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ABSTRACT 

 

Agriculture in the twenty-first century faces the double challenge of feeding a growing 

population in a changing climate. Food security will increasingly rely on the active release of 

stable high-yielding cultivars with improved resilience to water shortages, particularly for 

vulnerable drought-prone environments. Therefore, developing new techniques and approaches 

to improve the efficiency and precision of crop breeding for drought tolerance is essential. 

Conventional plant phenotyping methods for assessing plant responses to water-limiting 

conditions, and supporting selective breeding, are usually laborious, time-consuming, and 

costly. More recently, cost-effective high-throughput phenotyping platforms (HTPPs) have 

emerged, enabling rapid and accurate phenotypic characterisation of large populations in either 

controlled or field conditions. HTPPs deploy sensors to non-invasively and non-destructively 

identify, quantify, and record relevant plant traits. An integrative signal, such as photosynthesis, 

may serve as a robust selection parameter for crop performance. Chlorophyll fluorescence 

(ChlF) is an inexpensive, fast, and non-invasive technique for probing photosynthesis and, 

therefore, for monitoring plant physiological status. Although proposed as a method for drought 

tolerance screening, ChlF has not yet been fully adopted in physiological breeding, mainly due 

to limitations in high-throughput phenotyping capabilities. Most of the prior research has relied 

on the pulse-amplitude modulation (PAM) fluorometry, which typically requires a saturating 

flash in very close proximity, done mainly by clamping on leaves, limiting its throughput. In 

this context, the Light-Induced Fluorescence Transient (LIFT) sensor arose as an alternative for 

acquiring high-throughput ChlF-based traits. The LIFT fluorometer actively monitors ChlF 

within milliseconds using subsaturating excitation flashlets instead of the saturating pulse. Also, 

this pump-and-probe method works at a distance, bridging the gap between leaf and canopy 

levels. LIFT-measured ChlF has proved to provide not only PAM-analogous photosynthetic 

parameters but also measures the downstream electron transport rates from the primary quinone 

acceptor (QA) to the plastoquinone (PQ) pool, and ultimately, towards the photosystem (PS) I. 

Nevertheless, little knowledge is available on the overall responses of LIFT-measured ChlF 

traits in field-grown crops under drought and their native genetic variability, aiding 

physiological crop breeding towards drought tolerance. To this end, the LIFT instrument was 

mounted on a manually pushed cart to measure ChlF across time in a large panel of durum 

wheat genotypes (> 220 elite accessions) subjected to progressive drought in replicated field 

trials over two growing seasons in Maricopa, Arizona, USA. Secondly, the LIFT sensor was 

combined with an existing automated HTPP for simultaneous and continuous monitoring of 

water relations in the soil-plant-atmosphere continuum of wheat plants growing in semi-

controlled conditions. The photosynthetic performance was measured at the canopy level by 

means of the operating efficiency of PSII (𝐹𝑞
′ 𝐹𝑚

′⁄ ) and the kinetics of electron transport from 

QA to PQ pool and from PQ pool to PSI measure by reoxidation rates, 𝐹𝑟1
′  and 𝐹𝑟2

′ , respectively. 

Short- and long-term changes in ChlF traits were found in response to soil water availability 

and interactions with weather fluctuations, namely photosynthetic photon flux density (PPFD) 

and vapour pressure deficit (VPD). At an unprecedented scale, this high-throughput approach 

for phenotyping ChlF traits integrated with a high-resolution recording of the environment 

allowed for estimation of genetic effects over time and shed light on the diurnal dynamics of 

the photosynthetic apparatus, facilitating the ability to dissect complex physiological traits in 

fluctuating growing conditions. 

 

Keywords: durum wheat; drought; LIFT; chlorophyll fluorescence; electron transport rate; 

photosynthesis; high-throughput plant phenotyping; genetic diversity; physiological breeding; 

fluctuating environment; genotype-by-environment interaction; spatiotemporal modelling.  



 

 

 

ZUSAMMENFASSUNG 

 

Die Landwirtschaft steht im 21. Jahrhundert vor der doppelten Herausforderung, dass 

sie unter sich stets verändernden klimatischen Bedingungen eine wachsende Weltbevölkerung 

zu ernähren hat. Das Züchten neuer ertragsstabiler Sorten, welche den kontinuierlich 

verändernden Klimabedingungen standhalten beziehungsweise trockentolerant sind, wird 

insbesondere in wasserarmen Gebieten entscheidenden zur globalen Ernährungssicherung 

beitragen. Im Hinblick auf die Trockentoleranz ist daher die Entwicklung neuer Techniken und 

Ansätze zur Verbesserung der Effizienz und Präzision der Pflanzenzüchtung unerlässlich. Die 

Untersuchung pflanzlicher Reaktionen auf wasserlimitierende Bedingungen im 

Zusammenhang mit der selektiven Züchtung gestaltet sich oft schwierig, da herkömmliche 

Methoden der Pflanzenphänotypisierung in der Regel umständlich, zeitintensiv und kostspielig 

sind. Neuerdings wurden vermehrt kostengünstige Hochdurchsatz-

Phänotypisierungsplattformen (HTPPs) entwickelt, die eine schnelle und akkurate 

phänotypische Charakterisierung großer Populationen unter kontrollierten und 

Feldbedingungen ermöglichen. HTPPs greifen auf Sensoren zurück, um relevante 

Eigenschaften von Pflanzen nicht-invasiv und nicht-destruktiv zu identifizieren, quantifizieren 

und aufzuzeichnen. Ein integratives Signal, wie die Photosynthese, könnte als robuster 

Selektionsparameter zur Beurteilung Leistungsfähigkeit der Pflanzen nutzbringend sein. Die 

Messung der Chlorophyll-Fluoreszenz (ChlF) ist eine kostengünstige, schnelle sowie nicht-

invasive Methode zur Untersuchung der Photosyntheseleistung, und somit zur Beobachtung des 

physiologischen Zustands der Pflanzen. Obschon die ChlF-Methode für das Screening 

trockentoleranter Sorten mitentwickelt wurde, findet sie bislang, noch keine breite Anwendung 

in der Pflanzenzüchtung, dies hauptsächlich aufgrund der Einschränkungen bei der 

Hochdurchsatz-Phänotypisierung. Der Großteil der bisherigen Forschung basiert auf der Puls-

Amplituden-Modulation (PAM)-Fluorometrie, die typischerweise einen sättigenden Lichtblitz 

in unmittelbarer Nähe erfordert. Meistens erfolgt dies durch das Einklemmen von Blättern was 

aber Probendurchsatz stark begrenzt. Vor diesem Hintergrund wurde der ʻLight-Induced 

Fluorescence Transientʼ (LIFT)-Sensor entwickelt. Dieser stellt eine Alternative zur Erfassung 

von ChlF-basierten Eigenschaften mit hohem Durchsatz dar. Unter Verwendung von nicht-

sättigenden Anregungs-Lichtblitzen anstatt des Sättigungspulses misst das LIFT-Fluorometer 

aktiv innerhalb von Millisekunden ChlF. Zudem ermöglicht dieses Pump-Probe-Verfahren eine 

Messung auf Distanz und überbrückt somit die Lücke zwischen Blattmessungen und 

Messungen auf Bestandsebene. Die ChlF Messung mit dem LIFT liefert nicht nur PAM-

analoge photosynthetische Parameter, sondern misst auch die nachgeschalteten 

Elektronentransportraten vom primären Chinon-Elektronenakzeptor (QA) zum Plastochinon 

Pool (PQ), und schließlich zum Photosystem (PS) I. Dennoch ist nur wenig über die 

allgemeinen Reaktionen von LIFT-gemessenen ChlF-Eigenschaften unter trockenen 

Feldbedienungen und deren genetische Variabilität bekannt. Zur Datenerhebung wurde das 

LIFT-Gerät auf einem manuell geschobenen Wagen montiert um schließlich ChlF im zeitlichen 

Verlauf in einem großen Panel von Hartweizen-Genotypen (> 220 Elite-Akzessionen) zu 

messen. Die Weizenpflanzen wurden über zwei Wachstumsperioden in Maricopa, Arizona, 

USA, progressiver Trockenheit in Feldbedingungen ausgesetzt. Zur simultanen und 

kontinuierlichen Aufzeichnung der Wasserverhältnisse im Boden-Pflanze-Atmosphäre-

Kontinuum wurden die LIFT Messungen mit einem automatisierten HTPP kombiniert. Die 

Photosyntheseleistung wurde auf Bestandesebene anhand der Quanteneffizienz des PSII 

(𝐹𝑞
′ 𝐹𝑚

′⁄ ) sowie der Kinetik des Elektronentransport vom QA zum PQ Pool und vom PQ Pool 

zum PSI durch Reoxidationsraten beziehungsweise durch 𝐹𝑟1
′  und 𝐹𝑟2

′  gemessen. Kurz- und 

langfristige Veränderungen der ChlF-Eigenschaften konnten als Reaktion auf die 

Wasserverfügbarkeit im Boden und in Wechselwirkung mit Bedingungsschwankungen 



 

 

 

(photosynthetischen Photonenflussdichte und dem Sättigungsdampfdruckdefizit) 

nachgewiesen werden. Dieser Hochdurchsatz-Ansatz zur Phänotypisierung von ChlF-

Eigenschaften, verknüpft mit einer hochauflösenden Aufzeichnung der Umweltdaten, 

ermöglicht in einem erstmaligen Ausmaß die Schätzung von genetischen Effekten im zeitlichen 

Verlauf. Zudem verdeutlicht er die tageszeitliche Dynamik des photosynthetischen Apparates 

mit der Fähigkeit komplexe physiologische Eigenschaften unter schwankenden 

Wachstumsbedingungen getrennt zu betrachten. 

 

Stichworte: Hartweizen; Trockenheit; LIFT; Chlorophyll-Fluoreszenz; 

Elektronentransportrate; Photosynthese; Hochdurchsatz-Pflanzenphänotypisierung; genetische 

Vielfalt; physiologische Züchtung; fluktuierende Umwelt; Genotyp-Umwelt-Interaktion; 

Raum-Zeit Modellierung. 
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1 INTRODUCTION 

 

1.1 A CHANGING WORLD: SETTING THE SCENE 

 

The world’s population reached 7.7 billion in mid-2019 and will continue to grow to 

some 9.7 billion by 2050 and 10.9 billion by 2100 (United Nations, 2019), leading to greater 

demand for food, feed, fibre, water and energy (Godfray et al., 2010). Future global food 

demand is expected to increase by some 70% by 2050 (Turral, Burke & Faurès, 2011). In terms 

of agricultural production, Tilman, Balzer, Hill & Befort (2011) estimate that the worldwide 

demand for crop calories may increase by 100-110% from 2005 to 2050. According to Ray, 

Mueller, West & Foley (2013), to achieve such a goal of doubling the production, it would 

require that global yields increase at rates of ~2.4% per year for the top four staple crops – 

maize, rice, wheat, and soybean – that respond to almost two-thirds of global calories. However, 

their current yields are increasing at rates ranging from 0.9% to 1.6% per year. Therefore, 

boosting global food production will require modern technologies and innovative approaches 

to accelerate crop improvement (Hickey et al., 2019; Tester & Langridge, 2010). 

Concurrent with this urge to increase agricultural yields, there is the ongoing climate 

change, driven by a continual rise in anthropogenic greenhouse gas emissions. Recently, IPCC 

(2019) reported that the observed mean temperature over the land surface for the period 2006-

2015 was 1.53°C warmer than for the pre-industrial period (1850-1900), and 0.66°C higher 

than the equivalent global (land and ocean) mean temperature. Also, without stringent 

mitigation of current emissions of greenhouse gases, IPCC (2014) estimates that the globe 

temperature will likely be between 1.8°C to 3.7°C warmer, on average, by the end of the 

century. It has been suggested that a global warming between 1.5°C and 2.5°C would have a 

moderate impact on the planet’s biodiversity (Porter et al., 2014), when approximately 20-30% 

of species could be at increased risk of extinction (UNEP, 2009). Apart from rising 

temperatures, the hydrological cycle is also expected to change patterns. Precipitation is 

predicted to rise in the tropics and higher latitudes but to decrease in the subtropics and lower 

mid-latitudes (Trenberth et al., 2014; Turral et al., 2011). Vulnerable water-scarce areas, such 

as arid and semi-arid regions, will likely exacerbate the climatic effects, getting drier and hotter 

(Seager, Naik & Vecchi, 2010). Altogether, both rainfalls and temperatures may become more 

variable in space and time, with higher frequency and intensity of extreme events, such as heat 

waves, droughts and floods (United Nations, 2019; UNEP, 2009). As a matter of fact, all 

potential impacts are not fully understood yet, although the predictions strongly suggest climate 
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change pose a threat to environmental sustainability and global socioeconomic development 

(Royal Society, 2012; Stern, 2007), which may cause radical changes in our society. 

Undoubtedly, a changing climate can jeopardise the availability of a stable food supply 

and undermine strategies for doubling agricultural productivity. For instance, Lobell, Schlenker 

& Costa-Roberts (2011) estimated that global maize and wheat production declined by 3.8% 

and 5.5%, respectively, from 1980 to 2008 due to changes in temperature and precipitation 

trends. For every 1°C increase in temperature, yields are expected to decline by 10% in wheat 

and rice, and decrease by 17% in soybean (Taiz, 2013). Despite the great uncertainties and 

difficulties in forecasting the agricultural impacts of climate change (FAO, 2016; Lobell & 

Burke, 2008), Cline (2007) projected potential losses in world agricultural capacity lying in the 

range of 10-25% by the 2080s. Likewise, Porter et al. (2014) reported that about 10% of their 

projections for the period 2030-2049 showed yield losses for the major crops (wheat, rice, and 

maize) higher than 25% compared to the late 20th century, with even greater risks of more 

severe impacts after 2050. Notably, climate trends may also increase crop vulnerability to pests 

since various pathogens, insects, and weeds become more active in warmer weather, changing 

their spatial and temporal population dynamics (Evans, Baierl, Semenov, Gladders & Fitt, 

2008; Garrett, Dendy, Frank, Rouse & Travers, 2006; Rosenzweig, Iglesias, Yang, Epstein & 

Chivian, 2001). Hence, global food security (i.e., availability, stability, utilisation, and access) 

can be seriously compromised (FAO, 2016; Schmidhuber & Tubiello, 2007). Indeed, feeding a 

growing population on a limited planet coupled with environmental constraints is certainly one 

of the greatest challenges of the twenty-first century (Royal Society, 2012). 

 

1.2 THE DROUGHT PHENOMENON 

 

Drought is a naturally occurring climatic feature; its recurrence is inevitable and can 

occur in virtually all edaphoclimatic zones (Dai, 2011). Globally, drought (7.5%) is the second-

most geographically extensive hazard after floods (11%) of the earth’s land area (Nagarajan, 

2009). Also, it has been estimated that about 18% and 26% of the world’s rural area show 

respectively moderate and severe constraints to rainfed crop production due to moisture 

limitations (van Velthuizen et al., 2007). To determine either the onset of drought or its 

termination, it is a rather tricky task (Wilhite & Glantz, 1985), making the drought event as one 

of the most complex but least understood of all natural hazards, affecting more people than any 

other hazard (American Meteorological Society, 1997; Wilhite, 2000). Indeed, Bryant (1991) 

assessed 31 natural hazard events and ranked drought at first based on its key impacts and 
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characteristics (e.g., the degree of severity, length of event, total areal extent, total loss of life, 

total economic loss, social effects, long-term impacts, suddenness, and occurrence of associated 

hazards). Despite its importance, there is no precise and universally accepted definition of 

drought, as it reflects multidisciplinary perspectives and consequently incorporates different 

physical, biological, and socioeconomic variables (Mishra & Singh, 2010; Trenberth, et al., 

2014; Wilhite, 2000). As a matter of fact, there are more than 150 definitions of drought 

published in the literature (Boken, 2005; Wilhite & Glantz, 1985). 

Regardless of this variation in definitions, often droughts are broadly grouped into four 

categories (American Meteorological Society, 1997; Dai, 2011; Heim Jr., 2002; Mishra & 

Singh, 2010) as follows: i) Meteorological or climatological drought is defined as a period of 

months to years with below-normal precipitation over a region, which is typically caused by 

persistent anomalies in large-scale atmospheric circulation patterns; ii) Hydrological drought 

occurs when precipitation deficits over a prolonged period affect surface and subsurface water 

supply, reducing streamflow, groundwater, reservoirs, and lake levels; iii) Agricultural drought, 

usually, refers to moisture deficits within the topmost one metre or so of soil (i.e., around the 

root zone), as a result of below-average precipitation or above-normal evapotranspiration, at a 

critical period during the growing season, which impacts crop development and growth, and 

ultimately leads to yield losses; and iv) Socioeconomic drought associates the supply and 

demand of some economic good with elements of meteorological, agricultural, and 

hydrological drought. The relationship between these various types of drought and the duration 

of the event is demonstrated in Figure 1.1. 

At the onset of drought, agriculture is frequently the first economic sector to be 

affected since soil moisture can quickly be depleted, mainly when associated with high 

temperatures and winds (Wilhite, 2000). As a matter of fact, agricultural drought is 

acknowledged as the most important and the most complex category of drought, often requiring 

a good knowledge of soil physics, plant physiology, and economics (Boken, 2005; Palmer, 

1965). At the macro-level, agricultural drought has the potential to cause severe food shortage 

or even famine in some countries, resulting in loss of both the human and livestock population 

(Boken, 2005). In short, people can be at a higher risk of hunger and poverty (FAO, 2016). This 

explains why the fight against drought is at high priority in the long-term plan of the World 

Meteorological Organization (WMO) through its Commission for Agricultural Meteorology, 

which provides direction and guidance to the Agricultural Meteorology Programme 

(Sivakumar, 2005, 2011). 
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Figure 1.1. The relationship between the various types of drought and the duration of drought events. 

Adapted from Wilhite (2000). 

 

1.3 DROUGHT STRESS IN CROP PLANTS: EFFECTS AND RESPONSES 

 

Plants are constantly exposed to environmental fluctuations and not rarely subjected 

to biotic (e.g., diseases and insect pests) and abiotic stresses (e.g., drought, flood, salinity, 

excess light, extreme temperatures, nutritional deficiency, and heavy metals). In being sessile 

organisms, plants have evolved several mechanisms to perceive surrounding environmental 

stimuli and cope with potential stressors via morphological, anatomical, biochemical, and 

physiological adjustments (De Micco & Aronne, 2012). These plant responses will vary 

depending on the type of stress and its time, duration and intensity, as well as on plant species, 

variety or ecotype (Lefebvre, Kiani & Durand-Tardif, 2009). Indeed, plant responses to stress 

rely on complex biological regulatory networks (Cramer, Urano, Delrot, Pezzotti & Shinozaki, 

2011), which are strongly genetically controlled (Ghatak, Chaturvedi & Weckwerth, 2017; 

Habash et al., 2014; Hu & Xiong, 2014; Sallam, Alqudah, Dawood, Baenziger & Börner, 2019). 
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Drought is a severe environmental constraint to crop growth and productivity. 

Drought-induced yield reduction has been reported to widely vary from 11% to 94% in many 

crops, such as barley, rice, chickpea, pigeon pea, common beans, soybean, cowpea, sunflower, 

canola, and potato (Farooq, Wahid, Kobayashi, Fujita & Basra, 2009). In a global meta-

analysis, Daryanto, Wang & Jacinthe (2016) estimated average yield losses of 20.6% and 39.3% 

in wheat and maize, respectively, at approximately 40% water reduction. As a matter of fact, 

depending upon the growth stage and the severity and duration of the water deficit period, yield 

losses can broadly range from 9% to 92% in wheat across different geographic locations, as 

reported by Mohammadi (2018) and Nezhadahmadi, Prodhan & Faruq (2013). If water is the 

only limitation, the upper limit of water productivity (i.e., the water-use efficiency) of rainfed 

wheat in dry environments is typically 20-22 kg ha-1 mm-1 (grain yield per water transpired), as 

shown by Passioura (2006) and Sadras & Angus (2006). Water is indeed an essential element 

of life. 

In general, plants have evolved three major strategies to cope with water-limiting 

conditions (Blum, 2011a; Fang & Xiong, 2015; Hu & Xiong, 2014; Kooyers, 2015; Lefebvre 

et al., 2009; Levitt, 1980; Verslues, Agarwal, Katiyar-Agarwal, Zhu & Zhu, 2006; Verslues & 

Juenger, 2011) as follows: i) Drought escape: allows plants to adjust their life cycle to avoid 

stress; in other words, shortening life cycle to complete maturation before the environment 

becomes drier by altering the flowering time; ii) Drought avoidance (or dehydration 

avoidance): occurs when plants increase water-use efficiency (WUE) by reducing transpiration, 

limiting vegetative growth, or increasing root growth; so it is mostly characterised by the 

maintenance of high plant water potentials, which involves growth adjustments to minimise 

water loss and/or to optimise water uptake and so tolerating low internal potentials without 

excessive tissue dehydration; and iii) Drought tolerance (or dehydration tolerance): is defined 

as the plant’s ability to function at low water availability; allows plants to survive and sustain 

a certain level of physiological activity through accumulation of osmoprotectants, antioxidants, 

and reactive oxygen species (ROS) scavengers. Nevertheless, this division in strategies is 

somewhat theoretical, and there is no clear cut since soil drying is a stochastic process. Plants 

might experience a variety of stress conditions leading to complex and mixed responses. 

Crop root and shoot growth are intimately linked (Bingham, 2001; Vercruyssen, 

Gonzalez, Werner, Schmülling & Inzé, 2011), in a way that roots can sense soil moisture 

depletion and signal its status to the shoot, mediating adjustments in leaf growth and stomatal 

aperture, and finally aiming to conserve internal water content (Neumann, 2008). Both chemical 

and hydraulic signals are involved in this signalling mechanism, where the chemical ones (e.g., 
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abscisic acid (ABA), cytokinins (CKs), a precursor of ethylene, malate and other unidentified 

factors) tend to predominate during early water deficit sensing stages, leading to reduced 

transpiration and decreased leaf growth (Schachtman & Goodger, 2008). These plant growth 

adjustments to environmental changes are driven by numerous cell wall modifying proteins, 

such as expansins, xyloglucan endotransglucosylase/hydrolases (XTHs), endo-β-1,4-

glucanases (EGases), and pectin methylesterases (PMEs), which alter cell wall structure and 

properties, facilitating plant acclimation (Sasidharan, Voesenek & Pierik, 2011). Notably, 

drought-responsive phytohormones (e.g., ABA, CKs and ethylene; Wilkinson & Davies, 2010) 

are known to regulate expansins and XTHs (Cho & Cosgrove, 2010; Yokoyama & Nishitani, 

2001). While shoot growth is inhibited, roots tend to keep elongating in water-limiting 

environments, probably as an adaptive strategy to exploit better the water stored in the soil 

matrix (Sasidharan et al., 2011; Vile et al., 2012). This improvement in root biomass is crucial 

but limited to some extent. As Bengough, McKenzie, Hallett & Valentine (2011) reviewed, the 

root elongation rate decreases in soil drying, by decreasing the soil matric potential (i.e., 

increasing water stress) there is a rapid increase in soil strength and, consequently, roots will 

encounter natural physical limitations to keep growing. 

Apart from vegetative growth attenuation and transpiration reduction, many other 

biochemical and physiological processes are also drought-induced. Osmolyte accumulation 

(i.e., osmotic adjustment) under environmental stress, for instance, plays an essential role in 

protecting subcellular structures, as well as various proteins, lipids, and enzymes critical for the 

photosynthetic apparatus (Blum, 1996; Chaves & Oliveira, 2004; Gururani, Mohanta & Bae, 

2015; Kapoor et al., 2020). In plants, the common osmoprotectants are proline, glycine betaine, 

mannitol, sucrose, trehalose, sorbitol, antioxidants (e.g., ascorbate, glutathione, tocopherols), 

late embryogenesis abundant (LEA) proteins, and others (Bartels & Sunkar, 2005; Seki, 

Umezawa, Urano & Shinozaki, 2007; Yang, Vanderbeld, Wan & Huang, 2010; Yordanov, 

Velikova & Tsonev, 2003). These metabolites accumulate and act as protectors and/or 

scavengers, helping plants acclimate, avoid and/or tolerate the unfavourable conditions. For 

example, sugars are essential signals in plant metabolism regulation and can induce leaf 

senescence under stress (Wingler & Roitsch, 2008). Moreover, as discussed by Munné-Bosch 

& Alegre (2004), drought-induced leaf senescence contributes to nutrient remobilisation and 

prevents excessive water loss via transpiration, mainly when leaf abscission follows, thereby 

improving the whole-plant water balance. As a matter of fact, as recently reviewed by Zhang, 

Zhao & Zhu (2020), plant regulatory networks for stress response and plant growth-control 
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pathways are in constant crosstalk at multiple levels, which is essential to ensure a balance 

between stress tolerance and crop productivity. 

 

1.4 PHENOTYPING FOR ASSESSING PLANT-ENVIRONMENT INTERACTIONS 

 

Protecting, or even improving, crop yield under drought-prone environments is a core 

challenge for modern agriculture. Yield alone is a complex trait controlled by numerous genes, 

each with minor effects, functioning within networks strongly dependent on epistasis (gene-by-

gene interaction), pleiotropy (one gene influencing multiple traits) and genotype-by-

environment (G×E) interaction effects (Bernardo, 2008; Cooper, Podlich & Smith, 2005; 

Podlich, Winkler & Cooper, 2004;). From the genomics perspective, drought tolerance adds 

another layer of complexity for plant breeders (Blum, 2011b; Messina, Podlich, Dong, Samples 

& Cooper, 2011). Similar to yield trait, drought tolerance also displays quantitative inheritance 

(i.e., polygenic inheritance) affected by the environment, whose genetic complexity and 

architecture can be assessed through quantitative trait loci (QTL) analysis, for example (Araus, 

Slafer, Royo & Serret, 2008; Mohammadi, 2018; Reynolds & Langridge, 2016; Yadav et al., 

2019; Yang et al., 2010). Linkage-based mapping and association mapping (e.g., genome-wide 

association study, GWAS) are methods commonly used for identifying QTLs, and so 

facilitating gene cloning, marker-assisted selection (MAS), and genomic selection or prediction 

(Sehgal, Singh & Rajpal, 2016; Verdeprado et al., 2018). In short, these are advanced statistical 

methods that link phenotypic data (trait measurements) and genotypic data (molecular 

markers). Therefore, meaningful genetic variation and accurate phenotypic data based on robust 

and reliable phenotyping methods are of great importance to identify genes and QTLs 

associated with agronomically important traits (e.g., grain yield and drought tolerance). 

However, the challenge is to define one feature (plant trait) able to feasibly and 

realistically characterise the whole-plant modulation induced by drought. Spurious or weak 

associations between genotype and phenotype due to low-quality phenotyping methods might 

result in diminished genetic gains (Campos et al., 2011). Indeed, inappropriate plant 

phenotyping for drought tolerance has been regarded as one of the main causes of past 

difficulties towards plant breeding progress for water-limited environments (Blum, 2011). In 

fact, trait-based breeding and genetic dissection of drought tolerance have been fostered since 

the advent of the Passioura (1977) equation [grain yield = water used × water-use efficiency × 

harvest index]. Generally, the morphophysiological traits are categorised as constitutive (or 

non-adaptive; i.e., also expressed in non-limiting conditions) or drought-responsive (or 
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adaptive; i.e., expressed only in pronounced stress) (Blum, 1996, 1997; Tuberosa, 2012). Plant 

phenology, canopy architecture, root size and depth, photosynthetic capacity, carbon storage 

and utilisation, and yield potential are examples of constitutive traits, whereas osmotic 

adjustment, relocation of water-soluble carbohydrates, and ABA accumulation are examples of 

drought-adaptive traits. Regardless of such categories, drought is commonly measured by 

phenotyping specific and relevant attributes related to dehydration avoidance and dehydration 

tolerance (Blum, 2011). Symptoms of wilting (e.g. leaf rolling), stomatal conductance, leaf 

water potential, leaf relative water content (RWC), water-use efficiency (WUE), water uptake 

(WU), sap flow, osmoprotectant content, cell membrane stability (CMS), chlorophyll content, 

carbon isotope discrimination, root-shoot ratio, and leaf canopy temperature are only a few 

examples of traits from an extensive list of phenotyping protocols for quantifying and 

qualifying drought effects in crops (Araus, Slafer, Reynolds & Royo, 2002; Araus et al., 2008; 

Blum, 2011; Monneveux, Jing & Misra, 2012; Pask, Pietragalla, Mullan & Reynolds, 2012; 

Salekdeh, Reynolds, Bennett & Boyer, 2009; Tuberosa, 2012; Verslues et al., 2006). Even 

though incorporating these traditional phenotyping methods in conventional breeding pipelines 

has facilitated the release of drought-tolerant cultivars, most of these phenotyping approaches 

rely on destructive measures, often seen as time-consuming, laborious and costly (Ashraf, 2010; 

Furbank & Tester, 2011). Physiological phenotyping is mostly limited by detailed, 

sophisticated and usually complex and expensive methodologies (Ghanem, Marrou & Sinclair, 

2015). 

Attempts to exploit new molecular tools to their full potential, particularly to dissect 

the genetics of quantitative traits, such as yield and stress tolerance, are limited by our ability 

to quantify relevant traits with the necessary throughput (Araus & Cairns, 2014; Tuberosa, 

2012). Indeed, novel low-cost high-throughput molecular ‘omics’ (e.g., genomics, 

epigenomics, transcriptomics, proteomics, and metabolomics) approaches and knowledge have 

evolved exponentially faster than high-throughput ‘plant phenomics’, i.e., the measurement of 

structural and/or functional plant traits at scales from molecules to ecosystems (Campos, 

Cooper, Habben, Edmeades & Schussler, 2004; Furbank & Tester, 2011; Tardieu, Cabrera-

Bosquet, Pridmore & Bennett, 2017). This mismatch between technologies may have hindered 

our biological understanding of the G×E interaction, especially for complex traits, ultimately 

leading to a ‘genotype-phenotype gap’ (Blum, 2011). As argued by Cabrera-Bosquet, Crossa, 

von Zitzewitz, Serret & Araus (2012) and Edmeades, McMaster, White & Campos (2004), the 

integration of high-throughput phenotyping with genotyping may shed light on the 

fundamentals of complex adaptive physiological traits. Actually, over the past decade, 
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significant investments and progress were made to improve the precision and throughput of 

plant phenotyping methods, aiming to bridge this gap between gene or genotype to phenotype. 

High-throughput plant phenotyping approaches mostly rely on remote sensing technologies, 

such as sensors and imaging systems, allowing the rapid, repeatable, reproducible, non-

destructive and non-invasive acquisition of relevant qualitative and quantitative crop traits 

(Cendrero-Mateo et al., 2017; Granier & Vile, 2014; Normanly, 2012). Outstanding reviews 

have extensively covered the recent efforts, achievements and challenges regarding crop 

phenomics and high-throughput phenotyping in open fields and controlled environments 

(Fiorani & Schurr, 2013; Reynolds et al., 2020; Tardieu et al., 2017; Watt et al., 2020; Yang et 

al., 2020). 

The most suitable set of sensors and techniques for monitoring a trait of interest will 

depend on the scientific objectives. According to Cendrero-Mateo et al. (2017) and Reynolds 

et al. (2020), the applicability and value of root and/or shoot phenotyping tools vary based on 

the target traits, whether morphoanatomical (e.g., phenology, architecture, structure) or 

physiological (e.g., WUE, transpiration, photosynthesis), and the scales (i.e., leaf, whole plant, 

canopy, large-scale fields, mega-environments, or ecosystems). Also, there are always trade-

offs between precision, resolution, time, costs, and the number of genotypes or plots to be 

characterised (Reynolds et al., 2020). 

High-throughput techniques allow breeders to investigate multiple traits in a large 

panel of genotypes under naturally fluctuating ambients and/or drought-induced stress (Berger, 

Parent & Tester, 2010; Cendrero-Mateo et al., 2017; Granier & Vile, 2014; Winterhalter, 

Mistele, Jampatong & Schmidhalter, 2011). Optimal phenotyping of photosynthetic traits in 

breeding for drought tolerance may require measurements at multiple scales (leaf to canopy) 

and phenological stages (Sanchez-Bragado et al., 2020). Undoubtedly, the simultaneous and 

continuous monitoring of water relations in the soil-plant-atmosphere continuum through high-

throughput functional physiological phenotyping, as proposed by Halperin, Gebremedhin, 

Wallach & Moshelion (2017), is extremely valuable to the screening of drought-tolerant 

genotypes, aiding the physiological breeding (Gosa, Lupo & Moshelion, 2019; Negin & 

Moshelion, 2017; Reynolds & Langridge, 2016). Also, multi-trait plant phenotyping implies 

that a primary trait, such as grain yield, may be combined with secondary traits (i.e., any trait 

consistently exhibiting enough genetic variability, genetic correlation with yield, and greater 

heritability than yield itself), boosting crop breeding for higher yield and stability under drought 

conditions (Araus et al., 2002, 2008). Indeed, there are still substantial opportunities to explore 

selectable secondary traits for improving crop photosynthesis and yield through conventional 
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breeding (Richards, 2000). In line with this statement, using high-throughput phenotyping, Sun 

et al. (2017) reported an average improvement of 70% in genomic prediction for wheat grain 

yield when including secondary traits (canopy temperature and normalised difference 

vegetation index, NDVI). Similar improvements were also reported by Rutkoski et al. (2016). 

Additionally, combining high-throughput hyperspectral reflectance data (i.e., vegetation 

indices) with other agronomic traits benefited the prediction of biomass yield in winter rye 

hybrids (Galán et al., 2020). Under field terminal drought stress and using both aerial- and 

ground-based high-throughput phenotyping, Condorelli et al. (2018) identified QTLs for NDVI 

in durum wheat, which showed concomitant QTL effects on leaf chlorophyll content, leaf 

rolling and biomass. Altogether, high-throughput plant phenotyping is a powerful tool for 

unlocking complex traits’ genetic basis under naturally varying environments. 

Last but not least, data mining, analysis and interpretation arise as the critical next 

challenges following the latest technological advances in plant phenomics. As argued by 

Granier & Vile (2014), due to novel technologies, robust high-throughput acquisition of 

phenotypic and environmental data are no longer limiting factors to disentangle plant traits but 

rather statistical and mathematical modelling. In agreement with this view, Kissoudis, van de 

Wiel, Visser & van der Linden (2016) stated that integrating phenotypic and genotypic data 

fine-tuned with environmental variables by modelling approaches is critical to successful crop 

breeding for stress resilience. Breeding for yield and drought tolerance typically involves multi-

environment trials (METs) to evaluate the relative performance of genotypes for a target 

population of environments (TPE; i.e. the set of conditions to which future-release genotypes 

might be subjected) and to unlock the G×E interaction (Chenu, 2015; Chenu et al., 2011). 

Hence, accurate environmental data collection is vital to a comprehensive assessment of 

‘confounding factors’ in field trials, and so to clarify differences among genotypes (Reynolds 

et al., 2020). Therefore, closing the genotype-phenotype gap with phenomics will demand 

dynamic and advanced statistical strategies, including spatial and temporal modelling of 

environmental data, for improving the effectiveness of new phenotyping techniques (van 

Eeuwijk et al., 2019). In this context, Resende et al. (2021) recently introduced the concept of 

‘enviromics’, large-scale envirotyping data, applied to envirotypic-assisted selection in plant 

breeding (i.e., the study and integration of the environmental markers or attributes for genetic 

selection, allowing to exploit the G×E interaction patterns among locations). Hence, a broad 

and better comprehension of high-throughput phenotyping and genotyping involves integration 

with high-resolution environmental data, whose interpretation will rely on modern statistics. 
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1.5 CHLOROPHYLL FLUORESCENCE: AN INTEGRATIVE PHOTOSYNTHETIC SIGNAL 

 

Light energy absorbed by chlorophylls can (i) drive photosynthesis (photochemistry), 

(ii) be thermally dissipated, or (iii) be re-emitted as light (fluorescence), and these three 

processes coexist in competition (Figure 1.2; see details in Baker, 2008; Maxwell & Johnson, 

2000; Stirbet, Lazár, Guo & Govindjee, 2020). Chlorophyll a fluorescence emanates from both 

Photosystem (PS) II and PSI, and at room temperature, it is mainly emitted by PSII at 

wavelengths between 650-780 nm, peaking at around 685-740 nm (Drusch et al., 2017). There 

has been a long-standing acknowledgement that ChlF-based parameters are powerful, 

inexpensive, fast, and non-invasive tools for probing photosynthesis and, therefore, for 

monitoring the physiological status of plants, even remotely (Baker, 2008; De Sousa, Hilker, 

Waring, De Moura & Lyapustin, 2017; Drusch et al., 2017; Fu, Meacham-Hensold, Siebers & 

Bernacchi, 2020; Govindjee, 2004; Kalaji et al., 2017; Krause & Weis, 1984, 1991; Mohammed 

et al., 2019; Murchie & Lawson, 2013; Pérez-Bueno, Pineda & Barón, 2019). The operating 

light use efficiency of PSII (𝐹𝑞
′ 𝐹𝑚

′⁄ ), for instance, has been demonstrated to be a reliable ChlF-

derived parameter to monitor the linear electron transport (LET) from water through PSII and 

PSI, and consequently, provides a good relative measure of the quantum yield of CO2 

assimilation (𝜙𝐶𝑂2
) in both C3 and C4 plants, when photorespiration is at a minimum (Genty, 

Briantais & Baker, 1989; Habash, Paul, Parry, Keys & Lawlor, 1995; Krall & Edwards, 1990). 

Biotic and abiotic stresses disturb this linear relationship due to concurrent electron-driven 

biological processes apart from CO2 assimilation (Baker, 2008). However, even in harsh 

conditions, ChlF has proven to be a robust integrative technique for assessing plant 

photosynthetic performance (Baker & Rosenqvist, 2004; Kalaji et al., 2017; Pérez-Bueno et al., 

2019; Wang et al., 2018). 
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Figure 1.2. Photosynthesis is a core biological process by which plants utilise sunlight, 

water (H2O), nutrients, and atmospheric carbon dioxide (CO2) to produce energy-rich 

biomolecules and oxygen (O2). Light-harvesting complex (LHC), a pigment-protein 

structure embedded in chloroplast thylakoid membranes, acts as an antenna, gathering 

sunlight. The photon’s excitation energy is transferred to the reaction centre (P680) in the 

photosystem II (PSII). Then, through an intricate and highly regulated cascade of 

biophysical and biochemical interactions, the solar energy is stepwise converted into 

energy-storing molecules, such as adenosine triphosphate (ATP) and nicotinamide adenine 

dinucleotide phosphate (NADPH). If the absorbed light exceeds the photochemical 

quenching capacity, the surplus of energy in the RC may lead to photo-oxidative damage. 

Thus, the excess energy must dissipate through heat (i.e., a non-photochemical quenching, 

NPQ, via the xanthophyll cycle) and/or red-light re-emission (i.e., chlorophyll 

fluorescence). Adapted from De Sousa et al. (2017). 

 

Due to technological advances, chlorophyll fluorometry techniques have rapidly 

evolved, and commercial instruments for measuring ChlF in plants have become available. 

Indeed, chlorophyll fluorometry developed into various types with different timescales of signal 

capturing where in vivo ChlF might be passively or actively acquired at both leaf and canopy 

scales (Aasen et al., 2019; Cendrero-Mateo et al., 2016). While passive techniques rely solely 

on solar irradiance to retrieve the fluorescence emission, active techniques stimulate 

fluorescence emission using dedicated light sources. In the last decades, several studies have 

taken advantage of the ChlF approach to assess the impact of water deficit on an extensive list 
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of plant species, ranging from native Mediterranean plants (e.g., rosemary and lavender) to 

various agricultural crops, including barley, wheat, rice, maize, beans, soybean, cotton, potato, 

and grapevine (Kao & Tsai, 1998; Longenberger, Smith, Duke & McMichael, 2009; Mathobo, 

Marais & Steyn, 2017; Nogués & Alegre, 2002; O’Neill, Shanahan & Schepers, 2006; 

Oukarroum, Madidi, Schansker & Strasser, 2007; Ranalli, di Candilo & Bagatta, 1997; Wada, 

Takagi, Miyake, Makino & Suzuki, 2019; Wang et al., 2012; Yan et al., 2017; Zivcak, Kalaji, 

Shao, Olsovska & Brestic, 2014). By far, the vast majority of the prior research relies on the 

pulse-amplitude modulation (PAM) fluorometry (Schreiber, 1986). This commonly used 

technique typically requires a dark-adaptation and/or a saturating flash in very close proximity, 

mostly done by clamping on leaves. However, such requirements can be time-consuming, have 

limited application at a distance, and are prohibitive in less accessible field locations (Cendrero-

Mateo et al., 2017; Osmond et al., 2017). Hence, despite the advantages of using ChlF for 

monitoring plant physiological status, applying this method to a large number of experimental 

units growing in open fields, as is required for plant breeding programmes, is still challenging. 

High-throughput phenotyping platforms (HTPPs) have been deployed to quantify 

ChlF and other traits to circumvent existing bottlenecks in phenotypic and genomic selection 

(e.g., Barbagallo, Oxborough, Pallett & Baker, 2003; Chen et al., 2014; Flood et al., 2016; 

Humplík et al., 2015;  Jansen et al., 2009; McAusland, Atkinson, Lawson & Murchie, 2019; 

Tschiersch, Junker, Meyer & Altmann, 2017; Wang et al., 2018). Even though these approaches 

may successfully help to elucidate and dissect genetic variability in ChlF-based traits (e.g., 

Chen et al., 2014; Flood et al., 2016), these HTPPs are generally confined to operate under 

controlled or semi-controlled environments and restricted to detached leaves or small and 

medium-sized plants, and only a few are suitable for large plants (> 1.50 m). The ‘Field 

Scanalyzer’ is one of the very few examples of an automated fixed-site phenotyping platform 

that quantifies multiple plant traits, including ChlF through imaging, for high-throughput 

monitoring of field-grown crops (Virlet, Sabermanesh, Sadeghi-Tehran & Hawkesford, 2017). 

Indeed, HTPPs for measuring ChlF under natural fluctuating field conditions are hitherto 

scarce, although its importance for supporting crop improvement and plant breeding has been 

highlighted (Araus, Amaro, Voltas, Nakkoul & Nachit, 1998; Fu et al., 2020; Hamdani et al., 

2019; Marcial & Sarrafi, 1996). 

More recently, the LIFT fluorometer (Kolber et al., 2005) has emerged as an 

alternative high-throughput approach for continuous remote measurement of the photosynthetic 

status of terrestrial vegetation (Ananyev et al., 2005). The LIFT method monitors ChlF 

induction and relaxation within milliseconds using subsaturating excitation flashlets in a fast 
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repetition rate (FRR) instead of the saturating pulse (Kolber, Prášil & Falkowski, 1998). This 

pump-and-probe technique works at a distance, bridging the gap between leaf and canopy 

levels, and has demonstrated a great potential for monitoring agricultural systems (Pieruschka, 

Klimov, Kolber & Berry, 2010; Raesch, Muller, Pieruschka & Rascher, 2014; Rascher & 

Pieruschka, 2008). LIFT-measured ChlF empirically provides not only PAM-analogous 

photosynthetic parameters but also measures the downstream electron transport rates from the 

primary quinone acceptor (QA) to the plastoquinone (PQ) pool, and ultimately, towards PSI 

(Osmond, Chow, Pogson & Robinson, 2019; Osmond et al., 2017; Pieruschka et al., 2010). By 

monitoring the kinetics of LIFT-based electron transport rates over different timeframes beyond 

QA, Keller et al. (2019b) developed the QA
¯ reoxidation efficiency parameters (𝐹𝑟1;𝑟2

′ ) for 

photosynthesis phenotyping. Using the LIFT method for automated plant phenotyping under 

semi-field conditions, Keller et al. (2019a) demonstrated that the ChlF-based parameters not 

only facilitated the understanding of photosynthetic interactions with varying environmental 

factors but also identified differences between and within crop species. Nevertheless, to the best 

of our knowledge, the LIFT approach has not yet been applied to large-scale field phenotyping 

of ChlF traits under natural fluctuating growing conditions. 

 

1.6 AIM AND OBJECTIVES 

 

This research primarily aimed to assess the inherent genetic variation in photosynthetic 

traits at the canopy level in a large durum wheat panel (> 220 elite accessions) under progressive 

drought in the field over two growing seasons. The photosynthetic performance was measured 

using the LIFT method, by means of ChlF-based traits: 𝐹𝑞
′ 𝐹𝑚

′⁄  and the newly developed 

reoxidation efficiency parameters, 𝐹𝑟1
′  and 𝐹𝑟2

′ , which were slightly modified from Keller et al. 

(2019b). In particular, this study aimed (1) to estimate relevant population parameters 

(genotypic variation and heritability) for the LIFT-measured ChlF traits; (2) to evaluate the 

phenotypic plasticity of ChlF-related traits in response to drought; (3) to assess correlations 

between ChlF traits and other relevant plant traits (e.g., above-ground biomass and leaf relative 

water content); and (4) to assess the spatiotemporal effects of a fluctuating environment, in 

terms of light intensity, vapour pressure deficit (VPD), and their interactions with varying soil 

moisture, on ChlF traits. 

In a second study, the LIFT sensor was combined with an existing automated high-

throughput shoot phenotyping platform in a semi-controlled glasshouse for simultaneous and 
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continuous monitoring of water relations in the soil-plant-atmosphere continuum of potted 

plants growing under fluctuating ambient. The selected contrasting wheat genotypes, based on 

their maturity group and responses to drought stress, were employed to investigate drought-

induced changes in the LIFT-measured ChlF traits over time, from early vegetative to 

reproductive stages. Besides monitoring whole-plant physiological status, the phenotypic 

correlations between ChlF-based traits and other plant traits (e.g., plant phenology, daily 

evapotranspiration rate, projected leaf area, total above-ground biomass, leaf area, and cell 

membrane stability) were also estimated. Moreover, the underlying roles of light intensity (i.e., 

photosynthetic photon flux density, PPFD) and VPD over the ChlF traits were investigated by 

statistical modelling. 

 

2 MATERIALS AND METHODS 

 

2.1 LIFT DEVICE AND METHOD 

 

Active ChlF was measured by means of a portable LIFT instrument (model LIFT-

REM 1.0, Soliense Inc., Shoreham, NY, USA; https://soliense.com/LIFT_Terrestrial.php), 

which is able to induce and record the resulting changes in the ChlF yield of a target leaf/plant 

canopy at a distance of up to 5 m. The LIFT apparatus relies on the fast repetition rate (FRR) 

fluorescence technique (Kolber et al., 1998), using high-frequency subsaturating excitation 

pulses, or ‘flashlets’, of a blue (λ 445 nm) light-emitting diode (LED) to manipulate the level 

of photosynthetic activity of PSII. A 685 nm ± 10 nm optical interference filter separates the 

red ChlF emission from the reflected excitation light. The system operates with a FRR 

fluorescence saturation/relaxation protocol with variable duty cycles. Firstly, during the 

saturation phase (SQA), at high duty cycle the primary quinone electron acceptor (QA) in PSII 

reduces progressively, leading to a transient increase in ChlF yield. Subsequently, during the 

relaxation phase (RQA), at exponentially decreasing duty cycle QA reoxidises, as electrons flow 

towards PSI, and the ChlF yield decreases. The number of flashlets, their energy and frequency 

are software-controlled to selectively activate different components of the photosynthetic 

machinery for real-time quantifying a range of biophysical features that govern the 

photosynthesis (Kolber et al., 2005; Osmond et al., 2017, 2019). 

Throughout the different experiments performed in either field or greenhouse 

conditions, the QA flash reproduced the FRRF0.75ms protocol introduced by Keller et al. (2019b). 

According to this protocol, the SQA phase (lasting ~0.75 ms) consists of a sequence of 300 

https://soliense.com/LIFT_Terrestrial.php
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subsaturating flashlets (1.6 µs pulse length) applied at 2.5 µs discrete intervals. And the RQA 

phase (lasting ~209 ms) consists of 127 flashlets (1.6 µs pulse length) with an initial interval 

between flashlets of 20 µs followed by exponential increments. The exponent factor increases 

from 1.025 to 1.05, linearly over the length of the RQA sequence to best cover the temporal 

dynamics of the fluorescence relaxation signal. The excitation power of the QA flash was 

measured at 1% duty cycle using a 5-second calibration flash (a sequence of 50,000 flashlets 

with 1 µs pulse length at 100 µs intervals) measured by a quantum sensor (LI-190R, LI-COR, 

Inc., Lincoln, NE, USA). 

Apart from the ChlF sensor, the LIFT device is also equipped with a Vis 

microspectrometer (STS-VIS, Ocean Optics, Inc., Winter Park, FL, USA) with an optical 

resolution of 1.5 nm (FWHM) for acquiring spectral bands within the 400 nm and 800 nm range 

from the target area. In both field experiments, the acquisition of a single spectral data was 

synchronized to be performed immediately after completion of a single LIFT 𝑄𝐴 flash with an 

integration time of 790 ms. 

 

2.2 FLUORESCENCE PARAMETERS FOR FIELD PHENOTYPING 

 

From the LIFT-measured ChlF transients, photosynthetic parameters are derived, such 

as functional and optical absorption cross-sections of PSII, time constants of electron transport, 

and non-photochemical quenching (Osmond et al., 2017, 2019; Wyber, Osmond, Ashcroft, 

Malenovský & Robinson, 2018). Some of these measures, though, may require a dark-

adaptation period, or stable and controlled conditions to be reliably interpretable and 

comparable across samples. However, such requirements are rarely met when the target is to 

assess large populations in the field. To overcome this challenge, Keller et al. (2019a, 2019b) 

developed LIFT traits which are suitable for field phenotyping conditions. Hence, based on a 

slight modification of the procedure reported by Keller et al. (2019b), the LIFT-measured ChlF 

transients acquired by the QA flash protocol were here used to derive the photosynthetic traits. 

The PSII operating efficiency (𝐹𝑞
′ 𝐹𝑚

′⁄ ) from light-adapted plants was estimated as 

[
𝐹𝑚

′ −𝐹′

𝐹𝑚
′ ], where 𝐹′ is the ChlF yield of the first flashlet and 𝐹𝑚

′  is the maximum ChlF yield 

observed between flashlets 298th and 302nd inclusive (Figure 2.1). 
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Figure 2.1. Schematic summary of a typical LIFT-measured chlorophyll fluorescence 

(ChlF) transient acquired by the QA flash protocol at the canopy level from a light-adapted 

plant, where 𝐹′ is the ChlF yield of the first flashlet, 𝐹𝑚
′  is the maximum ChlF yield 

observed between flashlets 298th and 302nd inclusive, and 𝐹𝑞
′ is the difference between 𝐹𝑚

′  

and 𝐹′. The saturation phase (SQA) is red highlighted and the relaxation phase (RQA) is blue 

(𝐹𝑟1
′ ) and yellow (𝐹𝑟2

′ ) highlighted. The kinetics of the ChlF relaxation was directly 

assessed by fitting log-log regression models for the time intervals of interest, namely 𝐹𝑟1
′  

from 303rd to 320th flashlets (or from 0.82 ms to 1.44 ms), and 𝐹𝑟2
′  from 321st to 360th 

flashlets (or from 1.56 ms to 8.08 ms). The inset shows the same ChlF transient on a 

logarithmic time scale. 

 

The QA
¯ reoxidation efficiency trait (𝐹𝑟) is typically estimated by integrating the ChlF 

yield curve at a specific time interval and using the normalised integral area as a proxy for the 

slope of the ChlF transient to assess the kinetics of the relaxation phase (Keller et al., 2019a, 

2019b). Herein, however, the kinetics was directly assessed by fitting log-log regression models 

for the time intervals of interest, namely t1 from 0.82 ms to 1.44 ms (i.e., from 303rd to 320th 

flashlets) and t2 from 1.56 ms to 8.08 ms (i.e., from 321st to 360th flashlets), where both 

variables, independent (time) and dependent (ChlF yield), were natural log-transformed. 

According to the power-law relationship in the form of 𝑓(𝑥) = 𝛼𝑥𝛽, the slope and the constant 

of a straight line from a log-log model equal 𝛽 and ln 𝛼, respectively (Marquet et al., 2005). 

Therefore, the efficiency of electron transport up to ~0.65 ms after reducing QA in light-adapted 
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plants (𝐹𝑟1
′ ) was estimated as the slope 𝛽 of the log-log regression fitted within the t1 interval, 

while the efficiency of electron transport up to ~6.64 ms after 𝐹𝑟1
′  (i.e., 𝐹𝑟2

′ ) was equal to the 

slope 𝛽 of the log-log model fitted within the t2 interval (Figure 2.1). The time intervals t1 and 

t2 approximate the time frame in which electron transfer from QA to the plastoquinone (PQ) 

pool, and to some extent from the PQ pool to PSI, respectively (de Wijn & van Gorkom, 2001; 

Govindjee, 2004; Keller et al., 2019b; Kolber et al., 1998; Osmond et al., 2017, 2019; Stirbet 

& Govindjee, 2011). These time intervals are also supported by various in silico models (Lazár, 

2003; Lazár & Jablonský, 2009; Stirbet & Strasser, 1995; Xin, Yang & Zhu, 2013; Zhu et al., 

2005). 

 

2.3 FIELD EXPERIMENTS 

 

2.3.1 Plant material 

 

We evaluated in two growing seasons a set of elite durum wheat (Triticum turgidum 

L. ssp. durum Desf.) accessions, mainly cultivars and advanced lines, from the association 

mapping population ‘UNIBO-Durum Panel’ assembled at the University of Bologna (UNIBO), 

Italy (see list of materials in Appendix 1). This panel contains a representative selection of the 

genetic diversity existing in the major improved durum wheat gene pools adapted to 

Mediterranean environments (Maccaferri et al., 2006, 2011). The collection includes ‘founder 

genotypes’ used extensively worldwide as parents in breeding programmes, as well as 

accessions bred and released by CIMMYT (the International Maize and Wheat Improvement 

Center), ICARDA (the International Center for Agricultural Research in the Dry Areas), 

INRAE (the French National Institute for Agriculture, Food and Environment), IRTA (the 

Spanish Institute of Agriculture and Food Research and Technology), and by public breeding 

programmes in Italy, in the Northern Great Plains of the USA and Canada (North Dakota, 

Montana, Saskatchewan and Alberta), and materials from the Southwestern USA, namely 

“Desert Durum®”, a registered certification mark owned jointly by the Arizona Grain Research 

and Promotion Council and the California Wheat Commission. Recently, Condorelli et al. 

(2018) reported the occurrence of a strong population genetic structure in the UNIBO-Durum 

Panel, identifying eight distinct subpopulations, despite a considerable admixture mostly 

among germplasm from ICARDA, CIMMYT and Italy. These subgroups were also considered 

for further assessment in our study. 
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2.3.2 Field experimental design 

 

Field experiments were conducted at the Maricopa Agricultural Center of the 

University of Arizona (33.07454°N, 111.97494°W, elevation 360 m) in Maricopa, AZ, USA, 

on a Casa Grande sandy loam soil (fine-loamy, mixed, superactive, hyperthermic Typic 

Natrargids) under a semi-arid low desert climate. In the first growing season 2017/2018 (Year 

1 = Y1), a total of 252 accessions were planted on 28 November 2017, while in the subsequent 

season, 2018/2019 (Year 2 = Y2), 224 accessions were planted on 18 December 2018. In both 

trials, genotypes were sown in 2-row plots, 3.5 m long with 0.76 m between rows, with an 

average seeding rate of 16.8 seeds per meter, which were laid out in a resolvable row-column 

incomplete block design (α-design) (Patterson & Williams, 1976; Piepho, Williams & Michel, 

2015) with two replicates (14 rows × 18 columns per rep) in Y1, and with three replicates (14 

rows × 16 columns per rep) in Y2. Pre-plant granular nitrogen fertiliser at 112 kg ha-1 and 

phosphorus (P2O5) at 56 kg ha-1 were incorporated into the soil. Fields were managed following 

the standard agricultural practices for the region and were regularly monitored to prevent 

damage from above-ground insect pests and pathogens. 

Sprinkler irrigation was used to germinate the seeds and establish the crop, followed 

by subsurface drip irrigation as needed for optimal plant growth, once or twice a week. The 

pressurised subsurface drip irrigation system was installed before planting when one dripline 

with emitters spaced every 0.30 m was buried at ~0.10 m depth along each seed row. In Y1, 

the final irrigation event was on 11 March 2018 (i.e., 103 days after sowing, DAS) when ca. 

50% of the genotypes had their flag leaf sheath opened (i.e., at growth stage (GS) 47; Zadoks, 

Chang & Konzak, 1974). From this time point, the whole experiment was subjected to a 

progressive water deficit until 2-3 April 2018 when plants at the anthesis halfway stage (GS65, 

on average) were harvested to measure total above-ground biomass. By contrast, in Y2, on 5 

March 2019 (77 DAS), when ca. 50% of the genotypes were at late tillering phase (GS26), well-

watered (WW) and water-limited (WD) treatments were implemented and assigned to entire 

single seed rows in an alternating pattern across the whole field, such that the initial 2-row plots 

where split into two side by side subplots of one-row each (i.e., a strip-plot type design with 

water treatment as one main-plot factor). Due to operational limitations, the water treatment 

could not be randomised, and this alternating pattern of WW and WD strips was assigned to 

keep a homogeneous field. Control subrows remained well watered by regular subsurface drip 

irrigation, whereas water-stressed subrows experienced a progressive water deficit. Both water 
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treatments were imposed until 9 April 2019 (112 DAS) at early anthesis (GS61, on average) 

when the experiment was terminated and plots were harvested to determine total above-ground 

biomass. 

 

2.3.3 Meteorological data and soil moisture monitoring 

 

Daily and hourly meteorological reports for both growing seasons were obtained from 

the Arizona Meteorological Network (AZMET; https://cals.arizona.edu/azmet/06.htm). Also, 

high temporal resolution meteorological data, particularly air temperature, relative humidity 

and photosynthetic photon flux density (PPFD), for the experimental site were recorded at 5-

second interval with an automated weather station (Clima Sensor US, Adolf Thies GmbH & 

Co. KG, Göttingen, Germany) and a quantum sensor (SQ-214, Apogee Instruments, Inc., 

Logan, UT, USA). These data were made available by the TERRA Phenotyping Reference 

Platform (TERRA-REF; https://terraref.org/). VPD was calculated as the difference between 

the saturation (𝑒𝑠) and actual vapour pressure (𝑒𝑎) (Allen et al., 1998). The saturation vapour 

pressure [kPa] was estimated as {𝑒𝑠 = 0.6108 𝑒𝑥𝑝 [
17.27⋅𝑇

𝑇+237.3
]}, where 𝑒𝑥𝑝 is 2.7183 (base of 

natural logarithm) and 𝑇 is air temperature [°C]. The actual vapour pressure [kPa] was estimated 

as [𝑒𝑎 = 𝑒𝑠 ×
𝑅𝐻

100
], where 𝑒𝑠 is the saturation vapour pressure [kPa] and 𝑅𝐻 is relative humidity 

[%]. 

In Y1, the volumetric water content (VWC) was monitored in and between seed rows 

with time-domain reflectometry (TDR) sensors (True TDR-315, Acclima, Inc., Meridian, ID, 

USA) installed at three locations within the experiment, and at 1 cm, 10 cm and 50 cm depths 

at each location. In Y2, the TDR sensors (True TDR-310S, Acclima, Inc., Meridian, ID, USA) 

were installed in both WW and WD seed rows at three locations within the experimental field 

at 2 cm, 10 cm, 25 cm and 50 cm depths, and at 15 cm and 35 cm depths, between seed rows. 

Additional soil sensors were installed between rows at 15 cm depth for measuring the soil 

matric potential (Tensiomark, ecoTech GmbH, Bonn, Germany). All soil sensors recorded data 

at 15-min intervals throughout the entire growing seasons. Based on characterisations of the 

soil hydraulic and physical properties of the experimental site by Prof. Dr. Markus Tuller at the 

University of Arizona (Tucson, AZ, USA) under the TERRA-REF project, the permanent 

wilting point (𝜃𝑃𝑊𝑃) and the field capacity (𝜃𝐹𝐶) at 10-15 cm depth, based on the van Genuchten 

(1980) model, corresponded to approximately 0.110 m3 m-3 and 0.282 m3 m-3, respectively. 

 

https://cals.arizona.edu/azmet/06.htm
https://terraref.org/
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2.3.4 Leaf relative water content 

 

The plant water status was monitored by leaf relative water content (RWC) as 

described by Mullan & Pietragalla (2012). In Y1, flag leaf samples from all plots (252 

genotypes × 2 reps) were collected on 12 March 2018 (104 DAS), as the initial RWC (𝑖𝑅𝑊𝐶), 

and on 27 March 2018 (119 DAS), as the final RWC (𝑓𝑅𝑊𝐶). The relative change in RWC 

[%Δ] was calculated at the plot level as [∆𝑅𝑊𝐶 =
𝑓𝑅𝑊𝐶−𝑖𝑅𝑊𝐶

𝑖𝑅𝑊𝐶
× 100]. In Y2, young fully 

expanded leaves from all plots of a single replicate (224 genotypes × 2 water treatments) were 

sampled on 26 March 2019 (98 DAS, and 21 days after imposing the irrigation treatments). 

Excised leaf samples were inserted into plastic tubes, sealed, placed in a cooled and insulated 

container, and immediately transferred to the laboratory. Fresh samples were weighted (𝐹𝑊) 

and then submerged in distilled water for 12 h at 4 °C in the dark. After rehydration, samples 

were quickly blotted dry with a paper towel, and the turgid weight (𝑇𝑊) was recorded. After 

oven-drying for three days at 60 °C, total dry weight (𝐷𝑊) was recorded. Leaf RWC [%] was 

then determined as the ratio [𝑅𝑊𝐶 =
𝐹𝑊−𝐷𝑊

𝑇𝑊−𝐷𝑊
× 100] (Barrs & Weatherley, 1962). 

 

2.3.5 Plant height and above-ground biomass 

 

Plant height was manually measured with a ruler as the distance from the soil surface 

to the base of the spike, or to the uppermost level of leaves in the absence of the spike. To 

reduce the influence of plot edge effects, median height was measured in the central portion of 

the plots. In Y1, plant height was recorded only once at 122 DAS, whilst multiple measurements 

over time (82, 93, 101 and 107 DAS) were taken in Y2. 

Plants were harvested prior to the ripening stage to allow for planting the next 

phenotyping experiment, and therefore biomass data indicate the status at a point in time rather 

than direct estimates of final yields. In Y1, at the end of the experiment (125-126 DAS), plants 

within the 2-row plots were cut with a mechanical forage harvester (Carter Manufacturing 

Company, Inc.) for above-ground whole plot weights, while subsamples for moisture content 

[%] were hand-cut prior to mechanical harvesting for measurements of fresh weight and dry 

weight after oven-drying for 2-3 days. Total shoot dry matter yield (SDMY) was adjusted to 

0% moisture and is reported as [kg ha-1]. In Y2, the experiment was ended at 112 DAS, and 

SDMY was obtained for two replicates by hand-cutting lengths of 0.914 m of plants from each 
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single-row plot (WW and WD), which were bundled and placed into large driers until a constant 

mass was achieved. 

 

2.3.6 LIFT measurements in the field 

 

The LIFT instrument was installed to the front end of a cart (model based on White & 

Conley, 2013) in the vertical direction pointing downward (nadir) and above the plant canopy, 

perpendicular to the crop row (Figure 2.2). The distance from the LIFT lens to the median 

uppermost-canopy (i.e., the target area) was ~0.60 m, being regularly adjusted as plants grew. 

The blue LED light beam was ~30 mm in diameter at the focal point over the target area. 

Aiming to operate with an optimal signal-to-noise ratio, the gain of the fluorescence channel 

was adjusted at the beginning of each day of measurement in order to maintain the raw 

fluorescence within 2000-20000 signal range. At a distance of 0.60 m, the average excitation 

power for the SQA phase was ~72000 µmol photons m-2 s-1 in Y1 and ~55000 µmol photons 

m-2 s-1 in Y2. 

The cart was manually pushed across the plots at an average speed of 8 cm s-1 while a 

total of 20 independent measurements, each one carried out in a time frame of ~1 s (ChlF 

transient in ~210 ms followed by reflectance data in 790 ms), were acquired from every 

experimental unit per day of measurement. In Y1, the entire field trial (252 genotypes × 2 reps) 

was measured at 0, 1, 2, 3, 4, 5, 6, 8, 10, 12 and 16 days after withholding water (DAWW). On 

average, measurements were performed between 09:20-16:40 hours local Mountain Standard 

Time (MST). In Y2, aiming to achieve three different levels of drought severity between WW 

and WD (D1, D2 and D3), field data were collected at three time points after imposing water 

treatment. However, due to the size of the trial (224 genotypes × 2 treatments × 3 replicates), 

only one replicate per day was operationally possible between 08:45-15:55 hours MST, on 

average. Thus, three consecutive days were required to phenotype the entire experiment with 

three replicates: D1 was taken between 12 and 14 days after imposing water treatment, D2 

between 17 and 19 days, and D3 between 23 and 25 days. 
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Figure 2.2. The LIFT apparatus was installed to the front end of a cart in the vertical direction pointing 

downward and above the plant canopy (~0.60 m distant from the median uppermost-canopy). (A) 

Top view of the default setting of the LIFT sensor mounted on a cart in the growing season 2017/2018 

(Y1). (B) Left side view of the default setting in the growing season 2018/2019 (Y2). The spectral 

data were calibrated by a white reference panel (95% reflectance) horizontally placed at 0.60 m in 

front of the LIFT lens. (C) The cart was manually pushed across the field while a total of 20 

independent measurements were acquired from every plot per day of measurement. Overall view of 

the field experiment carried out in Y1 in Maricopa, AZ, USA, under a semi-arid low desert climate. 

 

Regardless of the growing season, the day of measurement and the time of day, the 

front end of the cart was always facing south, in order to avoid self-shadowing over the target 

area. In Y1, all LIFT data were only taken in the western subplot row within the 2-row plots. 

The cart was manually pushed from north to south along the rows, one at a time, and from west 

to east within each replicate separately. Replicate two was collected from early mornings up to 

midday and replicate one from midday up to late afternoons with a ~30-min break between 

replicates (see Appendix 2 – Figure A.2.1). In Y2, LIFT data were taken in all the 1-row plots 

by following a zigzag path within each replicate. Pushing the cart forwards from north to south 

a WD subrow was measured and, immediately after, when pulling it backwards from south to 

north, the neighbouring WW subrow was collected. This pattern moved from west (early 
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mornings) to east (late afternoons) with a ~40-min break at around midday when half of a 

replicate was done (see Appendix 2 – Figure A.2.2). 

The spectral data were calibrated by a 0.50 m × 0.50 m white reference panel with 

95% reflectance (Zenith LiteTM diffuse target, SphereOptics GmbH, Herrsching, Germany) 

horizontally placed at 0.60 m in front of the LIFT apparatus (Figure 2.2B). Over the course of 

a field phenotyping day, white reference measurements were regularly taken every 36 plots 

(~30 min interval) in Y1 and every 32 plots (~25 min interval) in Y2. Dark reference 

measurements were acquired in a dark room with the LIFT lens covered with a dark cloth. 

 

2.3.7 Spectral reflectance data 

 

The calibrated reflectance was estimated by normalising the target spectrum against 

the dark and white references. Thus, plant canopy reflectance (%) at 1 nm interval from 400 nm 

to 800 nm was calculated as [
𝐷𝑁𝑟𝑎𝑤−𝐷𝑁𝑑𝑎𝑟𝑘

𝐷𝑁𝑤ℎ𝑖𝑡𝑒−𝐷𝑁𝑑𝑎𝑟𝑘
], where 𝐷𝑁𝑟𝑎𝑤 is the raw digital value of the 

target, 𝐷𝑁𝑑𝑎𝑟𝑘 is the dark reference measurement, and 𝐷𝑁𝑤ℎ𝑖𝑡𝑒 is the white reflectance 

measurement (Bruning, Berger, Lewis, Liu & Garnett, 2020). 

Red edge-based vegetation indices have been shown as useful indicators of leaf area 

index (LAI), leaf and canopy chlorophyll content, and plant water content (Bruning et al., 2020; 

Filella & Peñuelas, 1994; le Maire, François & Dufrêne, 2004; Liu, Miller, Haboudane & 

Pattey, 2004a; Liu et al., 2004b; Mutanga & Skidmore, 2007). Also, they are less sensitive to 

background conditions, leaf angle and stacking, and saturation due to dense vegetation (Dong 

et al., 2019; Katsoulas et al., 2016; Vogelmann, Rock & Moss, 1993). Therefore, the 

Vogelmann red edge index (VOGREI) was derived from the calibrated spectrum reflectance as 

the ratio (
𝜆 740 𝑛𝑚

𝜆 720 𝑛𝑚
) (Vogelmann et al., 1993). 

 

2.3.8 LIFT data cleaning 

 

The LIFT sensor relies on its artificial excitation light source to induce ChlF emission 

from the target canopy, and a ChlF transient, such as in Figure 2.1, is only possible in the 

presence of living photosynthetic tissues. However, due to the highly fluctuating environment, 

particularly solar irradiation and winds, shifting of the leaves, off-target measurements (e.g., 

soil), and/or technical constraints, low-quality data can occur. Hence, a data cleaning pipeline 

was defined and implemented in the R environment (R Core Team, 2020). 
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In Y1, a total of 110,880 ChlF transients and spectral data were collected over time. 

Data were assessed and discarded in accordance with the following: i) data points acquired with 

signal-to-noise ratio < 40; ii) 𝐹𝑞
′ 𝐹𝑚

′⁄  values outside the 0-1 range; iii) the adjusted coefficient 

of determination (𝑅𝑎𝑑𝑗
2 ) from the log-log model at t1 (for 𝐹𝑟1

′ ) was < .95 for data collected 

between 0 and 6 DAWW, < .9025 for data collected at 8 and 10 DAWW, or < .81 for data at 

12 and 16 DAWW; and iv) 𝑅𝑎𝑑𝑗
2  from the log-log model at t2 (for 𝐹𝑟2

′ ) was < .90 for data 

collected between 0 and 6 DAWW, < .85 for data collected at 8 and 10 DAWW, or < .80 for 

data at 12 and 16 DAWW. A high 𝑅𝑎𝑑𝑗
2  ensures that only reasonably formed ChlF transients 

(i.e., showing typical relaxation stages as close as possible to the schematic shown in Figure 

2.1) are kept in the datasets. After performing the previous steps, outliers at plot level per day 

of measurement for each trait (ChlF and VOGREI) were detected and removed based on the 

Tukey’s boxplot method by using 1.5 times the interquartile range (IQR) (Sim, Gan & Chang, 

2005), as implemented in the base package grDevices (R Core Team, 2020). As 𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  and 

𝐹𝑟2
′  are derived from the same transient, in the case of an outlier, none of the ChlF traits for that 

particular transient was considered for further analysis. Finally, after data cleaning, the 

remaining data points, 100,947 (91%) ChlF transients, were averaged, resulting in one value 

per trait per plot per time of measurement (N = 5544 data points per trait). 

In Y2, a total of 80,640 ChlF transients and spectral data were collected over time. 

Data were assessed and discarded as follows: i) data points acquired with signal-to-noise ratio 

≤ 100; ii) 𝐹𝑞
′ 𝐹𝑚

′⁄   values outside the 0-1 range; and iii) 𝑅𝑎𝑑𝑗
2  from the log-log models at t1 (for 

𝐹𝑟1
′ ) and t2 (for 𝐹𝑟2

′ ) were < .95 and < .90, respectively, regardless of timing. Then, outliers for 

each trait (ChlF and VOGREI) were detected and removed at plot level per day of measurement 

in the same way as done in Y1. Lastly, after data cleaning, the remaining data points, 77,946 

(97%) ChlF transients, were averaged, resulting in one value per trait per plot per time of 

measurement (N = 4032 data points per trait). 

The processed and cleaned datasets, as well as the raw data for both growing seasons, 

are publicly accessible (DOI: 10.5281/zenodo.4305673). 

 

2.3.9 Phenotypic plasticity across genotypes 

 

The phenotypic plasticity of a given genotype for a ChlF trait in Y1 was based on the 

overall drought-induced relative change (%Δ), being estimated as [
𝐶ℎ𝑙𝐹𝑓𝑖𝑛𝑎𝑙−𝐶ℎ𝑙𝐹𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝐶ℎ𝑙𝐹𝑖𝑛𝑖𝑡𝑖𝑎𝑙
× 100], 

https://doi.org/10.5281/zenodo.4305673
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where 𝐶ℎ𝑙𝐹𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the mean value of genotype i for a ChlF trait (𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  or 𝐹𝑟2

′ ) at 0 

DAWW (non-stress), and 𝐶ℎ𝑙𝐹𝑓𝑖𝑛𝑎𝑙 is the mean value of genotype i for a ChlF trait at 16 

DAWW (severe stress). 

 

2.3.10 Spatial-temporal statistical analysis 

 

A linear mixed model (LMM) approach was used to analyse the resolvable row-

column incomplete block design experiments with repeated measures for both Y1 and Y2 

growing seasons. Single-stage analysis models were applied to partition variance components 

and to estimate genotypic effects for all traits based on ‘Best Linear Unbiased Prediction’ 

(BLUP) (Robinson, 1991). A standard LMM is defined as 𝒚 = 𝚾𝜷 + 𝚭𝒖 + 𝜺, where 𝒚 is an n-

vector of observations, 𝜷 is the p-vector of parameters for fixed effects, 𝚾 is an n × p indicator-

variable matrix for fixed effects, 𝒖 is the q-vector of random effects assumed to be distributed 

as 𝒖~𝛮(𝟎, 𝑮), that is, normally distributed with mean zero and variance-covariance matrix 𝑮, 

𝚭 is an n × q indicator-variable matrix for random effects, and 𝜺 is a random residual vector 

assuming 𝜺~𝛮(𝟎, 𝑹). The distribution of observed data is assumed to be 𝒚~𝛮(𝚾𝜷, 𝑽), where 

𝑽 = 𝚭𝑮𝚭𝑻 + 𝑹. 

Positive-constrained variance components for each phenotypic variable (trait) were 

estimated in the LMM by residual maximum likelihood (REML) using the Average Information 

(AI) algorithm with sparse matrix methods (Gilmour, Thompson & Cullis, 1995), as 

implemented in GENSTAT (VSN International, 2019). 

In Y1, a LMM for each phenotype trait measured in a single day was defined as 

 

𝛾 = 𝑅 ∶ 𝐺 + 𝑅𝑂𝑊 + 𝑅 ∙ 𝑅𝑂𝑊 + 𝑅 ∙ 𝐶𝑂𝐿 + 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿,      [1] 

 

where 𝛾 is the vector of observed phenotype, 𝐺 stands for the genotypes, 𝑅 the 

replicates, 𝑅𝑂𝑊 the rows, 𝐶𝑂𝐿 the columns, and the underscored term (𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 in this 

case) is the residual error effect (𝜀) associated with the observation 𝛾. All models were herein 

outlined according to the syntax described in Piepho, Büchse & Emrich (2003), where the dot 

operator (⋅) specifies crossed effects (𝐴 ⋅ 𝐵), the crossing operator (×) defines a full factorial 

model (𝐴 × 𝐵 = 𝐴 + 𝐵 + 𝐴 ⋅ 𝐵), and the nesting operator (∕) describes that a factor 𝐵 is nested 

within another factor 𝐴 (𝐴 𝐵⁄ = 𝐴 + 𝐴 ⋅ 𝐵). Fixed and random terms are separated by a colon 

(∶), listing fixed effects first. Model [1] takes all factors except 𝑅 as random, and was used to 
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fit SDMY and ΔRWC; both traits were log-transformed. Also, one- and two-dimensional spatial 

analyses were performed at the residuals by fitting covariance structures (Payne, Welham & 

Harding, 2019; Wolfinger, 1993), such as autoregressive (AR), moving average (MA), 

autoregressive moving average (ARMA) or linear variance (LV), for modelling correlations 

among the neighbouring experimental units along rows and columns. For BLUEs (‘Best Linear 

Unbiased Estimator’) estimation, 𝐺 factor was fitted as fixed in the model [1]. 

Repeated measures were incorporated into the model [1] as proposed by Piepho, 

Büchse & Richter (2004). Hence, the single-stage baseline model (𝐵𝐿) which considers the 

entire observed data in Y1 in one stage at the level of individual plots was defined as 

 

𝛾 = 𝑅 × 𝑇 ∶ 𝐺 𝑇⁄ + 𝑅𝑂𝑊 𝑇⁄ + (𝑅 ⋅ 𝑅𝑂𝑊) 𝑇⁄ + (𝑅 ⋅ 𝐶𝑂𝐿) 𝑇⁄ + 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 +

𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 ⋅ 𝑇,             [2] 

 

where 𝑇 is time points (i.e., days after withholding water), the repeated factor. On top 

of the model [2], covariates were also included and the full baseline model (𝐵𝐿𝐶𝑜𝑣) for Y1 was 

defined as 

 

𝛾 = 𝑅 × 𝑇 + 𝑅𝑒𝑙𝐹 + 𝑖𝑍𝐷𝑆 + 𝑉𝑂𝐺𝑅𝐸𝐼 + 𝑃𝑃𝐹𝐷 × 𝑉𝑃𝐷 ∶ 𝑉𝑂𝐺𝑅𝐸𝐼 ⋅ 𝑇 + 𝐺 𝑇⁄ + 𝑅𝑂𝑊 𝑇⁄ +

(𝑅 ⋅ 𝑅𝑂𝑊) 𝑇⁄ + (𝑅 ⋅ 𝐶𝑂𝐿) 𝑇⁄ + 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 + 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 ⋅ 𝑇,    [3] 

 

where 𝑖𝑍𝐷𝑆 is the initial growth stage in the Zadoks scale measured two days before 

withholding water, 𝑉𝑂𝐺𝑅𝐸𝐼 the Vogelmann red edge index, 𝑃𝑃𝐹𝐷 the photosynthetic photon 

flux density, 𝑉𝑃𝐷 the vapour pressure deficit, and 𝑅𝑒𝑙𝐹 is the relative deviation of the target 

area from the focal point of the LIFT light beam set at 0.60 m, calculated as [
𝐿𝐼𝐹𝑇ℎ𝑒𝑖𝑔ℎ𝑡−𝑃𝐻

60
], 

where 𝐿𝐼𝐹𝑇ℎ𝑒𝑖𝑔ℎ𝑡 is the distance from the soil surface to the LIFT lens [cm] and 𝑃𝐻 is the plant 

height [cm]. 𝑅𝑒𝑙𝐹 and 𝑖𝑍𝐷𝑆 were time-constant covariates, whilst 𝑉𝑂𝐺𝑅𝐸𝐼, 𝑃𝑃𝐹𝐷 and 

𝑉𝑃𝐷 were time-varying covariates. Model [3] was used to fit 𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  and 𝐹𝑟2

′ . Besides the 

spatial modelling of trends along rows and columns, temporal correlation structures (Littell, 

Pendergast & Natarajan, 2000; Payne et al., 2019), such as compound symmetry (CS), banded 

Toeplitz (BAND), power (POW), ante-dependence (ANTE), unstructured (UN) or general 

correlation (COR), with equal or unequal variances were also fitted to the residuals to 

accommodate trends over time due to multiple observations on the same experimental unit. 

Modelling of serial correlation was also extended to 𝐺 ⋅ 𝑇 in order to assess genetic correlations 
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for the same trait across time, allowing for heterogeneity of genetic variances. For estimating 

BLUEs for each time point, 𝐺 𝑇⁄  were fitted as fixed in the model [3]. 

In Y2, a LMM for each phenotype trait measured in each time point after imposing 

water treatment was defined as 

 

𝛾 = 𝑇𝑅𝑇 + 𝑅 ∶ 𝐺 𝑇𝑅𝑇⁄ + 𝑅𝑂𝑊 𝑆𝑈𝐵⁄ + 𝑅 ⋅ 𝑅𝑂𝑊 + 𝑅 ⋅ 𝐶𝑂𝐿 + 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 + 𝑅 ⋅ 𝑅𝑂𝑊 ⋅

𝑆𝑈𝐵 + 𝑅 ⋅ 𝐶𝑂𝐿 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵,           [4] 

 

where 𝑇𝑅𝑇 is the water treatment and 𝑆𝑈𝐵 the subrows. Model [4] was used to fit 

SDMY, which was log-transformed. For estimating BLUEs within each water treatment, 

𝐺 𝑇𝑅𝑇⁄  were fitted as fixed in the model [4]. 

For assessing the differences among levels of drought severity, repeated measures 

were incorporated into the model [4]. Therefore, the 𝐵𝐿 model, which considers the entire 

observed data in Y2 in one stage at the level of individual plots, was defined as 

 

𝛾 = (𝑇𝑅𝑇 + 𝑅) × 𝑇 ∶ 𝐺 𝑇⁄ + (𝐺 ⋅ 𝑇𝑅𝑇) 𝑇⁄ + 𝑅𝑂𝑊 𝑇⁄ + (𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵) 𝑇⁄ +

(𝑅 ⋅ 𝑅𝑂𝑊) 𝑇⁄ + (𝑅 ⋅ 𝐶𝑂𝐿) 𝑇⁄ + (𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿) 𝑇⁄ + (𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵) 𝑇⁄ + 𝑅 ⋅ 𝐶𝑂𝐿 ⋅

𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵 + 𝑅 ⋅ 𝐶𝑂𝐿 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵 ⋅ 𝑇,         [5] 

 

where 𝑇 is time points after imposing water treatment (i.e., the levels of drought 

severity), the repeated factor. Taking into account the fluctuating environment during the 

measurements, covariates were also added as fixed in the model [5] and so the 𝐵𝐿𝐶𝑜𝑣 model for 

Y2 was defined as 

 

𝛾 = (𝑇𝑅𝑇 + 𝑅 + 𝑅𝑒𝑙𝐹 + 𝑍𝐷𝑆 + 𝑉𝑂𝐺𝑅𝐸𝐼) × 𝑇 + (𝑅𝑒𝑙𝐹 + 𝑍𝐷𝑆 + 𝑉𝑂𝐺𝑅𝐸𝐼 +

𝑃𝑃𝐹𝐷 × 𝑉𝑃𝐷) × 𝑇𝑅𝑇 ∶ 𝐺 𝑇⁄ + (𝐺 ⋅ 𝑇𝑅𝑇) 𝑇⁄ + 𝑅𝑂𝑊 𝑇⁄ + (𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵) 𝑇⁄ +

(𝑅 ⋅ 𝑅𝑂𝑊) 𝑇⁄ + (𝑅 ⋅ 𝐶𝑂𝐿) 𝑇⁄ + (𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿) 𝑇⁄ + (𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵) 𝑇⁄ + 𝑅 ⋅ 𝐶𝑂𝐿 ⋅

𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵 + 𝑅 ⋅ 𝐶𝑂𝐿 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵 ⋅ 𝑇,         [6] 

 

where 𝑍𝐷𝑆 is the growth stage in the Zadoks scale. 𝑅𝑒𝑙𝐹, 𝑍𝐷𝑆, 𝑉𝑂𝐺𝑅𝐸𝐼, 𝑃𝑃𝐹𝐷 and 

𝑉𝑃𝐷 were time-varying covariates. Model [6] was used to fit 𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  and 𝐹𝑟2

′  in Y2. 

Modelling of spatiotemporal (STM) correlations was also performed at the residuals, only. For 
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estimating BLUEs within each water treatment and across time points, 𝐺 𝑇⁄  and (𝐺 ⋅ 𝑇𝑅𝑇) 𝑇⁄  

were fitted as fixed in the model [6]. 

In all models, covariates were mean centred, except 𝑅𝑒𝑙𝐹 which was centred to 1 (i.e., 

target area at a distance of 0.60 m). 𝑃𝑃𝐹𝐷 and 𝑉𝑃𝐷 were also log-transformed and fitted to 

𝐵𝐿𝐶𝑜𝑣 models to evaluate whether a nonlinear relationship with the ChlF traits would improve 

model fit. 

Comparison between candidate models was assessed by the REML-likelihood ratio 

test (REMLRT), provided that the two models being compared were nested and had the same 

fixed effects model (Galwey, 2014). Otherwise, when models were non-nested, yet with the 

same fixed effects, the Akaike Information Criterion (AIC) was used to assess their goodness-

of-fit, judged by the ‘smaller the better’ form of the criterion (Cheng, Edwards, Maldonado-

Molina, Komro & Muller, 2010). The adjusted 𝑅2-like statistic for the final ‘best’ LMM was 

estimated based on the average semivariance approach (Ω𝛽
𝐴𝑆𝑉), as proposed by Piepho (2019). 

Conditional F-test statistic was used to test fixed effects. The Fisher-Hayter procedure, a 

modified LSD (MLSD) test using the Studentized Range statistic (Hayter, 1986), was used to 

perform pairwise comparisons between adjusted means. 

The impact of adding covariates (𝐵𝐿𝐶𝑜𝑣) and modelling the spatiotemporal 

correlations (𝐵𝐿𝐶𝑜𝑣+𝑆𝑇𝑀) was evaluated by means of relative efficiency (RE) in terms of the 

size of the error. Thus, RE was used to assess the improvement in precision of the alternative 

models over the 𝐵𝐿 models [2] and [5] (i.e., models without covariates and/or spatiotemporal 

covariance structures) for seasons Y1 and Y2, respectively. The RE (%) was calculated as 

suggested by Qiao, Basford, DeLacy & Cooper (2000) and can be defined as (
𝑆𝐸𝐷𝐵𝐿

𝑆𝐸𝐷𝐴𝑇
× 100), 

where SED is the REML-based average standard error of the difference between genotype 

means for the baseline model (𝑆𝐸𝐷𝐵𝐿) and for the alternative models (𝑆𝐸𝐷𝐴𝑇). The higher the 

RE estimate, the better the precision of the field evaluation of genotypes. 

 

2.3.11 Heritability and trait correlation estimation 

 

Broad-sense heritability on an entry-mean basis (H2), or repeatability, of a trait for a 

single time point was estimated according to Cullis, Smith & Coombes (2006) as 

𝐻2 = 1 −
�̅�Δ⋅⋅

𝐵𝐿𝑈𝑃

2𝜎𝑔
2 , 
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where �̅�Δ⋅⋅
𝐵𝐿𝑈𝑃 is the mean variance of a difference of two BLUPs for the genotypic 

effect and 𝜎𝑔
2 is the genotypic variance. 

Bivariate LMM (see details in Piepho, 2018; Piepho & Möhring, 2011) were used to 

estimate genetic correlations between each pair of traits (e.g., between ChlF traits and SDMY 

or ΔRWC) in each time point. Assuming 𝛾 = [
𝛾1

𝛾2
] as the response vector of observed phenotype 

for the trait 𝑘 (𝑘 = 1, 2), the bivariate model for a single time point was defined as 

 

𝛾 = 𝑇𝑅𝐴𝐼𝑇 + 𝑅 ∙ 𝑇𝑅𝐴𝐼𝑇 ∶ 𝐺 ∙ 𝑇𝑅𝐴𝐼𝑇 + 𝑅𝑂𝑊 ∙ 𝑇𝑅𝐴𝐼𝑇 + 𝑅 ∙ 𝑅𝑂𝑊 ∙ 𝑇𝑅𝐴𝐼𝑇 + 𝑅 ∙ 𝐶𝑂𝐿 ∙

𝑇𝑅𝐴𝐼𝑇 + 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 ∙ 𝑇𝑅𝐴𝐼𝑇,          [7] 

 

where 𝑇𝑅𝐴𝐼𝑇 stands for the traits of interest. Model [7] was used to assess the 

correlation between SDMY and ΔRWC traits in Y1. Covariates were also accommodated to the 

bivariate models for assessing the genetic correlations between each ChlF trait and SDMY or 

ΔRWC in Y1 as 

 

𝛾 = 𝑍 ∙ 𝑅𝑒𝑙𝐹 + 𝑍 ∙ 𝑖𝑍𝐷𝑆 + 𝑍 ∙ 𝑉𝑂𝐺𝑅𝐸𝐼 + 𝑍 ∙ (𝑃𝑃𝐹𝐷 × 𝑉𝑃𝐷) + 𝑇𝑅𝐴𝐼𝑇 + 𝑅 ∙ 𝑇𝑅𝐴𝐼𝑇 ∶ 𝐺 ∙

𝑇𝑅𝐴𝐼𝑇 + 𝑅𝑂𝑊 ∙ 𝑇𝑅𝐴𝐼𝑇 + 𝑅 ∙ 𝑅𝑂𝑊 ∙ 𝑇𝑅𝐴𝐼𝑇 + 𝑅 ∙ 𝐶𝑂𝐿 ∙ 𝑇𝑅𝐴𝐼𝑇 + 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 ∙ 𝑇𝑅𝐴𝐼𝑇, 

               [8] 

 

where 𝑍 is a quantitative variable, being set to 𝑍 = 0 when 𝑇𝑅𝐴𝐼𝑇 = SDMY or 

ΔRWC, and to 𝑍 = 1 when 𝑇𝑅𝐴𝐼𝑇 = 𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  or 𝐹𝑟2

′ . 

Coefficients of genotypic correlation between pairs of traits were estimated as 

𝜌𝑔 =
𝜎𝑔1𝑔2

√𝜎𝑔1
2  × 𝜎𝑔2

2
, 

where 𝜎𝑔1𝑔2
 is the genetic covariance between two traits, 𝜎𝑔1

2  and 𝜎𝑔2
2  are the genotypic 

variances of both traits under analysis; such variance-covariance components were estimated 

through the random 𝐺 ∙ 𝑇𝑅𝐴𝐼𝑇 effect in the model [7] or [8]. The REML estimate of 𝜌𝑔 is 

denoted as 𝑟𝑔. The REMLRT was used to estimate the significance of the genetic correlations 

by comparing the model with varying genetic covariance between the two traits and the model 

with the genetic covariance fixed to zero. 
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Coefficients of phenotypic correlation 𝑟𝑝 between traits across time points and within 

traits over time were calculated from the BLUE of genotypes by Pearson’s coefficients of 

correlation. 

 

2.4 GREENHOUSE EXPERIMENT 

 

2.4.1 Plant material 

 

This greenhouse study was performed using ten wheat genotypes: eight durum wheat 

(Triticum turgidum L. ssp. durum Desf.) accessions, a subset of the association mapping 

population ‘UNIBO-Durum Panel’ assembled at the University of Bologna (UNIBO), Italy; 

and two common wheat (Triticum aestivum L.) accessions, namely MGS Brilhante and 

PF020037, which are commercial cultivars adapted to rainfed environments (Soares et al., 

2021) and were released by public breeding programmes in Brazil. 

 

Table 2.1. The subset of durum wheat accessions from the UNIBO-Durum Panel included in the 

greenhouse experiment. The mean growth stage, according to Zadoks et al. (1974), at 121 days after 

planting (18 days after withholding water), and the respective mean drought-induced relative change in 

leaf relative water content (ΔRWC) from a previous field experiment performed during the growing 

season 2017/2018 (Y1) in Maricopa, AZ, USA. 

UNIBO 

Panel Code 
Accession Name Origin† Growth Stage ΔRWC (%) 

DP_140 Gezira 17 ICARDA 50 -16.3 

DP_242 Colorado Desert Durum® 53 -15.1 

DP_079 Arcangelo Italy 65 -32.1 

DP_119 Ainzen 1 ICARDA 68 -30.2 

DP_213 Semperdur Australia 72 -27.3 

DP_116 Westbred 881 Desert Durum® 74 -17.9 

DP_033 Bolenga IRTA 75 -36.5 

DP_041 Gallareta IRTA 77 -41.1 

†International Center for Agricultural Research in the Dry Areas (ICARDA); Spanish Institute of 

Agriculture and Food Research and Technology (IRTA); materials from the Southwestern USA, namely 

“Desert Durum®”, a registered certification mark co-owned by the Arizona Grain Research and 

Promotion Council and the California Wheat Commission. 

 



 

50 

 

In order to have a representative sample of the biological diversity observed within the 

UNIBO-Durum Panel, the durum wheat genotypes were selected according to their maturity 

group and contrasting responses to drought stress by means of relative change in leaf relative 

water content (ΔRWC), see Table 2.1. These phenotypic data were based on the field 

experiment previously carried out during the growing season 2017/2018 (Y1) in Maricopa, AZ, 

USA. 

 

2.4.2 Greenhouse experimental design 

 

The genotypes were evaluated in a pot experiment under the automatic ScreenHouse 

shoot phenotyping platform (Nakhforoosh, Bodewein, Fiorani & Bodner, 2016) at the Institute 

of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH 

(50.90976°N, 6.41313°E, elevation 100 m), in Jülich, Germany. The experiment was set up in 

a factorial completely randomised design (CRD) with 6 replicates for each genotype and water 

treatment (i.e., well-watered, WW, and water-limited, WD). In total, there were 120 pots (10 

genotypes × 2 water regimes × 6 reps). After each measurement, the pots were automatically 

re-randomised via a laser positioning system and a robotic crane to avoid systematic spatial bias 

within the greenhouse. 

Single seeds were sowed in plastic germination trays on 04 September 2018. 

Uniformly emerged seedlings at the one-leaf stage (BBCH scale = 11; Lancashire et al., 1991) 

were then individually transplanted to 5 L plastic pots (23 cm × 17 cm) containing a peat-sand-

pumice substrate (Dachstaudensubstrat SoMi 513; Hawita Gruppe GmbH, Vechta, Germany). 

According to the physical analysis performed by LUFA NRW, Landwirtschaftskammer 

Nordrhein-Westfalen (Münster, Germany), on 29 June 2018, the dry bulk density (𝜌𝑑) of the 

substrate was 644 kg m-3. Moreover, based on the characterisation of the substrate water 

retention curve performed at the Institute of Plant Nutrition and Soil Science, Kiel University 

(Kiel, Germany) in 2013, the permanent wilting point (𝜃𝑃𝑊𝑃; at matric potential, ψ𝑚 = -15000 

hPa) and the field capacity (𝜃𝐹𝐶; ψ𝑚 = -100 hPa), derived from the van Genuchten (1980) 

model, corresponded to approximately 0.129 m3 m-3 and 0.313 m3 m-3, respectively. The plant 

available water (PAW), therefore, estimated as the substrate volumetric water content (𝜃𝑣) 

difference between 𝜃𝐹𝐶  and 𝜃𝑃𝑊𝑃, was ~0.185 m3 m-3, which equals a gravimetric water 

content (𝜃𝑚) of ~0.286 kg kg-1. 

During the first week after transplanting, the substrate moisture level of all potted 

plants was maintained at the field capacity to ensure the optimum establishment of seedlings. 
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Afterwards, starting on 25 September 2018 at 21 days after sowing (DAS), when plants were, 

on average, with two detectable tillers (BBCH = 22), all pots were gradually dried down to the 

predefined water regimes, namely well-watered (WW; 75% of PAW) and water-limited (WD; 

25% of PAW). From 21 to 40 DAS, when most plants had their flag leaf visible (on average, 

BBCH = 38), WD pots were maintained at 25% of PAW, but from 41 to 62 DAS the water 

stress was further intensified, and thus WD plants were re-watered to keep only 15% of PAW. 

However, WW pots were maintained at 75% of PAW throughout the experiment (i.e., from 21 

to 62 DAS). Also, at 24 DAS on 28 September 2018, a layer of white plastic beads 

(Masterbatches, MACOMASS Verkaufs AG, Aschaffenburg, Germany) was placed on the 

substrate surface of every pot to limit evaporation, thus ensuring that water loss from the potted 

plants was mostly from transpiration. Each pot’s water content level was kept constant by 

automated irrigation after weighing twice a week in the first two weeks, and then three times a 

week. 

 

2.4.3 Growth conditions, meteorological and evapotranspiration data 

 

The greenhouse environmental conditions were recorded at 1-min interval through five 

weather stations with sensors to measure the air temperature (DS18B20, Maxim Integrated 

Products, Inc., San Jose, CA, USA), air relative humidity (HMP110, Vaisala Corporation, 

Vantaa, Finland), and photosynthetic photon flux density (PPFD; LI-190R, LI-COR, Inc., 

Lincoln, NE, USA). Vapour pressure deficit (VPD) was calculated as the difference between 

the saturation (𝑒𝑠) and actual vapour pressure (𝑒𝑎) (Allen et al., 1998). 

Plants were grown in a semi-controlled glass greenhouse under a photoperiod of 16 

h/8 h (light/dark) with additional supplemental lighting from high-pressure sodium lamps 

(MASTER SON-T PIA Plus 400W, Philips) whenever natural light intensity was < 400 μmol 

m-2 s-1 between 06:00-22:00 hours local Central European Time (CET). The average ambient 

temperature and relative humidity were 23.0 °C (standard deviation, SD = 3.25) and 54.0% (SD 

= 9.87), respectively, in the daytime. Moreover, at night, the average ambient temperature and 

relative humidity were respectively 17.7 °C (SD = 1.35) and 64.7% (SD = 6.03). Also, the mean 

daily light integral (DLI) at the canopy level was 8.52 mol m-2 d-1 (SD = 1.97). 

Water lost through evapotranspiration was quantified by automatically weighing the 

individual pots at regular intervals throughout the experiment (i.e., twice a week in the first two 

weeks, and then three times a week). In total, there were 18 days (time points) of measurements. 
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Daily evapotranspiration rate (ETR) was then expressed as the amount of water loss per day 

[ml d-1]. 

 

2.4.4 Plant growth development and projected leaf area 

 

Plant development, and thus plant phenology, was visually monitored twice a week, 

and each potted plant was scored according to the BBCH scale (Lancashire et al., 1991). The 

automated ScreenHouse shoot phenotyping platform provided non-invasive data of plant 

growth based on projected leaf area (PLA) by imaging of individual plant shoots at a regular 

basis (i.e., twice a week in the first two weeks, and then three times a week). In total, there were 

18 days (time points) of shoot phenotyping. The platform is equipped with three RGB (red, 

green, blue colour space) cameras fixed at 0° (nadir), 45° and 90° angle to acquire four images 

per camera from different side views of the above-ground plant biomass (further technical 

details in Nakhforoosh et al., 2016). 

Four images taken at 45° angle in each of the 18 time points were processed to estimate 

the average PLA per potted plant per day of measurement. The greenness thresholding 

approach, therefore, was employed on the grayscale representation of the RGB colour space in 

order to perform image segmentation (Müller-Linow et al., 2019). The intensity values of each 

image pixel were compared to a threshold 𝛼 resulting in a binary mask 𝐵 with values of 1 

indicating intensity values above 𝛼 and 0 otherwise. These values were attributed to plant and 

non-plant pixels, by which the PLA could be estimated. The greenness was computed based on 

the Excess Green Excess Red index (ExGR; Camargo Neto, 2004; Meyer & Camargo Neto, 

2008). According to this greenness index a pixel intensity value, 𝐼(𝑥, 𝑦), at position (𝑥, 𝑦) was 

classified to 𝐵 as 

𝐵(𝑥, 𝑦) = {1,
0,

     if     3∙𝐼𝐺
′ (𝑥,𝑦)−2.4∙𝐼𝑅

′ (𝑥,𝑦)−𝐼𝐵
′ (𝑥,𝑦)>𝛼

otherwise                                                         
 , 

where the threshold 𝛼 was set at 1.3 and the normalised RGB channel intensities (𝐼𝑅
′ , 

𝐼𝐺
′ , and 𝐼𝐵

′ ) were defined as 

𝐼𝑅
′ (𝑥, 𝑦) =

𝐼𝑅(𝑥,𝑦)

𝐼𝑅(𝑥,𝑦)+𝐼𝐺(𝑥,𝑦)+𝐼𝐵(𝑥,𝑦)
 , 

𝐼𝐺
′ (𝑥, 𝑦) =

𝐼𝐺(𝑥,𝑦)

𝐼𝑅(𝑥,𝑦)+𝐼𝐺(𝑥,𝑦)+𝐼𝐵(𝑥,𝑦)
 , and 

𝐼𝐵
′ (𝑥, 𝑦) =

𝐼𝐵(𝑥,𝑦)

𝐼𝑅(𝑥,𝑦)+𝐼𝐺(𝑥,𝑦)+𝐼𝐵(𝑥,𝑦)
 . 
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2.4.5 Leaf gas exchange measurements 

 

Instantaneous point measurements of leaf gas exchange from intact and mature leaves 

were conducted between 10:00-15:30 hours CET, using the LI-6400XT portable photosynthesis 

system equipped with the standard 6 cm2 leaf cuvette fitted with the 6400-02B Red/Blue (665 

nm/470 nm) LED light source (LI-COR, Inc., Lincoln, NE, USA). Light intensity was set to 

700 μmol m-2 s-1, block temperature controlled at 25 °C, airflow rate at 500 μmol s-1, CO2 

concentration in the airstream maintained at 400 μmol mol-1, and vapour pressure deficit at the 

leaf level (VpdL) was held approximately 1.31 kPa (SD = 0.143). Leaves were equilibrated 

inside the cuvette until net CO2 assimilation (An) and stomatal conductance (gs) were constant 

when then intercellular CO2 concentration (Ci) and transpiration rate (E) were also recorded. 

Measurements were performed at the central portion of the youngest fully-expanded leaf of the 

main stem from three plants per treatment at 37 and 58 DAS (i.e., at 16 and 37 days after 

imposing water treatment, respectively), when plants were, on average, at 37 (flag leaf just 

visible) and 61 (beginning of flowering) BBCH-scale, respectively. This gas exchange 

procedure followed the best practice protocols proposed by Evans & Santiago (2014) and 

Molero & Lopes (2012). 

 

2.4.6 Measurement of leaf cell membrane stability 

 

At 56 DAS (35 days after imposing water treatment), when plants were, on average, 

at the end of the heading stage (BBCH = 59), leaf cell membrane stability (CMS) was measured 

by means of electrolyte leakage from the leaf cells based on Blum & Ebercon (1981) and Bajji, 

Kinet & Lutts (2002). Three 1.5-cm leaf segments were randomly collected from the lower, 

middle and upper canopy of each potted plant, and placed in a 50 ml sterile polypropylene tube 

(Corning®, Merck KGaA, Darmstadt, Germany). Samples were quickly washed for three times 

with distilled deionised water and then were immersed in 20 ml of distilled deionised water. An 

initial electrical conductivity measure (𝑖𝐸𝐶) was taken at the beginning of this hydration period 

using a portable digital conductivity meter (AK83, Akso Electronic Products Ltd., São 

Leopoldo, RS, Brazil). Then, all capped tubes were incubated in the dark for 24 h at 10 °C. 

After incubation, samples were warmed up to room temperature for about one hour, were 

vigorously shaken, and then another round of electrical conductivity measure (𝑓𝐸𝐶) was taken. 

Following this, samples were autoclaved at 120 °C for 20 min. Tubes were cooled down to 
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room temperature and the total electrical conductivity (𝐸𝐶𝑇) was measured. Electrolyte leakage 

[%] was expressed as [
𝑓𝐸𝐶−𝑖𝐸𝐶

𝐸𝐶𝑇−𝑖𝐸𝐶
× 100]. 

 

2.4.7 Final destructive measurements 

 

The experiment was terminated on 05 November 2018 at 62 DAS (41 days after 

imposing water treatment), when ca. 40% of plants were at the end of the flowering stage 

(BBCH = 69). Plants were hand-cut near the substrate surface, placed in individual plastic bags 

and immediately weighed to determine the total above-ground fresh biomass. Leaves were 

detached from stems and, subsequently, the total leaf area (LA) per plant was quantified using 

a leaf area meter (LI-3100C, LI-COR, Inc., Lincoln, NE, USA). Finally, samples were placed 

in paper bags, oven-dried at 75 °C for 72 h, and weighted to obtain the final total shoot dry 

matter (SDM) per plant. 

 

2.4.8 LIFT measurements in the greenhouse 

 

The LIFT instrument was mounted on a commercial tripod (Advanced VX, Celestron, 

Torrance, CA, USA) and remained stationary in an adjacent area to the ScreenHouse’s 

weighing station throughout the experiment. The sensor acquired ChlF data from an oblique 

side view of the plant canopy, being regularly adjusted as plants grew (Figure 2.3A). The off-

nadir angle, therefore, shifted from 65° to 70° between the first and the last day of 

measurements. The distance from the LIFT lens to the middle-lower canopy (i.e., the target 

area) remained at ~0.90 m throughout the experiment. The blue LED light beam was ~35 mm 

in diameter at the focal point over the target area (Figure 2.3B). Aiming to operate with an 

optimal signal-to-noise ratio, the gain of the fluorescence channel was adjusted at the beginning 

of each day of measurement in order to maintain the raw fluorescence within 2000-20000 signal 

range. At a distance of 0.90 m, the average excitation power for the SQA phase was ~27000 

µmol photons m-2 s-1. 

The ChlF measurements were performed in parallel with the routine operations of the 

automated ScreenHouse shoot phenotyping platform. For each day of measurement, a minimum 

of 20 QA flashes was acquired from every experimental unit whilst a potted plant stood alone 

on the weighing table for automated gravimetric measures and subsequent irrigation. The LIFT 

sensor operated in the continuous scanning mode throughout a day of measurement, where 



 

55 

 

single QA flashes were executed at ~1-second interval. In total, there were 16 time points (at 

16, 21, 23, 28, 30, 34, 36, 38, 41, 43, 50, 52, 55, 57, 59, and 62 DAS), which were carried out, 

on average, between 09:50-13:50 hours CET. 

 

 

Figure 2.3. In the semi-controlled greenhouse experiment, (A) the LIFT instrument was mounted on 

a tripod, remained stationary in an adjacent area to the automated weighing and irrigation station, and 

acquired chlorophyll fluorescence data from an oblique side view of the plant canopy. (B) At a 

distance of ~0.90 m from the LIFT lens, the blue LED light beam was ~35 mm in diameter over the 

middle-lower canopy. 

 

2.4.9 LIFT data cleaning 

 

Due to off-target measurements (i.e., non-photosynthetic tissues), fluctuating lighting 

(either natural sunlight or supplemental lighting) and/or technical constraints, low-quality data 

can occur. Hence, a data cleaning pipeline was defined and implemented in the R environment 

(R Core Team, 2020). 

A total of 40,306 ChlF transients were collected over time. Data were assessed and 

discarded in accordance with the following: i) data points acquired with signal-to-noise ratio ≤ 

55; ii) 𝐹𝑞
′ 𝐹𝑚

′⁄  values outside the 0-1 range; iii) the adjusted coefficient of determination (𝑅𝑎𝑑𝑗
2 ) 

from the log-log model at t1 (for 𝐹𝑟1
′ ) was < .90; and iv) 𝑅𝑎𝑑𝑗

2  from the log-log model at t2 (for 

𝐹𝑟2
′ ) was < .85. After performing the previous steps, outliers were detected and removed for 

each ChlF trait per day of measurement according to a four-step approach sequentially executed 

as follows: 1) at plot level based on adjusted boxplot for skewed distributions as proposed by 

Hubert & Vandervieren (2008) and implemented in the R package robustbase (Maechler et al., 
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2020); 2) at genotype level also based on adjusted boxplot; 3) again at plot level but this time 

based on the standard Tukey’s boxplot method by using 1.5 times the interquartile range (IQR) 

(Sim et al., 2005) and implemented in the base package grDevices (R Core Team, 2020); and 

lastly, 4) at genotype level also based on a standard boxplot. As 𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  and 𝐹𝑟2

′  are derived 

from the same transient, in the case of an outlier, none of the ChlF traits for that particular 

transient was considered for further analysis. Finally, after data cleaning, the remaining data 

points were averaged, resulting in one value per trait per plot per time of measurement (N = 

1920 data points per trait). 

 

2.4.10 Statistical analysis 

 

A linear mixed model (LMM) approach was used to analyse the factorial completely 

randomised design experiment with repeated measures. Positive-constrained variance 

components for each phenotypic variable (trait) were estimated in the LMM by residual 

maximum likelihood (REML) using the Average Information (AI) algorithm with sparse matrix 

methods (Gilmour et al., 1995), as implemented in GENSTAT (VSN International, 2019). 

Patterson’s model syntax, including its related operators, herein used were previously described 

in item 2.3.10. 

A simple LMM for a trait measured in a single day was defined as 

 

𝛾 = 𝐺 × 𝑇𝑅𝑇 ∶ 𝑃𝐿𝑂𝑇,            [9] 

 

where 𝛾 is the vector of observed phenotype, 𝐺 stands for the genotypes, 𝑇𝑅𝑇 the 

water treatment, and 𝑃𝐿𝑂𝑇 indexes the plots (i.e., the pots). The underscored term (𝑃𝐿𝑂𝑇 in 

this case) is the residual error effect (𝜀) associated with the observation 𝛾. Model [9] was used 

to fit cell membrane stability (CMS), final total shoot dry matter (SDM), and final total leaf 

area (LA) traits, which were log-transformed. 

Repeated measures were then incorporated into the model [9] as proposed by Piepho 

et al. (2004). The single-stage baseline model (𝐵𝐿) which considers the entire observed data in 

one stage at the level of individual plots was defined as 

 

𝛾 = 𝐺 × 𝑇𝑅𝑇 + 𝑇 𝑇𝑅𝑇⁄ ∶ 𝐺 ∙ 𝑇 + 𝐺 ∙ 𝑇𝑅𝑇 ∙ 𝑇 + 𝑃𝐿𝑂𝑇 + 𝑃𝐿𝑂𝑇 ∙ 𝑇,    [10] 
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where 𝑇 is time points, the repeated factor. On top of the model [10], covariates were 

also included and the full baseline model (𝐵𝐿𝐶𝑜𝑣) was defined as 

 

𝛾 = 𝐺 × 𝑇𝑅𝑇 + 𝑇 𝑇𝑅𝑇⁄ + (log 𝑃𝑃𝐹𝐷 × log 𝑉𝑃𝐷) 𝑇𝑅𝑇⁄ ∶ 𝐺 ∙ 𝑇 + 𝐺 ∙ 𝑇𝑅𝑇 ∙ 𝑇 + 𝑃𝐿𝑂𝑇 +

𝑃𝐿𝑂𝑇 ∙ 𝑇               [11] 

 

where log 𝑃𝑃𝐹𝐷 is the log-transformed PPFD, and log 𝑉𝑃𝐷 the log-transformed VPD, 

both were time-varying covariates. Model [11] was used to fit 𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  and 𝐹𝑟2

′  traits. 

Temporal correlation structures (Littell et al., 2000; Payne et al., 2019), such as banded Toeplitz 

(BAND), power (POW), ante-dependence (ANTE), linear variance (LV), autoregressive 

moving average (ARMA), unstructured (UN) or general correlation (COR), with equal or 

unequal variances, were also fitted to the residuals in models [10] and [11] to accommodate 

trends over time due to multiple observations on the same experimental unit. In all models, 

covariates were mean centred. 

Projected leaf area (PLA), evapotranspiration rate (ETR) and growth stage (BBCH) 

traits were analysed by Model [10] but with 𝑇𝑅𝑇 ∙ 𝑇 effect fitted as random. PLA and ETR 

traits were log-transformed. Due to a limited number of days of measurement (only two time 

points), the leaf gas exchange traits (An, gs, Ci, and E) were analysed by Model [10] but with 

𝐺 ∙ 𝑇 effect fitted as fixed. Both Ci and gs traits were log-transformed. 

Comparison between candidate models was assessed by the REML-likelihood ratio 

test (REMLRT), provided that the two models being compared were nested and had the same 

fixed effects model (Galwey, 2014). Otherwise, when models were non-nested, yet with the 

same fixed effects, the Akaike Information Criterion (AIC) was used to assess their goodness-

of-fit, judged by the ‘smaller the better’ form of the criterion (Cheng et al., 2010). Conditional 

F-test statistic was used to test fixed effects. The Fisher-Hayter procedure, a modified LSD 

(MLSD) test using the Studentized Range statistic (Hayter, 1986), was used to perform pairwise 

comparisons between adjusted means. 

The strength of phenotypic association between two traits was calculated from the 

overall BLUEs (‘Best Linear Unbiased Estimator’) of genotypes by Spearman’s rank 

correlation coefficients (𝑟𝑠), regardless of time. Moreover, the drought-induced percentage 

change (%Δ) in a trait (e.g., PLA or ChlF traits), either for a particular genotype or point in 

time, was estimated as [
𝑊𝐷−𝑊𝑊

𝑊𝑊
× 100], where 𝑊𝐷 is the mean value of genotype or time point 
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i for a trait under water-limited conditions, and 𝑊𝑊 is the mean value of genotype or time point 

i for a trait under well-watered conditions. 

 

3 RESULTS 

 

3.1 FIELD TRIAL RESULTS 

 

3.1.1 Weather conditions and drought severity 

 

Overall, south-central Arizona’s climate conditions were quite distinct between the 

two growing seasons. According to the National Centers for Environmental Information 

(NOAA, 2020), the 6-month period (November-April) in the 2017/2018 season (Y1) was 

characterised as the warmest and the driest on record for a 126-year period (1895-2020), 

whereas the 2018/2019 season (Y2) was the 53rd warmest and the 75th driest for the same 

period. The average temperature, precipitation and Palmer Z Index, as a measure of short-term 

drought severity, for the 6-month period (Nov-Apr) in Y1 were 16.6 °C (+3.0 °C anomaly 

compared to the 1901-2000 mean), 41.7 mm (-99.1 mm anomaly) and -2.28 (severe drought; -

2.39 anomaly), against 13.9 °C, 147.3 mm and 0.19 in Y2, overall a near-normal season 

(NOAA, 2020). 

Mean meteorological data for the time period when LIFT data were recorded in both 

growing seasons are in Figure 3.1. The higher atmospheric water demand in Y1 led to a faster 

and more acute reduction in soil moisture compared to Y2 (Figure 3.2). After withholding 

water, 𝜃𝑃𝑊𝑃 at 10 cm depth was reached in roughly 3 days and 17 days in Y1 and Y2, 

respectively. From this time point until the last day of field measurements with the LIFT sensor, 

the soil VWC dropped ~27.1% up to 16 DAWW in Y1, and only ~11.2% up to 25 DAWW in 

Y2. The WD rows in Y2 were, on average, 31.1% drier at 10 cm depth compared to the WW 

counterpart rows in D1, even though soil VWC was still slightly above (~8.5%) the 𝜃𝑃𝑊𝑃 

(Figure 3.2). In D2 and D3 time points, WD rows were, on average, 43.1% and 45.5% drier 

than WW rows, respectively. The soil VWC for WD rows was just around and slightly below 

(~10.0%) the 𝜃𝑃𝑊𝑃 in D2 and D3, respectively (Figure 3.2). Overall, soil moisture in WW rows 

at 10 cm depth remained at 68.5% (SD = 7.2) of the 𝜃𝐹𝐶  over time in Y2. 
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Figure 3.1. Daily light integral (DLI; mol m-2 d-1), daily mean, maximum and minimum air 

temperature (Temp; °C), daily mean, maximum and minimum relative humidity (RH; %), daily mean 

air vapour pressure deficit (VPD; kPa), and daily reference evapotranspiration (ETo; mm) for the time 

period (in days after imposing water treatment) when LIFT data were recorded in both growing 

seasons, 2017/2018 (Y1) and 2018/2019 (Y2), at the Maricopa Agricultural Center of the University 

of Arizona (33.07454°N, 111.97494°W, elevation 360 m) in Maricopa, AZ, USA. 
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Figure 3.2. Daily mean soil volumetric water content (VWC) ± SE, n = 288, at 10 cm depth 

for seed rows in growing season 2017/2018 (Y1), and for well-watered (WW) and water-

limited (WD) seed rows in growing season 2018/2019 (Y2). Dotted lines approximate to 

the soil permanent wilting point (𝜃𝑃𝑊𝑃) and the soil field capacity (𝜃𝐹𝐶) at 10 cm depth. In 

Y2, three consecutive days (see arrows) were required to phenotype the entire durum wheat 

field with three replicates: D1 was taken between 12 and 14 days after imposing water 

treatment, D2 between 17 and 19 days, and D3 between 23 and 25 days. 

 

3.1.2 Covariates and spatiotemporal modelling of trends 

 

The model fit for the ChlF traits considerably improved after accounting for the 

biological and experimental sources of variation, as well as for the spatiotemporal correlations 

among neighbouring plots (Table 3.1). All models fitted to ChlF traits for Y1 and Y2 are found 

in Appendix 3 from Tables A.3.1 to A.3.6. The addition of fixed regression coefficients on top 

of the baseline models (i.e., 𝐵𝐿𝐶𝑜𝑣) to accommodate differences in plant height (i.e., 𝑅𝑒𝑙𝐹), in 

plant growth and development (𝑖𝑍𝐷𝑆 or 𝑍𝐷𝑆), in canopy structure and leaf pigments (i.e., 

𝑉𝑂𝐺𝑅𝐸𝐼), along with fluctuating environmental factors which were recorded at a 5-s interval 

(e.g., 𝑃𝑃𝐹𝐷 and 𝑉𝑃𝐷), promoted a net gain in precision, in terms of relative efficiency (RE) 

estimates, by 25.5%, 28.9% and 23.4%, on average, for 𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  and 𝐹𝑟2

′ , respectively. 

Models with the further addition of spatiotemporal trends (𝐵𝐿𝐶𝑜𝑣+𝑆𝑇𝑀) resulted in smaller but 
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meaningful gains in precision relative to 𝐵𝐿𝐶𝑜𝑣, yielding total final improvements of 29.6%, 

36.5% and 27.3%, on average, for 𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  and 𝐹𝑟2

′ , respectively. These final ‘best’ fit models 

(𝐵𝐿𝐶𝑜𝑣+𝑆𝑇𝑀, as indicated in Appendix 3 from Tables A.3.1 to A.3.6), whose coefficients of 

determination (Ω𝛽
𝐴𝑆𝑉) ranged from .49 to .73 (Table 3.1), served as the basis for all results 

hereafter reported. The conditional F-test statistics for fixed effects are reported in Appendix 4. 

 

Table 3.1. Relative efficiency (RE) in percentage in terms of the average standard error of difference 

between genotype means (SED) for baseline models after adding covariates (𝐵𝐿𝐶𝑜𝑣), and after adding 

covariates and modelling spatiotemporal correlations (𝐵𝐿𝐶𝑜𝑣+𝑆𝑇𝑀) for each chlorophyll fluorescence 

trait (𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  and 𝐹𝑟2

′ ) in both growing seasons, 2017/2018 (Y1) and 2018/2019 (Y2). The baseline 

model without covariates and spatiotemporal modelling (𝐵𝐿) is the reference (RE = 100%). Ω𝛽
𝐴𝑆𝑉 is the 

coefficient of determination, an 𝑅𝑎𝑑𝑗
2 -like statistic, for the ‘best’ fit models (𝐵𝐿𝐶𝑜𝑣+𝑆𝑇𝑀). 

Model Measure 
𝑭𝒒

′ 𝑭𝒎
′⁄  𝑭𝒓𝟏

′  𝑭𝒓𝟐
′  

Y1 Y2 Y1 Y2 Y1 Y2 

Baseline (𝑩𝑳) SED 0.0159 0.0113 0.0116 0.0102 0.0084 0.0076 

 RE 100.0 100.0 100.0 100.0 100.0 100.0 

𝑩𝑳𝑪𝒐𝒗 RE 122.3 128.7 134.2 123.6 116.5 130.2 

𝑩𝑳𝑪𝒐𝒗+𝑺𝑻𝑴 RE 127.6 131.6 145.1 127.8 121.9 132.6 

 Ω𝛽
𝐴𝑆𝑉 .71 .49 .73 .60 .72 .54 

 

The display of sample variograms can be informally used as a major diagnostic tool 

for checking for the presence of natural and extraneous variation in the analysis of field 

experiments (Gilmour, Cullis & Verbyla, 1997). Terms added to a model are then formally 

tested with F-statistics (fixed terms) or REML-likelihood ratio tests (random terms). To 

exemplify this approach of graphically checking models, Figures 3.3 and 3.4 show residual 

variograms for the growing seasons Y1 and Y2, respectively, for both the intercept only 

(without covariates and spatiotemporal covariance structures) and the final best-fitting 

(𝐵𝐿𝐶𝑜𝑣+𝑆𝑇𝑀) models. Overall, the sample variograms of the residuals for the intercept only 

model in Y1 (Figures 3.3A, 3.3C, and 3.3E) indicate that the semi-variance within both 

directions (columns and rows) has an increasing trend component. Likewise, the sample 

variograms of the residuals for the intercept only model in Y2 (Figures 3.4A, 3.4C, and 3.4E) 

indicate that the semi-variance within the same subrow appears fairly constant across all 

columns, while within each column has an increasing trend component. Solely for the 𝐹𝑟1
′  trait 

in Y2 (Figure 3.4C), an additional steps component was also observed within each column. 
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Such trends in both seasons, Y1 and Y2, seem to follow the walking path patterns imposed for 

the field data acquisition (see details in item 2.3.6), which also match the diurnal courses of 

sunlight and vapour pressure deficit (which will be discussed later). A first-order autoregressive 

moving average, ARMA(1, 1), model fitted to both directions (columns and rows), or a second-

order autoregressive, AR(2), model fitted to columns only, smoothly accommodated the 

majority of the spatial trends observed in Y1 and Y2, respectively (Appendix 3 from Tables 

A.3.1 to A.3.6). Indeed, the addition of these polynomial functions combined with temporal 

modelling and covariates, as previously presented, were key to account for trends (Figures 3.3B 

– 3.4B, 3.3D – 3.4D, and 3.3F – 3.4F), and to improve the precision of estimates of genotype 

effects and contrasts (Table 3.1). 

 

3.1.3 Effects of drought stress on leaf RWC and above-ground biomass 

 

In Y1, when the drought was severe, the mean relative change in leaf RWC (ΔRWC) 

from 0 to 15 DAWW was -25.3%Δ, 95% confidence interval (CI) [-23.1, -27.7], see Figure 

3.5A. Among the 252 genotypes, the least and the most dehydrated genotypes dropped their 

leaf RWC by -14.9%Δ (standard error, SE = 1.98) and -44.1%Δ (SE = 2.98), respectively. In 

Y2, when the drought was milder, even after imposing 21 days of water-limiting conditions, 

leaf RWC of WD plants decreased, on average, only by -1.83%Δ (SE = 0.13) compared to WW 

plants (Figure 3.5B). Despite this mild stress and a minor drop in RWC in Y2, the water 

treatment had a major effect on the total shoot dry matter yield (SDMY), F(1, 27.2) = 176, p < 

.001, where WD plants produced, on average, 4815 kg ha-1 (SE = 52.4), and WW plants 

produced 6020 kg ha-1 (SE = 65.6). However, the genotype-by-water treatment interaction was 

not significant (p = .258), and so the relative reduction in SDMY was similar across genotypes, 

ranging from -19.3% to -25.2% (Figure 3.5B). In Y1, the mean SDMY at the end of the severe 

stress was 5161 kg ha-1, 95% CI [4959, 5371], varying from 4343 kg ha-1 (SE = 267) to 5801 

kg ha-1 (SE = 146) among genotypes (Figure 3.5A). However, because the progressive drought 

was imposed throughout the entire experiment, a comparison with a WW condition within the 

same growing season was not possible. 
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Figure 3.3. Three-dimensional plot of sample variograms of the residuals for the intercept 

only models, on the left-hand side, and for the final best-fitting models (𝐵𝐿𝐶𝑜𝑣+𝑆𝑇𝑀), on 

the right-hand side, for (A – B) operating efficiency of PSII (𝐹𝑞
′ 𝐹𝑚

′⁄ ), and both reoxidation 

processes, (C – D) 𝐹𝑟1
′  and (E – F) 𝐹𝑟2

′ . The variograms were scaled onto a 0-1 (i.e., unit) 

scale for plotting. All models are related to the first growing season in 2017/2018 (Y1). 
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Figure 3.4. Three-dimensional plot of sample variograms of the residuals for the intercept 

only models, on the left-hand side, and for the final best-fitting models (𝐵𝐿𝐶𝑜𝑣+𝑆𝑇𝑀), on 

the right-hand side, for (A – B) operating efficiency of PSII (𝐹𝑞
′ 𝐹𝑚

′⁄ ), and both reoxidation 

processes, (C – D) 𝐹𝑟1
′  and (E – F) 𝐹𝑟2

′ . The variograms were scaled onto a 0-1 (i.e., unit) 

scale for plotting. All models are related to the second growing season in 2018/2019 (Y2). 
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Figure 3.5. Relationships across durum wheat genotypes between (A) the relative changes in leaf 

relative water content (ΔRWC in %) and the total shoot dry matter yield (SDMY in kg ha-1) at the end 

of the severe drought period in Y1. Dashed lines indicate mean, lower (LCI) and upper (UCI) 95% 

confidence intervals; or (B) the relative changes in leaf relative water content (ΔRWC in %) and the 

relative changes in total shoot dry matter yield (ΔSDMY in %) induced by mild drought in Y2, in 

comparison to non-stressed plants (WW). Genotypes were assembled into subgroups (S) according 

to the population genetic structure reported by Condorelli et al. (2018). 

 

3.1.4 Effects of drought stress on the LIFT-measured ChlF traits 

 

The increasing severity of drought stress condition in Y1 resulted in a slow but steady 

reduction in 𝐹𝑞
′ 𝐹𝑚

′⁄  and in both reoxidation efficiency traits, 𝐹𝑟1
′  and 𝐹𝑟2

′  (Figures 3.6A and 

3.6B). At 16 DAWW, 𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  and 𝐹𝑟2

′  significantly decreased by -14.4%, -17.8% and -

20.3%, 95% CIs [-6.24, -22.5], [-9.28, -26.4], and [-8.18, -32.4], respectively, relative to 0 

DAWW (Figure 3.6C). This downregulation of ChlF traits was well aligned with the combined 

effect of progressive soil moisture dry-down at 10 cm and 50 cm depths (Figure 3.7). Indeed, 

the soil VWC at 50 cm depth strongly correlated with overall daily means for ChlF traits (Figure 

3.8). Although linearly slowing down over time, 𝐹𝑟1
′  tended to accelerate immediately after the 

onset of drought (up to 3 DAWW) before decelerating in the long term (Figures 3.6C and 3.8B). 

Simultaneously, 𝜃𝑃𝑊𝑃 at 10 cm depth was reached around 3 DAWW. 

 

 

 

 



 

66 

 

 

Figure 3.6. LIFT-measured chlorophyll fluorescence (ChlF) traits from light-adapted durum wheat 

plants in response to progressive drought stress, from 0 to 16 days after withholding water (DAWW), 

in Y1. (A) Operating efficiency of PSII (𝐹𝑞
′ 𝐹𝑚

′⁄ ); and (B) efficiency of electron transport up to ~0.65 

ms after reducing QA (i.e., 𝐹𝑟1
′ ; the kinetics of electron transfer from QA to PQ pool), and up to ~6.64 

ms after 𝐹𝑟1
′  (i.e., 𝐹𝑟2

′ ; the kinetics of electron transfer from PQ pool to PSI). Values are means, 

averaged across genotypes, with ± 95% confidence intervals (CIs), n = 252. (C) Percentage changes 

(%Δ) in ChlF traits over time. Mean relative changes with ± 95% CIs are shown with respect to the 

baseline value at 0 DAWW. Pairwise comparisons between time points and baseline within each ChlF 

trait were performed by the Fisher-Hayter procedure. The levels of significance are indicated by * (p 

≤ .05), ** (p ≤ .01), and *** (p ≤ .001), otherwise blank if p > .05. Dashed arrow indicates when the 

soil permanent wilting point (𝜃𝑃𝑊𝑃 = 0.11 m3 m-3) at 10 cm depth was reached. 

 

 

 

 

Figure 3.7. LIFT-measured chlorophyll fluorescence traits from light-adapted durum wheat plants as 

a function of the soil volumetric water content (VWC) at 10 cm and 50 cm depths in Y1. (A) Operating 

efficiency of PSII (𝐹𝑞
′ 𝐹𝑚

′⁄ ); (B) efficiency of electron transport up to ~0.65 ms after reducing QA (i.e., 

𝐹𝑟1
′ ); and (C) efficiency of electron transport up to ~6.64 ms after 𝐹𝑟1

′  (i.e., 𝐹𝑟2
′ ). Values are means, 

averaged across genotypes, n = 252. Nearby points, the numerical label indicates the timing (in days) 

after withholding water (DAWW). 
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Figure 3.8. Relationships between LIFT-measured chlorophyll fluorescence traits from light-adapted 

durum wheat plants and the soil volumetric water content (VWC) at 50 cm depth in Y1. (A) Operating 

efficiency of PSII (𝐹𝑞
′ 𝐹𝑚

′⁄ ); (B) efficiency of electron transport up to ~0.65 ms after reducing QA (i.e., 

𝐹𝑟1
′ ); and (C) efficiency of electron transport up to ~6.64 ms after 𝐹𝑟1

′  (i.e., 𝐹𝑟2
′ ). Values are means, 

averaged across genotypes, with ± 95% confidence intervals, n = 252. Nearby points, the numerical 

label indicates the timing (in days) after withholding water (DAWW). The colour schemes indicate 

drought progression over time, from non-stress (darker colours) to severe stress (lighter colours). 

 

The overall main effect of water treatment in Y2, averaged across time, was minor but 

significant for 𝐹𝑞
′ 𝐹𝑚

′⁄ , F(1, 13.3) = 54.7, p = < .001, where WD plants (mean, M = 0.507, SE = 

0.0008) had slightly higher values than WW plants (M = 0.497, SE = 0.0008). Also, 𝐹𝑟1
′  for WD 

plants (M = -0.368, SE = 0.001) was faster than for WW plants (M = -0.347, SE = 0.001), F(1, 

13.0) = 205, p < .001. However, 𝐹𝑟2
′  for both treatments, WD (M = -0.212, SE = 0.0006) and 

WW (M = -0.210, SE = 0.0006), performed alike, F(1, 13.4) = 1.73, p = .211. The water 

treatment-by-time interaction was significant for 𝐹𝑞
′ 𝐹𝑚

′⁄ , F(2, 111) = 5.99, p = .003, and for 𝐹𝑟1
′ , 

F(2, 111) = 29.1, p < .001, but of minor effect for 𝐹𝑟2
′ , F(2, 110) = 2.01, p = .139. At time point 

D1, when the soil in the WD rows was only marginally dry, 𝐹𝑞
′ 𝐹𝑚

′⁄  for WD plants was +1.08% 

relative to control plants (Figure 3.9). At D2 and D3, with further depletion of soil VWC, 

stressed plants showed higher 𝐹𝑞
′ 𝐹𝑚

′⁄  compared to non-stressed plants, +2.72% and +2.58%, 

respectively (Figure 3.9). Likewise, 𝐹𝑟1
′  for WD plants was faster than for WW plants 

throughout the season in the order of +3.10%, +7.50%, and +7.86% for D1, D2, and D3, 

respectively (Figure 3.9). These drought-induced trends for 𝐹𝑟1
′  in Y2 (milder drought) were 

similar to those observed at the onset of the water-limiting conditions in Y1, particularly around 

3 DAWW (Figure 3.6C). 

 

 

 



 

68 

 

 

 

Figure 3.9. Percentage changes (%Δ) in chlorophyll fluorescence (ChlF) traits 

according to the drought severity D1, D2, and D3 imposed in Y2. Mean relative 

changes with ± 95% confidence intervals are shown with respect to non-

stressed plants (i.e., WW as the reference, 0%) within each ChlF trait per time 

point (drought severity). Exact p-values are displayed. 

 

Independent of the environment, the three ChlF traits operated in a highly coordinated 

manner, which was clearly observed in Y1 (Figure 3.10) across multiple time points with 

varying ambient conditions, either above or below ground. Daily means for 𝐹𝑟1
′  and 𝐹𝑞

′ 𝐹𝑚
′⁄  

(Figure 3.10A) were strongly correlated, indicating that the faster or slower the electron flow 

from QA towards PQ pool, the higher or lower the PSII operating efficiency. Moreover, 𝐹𝑟2
′  and 

𝐹𝑞
′ 𝐹𝑚

′⁄  (Figure 3.10B) were even better correlated, suggesting that the faster or slower the 

electron flow from PQ pool towards PSI, the higher or lower the PSII operating efficiency. 

Interestingly, this correlation was even stronger than the relationship between both reoxidation 

processes, 𝐹𝑟1
′  and 𝐹𝑟2

′  (Figure 3.10C). 
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Figure 3.10. Relationships among LIFT-measured chlorophyll fluorescence traits from light-adapted 

durum wheat plants under progressive drought stress in Y1. Relationships between (A) 𝐹𝑟1
′  (the 

kinetics of electron transport from QA to PQ pool) and operating efficiency of PSII (𝐹𝑞
′ 𝐹𝑚

′⁄ ); (B) 𝐹𝑟2
′  

(the kinetics of electron transport from PQ pool to PSI) and 𝐹𝑞
′ 𝐹𝑚

′⁄ ; C) both reoxidation processes, 

𝐹𝑟1
′  and 𝐹𝑟2

′ . Values are means, averaged across genotypes, with ± 95% confidence intervals, n = 252. 

Nearby points, the numerical label indicates the timing (in days) after withholding water (DAWW). 

The colour scale for points is based on the soil volumetric water content (VWC) at 10 cm depth, and 

the point sizes are based on the soil VWC at 50 cm depth. 

 

3.1.5 Environmental responses and diurnal courses of ChlF traits 

 

Both 𝑃𝑃𝐹𝐷 and air 𝑉𝑃𝐷 were major fluctuating environmental factors driving 

nonlinear changes in the ChlF traits from light-adapted plants within a measurement day. In 

fact, their interaction effect (log 𝑃𝑃𝐹𝐷 ⋅ log 𝑉𝑃𝐷; i.e., both variables were log-transformed) 

was very important for accounting for the variations observed in the ChlF traits under severe 

drought, as in Y1 (Appendix 4). Increasing light intensity from 150 to 2500 µmol m-2 s-1 induced 

a continuous but nonlinear reduction in 𝐹𝑞
′ 𝐹𝑚

′⁄  (Figure 3.11A) and a deceleration in 𝐹𝑟2
′  (Figure 

3.11C). Furthermore, such effects were even more pronounced when 𝑉𝑃𝐷 increased from 1.5 

to 2.5 kPa. 𝐹𝑟1
′  (Figure 3.11B) accelerated under higher 𝑉𝑃𝐷, especially at low light intensity 

(< ~450 µmol m-2 s-1), whereas this effect was negligible when 𝑃𝑃𝐹𝐷 was > ~900 µmol m-2 s-

1. Neither the 𝑃𝑃𝐹𝐷 by 𝑉𝑃𝐷 interaction nor its interaction with water treatments were 

significant (p > .10) for explaining the variations in the ChlF traits in Y2. Accordingly, these 

effects were dropped from the final fitted models. Nevertheless, the single main effects of 

log 𝑃𝑃𝐹𝐷 and log 𝑉𝑃𝐷 were still important in Y2 and did show similar trends as in Y1 

(Appendix 4). Notably, solely for 𝐹𝑟1
′  trait (Appendix 4), the log 𝑉𝑃𝐷 by water treatment 

interaction effect was significant, indicating that the faster rate of 𝐹𝑟1
′  induced by increasing 

𝑉𝑃𝐷 occurred even more rapidly in WD than in WW plants (Figure 3.11D). 
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Figure 3.11. Predicted values ± SE, n = 5044, for (A) operating 

efficiency of PSII (𝐹𝑞
′ 𝐹𝑚

′⁄ ), and both reoxidation processes, (B) 𝐹𝑟1
′  

and (C) 𝐹𝑟2
′ , from light-adapted durum wheat plants under 

progressive drought stress as a function of photosynthetic photon 

flux density (PPFD) and vapour pressure deficit (VPD). (D) 

Predicted 𝐹𝑟1
′  values ± SE, n = 4032, for well-watered (WW) and 

water-limited (WD) durum wheat plants in light-adapted conditions 

as a function of VPD. Predicted values are based on the best-fitting 

for models [3] and [6] in Y1 and Y2, respectively (see item 2.3.10). 
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Over the course of the day, ChlF traits exhibited clear patterns which were consistent 

across multiple days and growing seasons, and generally followed diurnal courses of 𝑃𝑃𝐹𝐷 

and 𝑉𝑃𝐷 (Figures 3.12 and 3.13). The diurnal course of 𝐹𝑞
′ 𝐹𝑚

′⁄  (Figures 3.12B and 3.13B) 

showed a local minimum around midday at the peak of incoming sunlight. Relative to WW 

conditions (Figure 3.12B), WD plants tended to have slightly higher 𝐹𝑞
′ 𝐹𝑚

′⁄  values towards the 

afternoon, when 𝑃𝑃𝐹𝐷 was decreasing but 𝑉𝑃𝐷 was at the highest. The diurnal course of 𝐹𝑟2
′  

(Figure 3.12D and 3.13D) mirrored that displayed by 𝐹𝑞
′ 𝐹𝑚

′⁄ , showing a local maximum (i.e., 

slowest rate) around midday. However, there were no evident changes between diurnal patterns 

of WD and WW plants (Figure 3.12D). By contrast, 𝐹𝑟1
′  (Figures 3.12C and 3.13C) was fairly 

stable early morning to midday and then decreased linearly (i.e., gradually accelerating the rates 

of QA
¯ reoxidation) towards the afternoon. Although stressed plants always had faster rates of 

𝐹𝑟1
′  throughout the day (Figure 3.12C), especially in the afternoon under increasing 𝑉𝑃𝐷 and 

decreasing 𝑃𝑃𝐹𝐷, the shape of the diurnal patterns of WW and WD plants were comparable. 

Since the LIFT field data were regularly acquired by following systematically two-

dimensional paths (columns and rows), see details in item 2.3.6, the diurnal courses of the ChlF 

traits can also be assessed from a spatial perspective. Therefore, contour plots for each ChlF 

trait were produced for Y1 and Y2, and are found in Figures 3.14 and 3.15, respectively. From 

these figures, it is possible to observe the spatial responses of ChlF traits over the course of the 

field phenotyping day, regardless of genotype. As previously presented, these overall responses 

were mainly driven by diurnal changes in 𝑃𝑃𝐹𝐷 and 𝑉𝑃𝐷. 

 

3.1.6 Changes of heritability over time 

 

Varying temporal dynamics of genotypic effects were observed for all ChlF traits 

during progressively increasing drought severity in Y1. The broad-sense heritability (H2; Figure 

3.16) for 𝐹𝑞
′ 𝐹𝑚

′⁄  increased from 0.55 to 0.64 between 0 to 5 DAWW (i.e., from non-stress to 

moderate drought) and then gradually decreased to 0.46 in severe drought at 16 DAWW. H2 

for 𝐹𝑟1
′  marginally increased to 0.59 within the first 2 DAWW, remained stable up to 5 DAWW, 

and then continuously decreased to 0.40 up till 16 DAWW (Figure 3.16). H2 for 𝐹𝑟2
′ , likewise, 

had starting values of 0.61, peaked at 0.68 in 3 DAWW, and decreased to a minimum of 0.40 

(Figure 3.16). The unknown (residual) environmental effects increased from moderate to severe 

stress conditions, which could explain the decline in heritabilities (i.e., the decreasing relative 

contribution of genetic effects to phenotypic variance). 
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Figure 3.12. Diurnal course of (A) photosynthetic photon flux density (PPFD) and air vapour 

pressure deficit (VPD), (B) operating efficiency of PSII (𝐹𝑞
′ 𝐹𝑚

′⁄ ), and both reoxidation processes, 

(C) 𝐹𝑟1
′  and (D) 𝐹𝑟2

′ , for well-watered (WW) and water-limited (WD) durum wheat plants in light-

adapted conditions in Y2. Values are means ± SD, averaged across days of field phenptyping, n 

= 9. The local time zone is Mountain Standard Time (MST). The discontinuity around midday 

relates to a daily operational break during the LIFT data collection (see details in Appendix 2 – 

Figure A.2.2). 
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Figure 3.13. Diurnal course of (A) photosynthetic photon flux density (PPFD), and air 

vapour pressure deficit (VPD), (B) operating efficiency of PSII (𝐹𝑞
′ 𝐹𝑚

′⁄ ), and both 

reoxidation processes, (C) 𝐹𝑟1
′  and (D) 𝐹𝑟2

′ , from light-adapted durum wheat plants under 

progressive drought stress in Y1. Values are means ± SD, averaged across days of field 

phenotyping, n = 11. The local time zone is Mountain Standard Time (MST). The 

discontinuity around midday relates to a daily operational break during the LIFT data 

collection (see details in Appendix 2 – Figure A.2.1). 
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Figure 3.14. Average spatial and temporal variation for the chlorophyll fluorescence traits from light-

adapted durum wheat plants under progressive drought stress in Y1. (A) Operating efficiency of PSII 

(𝐹𝑞
′ 𝐹𝑚

′⁄ ), and both reoxidation processes, (B) 𝐹𝑟1
′  and (C) 𝐹𝑟2

′ . The contour plots were built based on 

the mean values of 11 days of field phenotyping, from 0 to 16 days after withholding water. The local 

time zone is Mountain Standard Time (MST). 
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Figure 3.15. Average spatial and temporal variation for the chlorophyll fluorescence traits from light-

adapted durum wheat plants grown under both well-watered (i.e., the even subrows) and water-limited 

conditions (i.e., the odd subrows) in Y2. (A) Operating efficiency of PSII (𝐹𝑞
′ 𝐹𝑚

′⁄ ), and both 

reoxidation processes, (B) 𝐹𝑟1
′  and (C) 𝐹𝑟2

′ . The contour plots were built based on the mean values of 

9 days of field phenotyping, which were carried out at D1, D2, and D3 time points. The local time 

zone is Mountain Standard Time (MST). 

 

 

 

 

 



 

76 

 

For Y2, on average, H2 for 𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  and 𝐹𝑟2

′  were 0.65, 0.74 and 0.64, respectively, 

regardless of time (drought severity) and water treatment (WD and WW). Neither the genotype 

by treatment interaction effect nor the three-way interaction of genotype, treatment and time 

for ChlF traits were significant (p > .10) under the mild drought conditions in Y2. 

Values of H2 for SDMY and ΔRWC were 0.63 and 0.80, respectively, under the severe 

drought conditions in Y1. And H2 for SDMY was 0.45 for both WD and WW plants in Y2 since 

the genotype by water treatment interaction effect was not significant (p = 0.26). 

 

 

Figure 3.16. Dynamics of broad-sense heritability on an entry-mean basis (H2) for 

operating efficiency of PSII (𝐹𝑞
′ 𝐹𝑚

′⁄ ) and both reoxidation processes, 𝐹𝑟1
′  and 𝐹𝑟2

′ , from 

light-adapted durum wheat plants under progressive drought stress, between 0 and 16 days 

after withholding water (DAWW), in Y1. The progression of soil volumetric water content 

(VWC) at 10 cm depth over time is also displayed. Small arrows on the right-hand side 

approximate to the soil permanent wilting point (𝜃𝑃𝑊𝑃) and the soil field capacity (𝜃𝐹𝐶) at 

10 cm depth. 
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3.1.7 Genetic and phenotypic correlations within ChlF traits over time 

 

Pearson’s correlation coefficients were used to assess the phenotypic correlations (𝑟𝑝) 

within each ChlF trait while progressively increasing drought over time in Y1 (see Figure 3.17). 

The phenotypic correlations were variable and rarely found above 0.50, even between 

neighbouring time points, indicating that the fluctuating environment played a crucial role in 

driving the ChlF responses. Phenotypic correlations were almost null between non-stress (0 

DAWW) and severe drought (16 DAWW) scenarios; 𝑟𝑝 were 0.06 (p = .318), 0.11 (p = .074) 

and 0.08 (p = .181) for 𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  and 𝐹𝑟2

′ , respectively. 

To assess the genetic correlations (𝑟𝑔) within each ChlF trait over time, in an evolving 

drought environment, serial correlation structures were fitted to the genotype by time 

interaction effect (i.e., the 𝐺 ⋅ 𝑇 term) in the LMM for Y1. The heterogeneous linear variance 

(LVH) was the best-fitting model for all ChlF traits, indicating unequal genetic variances among 

field phenotyping days, whose covariances also varied. In general, genetic correlations within 

each ChlF trait (Figure 3.17) were strong and positive among the nearest neighbouring time 

points (> 0.80 for a time-lag up to 3 days) and smoothly decayed according to the increasing 

temporal distance. Hence, 𝑟𝑔 between contrasting environments, such as non-stressed at 0 

DAWW and severe drought at 16 DAWW in Y1, for 𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  and 𝐹𝑟2

′  were as low as 0.28 

(SE = 0.12), -0.10 (SE = 0.14) and 0.24 (SE = 0.12), respectively. The smooth decrease in 𝑟𝑔 

within ChlF traits over time strongly suggests that drought gradually induced a significant 

shifting in the estimated genotypic values over time. However, a relative increase in noise could 

not be ruled out as well. 
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Figure 3.17. Phenotypic (𝑟𝑝; above the diagonal) and genotypic (𝑟𝑔; below the diagonal) correlation 

coefficients across different time points (i.e., days after withholding water) from 252 durum wheat 

genotypes under progressive drought assessed within each chlorophyll fluorescence trait: (A) 

operating efficiency of PSII (𝐹𝑞
′ 𝐹𝑚

′⁄ ), and both reoxidation processes, (B) 𝐹𝑟1
′  and (C) 𝐹𝑟2

′ . Values in 

the diagonal are the estimated genotypic variance (𝜎𝑔
2) component over time. Genotypic correlation 

coefficients are means ± SE. The levels of significance for the phenotypic correlation coefficients are 

indicated by ns (nonsignificant; p > .05), * (p ≤ .05), ** (p ≤ .01), and *** (p ≤ .001). 
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3.1.8 Trait-trait genetic and phenotypic correlations 

 

Bivariate LMMs for testing the genetic overlap between traits (see Methods) were 

fitted to investigate the trait-trait genetic correlations (𝑟𝑔) over time between ChlF traits and 

SDMY or ΔRWC. The correlation patterns changed according to the drought severity (Figure 

3.18). The 𝑟𝑔 between 𝐹𝑞
′ 𝐹𝑚

′⁄  and SDMY (Figure 3.18A) decreased during the steady 

progression of drought, with the highest positive correlation at 1 DAWW (0.65, SE = 0.14, p < 

.001), and a weak negative correlation at 16 DAWW (-0.21, SE = 0.34, p = .274). Both 𝐹𝑟1
′  and 

𝐹𝑟2
′  (Figure 3.18A) showed similar 𝑟𝑔 patterns with final SDMY over time, and they mirrored 

that displayed by 𝐹𝑞
′ 𝐹𝑚

′⁄ . During the mild drought in Y2, the 𝑟𝑔 between ChlF traits and final 

SDMY (Figure 3.19) were, on average, 0.70, -0.45 and -0.65 for 𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  and 𝐹𝑟2

′ , 

respectively, which were similar to those correlations observed at the onset of water-limiting 

conditions in Y1, particularly between 1 and 5 DAWW. 

Time-varying genetic correlations were also evident between ChlF traits and the 

relative change in leaf RWC (Figure 3.18B). Within the first week after withholding water, 𝑟𝑔 

between 𝐹𝑞
′ 𝐹𝑚

′⁄  and ΔRWC was, on average, -0.36, and increased to 0.35 (SE = 0.28, p = .128) 

under severe stress at 16 DAWW. On the other hand, an opposite trend was seen for both 

reoxidation traits, 𝐹𝑟1
′  and 𝐹𝑟2

′ , whose 𝑟𝑔 with ΔRWC were, on average, 0.36 and 0.31, 

respectively, throughout the first week after imposing drought, and then shifted to -0.33 (SE = 

0.22, p = .109) and -0.34 (SE = 0.33, p = .162), respectively, at 16 DAWW. For these same 

plants experiencing severe stress in Y1, 𝑟𝑔 between SDMY and ΔRWC was -0.43 (SE = 0.10, 

p < .001). 

Trait-trait phenotypic correlations (𝑟𝑝) over time between ChlF traits and SDMY 

(Figure 3.20A) or ΔRWC (Figure 3.20B) were estimated by Pearson’s correlation coefficients. 

Similar to the genetic correlations (Figure 3.18), the phenotypic correlation patterns 

dynamically changed according to the drought severity. Indeed, all results for 𝑟𝑝 exhibited 

analogous trends to those described for the trait-trait 𝑟𝑔, but the magnitude of the phenotypic 

associations were lower, especially between ChlF traits and SDMY. In Y1, 𝑟𝑝 between SDMY 

and ΔRWC was -0.17 (p = .008). 
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Figure 3.18. Mean trait-trait genetic correlations (𝑟𝑔) ± SE, n = 252, from 0 to 16 days after 

withholding water (DAWW), between each chlorophyll fluorescence trait (𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  and 𝐹𝑟2

′ ) 

and (A) the total shoot dry matter yield (SDMY) at the end of the stress period, and (B) the relative 

change in leaf relative water content (ΔRWC) as a consequence of the severe drought stress 

imposed in Y1. 
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Figure 3.19. Mean trait-trait genetic correlations (𝑟𝑔) ± SE, n = 224, over time 

(i.e., levels of drought severity D1, D2 and D3) between each chlorophyll 

fluorescence trait (𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  and 𝐹𝑟2

′ ) and the total shoot dry matter yield 

(SDMY) at the end of the mild drought in Y2. 

 

 

Figure 3.20. Pearson’s coefficients of correlation (𝑟𝑝), n = 252 genotypes, over time (days after 

withholding water) between each chlorophyll fluorescence trait (𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  and 𝐹𝑟2

′ ) and (A) the total 

shoot dry matter yield (SDMY) at the end of the stress period, and (B) the relative change in leaf 

relative water content (ΔRWC) induced by the severe drought stress imposed in Y1. The levels of 

significance are indicated by ns (nonsignificant; p > .05), * (p ≤ .05), ** (p ≤ .01), and *** (p ≤ .001). 
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3.1.9 Phenotypic plasticity and variability across subpopulations 

 

The relationships between overall drought-induced percentage changes (%Δ), as a 

measure of phenotypic plasticity, and initial (non-stress) or final (severe stress) values for ChlF 

traits were evaluated for the subgroups of genotypes (Figure 3.21). For this assessment, we 

grouped genotypes into subpopulations (S) based on the genetic structure in the UNIBO-Durum 

Panel reported by Condorelli et al. (2018), as follows: S1 includes Mediterranean and North 

African germplasm; S2 includes cultivars bred for dryland areas at ICARDA (Syria) in the early 

1970s; S3 includes mainly IRTA (Spain) and INRAE (Morocco) accessions bred in early 1970s, 

and CIMMYT and ICARDA accessions selected for temperate areas; S4 contains 

predominantly high-yielding materials for temperate zones from ICARDA, and some Italian 

accessions from the 1970s; S5 comprises materials derived from broadly adapted (photoperiod-

insensitive) CIMMYT germplasm released between the late 1970s and the early 1980s; S6 

includes Italian accessions from the mid-1970s; S7 includes mostly high-yielding CIMMYT 

genotypes released from the late 1980s and the early 1990s; S8 contains American (North 

Dakota), Canadian, French and Australian genotypes; and finally, due to a significant exchange 

of genetic resources among international breeding programmes, there is an admixture subgroup 

composed mainly by ICARDA, CIMMYT and Italian materials. 

A weak negative correlation was found between the initial 𝐹𝑞
′ 𝐹𝑚

′⁄  values for genotypes 

under well-watered conditions at 0 DAWW and their respective %Δ after experiencing severe 

drought up to 16 DAWW (Figure 3.21A). On the other hand, moderate positive correlations 

were found for 𝐹𝑟1
′  (Figure 3.21B) and 𝐹𝑟2

′  (Figure 3.21C), whose initial values explained (by 

means of 𝑅2) nearly 20% and 45%, respectively, of variability in %Δ throughout genotypes. 

Nevertheless, there was a strong positive correlation between the final 𝐹𝑞
′ 𝐹𝑚

′⁄  values for 

genotypes at 16 DAWW and their corresponding overall drought-induced percentage changes 

(Figure 3.21D), which explained around 70% of the variability. Similarly, there was a very 

strong correlation (negative) for final 𝐹𝑟1
′  values (Figure 3.21E), which explained almost 90% 

of %Δ variability. Final 𝐹𝑟2
′  values (Figure 3.21F) were moderately and negatively correlated 

with their respective %Δ, explaining roughly 30% of the variability. In short, based on Figures 

3.21A and 3.21B, it is possible to state that 𝐹𝑞
′ 𝐹𝑚

′⁄  and 𝐹𝑟1
′  from non-stressed plants inform little 

about the a posteriori effect of drought across genotypes. On the other hand, 𝐹𝑞
′ 𝐹𝑚

′⁄  and 𝐹𝑟1
′  

from severely stressed plants can better indicate those genotypes most and least affected by 
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drought (i.e., with the highest and the lowest %Δ), Figures 3.21D and 3.21E. Notably, 𝐹𝑟2
′  from 

both non-stressed and severely stressed plants may serve as indicators of the potential 

magnitude of drought effect across genotypes, but interpretations require caution since opposite 

relationships occurred (Figures 3.21C and 3.21F). It is noteworthy that genotypes grouped at 

the tail end of %Δ within each ChlF trait (i.e., the two extreme groups of 15 genotypes ranked 

at the top and bottom according to drought-induced relative changes in 𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  or 𝐹𝑟2

′ ) also 

had contrasting means for leaf ΔRWC, but equal means for SDMY (Table 3.2). 

The variation among subpopulations alone accounted for approximately 7.5% (p < 

.001), 8.0% (p < .001) and 16.7% (p < .001) of the overall observed variation in the drought-

induced %Δ for 𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  and 𝐹𝑟2

′ , respectively. The subgroup S8 had the lowest overall %Δ 

in ChlF traits (Table 3.3), suggesting that genotypes from S8 were less prone to reduce 

photosynthetic activities even after severe drought stress. 

 

Table 3.2. The average, median and median difference with ± 95% confidence interval (CI) between 

the two extreme groups of 15 durum wheat genotypes, ranked according to the drought-induced relative 

changes (%Δ) within each chlorophyll fluorescence (ChlF) trait (𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  and 𝐹𝑟2

′ ), for the relative 

change in leaf relative water content (ΔRWC) and the total shoot dry matter yield (SDMY) traits in 

2017/2018 (Y1). L and H stand for the groups with the lowest and the highest %Δ, respectively, within 

each ChlF trait. The Mann-Whitney U-test was used to compare differences between the two groups. 

Measure 
%Δ in 𝑭𝒒

′ 𝑭𝒎
′⁄ †  %Δ in 𝑭𝒓𝟏

′ ‡  %Δ in 𝑭𝒓𝟐
′ § 

L H  L H  L H 

 ΔRWC (%Δ) 

Average -20.2 -30.2  -21.4 -31.0  -20.6 -28.8 

Median -20.2 -32.1  -21.3 -31.6  -20.8 -30.2 

Median difference [95% CI] 11.2 [5.94, 14.4]  10.1 [6.44, 12.9]  9.07 [5.13, 12.2] 

U-statistic (p-value) 19.0 (< .001)  15.0 (< .001)  26.0 (< .001) 

 SDMY (kg ha-1) 

Average 5241 5160  5121 5260  5115 5117 

Median 5251 5198  4994 5228  5100 5081 

Median difference [95% CI] 99.6 [-155, 336]  -152 [-366, 116]  -4.94 [-264, 274] 

U-statistic (p-value) 92.0 (.412)  81.0 (.202)  112.0 (1.00) 

†Average drought-induced relative changes in 𝐹𝑞
′ 𝐹𝑚

′⁄  for L and H groups were -7.81 and -23.2 %Δ, 

respectively; ‡Average drought-induced relative changes in 𝐹𝑟1
′  for L and H groups were -11.8 and -28.6 

%Δ, respectively; §Average drought-induced relative changes in 𝐹𝑟2
′  for L and H groups were -10.7 and 

-32.3 %Δ, respectively. 
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Table 3.3. The average overall drought-induced relative changes (%Δ) within each chlorophyll 

fluorescence trait (𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  and 𝐹𝑟2

′ ) among the durum wheat subpopulations in 2017/2018 (Y1). 

Genotypes were assembled into subgroups (S) according to the population genetic structure reported by 

Condorelli et al. (2018). Values are means ± SE. Different lowercase letters within the same trait are 

statistically different, according to the Fisher-Hayter procedure at p = .05. 

Subgroup %Δ in 𝑭𝒒
′ 𝑭𝒎

′⁄   %Δ in 𝑭𝒓𝟏
′   %Δ in 𝑭𝒓𝟐

′  

Admixture -15.7 ± 0.39 b  -19.6 ± 0.43 ab  -23.1 ± 0.42 b 

S1 -17.8 ± 1.31 b  -23.2 ± 1.43 b  -24.0 ± 1.43 b 

S2 -15.4 ± 1.11 ab  -22.8 ± 1.22 b  -23.4 ± 1.21 b 

S3 -17.4 ± 0.92 b  -21.4 ± 1.01 b  -25.7 ± 1.00 b 

S4 -16.4 ± 0.79 b  -19.1 ± 0.86 ab  -24.9 ± 0.85 b 

S5 -16.5 ± 0.87 b  -20.0 ± 0.95 ab  -26.0 ± 0.95 b 

S6 -16.4 ± 1.07 b  -19.5 ± 1.17 ab  -22.6 ± 1.16 ab 

S7 -16.4 ± 0.71 b  -21.0 ± 0.78 b  -23.2 ± 0.77 b 

S8 -13.2 ± 0.59 a  -17.6 ± 0.65 a  -17.9 ± 0.64 a 

 

 

 

Figure 3.21. Relationships across durum wheat genotypes between the overall percentage changes 

(%Δ; i.e., the size of the absolute change between 0 to 16 DAWW in comparison to the reference 

value at 0 DAWW) in chlorophyll fluorescence (ChlF) traits induced by severe drought and their 

initial (A) 𝐹𝑞
′ 𝐹𝑚

′⁄ , (B) 𝐹𝑟1
′ , and (C) 𝐹𝑟2

′  values measured in non-stressed plants at 0 days after 

withholding water (DAWW), or their final (D) 𝐹𝑞
′ 𝐹𝑚

′⁄ , (E) 𝐹𝑟1
′ , and (F) 𝐹𝑟2

′  values measured in 

severely stressed plants at 16 DAWW. Genotypes were assembled into subgroups (S) according to 

the population genetic structure reported by Condorelli et al. (2018). 
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3.2 GREENHOUSE TRIAL RESULTS 

 

3.2.1 Overall effects of drought at the canopy and leaf level 

 

The imposed drought stress was able to drive changes on all of the plant traits measured 

either at the canopy or leaf level (Table 3.4). Nonetheless, some of the traits quantified at the 

leaf level and low-throughput, such as leaf gas exchange (i.e., net CO2 assimilation, An; stomatal 

conductance, gs; intercellular CO2 concentration, Ci; and transpiration rate, E), were unable to 

statistically distinct the genotypes or to uncover either the genotype-by-water treatment or the 

genotype-by-water treatment-by-time interaction effect. 

 

Table 3.4. Probability values (exact p-values) for the estimates of variance components (genotypic, 𝜎𝑔
2; 

water treatment, 𝜎𝑤
2 ; time, 𝜎𝑡

2; genotype-by-water treatment interaction, 𝜎𝑔𝑤
2 ; genotype-by-time 

interaction, 𝜎𝑔𝑡
2 ; water treatment-by-time interaction, 𝜎𝑔𝑡

2 ; and genotype-by-water treatment-by-time 

interaction, 𝜎𝑔𝑤𝑡
2 ) for each trait measured in semi-controlled greenhouse conditions. 

Trait† 𝝈𝒈
𝟐  𝝈𝒘

𝟐  𝝈𝒕
𝟐 𝝈𝒈𝒘

𝟐  𝝈𝒈𝒕
𝟐  𝝈𝒘𝒕

𝟐  𝝈𝒈𝒘𝒕
𝟐  

𝑭𝒒
′ 𝑭𝒎

′⁄  < .001 .011 < .001 .050 < .001 .017 .116 

𝑭𝒓𝟏
′  < .001 < .001 < .001 .053 < .001 .009 .336 

𝑭𝒓𝟐
′  < .001 .057 < .001 .011 < .001 .015 .312 

PLA < .001 < .001 < .001 < .001 < .001 < .001 .340 

ETR < .001 < .001 .019 .302 < .001 < .001 .001 

BBCH < .001 .032 < .001 .859 < .001 < .001 < .001 

An .101 < .001 < .001 .487 .151 < .001 .500 

gs .329 < .001 .548 .640 .245 .002 .225 

Ci .633 < .001 .053 .977 .153 .005 .054 

E .245 < .001 .028 .296 .387 .004 .216 

SDM < .001 < .001 - < .001 - - - 

LA < .001 < .001 - .009 - - - 

CMS < .001 < .001 - .016 - - - 

†Traits are operating efficiency of PSII (𝐹𝑞
′ 𝐹𝑚

′⁄ ), electron transfer rate from QA to PQ pool (𝐹𝑟1
′ ), electron 

transfer rate from PQ pool to PSI (𝐹𝑟2
′ ), projected leaf area (PLA), daily whole-plant evapotranspiration 

rate (ETR), plant phenological growth stage (BBCH), leaf net CO2 assimilation (An), leaf stomatal 

conductance (gs), leaf intercellular CO2 concentration (Ci), leaf transpiration rate (E), final total shoot 

dry matter per plant (SDM), final total leaf area per plant (LA), and cell membrane stability (CMS). 
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At the leaf level, only the cell membrane stability (CMS) trait, in terms of the 

electrolyte leakage, was able to differentiate genotypes and their interactions with the imposed 

water treatment (Table 3.4). On the other hand, at the canopy level, the traits measured at both 

low (e.g., SDM, LA and BBCH) and high-throughput (e.g., ChlF traits, PLA and ETR) 

facilitated the assessment of drought effects among genotypes (i.e., 𝜎𝑔𝑤
2 ), across time (i.e., 𝜎𝑤𝑡

2 ), 

and/or their triple interaction (i.e., 𝜎𝑔𝑤𝑡
2 ), see Table 3.4. In short, these traits were able to identify 

differences among genotypes and/or water treatment over time. 

 

3.2.2 Effects of drought on plant growth and development 

 

The imposed drought stress of 25% of the plant available water (PAW) up to 38 days 

after sowing (DAS) had no evident impact on plant phenological development (Figure 3.22A), 

at least not at early vegetative stages. Significant differences in phenological growth stages, due 

to water treatment, were only observed at 41 DAS (p < .001) and 43 DAS (p = .030), when 

plants were at either late vegetative stages or the beginning of the inflorescence emergence (i.e., 

beyond the late booting or beginning of heading), whilst the drought was further increased up 

to 15% of PAW. Overall, during these time points, WD plants had a slight anticipated 

development compared to WW plants. This difference, though, became less noticeable after 51 

DAS. However, as the phenology was visually monitored by scoring plants based on the BBCH 

scale (i.e., non-destructively), the assessment of late reproductive stages (i.e., anthesis and grain 

filling) can be subjective and error-prone. 

Despite the minor effects on plant development, drought stress caused a significant 

reduction in plant growth by means of projected leaf area (PLA; Figure 3.22B). After the first 

week of drought, it was already observed an overall reduction of 25.2% in the PLA of WD 

plants compared to WW plants. This difference further increased till 50 DAS (i.e., 30 days after 

imposing drought), where the PLA of non-stressed plants was about 2.3-fold higher than of 

drought-stressed plants. Relationship across genotypes between PLA and the final total shoot 

dry matter per plant (SDM) was assessed at 62 DAS (i.e., 41 days after imposing drought; 

Figure 3.22D). Regardless of water treatment, PLA positively correlated with SDM (R2 = .93, 

p < .001), indicating that PLA may serve as a sound proxy for quantifying total above-ground 

biomass non-invasively. 
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Figure 3.22. The effects of drought stress on (A) plant phenological development by means of BBCH 

scale, (B) projected leaf area (PLA), and (C) daily evapotranspiration rate (ETR) of wheat plants 

growing in semi-controlled greenhouse conditions. Values are means ± SE, averaged across 

genotypes, n = 10. Drought severity was 25% of plant available water (PAW), between 21 and 40 

days after sowing (DAS), and 15% of PAW, between 41 and 62 DAS. (D) Relationship across 

genotypes between the final total shoot dry matter (SDM) and the PLA at 62 DAS for both well-

watered (WW) and water-limited (WD) plants. Values are means ± SE, n = 6. 

 

The changes over time in projected above-ground biomass reflected in the estimated 

daily evapotranspiration rates (ETR; Figure 3.22C). During the first two weeks after 

transplanting, between 16 and 30 DAS, while plants were still acclimating to the newly offered 

growth conditions with minor increases in PLA, both WW and WD plants reduced the ETR. 

However, this reduction was more exacerbated in WD plants. Subsequently, from 36 to 62 

DAS, ETR for WD plants remained stable at ~44.2 ml day-1, without being meaningfully 

affected by increasing drought intensity from 25% to 15% of PAW (Figure 3.22C). On the other 

hand, ETR for WW plants sharply rose from 30 to 43 DAS, during the exponential plant growth 
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phase, and then remained stable at ~109 ml day-1 until 62 DAS (Figure 3.22C), when plants 

reached their maximum projected above-ground biomass and were at reproductive stages, 

Figures 3.22B and 3.22A, respectively. 

 

3.2.3 Effects of drought on leaf gas exchange and cell membrane stability 

 

The drought stress adversely affected net CO2 assimilation (An), stomatal conductance 

(gs), intercellular CO2 concentration (Ci), and transpiration rate (E) at the leaf level (Figure 

3.23). Significant drought-induced reductions of 11.7%, 13.5%, 46.3%, and 32.1% in An, Ci, gs, 

and E, respectively, were evident at 37 DAS (i.e., when flag leaves were just visible) but not at 

58 DAS (i.e., when plants were at the beginning of flowering). Solely WW plants had their An, 

gs, and E reduced, on average, by 15.3%, 21.1%, and 19.3%, respectively, at 58 DAS relatively 

to 37 DAS (Figures 3.23A, 3.23C and 3.23D). These decreases in the photosynthetic activities 

of WW plants over time, but not for WD plants, may explain the lack of a significant drought 

effect at 58 DAS. 

 

 

Figure 3.23. (A) Net CO2 assimilation (An), (B) intercellular CO2 concentration (Ci), 

(C) stomatal conductance (gs), and (D) transpiration rate (E) at the leaf level of well-

watered (WW) and water-limited (WD) wheat plants growing in semi-controlled 

greenhouse conditions at 37 and 58 days after sowing. Values are means ± SE, averaged 

across genotypes, n = 10. Different lowercase letters within the same trait are 

statistically different, according to Fisher-Hayter’s test at p = .05. 
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Leaf cell membrane stability (CMS), in terms of percentage of electrolyte leakage, 

varied among genotypes (p < .001), and between water treatments (p < .001), Table 3.4. Overall, 

WD plants (M = 4.69%, SE = 0.15) had more leaf electrolyte leakage (i.e., lower CMS) than 

WW plants (M = 3.42%, SE = 0.11). However, the magnitude of this drought-induced leaf 

injury significantly varied among genotypes (p = .016), as reported in Figure 3.24. In general, 

genotypes with lower CMS (i.e., leaked the most) in well-watered conditions also tended to 

leak to a greater extent under drought stress; in other words, a greater leaf cell injury was 

observed. 

 

 

Figure 3.24. Leaf cell membrane stability, by means of percentage of electrolyte 

leakage, per wheat genotype under well-watered (WW) and water-limited (WD) 

conditions at 56 days after sowing (i.e., 35 days after imposing water treatment). 

Potted plants were grown in a semi-controlled greenhouse. Values are means ± SE, n 

= 6. Different lowercase letters above the line segments (i.e., at the genotypic level) 

are statistically different, according to Fisher-Hayter’s test at p = .05. The probability 

values (exact p-values) for comparing WW and WD treatments within a genotype are 

displayed below the line segments. 

 

3.2.4 Effects of drought stress on the LIFT-measured ChlF traits 

 

Apart from the main effect of genotype being significant (p < .001) for all of the ChlF 

traits, the water treatment also did impact 𝐹𝑞
′ 𝐹𝑚

′⁄  (p = .011) and 𝐹𝑟1
′  (p < .001) but only 

marginally 𝐹𝑟2
′  (p = .057), Table 3.4. In fact, the LIFT-measured ChlF traits dynamically 

changed over time (Figure 3.25). The sources of variations were essentially due to the genotype-
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by-time and the water treatment-by-time interactions, whereas the triple interaction between 

genotype, water treatment and time revealed not significant (p > .10) for any of the ChlF traits 

(Table 3.4). The overall daily changes during the vegetative stages, between 16 and 40 DAS, 

particularly in 𝐹𝑞
′ 𝐹𝑚

′⁄  (Figure 3.25A) and 𝐹𝑟2
′  (Figure 3.25E), may also be partially explained 

by variations in daily light intensity (i.e., PPFD) and VPD, the latter largely being driven by 

temperature (Figure 3.26). For instance, the combination of low PPFD and VPD observed at 28 

DAS (Figure 3.26) may have resulted in a higher 𝐹𝑞
′ 𝐹𝑚

′⁄  and a faster 𝐹𝑟2
′ , which were even more 

exacerbated in WD plants (Figures 3.25A and 3.25E). Conversely, at 38 DAS, when there was 

a sudden peak of high PPFD and VPD (Figure 3.26), 𝐹𝑞
′ 𝐹𝑚

′⁄  reduced and 𝐹𝑟2
′  slowed down 

(Figures 3.25A and 3.25E). Furthermore, plant development may also help clarify some of the 

overall daily changes in the ChlF traits. 𝐹𝑟1
′  (Figure 3.25C), for example, linearly accelerated 

from the early vegetative stages towards the beginning of the heading phase at 43 DAS, when 

there was the fastest kinetics of electron transfer from QA to PQ pool. After this peak, however, 

𝐹𝑟1
′  linearly decelerated with advancing plant maturity up to 62 DAS. Likewise, 𝐹𝑟2

′  also slowed 

down, and 𝐹𝑞
′ 𝐹𝑚

′⁄  decreased upon mature plants (Figure 3.25). 

The drought-induced relative changes in ChlF traits over time is reported in Figures 

3.25B, 3.25D and 3.25F. 𝐹𝑞
′ 𝐹𝑚

′⁄  and 𝐹𝑟2
′  displayed similar trends over time, where mostly no 

significant differences between WW and WD plants were observed from 21 to 43 DAS (i.e., 

between 0 and 22 days after imposing water treatment). The exception was at 28 DAS, where 

𝐹𝑞
′ 𝐹𝑚

′⁄  and 𝐹𝑟2
′  for WD plants were increased by +1.50% (SE = 0.58, p = .011) and +3.71% (SE 

= 1.09, p < .001), respectively, compared to WW plants (Figures 3.25B and 3.25F). However, 

upon reproductive stages (from 50 to 62 DAS), 𝐹𝑞
′ 𝐹𝑚

′⁄  and 𝐹𝑟2
′  for WD plants were reduced, on 

average, in -2.07% and -2.35%, respectively, compared to WW plants. By contrast, 𝐹𝑟1
′  (Figure 

3.25D) for WD plants remained consistently higher (i.e., accelerated) compared to WW plants, 

+3.65% on average, from 23 to 50 DAS (i.e., between 2 and 29 days after imposing water 

treatment). However, no differences between WW and WD plants for 𝐹𝑟1
′  were observed 

beyond 50 DAS (Figure 3.25D). 
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Figure 3.25. LIFT-measured chlorophyll fluorescence traits over time from light-adapted wheat 

plants growing in semi-controlled greenhouse conditions. On the left-hand side, mean values ± SE, 

averaged across genotypes, n = 10, for well-watered (WW) and water-limited (WD) plants. On the 

right-hand side, mean relative changes ± SE are shown with respect to non-stressed plants (i.e., WW 

as the reference, 0%); exact p-values are displayed. (A – B) Operating efficiency of PSII (𝐹𝑞
′ 𝐹𝑚

′⁄ ), 

and both reoxidation processes, (C – D) 𝐹𝑟1
′  and (E – F) 𝐹𝑟2

′ . Drought severity was 25% of plant 

available water (PAW), between 21 and 40 days after sowing (DAS), and 15% of PAW, between 41 

and 62 DAS. 
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Figure 3.26. Daily mean, maximum and minimum values for (A) 

photosynthetic photon flux density (PPFD; μmol m-2 s-1), (B) air relative 

humidity (RH; %), (C) air temperature (Temp; °C), and (D) air vapour 

pressure deficit (VPD; kPa) for the time period when LIFT data were 

acquired between 20 September and 05 November 2018 (i.e., between 16 

and 62 days after sowing). Environmental data were recorded at 1-min 

interval in a semi-controlled glass greenhouse at the Institute of Bio- and 

Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH 

(50.90976°N, 6.41313°E, elevation 100 m), in Jülich, Germany. 
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Strong relationships among the relative changes in ChlF traits across genotypes were 

observed in response to drought (Figure 3.27). The relative changes in 𝐹𝑞
′ 𝐹𝑚

′⁄  positively 

correlated with the relative changes in 𝐹𝑟1
′  (R2 = .77, p < .001) and 𝐹𝑟2

′  (R2 = .88, p < .001), as 

shown in Figures 3.27A and 3.27B, respectively. There was also a positive correlation between 

the relative changes in both reoxidation processes (R2 = .81, p < .001), Figure 3.27C. These 

results indicate that ChlF traits were highly coordinated, and their drought-induced changes 

were plastically modulated at the genotypic level. In other words, those genotypes that 

accelerated or slowed down their reoxidation processes, both 𝐹𝑟1
′  and 𝐹𝑟2

′ , also did better or 

worse at alleviating the decrease in the operating efficiency of PSII due to drought stress (Figure 

3.27). Even though the magnitude of these modulation processes did not differ between 

vegetative and reproductive stages, small or no reductions in 𝐹𝑞
′ 𝐹𝑚

′⁄  and 𝐹𝑟2
′ , relative to WW 

conditions, were noticed predominantly at vegetative stages (Figure 3.27). 

Strong relationships were also observed between the relative changes in ChlF traits 

and the relative changes in PLA across genotypes in response to drought (Figure 3.28). The 

relative changes in PLA positively correlated with the relative changes in 𝐹𝑞
′ 𝐹𝑚

′⁄  (R2 = .59, p < 

.001) and both reoxidation processes, 𝐹𝑟1
′  (R2 = .51, p < .001) and 𝐹𝑟2

′  (R2 = .61, p < .001), as 

reported in Figures 3.28A, 3.28B and 3.28C, respectively. Altogether, those genotypes that had 

the smallest or the largest reductions in their photosynthetic activities in terms of ChlF traits, 

relatively to WW treatment, also tended to have the smallest or the largest reductions in their 

PLA due to drought stress (Figure 3.28). Even though the magnitude of these effects did not 

differ between vegetative and reproductive stages, the cumulative drought did affect PLA more 

adversely at reproductive stages (i.e., when there were the largest reductions in PLA), see Figure 

3.28. 
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Figure 3.27. Relationships across genotypes among the drought-induced percentage changes (%Δ) 

in chlorophyll fluorescence (ChlF) traits from light-adapted wheat plants growing in semi-controlled 

greenhouse conditions. Relationships between (A) 𝐹𝑞
′ 𝐹𝑚

′⁄  and 𝐹𝑟1
′ ; (B) 𝐹𝑞

′ 𝐹𝑚
′⁄  and 𝐹𝑟2

′ ; and (C) both 

reoxidation processes, 𝐹𝑟1
′  and 𝐹𝑟2

′ . Values are overall means at the genotypic level for the relative 

changes in ChlF traits during the vegetative period (VEG; i.e., the average relative changes between 

21 and 40 days after sowing, DAS, n = 6), and the reproductive period (REP; i.e., the average relative 

changes between 41 and 62 DAS, n = 8). The well-watered treatment set as the reference at 0%. 

 

 

 

Figure 3.28. Relationships across genotypes between the drought-induced percentage changes (%Δ) 

in projected leaf area (PLA) and in chlorophyll fluorescence (ChlF) traits from light-adapted wheat 

plants growing in semi-controlled greenhouse conditions. Relationships between PLA and (A) 

𝐹𝑞
′ 𝐹𝑚

′⁄ ; (B) 𝐹𝑟1
′ ; (C) 𝐹𝑟2

′ . Values are overall means at the genotypic level for the relative changes 

during the vegetative period (VEG; i.e., the average relative changes between 21 and 40 days after 

sowing, DAS, n = 6), and the reproductive period (REP; i.e., the average relative changes between 41 

and 62 DAS, n = 8). The well-watered treatment set as the reference at 0%. 
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3.2.5 ChlF traits in response to light intensity and VPD 

 

Variable ambient light (𝑃𝑃𝐹𝐷) and air 𝑉𝑃𝐷, both log-transformed, as well as their 

interaction effect (log 𝑃𝑃𝐹𝐷 ⋅ log 𝑉𝑃𝐷), were major fluctuating environmental factors driving 

nonlinear changes in the ChlF traits from light-adapted plants (Table 3.5). Increasing light 

intensity from 50 to 750 µmol m-2 s-1 induced a continuous but nonlinear reduction in 𝐹𝑞
′ 𝐹𝑚

′⁄  

(Figure 3.29A) and a deceleration in 𝐹𝑟2
′  (Figure 3.29B). These effects were even more 

pronounced when 𝑉𝑃𝐷 increased from 1.0 to 2.0 kPa, especially for 𝐹𝑟2
′ , while 𝑉𝑃𝐷 had a 

minor effect on 𝐹𝑞
′ 𝐹𝑚

′⁄  when light intensity was > 500 µmol m-2 s-1. On the one hand, 𝐹𝑟1
′  

(Figures 3.29C and 3.29D) also slowed down under increasing 𝑃𝑃𝐹𝐷, but on the other hand, it 

accelerated under higher 𝑉𝑃𝐷, especially at light intensity > 250 µmol m-2 s-1. Notably, solely 

for 𝐹𝑟1
′  trait (Table 3.5) the triple interaction between 𝑃𝑃𝐹𝐷, 𝑉𝑃𝐷 and water treatment was 

significant (p = .027). 𝐹𝑟1
′  for WD plants, for instance, remained almost unchanged (M = -0.44) 

in 𝑉𝑃𝐷 at 2.0 kPa and increasing 𝑃𝑃𝐹𝐷 from 50 to 750 µmol m-2 s-1 (Figure 3.29C), whereas 

𝐹𝑟1
′  for WW plants decelerated roughly 14.2% over the same environmental conditions (Figure 

3.29D). Moreover, under low light intensity (i.e., < 150 µmol m-2 s-1) and low 𝑉𝑃𝐷 (i.e., at 1.0 

kPa), 𝐹𝑟1
′  was faster in WD than in WW plants (Figures 3.29C and 3.29D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

96 

 

 

 

 

 

Table 3.5. Effect size, standard error (SE), conditional F-test statistic, and probability values of 

environmental covariates for each chlorophyll fluorescence trait (𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  and 𝐹𝑟2

′ ) from light-

adapted wheat plants under drought stress in semi-controlled greenhouse conditions. 𝑃𝑃𝐹𝐷 is 

photosynthetic photon flux density, 𝑉𝑃𝐷 is vapour pressure deficit, and 𝑇𝑅𝑇 is water treatment. 

Trait Covariate† Effect SE F-statistic (ndf, ddf) p-value 

𝑭𝒒
′ 𝑭𝒎

′⁄       

 log 𝑃𝑃𝐹𝐷 -0.017 0.002 152 (1, 1183) < .001 

 log 𝑉𝑃𝐷 -0.044 0.004 110 (1, 973) < .001 

 log 𝑃𝑃𝐹𝐷 ∙ log 𝑉𝑃𝐷 0.021 0.006 13.2 (1, 784) < .001 

 log 𝑃𝑃𝐹𝐷 ∙ 𝑇𝑅𝑇   0.17 (1, 1196) .681 

 log 𝑉𝑃𝐷 ∙ 𝑇𝑅𝑇   0.06 (1, 975) .810 

 log 𝑃𝑃𝐹𝐷 ∙ log 𝑉𝑃𝐷 ∙ 𝑇𝑅𝑇   0.001 (1, 802) .949 

𝑭𝒓𝟏
′       

 log 𝑃𝑃𝐹𝐷 0.032 0.004 137 (1, 1283) < .001 

 log 𝑉𝑃𝐷 -0.009 0.007 19.7 (1, 1093) < .001 

 log 𝑃𝑃𝐹𝐷 ∙ log 𝑉𝑃𝐷 -0.059 0.010 41.9 (1, 904) < .001 

 log 𝑃𝑃𝐹𝐷 ∙ 𝑇𝑅𝑇   0.48 (1, 1289) .487 

 log 𝑉𝑃𝐷 ∙ 𝑇𝑅𝑇   1.62 (1, 1098) .203 

 log 𝑃𝑃𝐹𝐷 ∙ log 𝑉𝑃𝐷 ∙ 𝑇𝑅𝑇   4.93 (1, 921) .027 

𝑭𝒓𝟐
′       

 log 𝑃𝑃𝐹𝐷 0.017 0.002 217 (1, 1239) < .001 

 log 𝑉𝑃𝐷 0.049 0.004 183 (1, 1054) < .001 

 log 𝑃𝑃𝐹𝐷 ∙ log 𝑉𝑃𝐷 -0.013 0.005 7.14 (1, 748) .008 

 log 𝑃𝑃𝐹𝐷 ∙ 𝑇𝑅𝑇   0.001 (1, 1252) .998 

 log 𝑉𝑃𝐷 ∙ 𝑇𝑅𝑇   0.60 (1, 1054) .437 

 log 𝑃𝑃𝐹𝐷 ∙ log 𝑉𝑃𝐷 ∙ 𝑇𝑅𝑇   0.02 (1, 757) .891 

†Covariates: log 𝑃𝑃𝐹𝐷 is the log-transformed photosynthetic photon flux density; log 𝑉𝑃𝐷 is the log-

transformed vapour pressure deficit; 𝑇𝑅𝑇 is the water treatment. 
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Figure 3.29. Predicted values ± SE, n = 1920, for (A) operating efficiency of PSII (𝐹𝑞
′ 𝐹𝑚

′⁄ ), and (B) 

the reoxidation process 𝐹𝑟2
′  from light-adapted wheat plants, regardless of water treatment, as a 

function of photosynthetic photon flux density (PPFD) and vapour pressure deficit (VPD). Predicted 

𝐹𝑟1
′  values ± SE, n = 1920, for (C) water-limited (WD) and (D) well-watered light-adapted wheat 

plants growing in semi-controlled greenhouse conditions as a function of PPFD and VPD. 

 

3.2.6 Trait-trait phenotypic correlations 

 

Spearman’s rank correlation coefficients (𝑟𝑠) across the genotype BLUEs estimated 

the strength of phenotypic association between traits within each water treatment, regardless of 

time (Figure 3.30). As neither genotype nor genotype-by-water treatment effects for leaf gas 

exchange traits (i.e., An, gs, Ci, and E) were statistically significant (Table 3.4), their phenotypic 

correlations with the other traits were not investigated. 

The correlations among plant traits under WD conditions (Figure 3.30A) had similar 

trends to those estimated under WW conditions (Figure 3.30B), even though 𝑟𝑠 tended to be 

stronger in drought stress. Overall, plant phenology (i.e., BBCH) negatively correlated with 

𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟2
′ , PLA, CMS, and final total leaf area (LA). Notably, 𝐹𝑞

′ 𝐹𝑚
′⁄  and 𝐹𝑟2

′  positively 

correlated with PLA, LA and CMS, whereas 𝐹𝑟1
′  negatively correlated with ETR, SDM, and 

PLA. By contrast, 𝐹𝑟1
′  weakly correlated with BBCH and CMS. 
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Figure 3.30. Spearman’s rank correlation coefficients (𝑟𝑠; below the diagonal) and their respective 

probability values (p-values; above the diagonal) between traits averaged across time points from 10 

wheat genotypes under (A) drought stress (WD) and (B) well-watered (WW) conditions, and growing 

in a semi-controlled greenhouse. The plant traits are operating efficiency of PSII (𝐹𝑞
′ 𝐹𝑚

′⁄ ), electron 

transfer rate from QA to PQ pool (𝐹𝑟1
′ ), electron transfer rate from PQ pool to PSI (𝐹𝑟2

′ ), daily whole-

plant evapotranspiration rate (ETR), projected leaf area (PLA), final total shoot dry matter per plant 

(SDM), final total leaf area per plant (LA), leaf cell membrane stability (CMS), and plant phenological 

growth stage (BBCH). 
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4 DISCUSSION 

 

4.1 FIELD 

 

Changes in LIFT-measured ChlF traits of light-adapted durum wheat plants subjected 

to progressive soil drying were induced in both the short and long term. In fact, a reduced 

photosynthetic activity, estimated by the LIFT parameters (𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  and 𝐹𝑟2

′ ), was only 

observed under a persistent moderate to severe drought (Figure 3.6C). Though, it is worthy of 

note that the absence of a contiguous control treatment (WW) in Y1 may have limited our ability 

to isolate small changes caused solely by drought, particularly when it was not severe. Indeed, 

the photosynthetic machinery, especially PSII photochemistry, is known to be relatively 

resilient to water stress (Flexas et al., 2009; Flexas, Escalona & Medrano, 1998; Havaux, 1992; 

Kaiser, 1987). Such a resilience, however, has been shown more pronounced for ChlF traits 

measured in dark-adapted plants as the maximum quantum efficiency of PSII photochemistry 

(𝐹𝑣 𝐹𝑚⁄ ), rather than in light-adapted plants as 𝐹𝑞
′ 𝐹𝑚

′⁄  (Athar & Ashraf, 2005; Lu & Zhang, 

1999; Zivcak et al., 2014). Therefore, these findings indicate that light-adapted ChlF traits 

might be physiologically preferable for assessing the effects of environmental stressors. 

Concurrent electron acceptor sinks (i.e., photosynthetic carbon reduction and carbon 

oxidation) may explain the high resilience of ChlF traits, particularly 𝐹𝑞
′ 𝐹𝑚

′⁄  and 𝐹𝑟2
′ , even after 

ten days of water-limiting conditions in Y1 (Figure 3.6C) and also the fact that no declines 

relative to WW plants were found under mild drought in Y2. Stomatal (gs) and mesophyll (gm) 

conductance are key CO2 diffusion components that regulate leaf transpiration efficiency, 

playing pivotal roles in plant acclimation to drought (Flexas et al., 2009; Ouyang, Struik, Yin 

& Yang, 2017). In the short term, at the onset of water-limiting conditions, stomatal closure is 

induced to reduce water loss, and thereby CO2 availability, leading to increased 

photorespiration (Cornic, 2000; Lawlor, 2002). In C3 plants under mild drought, the O2 uptake 

via photorespiratory activity can almost entirely replace the lower CO2 availability as an 

electron acceptor pathway (Cornic & Fresneau, 2002). Drought-stressed tomato plants, for 

instance, doubled electron dissipation through photorespiration relative to non-stressed plants 

(Haupt-Herting & Fock, 2002). This repartitioning of light energy, or energy balancing network 

(Walker, Kramer, Fisher & Fu, 2020), may result in minor changes in ChlF-based traits in mild 

stress. Nevertheless, if drought progresses, LET might be electron sink-limited, as both 

photorespiration and the Calvin-Benson cycle can be repressed, causing impairment of ribulose 
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bisphosphate (RuBP) regeneration and adenosine triphosphate (ATP) synthesis (Flexas & 

Medrano, 2002; Tezara, Mitchell, Driscoll & Lawlor, 1999). Ultimately, whole photosynthetic 

electron transport activity will be down-regulated (Cornic & Fresneau, 2002; Haupt-Herting & 

Fock, 2002; Medrano, Escalona, Bota, Gulías & Flexas, 2002; Schöttler & Tóth, 2014). Hence, 

these considerations can explain the decrease in 𝐹𝑞
′ 𝐹𝑚

′⁄  co-occurring with reduced 𝐹𝑟1
′  and 𝐹𝑟2

′  

in response to long-term severe drought stress observed in Y1. 

The very strong linear relationship between 𝐹𝑞
′ 𝐹𝑚

′⁄  and 𝐹𝑟2
′  (i.e., the kinetics of electron 

transport from PQ pool towards PSI; Figure 3.10B) supports the mechanism of photosynthetic 

control of electron transfer when metabolism is repressed under environmental stresses to 

prevent photodamage in both PSII and PSI. According to Kanazawa et al. (2017), ATP synthase 

activity decreases in limiting CO2, slowing proton efflux from the thylakoid lumen and, 

consequently, increasing proton motive force (pmf) across the thylakoid membrane. As a 

consequence, a more acidic lumen can concomitantly (i) trigger the energy-dependent (qE) non-

photochemical quenching (NPQ), which thermally dissipates the surplus of absorbed light 

energy from the light-harvesting complexes (LHCs) to prevent over-excitation of PSII, as well 

as (ii) slow down the electron transfer through the cytochrome b6f complex (Cytb6f), which 

prevents over-reduction of PSI electron acceptors (Kanazawa et al., 2017; Tikhonov, 2013). 

These mechanisms of photoprotection governed by ATP synthase activity are known to be at 

the core of plant acclimation to long-term drought stress (Kohzuma et al., 2009). Therefore, a 

slower 𝐹𝑟2
′  might suggest a deceleration of electrons through Cytb6f with simultaneous 

decreasing in 𝐹𝑞
′ 𝐹𝑚

′⁄  due to a higher NPQ. 

Regardless of drought, LIFT-measured ChlF traits displayed similar diurnal temporal 

patterns (Figures 3.12 and 3.13), demonstrating the high level of inherent regulation of the 

photosynthetic apparatus under fluctuating growing conditions, particularly through, but not 

limited to, NPQ. Similar patterns have also been observed in various other plant species 

growing in open fields (Pieruschka et al., 2010, 2014; Raesch et al., 2014). Instantaneous light 

intensity and temperature have been reported by Keller et al. (2019a) as the key drivers of such 

dynamics, in agreement with our findings. Actually, because air VPD is strongly correlated 

with air temperature (Gates, Zolnier & Buxton, 1998; Yuan et al., 2019) and includes air relative 

humidity, the impacts of VPD was investigated instead. It is well known that adjustments in the 

PSII/PSI stoichiometry are crucial to optimise the quantum efficiency of photosynthesis under 

fluctuating environment (Chow, Melis & Anderson, 1990; Külheim, Ågren & Jansson, 2002). 

Indeed, the efficiency of electron transport under changing ambient conditions is highly 
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dependent on the tight co-ordination among the several electron carriers between PSII and PSI, 

whose intricate regulatory processes occur at different time scales and multiple sites (see details 

in Dietz, 2015; Horton, 2012; Kono & Terashima, 2014; Rochaix, 2011; Schöttler & Tóth, 

2014; Tikkanen et al., 2012; Walters, 2005). 

The sustained faster 𝐹𝑟1
′  (i.e., the kinetics of electron transport from QA towards PQ 

pool) in Y2 relative to control (Figure 3.12C) was the most remarkable effect of mild drought. 

This suggests that plants were able to sense a subtle shortage of soil moisture and quickly 

modulate their photosynthetic electron transport, and potentially trigger responses to either 

acclimate or cope with reduced water availability. Interestingly, increasing atmospheric VPD 

intensified this response (Figure 3.11D). A plausible hypothesis is that stomata responses 

combined with alternative electron flows apart from the LET, such as water-water cycle 

(WWC), cyclic electron flow around PSI (CEF) and/or chlororespiration mediated by the 

plastid terminal oxidase (PTOX) (Cruz et al., 2005; Kono & Terashima, 2014), might explain 

a faster 𝐹𝑟1
′  at the onset of drought. Takahashi, Milward, Fan, Chow & Badger (2009) 

demonstrated that CEF enhances the pmf and helps to alleviate photoinhibition by either 

suppressing photodamage to PSII via a qE-independent mechanism or preventing the inhibition 

of the repair of photodamaged PSII via a qE-dependent mechanism. It has long been recognised 

that CEF is enhanced under drought (Golding, Finazzi & Johnson, 2004; Golding & Johnson, 

2003; Zivcak et al., 2014). Also, PTOX mediates the electron transfer from plastoquinol (PQH2) 

to reduce O2 to H2O via a non-electrogenic process (Shirao et al., 2013), potentially acting as a 

safety valve by protecting the PQ pool and mediating physiological responses (Krieger-Liszkay 

& Feilke, 2016; McDonald et al., 2011; Nawrocki, Tourasse, Taly, Rappaport & Wollman, 

2015). Indeed, both CEF and PTOX are dependent on the redox state of the PQ pool, a vital 

component of photosynthesis with multiple functions, including photoprotection and stress 

tolerance (Havaux, 2020). Remarkably, Wang et al. (2016) recently demonstrated the role of 

the PQ pool over-reduction as a mechanism of chloroplast-mediated stomatal closure. 

Moreover, it is known that rising VPD increases atmospheric demand for water, leading to 

stomatal closure (Franks, Cowan & Farquhar, 1997; Massmann, Gentine & Lin, 2019). Besides 

VPD, diurnal and seasonal stomata kinetics are also driven by combined effects of temperature, 

irradiance, and soil moisture (Matthews, Vialet-Chabrand & Lawson, 2018; McAusland et al., 

2016; Neukam, Böttcher & Kage, 2016; Sack & Holbrook, 2006). Altogether, early changes in 

𝐹𝑟1
′  may appear as acclimation responses to the onset of water-limiting conditions, which might 

promote photoprotection, even when drought stress effects are not obvious at the whole-plant 

level. 
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Under fluctuating light conditions, Sakoda, Yamori, Groszmann & Evans (2021) 

reported that the carbon gain in plants, in terms of CO2 assimilation rate, was primarily limited 

by gs and electron transport rate rather than gm. Additionally, when assessing wheat growing in 

progressive drought and fluctuating light, Grieco et al. (2020) remarkably identified short- and 

long-term regulatory mechanisms by which plants acclimated their photosynthetic machinery 

through changes in the NPQ kinetics and in the enzymatic stoichiometry, particularly by 

modifying the PSII and light-harvesting complex II (PSII-LHCII) phosphorylation pattern. The 

authors shed light on the complexity of the photosynthetic apparatus’ re-configuration, 

impacting both cyclic and linear electron flows, where plant acclimation did respond according 

to drought severity and light dynamics simultaneously. 

Due to changes in the relative contribution of genetic variance over time, it was 

observed dynamic fluctuations in broad-sense heritability for ChlF traits (Figure 3.16). Even 

after correcting the ChlF traits for biological (e.g., plant height, phenology, and canopy 

reflectance) and environmental (e.g., PPFD and VPD) variations, strong significant differences 

between genotypes were still found, demonstrating that there was substantial genetic variability 

that could not be explained by those covariates alone. Araus et al. (1998) have similarly reported 

such a genetic variability for ChlF traits in durum wheat under field conditions, where 

phenology was also considered. In our data, the highest H2 for 𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  and 𝐹𝑟2

′  were 

observed in mild drought but with gradual reductions when the soil became drier. It is 

noteworthy that H2 values estimated in Y2 (milder drought) were of similar orders of magnitude 

as in Y1 at the onset of drought stress (i.e., when the soil VWC of both seasons were 

comparable). Using a high-throughput image phenotyping approach, Chen et al. (2014) also 

observed dynamic changes in heritability over time for fluorescence-based traits in barley under 

drought, where H2 similarly decreased during progressive stress. Time-varying H2 for 𝐹𝑞
′ 𝐹𝑚

′⁄  

in Arabidopsis growing in fluctuating light has also been reported by Flood et al. (2016). It has 

been argued that the dynamic change of heritability over time is due to changes in the magnitude 

of genotype and environment effects, as well as their interaction (Visscher, Hill & Wray, 2008). 

Fluctuations in H2 for a trait can be challenging for plant breeding programmes, particularly in 

drought-prone environments, where a lower heritability under severe stress could negatively 

impact the effectiveness of selection. 

The changing genetic and phenotypic correlations between ChlF traits and above-

ground biomass yield (Figures 3.18A and 3.20A) or ΔRWC (Figures 3.18B and 3.20B) during 

soil drying might suggest that multiple water use strategies are in place to cope with water 
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deficit. In mild drought, genotypes with high photosynthetic activity tended to have both high 

biomass yield and high dehydration, altogether indicating a high transpiration rate. As the 

opposite behaviour was also true (i.e., low photosynthetic activity with low biomass yield and 

low dehydration), the identification of water savers and spenders (Nakhforoosh et al., 2016) 

may be somewhat facilitated by ChlF values, at least under mild stress. Nonetheless, such 

correlations were weaker, or even shifted directions, in severe drought. These circumstances 

were probably due to other traits related to drought tolerance which may also affect ChlF 

responses, including stay-green (delayed senescence), osmotic adjustment and antioxidant 

defence (Chen et al., 2017; Christopher, Christopher, Borrell, Fletcher & Chenu, 2016; Farooq, 

Hussain & Siddique, 2014). For instance, Shangguan, Shao & Dyckmans (1999) noted that 

higher degree of osmotic adjustment induced by a gradual soil drying, compared to a fast-drying 

process, allowed wheat plants to maintain a greater photosynthetic capacity. Besides, it is also 

known that plants under drought stress can adapt by altering biomass partitioning among roots 

and grain development (Davies & Zhang, 1991; Fang et al., 2017). However, it was beyond the 

scope of this study to evaluate root dynamics and possible changes due to drought. 

Apart from the high level of phenotypic plasticity for ChlF traits among genotypes, a 

crossover interaction was noticed (Figure 3.21), especially for 𝐹𝑟1
′  and 𝐹𝑟2

′ , which reinforces the 

roles of genotype-by-time (i.e., drought severity) effect and the genetic complexity of plant 

responses to drought. In other words, genotypes with high photosynthetic activity (high 𝐹𝑞
′ 𝐹𝑚

′⁄  

and fast 𝐹𝑟1
′  and 𝐹𝑟2

′ ) in non-limiting environments will likely perform worse when grown under 

very poor conditions compared to those with low photosynthetic activity, and vice versa. A 

crossover effect has also been reported for grain yield (Araus et al., 2002, 2008; Cooper, 

Stucker, DeLacy & Harch, 1997) and is a ‘source of frustration’ (Blum, 2005) to plant breeding 

for drought stress adaptation. Properly setting the target environment, therefore, seems to be 

essential for accurate comprehension of and good use of the genetic variation in ChlF traits. 

 

4.2 GREENHOUSE 

 

In general, the trends for the LIFT-measured ChlF traits from light-adapted and 

drought-stressed wheat plants growing in semi-controlled greenhouse conditions were in good 

agreement with those trends observed in open field conditions. For instance, a sustained 

reduction in plant photosynthetic activity, estimated by the parameters 𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  and 𝐹𝑟2

′ , also 

occurred only after a prolonged period of moderate to severe drought (Figure 3.25). 
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Furthermore, as it also occurred in the field, 𝐹𝑟1
′  (i.e., the kinetics of electron transport from QA 

towards PQ pool; Figures 3.25C and 3.25D) remained remarkably accelerated in stressed plants 

in the greenhouse, particularly under mild and moderate drought. Moreover, increasing 

atmospheric VPD notably intensified this response (Figure 3.29C). Altogether, this endorses, 

once more, the hypothesis that plants were capable of early sensing a subtle shortage of water 

supply and rapidly modulated their photosynthetic machinery to potentially trigger responses 

to either acclimate or cope with reduced water availability. 

As previously discussed, stomatal closure is one of the earliest plant responses to 

drought, minimising water loss by transpiration. The results here also support a consistent 

reduction in leaf gs and, therefore, in whole-plant evapotranspiration rate (ETR) under drought 

(Figures 3.22C and 3.23C). Interestingly, a strong negative correlation between 𝐹𝑟1
′  and ETR at 

the genotypic level was observed under water-limiting conditions (Figure 3.30A), suggesting a 

putative link between the photosynthetic electron transport efficiency and the whole-plant water 

use efficiency (WUE). In line with this suggestion, Wang et al. (2016) showed that the over-

reduction of the PQ pool in mesophyll chloroplasts promotes the synthesis of hydrogen 

peroxide (H2O2), a reactive oxygen species (ROS), which may diffuse to the guard cells, 

mediating stomatal closing. Additionally, Karpinska, Wingsle & Karpinski (2000) 

demonstrated that, before stress, a transient higher concentration of H2O2 in the chloroplast 

regulated by the redox status of the quinone B (QB) and PQ pools might protect the 

photosynthetic apparatus and the plant cell from photoinhibition and photooxidative damage. 

Altogether, a faster 𝐹𝑟1
′  (i.e., QA

¯ reoxidation efficiency up to 0.65 ms) at the onset of drought 

may either trigger plant acclimation responses or promote the production of signalling 

molecules. Nonetheless, whether mechanistic links between these complex biological processes 

exist, this still requires further investigation. 

Indeed, plants activate an intricate root-to-shoot signalling network in drying soil 

conditions to modulate WUE (Dodd et al., 2015; Schachtman & Goodger, 2008). The hormone 

abscisic acid (ABA), for example, is known to play a pivotal role in this signalling network by 

regulating stomatal aperture and gene expression to cope with water deficit (Cutler, Rodriguez, 

Finkelstein & Abrams, 2010; Liang, Zhang & Wong, 1997; Martin-Vertedor & Dodd, 2011; 

Saradadevi, Palta & Siddique, 2017; Takahashi, Kuromori, Urano, Yamaguchi-Shinozaki & 

Shinozaki, 2020; Tardieu, Parent & Simonneau, 2010; Zhou et al., 2019). Pei et al. (2000) 

demonstrated that ABA also induces the production of H2O2 in guard cells, which activates 

plasma membrane calcium (Ca2+) channels and, ultimately, leading to stomatal closing. As a 

matter of fact, plants modulate photosynthesis and photoprotection under environmental stress 
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not by ABA alone but through various other phytohormones (including, but not limited to, 

ethylene, jasmonates, brassinosteroids, and salicylates) and their complex crosstalk (Gururani, 

et al., 2015; Müller & Munné-Bosch, 2021), which are beyond the scope of this study, however. 

Electrolyte leakage has been shown as a robust approach for assessing the cell 

membrane stability (CMS) under stress (Bajji et al., 2001; Blum & Ebercon, 1981), and 

facilitating the prediction of genetic variation for dehydration tolerance in crops ( Qaseem, 

Qureshi & Shaheen, 2019; Rehman et al., 2016; Tripathy, Zhang, Robin, Nguyen & Nguyen, 

2000). Given the positive correlations between CMS ranks and the ranks for 𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟2
′ , PLA, 

SDM, and LA herein reported (Figure 3.30), there was compelling evidence that wheat 

genotypes with higher CMS under drought stress managed to sustain a higher photosynthetic 

performance, producing more above-ground biomass. Unfortunately, grain yield traits were not 

available for this study, so no direct links or inferences regarding yield components and CMS 

could be made. However, Abid et al. (2018) showed that a drought-tolerant wheat genotype had 

less-pronounced yield loss under severe stress than a sensitive genotype, primarily due to its 

greater ability to scavenge ROS and to osmotically adjust, resulting in improved membrane 

stability and higher photosynthetic rates during drought. There is a longstanding 

acknowledgement that leaf dehydration results in chloroplast membrane rupture (Hincha, 

Höfner, Schwab, Heber & Schmitt, 1987). In fact, biological membranes are the first target of 

many abiotic stresses (Tenhaken, 2015). Prolonged, severe drought compromises cell 

membrane integrity and stability leading to irreversible damage since water is essential for 

maintaining the membrane fluidity and functional structure (Blum, 2011a; Bodner, 

Nakhforoosh & Kaul, 2015; Farooq et al., 2009). 
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5 CONCLUSIONS 

 

Short- and long-term changes in ChlF traits induced by progressive drought were 

rapidly and non-invasively monitored at canopy level in field-grown durum wheat. Integrating 

LIFT-measured ChlF traits with high temporal resolution environmental data facilitated the 

assessment of genotype-by-environment interaction effects under drought stress. Simultaneous 

statistical modelling of spatial patterns and temporal trends combined with time-varying 

covariates (e.g., plant height and phenology, canopy structure and leaf pigments, PPFD, and 

VPD) helped to improve the precision and interpretation of experiments under changing 

ambient conditions. Indeed, modelling experimentally and naturally arising confounding effects 

improved precision by an average of 31%. Soil drying conditions at both 10 cm and 50 cm 

depths progressively induced changes in ChlF traits. In severe drought stress, field-grown plants 

down-regulated their photosynthetic activities, resulting in a reduction of 14%, 18% and 20% 

in 𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  and 𝐹𝑟2

′ , respectively. To a lesser extent, prolonged drought under controlled 

conditions also induced reductions in the ChlF traits of the order of 3%, 2% and 4% in 𝐹𝑞
′ 𝐹𝑚

′⁄ , 

𝐹𝑟1
′  and 𝐹𝑟2

′ , respectively. In mild stress, 𝐹𝑞
′ 𝐹𝑚

′⁄  and 𝐹𝑟2
′  were little affected, while 𝐹𝑟1

′  

remarkably accelerated up to 8% relative to well-watered plants, and increasing VPD 

exacerbated such behaviour. Apart from soil water content, light intensity (PPFD) and VPD 

were key environmental factors to drive nonlinear changes in the ChlF traits, including their 

diurnal course patterns. The three ChlF traits worked in a highly coordinated manner, indicating 

a high level of inherent regulation of the photosynthetic apparatus under fluctuating growing 

conditions. 

Strong significant differences in ChlF traits were found among genotypes, 

demonstrating substantial genetic variability for breeding programmes to select for drought-

adaptive traits. Indeed, broad-sense heritability for the LIFT-measured ChlF traits was, on 

average, 0.60 under non-limiting conditions up to moderate drought. It slightly dropped to 0.49 

in severe drought stress, indicating genotype-by-environment interaction effects and/or 

increasing environmental noise. Moderate genetic correlations between final above-ground 

biomass yield or drought-induced relative change in leaf RWC and the ChlF traits were 

observed, but they changed over time, and so, care should be taken when interpreting these 

correlations. Positive moderate to strong correlations between the ranking of wheat genotypes 

by 𝐹𝑞
′ 𝐹𝑚

′⁄  or 𝐹𝑟2
′  and the leaf CMS or PLA were revealed under drought in controlled conditions. 

As well, a strong negative correlation between the rank of genotypes for 𝐹𝑟1
′  and for daily 
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evapotranspiration rate was displayed. These correlations emphasise the complexity of plant 

physiological responses to coping with drought stress. The observed genetic variation suggests 

that the LIFT method can enable genome-wide association studies (GWAS) for dissecting the 

QTLome of photosynthetic traits, and assess the effects on yield associated with the relevant 

quantitative trait loci (QTLs). At an unprecedented scale, this high-throughput approach for 

field phenotyping ChlF traits (which may also be integrated into existing HTPPs in controlled 

environments) allowed for estimation of genetic effects over time in a large durum wheat panel 

and shed light on the diurnal dynamics of the photosynthetic apparatus leveraging the ability to 

dissect complex physiological traits. Therefore, plant ecophysiology studies and physiological 

plant breeding may benefit from this flexible and versatile LIFT method, enabling knowledge 

of the mechanisms of drought-adaptive traits under natural plant stand and agricultural field 

conditions alike.  



 

108 

 

REFERENCES 

 

Aasen, H., van Wittenberghe, S., Medina, N. S., Damm, A., Goulas, Y., Wieneke, S., . . . Mac 

Arthur, A. (2019). Sun-induced chlorophyll fluorescence II: review of passive 

measurement setups, protocols, and their application at the leaf to canopy level. 

Remote Sensing, 11(8), 927. 

Abid, M., Ali, S., Qi, L. K., Zahoor, R., Tian, Z., Jiang, D., . . . Dai, T. (2018). Physiological 

and biochemical changes during drought and recovery periods at tillering and jointing 

stages in wheat (Triticum aestivum L.). Scientific Reports, 8, 4615. 

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop Evapotranspiration: 

guidelines for computing crop water requirements. FAO Irrigation and Drainage 

Paper No. 56. Rome: FAO. 

American Meteorological Society. (1997). Meteorological drought - policy statement. Bulletin 

of the American Meteorological Society, 78(5), 847-849. 

Ananyev, G., Kolber, Z. S., Klimov, D., Falkowski, P. G., Berry, J. A., Rascher, U., . . . 

Osmond, B. (2005). Remote sensing of heterogeneity in photosynthetic efficiency, 

electron transport and dissipation of excess light in Populus deltoides stands under 

ambient and elevated CO2 concentrations, and in a tropical forest canopy, using a new 

LIFT device. Global Change Biology, 11(8), 1195-1206. 

Araus, J. L., & Cairns, J. E. (2014). Field high-throughput phenotyping: the new crop 

breeding frontier. Trends in Plant Science, 19(1), 52-61. 

Araus, J. L., Amaro, T., Voltas, J., Nakkoul, H., & Nachit, M. M. (1998). Chlorophyll 

fluorescence as a selection criterion for grain yield in durum wheat under 

Mediterranean conditions. Field Crops Research, 55(3), 209-223. 

Araus, J. L., Slafer, G. A., Reynolds, M. P., & Royo, C. (2002). Plant breeding and drought in 

C3 cereals: what should we breed for? Annals of Botany, 89(7), 925-940. 

Araus, J. L., Slafer, G. A., Royo, C., & Serret, M. D. (2008). Breeding for yield potential and 

stress adaptation in cereals. Critical Reviews in Plant Science, 27(6), 377-412. 

Ashraf, M. (2010). Inducing drought tolerance in plants: recent advances. Biotechnology 

Advances, 28(1), 169-183. 

Athar, H.-u.-R., & Ashraf, M. (2005). Photosynthesis under drought stress. In M. Pessaraki 

(Ed.), Handbook of Photosynthesis (2nd ed., pp. 793-809). Boca Raton, FL, USA: 

CRC Press. 



 

109 

 

Bajji, M., Kinet, J.-M., & Lutts, S. (2002). The use of the electrolyte leakage method for 

assessing cell membrane stability as a water stress tolerance test in durum wheat. 

Plant Growth Regulation, 36, 61-70. 

Baker, N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual 

Review of Plant Biology, 59(1), 89-113. 

Baker, N. R., & Rosenqvist, E. (2004). Applications of chlorophyll fluorescence can improve 

crop production strategies: an examination of future possibilities. Journal of 

Experimental Botany, 55(403), 1607-1621. 

Barbagallo, R. P., Oxborough, K., Pallett, K. E., & Baker, N. R. (2003). Rapid, noninvasive 

screening for perturbations of metabolism and plant growth using chlorophyll 

fluorescence imaging. Plant Physiology, 132(2), 485-493. 

Barrs, H. D., & Weatherley, P. E. (1962). A re-examination of the relative turgidity technique 

for estimating water deficits in leaves. Australian Journal of Biological Sciences, 

15(3), 413-428. 

Bartels, D., & Sunkar, R. (2005). Drought and salt tolerance in plants. Critical Reviews in 

Plant Sciences, 24(1), 23-58. 

Bengough, A. G., McKenzie, B. M., Hallett, P. D., & Valentine, T. A. (2011). Root 

elongation, water stress, and mechanical impedance: a review of limiting stresses and 

beneficial root tip traits. Journal of Experimental Botany, 62(1), 59-68. 

Berger, B., Parent, B., & Tester, M. (2010). High-throughput shoot imaging to study drought 

responses. Journal of Experimental Botany, 61(13), 3519-3528. 

Bernardo, R. (2008). Molecular markers and selection for complex traits in plants: learning 

from the last 20 years. Crop Science, 48(5), 1649-1664. 

Bingham, I. J. (2001). Soil-root-canopy interactions. Annals of Applied Biology, 138, 243-

251. 

Blum, A. (1996). Crop responses to drought and the interpretation of adaptation. Plant 

Growth Regulation, 20, 135-148. 

Blum, A. (1997). Constitutive traits affecting plant performance under stress. In G. O. 

Edmeades, M. Bänziger, H. R. Mickelson, & C. B. Peña-Valdivia (Ed.), Developing 

Drought- and Low N-Tolerant Maize. Proceedings of a Symposium, March 25-29, 

1996, CIMMYT, El Batán, Mexico (pp. 131-135). Mexico, D.F.: CIMMYT. 

Blum, A. (2005). Drought resistance, water-use efficiency, and yield potential - are they 

compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural 

Research, 56(11), 1159-1168. 



 

110 

 

Blum, A. (2011a). Plant Breeding for Water-Limited Environments. New York, NY, United 

States of America: Springer. 

Blum, A. (2011b). Drought resistance - is it really a complex trait? Functional Plant Biology, 

38(10), 753-757. 

Blum, A., & Ebercon, A. (1981). Cell membrane stability as a measure of drought and heat 

tolerance in wheat. Crop Science, 21(1), 43-47. 

Bodner, G., Nakhforoosh, A., & Kaul, H.-P. (2015). Management of crop water under 

drought: a review. Agronomy for Sustainable Development, 35, 401-442. 

Boken, V. K. (2005). Agricultural drought and its monitoring and prediction: some concepts. 

In V. K. Boken, A. P. Cracknell, & R. L. Heathcote (Eds.), Monitoring and Predicting 

Agricultural Drought: A Global Study (pp. 3-10). New York, NY, United States of 

America: Oxford University Press. 

Bruning, B., Berger, B., Lewis, M., Liu, H., & Garnett, T. (2020). Approaches, applications, 

and future directions for hyperspectral vegetation studies: an emphasis on yield-

limiting factors in wheat. The Plant Phenome Journal, 3(1), e20007. 

Bryant, E. A. (1991). Natural Hazards. Cambridge, United Kingdom: Cambridge University 

Press. 

Cabrera-Bosquet, L., Crossa, J., von Zitzewitz, J., Serret, M. D., & Araus, J. L. (2012). High-

throughput phenotyping and genomic selection: the frontiers of crop breeding 

converge. Journal of Integrative Plant Biology, 54(5), 312-320. 

Camargo Neto, J. (2004). A combined statistical-soft computing approach for classification 

and mapping weed species in minimum-tillage systems. University of Nebraska, 

Department of Biological Systems Engineering. Lincoln, NE: University of Nebraska. 

Campos, H., Cooper, M., Habben, J. E., Edmeades, G. O., & Schussler, J. R. (2004). 

Improving drought tolerance in maize: a view from industry. Field Crops Research, 

90(1), 19-34. 

Campos, H., Heard, J. E., Ibañez, M., Luethy, M. H., Peters, T. J., & Warner, D. C. (2011). 

Effective and efficient platforms for crop phenotype characterisation under drought. In 

P. Monneveux, & J.-M. Ribaut (Eds.), Drought phenotyping in crops: from theory to 

practice (pp. 37-47). Texcoco, Mexico: CGIAR Generation Challenge Programme. 

Cendrero-Mateo, M. P., Moran, M. S., Papuga, S. A., Thorp, K. R., Alonso, L., Moreno, J., . . 

. Wang, G. (2016). Plant chlorophyll fluorescence: active and passive measurements at 

canopy and leaf scales with different nitrogen treatments. Journal of Experimental 

Botany, 67(1), 275-286. 



 

111 

 

Cendrero-Mateo, M. P., Muller, O., Albrecht, H., Burkart, A., Gatzke, S., Janssen, B., . . . 

Rascher, U. (2017). Field phenotyping: concepts and examples to quantify dynamic 

plant traits across scales in the field. In A. Chabbi, & H. W. Loescher (Eds.), 

Terrestrial Ecosystem Research Infrastructures: Challenges and Opportunities (pp. 

53-80). Boca Raton, FL, United States of America: CRC Press. 

Chaves, M. M., & Oliveira, M. M. (2004). Mechanisms underlying plant resilience to water 

deficits: prospects for water-saving agriculture. Journal of Experimental Botany, 

55(407), 2365-2384. 

Chen, D., Neumann, K., Friedel, S., Kilian, B., Chen, M., Altmann, T., & Klukas, C. (2014). 

Dissecting the phenotypic components of crop plant growth and drought responses 

based on high-throughput image analysis. The Plant Cell, 26(12), 4636-4655. 

Chen, Y.-E., Cui, J.-M., Su, Y.-Q., Zhang, C.-M., Ma, J., Zhang, Z.-W., . . . Yuan, S. (2017). 

Comparison of phosphorylation and assembly of photosystem complexes and redox 

homeostasis in two wheat cultivars with different drought resistance. Scientific 

Reports, 7, 12718. 

Cheng, J., Edwards, L. J., Maldonado-Molina, M. M., Komro, K. A., & Muller, K. E. (2010). 

Real longitudinal data analysis for real people: building a good enough mixed model. 

Statistics in Medicine, 29(4), 504-520. 

Chenu, K. (2015). Characterizing the crop environment - nature, significance and 

applications. In V. O. Sadras, & D. F. Calderini (Eds.), Crop Physiology: Applications 

for Genetic Improvement and Agronomy (2nd ed., pp. 321-348). London, United 

Kingdom: Academic Press. 

Chenu, K., Cooper, M., Hammer, G. L., Mathews, K. L., Dreccer, M. F., & Chapman, S. C. 

(2011). Environment characterization as an aid to wheat improvement: interpreting 

genotype-environment interactions by modelling water-deficit patterns in North-

Eastern Australia. Journal of Experimental Botany, 62(6), 1743-1755. 

Cho, H.-T., & Cosgrove, D. J. (2010). Expansins as agents in hormone action. In P. J. Davies 

(Ed.), Plant Hormones: Biosynthesis, Signal Transduction, Action! (Revised 3rd ed., 

pp. 262-281). Dordrecht, The Netherlands: Springer. 

Chow, W. S., Melis, A., & Anderson, J. M. (1990). Adjustments of photosystem 

stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis. 

Proceedings of the National Academy of Sciences of the United States of America, 

87(19), 7502-7506. 



 

112 

 

Christopher, J. T., Christopher, M. J., Borrell, A. K., Fletcher, S., & Chenu, K. (2016). Stay-

green traits to improve wheat adaptation in well-watered and water-limited 

environments. Journal of Experimental Botany, 67(17), 5159-5172. 

Cline, W. R. (2007). Global Warming and Agriculture: Impact Estimates by Country. 

Washington, DC, United States of America: Center for Global Development and 

Peterson Institute for International Economics. 

Condorelli, G. E., Maccaferri, M., Newcomb, M., Andrade-Sanchez, P., White, J. W., French, 

A. N., . . . Tuberosa, R. (2018). Comparative aerial and ground based high throughput 

phenotyping for the genetic dissection of NDVI as a proxy for drought adaptive traits 

in durum wheat. Frontiers in Plant Science, 9, 893. 

Cooper, M., Podlich, D. W., & Smith, O. S. (2005). Gene-to-phenotype models and complex 

trait genetics. Australian Journal of Agricultural Research, 56(9), 895-918. 

Cooper, M., Stucker, R. E., DeLacy, I. H., & Harch, B. D. (1997). Wheat breeding nurseries, 

target environments, and indirect selection for grain yield. Crop Science, 37(4), 1168-

1176. 

Cornic, G. (2000). Drought stress inhibits photosynthesis by decreasing stomatal aperture - 

not by affecting ATP synthesis. Trends in Plant Science, 5(5), 187-188. 

Cornic, G., & Fresneau, C. (2002). Photosynthetic carbon reduction and carbon oxidation 

cycles are the main electron sinks for photosystem II activity during a mild drought. 

Annals of Botany, 89(7), 887-894. 

Cramer, G. R., Urano, K., Delrot, S., Pezzotti, M., & Shinozaki, K. (2011). Effects of abiotic 

stress on plants: a systems biology perspective. BMC Plant Biology, 11, 163. 

Cruz, J. A., Avenson, T. J., Kanazawa, A., Takizawa, K., Edwards, G. E., & Kramer, D. M. 

(2005). Plasticity in light reactions of photosynthesis for energy production and 

photoprotection. Journal of Experimental Botany, 56(411), 395-406. 

Cullis, B. R., Smith, A. B., & Coombes, N. E. (2006). On the design of early generation 

variety trials with correlated data. Journal of Agricultural, Biological, and 

Environmental Statistics, 11(4), 381-393. 

Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic acid: 

emergence of a core signaling network. Annual Review of Plant Biology, 61(1), 651-

679. 

Dai, A. (2011). Drought under global warming: a review. WIREs Climate Change, 2(1), 45-

65. 



 

113 

 

Daryanto, S., Wang, L., & Jacinthe, P.-A. (2016). Global synthesis of drought effects on 

maize and wheat production. PLOS ONE, 11(5), e0156362. 

Davies, W. J., & Zhang, J. (1991). Root signals and the regulation of growth and development 

of plants in drying soil. Annual Review of Plant Physiology and Plant Molecular 

Biology, 42(1), 55-76. 

De Micco, V., & Aronne, G. (2012). Morpho-anatomical traits for plant adaptation to drought. 

In R. Aroca (Ed.), Plant Responses to Drought Stress: From Morphological to 

Molecular Features (pp. 37-61). Heidelberg: Springer. 

De Sousa, C. R., Hilker, T., Waring, R., De Moura, Y. M., & Lyapustin, A. (2017). Progress 

in remote sensing of photosynthetic activity over the Amazon Basin. Remote Sensing, 

9(1), 48. 

de Wijn, R., & van Gorkom, H. J. (2001). Kinetics of electron transfer Qa to Qb in 

photosystem II. Biochemistry, 40(39), 11912-11922. 

Dietz, K.-J. (2015). Efficient high light acclimation involves rapid processes at multiple 

mechanistic levels. Journal of Experimental Botany, 66(9), 2401-2414. 

Dodd, I. C., Puértolas, J., Huber, K., Pérez-Pérez, J., Wright, H. R., & Blackwell, M. S. 

(2015). The importance of soil drying and re-wetting in crop phytohormonal and 

nutritional responses to deficit irrigation. Journal of Experimental Botany, 66(8), 

2239-2252. 

Dong, T., Liu, J., Shang, J., Qian, B., Ma, B., Kovacs, J. M., . . . Shi, Y. (2019). Assessment 

of red-edge vegetation indices for crop leaf area index estimation. Remote Sensing of 

Environment, 222, 133-143. 

Drusch, M., Moreno, J., Del Bello, U., Franco, R., Goulas, Y., Huth, A., . . . Verhoef, W. 

(2017). The FLuorescence EXplorer Mission Concept - ESA's Earth Explorer 8. IEEE 

Transactions on Geoscience and Remote Sensing, 55(3), 1273-1284. 

Edmeades, G. O., McMaster, G. S., White, J. W., & Campos, H. (2004). Genomics and the 

physiologist: bridging the gap between genes and crop response. Field Crops 

Research, 90(1), 5-18. 

Evans, J. R., & Santiago, L. S. (2014). PrometheusWiki Gold Leaf Protocol: gas exchange 

using LI-COR 6400. Functional Plant Biology, 41(3), 223-226. 

Evans, N., Baierl, A., Semenov, M. A., Gladders, P., & Fitt, B. D. (2008). Range and severity 

of a plant disease increased by global warming. Journal of the Royal Society Interface, 

5(22), 525-531. 



 

114 

 

Fang, Y., & Xiong, L. (2015). General mechanisms of drought response and their application 

in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 

72, 673-689. 

Fang, Y., Du, Y., Wang, J., Wu, A., Qiao, S., Xu, B., . . . Chen, Y. (2017). Moderate drought 

stress affected root growth and grain yield in old, modern and newly released cultivars 

of winter wheat. Frontiers in Plant Science, 8, 672. 

FAO. (2016). The State of Food and Agriculture 2016. Climate change, agriculture and food 

security. Rome: Food and Agriculture Organization of the United Nations. 

Farooq, M., Hussain, M., & Siddique, K. H. (2014). Drought stress in wheat during flowering 

and grain-filling periods. Critical Reviews in Plant Sciences, 33(4), 331-349. 

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. (2009). Plant drought stress: 

effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 

185-212. 

Filella, I., & Peñuelas, J. (1994). The red edge position and shape as indicators of plant 

chlorophyll content, biomass and hydric status. International Journal of Remote 

Sensing, 15(7), 1459-1470. 

Fiorani, F., & Schurr, U. (2013). Future scenarios for plant phenotyping. Annual Review of 

Plant Biology, 64(1), 267-291. 

Flexas, J., & Medrano, H. (2002). Drought-inhibition of photosynthesis in C3 plants: stomatal 

and non-stomatal limitations revisited. Annals of Botany, 89(2), 183-189. 

Flexas, J., Barón, M., Bota, J., Ducruet, J.-M., Gallé, A., Galmés, J., . . . Medrano, H. (2009). 

Photosynthesis limitations during water stress acclimation and recovery in the 

drought-adapted Vitis hybrid Richter-110 (V. berlandieri x V. rupestris). Journal of 

Experimental Botany, 60(8), 2361-2377. 

Flexas, J., Escalona, J. M., & Medrano, H. (1998). Down-regulation of photosynthesis by 

drought under field conditions in grapevine leaves. Australian Journal of Plant 

Physiology, 25(8), 893-900. 

Flood, P. J., Kruijer, W., Schnabel, S. K., van der Schoor, R., Jalink, H., Snel, J. F., . . . Aarts, 

M. G. (2016). Phenomics for photosynthesis, growth and reflectance in Arabidopsis 

thaliana reveals circadian and long-term fluctuations in heritability. Plant Methods, 12, 

14. 

Franks, P. J., Cowan, I. R., & Farquhar, G. D. (1997). The apparent feedforward response of 

stomata to air vapour pressure deficit: information revealed by different experimental 

procedures with two rainforest trees. Plant, Cell and Environment, 20(1), 142-145. 



 

115 

 

Fu, P., Meacham-Hensold, K., Siebers, M. H., & Bernacchi, C. J. (2020). The inverse 

relationship between solar-induced fluorescence yield and photosynthetic capacity: 

benefits for field phenotyping. Journal of Experimental Botany, eraa537. 

doi:https://doi.org/10.1093/jxb/eraa537 

Furbank, R. T., & Tester, M. (2011). Phenomics - technologies to relieve the phenotyping 

bottleneck. Trends in Plant Science, 16(12), 635-644. 

Galán, R. J., Bernal-Vasquez, A.-M., Jebsen, C., Piepho, H.-P., Thorwarth, P., Steffan, P., . . . 

Miedaner, T. (2020). Hyperspectral reflectance data and agronomic traits can predict 

biomass yield in winter rye hybrids. BioEnergy Research, 13, 168-182. 

Galwey, N. W. (2014). Introduction to Mixed Modelling: Beyond Regression and Analysis of 

Variance (2nd ed.). Chichester, United Kingdom: John Wiley & Sons. 

Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N., & Travers, S. E. (2006). Climate 

change effects on plant disease: genomes to ecosystems. Annual Review of 

Phytopathology, 44(1), 489-509. 

Gates, R. S., Zolnier, S., & Buxton, J. (1998). Vapor pressure deficit control strategies for 

plant production. IFAC Proceedings Volumes, 31(12), 271-276. 

Genty, B., Briantais, J.-M., & Baker, N. R. (1989). The relationship between the quantum 

yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. 

Biochimica et Biophysica Acta (BBA) - General Subjects, 990(1), 87-92. 

Ghanem, M. E., Marrou, H., & Sinclair, T. R. (2015). Physiological phenotyping of plants for 

crop improvement. Trends in Plant Science, 20(3), 139-144. 

Ghatak, A., Chaturvedi, P., & Weckwerth, W. (2017). Cereal crop proteomics: systemic 

analysis of crop drought stress responses towards marker-assisted selection breeding. 

Frontiers in Plant Science, 8, 757. 

Gilmour, A. R., Cullis, B. R., & Verbyla, A. (1997). Accounting for natural and extraneous 

variation in the analysis of field experiments. Journal of Agricultural, Biological, and 

Environmental Statistics, 2(3), 269-293. 

Gilmour, A. R., Thompson, R., & Cullis, B. R. (1995). Average information REML: an 

efficient algorithm for variance parameter estimation in linear mixed models. 

Biometrics, 51(4), 1440-1450. 

Godfray, H. C., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., . . . 

Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science, 

327(5967), 812-818. 



 

116 

 

Golding, A. J., & Johnson, G. N. (2003). Down-regulation of linear and activation of cyclic 

electron transport during drought. Planta, 218, 107-114. 

Golding, A. J., Finazzi, G., & Johnson, G. N. (2004). Reduction of the thylakoid electron 

transport chain by stromal reductants - evidence for activation of cyclic electron 

transport upon dark adaptation or under drought. Planta, 220, 356-363. 

Gosa, S. C., Lupo, Y., & Moshelion, M. (2019). Quantitative and comparative analysis of 

whole-plant performance for functional physiological traits phenotyping: new tools to 

support pre-breeding and plant stress physiology studies. Plant Science, 282, 49-59. 

Govindjee. (2004). Chlorophyll a fluorescence: a bit of basics and history. In G. C. 

Papageorgiou, & Govindjee (Eds.), Advances in Photosynthesis and Respiration. 

Chlorophyll a Fluorescence: A Signature of Photosynthesis (Vol. 19, pp. 1-42). 

Dordrecht, The Netherlands: Springer. 

Granier, C., & Vile, D. (2014). Phenotyping and beyond: modelling the relationships between 

traits. Current Opinion in Plant Biology, 18, 96-102. 

Grieco, M., Roustan, V., Dermendjiev, G., Rantala, S., Jain, A., Leonardelli, M., . . . Teige, 

M. (2020). Adjustment of photosynthetic activity to drought and fluctuating light in 

wheat. Plant, Cell and Environment, 43(6), 1484-1500. 

Gururani, M. A., Mohanta, T. K., & Bae, H. (2015). Current understanding of the interplay 

between phytohormones and photosynthesis under environmental stress. International 

Journal of Molecular Sciences, 16(8), 19055-19085. 

Habash, D. Z., Baudo, M., Hindle, M., Powers, S. J., Defoin-Platel, M., Mitchell, R., . . . 

Nachit, M. M. (2014). Systems responses to progressive water stress in durum wheat. 

PLOS ONE, 9(9), e108431. 

Habash, D. Z., Paul, M. J., Parry, M. A., Keys, A. J., & Lawlor, D. W. (1995). Increased 

capacity for photosynthesis in wheat grown at elevated CO2: the relationship between 

electron transport and carbon metabolism. Planta, 197, 482-489. 

Halperin, O., Gebremedhin, A., Wallach, R., & Moshelion, M. (2017). High-throughput 

physiological phenotyping and screening system for the characterization of plant-

environment interactions. The Plant Journal, 89(4), 839-850. 

Hamdani, S., Wang, H., Zheng, G., Perveen, S., Qu, M., Khan, N., . . . Zhu, X.-G. (2019). 

Genome-wide association study identifies variation of glucosidase being linked to 

natural variation of the maximal quantum yield of photosystem II. Physiologia 

Plantarum, 166(1), 105-119. 



 

117 

 

Haupt-Herting, S., & Fock, H. P. (2002). Oxygen exchange in relation to carbon assimilation 

in water-stressed leaves during photosynthesis. Annals of Botany, 89(7), 851-859. 

Havaux, M. (1992). Stress tolerance of photosystem II in vivo: antagonistic effects of water, 

heat, and photoinhibition stresses. Plant Physiology, 100(1), 424-432. 

Havaux, M. (2020). Plastoquinone in and beyond photosynthesis. Trends in Plant Science, 

25(12), 1252-1265. 

Hayter, A. J. (1986). The maximum familywise error rate of Fisher's least significant 

difference test. Journal of the American Statistical Association, 81(396), 1000-1004. 

Heim Jr., R. R. (2002). A review of twentieth-century drought indices used in the United 

States. Bulletin of the American Meteorological Society, 83(8), 1149-1166. 

Hickey, L. T., Hafeez, A. N., Robinson, H., Jackson, S. A., Leal-Bertioli, S. C., Tester, M., . . 

. Wulff, B. B. (2019). Breeding crops to feed 10 billion. Nature Biotechnology, 37, 

744-754. 

Hincha, D. K., Höfner, R., Schwab, K. B., Heber, U., & Schmitt, J. M. (1987). Membrane 

rupture is the common cause of damage to chloroplast membranes in leaves injured by 

freezing or excessive wilting. Plant Physiology, 83(2), 251-253. 

Horton, P. (2012). Optimization of light harvesting and photoprotection: molecular 

mechanisms and physiological consequences. Philosophical Transactions of the Royal 

Society of London. Series B, Biological Sciences, 367(1608), 3455-3465. 

Hu, H., & Xiong, L. (2014). Genetic engineering and breeding of drought-resistant crops. 

Annual Review of Plant Biology, 65(1), 715-741. 

Hubert, M., & Vandervieren, E. (2008). An adjusted boxplot for skewed distributions. 

Computational Statistics and Data Analysis, 52(12), 5186-5201. 

Humplík, J. F., Lazár, D., Fürst, T., Husičková, A., Hýbl, M., & Spíchal, L. (2015). 

Automated integrative high-throughput phenotyping of plants shoots: a case study of 

the cold-tolerance of pea (Pisum sativum L.). Plant Methods, 11, 20. 

IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II 

and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate 

Change. (Core Writing Team, R. K. Pachauri, & L. Meyer, Eds.) Geneva, 

Switzerland: IPCC. 

IPCC. (2019). Climate Change and Land: an IPCC Special Report on climate change, 

desertification, land degradation, sustainable land management, food security, and 

greenhouse gas fluxes in terrestrial ecosystems. Intergovernmental Panel on Climate 

Change. Retrieved November 11, 2020, from https://www.ipcc.ch/srccl/download/ 



 

118 

 

Jansen, M., Gilmer, F., Biskup, B., Nagel, K. A., Rascher, U., Fischbach, A., . . . Walter, A. 

(2009). Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via 

GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis 

thaliana and other rosette plants. Functional Plant Biology, 36(11), 902-914. 

Kaiser, W. M. (1987). Effects of water deficit on photosynthetic capacity. Physiologia 

Plantarum, 71(1), 142-149. 

Kalaji, H. M., Schansker, G., Brestic, M., Bussotti, F., Calatayud, A., Ferroni, L., . . . Baba, 

W. (2017). Frenquently asked questions about chlorophyll fluorescence, the sequel. 

Photosynthesis Research, 132, 13-66. 

Kanazawa, A., Ostendorf, E., Kohzuma, K., Hoh, D., Strand, D. D., Sato-Cruz, M., . . . 

Kramer, D. M. (2017). Chloroplast ATP synthase modulation of the thylakoid proton 

motive force: implications for photosystem I and photosystem II photoprotection. 

Frontiers in Plant Science, 8, 719. 

Kao, W. Y., & Tsai, T. T. (1998). Tropic leaf movements, photosynthetic gas exchange, leaf 

δ13C and chlorophyll a fluorescence of three soybean species in response to water 

availability. Plant, Cell and Environment, 21(10), 1055-1062. 

Kapoor, D., Bhardwaj, S., Landi, M., Sharma, A., Ramakrishnan, M., & Sharma, A. (2020). 

The impact of drought in plant metabolism: how to explot tolerance mechanisms to 

increase crop production. Applied Sciences, 10(16), 5692. 

Karpisnka, B., Wingsle, G., & Karpinski, S. (2000). Antagonistic effects of hydrogen 

peroxide and glutathione on acclimation to excess excitation energy in Arabidopsis. 

IUBMB Life, 50(1), 21-26. 

Katsoulas, N., Elvanidi, A., Ferentinos, k. P., Kacira, M., Bartzanas, T., & Kittas, C. (2016). 

Crop reflectance monitoring as a tool for water stress detection in greenhouses: a 

review. Biosystems Engineering, 151, 374-398. 

Keller, B., Matsubara, S., Rascher, U., Pieruschka, R., Steier, A., Kraska, T., & Muller, O. 

(2019a). Genotype specific photosynthesis x environment interactions captured by 

automated fluorescence canopy scans over two fluctuating growing seasons. Frontiers 

in Plant Science, 10, 1482. 

Keller, B., Vass, I., Matsubara, S., Paul, K., Jedmowski, C., Pieruschka, R., . . . Muller, O. 

(2019b). Maximum fluorescence and electron transport kinetics determined by light-

induced fluorescence transients (LIFT) for photosynthesis phenotyping. 

Photosynthesis Research, 140, 221-233. 



 

119 

 

Kissoudis, C., van de Wiel, C., Visser, R. G., & van der Linden, G. (2016). Future-proof 

crops: challenges and strategies for climate resilience improvement. Current Opinion 

in Plant Biology, 30, 47-56. 

Kohzuma, K., Cruz, J. A., Akashi, K., Hoshiyasu, S., Munekage, Y. N., Yokota, A., & 

Kramer, D. M. (2009). The long-term responses of the photosynthetic proton circuit to 

drought. Plant, Cell and Environment, 32(3), 209-219. 

Kolber, Z. S., Prášil, O., & Falkowski, P. G. (1998). Measurements of variable chlorophyll 

fluorescence using fast repetition rate techniques: defining methodology and 

experimental protocols. Biochimica et Biophysica Acta, 1367(1-3), 88-106. 

Kolber, Z., Klimov, D., Ananyev, G., Rascher, U., Berry, J., & Osmond, B. (2005). 

Measuring photosynthetic parameters at a distance: laser induced fluorescence 

transient (LIFT) method for remote measurements of photosynthesis in terrestrial 

vegetation. Photosynthesis Research, 84, 121-129. 

Kono, M., & Terashima, I. (2014). Long-term and short-term responses of the photosynthetic 

electron transport to fluctuating light. Journal of Photochemistry and Photobiology B: 

Biology, 137, 89-99. 

Kooyers, N. J. (2015). The evolution of drought escape and avoidance in natural herbaceous 

populations. Plant Science, 234, 155-162. 

Krall, J. P., & Edwards, G. E. (1990). Quantum yields of photosystem II electron transport 

and carbon dioxide fixation in C4 plants. Australian Journal of Plant Physiology, 

17(5), 579-588. 

Krause, G. H., & Weis, E. (1984). Chlorophyll fluorescence as a tool in plant physiology. II. 

Interpretation of fluorescence signals. Photosynthesis Research, 5, 139-157. 

Krause, G. H., & Weis, E. (1991). Chlorophyll fluorescence and photosynthesis: the basics. 

Annual Review of Plant Physiology and Plant Molecular Biology, 42(1), 313-349. 

Krieger-Liszkay, A., & Feilke, K. (2016). The dual role of the plastid terminal oxidase PTOX: 

between a protective and a pro-oxidant function. Frontiers in Plant Science, 6, 1147. 

Külheim, C., Ågren, J., & Jansson, S. (2002). Repid regulation of light harvesting and plant 

fitness in the field. Science, 297(5578), 91-93. 

Lancashire, P. D., Bleiholder, H., van den Boom, T., Langelüddeke, P., Stauss, R., Weber, E., 

& Witzenberger, A. (1991). A uniform decimal code for growth stages of crops and 

weeds. Annals of Applied Biology, 119(3), 561-601. 

Lawlor, D. W. (2002). Limitation to photosynthesis in water-stressed leaves: stomata vs. 

metabolism and the role of ATP. Annals of Botany, 89(7), 871-885. 



 

120 

 

Lazár, D. (2003). Chlorophyll a fluorescence rise induced by high light illumination of dark-

adapted plant tissue studied by means of a model of photosystem II and considering 

photosystem II heterogeneity. Journal of Theoretical Biology, 220(4), 469-503. 

Lazár, D., & Jablonský, J. (2009). On the approaches applied in formulation of a kinetic 

model of photosystem II: different approaches lead to different simulations of the 

chlorophyll a fluorescence transients. Journal of Theoretical Biology, 257(2), 260-

269. 

le Maire, G., François, C., & Dufrêne, E. (2004). Towards universal broad leaf chlorophyll 

indices using PROSPECT simulated database and hyperspectral reflectance 

measurements. Remote Sensing of Environment, 89(1), 1-28. 

Lefebvre, V., Kiani, S. P., & Durand-Tardif, M. (2009). A focus on natural variation for 

abiotic constraints response in the model species Arabidopsis thaliana. International 

Journal of Molecular Sciences, 10(8), 3547-3582. 

Levitt, J. (1980). Responses of Plants to Environmental Stresses: Water, Radiation, Salt, and 

Other Stresses (2nd ed., Vol. II). New York, NY, United States of America: Academic 

Press. 

Liang, J., Zhang, J., & Wong, M. H. (1997). Can stomatal closure caused by xylem ABA 

explain the inhibition of leaf photosynthesis under soil drying? Photosynthesis 

Research, 51, 149-159. 

Littell, R. C., Pendergast, J., & Natarajan, R. (2000). Modelling covariance structure in the 

analysis of repeated measures data. Statistics in Medicine, 19(13), 1793-1819. 

Liu, J., Miller, J. R., Haboudane, D., & Pattey, E. (2004a). Exploring the relationship between 

red edge parameters and crop variables for precision agriculture. 2004 IEEE 

International Geoscience and Remote Sensing Symposium Proceedings. Science for 

Society: Exploring and Managing a Changing Planet. II, pp. 1276-1279. Anchorage, 

AK: IEEE. doi:https://doi.org/10.1109/IGARSS.2004.1368649 

Liu, L., Wang, J., Huang, W., Zhao, C., Zhang, B., & Tong, Q. (2004b). Estimating winter 

wheat plant water content using red edge parameters. International Journal of Remote 

Sensing, 25(17), 3331-3342. 

Lobell, D. B., & Burke, M. B. (2008). Why are agricultural impacts of climate change so 

uncertain? The importance of temperature relative to precipitation. Environmental 

Research Letters, 3(3), 034007. 

Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop 

production since 1980. Science, 333(6042), 616-620. 



 

121 

 

Longenberger, P. S., Smith, C. W., Duke, S. E., & McMichael, B. L. (2009). Evaluation of 

chlorophyll fluorescence as a tool for the identification of drought tolerance in upland 

cotton. Euphytica, 166, 25-33. 

Lu, C., & Zhang, J. (1999). Effects of water stress on photosystem II photochemistry and its 

thermostability in wheat plants. Journal of Experimental Botany, 50(336), 1199-1206. 

Maccaferri, M., Sanguineti, M. C., Demontis, A., El-Ahmed, A., del Moral, L., Maalouf, F., . 

. . Tuberosa, R. (2011). Association mapping in durum wheat grown across a broad 

range of water regimes. Journal of Experimental Botany, 62(2), 409-438. 

Maccaferri, M., Sanguineti, M. C., Natoli, V., Ortega, J. A., Salem, M. B., Bort, J., . . . 

Tuberosa, R. (2006). A panel of elite accessions of durum wheat (Triticum durum 

Desf.) suitable for association mapping studies. Plant Genetic Resources, 4(1), 79-85. 

Maechler, M., Rousseeuw, P., Croux, C., Todorov, V., Ruckstuhl, A., Salibian-Barrera, M., . . 

. Anna di Palma, M. (2020). robustbase: Basic Robust Statistics. R package version 

0.93-6. Retrieved from http://robustbase.r-forge.r-project.org/ 

Marcial, L., & Sarrafi, A. (1996). Genetic analysis of some chlorophyll fluorescence and 

productivity parameters in barley (Hordeum vulgare). Plant Breeding, 115(5), 339-

342. 

Marquet, P. A., Quiñones, R. A., Abades, S., Labra, F., Tognelli, M., Arim, M., & 

Rivadeneira, M. (2005). Scaling and power-laws in ecological systems. The Journal of 

Experimental Biology, 208, 1749-1769. 

Martin-Vertedor, A., & Dodd, I. C. (2011). Root-to-shoot signalling when soil moisture is 

heterogeneous: increasing the proportion of root biomass in drying soil inhibits leaf 

growth and increases leaf abscisic acid concentration. Plant, Cell and Environment, 

34(7), 1164-1175. 

Massmann, A., Gentine, P., & Lin, C. (2019). When does vapor pressure deficit drive or 

reduce evapotranspiration? Journal of Advances in Modeling Earth Systems, 11(10), 

3305-3320. 

Mathobo, R., Marais, D., & Steyn, J. M. (2017). The effect of dorught stress on yield, leaf 

gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.). 

Agricultural Water Management, 180(Part A), 118-125. 

Matthews, J. S., Vialet-Chabrand, S., & Lawson, T. (2018). Acclimation to fluctuating light 

impacts the rapidity of response and diurnal rhythm of stomatal conductance. Plant 

Physiology, 176(3), 1939-1951. 



 

122 

 

Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence - a practical guide. Journal 

of Experimental Botany, 51(345), 659-668. 

McAusland, L., Atkinson, J. A., Lawson, T., & Murchie, E. H. (2019). High throughput 

procedure utilising chlorophyll fluorescence imaging to phenotype dynamic 

photosynthesis and photoprotection in leaves under controlled gaseous conditions. 

Plant Methods, 15, 109. 

McAusland, L., Vialet-Chabrand, S., Davey, P., Baker, N. R., Brendel, O., & Lawson, T. 

(2016). Effects of kinetics of light-induced stomatal responses on photosynthesis and 

water-use efficiency. New Phytologist, 211(4), 1209-1220. 

McDonald, A. E., Ivanov, A. G., Bode, R., Maxwell, D. P., Rodermel, S. R., & Hüner, N. P. 

(2011). Flexibility in photosynthetic electron transport: the physiological role of 

plastoquinol terminal oxidase (PTOX). Biochimica et Biophysica Acta (BBA) - 

Bioenergetics, 1807(8), 954-967. 

Medrano, H., Escalona, J. M., Bota, J., Gulías, J., & Flexas, J. (2002). Regulation of 

photosynthesis of C3 plants in response to progressive drought: stomatal conductance 

as a reference parameter. Annals of Botany, 89(7), 895-905. 

Messina, C. D., Podlich, D., Dong, Z., Samples, M., & Cooper, M. (2011). Yield-trait 

performance landscapes: from theory to application in breeding maize for drought 

tolerance. Journal of Experimental Botany, 62(3), 855-868. 

Meyer, G. E., & Camargo Neto, J. (2008). Verification of color vegetation indices for 

automated crop imaging applications. Computers and Electronics in Agriculture, 

63(2), 282-293. 

Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 

391(1-2), 202-216. 

Mohammadi, R. (2018). Breeding for increased drought tolerance in wheat: a review. Crop 

and Pasture Science, 69(3), 223-241. 

Mohammed, G. H., Colombo, R., Middleton, E. M., Rascher, U., van der Tol, C., Nedbal, L., 

. . . Zarco-Tejada, P. J. (2019). Remote sensing of solar-induced chlorophyll 

fluorescence (SIF) in vegetation: 50 years of progress. Remote Sensing of 

Environment, 231, 111177. 

Molero, G., & Lopes, M. (2012). Gas exchange and chlorophyll fluorescence. In A. Pask, J. 

Pietragalla, D. Mullan, & M. Reynolds (Eds.), Physiological Breeding II: A Field 

Guide to Wheat Phenotyping (pp. 63-70). Mexico, D.F.: CIMMYT. 



 

123 

 

Monneveux, P., Jing, R., & Misra, S. C. (2012). Phenotyping for drought adaptation in wheat 

using physiological traits. Frontiers in Physiology, 3, 429. 

Mullan, D., & Pietragalla, J. (2012). Leaf relative water content. In A. Pask, J. Pietragalla, D. 

Mullan, & M. Reynolds (Eds.), Physiological Breeding II: A Field Guide to Wheat 

Phenotyping (pp. 25-27). Mexico, D.F.: CIMMYT. 

Müller, M., & Munné-Bosch, S. (2021). Hormonal impact on photosynthesis and 

photoprotection in plants. Plant Physiology, kiaa119. 

doi:https://doi.org/10.1093/plphys/kiaa119 

Müller-Linow, M., Wilhelm, J., Briese, C., Wojciechowski, T., Schurr, U., & Fiorani, F. 

(2019). Plant screen mobile: an open-source mobile device app for plant trait analysis. 

Plant Methods, 15, 2. 

Munné-Bosch, S., & Alegre, L. (2004). Die and let live: leaf senescence contributes to plant 

survival under drought stress. Functional Plant Biology, 31(3), 203-216. 

Murchie, E. H., & Lawson, T. (2013). Chlorophyll fluorescence analysis: a guide to good 

practice and understanding some new applications. Journal of Experimental Botany, 

64(13), 3983-3998. 

Mutanga, O., & Skidmore, A. K. (2007). Red edge shift and biochemical content in grass 

canopies. ISPRS Journal of Photogrammetry and Remote Sensing, 62(1), 34-42. 

Nagarajan, R. (2009). Drought Assessment. Dordrecht, The Netherlands and New Delhi, 

India: Springer and Capital Publishing Company. 

Nakhforoosh, A., Bodewein, T., Fiorani, F., & Bodner, G. (2016). Identification of water use 

strategies at early growth stages in durum wheat from shoot phenotyping and 

physiological measurements. Frontiers in Plant Science, 7, 1155. 

Nawrocki, W. J., Tourasse, N. J., Taly, A., Rappaport, F., & Wollman, F.-A. (2015). The 

plastid terminal oxidase: its elusive function points to multiple contributions to plastid 

physiology. Annual Review of Plant Biology, 66(1), 49-74. 

Negin, B., & Moshelion, M. (2017). The advantages of functional phenotyping in pre-field 

screening for drought-tolerant crops. Functional Plant Biology, 44(1), 107-118. 

Neukam, D., Böttcher, U., & Kage, H. (2016). Modelling wheat stomatal resistance in hourly 

time steps from micrometeorological variables and soil water status. Journal of 

Agronomy and Crop Science, 202(3), 174-191. 

Neumann, P. M. (2008). Coping mechanisms for crop plants in drought-prone environments. 

Annals of Botany, 101(7), 901-907. 



 

124 

 

Nezhadahmadi, A., Prodhan, Z. H., & Faruq, G. (2013). Drought tolerance in wheat. The 

Scientific World Journal, 2013, Article ID 610721. 

NOAA. (2020). Climate at a Glance: Divisional Rankings. (National Centers for 

Environmental Information) Retrieved July 14, 2020, from 

https://www.ncdc.noaa.gov/cag/divisional/rankings/0206/zndx/201804 

Nogués, S., & Alegre, L. (2002). An increase in water deficit has no impact on the 

photosynthetic capacity of field-grown Mediterranean plants. Functional Plant 

Biology, 29(5), 621-630. 

Normanly, J. (Ed.). (2012). High-Throughput Phenotyping in Plants: Methods and Protocols. 

Totowa, NJ, United States of America: Humana Press. 

O'Neill, P. M., Shanahan, J. F., & Schepers, J. S. (2006). Use of chlorophyll fluorescence 

assessments to differentiate corn hybrid response to variable water conditions. Crop 

Science, 46(2), 681-687. 

Osmond, B., Chow, W. S., Pogson, B. J., & Robinson, S. A. (2019). Probing functional and 

optical cross-sections of PSII in leaves during state transitions using fast repetition rate 

light induced fluorescence transients. Functional Plant Biology, 46(6), 567-583. 

Osmond, B., Chow, W. S., Wyber, R., Zavafer, A., Keller, B., Pogson, B. J., & Robinson, S. 

A. (2017). Relative functional and optical absorption cross-sections of PSII and other 

photosynthetic parameters monitored in situ, at a distance with a time resolution of a 

few seconds, using a prototype light induced fluorescence transient (LIFT) device. 

Functional Plant Biology, 44(10), 985-1006. 

Oukarroum, A., Madidi, S., Schansker, G., & Strasser, R. J. (2007). Probing the responses of 

barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under 

drought stress and re-watering. Environmental and Experimental Botany, 60(3), 438-

446. 

Ouyang, W., Struik, P. C., Yin, X., & Yang, J. (2017). Stomatal conductance, mesophyll 

conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat 

genotypes under drought. Journal of Experimental Botany, 68(18), 5191-5205. 

Palmer, W. C. (1965). Meteorological drought. Research Paper No. 45. Weather Bureau. 

Washington, D.C.: U.S. Department of Commerce. 

Pask, A., Pietragalla, J., Mullan, D., & Reynolds, M. (Eds.). (2012). Physiological Breeding 

II: A Field Guide to Wheat Phenotyping. Mexico City, Mexico: CIMMYT. 

Passioura, J. (2006). Increasing crop productivity when water is scarce - from breeding to 

field management. Agricultural Water Management, 80(1-3), 176-196. 



 

125 

 

Passioura, J. B. (1977). Grain yield, harvest index, and water use of wheat. The Journal of the 

Australian Institute of Agricultural Science, 43(3-4), 117-120. 

Patterson, H. D., & Williams, E. R. (1976). A new class of resolvable incomplete block 

designs. Biometrika, 63(1), 83-92. 

Payne, R., Welham, S., & Harding, S. (2019). A guide to REML in Genstat (20th Edition). 

Hemel Hempstead, Hertfordshire, United Kingdom: VSN International. 

Pei, Z.-M., Murata, Y., Benning, G., Thomine, S., Klüsener, B., Allen, G. J., . . . Schroeder, J. 

I. (2000). Calcium channels activated by hydrogen peroxide mediate abscisic acid 

signalling in guard cells. Nature, 406, 731-734. 

Pérez-Bueno, M., Pineda, M., & Barón, M. (2019). Phenotyping plant responses to biotic 

stress by chlorophyll fluorescence imaging. Frontiers in Plant Science, 10, 1135. 

Piepho, H. P. (2018). Allowing for the structure of a designed experiment when estimating 

and testing trait correlations. The Journal of Agricultural Science, 156(1), 59-70. 

Piepho, H. P. (2019). A coefficient of determination (R2) for generalized linear mixed 

models. Biometrical Journal, 61(4), 860-872. 

Piepho, H. P., & Möhring, J. (2011). On estimation of genotypic correlations and their 

standard errors by multivariate REML using the MIXED procedure of the SAS 

system. Crop Science, 51(6), 2449-2454. 

Piepho, H. P., Büchse, A., & Emrich, K. (2003). A Hitchhiker's guide to mixed models for 

randomized experiments. Journal of Agronomy and Crop Science, 189(5), 310-322. 

Piepho, H. P., Büchse, A., & Richter, C. (2004). A mixed modelling approach for randomized 

experiments with repeated measures. Journal of Agronomy and Crop Science, 190(4), 

230-247. 

Piepho, H. P., Williams, E. R., & Michel, V. (2015). Beyond Latin squares: a brief tour of 

row-column designs. Agronomy Journal, 107(6), 2263-2270. 

Pieruschka, R., Klimov, D., Kolber, Z. S., & Berry, J. A. (2010). Monitoring of cold and light 

stress impact on photosynthesis by using the lase induced fluorescence transient 

(LIFT) approach. Functional Plant Biology, 37(5), 395-402. 

Podlich, D. W., Winkler, C. R., & Cooper, M. (2004). Mapping as you go: an effective 

approach for marker-assisted selection of complex traits. Crop Science, 44(5), 1560-

1571. 

Porter, J. R., Challinor, A. J., Cochrane, K., Howden, S., Iqbal, M. M., Lobell, D. B., & 

Travasso, M. (2014). Food security and food production systems. In C. B. Field, V. R. 

Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, . . . L. L. White 



 

126 

 

(Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global 

and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment 

Report of the Intergovernmental Panel on Climate Change (pp. 485-533). Cambridge, 

United Kingdom and New York, United States of America: Cambridge University 

Press. 

Qaseem, M. F., Qureshi, R., & Shaheen, H. (2019). Effects of pre-anthesis drought, heat and 

their combination on the growth, yield and physiology of diverse wheat (Triticum 

aestivum L.) genotypes varying in sensitivity to heat and drought stress. Scientific 

Reports, 9, 6955. 

Qiao, C. G., Basford, K. E., DeLacy, I. H., & Cooper, M. (2000). Evaluation of experimental 

designs and spatial analyses in wheat breeding trials. Theoretical and Applied 

Genetics, 100, 9-16. 

R Core Team. (2020). R a language and environment for statistical computing. Vienna, 

Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-

project.org/ 

Raesch, A. R., Muller, O., Pieruschka, R., & Rascher, U. (2014). Field observations with 

laser-induced fluorescence transient (LIFT) method in barley and sugar beet. 

Agriculture, 4(2), 159-169. 

Ranalli, P., di Candilo, M., & Bagatta, M. (1997). Drought tolerance screening for potato 

improvement. Plant Breeding, 116(3), 290-292. 

Rascher, U., & Pieruschka, R. (2008). Spatio-temporal variations of photosynthesis: the 

potential of optical remote sensing to better understand and scale light use efficiency 

and stresses of plant ecosystems. Precision Agriculture, 9, 355-366. 

Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to 

double global crop production by 2050. PLOS ONE, 8(6), e66428. 

Rehman, S. U., Bilal, M., Rana, R. M., Tahir, M. N., Shah, M. K., Ayalew, H., & Yan, G. 

(2016). Cell membrane stability and chlorophyll content variation in wheat (Triticum 

aestivum) genotypes under conditions of heat and drought. Crop and Pasture Science, 

67(7), 712-718. 

Resende, R. T., Piepho, H.-P., Rosa, G. J., Silva-Junior, O. B., Silva, F. F., de Resende, M. 

V., & Grattapaglia, D. (2021). Enviromics in breeding: applications and perspectives 

on envirotypic-assisted selection. Theoretical and Applied Genetics, 134, 95-112. 

Reynolds, M., & Langridge, P. (2016). Physiological breeding. Current Opinion in Plant 

Biology, 31, 162-171. 



 

127 

 

Reynolds, M., Chapman, S., Crespo-Herrera, L., Molero, G., Mondal, S., Pequeno, D. N., . . . 

Sukumaran, S. (2020). Breeder friendly phenotyping. Plant Science, 295, 110396. 

Richards, R. A. (2000). Selectable traits to increase crop photosynthesis and yield of grain 

crops. Journal of Experimental Botany, 51(Issue suppl_1), 447-458. 

Robinson, G. K. (1991). That BLUP is a good thing: the estimation of random effects. 

Statistical Science, 6(1), 15-32. 

Rochaix, J.-D. (2011). Regulation of photosynthetic electron transport. Biochimica et 

Biophysica Acta (BBA) - Bioenergetics, 1807(3), 375-383. 

Rosenzweig, C., Iglesias, A., Yang, X. B., Epstein, P. R., & Chivian, E. (2001). Climate 

change and extreme weather events: implications for food production, plant diseases, 

and pests. Global Change and Human Health, 2(2), 90-104. 

Royal Society. (2012). People and the planet. The Royal Society, Science Policy Centre. 

London: The Royal Society. Retrieved November 10, 2020, from 

https://royalsociety.org/topics-policy/projects/people-planet/report/ 

Rutkoski, J., Poland, J., Mondal, S., Autrique, E., Pérez, L. G., Crossa, J., . . . Singh, R. 

(2016). Canopy temperature and vegetation indices from high-throughput phenotyping 

improve accuracy of pedigree and genomic selection for grain yield in wheat. G3: 

Genes, Genomes, Genetics, 6(9), 2799-2808. 

Sack, L., & Holbrook, N. M. (2006). Leaf hydraulics. Annual Review of Plant Biology, 57(1), 

361-381. 

Sadras, V. O., & Angus, J. F. (2006). Benchmarking water-use efficiency of rainfed wheat in 

dry environments. Australian Journal of Agricultural Research, 57(8), 847-856. 

Sakoda, K., Yamori, W., Groszmann, M., & Evans, J. R. (2021). Stomatal, mesophyll 

conductance, and biochemical limitations to photosynthesis during induction. Plant 

Physiology, 185(1), 146-160. 

Salekdeh, G. H., Reynolds, M., Bennett, J., & Boyer, J. (2009). Conceptual framework for 

drought phenotyping during molecular breeding. Trends in Plant Science, 14(9), 488-

496. 

Sallam, A., Alqudah, A. M., Dawood, M. F., Baenziger, P. S., & Börner, A. (2019). Drought 

stress tolerance in wheat and barley: advances in physiology, breeding and genetics 

research. International Journal of Molecular Sciences, 20(13), 3137. 

Sanchez-Bragado, R., Newcomb, M., Chairi, F., Condorelli, G. E., Ward, R. W., White, J. W., 

. . . Molins, M. S. (2020). Carbon isotope composition and the NDVI as phenotyping 



 

128 

 

approaches for drought adaptation in durum wheat: beyond trait selection. Agronomy, 

10(11), 1679. 

Saradadevi, R., Palta, J. A., & Siddique, K. H. (2017). ABA-mediated stomatal response in 

regulating water use during the development of terminal drought in wheat. Frontiers 

in Plant Science, 8, 1251. 

Sasidharan, R., Voesenek, L. A., & Pierik, R. (2011). Cell wall modifying proteins mediate 

plant acclimatization to biotic and abiotic stresses. Critical Reviews in Plant Sciences, 

30(6), 548-562. 

Schachtman, D. P., & Goodger, J. Q. (2008). Chemical root to shoot signaling under drought. 

Trends in Plant Science, 13(6), 281-287. 

Schmidhuber, J., & Tubiello, F. N. (2007). Global food security under climate change. 

Proceedings of the National Academy of Sciences of the United States of America, 

104(50), 19703-19708. 

Schöttler, M. A., & Tóth, S. Z. (2014). Photosynthetic complex stoichiometry dynamics in 

higher plants: environmental acclimation and photosynthetic flux control. Frontiers in 

Plant Science, 5, 188. 

Schreiber, U. (1986). Detection of rapid induction kinetics with a new type of high-frequency 

modulated chlorophyll fluorometer. Photosynthesis Research, 9, 261-272. 

Seager, R., Naik, N., & Vecchi, G. A. (2010). Thermodynamic and dynamic mechanisms for 

large-scale changes in the hydrological cycle in response to global warming. Journal 

of Climate, 23(17), 4651-4668. 

Sehgal, D., Singh, R., & Rajpal, V. R. (2016). Quantitative trait loci mapping in plants: 

concepts and approaches. In V. R. Rajpal, S. R. Rao, & S. N. Raina (Eds.), Molecular 

Breeding for Sustainable Crop Improvement (Vol. 2, pp. 31-59). Cham, Switzerland: 

Springer. 

Seki, M., Umezawa, T., Urano, K., & Shinozaki, K. (2007). Regulatory metabolic networks in 

drought stress responses. Current Opinion in Plant Biology, 10(3), 296-302. 

Shangguan, Z., Shao, M., & Dyckmans, J. (1999). Interaction of osmotic adjustment and 

photosynthesis in winter wheat under soil drought. Journal of Plant Physiology, 

154(5-6), 753-758. 

Shirao, M., Kuroki, S., Kaneko, K., Kinjo, Y., Tsuyama, M., Förster, B., . . . Badger, M. R. 

(2013). Gymnosperms have increased capacity for electron leakage to oxygen (Mehler 

and PTOX reactions) in photosynthesis compared with angiosperms. Plant and Cell 

Physiology, 54(7), 1152-1163. 



 

129 

 

Sim, C. H., Gan, F. F., & Chang, T. C. (2005). Outlier labeling with boxplot procedures. 

Journal of the American Statistical Association, 100(470), 642-652. 

Sivakumar, M. V. (2005). World Meteorological Organization and agricultural droughts. In 

V. K. Boken, A. P. Cracknell, & R. L. Heathcote (Eds.), Monitoring and Predicting 

Agricultural Drought: A Global Study (pp. 401-410). New York, NY, United States of 

America: Oxford University Press. 

Sivakumar, M. V. (2011). Agricultural Drought - WMO Perspectives. In M. V. Sivakumar, R. 

P. Motha, D. A. Wilhite, & D. A. Wood (Ed.), Agricultural Drought Indices. 

Proceedings of the WMO/UNISDR Expert Group Meeting on Agricultural Drought 

Indices, 2-4 June 2010, Murcia, Spain (pp. 22-34). Geneva, Switzerland: World 

Meteorological Organization. 

Soares, G. F., Ribeiro Júnior, W. Q., Pereira, L. F., de Lima, C. A., Soares, D. d., Muller, O., . 

. . Ramos, M. G. (2021). Characterization of wheat genotypes for drought tolerance 

and water use efficiency. Scientia Agricola, 78(5), e20190304. 

doi:https://doi.org/10.1590/1678-992x-2019-0304 

Stern, N. (2007). The Economics of Climate Change: The Stern Review. Cambridge, United 

Kingdom: Cambridge University Press. 

Stirbet, A. D., & Strasser, R. J. (1995). Numerical simulation of the fluorescence induction in 

plants. Archives des sciences et compte rendu des séances de la Société, 48(1), 41-60. 

Stirbet, A., & Govindjee. (2011). On the relation between the Kautsky effect (chlorophyll a 

fluorescence induction) and photosystem II: basics and applications of the OJIP 

fluorescence transient. Journal of Photochemistry and Photobiology B: Biology, 

104(1-2), 236-257. 

Stirbet, A., Lazár, D., Guo, Y., & Govindjee, G. (2020). Photosynthesis: basics, history and 

modelling. Annals of Botany, 126(4), 511-537. 

Sun, J., Rutkoski, J. E., Poland, J. A., Crossa, J., Jannink, J.-L., & Sorrells, M. E. (2017). 

Multitrait, random regression, or simple repeatability model in high-throughput 

phenotyping data improve genomic prediction for wheat grain yield. The Plant 

Genome, 10(2), plantgenome2016.11.0111. 

Taiz, L. (2013). Agriculture, plant physiology, and human population growth: past, present, 

and future. Theoretical and Experimental Plant Physiology, 25(3), 167-181. 

Takahashi, F., Kuromori, T., Urano, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2020). 

Drought stress responses and resistance in plants: from cellular responses to long-

distance intercellular communication. Frontiers in Plant Science, 11, 556972. 



 

130 

 

Takahashi, S., Milward, S. E., Fan, D.-Y., Chow, W. S., & Badger, M. R. (2009). How does 

cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiology, 

149(3), 1560-1567. 

Tardieu, F., Cabrera-Bosquet, L., Pridmore, T., & Bennett, M. (2017). Plant phenomics, from 

sensors to knowledge. Current Biology, 27(15), R770-R783. 

Tardieu, F., Parent, B., & Simonneau, T. (2010). Control of leaf growth by abscisic acid: 

hydraulic or non-hydraulic processes? Plant, Cell and Environment, 33(4), 636-647. 

Tenhaken, R. (2015). Cell wall remodeling under abiotic stress. Frontiers in Plant Science(5), 

771. 

Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a 

changing world. Science, 327(5967), 818-822. 

Tezara, W., Mitchell, V. J., Driscoll, S. D., & Lawlor, D. W. (1999). Water stress inhibits 

plant photosynthesis by decreasing coupling factor and ATP. Nature, 401, 914-917. 

Tikhonov, A. N. (2013). pH-Dependet regulation of electron transport and ATP synthesis in 

chloroplasts. Photosynthesis Research, 116, 511-534. 

Tikkanen, M., Grieco, M., Nurmi, M., Rantala, M., Suorsa, M., & Aro, E.-M. (2012). 

Regulation of the photosynthetic apparatus under fluctuating growth light. 

Philosophical Transactions of the Royal Society of London. Series B, Biological 

Sciences, 367(1608), 3486-3493. 

Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the 

sustainable intensification of agriculture. Proceedings of the National Academy of 

Sciences of the United States of America, 108(50), 20260-20264. 

Trenberth, K. E., Dai, A., van der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., & 

Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 

4, 17-22. 

Tripathy, J. N., Zhang, J., Robin, S., Nguyen, T. T., & Nguyen, H. T. (2000). QTLs for cell-

membrane stability mapped in rice (Oryza sativa L.) under drought stress. Theoretical 

and Applied Genetics, 100, 1197-1202. 

Tschiersch, H., Junker, A., Meyer, R. C., & Altmann, T. (2017). Establishment of integrated 

protocols for automated high throughput kinetic chlorophyll fluorescence analyses. 

Plant Methods, 13, 54. 

Tuberosa, R. (2012). Phenotyping for drought tolerance of crops in the genomics era. 

Frontiers in Physiology, 3, 347. 



 

131 

 

Turral, H., Burke, J., & Faurès, J.-M. (2011). FAO Water Reports 36. Climate change, water 

and food security. Rome: FAO. 

UNEP. (2009). Climate in Peril: A popular guide to the latest IPCC reports. UNEP/GRID-

Arendal. Birkeland, Norway: United Nations Environment Programme. 

United Nations. (2019). World Population Prospects 2019: Highlights (ST/ESA/SER.A/423). 

Department of Economic and Social Affairs, Population Division. New York: United 

Nations. 

van Eeuwijk, F. A., Bustos-Korts, D., Millet, E. J., Boer, M. P., Kruijer, W., Thompson, A., . . 

. Chapman, S. C. (2019). Modelling strategies for assessing and increasing the 

effectiveness of new phenotyping techniques in plant breeding. Plant Science, 282, 

23-39. 

van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic 

conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892-

898. 

van Velthuizen, H., Huddleston, B., Fischer, G., Salvatore, M., Ataman, E., Nachtergaele, F. 

O., . . . Bloise, M. (2007). Mapping biophysical factors that influence agricultural 

production and rural vulnerability. Rome: FAO and IIASA. 

Vercruyssen, L., Gonzalez, N., Werner, T., Schmülling, T., & Inzé, D. (2011). Combining 

enhanced root and shoot growth reveals cross talk between pathways that control plant 

organ size in Arabidopsis. Plant Physiology, 155(3), 1339-1352. 

Verdeprado, H., Kretzschmar, T., Begum, H., Raghavan, C., Joyce, P., Lakshmanan, P., . . . 

Collard, B. C. (2018). Association mapping in rice: basic concepts and perspectives 

for molecular breeding. Plant Production Science, 21(3), 159-176. 

Verslues, P. E., & Juenger, T. E. (2011). Drought, metabolites, and Arabidopsis natural 

variation: a promising combination for understanding adaptation to water-limited 

environments. Current Opinion in Plant Biology, 14(3), 240-245. 

Verslues, P. E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., & Zhu, J.-K. (2006). Methods and 

concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that 

affect plant water status. The Plant Journal, 45(4), 523-539. 

Vile, D., Pervent, M., Belluau, M., Vasseur, F., Bresson, J., Muller, B., . . . Simonneau, T. 

(2012). Arabidopsis growth under prolonged high temperature and water deficit: 

independent or interactive effects? Plant, Cell and Environment, 35(4), 702-718. 



 

132 

 

Virlet, N., Sabermanesh, K., Sadeghi-Tehran, P., & Hawkesford, M. J. (2017). Field 

Scanalyzer: an automated robotic field phenotyping platform for detailed crop 

monitoring. Functional Plant Biology, 44(1), 143-153. 

Visscher, P. M., Hill, W. G., & Wray, N. R. (2008). Heritability in the genomics era - 

concepts and misconceptions. Nature Reviews Genetics, 9, 255-266. 

Vogelmann, J. E., Rock, B. N., & Moss, D. M. (1993). Red edge spectral measurements from 

sugar maple leaves. International Journal of Remote Sensing, 14(8), 1563-1575. 

VSN International. (2019). Genstat for Windows 20th Edition. Hemel Hempstead, United 

Kingdom: VSN International. Retrieved from https://www.vsni.co.uk/ 

Wada, S., Takagi, D., Miyake, C., Makino, A., & Suzuki, Y. (2019). Responses of the 

photosynthetic electron transport reactions stimulate the oxidation of the reaction 

center chlorophyll of photosystem I, P700, under drought and high temperatures in 

rice. International Journal of Molecular Sciences, 20(9), 2068. 

Walker, B. J., Kramer, D. M., Fisher, N., & Fu, X. (2020). Flexibility in the energy balancing 

network of photosynthesis enables safe operation under changing environmental 

conditions. Plants, 9(3), 301. 

Walters, R. G. (2005). Towards an understanding of photosynthetic acclimation. Journal of 

Experimental Botany, 56(411), 435-447. 

Wang, H., Qian, X., Zhang, L., Xu, S., Li, H., Xia, X., . . . Liu, X. (2018). A method of high 

throughput monitoring crop physiology using chlorophyll fluorescence and 

multispectral imaging. Frontiers in Plant Science, 9, 407. 

Wang, W.-H., He, E.-M., Chen, J., Guo, Y., Chen, J., Liu, X., & Zheng, H.-L. (2016). The 

reduced state of the plastoquinone pool is required for chloroplast-mediated stomatal 

closure in response to calcium stimulation. The Plant Journal, 86(2), 132-144. 

Wang, Z. X., Chen, L., Ai, J., Qin, H. Y., Liu, Y. X., Xu, P. L., . . . Zhang, Q. T. (2012). 

Photosynthesis and activity of photosystem II in response to drought stress in Amur 

Grape (Vitis amurensis Rupr.). Photosynthetica, 50(2), 189-196. 

Watt, M., Fiorani, F., Usadel, B., Rascher, U., Muller, O., & Schurr, U. (2020). Phenotyping: 

new windows into the plant for breeders. Annual Review of Plant Biology, 71(1), 689-

712. 

White, J. W., & Conley, M. M. (2013). A flexible, low-cost cart for proximal sensing. Crop 

Science, 53(4), 1646-1649. 



 

133 

 

Wilhite, D. A. (2000). Drought as a natural hazard: concepts and definitions. In D. A. Wilhite 

(Ed.), Drought: A Global Assessment (Vol. I, pp. 3-18). London, United Kingdom: 

Routledge. 

Wilhite, D. A., & Glantz, M. H. (1985). Understanding: the drought phenomenon: the role of 

definitions. Water International, 10(3), 111-120. 

Wilkinson, S., & Davies, W. J. (2010). Drought, ozone, ABA and ethylene: new insights from 

cell to plant to community. Plant, Cell and Environment, 33(4), 510-525. 

Wingler, A., & Roitsch, T. (2008). Metabolic regulation of leaf senescence: interactions of 

sugar signalling with biotic and abiotic stress responses. Plant Biology, 10(S1), 50-62. 

Winterhalter, L., Mistele, B., Jampatong, S., & Schmidhalter, U. (2011). High throughput 

phenotyping of canopy water mass and canopy temperature in well-watered and 

drought stressed tropical maize hybrids in the vegetative stage. Eurpean Journal of 

Agronomy, 35(1), 22-32. 

Wolfinger, R. (1993). Covariance structure selection in general mixed models. 

Communications in Statistics - Simulation and Computation, 22(4), 1079-1106. 

Wyber, R., Osmond, B., Ashcroft, M. B., Malenovský, Z., & Robinson, S. A. (2018). Remote 

monitoring of dynamic canopy photosynthesis with high time resolution light-induced 

fluorescence transients. Tree Physiology, 38(9), 1302-1318. 

Xin, C. P., Yang, J., & Zhu, X.-G. (2013). A model of chlorophyll a fluorescence induction 

kinetics with explicit description of structural constraints of individual photosystem II 

units. Photosynthesis Research, 117, 339-354. 

Yadav, S., Sandhu, N., Majumder, R. R., Dixit, S., Kumar, S., Singh, S. P., . . . Kumar, A. 

(2019). Epistatic interactions of major effect drought QTLs with genetic background 

loci determine grain yield of rice under drought stress. Scientific Reports, 9, 2616. 

Yan, H., Wu, L., Filardo, F., Yang, X., Zhao, X., & Fu, D. (2017). Chemical and hydraulic 

signals regulate stomatal behavior and photosynthetic activity in maize during 

progressive dorught. Acta Physiologiae Plantarum, 39, 125. 

Yang, S., Vanderbeld, B., Wan, J., & Huang, Y. (2010). Narrowing down the targets: towards 

successful genetic engineering of drought-tolerant crops. Molecular Plant, 3(3), 469-

490. 

Yang, W., Feng, H., Zhang, X., Zhang, J., Doonan, J. H., Batchelor, W. D., . . . Yan, J. 

(2020). Crop phenomics and high-throughput phenotyping: past decades, current 

challenges, and future perspectives. Molecular Plant, 13(2), 187-214. 



 

134 

 

Yokoyama, R., & Nishitani, K. (2001). A comprehensive expression analysis of all members 

of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory 

regions involved in cell-wall construction in specific organs of Arabidopsis. Plant Cell 

Physiology, 42(10), 1025-1033. 

Yordanov, I., Velikova, V., & Tsonev, T. (2003). Plant responses to drought and stress 

tolerance. Bulgarian Journal of Plant Physiology, 29(3-4), 187-206. 

Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., . . . Yang, S. (2019). 

Increased atmospheric vapor pressure deficit reduces global vegetation growth. 

Science Advances, 5(8), eaax1396. 

Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of 

cereals. Weed Research, 14(6), 415-421. 

Zhang, H., Zhao, Y., & Zhu, J.-K. (2020). Thriving under stress: how plants balance growth 

and the stress response. Developmental Cell, 55(5), 529-543. 

Zhou, Y., He, R., Guo, Y., Liu, K., Huang, G., Peng, C., . . . Duan, L. (2019). A novel ABA 

functional analogue B2 enhances drought tolerance in wheat. Scientific Reports, 9, 

2887. 

Zhu, X.-G., Govindjee, Baker, N. R., deSturler, E., Ort, D. R., & Long, S. P. (2005). 

Chlorophyll a fluorescence induction kinectis in leaves predicted from a model 

describing each discrete step of excitation energy and electron transfer associated with 

photosystem II. Planta, 223, 114-133. 

Zivcak, M., Kalaji, H. M., Shao, H.-B., Olsovska, K., & Brestic, M. (2014). Photosynthetic 

proton and electron transport in wheat leaves under prolonged moderate drought 

stress. Journal of Photochemistry and Photobiology B: Biology, 137, 107-115. 

 

  



 

135 

 

APPENDIX 1 – LIST OF GENETIC RESOURCES 

 

Table A.1.1. List of elite durum wheat (Triticum turgidum L. ssp. durum Desf.) accessions, mainly 

cultivars and advanced lines, from the association mapping population ‘UNIBO-Durum Panel’ 

assembled at the University of Bologna, Italy, which were evaluated in the growing seasons 2017/2018 

(Y1) and 2018/2019 (Y2) in Maricopa, AZ, USA. The subgroups were defined as reported by Condorelli 

et al. (2018). 

 

(continue) 

2017/2018 

(Y1)

2018/2019 

(Y2)

Yes Yes DP_001 S6 ITALY BRADANO

Yes Yes DP_002 S6 ITALY CANNIZZO

Yes Yes DP_004 Admixture ITALY LESINA

Yes Yes DP_005 S5 ITALY MERIDIANO

Yes Yes DP_006 S6 ITALY MONGIBELLO

Yes Yes DP_007 Admixture ITALY NORBA

Yes Yes DP_008 S6 ITALY PIETRAFITTA

Yes Yes DP_009 S6 ITALY QUADRATO

Yes Yes DP_010 S6 ITALY TORREBIANCA

Yes Yes DP_011 S7 CIMMYT CIMMYT23

Yes Yes DP_012 Admixture CIMMYT CIMMYT36

Yes Yes DP_013 Admixture CIMMYT CIMMYT41

Yes Yes DP_014 S7 CIMMYT CIMMYT47

Yes Yes DP_015 S7 CIMMYT CIMMYT52

Yes Yes DP_016 S7 CIMMYT CIMMYT67

Yes No DP_017 S7 CIMMYT CIMMYT73

Yes No DP_018 S7 CIMMYT CIMMYT78

Yes No DP_019 S7 CIMMYT CIMMYT104

Yes Yes DP_020 S7 CIMMYT CIMMYT108

Yes Yes DP_021 S7 CIMMYT CIMMYT136

Yes Yes DP_022 S7 CIMMYT CIMMYT172

Yes Yes DP_023 S7 CIMMYT CIMMYT198

Yes Yes DP_024 S7 CIMMYT CIMMYT222

Yes Yes DP_025 S7 CIMMYT CIMMYT247

Yes Yes DP_026 S7 CIMMYT CIMMYT260

Yes Yes DP_027 Admixture CIMMYT CIMMYT266

Yes Yes DP_028 Admixture IRTA ALDEANO

Yes Yes DP_029 Admixture IRTA ARIESOL

Yes No DP_030 S3 IRTA ARTENA

Yes Yes DP_031 S7 IRTA ASTIGI

Yes Yes DP_032 Admixture IRTA BOABDIL

Yes Yes DP_033 Admixture IRTA BOLENGA

Yes Yes DP_034 S3 IRTA BOLIDO

Yes Yes DP_035 Admixture IRTA BOLO

Yes Yes DP_036 S7 IRTA BOMBASI

Yes Yes DP_037 S5 IRTA BORLI

Yes Yes DP_038 Admixture IRTA CANYON

Yes Yes DP_039 S3 IRTA DURCAL

Yes Yes DP_040 Admixture IRTA DUROI

Yes Yes DP_041 S7 IRTA GALLARETA

Yes Yes DP_042 S7 IRTA ILLORA

Yes Yes DP_043 S7 IRTA JABATO

Yes Yes DP_045 S7 IRTA SULA

Yes Yes DP_046 S3 INRAE 1804

Yes Yes DP_047 S5 INRAE 1805

Yes Yes DP_048 S3 INRAE 1807

Yes Yes DP_049 S3 INRAE 1808

Yes Yes DP_050 Admixture INRAE 1809

Growing Season
UNIBO 

Panel Code
Subgroup Origin Accession Name
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(continue) 

2017/2018 

(Y1)

2018/2019 

(Y2)

Yes Yes DP_051 S5 INRAE ANOUAR

Yes Yes DP_052 S3 INRAE ISLY

Yes Yes DP_053 Admixture INRAE JAWHAR

Yes Yes DP_054 S7 INRAE MARJANA

Yes Yes DP_055 S3 INRAE MARZAK

Yes Yes DP_056 S5 INRAE OURGH

Yes Yes DP_057 Admixture INRAE TAREK

Yes Yes DP_058 S2 INRAE TOMOUH

Yes Yes DP_059 S5 INRAE YASMINE

Yes Yes DP_060 S2 ICARDA AW12/BIT

Yes Yes DP_061 S4 ICARDA BIC/3/CHAM1//GRA//STK

Yes Yes DP_062 Admixture ICARDA CHABA/DERAA

Yes Yes DP_063 S4 ICARDA CHACAN

Yes Yes DP_064 S5 ICARDA KARIM

Yes Yes DP_065 Admixture ICARDA H.MOUL(MOR)/CHABA 88

Yes Yes DP_066 Admixture ICARDA KRS/HAUCAN

Yes Yes DP_067 Admixture ICARDA LAGOST 3

Yes Yes DP_068 S4 ICARDA MOULSABIL 2

Yes Yes DP_069 Admixture ICARDA OMBAR

Yes Yes DP_070 S2 ICARDA OMRABI 3

Yes Yes DP_071 S2 ICARDA OMRABI 5

Yes Yes DP_072 Admixture ICARDA QUAD//ERP/MAL/3/UNKN

Yes Yes DP_073 S4 ICARDA SEBAH

Yes Yes DP_074 S3 ICARDA STOJOCRI-3

Yes Yes DP_075 S4 ICARDA ZEINA 1

Yes Yes DP_076 S6 ICARDA ANTON

Yes Yes DP_077 S3 ITALY APPIO

Yes Yes DP_078 S1 ITALY APPULO

Yes Yes DP_079 Admixture ITALY ARCANGELO

Yes Yes DP_080 S7 ITALY ARCOBALENO

Yes Yes DP_081 Admixture USA BRAVADUR

Yes Yes DP_082 S5 ITALY BRONTE

Yes Yes DP_083 S1 ITALY CAPEITI 8

Yes Yes DP_084 S1 ITALY CAPPELLI

Yes Yes DP_085 S1 ITALY CICCIO

Yes Yes DP_086 S8 USA/ITALY COLORADO

Yes Yes DP_087 S4 ITALY COLOSSEO

Yes Yes DP_088 Admixture USA CORTEZ

Yes Yes DP_089 S4 ITALY CRESO

Yes Yes DP_090 Admixture ITALY DON PEDRO

Yes Yes DP_100 Admixture USA KRONOS

Yes Yes DP_101 Admixture ITALY LIRA B 45

Yes Yes DP_102 S3 ITALY MESSAPIA

Yes Yes DP_103 Admixture ITALY MEXICALI 75

Yes Yes DP_104 Admixture ITALY MOHAWK

Yes Yes DP_105 S6 ITALY OFANTO

Yes Yes DP_106 Admixture ITALY PLATANI

Yes Yes DP_107 S6 ITALY PLINIO

Yes Yes DP_108 S4 ITALY PRODURA

Yes Yes DP_109 Admixture ITALY REVA

Yes Yes DP_110 S3 ITALY ROQUENO

Yes Yes DP_111 S3 ITALY SVEVO

Yes Yes DP_112 S1 ITALY TRINAKRIA

Yes Yes DP_113 S1 ITALY VALBELICE

Yes Yes DP_114 S6 ITALY VALNOVA

Yes Yes DP_115 S6 ITALY VARANO

Yes Yes DP_116 S8 USA WEST BRED 881

Growing Season
UNIBO 

Panel Code
Subgroup Origin Accession Name
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(continue) 

2017/2018 

(Y1)

2018/2019 

(Y2)

Yes Yes DP_117 S5 USA WEST BRED TURBO

Yes Yes DP_118 Admixture ICARDA AGHRASS-1

Yes Yes DP_119 S5 ICARDA AINZEN-1

Yes Yes DP_120 Admixture ICARDA ANGRE

Yes Yes DP_121 Admixture ICARDA AMEDAKUL-1

Yes Yes DP_122 Admixture ICARDA AMMAR-1

Yes Yes DP_123 Admixture ICARDA ARISLAHN-5

Yes Yes DP_124 Admixture ICARDA ATLAST-1

Yes Yes DP_125 Admixture ICARDA AUS-1

Yes Yes DP_126 Admixture ICARDA AWALI-1

Yes Yes DP_127 S4 ITALY RADIOSO

Yes Yes DP_128 Admixture ICARDA AZEGHAR-2

Yes Yes DP_129 S4 ICARDA BCRCH-1

Yes Yes DP_130 S5 ICARDA BICRE

Yes Yes DP_131 Admixture ICARDA BICREDERAA-1

Yes Yes DP_132 S5 ICARDA BIGOST-1

Yes Yes DP_133 Admixture ICARDA BLK2

Yes Yes DP_134 Admixture ICARDA BRACHOUA

Yes Yes DP_135 S5 ICARDA CHABHA 88

Yes Yes DP_136 Admixture ICARDA CHAM-1

Yes Yes DP_137 S4 ICARDA DERAA

Yes Yes DP_138 Admixture ICARDA FURAT-1

Yes Yes DP_139 S4 ICARDA GEROMTEL-1

Yes Yes DP_140 Admixture ICARDA GEZIRA 17

Yes Yes DP_142 Admixture ICARDA GUEROU-1

Yes Yes DP_143 S4 ICARDA ADYT 02

Yes Yes DP_144 S1 ICARDA HAURANI

Yes Yes DP_145 Admixture ICARDA HEIDER

Yes Yes DP_146 S4 ICARDA ICARDA121

Yes Yes DP_147 S3 ICARDA SEBOU

Yes Yes DP_148 S2 ICARDA ICARDA125

Yes Yes DP_149 S3 ICARDA ICARDA78

Yes Yes DP_150 Admixture ICARDA JORDAN

Yes Yes DP_151 Admixture ICARDA KABIR1

Yes Yes DP_152 S4 ICARDA GR/BOY

Yes Yes DP_153 Admixture ICARDA KHABUR-1

Yes Yes DP_154 Admixture ICARDA KRF

Yes Yes DP_155 Admixture ICARDA LAGONIL-2

Yes Yes DP_156 S5 ICARDA LAHN

Yes Yes DP_157 Admixture ICARDA LOUKOS-1

Yes Yes DP_158 Admixture ICARDA MAAMOURI-1

Yes Yes DP_159 Admixture ICARDA MARSYR-1

Yes Yes DP_160 S2 ICARDA MASSARA-1

Yes Yes DP_161 Admixture ICARDA MIKI-1

Yes Yes DP_162 S2 ICARDA MRB17

Yes Yes DP_163 S4 ICARDA MURLAGOST-1

Yes Yes DP_164 Admixture ICARDA NILE

Yes Yes DP_165 S2 ICARDA OMBIT-1

Yes Yes DP_166 S2 ICARDA OMGENIL-3

Yes Yes DP_167 S2 ICARDA OMLAHN-3

Yes Yes DP_168 Admixture ICARDA OMRUF-2

Yes Yes DP_169 Admixture ICARDA OMSNIMA-1

Yes Yes DP_170 Admixture ICARDA ORT-1

Yes Yes DP_171 S4 ICARDA OTB-6

Yes Yes DP_172 S4 ICARDA OUASERL-1

Yes Yes DP_173 S4 ICARDA OUASLAHN-1

Yes Yes DP_174 Admixture ICARDA OUASLOUKOS-1

Growing Season
UNIBO 

Panel Code
Subgroup Origin Accession Name
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(continue) 

2017/2018 

(Y1)

2018/2019 

(Y2)

Yes Yes DP_175 S4 ICARDA QUABRACH-1

Yes Yes DP_176 S3 ICARDA QUADALETE

Yes Yes DP_177 S5 INRAE RAZZAK

Yes Yes DP_178 Admixture ICARDA SAADA3/DDS//MTL1

Yes Yes DP_179 Admixture ICARDA SAJUR

Yes Yes DP_180 Admixture ICARDA SEBATEL-1

Yes Yes DP_181 S8 ICARDA SHABHA

Yes Yes DP_182 Admixture ICARDA TELSET-5

Yes Yes DP_183 S5 ICARDA TENSIFT-1

Yes Yes DP_184 Admixture ICARDA TERBOL97-3

Yes Yes DP_185 S4 ICARDA TUNSYR-1

Yes Yes DP_186 S4 ICARDA WADALMEZ-1

Yes Yes DP_187 S2 ICARDA YOUNES-1

Yes Yes DP_188 Admixture ICARDA YOUSEF-1

Yes Yes DP_189 S8 USA KOFA

Yes No DP_190 Admixture FRANCE ACALOU

Yes Yes DP_191 Admixture FRANCE AGRIDUR

Yes Yes DP_192 Unknown FRANCE ARAMON

Yes Yes DP_194 Admixture FRANCE ARDENTE

Yes No DP_195 S8 FRANCE ARSTAR

Yes Yes DP_196 S8 FRANCE BRINDUR

Yes No DP_197 S6 FRANCE DURIAC

Yes No DP_199 Unknown FRANCE GALADUR

Yes No DP_200 S8 FRANCE ORJAUNE

Yes No DP_201 S8 FRANCE PRIMADUR

Yes Yes DP_202 S8 FRANCE TETRADUR

Yes Yes DP_203 S8 FRANCE AUROC

Yes Yes DP_204 S8 FRANCE EXELDUR

Yes No DP_205 Admixture FRANCE NEFER

Yes No DP_206 S8 FRANCE NEODUR

Yes Yes DP_207 S8 AUSTRALIA ASTRODUR

Yes No DP_208 S8 AUSTRALIA EXTRADUR

Yes No DP_209 Unknown AUSTRALIA GOLDUR

Yes No DP_210 Admixture AUSTRALIA GRANDUR

Yes Yes DP_212 S8 AUSTRALIA HELIDUR

Yes Yes DP_213 S8 AUSTRALIA SEMPERDUR

Yes No DP_215 S8 CANADA AC_AVONLEA

Yes Yes DP_216 Unknown CANADA AC_MELITA

Yes Yes DP_217 S8 CANADA AC_MORSE

Yes Yes DP_218 S8 CANADA AC_NAVIGATOR

Yes Yes DP_219 S8 CANADA AC_PATHFINDER

Yes Yes DP_220 S8 CANADA HERCULES

Yes No DP_221 S8 CANADA KYLE

Yes No DP_222 S8 CANADA MEDORA

Yes No DP_223 S8 CANADA PLENTY

Yes No DP_224 S8 CANADA SCEPTRE

Yes No DP_225 Unknown CANADA WAKOOMA

Yes Yes DP_226 S8 USA BEN

Yes No DP_227 S8 USA BELZER

Yes No DP_228 S8 USA PLAZA

Yes No DP_229 S8 USA LLOYD

Yes Yes DP_230 Unknown USA MAIER

Yes Yes DP_231 Unknown USA MONROE

Yes Yes DP_232 S8 USA MUNICH

Yes No DP_233 S8 USA RENVILLE

Yes Yes DP_234 S8 USA RUGBY

Yes No DP_235 S8 USA LAKOTA

Growing Season
UNIBO 

Panel Code
Subgroup Origin Accession Name
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(conclusion) 

 

 

 

 

 

 

 

 

 

2017/2018 

(Y1)

2018/2019 

(Y2)

Yes No DP_237 S8 USA WASKANA

Yes No DP_238 S8 USA EDMORE

Yes Yes DP_239 S8 USA VIC

Yes Yes DP_240 S8 USA MINDUM

Yes Yes DP_242 S8 USA COLORADO

Yes Yes DP_243 Admixture AUSTRALIA YALLAROI

Yes Yes DP_244 S8 AUSTRALIA KAMILAROI

Yes Yes DP_245 Admixture AUSTRALIA WOLLAROI

Yes Yes DP_246 Unknown LANDRACE RUSSELLO_SG7

Yes No DP_247 Unknown LANDRACE SARAGOLLA

Yes Yes DP_248 S1 ITALY SIMETO

Yes Yes DP_249 Admixture ITALY LEVANTE

Yes Yes DP_250 Admixture FRANCE ARDENTE

Yes Yes DP_251 Admixture CIMMYT 1A.1D 5+10-6/3*MOJO//RCOL

Yes Yes DP_252 Admixture CIMMYT SOOTY_9/RASCON_37 (ATIL C2000)

Yes Yes DP_253 S7 CIMMYT STOT//ALTAR 84/ALD (JUPARE C2003)

Yes Yes DP_254 S5 CIMMYT SOMAT_4/INTER_8 (SAMAYOA C2004)

Yes Yes DP_255 S7 CIMMYT

Yes Yes DP_256 Admixture CIMMYT MALMUK_1//LOTUS_5/F3LOCAL(SEL.ETHIO.135.85)

Yes Yes DP_257 S7 CIMMYT

Yes Yes DP_258 S7 CIMMYT HESSIAN-F_2/3/STOT//ALTAR 84/ALD

Yes Yes DP_259 Admixture CIMMYT

Yes Yes DP_260 Admixture CIMMYT

Yes Yes DP_261 Admixture CIMMYT

Yes Yes DP_262 S7 CIMMYT

Yes Yes DP_263 Admixture CIMMYT VANRRIKSE_6.2//1A-1D 2+12-5/3*WB881

Yes Yes DP_264 Admixture CIMMYT

Yes Yes DP_265 Admixture CIMMYT

Yes Yes DP_266 S5 CIMMYT EUDO//CHEN_1/TEZ/3/TANTLO_1/4/PLATA_6/GREEN_17

Yes Yes DP_267 Admixture CIMMYT

Yes Yes DP_268 Admixture CIMMYT ARMENT//SRN_3/NIGRIS_4/3/CANELO_9.1

Yes Yes DP_269 Admixture CIMMYT SOMAT_3/PHAX_1//TILO_1/LOTUS_4

Yes Yes DP_270 Unknown CIMMYT YAVAROS 79

No Yes n/a Unknown USA TIBURON

AJAIA_12/F3LOCAL(SEL.ETHIO.135.85)//PLATA_13/3/SOM

AT_3/4/SOOTY_9/RASCON_37

CNDO/PRIMADUR//HAI-OU_17/3/SN TURK MI83-84 

375/NIGRIS_5//TANTLO_1

PLATA_10/6/MQUE/4/USDA573//QFN/AA_7/3/ALBA-

D/5/AVO/HUI/7/PLATA_13/8/THKNEE_11/9/CHEN/ALTAR 

RANCO//CIT71/CII/3/COMDK/4/TCHO//SHWA/MALD/3/CR

EX/5/SN TURK MI83-84 375/NIGRIS_5//TANTLO_1

GEDIZ/FGO//GTA/3/SRN_1/4/TOTUS/5/ENTE/MEXI_2//HUI/

3/YAV_1/GEDIZ/6/SOMBRA_20/7/STOT//ALTAR 84/ALD

ROLA_5/3/AJAIA_12/F3LOCAL(SEL.ETHIO.135.85)//PLAT

A_13/4/MALMUK_1/SERRATOR_1

USDA595/3/D67.3/RABI//CRA/4/ALO/5/HUI/YAV_1/6/ARDE

NTE/7/HUI/YAV79/8/POD_9

CHEN_1/TEZ/3/GUIL//CIT71/CII/4/SORA/PLATA_12/5/STOT

//ALTAR 84/ALD

1A.1D 5+10-6/2*WB881//1A.1D 5+10-

6/3*MOJO/3/BISU_1/PATKA_3

Growing Season
UNIBO 

Panel Code
Subgroup Origin Accession Name
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APPENDIX 2 – FIELD MAPS 

 

 

Figure A.2.1. Field map for the durum wheat panel grown under progressive drought in season 

2017/2018. In Y1, all LIFT data were only taken in the western subplot row within the 2-row plots. 

The cart was manually pushed (starting in the black point 1) from north to south along the rows, one 

at a time, and from west to east within each replicate separately. Rep 2 was collected from early 

mornings up to midday, and Rep 1 from midday up to late afternoons with a ~30-min break (yellow 

point) between replicates. The red point indicates where a day of field phenotyping ended. 
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Figure A.2.2. Field map for the durum wheat panel grown under progressive drought in season 

2018/2019. In Y2, LIFT data were taken in all the 1-row plots (i.e., all subrows) by following a zigzag 

path within each replicate. Manually pushing the cart forwards (starting in the black point 1), from 

north to south, a water-limited (WD; darker colour) subrow was measured and, immediately after, 

when pulling it backwards, from south to north, the neighbouring well-watered (WW; lighter colour) 

subrow was measured. This pattern moved from west (early mornings) to east (late afternoons) with 

a ~40-min break (yellow points) at around midday when half of a replicate was done. The red points 

indicate where a day of field phenotyping ended. In being a large experiment, only one replicate per 

day was operationally possible, and so three consecutive days were required to phenotype the entire 

experiment with three replicates. 
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APPENDIX 3 – STATISTICAL MODELS 

 

Table A.3.1. All models fitted to analyse the operating efficiency of PSII (𝐹𝑞
′ 𝐹𝑚

′⁄ ) in growing season 

2017/2018 (Y1). 𝐵𝐿𝐶𝑜𝑣+𝑆𝑇𝑀 is the final ‘best’ fit model that incorporates covariates and spatiotemporal 

modelling over the initial baseline model (𝐵𝐿), as explained in the text. The Kronecker product (i.e., the 

direct product) is denoted by ⨂, and df is the degrees of freedom for the model. 

Model Terms AIC Deviance df 

0 Intercept only model -11272.63 -21449.69 5540 

1 Baseline (𝑩𝑳) -19611.90 -29655.34 5510 

2 1 + Covariates (𝑩𝑳𝑪𝒐𝒗) -20826.01 -30793.09 5503 

Temporal covariance modelling over residuals (𝑹 ⋅ 𝑹𝑶𝑾 ⋅ 𝑪𝑶𝑳 ⋅ 𝑻) 

3 2 + 𝐼⨂𝐼⨂𝐼⨂𝐷𝐼𝐴𝐺 -21101.89 -31277.95 5493 

4 2 + 𝐼⨂𝐼⨂𝐼⨂𝑈𝑁 Failed to converge 

5 2 + 𝐼⨂𝐼⨂𝐼⨂𝐴𝑁𝑇𝐸1 Failed to converge 

6 2 + 𝐼⨂𝐼⨂𝐼⨂𝑃𝑂𝑊 -20655.20 -30813.26 5502 

7 2 + 𝐼⨂𝐼⨂𝐼⨂𝑃𝑂𝑊𝐻 -21113.33 -31291.39 5492 

8 7 − 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 -21016.90 -31192.95 5493 

9 2 + 𝐼⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -21165.20 -31343.26 5492 

10 9 − 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 -21089.93 -31265.98 5493 

11 2 + 𝐼⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻2 Failed to converge 

12 11 − 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 -21148.54 -31326.59 5492 

13 2 + 𝐼⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻3 Failed to converge 

14 13 − 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 -21200.47 -31380.53 5491 

15 2 + 𝐼⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻4 Failed to converge 

16 15 − 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 Failed to converge 

17 2 + 𝐼⨂𝐼⨂𝐼⨂𝐶𝑂𝑅𝐻1 -21221.89 -31417.94 5483 

18 17 − 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 -21154.55 -31348.61 5484 

19 2 + 𝐼⨂𝐼⨂𝐼⨂𝐶𝑂𝑅𝐻2 Failed to converge 

20 19 − 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 Failed to converge 

Spatial covariance modelling over residuals (𝑹 ⋅ 𝑹𝑶𝑾 ⋅ 𝑪𝑶𝑳 ⋅ 𝑻) 

21 2 + 𝐼⨂𝐿𝑉⨂𝐼⨂𝐶𝑂𝑅𝐻1 Failed to converge 

22 2 + 𝐼⨂𝐼⨂𝐿𝑉⨂𝐶𝑂𝑅𝐻1 Failed to converge 

23 2 + 𝐼⨂𝐿𝑉⨂𝐿𝑉⨂𝐶𝑂𝑅𝐻1 Failed to converge 

24 2 + 𝐼⨂𝐴𝑅1⨂𝐼⨂𝐶𝑂𝑅𝐻1 -21221.29 -31429.35 5482 

25 2 + 𝐼⨂𝐼⨂𝐴𝑅1⨂𝐶𝑂𝑅𝐻1 -21334.07 -31532.12 5482 
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Model Terms AIC Deviance df 

26 2 + 𝐼⨂𝐴𝑅1⨂𝐴𝑅1⨂𝐶𝑂𝑅𝐻1 -21334.37 -31534.42 5481 

27 2 + 𝐼⨂𝐴𝑅2⨂𝐴𝑅2⨂𝐶𝑂𝑅𝐻1 -21351.25 -31555.31 5479 

28 2 + 𝐼⨂𝑀𝐴1⨂𝐼⨂𝐶𝑂𝑅𝐻1 -21221.21 -31419.27 5482 

29 2 + 𝐼⨂𝐼⨂𝑀𝐴1⨂𝐶𝑂𝑅𝐻1 -21318.91 -31516.96 5482 

30 2 + 𝐼⨂𝑀𝐴1⨂𝑀𝐴1⨂𝐶𝑂𝑅𝐻1 -21318.97 -31519.02 5481 

31 2 + 𝐼⨂𝑀𝐴2⨂𝑀𝐴2⨂𝐶𝑂𝑅𝐻1 -21341.83 -31545.88 5479 

32 2 + 𝐼⨂𝐴𝑅𝑀𝐴1⨂𝐼⨂𝐶𝑂𝑅𝐻1 -21225.82 -31425.87 5481 

33 2 + 𝐼⨂𝐼⨂𝐴𝑅𝑀𝐴1⨂𝐶𝑂𝑅𝐻1 -21354.18 -31554.24 5481 

34 2 + 𝐼⨂𝐴𝑅𝑀𝐴1⨂𝐴𝑅𝑀𝐴1⨂𝐶𝑂𝑅𝐻1 -21360.21 -31564.27 5479 

Serial correlation modelling for genotype by time interaction (𝑮 ⋅ 𝑻) 

35 34 + 𝐼⨂𝑃𝑂𝑊 Failed to converge 

36 34 + 𝐼⨂𝑃𝑂𝑊 − 𝐺 -21405.75 -31609.80 5479 

37 34 + 𝐼⨂𝐿𝑉 − 𝐺 -21413.51 -31617.56 5479 

38 34 + 𝐼⨂𝐿𝑉𝐻 − 𝐺 -21413.15 -31637.21 5469 

PPFD and VPD were log-transformed 

39 38 + log 𝑃𝑃𝐹𝐷 × log 𝑉𝑃𝐷 -21464.37 -31688.42 5469 

Checking fixed effects (covariates were dropped if p > .10 for F-test) 

𝑩𝑳𝑪𝒐𝒗+𝑺𝑻𝑴 39 and none fixed effect dropped -21464.37 -31688.42 5469 
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Table A.3.2. All models fitted to analyse 𝐹𝑟1
′  (i.e., the kinetics of electron transfer from QA to PQ pool) 

in growing season 2017/2018 (Y1). 𝐵𝐿𝐶𝑜𝑣+𝑆𝑇𝑀 is the final ‘best’ fit model that incorporates covariates 

and spatiotemporal modelling over the initial baseline model (𝐵𝐿), as explained in the text. The 

Kronecker product (i.e., the direct product) is denoted by ⨂, and df is the degrees of freedom for the 

model. 

Model Terms AIC Deviance df 

0 Intercept only model -14287.25 -24464.31 5540 

1 Baseline (𝑩𝑳) -22494.15 -32537.59 5510 

2 1 + Covariates (𝑩𝑳𝑪𝒐𝒗) -23804.22 -33771.29 5503 

Temporal covariance modelling over residuals (𝑹 ⋅ 𝑹𝑶𝑾 ⋅ 𝑪𝑶𝑳 ⋅ 𝑻) 

3 2 + 𝐼⨂𝐼⨂𝐼⨂𝐷𝐼𝐴𝐺 -24021.10 -34197.15 5493 

4 2 + 𝐼⨂𝐼⨂𝐼⨂𝑈𝑁 Failed to converge 

5 2 + 𝐼⨂𝐼⨂𝐼⨂𝐴𝑁𝑇𝐸1 Failed to converge 

6 2 + 𝐼⨂𝐼⨂𝐼⨂𝑃𝑂𝑊 -23684.66 -33842.71 5502 

7 2 + 𝐼⨂𝐼⨂𝐼⨂𝑃𝑂𝑊𝐻 -24015.18 -34191.24 5493 

8 7 − 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 -24018.69 -34194.74 5493 

9 2 + 𝐼⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -24126.38 -34304.44 5492 

10 9 − 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 -24099.89 -34275.94 5493 

11 2 + 𝐼⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻2 -24179.75 -34359.80 5491 

12 11 − 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 -24172.35 -34350.40 5492 

13 2 + 𝐼⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻3 Failed to converge 

14 13 − 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 -24210.86 -34390.92 5491 

15 2 + 𝐼⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻4 Failed to converge 

16 15 − 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 Failed to converge 

17 2 + 𝐼⨂𝐼⨂𝐼⨂𝐶𝑂𝑅𝐻1 -24176.77 -34372.82 5483 

18 17 − 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 -24147.98 -34342.04 5484 

19 2 + 𝐼⨂𝐼⨂𝐼⨂𝐶𝑂𝑅𝐻2 -24229.92 -34443.98 5474 

20 19 − 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 Failed to converge 

Spatial covariance modelling over residuals (𝑹 ⋅ 𝑹𝑶𝑾 ⋅ 𝑪𝑶𝑳 ⋅ 𝑻) 

21 2 + 𝐼⨂𝐿𝑉⨂𝐼⨂𝐶𝑂𝑅𝐻2 Failed to converge 

22 2 + 𝐼⨂𝐼⨂𝐿𝑉⨂𝐶𝑂𝑅𝐻2 Failed to converge 

23 2 + 𝐼⨂𝐿𝑉⨂𝐿𝑉⨂𝐶𝑂𝑅𝐻2 Failed to converge 

24 2 + 𝐼⨂𝐴𝑅1⨂𝐼⨂𝐶𝑂𝑅𝐻2 -24231.62 -34447.67 5473 

25 2 + 𝐼⨂𝐼⨂𝐴𝑅1⨂𝐶𝑂𝑅𝐻2 Failed to converge 

26 2 + 𝐼⨂𝐴𝑅1⨂𝐴𝑅1⨂𝐶𝑂𝑅𝐻2 Failed to converge 

27 2 + 𝐼⨂𝐴𝑅1⨂𝐼⨂𝐶𝑂𝑅𝐻1 -24178.01 -34376.06 5482 

28 2 + 𝐼⨂𝐼⨂𝐴𝑅1⨂𝐶𝑂𝑅𝐻1 -24256.48 -34454.53 5482 
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Model Terms AIC Deviance df 

29 2 + 𝐼⨂𝐴𝑅1⨂𝐴𝑅1⨂𝐶𝑂𝑅𝐻1 -24259.17 -34459.23 5481 

30 2 + 𝐼⨂𝐴𝑅2⨂𝐴𝑅2⨂𝐶𝑂𝑅𝐻1 -24260.96 -34465.02 5479 

31 2 + 𝐼⨂𝑀𝐴1⨂𝐼⨂𝐶𝑂𝑅𝐻1 -24177.88 -34375.94 5482 

32 2 + 𝐼⨂𝐼⨂𝑀𝐴1⨂𝐶𝑂𝑅𝐻1 -24250.41 -34448.47 5482 

33 2 + 𝐼⨂𝑀𝐴1⨂𝑀𝐴1⨂𝐶𝑂𝑅𝐻1 -24252.72 -34452.77 5481 

34 2 + 𝐼⨂𝑀𝐴2⨂𝑀𝐴2⨂𝐶𝑂𝑅𝐻1 -24259.43 -34463.48 5479 

35 2 + 𝐼⨂𝐴𝑅𝑀𝐴1⨂𝐼⨂𝐶𝑂𝑅𝐻1 -24182.91 -34382.97 5481 

36 2 + 𝐼⨂𝐼⨂𝐴𝑅𝑀𝐴1⨂𝐶𝑂𝑅𝐻1 -24258.27 -34458.33 5481 

37 2 + 𝐼⨂𝐴𝑅𝑀𝐴1⨂𝐴𝑅𝑀𝐴1⨂𝐶𝑂𝑅𝐻1 -24267.81 -34471.86 5479 

Serial correlation modelling for genotype by time interaction (𝑮 ⋅ 𝑻) 

38 37 + 𝐼⨂𝑃𝑂𝑊 Failed to converge 

39 37 + 𝐼⨂𝑃𝑂𝑊 − 𝐺 -24309.50 -34513.55 5479 

40 37 + 𝐼⨂𝐿𝑉 − 𝐺 -24316.22 -34520.28 5479 

41 37 + 𝐼⨂𝐿𝑉𝐻 − 𝐺 -24328.68 -34552.73 5469 

PPFD and VPD were log-transformed  

42 41 + log 𝑃𝑃𝐹𝐷 × log 𝑉𝑃𝐷 -24366.14 -34590.20 5469 

Checking fixed effects (covariates were dropped if p > .10 for F-test) 

𝑩𝑳𝑪𝒐𝒗+𝑺𝑻𝑴 42 and none fixed effect dropped -24366.14 -34590.20 5469 
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Table A.3.3. All models fitted to analyse 𝐹𝑟2
′  (i.e., the kinetics of electron transfer from PQ pool to PSI) 

in growing season 2017/2018 (Y1). 𝐵𝐿𝐶𝑜𝑣+𝑆𝑇𝑀 is the final ‘best’ fit model that incorporates covariates 

and spatiotemporal modelling over the initial baseline model (𝐵𝐿), as explained in the text. The 

Kronecker product (i.e., the direct product) is denoted by ⨂, and df is the degrees of freedom for the 

model. 

Model Terms AIC Deviance df 

0 Intercept only model -17609.29 -27784.34 5540 

1 Baseline (𝑩𝑳) -26443.66 -36487.10 5510 

2 1 + Covariates (𝑩𝑳𝑪𝒐𝒗) -27433.87 -37400.94 5503 

Temporal covariance modelling over residuals (𝑹 ⋅ 𝑹𝑶𝑾 ⋅ 𝑪𝑶𝑳 ⋅ 𝑻) 

3 2 + 𝐼⨂𝐼⨂𝐼⨂𝐷𝐼𝐴𝐺 -27609.31 -37785.36 5493 

4 2 + 𝐼⨂𝐼⨂𝐼⨂𝑈𝑁 Failed to converge 

5 2 + 𝐼⨂𝐼⨂𝐼⨂𝐴𝑁𝑇𝐸1 Failed to converge 

6 2 + 𝐼⨂𝐼⨂𝐼⨂𝑃𝑂𝑊 -27245.41 -37403.47 5502 

7 2 + 𝐼⨂𝐼⨂𝐼⨂𝑃𝑂𝑊𝐻 -27579.11 -37755.17 5493 

8 7 − 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 -27527.81 -37703.87 5493 

9 2 + 𝐼⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -27665.54 -37843.60 5492 

10 9 − 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 -27586.18 -37762.23 5493 

11 2 + 𝐼⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻2 Failed to converge 

12 11 − 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 -27639.69 -37817.74 5492 

13 2 + 𝐼⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻3 Failed to converge 

14 13 − 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 Failed to converge 

15 2 + 𝐼⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻4 Failed to converge 

16 15 − 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 Failed to converge 

17 2 + 𝐼⨂𝐼⨂𝐼⨂𝐶𝑂𝑅𝐻1 -27698.81 -37894.87 5483 

18 17 − 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 -27631.13 -37825.19 5484 

19 2 + 𝐼⨂𝐼⨂𝐼⨂𝐶𝑂𝑅𝐻2 Failed to converge 

20 19 − 𝑅 ⋅ 𝑅𝑂𝑊 ⋅ 𝐶𝑂𝐿 -27693.69 -37905.75 5475 

Spatial covariance modelling over residuals (𝑹 ⋅ 𝑹𝑶𝑾 ⋅ 𝑪𝑶𝑳 ⋅ 𝑻) 

21 2 + 𝐼⨂𝐿𝑉⨂𝐼⨂𝐶𝑂𝑅𝐻1 -25393.38 -35591.43 5482 

22 2 + 𝐼⨂𝐼⨂𝐿𝑉⨂𝐶𝑂𝑅𝐻1 Failed to converge 

23 2 + 𝐼⨂𝐿𝑉⨂𝐿𝑉⨂𝐶𝑂𝑅𝐻1 Failed to converge 

24 2 + 𝐼⨂𝐴𝑅1⨂𝐼⨂𝐶𝑂𝑅𝐻1 -27697.25 -37895.30 5482 

25 2 + 𝐼⨂𝐼⨂𝐴𝑅1⨂𝐶𝑂𝑅𝐻1 -27872.03 -38070.08 5482 

26 2 + 𝐼⨂𝐴𝑅1⨂𝐴𝑅1⨂𝐶𝑂𝑅𝐻1 -27870.66 -38070.71 5481 

27 2 + 𝐼⨂𝐴𝑅2⨂𝐴𝑅2⨂𝐶𝑂𝑅𝐻1 -27897.53 -38101.58 5479 

28 2 + 𝐼⨂𝑀𝐴1⨂𝐼⨂𝐶𝑂𝑅𝐻1 -27697.23 -37895.29 5482 
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Model Terms AIC Deviance df 

29 2 + 𝐼⨂𝐼⨂𝑀𝐴1⨂𝐶𝑂𝑅𝐻1 -27842.78 -38040.83 5482 

30 2 + 𝐼⨂𝑀𝐴1⨂𝑀𝐴1⨂𝐶𝑂𝑅𝐻1 -27841.38 -38041.43 5481 

31 2 + 𝐼⨂𝑀𝐴2⨂𝑀𝐴2⨂𝐶𝑂𝑅𝐻1 -27876.55 -38080.61 5479 

32 2 + 𝐼⨂𝐴𝑅𝑀𝐴1⨂𝐼⨂𝐶𝑂𝑅𝐻1 -27699.18 -37899.23 5481 

33 2 + 𝐼⨂𝐼⨂𝐴𝑅𝑀𝐴1⨂𝐶𝑂𝑅𝐻1 -27910.68 -38110.73 5481 

34 2 + 𝐼⨂𝐴𝑅𝑀𝐴1⨂𝐴𝑅𝑀𝐴1⨂𝐶𝑂𝑅𝐻1 -27912.24 -38116.29 5479 

Serial correlation modelling for genotype by time interaction (𝑮 ⋅ 𝑻) 

35 34 + 𝐼⨂𝑃𝑂𝑊 Failed to converge 

36 34 + 𝐼⨂𝑃𝑂𝑊 − 𝐺 -27980.26 -38184.31 5479 

37 34 + 𝐼⨂𝐿𝑉 − 𝐺 -27990.10 -38194.16 5479 

38 34 + 𝐼⨂𝐿𝑉𝐻 − 𝐺 -27986.57 -38210.62 5469 

PPFD and VPD were log-transformed 

39 38 + log 𝑃𝑃𝐹𝐷 × log 𝑉𝑃𝐷 -28048.35 -38272.41 5469 

Checking fixed effects (covariates were dropped if p > .10 for F-test) 

𝑩𝑳𝑪𝒐𝒗+𝑺𝑻𝑴 39 and none fixed effect dropped -28048.35 -38272.41 5469 
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Table A.3.4. All models fitted to analyse the operating efficiency of PSII (𝐹𝑞
′ 𝐹𝑚

′⁄ ) in growing season 

2018/2019 (Y2). 𝐵𝐿𝐶𝑜𝑣+𝑆𝑇𝑀 is the final ‘best’ fit model that incorporates covariates and spatiotemporal 

modelling over the initial baseline model (𝐵𝐿), as explained in the text. The Kronecker product (i.e., the 

direct product) is denoted by ⨂, and df is the degrees of freedom for the model. 

Model Terms AIC Deviance df 

0 Intercept only model -13079.01 -20481.20 4030 

1 Baseline (𝑩𝑳) -16257.14 -23609.01 4002 

2 1 + Covariates (𝑩𝑳𝑪𝒐𝒗) -17134.54 -24309.81 3984 

Temporal covariance modelling over residuals (𝑹 ⋅ 𝑪𝑶𝑳 ⋅ 𝑹𝑶𝑾 ⋅ 𝑺𝑼𝑩 ⋅ 𝑻) 

3 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝐷𝐼𝐴𝐺 -16942.29 -24337.47 3982 

4 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝑈𝑁 Failed to converge 

5 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝐴𝑁𝑇𝐸1 -16566.18 -23963.36 3981 

6 5 − 𝑅 ⋅ 𝐶𝑂𝐿 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵 -16942.61 -24339.79 3981 

7 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝑃𝑂𝑊 -16916.63 -24309.81 3984 

8 7 − 𝑅 ⋅ 𝐶𝑂𝐿 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵 -16917.56 -24308.74 3985 

9 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝑃𝑂𝑊𝐻 -16940.58 -24337.76 3981 

10 9 − 𝑅 ⋅ 𝐶𝑂𝐿 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵 -16941.29 -24336.47 3983 

11 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝐶𝑂𝑅𝐻1 -16940.62 -24339.81 3980 

12 11 − 𝑅 ⋅ 𝐶𝑂𝐿 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵 -16942.62 -24339.81 3981 

13 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝐶𝑂𝑅𝐻2 Failed to converge 

14 13 − 𝑅 ⋅ 𝐶𝑂𝐿 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵 -16940.64 -24339.82 3980 

15 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -16942.13 -24339.31 3981 

16 15 − 𝑅 ⋅ 𝐶𝑂𝐿 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵 -16944.13 -24339.31 3982 

17 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻2 Failed to converge 

18 17 − 𝑅 ⋅ 𝐶𝑂𝐿 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵 -16942.14 -24339.32 3981 

Spatial covariance modelling over residuals (𝑹 ⋅ 𝑪𝑶𝑳 ⋅ 𝑹𝑶𝑾 ⋅ 𝑺𝑼𝑩 ⋅ 𝑻) 

19 16 + 𝐼⨂𝐼⨂𝐼⨂𝑈𝑁⨂𝐵𝐴𝑁𝐷𝐻1 Failed to converge 

20 16 + 𝐼⨂𝐼⨂𝐼⨂𝐷𝐼𝐴𝐺⨂𝐵𝐴𝑁𝐷𝐻1 -16942.17 -24339.35 3981 

21 16 + 𝐼⨂𝐼⨂𝐼⨂𝐶𝑂𝑅1⨂𝐵𝐴𝑁𝐷𝐻1 -16942.57 -24339.76 3981 

22 16 + 𝐼⨂𝐼⨂𝐴𝑅1⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -16943.73 -24340.91 3981 

23 16 + 𝐼⨂𝐴𝑅1⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -16956.43 -24353.61 3981 

24 16 + 𝐼⨂𝐴𝑅1⨂𝐴𝑅1⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -16956.00 -24355.18 3980 

25 16 + 𝐼⨂𝐼⨂𝑀𝐴1⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -16943.79 -24340.98 3981 

26 16 + 𝐼⨂𝑀𝐴1⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -16954.96 -24352.15 3981 

27 16 + 𝐼⨂𝑀𝐴1⨂𝑀𝐴1⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -16954.61 -24353.79 3980 

28 16 + 𝐼⨂𝐼⨂𝐴𝑅𝑀𝐴1⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -16941.82 -24340.92 3980 

29 16 + 𝐼⨂𝐴𝑅𝑀𝐴1⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -16961.82 -24361.00 3980 
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30 16 + 𝐼⨂𝐴𝑅2⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -16963.16 -24362.34 3980 

31 16 + 𝐼⨂𝑀𝐴2⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -16962.65 -24361.83 3980 

32 16 + 𝐼⨂𝐴𝑅𝐻2⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -16961.85 -24391.03 3965 

33 16 + 𝐼⨂𝐴𝑅𝐻2⨂𝐷𝐼𝐴𝐺⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -16951.42 -24406.60 3952 

PPFD and VPD were log-transformed  

34 32 + log 𝑃𝑃𝐹𝐷 × log 𝑉𝑃𝐷 -17014.74 -24443.92 3965 

Checking fixed effects (covariates were dropped if p > .10 for F-test) 

𝑩𝑳𝑪𝒐𝒗+𝑺𝑻𝑴 34 − (log 𝑃𝑃𝐹𝐷 ⋅ log 𝑉𝑃𝐷) 𝑇𝑅𝑇⁄ − log 𝑃𝑃𝐹𝐷 ⋅

𝑇𝑅𝑇 − log 𝑉𝑃𝐷 ⋅ 𝑇𝑅𝑇 − 𝑍𝐷𝑆 ⋅ 𝑇𝑅𝑇 − 𝑉𝑂𝐺𝑅𝐸𝐼 ⋅

𝑇𝑅𝑇 − 𝑍𝐷𝑆 ⋅ 𝑇 − 𝑉𝑂𝐺𝑅𝐸𝐼 ⋅ 𝑇 

-17217.07 -24554.40 3975 
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Table A.3.5. All models fitted to analyse 𝐹𝑟1
′  (i.e., the kinetics of electron transfer from QA to PQ pool) 

in growing season 2018/2019 (Y2). 𝐵𝐿𝐶𝑜𝑣+𝑆𝑇𝑀 is the final ‘best’ fit model that incorporates covariates 

and spatiotemporal modelling over the initial baseline model (𝐵𝐿), as explained in the text. The 

Kronecker product (i.e., the direct product) is denoted by ⨂, and df is the degrees of freedom for the 

model. 

Model Terms AIC Deviance df 

0 Intercept only model -13167.87 -20570.05 4030 

1 Baseline (𝑩𝑳) -17545.75 -24897.62 4002 

2 1 + Covariates (𝑩𝑳𝑪𝒐𝒗) -18292.44 -25467.71 3984 

Temporal covariance modelling over residuals (𝑹 ⋅ 𝑪𝑶𝑳 ⋅ 𝑹𝑶𝑾 ⋅ 𝑺𝑼𝑩 ⋅ 𝑻) 

3 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝐷𝐼𝐴𝐺 -18077.75 -25472.93 3982 

4 3 − 𝑅 ⋅ 𝐶𝑂𝐿 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵 -18074.20 -25467.38 3983 

5 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝑈𝑁 Failed to converge 

6 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝐴𝑁𝑇𝐸1 -18075.84 -25475.02 3980 

7 6 − 𝑅 ⋅ 𝐶𝑂𝐿 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵 -18075.99 -25473.17 3981 

8 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝑃𝑂𝑊 -18075.56 -25468.74 3983 

9 8 − 𝑅 ⋅ 𝐶𝑂𝐿 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵 -18076.38 -25467.56 3984 

10 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝑃𝑂𝑊𝐻 -18075.75 -25472.93 3982 

11 10 − 𝑅 ⋅ 𝐶𝑂𝐿 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵 -18077.50 -25472.69 3982 

12 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝐶𝑂𝑅𝐻1 -18075.84 -25475.03 3980 

13 12 − 𝑅 ⋅ 𝐶𝑂𝐿 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵 -18075.84 -25473.02 3981 

14 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝐶𝑂𝑅𝐻2 Failed to converge 

15 14 − 𝑅 ⋅ 𝐶𝑂𝐿 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵 -18075.84 -25475.03 3980 

16 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -18075.94 -25473.13 3981 

17 16 − 𝑅 ⋅ 𝐶𝑂𝐿 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵 -18075.95 -25471.13 3982 

18 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻2 Failed to converge 

19 18 − 𝑅 ⋅ 𝐶𝑂𝐿 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵 -18075.76 -25472.94 3981 

Spatial covariance modelling over residuals (𝑹 ⋅ 𝑪𝑶𝑳 ⋅ 𝑹𝑶𝑾 ⋅ 𝑺𝑼𝑩 ⋅ 𝑻) 

20 3 + 𝐼⨂𝐼⨂𝐼⨂𝑈𝑁⨂𝐷𝐼𝐴𝐺 Failed to converge 

21 3 + 𝐼⨂𝐼⨂𝐼⨂𝐷𝐼𝐴𝐺⨂𝐷𝐼𝐴𝐺 -18075.54 -25472.72 3981 

22 3 + 𝐼⨂𝐼⨂𝐼⨂𝐶𝑂𝑅1⨂𝐷𝐼𝐴𝐺 Failed to converge 

23 3 + 𝐼⨂𝐼⨂𝐴𝑅1⨂𝐼⨂𝐷𝐼𝐴𝐺 -18076.41 -25473.59 3981 

24 3 + 𝐼⨂𝐴𝑅1⨂𝐼⨂𝐼⨂𝐷𝐼𝐴𝐺 -18098.08 -25495.27 3981 

25 3 + 𝐼⨂𝐴𝑅1⨂𝐴𝑅1⨂𝐼⨂𝐷𝐼𝐴𝐺 -18096.74 -25495.93 3980 

26 3 + 𝐼⨂𝐼⨂𝑀𝐴1⨂𝐼⨂𝐷𝐼𝐴𝐺 -18076.46 -25473.65 3981 

27 3 + 𝐼⨂𝑀𝐴1⨂𝐼⨂𝐼⨂𝐷𝐼𝐴𝐺 -18095.17 -25492.36 3981 

28 3 + 𝐼⨂𝑀𝐴1⨂𝑀𝐴1⨂𝐼⨂𝐷𝐼𝐴𝐺 -18093.90 -25493.08 3980 
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29 3 + 𝐼⨂𝐼⨂𝐴𝑅𝑀𝐴1⨂𝐼⨂𝐷𝐼𝐴𝐺 Failed to converge 

30 3 + 𝐼⨂𝐴𝑅𝑀𝐴1⨂𝐼⨂𝐼⨂𝐷𝐼𝐴𝐺 -18105.79 -25504.98 3980 

31 3 + 𝐼⨂𝐴𝑅2⨂𝐼⨂𝐼⨂𝐷𝐼𝐴𝐺 -18107.43 -25506.62 3980 

32 3 + 𝐼⨂𝑀𝐴2⨂𝐼⨂𝐼⨂𝐷𝐼𝐴𝐺 -18107.65 -25506.83 3980 

33 3 + 𝐼⨂𝐴𝑅𝐻2⨂𝐼⨂𝐼⨂𝐷𝐼𝐴𝐺 -18101.68 -25530.87 3965 

34 3 + 𝐼⨂𝐴𝑅𝐻2⨂𝐷𝐼𝐴𝐺⨂𝐼⨂𝐷𝐼𝐴𝐺 -18135.74 -25590.93 3952 

35 3 + 𝐼⨂𝑀𝐴𝐻2⨂𝐼⨂𝐼⨂𝐷𝐼𝐴𝐺 -18108.38 -25537.57 3965 

36 3 + 𝐼⨂𝑀𝐴𝐻2⨂𝐷𝐼𝐴𝐺⨂𝐼⨂𝐷𝐼𝐴𝐺 -18133.85 -25589.03 3952 

PPFD and VPD were log-transformed  

37 34 + log 𝑃𝑃𝐹𝐷 × log 𝑉𝑃𝐷 -18204.38 -25659.56 3952 

Checking fixed effects (covariates were dropped if p > .10 for F-test) 

𝑩𝑳𝑪𝒐𝒗+𝑺𝑻𝑴 37 − (log 𝑃𝑃𝐹𝐷 ⋅ log 𝑉𝑃𝐷) 𝑇𝑅𝑇⁄ − log 𝑃𝑃𝐹𝐷 ⋅

𝑇𝑅𝑇 − 𝑍𝐷𝑆 ⋅ 𝑇𝑅𝑇 − 𝑉𝑂𝐺𝑅𝐸𝐼 ⋅ 𝑇𝑅𝑇 −

𝑉𝑂𝐺𝑅𝐸𝐼 ⋅ 𝑇 

-18392.80 -25727.25 3959 
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Table A.3.6. All models fitted to analyse 𝐹𝑟2
′  (i.e., the kinetics of electron transfer from PQ pool to PSI) 

in growing season 2018/2019 (Y2). 𝐵𝐿𝐶𝑜𝑣+𝑆𝑇𝑀 is the final ‘best’ fit model that incorporates covariates 

and spatiotemporal modelling over the initial baseline model (𝐵𝐿), as explained in the text. The 

Kronecker product (i.e., the direct product) is denoted by ⨂, and df is the degrees of freedom for the 

model. 

Model Terms AIC Deviance df 

0 Intercept only model -15792.65 -23194.83 4030 

1 Baseline (𝑩𝑳) -19421.38 -26773.25 4002 

2 1 + Covariates (𝑩𝑳𝑪𝒐𝒗) -20377.64 -27552.92 3984 

Temporal covariance modelling over residuals (𝑹 ⋅ 𝑪𝑶𝑳 ⋅ 𝑹𝑶𝑾 ⋅ 𝑺𝑼𝑩 ⋅ 𝑻) 

3 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝐷𝐼𝐴𝐺 -20169.24 -27564.43 3982 

4 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝑈𝑁 Failed to converge 

5 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝐴𝑁𝑇𝐸1 -20163.80 -27562.99 3980 

6 5 − 𝑅 ⋅ 𝐶𝑂𝐿 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵 -20164.89 -27562.07 3981 

7 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝑃𝑂𝑊 Failed to converge 

8 7 − 𝑅 ⋅ 𝐶𝑂𝐿 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵 Failed to converge 

9 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝑃𝑂𝑊𝐻 -20167.60 -27564.78 3981 

10 9 − 𝑅 ⋅ 𝐶𝑂𝐿 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵 Failed to converge 

11 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝐶𝑂𝑅𝐻1 -20167.74 -27566.92 3980 

12 11 − 𝑅 ⋅ 𝐶𝑂𝐿 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵 -20169.74 -27566.92 3981 

13 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝐶𝑂𝑅𝐻2 Failed to converge 

14 13 − 𝑅 ⋅ 𝐶𝑂𝐿 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵 -20167.82 -27567.00 3980 

15 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -20168.77 -27565.95 3981 

16 15 − 𝑅 ⋅ 𝐶𝑂𝐿 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵 -20170.78 -27565.96 3982 

17 2 + 𝐼⨂𝐼⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻2 Failed to converge 

18 17 − 𝑅 ⋅ 𝐶𝑂𝐿 ⋅ 𝑅𝑂𝑊 ⋅ 𝑆𝑈𝐵 -20168.83 -27566.02 3981 

Spatial covariance modelling over residuals (𝑹 ⋅ 𝑪𝑶𝑳 ⋅ 𝑹𝑶𝑾 ⋅ 𝑺𝑼𝑩 ⋅ 𝑻) 

19 16 + 𝐼⨂𝐼⨂𝐼⨂𝑈𝑁⨂𝐵𝐴𝑁𝐷𝐻1 Failed to converge 

20 16 + 𝐼⨂𝐼⨂𝐼⨂𝐷𝐼𝐴𝐺⨂𝐵𝐴𝑁𝐷𝐻1 -20168.96 -27566.15 3981 

21 16 + 𝐼⨂𝐼⨂𝐼⨂𝐶𝑂𝑅1⨂𝐵𝐴𝑁𝐷𝐻1 -20166.57 -27563.74 3981 

22 16 + 𝐼⨂𝐼⨂𝐴𝑅1⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -20169.83 -27567.02 3981 

23 16 + 𝐼⨂𝐴𝑅1⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -20185.67 -27582.85 3981 

24 16 + 𝐼⨂𝐴𝑅1⨂𝐴𝑅1⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -20184.69 -27583.88 3980 

25 16 + 𝐼⨂𝐼⨂𝑀𝐴1⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -20169.86 -27567.05 3981 

26 16 + 𝐼⨂𝑀𝐴1⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -20184.04 -27581.22 3981 

27 16 + 𝐼⨂𝑀𝐴1⨂𝑀𝐴1⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -20183.10 -27582.29 3980 

28 16 + 𝐼⨂𝐼⨂𝐴𝑅𝑀𝐴1⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 Failed to converge 
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29 16 + 𝐼⨂𝐴𝑅𝑀𝐴1⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 Failed to converge 

30 16 + 𝐼⨂𝐴𝑅2⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -20191.59 -27590.78 3980 

31 16 + 𝐼⨂𝑀𝐴2⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -20190.51 -27589.69 3980 

32 16 + 𝐼⨂𝐴𝑅𝐻2⨂𝐼⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -20184.47 -27613.66 3965 

33 16 + 𝐼⨂𝐴𝑅𝐻2⨂𝐷𝐼𝐴𝐺⨂𝐼⨂𝐵𝐴𝑁𝐷𝐻1 -20171.75 -27626.93 3952 

PPFD and VPD were log-transformed  

34 32 + log 𝑃𝑃𝐹𝐷 × log 𝑉𝑃𝐷 -20228.87 -27658.06 3965 

Checking fixed effects (covariates were dropped if p > .10 for F-test) 

𝑩𝑳𝑪𝒐𝒗+𝑺𝑻𝑴 34 − (log 𝑃𝑃𝐹𝐷 ⋅ log 𝑉𝑃𝐷) 𝑇𝑅𝑇⁄ − log 𝑃𝑃𝐹𝐷 ⋅

𝑇𝑅𝑇 − log 𝑉𝑃𝐷 ⋅ 𝑇𝑅𝑇 − 𝑍𝐷𝑆 ⋅ 𝑇𝑅𝑇 −

𝑉𝑂𝐺𝑅𝐸𝐼 ⋅ 𝑇𝑅𝑇 − 𝑍𝐷𝑆 ⋅ 𝑇 − 𝑉𝑂𝐺𝑅𝐸𝐼 ⋅ 𝑇 

-20432.77 -27770.10 3975 
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APPENDIX 4 – CONDITIONAL F-TEST STATISTIC FOR FIXED EFFECTS 

 

Table A.4.1. Conditional F-test statistic for the fixed effects based on the ‘best’ fit models (𝐵𝐿𝐶𝑜𝑣+𝑆𝑇𝑀) 

for each chlorophyll fluorescence trait (𝐹𝑞
′ 𝐹𝑚

′⁄ , 𝐹𝑟1
′  and 𝐹𝑟2

′ ) measured in light-adapted durum wheat 

plants under progressive drought stress for both growing seasons, 2017/2018 (Y1) and 2018/2019 (Y2). 

Year Trait Covariate† Effect SE F-statistic (ndf, ddf) p-value 

Y1 𝑭𝒒
′ 𝑭𝒎

′⁄       

  𝑅𝑒𝑙𝐹 -0.059 0.007 74.8 (1, 400) < .001 

  𝑖𝑍𝐷𝑆 0.001 0.0002 29.4 (1, 353) < .001 

  𝑉𝑂𝐺𝑅𝐸𝐼 0.10 0.011 79.6 (1, 10.4) < .001 

  log 𝑃𝑃𝐹𝐷 -0.017 0.002 143 (1, 1376) < .001 

  log 𝑉𝑃𝐷 -0.054 0.016 49.9 (1, 251) < .001 

  log 𝑃𝑃𝐹𝐷 ⋅ log 𝑉𝑃𝐷 -0.029 0.007 16.0 (1, 894) < .001 

 𝑭𝒓𝟏
′       

  𝑅𝑒𝑙𝐹 0.026 0.004 35.6 (1, 421) < .001 

  𝑖𝑍𝐷𝑆 -0.0007 0.0001 34.9 (1, 370) < .001 

  𝑉𝑂𝐺𝑅𝐸𝐼 -0.084 0.009 85.2 (1, 10.2) < .001 

  log 𝑃𝑃𝐹𝐷 0.007 0.002 38.3 (1, 1447) < .001 

  log 𝑉𝑃𝐷 -0.013 0.012 114 (1, 262) < .001 

  log 𝑃𝑃𝐹𝐷 ⋅ log 𝑉𝑃𝐷 0.015 0.005 7.48 (1, 846) .006 

 𝑭𝒓𝟐
′       

  𝑅𝑒𝑙𝐹 0.038 0.004 101 (1, 388) < .001 

  𝑖𝑍𝐷𝑆 -0.0002 0.0001 3.09 (1, 357) .080 

  𝑉𝑂𝐺𝑅𝐸𝐼 -0.051 0.005 111 (1, 10.9) < .001 

  log 𝑃𝑃𝐹𝐷 0.011 0.001 210 (1, 1421) < .001 

  log 𝑉𝑃𝐷 0.047 0.010 224 (1, 235) < .001 

  log 𝑃𝑃𝐹𝐷 ⋅ log 𝑉𝑃𝐷 0.018 0.004 17.1 (1, 925) < .001 

Y2 𝑭𝒒
′ 𝑭𝒎

′⁄       

  𝑅𝑒𝑙𝐹 -0.018 0.012 64.1 (1, 1035) < .001 

  𝑅𝑒𝑙𝐹 ⋅ 𝑇   25.7 (2, 682) < .001 

  𝑅𝑒𝑙𝐹 ⋅ 𝑇𝑅𝑇   15.7 (1, 456) < .001 

  𝑍𝐷𝑆 0.0005 0.0001 15.1 (1, 1071) < .001 

  𝑉𝑂𝐺𝑅𝐸𝐼 0.091 0.003 1041 (1, 3532) < .001 

  log 𝑃𝑃𝐹𝐷 -0.055 0.008 48.5 (1, 278) < .001 
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  log 𝑉𝑃𝐷 -0.022 0.008 7.30 (1, 85.0) .008 

  

𝑭𝒓𝟏
′  

     

  𝑅𝑒𝑙𝐹 0.024 0.011 72.9 (1, 1267) < .001 

  𝑅𝑒𝑙𝐹 ⋅ 𝑇   5.16 (2, 717) .006 

  𝑅𝑒𝑙𝐹 ⋅ 𝑇𝑅𝑇   14.7 (1, 485) < .001 

  𝑍𝐷𝑆 -0.0004 0.0003 0.040 (1, 1189)  .843 

  𝑍𝐷𝑆 ⋅ 𝑇   4.96 (2, 717) .007 

  𝑉𝑂𝐺𝑅𝐸𝐼 -0.072 0.002 889 (1, 3588) < .001 

  log 𝑃𝑃𝐹𝐷 0.021 0.007 9.38 (1, 291) .002 

  log 𝑉𝑃𝐷 -0.066 0.007 77.3 (1, 80.0) < .001 

  log 𝑉𝑃𝐷 ⋅ 𝑇𝑅𝑇   7.80 (1, 28.8) .009 

       

 𝑭𝒓𝟐
′       

  𝑅𝑒𝑙𝐹 0.013 0.008 68.0 (1, 1022) < .001 

  𝑅𝑒𝑙𝐹 ⋅ 𝑇   26.7 (2, 676) < .001 

  𝑅𝑒𝑙𝐹 ⋅ 𝑇𝑅𝑇   26.4 (1, 457) < .001 

  𝑍𝐷𝑆 -0.0002 0.00008 8.02 (1, 1061) .005 

  𝑉𝑂𝐺𝑅𝐸𝐼 -0.063 0.002 1113 (1, 3571) < .001 

  log 𝑃𝑃𝐹𝐷 0.035 0.006 39.6 (1, 299) < .001 

  log 𝑉𝑃𝐷 0.037 0.006 42.8 (1, 82.0) < .001 

†Covariates: log 𝑃𝑃𝐹𝐷 is the log-transformed photosynthetic photon flux density; log 𝑉𝑃𝐷 is the log-

transformed vapour pressure deficit; 𝑉𝑂𝐺𝑅𝐸𝐼 is the Vogelmann red edge index; 𝑖𝑍𝐷𝑆 is the initial 

growth stage in the Zadoks scale measured two days before withholding water (in Y1); 𝑍𝐷𝑆 is the 

growth stage in the Zadoks scale (in Y2); 𝑇 is the time points after imposing water treatment (i.e., the 

levels of drought severity); 𝑇𝑅𝑇 is the water treatment; 𝑅𝑒𝑙𝐹 is the relative deviation of the target area 

from the focal point of the LIFT light beam set at 0.60 m, calculated as [
𝐿𝐼𝐹𝑇ℎ𝑒𝑖𝑔ℎ𝑡−𝑃𝐻

60
], where 𝐿𝐼𝐹𝑇ℎ𝑒𝑖𝑔ℎ𝑡 

is the distance from the soil surface to the LIFT lens [cm] and 𝑃𝐻 is the plant height [cm]. 


