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ABSTRACT 

A profound understanding of the infiltration dynamics into the vadose zone is crucial to our 

capacity to link surface and subsurface processes for the description of the hydrologic cycle. A 

key to establish reliable models describing the infiltration process is the knowledge of the soil 

hydraulic parameters. A promising approach to estimate soil hydraulic parameters is inverse 

modeling based on dynamic changes in soil water content (SWC). In this context, ground 

penetrating radar (GPR) has been recognized as a powerful geophysical technique in vadose zone 

hydrogeophysics, because SWC is strongly related to the soil bulk permittivity that can be 

precisely determined by GPR. The aim of this thesis is to investigate the feasibility of using time-

lapse GPR measurements obtained during infiltration events for vadose zone characterization 

with a special focus on the estimation of soil hydraulic parameters. 

 

A prerequisite for estimating soil hydraulic parameters based on GPR measurements obtained 

during infiltration events is that the GPR measurements should reliably reflect the transient SWC 

dynamics during and after infiltration events. To verify this, a 4-day infiltration experiment was 

performed at the rhizotron facility in Selhausen, Germany. SWC information at 0.2, 0.4, 0.6, 0.8, 

and 1.2 m depths were obtained by zero-offset profiling (ZOP) measurements from horizontal 

borehole GPR. Unfortunately, SWC information for the top 0.1 m of soil obtained by ZOP 

measurements was not reliable due to the strong interference between direct and refracted waves. 

To solve this problem, surface GPR measurements were additionally conducted. Dispersive 

guided waves were observed in the 500 MHz surface GPR data because the infiltration event 

generated electromagnetic waveguides in the top soil layer. This allowed to obtain SWC 

information of the top 0.1 m soil layer through dispersion analysis of the dispersive surface GPR 

data. By combining surface and horizontal borehole GPR measurements, the vertical SWC 

profiles (0 - 1.2 m) and dynamics were successfully represented during and after infiltration events. 

Additionally, it was found that the GPR-derived SWC corresponded well with independently 

measured SWC estimates obtained with time domain reflectometry (TDR) and the known amount 

of water applied in the infiltration events. 

 

In a next step, the performance of sequential and coupled inversion strategies for estimating 

hydraulic parameters from horizontal borehole GPR measurements during infiltration events was 

investigated. For this, a synthetic modelling study was performed first. The sequential inversion 

was based on measured SWC profiles obtained from the GPR travel times of the direct wave 

based on the straight-wave approximation and modelled SWC profiles obtained with HYDRUS-
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1D. Due to interpretation errors near the infiltration front and the soil surface associated with the 

straight-wave approximation, the sequential inversion scheme inaccurately estimated the soil 

hydraulic parameters in the synthetic modelling study. On the other hand, the coupled inversion 

scheme relied on the measured GPR travel time information and the simulated GPR travel times 

obtained by coupling HYDRUS-1D with a forward model describing GPR wave propagation 

(gprMax3D). As the interpretation errors from the straight-wave approximation were avoided, the 

coupled inversion scheme obtained accurate estimates of the soil hydraulic parameters in the 

synthetic modelling study. The coupled inversion approach was also applied to the actual 

horizontal borehole GPR measurements obtained during the 4-day infiltration experiment at the 

rhizotron facility, where it also provided plausible estimates of the hydraulic parameters. 

 

Finally, a synthetic modelling study was conducted to evaluate the potential advantages and 

shortcomings of coupled full waveform inversion (CFWI) of horizontal borehole GPR 

measurements for estimating soil hydraulic parameters and layer thickness for a 2-layer soil 

profile. Here, CFWI uses the full GPR waveform instead of the first arrival time, which is 

expected to provide additional information for parameter estimation. The results of the CFWI 

were compared to the coupled inversion of GPR travel times, as well as sequential inversion using 

SWCs from GPR travel times. A workflow of the CFWI was proposed and an efficient synthetic 

infiltration experiment was designed. The results for the synthetic experiment showed that CFWI 

allowed to accurately estimate layer thickness for a 2-layered soil profile in addition to the soil 

hydraulic parameters, because CFWI used additional information contained in reflected waves 

from the layer boundary. Moreover, the hydraulic parameter estimates from the coupled inversion 

of travel times exhibited a slight deviation from the true values and a relatively larger uncertainty 

in the hydraulic conductivity and retention functions. In contrast, the soil hydraulic parameters 

estimated by CFWI showed considerably smaller uncertainty and better matched with the known 

water retention and hydraulic conductivity curves. However, there are still several remaining 

challenges for the application of CFWI to measured GPR data. First, an effective approach for 

source wavelet estimation from measured ZOP data needs to be developed. Second, a 

sophisticated hydrological model combining the simulations of water flow and solute transport 

needs to be considered for CFWI to better estimate the electrical conductivity distributions during 

the infiltration process. Finally, the accuracy and especially the efficiency of the current GPR 

forward modelling method needs to be improved to enable CFWI for actual GPR data. 

 

In conclusion, the combined use of surface and horizontal borehole GPR measurements was able 

to provide accurate information on the spatiotemporal SWC variation induced by infiltration. This 
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allowed the use of sequential and coupled inversion approaches to obtain estimates of soil 

hydraulic parameters. It was found that coupled inversion outperforms sequential inversion for 

the estimation of the soil hydraulic parameter from time-lapse horizontal borehole GPR data if 

strong SWC gradients occurred during the infiltration events. In addition, it was shown that CFWI 

has several additional advantages over the coupled inversion of GPR travel time data, and thus 

could become a promising approach for characterizing soil hydraulic properties at the field scale 

after resolving several remaining challenges. 
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ZUSAMMENFASSUNG 

Ein tiefgreifendes Verständnis über die Infiltrationsdynamik in der ungesättigten Zone ist 

ausschlaggebend um ober- und unterirdische Prozesse miteinander zu verknüpfen und somit die 

Prozesse des hydrologischen Kreislaufs zu beschreiben. Ein Schlüssel bei der Erstellung 

zuverlässiger Modelle zur Beschreibung von Infiltrationsprozessen, ist die Kenntnis der 

bodenhydraulischen Parameter. Ein vielversprechender Ansatz zur Bestimmung der 

bodenhydraulischen Parameter ist die inverse Modellierung, die auf dynamischen Änderungen 

des Bodenwassergehalts (SWC) basiert. In diesem Zusammenhang wird Bodenradar (GPR) als 

eine vielversprechende geophysikalische Methode in der Hydrogeophysik der ungesättigten Zone 

angesehen, da der SWC stark mit der dielektrischen Permittivität des Bodens zusammenhängt, 

die mit GPR präzise bestimmt werden kann. Das Ziel dieser Arbeit ist es, die Anwendbarkeit von 

GPR während Infiltrationsereignissen und die Charakterisierung der ungesättigten Zone zu testen. 

Ein besonderer Fokus liegt hierbei auf der Abschätzung der bodenhydraulischen Parameter. 

 

Eine Voraussetzung für die Bestimmung bodenhydraulischer Parameter anhand von GPR-

Messungen während Infiltrationsereignissen, ist die korrekte Darstellung der instationären SWC-

Dynamik während und nach der Infiltrationsereignisse. Um dieses zu überprüfen, wurde ein 

viertägiges Infiltrationsexperiment auf der Rhizotron-Anlage in Selhausen, Deutschland, 

durchgeführt. SWC-Informationen in 0,2, 0,4, 0,6, 0,8 und 1,2 m Tiefe wurden durch Zero-Offset-

Profiling (ZOP)-Messungen in horizontalen Bohrlöchern gewonnen. Leider waren die SWC 

Informationen, die durch die ZOP-Messungen in den obersten 0,1 m des Bodens aufgenommen 

wurden, aufgrund der starken Interferenz zwischen direkten und gebrochenen 

elektromagnetischen Wellen nicht zuverlässig. Um dieses Problem zu lösen, wurden zusätzliche 

Oberflächen-GPR-Messungen durchgeführt. Dispers geführte Wellen wurden anhand der 500 

MHz Oberflächen-GPR-Daten beobachtet, da das Infiltrationsereignis elektromagnetische 

Wellenleiter in der obersten Bodenschicht generierten. Dies ermöglichte es, durch eine 

Dispersionsanalyse der Oberflächen-GPR-Daten SWC Informationen über die oberste 0,1 m 

mächtige Bodenschicht zu erhalten. Durch die Kombination von Oberflächen- und horizontalen 

Bohrloch-GPR-Messungen konnten die vertikalen SWC-Profile (0 - 1,2 m) und die Dynamik 

während und nach den Infiltrationsereignissen erfolgreich abgebildet werden. Darüber hinaus 

wurde festgestellt, dass die von GPR abgeleiteten SWC gut mit unabhängig gemessenen SWC 

Schätzungen übereinstimmten, die mit Zeitbereichsreflektometrie (TDR) und der bekannten 

Wassermenge, die bei den Infiltrationsereignissen aufgebracht wurde, ermittelt wurden. 

 

Im nächsten Schritt wurde die Leistungsfähigkeit von sequentiellen und gekoppelten 
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Inversionsstrategien zur Abschätzung der hydraulischen Parameter aus horizontalen Bohrloch-

GPR-Messungen während Infiltrationsereignissen untersucht. Hierfür wurde zunächst eine 

synthetische Modellstudie durchgeführt. Die sequentielle Inversion basierte dabei auf 

gemessenen SWC Profilen, die aus den GPR-Laufzeiten der direkten Welle basierend auf der 

Geradwellenapproximation gewonnen wurden, und modellierten SWC-Profilen die mit 

HYDRUS-1D generiert wurden. Aufgrund von Interpretationsfehlern in der Nähe der 

Infiltrationsfront und der Bodenoberfläche im Zusammenhang mit der 

Geradwellenapproximation schätzte das sequentielle Inversionsschema die bodenhydraulischen 

Parameter in der synthetischen Modellstudie ungenau. Andererseits stützte sich das gekoppelte 

Inversionsschema auf die gemessenen GPR-Laufzeitinformationen und die simulierten GPR-

Laufzeiten, die durch die Kopplung mit HYDRUS-1D zur Beschreibung der GPR-

Wellenausbreitung (gprMax3D) generiert wurden. Da dadurch die Interpretationsfehler aus der 

Geradwellenapproximation vermieden wurden, zeigte das gekoppelte Inversionsschema genauere 

Schätzungen der bodenhydraulischen Parameter in der synthetischen Modellstudie. Der 

gekoppelte Inversionsansatz wurde auch auf die tatsächlichen horizontalen Bohrloch-GPR-

Messungen angewandt. die während des viertägigen Infiltrationsexperiments auf der Rhizotron-

Anlage gewonnen wurden, wo dieser Ansatz ebenfalls zu plausible Schätzungen der 

hydraulischen Parameter führte. 

 

Schließlich wurde eine synthetische Modellstudie durchgeführt, um die potenziellen Vor- und 

Nachteile der gekoppelten Volle-Wellenform-Inversion (CFWI) von horizontalen Bohrloch-

GPR-Messungen zur Schätzung der bodenhydraulischen Parameter und der Schichtdicke für ein 

zweischichtiges Bodenprofil zu bewerten. Hierbei verwendet die CFWI die vollständige GPR-

Wellenform anstelle lediglich der ersten Ankunftszeit, was zusätzliche Informationen für die 

Parameterschätzung liefern sollte. Die Ergebnisse der CFWI wurden mit der gekoppelten 

Inversion von GPR-Laufzeiten sowie der sequentiellen Inversion mit SWCs aus GPR-Laufzeiten 

verglichen. Ein Arbeitsablauf der CFWI wurde vorgeschlagen und ein effizientes synthetisches 

Infiltrationsexperiment entworfen. Die Ergebnisse für das synthetische Experiment zeigten, dass 

CFWI zusätzlich zu den bodenhydraulischen Parametern eine genaue Schätzung der Schichtdicke 

für ein zweischichtiges Bodenprofil ermöglichte, da die CFWI zusätzliche Informationen 

verwendete, die in reflektierten Wellen von der Schichtgrenze enthalten waren. Darüber hinaus 

wiesen die hydraulischen Parameterschätzungen aus der gekoppelten Inversion der Laufzeiten 

eine leichte Abweichung von den wahren Werten und eine verhältnismäßig höhere Unsicherheit 

bei den hydraulischen Leitfähigkeits- und Retentionskurven auf. Im Gegensatz dazu zeigten die 

durch CFWI geschätzten bodenhydraulischen Parameter eine wesentlich geringere Unsicherheit 



 

 

 

VII 

 

und stimmten besser mit den bekannten Wasserretentions- und hydraulischen 

Leitfähigkeitskurven überein. Allerdings gibt es noch einige verbleibende Herausforderungen für 

die Anwendung von CFWI für gemessene GPR-Daten. Erstens muss ein effektiver Ansatz für die 

Bestimmung des Quellsignals aus gemessenen ZOP-Daten entwickelt werden. Zweitens muss ein 

anspruchsvolles hydrologisches Modell, das die Simulationen des Wasser- und des 

Stofftransports kombiniert für CFWI in Betracht gezogen werden, um die Verteilungen der 

elektrischen Leitfähigkeit während des Infiltrationsprozesses besser abzuschätzen. Schließlich 

muss die Genauigkeit und insbesondere die Effizienz der aktuellen GPR-

Vorwärtsmodellierungsmethode verbessert werden, um CFWI für aktuelle GPR-Daten zu 

ermöglichen. 

 

Zusammenfassend lässt sich sagen, dass die kombinierte Verwendung von Oberflächen- und 

horizontalen Bohrloch-GPR-Messungen in der Lage war, genaue Informationen über die 

raumzeitliche SWC-Variation zu bestimmen, die durch Infiltration induziert wird. Dies 

ermöglichte die Verwendung von sequentiellen und gekoppelten Inversionsansätzen, um 

Schätzungen der bodenhydraulischen Parameter zu erhalten. Es wurde festgestellt, dass die 

gekoppelte Inversion die sequenzielle Inversion für die Schätzung der bodenhydraulischen 

Parameter aus horizontalen Bohrloch-GPR-Daten im Zeitraffer übertrifft, wenn starke SWC-

Gradienten während der Infiltrationsereignisse auftraten. Darüber hinaus wurde gezeigt, dass 

CFWI mehrere zusätzliche Vorteile gegenüber der gekoppelten Inversion von GPR-Laufzeitdaten 

hat und somit, nach dem Lösen einige verbleibende Herausforderungen, ein vielversprechender 

Ansatz für die Charakterisierung der bodenhydraulischen Eigenschaften auf der Feldskala werden 

könnte 
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CHAPTER 1 GENERAL INTRODUCTION 

1.1 Research background 

Water is one of the most important natural resources for the survival and development of human 

civilization. Although there is a large amount of water on Earth, only ~2.5% is fresh water (Oki 

and Kanae, 2006) that can be cheaply and directly used in our daily life for drinking, sanitation, 

and production purposes. Ground water makes up 30% of total fresh water or 95% of unfrozen 

fresh water (Gleick, 1993), which implies that it plays a central part in enabling human adaptation 

and maintaining ecosystems (Taylor et al., 2013). The vadose zone is the unsaturated portion that 

lies between the land surface and the ground water table. It controls the exchange and distribution 

of water and energy flux at the land surface (Vereecken et al., 2008). With the rapidly growing 

global population, the sustainable use of ground water resources has become a critical issue (Singh, 

2014), and therefore, scientifically-based management of ground water resources and effective 

remediation of ground water contamination are increasingly demanded. To achieve these goals, a 

key point is to estimate the soil hydraulic parameters of the vadose zone, which can be used to 

inform state-of-the-art hydrological models for simulating water flow and contaminant transport 

for the areas of interest (Jhorar et al., 2009; Singh, 2010; Zhu et al., 2013).  

  

Soil hydraulic properties can be determined by various laboratory methods (e.g., Hsieh et al., 

1981; Neuzil et al., 1981; Tamari et al., 1993), which are in general tedious and time-consuming. 

Additionally, hydraulic properties estimated from laboratory methods typically represent a 

relatively small volume, which may poorly represent the soil characteristics at the field scale 

(Kool et al., 1987) because the variation of natural soil conditions (e.g., soil texture and structure, 

bulk density, or soil organic carbon content) generates considerable spatiotemporal variability of 

the soil hydraulic properties. This scale effect can be further illustrated by using the concept of 

the representative elementary volume (REV) (Bear, 1972; Chen and Wagenet, 1992). Hereby, the 

REV indicates a volume that is representative to a certain extent if the soil state does not vary 

substantially with a change of scale (Wessel-Bothe and Weihermüller, 2020). Possible relations 

between a soil property and the characteristic length are shown in Fig. 1.1. For a continuous 

hierarchy and in the transition zones of a discrete hierarchy, soil properties obtained from 

laboratory methods and point sensors that have small REV will be not representative for the next 

larger scale (e.g., the field scale). Moreover, it is likely that sample preparation and the operation 

of the laboratory experiment introduce additional uncertainty in the hydraulic parameters 
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(Sonnleitner et al., 2003). Hence, field-scale estimation of soil hydraulic properties is preferred 

for establishing a realistic hydrological model. 

 

 

Fig. 1.1 The dependency of a soil property on characteristic length for two different types of 

spatial heterogeneity (adapted from Zurmühl (1994)). 

For the estimation of the saturated hydraulic conductivity of soil, infiltration experiments 

performed by ring infiltrometers (single ring and double ring) (e.g., Bagarello and Sgroi, 2004; 

Fatehnia et al., 2016; Lai and Ren, 2007; Verbist et al., 2010; Youngs, 1987) and tension-disc 

infiltrometers (e.g., Angulo-Jaramillo et al., 2000; Šimůnek et al., 1998) have been widely used, 

since the infiltration rate of water into the soils is strongly related to the soil hydraulic conductivity. 

Generally, single ring infiltrometers can efficiently measure the saturated hydraulic conductivity 

(e.g., Di Prima, 2016; Prieksat et al., 1992). Due to the lateral water flow below the ring, the rate 

of infiltrated water determined using a single ring overestimates the saturated hydraulic 

conductivity (Wessel-Bothe and Weihermüller, 2020). Sophisticated modelling approaches are 

needed to obtain more accurate estimates of the saturated hydraulic conductivity from such 

experiments (e.g., Verbist et al., 2013). To prevent lateral water flow, double ring infiltrometers 

were introduced and recognized as an economical technique for conducting soil infiltration 

experiments. A disadvantage of both single ring and double ring infiltrometers is that the saturated 

hydraulic conductivity in soils having macropores (e.g., wormholes and cracks) may be 

overestimated (Yolcubal et al., 2004), because a large amount of ponded water may infiltrate 

through these macropores. Tension-disc infiltrometers measure both unsaturated and 

(near-)saturated hydraulic conductivity at a negative pressure. Compared to ring infiltrometers, 

tension-disc infiltrometers require less water and cause less disturbance of the soil surface while 
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avoiding the influence of macropores (Yolcubal et al., 2004). A challenge with tension-disc 

infiltrometer measurements is the need for a completely flat surface. This can be solved by using 

contact materials between the soil surface and the infiltrometer (e.g., Reynolds and Zebchuk, 

1996). On the other hand, such a contact layer may introduce flow impedance effects and therefore 

result in the underestimation of the hydraulic conductivity, especially at high infiltration rates 

(Reynolds et al., 2000). 

 

Classical infiltration experiments are useful to estimate the saturated hydraulic conductivity or 

the unsaturated hydraulic conductivity at a predefined pressure head. Nevertheless, they cannot 

provide information about the soil water retention characteristics (e.g., the pore-size distribution). 

To estimate water retention characteristics, either soil matric potential or soil water content (SWC) 

measurements can be used in combination with an inversion scheme (e.g., Ritter et al., 2003; 

Šimůnek and van Genuchten, 1996). SWC measurements have several advantages over soil 

matric potential measurements to estimate soil hydraulic parameters (Vereecken et al., 2008). 

First of all, SWC measurements are commonly non-or/minimally invasive and can be conducted 

at different scale with high temporal and spatial resolution, while soil matric potential can only 

be measured at the point-scale. In addition, soil matric potential is not easy to measure accurately 

and the measurement range and/or resolution over the entire pressure head range is limited. 

Therefore, SWC measurements are often preferred for characterizing soil hydraulic properties 

(e.g., Angulo-Jaramillo et al., 1996; Malicki et al., 1992). 

1.2 SWC determination with point sensors 

Conventional SWC measurements are performed with point sensors, such as the neutron probe 

(Chanasyk and Naeth, 1996), time domain reflectometry (TDR) (Topp et al., 1980), capacitance 

sensors (Dean et al., 1987), or time domain transmission sensors (TDT) (Blonquist Jr. et al., 2005). 

The neutron probe is a classical nuclear technique that estimates the SWC by measuring the 

thermal or slow neutron density (Schmugge et al., 1980). With access tubes, SWC can be 

determined as a function of depth. TDR determines the relative dielectric permittivity of the soil 

from the propagation velocity of an electromagnetic wave determined from the travel time along 

a sensor with a known length. Using the strong relationship between bulk permittivity and SWC 

(e.g., Topp et al., 1980; Roth et al., 1990), TDR allows accurate SWC measurements. In addition, 

TDR allows to measure SWC and bulk electrical conductivity simultaneously (e.g., Dalton et al., 

1984; Noborio, 2001; Yu and Drnevich, 2004; Zegelin et al., 1989). As cheaper alternatives to 

TDR, capacitance and TDT sensors measure SWC with lower accuracy. TDR, capacitance and 

TDT sensors have been widely utilized in hydrology and soil science for flexible measurements 
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of SWC, such as monitoring of liquid movements (e.g., Cataldo et al., 2007; Paltineanu and Starr, 

2000; Topp and Davis, 1981) and revealing SWC variation during the infiltration (e.g., Blonquist 

Jr. et al., 2006; Greco, 2006). Moreover, SWC sensors have been used to build sensor networks 

for long-term SWC measurements at the field scale (e.g., Bogena et al., 2007; Bogena et al., 2010; 

Qu et al., 2013; Weihermüller et al., 2013). A key disadvantage of all point sensors, and especially 

of most capacitance and TDT sensors is the relatively small sensing volume that results in poor 

spatial representativeness. 

1.3 SWC determination with geophysical methods 

In the last decades, geophysical techniques, such as electrical resistivity tomography (ERT), 

ground penetrating radar (GPR), electromagnetic induction (EMI), and the cosmic-ray neutron 

probe (CRNP) have been rapidly developed and widely used for SWC determination. ERT and 

EMI provide the apparent electrical conductivity of the subsurface, which is a weighted average 

of the soil bulk electrical conductivity with depth (Corwin and Scudiero, 2020). Since the soil 

bulk conductivity depends on SWC (e.g., Archie, 1942; Rhoades et al., 1976), apparent electrical 

conductivity measurements from ERT or EMI can potentially be used to estimate SWC. In 

particular, ERT is a well-established technique to monitor 2D/3D SWC dynamics with a high 

resolution (e.g., Beff et al., 2013; Brunet et al., 2010, Jouen et al., 2008; Kemna et al., 2002). 

Another advantage of ERT is the relatively large investigation depth (0 ~ 10 m) (e.g., Chambers 

et al., 2014). EMI has advantages with respect to mobility and efficiency, and allows rapid SWC 

estimation of larger areas up to a scale of ~ 1 km2 (e.g., Altdorff et al., 2017). Unfortunately, ERT 

and EMI are also sensitive to several other confounding factors such as clay content and pore 

water salinity (Klotzsche et al., 2019a), which makes SWC estimation complicated. CRNP is a 

novel technique that estimates SWC by measuring the fast neutron flux near the soil surface, using 

the fact that the count of near-surface fast neutrons is negatively correlated with SWC (Zreda et 

al., 2008). The most attractive advantage of CRNP is the relatively large measurement volume. 

The horizontal footprint of CRNP is related to the air density and has an approximate radius of 

130 – 240 m at sea level (Köhli et al., 2015). A clear disadvantage of CRNP is that the method is 

not only sensitive to the water contained in the soil but to all hydrogen in the footprint (e.g., lattice 

water, atmospheric water vapor, snow cover, and water in and on vegetation) (Zreda et al., 2012). 

In addition, a further critical point is that the measurement depth of CRNP is strongly related to 

SWC (Zreda et al., 2008). For wet soils, the measurement depth is shallow and limited to ~0.12 

m (Franz et al., 2013). 
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GPR is a non-invasive method that uses high frequency (10 ~ 2500 MHz) electromagnetic (EM) 

waves to investigate soils and deeper geological features (Daniels, 2005). To conduct GPR 

measurements, EM signals are emitted by transmitter antenna and are then propagating through 

the subsurface and will be finally received by receiver antenna as a function of time. After 

processing these signals, the bulk dielectric permittivity 𝜀 (-) (related to the velocity of EM waves) 

and soil electrical conductivity 𝜎 (S m-1) (related to the attenuation of the EM wave) can be 

estimated. A major advantage of GPR compared to ERT and EMI is the strong relationship soil 

bulk permittivity and SWC that is relatively independent of confounding factors (Huisman et al., 

2003a; Klotzsche et al., 2018; Liu et al., 2019). Furthermore, GPR also has a good mobility and 

allows rapid investigations of larger scales with profiles up to 1000 m length (e.g., 

Mahmoudzadeh Ardekani, 2013). With the help of borehole tubes, GPR can measure the SWC at 

deep depths with a very high resolution (e.g., Alumbaugh et al., 2002). Therefore, GPR is a 

popular technique for providing high-resolution subsurface characterization and addressing 

water-related problems at different scales (e.g., Cao et al., 2020; Grote et al., 2010; Lambot et al., 

2004). The most common GPR measurement strategies include surface GPR, off-ground GPR, 

and borehole GPR, which will be reviewed in the following section. 

1.4 SWC determination with GPR 

1.4.1 SWC determination with surface GPR  

Surface GPR is the most widely-used GPR configuration. In this configuration, the transmitter 

and receiver antennas (e.g., Beres Jr. and Haeni, 1991; Kaufmann et al., 2020) are in full contact 

with the soil surface. To perform a successful surface GPR survey, a compromise between 

resolution and depth penetration should be found, because the resolution of the GPR improves 

with increasing antenna center frequency but high frequency GPR signals exhibit stronger 

attenuation, and thus, have limited penetration depth, especially in high-conductivity soils 

(Huisman et al., 2003a). Therefore, it is important to have at least a rough knowledge of the soil 

texture at the measurement location to properly select the GPR antennas to be used. 

 

Surface GPR waves propagate along different paths in the soil. In order to determine the velocity 

and attenuation of these waves, several data acquisition strategies can be employed (Davis and 

Annan, 1989), such as common offset profiling (COP) (Fig. 1.2a), wide angle reflection and 

refraction (WARR) (Fig. 1.2b), and common midpoint (CMP) (Fig. 1.2c) measurements. COP 

measurements are carried out by moving the transmitter and receiver with a fixed spacing. Data 

processing approaches developed for seismic data, such as the semblance method for velocity 
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analysis (Yilmaz, 2001) and migration (e.g., Fisher et al., 1992) can also be used for GPR. For 

COP data, many GPR data analysis programs provide workflows to interactively extract GPR 

wave velocity by manually fitting a hyperbola to the hyperbolic reflection of scattering objects 

(Fig. 1.2d). COP measurements are commonly used for mapping soil layering (e.g, Dal Bo et al., 

2019) or detecting buried targets (e.g, Liu et al., 2018; Porsani et al., 2012). However, they are 

not widely used for SWC determination because the calculation of the radar velocity to obtain the 

dielectric permittivity for SWC estimation requires the presence of scattering objects or 

knowledge of the layer depth (Huisman et al., 2003a).  

 

 

Fig. 1.2 Schematic illustration of (a) common offset profiling (COP), (b) wide angle reflection 

and refraction (WARR), and (c) common midpoint (CMP) measurements. (d) Typical measured 

COP data for pipe detection. The hyperbola indicates the reflection of a steel pipe (modified 

version from Wiwatrojanagul et al., 2017). (e) Typical measured CMP data showing different 

types of GPR waves (modified version from Huisman et al., 2003a). (f) Typical measured CMP 

data showing dispersion characteristics associated with guided waves (adapted from van der Kruk 

et al., 2009a). 

WARR measurements are conducted by fixing the transmitter at one position and moving the 

receiver with fixed steps. In CMP measurements, the transmitter and receiver antennas are moved 

simultaneously with a fixed spacing in different direction, while keeping a common mid-point. 

The air wave, ground wave, and reflected wave are typical wave paths that can easily be identified 

in WARR and CMP data (Fig. 1.2e). The air wave propagates directly from transmitter to the 

receiver through the air. It can thus be recognized as a straight line in WARR and CMP data with 

a slope that is equal to the speed of light (0.3 m ns-1). Given the known travel time, the air wave 
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is commonly employed to determine the beginning of the effective signal (zero time) for GPR 

data (Grote et al., 2005). SWC can be accurately estimated from WARR/CMP measurements by 

using the velocity of ground waves, reflected waves, and guided waves. The ground wave directly 

travels from transmitter to receiver through the shallow subsurface, and thus, shows potential to 

obtain SWC of the shallow subsurface. Huisman et al. (2001) investigated the use of the ground 

wave for SWC determination. In this case, 25 WARR measurements were conducted and the 

SWC was estimated from the velocity of the ground waves and compared to SWC estimates 

obtained with TDR. It was found that the accuracy of SWC determination from GPR ground 

waves (± 0.03 cm3 cm-3) was comparable with that of the TDR measurements. As the ground 

wave can be easily recognized in CMP/WARR data even in the absence of soil layering, the 

ground wave method has been widely used to estimate and map shallow SWC (e.g., Algeo et al., 

2016; Huisman et al., 2002; van Overmeeren et al.,1997; Weihermüller et al., 2007). However, a 

major disadvantage of the ground wave method is that the sampling volume of the estimated SWC 

cannot be precisely obtained, because the penetrating depth of the ground wave can only be 

estimated empirically (e.g., Grote et al., 2010, van Overmeeren et al., 1997). 

 

As an alternative, SWC can also be estimated from the velocity of reflected waves if a reflecting 

soil layer exists in the subsurface. The reflected wave in CMP/WARR data is hyperbolic-shaped 

(Fig. 1.2e). The velocity of reflected waves in CMP/WARR data can be obtained by semblance 

analysis or fitting a hyperbola. Reflected waves provide estimates of the average SWC to the 

depth of the reflecting layer (e.g., Lunt et al., 2005; Mangel et al., 2012; Mangel et al., 2020). For 

soils with multiple reflecting layers (e.g., Grote et al., 2005), the SWC of each layer can be 

estimated from the interval velocity of the different layers obtained by solving Dix’s equation 

(Dix, 1955). As in the case of COP measurements, SWC determination from reflected waves 

relies on the presence of reflectors in the subsurface, which are likely to vary over time and across 

space. Therefore, the measurement resolution of the reflection method cannot be controlled. 

Moreover, the reflected wave has a relatively weak amplitude compared to other waves, and thus, 

is more sensitive to noise and interference from other waves. 

 

In situations where the subsurface shows pronounced layering, such as ice overlying unfrozen 

soil (e.g., Arcone, 1984), a guided wave can be generated in a waveguide layer. In particular, this 

commonly occurs if the layer thickness is similar or smaller than the radar wavelength (van der 

Kruk et al., 2006a). As in the case of Rayleigh or Love waves in seismic data, guided waves 

obtained by GPR are characterized by dispersion due to differences between the group and phase 

velocities (Fig. 1.2f). In this case, traditional ground wave and reflection methods cannot be 
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employed for SWC determination. Instead, waveguide properties such as the permittivity of 

waveguide layer, permittivity below this layer, and the waveguide thickness can be estimated by 

inverting the phase velocity of the guided wave (dispersion analysis) (e.g., Mangel et al., 2015;van 

der Kruk et al., 2009b; van der Kruk et al., 2010). A specific case for the application of dispersion 

analysis is to monitor water dynamics during infiltration (Cassiani et al., 2009; Mangel et al., 

2017), since this is commonly associated with a transition from wet to dry soil that can serve as 

the waveguide boundary. Although, guided waves allow to estimate SWC within the waveguide 

as well as the thickness of the waveguide, the SWC estimates below the waveguide are rather 

inaccurate, especially when the waveguide layer shows strong vertical heterogeneity (Strobbia 

and Cassiani, 2007) or in the case of noisy GPR data (Bikowski et al., 2012). 

 

1.4.2 SWC determination with off-ground GPR 

Off-ground GPR is measured by using one or more antennas at a given height above the ground 

surface. The antennas are commonly mounted on a vehicle (e.g., Lambot et al., 2004), drone (Wu 

et al., 2019), or helicopter (Bradford et al., 2010) to provide mobility. Both monostatic and bistatic 

radar systems can be employed for off-ground GPR data collection (e.g., Rutishauser et al., 2016). 

In the first off-ground GPR applications, a time-domain approach to estimate SWC from the 

reflection coefficient of the ground surface was used (e.g., Redman et al., 2002; Serbin and Or, 

2005). However, this approach assumes that the soil material is uniform and lossless (Lambot et 

al., 2006a; Leng and Al-Qadi, 2014), and thus may lead to inaccurate SWC determination if the 

soil surface is not smooth or if SWC varies with depth (Huisman et al., 2003a). Lambot et al. 

(2004) proposed a new integrated frequency-domain approach based on the use of an ultrawide 

band stepped frequency continuous wave radar combined with a dielectric filled transverse 

electric and magnetic horn antenna and full waveform inversion. This method can be employed 

for estimating a depth dependent SWC profile (Lambot et al., 2006a) and is suitable for mapping 

SWC distribution at larger scales. Nevertheless, this method is still prone to the influence of 

surface roughness, which can be theoretically corrected (e.g., Jonard et al., 2012) if the roughness 

is known from independent measurements or if independent SWC are available to estimate the 

correction term. For both time-domain and full waveform inversion approaches to interpret off-

ground GPR measurements, the signal (backscatter) is impacted by the vegetation, which also has 

to be accounted for (e.g., Mahmoudzadeh Ardekani et al., 2016). 

 

1.4.3 SWC determination with borehole GPR 

Off-ground and surface GPR are less suitable for obtaining SWC information from deep soil 
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horizons (Klotzsche et al., 2018) because strong reflectors (e.g., soil – air interface or bedrock) 

and highly conductive soil (e.g., clay or saline soils) impede the transmission of radar energy. A 

feasible approach to overcome this limitation is to measure GPR in vertical or horizontal 

boreholes (borehole GPR). Generally, borehole GPR measurements can be conducted by using 

zero-offset profiling (ZOP) or multi-offset gathers (MOG). In the case of ZOP measurements (Fig. 

1.3a), the transmitter and receiver are moved simultaneously with the same step size in two 

different boreholes to obtain 1D profile information between the boreholes. Classically, velocity 

estimates and thus the SWC obtained with ZOP measurements is based on the straight-wave 

approximation. After determining the first arrival time of the direct wave propagating between 

the boreholes, depth-dependent velocity estimates can be obtained using the known borehole 

distance. ZOP measurements are promising for monitoring SWC within the subsurface, but the 

coexistence of multiple travel paths can result in inaccurate SWC estimates (Rucker and Ferré, 

2004a). For example, interference of the critically refracted air wave and the direct wave occurs 

at shallow borehole depths (Klotzsche et al., 2019a). Several recent studies have used ZOP GPR 

measurements between horizontal boreholes to monitor seasonal depth-dependent SWC 

variations (Cai et al., 2016; Klotzsche et al., 2019a). Due to the good control on vertical resolution 

and the improved field representativeness, this type of set up can provide detailed information to 

reveal the spatial and temporal variation of SWC. 

 

 

Fig. 1.3 Schematic diagrams for (a) ZOP and (b) MOG measurements (adapted from Klotzsche 

et al., 2019b). 

MOG measurements (Fig. 1.3b) have been used to obtain a 2D SWC distribution between the 

boreholes (e.g., Binley et al., 2001). MOG measurements are conducted by fixing the transmitter 

in a borehole at different depths, while moving the receiver down or up with a constant spacing 
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in other boreholes. The traditional procedure for inverting MOG data is based on geometrical ray 

theory (Peterson, 2001). MOG measurements can map 2D or even 3D SWC distribution with a 

high resolution but are associated with long acquisition times. Therefore, MOG measurements 

are promising for imaging steady-state water distributions but are less suitable for monitoring 

dynamic SWC variations caused by e.g., rapid infiltration. 

 

With the increase of computation power, GPR data processing strategies have advanced in the 

past decade. In particular, the development of the full waveform inversion (FWI) has allowed 

improved interpretation of both surface and borehole GPR measurements. Instead of only 

extracting the velocity information from GPR data, as in the case of traditional ray-based methods, 

FWI takes the entire GPR waveform into consideration. Hence, it theoretically allows the 

mapping of the SWC distribution in the subsurface with a higher resolution (Klotzsche et al., 

2018). For surface and off-ground GPR, FWI approaches are mainly reported to characterize 

layered soils (e.g., Busch et al., 2012; Lambot and Andre, 2014; Minet et al., 2011). For vertical 

borehole GPR, FWI has become a well-established technique to obtain high resolution subsurface 

images (e.g., Gueting et al., 2017; Klotzsche et al., 2014; Meles et al., 2010). In the case of 

horizontal borehole GPR measurement, only a few studies with FWI have been reported. A 

preliminary study is presented by Klotzsche et al. (2016) about using FWI to obtain 𝜀 and 𝜎 for a 

2-layer soil profile with horizontal borehole GPR data. 

1.5 Hydrological model parameterization 

1.5.1 Unsaturated water flow in porous media 

Reliable predictions of water flow in the vadose zone are the prerequisite for water resources 

management and effective contaminant remediation. The 1D unsaturated water flow in porous 

media can be described by the Richards equation:  

𝜕𝜃(ℎ)

𝜕𝑇
=  

𝜕

𝜕𝑧
[𝐾𝑟(ℎ) (

𝜕ℎ

𝜕𝑧
+ 1)] − 𝑆                          (1.1) 

where 𝜃(ℎ) is the water retention function that describes the relationship between the volumetric 

SWC (𝜃) (cm3 cm-3) and the pressure head (ℎ) (cm) , 𝑇 is time (min), 𝑧 represents the positive 

upward spatial coordinate (cm), and 𝐾𝑟 is the hydraulic conductivity (cm min-1) as a function of 

ℎ. The sink term 𝑆 (cm3 cm-3 min-1) is the volume of water removed from a unit volume of soil 

due to root water uptake. The soil water retention function (𝜃(ℎ)) and the hydraulic conductivity 

function (𝐾𝑟(ℎ)) are crucial properties to assess soil water fluxes (Vereecken et al., 2008). These 
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two functions are often parameterized by using the Mualem - van Genuchten (MvG) model 

(Mualem, 1976; van Genuchten, 1980) as: 

 

 𝜃(ℎ) =  {
𝜃𝑟 +

𝜃𝑠−𝜃𝑟

(1+|𝛼ℎ|𝑛)𝑚     , ℎ < 0

     𝜃𝑠                          , ℎ ≥ 0
                                          (1.2) 

𝐾𝑟(ℎ) = 𝐾𝑠𝑆𝑒
𝑙 [1 − (1 − 𝑆𝑒

1/𝑚
)𝑚]2                                         (1.3) 

𝑆𝑒 =  
𝜃−𝜃𝑟

𝜃𝑠−𝜃𝑟
                                                               (1.4) 

where, 𝜃𝑟 and 𝜃𝑠 are the residual and saturated SWC (cm3 cm-3), respectively. 𝛼 (cm-1) is related 

to the inverse of the air-entry pressure. 𝑛 (-) is the pore-size distribution index, and 𝑚 (-) is related 

to 𝑛 by 𝑚 = 1 −
1

𝑛
. 𝑙 (-) is the empirical pore-connectivity parameter (tortuosity)  commonly set 

to 0.5 (van Genuchten, 1980) but can also be estimated for individual soils (Schaap and Leij, 

2000) ,  𝐾𝑠 (cm min-1) is the saturated hydraulic conductivity and 𝑆𝑒 (-)  is the effective saturation.  

 

HYDRUS-1D (Šimůnek et al., 2008) is a widely used finite-element model to numerically 

simulate water flow in the vadose zone. Since HYDRUS-1D is in the public domain and can be 

downloaded freely, it has been widely employed in a range of agriculture applications (Šimůnek 

et al., 2016), including studying root water uptake process (e.g., Cai et al., 2018a) and modelling 

contaminant transport (e.g., Wehrhan et al., 2007). HYDRUS-1D has also been used in 

combination with geophysical data in order to determine the MvG parameters (e.g., Busch et al., 

2013; Moghadas et al., 2013) using different inversion strategies. 

 

1.5.2 Inversion strategies for combining hydrological models and geophysical data 

Since geophysical measurements cannot directly provide SWC information, sequential 

(uncoupled) inversion and coupled inversion approaches have been used for hydrological model 

parameterization with geophysical data (Hinnell et al., 2010; Huisman et al., 2010). Sequential 

inversion generally consists of three steps. First, geophysical data (e.g., GPR data) are inverted to 

obtain the geophysical properties (e.g., 𝜀 and 𝜎) throughout the subsurface of the region of interest. 

Next, a petrophysical relationship (e.g., Topp et al., 1980) is adopted to obtain the spatiotemporal 

distribution of hydrologic states (e.g., SWC) from measured geophysical properties. Finally, the 

obtained hydrologic states are used to parameterize a hydrological model by inverse modelling. 

Sequential inversion is an efficient approach that can directly use geophysical data to parameterize 

hydrological models. Many studies have used a sequential inversion approach to estimate 

hydraulic parameters from GPR data (e.g., Cassiani et al., 2009; Chen et al., 2004; Looms et al., 
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2008a). However, a major disadvantage of the sequential inversion approach is that the 

interpretation errors that occur during the data processing and the uncertainties related to 

parameter resolution and uniqueness are propagated into the hydraulic parameter estimation 

through the petrophysical relation. Due to the propagation of such interpretation errors, sequential 

inversion is likely to provide erroneous hydraulic parameters. 

 

To improve hydrologic model parameter estimation, coupled inversion has been proposed. In this 

approach, the output of the hydrological model (e.g., SWC) is used to obtain the simulated 

geophysical data (e.g., GPR travel times or waveforms). Hence, the measured geophysical data 

do not have to be processed to obtain the SWC and the optimization is directly carried out between 

measured and simulated geophysical data. Coupled inversion thus avoids the propagation of 

interpretation errors and parameter uncertainty related to the data resolution. However, it requires 

a good hydrological model conceptualization and is associated with significantly higher 

computational costs. In the last decade, coupled inversion of GPR data has increasingly been used 

to parameterize hydrological models (e.g., Jadoon et al., 2012; Jonard et al., 2015). An early 

example for the estimation of field-scale hydraulic parameters through coupled inversion of GPR 

data was presented by Kowalsky et al. (2005). In this case, a heterogeneous distribution of 

hydraulic conductivity was estimated using coupled inversion of time-lapse borehole GPR data. 

In conclusion, coupled inversion is expected to be a more reliable approach for estimating soil 

hydraulic parameters from geophysical data compared to the more widely used sequential 

inversion approach. 

 

It is anticipated that a combination of full waveform and coupled inversion will further increase 

the information content of GPR measurements, and thus reduce uncertainty in the estimated 

hydraulic parameters. However, there are only a few studies that combined coupled and full 

waveform inversion (CFWI) for hydrological parameterization. Lambot et al. (2009) used 

coupled FWI of time-lapse off-ground GPR data to estimate the soil hydraulic parameters during 

an infiltration experiment. Li et al. (2020) presented a series of synthetic modelling studies that 

showed how coupled FWI of time-lapse seismic data can be used to obtain the 2D distribution of 

the saturated hydraulic conductivity. In future studies, CFWI needs to get more attentions and the 

advantages of CFWI need to be recognized by more synthetic or actual case studies. 
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1.6  Objectives and outline 

The overall aim of this thesis is to investigate the use of GPR for vadose zone characterization 

with a particular focus on the determination of soil hydraulic properties from time-lapse GPR data 

measured during infiltration events. Especially, I intend to use this thesis to explore the 

advantages of coupled inversion since the coupled inversion approach is still not well recognized 

and widely used. To achieve this overall aim, the thesis is divided in three parts that have their 

own specific aim.  

 

The first part (Chapter 2) aims to evaluate the feasibility of using surface and horizontal borehole 

GPR data to reveal the transient dynamics of soil water distribution during an infiltration 

experiment conducted at a minirhizotron facility in Selhausen, Germany. In particular, SWC 

variations at 0.2, 0.4, 0.6, 0.8, and 1.2 m depth are estimated using ZOP measurements with 

horizontal borehole GPR. In addition, dispersion analysis of guided waves is employed to 

determine the SWC for the top 0.1 m soil. By combining the complementary borehole and surface 

GPR data, representative vertical SWC profiles (0 –1.2 m depth) are obtained before, during, and 

after the infiltration events. Finally, the SWC profiles obtained by GPR will be compared with 

the known water storage changes during the infiltration experiment. A good correspondence 

would indicate that the measured GPR data are useful for characterizing the properties of the 

vadose zone. 

 

The second part (Chapter 3) aims to compare the performance of sequential and coupled inversion 

strategies for estimating hydraulic parameters from horizontal borehole GPR travel time data. In 

a first step, the differences between sequential and coupled inversion for GPR travel times will 

be systematically studied using a synthetic infiltration event based on the actual experiment 

introduced in Chapter 2. Synthetic SWC data and GPR data will be obtained and the correlations 

between different pairs of hydraulic parameters will be revealed based on the synthetic data.  Next, 

sequential and coupled inversion will be applied to the synthetic data and their results will be 

compared to determine which inversion scheme is more suitable for inverting measured GPR data. 

Finally, an appropriate inversion approach will be used to invert the actual GPR measurements, 

and the inversely estimated soil hydraulic properties will be compared with independent hydraulic 

parameters estimated by other methods to assess the reliability of the inversion. In addition, the 

uncertainty of the inverted soil hydraulic parameters will be quantified. 

 

The third part (Chapter 4) aims to investigate potential benefits and shortcomings of a coupled 
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full-waveform inversion (CFWI) for estimating soil hydraulic parameters and layer thickness for 

a 2-layer profile using synthetic horizontal borehole GPR data. For this, synthetic SWC, GPR 

travel time and waveform data will be obtained and the correlations between the layer thickness 

and hydraulic parameters will be analyzed for the inversions with different types of data. Next, 

CFWI will be performed with synthetic data to estimate the hydraulic parameters and layer 

thickness for a 2-layer model. The estimated parameters and their uncertainty will be compared 

with those obtained from the standard coupled inversion of GPR travel time data. Finally, the 

limitations of CFWI will be discussed and solutions to improve the CFWI will be proposed. 

 

The conclusions of this thesis as well as the prospects for future research will be summarized in 

Chapter 5. 
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CHAPTER 2 MEASURING VERTICAL SOIL WATER 

CONTENT PROFILES BY COMBINING HORIZONTAL 

BOREHOLE AND DISPERSIVE SURFACE GROUND 

PENETRATING RADAR DATA1 

Abstract 

To investigate transient dynamics of soil water redistribution during infiltration, horizontal 

borehole and surface ground penetrating radar (GPR) measurements were conducted during a 4-

day infiltration experiment at the rhizontron facility in Selhausen, Germany. Zero-offset GPR 

profiling (ZOP) in horizontal boreholes was used to obtain soil water content (SWC) information 

at specific depths (0.2, 0.4, 0.6, 0.8, and 1.2 m). However, horizontal borehole GPR measurements 

do not provide accurate SWC estimates of the top soil (0 – 0.1 m depth) because of interference 

between direct and critically refracted waves. Therefore, surface GPR data were additionally 

acquired to estimate SWC of the top soil. Due to the generation of electromagnetic waveguides 

in the top soil caused by infiltration, a strong dispersion in the GPR data was observed in 500 

MHz surface GPR data. A dispersion inversion was thus performed with these surface GPR data 

to obtain SWC information for the top 0.1 m of the soil. By combining the complementary 

borehole and surface GPR data, vertical SWC profiles were obtained, which were used to 

investigate vertical soil water redistribution. Reasonable consistency was found between the GPR 

results and independent SWC data derived from time domain reflectometry (TDR) measurements. 

Because of the improved spatial representativeness of the GPR measurements, the SWC profiles 

obtained by GPR better matched the known water storage changes during the infiltration 

experiment. It was concluded that the combined use of borehole and surface GPR data 

convincingly revealed spatiotemporal SWC variation during infiltration. In addition, this setup 

allowed a better quantification of water storage, which is a prerequisite for future applications, 

where for example the soil hydraulic properties will be estimated from GPR data. 

 

 

 

1 Adapted from Yu, Y., Klotzsche, A., Weihermüller, L., Huisman, J.A., Vanderborght, J., Vereecken, H., van der Kruk, 

J., 2020. Measuring vertical soil water content profiles by combining horizontal borehole and dispersive surface ground 

penetrating radar data. Near Surf. Geophys. 18(3): 275-294. doi:10.1002/nsg.12099. 
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2.1  Introduction 

Characterizing soil water content (SWC) dynamics in unsaturated soil is important for a range of 

applications, including monitoring of pollutant transport (e.g., Binley et al., 2001), investigating 

root and plant growth processes (e.g., Cai et al., 2018b), and estimating subsurface 

hydrogeological properties (e.g., Knight, 2001). GPR is a popular hydrogeophysical method to 

investigate SWC dynamics because of its potentially high spatial resolution (Binley et al., 2015; 

Huisman et al., 2003b; Slob et al., 2010) and the direct relationship between SWC and dielectric 

permittivity, which in turn determines the propagation of electromagnetic waves between GPR 

antennas. Over the last years, GPR has been widely used for investigating spatial SWC variability, 

monitoring SWC variations, and estimating soil hydraulic properties (e.g., Allroggen et al., 2015; 

Busch et al., 2013; Galagedara et al., 2002; Huisman et al., 2001; Huisman et al., 2002; Iwasaki 

et al., 2016; Jadoon et al., 2012; Jaumann and Roth, 2018; Klotzsche et al., 2018; Pan et al., 2012; 

Redman et al., 2000; Steelman et al., 2012; van Overmeeren et al., 1997).  

 

GPR measurements can be conducted by using antennas placed at the surface or in boreholes. 

Surface GPR measurements have been used to obtain high-resolution SWC information using 

different acquisition strategies. A range of studies have shown that the ground wave that travels 

directly from the transmitter to the receiver through the top soil has potential for spatial mapping 

of SWC (Galagedara et al., 2005a; Huisman et al., 2003a; Weihermüller et al., 2007). Due to the 

unclear penetration depth of the ground wave (Galagedara, et al., 2005b; Grote et al., 2010), it is, 

however, not possible to determine vertical SWC profiles from this type of GPR measurements. 

Multi-offset reflection methods have also been used to estimate SWC in both field-scale (Lunt et 

al., 2005) and lab-scale studies on SWC dynamics (Mangel et al., 2012). However, the energy of 

reflected waves is often relatively weak and can thus be easily distorted by other radiated energy, 

which may lead to biased SWC estimates, especially in the case of heterogeneous permittivity 

distributions commonly associated with infiltration events. In addition, there is only limited 

control on the vertical resolution of SWC measurements obtained with the reflection method, 

because it depends on the position of the reflectors in the soil (Huisman et al., 2003a). Therefore, 

conventional ground wave and reflection methods are not well suited to obtain high-resolution 

vertical SWC profiles by using GPR.  

 

Borehole GPR can provide high resolution geophysical information of the shallow subsurface, 

and this approach has been used to characterize soil properties for many years (e.g., Dafflon et al., 

2011; Doetsch et al., 2010; Holliger et al., 2001; Klotzsche et al., 2013; Yang et al., 2013). Zero-
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offset profiling (ZOP) is a widely-used acquisition strategy for borehole GPR measurements (e.g., 

Rejiba et al., 2011), in which the transmitting and receiving antenna are moved simultaneously 

with a fixed step size in two different boreholes. Standard ray-based analysis methods can then 

be used to obtain a 1D velocity profile between the two boreholes. Recently, several time-lapse 

plot-scale studies focused on SWC variation using horizontal borehole GPR measurements at 

specific depths, which ensures a good control on the vertical resolution of the obtained SWC 

profile information (Cai et al., 2016; Klotzsche et al., 2019a).  These studies mainly investigated 

seasonal SWC variations for different soils, surface treatments and the influence of plant types. It 

was found that the horizontal borehole GPR measurements did not provide accurate information 

close to the soil surface (0 – 10 cm) because of interference between the critically refracted air 

wave and the direct wave (Klotzsche et al., 2019a). This is obviously problematic when 

investigating infiltration processes, because the top soil is the most dynamic area with the 

strongest SWC changes. One possibility to overcome this limitation is to combine horizontal 

borehole and surface GPR measurements.  

 

It has been observed that increased near-surface SWC associated with infiltration leads to low-

velocity waveguides (van der Kruk et al., 2006a). In such waveguides, total reflection of the GPR 

waves occurs on the boundary between the wet and dry soil, which generates a guided wave 

through the constructive interference of the critical reflections and the ground wave causing late-

arrival high-amplitude events in the data (Arcone et al., 2003). Such guided waves show a 

pronounced dispersion in multi-offset surface GPR data, and thus a frequency-dependent velocity 

where phase velocities are different from the group velocity (van der Kruk et al., 2009a). 

Dedicated analysis methods are required to obtain relevant information from guided waves. In a 

first step, a phase velocity spectrum is calculated (Park et al., 1998) and the strongest energy in 

the spectrum is used to determine the phase velocity of different frequencies. With this frequency-

dependent phase velocity, single-layer (van der Kruk et al., 2006a), multi-layer (van der Kruk et 

al., 2010), or piece-wise linear models (Mangel et al., 2015) can be used to determine waveguide 

properties (e.g., permittivity, layer thickness) using model inversion. For example, single-layer 

waveguide inversion has been used to obtain the average dielectric permittivity and thickness of 

the waveguide during infiltration (Cassiani et al., 2009, Rossi et al., 2015). Using a piece-wise 

linear model in the waveguide inversion, it is also possible to obtain a continuous and smooth 

SWC profile that may be more appropriate to describe the actual vertical distribution of SWC 

during and after infiltration events (Mangel et al., 2017).  
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Until now, no study has been conducted that combines surface GPR with horizontal borehole 

GPR to study soil water content changes. Therefore, the aim of this chapter is to evaluate the 

accuracy and consistency of combined surface and horizontal borehole GPR results obtained 

during a dynamic infiltration experiment. In order to achieve this aim, transient SWC changes up 

to a depth of 1.2 m were monitored during a well-controlled infiltration experiment using ZOP 

surveys in horizontal boreholes. In addition, surface GPR measurements were conducted to 

characterize infiltration-induced waveguides in order to obtain SWC of the upper 0.1 m of soil. 

As a reference for the GPR results, Time domain reflectometry (TDR) measurements were 

recorded at the same depths of the horizontal boreholes during the infiltration experiment. To 

assess the accuracy of the GPR and TDR results, the measured increase in water storage of these 

two methods was compared with the known irrigation amount used in the infiltration experiment. 

2.2  Method and material 

2.2.1 Infiltration experiment 

The infiltration experiment was performed at the upper terrace minirhizotron facility in Selhausen, 

Germany (Cai et al., 2016; Kelter et al., 2018). The facility is divided into three plots (3 × 7 m) 

with different water treatments (natural rain, rain-out shelter, and irrigated). Horizontal rhizotubes 

and soil sensors can be accessed via an access trench on one side of the facility (Fig. 2.1). 

Rhizotubes of 7 m length were installed at 0.1, 0.2. 0.4, 0.6, 0.8, and 1.2 m depths across the field 

with a horizontal offset of 0.1 m between tubes at different depth levels (see Fig. 2.1b and 2.1d). 

Here, it has to be noted, that the installation of the boreholes was done after excavating the entire 

plot up to a depth of 1.5 m as undisturbed installation of the boreholes using a drilling device into 

the stony native soil was not feasible. After excavation, the soil was refilled layer-wise and the 

boreholes (and other sensors) were installed during this backfilling. After completion of the 

facility, horizontal borehole GPR measurement could be carried out from the access trench by 

putting transmitter and receiver antennas into two neighboring (rhizo-) tubes at the same depth 

(Fig. 2.1b). 
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Fig. 2.1 (a) Photo of the set-up of the infiltration experiment (surface), and (b) horizontal 

boreholes used for GPR measurements and location of the TDR sensors. (c) Schematic setup of 

the drip irrigation system at the soil surface and (d) sketch of the entire acquisition set-up with 

surface GPR and horizontal borehole tubes. 

TDR measurements were made hourly by using a TDR100 system connected to a CR3000 data 

logger (both Campbell Scientific, Logan, USA) and the 50C81-SDM multiplexer as described by 

Weihermüller et al. (2013). Custom-made three-rod TDR sensors with a rod length of 200 mm 

and a spacing of 26 mm were installed 0.75 m away from the facility wall into the soil at the same 

depths as the tubes used for GPR measurements. Stones and gravel larger than 60 mm were 

removed around the location of the TDR sensors during installation. For more details on the 
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construction of the minirhizotron facility and the installed sensors, I refer to Cai et al. (2016). 

 

The infiltration experiment was conducted in the sheltered plot (Fig. 2.1a) using a drip irrigation 

system (Fig. 2.1c). The plot was completely sheltered several weeks before the start of the 

experiment to ensure dry initial soil conditions. The distance between two neighboring dripping 

tubes was 0.30 m and the distance between the drippers was 0.20 m. To ensure irrigation at a 

constant rate, water was first poured into an underground water tank and then pumped out from 

that to supply the drip irrigation system. The water volume was recorded by a flow meter between 

the water pump and the drip irrigation system. 

 

Five infiltration events were performed between the 30th of September 2013 and the 3rd of October 

2013 (Table 2.1). Horizontal borehole and surface GPR measurements were taken using a 

PulseEKKO system (Sensors & Software, Canada) during the first 4 days of the infiltration 

experiment. For the borehole measurements, 200 MHz dipole antennas were used and for the 

surface measurements unshielded 100 and 200 MHz as well as shielded 500 MHz antennas were 

used.  

 

Table 2.1 Overview of infiltration events during the infiltration experiment 

Date Start time End time Water volume 

(L m-2) 
𝑇𝑝 

(°C) 

𝜎𝑤 

(S m-1) 

30/09/2013 14:54 16:24 28.4 17.0 0.0513 

01/10/2013 12:24 13:54 27.3 17.0 0.0513 

02/10/2013 12:45 14:15 28.0 16.0 0.0500 

03/10/2013 

03/10/2013 

12:24 

14:28 

13:54 

15:58 

26.1 

27.0 

14.4 

14.4 

0.0488 

0.0488 

 

Although the saturated hydraulic conductivity (𝐾𝑠   = 0.057 cm min-1; Cai et al., 2018a) of the 

topsoil is much larger than the average irrigation rate (0.03 cm min-1), ponding at the soil surface 

was observed on the first day of the experiment. Ponding was not observed anymore during the 

following infiltration events. Before, during, and after the daily infiltration events, ZOP GPR 

measurements were performed in the horizontal borehole pairs. As the SWC is assumed to 

increase mainly at shallow depths at the beginning of each consecutive infiltration event, only the 

horizontal boreholes at 0.2 and 0.4 m depth were measured during the infiltration event to ensure 

that all measurements could be performed within the irrigation interval. After the irrigation 

stopped, the deeper boreholes were also measured. Additionally, more than 140 wide angle 

reflection and refraction (WARR) measurements were obtained with surface GPR during the 

infiltration experiment (see Fig. 2.1c for setup). 
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2.2.2 Horizontal borehole GPR data acquisition and processing 

For the ZOP measurements, I followed the same acquisition, processing and analysis strategies 

as presented in Klotzsche et al. (2019a). To conduct the ZOP survey, the transmitter (𝑇𝑥) and 

receiver (𝑅𝑥) antenna were first pushed to the end of the horizontal boreholes (7 m) at the same 

depth. Then, both antennas were pulled simultaneously in 0.05 m steps towards the access trench 

wall up to a minimum distance of 1.5 m to the wall. Using the recorded travel time 𝑡 (ns) and the 

known distance between the two boreholes (𝑑 = 0.75 m), the velocity of the radar wave 𝑣 (m ns-

1) can be determined using: 

𝑣 =
𝑑

𝑡−𝑇0
                                                                 (2.1) 

where, 𝑇0 (ns) is the so-called time-zero offset (Fig. 2.2a). Different with the case for surface GPR 

measurements, the determination of 𝑇0is difficult for borehole GPR measurements because no air 

wave is present, Therefore, 𝑇0 was determined from multi-offset measurements with the borehole 

antennas in air (hereafter referred to as calibration WARR measurements). An accurate 

determination of 𝑇0 is important because the pulse onset time can drift during the GPR survey 

and relatively small changes in 𝑇0  can easily introduce substantial velocity changes and thus 

erroneous SWC estimates (Peterson, 2001), in particular in the case of the small borehole 

separations used here. In order to determine 𝑇0, the following procedure was used. In a first step, 

the first maximum and zero-crossing of each trace in the calibration WARR measurement (inset 

of Fig. 2.2b) is determined automatically. Then, a constant time difference between the actually 

needed first arrival time and first zero-crossing is determined for a certain number of traces by 

manual time picking. This constant time offset is different for the calibration measurement and 

the ZOP data due to the different center frequencies. The first arrival of each GPR trace is then 

obtained by subtracting the constant time difference from the zero-crossing times for all traces. 

Finally, 𝑇0 is determined as the intercept of a line with a fixed slope (1/0.3 m ns-1) fitted to the 

first arrival times. 
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Fig. 2.2 (a) Typical 200 MHz ZOP data for horizontal borehole GPR. The appropriate 𝑇0  is 

determined from a WARR measurement in air. (b) Illustration of 𝑇0 estimation from a WARR 

measurement with 200 MHz antenna. The first arrival time of all traces are indicated by red dots. 

𝑇0 is the intercept of the regression line for the first arrival of the air wave as a function of antenna 

offset (blue line). The inset illustrates the determination of the time difference between the first 

arrival (red dot) and the first zero-crossing (blue dot). 
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In order to account for drifts in 𝑇0, calibration WARR measurements were made regularly in 

between ZOP measurements. Drift in 𝑇0  as a function of time was observed and the most 

appropriate value for 𝑇0  at the time of each ZOP measurement was determined by linear 

interpolation between calibration measurements. After the determination of 𝑣  for each ZOP 

measurement using Eq. 2.1, the measured dielectric permittivity 𝜀𝑜𝑏𝑠 (-) at different depths was 

obtained by: 

𝜀𝑜𝑏𝑠 = (
𝑐

𝑣
)

2

                                                           (2.2) 

where c is the speed of light in vacuum (0.3 m ns-1). 

 

2.2.3 Surface GPR data acquisition and processing 

Surface GPR measurements were made on a plastic track to prevent contact between the antenna 

and the irrigation water as well as to protect the soil from being damaged by the operators of the 

surface GPR system. The offset range of the surface WARR measurement was from 0.5 to 5.0 m 

(see Table 2.2 for acquisition parameters). Firstly, the 𝑇0 of the data surface GPR data is calibrated 

as the intercept of a line that determined by a fixed slope (1/0.3 m ns-1) and the picked first arrival 

time of air wave at 0.5 m offset. A combined linear move-out (LMO) and hyperbolic move-out 

(HMO) semblance analysis approach (Dal Bo et al., 2019) was used to analyze the 100 and 200 

MHz data. These GPR measurements did not show velocity dispersion associated with infiltration 

because the wavelength at these frequencies is much larger than the thickness of the wetted top 

soil layer. The velocity of the direct ground wave was extracted by LMO. HMO was used to 

estimate the velocity of the reflected wave. An empirical function (Grote et al., 2003; van 

Overmeeren et al., 1997) was employed to estimate the sampling depth 𝑍𝐺  (m) of the ground 

wave: 

𝑍𝐺 =
1

2
√

𝑣𝐺𝑤𝑆𝑑

𝑓
                                                          (2.3) 

where, 𝑣𝐺𝑤  (m ns-1) is the velocity of the ground wave, 𝑆𝑑 (m) is the distance between transmitter 

and receiver, and 𝑓 (MHz) is the center frequency of the antenna. Based on this relationship, it 

can be seen that sampling depth decreases with increasing frequency and SWC (Grote et al., 2010). 

 

Table 2.2 Overview of data acquisition of surface GPR 

Frequency 

(MHz) 

Sampling interval 

(m) 

Time window 

(ns) 

Sampling rate 

(ns) 

Stack 

(-) 

100 

200 

0.05 

0.05 

100 

200 

0.4 

0.4 

32 

32 

500 0.01 50 0.2 32 
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After the first infiltration event, the WARR measurements made with the 500 MHz antenna 

showed dispersive waves. The following procedure was used to process these dispersive data. In 

a first step, the air wave was muted and the guided wave (Fig. 2.3a) was selected to generate a 

phase-velocity spectrum (Fig. 2.3c, 2.3d). Next, the phase velocity for different frequencies 

𝑣𝑑𝑎𝑡𝑎(𝑓𝑖) (m ns-1) was obtained by picking the maximum energy for each frequency in the phase 

velocity spectrum (black line, Fig. 2.3d). The center frequency of the measured data (350 MHz, 

Fig. 2.3b) is commonly less than that of the GPR antenna (500 MHz) and it can be observed from 

the amplitude spectrum (Fig. 2.3b) that the effective bandwidth is approximately between 200 

and 700 MHz when using a threshold of 15% of the maximum amplitude. This bandwidth is used 

in the following analysis of the frequency-dependent phase velocity. 

 

 

Fig. 2.3 (a) Dispersive surface GPR dataset measured at the end of the first infiltration event using 

500 MHz antenna. Dashed lines indicated the zone used for the dispersion analysis. (b) Average 

frequency spectrum (normalized) of the GPR data. (c) Phase velocity spectrum before and (d) 

after normalization. 

Single-layer low-velocity waveguide inversion was employed to invert the dispersive surface 

GPR data to obtain the thickness ℎ𝑡  (m), average permittivity of the wet layer 𝜀1(-), and the 

underlying material 𝜀2 (-). For this, the theoretical phase velocity 𝑣𝑚𝑜𝑑𝑒𝑙(𝑓𝑖, 𝜀1, 𝜀2, ℎ𝑡) (m ns-1) 

was calculated by solving the equation established by the given waveguide parameters (𝜀1, 𝜀2, ℎ𝑡): 

𝑣𝑚𝑜𝑑𝑒𝑙(𝑓𝑖, 𝜀1, 𝜀2, ℎ𝑡) =
𝑐

√𝜀1 sin[𝜃𝑚(𝑓𝑖,𝜀1,𝜀2,ℎ𝑡)]
                                          (2.4) 
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where 𝜃𝑚(𝑓𝑖, 𝜀1, 𝜀2, ℎ𝑡) (rad) is the fundamental equation of modal theory (Arcone, 1984). Since 

the surface GPR measurements were conducted in the transverse electric (TE) mode, the 

fundamental modes (TE0) and higher modes (TE1, TE2, etc.) of the guided wave can be present in 

the data, if the signals contain frequencies above the respective cutoff frequency (van der Kruk, 

2006b). The dispersion inversion of fundamental mode and higher modes was performed through 

minimization of a cost function 𝐶𝑚(𝜀1, 𝜀2, ℎ𝑡) (m ns-1) based on the absolute difference between 

𝑣𝑚𝑜𝑑𝑒𝑙

TE𝑚𝑓 (𝑓𝑖, 𝜀1, 𝜀2, ℎ) and 𝑣𝑑𝑎𝑡𝑎

TE𝑚𝑓(𝑓𝑖) (van der Kruk et al., 2006a): 

𝐶𝑚(𝜀1, 𝜀2, ℎ𝑡) = ∑
|𝑣𝑑𝑎𝑡𝑎

TE𝑚𝑓
(𝑓𝑖)−𝑣𝑚𝑜𝑑𝑒𝑙

TE𝑚𝑓
(𝑓𝑖,𝜀1,𝜀2,ℎ𝑡)|

𝑛𝑓

𝑛𝑓
𝑖=1                                  (2.5) 

where 𝑛𝑓 (-) refers to the number of frequency points picked in the phase velocity spectrum and 

𝑚𝑓 represents the mode of the guided wave. The inversion for single layer waveguide parameters 

is very sensitive to 𝜀1 and partly to ℎ𝑡 (Strobbia and Cassiani, 2007), whereas the inverted 𝜀2 are 

typically not accurate. The uncertainty in the inversion of 𝜀2is caused by simplifying the vertical 

SWC distribution to a single layer waveguide and the stronger measurement noise in the low-

frequency part of the phase velocity spectrum (below 200 MHz) (Bikowski et al., 2012).  

 

2.2.4 Determination of soil water content and storage 

The complex refractive index model (CRIM) (Roth et al., 1990) was used to relate the dielectric 

permittivity obtained with GPR and TDR to SWC 𝜃  (cm3 cm-3) according to the following 

equation: 

                                            𝜃 =
√𝜀−(1−𝛷)√𝜀𝑠−𝛷

√𝜀𝑤−1
                                                       (2.6) 

where, 𝜀𝑤 (-) refers to the permittivity of water (84 at 10°C). The permittivity of the soil particles 

𝜀𝑠 (-) was considered to be 4.7 for this test site, as suggested by Klotzsche et al. (2019a) and 

Robinson et al. (2005). It is important to notice that porosity 𝛷 changed from 0.33 to 0.25 (cm3 

cm-3) at 0.3 m depth due to the presence of a plowing horizon (Fig. 2.1). 

 

To verify the accuracy of the SWC estimates obtained by GPR and TDR, cumulative water 

storage (m) was calculated by integrating the measured SWC over the entire profile depth. The 

increase in water storage was then compared with the known irrigation amounts (Table 2.1). In 

the integration, it was assumed that the surface GPR measurements and the TDR measurements 

at 0.1 m depth represent the average SWC of the 0 - 0.1 m depth range. Furthermore, the horizontal 

borehole GPR and TDR measurements at 0.2, 0.4, 0.6, 0.8, and 1.2 m depth were assumed to 

represent the mean SWC of 0.1 - 0.3, 0.3 - 0.5, 0.5 - 0.7, 0.7 - 0.9, and 0.9 - 1.3 m depth, 
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respectively. The water storage was also calculated from the borehole GPR measurements only. 

Here, it was assumed that the GPR measurements at 0.2 m depth were representative for the mean 

SWC of the top 0.30 m of soil. 

2.3  Results and discussion 

2.3.1 Horizontal borehole GPR data 

For a reliable estimation of the SWC changes due to infiltration, the time-zero 𝑇0 has to be known 

accurately. The change in 𝑇0  during the infiltration experiment is shown in Fig. 2.4. The 

maximum difference between two adjacent 𝑇0 estimates was relatively small on day 1 (0.34 ns) 

and day 2 (0.73 ns), but was larger on day 3 (0.96 ns) and day 4 (0.8 ns). The largest variation of 

𝑇0 occurred on day 3, which could be caused by a too short warm-up period of the GPR system 

on this day. The uncertainty in the SWC estimates resulting from a 0.96 ns time-shift is 0.047 cm3 

cm-3 independent of the SWC. 

 

 

Fig. 2.4 The time-zero 𝑇0 variation during the entire experiment. The duration of the infiltration 

events is indicated by the light blue background. Note that the y-axis has different scales for the 

first 2 and last 2 irrigation events. 

Spatial SWC variation along the horizontal borehole tubes at five depths before and after the four 

infiltration events are shown in Fig. 2.5. Before the start of the infiltration experiment, the deeper 

soil was generally wetter than the top soil (Fig. 2.5a). After the infiltration event on day 1, an 

increase of the SWC was mainly observed at 0.2 m depth and the deeper soil was less affected. 

Moreover, infiltration introduced lateral heterogeneity in SWC at 0.2 m depth, especially at the 
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first and second day, which could be caused by the layout of the dripping system and the 

heterogeneity of the soil. During the infiltration events at day 3 and 4, the soil at 0.2 m depth was 

almost saturated and an increase of SWC was observed at all depths. 

 

 

Fig. 2.5 Semi-3D image of SWC estimates from horizontal borehole GPR. Panels on the (a, c, e, 

and g) left side were measured before infiltration events for the four respective days, whereas 

panels on the (b, d, f, and h) right side were measured after the infiltration events for the respective 

days. 
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2.3.2 Semblance analysis of surface GPR data 

The results of the semblance analysis for three different frequencies before and after infiltration 

are exemplary shown in Fig. 2.6. For the 100 and 200 MHz measurements gathered before 

infiltration (Fig. 2.6a, 2.6c), only the air wave could be identified because the soil was very dry 

and a large part of the radiation energy was thus contained in this wave. 

 

 

Fig. 2.6 WARR measurements with 100, 200, and 500 MHz data (right panel a, c, e) before and 

(left panel b, d, f) after infiltration and their semblance spectra. The black dashed lines indicate 

the first arrival of the direct air wave. The guided wave is enclosed by red dashed lines. The 

velocities of the ground and reflected wave were picked in the semblance spectra and indicated 

by the black circles. The corresponding ground and reflected waves are shown by straight and 

hyperbolic lines in the WARR measurements, respectively. The phase-shift of guided wave is 

enclosed by the eclipses. 
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For the 500 MHz data (Fig. 2.6e), a reflection from the bottom of the excavated field plot is 

observed as a hyperbolic move-out. Because of the strong interference with the air wave, the 

estimated velocity (0.19 m ns-1) from the semblance analysis is not accurate, and can therefore 

not be used to estimate SWC. After infiltration, a clear ground wave could be observed for all 

frequencies (Fig. 2.6b, 2.6d and 2.6f). Additionally, the phase-shift of the ground wave in Fig. 

2.6f suggests that the 500 MHz data were dispersive after the infiltration event, which was not 

observed in the 100 and 200 MHz data. 

 

2.3.3 Dispersion analysis of surface GPR data 

After the infiltration event of day 1, a guided wave was observed during the remainder of the 

infiltration experiment. Four typical WARR measurements obtained at day 2 of the infiltration 

experiment are shown in Fig. 2.7. The first WARR measurement (Fig. 2.7a) was obtained before 

the start of the infiltration on day 2. The low-velocity waveguide induced by the irrigation event 

of day 1 was still clearly present. The dispersion curve of the TE0 is well defined and smooth, and 

the first higher mode TE1 can also be easily identified (Fig. 2.7b). 

 

In a first step, the TE0 mode was used for inversion (Table 2.3). To validate the obtained results 

of the dispersion inversion, I performed synthetic forward modelling with the obtained inversion 

results using the GprMax software (Giannopoulos, 2005; Warren et al., 2016) (Fig. 2.7c, f, i, l). 

The slope and the phase-shift of the simulated guided waves matched well with the measured data. 

It should be mentioned that the field was relatively heterogeneous at the beginning of the 

infiltration due to the layout of the dripping system. Therefore, the dispersion curve of the data 

measured at the beginning of the infiltration event (Fig. 2.7e) was not only found to be distorted 

and of shorter frequency range (200 – 500 MHz) than other data, but also the TE1 mode could not 

be identified. Consequently, a large 𝜀1 and a small layer thickness ℎ𝑡 were obtained with a larger 

uncertainty from inversion (Bikowski et al., 2012).  

 

In a second step, data for the TE0 and TE1 mode were jointly inverted (Table 2.3). Compared to 

the inversion with TE0 only, the TE0-TE1 inversion generally resulted in slightly larger 𝜀1 and 

smaller layer thickness ℎ𝑡. TE0 and TE0-TE1 results showed a good consistency and the largest 

difference between these two inversion approaches was also small with a difference of 0.085 for 

𝜀1 and 0.016 m for ℎ𝑡. Therefore, it was concluded that the consideration of the TE1 mode in the 

inversion did not result in different waveguide parameters compared to the use of the TE0 mode 

only. Additionally, since the TE1 mode could not be identified for all measured GPR data, it was 

preferred to consistently use the TE0 mode only for inversion. 
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Fig. 2.7 Four typical dispersive WARR measurements with associated phase velocity spectra and 

modelled WARR measured obtained (a, b, c) before, (d, e, f) at the start of the infiltration event, 

(g, h, i) at the end of the infiltration event, and (j, k, l) after the infiltration event on day 2 of 

infiltration experiment. The guided waves are enclosed by the black dashed lines (left panel), 

which were also used to generate corresponding phase-velocity spectra. Synthetic modelled 

WARR data based on the TE0 inversion results. 

Table 2.3 Inversion results of dispersive 500 MHz data obtained in day 2 

Data Inversion 

methods 
𝜀1; SWC 

(-);(cm3 cm-3) 

𝜀2  

(-) 

ℎ𝑡  

(m) 

𝐶𝑚 

 (m ns-1) 

Fig. 2.7a TE0 11.40;0.201 3.82 0.100 0.0013 

TE0-TE1 12.25;0.224 3.57 0.084 0.0019 

Fig. 2.7d TE0 16.59;0.294 4.88 0.068 0.0017 

Fig. 2.7g TE0 14.22;0.257 3.85 0.095 0.0007 

TE0-TE1 14.82;0.266 3.75 0.087 0.0011 

Fig. 2.7j TE0 13.94;0.253 3.27 0.097 0.0009 

TE0-TE1 14.43;0.261 4.54 0.085 0.0019 
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The SWC estimates from the semblance and dispersion analysis as well as the calculated sampling 

depth derived from Eq. 2.3 are summarized in Table 2.4 for all surface GPR measurements. For 

the 500 MHz data, the SWC estimates obtained from semblance and dispersion analysis deviated 

considerably. This is due to the fact that the SWC obtained by semblance analysis is based on the 

group velocity of the guided wave, which is always lower than the phase velocity according to 

Eq. 2.4. As a result, semblance analysis underestimated SWC of the top layer for 500 MHz 

measurements. The results of the dispersion analysis suggest that the thickness of the waveguide 

was around 0.1 m during the entire experiment. This is attributed to layering caused by regular 

agricultural activity. 

 

     Table 2.4 Results of semblance and dispersion analysis 

      Time Semblance results 

 SWC (cm3 cm-3); sampling depth 𝑍𝐺(m) 

Dispersion analysis 

         (500 MHz) 

 100 MHz 200 MHz 500 MHz SWC(cm3cm-3); ℎ𝑡 (m)    

Day 1 

11:32 

 15:26†  

 

/ 

 0.125; 0.747 

 

/ 

0.095; 0.554 

 

/ 

0.075; 0.362 

 

/ 

/ 

16:28 0.152; 0.718 0.116; 0.535 0.136; 0.328 0.202;0.107 

17:21 0.139; 0.731 0.119; 0.533 0.134; 0.329 0.189;0.135 

18:39 0.138; 0.732 0.125; 0.528 0.124; 0.330 0.198;0.111 

19:39 0.133; 0.738 0.129; 0.524  0.134; 0.329 0.194;0.116 

Day 2 

12:00 

 

0.148; 0.722 

 

0.137; 0.519 

 

0.131; 0.330 

 

0.201;0.100 

 12:48† 0.173; 0.698 0.169; 0.495 0.163; 0.316 0.294;0.068 

 13:41† 0.183; 0.688 0.182; 0.487 0.191; 0.304 0.254;0.125 

 14:23† 0.178; 0.693 0.180; 0.488 0.171; 0.313 0.254;0.108 

15:53 0.179; 0.692 0.167; 0.497 0.168; 0.314 0.257;0.095 

17:04 0.168; 0.702 0.161; 0.501 0.167; 0.314 0.259;0.090 

18:02 0.173; 0.697 0.171; 0.495 0.155; 0.319 0.253;0.097 

Day 3 

10:50 

 

0.179; 0.692 

 

0.173; 0.493 

 

0.153; 0.320 

 

0.243;0.096 

 13:09† 0.180; 0.691 0.186; 0.485 0.168; 0.314 0.289;0.087 

 13:42† 0.204; 0.691 0.212; 0.469 0.191; 0.304 0.280;0.097 

 14:22† 0.204; 0.691 0.197; 0.478 0.182; 0.308 0.286;0.099 

15:22 0.202; 0.672 0.189; 0.482 0.171; 0.313  0.283;0.083 

16:44 0.197; 0.676 0.188; 0.483 0.169; 0.314 0.269;0.090 

Day 4 

10:30 

 

0.165; 0.705 

 

0.179; 0.489 

 

0.160; 0.317 

 

0.247;0.097 

 12:49† 0.185; 0.687 0.186; 0.484 0.173; 0.311 0.338;0.062 

 13:21† 0.186; 0.686 0.210; 0.470 0.219; 0.294 0.298;0.091 

 13:52† 0.197; 0.676 0.205; 0.473 0.189; 0.305  0.311;0.082 

 15:07† 0.214; 0.663 0.204; 0.474 0.201; 0.300 0.306;0.092 

16:11 0.192; 0.680 0.215; 0.467 0.188; 0.306 0.285;0.099 
SWC was calculated by the CRIM.  

Sampling depths of ground wave were calculated with Eq. 2.3 

† Measuring times during the infiltration event. 
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2.3.4 Combined horizontal borehole and surface GPR data 

The vertical SWC profiles obtained by combining the dispersion analysis and the mean SWC 

along the horizontal borehole tubes can be used to analyze the spatiotemporal soil water content 

evolution during the infiltration experiment (Fig. 2.8). As expected, changes in SWC were first 

observed at shallow depth (0.2 m) during the infiltration event on day 1. The GPR data gathered 

at 0.4 m depth also indicate a small increase in SWC, but measurements below 0.4 m were 

unaffected by the infiltrating water (Fig. 2.8a). Vertical SWC profiles measured before and after 

infiltration are shown in Fig. 2.9. After the irrigation event on day 1, the SWC obtained from 

surface GPR increased slightly overnight. This is possibly caused by the horizontal movement of 

water within the top soil layer during the night. After the start of the infiltration on day 2, the 

SWC increased and stayed at a relatively constant value and the thickness of the waveguide did 

not change. With further irrigation, the SWC close to the surface increased but water also moved 

downwards, as indicated by the increase in SWC below 0.4 m.  

 

Water obviously redistributed to deeper depths between the infiltration event of day 2 and day 3 

but also between day 3 and day 4 (Fig. 2.9). The SWC profiles for day 3 and day 4 show a clear 

increase in SWC for all depths during the infiltration event (Fig. 2.8c and 2.8d). The movement 

of the wetting front can clearly be seen in Fig. 2.9. After infiltration at day 1, the wetting front 

moved to a depth between 0.2 m and 0.4 m. After the infiltration event at day 2, the upper 0.8 m 

depth were wetted but the SWC at 1.2 m depth did not change yet. For the infiltration events at 

day 3 and day 4, it was observed that SWC increased at all depths, which suggests that the wetting 

front quickly moved to below 1.2 m depth at these days, which is a consequence of the higher 

initial water content in the soil profile and the associated higher unsaturated hydraulic 

conductivity. 
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Fig. 2.8 Vertical SWC profiles at (a) day 1, (b) day 2, (c) day 3, and (d) day 4. The colors indicate 

the different times when the measurements were performed, whereas measurements taken during 

infiltration are shown in red in the legend. Above the horizontal black dashed line, the surface 

GPR results are shown, whereas the averaged borehole GPR results are plotted below this line. 

Note that the total porosity 𝛷 changes from 0.33 to 0.25 at 0.3 m depth as indicated by the blue 

solid line due to previous tillage practice. 
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Fig. 2.9 Combined GPR SWC profiles measured before and after infiltration events for all days. 

The time series of average SWC obtained with TDR sensors at six depths are shown in Fig. 2.10a 

along with the SWC estimated from the GPR measurements (average for the entire borehole 

length). It can be seen that the GPR and TDR measurements show a rapid and synchronous 

response to the four infiltration events and similar trends in SWC increase. Nevertheless, the SWC 

estimates obtained with GPR and TDR differed considerably, especially at 0.1 and 0.2 m depth. 

In particular, the SWCs determined with GPR measurements were higher than that obtained with 

TDR measurements at 0.1 m and lower at 0.2 m depth. These differences are attributed to the 

different sensing volumes of the TDR and GPR measurements. The TDR sensors provide point 

measurements approximately 1 m away from the trench wall, whereas the GPR measurements 

represent the average SWC of the top soil from 1.5 m to 7 m away from the trench. Therefore, 

GPR is expected to be more representative of the irrigated area and thus provide improved ability 

to monitor wetting front movement in this experiment. For example, SWC obtained with TDR 

increased up to a depth of 0.4 m during the first infiltration event, while the SWC obtained with 

GPR only responded at 0.1 and 0.2 m depth. Although it is possible that water infiltrated to 0.4 m 

depth in some places due to the spatial soil heterogeneity, it is unlikely that the wetting front 

moved to 0.4 m depth over the entire infiltration area because only 2.84 cm of water was applied 

in the first infiltration event. 
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Fig. 2.10 (a) SWC time series at different depths obtained with GPR and TDR. Black dashed lines 

indicate the start and end time of infiltration events. (b) Comparison of SWC measurements 

obtained with GPR and TDR. Different colors represent different depths of investigation. Both 

the 1:1 line (dashed black) and a linear regression (red) are also shown.  
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The correlation between depth-averaged SWC obtained with GPR and TDR is shown in Fig. 

2.10b. The linear regression between GPR and TDR results has a slope close to one, and the 

intercept is also small. This indicates an unbiased and fairly good agreement between GPR and 

the TDR data. However, there is substantial scatter in this relationship as indicated by the 

relatively low explained variance (R2 of 0.63) and the high root mean square error (RMSE of 0.04 

cm3 cm-3). As mentioned before, the misfit is strongest for the shallow soil layers (0.1 and 0.2 m). 

There is a range of possible explanations for the relatively large misfit. First, there is some 

uncertainty in using surface GPR measurements to estimate SWC at 0.1 m depth since the inverted 

layer depth is varying around 0.1 m during the experiment and a homogeneous water content 

distribution in the top layer is assumed in the single-layer waveguide dispersion. Second, there is 

uncertainty in time-zero estimation for the horizontal borehole GPR data. Third, there is intrinsic 

uncertainty in the SWC estimates obtained with GPR and TDR. This includes uncertainty in travel 

time determination for both GPR and TDR and the uncertainty in the position of the horizontal 

boreholes. Fourth and foremost, there is a considerable difference between the sampling volumes 

of GPR and TDR (Klotzsche et al., 2019a; Huisman et al., 2001), which likely explains a 

considerable part of the observed scatter given the lateral heterogeneity of soil within the 7 m 

long facility.   

 

To independently validate the GPR and TDR results, the change in water storage of the total 

profile was calculated for each individual measurement time (Fig. 2.11). To do so, the initial water 

storage before the start of the first infiltration experiment was subtracted from all other water 

storages calculated from the estimated SWC (Loeffler and Bano, 2004). Therefore, the increase 

in soil water storage for the upper 1.3 m depth can be directly compared with the total amount of 

irrigated water. The standard deviation of the SWC measurements obtained with GPR was used 

to represent the spatial variation of the water storage along the borehole tubes (black error bars in 

Fig. 2.11). Also, the spatial variation of the TDR water storage along the facility wall was 

visualized (yellow error bars in Fig. 2.11). It can be seen that the observed TDR water storage 

systematically overestimated the expected increase in water storage based on the irrigation 

amount by around 25% for day 1 to day 3. On the contrary, the increase in water storage obtained 

from borehole GPR only showed a 5 - 10% underestimation for day 1 and day 2. This is attributed 

to the lack of information on the SWC up to a depth of 0.2 m. By combining the surface and 

borehole GPR data, the error in water storage estimates was further reduced to 4 - 8% for day 1, 

2, and 4. Only for day 3, the combined GPR results overestimated the increase in water storage 

by 0.008 m (10%), which can be explained by the relatively large uncertainty in the time-zero 

estimation for borehole GPR measurements at day 3 (Fig. 2.4). Towards the end of the infiltration 
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experiment, it is likely that water drained below the investigated depth range due to deep drainage 

(Fig. 2.8). Therefore, an underestimation of the increase in water storage should be expected for 

day 3 and day 4. Although the combined GPR result showed a good match with the known water 

amount for day 4, the water storage of the field is thus still potentially overestimated. Overall, it 

is concluded that the combined borehole and surface GPR measurements outperformed the two 

other methods for water storage estimation in this case.  

 

 

Fig. 2.11 Time series of changes in water storage estimated with borehole GPR (light blue bars), 

a combination of borehole and surface GPR (dark blue bars), and TDR (yellow dashed line). Light 

purple bars indicate time of irrigation and red dotted line the total water added to the system. 

2.4  Summary and conclusions 

In this chapter, surface and horizontal borehole GPR measurements were combined to investigate 

soil water content (SWC) dynamics up to a depth of 1.2 m in a field-scale infiltration experiment. 

Borehole GPR measurements provided SWC at five depths using zero-offset profiling (ZOP) 

surveys. Reference TDR measurements were taken hourly at six depths. In general, wetting front 

movement over the experimental period could clearly be monitored using GPR and TDR. 

However, the use of horizontal borehole GPR data alone failed to provide information on SWC 

changes of the top soil since the interpretation of borehole GPR measurements at 0.1 m depth was 

hindered by the interference of direct and critically refracted waves. Therefore, I additionally 

made surface GPR measurements to characterize the top soil. The surface GPR measurements 

with 500 MHz antenna showed infiltration-induced waveguides. Single layer waveguide 
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inversion was used to invert waveguide properties. By combining surface and horizontal borehole 

GPR results, representative vertical SWC profiles over the entire depth (0 – 1.2 m) were obtained 

for the entire infiltration experiment. The SWC profiles obtained by borehole GPR, combined 

borehole/surface GPR, and TDR were used to calculate water storage changes after infiltration 

and were compared to the amount of irrigated water. This analysis showed that TDR 

systematically overestimated the increase in water storage, which was attributed to the poor 

spatial representativeness of the local TDR measurements. The increase in water storage due to 

infiltration calculated from borehole GPR only underestimated water storage as long as the topsoil 

layer was not saturated. The combined use of borehole and surface GPR measurements provided 

the most accurate estimates of the increase in water storage. Nevertheless, further studies are 

needed to prove the advantage of the combined borehole/surface method for more natural 

infiltration events (e.g., natural rainfall). In addition, future work will explore the use of coupled 

hydrogeophysical inversion approaches to estimate soil hydraulic properties from the GPR data. 
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CHAPTER 3 SEQUENTIAL AND COUPLED INVERSION OF 

HORIZONTAL BOREHOLE GROUND PENETRATING 

RADAR DATA TO ESTIMATE SOIL HYDRAULIC 

PROPERTIES AT THE FIELD SCALE2 

Abstract 

Horizontal borehole ground penetrating radar (GPR) measurements can provide valuable 

information on soil water content dynamics in the vadose zone, and hence show potential to 

estimate soil hydraulic properties. In this chapter, the performance of both sequential and coupled 

inversion workflows to obtain soil hydraulic properties from time-lapse horizontal borehole GPR 

data obtained during an infiltration experiment were compared using a synthetic modelling study 

and the analysis of actual field data. The sequential inversion using the vadose zone flow model 

HYDRUS-1D directly relied on soil water content (SWC) profiles determined from the travel 

time of GPR direct waves using the straight-wave approximation. The synthetic modelling study 

showed that sequential inversion did not provide accurate estimates of the soil hydraulic 

parameters due to interpretation errors in the estimated SWC near the infiltration front and the 

ground surface. In contrast, the coupled inversion approach, which combined HYDRUS-1D with 

a forward model of GPR wave propagation (gprMax3D) and GPR travel time information, 

provided accurate estimates of the hydraulic properties in the synthetic modelling study. The 

application of the coupled inversion approach to measured borehole GPR data also resulted in 

plausible estimates of the soil hydraulic parameters. It was concluded that coupled inversion 

should be preferred over sequential inversion of time-lapse horizontal borehole GPR data in the 

presence of strong SWC gradients that occur during infiltration events. 

 

 

 

 

2 Adapted from Yu, Y., Weihermüller, L., Klotzsche, A., Lärm, L., Vereecken, H., Huisman, J.A., 2021. Sequential 

and coupled inversion of horizontal borehole ground penetrating radar data to estimate soil hydraulic properties at the 

field scale. J. Hydrol. 126010. doi: 0.1016/j.jhydrol.2021.126010 
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3.1  Introduction 

Obtaining accurate hydraulic parameters of the vadose zone is important in a wide range of 

applications, including modelling of water flow and contaminant transport (e.g., Vereecken et al., 

2007; Wagner, 1992;, managing water and soil resources (e.g., Blanco-Canqui and Lai, 2007; 

Hartmann et al., 2014), and evaluating climate change effects on forests (e.g., Martıńez-Vilalta et 

al., 2002; McDowell and Allen, 2015). Hydraulic parameters can be determined by different 

laboratory methods (e.g., Neuzil et al., 1981), but this typically leads to hydraulic property 

estimates that are not representative of field conditions (Kool et al., 1987). Therefore, estimation 

of hydraulic properties at the field scale is preferred if characterization at this scale is intended 

(Klute and Dirksen, 1986).  

 

Field-scale estimation of hydraulic properties is commonly based on measurements made with 

point-scale sensors, such as the neutron probe (Chanasyk and Naeth, 1996) and time domain 

reflectometry (TDR) (Robinson et al., 2008). Such methods allow the accurate determination of 

soil water content (SWC) dynamics, and therefore have been widely used for parameterizing 

hydrological models (e.g., Abbaspour et al., 2000; Katul et al., 1993; Kumar et al., 2010; Malicki 

et al., 1992; Nandagiri and Prasad, 1996; Steenpass et al., 2010; Wollschläger et al., 2009). In 

some studies, SWC measurements were combined with matric potential measurements obtained 

by tensiometers (e.g., Zhang et al., 2003) in order to better constrain the hydraulic parameter 

estimation (Vereecken et al., 2008). A major disadvantage of using point sensor information to 

estimate soil hydraulic properties is the relatively small sensing volume and the resulting limited 

representativeness for the field-scale soil states. 

 

In the last decades, many studies reported the potential of using geophysical techniques, such as 

electromagnetic induction (EMI) (e.g., Brosten et al., 2011; Moghadas et al., 2017), electrical 

resistivity tomography (ERT) (e.g., Brunet et al., 2010; Huisman et al., 2010; Manoli et al., 2015; 

Mboh et al., 2012; Pollock and Cirpka, 2010) and ground penetrating radar (GPR) (e.g., Hubbard 

and Rubin, 2000; Looms et al., 2008a; Rossi et al., 2015), to obtain accurate field-scale estimates 

of SWC and soil hydraulic properties. GPR uses the travel time and attenuation of high-frequency 

electromagnetic waves travelling through the ground to obtain the dielectric permittivity 𝜀 and 

electrical conductivity 𝜎 of the subsurface (e.g., Holliger et al., 2001; Slob et al., 2010). Due to 

the direct relationship between 𝜀  and SWC (Topp et al., 1980), GPR is the one of the most 

promising geophysical methods for SWC estimation (e.g., Huisman et al., 2003a; Klotzsche et al., 

2018). GPR can rapidly provide surveys for larger scales of interest (1 ~ 1000 m profiles) (e.g., 



 

 

 

41 

 

Mahmoudzadeh Ardekani, 2013), which implies that GPR is capable of characterizing the 

spatiotemporal SWC distribution at the field scale (e.g., Steelman et al., 2012).  

 

In general, GPR measurements can be performed off the ground surface (off-ground GPR) (e.g., 

Lambot et al., 2004), on the soil surface (surface GPR) (e.g., Huisman et al., 2002; van 

Overmeeren et al., 1997) or in vertical or horizontal boreholes (borehole GPR) (e.g., Redman et 

al., 2000). Off-ground GPR relies on the use of an ultra-wide frequency band for subsurface 

investigations, and hence can potentially provide high-resolution information about the soil states. 

However, off-ground GPR measurements are influenced by surface roughness and only have a 

limited penetration depth (Lambot et al., 2006a).  For surface GPR measurements, SWC can be 

estimated based on the analysis of the direct ground wave (Grote et al., 2003; Weihermüller et al., 

2007) or reflected waves (Lunt et al., 2005). Both GPR acquisition strategies have been 

successfully used to monitor water flow dynamics in unsaturated soil (Allroggen et al., 2015; 

Mangel et al., 2012; Moysey, 2010). The penetration depth of surface GPR is limited by the soil 

characteristics, especially by the bulk electrical conductivity. Furthermore, there is no control on 

the vertical resolution when using reflected waves for SWC determination (Huisman et al., 2003a). 

Borehole GPR can overcome these limitations but requires the availability and accessibility of 

appropriate boreholes or wells, and is therefore restricted to specialized test sites and experimental 

set-ups. Borehole GPR measurements have also been used to monitor SWC dynamics (Looms et 

al., 2008b). In addition, zero-offset profiling (ZOP) measurements between horizontal boreholes 

have been used to monitor SWC dynamics (Cai et al., 2016; Galagedara et al., 2002; Klotzsche et 

al., 2019a). Due to the good control on the vertical resolution and the improved spatial 

representativeness for the field plot scale, this kind of set-up provides detailed information on the 

spatial and temporal variation of SWC. 

 

In order to derive soil hydraulic parameters from time-lapse GPR data, two types of inversion 

strategy can be used. The first type is commonly called sequential inversion and consists of three 

steps (Hinnell et al., 2010; Huisman et al., 2010). First, the dielectric permittivity   is determined 

from the first arrival time of a GPR measurement using a straight-ray approximation (e.g., 

Galagedara et al., 2002) or a full-waveform inversion (e.g., Klotzsche et al., 2019b). Second, a 

petrophysical relationship is used to convert   to SWC using the empirical Topp’s equation (Topp 

et al., 1980) or a more advanced dielectric mixing model (Roth et al., 1990). Third, the obtained 

time-lapse SWC data are used in combination with a hydrological model to estimate soil hydraulic 

parameters using inverse modelling. However, the use of a sequential inversion strategy may 

cause errors in the estimated soil hydraulic parameters when errors due to simplified geophysical 
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data interpretations propagate into the estimated soil hydraulic parameters. An example of a 

potential source for such errors is the use of the straight-wave approximation for the travel path 

of the electromagnetic waves (Rucker and Ferré, 2004a). To overcome this problem, a coupled 

inversion strategy can be used (Hinnel et al., 2010; Lambot et al., 2006b). In contrast to sequential 

inversion, a coupled inversion links a hydrological model directly with a forward model of the 

geophysical data, and the mismatch between measured and modelled geophysical response is 

minimized (i.e., first arrival time or even the full waveform in the case of GPR). In doing so, the 

soil hydraulic parameters used in the hydrological model can be optimized, while error 

propagation is avoided. The coupled inversion approach relies heavily on an accurate forward 

hydrological model. A wrong conceptualization of the subsurface in terms of layering or 

processes not adequately captured by the hydrological model (e.g., dual porosity or macropore 

flow) will introduce errors that propagate into the estimated parameters. 

 

A range of studies have employed off-ground GPR, surface GPR, and vertical borehole GPR 

measurements for estimating soil hydraulic properties from time-lapse SWC information by using 

either a sequential or a coupled inversion approach (e.g., Busch et al., 2013; Chen et al., 2001; 

Chen et al., 2004; Jadoon et al., 2012; Jaumann and Roth, 2018; Jonard et al., 2015; Kowalsky et 

al., 2005; Lambot et al., 2009; Rucker and Ferré, 2004b). Compared to these GPR acquisition 

strategies, horizontal borehole GPR measurements have several advantages to reveal the temporal 

and spatial SWC variations at the field plot scale. Firstly, horizontal borehole GPR measurements 

can provide SWC information at specific depths and thus have larger penetration depth and better 

control on vertical resolution compared to off-ground and surface GPR. Secondly, horizontal 

borehole GPR measurements provide a higher lateral spatial representativeness of the field plot 

compared to vertical borehole GPR measurements. However, no studies have been conducted yet 

that use horizontal borehole GPR measurements to parameterize a hydrological model. In this 

chapter, the performance of both sequential and coupled inversion workflows to obtain soil 

hydraulic properties from time-lapse horizontal borehole GPR data obtained during an infiltration 

event will be compared. To systematically study the differences between the two inversion 

approaches, a synthetic modelling experiment will be presented first. In a second step, actual 

horizontal borehole GPR measurements will be inverted using a coupled inversion approach. The 

resulting estimates of the hydraulic parameters will be compared to available independent 

hydraulic property estimates obtained from TDR measurements. 
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3.2  Method and material 

3.2.1 Test site and GPR data acquisition 

The details of the test site, experimental set-up, GPR data acquisition, and GPR data analysis were 

introduced in Section 2.2.  Therefore, only a short summary is provided here.  

 

In this facility, three plots (7 x 3 m) were established with different treatments (natural rain, rain-

sheltered, and irrigated). GPR access tubes of 7 m length were horizontally installed at 0.1, 0.2, 

0.4, 0.6, 0.8, and 1.2 m depth across the entire length of the plot. The soil in the facility originates 

from fluvial gravel deposits from the Rur river system and is characterized as an Orthic Luvisol 

with high stone content (>50%) and a loamy texture (Table 3.1). Due to tillage activity, soil 

porosity 𝛷 changes from 0.33 cm3 cm-3 near the surface to approximately 0.25 cm3 cm-3 below 

0.3 m depth. In order to install the GPR access tubes, the entire plot was dug out and refilled layer-

wise. Therefore, no pedogenetic horizons are detectable anymore below the plough horizon. No 

clear pedogenetic layers are detectable in the gravely layers of the natural soil either.  

 

The infiltration experiment consisted of five infiltration events that were carried out at the rain-

sheltered plot during a 4-day period. Water was infiltrated using a drip irrigation system that was 

supplied by water from an underground tank at a constant rate (0.03 cm min-1). Approximately 

2.7 cm of water was applied for each infiltration event of 90 min (Fig. 3.1a). ZOP surveys were 

made using a GPR system (PulseEKKO, Sensors & Software, Canada) with 200 MHz borehole 

antenna. GPR measurements were made at six depths (0.1, 0.2, 0.4, 0.6, 0.8 and 1.2 m) before 

and after infiltration events. During the infiltration events, GPR measurements were restricted to 

the boreholes at 0.1, 0.2 and 0.4 m depth as the SWC was expected to increase mainly at shallow 

depths at the beginning of each infiltration event. For each ZOP survey, the transmitter and 

receiver were first pushed to the end of the borehole (7 m) and then pulled simultaneously 

throughout the boreholes in 0.05 m steps. The survey ended at 1.5 m distance from the access 

trench to avoid that reflections from the trench wall and installed sensors interfered with the direct 

waves. 
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Table 3.1 Soil texture of fine soil, mass fraction of stones and porosity of the field 

according to Cai et al. (2016) 

Depth Sand Silt Clay Stones Porosity 

(cm) ————————   (Mass %)     —————               (cm3cm-3) 

Topsoil (0 - 30)       35 52 13 50 0.33 

Subsoil (30 – 120)  37 47 16 69 0.25 

 

 

Fig. 3.1 (a) Schedule and amount of irrigated water for the five infiltration events and (b) GPR 

travel time data measured at 6 different depths during the infiltration experiment. The timing of 

the infiltration events was indicated by light green background. The spatial variation of the travel 

times along the 5.5 m borehole tube is indicated by the error bars. Note that different y-axis scales 

are used for the results of different depths. 

The development of the mean GPR travel time at different depths is shown in Fig. 3.1b. To 

determine the GPR travel time from the ZOP data, the time-zero offset (𝑇0) and first arrival time 

(𝑡𝑜𝑏𝑠) of the direct wave were determined by using the strategy introduced in Section 2.2.2. In 

this strategy, 𝑇0  was determined from wide angle reflection and refraction (WARR) 

measurements with the borehole antennas in air and 𝑡𝑜𝑏𝑠 was manually picked for each trace. 

GPR travel times measured at 0.1 and 0.2 m depth increased after the first infiltration event. In 
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response to the second infiltration event, travel times up to a depth of 0.8 m responded to the 

infiltration. After the third infiltration event, the travel times increased at all depths. The standard 

deviation of the travel times is also shown in in Fig. 3.1b, which illustrates the spatial variability 

along the 5.5 m borehole tubes that were generated by the expected differences in the irrigation 

rate of the used dripping system and small-scale lateral water content variations caused by the 

heterogeneity of the soil. SWC information at each depth can be estimated based on the straight-

ray approximation and CRIM model (Eq. 2.1, Eq. 2.2 and Eq. 2.6).  

 

3.2.2 Hydrological modelling 

In this case, HYDRUS-1D was used to simulate the 1D vertical water flow in porous media based 

on the Mualem - van Genuchten (MvG) model where soil hydraulic properties were described by 

five parameters 𝐾𝑠 , 𝜃𝑠 , 𝜃𝑟 , 𝛼, and 𝑛 (See Section 1.5.1). For the simulation of vertical SWC 

dynamics, the model domain was set to be 150 cm deep and was discretized with 151 nodes with 

an equal spacing of 1 cm. Simulations were initialized using linearly interpolated SWC estimates 

from measured permittivity obtained from borehole GPR data acquired prior to the first 

infiltration event. Evaporation and root water uptake were both neglected in the simulation, as 

evaporation was low with respect to the amount of infiltrated water and the soil was bare. An 

atmospheric boundary condition with surface run-off was used to represent the irrigation events 

at the upper boundary of the domain. At the lower boundary of the domain, a seepage face (ℎ = 

0) was used. The use of a seepage face was required to match SWC observations and avoid 

excessive drainage out of the profile, which occurred when a free drainage boundary condition 

was used. A physical explanation for the need to use a seepage face may be the presence of a 

compacted soil layer directly below the rhizotron facility caused by the construction of the facility. 

As an alternative to the use of a seepage face, a longer soil profile with a dense layer with low 𝐾𝑠 

could have been used. However, this would have made the hydrological simulations 

computationally more demanding, especially in the case of the coupled inversion. 

 

3.2.3 GPR modelling 

The gprMax3D model was used to simulate GPR wave propagation with the Finite-difference 

time-domain (FDTD) numerical method (Giannopoulos, 2005; Warren et al., 2016). The size of 

the simulation domain for the gprMax3D simulation was set to 2 x 1.1 x 2.2 m, including a soil 

of 1.5 m thickness below an air layer of 0.7 m. The 3D domain was discretized with nodes with 

0.02 m spacing and perfectly matched layers (PML) were used at the boundaries of the model 

domain (Berenger, 1994). The center frequency of the antenna was set to 200 MHz and the first 



 

 

 

46 

 

derivative of a Gaussian waveform was selected as the excitation function for the current source. 

As I only considered the velocity information for the GPR data interpretation, the electrical 

conductivity of the soil was assumed to be zero. 

 

3.2.4 Set-up for sequential and coupled inversion 

To estimate hydraulic parameters from horizontal borehole GPR measurements, both sequential 

and coupled inversion strategies were used. The general set-ups of the two inversion strategies 

are illustrated in Fig. 3.2a and Fig. 3.2b. A key difference between the two approaches is that the 

sequential inversion approach directly optimizes the misfit between the SWC obtained from the 

GPR measurements 𝜃𝑜𝑏𝑠  (cm3 cm-3) and the simulated SWC 𝜃𝑚𝑜𝑑  (cm3 cm-3) provided by 

HYDRUS-1D, whereas the coupled inversion optimizes the misfit between the travel time of the 

measured GPR data 𝑡𝑜𝑏𝑠 (ns) and the simulated travel time 𝑡𝑚𝑜𝑑 (ns) obtained with gprMax3D 

using SWC information (𝜃𝑚𝑜𝑑) provided by HYDRUS-1D. The misfits for the sequential and 

coupled inversions were described using cost functions based on the root-mean-square error 

(RMSE) between observed and simulated data: 

𝐶𝑀𝑉𝐺(𝜃) = √
∑ (𝜃𝑖

𝑚𝑜𝑑−𝜃𝑖
𝑜𝑏𝑠)2𝑛𝑚

𝑖=1

𝑛𝑚
                                              (3.1) 

𝐶𝑀𝑉𝐺(𝑡) = √
∑ (𝑡𝑖

𝑚𝑜𝑑−𝑡𝑖
𝑜𝑏𝑠)2𝑛𝑚

𝑖=1

𝑛𝑚
                                               (3.2) 

Where 𝐶𝑀𝑉𝐺(𝜃) (cm3 cm-3) and 𝐶𝑀𝑉𝐺(𝑡) (ns) are the cost functions based on SWC and travel 

time, respectively. 𝑛𝑚 (-) is the number of GPR measurements.  

 

In order to minimize these cost functions, the shuffled complex evolution (SCE-UA) algorithm 

introduced by Duan et al. (1993) was used. SCE-UA is a global optimization algorithm that not 

only has been widely used in hydrological research (e.g., Chu et al., 2010; Thyer et al., 1999) but 

also in geophysical applications (e.g., Liu et al., 2018; Mangel et al., 2017). The SCE-UA 

algorithm requires the specification of parameter bounds for each parameter considered in the 

optimization. The optimization includes several steps. First, different sets of hydraulic parameters 

are randomly created in the feasible parameter space and the cost function value for each of these 

parameter sets is calculated. Second, the parameter sets are sorted in order of their cost function 

value and distributed into several complexes that are subsequently evolved using the competitive 

complex evolution (CCE) algorithm (Duan et al., 1994). After this first loop of evolution, the 

complexes are merged again into a single population, which again is sorted in order of increasing 

cost function value and divided into complexes for the next optimization loop. The algorithm is 
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considered to be converged if the cost function valued reaches a specified value (i.e., the known 

error of the data) or if the improvement in the best model is below 0.01% in the last 10 evolution 

loops. 

 

Since no GPR measurements were made in dry soil conditions, the inversion is not expected to 

be sensitive to 𝜃𝑟 . In order to build an independent hydrological model based on GPR 

measurement, 𝜃𝑟 was fixed it to 0 for the inversion and only 𝐾𝑠, 𝜃𝑠, 𝛼, and 𝑛 were estimated. 𝐾𝑠 

was inverted by using its log-transform (log(𝐾𝑠)). The algorithms for both sequential and coupled 

inversion were coded in GNU Octave (Eaton, 2012).  

 

 

Fig. 3.2 Flow charts of (a) sequential inversion and (b) coupled inversion. 

3.2.5 Set-up for synthetic infiltration experiments 

Synthetic model experiments were performed to gain further insight into the feasibility of 

obtaining plausible parameter estimates from sequential and coupled inversion of time-lapse 
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borehole GPR data. In a first model experiment, a 1-layer soil profile was considered. I used the 

soil hydraulic parameters for the top soil (0 - 30 cm) determined by Cai et al. (2018a), which were 

estimated from TDR measurements at the same depths as the GPR access tubes (Table 3.2). In 

order to generate synthetic data for the model experiments, five infiltration events were simulated 

with an infiltration rate of 0.03 cm min-1, which corresponds with the infiltration rate used in the 

actual field experiment. Since the 1-layer soil profile was constructed using the hydraulic 

parameters of the topsoil (higher 𝜃𝑠), the amount of applied water was increased in the synthetic 

modelling experiment. In particular, the first three irrigation events now lasted 400 min whereas 

the last two infiltration events still lasted 90 min. After obtaining the SWC profile (𝜃𝑚𝑜𝑑) from 

HYDRUS-1D, a dielectric permittivity profile 𝜀𝑚𝑜𝑑 (-) was calculated using the rearranged form 

of the CRIM model given in Eq. 2.6:  

  𝜀𝑚𝑜𝑑 = [(√𝜀𝑤 − 1) ∗ 𝜃𝑚𝑜𝑑 + (1 − 𝛷) ∗ √𝜀𝑠 + 𝛷]2                             (3.3) 

This dielectric permittivity profile was then used to simulate GPR measurements for the six depths 

using gprMax3D.  

 

A synthetic modelling experiment with a 2-layer soil profile was also performed. Sequential and 

coupled inversions for the 2-layer soil profile were conducted based on the infiltration schedule 

of the actual experiment (Fig. 3.1a). The hydraulic parameters in this second experiment were 

also based on Cai et al. (2018a). However, the saturated hydraulic conductivity of the subsoil (𝐾𝑠2) 

was changed from 0.0004 cm min-1 reported by Cai et al. (2018a) to 0.04 cm min-1, because it had 

to be larger than the infiltration rate of 0.03 cm min-1 to avoid ponding of water at the layer 

interface. For a more realistic synthetic modelling study, Gaussian noise with zero mean and a 

standard deviation of 0.1 ns and 0.01 cm3 cm-3 was added to the synthetic travel times and SWC 

data, respectively, for both the 1-layer and the 2-layer model. 

 

Table 3.2 Soil hydraulic parameters for the rhizotron facility 

Depth  𝜃𝑟  𝜃𝑠  𝛼   𝑛  𝐾𝑠 𝑙 

(cm) (cm3cm-3)        (cm3cm-3) (cm-1) (-) (cm min-1) (-) 

0 - 30 0.043 0.326 0.036 1.386 0.057 1.47 

30- 120 0.053 0.229 0.050 1.534 0.0004†;0.04†† -2.78 

† The 𝐾𝑠 value of subsoil estimated by Cai et al. (2018a). 

†† The 𝐾𝑠 value used for synthetic study of 2-layer soil profile. 

 

The implementation of the coupled inversion approach requires an automatic picking of the first 

arrival time. For the simulated GPR data, the first arrival time can be automatically determined 

using an amplitude threshold. To obtain this threshold, the excitation moment  𝑇𝑠  (ns) of the 

simulated data was determined from the onset of the source wavelet. The source wavelet is 
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defined as the first derivative of the Gaussian waveform: 

𝐼 =  −2ζ√𝑒
1

2ζ𝑒−ζ(𝑡−𝜒)2
(𝑡 − 𝜒)                                          (3.4) 

where ζ = 2𝜋2𝑓2  and 𝜒 = 1/𝑓 , 𝐼  is the electric current density (A m-2), 𝑒  (-) is the natural 

logarithm, and 𝑓 (MHz) is the center frequency of the antenna (200 MHz). From this source 

wavelet, a 𝑇𝑠 of 1.62 ns was manually determined (Fig. 3.3a). Subsequently, an air wave was 

simulated using antennas positioned at 0.1 m above the ground surface (Fig. 3.3b). With the 

known propagation velocity in air (0.3 m ns-1) and the antenna separation (0.75 m), the true travel 

time of the air wave is 2.5 ns. The appropriate amplitude threshold (0.0158 V m-1) was then 

determined from the amplitude of the simulated air wave at the travel time of 4.12 ns, which is 

the sum of 𝑇𝑠 (1.62 ns) and true travel time of the air wave (2.5 ns).  

 

To verify the robustness of the automatic first arrival time determination, a synthetic infiltration-

induced SWC profile was generated by HYDRUS-1D (Fig. 3.3c) and ZOP measurements were 

simulated using gprMax3D at different depths. The amplitude threshold of 0.0158 V m-1 was used 

to determine the first arrival time (Fig. 3.3d). It was found that the amplitude of the traces rapidly 

increased after the determined first arrival time, which confirms the robustness of automatic 

procedure for the determination of the first arrival time.  
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Fig. 3.3 (a) The source wavelet. (b) A synthetic trace of air wave generated by gprMax3D. (c) A 

synthetic vertical SWC profile generated by HYDRUS-1D. (d) Six synthetic GPR traces obtained 

using the synthetic vertical SWC distribution shown in (c). The red crosses indicate the first 

arrival time of the GPR traces. 

3.2.6 Uncertainty analysis 

Proper quantification of uncertainty in the estimated soil hydraulic parameters is of great 

importance given that the information content of soil water content measurements for the 

estimation of soil hydraulic properties depends on the initial and boundary conditions during the 

experiment (Mboh et al., 2011). In this study, I used both response surface analysis (Toorman et 

al., 1992) and a simple first-order approximation (Kool and Parker, 1988; Kuczera and 
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Mroczkowski, 1998; Vrugt and Dane, 2006) to investigate the uncertainty of the inverted 

hydraulic parameters.  

 

Response surfaces provide a 2D view of the cost function distribution obtained with a grid search. 

In order to obtain such surfaces, two hydraulic parameters (e.g., 𝛼 and 𝑛) are varied between 

defined bounds, whereas the other hydraulic parameters (e.g., log(𝐾𝑠) and 𝜃𝑠) are fixed at their 

true (or optimized) value. Response surfaces are a robust method to visualize parameter 

uncertainty and the minimum of the cost function. However, they commonly require a high 

computational effort, especially in the case of many model parameters (i.e., the 2-layer model). 

Therefore, this method was only used for the synthetic model study with a 1-layer soil profile.  

 

A classic first-order approximation of parameter uncertainty was also used (Vrugt and Dane, 

2006). It is based on the covariance matrix (𝐶𝑣) of the optimized hydraulic parameters, which is 

calculated by: 

𝐶𝑣 = 𝑠𝑣
2(𝐽𝑇𝐽)−1                                                        (3.5) 

where 𝑠𝑣
2 is the error variance between simulated and observed data and J is the Jacobian matrix. 

The Jacobian matrix is the first-order partial derivative of the cost function for each inverted 

hydraulic parameter and was obtained using a finite difference approach. The marginal posterior 

distribution of the estimated hydraulic parameters (𝑚𝑒𝑠𝑡) is assumed to be a multivariate normal 

distribution 𝑁 (𝑚𝑒𝑠𝑡 , 𝐶𝑣) . The uncertainty of the estimated hydraulic parameters can be 

approximated by the confidence interval for a given level (i.e., 99%) of significance calculated 

from the diagonal elements of 𝐶𝑣. A matrix (𝐴) that provides the correlation between the estimated 

hydraulic parameters can be obtained by dividing the elements of 𝐶𝑣 with the square root of the 

diagonal elements of 𝐶𝑣: 

𝐴𝑖𝑗 =
𝐶𝑣𝑖𝑗

𝐶𝑣𝑖𝑖
1/2

𝐶𝑣𝑗𝑗
1/2                                                         (3.6) 

This first-order approximation is an efficient way for estimating the uncertainty of the estimated 

hydraulic parameters for linear or nearly linear hydrologic models and the correlation matrix is a 

useful indicator of parameter correlation (Zhu and Mohanty, 2003). If the hydrological model is 

highly non-linear, the first-order approximation may be unreliable. Therefore, I only focus on 𝐴𝑖𝑗 

values larger than 0.6 in our analysis.   
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3.3  Results and discussion 

3.3.1 Synthetic infiltration experiments 

The simulated vertical SWC profiles at times where GPR measurements were obtained are shown 

in Fig. 3.4 for the synthetic modelling study with a 1-layer soil. It can be seen that the infiltration 

front moved down to 0.6 and 1.2 m depth after the first and second infiltration event, respectively. 

After the third infiltration event, the entire soil profile was saturated. Because of the high 

saturation after the third infiltration event, the infiltration front moved rapidly downward through 

the entire soil profile during infiltration events 4 and 5.  

 

The SWC estimates obtained from the first-arrival time of simulated horizontal borehole GPR 

measurements using a straight-wave approximation are also shown in Fig. 3.4b. It was found that 

SWC estimates obtained from GPR measurements at shallow depth (0 – 0.2 m) and near the 

infiltration front underestimated the actual SWC (Fig. 3.4b and 3.4c). This is attributed to the 

interference of the direct wave with critical refractions generated at the air – soil interface and the 

infiltration front where the dielectric permittivity changes sharply (Rucker and Ferré, 2004a). For 

this reason, horizontal borehole GPR measurements at 0.1 m depth were previously not 

considered for SWC estimation (Klotzsche et al., 2019a). In the synthetic study, these data were 

also not used in the sequential inversion to reduce this interpretation error. Unfortunately, errors 

in SWC estimates near the infiltration front cannot be simply identified and eliminated and thus 

are expected to affect the estimated hydraulic parameters obtained with the sequential inversion 

approach. For the coupled inversion, the effect of the air-soil interface is considered in the 

simulation of GPR wave propagation and therefore there is no need to remove the measurement 

at 0.1 m depth. However, the information content with respect to the soil hydraulic properties is 

expected to be limited for these measurements because of the limited travel path length in the 

topsoil.  
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Fig. 3.4 (a) Schedule of the synthetic infiltration events and synthetic GPR measurements. (b) 

Synthetic vertical SWC profiles from HYDRUS-1D (solid lines) and synthetic vertical SWC 

profiles estimated by GPR data (dashed lines) based on the vertical water content distribution 

used as inputs in gprMax3D. The colors indicate different measurement times. The GPR estimated 

SWCs at 0.2 – 1.2 m depth were inverted using a sequential inversion approach to estimate the 

hydraulic parameters for the 1-layer soil. (c) Differences between GPR-estimated and simulated 

HYDRUS-1D SWCs. The timing of the infiltration events is indicated by the light green 

background. Note that different y-axis scales are used for the results of different depths. 
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Fig. 3.5a presents the response surface based on true SWC data that would be obtained using point 

measurements (i.e., TDR) at the same depth as the borehole GPR measurements. The 

corresponding response surfaces for the noise-free coupled inversion of the synthetic GPR data 

are shown in Fig. 3.5b. It can be seen that the cost functions for point and GPR measurements 

have a very similar misfit distribution. This is not unexpected given that point and GPR 

measurements provide a similar type of information, albeit with a different sampling volume 

(Klotzsche et al., 2019a). 

 

 

Fig. 3.5 Response surfaces for different pairs of hydraulic parameters obtained using (a) true SWC 

data simulated by HYDRUS-1D and (b) noise-free synthetic GPR travel times. The cost function 

values are shown in logarithmic scale. Blank spaces indicate that the hydrological model did not 

converge for the selected parameters. The global minimum of the cost function is shown by the 

red cross. Also note that the cost functions of sequential and coupled inversion (𝐶𝑀𝑉𝐺(𝜃) and 

𝐶𝑀𝑉𝐺(𝑡) ) have different units (cm3cm-3 and ns, respectively). 
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The response surfaces can be used to gain insight in the expected parameter uncertainty. In the 

case of the 𝛼  parameter, the response surfaces for 𝑛 −  𝛼 ,    𝜃𝑟 − 𝛼 , and 𝜃𝑠 − 𝛼  indicate that 

changes in the cost function are parallel to the 𝛼  axis. This suggests that the 𝛼  parameter is 

independent from the other parameters. Although a clear minimum in the cost function value can 

be observed in these three surfaces, it is also elongated in the direction of the 𝛼 axis suggesting 

that the 𝛼 parameter is expected to be less constrained in the inversion results compared to the 

other model parameters. According to the response surfaces for 𝜃𝑠 − 𝑛  and 𝜃𝑠 −  log( 𝐾𝑠 ), 

estimates of 𝜃𝑠 are expected to be correlated with the estimates of 𝑛 and log(𝐾𝑠). In the vicinity 

of the global minimum, the response surface is almost perpendicular to the 𝜃𝑠 axis and steep, 

which suggests that 𝜃𝑠 estimates are well-constrained during inversion. The global minimum in 

the response surface between log(𝐾𝑠) and 𝑛 is positioned in an elongated valley. A strong negative 

correlation between the parameter estimates for log(𝐾𝑠) and 𝑛 is thus expected, which implies 

that the GPR measurements may not contain sufficient information to simultaneously constrain 

both log(𝐾𝑠) and 𝑛.  

 

Sequential and coupled inversions were performed using noisy simulated GPR measurements for 

the 1-layer soil profile. In the case of the sequential inversion, the fitted SWC data showed a large 

misfit with the expected SWC (Fig. 3.6a), particularly for the shallow depths (0.2 m). This is also 

reflected in the large cost function value (0.05 cm3 cm-3) for the optimized parameters, which is 

much higher than the added uncertainty in the SWC data (0.01 cm3 cm-3). Additionally, the SWC 

profiles simulated by using the estimated parameters from the sequential inversion showed large 

deviation with the SWC profiles from the true forward model (Fig. 3.7a). Due to the poor fit to 

the data, the hydraulic parameters were not accurately estimated by the sequential inversion 

(Table 3.3). In particular, 𝜃𝑠 was strongly underestimated and this resulted in a large mismatch 

between the inverted and true water retention curves (Fig. 3.8a). Moreover, the estimated value 

for 𝐾𝑠 was at the lower boundary of the feasible parameter space (0.035 cm min-1), which is 

almost equal to the infiltration rate. The 𝑛 and 𝛼  parameters were also overestimated, which 

resulted in a large difference between the inverted and true relative hydraulic conductivity 

function (Fig. 3.8b). As detailed above, sequential inversion of ZOP data may lead to erroneous 

estimates of hydraulic parameters if strong vertical gradients in SWC are present (e.g., infiltration-

induced gradients). 

 

In the case of the parameters estimated from coupled inversion, the simulated travel time fitted 

the known travel time from the true model well (Fig. 3.6b) as expressed by the low RMSE of 0.1 

ns. Also, the simulated SWC profiles matched well the SWC profiles from the true model (Fig. 
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3.7a). It should be noted that the coupled inversion was ended when the cost function value 

decreased to the standard deviation of the Gaussian noise (0.1 ns) (Table 3.3) to avoid overfitting. 

Therefore, the data simulated with the inverted model parameters have the same RMSE as the 

noise-free data and the simulated travel times based on the inverted parameters also match well 

with the noise-free data. 

 

 

Fig. 3.6 (a) Sequential inversion results of noisy GPR SWC estimations. (b) Coupled inversion 

results of noisy GPR travel time data. SWC data at 0.1 m depth was not used for sequential 

inversion. The timing of the infiltration events is indicated by the light green background. Note 

that different y-axis scales are used to show the results for different depths. 



 

 

 

57 

 

 

Fig. 3.7 Vertical SWC profiles of the (a) 1-layer and (b) 2-layer soil profile, which were simulated 

by using the true model (black solid line), parameters estimated from the coupled inversion 

(purple dashed line) and sequential inversion (yellow dashed line) at four different measurement 

times. Note that the different background indicates the different layers. 
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Table 3.3 Inverted results of noisy synthetic data 

 
True 

value 
Bounds 

Inverted results 

Sequential inversion   Coupled inversion 

——————    homogenous soil profile    —————— 

𝜃𝑠 (cm3cm-3) 0.326 0.25 – 0.40 0.290 0.326±0.001† 

𝛼 (cm-1) 0.036 0.030 – 0.125 0.106 0.036±0.003 

𝑛 (-) 1.386 1.1 – 2.8 1.431 1.358±0.016 

log(𝐾𝑠) (cm min-1) -1.244 -1.456 – -0.276 -1.456 -1.168±0.038 

Cost-function - - 0.05  0.1  

——————    2-layer soil profile    —————— 

𝜃𝑠1 (cm3cm-3) 0.326 0.30 – 0.40 0.345 0.324±0.007 

𝛼1 (cm-1) 0.036 0.030 – 0.125 0.036 0.036±0.004 

𝑛1  (-) 1.386 1.1 – 2.8 1.506 1.312±0.024 

log(𝐾𝑠1) (cm min-1) -1.244 -1.456 – -0.276 -0.276 -0.996±0.048 

𝜃𝑠2 (cm3cm-3) 0.229 0.15 – 0.30 0.300 0.240±0.007 

𝛼2 (cm-1) 0.050 0.030 – 0.125 0.038 0.045±0.004 

𝑛2 (-) 1.534 1.1 – 2.8 1.696 1.431±0.020 

log(𝐾𝑠2) (cm min-1) -1.398 -1.456 – -0.276  -1.456 -1.108±0.048 

Cost-function - -   0.01 0.1 

†The values indicated the 99% confidence interval based on the first-order approximation. 

 

The values for 𝜃𝑠 and 𝛼 were accurately estimated by coupled inversion (Table 3.3). However, 

the estimated values for 𝑛 and log(𝐾𝑠) showed a slight deviation from the true model, likely 

because of the strong correlation between these two parameters. The accurate estimation of the 

hydraulic parameters is also reflected in the good match between the estimated and known water 

retention and relative hydraulic conductivity function (Fig. 3.8a, 3.8b). The first-order uncertainty 

estimates for the coupled inversion are presented in Table 3.3 and the associated correlation 

matrix of the estimated hydraulic parameters is given in Table 3.4. The results indicate a strong 

negative correlation for log(𝐾𝑠 ) -  𝑛  and weak correlations between other pairs of hydraulic 

parameters. This is consistent with the results of the response surface analysis and confirms that 

the first-order approximation provides a meaningful assessment of parameter uncertainty.  

 

In a next step, the synthetic modelling study for the 2-layer soil profile was analyzed.  As expected 

from the results of the 1-layer soil profile, the parameters estimated using sequential inversion 

deviated considerably from the true hydraulic parameters (Table 3.3) and the estimated and true 
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water retention (Fig. 3.8c, 3.8e) and relative hydraulic conductivity functions did not match well 

(Fig. 3.8d, 3.8f). Hence, sequential inversion will not be considered for the analysis of the actual 

field measurements. 

 

 

Fig. 3.8 Water retention 𝜃(ℎ) and relative hydraulic conductivity 𝐾𝑟(ℎ) function for the (a,b) 

synthetic homogeneous soil profile, and the (c,d) topsoil and (e,f) subsoil of the 2-layer profile. 

Table 3.4 Correlation matrix of the estimated hydraulic parameters for the 

homogeneous profile 

  𝛼  

(cm-1) 

 𝑛  

(-) 

log(𝐾𝑠)  

(cm min-1) 

𝜃𝑠  

  (cm3cm-3) 

𝑛 -0.335 1   

log(𝐾𝑠) 0.233 -0.694† 1  

𝜃𝑠 -0.086 0.256 0.186 1 

†The values indicated the pairs of parameters showing strong correlation.  
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The results of the coupled inversion for the 2-layer soil profile generally were consistent with the 

results of the 1-layer profile, despite the dimensional expansion of the search space from four to 

eight parameters. Again, the estimated travel times from coupled inversion results nicely fitted 

the noisy synthetic travel time series (Fig. 3.9) and the vertical SWC profiles from the true model 

(Fig. 3.7b). In addition, accurate hydraulic parameter estimates were obtained (Table 3.3), as also 

confirmed by the minor differences in estimated and true water retention (Fig. 3.8c, 3.8e) and 

relative hydraulic conductivity functions (Fig. 3.8d, 3.8f). 

 

 

Fig. 3.9 Coupled inversion results of noisy GPR travel time data for 2-layer profile. The timing 

of the infiltration events is indicated by the light green background. Please note that results for 

different depths are shown with difference range of y-axis scale. 
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3.3.2 Inversion of experimental GPR data 

Coupled inversion was used to estimate the hydraulic parameters from the measured horizontal 

borehole GPR data shown in Fig. 3.10. The resulting fit to the measured data is also shown in Fig. 

3.10 and the estimated soil hydraulic parameters are provided in Table 3.5. For comparison, the 

simulated data using the hydraulic parameters of Cai et al. (2018a) are also provided, which are 

based on long-term TDR measurements also made during vegetation periods.  

 

 

Fig. 3.10 Coupled inversion results of measured GPR travel time data at different depths. 

Simulated travel time using the hydraulic parameters of Cai et al. (2018a) and inverted model are 

shown in blue and black dashed lines, respectively. The timing of infiltration events is indicated 

by the light green background. Please note that different y-axis scales are used for the results at 

different depths.  
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The comparison between measured and simulated travel times showed a good correspondence at 

0.1 m depth both for the inverted hydraulic parameters and the parameters from Cai et al. (2018a) 

(Fig. 3.10). For 0.2 m depth, the measured GPR travel times steadily increased during the entire 

infiltration experiment, whereas the simulated travel times using both sets of hydraulic parameters 

remained constant after the second infiltration event because the soil reached saturation. This can 

be explained by the heterogeneous nature of the topsoil, which is supported by the large spatial 

variation of the GPR travel time data. For the subsoil, the key features of the measured time-lapse 

GPR data were well captured by the coupled inversion, also considering the spatial variability in 

the measured GPR data. The simulated travel time data based on the hydraulic parameters of Cai 

et al. (2018a) did not match the observed GPR data well in the subsoil (i.e., at 0.6, 0.8, and 1.2 m 

depth). This is attributed to the small 𝐾𝑠2 used in Cai et al. (2018a), which results in a slow 

movement of the infiltration front in the subsoil (Fig. 3.11), and therefore, a reduced variation in 

simulated water content at large depths. 

 

Table 3.5 Inverted Soil hydraulic parameters for the rhizotron facility from 

measured GPR data. 

Depth    𝜃𝑟  𝜃𝑠 𝛼 𝑛 log(𝐾𝑠) l 

(cm) (cm3cm-3)      (cm3cm-3) (cm-1) (-) (cm min-1) (-) 

——————    [cost-function = 0.32 (ns)]    —————— 

0 – 30 0 0.328±0.011† 0.032±0.011 1.125±0.028 -0.983±0.266 0.5 

30 - 120 0 0.196±0.009 0.038±0.015 1.202±0.054 -1.022±0.349 0.5 

†The values indicated the 99% confidence interval based on the first-order approximation. 
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Fig. 3.11 Vertical SWC profiles simulated by using hydraulic parameters from the inversion of 

measured data (black lines) and Cai et al. (2018a) (blue lines). Note that the different backgrounds 

indicate the different soil types. 

Measured and inverted GPR travel time data are directly compared in Fig. 3.12. The use of the 

hydraulic parameters from Cai et al. (2018a) clearly resulted in a systematic underestimation of 

the measured data and a relatively high RMSE of 0.43 ns. The hydraulic parameters obtained 

using coupled inversion better matched the measured travel time data, as indicated by the lower 

RMSE (0.32 ns) and a higher R2 value (0.90). Nevertheless, the RMSE between inverted and 

measured GPR data is still relatively large. This is partly attributed to the heterogeneity of the 

topsoil, as the measurements at 0.2 m depth make up a considerable part of the observed misfit. 

Furthermore, there is uncertainty in the initial SWC profile, which is solely based on GPR 

measurements at six different depths. Here, extrapolation from the shallowest borehole to the soil 

surface is problematic, and may have introduced some degree of uncertainty. Finally, there is 

intrinsic uncertainty in the field GPR measurements and data processing, such as the uncertainty 

in the position of the horizontal boreholes and the uncertainty in the determination of the time-

zero or first arrival time of measured GPR data. These issues obviously did not affect the coupled 

inversion in the synthetic case study but they are highly relevant for the inversion of actual field 

measurements. 
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Fig. 3.12 Linear regression between measured and GPR travel time data obtained using the 

inverted hydraulic parameters (black squares) and the hydraulic parameters of Cai et al. (2018a) 

(blue crosses). The 1:1 line is indicated by the dashed red line. 

The results of the first-order uncertainty estimation of the inverted hydraulic parameters are 

provided in Table 3.5. The uncertainty of 𝛼  and 𝜃𝑠  are comparable for the top- and subsoil, 

whereas 𝑛 and log(𝐾𝑠) showed a larger uncertainty for the subsoil. This can be explained by the 

strong negative correlation (𝐴 = -0.615) between 𝑛2 and log(𝐾𝑠2) (Table 3.6). All other pairs of 

hydraulic parameters did not show strong correlations. Fig. 3.13 presents the water retention and 

relative hydraulic conductivity functions obtained using coupled inversion. The associated 

uncertainty was obtained by randomly plotting 100 sets of hydraulic parameters drawn from the 

uncertainty bounds provided in Table 3.5. As can be seen from the uncertainty bounds, 𝜃𝑠 is 

associated with a relatively low uncertainty, whereas the 𝑛  value is associated with a larger 

uncertainty as indicated by the increasing spread of the functions at lower pressure heads. 

Furthermore, uncertainty in the water retention function is similar for the top- and subsoil (Fig. 

3.13a, 3.13c). For comparison, the functions based on the hydraulic parameters of Cai et al. (2018a) 

were also provided. The water retention function obtained using coupled inversion clearly 

deviated from that of Cai et al. (2018a), which showed a faster decrease of water content with 

matric potential due to the larger 𝑛 value. Additionally, a lower 𝜃𝑠 was estimated by the coupled 

inversion. 
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Table 3.6 Correlation matrix of the inverted hydraulic parameters for the 2-layer 

model 

 𝛼1 𝑛1 log(𝐾𝑠1) 𝛼2 𝑛2 log(𝐾𝑠2) 𝜃𝑠1 𝜃𝑠2 

 (cm-1) (-) (cm min-1) (cm-1) (-) (cm min-1) (cm3cm-3) (cm3cm-3) 

𝑛1 -0.388 1       

log(𝐾𝑠1)   0.324 0.045 1      

𝛼2 -0.077 0.129 0.138 1     

𝑛2 -0.119 -0.139 -0.163 -0.069 1    

log(𝐾𝑠2) 0.061 -0.059 -0.046 0.549 -0.615† 1   

𝜃𝑠1 -0.032 -0.226 0.189 0.040 -0.087 0.049 1  

𝜃𝑠2 -0.058 -0.347 -0.192 -0.083 0.404 0.070 -0.192 1 

†The values indicated the pairs of parameters showing strong correlation.  

 

The hydraulic conductivity functions obtained using coupled inversion also showed a similar 

uncertainty for the top- and subsoil (Fig. 3.13b, 3.13d). For the topsoil, the hydraulic conductivity 

function obtained using coupled inversion corresponded well with the function obtained in Cai et 

al. (2018a). This is at least partly due to the similarity in the inverted 𝐾𝑠 obtained in this study and 

in Cai et al. (2018a). However, there are obvious differences in the hydraulic conductivity 

functions for the subsoil due to differences in estimated 𝐾𝑠 . There is a range of possible 

explanations for the observed differences. First, the estimation of 𝐾𝑠  is known to be scale-

dependent. For example, laboratory methods using small sample volumes often lead to lower 𝐾𝑠 

compared to estimates from in-situ measurement from a larger soil volume (Busch et al., 2013; 

Rovey II and Cherkauer, 1995). The results of Cai et al. (2018a) were based on TDR measurement 

that only cover a small areal fraction of the rhizotron facility, whereas the GPR measurements 

represent a larger volume (Klotzsche et al., 2019a). Thus, a higher 𝐾𝑠 is perhaps expected for the 

GPR measurements since the importance of preferential flow in macropores likely increased from 

the TDR to the GPR scale. The analysis presented here also indicated potential parameter 

correlations between 𝐾𝑠 and 𝑛. Since larger 𝑛 values were reported by Cai et al. (2018a), this may 

explain the small 𝐾𝑠 values. It is also important to note that Cai et al. (2018a) estimated hydraulic 

parameters with a more complex model set-up that considered root water uptake. In particular, 

root water uptake parameters were estimated alongside the hydraulic parameters, which might 

have hampered the correct estimation of the soil hydraulic parameters and likely increased the 

uncertainty in the estimated hydraulic parameters obtained by Cai et al. (2018a). Finally, it is 

important to note that Cai et al. (2018a) assumed free drainage as a lower boundary condition 

whereas a seepage face was used in this study.  
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Fig. 3.13 Water retention 𝜃(ℎ) and relative hydraulic conductivity 𝐾𝑟(ℎ) function from 100 

possible inverted hydraulic parameter sets (dark lines), the hydraulic parameters of Cai et al. 

(2018a) (blue line) and the hydraulic parameters with the best fit (red line) for the (a, c) top soil 

and (b, d) subsoil. 

3.4  Summary and conclusions 

In this chapter, I used both sequential and coupled inversion strategies to estimate hydraulic 

parameters from horizontal borehole GPR measurements during an infiltration experiment. First, 

a synthetic modelling study was set-up to compare the two inversion approaches independent of 

measurement and model errors. In a noise-free synthetic study using a 1-layer soil profile, a 

response surface analysis was used to evaluate correlation between hydraulic parameters. The 

results showed that the hydraulic parameters 𝑛  and log(𝐾𝑠 ) were strongly correlated, which 

implies that the GPR measurements were not able to simultaneously constrain log(𝐾𝑠) and 𝑛. In 

a next step, synthetic SWC and travel time data with added noise were used to estimate hydraulic 
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parameters using sequential and coupled inversion approaches, respectively. It was observed that 

a sequential inversion approach relying on the conventional straight-ray approximation to 

estimate SWC did not provide accurate hydraulic parameter estimates if strong vertical gradients 

in SWC were present due to infiltration. The coupled inversion approach, which combined 3D 

modelling of GPR measurements with a 1D vadose zone flow model, was able to provide accurate 

estimates of the hydraulic parameters both for a 1-layer and a 2-layer soil profile because 

interpretation errors associated with the straight-ray approximation were avoided. In a final step, 

horizontal borehole GPR measurements made during an infiltration experiment were inverted 

using a coupled inversion approach. The estimated hydraulic parameters were reasonably 

consistent with water retention and relative hydraulic conductivity functions reported by Cai et al. 

(2018a) for the same site. 

 

In conclusion, the coupled inversion of horizontal borehole GPR measurements provided accurate 

field-scale estimates of soil hydraulic parameters. Because of the larger sampling volume 

compared to point sensors, the estimated hydraulic parameters are expected to have an improved 

field representativeness. In future studies, coupled inversion of horizontal borehole GPR data may 

be used to estimate 2D and perhaps even 3D distributions of soil hydraulic parameters by 

considering all measured travel times over the profile, although this will obviously be associated 

with a higher computational effort. A disadvantage of the proposed approach is that GPR 

measurements are still taken manually and are thus time-consuming, whereas point sensors often 

allow automated data acquisition. As an alternative to GPR, other geophysical methods such as 

ERT can also be employed to estimate hydraulic parameters. ERT can investigate the subsurface 

with high resolution, and data acquisition can be automated. However, the electrical conductivity 

distribution obtained with ERT is not only sensitive to SWC but also depends on several other 

factors (e.g., clay content, pore water salinity) (Binley et al., 2015). This can complicate vadose 

zone model parameterization using ERT measurements considerably. It would be interesting to 

extend coupled inversion by considering the full GPR waveform instead of solely using travel 

time information, as was recently proposed for seismic data by Li et al. (2020). It is expected that 

this would increase the information content of the GPR measurements in the inversion, and 

therefore reduce uncertainty in the estimated hydraulic parameters and provide chances to 

estimate hydraulic properties of multi-layer soils.  

 

  



 

 

 

68 

 

  



 

69 

 

CHAPTER 4 COUPLED FULL WAVEFORM INVERSION OF 

HORIZONTAL BOREHOLE GROUND PENETRATING 

RADAR DATA TO ESTIMATE SOIL HYDRAULIC 

PARAMETERS: A SYNTHETIC STUDY3 

The coupled inversion approach has been introduced as an effective technique to characterize soil 

hydraulic properties based on time-lapse geophysical measurements. As shown in Chapter 3, it 

has been successfully used to estimate the soil hydraulic properties for the Selhausen test site 

using GPR travel time data. There may be room for further improvement of the coupled inversion 

approach by extending it to coupled full waveform inversion (CFWI) of GPR data. This topic is 

explored in this chapter using a synthetic modelling study with a 2-layer soil profile with unknown 

layer depth. 

4.1 Introduction 

Borehole GPR data are conventionally processed by using ray-based inversion approaches (e.g., 

Irving et al., 2007), which only provide velocity and attenuation information obtained from the 

first arrival times and first cycle amplitudes of the GPR data, respectively. Such approaches 

generally have a limited resolution for subsurface characterization because only a small amount 

of the data is considered. Therefore, ray-based inversions have difficulty to provide images that 

resolve small-scale high-contrast layers, such as high-porosity zones that form preferential flow 

paths in aquifer systems or impermeable clay lenses (Klotzsche et al., 2019b). In contrast, full-

waveform inversion (FWI) of GPR data takes the entire measured signal into account, including 

reflections and refractions, and is therefore able to provide more accurate and spatially higher 

resolved permittivity and electrical conductivity images than ray-based methods. The FWI 

method was first proposed by Tarantola (1984) for seismic data. FWI of seismic data has been 

further developed since then and is currently widely used (e.g., Berkhout, 2012; Brossier et al., 

2009; Vigh and Starr, 2008). A comprehensive overview of FWI developments and applications 

is provided by Virieux and Operto (2009). Because of the similarity between seismic and GPR 

data, FWI has also been used for analyzing off-ground (Lambot and Andre, 2014), surface (Busch 

 

3Adapted from Yu, Y., Huisman, J.A., Klotzsche, A., Vereecken, H., Weihermüller, L., 2021, Coupled full waveform 

inversion of horizontal borehole ground penetrating radar data to estimate soil hydraulic parameters: a synthetic study, 

in preparation. 
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et al., 2014), and borehole GPR data (Klotzsche et al., 2019b) to obtain high-resolution 

information on the spatial distribution of both 𝜀 and 𝜎. The application of FWI for off-ground and 

surface GPR has mainly focused on estimating the properties of simplified models with a limited 

number of unknowns, such as layered media (Busch et al., 2012; Ihamouten et al., 2019) or 

cylindrical objects (Liu et al., 2018) in the subsurface. In contrast, FWI of vertical borehole GPR 

data uses a gradient-based inversion algorithm to obtain high resolution subsurface images 

(Gueting et al., 2017; Klotzsche et al., 2010; Klotzsche et al., 2014; Looms et al., 2017). For FWI 

of horizontal borehole GPR data, so far only a preliminary study was performed by Klotzsche et 

al. (2016) to invert 𝜀 and 𝜎 for a 2-layer soil profile of the Selhausen test site from ZOP data (see 

Section 2.2.1). As indicated in Chapter 2, the measured data for shallow boreholes (e.g., 0.1 m 

depth) is difficult to interpret due to the interference of the direct ground wave and the critically 

refracted air wave at the soil-air interface. The approach of Klotzsche et al. (2016) applied the 

FWI based on a SCE-UA optimization to retrieve the soil permittivity and conductivity for 

shallow boreholes by considering the wave interactions at the interface. This approach worked 

well with synthetic GPR data but is still challenging to apply to measured GPR data, because it is 

difficult to estimate an efficient source wavelet from a single ZOP trace. 

 

To estimate soil hydraulic properties from time-lapse geophysical data, a coupled inversion 

approach can be used (e.g., Hinnell et al., 2010; Huisman et al., 2010; Lambot et al., 2006b; Mboh 

et al., 2012). Compared to a traditional sequential inversion approach where the hydrological 

model is inverted with SWC information estimated from geophysical data, coupled inversion is 

recognized as a more reliable and advanced approach that directly assimilates the geophysical 

data and therefore avoids interpretation errors from data processing. In Chapter 3, coupled 

inversion was applied successfully to GPR travel times to estimate the soil hydraulic parameters. 

Since GPR waveforms are expected to contain more information about the subsurface than GPR 

travel times, it is anticipated that the combined use of coupled inversion and FWI (i.e., coupled 

full waveform inversion, CFWI) is potentially able to provide soil hydraulic parameter estimates 

with less uncertainty. Up to now, there are only a few studies that have reported the use of CFWI 

to estimate hydraulic parameters from time-lapse off-ground GPR measurements (Lambot et al., 

2009) or synthetic seismic data (Li et al., 2020). However, until now, no studies have been 

conducted that applied CFWI to borehole GPR data for parameterizing hydrological models. 

 

This chapter aims to investigate potential benefits and shortcomings of a coupled full-waveform 

inversion (CFWI) for estimating soil hydraulic parameters and layer thickness for a 2-layer profile 

using synthetic horizontal borehole GPR data. First, a workflow of the CFWI will be proposed. 
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Next, an efficient synthetic infiltration experiment will be designed to simulate SWC and GPR 

data. Afterwards, parameter correlations between hydraulic parameters and layer thickness for the 

CFWI will be analyzed. Finally, CFWI will be applied to the synthetic data and the inversion 

results will be compared with the results from coupled inversion of GPR travel times. 

4.2 Method and material 

4.2.1 Set-up of the coupled full waveform inversion 

To estimate soil hydraulic parameters and soil layer thickness for a 2-layer soil profile, the 

following CFWI set-up is used (Fig. 4.1). The set-up is similar to those shown in Fig. 3.2 for the 

sequential inversion and coupled inversion based on GPR travel times. Compared to the latter 

approach, the main difference is that CFWI directly optimizes the misfit between measured 𝐸𝑜𝑏𝑠 

(V m-1) and simulated waveforms 𝐸𝑚𝑜𝑑 (V m-1) in the time domain instead of the first arrival 

times. For the coupled inversion of travel times, it was assumed that the effects of soil electrical 

conductivity could be neglected, which is reasonable given that the first arrivals of GPR data are 

not sensitive to the soil electrical conductivity. In contrast, soil electrical conductivity should be 

considered for GPR modelling in CFWI, since the soil electrical conductivity influences the 

attenuation, and thus, the amplitude of the GPR waveform. The distribution of the electrical 

conductivity can be reasonably obtained from the distribution of SWC(𝜃) and a petrophysical 

relationship, e.g., Archie’s law (Archie, 1942): 

𝜎𝑚𝑜𝑑 =  
1

𝑘𝑎
 𝜎𝑤𝛷𝑚𝑎(

𝜃

𝛷
)𝑛𝑎                                                (4.1) 

where 𝜎𝑚𝑜𝑑 (S m-1) is the bulk soil conductivity used for GPR modelling, 𝜎𝑤 is the conductivity 

of the water (assumed to be 0.0519 S m-1 here), 𝛷 (cm3 cm-3) is the porosity of the respective 

layer (Table 3.1), 𝑘𝑎 (-) is a tortuosity constant, 𝑚𝑎 (-) is the cementation exponent and 𝑛𝑎 (-) is 

the saturation exponent. In this case, 𝑘𝑎, 𝑚𝑎, and 𝑛𝑎are assumed to be 1, 2, and 2, respectively, 

as suggested by Huisman et al. (2010). 

 

The cost function 𝐶𝑀𝑉𝐺(𝐸) (V m-1) in CFWI consists of the RMSE between the synthetic and 

measured electrical fields: 

𝐶𝑀𝑉𝐺(𝐸) = √
∑ (𝐸𝑖

𝑚𝑜𝑑−𝐸𝑖
𝑜𝑏𝑠)2𝑛𝑒

𝑖=1

𝑛𝑒
                                                (4.2) 

where 𝑛𝑒 (-) is the number of the electric field points in the synthetic GPR data. It should be 

noted, that simulated GPR waveforms commonly contain more electric field points than 

measured GPR waveforms. To ensure that the measured and synthetic data are of the same size, 
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either the measured GPR data can be interpolated, or the simulated data can be resampled. 

 

 

Fig. 4.1 Flowchart of the coupled full waveform inversion (CFWI) method. 

4.2.2 Set-up for synthetic infiltration experiment 

A synthetic case study is used to investigate the feasibility of obtaining plausible hydraulic 

parameter estimates for a 2-layer profile by using CFWI. The results of CFWI will be compared 

to results obtained with coupled inversion of GPR travel times as a reference. As in previous 

chapters, the hydraulic parameters determined by Cai et al. (2018a) were used to generate 

synthetic SWC profiles (Table 3.2). The infiltration experiment described in Chapter 3 (Fig. 3.1a) 

showed that coupled inversion of time-lapse borehole GPR travel time data can provide plausible 

parameter estimates. In this chapter, the infiltration experiment was modified to improve the 

modelling efficiency by reducing the number of required simulations. In particular, horizontal 

borehole GPR data were simulated for three depths only (0.2, 0.4, and 0.6 m depths) because the 

GPR data for 0.1 m depth were less informative (Chapter 3). Moreover, it is unnecessary to obtain 

GPR data at 0.8 and 1.2 m depths to estimate the hydraulic parameters for a 2-layer soil profile 

with a layer boundary at 0.3 m depth. With this reduction of measurement depths, less water 

needed to be supplied and the number of GPR measurements and the duration of the infiltration 

event could be reduced. The schedule of the modified infiltration experiment is shown in Fig. 

4.2a. It uses the same infiltration rate (0.03 cm min-1) as in Chapter 3, but it now considers a single 

6-hour infiltration event (360 min) followed by a 90-min period with soil water redistribution 

without infiltration. GPR data were simulated every 30 min at all three depths. The set-up for 
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hydrological modelling was identical to the set-up used in Chapter 3 (see Section 3.2.2). Due to 

the reduction in the number of measurement depths, the size of the modelling domain for GPR 

simulations could also be reduced. The size of the simulation domain for the gprMax3D 

simulations was now set to 2 x 1.5 x 1.5 m, including a soil profile of 0.8 m thickness. The other 

settings for gprMax3D (e.g., grid size, source wavelet) were as described in Section 3.2.3. 

 

 

Fig. 4.2 (a) Schedule of the infiltration experiment and synthetic GPR measurements. (b) 

Synthetic vertical SWC profiles obtained with HYDRUS-1D at the time of the GPR 

measurements obtained with the hydraulic parameters provided in Table 3.2.  
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Fig. 4.3 (a) Synthetic time-lapse SWC data at 0.2, 0.4, and 0.6 m depths. (b) GPR travel times 

obtained from synthetic GPR data based on vertical water content distributions used as inputs in 

gprMax3D. (c) Synthetic GPR waveform data obtained at 3 different measurement times. The 

timing of the infiltration events is indicated by the light green background. 

The synthetic vertical SWC profiles at times when GPR measurements were conducted are shown 

in Fig. 4.2b. It can be seen that the infiltration front reached the layer boundary at a depth of 30 

cm after 180 min. At the end of the infiltration event (360 min), the upper 0.6 m of soil was 

saturated and the infiltration front moved to 0.8 m depth. After the infiltration stopped, the 

infiltration front still moved down to a depth of 0.9 m and the SWC above 0.6 m depth slightly 
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decreased due to redistribution. The synthetic time-lapse SWC data at 0.2, 0.4, and 0.6 m depths 

are shown in Fig. 4.3a. The soil at 0.2 and 0.4 m depth reached saturation after 200 and 300 min, 

respectively. After obtaining the synthetic SWC profiles, the dielectric permittivity profiles used 

for GPR modelling were obtained using the CRIM model (Eq. 2.6) and the electrical conductivity 

profiles were obtained using Eq. 4.1. These dielectric permittivity and electrical conductivity 

profiles were used to obtain synthetic GPR data with gprMax3D, which were then used to 

determine the GPR first arrival time data (Fig. 4.3b). The approach for automatic picking of the 

GPR first arrival times is described in Section 3.2.5. A comparison of Fig. 4.3a and Fig. 4.3b 

shows that the synthetic time-lapse SWC data and GPR travel time data have synchronous 

dynamics during the entire experiment.  

 

The GPR waveforms simulated before (0 min), at the beginning (30 min), middle (210 min), and 

end (420 min) of the infiltration event are shown in Fig. 4.3c for different borehole depths. In 

general, the waveforms simulated at different times show large differences, which was not always 

the case for the soil water content measurements and the first arrival times. For example, the 

arrival time of the direct wave simulated at a 0.6 m depth did not show a clear difference between 

0 and 30 min (Fig. 4.3b), but the simulated GPR waveforms are obviously different at these 

measurement times (Fig. 4.3c). To explain this in detail, the wavefield snapshots for the GPR 

measurements at 0.6 m depth were obtained at the infiltration times of 0 and 30 min (Fig. 4.4). At 

the early stage of the GPR measurements (8 ns), only the direct waves were generated (Fig. 4.4a 

and 4.4b). As the infiltration front did not move to 0.6 m depth, the waveforms of the direct wave 

that were measured by the receiver between 8 and 14 ns (Fig. 4.3c) did not show differences at 

these two measurement times. The reflected waves were generated on the land surface at around 

12 ns (Fig. 4.4b and 4.4c). Since the infiltration event increased the SWC of the top 0.1 m of the 

soil at 30 min (see Fig. 4.2b), the permittivity of the top soil and the reflection coefficient of the 

land surface were changed. As a result, the travel time and amplitude of the reflected waves 

measured by the receiver between 15 and 20 ns (Fig. 4.3c) showed substantial differences (see 

Fig. 4.4e – 4.4h) at these measurement times.  

 

For a more realistic synthetic modelling study, Gaussian noise with zero mean and a standard 

deviation of 0.1 ns (Δ𝑡) and 0.01 cm3 cm-3 (Δ𝜃) was added to the noise-free GPR travel time and 

SWC data, respectively. The noise level of 0.1 ns for GPR travel times is based on the sampling 

interval of 0.2 ns used for measuring GPR data, which limits the accuracy of travel time 

determination. The noise level of 0.01 cm3 cm-3 for SWC data is based on the averaged uncertainty 

of TDR measurements (Topp and Ferré, 2005). The noise added to the GPR waveform data was 
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based on noise evaluation using previously measured GPR waveforms at recorded times before 

the first arrival, which showed that noise varied from 0.1 to 0.5 % of the maximum amplitude. 

Therefore, Gaussian noise with zero mean and a standard deviation of 0.5 % of the maximum 

amplitude (Δ𝐸 ) was added to the simulated GPR waveforms in this synthetic study. After 

obtaining the final inversion results using different inversion approaches, the uncertainty of the 

estimated parameters was evaluated using the first-order approximation described in Section 3.2.6. 
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Fig. 4.4 Snapshots of the GPR wavefields for transmitter and receiver position at 0.6 m depth. 

Wavefields are shown for (a, b) 8 ns, (c, d) 12 ns, (e, f) 14 ns and (g, h) 15 ns for two different 

measurement times of the infiltration experiment. Each wavefield was normalized with the 

maximum field value. The position of the receiver antenna is indicated by the black cross. Note 

that the transmitter is located at a position of -0.75 m at a depth of 0.6 m. 
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4.3 Results 

4.3.1 Response surfaces 

In a first step, parameter correlations were analyzed using response surface analysis. Given the 

available computing power, it was not possible to calculate the response surface for all parameter 

pairs for a 2-layer profile in the case of GPR travel time and waveform data. In Chapter 3, response 

surfaces for SWC and GPR travel times were already used to investigate parameter correlations 

between soil hydraulic parameters for a 1-layer profile (Fig. 3.5). It was found that the response 

surfaces from GPR travel times and SWC showed similar parameter correlations. Since the layer 

thickness (ℎ𝑡 ) was also considered as a model parameter in this chapter, response surfaces 

considering this parameter were specifically analyzed to reveal the correlations between layer 

thickness and different hydraulic parameters for a 2-layer soil profile from GPR waveforms, GPR 

travel times, and SWCs at three depths (Fig. 4.5). 

 

In general, response surfaces obtained from different types of data again showed similar 

parameter correlations. In the response surfaces for ℎ𝑡 − 𝑛1 and ℎ𝑡 − 𝑛2, a steep gradient of the 

cost function can be observed near the global minimum, which indicates that ℎ𝑡, 𝑛1, and 𝑛2 are 

well constrained by the inversion. However, in the response surfaces for ℎ𝑡 − log(𝐾𝑠1), ℎ𝑡 − 

log(𝐾𝑠2), ℎ𝑡 − 𝛼1, and ℎ𝑡 −  𝛼2 the misfit distribution is perpendicular to the ℎ𝑡 axis, suggesting 

that the log(𝐾𝑠1), log(𝐾𝑠2), 𝛼1, and 𝛼2 are less constrained in the inversion. The global minima in 

the response surfaces for ℎ𝑡 − 𝜃𝑠1  and ℎ𝑡 − 𝜃𝑠2  are positioned in an elongated valley, which 

implies that 𝜃𝑠1 and 𝜃𝑠2 are negatively correlated with ℎ𝑡. 

 

The misfit distributions in the response surfaces from SWC show a strong change at ℎ𝑡 = 0.2 m 

and ℎ𝑡 = 0.4 m (Fig. 4.5), which were the depths where SWC data were simulated. To explain 

this, synthetic SWC data (Fig. 4.6a) were simulated by using ℎ𝑡 = 0.18 m and ℎ𝑡 = 0.22 m, while 

keeping the other parameters at the optimal values (see blue crosses in Fig. 4.5a). Large SWC 

differences were observed at 0.2 m depth after the soil got fully saturated, because the saturated 

SWC at this depth was different for the models with ℎ𝑡 = 0.18 m and ℎ𝑡 = 0.22 m (𝜃𝑠1= 0.229 

and 𝜃𝑠2 = 0.326 cm3 cm-3). Similarly, models with the layer boundary below 0.4 m depth will also 

have different saturated SWCs. The response surfaces for GPR travel times and waveforms do 

not show a sudden change at ℎ𝑡 = 0.2 m and ℎ𝑡 = 0.4 m. Although, the simulations with ℎ𝑡 = 0.18 

m and ℎ = 0.22 m show differences in GPR travel time (Fig. 4.6b) and GPR waveforms (Fig. 

4.6c), the cost function values for GPR travel times (0.36 and 0.23 ns) and GPR waveforms (0.98 
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and 0.84 V m-1) showed much less pronounced differences as SWCs (0.05 and 0.014 cm3cm-3). 

This can be explained by the fact that GPR measurements have a larger sampling volume than 

point measurements. Because of the spatial averaging, GPR travel times and waveforms will be 

less sensitive to abrupt changes in the vertical SWC profile. 

 

Besides potential parameter correlations, it is also interesting to analyze the cost function values 

in the response surfaces from different types of data, which were visualized in logarithmic scale 

after normalization with the expected noise level (Δ𝑡, Δ𝜃, Δ𝐸). Using this normalization, the areas 

enclosed by green in the response surfaces can qualitatively be interpreted as the parameter 

uncertainty. The response surfaces show that many model parameters can be inverted with low 

uncertainty for the GPR waveform data (at least in theory). To further illustrate this, two sets of 

model parameters (black crosses in Fig. 4.5a) were selected in the response surfaces for ℎ𝑡 − 𝜃𝑠1, 

while the other parameters were set to the optimal parameters. SWC, travel times, and waveforms 

were simulated for both sets of model parameters (Fig. 4.7). It can be seen that both SWC and 

travel times (Fig. 4.7a and 4.7b) only showed very minor differences for these two sets of 

simulations. For the simulated GPR waveforms (Fig. 4.7c), the two sets of model parameters also 

provide almost identical GPR waveforms at the beginning of the experiment (30 min) because the 

infiltration front was still located at a shallow depth in the first layer (see Fig. 4.2b). When the 

infiltration front approached the layer boundary (210 min), obvious differences appeared between 

the waveforms from the true model and the two selected parameter sets, especially at the 0.2 m 

depth. To explain this in detail, the wavefield snapshots were simulated with the true model and 

the selected parameter sets (Fig. 4.8). Due the considerable SWC (permittivity) differences 

between the first and second layer, a strong reflected wave was generated on the layer boundary. 

It can be seen that the reflected wave was superimposed with the direct wave, but that this did not 

affect the first arrival time (Fig. 4.8a, 4.8b and 4.8c). Hence, the GPR travel times for the selected 

parameter sets only showed minor differences. However, the path length and reflection coefficient 

of the reflected wave are related to ℎ𝑡, and thus the travel time and amplitude of this reflected 

wave were different and resulted in the substantial differences for the simulated GPR waveforms 

(Fig. 4.8d and 4.8e). This also explains the difference in GPR waveforms for these models at the 

end of the infiltration (420 min). These results highlight that the inversion of SWC obtained with 

a point measurement such as TDR or GPR travel times only contains information about the SWC 

at or near the borehole depth. On the other hand, CFWI contains additional information on the 

hydraulic parameters, and especially the layer depth due to the reflected wave generated from the 

layer boundary. Therefore, CFWI is expected to outperform the inversion of SWCs and travel 

times for estimating ℎ𝑡. 
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Fig. 4.5 Response surfaces for layer thickness (ℎ𝑡) and different hydraulic parameters of (a) the 

first layer and (b) second layer from GPR waveforms, GPR travel times, and SWC. The cost 

function values were normalized by their noise level and shown in logarithmic scale. Blank spaces 

indicate that the hydrological model did not converged. The true model is shown by the red cross. 

In the response surfaces for ℎ𝑡 − 𝜃𝑠1, the black crosses refer to the models of (0.28 m, 0.332 

cm3cm-3) and (0.32 m, 0.320 cm3cm-3) and the blue crosses refer to the models of (0.18 m, 0.326 

cm3cm-3) and (0.22 m, 0.326 cm3cm-3). 
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Fig. 4.6 (a) SWC data, (b) synthetic travel times, and (c) synthetic GPR waveforms at three 

different times calculated according to the models indicated by the blue crosses in Fig. 4.5. The 

length of the infiltration event is indicated by the light green background. 
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Fig. 4.7 (a) SWC data, (b) synthetic travel times and (c) synthetic GPR waveforms at three 

different times calculated according to the models indicated by black crosses in Fig. 4.5 and the 

true model. The length of the infiltration event is indicated by the light green background. 
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Fig. 4.8 Snapshots of the GPR normalized wavefields simulated at 12 ns for the GPR 

measurement conducted at 210 min, based on (a) true model, (b) and (c) two selected models 

indicated by black crosses in Fig. 4.5.  (d) and (e) indicate the residual wavefields. The layer 

boundary is shown by the black dashed line. The positions of the transmitter and receiver antenna 

are indicated by the black circle and black cross, respectively.  

4.3.2 Coupled full waveform inversion  

In a second step, hydraulic parameters were estimated by using coupled inversion of noisy travel 

times and waveforms (Table 4.1). To avoid overfitting, inversions were stopped when the noise 

levels for travel time (0.1 ns) and waveform data (0.03 V m-1) were reached. In general, the noisy 

travel times (Fig. 4.9a) and waveforms (Fig. 4.9b) were fitted well by the estimated parameters 

from coupled inversion of travel time and CFWI, respectively. It also can be seen that the 

waveforms simulated with the results of the coupled inversion of travel times resulted in a slight 

mismatch for several measurements, e.g., the measurement conducted at 0.2 m depth at 210 min. 

This can be attributed to the fact that the coupled inversion of travel times did not use all the 

information contained in the waveforms. In the case of the coupled inversion of travel times, the 

inversely estimated parameters showed larger uncertainty, whereas for CFWI the parameter 

uncertainty was lower and 𝜃𝑠1 , 𝛼1 ,  𝜃𝑠2 ,  𝛼2 , and ℎ𝑡  were accurately estimated. The CFWI 

estimated values of 𝑛1, log(𝐾𝑠1), 𝑛2, and log(𝐾𝑠2) still showed a slight difference with the true 

value, which is likely caused by the correlations between 𝑛1 − log(𝐾𝑠1) and 𝑛2 − log(𝐾𝑠2) (Table 

4.2). Other parameter combinations did not show strong correlations.  
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Table 4.1 Inverted results of noisy travel time and waveform data 

 
True 

value 
Bounds 

Inverted results 

Travel times         Waveforms 

——————    2-layer soil profile    —————— 

𝜃𝑠1 (cm3cm-3) 0.326 0.30 – 0.40 0.330±0.007 0.326±2.58×10-5† 

𝛼1 (cm-1) 0.036 0.030 – 0.125 0.042± 0.017 0.037±0.0002 

𝑛1 (-) 1.386 1.1 – 2.8 1.240±0.125 1.369±0.002 

log(𝐾𝑠1) (cm min-1) -1.244 -1.456 – -0.276 -0.976± 0.180 -1.214±0.004 

𝜃𝑠2 (cm3cm-3) 0.229 0.15 – 0.30 0.232± 0.007 0.229±4.03×10-5 

𝛼2 (cm-1) 0.050 0.030 – 0.125 0.063±0.014 0.049±0.0002 

𝑛2 (-) 1.534 1.1 – 2.8 1.379±0.076 1.527±0.0012 

log(𝐾𝑠2) (cm min-1) -1.398 -1.456 – -0.276 -1.123±0.194 -1.396±0.0026 

ℎ𝑡 (m) 0.3 0.2 – 0.4 0.29± 0.020 0.30±2.34×10-5 

Cost-function - - 0.01 (ns) 0.03 (V m-1) 

†The values indicated the 99% confidence interval based on the first-order approximation. 

 

Table 4.2 Correlation matrix of the inverted hydraulic parameters from CFWI 

 𝛼1 𝑛1 log(𝐾𝑠1) 𝛼2 𝑛2 log(𝐾𝑠2) 𝜃𝑠1 𝜃𝑠2 ℎ𝑡 

 (cm-1) (-) (cm min-1) (cm-1) (-) (cm min-1) (cm3cm-3) (cm3cm-3) (m) 

𝑛1 -0.499 1        

log(𝐾𝑠1)   0.488 -0.936† 1       

𝛼2 -0.228 0.441 -0.424 1      

𝑛2 0.128 0.474 -0.415 -0.054 1     

log(𝐾𝑠2) -0.248 -0.100 0.042 0.519 -0.783† 1    

𝜃𝑠1 0.272 -0.417 0.604 -0.054 -0.212 0.049 1   

𝜃𝑠2 -0.162 -0.010 -0.066 0.259 -0.354 0.474 -0.257 1  

ℎ𝑡 0.127 -0.105 0.154 -0.043 -0.086 0.067 -0.188 -0.122 1 

†The values indicated the pairs of parameters showing strong correlation.  
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Fig. 4.9 Coupled inversion results from (a) noisy travel times and (b) noisy GPR waveforms. The 

length of the infiltration event is indicated by the light blue background. 
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Fig. 4.10 Water retention 𝜃(ℎ) and relative hydraulic conductivity 𝐾𝑟(ℎ) functions for the first 

(a, b) and (c, d) second soil layer obtained from the true model (black line) and 50 possible 

inverted hydraulic parameters sets from coupled inversion of travel times (yellow dashed lines) 

and CFWI (purple dashed lines), respectively. 

Fig. 4.10 presents 50 realizations of the water retention and relative hydraulic conductivity 

functions based on the estimated parameters from CFWI and coupled inversion of travel times 

and the associated uncertainty in Table 4.2. Since the CFWI accurately obtained the hydraulic 

parameters with considerably smaller uncertainty, a very good match was found between the 

estimated and true water retention and relative hydraulic conductivity functions. However, for the 

coupled inversion of travel times, the estimated water retention functions (Fig. 4.10a and 4.10c) 

showed relatively larger uncertainty and did not accurately predict the true function at low 

pressure heads, because the 𝑛1 and 𝑛2 of the true model were not within the uncertainty bounds 

of the estimated 𝑛1 and 𝑛2. In addition, since the uncertainty interval of estimated 𝐾𝑠2 did contain 

the true 𝐾𝑠2 value, a slight mismatch (Fig. 4.10d) of the estimated and true relative hydraulic 

conductivity functions can be found when the second layer is close to the saturation. 
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4.4 Discussion 

Although CFWI showed advantages over the coupled inversion of GPR travel time in the 

presented synthetic study, it is currently still challenging to use CFWI for processing experimental 

GPR data. Similar to the FWI approach proposed by Klotzsche et al. (2016), the use of CFWI 

requires an accurate estimation of the source wavelet from the measured GPR data as the GPR 

waveform does not only depend on the medium properties (dielectric permittivity and electrical 

conductivity) but also on the source wavelet emitted by the system and the coupling of the antenna 

and the medium (Busch et al., 2012, Klotzsche et al., 2018). Ineffective source wavelet estimation 

from measured GPR data will likely result in erroneous simulation of GPR waveform data, and 

in consequence will lead to erroneous estimates of the hydraulic parameters using CFWI. 

Normally, the effective source wavelet is estimated using a deconvolution approach, which relies 

on the measured data and forward modelling based on starting model values. If there are 

insufficient measurements with varying offsets or angles, it is very difficult to define such starting 

models and hence to obtain effective source wavelets. Therefore, the effective source wavelet is 

very difficult to estimate from GPR data obtained by ZOP data acquisition. For the GPR data in 

this thesis, the phase of the effective source wavelet can be estimated using a starting model where 

the permittivity is obtained from a ray-based inversion with sufficient accuracy. However, the 

amplitude of the wavelet is directly coupled to the medium properties and is very sensitive to 

small changes in the electrical conductivity. For this reason, it is not yet possible to apply CFWI 

to the GPR data presented in this thesis. To estimate an effective waveform for CFWI, a feasible 

approach would be to perform MOG measurements before measuring the ZOP data or to apply 

the workflow proposed by Busch et al. (2012) to estimate the source wavelet from the ZOP/ MOG 

data. 

 

A second challenge for CFWI is the need for accurate estimation of the electrical conductivity 

distribution. In this chapter, the electrical conductivity profiles for GPR modelling were obtained 

from the corresponding SWC profiles by using Archie’s law. However, the uncertainty in 

Archie’s law for estimating soil conductivity from SWC is much greater than that in the 

petrophysical models relating permittivity and SWC (e.g., CRIM), because soil electrical 

conductivity is also sensitive to other factors, e.g., clay content and pore water salinity (Binley et 

al., 2015). Furthermore, Archie’s law does not consider surface electrical conductivity associated 

with the electrical double layer surrounding soil particles. Advanced petrophysical models should 

be employed in future studies to consider the influence of the surface conductivity (e.g., Revil et 

al., 2007; Mboh et al., 2012). In addition, the electrical conductivity distribution may not only be 
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related to the SWC distribution, because of independent variations in the pore water electrical 

conductivity associated with fertilizer application or geochemical reactions in the subsurface. This 

mismatch between the distribution of electrical conductivity and SWC cannot be neglected in a 

real-life infiltration experiment. To accurately describe the electrical conductivity distribution, it 

may thus be necessary to consider a solute transport and/or geochemical model coupled with the 

Richards equation (Eq. 1.1) to predict the distribution of the bulk electrical conductivity in the 

unsaturated soil (e.g., Loague and Green, 1991). Unfortunately, by doing so more unknowns will 

be introduced and will undoubtedly increase the difficulty of CFWI. Finally, soils of high salinity 

or clay content may lead to a strong attenuation of the waveform amplitude. As a result, the noise 

level of the actual field data measured in these types of soil could be relatively high. Compared 

to the coupled inversion of the travel times, CFWI may thus be less robust to estimate the 

hydraulic parameters for these types of soils. 

 

Another point of discussion is that the use of CFWI relies heavily on accurate simulations of GPR 

data, as the amplitudes of the entire waveform are considered in the cost function. For the 

gprMax3D modelling using the Finite-difference time-domain method (FDTD), the systematic 

modelling errors generated from the finite-difference discretization and numerical dispersion 

(Warnick, 2005) will likely also introduce errors in the hydraulic parameter estimation. In this 

study, the grid size was set to 0.02 m, which may not be sufficient for accurate GPR simulations 

in actual 2D or 3D applications of CFWI.  

 

Finally, it is important to emphasize here that CFWI is time-consuming. For the synthetic study 

presented here, CFWI took almost 10 days with a computer cluster (48 processers of AMD 

Opteron 6300) or a week with the JURECA supercomputer (24 processors) although the FDTD 

algorithm in gprMax3D was able to calculate in parallel. If modelling errors need to be further 

reduced, the discretization of the simulation needs to be refined, which will further increase 

computational costs. Therefore, it is important to improve the efficiency and accuracy of the 

current GPR modelling method. An additional improvement in the computational efficiency of 

CFWI can be achieved by the simultaneous parallelization of the SCE-UA and FDTD algorithm, 

which should also be explored in future studies. 

4.5 Conclusions 

In this chapter, I conducted a synthetic study to explore the feasibility of using CFWI to estimate 

the hydraulic parameters and the layer thickness for a 2-layer soil profile. First, a workflow for 

CFWI was introduced. Compared with the coupled inversion of travel times, CFWI directly uses 
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the entire GPR waveform and can therefore avoid propagation of uncertainties from the picking 

of first arrivals into the inversion. In a next step, I used the 2-layer soil profile introduced in 

Chapter 3 and proposed an efficient infiltration experiment to obtain synthetic vertical SWC 

profiles. This experiment included a 6-hour infiltration event with GPR measurements at three 

depths only (0.2, 0.4, and 0.6 m depth). Based on this experimental design, response surfaces for 

the layer thickness and different hydraulic parameters were calculated for point SWC 

measurements, GPR travel times and GPR waveforms to investigate potential parameter 

correlations. It was found that ℎ𝑡  was negatively correlated with 𝜃𝑠1 and 𝜃𝑠2. In addition, the 

response surfaces indicated that CFWI provided more accurate estimates of layer depth compared 

with coupled inversion of GPR travel times and inversion of point SWC measurements. This is 

attributed to the fact that CFWI contains additional information introduced by the reflected wave 

from the layer boundary. Finally, CFWI and coupled inversion of GPR travel times were applied 

to the synthetic infiltration experiment. The simulated waveforms and travel times matched well 

with the noisy data but the estimates of the hydraulic parameters from the coupled inversion of 

travel times showed a slight deviation from the true values and a relatively larger uncertainty in 

the hydraulic conductivity and retention functions. On the other hand, hydraulic parameters 

estimated from CFWI had considerably smaller uncertainty and thus better matched the known 

water retention and hydraulic conductivity curves. However, a range of challenges remain for the 

application of CFWI to real field experiments. First, a robust approach for source wavelet 

estimation for measured ZOP data has to be developed. Moreover, the use of a more sophisticated 

hydrological model that couples the simulations of water flow and solute transport has to be 

considered for CFWI to cope with changes in electrical conductivity associated with fertilization 

and geochemical processes. In addition, the accuracy and efficiency of the current GPR modelling 

has to be improved. In conclusion, CFWI has several advantages over the coupled inversion of 

GPR travel times and it is expected to be a promising inversion approach for estimating hydraulic 

parameters at field scale, after solving several remaining problems. 
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CHAPTER 5 SYNTHESIS AND OUTLOOK 

5.1 Synthesis 

The work performed in this thesis aimed to investigate the potential of time-lapse GPR 

measurements for the estimation of soil hydraulic parameters from infiltration events. First, the 

combined use of surface and horizontal borehole GPR to monitor SWC variations during an 

infiltration experiment conducted at a rhizotron facility at the Selhausen test site was investigated. 

Second, the performance of sequential and coupled inversion strategies for estimating soil 

hydraulic parameters based on horizontal borehole GPR measurements was tested. Finally, the 

feasibility of the use of CFWI for estimating soil hydraulic parameters and layer thickness for a 

2-layer profile was explored and current limitations of CFWI for the application to measured 

borehole GPR data were discussed. 

 

In the first part (Chapter 2), SWC dynamics during an infiltration experiment were monitored by 

the combined use of horizontal borehole and surface GPR measurements. The 200 MHz ZOP 

borehole GPR data were processed using a ray-based approach to reveal the spatial SWC 

variations along the horizontal boreholes installed at 0.2, 0.4, 0.6, 0.8, and 1.2 m depth during the 

infiltration experiment. However, the ray-based approach did not provide accurate SWC estimates 

for the top soil (0 – 0.1 m depth) from the horizontal borehole GPR data measured at 0.1 m depth, 

because of interference between the direct and refracted wave at this shallow depth. To obtain 

detailed SWC information for the top soil, multi-offset surface GPR measurements were made 

with different antenna frequencies (100, 200, and 500 MHz). Standard semblance analysis was 

employed to process these data. The SWC estimates obtained from 100 and 200 MHz data 

corresponded to large sampling depths of 0.7 and 0.5 m, respectively, and were therefore not 

suitable to represent the SWC of the shallow top 0.1 m soil layer. On the other hand, the 500 MHz 

GPR data showed strong dispersion because the wavelength at this frequency is comparable with 

the thickness of the infiltration-induced waveguide. As a result, semblance analysis did not 

provide accurate SWC estimates for the 500 MHz data. To solve this problem, a dispersion 

analysis was employed to correctly estimate the SWC of the wet layer close to the surface and the 

thickness of the waveguide. The estimated thickness was found to be around 0.1 m during the 

entire experiment, which is attributed to the presence of a plough layer associated with agricultural 

management that acted as the waveguide. Hence, the SWC estimates obtained from the waveguide 

was used to represent the average SWC of the top 0.1 m of the soil. Finally, the vertical SWC 
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profiles (0 – 1.2 m) was obtained by combining the SWC estimates from the horizontal borehole 

and surface GPR, which was used to reconstruct the SWC dynamics during and between 

infiltration events. To increase confidence in the obtained results, the SWC estimates from GPR 

were compared to the independent SWC estimates from TDR. Reasonable consistency was found 

between the GPR and TDR estimates, as they displayed a similar temporal response to the 

infiltration events. Furthermore, a regression between SWC estimates obtained with GPR and 

TDR resulted in a slope close to 1 (0.96) and a small intercept of 0.02 cm3cm-3. Finally, the 

changes in soil water storage over the entire soil profile were calculated for both GPR and TDR. 

It was found that the combined GPR estimates matched well with the known water amount used 

during irrigation, whereas the water storage obtained with TDR systematically overestimated the 

known water storage due to the poor spatial representativeness of the local TDR measurements 

that were made on one side of the irrigated area only.  

 

In the second part (Chapter 3), the feasibility of estimating soil hydraulic properties for the 

rhizotron facility at the Selhausen test site was evaluated by employing either a sequential 

inversion or a coupled inversion approach to the horizontal borehole GPR data. First, a synthetic 

infiltration experiment for a 1-layer profile was designed based on soil hydraulic parameters 

reported by Cai et al. (2018a) and the schedule of the infiltration experiment used in Chapter 2. 

Synthetic vertical SWC profiles were obtained using HYDRUS-1D at actual GPR measurement 

times and used to simulate GPR wave propagation for measurements at 6 depths (0.1, 0.2, 0.4, 

0.6, 0.8, and 1.2 m) with gprMax3D. GPR travel times were automatically picked from the 

synthetic GPR measurements and used to estimate SWC at the six depths based on a ray-based 

approach. Response surfaces were obtained by conducting grid searches based on the cost 

functions for GPR travel times and true SWC data to demonstrate the correlations between the 

soil hydraulic parameters. It was found that the saturated water content  𝜃𝑠 , can be well 

constrained by the inversion, whereas the 𝛼 parameter is expected to be less constrained. The 

hydraulic parameters 𝑛  and log( 𝐾𝑠 ) were negatively correlated, and thus cannot be well 

disentangled from each other. In a next step, the GPR SWC estimates and GPR travel time data 

with added noise were inverted by a sequential and a coupled inversion approach, respectively. 

In the sequential inversion approach, the soil hydraulic parameters were estimated from the SWC 

estimates obtained from the GPR data using the straight-wave approximation. This did not return 

accurate estimates of the soil hydraulic parameters because the SWC obtained with this approach 

underestimated the actual SWC at shallow depths and near the infiltration front. On the other hand, 

the coupled inversion directly assimilated GPR travel times, and thus avoided interpretation errors 

which occurred in the SWC estimates using the ray-based approach. Therefore, the coupled 
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inversion provided accurate estimates of the hydraulic properties both for a 1-layer and a 2-layer 

soil profile. In the final step, soil hydraulic parameters were estimated from actual GPR data using 

the coupled inversion approach. The results showed a reasonable consistency with the water 

retention and relative hydraulic conductivity functions reported in the independent study of Cai 

et al. (2018a). 

 

In the third and final part (Chapter 4), the feasibility of coupled inversion of horizontal borehole 

GPR full waveform data for estimating soil hydraulic parameters and layer thickness for a 2-layer 

profile was investigated. First, a workflow for such a coupled full waveform inversion (CFWI) 

was proposed. In contrast to the coupled inversion of GPR travel times, CFWI directly optimized 

the misfits between measured and simulated waveforms in the time domain instead of the first-

arrival times. In the established CFWI workflow, the soil electrical conductivity profile was 

estimated from SWC and Archie’s law. This was not required for the coupled inversion of GPR 

travel times because the electrical conductivity only influences the amplitude of GPR waveforms. 

Based on the infiltration experiment introduced in Chapter 2 and 3, a new synthetic infiltration 

experiment was designed to reduce the computational costs needed for the inversion. In the new 

infiltration experiment, only one single 360-min infiltration event was assumed for a 2-layer soil 

profile and horizontal GPR data were obtained at 0.2, 0.4, and 0.6 m depth only. To evaluate the 

correlation between the soil hydraulic parameters and the layer thickness during parameter 

estimation, response surfaces were again calculated based on the true SWC data, GPR travel times, 

and GPR waveforms. For the different inversion approaches, the layer thickness, ℎ𝑡, was found 

to be negatively correlated with the saturated water content of the topsoil (𝜃𝑠1) and subsoil (𝜃𝑠2). 

Furthermore, the response surfaces demonstrated that CFWI can more accurately estimate the 

layer thickness ℎ𝑡 compared with the coupled inversion of travel times and inversion of SWC 

data, because CFWI contains additional information through the reflected wave generated from 

the layer boundary. In a next step, CFWI and coupled inversion of GPR travel times were 

performed for the synthetic infiltration experiment. CFWI estimated soil hydraulic parameters 

and layer thickness with considerably smaller uncertainty and matched well with the known water 

retention and hydraulic conductivity functions, whereas the hydraulic parameters obtained by the 

coupled inversion of travel times exhibited a slight deviation from the true parameters and 

relatively larger uncertainty in the hydraulic conductivity and retention functions. Despite the 

promising results demonstrated by the synthetic study, the application of CFWI to measured 

horizontal borehole GPR data is still challenging. A first challenge is the required knowledge of 

the effective source wavelet used for CFWI, as it cannot be estimated from the GPR data obtained 

with a ZOP data acquisition strategy. A second challenge for CFWI is the need for accurate 
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estimation for the electrical conductivity distribution during the infiltration experiment, because 

the uncertainty in the petrophysical relationship between electrical conductivity (e.g., Archie’s 

law) is much greater than that in the petrophysical models relating permittivity and SWC (e.g., 

CRIM). Furthermore, the distribution of electrical conductivity may not only be related to the 

SWC distribution, but might be also influenced by independent variations in the pore water 

electrical conductivity associated with fertilizer application or geochemical reactions in the 

subsurface. Finally, CFWI is time-consuming and even more computational costs would be 

demanded if CFWI is used to estimate actual 2D/3D distribution of soil hydraulic parameters, as 

it requires higher accuracy for the simulation of GPR data. 

 

In general, it was concluded that the combined use of borehole and surface GPR measurements 

allows to determine spatiotemporal SWC dynamics during infiltration events. Furthermore, 

hydraulic parameters can reliably be estimated using the coupled inversion of the GPR travel time 

data measured during infiltration. It was also found that ZOP measurements underestimated the 

actual SWC at depths where strong SWC gradients are present. As a result, coupled inversion 

outperforms sequential inversion for estimating the hydraulic parameters from ZOP data if there 

are strong vertical SWC gradients. Considering the computational costs of coupled inversion, 

sequential inversion still is useful when vertical variation in SWC is low. Finally, it was shown 

that CFWI can estimate the hydraulic parameters and layer thickness with less uncertainty 

compared to coupled inversion of GPR travel times. Therefore, it is expected to be a promising 

method for characterizing soil hydraulic properties at the field scale after several remaining 

challenges have been adequately addressed. 
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5.2 Outlook 

The presented work showed how GPR measurements can be used to characterize soil hydraulic 

properties at the field scale. As the research and rethinking should never cease, the following 

section provides perspectives on improving the presented work and ideas that may be worthwhile 

to explore in future studies. 

 

As shown in Chapter 2, the ray-based approach cannot provide accurate SWC estimates for the 

top 0.1 m of soil from horizontal borehole GPR data measured at 0.1 m depth. Besides the 

combination with surface GPR data explored in this thesis, another approach to obtain accurate 

SWC estimates at 0.1 m depth is to use FWI for the horizontal borehole GPR data, as already 

suggested by Klotzsche et al. (2016). However, the main challenge of performing FWI is how to 

estimate an efficient source wavelet from a single ZOP trace. Furthermore, the depth of the 

horizontal boreholes was found to vary in time due to regular agricultural activity and soil 

compaction at the Selhausen test site. Therefore, FWI may be also need to take the borehole depth 

into consideration. Theoretically, this can be achieved because the refracted wave at the soil-air 

interface is sensitive to the borehole depth. 

 

It is common for infiltration events to generate low velocity waveguides resulting in the dispersion 

of surface GPR data. Infiltration-induced near-surface SWC profiles can be resolved by using 

dispersion analysis of surface GPR data. In Chapter 2, the dispersion analysis of a single layer 

waveguide model was employed to obtain the SWC information of the top soil. Due to the 

stronger measurement noise at low frequencies and the simplification of the vertical SWC 

distribution to a single-layer model, the SWC of the material underlying the waveguide was 

inaccurately estimated. To solve this issue, a joint waveguide inversion of the high-frequency 

(e.g., 500 MHz) and low-frequency (e.g., 250 MHz) dispersive surface GPR data can be 

performed, since the permittivity of the underlying material is more sensitive to the low 

frequencies of the dispersion curve (Bikowski et al., 2012). Furthermore, a piece-wise linear 

model can be employed (Mangel et al., 2017). This will not only reduce the inversion uncertainty 

of the permittivity of the underlying material (Strobbia and Cassiani, 2007), but will also provide 

a more continuous and smoother SWC profile that better describes the actual vertical SWC 

distribution during infiltration events. However, dispersion analysis with a multi-layer model is 

more challenging due to the non-uniqueness of the inversion as indicated by van der Kruk et al. 

(2010). 
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In Chapter 3, the application of sequential and coupled inversion approaches to estimate soil 

hydraulic parameters was discussed. Besides the borehole GPR data used in this study, sequential 

and coupled inversion approaches can obviously also be applied to other types of GPR 

measurements. However, until now, no studies utilized either a sequential inversion or a coupled 

inversion approach to estimate soil hydraulic properties using dispersive surface GPR data. Since 

the SWC profiles can be reliably estimated from dispersive surface GPR data, it will be interesting 

to characterize the soil hydraulic properties by using a sequential inversion of vertical SWC 

profiles obtained by dispersion analysis based on a piece-wise linear model. As a coupled 

inversion approach can avoid interpretation errors and since the forward modelling of theoretical 

dispersion curves for a guided wave based on the modal theory does not require high 

computational costs, the coupled inversion approach of the phase velocities of GPR guided wave 

is expected to be even more powerful to estimate soil hydraulic parameters from dispersive GPR 

data. 

 

It would be also interesting to apply CFWI to dispersive surface GPR data for estimating soil 

hydraulic parameters.  In fact, it would be easier to conduct CFWI with surface GPR 

measurements than for borehole GPR measurements because the effective source wavelet can be 

determined from multi-offset GPR measurements using the approach of Busch et al. (2012).  

However, dispersive GPR data can only be employed to characterize soil hydraulic properties of 

a one-layer soil profile or a multi-layer soil profile that does not show strong vertical changes in 

saturated water content and porosity. For example, a two-layer soil profile where the saturated 

water content of the subsoil is considerably larger than that of the topsoil will lead to a leaky 

waveguide when the subsoil gets saturated during infiltration. In such a case, SWC dynamics in 

the second layer cannot be obtained from the dispersive GPR data (van der Kruk et al., 2009b). 

In addition, for a two-layer soil profile where the saturated water content of the subsoil is 

considerably smaller than that of the topsoil, there will be a sharp decrease of SWC at the layer 

boundary when the infiltration front has moved into the subsoil. As a result, a large part of the 

radar energy would be trapped within the topsoil and thus it will be also difficult to obtain 

information on the SWC dynamics in the subsoil based on dispersive surface GPR measurements. 

 

In this thesis, I highlighted the feasibility of using coupled inversion to estimate soil hydraulic 

parameters based on horizontal borehole GPR measurements obtained during infiltration events 

at the field scale. In future studies, it will be interesting to use coupled inversion to estimate soil 

hydraulic parameters from long-term horizontal borehole GPR measurements under natural 

rainfall (atmospheric conditions). By doing so, it may also be possible to estimate the residual 
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water content, since such longer time series of GPR measurements will also contain 

measurements in dry soil conditions in summer. On the other hand, the soil may not get fully 

saturated during natural rainfall events, and thus the inversion may not be sensitive to the saturated 

water content. 

 

Following the pioneering work of Kowalsky et al. (2004), coupled inversion may be also used to 

estimate the heterogeneous distribution of the saturated hydraulic conductivity using multi-offset 

horizontal borehole GPR data. In principle, the CFWI might be more suitable than the coupled 

inversion of GPR travel times since full waveforms contain more information and may thus lead 

to reduced inversion uncertainty. However, as discussed in Chapter 4, CFWI still is associated 

with a number of challenges when dealing with measured GPR data. To improve CFWI, a robust 

approach should be developed to estimate an effective source wavelet from measured data first. 

The method reported by Busch et al. (2012) based on multi-offset GPR measurements may 

provide a solution, but this needs to be further tested. To better estimate the electrical conductivity 

distribution during the infiltration process, a more sophisticated model coupling water flow, solute 

transport, and a geochemical model can be integrated into the CFWI scheme. However, this will 

introduce additional unknown parameters and therefore there is no doubt that the difficulty of 

performing CFWI will increase. Furthermore, although the electrical conductivity is commonly 

frequency-dependent, the difference of electrical conductivity measured in low and high 

frequencies is commonly within an order of magnitude for most types of soil (Domenzain et al., 

2020). Based on this fact, in Chapter 4, the frequency-dependency of soil electrical conductivity 

was not considered and the distribution of the electrical conductivity was estimated based on the 

distribution of SWC only. Moreover, it is reasonable to assume that the conductivity obtained by 

direct current (DC) resistivity methods is equal to the soil electrical conductivity that affects GPR 

measurements. Therefore, besides employing a complex hydrological model that couples the 

water flow and solute transport, the effective electrical conductivity distribution during infiltration 

required for CFWI can be obtained from DC methods. In addition, as discussed in Chapter 4, the 

coupled inversion of GPR travel time data is more robust than the CFWI for estimating soil 

hydraulic parameters for the soil of high electrical conductivity. In Chapter 3, the distribution of 

the electrical conductivity was not considered for the GPR modelling, because generally the 

electrical conductivity only has negligible influence on the velocity of radar wave. However, in 

the situation where the soil electrical conductivity is higher than 0.1 S m-1, the influence of soil 

electrical conductivity on the velocity of radar wave will be unneglectable (Al Hagrey and Müller, 

2000). Therefore, it would be also necessary to estimate an accurate distribution of electrical 

conductivity with the suggested approaches for the coupled inversion of travel times for cases of 
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estimating hydraulic parameters for soils of high salinity or clay content. 

  

The work in this thesis showed that it would be beneficial to improve the accuracy and especially 

the efficiency of current methods for GPR modelling. To more efficiently conduct CFWI, the 

simultaneous parallelization of the optimization and FDTD algorithm is desirable. Due to the 

limitation of the computer power, I only analyzed the correlations between layer thickness and 

different hydraulic parameters for a 2-layer soil profile in Chapter 4.  In future studies, it will also 

necessary to study the correlations between the different hydraulic parameters for a two-layer soil 

profile by using the response surface. Moreover, a traditional first-order approximation was 

employed in Chapter 3 and Chapter 4 to quantify the uncertainty of the inverted hydraulic 

parameters. It is well known that this only works well with linear or nearly linear hydrological 

models (Vrugt and Dane, 2006). This method obtained promising uncertainty ranges for inverted 

hydraulic parameters in this thesis, since hydraulic parameters were found to change steadily with 

changes in the model parameters. Complex banana-shaped relationships between parameters that 

have previously been reported for soil hydraulic parameter estimation were not observed in the 

the response surfaces analyzed in this thesis. Nevertheless, this method may have a poor 

approximation of parameter uncertainty for actual 2D or 3D applications of CFWI. After 

improving the efficiency of GPR modelling, a more sophisticated approach, such as the 

differential evolution adaptive metropolis algorithm (DREAM), should be used to better evaluate 

the uncertainty ranges for inverted hydraulic parameters. 

 

After resolving the remaining issues with CFWI, it can hopefully be employed to estimate 2D or 

even 3D distributions of soil hydraulic parameters from multi-offset GPR measurements. 

However, since the FWI of GPR measurements for 2D/3D applications is commonly prone to 

non-uniqueness (Domenzain et al., 2020), it would also be important to employ other geophysical 

measurements to constrain the CFWI, e.g., a joint coupled inversion of GPR full waveforms and 

ERT data. 
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