
Optimal Transport for
Interactive Interpolation
Problems in Computer

Graphics

Dissertation

zur Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Dipl.-Inform. Tim Golla
aus

Dachau

Bonn, Juli 2021

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen

Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Reinhard Klein

2. Gutachter: Prof. Dr. Thomas Schultz

Tag der Promotion: 14.1.2022
Erscheinungsjahr: 2022

Acknowledgements

I would like to thank Prof. Dr. Reinhard Klein for supervising this thesis

and always having new ideas. I would like to thank my family, my friends and

my colleagues for supporting me.

Abstract

Modern computer graphics require realistic surface materials and geome-

tries for generating convincing imagery. Both types of data are inherently

complex for most applications. To obtain them, measurement of real-world

samples is a widespread method. A frequently required editing operation in

computer graphics is the creation of intermediate states of measured assets.

In the case of complex assets such as highly-detailed surface materials or

complicated geometries this as a difficult task.

For the purpose of interpolating this type of data, the theory of optimal

transport is applied in this thesis. In general, this theory deals with the

optimal allocation of resources. Mathematically speaking, it aims to warp one

probability measure onto another at minimum cost. The common theme and

overarching question of this thesis is how how measured input data can be

processed and represented in such a way that an optimal transport problem

can be set up and how its solution can provide a meaningful result. This

allows achieving results of a visual quality that was impossible to obtain

before.

Overall the proposed approach consists of the following key steps. The

first step is to represent the input data as probability measures. Then, a cost

measure that suits the needs of the problem at hand has to be chosen. The

next step is to set up the optimal transport problem in a computationally

manageable way and to solve it. The final step comprises interpreting the

problem’s solution in a way that is useful for our purpose, for instance, to

produce meaningful, visually appealing results.

The proposed approach is applied here in two areas of computer graphics

for which satisfactory solutions have not yet been found. This thesis first

focuses on representing the sparkling effect of metallic car paints as measured

bidirectional texture functions (BTFs). It explains how to represent these in

a novel, memory-efficient statistical way that is also suitable for real-time

rendering. Having obtained this statistical representation, it is described how

to set up and solve an optimal transport problem between two such represen-

tations. The interpolation of the metallic paint BTFs is then performed using

the solution of the optimal transport problem in real-time, allowing for an

interactive application.

Following this, the temporal upsampling of time series of 3D point clouds

obtained from 3D scans of plants is addressed. The first step of the developed

solution is to represent the point clouds as hierarchies of point cloud clusters

that correspond to the natural segments of the plant. Then, a matching

of the hierarchically organized clusters using the optimal transport-based

Wasserstein distance is to be found. A solution to the optimal transport

problem between all matched pairs of clusters is computed. The information

gained through the optimal transport solution is then used to generate an

arbitrary number of intermediate states between two consecutive scans of a

time series, which allows us to generate a temporal upsampling of the whole

sequence, resulting in smooth animations for temporally sparse 3D scans.

In summary, the methods proposed in this thesis solve the problem of

generating interpolations of measured data that were previously hard or

impossible to generate. The methods provide realistic interpolations, using

optimal transport theory as a basis, underlining its usefulness in computer

graphics applications. The findings can be used for artistic applications in

the field of rendering as well as for scientific applications in the field of plant

growth visualization.

Zusammenfassung

Moderne Computergrafik erfordert realistische Oberflächenmaterialien

und -geometrien, um überzeugende Bilder zu erzeugen. Beide Arten von

Daten sind für die meisten Anwendungen von Natur aus komplex. Um sie zu

erhalten, ist die Messung von realen Proben eine sehr weit verbreitete Methode.

Eine häufig erforderliche Bearbeitungsoperation in der Computergrafik ist die

Erstellung von Zwischenzuständen gemessener Daten. Bei komplexen Daten

wie hochdetaillierten Oberflächenmaterialien oder komplizierten Geometrien

ist dies eine schwierige Aufgabe.

Zum Zwecke der Interpolation dieser Art von Daten wird in dieser Arbeit

die Theorie des optimalen Transports angewendet. Im Allgemeinen befasst

sich diese Theorie mit der optimalen Allokation von Ressourcen. Mathema-

tisch gesehen zielt sie darauf ab, ein Wahrscheinlichkeitsmaß zu minimalen

Kosten auf ein anderes abzubilden. Das grundlegende Thema und die über-

greifende Frage dieser Arbeit ist, wie gemessene Eingabedaten so aufbere-

itet und dargestellt werden können, dass ein optimales Transportproblem

aufgestellt werden kann und wie seine Lösung ein nutzbares Ergebnis liefert.

Auf diese Weise können Ergebnisse von einer visuellen Qualität erzielt werden,

die vorher unmöglich zu erreichen war.

Insgesamt besteht der vorgeschlagene Ansatz aus den folgenden Schlüs-

selschritten. Der erste Schritt besteht darin, die Eingabedaten als Wahrschein-

lichkeitsmaße darzustellen. Dann muss ein Kostenmaß gewählt werden,

das den Erfordernissen des vorliegenden Problems entspricht. Der nächste

Schritt besteht darin, das optimale Transportproblem in einer rechnerisch

handhabbaren Weise aufzustellen und zu lösen. Der letzte Schritt umfasst

die Interpretation der Lösung des Problems in einer Weise, die für unsere

Zwecke nützlich ist, zum Beispiel um aussagekräftige, visuell ansprechende

Ergebnisse zu erzielen.

Der vorgeschlagene Ansatz wird hier in zwei Bereichen der Computergrafik

angewandt, für die es bisher keine befriedigenden Lösungen gibt. Diese

Arbeit konzentriert sich zunächst auf die Darstellung des Glitzereffekts von

Metallic-Autolacken als gemessene bidirektionale Texturfunktionen (BTFs).

Es wird erklärt, wie diese auf eine neuartige, speichereffiziente statistische

Weise dargestellt werden können, die auch für Echtzeit-Rendering geeignet

ist.

Nachdem diese statistische Darstellung vorliegt, wird beschrieben, wie ein

optimales Transportproblem zwischen zwei solchen Darstellungen aufgestellt

und gelöst werden kann. Die Interpolation der BTFs für Metallic-Lacke

wird dann unter Verwendung der Lösung des optimalen Transportproblems

in Echtzeit durchgeführt, wodurch eine interaktive Anwendung ermöglicht

wird.

Im Anschluss daran wird das zeitliche Upsampling von Zeitreihen von 3D-

Punktwolken, die durch 3D-Scans von Pflanzen behandelt. Der erste Schritt

der hier entwickelten Lösung besteht darin, die Punktwolken als Hierarchien

von Punktwolken-Clustern darzustellen, die den natürlichen Segmenten der

Pflanze entsprechen. Danach wird ein Matching der hierarchisch organisierten

Cluster unter Verwendung der Wasserstein-Distanz gefunden. Es wird eine

Lösung für das optimale Transportproblem zwischen allen Paaren von Clus-

tern berechnet. Die durch die Lösung des Transportproblems gewonnene

Information wird dann dazu verwendet, eine beliebige Anzahl von Zwis-

chenzuständen zwischen zwei aufeinanderfolgenden Scans einer Zeitreihe zu

erzeugen, was uns erlaubt, ein zeitliches Upsampling der gesamten Sequenz

zu erzeugen, wodurch sich flüssige Animationen für zeitlich gering aufgelöste

Reihen von 3D-Scans ergeben.

Zusammenfassend lässt sich sagen, dass die in dieser Arbeit vorgestellten

Methoden das Problem der Erzeugung von Interpolationen von Messdaten

lösen, welche vorher nur schwer oder gar nicht zu erzeugen waren. Die

Methoden liefern realistische Interpolationen auf der Grundlage der Theorie

des optimalen Transports, was deren Nützlichkeit für Computergrafikan-

wendungen unterstreicht. Die Ergebnisse können sowohl für künstlerische

Anwendungen im Bereich des Renderings als auch für wissenschaftliche An-

wendungen im Bereich der Visualisierung von Pflanzenwachstum verwendet

werden.

Contents

1 Introduction 1

1.1 Motivation and Contributions 1

1.2 Contributions . 4

1.3 Mathematical Foundations of Optimal Transport 6

1.4 Optimal Transport In Computer Graphics 13

1.5 Publications . 15

1.6 Outline . 16

2 An Efficient Statistical Data Representation for Real-time Ren-

dering of Metallic Effect Car Paints 17

2.1 Introduction . 18

2.2 Related Work . 22

2.3 Original AxF Car Paint Model 23

2.4 Our Representation and its Generation 27

2.4.1 Generation of the Statistical Representation 27

2.4.2 Real-time BTF Reconstruction and Rendering 32

2.5 Evaluation . 33

2.5.1 Visual Comparison . 33

2.5.2 Memory Usage and Rendering Times 37

2.6 Limitations . 37

2.7 Conclusion . 38

Contents

3 Interactive Interpolation of Metallic Effect Car Paints 39

3.1 Introduction . 40
3.2 Related Work . 42

3.2.1 Metallic Car Paint Rendering 42
3.2.2 BTF Synthesis and Interpolation 44
3.2.3 Optimal Transport in Computer Graphics 45

3.3 The Statistical Car Paint Model 45
3.3.1 The Basic Car Paint Model 45
3.3.2 The Statistical Model . 47

3.4 Interpolation Method . 48
3.4.1 Preprocessing for the Interpolation of the Flake BTFs . 49
3.4.2 Real-Time Interpolation 52
3.4.3 Interpolation of Multiple Materials 53
3.4.4 Separate Interpolation of the Flake Intensity and the Color 54

3.5 Results . 54
3.6 Conclusion . 60

4 Temporal Upsampling of Point Cloud Sequences by Optimal

Transport for Plant Growth Visualization 61

4.1 Introduction . 62
4.2 Related Work . 64
4.3 Temporal Upsampling of Point Cloud Sequences Using Optimal

Transport for Plant Growth Visualization 69
4.3.1 Coarse Alignment . 72
4.3.2 Hierarchical Segmentation 72
4.3.3 Segment Matching . 75
4.3.4 Optimal Transport Plan for Two Point Clouds 78

4.4 Results . 83
4.5 Limitations and Future Work 88
4.6 Conclusion . 89

5 Summary, Conclusion and Future Work 91

5.1 Summary and Conclusion . 91

Contents

5.2 Future Work . 93

6 Bibliography 95

List of Figures 114

List of Tables 122

1 Introduction

1.1 Motivation and Contributions
In modern computer graphics, realistic surface materials and geometries are

required for generating convincing imagery. Both of these types of data are,

however, complex by nature for most applications. For obtaining these data,

there are two approaches: (1) manually creating them or (2) measuring real-

world samples. The manual creation has the advantage of providing exactly

what the artist had in mind and it allows for great flexibility in the modifica-

tion of the assets due to the nature of their generation with e.g. analytical pa-

rameters. Creating assets with realistic detail, however, is a resource-intensive

task, demanding expert knowledge and experience. Measuring real-world

samples, on the other hand, requires – thanks to the availability of commercial

scanning devices – less expertise and can reproduce very fine detail. It is

the equivalent of comparing painting to taking a photograph with a modern

camera. By measuring real-world samples using 3D scanners, even biological

processes such as the growth of plants can be captured with a realistic detail

that is hard to achieve with manual or computational methods. Despite these

advantages, measured data provides less flexibility in terms of customiza-

tion. Data modifications are more difficult. For instance, modifications of

unstructured point clouds resulting from a 3D scan are much harder than

modifications of a 3D mesh generated with 3D software. Measured data also

represents only snapshots of reality. Only what is physically available at the

current point in time can be captured. When e.g. scanning a plant, the data

represent its current state of growth. When scanning a metallic car paint, only

1

1.1 Motivation and Contributions

the existing sample can be used. It will however frequently happen that the

existing real-world input data is not perfectly adequate for the application at

hand. As an example, the designer might want to change the appearance of

the paint of a car after the acquisition process has ended already. A real-world

sample of what he has in mind might not be available. Thus, it becomes

necessary to modify the data after the acquisition process.

A frequently-used operation in many computer graphics applications is

the interpolation between discrete states of input data, i.e. generating smooth

transitions between them. This operation is also intuitive for the user. Inter-

polation in general has been used in computer graphics in numerous applica-

tions, from fundamental techniques like spline interpolation to more complex

methods like view interpolation [CW93], motion figure interpolation [WH97]
and mesh interpolation [ACOL00]. One of the first interpolation applications

more noticeable to the wider audience was the movie special effects technique

of morphing, thanks to its ability to generate previously impossible imagery.

In early motion pictures, this effect was achieved by blending one image over

the other – a simple interpolation technique. A similar effect also exists in

physical form: The tabula scalata, a technique known since the end of the 16th
century. Here, two images are painted over a corrugated surface. Depending

on the view direction, either the one or the other is visible. This effect is still

used today for example in children’s toys. The first digital morphing effects

were used in the 1980s, e.g. in the movies "Flight of the Navigator" (1986) and

"The Golden Child" (1986). These were already a big step forward from the

previous blending technique. In the 1990s, a more realistic computer-aided

technique became popular, where the user would have to manually select

corresponding points in two images. Then, e.g. by using the algorithm of Beier

and Neely [BN92], it is possible to warp one image’s shape and interpolate

its colors towards that of a second image. Well-known examples showcasing

such more advanced morphing techniques are the Michael Jackson music

video "Black or White" (1991) and the movies "Star Trek VI: The Undiscovered

Country" (1991) and "Terminator 2: Judgment Day" (1991).
In recent years, the theoretical framework of optimal transport has gained

popularity in the field of computer graphics, e.g. as shown in [SDGP+15].

2

1.1 Motivation and Contributions

Figure 1.1: Rendering and interpolation of metallic paints. On the left and on the
right are two original metallic effect car paints. Note that the material on the left
exhibits an appearance with a strong sparkling effect, while the blue material on the
right only exhibits a weak sparkling. In between are interpolated paints, generated
with the method described in this thesis.

This thesis investigates the use of optimal transport with the aim of generating

interpolated states of complex measured data. The focus is on cases for

which the generation of interpolated states is particularly difficult. Intuitively,

optimal transport theory deals with matching supply from given sources (like

factories) to given targets (e.g. warehouses). For each pair of source and target,

a transport cost, usually the distance, has to be defined. The optimal transport

problem is to find the allocation of goods from sources to targets at minimal

cost. In this thesis, possibilities to prepare measured data used for computer

graphics in a way such that the interpolation of two datasets can be posed

as an optimal transport problem are explored. The solution to this problem

is used for creating intermediate steps and animations in a way that makes

sense visually for a human observer.

This thesis first focuses on metallic car paints. These paints consist of sev-

eral layers and are visually complex. They exhibit a sparkling effect which

is represented here in a data-driven way as measured bidirectional texture

functions (BTFs). These BTFs are memory-intense. A novel, memory-effcient

representation for the metallic paint BTFs, which is also suitable for real-time

rendering, is introduced in this thesis. The key to this is to find clusters of

uniform distribution in color space. The distributions, as well as their bound-

aries, are stored in textures on the GPU. A specialized shader is able to render

3

1.2 Contributions

the metallic effect from this representation. Having obtained this statistical

representation, it is described how to set up and solve an optimal transport

problem between two such BTFs. The interpolation of the metallic paint BTFs

is then performed using the solution of the optimal transport problem by

transporting the color clusters accordingly through color space. The interpo-

lation is performed in real-time, allowing for an interactive application. A

rendering of two measured metallic car paints and interpolations between

them is shown in Fig. 1.1.
Following this, the temporal upsampling of time series of 3D point clouds

obtained by 3D scans of plants by interpolation is addressed. The key is to rep-

resent the point clouds as hierarchies of point cloud clusters that correspond

to the natural segments of the plant. It is described how to find a matching

of the hierarchically organized clusters using the optimal transport-based

Wasserstein distance. For each pair of clusters, an optimal transport problem

is set up. Due to the size of the point clouds, setting up the optimal transport

problem in the standard way, using a full distance matrix is often impossible.

It is described how to set up the problem in a sparse way, regularize it and

then solve it efficiently. The information gained through the optimal transport

solution allows to identify associations between the points of two subsequent

scans of a time series and subsequentially to generate an arbitrary amount of

intermediate states between them in real-time. This allows for generating a

temporal upsampling of the whole sequence, yielding smooth animations for

temporally sparse 3D scans. An exemplary upsampling of a komatsuna plant

scan is shown in Fig. 1.2. An upsampling of a synthetically generated scan of

a tree is shown in Fig. 1.3.
In both areas, the methods described deliver high quality interpolation

results at comparatively low computational demands.

1.2 Contributions
In summary, the contributions of this thesis are:

■ A novel, statistical representation for the data-driven BTF used for

metallic car paint, which is

4

1.2 Contributions

ti ti+1

Figure 1.2: Temporal upsampling of scans of a komatsuna plant. The original
point clouds for the time steps ti and ti+1 are highlighted with a gray background.
The in-between states have been computed with the method described in this thesis.

ti ti+1

Figure 1.3: Temporal upsampling of two synthetically generated tree point clouds
obtained with the method described in this thesis. The original point clouds for
the time steps ti and ti+1 are highlighted with a gray background. The in-between
states have been computed with the upsampling method described in this thesis.

5

1.3 Mathematical Foundations of Optimal Transport

– memory-efficient.
– fast to compute.
– suitable for decompression and real-time rendering on the GPU.
– allows for the generation of arbitrarily-sized BTFs, despite the

limited size of the original input data.
■ A novel method for interpolating metallic car paints using the previ-

ously introduced representation and the theory of optimal transport,

which

– exhibits a high visual quality.
– is suitable for real-time applications.
– allows to separately interpolate the different visual aspects of the

metallic paints, that is the larger-scale reflective properties, in-

cluding the basic color hue, the local color hue and the sparkling

intensity of the metallic paints.
– allows to generate interpolations of three or more metallic car

paints.
■ A novel method for temporal upsampling of sequences of 3D scans of

plants, based on optimal transport theory, which

– doesn’t require exact point correspondences, shape priors or huge

databases.
– identifies and handles topological changes like growing or de-

caying leaves and generates corresponding virtual segments and

thus interpolations.
– includes a heuristic segmentation method suitable for thin struc-

tures such as occurring in plants like maize or trees.
– yields smooth temporal upsamplings, allowing for realistic

growth animations with moderate computational effort.

1.3 Mathematical Foundations of Optimal

Transport
In the following, we outline the mathematical foundations of optimal trans-

port, which facilitates a better understanding of the rest of this thesis. Optimal

6

1.3 Mathematical Foundations of Optimal Transport

Figure 1.4: Illustration of the intuition behind the Monge Problem. The goal is
to transport the pile of sand on the left (blue) into the hole on the right (red) at
minimum cost.

Transport is a linear optimization or linear programming problem. The French

mathematician Gaspard Monge (1746–1818) was the first to formalize the

problem of optimal transport [Mon81]. He described the problem as follows:

An existing pile of sand has to be moved to a target hole that has a specific

shape. The total effort spent on this task has to be minimized. This is also

called Monge problem and is illustrated in Fig. 1.4. Interpreted in a mathemat-

ical way, the problem can be stated as follows: With two given probability

distributions we want to find the optimal way of morphing or transporting

them onto each other.

Mathematically speaking, letM be a Riemannian manifold, µ0 (the "pile

of sand") and µ1 (the "hole") two probability measures onM and c a distance

measure onM. Our task is to find a map τ that minimizes:

W (µ0,µ1) =
∫
M
c(x,τ(x))dµ0(x) (1.1)

with

µ0(τ−1(Ω)) = µ1(Ω)∀Ω ∈M. (1.2)

7

1.3 Mathematical Foundations of Optimal Transport

0 200 400 600 800 1000

0.000

0.002

0.004

0.006

0.008

τ

µ0

µ1

Figure 1.5: Illustration of the basic optimal transport problem. Our goal is to find
the map τ that transports the probability measure µ0 to µ1 at minimal cost.

µ1 is sometimes also called the pushforward of µ0 by τ , denoted as µ1 = τ#µ0.

W (µ0,µ1) defines the total transport cost of µ0 to µ1. In the case c(x,τ(x)) =

d(x,τ(x))p,p > 1 and d is the geodesic distance onM, W (µ0,µ1)1/p is also called

the pth Wasserstein distance. An illustration of the problem is given in Fig. 1.5.

In the 1930s and 40s, Leonid Vitaliyevich Kantorovich (1912-1986) was

working in the field of linear optimization [Kan39]. The problem he was

trying to solve was how to move soldiers to destinations in the most efficient

way. In 1942 [Kan42], he described the following problem, also called Monge-
Kantorovich problem, and a solution to it: Find a probability measure π that

minimizes:

W (µ0,µ1) = inf
π∈Π(µ0,µ1)

∫
M

∫
M
c(x,y)dπ(x,y), (1.3)

with the constraints

π(U ×M) = µ0(U)∀U ⊆M, (1.4)

π(M×V) = µ1(V)∀V ⊆M, (1.5)

8

1.3 Mathematical Foundations of Optimal Transport

0 250 500 750
0

200

400

600

800

µ0

µ1

(a) Distances

0 250 500 750
0

200

400

600

800

µ0

µ1

(b) Exact Solution

0 250 500 750
0

200

400

600

800

µ0

µ1

(c) Approximate Solution

Figure 1.6: Illustration of the setup of a 1D optimal transport problem. The
probability measure µ0 (blue) is to be transported to the probability measure µ1
(red). The measures and the distances between two positions is illustrated in
Fig. 1.6a. Brighter colors mean larger values. An exact solution for the probability
measure π in the optimal transport problem is visualized in Fig. 1.6b. Note that
the transport is so selective that it is barely visible in the picture. An approximate
solution to the optimal transport problem is illustrated in Fig. 1.6c. This solution
is slightly "blurred", which also makes it easier to see in the visualization.

where Π(µ0,µ1) is the set of probability measures fulfilling these constraints,

i.e.

Π(µ0,µ1) = {π ∈ P r(M×M) |π(U ×M) = µ0(U)∀U ⊆M,

π(M×V) = µ1(V)∀V ⊆M
}
,

(1.6)

with P r(M×M) being the set of probability measures onM×M. An illus-

tration of the problem setup and solutions is given in Fig. 1.6. Analogous to

before, we can define the pth Wasserstein distance as:

Wp(µ0,µ1) :=
(

inf
π∈Π(µ0,µ1)

∫
M

∫
M
d(x,y)pdπ(x,y)

)1/p

, (1.7)

with d(·, ·) being the geodesic distance onM.

Around the same time as Kantorovich, Tjalling Charles Koopmans came to

similar conclusions. In 1975, they were awarded the Nobel Prize in economics.

9

1.3 Mathematical Foundations of Optimal Transport

The Monge-Kantorovich problem can be discretized as follows. The proba-

bility measures µ0 and µ1 are discretized as histograms µ̄0 = (h0a)a ∈ [0,1]n, a ∈
{1, . . . ,n} with n bins resp. µ̄1 = (h1b)b ∈ [0,1]m,b ∈ {1, . . . ,m} with m bins.

A discretized version of Eq. (1.3) can then be written as: Find a matrix

T = (Tab)ab ∈Rn×m such that

W (µ̄0, µ̄1) =min
T

n∑
a=1

m∑
b=1

Tab ·Cab, Cab = c(xa, yb) (1.8)

s.t. Tab ≥ 0 ∀a ∈ {1, . . . ,n},∀b ∈ {1, . . . ,m}
(1.9)

n∑
a=1

Tab = h1b ∀b ∈ {1, . . . ,m}

(1.10)
m∑
b=1

Tab = h0a ∀a ∈ {1, . . . ,n}

(1.11)

This problem formulation is a linear program with mn variables, mn inequality

constraints and m + n equality constraints. An illustration of the problem

setup is given in Fig. 1.7 and Fig. 1.8.

Towards the end of the 1990s, optimal transport became popular in the

field of computer vision, most notably under the name Earth Mover’s Distance.

Very influential work regarding this was published by Rubner and his collabo-

rators [RTG98, RTG00, RT01]. Also known as Wasserstein Distance, the Earth

Mover’s Distance describes the cost of the optimal transport and can e.g. be

used as a measure for image similarity.

As stated before, the discretized optimal transport problem is a linear

program with nm unknowns, thus it can be solved with a standard approach

like Dantzig’s Simplex algorithm. For large problems however, it turned out

[Cut13] that it is advantageous to solve a modified problem: The regularized

10

1.3 Mathematical Foundations of Optimal Transport

0 200 400 600 800 1000
0.0

0.1

0.2

0.3

0.4

T

h0

h1

Figure 1.7: Illustration of the discretized basic optimal transport problem. Our
goal is to find the map T that transports the histogram h0 to h1 at minimal cost.

0 500 1000

0

200

400

600

800

1000

h0

h1

(a) Distances

0 500 1000

0

200

400

600

800

1000

h0

h1

(b) Exact Solution

0 500 1000

0

200

400

600

800

1000

h0

h1

(c) Approximate Solution

Figure 1.8: Illustration of the setup of a discrete 1D optimal transport problem. The
histogram h0 (blue) is to be transported to the histogram h1 (red). The histograms
and the distances between two positions is illustrated in Fig. 1.8a. Brighter colors
mean higher cost. An exact solution for the transport matrix T in the optimal
transport problem is visualized in Fig. 1.8b. Brighter colors mean larger values. An
approximate solution to the optimal transport problem is illustrated in Fig. 1.8c.
Note that in this case, the difference between the exact and approximate solution is
very small.

11

1.3 Mathematical Foundations of Optimal Transport

optimal transport problem. In the regularized transport problem, the objective

function in Eq. (1.8) is modified to

min
T

n∑
a=1

m∑
b=1

Tab ·Cab −γH(T), (1.12)

where H(T) is the entropy of the matrix T , defined as

H(T) = −
n∑

a=1

m∑
b=1

Tab logTab. (1.13)

Inserting Eq. (1.13) into Eq. (1.12) yields

min
T

n∑
a=1

m∑
b=1

Tab ·Cab +γ
n∑

a=1

m∑
b=1

Tab logTab. (1.14)

For solving this problem, a more efficient algorithm exists: The Sinkhorn

algorithm. It can be shown [Cut13] that minimizing Eq. (1.14) leads to the

following condition for the elements of T :

Tab = uaKabvb (1.15)

where Kab = exp(−Cab/γ) are the entries of a matrix K and u = (ua)a,v = (vb)b
are unknown vectors to be determined. Note that with the vectors u and v we

only have a linear number of unknowns, as opposed to the quadratic number

in the matrix T . If we insert Eq. (1.15) into the problem constraints Eq. (1.10)
and Eq. (1.11), we obtain the following relationships:

n∑
a=1

Tab = h1b⇒ vb

n∑
a=1

Kabua = h1b⇒ vb =
h1b∑n

a=1Kabua
(1.16)

m∑
b=1

Tab = h0a⇒ ua

m∑
b=1

Kabvb = h0a⇒ ua =
h0a∑m

b=1Kabvb
(1.17)

Using these relations iteratively as an algorithm for finding the solution was

originally proposed by Sinkhorn [Sin64] in a different context and introduced

12

1.4 Optimal Transport In Computer Graphics

to optimal transport by Cuturi [Cut13]. Initialize the vectors u = (ua)a = 1,v =

(vb)b = 1∀a ∈ A,b ∈ B. The Sinkhorn algorithm then finds an approximate

solution by iterating the following steps:

1. u← h0 ⊘Ku

2. v← h1 ⊘Kv,

where ⊘ denotes an element-wise division. The elements of the approximate

solution matrix T are then Tab := uaKabvb. The algorithm usually only takes

few iterations to converge.

The questions that arise for most practitioners that want to use optimal

transport in order to solve their problems are:

■ How to state the problem at hand in a way such that it can be trans-

formed into a standard optimal transport problem. How to represent

the data at hand? When these questions are answered, an existing

algorithm can be used for solving the problem.

■ How to interpret and use the result?

While for some problems, such as the problem of finding the optimal logistics

from a number of sources (factories) to a number of targets (warehouses),

setting up and interpreting the problem are relatively obvious. For many

other applications, this is not clear.

This thesis gives answers to these questions in two fields, where these

have not been tackled yet: The rendering of data-based metallic car paint

representations (BTFs) and in the field of the temporal upsampling of 3D
scans of plants. It is shown how to transform the measured input data into

forms that are applicable as an input to an optimal transport problem and

how to interpret the results for interpolation in real-time applications.

1.4 Optimal Transport In Computer Graphics
In this section, an overview of the use of optimal transport in the field of

computer graphics is given. Well-known are the works of Rubner et al.

[RTG98, RTG00], who used optimal transport in the form of the Earth Mover’s

13

1.4 Optimal Transport In Computer Graphics

Distance for measuring the similarity of images. They computed the trans-

portation cost between color distributions and texture feature distributions

for measuring the distances between images. Pele and Werman presented a

fast algorithm for thresholded Earth Mover’s Distances [PW09] that they used

for image retrieval. Solomon et al. [SRGB14] described how to compute the

Earth Mover’s Distance on discrete surfaces. Mérigot presented a multiscale

approach to optimal transport with an application in image interpolation

[Mér11].
A widely-used application for optimal transport in computer graphics is

color transfer. The following papers are all in this field: Pitié et al. used

optimal transport with regularization while maintaining the gradient of the

original picture for color transfer [PKD07]. Rabin et al. [RP11] use approxi-

mate Wasserstein constraints on color statistics and geometric regularization

for color transfer in images. Ferradans et al. used regularized discrete optimal

transport within a unified convex variational framework [FPPA14]. Rabin et

al. [RFP14] used relaxed optimal transport with a regularization that respects

the spatial distribution of colors. Frigo et al. [FSDH14] separately matched il-

luminant and optimal transported dominant colors, which was regularized by

thin plate splines. Chizat et al. extended optimal transport based on entropy

regularization to unbalanced problems [CPSV16].
De Goes et al. [DGCSAD11] described a method for 2D shape reconstruction

and simplification from defect and noisy point clouds. In the following year,

De Goes et al. [DGBOD12] described an algorithm to generate blue noise with

the help of optimal transport. Digne et al. [DCSA+14] used optimal transport

for feature-preserving surface reconstruction from point clouds and their

simplification. Merigot et al. [MMT18] described an algorithm for optimal

transport between a point cloud and a simplex soup. Lavenant et al. [LCCS18]
dealt with optimal transport on discrete surfaces. Qin et al. [QHL+19] used

optimal transport for topology-aware skeleton extraction from point clouds.

The most closely related work in the context of this thesis deals with inter-

polation in computer graphics. These papers are described in this paragraph.

Rabin et al. [RPDB11] used optimal transport for interpolating textures. They

used a sliced approximation over 1D distributions to replace the original

14

1.5 Publications

Wasserstein metric. This allows them to employ a fast stochastic gradient

descent algorithm. This yields a new notion of the barycenter of probabilities,

which they use for 2D texture interpolation. Bonneel et al. [BVDPPH11] used

optimal transport for bidirectional reflectance distribution function (BRDF)

interpolation. They represent distributions or functions as sums of radial

basis functions and solve a transport problem between these representations.

Solomon et al. [SDGP+15] introduced convolutional Wasserstein distances

which exhibited faster convergence in their applications and were applied for

interpolating BRDFs and volumetric representations. They interpolated 3D
data represented as density functions in a fixed 3D voxel grid and BRDFs.

The works in this thesis are – to the best of the author’s knowledge – the

first ones to use optimal transport to solve interpolation of measured BTFs

and point clouds.

1.5 Publications
This cumulative thesis comprises the following publications:

1. Tim Golla and Reinhard Klein. An Efficient Statistical Data Represen-

tation for Real-Time Rendering of Metallic Effect Car Paints. In Virtual
Reality and Augmented Reality: 14th EuroVR International Conference,
EuroVR 2017, pages 51–68. Springer, Cham, 2017

2. Tim Golla and Reinhard Klein. Interactive Interpolation of Metallic

Effect Car Paints. In Vision, Modeling & Visualization, VMV 2018, EG

VMV ’18, page 11–20. The Eurographics Association, 2018

3. Tim Golla, Tom Kneiphof, Heiner Kuhlmann, Michael Weinmann, and

Reinhard Klein. Temporal Upsampling of Point Cloud Sequences by

Optimal Transport for Plant Growth Visualization. Computer Graphics
Forum, 39(6):167–179, September 2020

The following papers were also published during the PhD period and are in

the context of this thesis, but were not included in it in order to put the focus

on interpolation of measured data using optimal transport:

15

1.6 Outline

1. Tom Kneiphof, Tim Golla, and Reinhard Klein. Real-time Image-based

Lighting of Microfacet BRDFs with Varying Iridescence. Computer
Graphics Forum, 38(4), July 2019

2. Tom Kneiphof, Tim Golla, Michael Weinmann, and Reinhard Klein. A

Method for Fitting Measured Car Paints to a Game Engine’s Rendering

Model. In Workshop on Material Appearance Modeling, pages 27–31. The

Eurographics Association, 2018
3. Tim Golla and Reinhard Klein. Real-time Point Cloud Compression.

In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on, pages 5087–5092. IEEE, 2015

4. Tim Golla, Christopher Schwartz, and Reinhard Klein. Towards Effi-

cient Online Compression of Incrementally Acquired Point Clouds. In

Vision, Modeling & Visualization. The Eurographics Association, 2014

1.6 Outline
The rest of this cumulative thesis is structured as follows: Chapter 2 introduces

a memory-efficient statistical data representation for the memory-intensive

bidirectional texture function (BTF) required for the metallic effect in the

data-driven metallic car paint representation, suitable for real-time rendering.

Chapter 3 describes how to use this representation as input for an optimal

transport problem. Its solution is used for creating interpolations of two or

more car paints suitable for interactive applications. Chapter 4 investigates

how 3D point clouds of plants can be represented in a hierarchy of segments in

order to facilitate the definition of an optimal transport problem. The solution

of this problem can be used to generate an arbitrary number of intermediate

states of real-world data, i.e. to create a temporal upsampling. The thesis

closes with a summary, a conclusion and an outlook in Chapter 5, followed by

the bibliography, a list of figures and a list of tables.

16

2 An Efficient Statistical Data

Representation for Real-time

Rendering of Metallic Effect

Car Paints

Abstract Realistic virtual reality applications require highly-detailed ge-

ometry as well es convincing surface representations. In many applications,

especially in the automotive industry, the realistic rendering of metallic effect

paints is necessary. Due to their complex appearance, this is a demanding

problem. Previous methods either use a computationally heavy-weight and

often hand-tuned simulation approach or a data-driven approach. The former

are thus not well-suited for real-time applications. The latter have the advan-

tage of lower computational complexity and virtually no manual hand-tuning,

but the disadvantage of requiring large amounts of the graphics card’s mem-

ory, making them problematic for larger scenes with numerous materials as

required in VR applications. In this paper, we describe an efficient represen-

tation for metallic car paints, based on computing the statistical properties

of measured real-world samples. Our approach is suited for real-time ren-

dering, poses only moderate requirements on the computing power, uses a

low amount of memory and displays high-quality results, as shown in our

evaluation section. As an additional advantage, our representation allows the

generation of BTFs of arbitrary resolution.

17

2.1 Introduction

Figure 2.1: Scene displaying various metallic paints on cars in a virtual showroom,
as may be employed to show color choices to a customer. Thanks to our efficient
statistical representation, various different digitally acquired real-world metallic
paints can be rendered in real-time on commodity hardware.

This chapter corresponds to the publication Tim Golla and Reinhard Klein.

An Efficient Statistical Data Representation for Real-Time Rendering of Metal-

lic Effect Car Paints. In Virtual Reality and Augmented Reality: 14th EuroVR
International Conference, EuroVR 2017, pages 51–68. Springer, Cham, 2017
[GK17].

2.1 Introduction
Virtual reality applications are gaining popularity in the automotive industry,

where applications range from virtual showrooms for customers to tools for

designers. Metallic effect paints are among the most popular finishes for cars

and thus must be included in these applications. The metallic paints consist of

multiple layers and exhibit – among other optical effects – a metallic-looking

sparkling effect. This is achieved by including additional effect pigments

to the base paint, which are usually small aluminium flakes. A variation

18

2.1 Introduction

are pearlescent paints, that change color depending on the view and light

angles, an effect also caused by flakes. Recreating realistic-looking car paints

in computer graphics is a demanding problem. The sparkling effect of metallic

paints is particularly difficult to recreate.

The rendering equation [Kaj86] is the theoretical basis for most rendering

algorithms and can be written in simplified form as:

Lo(x,o) = Le(x,o) +
∫
Ω+

i

fr(x, i,o)Li(x, i)(i ·n)di, (2.1)

where x is the position on the surface, i the incoming, o the outgoing light

direction, n the surface normal, Lo the outgoing radiance, Li the incoming ra-

diance, Le the emitted radiance, Ω+
i the hemisphere over x and fr a reflectance

function. The recreation of the metallic car paint effect can be described as

defining a suitable reflectance function fr(x, i,o). For homogenous materials,

the dependency on the spatial variable x can be omitted. Especially for the

latter case, many analytical models exist [GGH+17, GGG+16]. When one

wants to take non-local effects into account, one has to extend this equation

to:

Lo(x,o) = Le(x,o) +
∫
A

∫
Ω+

i (xi)
S(xi , i,x,o)Li(xi , i)(i ·n)didxi , (2.2)

where A is the object’s 2D surface and S is a scattering function. With this

definition, light incident at xi and scattered to x is taken into account.

Another approach is image-based rendering. Here, we compute light fields
L·,V parameterized on a volume’s surface V . We are interested in the outgoing

light field Lo,V , which can be computed by the equation

Lo,V (x,o) =
∫
V

∫
Ω+

i (xi)
RV (xi , i,x,o)Li,V (xi , i)didxi , (2.3)

where RV is the reflectance field, which was introduced by Debevec et al.

[DHT+00]. The equation is called image-based relighting equation. When

assuming a directional incident light field Ldi,V , which does not depend on the

surface position xi , i.e. the light sources are in an infinite distance resulting

19

2.1 Introduction

in only parallel light rays, also called far field assumption, one can reduce

the 8-dimensional reflectance field RV to a 6-dimensional reflectance field BV ,

which is called Bidirectional Texture Function (BTF) [Dis98]. The outgoing

light field can then be computed with the following equation:

Lo,V (x,o) =
∫
Ω+

i

BV (i,x,o)Ldi,V (i)di (2.4)

Depending on the choice of the approach used for rendering metallic car

paints, either model-based, specifying a BRDF or scattering function, or image-

based by capturing the reflectance function, the corresponding equation is

discretized and the final image can be computed. In any case, for a high-

quality virtual reality application the approach of choice should fulfill the

following requirements:

■ High-quality look in order to convince and impress customers and be

useful for designers.
■ Relative ease of acquisition or generation to be usable for non-expert

users and save time for experts.
■ Evaluable in real-time, using as few computational power as possible

to enable high frame rates.
■ Low memory footprint in order to support the rendering of many

different paints simultaneously and allow the use of more complex car

and scene geometry.

The latter two points are even more important on mobile devices. Simple

model-based approaches are unable to recreate the complex effects of car

paints. Nevertheless, achieving high-quality results with model-based ap-

proaches is possible, as e.g. shown by Yan et al. [YHJ+14, YHMR16] and

Jakob et al. [JHY+14], but these are computationally demanding and thus not

suited for real-time applications as required for virtual reality. Many of these

approaches furthermore require manual setting of numerous parameters,

making them difficult to handle for non-experts.

Alternatively, image-based approaches, where a real-world sample of the

material to be represented is digitized by taking images under varying illu-

20

2.1 Introduction

mination, deliver high-quality results, but inherently require large amounts

of memory, which again hinders the usage of these representations in a VR

scenario. To overcome this problem, Rump et al. [RMS+08] introduced a

hybrid representation and decomposed the full BTF of a car paint into a BRDF

and an easier to compress remaining BTF containing effects caused by the

metallic flakes, which we will call in the following flake BTF. Although this

representation yields high-quality renderings and is relatively straightforward

to generate, it still requires large amounts of memory. In a VR application, this

permits only the simultaneous use of a small number of different car paints.

Based on this approach, X-Rite developed the car paint model used in the AxF

file format [ML15], which is used by the TAC7 device and has already been

included in several commercially available software packages like Autodesk

VRED, Nvidia Iray or X-Rite Pantora. This representation fulfills all require-

ments except for its memory footprint. We thus use it as a basis for our new

representation for metallic paints.

The flake BTF requires by far the largest amount of memory of the model.

While in the original representation by Rump et al., as well as the AxF format,

the flake BTF is represented as a 4D matrix, we compute a statistical represen-

tation of this data, suited for real-time reconstruction on the graphics card.

Our representation requires much less memory and only moderate computing

power. As an additional advantage, our representation allows the generation

of BTFs of arbitrary resolution, independent of the resolution of the originally

acquired data.

The rest of this paper is structured as follows: In Section 2.2, we describe

the related work. In Section 2.3, we explain the original representation used in

the AxF car paint model. In Section 2.4, we describe our model for the metallic

flakes, our statistics generation algorithm and our real-time reconstruction

algorithm. In Section 2.5, we provide results and an evaluation. In Section

2.6, we describe limitations of the approach, followed by our conclusion in

Section 2.7.

21

2.2 Related Work

2.2 Related Work

We only focus on related work specific to the rendering of metallic car paints.

For a more general overview, we refer the reader to the literature like the

SIGGRAPH 2017 course Material Capture and Representation with Applications
in VR by Guarnera et al. [GGH+17], the state of the art report by Guarnera

et al. [GGG+16] and the textbook Digital modeling of material appearance by

Dorsey et al [DRS10].

The first works on measurement and rendering of car paints were done by

Takagi et al. in 1990 [TTOO90]. Another team lead by Takagi published more

findings 15 years later [TWB05]. Dumont-Bècle et al. [DBFK+01] presented

a multi-texture approach. They didn’t show result images, which makes it

hard to compare their results to others. Kitaguchi [Kit08] provided a detailed

introduction into the physics of metallic paints. Ershov et al. [EKK99] pre-

sented a physically-based, analytical model, which they improved further

in their subsequent publications [EKM01, EĎKM04]. They achieved good-

looking results, which however require a large amount of parameters, which

are difficult to set by hand. Ďurikovič and Martens [ĎM03] modeled the flake

sparkling by explicitly modeling their geometry. This however makes the

approach not well-suited for real-time applications. Ngan et al. [NDM05]
showed that the Cook-Torrance model [CT82] is well-suited for car paints.

Günther et al. [GCG+05] described the complete process from measuring to

real-time rendering of car paints. They fit analytical models to their mea-

surements. For the metallic flakes, they draw on ideas from Ershov et al.

[EKK99] and Ďurikovič and Martens [ĎM03] and procedurally generate a

normal map which represents the flakes. Rump et al. [RMS+08] introduced

the combined model for metallic and pearlescent paints, on which the AxF car

paint model [ML15] and hence our model is based. It is similar to the model

by Günther et al. [GCG+05], with the main difference of using a measured BTF

for the metallic flakes instead of the procedural approach. They experimented

with PCA-based compression for the BTF part, but achieved only a moderate

compression ratio of 1:4 on their data. Later, they proposed a flake BTF com-

pression algorithm based on selecting representative image patches [RSK09].

22

2.3 Original AxF Car Paint Model

The patch computation is quite involved. They report compression rates of

1:18 to 1:46 on their data, depending on the dataset. The AxF format builds

on this compressed representation. Later, Ďurikovič and Mihálik described a

similar approach [ĎM13]. They used an 8 Bit texture to generate the sparkle

effect. The shown results are good, but the BTF approach seems to deliver a

higher quality.

Kurt et al. [KSKK10] suggested a novel BRDF model that surpasses the

Cook-Torrance model for car paint in their evaluation. Another high-quality

BRDF model for glossy surfaces was presented by Löw et al. [LKYU12]. Being

homogeneous BRDFs, their models however cannot account for the spatially

varying metallic flakes.

Yan et al. [YHJ+14, YHMR16] and Jakob et al. [JHY+14] presented high-

quality simulation models for rendering of glints and metal surfaces. Their

approaches are computationally intensive and thus not ideal for real-time

applications. Related is also the publication by Raymond et al. [RGB16], who

render scratched metal surfaces, but no metallic paints. Atanasov and Koyla-

zov [AK16] presented an approach specialized on metallic flakes rendering,

which is however not real-time capable.

2.3 Original AxF Car Paint Model
Our representation for metallic paints is based on the car paint model used

in the AxF file format [ML15], which has already been included in several

commercially available software packages like Autodesk VRED, Nvidia Iray

or X-Rite Pantora. The format is largely based on the work of Rump et al.

[RMS+08] and consists of a combination of multiple models:

■ A measured clear cloat layer, that changes incoming and outgoing

directions i,o to ī, ō, depending on the thickness and refraction index

of this layer.

■ A Lambertian BRDF a
π

23

2.3 Original AxF Car Paint Model

■ A multi-lobe Cook-Torrance BRDF [CT82] for the brightness, where the

k-th lobe is defined as:

f CT
sk ,αk ,F0,k

(
ī, ō

)
=
sk
π

Dαk
(h̄)FF0,k

(
h̄, ō

)
G

(
ī, ō

)
īz ōz

, (2.5)

where h̄ is the half vector, sk is the specular coefficient,

Dαk
(h̄) =

1

α2
k h̄

4
z
e
h̄2
z−1

h̄2
z α

2
k (2.6)

is the microfacet distribution,

FF0,k
(h̄, ō) = F0,k + (1−F0,k)(1− h̄ · ō)5, (2.7)

where

F0,k =
(
n1,k −n2,k

n1,k +n2,k

)2

(2.8)

is Schlick’s approximation [Sch94] of the Fresnel term, n1,k ,n2,k are the

refractive indices and

G(ī, ō) = min
(
1,

2h̄zōz
h̄ · ō

,
2h̄z īz
h̄ · ō

)
(2.9)

is the geometry term, where

yz = y ·n,y ∈ {h̄, ī, ō} (2.10)

denotes the dot product of y with the surface normal.

■ A 2D color table χ(θh̄,θī), modulating the brightness in order to take

view-dependent color shifts into account. It is parametrized by the

angles θh̄ and θī, where θh̄ = arccos(h̄z) is the angle between half vector

and normal and θī = arccos(h̄ · ī) is the angle between half vector and

incoming direction.

■ A BTF taking the effects caused by the metallic flakes into account. It is

parameterized by θh̄, θī and x ∈R2, the position on the surface, i.e. it is

24

2.4 Our Representation and its Generation

Figure 2.2: Real-time rendering of a car with our metallic car paint representation.

a 4D table, denoted as Ξ(x,θh̄,θī). According to Rump et al. [RMS+08],
the angular lifetime of a metallic flake is around 6-7 degrees, which is

why an angular sampling of 24-30 samples along each direction was

chosen. Each combination of θh̄ and θī results in a 2D texture. A typical

AxF file contains 68 of these. In the following we call this function flake
BTF.

The complete model is then:

f (x, ī, ō) = χ(θh̄,θī)

 aπ +
K∑
k=1

f CT
sk ,αk ,F0,k

(
ī, ō

)+Ξ(x,θh̄,θī) (2.11)

Choosing three lobes, i.e. K = 3, was shown to deliver good results [GCG+05,
ML15].

25

2.4 Our Representation and its Generation

Figure 2.3: Closeup of the car shown in Figure 2.2

26

2.4 Our Representation and its Generation

2.4 Our Representation and its Generation
The AxF car paint model delivers high-quality results, but uses a great amount

of the graphics card’s memory for each material. While most parts of the

model are described by only a small number of parameters, the flake BTF

Ξ(x,θh̄,θī) consists of a big number of – possibly large – textures, and thus

is by far the most memory-consuming part of the model. As pointed out by

Rump et al., traditional high-ratio image compression methods like JPEG are

not suited for the BTF, as they tend to smear out or remove the very small

flakes and also may introduce artifacts and noise. We therefore use the BRDF

and color table parts of the original model, but replace the memory-intensive

BTF with our statistical model which is computed on the measured data. Our

representation is based on the following observations:

■ The absolute position of the BTF’s pixels representing e.g. the flakes is

irrelevant for a metallic paint’s unique look.

■ The flake BTF colors and their distributions are very important for a

paint’s unique look.

■ These two properties vary strongly with the light and viewpoint orien-

tation.

■ The positions of the flakes follow a uniform random distribution on

the surface.

■ Due to their extremely small size, each metallic flake usually only

covers one pixel in an image generate by current acquisition devices.

■ The positions of the color pixels follow a uniform random distribution

on the surface.

These observations allow us to reduce the flake BTF to a statistical representa-

tion, from which a similar-looking BTF can be reconstructed in real-time on

the graphics card.

2.4.1 Generation of the Statistical Representation
We start with the car paint representation used in the AxF format. In an offline

step, running on the CPU, we convert the flake BTF representation Ξ(x,θh̄,θī)

to our statistical representation.

27

2.4 Our Representation and its Generation

The AxF car paint BTF representation discretizes the view- and lighting

hemisphere by the angles θh̄ and θī. Usually 68 angle combinations are

used, in combination with interpolation to generate a high-quality look. This

number was chosen so that one combination roughly encompasses the angu-

lar lifetime of one flake [RSK09]. Each of the following steps is performed

independently for each of the angular combinations.

Color Octree Generation

For each combination of θh̄ and θī chosen in the original model, i.e. one

flake texture, we compute statistical information on the color distribution.

For this, we employ an octree, somewhat similar to octree color quantization

[GP88, BX06]. We first compute a sparse color octree of a predefined depth

d for all pixels in one BTF texture. d should be chosen as large as possible

in order to achieve maximum precision. Note however, that the number of

leaf nodes can be up to 8d . All pixel color values are stored in the leaf nodes.

8d should not exceed the number of pixels, since then no gain in precision is

possible anymore, as each leaf will then contain a single color value. One leaf

may represent multiple pixels, since they can have the same color.

Now the pruning process starts. We iteratively remove the octree leaves

that are most balanced concerning the number of color values per volume in

color space. This means that sibling octree nodes are only combined if they

contain a similar number of colors. The idea behind this is that we want to

generate a predefined maximum number cmax of color clusters – defined by the

contents of the final leaf nodes – whose contents are as uniformly distributed

as possible. The larger cmax, the more accurate the reconstruction will be.

However, memory usage rises linearly with it. Note that the resulting number

of leaf nodes/clusters l may be less or equal cmax. The algorithm is given in

pseudo-code in Algorithm 1.

Statistics Computation

After generating the tree, we sort the color clusters defined by the leaf nodes

in an arbitrary order. For each cluster, we count the number of colors in it and

compute the bounding box in color space. From the numbers of colors for all

28

2.4 Our Representation and its Generation

Algorithm 1 Density-based Octree Pruning
1: function getAverageChildDensityDisparity(Node n)
2: d← [∞, . . . ,∞] ∈R8

3: for i ∈ [0, . . .7] do
4: if ith child node is a leaf then
5: v← volume of bounding box of colors in child node i
6: c← number of color values in the leaf node
7: if c > 0 then
8: d[i]← c

v
9: else
10: d[i]← 0
11: end if
12: end if
13: end for
14: d̄← 1

8
∑
d[i]

15: ∀i : d[i]← d[i]− d̄
16: return 1

8
∑
d[i] ▷ returns∞ if not all child nodes are leaves

17: end function
18:
19: function testAndAppend(n,C,D)
20: d← getAverageChildDensityDisparity(n)
21: if d ,∞ then
22: append n to C
23: append d to D
24: end if
25: end function
26:
27: function Density-based Octree Pruning(Octree O, max nr of leaves cmax)
28: Initial Candidate Nodes Cinit ← all inner nodes
29: C← []
30: D← []
31: for all n ∈ Cinit do
32: testAndAppend(n,C,D)
33: end for
34: while number of leaves > cmax do
35: i← argminD[i]
36: for all child node n of C[i] do
37: Collect color data from n and attach to C[i]
38: Remove n from O
39: end for
40: p← parent(n)
41: testAndAppend(p,C,D)
42: Remove D[i] from D
43: Remove C[i] from C ▷ C[i] became a leaf and is no longer a candidate
44: end while
45: end function

29

2.4 Our Representation and its Generation

clusters, we can compute their discrete probability distribution. From this,

we compute the cumulative distribution function.

Mipmapping

We compute the mipmaps separately for each angle combination on the orig-

inal data. We then generate the octrees and statistics separately for each

mipmap level.

Texture Generation

As we want to reconstruct the flake BTF in the GPU fragment shader, we

store all required information in textures. We have a cumulative distribution

function per angle combination and per mipmap level. Each function can be

represented as one row in a single color floating point texture. We first store

all functions of mipmap level 0, then all functions of level 1 and so on in a

single texture. See Figure 2.4 for an example. Note that this texture has a

fixed width of cmax, the previously specified maximum number of leaf nodes.

However, as the color octrees might have a smaller number of leaf nodes l, the

discrete cumulative distribution functions will also have only l sample points.

We assign a probability of 0 to the remaining cmax − l points, i.e. they have a

cumulative value identical to their predecessor, usually 1.

Similarly, we store two opposing leaf nodes’ bounding box corner points

in a separate three color texture of width 2cmax. Again, as there may be only

l leaf nodes, we fill the remaining 2(cmax − l) pixels with black or any other

arbitrary color. These "fill" colors are never used since their probability is 0.
See Figure 2.5 for an example.

In addition, for the reconstruction on the graphics card, we require pseudo-

random numbers that remain fixed on the surface in order to guarantee

a constant look from frame to frame. If we would generate new random

number for each frame or when changing the viewpoint, new colors would be

generated every time, manifesting in flicker. For this, we generate a floating

point, single color texture with pseudo-random pixel values between 0 and 1.
See Figure 2.6 for an example. In order to obtain a BTF of the same resolution

as in the original AxF representation, for simplicity we choose the random

30

2.4 Our Representation and its Generation

Figure 2.4: Example cumulative dis-
tribution function texture for one
mipmap level. One row represents
one discrete cumulative distribution
function. Black means zero probabil-
ity, the brightest values mean proba-
bility 1.

Figure 2.5: Example color bound-
ing box corners for one mipmap level.
One row represents the color bound-
ing boxes belonging to one discrete cu-
mulative distribution function. Even
pixels are the colors of "lower left"
box corners, the pixels on the right
to each the respective opposite "upper
right" corner color.

texture’s resolution identical to the AxF BTF’s resolution. In our case, this

was 480 × 480. Note that with the help of coordinate transformations, one

could choose different resolutions to obtain similarly-looking results. As an

additional advantage, our representation also allows the generation of BTFs of

arbitrary resolution by varying the random texture’s resolution or coordinate

transformation. The wrapping mode for the random texture should be set to

repeat – see Section 2.4.2.

31

2.4 Our Representation and its Generation

Figure 2.6: Part of an example pseudo-random value texture. It is used for BTF
reconstruction.

2.4.2 Real-time BTF Reconstruction and Rendering
In the fragment shader, we first compute the angle combination θh̄ and θī and

its discretization step, as in the AxF specification. Additionally, we compute

the mipmap level. According to these values, we can compute the correct row

in our cumulative distribution function and bounding box textures. According

to the standard uv values selected by the default pipeline, a pseudo-random

value is read from the pseudo-random texture.

In a loop, we walk along the columns of the cumulative distribution function

texture, till we reach a value larger than the random value previously picked.

This gives us the column number i. Note that while this approach requires a

loop of size cmax (usually small) and as many texture lookups, in comparison to

using the inverse cumulative distribution function, which would only require

one texture lookup, we prefer it, as it has a natural discretization, whereas

the inverse function would have to be newly discretized, possibly leading to

sampling artifacts and in this case also the requirement of more sampling

points, i.e. a larger texture, in order to reduce the artifacts.

i specifies the column numbers in the color bounding box texture we have

to use: 2i and 2i + 1. The row is the same as in the cumulative distribution

32

2.5 Evaluation

function texture. Accessing these returns the color bounding box corners. We

now require three additional pseudo-random numbers in order to generate

a color value within the bounding box – one for each color channel. While

in a naive implementation, one could use the previously generated random

number, this would couple the generated color to the (arbitrary) position

of the color cluster, resulting in a tendency to generate colors nearer to the

"lower left" bounding box corner, i.e. darker colors, for color cluster with

a low index and brighter colors for clusters with a high index. While one

could generate additional pseudo-random textures in order to generate these

pseudo-random values, we chose a more memory-efficient approach: We

specify arbitrary, fixed offsets (0,0) < o1, o2, o3 < (1,1) and read the pseudo-

random values (u,v) + oj , j ∈ {1,2,3} from our original pseudo-random texture.

Note that these texture coordinates may be larger than (1,1), which is why the

texture mode has to be set to repeat. With these three random values, we can

determine a color in the color bounding box, which is our final flake color.

In order to provide smooth results when slowly changing the observed angle

combination, i.e. changing the camera’s or light’s orientation, we perform a

bilinear interpolation between the colors resulting from neighboring angle

discretization steps.

2.5 Evaluation
2.5.1 Visual Comparison
See Figure 2.7 for a visual comparison between the AxF representation and

our statistical representation of a light gray metallic paint. Figure 2.8 contains

a comparison between the data-driven AxF rendering and a rendering with

our statistical representation of a gray-blue metallic paint. Figure 2.9 shows

extreme close-up views of the AxF and our statistical representation of the

light gray paint. Note that on the pixel level, one can clearly see differences

between the two representations. Under normal viewing conditions, both

representations convey very similar impressions. Figures 2.10 and 2.11 contain

further examples. Figure 2.12 contains a particularly interesting example: A

pearlescent or flip-flop effect paint, that changes its color from green to blue.

33

2.5 Evaluation

Figure 2.7: A light gray metallic paint. Left: Rendering of the original AxF car
paint representation. Right: Rendering of our statistical representation, which uses
only a fraction of the AxF’s memory requirement.

Figure 2.8: A gray-blue metallic paint. Left: Rendering of the original AxF car
paint representation. Right: Rendering of our statistical representation, which uses
only a fraction of the AxF’s memory requirement.

34

2.5 Evaluation

Figure 2.9: Extreme close-up view of the light-gray paint. Left: AxF representation.
Right: Our statistical representation. Note that on the pixel level, one can clearly
see differences between the two representations.

Figure 2.10: A brown metallic paint on a cylinder. Left: AxF representation. Right:
Our statistical representation.

35

2.5 Evaluation

Figure 2.11: An intense blue metallic paint on a cylinder. Note that in this
case, most flakes are blue, too. Left: AxF representation. Right: Our statistical
representation.

Figure 2.12: A pearlescent effect paint on a cylinder. It changes its color from green
to blue, depending on the light-view combination. Left: AxF representation. Right:
Our statistical representation.

36

2.6 Limitations

Figure 2.2 shows the blue metallic paint on a car model, Figure 2.3 shows a

closeup.

2.5.2 Memory Usage and Rendering Times
In order to measure the memory usage and computation times, we use a simple

test scene, consisting only of a quad, one directional light, one camera and

and a simple environment map. We used a first-generation Nvidia GeForce

Titan for evaluation. When no material is applied to the quad, the graphics

memory requirement of the scene is 19.2 MB. Average rendering time was

2.0 ms.

The following numbers are valid for all car paints we tested, as their AxF

representation as well as their statistical representation is identical concerning

memory and computation time usage. We set cmax = 50. Generation of the rep-

resentation took 53 s in our unoptimized Python implementation, including

file IO on a standard hard drive.

When applying the original AxF car paint material, the memory usage went

up to 202.8 MB. Deducing from this, the memory requirement of the material

is 183.6 MB. Average rendering time was 4.6 ms.

Applying the material in our statistical representation resulted in a total

graphics memory usage of 23.8 MB. Deducing from this, the memory usage

of the material alone is 4.6 MB. This means that our representation uses

only 2.5 % of the AxF car paint’s required amount of memory, respectively a

compression ratio of about 1:40 in comparison to the AxF format. Average

rendering time was 5.8 ms.

Assuming 1 GB (1024 MB) of graphics memory available for materials, the

original AxF car paint representation would allow up to 5 different metallic

paints per scene. Our representation would allow up to 222 different paints.

2.6 Limitations
By design it is impossible to reconstruct a BTF from our representation that is

identical to the original representation on the pixel level. As argued above,

this is irrelevant for the metallic paints. The described approach is only valid

37

2.7 Conclusion

as long as the assumption holds, that one metallic flake only occupies one

pixel in the acquired data. This was the case for all samples we studied.

2.7 Conclusion
We presented an efficient statistical data representation for metallic effect

car paints, based on measured real-world samples, allowing for real-time

high-quality renderings in VR applications. We described our representation

generation algorithm and our real-time reconstruction shader in detail. De-

spite the limitations described in the previous section, our approach proved

very useful in practice. Our representation shares the high-quality look and

relative ease of use of previous data-driven approaches. In addition, it allows

to generate car paint materials of arbitrary size and resolution, independent of

the acquisition resolution. While only slightly increasing computation times,

it greatly reduces the amount of graphics memory required. This allows for

using a much higher number of different metallic paints in virtual reality

environments than previously possible with data-driven representations, as

required by applications in the automotive industry.

Acknowledgments
We would like to thank Volkswagen and X-Rite for providing measurements

of the metallic paints. Uffizi Gallery Light Probe Image ©1999 Paul Debevec,

http://www.debevec.org/Probes/

38

3 Interactive Interpolation of

Metallic Effect Car Paints

(a) Measured metallic
car paints

(b) Measured and interpolated metallic car paint materi-
als

Figure 3.1: (a) Two measured metallic car paints. (b) Measured car paints and car
paints generated with our approach: Interpolation of the brown paint towards the
blue paint in 25% steps. All parameters are interpolated, including the metallic
sparkling effect caused by metallic flakes.

Abstract Metallic car paints are visually complex materials that, among

others effects, exhibit a view-dependent metallic sparkling, which is particu-

larly difficult to recreate in computer graphics. While capturing real-world

metallic paints is possible with specialized devices, creating these materials

computationally poses a difficult problem. We present a method that allows

for interactive interpolation between measured metallic automotive paints,

which can be used to generate new realistic-looking metallic paint materials.

By clustering the color information present in the measured bidirectional

39

3.1 Introduction

texture function (BTF) responsible for the metallic sparkling effect, we set

up an optimal transport problem between metallic paints’ appearances. The

design of the problem facilitates efficiently finding a solution, based on which

we generate a representation that allows for real-time generation of interpo-

lated realistic materials. Interpolation happens smoothly, no flickering or

other visual artifacts can be observed. The developed approach also enables

to separately interpolate the larger-scale reflective properties, including the

basic color hue, the local color hue, and the sparkling intensity of the metallic

paint. Our method can be used intuitively in order to generate automotive

paints with a novel appearance and explore the space of possible metallic

paints spanned by given real-world measurements. The resulting materials

are also well suited for real-time rendering in standard engines.

This chapter corresponds to the publication Tim Golla and Reinhard Klein.

Interactive Interpolation of Metallic Effect Car Paints. In Vision, Modeling
& Visualization, VMV 2018, EG VMV ’18, page 11–20. The Eurographics

Association, 2018 [GK18].

3.1 Introduction
Metallic paints are complex materials that are widely used in the car industry.

They exhibit a sparkling effect that is caused by small effect particles – usually

aluminium flakes – which is difficult to render in a convincing way. Metallic

automotive paints convey a premium look and thus are the most popular kind

of paints used for new cars. Realistic rendering of metallic paints in real-time

is of great importance for the car industry. Typical applications are in the field

of marketing, where real-time applications for customers are becoming more

and more common, for example on the car manufacturer’s websites as well as

in the design area. Further fields are the game industry and even the movie

industry where real-time rendering is used for quick prototypical viewing of

virtual scenes.

For designers not only realistic rendering but also the ability to generate new

variants of the paints is very important. This imposes tremendous technical

challenges. Finding the desired paint should be intuitive and efficient, which

40

3.1 Introduction

requires interactive editing of the appearance, since otherwise the exploration

of the space of possible paints is very difficult.

Current models for car paints are either fully analytical, partially, or com-

pletely data-driven. Analytical models provide great freedom with the ability

to generate more or less any kind of paint. They however have drawbacks in

terms of usability: It is often tedious for non-expert users to generate new

automotive paints’ appearances because of the large number of parameters

which are not intuitively usable. Testing parameters to realize the diversity of

appearances is usually time-consuming. Furthermore, the high quality mod-

els are computationally heavy and thus not suited for real-time applications.

Fully or partially data-driven models are easier to use, because real-world

materials can be measured. They are often also computationally simpler

than analytical models, making them better suited for real-time applications.

It is however much harder to generate new materials from given measured

real-world samples and specialized synthesis methods have to be used.

In this paper, we present a novel method for interactively synthesizing

new metallic paints by inter- and extrapolating measured materials. For

this purpose we build on a recently developed real-time capable car paint

model, which among other parameters exploits the statistics of the measured

materials. We formulate the correspondence computation between two of

these statistical representations as an optimal transport problem, which can

be solved efficiently. Based on the resulting correspondence map, a fast

interactive inter- and extrapolation of measured paints is realized. The key

contributions of our work can be summarized as follows:

■ We present a simple and fast method for solving the interpolation

problem for measured car paints. In comparison to the related works of

Bonneel et al.[BVDPPH11] and Solomon et al.[SDGP+15], our method

is easier to implement and handles a measured bidirectional texture

function (BTF) representation.

■ We show how to separately interpolate the larger-scale reflective proper-

ties, including the basic color hue, the local color hue and the sparkling

41

3.2 Related Work

intensity of the metallic paints’ appearances in order to allow greater

artistic freedom.

■ We describe a representation suited for real-time editing and rendering

of the metallic paints.

3.2 Related Work
We focus on the related work most closely related to this paper. For a more

general overview of material acquisition and rendering, we refer the reader to

the literature like the SIGGRAPH 2017 course Material Capture and Represen-
tation with Applications in VR by Guarnera et al. [GGH+17], the state of the

art report by Guarnera et al. [GGG+16] and the textbook Digital modeling of
material appearance by Dorsey et al [DRS10].

3.2.1 Metallic Car Paint Rendering
This subsection largely follows the overview given by Golla and Klein [GK17].
In 1990, first research on measurement and rendering of car paints were

done by Takagi et al. [TTOO90]. Takagi continued to work in this field

and published further research later [TWB05]. Further pioneers in this area

were Dumont-Bècle et al. [DBFK+01], who presented a multi-texture ap-

proach. Ershov et al. [EKK99] presented a good-looking physically-based,

analytical model. They further improved this in their later publications

[EKM01, EĎKM04]. A disadvantage of their method is the large amount of

parameters, which are difficult to select for non-expert users. A detailed intro-

duction to the physics behind the appearance of metallic paints was given by

Kitaguchi [Kit08].

In the approach of Ďurikovič and Martens [ĎM03] the geometry of metallic

flakes is modeled explicitly in order to simulate their sparkling. This however

leads to a huge number of polygons, which is not suitable for many appli-

cations, especially in the real-time context. Ngan et al. [NDM05] were able

to show that the Cook-Torrance model [CT82] can represent the large-scale

shininess of car paints well. A complete process from measuring to real-time

rendering of car paints was presented by Günther et al. [GCG+05]. They

42

3.2 Related Work

rely on fitting analytical models to their measurements. To reproduce the

sparkling, they used ideas from Ershov et al. [EKK99] and Ďurikovič and

Martens [ĎM03] and procedurally generate a normal map which represents

the flakes.

A combined model for metallic and pearlescent paints was presented by

Rump et al. [RMS+08]. Later the AxF car paint model [ML15] was developed

based on their research. They use a measured BTF for the metallic flakes, in

contrast to the otherwise similar model by Günther et al. [GCG+05], where

a procedural technique was used. Rump et al. also experimented with PCA-

based compression for the BTF part. They achieved a moderate compression

ratio of 1:4 on their data. In their follow-up paper [RSK09], they described a

compression algorithm based on selecting representative image patches for the

flake BTF. Depending on the dataset, they report compression rates of 1:18 to

1:46 on their data, The AxF format builds on this compressed representation.

Golla and Klein [GK17] based their model on the AxF car paint model, but

replaced the image-based BTF by a statistical representation based on the

measurements. This way, they are able to achieve very good compression

ratios.

Another approach was presented by Ďurikovič and Mihálik [ĎM13], who

used an 8 bit texture to generate the sparkle effect. While yielding good

results, the BTF approach seems to deliver a higher quality. A new BRDF

model surpassing the Cook-Torrance model for car paints was introduced by

Kurt et al. [KSKK10]. Another novel BRDF model for glossy surfaces was

suggested by Löw et al. [LKYU12]. However, their models cannot account for

the spatially varying metallic flakes.

Recently, high-quality simulation models for rendering of glints and metal

surfaces were presented by Yan et al. [YHJ+14, YHMR16] and Jakob et al.

[JHY+14]. These approaches deliver good results, but are computationally

intensive and thus not ideal for real-time applications. Related is also the pub-

lication by Raymond et al. [RGB16], who render scratched metal surfaces, but

no metallic paints. An approach for rendering metallic flakes was presented

by Atanasov and Koylazov [AK16]. It is not real-time capable, however.

43

3.2 Related Work

3.2.2 BTF Synthesis and Interpolation

The following publications all present methods for the synthesis of BTFs

that look similar to a given – usually small – sample, but are parameterized

on different – usually larger – surfaces. Tong et al. [TZL+02] described

a method for BTF synthesis using so-called textons. They generate BTFs

that look similar to samples from a database, but can be parameterized on

arbitrary surfaces. Kawasaki et al. [KSOF05] presented a patch-based method

for the same application. Meseth et al. [MMK03] presented a method for

real-time rendering of BTFs, which relies on synthesis of similar-looking

BTFs from small samples. Zhou et al. [ZDW+05] provided a method that

synthesizes arbitrarily sized BTFs using a graph cut based algorithm. In a

successive step, they add additional detail – imperfections, like scratches

– to the BTF and generate seamless transitions. Haindl and Filip [HF04]
described a probabilistic approach for BTF synthesis, which also provides

good compression. Later, the same authors [HF07] presented a different

method for strong compression and synthesis of BTFs, that look similar to

the original data. Haindl et al. [HHCD05] presented a patch-based method

for synthesizing BTFs. Liu et al. [LHZ+04] approximate a BTF sample by 4D
point appearance functions. These, combined with 2D geometry maps can

then be used for synthesis and real-time rendering. A good overview of BTF

acquisition, synthesis and rendering was given by Müller et al [MMS+05].

Müller et al. [MSK07] presented a procedural method for editing BTFs.

Their approach seems to be suited best for materials that exhibit a relatively

coarse geometry like leather or corduroy. Kautz et al. [KBD07] presented an

interactive approach for editing BTFs, which is well suited for materials like

cloth, but not for the highly specular automotive paints. Ruiters et al. [RSK13]
described a method for interpolating BTFs of different materials. Although

their results look good, they report runtimes in the range of hours and require

some manual markups. The major problem of these approaches is the correct

interpolation of textures, which is hard to solve.

44

3.3 The Statistical Car Paint Model

3.2.3 Optimal Transport in Computer Graphics

Optimal Transport problems and algorithms solving them have widespread

use in many fields. We will only focus on applications in computer graphics.

One of the best-known applications of optimal transport is the Wasserstein

metric, also known as Earth Mover’s Distance. Some of the best-known

research in this context was published by Rubner et al. [RTG98, RTG00,
RT01], who showed its usefulness for measuring the similarity of images.

The earth mover’s distance is frequently used in the computer vision area,

as shown by Levina and Bickel [LB01], Ren et al. [RYZ11], Ling and Okada

[LO07], Graumann and Darrell[GD04] and Pele and Werman [PW09].

Another widespread use of optimal transport, which is also closely related

to our method, is color transfer for 2D images. Examples for this are the

publications by Pitié et al. [PKD07], Rabin and Peyré [RP11], Ferradans et

al. [FPPA14], Rabin et al. [RFP14], Frigo et al. [FSDH14] and Chizat et al.

[CPSV16]. Rabin et al. [RPDB11] showed an application of optimal trans-

port for 2D texture interpolation. Most closely related to our work are the

publications by Bonneel et al.[BVDPPH11] and Solomon et al.[SDGP+15],
who both employed optimal transport for BRDF interpolation. Bonneel et

al.[BVDPPH11] described a method of mass transportation for BRDF inter-

polation. Solomon et al.[SDGP+15] employed convolutional Wasserstein dis-

tances for faster convergence and showed that their framework can also be

used for BRDF interpolation.

3.3 The Statistical Car Paint Model
Our representation is based on the statistical car paint model presented by

Golla and Klein [GK17], which itself is based on the car paint model defined

in the AxF file format [ML15], which we will explain first.

3.3.1 The Basic Car Paint Model

The basic car paint model we use, which is also used in the AxF format [ML15],
consists of a combination of multiple models. The model for a specific paint

45

3.3 The Statistical Car Paint Model

can be obtained by measurements, where the analytical parts are fitted to the

measurements. The model consists of these components:

■ A clear cloat layer, that changes incoming and outgoing directions i,o
to ī, ō, depending on the thickness and refractive index of this layer.

■ A Lambertian BRDF a
π

■ A multi-lobe Cook-Torrance BRDF [CT82] for the brightness, where the

k-th lobe is defined as:

f CT
sk ,αk ,F0,k

(
ī, ō

)
=
sk
π

Dαk
(h̄)FF0,k

(
h̄, ō

)
G

(
ī, ō

)
īz ōz

, (3.1)

where h̄ is the half vector, sk is the specular coefficient,

Dαk
(h̄) =

1

α2
k h̄

4
z
e
h̄2
z−1

h̄2
z α

2
k (3.2)

is the microfacet distribution,

FF0,k
(h̄, ō) = F0,k + (1−F0,k)(1− h̄ · ō)5, (3.3)

where

F0,k =
(
n1,k −n2,k

n1,k +n2,k

)2

(3.4)

is Schlick’s approximation [Sch94] of the Fresnel term, n1,k ,n2,k are the

refractive indices and

G(ī, ō) = min
(
1,

2h̄zōz
h̄ · ō

,
2h̄z īz
h̄ · ō

)
(3.5)

is the geometry term, where

yz = y ·n,y ∈ {h̄, ī, ō} (3.6)

denotes the dot product of y with the surface normal.

46

3.3 The Statistical Car Paint Model

■ A 2D color table χ(θh̄,θī), that is used to represent large-scale color

shifts, observed in pearlescent paints. It is parametrized by the an-

gles θh̄ and θī, where θh̄ = arccos(h̄z) is the angle between half vector

and normal and θī = arccos(h̄ · ī) is the angle between half vector and

incoming direction.
■ A BTF representing the sparkling effects caused by the metallic flakes.

It is parameterized by θh̄, θī and x ∈ R2, the position on the surface,

i.e. it is a 4D table, denoted as Ξ(x,θh̄,θī). An angular sampling of

24-30 samples along each direction is usually chosen. This is according

to research by Rump et al. [RMS+08], who observed that the angular

lifetime of a metallic flake is around 6-7 degrees. Each combination of

θh̄ and θī results in a 2D texture. For clarity, we will call this function

flake BTF in the following.

The complete model is:

f (x, ī, ō) = χ(θh̄,θī)

 aπ +
K∑
k=1

f CT
sk ,αk ,F0,k

(
ī, ō

)+Ξ(x,θh̄,θī) (3.7)

According to the literature [ML15, GCG+05], good results can be achieved

with three lobes.

3.3.2 The Statistical Model
Golla and Klein [GK17] replaced the memory-intensive flake BTF with a

statistical representation for compression purposes. We will explain their

flake model in the following. They keep the basic discrete parametrization

of the flake BTF by angles θh̄ and θī. Each discretized angle combination

yields a 2D texture, which we will call flake slice. Their approach is based on

representing each slice by a number of cuboid-shaped color clusters. Within

each cluster, they assume a uniform distribution of colors. Each of these

clusters has a probability pi , where
∑
pi = 1. In order to compute these color

clusters, they employ an algorithm based on reducing an octree in color space

to a pre-defined number of leave nodes n. The latter is the only parameter in

their method, and thus in ours. They suggest using n = 50, which we adopt.

47

3.4 Interpolation Method

In order to render metallic car paints in real-time from this representation,

they provide a GPU-friendly representation. Each flake slice is represented

by one row of two textures. They represent the color clusters by storing two

opposing corners of the cluster cuboid of each cluster in a common texture.

For representing the probabilities pi , they compute the discrete cumulative

distribution function F and store its kth value in the kth pixel of a single

channel texture row, i.e. the texture row’s kth pixel value equals
∑k

i=1pi . They

do this to obtain the best possible compression ratio. This however forces

their algorithm to read the complete texture row for each reconstruction.

Since our focus is on speed, we slightly modify their approach by storing

F−1. This forces us to use a different discretization. Instead of the original 50
discretization steps for F, we use 500 steps for F−1. The overall texture size

remains comparatively small, such that this does not pose an issue memory-

wise. For real-time reconstruction, random numbers are required. In order to

ensure frame-to-frame coherence they generate a texture of pseudo-random

numbers.

Real-time reconstruction is then performed on the GPU in the fragmen-

t/pixel shader. First, the discrete angle combination θh̄ and θī is computed

for the current pixel to be shaded. The random value texture is read for the

current u,v position, which yields a random value. Different from Golla and

Klein’s approach, the random value is identical to the u coordinate in the

inverse CDF texture. The inverse CDF texture value is the index of the color

cluster to be used. We read the appropriate cluster cuboid corner values from

the respective texture. Like Golla and Klein, we then read additional random

values from the random value texture by using fixed offsets. Using these

values, we generate a color value in the color cluster.

3.4 Interpolation Method
For synthesis, we wish to compute inter- and extrapolations of measured

metallic paints. For simplicity, we first consider two metallic paints, where

we regard one paint as the source paint and the other as target paint. In

order to be able to interpolate the flake BTF responsible for the metallic

48

3.4 Interpolation Method

sparkling effect, we preprocess it, which is explained in the following. The

other components of the model require no preprocessing.

3.4.1 Preprocessing for the Interpolation of the Flake BTFs
First, the statistical model according to Golla and Klein [GK17] is gener-

ated for both metallic flake BTFs. Based on these representations, we set

up an optimal transport problem. This idea is related to the Wasserstein

metric[Was69, Dob70], also known as Earth Mover’s Distance[RTG00, RT01].
Note that all computations are done in the Lab color space, where distances

and interpolations behave in a perceptually plausible way. The interpolation

has to be performed for all flake BTF texture slices, i.e. separate textures of

the two metallic paint BTFs. We assume an identical angle discretization for

both BTFs. The interpolation is then performed on each matching pair of BTF

texture slices of the two paints. In the following we will consider one flake

BTF slice pair of a source paint and a target paint. The process is repeated

analogously for each slice pair.

For each BTF slice, we compute the centers of the color cluster cuboids.

We assign each cluster’s probability to the respective center. The problem

is now to transport the probabilities of the source BTF slice to those of the

respective target BTF slice. The transportation cost is given by the Euclidean

distance of the centers in the Lab color space. It can be visualized as a

bipartite graph where each center of the source BTF slice is connected to each

center of the target BTF slice – see Figure 3.2. The edge cost is the Euclidean

distance. This can be formulated as a linear programming problem. The

number of variables is equal to the number of edges, which is ns · nt, where

ns,nt is the number of color clusters of the source, respectively target BTF

slice. Note that ns does not have to be equal to nt. Let pi , i ∈ {1, . . . ,ns} be

the probabilities of the source BTF slice color clusters, qj , j ∈ {1, . . . ,nt} the

probabilities of the target BTF slice color clusters. Let ∥·∥ be the Euclidean

norm and ci ,dj , i ∈ {1, . . . ,ns}, j ∈ {1, . . . ,nt} be the source, respectively target,

BTF slice color clusters’ centers in the Lab color space. Let

wij = ∥ci − dj∥, i ∈ {1, . . . ,ns}, j ∈ {1, . . . ,nt} (3.8)

49

3.4 Interpolation Method

(a) Schematic of the setup
of the transportation trans-
port problem. Black: Color
clusters of the source car
paint. Red: Color clusters
of the target paint. Each
cluster of the source ma-
terial is connected to each
cluster of the target ma-
terial. The distances of
the cluster centers in color
space are the transporta-
tions costs. Not shown:
Each cluster has a probabil-
ity relative to the number
of color data points it en-
compasses.

(b) A solution to the op-
timal transport problem.
The arrows indicate that
some of the probability of
the cluster is transported to
the respective target clus-
ter.

(c) For each transport path
used, a copy of the source
color cluster’s bounding
box is generated – shown
in gray. During real-time
interpolation, the boxes
are transported and trans-
formed through the color
space, until the respective
target cluster’s bounding
boxes positions and shapes
are reached at 100% inter-
polation. A 50% interpo-
lation for only the top left
cluster is shown.

Figure 3.2: Our interpolation method for metallic paints is based on solving an
optimal transport problem. After clustering the colors present in the car paint
BTF, we set up an optimal transport problem and use its solution for interpolating
between the paints. Schematics of the involved steps are given in the subfigures.

50

3.4 Interpolation Method

be the Euclidean distances of the color clusters’ centers.

The optimization problem’s objective function, which is to be minimized, is:

f (x) =
ns∑
i=1

nt∑
j=1

wijxij , (3.9)

where x = (xij) ∈Rns·nt under the constraints:

xij >= 0 ∀i ∈ {1, . . . ,ns} ∀j ∈ {1, . . . ,nt} (3.10)

ns∑
i=1

xij = qj ∀j ∈ {1, . . . ,nt} (3.11)

nt∑
j=1

xij = pi ∀i ∈ {1, . . . ,ns} (3.12)

The constraints also imply that xij ∈ [0,1] and

ns∑
i=1

nt∑
j=1

xij = 1. (3.13)

These properties implicate that the xij can be used as a probability measure

for some countable collection {Eij}. The solution can be computed by one of

the existing solvers for linear programming problems – we used the Cbc solver

from the COIN-OR project[LH03].

Using this information, we generate a new representation which allows

interpolation between the two original BTF slices. We will now explain

how to generate the collection {Eij}. Let Ci , i ∈ {1, . . . ,ns}, be the source and

Dj , j ∈ {1, . . . ,nt}, the target BTF slice color clusters. For each xij > 0, we create

copies of the source BTF slice’s ith color cluster, as well as of the target BTF

slice’s jth color cluster, i.e. Eij = (Ci ,Dj). The tuple (xij ,Eij) then represents

an interpolatable color cluster of our new interpolatable material. In theory, we

could also generate the tuples (xij ,Eij) for xij = 0, but they would never be

51

3.4 Interpolation Method

used for rendering and thus be useless. The number nu of non-zero xij is at

most ns +nt − 1[Flo53, BVDPPH11].

3.4.2 Real-Time Interpolation

The coefficients of the analytical parts of the original paints can be inter- and

extrapolated in a straightforward way. For the inter- and extrapolation of the

diffuse color lookup table, we convert its entries to the Lab color space and

interpolate linearly in this space.

To generate a realization of the interpolatable material of two metallic

paints, we choose interpolation values α,β ∈ [0,1],α + β = 1. Besides the

interpolation of the analytical parameters, we have to compute the flake BTF

for this realization. Let us consider one interpolatable color cluster (xij ,Eij) =

(xij , (Ci ,Dj)). The probability xij was already computed appropriately in the

preprocessing step to be valid for all realizations. We only need to compute

an interpolated color cluster. For this, we consider two opposing corners gi
and g ′i of the cuboid representing Ci and the matching opposing corners hj
and h′j of Dj . Without loss of generality, gi and hj are chosen with the smallest

possible coordinates and g ′i and h′j with the largest possible coordinates. The

respective corners lij , l′ij of the realization of the interpolatable color cluster

are then computed as

lij = αgi + βhj (3.14)

and

l′ij = αg ′i + βh′j . (3.15)

This can be computed in real-time, on the CPU or the GPU, e.g. in a compute

shader. In both cases, only the texture representing the cluster corners has

to be updated, while the other properties of the flake BTF remain constant.

The analytical parameters and the color lookup table have to be updated as

well, which also require only a small amount of memory. Thus the necessary

bandwidth is relatively low. Computing on the GPU is faster and has only the

disadvantage of using slightly more memory, because all parameters have to

be kept in the video RAM.

52

3.4 Interpolation Method

By dropping the requirement α,β ∈ [0,1], extrapolations can be generated.

Dropping the requirement α + β = 1 is also possible, however the results are

less intuitive.

3.4.3 Interpolation of Multiple Materials

The approach can be generalized to an arbitrary number of metallic paints.

While it would be possible to set up a transportation problem for many

paints, this is not recommended, because the number of variables in the lin-

ear programming problem strongly increases. Let ns,nt,no be the number of

color clusters of matching flake BTF slices of the three metallic paints and

Fl , l ∈ {1 . . .no} the color clusters of the third paint’s BTF slice. The number of

variables in the objective function would be ns · nt · no. We therefore choose

a different approach: We iteratively solve transportation problems. We start

with two original materials and generate their resulting interpolatable ma-

terial. From this material’s realization with α = β = 0.5, we compute the

interpolatable material with a new paint. Let us denote the first interpolat-

able material’s probabilities xij , 0 by xk , k ∈ {1, . . . ,nu} and k↔ (i, j) for the

respective i, j. As mentioned, in practice nu << ns ·nt. Let rl , l ∈ {1 . . .no} be the

probabilities of the third paint. The second optimization problem can then

be set up analogously to the first with variables ykl , k ∈ {1, . . . ,nu}, l ∈ {1 . . .no}.
The new interpolatable material will then have color clusters that are repre-

sented as tuples (ykl , (Ci ,Dj ,Fl)), k↔ (i, j). A realization will be computed as a

linear combination of the three clusters and the analytical parameters with

interpolation parameters α,β,γ ∈ [0,1],α + β + γ = 1. Again, extrapolations

are possible. This process can be repeated with every additional paint.

Note that the number of color clusters and thus the memory usage typically

increases with each additional paint added to the material. For practical

applications however, we consider three to five paints being the maximum

number of paints being intuitively usable. Since the statistical model and

thus the interpolatable version are very memory efficient, this does not pose a

problem in practice.

53

3.5 Results

While solving the transportation problem is computationally somewhat

intensive, it has to be done only once for each additional new paint and thus

is considered a preprocessing step. In our implementation, the whole process

of loading the original paints and computing the interpolatable material

typically took around 50 seconds. The actual inter- and extrapolation, i.e.

material synthesis can be done in real-time.

3.4.4 Separate Interpolation of the Flake Intensity and the

Color

By introducing smaller modifications to the method, we can create further

useful applications. The first is to only interpolate the lightness color channel

of the flake BTF, but leaving the hue channels as they are and also leaving all

other parameters at those of the source paint. This makes the flakes sparkling

intensity look more like that of the target paint, while keeping the color hue

of the source paint. See Figure 3.3 for an example. The "dual" operation

is also possible: One can keep the flake BTF’s lightness information while

interpolating its hue channels and the other paint parameters. This results in

paints with a new color impression while keeping the flake sparkling intensity.

See Figure 3.4 for an example. Note that some results can be achieved with

both techniques. Another interesting experiment is to remove the color, i.e. a

and b color channel information from the flake BTF. The result looks slightly

less convincing as a metallic paint, because it has a very smooth look. See

Figure 3.5. This also shows that the color (Lab ab) information in the flake

BTF contributes to the overall look.

3.5 Results
All if our experiments were performed on a standard PC with an Intel Core

i7-4930K CPU, 64 GB RAM and an Nvidia Geforce Titan first generation

graphics card. Including reading and writing to disk, the computation of an

interpolatable material from two paints took 50 seconds in our unoptimized

Python implementation. Interpolation of three paints took 103 seconds.

54

3.5 Results

Figure 3.3: Manipulating the metallic sparkling intensity by interpolation of only
the flake BTF’s lightness. From left to right: Original blue paint, blue paint with
flake BTF lightness interpolated half-way between blue and brown paint, blue paint
with flake lightness set to match the brown paint’s flake BTF lightness, original
brown paint. The basic color impression of the interpolated material remains blue,
while the metallic sparkling intensity increases, matching that of the brown paint.

Figure 3.4: Partial Interpolation. Left to right: Original brown paint, brown paint
with all parameters except the flake BTF’s lightness interpolated half-way between
the brown and the blue paint’s, brown paint with all parameters except the flake
BTF’s lightness interpolated to the blue paint’s, original blue paint

55

3.5 Results

Figure 3.5: Left: Original blue car paint material. Right: Blue paint with the flake
BTF’s color hue information set to white. This yields a blue material with white
sparkles. However, it looks less convincing as a metallic paint, because it looks too
smooth.

Figure 3.6 shows several different interpolated materials. In each row, the

paints in the left and right column are the original measured paints, paints in

between are interpolated between them. The green-blue paint in the bottom

picture is a flip-flop paint, which is also correctly interpolated. The flip-flop

effect gets weaker the more one goes towards the gray paint.

We devised an interactive demo with three capsule models with original

measured materials (blue, brown and gray), one capsule with a material that is

interpolatable between the other three and a car with the same interpolatable

material. The user can move the capsule with the interpolatable material and

this material will be set according to the distance of this capsule to the other

three capsules. That is, if the capsule with the interpolatable material is e.g.

moved close to the blue capsule, it will be mostly blue. This demo is shown

in Figure 3.7. This demo was running with 105 frames per second, when the

materials remained constant. It dropped to 28 frames per second when the

user started moving the capsules, i.e. the materials had to be interpolated. We

are thus able to maintain real-time speeds even on slightly outdated hardware.

The interpolation was performed on the CPU. We expect the frame rate to be

56

3.5 Results

Figure 3.6: Several interpolations: In each row, the capsules in the left and right
column are have been assigned the original measured paints, capsules have been
assigned materials interpolated between the respective measured materials. The
green-blue paint in the bottom picture is a flip-flop paint, which is also correctly
interpolated. The flip-flop effect gets weaker the more one goes towards the gray
paint.

57

3.5 Results

even higher when the interpolation is performed on the GPU. The total VRAM

requirement of this demo was 131 MB.

Figure 3.3 shows an example where only the flake BTF lightness is inter-

polated, but the paint’s basic color remains that of the source paint. On the

left, the original blue metallic paint is shown, which has flakes of only a low

sparkling intensity. On the right, the original brown paint is shown, which has

more intensely sparkling flakes. The second capsule from the left consists of a

50 % interpolation of the BTF lightness of the two original paints. Visually its

sparkling intensity is between the original paints. The material of the third

capsule from the left has the blue base color and also the bluish tint of the

flakes, but the sparkling intensity of the brown paint. It looks like a version of

the blue paint with more and brighter flakes.

Figure 3.4 shows the orthogonal operation: Starting with the brown paint

on the right, we interpolate its base color and the flake BTF hue, but keep the

flakes BTF lightness. The material of the second capsule from the right is a

50 % interpolation. It has a violet color, which is between blue and brown

in the Lab color space. Its sparkling intensity remains that of the brown

paint. The second paint from the left is the brown paint, with its hue fully

interpolated to blue. Note that the result looks very similar to the third paint

from the left in Figure 3.3, where the orthogonal operation, starting from

the blue paint was performed. The leftmost paint is again the original blue

metallic paint.

When only small manipulations are desired, it is also possible to just manip-

ulate one paint. Figure 3.5 shows the blue paint with the flake representation’s

color hue set to white. This yields a blue material with white sparkles. How-

ever, it looks less convincing as a metallic paint, because it looks too smooth.

Figure 3.8 shows materials generated by extrapolation. The measured

brown and blue metallic paints are shown in Figure 3.8b. The result from

extrapolating in 25% steps are shown in Figures 3.8a and 3.8c. The results are

yellow-brown (3.8a) and intensely blue materials (3.8c).

58

3.5 Results

Figure 3.7: Example Application: The capsules can be moved. The central capsule’s
material is interpolated from the other three capsules’ materials, depending on the
distance to them. The car has the same interpolated material. This way the user
can generate a desired material in real-time. See also the accompanying video.

59

3.6 Conclusion

(a) Extrapolated (b) Measured (c) Extrapolated

Figure 3.8: Our approach can also be used to generate extrapolated versions of
the metallic paints. The two paints displayed in the center (b) are the original
paints. To the left (a) and right (b) are extrapolations in 25% steps. The respective
interpolations are shown in Figure 3.1b.

3.6 Conclusion
We presented a method that allows to generate realistic complex metallic

car paint materials in real-time, based on interpolating captured real-world

car paints. Our method requires no manual parameter tuning, only a short

preprocessing step and is intuitive to use. We showed how to separately

interpolate the larger-scale reflective properties, including the basic color

hue, the local color hue, and the sparkling intensity of the metallic paints’

appearances, allowing for even greater artistic freedom. Our method is simple

to implement and efficient in terms of memory and computation requirements

and thus only has moderate hardware requirements. Using our approach

facilitates intuitively exploring the space of possible metallic paints spanned

by given real-world measurements. We believe that our method will be useful

for designers in the game, car and movie industry.

Acknowledgments
We would like to thank Volkswagen and X-Rite for providing measurements

of the metallic paints. Uffizi Gallery Light Probe Image ©1999 Paul Debevec,

http://www.debevec.org/Probes/

60

4 Temporal Upsampling of Point

Cloud Sequences by Optimal

Transport for Plant Growth

Visualization

ti ti+1

Figure 4.1: Temporal upsampling of two synthetically generated tree point clouds
obtained with our method. The original point clouds for the time steps ti and
ti+1 are highlighted with a gray background and the in-between states have been
computed based on our method.

Abstract Plant growth visualization from a series of 3D scanner measure-

ments is a challenging task. Time intervals between successive measurements

are typically too large to allow a smooth animation of the growth process.

Therefore, obtaining a smooth animation of the plant growth process requires

a temporal upsampling of the point cloud sequence in order to obtain ap-

proximations of the intermediate states between successive measurements.

Additionally, there are suddenly arising structural changes due to the occur-

61

4.1 Introduction

rence of new plant parts such as new branches or leaves. We present a novel

method that addresses these challenges via semantic segmentation and the

generation of a segment hierarchy per scan, the matching of the hierarchical

representations of successive scans and the segment-wise computation of

optimal transport. The transport problems’ solutions yield the information

required for a realistic temporal upsampling, which is generated in real-time.

Thereby, our method does not require shape templates, good correspondences

or huge databases of examples. Newly grown and decayed parts of the plant

are detected as unmatched segments and are handled by identifying corre-

sponding bifurcation points and introducing virtual segments in the previous,

respectively successive time step. Our method allows the generation of realis-

tic upsampled growth animations with moderate computational effort.

This chapter corresponds to the publication Tim Golla, Tom Kneiphof,

Heiner Kuhlmann, Michael Weinmann, and Reinhard Klein. Temporal Up-

sampling of Point Cloud Sequences by Optimal Transport for Plant Growth

Visualization. Computer Graphics Forum, 39(6):167–179, September 2020
[GKK+20].

4.1 Introduction
Modeling, visualizing and analyzing plant growth is of great relevance in

various domains including biology, agriculture and computer graphics with

applications in movie and game productions. Therefore, the coupling of

respective plant models to measurements of growing plants allows a better

understanding regarding the underlying growth processes for individual plant

species. While a conventional video recording has shown great potential for

plant monitoring, its limitations regarding the flexibility of inspecting plants

from arbitrary views and performing 3D measurements can only be overcome

by directly considering a complete 3D scan of the plant of interest. However,

capturing the plant growth with all its details relies on an (ideally) temporally

continuous scanning of the plant state which is hindered by the fact that cap-

turing the plant state at a certain time step usually involves a time-consuming

manual acquisition. This induces larger time intervals between successive

62

4.1 Introduction

measurements. As a plant often has grown significantly between successive

scans, a smooth animation of the growth process from coarsely taken discrete

measurements is not easily possible. Additionally, suddenly arising struc-

tural changes induced by bifurcation or the evolution of leaves have to be

taken into account when aiming for a smooth completion of the intermediate

states between successive measurements. Such topological changes of the

underlying ground truth model and the fact that the measurement process

inherently does not guarantee perfectly corresponding points or point num-

bers for successive point cloud scans cannot be handled by trajectory-based

deformation and morphing approaches. These require exact point correspon-

dences that can only be reliably obtained for small deformations and motions

and, hence, are by design not suitable for analyzing growth processes with

changing topology [XSWL15]. Further limitations of previous work on defor-

mations based on exact point correspondences regarding their applicability

on growth processes include the assumption of piecewise rigid motion as used

for object tracking [BIZ18], the requirement of a 3D object template that is

deformed and fitted to the point clouds in adjacent time steps using respective

priors (without enforcing temporal coherence) [ZFG+17], the involvement of

a visual hull prior that biases the optimization in the context of mesh-based

approaches [LLV+12], or the need for large databases required by learning-

based methods [WLX+18] that are hard to acquire due to the time-consuming

nature of the scanning process and the growth of the plants themselves.

In this paper, we address the aforementioned limitations by a novel method

that allows temporal upsampling of coarsely acquired point cloud sequences

of growth processes including topological changes without requiring exact

point correspondences, shape priors or huge databases. For this purpose, our

approach involves an initial point cloud segmentation and the generation of

a hierarchy on the segments for each of the individual scans, the matching

of the segment hierarchies of successive scans, and the final computation of

a segment-wise regularized optimal transport (OT) to morph the point sets

associated with matched segments. Newly grown and decayed parts of the

plant, that are detected as unmatched segments, are handled by identifying

corresponding bifurcation points and introducing virtual segments in the

63

4.2 Related Work

previous, resp. successive time step. Furthermore, we present a heuristic

segmentation approach that is particularly suitable for thin structures as

occurring for maize plants or tree structures. By using a memory-efficient

formulation of the optimal transport problem, our approach is also capable of

handling large point clouds. As demonstrated in the evaluation, our approach

yields smooth temporal upsamplings, allowing for realistic growth animations

with moderate computational effort.

4.2 Related Work
Temporal upsampling for modeling and visualizing growth and deformation

processes can be approached based on several strategies such as procedural

modeling, template-based approaches, correspondence-based approaches and

data-driven approaches. In the following, we will discuss respective devel-

opments in the context of plant growth simulation. In addition, we provide

a review of applications of optimal transport between data distributions in

the context of graphics applications as the use of optimal transport allows

our method to overcome the need for perfect one-to-one correspondences or

templates.

Procedural modeling for plant growth Modeling structures and phenom-

ena from sets of rules has received a lot of attention in the contexts of facade

modeling and plant modeling. However, the underlying rules are often not

directly known and have to be derived, for example, using inverse procedural

modeling. In the context of modeling plant growth, L-systems have been ex-

tended by growth rules such as relational growth grammars [KKBS05] or tree-

species-specific growth rules [LKMH05], component-wise time functions of lo-

gistic growth [CAJBS05], guiding vectors to provide local control over branch

orientation during tree growth [XM15], generic rules to provide sequences of

symbols and branching [SBM+10], the localization and tracking of topological

events like budding and bifurcation [LPY+12], growth models [SPK+14] or

plant modules for capturing species-specific branching pattern characteristics

that can be combined to model whole individual plants [MHS+19]. While

64

4.2 Related Work

individual instances can be derived via the use of meaningful parameters and

rules, a smooth interpolation between individual objects or process instances

is challenging as smooth deformations of plants cannot simply be achieved

by interpolating within the parameter space. In addition, inverse procedural

growth models may fail to capture the nature of input examples that do not

capture all of the relevant growth phenomena and may be limited to certain

species.

Template-based and mesh-based interpolation Early work on template-

based growth analysis and visualization include the modeling of plant growth

in terms of flexible spatio-temporal templates to represent non-rigid mo-

tions [LXZ+97]. Regarding mesh morphing, the morphing based on local

transformations between source and target meshes such as ARAP [ACOL00]
and affine transformations [SZGP05] is not capable of handling large de-

formations. The latter also applies to morphing based on intrinsic shape

information such as differential coordinates [Ale03], linear rotation-invariant

(LRI) coordinates [LSLCO05], Laplacian coordinates with invariance to rota-

tion and isotropic scaling [SCOL+04], mean curvature flow Laplacian coordi-

nates [HLW07], gradient fields [XZWB06] or the combination of near-rigid

priors with a local gradient field interpolation [CL09]. Further work used

spatio-temporal skeleton-based models [ZLLZ12]. Bansal et al. [BT18] in-

troduced a mesh morphing and interpolation framework based on the Lie

Bodies representation. For large deformations, the authors perform mesh

segmentation and apply the Lie Bodies framework on the respective com-

ponents. Furthermore, Chen et al. [CFB16] presented a method for the

simultaneous morphing between two mesh sequences for blending motions

and interpolating shapes. Zhao and Barbic [ZB13] segment plants from the ge-

ometric information to establish a structural hierarchy that is connected with

a FEM simulation model to allow deformations. However, template-based

approaches rely on the availability of 3D object templates that are deformed

and fitted to the observations in adjacent time steps as well as adequate priors

and larger deformations cannot be handled easily.

65

4.2 Related Work

Correspondence-based interpolation Instead of exploring templates and

shape priors given by the mesh representation, several approaches focused on

unstructured representations such as point clouds, where the missing topo-

logical information complicates the morphing. This has been addressed based

on improving the robustness of correspondences based on local mappings

between the projections of the input point clouds onto a common parameter

space which can be performed in a segment-wise manner for complex-shaped

objects [XZPF04]. Alternatives include the guidance of the morphing by regis-

tration and warp functions [THCF06], exploiting differential geometry and

continuum mechanics to get physically-meaningful transitions [BGQ05] or

the guidance of the interpolation based on gradient fields [TZZ09]. Wang

et al.[WZH12] presented a method for morphing point-sampled geometry

based on parameterizing the point clouds onto spheres and then comparing

features. Solenthaler et al. [SZP07] refine irregularly sampled, dynamic points

in the context of particle-based fluid simulation while preserving edges and

avoiding point collisions. Further work on temporal upsampling by interpo-

lating between temporally consecutive point cloud measurements includes

the use of 4D spatio-temporal models as proposed in the context of large

dynamic urban scenes [JBB13]. Lie et al. [LLV+12] incorporate the visual hull

as a shape topology prior and surface bending energy for shape completion.

Subsequently, inter-frame correspondences are used to obtain temporally co-

herent dynamics. The approach can handle larger deformations and certain

topological changes, however, the topology of the output is tied to the possibly

incorrect topology of the visual hull. Li et al. [LFM+13] exploit a forward-

backward analysis for spatial and temporal analysis of 4D point clouds for

tracking plant parts over time. The co-segmentation framework proposed

by Yuan et al. [YLX+16] decomposes articulated point cloud sequences into

near-rigid moving parts. Segments derived using trajectory analysis are pro-

gressively propagated to neighboring frames and merged through all frames

using space-time segment grouping. This results in robustness regarding

noise, occlusions as well as variations of pose and view. Similarly, Bertholet et

al. [BIZ18] address motion segmentation from RGB-D videos by representing

motion as a sequence of rigid transformations through all input frames in

66

4.2 Related Work

an energy optimization framework. Vlachos et al. [VLSM18] focus on the

improvement of animation reconstruction based on rank minimization while

imposing spatial coherence between successive frame clusters. Furthermore,

Xu et al. [XSWL15] approach trajectory-based shape interpolation by solv-

ing Poisson equations defined on a domain mesh. Interpolated shapes are

reconstructed from interpolated gradient fields that exploit both point coor-

dinates and surface orientations instead of directly using point coordinates.

The technique shows stable area and volume changes and overcomes the

shrinkage problem of linear shape interpolation. Zheng et al. [ZFG+17] used

a template-based dynamic tracking algorithm for the temporal reconstruc-

tion of geometry and deformation in point cloud sequences, tailored to the

reconstruction of flower petals. The use of specific priors to assist the track-

ing allows handling occlusions and collision-based interactions at the cost

of requiring a suitable template. However, trajectory-based deformation/-

morphing approaches require exact point correspondences that can usually

only be reliably obtained for small deformations/motions and, hence, are by

design not suitable for analyzing growth processes with changing topology

due to newly added branches or leaves [XSWL15]. Furthermore, the points in

adjacent point clouds may not exactly represent corresponding surface parts

as the point distribution is determined by the scanning process. Our approach

overcomes these limitations by considering the point distributions instead

of the point cloud itself. As a result, we can circumvent the establishment

of exact point correspondences that are hard to establish for growing objects

with possibly changing topology.

Data-driven and learning-based interpolation Data-driven approaches

exploit the availability of large collections of related exemplars to describe the

characteristic deviations between objects and, hence, to guide the interpola-

tion between object states, which allows handling large deformations. This has

been used in the context of mesh interpolation based on patch-based linear ro-

tation invariant (LRI) coordinates [BVGP09], using an iterative Gauss-Newton

method for shape interpolation [FB11], solving a shortest path problem in

the local linear subspaces derived from a given model database [GLHH13],

67

4.2 Related Work

using low-dimensional shape spaces that exploit the specific structure of the

interpolation problem [VTSSH15] and using rotation/translation-invariant

representations that define plausible deformations in a global continuous

space [GCLX17]. Furthermore, the approach by Wang et al. [WLX+18] ex-

plores a shape space technique that relies on the correspondence computation

between trees of different structure and using geodesics to obtain the con-

tinuous blending between trees. However, such collections of examples that

represent the complete range of possible variations are often not available due

to the impractically time-consuming capture processes.

Optimal Transport in Graphics and Vision Optimal transport has been

used successfully in various computer graphics and computer vision appli-

cations. Early applications include its use for the measurement of the sim-

ilarity of images by defining the earth mover’s distance between color dis-

tributions and between texture feature distributions as used by Rubner et

al. [RTG98, RTG00]. Furthermore, optimal transport has been successfully

used for color transfer in 2D images based on the regularization with the

preservation of the gradient of the original picture [PKD07], an approximate

variational formulation using an approximate Wasserstein constraint on color

statistics and a generic geometric-based regularization [RP11], regularized

discrete optimal transport within a unified convex variational framework

[FPPA14], relaxed optimal transport using a regularization that considers the

spatial distribution of colors [RFP14], by using separate illuminant matching

and optimal transfer of dominant colors regularized by thin plate splines

[FSDH14] and extending standard entropy regularization based optimal trans-

port to unbalanced problems [CPSV16].
In addition, optimal transport has been applied for interpolation. Re-

spective examples include the interpolation between textures [RPDB11],
reflectance models such as bidirectional reflectance distribution functions

(BRDFs) [BVDPPH11, SDGP+15] or bidirectional texture functions (BTFs)

[GK18] based on statistical representations [GK17] as well as geometric mod-

els in terms of volumetric representations [SDGP+15]. Digne et al. [DCSA+14]
used optimal transport for surface reconstruction and simplification from

68

4.3 Temporal Upsampling of Point Cloud Sequences Using Optimal

Transport for Plant Growth Visualization

point clouds and Merigot et al. [MMT18] investigated optimal transport

between a simplex group and a point cloud.

Plant Segmentation The numerous approaches for plant segmentation

include the combination of color information and 3D models [ADT11,
MBW+18], adapted surface feature-based techniques [PDMK13], model-based

approaches based on cylinder representations of stems and separate segmenta-

tion tailored to leaves [GDHB17], skeleton-based stem and leaf point recogni-

tion approaches [WWX+19], facet region growing approaches after an initial

oversegmentation [LCT+18] as well as automated, data-driven approaches for

plant structure segmentation based on geometric features and Random Forests

classifiers (e.g. [DNC+18]) or geometric features and clustering [WPKM15].

4.3 Temporal Upsampling of Point Cloud

Sequences Using Optimal Transport for Plant

Growth Visualization
Given a time series of point cloud scans obtained by a 3D scanner, our goal

is to produce a temporal upsampling of the plant growth that happened be-

tween the individual measurements that results in a realistic, smooth plant

growth visualization. As illustrated in Fig. 4.2, our method consists of the

following steps: Initially, the scans are coarsely aligned to each other (Sec-

tion 4.3.1). While it is possible to set up and solve a single optimal transport

problem for the whole dataset, the result is not satisfactory, as artifacts like

unnatural-looking breaking up of plant parts occur (see Fig. 4.3). In order

to alleviate this, we perform the following steps: First, a hierarchical seg-

mentation is derived for each scan individually (Section 4.3.2). Afterward,

the corresponding segments of successive scans are matched (Section 4.3.3),
which is facilitated by the initial coarse alignment. Finally, for each pair of

corresponding segments, a regularized optimal transport problem is set up

(Section 4.3.4). Its solution delivers the information required for a temporal

upsampling, which is obtained by interpolation.

69

4.3 Temporal Upsampling of Point Cloud Sequences Using Optimal

Transport for Plant Growth Visualization

Optimal
Transport

Segment
Matching

...

...

Sc
an

t i
Sc

an
t i

+
1

Segmentation &
Hierarchy Gen.

Segmentation &
Hierarchy Gen.

A
li

gn
m

en
t

Figure 4.2: Overview of our method: First, a hierarchical segmentation is gener-
ated for each scan, which is followed by a matching of the segments of point clouds
obtained for successive measurements at the time steps ti and ti+1 and the compu-
tation of segment-wise optimal transport solutions used for temporal upsampling.

70

4.3 Temporal Upsampling of Point Cloud Sequences Using Optimal

Transport for Plant Growth Visualization

ti ti+1

W
it

ho
u

t
Se

gm
en

ta
ti

on
W

it
h

Se
gm

en
ta

ti
on

Figure 4.3: Comparison between animations generated from the same data without
segmentation (top row) and with segmentation (bottom row). Images with a
gray background correspond to the input scans. Images with a white background
represent upsampled data. In the case without segmentation (top row), the plant
breaks up in an unrealistic way. Using segmentation (depicted in the bottom row),
this problem is solved, because transport is restricted to take place only within a
segment.

71

4.3 Temporal Upsampling of Point Cloud Sequences Using Optimal

Transport for Plant Growth Visualization

4.3.1 Coarse Alignment

Continuously monitoring plant growth with a fixed arrangement of scanners is

complicated due to self-occlusions induced by growing plant parts and results

in incomplete 3D scans. As a consequence, detailed plant scans require a

manual scanning process, ideally with a movable scanner platform that can be

guided by a user to obtain complete scans. As this may require the relocation

of plants to a certain scanner platform, successive scans have to be aligned in a

common coordinate system in order to register the individual plant segments

and to allow the consideration of changes induced by the growth process. For

this purpose, we align each scan in the time series coarsely via the iterative

closest point algorithm [BM92] to its predecessor. We assume that scans in a

time series have a consistent scaling.

4.3.2 Hierarchical Segmentation

If used without any further constraints, the later described optimal transport

solution will lead to an unrealistic breaking up of the dataset in the upsam-

pling as shown in Fig. 4.3. To avoid this problem, we segment the respective

point cloud Pi of each time step ti into segments s ∈ SPi , onto which we restrict

the optimal transport problem setup. These segments are not necessarily

matched. Additionally, new segments might appear due to growth or might

disappear due to cropping. In order to be able to better match the segments

and handle growth and decay events, we introduce a hierarchy HPi on the

segments SPi of each point cloud Pi .

Creating a Hierarchy on Existing Segmentations

In principle, different segmentation techniques may be used to derive the

segmentation SPi . However, they should be suitable for the expected plant

structures. For a given segmentation of a plant into its semantic entities like

stem, branches, leaves or blossom petals, we first identify the root segment of

the hierarchy HPi as the segment containing the point with the lowest vertical

coordinate. Alternatively, the respective segment may also be directly chosen

by the user.

72

4.3 Temporal Upsampling of Point Cloud Sequences Using Optimal

Transport for Plant Growth Visualization

Figure 4.4: Exemplary segment hierarchy obtained from an initially provided
plant segmentation: The artificially generated tree has a natural segmentation. We
impose a hierarchy by heuristically or manually selecting a root (the tree trunk)
and then performing successive nearest neighbor searches in order to generate a
hierarchy on the segments.

Then, successive nearest neighbor searches are performed to populate the

hierarchy HPi . All segments containing points that are closer than a user-

specified threshold to points of the currently considered segment are added

as children of this segment in the hierarchy. This is iterated until all segments

have been processed. An exemplary decomposition into a segment hierarchy

derived for a synthetic tree model is illustrated in Fig. 4.4. Here, the ground

truth segmentation of the tree into the stem and individual branches was

directly obtained from the synthesis and we chose the trunk as the root

segment, which is also the segment with the lowest vertical coordinate. In

the case of a given segmentation with no meaningful root segments, such

as in the Komatsuna dataset [USM+17], we introduce a virtual, empty root

segment and add the other segments as direct successors in the hierarchy HPi .

An example is shown in Fig. 4.5.

73

4.3 Temporal Upsampling of Point Cloud Sequences Using Optimal

Transport for Plant Growth Visualization

(a) Small Growth (b) Significant Growth & New Part

Figure 4.5: Labeled point cloud scans from the Komatsuna dataset [USM+17].
(a) shows two successive point cloud scans which are consistently labeled and
only a small amount of growth happened. In this case, no further matching of
the segmentations is necessary. (b) shows two point clouds where there has been
significant growth in the meantime. While consistent labels are assigned to the
individual parts, for the newly grown part a small new virtual segment is added to
the first point cloud and matched to the unmatched segment of the second point
cloud.

Simultaneous Segmentation and Hierarchy Generation for Thin

Structures

For plants with thin structures, we can derive the segment hierarchy HPi

together with the corresponding segmentation SPi without the requirement of

an initial segmentation of a plant into its parts.

First, we build a k-nearest neighbor graph on the point cloud, where k is

a user-defined parameter. We found k = 15 to deliver good results in our

experiments. On this graph, we compute a minimum spanning tree (MST). We

assume the point with the smallest value along the vertical axis to be the root

point of the MST, thus inducing a direction on the graph. When operating on

single plants, this is a reasonable assumption as this point corresponds to the

location where the stem exits the ground.

For each node v in the MST, we compute the longest possible path length mv

to a leaf node in the MST subtree rooted at v. Starting with the root, we traverse

the MST. If we encounter a node v in the tree where the number of successors

u ∈ succ(v) with longest path length mu > c is more than one, for a user-

defined threshold c, we found a bifurcation. All of v’s successor nodes u with

74

4.3 Temporal Upsampling of Point Cloud Sequences Using Optimal

Transport for Plant Growth Visualization

0

1
2

43
2

3

1

0

4

Figure 4.6: Segmented point clouds of two successive scans of a maize plant. The
hierarchy graphs are plotted on top of the plants and shown additionally in the
boxes. Although the numberings of the nodes, indicated in terms of the segment
colors, differ, our method allows a correct matching of corresponding segments.

mu > c are then considered to be roots of trees corresponding to new biological

branches. The edges from v to these successors are inserted into a set E of

edges to be removed from the MST, which also define the connectivity between

created segments. After visiting all nodes, the edges e ∈ E are removed from

the MST and the connected components of the resulting graph, respectively

the corresponding 3D points, define the segmentation SPi on the point cloud

Pi . At the same time, a separate graph representing the hierarchy HPi of

the segments in SPi is created. The root segment is chosen such that it

contains the MST root node. Two segments s1, s2 ∈ SPi are connected in HPi if

an edge (u,v) ∈ E exists with u ∈ s1 and v ∈ s2. An example of the resulting

segmentation and the corresponding hierarchy graph is depicted in Fig. 4.6.

4.3.3 Segment Matching
Given segmentations of two point clouds P and Q for successive time steps,

we match the segments of P and Q using the hierarchies HP and HQ built in

the previous step. We differentiate the following cases:

1. The labels are consistent and the number of segments is identical.

This is usually the case with manually segmented data, when no new

segments have grown. An example is shown in Fig. 4.5(a).

2. The labels are consistent and the number of segments varies. This is

usually the case with manually segmented data, when new structures

represented by new segments have grown or parts have decayed. An

75

4.3 Temporal Upsampling of Point Cloud Sequences Using Optimal

Transport for Plant Growth Visualization

example is shown in Fig. 4.5(b). For growth scenarios, small new

virtual segments are added to the first point cloud P and matched to

the otherwise unmatched segments of the second point cloud Q. These

virtual segments are used to generate a growth animation. For decay

scenarios, we add a point set that represents the decayed leaf. As a

heuristic, we generate this point set by moving the segment’s points

towards the smallest vertical coordinate, which is perceived as the floor.

Alternatively, this segment may be simply faded out. We emphasize

that the respective choice depends on the preferences of the user.

3. The labels are inconsistent. This can occur if the labeling has been

generated automatically with no additional information. In this case,

we perform a matching algorithm, which is described in Section 4.3.3.
Growth or decay may also occur and is handled analogously to the

scenario with a consistent labeling.

Segment Matching with Inconsistent Labeling

If different IDs are assigned to corresponding segments sP , sQ in consecutive

scans, we use the Wasserstein distance dw(sP , sQ) (see Eq. (4.1)) as a similarity

measure between the two segments sP , sQ, that is, the cost of warping the

point distributions onto each other. Initially, only the root segments of the

hierarchy are considered to be matched. We then alternate between merging

and matching segments in the hierarchy, which is explained in detail in the

following paragraphs.

Merging For each newly created match of the segments (sP ∈HP , sQ ∈HQ),

we try to merge the segment in the second point cloud sQ with one of its chil-

dren cQ ∈ succ(sQ), as long as this reduces the Wasserstein distance dw(sP , sQ)

between the associated point clouds. The rationale behind this step is to adapt

to different segment hierarchies induced by growth or decay processes. For

example, a new biological branch might have appeared in the later states of the

plant growth, which leads to the splitting of the segment of the previous scan

at the location where the new part starts growing. This process is repeated

until no further improvement is possible.

76

4.3 Temporal Upsampling of Point Cloud Sequences Using Optimal

Transport for Plant Growth Visualization

Matching When no further merging steps are possible, we create a matching

of the remaining child segments. Since the scans are segmented individually,

the association of corresponding parts between the segmentations has still

to be computed in order to be able to set up an optimal transport problem

between segment pairs. An example of the segmentations and the associated

graphs of two consecutive scans is shown in Fig. 4.6.
In order to resolve this ambiguity, we perform the following matching step:

We compute the pairwise Wasserstein distances dw(cP , cQ) between the point

clouds associated with the child segments cP ∈ succ(sP) and cQ ∈ succ(sQ). The

pairwise costs are stored in a cost matrix. The optimal association of the child

segments is computed with optimal transport.

Segment Growth and Cropping/Decay A plant’s growth may yield new

parts like new branches or leaves. Analogously, there may also be a loss

of parts such as the falling of leaves or the breaking of branches. This is

reflected in the segment hierarchy. If the current target segment sQ has more

children than sP , a new part has grown. If sQ has fewer segments, plant parts

have been cropped or decayed and fallen off the plant. In order to handle

these cases, we create virtual matching segments. The child segment with the

largest Wasserstein distance to any child segment of the other point cloud is

considered unmatched and a virtual segment is generated in the other scan.

For growth scenarios, the point cloud associated with the virtual segment

is generated by searching l points in the point cloud of sP , that are closest to

the points of the unmatched segment of point cloud Q. l has to be chosen by

the user, depending on the density of the point cloud. In our experiments, we

found values between 10 and 100 to deliver good results. These points are

duplicated, labeled as a new segment and added to the segment hierarchy. The

newly generated virtual segment is matched with the previously unmatched

segment. This procedure is repeated for all unmatched segments.

For cropping or decaying scenarios, our goal is to generate an animation

of the cropped part falling to the ground. Note that other solutions like the

fading out of the respective points or their immediate removal are also viable

and can be generated analogously. We duplicate the points of the cropped

77

4.3 Temporal Upsampling of Point Cloud Sequences Using Optimal

Transport for Plant Growth Visualization

segment, but set their vertical axis coordinate to the point cloud’s minimum.

These points are added as a new segment to Q, which is then matched to the

previously unmatched segment of P .

4.3.4 Optimal Transport Plan for Two Point Clouds

So far, we have outlined how point clouds are segmented and how the seg-

ments are associated between different time steps. Based on this information,

we perform temporal upsampling by warping respectively matching the point

distributions of previously matched segments. Let P and Q be their respective

point clouds, which we want to match onto each other using optimal transport.

Solving the optimal transport problem for given point clouds P and Q involves

the computation of the Wasserstein distance dw(P ,Q), which is essentially the

cost of the optimal transport solution, that is, the cost of warping one distri-

bution onto the other, and the temporal upsampling is performed by using

the solution for the interpolation of the point clouds.

In the (discretized) optimal transport problem, each point pa ∈ P , 1 ≤ a ≤ |P |
and qb ∈ Q, 1 ≤ b ≤ |Q| is assigned a mass ma and m′b, respectively, such that∑

1≤a≤|P |ma = 1 =
∑

1≤b≤|Q|m
′
b. The goal is to find an optimal transport plan,

which transports all mass from P to Q, minimizing the cost, which is given

by a cost matrix C ∈R|P |×|Q|, with entries Cab defining the cost of transporting

a piece of mass from pa to qb, where one common choice is given by the

euclidean distance. The optimal solution is a transport matrix T ∈R|P |×|Q|

with entries Tab denoting the amount of mass transported from pa ∈ P to

qb ∈ Q, chosen such that the total transport cost is minimized. The optimal

transport problem can be written as a linear program:

dw
2
2(P ,Q) = min

T

∑
1≤a≤|P |

∑
1≤b≤|Q|

Tab ·Cab (4.1)

s.t.
∑

1≤a≤|P |
ma · Tab = m′b ∀1 ≤ b ≤ |Q| ∧ b ∈N∑

1≤b≤|Q|
m′b · Tab = ma ∀1 ≤ a ≤ |P | ∧ a ∈N,

78

4.3 Temporal Upsampling of Point Cloud Sequences Using Optimal

Transport for Plant Growth Visualization

ti ti+1 ti+2

ti+3 ti+4 ti+5

Figure 4.7: Several stages of a growing maize plant, visualized with our method.
Real measurements are highlighted with a gray background, while temporally
upsampled data generated with our method is shown with a white background.

which minimizes the (discretized) squared 2-Wasserstein distance dw(P ,Q)

between the point clouds P and Q. For small point clouds, this problem can

be solved by standard algorithms.

Transport Problem Setup In order to compute the optimal transport from

point cloud P to Q, we have to define the point masses ma and m′b, and

the entries Cab of the cost matrix C. Since we do not have any particular

preference for certain points, we define their masses uniformly as ma = 1/ |P |
and m′b = 1/ |Q| for each point pa ∈ P and qb ∈Q, respectively.

For each point pa ∈ P , we collect the k nearest neighbors qb ∈ Q. This

graph is represented by a sparse matrix CP , where entry CP ,ab = d(pa,qb) is the

distance between pa and qb if qb is one of the nearest neighbors. If qb is not

among the k nearest neighbors of pa, we define CP ,ab =∞. The matrix CP is

the cost matrix of transport from the source cloud’s points to the target cloud’s

points. This is a reasonable approximation to the true dense cost matrix, since

points in Q that are far away from a point pa are unlikely to be used as targets

for transporting mass from pa in the solution of the full optimal transport

problem. The cost for transporting from pa to non-neighbor points is thus

infinite.

79

4.3 Temporal Upsampling of Point Cloud Sequences Using Optimal

Transport for Plant Growth Visualization

ti ti+1

Figure 4.8: Several stages of a growing maize plant. Images with a gray background
are input data. Images with a white background were generated with our method.
Between the two successive scans, the plant has grown regarding its size as well as a
newly-evolved leaf. The budding process was generated automatically. In the upper
row, the points were colorized according to their label. Note that the labels and
their respective colors in the input data (gray background) do not match, because
the input scans are segmented individually. Our matching method automatically
produces correct assignments. The label color of matched segments is interpolated
over time (white background) in order to visualize this.

80

4.3 Temporal Upsampling of Point Cloud Sequences Using Optimal

Transport for Plant Growth Visualization

It is possible that some points of the target point cloud are not are not

among the nearest neighbors. Since we want to compute a solution to the

optimal transport problem that transports from each point and to each point,

this is not desirable. In order to alleviate this, we also compute the k nearest

neighbors pa ∈ P for points qb ∈Q. This is also represented by a sparse matrix

CQ, where entry CQ,ab = d(pa,qb) represents the distance between pa and qb if

pa is among the nearest neighbors of qb. The resulting cost matrix C is then

defined as the coefficient-wise minimum of CP and CQ. k determines the

sparsity of the matrix and is user-defined. We found k = 15 to deliver good

results in our experiments. Thus, in the resulting graph, there are at least k

connections from each point in the source cloud to points in the target cloud

and also at least k connections from each point in the target cloud to points in

the source cloud.

The Sinkhorn Algorithm for Regularized Optimal Transport The optimal

transport problem is approximated by the regularized optimal transport prob-

lem, which we solve using the Sinkhorn algorithm [Cut13]. In the regularized

transport problem, the objective function in Eq. (4.1) is modified to

min
T

∑
1≤a≤|P |

∑
1≤b≤|Q|

Tab ·Cab −γH(T), (4.2)

where H(T) is the entropy of the matrix T , defined as

H(T) = −
∑

1≤a≤|P |

∑
1≤b≤|Q|

Tab logTab. (4.3)

Inserting Eq. (4.3) into Eq. (4.2) yields

min
T

∑
1≤a≤|P |

∑
1≤b≤|Q|

Tab ·Cab +γ
∑

1≤a≤|P |

∑
1≤b≤|Q|

Tab logTab. (4.4)

81

4.3 Temporal Upsampling of Point Cloud Sequences Using Optimal

Transport for Plant Growth Visualization

It can be shown [Cut13] that minimizing Eq. (4.4) leads to the following

condition for the elements of T :

Tab = uaKabvb (4.5)

where Kab = exp(−Cab/γ) are the entries of a matrix K and u = (ua)a,v = (vb)b
are unknown vectors. K is also a sparse matrix and the infinite distances in

C become 0 in K. This property is important in order to be able to handle

large point clouds. A full cost matrix for large point clouds would not fit into

the computer’s memory. We initialize the vectors u = (ua)a = 1,v = (vb)b =

1∀a ∈ A,b ∈ B. The Sinkhorn algorithm then finds an approximate solution by

iterating the following steps: m = (ma)a,m′ = (m′b)b

1. u←m⊘Ku

2. v←m′ ⊘Kv,

where ⊘ denotes an element-wise division. The elements of the approximate

solution matrix T are then Tab := uaKabvb.

Using the Solution of the Transport Problem for Interpolation The solu-

tion of the transport problem is a transport matrix T of the same size as C,

where each entry Tab denotes the amount of mass that has to be transported

from pa to qb. Since we are interested in an interpolation animation that is

visually appealing, we set up the following requirements:

■ No point can disappear, that is, each point of P has to move to at least

one point of Q.

■ No point can appear out of nowhere, that is, for each point of Q there

must be at least one point of P moving to it.

■ For efficiency, as few as possible point pairs should be used for the

transport.

A solution to the first two requirements is to use each entry Tab > 0 of

the transport matrix and interpolate pa to qb. If there are several Tab > 0 for

fixed a, we create copies of pa, which follow different animation paths to

82

4.4 Results

Dataset Segmentation Matching + OT
Maize Plant 12.1 s 50 s

Cropped Maize 3 s 6 s
Synthetic Tree 1 4.2 s 42 s
Synthetic Tree 2 - 88 s

Komatsuna Plant 0 - 105 s
Komatsuna Plant 0/10 - 8 s

Table 4.1: Overview of computation times for the segmentation step and the
combined matching and optimal transport step for different datasets. For datasets
that are already segmented, we do not report timings for segmentation.

their respective qb. Since the cost matrix C allows up to k targets for each

pa, the number of transported points is at most k · (|P |+ |Q|) instead of |P | · |Q|.
Yet, this may be an unnecessarily huge amount of transported points, which

is inefficient for real-time animations as the number of point copies may

still become very big. In order to alleviate this, we perform the following

optimization: We create a matrix T ′, which contains a 1 only at the maximum

entry of each row of T at their respective position. All other entries are set to

0. We create another matrix T ′′, which is 1 only at the column maxima of T

and 0 otherwise. We then generate a matrix T̂ = 1
2(T ′ +T ′′) which is used for

the transport instead of T .

Having this transport plan, we can visualize the result as an animation,

where each point pi and its copies are transported linearly to the qj ’s positions

in real-time.

4.4 Results
In this section, we show results obtained with our method. All experiments

were performed on a PC with an Intel Core i7-8700K CPU and 64 GB RAM.

We implemented our approach in Python. An overview of the computation

times, separated into segmentation (where applicable) and segment matching

and solving of the optimal transport problem is given in Table 4.1. The

upsampling using the optimal transport solution and the visualization run in

real-time, thus no computation times are given for this step.

83

4.4 Results

Maize Plant Time Series We generated a smooth animation from eight

scans of a maize plant. These were acquired with a hand-held laser scanner,

in a fashion comparable to the one described by Paulus et al. [PSKL14].
Exemplary input scans and upsampled data are shown in Fig. 4.7 and a full

animation is shown in the accompanying video. Fig. 4.8 shows two input scans

from this dataset and their upsampling in more detail. The segmentation

of these scans is shown by the coloring of the plant. The labels and their

respective colors do not match in the input scans, because the point clouds

were segmented individually. Our matching method automatically assigns the

correct segments to each other. This is visualized by interpolating the segment

color in the upsampled data. The scans in this dataset have between 1700 and

5000 points, which took 12.1 s. The point cloud matching and computation

of optimal transport took 50.0 s. The total computation time was 62.2 s. The

visualization of the interpolation runs in real-time.

We also computed an animation without computing a segmentation, using

the described interpolation method on the whole point clouds, as shown in

Fig. 4.3. Here, parts of one leaf get transported to a different leaf, because it

exhibits a stronger growth than before. Employing the segmentation prohibits

this artifact because the transport is restricted to take place only between

matched segments.

Cropped Maize In order to test the handling of cropped plant segments,

we manually removed a leaf of the maize plant. As a first test, we used the

cropped plant as the source and the complete plant as the target. The result is

an animation of a growing leaf, shown in Fig. 4.9. For the second test, we used

the full plant as the source and the cropped plant as the target. Our method is

able to generate an animation of the cropped leaf falling to the ground, shown

in Fig. 4.10 and the accompanying video. The full plant had 5080 points, the

cropped one 4100. The total time required for segmentation was 6 s. The time

for computing the upsampling was 3 s in both cases.

Synthetic Tree 1 Time Series We generated a dataset of four virtual scans

of a simulated growing tree with 778 to 2253 points. The segmentation took

84

4.4 Results

ti ti+1

Figure 4.9: Temporal upsampling generated from the two input point clouds
highlighted with a gray background. The inputs are identical, except that the light
blue leaf was removed in ti , simulating the growth of a new plant part. The new
leaf grows smoothly.

ti t′i+1

Figure 4.10: Animation generated from the two input point clouds from Fig. 4.9
in reverse order. The inputs are highlighted with a gray background, depicting the
full plant as the source and the cropped plant as the target (automatically modified
version shown here). The cropped leaf falls slowly to the ground.

85

4.4 Results

t1 t2

t3 t4

Figure 4.11: The synthetic tree 1 dataset consists of four time steps t1 to t4.
Input scans are highlighted with a gray background. The dataset was temporally
upsampled with our method in the intervals [t1, t2] and [t3, t4], respectively, shown
with a white background.

4.2 s. Matching and optimal transport took 42.0 s. Our visualization runs in

real-time. The dataset and its upsampling are shown in Fig. 4.11 and the

accompanying video.

Synthetic Tree 2 Dataset We generated a synthetic tree dataset consisting

of two point clouds, representing tree states for different times with a con-

siderable growth in-between including the growth of many new branches,

where the first has 77448 points and the second one 326032 points. A huge

amount of growth with many new branches occurred. The segmentation was

given due to the synthesis, as shown in Fig. 4.4. We created a hierarchy on

the segments as described in Section 4.3.2. The computation of the matching

and optimal transport plan took 88 s. Our algorithm was able to generate a

smooth and realistic animation, which is depicted in Fig. 4.1 and shown in

the accompanying video.

Komatsuna dataset for instance segmentation, tracking and reconstruc-

tion The Komatsuna RGB-D dataset described by Uchiyama et al. [USM+17]
consists of a time series of RGB and depth images of five plants acquired with

an RGB-D camera, as well as a manually created labeling of the plant parts.

86

4.4 Results

All plants were recorded six times a day over a period of ten days. For our

experiments, we used plant 0 and constructed colored 3D point clouds from

the RGB-D images for each plant part. Each label in the dataset defines a

segment in our context and is interpolated separately. In order to obtain a

hierarchical representation, we create an empty virtual root node and added

child nodes representing the plant’s leaves.

Due to noise in the original data, the depth-discontinuities at leaf bound-

aries are not precisely aligned with the RGB images and label data, and the

depth of thin branches is not well-captured. Therefore, we apply a semi-

automatic preprocessing step before creating the 3D point clouds: First, we

remove all depth values which we consider to be incorrect in a manual process

and mark them as “unknown”, which usually occurs at the boundaries of

leaves. In a second step, we fill in the “unknown” depth values based on the

known valid depth values, similar to the approach of Desbrun et al. [DMSB99].
This is carried out for each label of each plant separately.

This dataset shows partial occlusions and in some cases slightly misplaced

manual labels. In Fig. 4.12 and in the accompanying video, it can be seen,

that, while the general animation is smooth, these two aspects lead to some

visual artifacts. The temporal occlusion leads to leaves seemingly shrinking

away from the center of the plant and growing back to the center shortly later.

The misplaced labeling leads to some points moving between leaves. Both are

limitations of our method and may be addressed either in preprocessing or in

future work. The computation time was 105 s.

As an additional experiment, we used only each 10th scan of the Komatsuna

plant 0 dataset. The resulting upsampling looks convincing and shows fewer

visual artifacts since by skipping input data, we essentially removed high-

frequency temporal noise as also demonstrated in the accompanying video.

The computation time was 10 s.

Verification: Reconstruction of the Komatsuna dataset by skipping origi-

nal data To analyze the quality of the upsampling, we omit every second

frame of the original dataset and compare it with a reconstruction generated

with our method. As an example, we show scan 3 of day 9 of plant 0 of the

87

4.5 Limitations and Future Work

ti ti+1 ti+2

Figure 4.12: Artifacts in the input data, like the temporarily severed stalk in the
back and the partially occluded leaf on the right in this example are temporally
upsampled as shrinking and growing animations. Input scans are highlighted with
a gray background. We suggest a pre- or post-processing in order to mitigate these
artifacts for future work.

dataset. The whole dataset was rescaled to fit into the [0,1]3 unit volume.

Comparing the reconstruction to the original data resulted in a mean distance

of 0.001728 unit lengths, a standard deviation of 0.001130 unit lengths and a

maximum distance of 0.00787517 unit lengths. A visual comparison is shown

in Fig. 4.13.

4.5 Limitations and Future Work
The segmentation algorithm described in Section 4.3.2 is designed for thin

structures as occurring in the plant data considered, whereas the matching and

optimal transport components of our method do not have such limitations. In

the future, we intend to investigate the combination of our method with other

segmentation techniques, such as PointNet [QSMG17]. Furthermore, our

method is tailored to data that can be represented as a hierarchy of segments,

and the results of our method depend on the quality of the input data. If the

input data seemingly moves back and forward, as in the Komatsuna dataset,

this is also mirrored in our upsampling. The plant movement can be due to

the natural movement of the plant or due to scanner noise. Varying sampling

in the input data can also lead to counter-intuitive movement of the individual

points in the upsampled dataset in some cases. This can either be resolved

by resampling the data in a preprocessing step or by introducing additional

constraints to the optimal transport problem, which would be an interesting

88

4.6 Conclusion

(a) Original data from time
step ti

(b) Reconstruction from
neighboring time steps ti−1
and ti+1

(c) Error

Figure 4.13: Reconstruction of a point cloud of the Komatsuna dataset. Left:
Original data of scan 3 of day 9 of plant 0. Center: Reconstruction of this data,
using scans 2 and 4 of day 9 of plant 0. Right: Color-coded reconstruction error.
Lower values are colored in blue, higher values in red. The maximum error is
0.00787517 unit lengths, with input data scaled to the unit volume.

direction for future work. Noisy points are not smoothed out by the method

itself. In this case, we rely on preprocessing. Furthermore, our method does

not fill in temporarily occluded regions of the point cloud data. This can

be resolved by preprocessing the data with existing methods like 3D shape

inpainting.

Our method matches the segments traversing the hierarchy in a greedy

fashion. While this strongly reduces computational complexity, it can also

lead to errors that could be prevented by comparing all possible successor

combinations. Segments that were pruned completely can be recognized and

handled in a user-defined fashion. Partially pruned segments are currently

not recognized and thus result in a shrinking animation. In the future, we

would like to explore possibilities for handling these cases, e.g. by comparing

the volume and only allowing volume increases for the animation. Volume

decreases could be either faded out or filled.

4.6 Conclusion
We presented a novel, efficient approach for the temporal upsampling of

point cloud sequences that, by design, circumvents limitations of previous

approaches that rely on exact point correspondences, shape priors or the

89

4.6 Conclusion

availability of huge datasets and allows handling topological changes to be

expected for several growth processes. For this purpose, our approach involves

an initial automatic alignment of successive scans, the generation of a segment

hierarchy for each individual scan, the matching of the segment hierarchies

obtained for successive scans and the final computation of segment-wise

regularized optimal transport in a memory-efficient way that allows morphing

the distributions of the point sets associated with matched segments onto each

other. As demonstrated by our evaluation, our approach allows the generation

of a smooth temporal upsampling of the input point cloud sequence and,

hence, a realistic growth animation. We believe that our method will be useful

for biologists and researchers in the field of agriculture, as well as in the

entertainment industry.

Acknowledgments We would like to thank the reviewers and the editor for

providing valuable feedback and suggestions for improvements. We would

like to thank Alexander Schier for providing the synthetic tree 1 dataset and

Lasse Klingbeil for his helpful comments.

90

5 Summary, Conclusion and

Future Work

5.1 Summary and Conclusion
This thesis presented methods for transforming measured real-world input

data into forms that can be interpreted as probability measures. These repre-

sentations are suitable for setting up optimal transport problems. Here, it was

demonstrated how to solve these problems efficiently and use the solutions

for creating realistic interpolations in real-time.

The first type of measured data investigated were metallic effect car paints.

These paints exhibit a complex appearance, which makes using them in

real-time rendering applications a demanding task. Previous methods for

representing them can be separated into two general fields: simulation-based

and data-driven approaches. While both are able to achieve good results,

simulation-based approaches are computationally complex and thus not well

suited for most real-time applications. Data-driven approaches are less com-

putationally complex but require larger amounts of memory. Rump et al.

[RMS+08] introduced a mixed analytical and data-driven model. The analyt-

ical component is fitted to the measured raw data. The metallic sparkling

effect is represented as a bidirectional texture function (BTF). This BTF is

still memory-consuming to store. In Chapter 2, this problem was solved by

introducing a new compact statistical representation for the BTF. This rep-

resentation is generated by finding clusters of nearly uniform distribution

in color space and computing their probability and their boundaries. This

91

5.1 Summary and Conclusion

information is stored in textures. Using a specialized shader, it is possible to

reconstruct a BTF representing the sparkling effect from this representation in

real-time. This representation uses only 2.5 % of the memory that the original

one used, while the visual impression remains very similar to the original

representation and the computational cost is only slightly higher.

Chapter 3 showed that the statistical data representation is also useful for

solving another problem: Interpolating the complex metallic effect car paints.

While the analytical components of the model used are straightforward to

interpolate, it is difficult to interpolate the high-frequency data-driven BTF

component. Using the previously developed statistical BTF representation,

it was shown how to set up an optimal transport problem between the BTFs

of two metallic car paints. No manual parameter tuning is necessary for this

process. The solution to this problem then serves as input for an interactive

application that allows the user to interpolate metallic paints in real-time

in an intuitive way. By adding the possibility to separately interpolate the

individual aspects of the reflectance model, including the basic color hue, the

local color hue, and the sparkling intensity of the BTFs, the user is given even

more options for altering the appearance of metallic paints. The results are

convincing while the computational cost is low.

In Chapter 4 the interpolation of a different type of measured data is inves-

tigated: Sequences of 3D scans of plants. The goal was to create a temporal

upsampling of these sequences. As before, it was shown that by generating

a suitable data representation and applying the theory of optimal transport

appropriately, we can achieve convincing results. Each timestep of the data is

represented as a hierarchy of segments on the point clouds is created. E.g. in

the case of a tree, the point cloud representing its stem is the root of the hierar-

chy, followed by the branches. For subsequent point clouds, these hierarchies

are traversed and the associated segments are matched by computing their

pairwise Wasserstein distances – an optimal transport-based distance measure.

After computing the matching by using the combination with the least total

distance, an optimal transport problem per pair of matched segments is set

up. The solution to this problem provides the associations between the points

of the subsequent point clouds. These are used for interpolating the point

92

5.2 Future Work

clouds in real-time. Applying this method to a sequence of scans allows to

generate a realistic-looking temporal upsampling of arbitrary precision.

In summary, this thesis introduced methods for generating interpolations

of measured input data in areas where this was previously difficult to achieve.

The methods work by first transforming the input data to a suitable repre-

sentation and then making use of optimal transport theory. The final results

are achieved by using the solutions to optimal transport problems in an ap-

propriate way for interactive interpolation. The algorithms presented are

comparatively easy to implement while also being efficient in terms of mem-

ory and computational complexity. We believe that the methods presented

in this thesis will find widespread use and are looking forward to future

applications and extensions.

5.2 Future Work
In this section, possible future directions for research, based on the results

of this thesis are given. A limitation of the metallic car paint representation

developed in Chapter 2 is that it can only reproduce metallic paint sparkles

that have a size of one pixel. This limitation facilitated a perfectly parallel

extraction in the graphics card’s pixel shader. For the given data, the sparkles

created by the metallic flakes were indeed so small that they only occupied

one pixel at the camera resolution. When data of higher resolution become

available, a modification will be required. Such an approach will have to take

neighboring pixels into consideration when the BTF is regenerated. On current

graphics card models, such a modification might lead to a negative impact on

performance. Furthermore, research might be performed in representing other

materials that exhibit stochastic patterns in a way similar to the described one,

such that the ideas presented in this thesis can be transferred to new material

types.

The BTF interpolation method based on optimal transport described in

Chapter 3 may also be used for other materials if they can be represented

as probability measures similar to the metallic paint BTFs. It may even be

possible to interpolate materials of different natures.

93

5.2 Future Work

The method for interpolation and temporal upsampling of point clouds de-

scribed in Chapter 4 enables numerous applications. It can also be interpreted

as generating non-injective, yet surjective, i.e. one-to-many, many-to-one and

many-to-many correspondences between point clouds. One possibility for

future applications is the combination with other segment matching methods

and point path generation methods. A candidate would be the work of Wang

et al.[WLX+18], which describes morphing of 3d meshes of trees. In combina-

tion with the method presented in this thesis, it would allow for the morphing

of scans of very different tree species.

In general, this thesis showed that in combination with a suitable data

transformation and result interpretation, the theory of optimal transport

allows for the generation of realistic intermediate states of measured input

data. We are looking forward to future interesting applications based on our

findings.

94

6 Bibliography

[ACOL00] Marc Alexa, Daniel Cohen-Or, and David Levin. As-rigid-as-

possible shape interpolation. In Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’00, pages 157–164, New York, NY, USA, 2000.
ACM Press/Addison-Wesley Publishing Co.

[ADT11] G. Alenya, B. Dellen, and C. Torras. 3d modelling of leaves

from color and ToF data for robotized plant measuring. In

2011 IEEE International Conference on Robotics and Automation,

pages 3408–3414, Shanghai, China, May 2011. IEEE.

[AK16] Asen Atanasov and Vladimir Koylazov. A practical stochastic

algorithm for rendering mirror-like flakes. In ACM SIGGRAPH
2016 Talks, page 67. ACM, 2016.

[Ale03] Marc Alexa. Differential coordinates for local mesh morphing

and deformation. The Visual Computer, 19(2):105–114, May

2003.

[BGQ05] Yunfan Bao, Xiaohu Guo, and Hong Qin. Physically based

morphing of point-sampled surfaces. Computer Animation and
Virtual Worlds, 16(3-4):509–518, July 2005.

[BIZ18] P. Bertholet, A.E. Ichim, and M. Zwicker. Temporally consistent

motion segmentation from RGB-D video. Computer Graphics
Forum, 37(6):118–134, 2018.

95

6 Bibliography

[BM92] Paul J. Besl and Neil D. McKay. Method for registration of

3-D shapes. In Sensor Fusion IV: Control Paradigms and Data
Structures, volume 1611, pages 586–606. International Society

for Optics and Photonics, April 1992.

[BN92] Thaddeus Beier and Shawn Neely. Feature-based image meta-

morphosis. ACM SIGGRAPH computer graphics, 26(2):35–42,
1992.

[BT18] Sumukh Bansal and Aditya Tatu. Lie bodies based 3d shape

morphing and interpolation. In Proceedings of the 15th ACM
SIGGRAPH European Conference on Visual Media Production,

CVMP ’18, pages 5:1–5:10, New York, NY, USA, 2018. ACM.

[BVDPPH11] Nicolas Bonneel, Michiel Van De Panne, Sylvain Paris, and

Wolfgang Heidrich. Displacement interpolation using la-

grangian mass transport. ACM Transactions on Graphics (TOG),
30(6):1–12, 2011.

[BVGP09] Ilya Baran, Daniel Vlasic, Eitan Grinspun, and Jovan Popović.

Semantic deformation transfer. ACM Transactions on Graphics
(TOG), 28(3):36:1–36:6, July 2009.

[BX06] Guo Baolong and Fu Xiang. A modified octree color quantiza-

tion algorithm. In Communications and Networking in China,
2006. ChinaCom’06. First International Conference on, pages 1–3.
IEEE, 2006.

[CAJBS05] Somporn Chuai-Aree, Willi Jäger, Hans Georg Bock, and

Suchada" Siripant. Simulation and Visualization of Plant

Growth Using Lindenmayer Systems. In Modeling, Simulation
and Optimization of Complex Processes, pages 115–126. Springer

Berlin Heidelberg, 2005.

96

6 Bibliography

[CFB16] Xue Chen, Jieqing Feng, and Dominique Bechmann. Mesh

sequence morphing. Computer Graphics Forum, 35(1):179–190,
February 2016.

[CL09] Hung-Kuo Chu and Tong-Yee Lee. Multiresolution mean shift

clustering algorithm for shape interpolation. IEEE Transac-
tions on Visualization and Computer Graphics, 15(5):853–866,
September 2009.

[CPSV16] Lenaic Chizat, Gabriel Peyré, Bernhard Schmitzer, and

François-Xavier Vialard. Scaling algorithms for unbalanced

transport problems. arXiv preprint arXiv:1607.05816, 2016.

[CT82] Robert L Cook and Kenneth E. Torrance. A reflectance model

for computer graphics. ACM Transactions on Graphics (TOG),
1(1):7–24, 1982.

[Cut13] Marco Cuturi. Sinkhorn Distances: Lightspeed Computation

of Optimal Transport. In C. J. C. Burges, L. Bottou, M. Welling,

Z. Ghahramani, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 26, pages 2292–2300.
Curran Associates, Inc., 2013.

[CW93] Shenchang Eric Chen and Lance Williams. View interpolation

for image synthesis. In Proceedings of the 20th annual conference
on Computer graphics and interactive techniques, pages 279–288,
1993.

[DBFK+01] Patricia Dumont-Bècle, Eric Ferley, Andras Kemeny, Sylvain

Michelin, and Didier Arquès. Multi-texturing approach for

paint appearance simulation on virtual vehicles. In Proceedings
of the driving simulation conference, pages 123–133, 2001.

[DCSA+14] Julie Digne, David Cohen-Steiner, Pierre Alliez, Fernando

de Goes, and Mathieu Desbrun. Feature-Preserving Surface

Reconstruction and Simplification from Defect-Laden Point

97

6 Bibliography

Sets. Journal of Mathematical Imaging and Vision, 48(2):369–382,
February 2014.

[DGBOD12] Fernando De Goes, Katherine Breeden, Victor Ostromoukhov,

and Mathieu Desbrun. Blue noise through optimal transport.

ACM Transactions on Graphics (TOG), 31(6):1–11, 2012.

[DGCSAD11] Fernando De Goes, David Cohen-Steiner, Pierre Alliez, and

Mathieu Desbrun. An optimal transport approach to robust

reconstruction and simplification of 2d shapes. In Computer
Graphics Forum, volume 30, pages 1593–1602. Wiley Online

Library, 2011.

[DHT+00] Paul Debevec, Tim Hawkins, Chris Tchou, Haarm-Pieter

Duiker, Westley Sarokin, and Mark Sagar. Acquiring the re-

flectance field of a human face. In Proceedings of the 27th annual
conference on Computer graphics and interactive techniques, pages

145–156. ACM Press/Addison-Wesley Publishing Co., 2000.

[Dis98] Jean-Michel Dischler. Efficiently rendering macro geometric

surface structures with bi-directional texture functions. Ren-
dering Techniques ’98, 98:169–180, 1998.

[ĎM03] Roman Ďurikovič and William L Martens. Simulation of

sparkling and depth effect in paints. In Proceedings of the 19th
spring conference on Computer graphics, pages 193–198. ACM,

2003.

[ĎM13] Roman Ďurikovič and Andrej Mihálik. Metallic paint appear-

ance measurement and rendering. Journal of Applied Mathemat-
ics, Statistics and Informatics, 9(2):25–39, 2013.

[DMSB99] Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H

Barr. Implicit fairing of irregular meshes using diffusion and

curvature flow. In Proceedings of the 26th annual conference
on Computer graphics and interactive techniques, SIGGRAPH

98

6 Bibliography

’99, pages 317–324, USA, 1999. ACM Press/Addison-Wesley

Publishing Co.

[DNC+18] Sundara Tejaswi Digumarti, Juan Nieto, Cesar Cadena, Roland

Siegwart, and Paul Beardsley. Automatic Segmentation of Tree

Structure From Point Cloud Data. IEEE Robotics and Automa-
tion Letters, 3(4):3043–3050, October 2018.

[Dob70] R. L. Dobrushin. Prescribing a System of Random Variables by

Conditional Distributions. Theory of Probability & Its Applica-
tions, 15(3):458–486, January 1970.

[DRS10] Julie Dorsey, Holly Rushmeier, and François Sillion. Digital
modeling of material appearance. Morgan Kaufmann, 2010.

[EĎKM04] Sergey Ershov, Roman Ďurikovič, Konstantin Kolchin, and

Karol Myszkowski. Reverse engineering approach to

appearance-based design of metallic and pearlescent paints.

The Visual Computer, 20(8-9):586–600, 2004.

[EKK99] Sergey Ershov, Andrei Khodulev, and Konstantin Kolchin. Sim-

ulation of sparkles in metallic paints. In Proceeding of Graph-
icon, pages 121–128, 1999.

[EKM01] Sergey Ershov, Konstantin Kolchin, and Karol Myszkowski.

Rendering pearlescent appearance based on paint-composition

modelling. In Computer Graphics Forum, volume 20, pages

227–238. Wiley Online Library, 2001.

[FB11] Stefan Fröhlich and Mario Botsch. Example-driven defor-

mations based on discrete shells. Computer Graphics Forum,

30(8):2246–2257, 2011.

[Flo53] Merrill M. Flood. On the Hitchcock distribution problem.

Pacific Journal of Mathematics, 3(2):369–386, 1953.

99

6 Bibliography

[FPPA14] Sira Ferradans, Nicolas Papadakis, Gabriel Peyré, and Jean-

François Aujol. Regularized discrete optimal transport. SIAM
Journal on Imaging Sciences, 7(3):1853–1882, 2014.

[FSDH14] Oriel Frigo, Neus Sabater, Vincent Demoulin, and Pierre Hel-

lier. Optimal transportation for example-guided color transfer.

In Computer Vision – ACCV 2014, pages 655–670, Cham, Ger-

many, 2014. Springer International Publishing.

[GCG+05] Johannes Günther, Tongbo Chen, Michael Goesele, Ingo Wald,

and Hans-Peter Seidel. Efficient acquisition and realistic ren-

dering of car paint. In Vision, Modeling, and Visualization,

volume 5, pages 487–494, 2005.

[GCLX17] Lin Gao, Shu-Yu Chen, Yu-Kun Lai, and Shihong Xia. Data-

driven shape interpolation and morphing editing. Computer
Graphics Forum, 36(8):19–31, 2017.

[GD04] Kristen Grauman and Trevor Darrell. Fast contour matching

using approximate earth mover’s distance. In Computer Vision
and Pattern Recognition, 2004. CVPR 2004. Proceedings of the
2004 IEEE Computer Society Conference on, volume 1, pages I–I.

IEEE, 2004.

[GDHB17] William Gelard, Michel Devy, Ariane Herbulot, and Philippe

Burger. Model-based Segmentation of 3d Point Clouds for

Phenotyping Sunflower Plants:. In Proceedings of the 12th In-
ternational Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications, pages 459–467.
SCITEPRESS - Science and Technology Publications, 2017.

[GGG+16] Dar’ya Guarnera, Giuseppe Claudio Guarnera, Abhijeet Ghosh,

Cornelia Denk, and Mashhuda Glencross. BRDF representation

and acquisition. In Computer Graphics Forum, volume 35, pages

625–650. Wiley Online Library, 2016.

100

6 Bibliography

[GGH+17] Giuseppe Claudio Guarnera, Abhijeet Ghosh, Ian Hall, Mash-

huda Glencross, and Dar’ya Guarnera. Material capture and

representation with applications in virtual reality. In ACM
SIGGRAPH 2017 Courses, page 6. ACM, 2017.

[GK15] Tim Golla and Reinhard Klein. Real-time Point Cloud Com-

pression. In Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on, pages 5087–5092. IEEE,

2015.

[GK17] Tim Golla and Reinhard Klein. An Efficient Statistical Data

Representation for Real-Time Rendering of Metallic Effect Car

Paints. In Virtual Reality and Augmented Reality: 14th EuroVR
International Conference, EuroVR 2017, pages 51–68. Springer,

Cham, 2017.

[GK18] Tim Golla and Reinhard Klein. Interactive Interpolation of

Metallic Effect Car Paints. In Vision, Modeling & Visualiza-
tion, VMV 2018, EG VMV ’18, page 11–20. The Eurographics

Association, 2018.

[GKK+20] Tim Golla, Tom Kneiphof, Heiner Kuhlmann, Michael Wein-

mann, and Reinhard Klein. Temporal Upsampling of Point

Cloud Sequences by Optimal Transport for Plant Growth Visu-

alization. Computer Graphics Forum, 39(6):167–179, September

2020.

[GLHH13] Lin Gao, Yu-Kun Lai, Qi-Xing Huang, and Shi-Min Hu. A

data-driven approach to realistic shape morphing. Computer
Graphics Forum, 32(2pt4):449–457, 2013.

[GP88] Michael Gervautz and Werner Purgathofer. A simple method

for color quantization: Octree quantization. In New Trends in
Computer Graphics, pages 219–231. Springer Berlin Heidelberg,

1988.

101

6 Bibliography

[GSK14] Tim Golla, Christopher Schwartz, and Reinhard Klein. To-

wards Efficient Online Compression of Incrementally Acquired

Point Clouds. In Vision, Modeling & Visualization. The Euro-

graphics Association, 2014.

[HF04] Michal Haindl and Jiří Filip. A fast probabilistic bidirectional

texture function model. In Image Analysis and Recognition,

pages 298–305. Springer Berlin Heidelberg, 2004.

[HF07] Michal Haindl and Jiri Filip. Extreme compression and mod-

eling of bidirectional texture function. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 29(10), 2007.

[HHCD05] Michal Haindl, Martin Hatka, M Chantler, and O Drbohlav.

BTF roller. In Proceedings of the 4th International Workshop on
Texture Analysis and Synthesis, pages 89–94, 2005.

[HLW07] Jianwei Hu, Ligang Liu, and Guozhao Wang. Dual laplacian

morphing for triangular meshes. Computer Animation and
Virtual Worlds, 18(4-5):271–277, September 2007.

[JBB13] O. Józsa, A. Börcs, and C. Benedek. Towards 4D virtual city

reconstruction from lidar point cloud sequences. In ISPRS An-
nals of Photogrammetry, Remote Sensing and Spatial Information
Sciences, volume II-3/W1, pages 15–20, 2013.

[JHY+14] Wenzel Jakob, Miloš Hašan, Ling-Qi Yan, Jason Lawrence, Ravi

Ramamoorthi, and Steve Marschner. Discrete stochastic micro-

facet models. ACM Transactions on Graphics (TOG), 33(4):115,
2014.

[Kaj86] James T Kajiya. The Rendering Equation. In ACM Siggraph
Computer Graphics, volume 20, pages 143–150. ACM, 1986.

[Kan39] Leonid V Kantorovich. The mathematical method of produc-

tion planning and organization. Management Science, 6(4):363–
422, 1939.

102

6 Bibliography

[Kan42] Leonid V Kantorovich. On the translocation of masses. In Dokl.
Akad. Nauk. USSR (NS), volume 37, pages 199–201, 1942.

[KBD07] Jan Kautz, Solomon Boulos, and Frédo Durand. Interactive

editing and modeling of bidirectional texture functions. In

ACM Transactions on Graphics (TOG), volume 26, page 53. ACM,

2007.

[KGK19] Tom Kneiphof, Tim Golla, and Reinhard Klein. Real-time

Image-based Lighting of Microfacet BRDFs with Varying Iri-

descence. Computer Graphics Forum, 38(4), July 2019.

[KGWK18] Tom Kneiphof, Tim Golla, Michael Weinmann, and Reinhard

Klein. A Method for Fitting Measured Car Paints to a Game

Engine’s Rendering Model. In Workshop on Material Appearance
Modeling, pages 27–31. The Eurographics Association, 2018.

[Kit08] Saori Kitaguchi. Modelling texture appearance of gonioapparent
objects. PhD thesis, University of Leeds, 2008.

[KKBS05] Winfried Kurth, Ole Kniemeyer, and Gerhard Buck-Sorlin. Re-

lational growth grammars – a graph rewriting approach to

dynamical systems with a dynamical structure. In Unconven-
tional Programming Paradigms, pages 56–72. Springer Berlin

Heidelberg, 2005.

[KSKK10] Murat Kurt, László Szirmay-Kalos, and Jaroslav Křivánek. An

anisotropic BRDF model for fitting and monte carlo rendering.

ACM SIGGRAPH Computer Graphics, 44(1):3, 2010.

[KSOF05] Hiroshi Kawasaki, Kyoung-Dae Seo, Yutaka Ohsawa, and Ryo

Furukawa. Patch-based BTF synthesis for real-time render-

ing. In Image Processing, 2005. ICIP 2005. IEEE International
Conference on, volume 1, pages I–393. IEEE, 2005.

[LB01] Elizaveta Levina and Peter Bickel. The earth mover’s distance

is the mallows distance: Some insights from statistics. In

103

6 Bibliography

Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE
International Conference on, volume 2, pages 251–256. IEEE,

2001.

[LCCS18] Hugo Lavenant, Sebastian Claici, Edward Chien, and Justin

Solomon. Dynamical optimal transport on discrete surfaces.

ACM Transactions on Graphics (TOG), 37(6):1–16, 2018.

[LCT+18] Dawei Li, Yan Cao, Xue-song Tang, Siyuan Yan, and Xin Cai.

Leaf Segmentation on Dense Plant Point Clouds with Facet

Region Growing. Sensors, 18(11):3625, November 2018.

[LFM+13] Yangyan Li, Xiaochen Fan, Niloy J. Mitra, Daniel Chamovitz,

Daniel Cohen-Or, and Baoquan Chen. Analyzing growing

plants from 4d point cloud data. ACM Transactions on Graphics
(TOG), 32(6):1–10, November 2013.

[LH03] R. Lougee-Heimer. The Common Optimization INterface for

Operations Research: Promoting open-source software in the

operations research community. IBM Journal of Research and
Development, 47(1):57–66, January 2003.

[LHZ+04] Xinguo Liu, Yaohua Hu, Jingdan Zhang, Xin Tong, Baining

Guo, and Heung-Yeung Shum. Synthesis and rendering of

bidirectional texture functions on arbitrary surfaces. IEEE
transactions on visualization and computer graphics, 10(3):278–
289, 2004.

[LKMH05] Lars Linsen, Brian J Karis, E Gregory McPherson, and Bernd

Hamann. Tree Growth Visualization. Journal of WSCG, page 8,
2005.

[LKYU12] Joakim Löw, Joel Kronander, Anders Ynnerman, and Jonas

Unger. BRDF models for accurate and efficient rendering of

glossy surfaces. ACM Transactions on Graphics (TOG), 31(1):9,
2012.

104

6 Bibliography

[LLV+12] Hao Li, Linjie Luo, Daniel Vlasic, Pieter Peers, Jovan Popović,

Mark Pauly, and Szymon Rusinkiewicz. Temporally coherent

completion of dynamic shapes. ACM Transactions on Graphics
(TOG), 31(1):2:1–2:11, February 2012.

[LO07] Haibin Ling and Kazunori Okada. An efficient earth

mover’s distance algorithm for robust histogram comparison.

IEEE transactions on pattern analysis and machine intelligence,

29(5):840–853, 2007.

[LPY+12] Yingying Liu, Juan Pan, Li Yang, Xiaodong Zhu, and Na Zhang.

Visualization of Virtual Plants Growth Based on Open L-

System. In Daoliang Li and Yingyi Chen, editors, Computer
and Computing Technologies in Agriculture V, volume 368, pages

90–96. Springer Berlin Heidelberg, 2012.

[LSLCO05] Yaron Lipman, Olga Sorkine, David Levin, and Daniel Cohen-

Or. Linear rotation-invariant coordinates for meshes. ACM
Transactions on Graphics (TOG), pages 479–487, 2005.

[LXZ+97] J. J. Loomis, Xiuwen Liu, Zhaohua Ding, K. Fujimura, M. L.

Evans, and H. Ishikawa. Visualization of plant growth. In

Proceedings. Visualization ’97 (Cat. No. 97CB36155), pages 475–
478. IEEE, October 1997.

[MBW+18] Anders Krogh Mortensen, Asher Bender, Brett Whelan, Mar-

garet M. Barbour, Salah Sukkarieh, Henrik Karstoft, and René

Gislum. Segmentation of lettuce in coloured 3d point clouds

for fresh weight estimation. Computers and Electronics in Agri-
culture, 154:373–381, November 2018.

[Mér11] Quentin Mérigot. A multiscale approach to optimal transport.

In Computer Graphics Forum, volume 30, pages 1583–1592.
Wiley Online Library, 2011.

105

6 Bibliography

[MHS+19] Miłosz Makowski, Torsten Hädrich, Jan Scheffczyk, Dominik L

Michels, Sören Pirk, and Wojtek Pałubicki. Synthetic Silvicul-

ture: Multi-scale Modeling of Plant Ecosystems. ACM Transac-
tions on Graphics (TOG), 38(4):14, July 2019.

[ML15] Gero Müller and Francis Lamy. Axf - appearance exchange

format. Technical report, X-Rite, Inc., 4300 44th St. SE, Grand

Rapids, MI 49505, 2015. Version 1.0.

[MMK03] Jan Meseth, Gero Müller, and Reinhard Klein. Preserving real-

ism in real-time rendering of bidirectional texture functions.

In OpenSG Symposium, pages 89–96. The Eurographics Associ-

ation, 2003.

[MMS+05] Gero Müller, Jan Meseth, Mirko Sattler, Ralf Sarlette, and Rein-

hard Klein. Acquisition, synthesis, and rendering of bidirec-

tional texture functions. In Computer Graphics Forum, vol-

ume 24, pages 83–109. Wiley Online Library, 2005.

[MMT18] Quentin Mérigot, Jocelyn Meyron, and Boris Thibert. An Al-

gorithm for Optimal Transport between a Simplex Soup and

a Point Cloud. SIAM Journal on Imaging Sciences, 11(2):1363–
1389, January 2018.

[Mon81] Gaspard Monge. Mémoire sur la théorie des déblais et des

remblais. Histoire de l’Académie Royale des Sciences de Paris,
1781.

[MSK07] Gero Müller, Ralf Sarlette, and Reinhard Klein. Procedural

editing of bidirectional texture functions. In Proceedings of
the 18th Eurographics conference on Rendering Techniques, pages

219–230. Eurographics Association, 2007.

[NDM05] Addy Ngan, Frédo Durand, and Wojciech Matusik. Exper-

imental analysis of BRDF models. Rendering Techniques,
2005(16th):2, 2005.

106

6 Bibliography

[PDMK13] Stefan Paulus, Jan Dupuis, Anne-Katrin Mahlein, and Heiner

Kuhlmann. Surface feature based classification of plant organs

from 3d laserscanned point clouds for plant phenotyping. BMC
Bioinformatics, 14(1):238, July 2013.

[PKD07] François Pitié, Anil C Kokaram, and Rozenn Dahyot. Auto-

mated colour grading using colour distribution transfer. Com-
puter Vision and Image Understanding, 107(1):123–137, 2007.

[PSKL14] Stefan Paulus, Henrik Schumann, Heiner Kuhlmann, and Jens

Léon. High-precision laser scanning system for capturing

3d plant architecture and analysing growth of cereal plants.

Biosystems Engineering, 121:1–11, May 2014.

[PW09] Ofir Pele and Michael Werman. Fast and robust earth mover’s

distances. In Computer vision, 2009 IEEE 12th international
conference on, pages 460–467. IEEE, 2009.

[QHL+19] Hongxing Qin, Jia Han, Ning Li, Hui Huang, and Baoquan

Chen. Mass-driven topology-aware curve skeleton extraction

from incomplete point clouds. IEEE Transactions on Visualiza-
tion and Computer Graphics, 2019.

[QSMG17] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification and

segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 652–660. IEEE,

2017.

[RFP14] Julien Rabin, Sira Ferradans, and Nicolas Papadakis. Adaptive

color transfer with relaxed optimal transport. In 2014 IEEE
International Conference on Image Processing (ICIP), pages 4852–
4856. IEEE, 2014.

[RGB16] Boris Raymond, Gael Guennebaud, and Pascal Barla. Multi-

scale rendering of scratched materials using a structured SV-

107

6 Bibliography

BRDF model. ACM Transactions on Graphics (TOG), 35(4):57,
2016.

[RMS+08] Martin Rump, Gero Müller, Ralf Sarlette, Dirk Koch, and Rein-

hard Klein. Photo-realistic rendering of metallic car paint

from image-based measurements. In Computer Graphics Forum,

volume 27, pages 527–536. Wiley Online Library, 2008.

[RP11] Julien Rabin and Gabriel Peyré. Wasserstein regularization of

imaging problem. In 2011 18th IEEE International Conference
on Image Processing, pages 1541–1544. IEEE, 2011.

[RPDB11] Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot.

Wasserstein barycenter and its application to texture mixing. In

International Conference on Scale Space and Variational Methods
in Computer Vision, pages 435–446. Springer Berlin Heidelberg,

2011.

[RSK09] Martin Rump, Ralf Sarlette, and Reinhard Klein. Efficient re-

sampling, compression and rendering of metallic and pearles-

cent paint. In Vision, Modeling, and Visualization, pages 11–18,
2009.

[RSK13] Roland Ruiters, Christopher Schwartz, and Reinhard Klein.

Example-based interpolation and synthesis of bidirectional

texture functions. In Computer Graphics Forum, volume 32,
pages 361–370. Wiley Online Library, 2013.

[RT01] Yossi Rubner and Carlo Tomasi. The earth mover’s distance. In

Perceptual Metrics for Image Database Navigation, pages 13–28.
Springer, 2001.

[RTG98] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. A metric

for distributions with applications to image databases. In Sixth
International Conference on Computer Vision, pages 59–66. IEEE,

1998.

108

6 Bibliography

[RTG00] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth

mover’s distance as a metric for image retrieval. International
Journal of Computer Vision, 40(2):99–121, 2000.

[RYZ11] Zhou Ren, Junsong Yuan, and Zhengyou Zhang. Robust hand

gesture recognition based on finger-earth mover’s distance with

a commodity depth camera. In Proceedings of the 19th ACM
international conference on Multimedia, pages 1093–1096. ACM,

2011.

[SBM+10] O. Stava, B. Beneš, R. Měch, D. G. Aliaga, and P. Krištof. Inverse

Procedural Modeling by Automatic Generation of L-systems.

Computer Graphics Forum, 29(2):665–674, May 2010.

[Sch94] Christophe Schlick. An inexpensive BRDF model for physically-

based rendering. In Computer graphics forum, volume 13, pages

233–246. Wiley Online Library, 1994.

[SCOL+04] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and

H.-P. Seidel. Laplacian surface editing. In Proceedings of the
2004 Eurographics/ACM SIGGRAPH Symposium on Geometry
Processing, SGP ’04, pages 175–184, New York, NY, USA, 2004.
ACM.

[SDGP+15] Justin Solomon, Fernando De Goes, Gabriel Peyré, Marco Cu-

turi, Adrian Butscher, Andy Nguyen, Tao Du, and Leonidas

Guibas. Convolutional wasserstein distances: Efficient optimal

transportation on geometric domains. ACM Transactions on
Graphics (TOG), 34(4):66, 2015.

[Sin64] Richard Sinkhorn. A relationship between arbitrary positive

matrices and doubly stochastic matrices. The annals of mathe-
matical statistics, 35(2):876–879, 1964.

[SPK+14] O. Stava, S. Pirk, J. Kratt, B. Chen, R. Měch, O. Deussen, and

B. Benes. Inverse Procedural Modelling of Trees: Inverse Proce-

109

6 Bibliography

dural Modeling of Trees. Computer Graphics Forum, 33(6):118–
131, September 2014.

[SRGB14] Justin Solomon, Raif Rustamov, Leonidas Guibas, and Adrian

Butscher. Earth Mover’s Distances on Discrete Surfaces. ACM
Trans. Graph., 33(4):67:1–67:12, July 2014.

[SZGP05] Robert W. Sumner, Matthias Zwicker, Craig Gotsman, and Jo-

van Popović. Mesh-based inverse kinematics. ACM Transactions
on Graphics (TOG), 24(3):488–495, 2005.

[SZP07] Barbara Solenthaler, Yanci Zhang, and Renato Pajarola. Effi-

cient Refinement of Dynamic Point Data. In M. Botsch, R. Pa-

jarola, B. Chen, and M. Zwicker, editors, Eurographics Sympo-
sium on Point-Based Graphics. The Eurographics Association,

2007.

[THCF06] Haishan Tian, Yuanjun He, Hongming Cai, and Lirong Feng.

Efficient Metamorphosis of Point-Sampled Geometry. In 16th
International Conference on Artificial Reality and Telexistence–
Workshops (ICAT’06), pages 260–263, Hangzhou, Zhejiang,

China, 2006. IEEE.

[TTOO90] Atsushi Takagi, Hitoshi Takaoka, Tetsuya Oshima, and Yoshi-

nori Ogata. Accurate rendering technique based on colori-

metric conception. In ACM SIGGRAPH Computer Graphics,
volume 24, pages 263–272. ACM, 1990.

[TWB05] Atsushi Takagi, Akihiro Watanabe, and Gorow Baba. Prediction

of spectral reflectance factor distribution of automotive paint

finishes. Color Research & Application, 30(4):275–282, 2005.

[TZL+02] Xin Tong, Jingdan Zhang, Ligang Liu, Xi Wang, Baining Guo,

and Heung-Yeung Shum. Synthesis of bidirectional texture

functions on arbitrary surfaces. In ACM Transactions on Graph-
ics (ToG), volume 21, pages 665–672. ACM, 2002.

110

6 Bibliography

[TZZ09] G. Tan, S. Zhang, and Y. Zhang. Shape Morphing for Point

Set Surface Based on Vertex Deformation Gradient. In 2009
WRI World Congress on Software Engineering, volume 2, pages

466–471. IEEE, May 2009.

[USM+17] Hideaki Uchiyama, Shunsuke Sakurai, Masashi Mishima,

Daisaku Arita, Takashi Okayasu, Atsushi Shimada, and Rin-

ichiro Taniguchi. An Easy-to-Setup 3d Phenotyping Platform

for KOMATSUNA Dataset. In 2017 IEEE International Confer-
ence on Computer Vision Workshops (ICCVW), pages 2038–2045,
Venice, Italy, October 2017. IEEE.

[VLSM18] E. Vlachos, A. S. Lalos, A. Spathis-Papadiotis, and K. Mous-

takas. Distributed consolidation of highly incomplete dynamic

point clouds based on rank minimization. IEEE Transactions
on Multimedia, 20(12):3276–3288, Dec 2018.

[VTSSH15] Christoph Von-Tycowicz, Christian Schulz, Hans-Peter Seidel,

and Klaus Hildebrandt. Real-time nonlinear shape interpola-

tion. ACM Transactions on Graphics (TOG), 34(3):34:1–34:10,
May 2015.

[Was69] Leonid N Wasserstein. Markov processes over denumerable

products of spaces describing large systems of automata. Prob-
lems of Information Transmission, 5(3):47–52, 1969.

[WH97] Douglas J Wiley and James K Hahn. Interpolation synthe-

sis of articulated figure motion. IEEE Computer Graphics and
Applications, 17(6):39–45, 1997.

[WLX+18] Guan Wang, Hamid Laga, Ning Xie, Jinyuan Jia, and Hedi

Tabia. The Shape Space of 3d Botanical Tree Models. ACM
Transactions on Graphics (TOG), 37(1):1–18, January 2018.

[WPKM15] Mirwaes Wahabzada, Stefan Paulus, Kristian Kersting, and

Anne-Katrin Mahlein. Automated interpretation of 3d laser-

111

6 Bibliography

scanned point clouds for plant organ segmentation. BMC
Bioinformatics, 16(1), December 2015.

[WWX+19] Sheng Wu, Weiliang Wen, Boxiang Xiao, Xinyu Guo, Jianjun

Du, Chuanyu Wang, and Yongjian Wang. An Accurate Skeleton

Extraction Approach From 3d Point Clouds of Maize Plants.

Frontiers in Plant Science, 10, 2019.

[WZH12] Renfang Wang, Changwei Zhang, and Jie Hu. Smooth Morph-

ing of Point-Sampled Geometry. In Tai-hoon Kim, Hyun-seob

Cho, Osvaldo Gervasi, and Stephen S. Yau, editors, Computer
Applications for Graphics, Grid Computing, and Industrial Envi-
ronment, Communications in Computer and Information Sci-

ence, pages 16–23. Springer Berlin Heidelberg, 2012.

[XM15] Ling Xu and David Mould. Procedural Tree Modeling with

Guiding Vectors. Computer Graphics Forum, 34(7):47–56, Octo-

ber 2015.

[XSWL15] W. Xu, M. Salzmann, Y. Wang, and Y. Liu. Deformable 3D
fusion: From partial dynamic 3D observations to complete 4D
models. In 2015 IEEE International Conference on Computer
Vision (ICCV), pages 2183–2191. IEEE, Dec 2015.

[XZPF04] Chunxia Xiao, Wenting Zheng, Qunsheng Peng, and A. R. For-

rest. Robust morphing of point-sampled geometry. Computer
Animation and Virtual Worlds, 15(3-4):201–210, July 2004.

[XZWB06] Dong Xu, Hongxin Zhang, Qing Wang, and Hujun Bao. Poisson

shape interpolation. Graphical Models, 68(3):268 – 281, 2006.

[YHJ+14] Ling-Qi Yan, Miloš Hašan, Wenzel Jakob, Jason Lawrence, Steve

Marschner, and Ravi Ramamoorthi. Rendering glints on high-

resolution normal-mapped specular surfaces. ACM Transac-
tions on Graphics (TOG), 33(4):116, 2014.

112

6 Bibliography

[YHMR16] Ling-Qi Yan, Miloš Hašan, Steve Marschner, and Ravi Ra-

mamoorthi. Position-normal distributions for efficient render-

ing of specular microstructure. ACM Transactions on Graphics
(TOG), 35(4):56, 2016.

[YLX+16] Qing Yuan, Guiqing Li, Kai Xu, Xudong Chen, and Hui Huang.

Space-time co-segmentation of articulated point cloud se-

quences. Computer Graphics Forum, 35(2):419–429, 2016.

[ZB13] Yili Zhao and Jernej Barbič. Interactive authoring of simulation-

ready plants. ACM Transactions on Graphics (TOG), 32(4):84:1–
84:12, July 2013.

[ZDW+05] Kun Zhou, Peng Du, Lifeng Wang, Yasuyuki Matsushita, Jiaoy-

ing Shi, Baining Guo, and Heung-Yeung Shum. Decorating

surfaces with bidirectional texture functions. IEEE Transac-
tions on Visualization and Computer Graphics, 11(5):519–528,
2005.

[ZFG+17] Qian Zheng, Xiaochen Fan, Minglun Gong, Andrei Sharf,

Oliver Deussen, and Hui Huang. 4D reconstruction of bloom-

ing flowers. Computer Graphics Forum, 36(6):405–417, 2017.

[ZLLZ12] Q Zeng, X Lin, H Liu, and T Zhu. Plant’s 3d modeling and

growth simulation system based on skeleton extraction. Jour-
nal of Information & Computational Science, 9:1357–1363, May

2012.

113

114

List of Figures

1.1 Rendering and interpolation of metallic paints 3
1.2 Temporal upsampling of scans of a komatsuna plant. 5
1.3 Temporal upsampling of two synthetically generated tree point

clouds obtained with the method described in this thesis. . . . 5
1.4 Illustration of the intuition behind the Monge Problem. The

goal is to transport the pile of sand on the left (blue) into the

hole on the right (red) at minimum cost. 7
1.5 Illustration of the basic optimal transport problem. 8
1.6 Illustration of the setup of a 1D optimal transport problem. . . 9
1.7 Illustration of the discretized basic optimal transport problem. 11
1.8 Illustration of the setup of a discrete 1D optimal transport

problem. 11

2.1 Scene displaying various metallic paints on cars in a virtual

showroom, as may be employed to show color choices to a

customer. Thanks to our efficient statistical representation,

various different digitally acquired real-world metallic paints

can be rendered in real-time on commodity hardware. 18
2.2 Real-time rendering of a car with our metallic car paint repre-

sentation. 25
2.3 Closeup of the car shown in Figure 2.2 26
2.4 Example cumulative distribution function texture for one

mipmap level. One row represents one discrete cumulative

distribution function. Black means zero probability, the bright-

est values mean probability 1. 31

115

List of Figures

2.5 Example color bounding box corners for one mipmap level.

One row represents the color bounding boxes belonging to one

discrete cumulative distribution function. Even pixels are the

colors of "lower left" box corners, the pixels on the right to each

the respective opposite "upper right" corner color. 31

2.6 Part of an example pseudo-random value texture. It is used for

BTF reconstruction. 32

2.7 A light gray metallic paint. Left: Rendering of the original AxF

car paint representation. Right: Rendering of our statistical

representation, which uses only a fraction of the AxF’s memory

requirement. 34

2.8 A gray-blue metallic paint. Left: Rendering of the original AxF

car paint representation. Right: Rendering of our statistical

representation, which uses only a fraction of the AxF’s memory

requirement. 34

2.9 Extreme close-up view of the light-gray paint. Left: AxF repre-

sentation. Right: Our statistical representation. Note that on

the pixel level, one can clearly see differences between the two

representations. 35

2.10 A brown metallic paint on a cylinder. Left: AxF representation.

Right: Our statistical representation. 35

2.11 An intense blue metallic paint on a cylinder. Note that in this

case, most flakes are blue, too. Left: AxF representation. Right:

Our statistical representation. 36

2.12 A pearlescent effect paint on a cylinder. It changes its color

from green to blue, depending on the light-view combination.

Left: AxF representation. Right: Our statistical representation. 36

3.1 (a) Two measured metallic car paints. (b) Measured car paints

and car paints generated with our approach: Interpolation

of the brown paint towards the blue paint in 25% steps. All

parameters are interpolated, including the metallic sparkling

effect caused by metallic flakes. 39

116

List of Figures

3.2 Our interpolation method for metallic paints is based on solv-

ing an optimal transport problem. After clustering the colors

present in the car paint BTF, we set up an optimal transport

problem and use its solution for interpolating between the

paints. Schematics of the involved steps are given in the sub-

figures. 50

3.3 Manipulating the metallic sparkling intensity by interpolation

of only the flake BTF’s lightness. From left to right: Original

blue paint, blue paint with flake BTF lightness interpolated

half-way between blue and brown paint, blue paint with flake

lightness set to match the brown paint’s flake BTF lightness,

original brown paint. The basic color impression of the inter-

polated material remains blue, while the metallic sparkling

intensity increases, matching that of the brown paint. 55

3.4 Partial Interpolation. Left to right: Original brown paint, brown

paint with all parameters except the flake BTF’s lightness in-

terpolated half-way between the brown and the blue paint’s,

brown paint with all parameters except the flake BTF’s light-

ness interpolated to the blue paint’s, original blue paint 55

3.5 Left: Original blue car paint material. Right: Blue paint with

the flake BTF’s color hue information set to white. This yields

a blue material with white sparkles. However, it looks less

convincing as a metallic paint, because it looks too smooth. . . 56

3.6 Several interpolations: In each row, the capsules in the left and

right column are have been assigned the original measured

paints, capsules have been assigned materials interpolated be-

tween the respective measured materials. The green-blue paint

in the bottom picture is a flip-flop paint, which is also correctly

interpolated. The flip-flop effect gets weaker the more one goes

towards the gray paint. 57

117

List of Figures

3.7 Example Application: The capsules can be moved. The central

capsule’s material is interpolated from the other three capsules’

materials, depending on the distance to them. The car has the

same interpolated material. This way the user can generate a

desired material in real-time. See also the accompanying video. 59

3.8 Our approach can also be used to generate extrapolated versions

of the metallic paints. The two paints displayed in the center

(b) are the original paints. To the left (a) and right (b) are

extrapolations in 25% steps. The respective interpolations are

shown in Figure 3.1b. 60

4.1 Temporal upsampling of two synthetically generated tree point

clouds obtained with our method. The original point clouds

for the time steps ti and ti+1 are highlighted with a gray back-

ground and the in-between states have been computed based

on our method. 61

4.2 Overview of our method: First, a hierarchical segmentation is

generated for each scan, which is followed by a matching of the

segments of point clouds obtained for successive measurements

at the time steps ti and ti+1 and the computation of segment-

wise optimal transport solutions used for temporal upsampling.

. 70

4.3 Comparison between animations generated from the same data

without segmentation (top row) and with segmentation (bottom

row). Images with a gray background correspond to the input

scans. Images with a white background represent upsampled

data. In the case without segmentation (top row), the plant

breaks up in an unrealistic way. Using segmentation (depicted

in the bottom row), this problem is solved, because transport is

restricted to take place only within a segment. 71

118

List of Figures

4.4 Exemplary segment hierarchy obtained from an initially pro-

vided plant segmentation: The artificially generated tree has a

natural segmentation. We impose a hierarchy by heuristically

or manually selecting a root (the tree trunk) and then perform-

ing successive nearest neighbor searches in order to generate a

hierarchy on the segments. 73

4.5 Labeled point cloud scans from the Komatsuna dataset

[USM+17]. (a) shows two successive point cloud scans which

are consistently labeled and only a small amount of growth

happened. In this case, no further matching of the segmen-

tations is necessary. (b) shows two point clouds where there

has been significant growth in the meantime. While consistent

labels are assigned to the individual parts, for the newly grown

part a small new virtual segment is added to the first point

cloud and matched to the unmatched segment of the second

point cloud. 74

4.6 Segmented point clouds of two successive scans of a maize

plant. The hierarchy graphs are plotted on top of the plants

and shown additionally in the boxes. Although the numberings

of the nodes, indicated in terms of the segment colors, differ, our

method allows a correct matching of corresponding segments. 75

4.7 Several stages of a growing maize plant, visualized with our

method. Real measurements are highlighted with a gray back-

ground, while temporally upsampled data generated with our

method is shown with a white background. 79

119

List of Figures

4.8 Several stages of a growing maize plant. Images with a gray

background are input data. Images with a white background

were generated with our method. Between the two successive

scans, the plant has grown regarding its size as well as a newly-

evolved leaf. The budding process was generated automatically.

In the upper row, the points were colorized according to their

label. Note that the labels and their respective colors in the

input data (gray background) do not match, because the input

scans are segmented individually. Our matching method au-

tomatically produces correct assignments. The label color of

matched segments is interpolated over time (white background)

in order to visualize this. 80
4.9 Temporal upsampling generated from the two input point

clouds highlighted with a gray background. The inputs are

identical, except that the light blue leaf was removed in ti , sim-

ulating the growth of a new plant part. The new leaf grows

smoothly. 85
4.10 Animation generated from the two input point clouds from

Fig. 4.9 in reverse order. The inputs are highlighted with a

gray background, depicting the full plant as the source and

the cropped plant as the target (automatically modified version

shown here). The cropped leaf falls slowly to the ground. . . . 85
4.11 The synthetic tree 1 dataset consists of four time steps t1 to

t4. Input scans are highlighted with a gray background. The

dataset was temporally upsampled with our method in the

intervals [t1, t2] and [t3, t4], respectively, shown with a white

background. 86
4.12 Artifacts in the input data, like the temporarily severed stalk in

the back and the partially occluded leaf on the right in this ex-

ample are temporally upsampled as shrinking and growing an-

imations. Input scans are highlighted with a gray background.

We suggest a pre- or post-processing in order to mitigate these

artifacts for future work. 88

120

List of Figures

4.13 Reconstruction of a point cloud of the Komatsuna dataset. Left:

Original data of scan 3 of day 9 of plant 0. Center: Reconstruc-

tion of this data, using scans 2 and 4 of day 9 of plant 0. Right:

Color-coded reconstruction error. Lower values are colored in

blue, higher values in red. The maximum error is 0.00787517

unit lengths, with input data scaled to the unit volume. 89

121

122

List of Tables

4.1 Overview of computation times for the segmentation step and

the combined matching and optimal transport step for different

datasets. For datasets that are already segmented, we do not

report timings for segmentation. 83

123

	Introduction
	Motivation and Contributions
	Contributions
	Mathematical Foundations of Optimal Transport
	Optimal Transport In Computer Graphics
	Publications
	Outline

	An Efficient Statistical Data Representation for Real-time Rendering of Metallic Effect Car Paints
	Introduction
	Related Work
	Original AxF Car Paint Model
	Our Representation and its Generation
	Generation of the Statistical Representation
	Real-time BTF Reconstruction and Rendering

	Evaluation
	Visual Comparison
	Memory Usage and Rendering Times

	Limitations
	Conclusion

	Interactive Interpolation of Metallic Effect Car Paints
	Introduction
	Related Work
	Metallic Car Paint Rendering
	BTF Synthesis and Interpolation
	Optimal Transport in Computer Graphics

	The Statistical Car Paint Model
	The Basic Car Paint Model
	The Statistical Model

	Interpolation Method
	Preprocessing for the Interpolation of the Flake BTFs
	Real-Time Interpolation
	Interpolation of Multiple Materials
	Separate Interpolation of the Flake Intensity and the Color

	Results
	Conclusion

	Temporal Upsampling of Point Cloud Sequences by Optimal Transport for Plant Growth Visualization
	Introduction
	Related Work
	Temporal Upsampling of Point Cloud Sequences Using Optimal Transport for Plant Growth Visualization
	Coarse Alignment
	Hierarchical Segmentation
	Segment Matching
	Optimal Transport Plan for Two Point Clouds

	Results
	Limitations and Future Work
	Conclusion

	Summary, Conclusion and Future Work
	Summary and Conclusion
	Future Work

	Bibliography
	List of Figures
	List of Tables

