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Summary (English) 

Drought is the major abiotic stress factor limiting agricultural production in arid, semi-arid as well as in 

temperate regions around the world, whereas nitrogen (N) is one of the most important nutrients for crop 

production. With the current threat of climate change, drought-prone land is predicted to increase in the 

four corners of the planet. The development of drought-tolerant genotypes is seen as the most efficient and 

economical approach to curb the problem of drought and increase crop productivity. In this study, we 

employed a forward genetic approach to understanding the genetic basis of traits related to drought 

tolerance and nitrogen use efficiency, with the ultimate goal to find genetic variants that can be used to 

improve drought tolerance and N use efficiency in wheat. 

A number of 200 winter wheat genotypes released from 1946 to 2013 were used to screen the genotypic 

variation in agronomic, photosynthetic-related and grain quality traits under different water regimes. The 

evaluated genetic variation was used to identify traits with higher contribution to grain yield (GY) and 

highlighted the role played by breeding to enhance drought tolerance, photosynthesis efficiency and GY in 

the last seven decades. Results indicated significant effects of genotype, water regime, and their interactions 

for agronomic and photosynthesis-related traits. Kernels number per square meter was the yield-component 

with highest contribution to GY. Breeding has increased GY over years through improving the kernels 

number per area and the harvest index, which were due to improvement in the photosynthesis efficiency in 

modern cultivars. Genome wide association study (GWAS) and haplotypes effects analysis confirm that 

major haplotypes favorable for higher GY, and higher photosynthesis efficiency, especially under drought 

conditions were selected through breeding. 

The effect of drought on plant nitrogen uptake and use efficiency was examined to uncover genomic 

regions that simultaneously contributed to drought tolerance and N use efficiency. The results indicated a 

total of 27 potential QTL with main effects on evaluated traits, while 10 QTL regions were interacting with 

N availability. The transcript abundance analysis showed that the cold shock protein gene in the vicinity of 

a pleiotropic QTL region was highly expressed under drought stress conditions. Our result from the 

experiment conducted to assess the effect of fungicide and nitrogen supply on wheat grain productivity 

revealed a synergistic effect of nitrogen and fungicide on GY. Forty-six high-yielding cultivars showed 

different stability levels under three cropping systems (CS) including low N, high N and high N plus 

fungicide, suggesting that resource use efficiency can be improved via cultivar selection for targeted CS. 

The breeding progress in the wheat panel for most traits including GY was consistent across all three CS. 

The present study demonstrated that breeding has improved genotypes performance not only under 

optimum conditions but also under various stress conditions such as drought and N deprivation. This 

improvement could be explained by the increment of favorable alleles for photosynthesis efficiency. Upon 

validation of the genomic regions harboring the favorable alleles highlighted in this study, they can be 

exploited to improve drought tolerance and N use efficiency in wheat.   
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Kurzfassung (Deutsch) 

Trockenheit ist der wichtigste abiotische Stressfaktor, der die landwirtschaftliche Produktion in ariden, 

semiariden sowie in gemäßigten Regionen der Welt begrenzt, während Stickstoff (N) einer der wichtigsten 

Nährstoffe für die Pflanzenproduktion ist. Angesichts des drohenden Klimawandels wird prognostiziert, 

dass die Zahl der dürregefährdeten Flächen in vielen Gebieten der Erde zunehmen wird. Die Entwicklung 

von trockenheitstoleranten Genotypen wird als der effizienteste und wirtschaftlichste Ansatz angesehen, um 

das Problem der Trockenheit einzudämmen und die Produktivität der Pflanzen zu erhöhen. In dieser Studie 

verwendeten wir einen als forward-gentics gerichteten Ansatz, um die genetische Grundlage von 

Merkmalen im Zusammenhang mit Trockenheitstoleranz und Stickstoffnutzungseffizienz zu verstehen, mit 

dem Ziel, genetische Varianten zu finden, die zur Verbesserung der Trockenheitstoleranz und N-

Nutzungseffizienz in Weizen verwendet werden können. Zweihundert zwischen 1946 und 2013 

zugelassene Winterweizen-Genotypen wurden verwendet, um die genotypische Variation in 

agronomischen, photosynthetischen und Getreidequalitätsmerkmalen unter verschiedenen Wasserregimen 

zu untersuchen, um Merkmale mit einem höheren Beitrag zum Getreideertrag (GY) zu identifizieren, sowie 

die Rolle der Züchtung zur Verbesserung der Trockenheitstoleranz, Photosyntheseeffizienz und GY in den 

letzten sieben Jahrzehnten zu bewerten. Die Ergebnisse zeigten signifikante Auswirkungen des Genotyps, 

des Wasserhaushalts und ihrer Interaktionen auf diese Merkmale. Die Anzahl der Körner pro Quadratmeter 

war die Ertragskomponente mit dem höchsten Beitrag zum GY. Genomweite Assoziationsstudie (GWAS) 

und Haplotyp-Effektanalyse bestätigen, dass durch Züchtung Haupthaplotypen ausgewählt wurden, die für 

einen höheren GY und eine höhere Photosyntheseeffizienz, insbesondere unter Dürrebedingungen, günstig 

sind. Der Einfluss von Trockenheit auf die Stickstoffaufnahme und Nutzungseffizienz der Pflanzen wurde 

untersucht und die Ergebnisse zeigten insgesamt 27 potenzielle QTL mit Haupteffekten auf diese 

Merkmale, während 10 QTL-Regionen mit der N-Verfügbarkeit interagierten. Die 

Transkriptabundanzanalyse zeigte, dass das Kälteschockprotein-Gen in der Nähe einer pleiotropen QTL-

Region unter Trockenstressbedingungen stark exprimiert wurde. Unser Ergebnis aus dem Experiment, das 

durchgeführt wurde, um die Wirkung von Fungizid und Stickstoffzufuhr auf die Weizenkornproduktivität 

zu bewerten, zeigte eine synergistische Wirkung von Stickstoff und Fungizid auf den GY. Die 

Genotypleistung von 46 ertragreichen Sorten zeigte unter drei verschiedenen Anbausystemen (CS) 

unterschiedliche Stabilitätsniveaus, was darauf hindeutet, dass die Effizienz der Ressourcennutzung durch 

die Sortenauswahl für gezielte CS verbessert werden kann. Der Zuchtfortschritt im Weizenpanel war bei 

den meisten Merkmalen, einschließlich GY, über alle drei CS hinweg konsistent. Die vorliegende Studie 

zeigte, dass die Züchtung dazu beigetragen hat, die Leistung der Genotypen nicht nur unter optimalen 

Bedingungen, sondern auch unter verschiedenen Stressszenarien zu verbessern. Dies könnte durch die 

Zunahme günstiger Allele für die Photosyntheseeffizienz erklärt werden. Nach Validierung der 

genomischen Regionen, können diese zur Verbesserung der Trockenstresstoleranz und der N-

Nutzungseffizienz bei Weizengenutzt werden.  
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Chapter 1 

1.1. General Introduction  

1.1. Plant water and nutrients demands 

The agricultural community has the challenge of increasing food production up to more than 70% to meet 

the demand from the global population predicted to increase to 9 billion by 2050 (Friedrich, 2015; FAO, 

2020). Sustainable crop production involves the efficient and successful use of available resources that 

are of paramount importance in agriculture such as water (Barnabás et al., 2008; Mohammadi, 2018) and 

nitrogen (Hawkesford, 2017). It aims to meet human food needs, while protecting the environment 

through less carbon, nitrous emission, and increasing biological resources (Allahyari et al., 2019). 

1.1.1. Importance of water in crop production 

Water input is essential for crops, and its deficit is the most prominent abiotic stress factor limiting 

agricultural production (McElrone et al., 2013a; Nezhadahmadi et al., 2013). Globally, agriculture 

account for 80-90% of existing fresh water used by humans (Morison et al., 2008b; D‘Odorico et al., 

2020). Water is important for plant‘s growth, development and reproduction, and consequently for its 

yield and quality. Water profoundly influences photosynthesis, respiration, absorption, translocation and 

utilization of mineral nutrients, and cell division besides some other processes production (McElrone et 

al., 2013). Water acts as base material for all metabolic activities in plant systems and helps to transport 

metabolites from source to sink. 

Considering the importance of water in plants, the increase in crop production would undoubtedly 

imply increasing water use. Globally, around 2.7*10
3 

km
3
 of water were used in agriculture in the year 

2000 (Morison et al., 2008). A production of 1 kg of wheat requires 1 m
3
 of water and 1 kg of rice 

requires at least 1.2 m
3
 of water (Pimentel et al., 2004). In temperate zones and in arid regions, an amount 

of 0.7–2 m
3
 and 3–5 m

3
, respectively, is required for 1 kg of grain yield (Gregory, 2004; Morison et al., 

2008). Water's importance for crop production stems from its central role in plant nutrition as it is the 

solution through which other production inputs such as minerals are absorbed from soil (Kaggwa, 2013). 

1.1.2. Importance of nitrogen in crop production 

Nitrogen is the most important nutrient that impacts crop production (Perchlik and Tegeder, 2017) and its 

absorption mostly depends on environmental conditions, particularly on the soil moisture content (Abreu 

et al., 1993) Ladha et al., 2016). This nutrient plays a key role in the plant life cycle and it is needed for 

chlorophyll production and for the synthesis of other plant cell components (proteins, nucleic acids, 
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amino acids). Moreover, nitrogen contributes to the production of chemical components that protect 

against parasites and plant diseases. The amount of nitrogen supply plays a key role in the cropping 

systems and nitrogen is part of various enzymatic proteins that catalyze and regulate plant-growth 

processes (Gregory, 2011; Muñoz-Huerta et al., 2013; Barraclough et al., 2014). For instance, nitrogen is 

required in large quantities to constitute the plant proteins that convert solar radiation into carbohydrates 

through photosynthesis (Ladha et al., 2016). 

In cereals, N fertilizer applications have facilitated the increase in grain yields and grain protein 

contents (Garnett et al., 2009). Nitrogen application greatly affects gluten and protein content, protein 

composition, starch composition and grain quality of wheat (Wang et al., 2004). A wheat crop requires 

about 168-336 kg ha
-1

 of fertilizer N for optimum yields, and contains 15-17 kg of N per 454 kg of grain 

whose protein content ranges from 12-14% (Ottman and Thompson, 2006; Kaggwa, 2013). 

1.2. Drought stress, N deficiency and plant response under stress conditions 

1.2.1. Causes of drought stress and his effect on crop production 

Drought is defined as a period of weeks to years when precipitation is below the normal condition, 

resulting in a water shortage (Mitra, 2001; Dai, 2011). Droughts are categorized according to how they 

develop and what types of impact they have. They are three major categories of drought, namely, 

meteorological drought, hydrological drought, and agricultural drought (Shrestha, 2020). The category 

affecting crop production is agricultural drought, which refers to the period during a cropping season 

when the rainfall and soil moisture cannot meet the evapotranspiration demand of the crops (Dai, 2011). 

Droughts are caused by a combination of factors and can occur naturally or by human activity, such as 

deforestation, land degradation and inappropriate water use and management. Although, most causes of 

droughts over recent years seem to be natural in terms of where and when they occur (Hoerling et al., 

2010), the anthropogenic factor of climate change, generating extra heat from global warming, is 

expected to increase the intensity and severity of drought (Trenberth et al., 2014). 

Approximately 82% of the world‘s cultivated areas are devoted to rainfed agriculture, whereas, 

drought stress on plants accounts for approximately 70% of potential yield loss worldwide (Kang et al., 

2009; Huang et al., 2013). Compared to other abiotic stress, drought has the largest spatial extent with 

nearly 80% of the total cultivated area worldwide and also has the longest duration (Sheffield and Wood, 

2012). Drought is expected to increase due to the current effect of climate change (Figure 1.1). The 

anomaly of global land (60° S to 75° N) precipitation times series, revealed very high variation in rainfall 

across years between 1950 and 2010 (Trenberth et al., 2014). These data highlight the importance of 

rainfall for crop production, and how much its irregularity due to drought can threaten the food security 

worldwide. Drought stress effect on plants combines several types of abiotic stress, such as high 



Chapter 1. General Introduction 

3 
 

temperatures, high irradiance, and nutrient toxicities or deficiencies (Mohammadi, 2018). Drought affects 

the plant–water relations at all scales, from molecular, cellular, and organ to the whole plant levels (Oyiga 

et al., 2020). Following drought, stomata close progressively with a parallel decline in net photosynthesis 

which is the key physiological process for crop production (Figure 1.2). The immediate consequence is 

the production of smaller organs, and hampered flower production and grain filling (Farooq et al., 2014). 

The impact of drought on yield production varies with the developmental stage when it occurs, the crop 

and cultivars, and the occurrence of other abiotic stress factors such as high temperature and nutrient 

toxicities. Reports indicated that yield loss could reach 90% when a prolonged stress occurs from anthesis 

to maturity (Dhanda and Sethi, 2002a; Mohammadi, 2018). These reductions in yield mainly stem from 

the negative effect of drought stress on photosynthesis efficiency. 

During photosynthesis, drought causes stomatal restriction (Carmo-Silva et al., 2010), which lowers 

the intercellular CO2 concentration. Drought might also lead to a non-stomatal restriction defined as the 

inhibition of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) or changes in 

photosynthetic pigments, reducing the activity of enzymes involved in Calvin cycle reaction. Both 

stomata activities hampered crop photosynthesis and yield production (Anjum et al., 2003; Friso et al., 

2004; Zhao et al., 2020). Severe drought conditions limit photosynthesis through a decrease in the 

activities of RuBisCo, phosphoenolpyruvate carboxylase (PEPCase), NADP-malic enzyme (NADP-ME), 

fructose-1,6-bisphosphatase (FBPase) and pyruvate orthophosphate dikinase (PPDK). Reduced contents 

of tissue water also increase the activity of RuBisCo-binding inhibitors. Due to the reduction of NADPH 

produced, non-cyclic electron transport is downregulated, and thus reduces ATP synthesis (Farooq et al., 

2009). 

Another important effect of drought that reduces plant growth and photosynthetic abilities is the loss 

of balance between the production of reactive oxygen species (ROS) and the antioxidant defense (Reddy 

et al., 2004). Consequently, ROS is accumulated, inducing oxidative stress in proteins, membrane lipids 

and other cellular components. Some important components of photosynthesis affected by drought are 

shown in Figure 1.3. The primary sites where ROS are produced in plants are chloroplasts, mitochondria, 

and peroxisomes (Mittler et al., 2004; Asada, 2006). These important organs and especially the cellular 

membranes, enzymes and DNA are very sensitive to ROS and are damaged under the high accumulation 

triggered by drought stress. The deciphering of mechanisms of drought tolerance requires a deep 

understanding of plant physiology. Drought-adapted species control stomatal function to allow carbon 

fixation under stress, therefore improving water use efficiency (Lawlor and Cornic, 2002). 



Chapter 1. General Introduction 

4 
 

 

  

FIGURE 1.1 | The most important spatial pattern (top) of the monthly Palmer Drought Severity Index 

(PDSI) for 1900 to 2002. The PDSI is a prominent index of drought and measures the cumulative deficit 

(relative to local mean conditions) in surface land moisture by incorporating previous precipitation and 
estimates of moisture drawn into the atmosphere (based on atmospheric temperatures) into a hydrological 

accounting system. The lower panel shows how the sign and strength of this pattern has changed since 

1900. Red and orange areas are drier than average and blue and green areas are wetter than average when 

the values shown in the lower plot are positive. The smooth black curve shows decadal variations. The 
time series approximately corresponds to a trend, and this pattern and its variations account for 67% of the 

linear trend of PDSI from 1900 to 2002 over the global land area. It therefore features widespread increas-

ing African drought, especially in the Sahel, for instance. Note also the wetter areas, especially in eastern 
North and South America and northern Eurasia. Source: (Solomon et al., 2007). 
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FIGURE 1.2 | Plant responses at molecular, cellular, and organ to the whole plant level under drought. 

Source: Barnabás et al. (2008). 
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FIGURE 1.3 | Photosynthesis under drought stress. Possible mechanisms by which photosynthesis is re-

duced under drought stress conditions. Source: Farooq et al. (2009) 
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1.2.2. Crop plant response to drought stress 

Plants, as sessile organisms have developed various mechanism to cope with temporary water 

limitations that prevent their growth and productivity (Figure 1.4) (Barnabás et al., 2008; Fang and 

Xiong, 2015). Depending on the drought stress level, plants integrate diverse responses and adaptive 

mechanisms at the morphological, physiological, and molecular levels, to overcome water-deficit 

(Figure 1.4). These adaptations leading to plant resistance to drought can be genotypes and/or 

species–specific, (Fang and Xiong, 2015) and involve four mechanisms: drought avoidance (DA) (or 

‗‗shoot dehydration avoidance‘‘), drought tolerance (DT), drought escape (DE), and drought recovery 

(Fang and Xiong, 2015). DA and DT are the two major mechanisms employed by plants to tolerate 

mild, moderate, and severe drought (Yue et al., 2006). DE is a natural or artificial adaptation of the 

plant life cycle to avoid encountering local seasonal or climatic drought, by accelerating reproductive 

growth (Mitra, 2001; Shavrukov et al., 2017). Drought recovery, as indicated by the name, refers to 

the capacity of the plant to resume growth after severe drought stress that results in a loss of turgor 

pressure and leaf dehydration. 

DA refers to morphological and physiological changes occurring at leaf or root level to respond 

to drought stress. The changes at leaf level involve leaf rolling and increasing wax accumulation to 

prevent water loss. The leaf rolling is caused by loss of turgor pressure, resulting in reduction of water 

loss and increase of photosynthesis activity, as found on rice (Zou et al., 2011), wheat (Omarova et 

al., 1995), and maize (Prechamandra et al., 1992). Delay of leaf rolling under water stress can be 

achieved through osmotic adjustment (Fang and Xiong, 2015). Besides leaf rolling traits, epidermal 

hairs, cuticular wax, along with leaf water potential, relative water content, water loss rate, and 

importantly canopy temperature, are also used as criteria for appraisal of DA (Hu and Xiong, 2014). 

Another leaf trait is stomata closure, which reduces water loss from transpiration (Tardieu, 2013). 

Several molecular mechanisms are underlying leaves stomata closure, among which abscisic acid 

(ABA) is the positive regulator during drought stress and plays an important role in Ca
2+

 influx and 

K
+
 efflux across the guard cells (Daszkowska-Golec and Szarejko, 2013). The endogenous 

phytohormone ABA is synthesized and transported to leaves cells to trigger the stomatal closure after 

drought stress is detected by roots cells.  

Besides leaf adaptation to overcome drought stress, plants generally mine water from 

underground through root system under early water-stress. Development of plant root system 

architecture plays an important role in response to water deficit (Ashraf et al., 2019). After the onset 

of drought, water is often found in deeper soil layers (Trachsel et al., 2011). Drought-adaptive traits 

related to root physiology and morphology have been identified in maize (Zea mays), sorghum 
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(Sorghum bicolor), rice (Oryza sativa) and wheat (Richard et al., 2015). Wheat cultivars with 

narrower lateral root distribution and higher proportion of roots at depth can access more soil 

moisture deep in the soil profile (Richard et al., 2015). Furthermore, DA can refer to phenological 

changes resulting in the reduction or extension of the vegetative stage to respond to drought stress. 

DT is the capability of plants to maintain physiological activities through the regulation of genes 

to reduce or repair damages from drought stress (Yue et al., 2006; Luo, 2010). The mechanisms 

associated with DT involve cell osmotic adjustment, production of antioxidants, phytohormones and 

increase in the chlorophyll content (Fang and Xiong, 2015). Osmotic adjustment, via production and 

accumulation of organic and inorganic substances such as sugars, amino acids polyols (proline, 

glycine), alkaloids and inorganic ions, allows cells to manage their dehydration and membrane 

structural integrity to give tolerance against drought and cellular dehydration (Loutfy et al., 2012). For 

instance, under severe drought stress wheat genotypes accumulate more soluble sugars that become an 

essential replacement for water (Farshadfar et al., 2008; Hussain et al., 2018; Sallam et al., 2019). The 

detoxification of reactive oxygen species (ROS) through antioxidants defense is one of the drought 

tolerance mechanisms. The accumulation of ROS, such as singlet oxygen 
1
O2, hydrogen peroxide 

(H2O2), superoxide radicals (O2), and hydroxyl radical (OH) increase under drought stress and may 

lead to cell death, chlorophyll destruction, metabolism perturbations, and severe injury (Cruz de 

Carvalho, 2008; Gill and Tuteja, 2010). To detoxify cells from excessively accumulated ROS, plants 

produce protective enzymatic and non-enzymatic antioxidants to maintain the equilibrium of the 

intracellular redox state. Among the enzymatic type are catalase (CAT), superoxide dismutase (SOD), 

peroxidase (POD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR). On the 

other hand, non-enzymatic antioxidants include ascorbic acid (AsA), glutathione (GSH), carotenoids 

(CAR), a-tocopherol (vitamin E), and anthocyanins.  

As discussed above, the processes coordinating the response to drought stress involve a network 

of stress-responsive genes (Osakabe et al., 2014). Succinctly, at least three principal pathways are 

used by genes networks to convey drought tolerance, two ABA-dependent and one ABA-independent 

pathways (Abrahám et al., 2003; Nakashima et al., 2009). Several candidate genes with kinase 

domain, such as calcium-dependent protein kinases (CDPKs), CBL (calcineurin B-like) interacting 

protein kinase (CIPK), mitogen-activated protein kinases (MAPKs), and sucrose non-fermenting 

protein (SNF1)-related kinase 2 (SnRK2), have been reported to participate in drought response. 

Genes encoding many transcription factor (TFs) family members have been identified as involved in 

drought tolerance e.g., DREB, NAC, WRKY, MYB, bZIP, TZF, APETALA2/Ethylene-responsive 

element binding protein (AP2/EREBP), and zinc finger (Joshi and Nayak, 2010; Samarah, 2016). The 
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major physiological changes that occur in tolerant and susceptible wheat and barley genotypes are 

illustrated in Figure 1.5.  

 

  

FIGURE 1.5 | Description of possible mechanisms of growth reduction under drought stress (left panel) and 

the representation of the three adaptive mechanisms (physiological, morphological and molecular) and their 
connection in drought tolerance (right panel). The double arrows represent the interaction among the differ-

ent adaptive mechanisms. Source: left panel; (Farooq et al., 2009); right panel (Reinert, 2017). 

FIGURE 1.5 | Physiological changes in tolerant and susceptible wheat and barley genotypes in response 

to drought stress. Source: Sallam et al., 2019. 
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1.2.3. Nitrogen uptake and use efficiency, particularly under drought conditions 

Nitrogen has a strong effect on plant metabolism and biological processes that regulate plant growth, 

development and yield (Gregory, 2011; Barraclough et al., 2014). Plants absorb nitrogen as a mineral 

nutrient mainly from soil solution, in the form of ammonium (NH4
+
) and nitrate (NO3

−
), with NH4

+
 

being ~10% of the NO3
– 

concentration (Marschner et al., 2011; Garnett et al., 2015). Nitrogen 

transformation process closely depend on water and its mobility in the soil (Gonzalez-Dugo et al., 

2010). Nitrogen absorption by plants is related to three major steps, including uptake, assimilation, 

and re-mobilization (Figure 1.6) (Han et al., 2016). The nitrogen use efficiency (NUE) is the product 

of N uptake efficiency (NUpE) and N utilization efficiency (NUtE) (Good et al., 2004). NUE can be 

calculated in many ways (Fageria and Baligar, 2005), but it is widely accepted that NUE is the ratio of 

output (economic yield) to N fertilizers input (Moll et al., 1982). Increased NUE usually positively 

correlates with the crops aboveground biomass, seed production, grain protein, and yield (Masclaux-

Daubresse et al., 2010), an indication that selection based on high NUE can improve crop productivity 

(Garnett et al., 2015). 

Considering the importance of nitrogen (N) in ensuring higher crop yield and productivity, 

farmers tend to overuse it (Good and Beatty, 2011) but paying little attention on important aspects on 

plant nitrogen absorption and use efficiency. Rather than increasing yield, higher N supply can also 

decrease the nitrogen use efficiency, causing low yields due to over-stimulation of tillering and plant 

vegetation (i.e. haying-off) and high N loss (Van Herwaarden et al., 1998; Vitousek et al., 2009). 

Worldwide, only a third of nitrogen inputs to cereal crops are recovered in grain for consumption. The 

remaining part could stay in the agro-system or be lost through N leaching, erosion, and runoff, and 

have negative impacts on the environment (Hawkesford, 2017; SHEN et al., 2017) such as 

salinization and eutrophication (Cai et al., 2011). That could accelerate the global warming due to 

Nitrous oxide (N2O) emission (Thompson et al., 2019) (Figure 1.7). In Europe, between 2004 and 

2011, most of the soils were characterized by N surpluses of around 40 to 80 kg N/ha (Buckwell and 

Nadeu, 2016). In the context of political and environmental constraints on agrochemical supply and 

climatic changes, reduction of agricultural inputs will contribute to lessen negative impacts of 

agriculture on the environment (Gregory, 2011). 

Soil water content is an important factor affecting the availability of N and thus plants NUE 

(Kaggwa, 2013). There is a reduction of N availability, uptake, translocation and assimilation under 

drought stress condition(Gregersen, 2011). Besides being the medium for N in soil, water convey 

nutrients from soil to plants via mass flow and diffusion (Marschner et al., 2011)(Under water stress, 

nitrate flow is reduced by 50% to 0.2 mm/day due to the reduction of the transpiration rate due to low 
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water uptake (Farooq et al., 2009). Therefore, increasing the water uptake under drought conditions 

will improve nitrogen uptake and use efficiency.  
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A B 

FIGURE 1.7 | Hypothetical nitrogen stocks and flows of two contrasting cropping systems. Cropping 

systems relying mainly on mineral nitrogen inputs (A) have relatively higher nitrogen losses to air and 

water than cropping systems with emphasis on biological N fixation, manure and other organic matter 

amendments, cover crops and perennial crops, and low reliance on mineral N fertilizer, such as organic 

and integrated systems (B). The width of the arrows is relative to the size of the nitrogen flux; boxes 

representing nitrogen stocks are not scaled to the pool size. Arrows represent nitrogen inputs (green), 

losses (orange) and transformations (blue). Source:(Reganold and Wachter, 2016). 

FIGURE 1.7 | The nitrogen cycle from soil to plant product. Nitrogen use efficiency (NUE) is 

determined by uptake efficiency (NUpE) which is the amount of nitrogen taken up by the plant and by N 

utilization efficiency (NUtE). NUpE = Nt (total plant nitrogen)/Ns (total available soil nitrogen). Gw is 

grain yield or weight. NUtE= Gw/Nt key components (traits) that have been modified and should be 

evaluated in more detail are shown. Source: (Good and Beatty, 2011). 
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1.3. Breeding for drought tolerance and nitrogen use efficiency 

Wheat (Triticum aestivum L.) is an allohexaploid (6x) with a genome of 21 pairs of chromosomes (2n 

= 6x = 42) sub-divided into 3 closely related (homologous) groups of chromosomes, the A, B and D 

sub-genomes. Each sub-genome has 7 pairs of chromosomes. The estimated size of wheat genome is 

17 Gbp (Shi and Ling, 2018), which is larger than the one of barley (~5.3 Gbp in 7 chromosomes) and 

rice (~430 Mb in 12 chromosomes) due to high content of repeated sequences. Recent technology 

developments have enabled the identification of high numbers of DNA-markers but also the 

production of the whole genome sequence draft of wheat (Shi and Ling, 2018). 

Wheat is one of the most important cereals with an annual yield of 760.1 million tones(FAO, 

2020). It provides ~20% of human daily calories and ~21% protein requirements (Braun et al., 2010; 

Hawkesford et al., 2013; Kulkarni et al., 2017), thus plays a major role in global food security (Oyiga 

et al., 2019). However, wheat production is challenged by various abiotic stress factors, among which 

drought accounts for approximately 70% loss of potential yield worldwide (Huang et al., 2013). 

Besides, inefficient cropping management practices such as inappropriate higher nitrogen fertilization 

rates, growing cultivars with low N use efficiency level are factors that decrease wheat yield and 

associate with a number of environmental problems (Thompson et al., 2019). Despite these challenges 

of drought stress and regulations for reducing N supply, the global wheat production needs an annual 

increase of 44 Mt to meet demand by 2050 (Figure 1.8) (Semenov et al., 2014; Mohammadi, 2018). 

Optimizing wheat productivity in rainfed agricultural systems and under drought prone 

environment, while reducing the amount of N input, require the development of drought tolerant and 

nitrogen use efficient cultivars. Breeding to increase nitrogen use efficiency has become an object of 

intense research to reduce economical costs and ensure sustainability (Hawkesford et al., 2013; 

Muñoz-Huerta et al., 2013). Currently, research involving phenotyping, genetics, and breeding for 

tolerance against drought is receiving attention worldwide. However, many challenges reside in the 

complex nature of traits associated with improved performance of wheat under water limitation, as 

each of these traits is controlled by many genes with small effect (Richards et al., 2007; Yang et al., 

2007). Fortunately, significant genetic variation for traits associated with drought tolerance seems to 

be available in wheat germplasm and can be used to develop drought tolerant cultivars (Reynolds et 

al., 1994; Joshi et al., 2007; Gupta et al., 2012, 2017). The understanding of the shoot-root system and 

the genetic basis of drought tolerance and NUE in crop plants is of paramount importance for 

developing superior genotypes (Fleury et al., 2010; Monneveux et al., 2012).   
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A 

B 

FIGURE 1.8 | (A) Global cereal production has risen from 877Mt in 1961 to 2351 Mt in 2007 (blue). 
To meet predicted demands, production will need to rise to > 4000Mt by 2050 (red). The rate of yield 

increase must move from the blue trend line (32 Mt year
–1

) to the red dotted line (44 Mt year
–1

) to meet 

this demand, an increase of 37% is required. The inset table shows 2007 data for the three major cere-
als. Source:Mohammadi 2018. (B) World map showing countries according to their average wheat 

production (tonnes) from 1961 to 2019 based on data from the Food and Agriculture Organization 

Corporate Statistical Database. Source: www.fao.org/faostat/. 

http://www.fao.org/faostat/
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1.3.1. Improving root system architecture 

The future gains in productivity, especially under low input conditions, can be achieved through 

optimization of root system architecture (RSA) (Zhu et al., 2011; Xie et al., 2017). The root system 

provides the plant anchorage, competitiveness and adaptation to stress. Roots also have significant 

roles in soil exploration, stand establishment, adaptation to drought, belowground carbon 

sequestration, soil structure improvement and maintenance of soil fertility by driving microbial 

processes (Kaggwa, 2013a; Richard et al., 2015; Siddiqui et al., 2020). 

Despite the importance of roots, direct selection for optimal RSA characteristics in the field has 

not been routine because of the complex interactions between roots system and rhizosphere. Different 

approaches and methods have been used to study these interactions, but most methods failed to 

represent the system plant-soil and environment as it is in the field where roots and shoots are 

exposed to very different environmental conditions, especially temperature, which is an important 

regulator of root development (Ruta et al., 2010). For these reasons, breeding efforts have typically 

focused on improving above-ground traits with an obvious emphasis on yield (Zhu et al., 2011). In 

order to improve plant performance for higher yield under stress conditions, breeders need to select 

genotypes with root system architecture adapted to low input conditions such as nitrogen fertilizer and 

water deficit (Trachsel et al., 2011; Kaggwa, 2013). 

Cultivars with narrow development of lateral roots and suberized roots have better performance 

plants under drought conditions (Schreiber, 2010). Higher root biomass and deeper rooting (Figure 

1.9) could increase water and N uptake, and contribute to reductions in N fertilizer wastes and losses 

associated with wheat production systems (Kaggwa, 2013a; Kulkarni et al., 2017). Higher genotypic 

variations were found on RSA traits of wheat seedlings (Richard et al., 2015). RSA traits such as 

seminal root number and total root length were highly correlated with grains m
–2

, grains per spike, 

above-ground biomass m
–2

 and grain yield. More seminal roots and longer total root length were also 

associated with delayed maturity and extended grain filling, which is likely to be a consequence of 

more grains being produced before anthesis (Xie et al., 2017). Similarly, maximum width of RSA 

displayed positive associations with yield related traits. The higher phenotypic correlations between 

wheat RSA and yields were confirmed at genetic level with detection of common QTL regions 

underlying roots traits and grain yield and thousand grain weight (Cao et al., 2014; Maccaferri et al., 

2016). The Table 1.S1-1.S2-1.S3 provide a review of some genomic regions harboring important 

genes (Dro1, ERECTA) and transcription regulators (AP2/ERF, ZFPs, WRKY, and MYB) that are 

associated with drought tolerance through enhanced root development.   
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FIGURE 1.9 | Root and stomatal traits that define drought tolerant and susceptible wheat plant 

ideotypes. This illustration is prepared based on the findings from various articles cited throughout the 

manuscript. Plant tolerance to drought stress relies on favorable root anatomical features such as, 

deeper roots and smaller central metaxylem (CMX) that contribute to improved moisture uptake-

efficiency (MUE), and stomatal features such as high density and smaller size that contribute to lower 

canopy temperature (CT) and reduced carbon isotope discrimination. Source: (Kulkarni et al., 2017). 
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1.3.2. Morphological and physiological traits linked to drought tolerance and NUE 

Photosynthesis activity 

Drought stress is associated with other several abiotic stress, such as heat stress, which negatively 

impact agricultural production (Lobell et al., 2011; IPCC, 2014). Therefore, development of crop 

varieties with improved water use efficiency (WUE) could help maintaining higher yield under 

predicted future environmental constraints. WUE can be estimated at an agronomic level as the ratio 

of water used in crop production versus biomass or yield, while at the physiological view it is the 

amount of CO2 fixed in photosynthesis (A) relative to the amount of water vapor lost in the 

atmosphere (E) (Condon et al., 2004; Medrano et al., 2015). Leaf structural traits, such as the cuticule 

and cuticular waxes, leaf ―Stay Green‖ are playing important role in WUE under drought stress (Bi et 

al., 2017; Zeisler-Diehl et al., 2018). Leaf ―Stay Green‖ habit, which is related to its chlorophyll 

content is linked to the grain filling duration. Furthermore, leaf rolling, leaf membrane thermostability 

are playing important role in maintaining photosynthesis activity under drought stress. Differences in 

photosynthesis among genotypes under heat and drought stress have been shown to be associated with 

a loss of chlorophyll and a change in the chlorophyll a/ b ratio due to premature leaf senescence 

(Gupta et al., 2012; Reynolds et al., 1994). Plant canopy temperature measured by infrared 

thermometry has been used to identify water stress in wheat. Canopy temperatures were negatively 

correlated with cultivars water uptake and photosynthesis activity under drought stress condition 

(Reynolds et al., 2000a; Lopes and Reynolds, 2010; Sarieva et al., 2010). 

Genes controlling those physiological changes are very important sources for geneticists and breeders 

to genetically improve drought tolerance through a breeding program. The positive regulations of 

genes expression both at transcriptional and post-transcriptional level has a pivotal role in plant 

adaptation to drought stress (López-Maury et al., 2008; Kulkarni et al., 2017). In addition, 

transcription factors such as AP2/ERF consisting of four sub-families in wheat DREB, ERF, AP2, and 

RAV are mediating these mechanisms underlying stress tolerance (Licausi et al., 2013; Kulkarni et 

al., 2017). 

Photosynthesis mechanism 

Photosynthesis is the physicochemical process by which green plants and certain other organisms 

convert light energy into chemical energy (Singer et al., 2020; Yang et al., 2020). During 

photosynthesis in green plants, light energy is captured and used to convert water, carbon dioxide into 

oxygen and energy-rich organic compounds through the equation 1. This chemical energy-rich 

compound is stored in carbohydrate molecules, such as sugars (Baker, 2008). 
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6 CO2 + 6 H2O + hν (ligh energy) ----------------------- C6H12O6 + 6 O2   (Equation 

1.1) 

Photosynthesis consist of two major‘s reactions (Figure 1.10A-C): the light-dependent reactions and 

light-independent reactions (Singer et al., 2020). The light-dependent reaction takes place within the 

thylakoid membrane and requires a steady stream of sunlight, hence the name light-dependent 

reactions. The chlorophyll absorbs energy from the light waves, which is converted into chemical 

energy in the form of the molecules ATP and NADPH (Figure 1.10C). The light energy absorbed by 

chlorophylls associated with the photosystem II (PSII) reaction centers (RC) encounters three possible 

fates. It can be used to drive photochemistry in which an electron (e
−
) is transferred from the reaction 

center chlorophyll, P680, to the primary quinone acceptor of PSII, QA. Alternatively, absorbed light 

energy can be lost from PSII as chlorophyll fluorescence or heat (Figure 1.10B). The processes of 

photochemistry, chlorophyll fluorescence, and heat loss are in direct competition for excitation 

energy. If the rate of one process increases the rates of the other two will decrease (Baker, 2008). The 

light-independent reactions, also known as the Calvin–Benson–Bassham Cycle or Calvin cycle (or 

dark reactions), take place in the stroma which is the space between the thylakoid membranes and the 

chloroplast membranes, and consequently do not require light, hence the name light-independent 

reactions. During this reaction, energy from the ATP and NADPH molecules produced from light 

reactions is used to power the assimilation of CO2 to assemble carbohydrate molecules, like glucose 

(Long et al., 2015; Singer et al., 2020). 

There are different types of photosynthesis. The C3 photosynthesis occurring in the majority of 

plants including wheat during which the first carbon compound produced under the catalysis of 

RuBisCo enzyme contains three carbon atoms called 3-phosphoglyceric acid (3PGA) which goes on 

to become glucose in the Calvin Cycle. The disadvantages of C3 plants are the photorespirations, by 

which RuBisCo fixes O2 instead of CO2, thus, utilize energy that plants could have used to drive 

photosynthesis (Singer et al., 2020). Besides, when stomata are open, CO2 is entering at the expense 

of water loss, which is a disadvantage under drought-prone environments. Whereas, in C4 

photosynthesis used by plants such as maize, sugarcane and sorghum, there is a four-carbon 

intermediate compound, which splits into carbon dioxide and a three-carbon compound during the 

Calvin Cycle. A benefit of C4 photosynthesis is the higher levels of carbon produced, allowing plants 

to thrive in environments without much light or water. 

Severe drought conditions limit photosynthesis due to a decline in RuBisCo activity (Farooq et 

al., 2009). Further increase in wheat yield could be successfully achieved through research to enhance 

photosynthesis activity through manipulation of RuBisCo (Reynolds et al., 2011) or through 
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regulation of genes intervening in these process (Gupta et al., 2012). Under stress conditions, 

regulation of some stress-responsive genes could alleviate the stress negative impact of plant 

production. For instance, the upregulation of PsbH, PsbB and PsbD genes encoding PSII Core 

Proteins in wheat resulted in an increase in photosynthesis activity under heat stress, and hence 

produce a positive effect on grain yield (Zhang et al., 2020; Hassan et al., 2021). 



Chapter 1. General Introduction 

20 
 

 

  

A B 

C 

FIGURE 1.10 | Overview of photosynthesis reactions. (A) Structure of chloroplast presenting the locations of both 

reactions of photosynthesis. (B) Simple model of the possible fate of light energy absorbed by photosystem II (PSII). 

(PSII). (C) Schematic diagram of photosynthetic light reactions and non-photochemical quenching in C3 plants. 
Blue lines denote proton movement, black discontinuous lines denote movement of electrons, red lines denote 

movement to the Calvin cycle. Thermal dissipation of excess light energy via non-photochemical quenching (NPQ) 

is boxed in orange. Components of the light reactions and NPQ that have been modulated (either directly or indirect-

ly) for improvement of photosynthetic efficiency are shown in red and orange, respectively. A light-harvesting an-

tennae complexes, CBB Calvin–Benson–Bassham, cytb6f cytochrome b6f complex, Fd ferre-doxin, FNR ferredox-

in: NADP + reductase, NPQ non-photochemical quenching, PC plastocyanin, PQ plastoquinone, PSI photosystem I, 

PSII photosystem II, PsbS photosystem II subunit protein, RC reaction centre, RieskeFeS component of the cytb6f 

complex encoded by PetC, VDE violaxanthin de-epoxidase, ZE zeaxanthin epoxidase. Source: (B)(Baker, 2008); 

(C)(Singer et al., 2020). 
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1.3.3. Sensor-based phenotyping of crop photosynthesis activity 

High level of precision is necessary to record phenotypic data in plants, thus plant phenotyping of 

populations for QTL-studies can be laborious and time consuming for breeders aiming to release new 

varieties. Conventional phenotyping methods for water status in plant or chlorophyll parameters are 

destructive, nevertheless, the evaluation of crops tolerance to abiotic stress requires non-invasive 

measurements on the same plant/genotypes over growth stage to observe the kinetic of their stress-

response (Sannemann, 2013; Dadshani, 2018). Therefore, the development and use of sensors in plant 

breeding could make advance in plant phenomics, which laid behind genomics data (Gupta et al., 

2012). That will make the best used of DNA information level acquired through new high-throughput 

sequencing technologies (Churko et al., 2013; Sannemann, 2013). Sensor-based techniques have been 

used for recording data on complex traits such as tolerance to drought and heat. The methods used to 

monitor photosynthetic rates are based on spectroscopy. In this research project, we used several 

sensors such as, Mini-pam II (Walz, 2014), SPAD-502Plus (Minolta, 2009), Polypen RP410, Licor-

6800, Ap4 porometer Delta-T to measure plant photosynthesis-related traits over growth stages. 

The photosynthesis yield analyzer MINI-PAM-II is used to screen for chlorophyll fluorescence 

characteristics. The use of chlorophyll fluorescence to monitor photosynthetic performance in algae 

and plants is now widespread (Baker, 2008). The chlorophyll florescence parameters give insight on 

the changes in the photosystem II (PSII), the linear electron transport rates, and the CO2 assimilation. 

The relationship between the PSII photochemistry efficiency and CO2 assimilation in leaves enables 

to detect differences in the response of plants to environmental challenges and, consequently, to 

screen for tolerance to environmental stresses (Baker and Rosenqvist, 2004). 

The use of spectral absorption index such as SPAD measured by SPAP-502Plus (Minolta, 2009) 

for estimating leaf chlorophyll content or plant healthiness or nitrogen status is also widely used in 

plant breeding. It determines the relative amount of chlorophyll present by measuring the absorbance 

of the leaf in two wavelength regions: the blue (400-500 nm) and the red (600-700 nm). This non-

invasive method to measure chlorophyll content has shown strong correlation with the destructive one 

using acetone (Minolta, 2009; Su et al., 2010; Kumar, 2017). Other indices like Normalized 

Difference Vegetation Index (NDVI) measured by PolyPen RP 410 (Photon Systems Instruments, 

Drásov, Czech Republic) has been extensively used in agriculture as an indirect measure of 

photosynthetic activity and crop yield (Gupta et al., 2012). The NDVI is calculated using 

measurements of reflected light from the red (630–690 nm) and NIR (near infrared 750-2500 nm) 

bands as NDVI = (NIR-RED)/(NIR+RED) (Rouse et al., 1974). It is also an integrated measure of 

ground cover (leaf area) and the nitrogen (N) content of the canopy (an indirect measure of final crop 
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yield in small grains), under long-term water stress. Sensor phenotyping methods usually operate at 

leaf level, but new developments with aerial and mobile platforms are providing measurements on the 

whole canopy, hence giving a holistic status of plant response to external stress (Figure 1.11). 
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FIGURE 1.11 | Genome to phenome and back: identification of photosynthetic traits for integration 

into breeding programs or gene technologies. Analysis of the photosynthetic CO2 assimilation from 

the canopy and leaf level can be achieved through rapid phenotyping techniques. These techniques 
enable rapid determination of photosynthetic parameters that help select germplasm for detailed 

analyses. At the canopy level, LIDAR is used for non-destructive biomass determination, drones or 

unmanned aerial vehicles are used for imaging crop canopies which can include RGB cameras for 
crops coverage, and thermal imaging is used to estimate canopy temperature, which can be utilized 

for screening germplasm for differences in water use efficiency. At the leaf level, tools such as hy-

perspectral reflectance can be used to estimate electron transport capacity and Vcmax, in addition to 

leaf N and leaf mass per area. Tools such as MINI-PAM-II and SPAD provide surrogates for leaf N 
content, with the former measuring electron transport and non-photochemical dissipation of incom-

ing light energy. Determining the underpinning biochemistry and gene sequence diversity is requi-

site to deploy traits crucial for improving CO2 assimilation. Source: (Furbank et al., 2020). 
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1.3.4. Molecular breeding 

Molecular breeding, or marker assister selection (MAS), refers to the technique of using DNA markers 

that are tightly linked to phenotypic traits to assist in a selection scheme for a particular breeding 

objective (Jaradat, 2016). This method has been successfully applied in plant breeding due to the 

characterization of several genetic markers, such as random amplified polymorphic DNA (RAPD), inter-

simple sequence repeats (ISSRs), amplified fragment length polymorphism (AFLP), and notably single 

nucleotide polymorphism (SNP) (Cooper et al., 2014). In wheat, several generations of molecular markers 

have been identified for quantitative traits such as drought tolerance and can be used in marker-assisted 

breeding programs. The use of these markers in molecular breeding offer the possibility to improve wheat 

performance in diverse physio-morphological traits at different growth stages and also yield (Varshney et 

al., 2007; Khadka et al., 2020). 

With the objective to be used in marker assisted selection, the discovery of QTLs/genes associated with 

target traits, including those associated with drought require the use of a mapping population, either a 

family-based linkage populations in traditional linkage mapping or a diversity panel in association 

mapping (Sallam et al., 2016; Khadka et al., 2020). 

In contrast to the conventional linkage mapping approaches that uses two parents in the development of 

the population, hence has lower genetic variation resulting in low resolution QTLs, AM populations 

comprised diverse lines representing the diversity of natural or breeding populations of the crops (Zhu et 

al., 2008). Recently, advanced mapping populations named next-generation populations (NGPs), 

comprise Nested association mapping (NAM) populations, Multi-parent advanced generation intercross 

(MAGIC) population, and advanced intercross recombinant inbred lines (AIRILs), were developed to 

overcome the limitations posed by both previous mapping approaches. These mapping approaches has 

been successfully used in plant breeding and identified QTL regions harboring drought-responsive genes 

and transcription factors involved in drought tolerance (Table S1-S2-S3)(Mwadzingeni et al., 2016; Gupta 

et al., 2017; Kulkarni et al., 2017). Nevertheless, with the recent evolution in genomics that enable the 

detection of high number of SNP across the wheat genome (Shi and Ling, 2018), further research in QTL 

mapping is important to uncover the precise genetic architecture of drought tolerance. 
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1.4. Breeding progress and dissection of the genetic basis of traits of interest 

1.4.1. Breeding progress 

Wheat is a key cereal crop that impacts the global economy and food security. Continuous increase in 

grain related traits and tolerance to biotic and abiotic stress, together with higher nutritional value are 

critical for providing food to the growing population, and remain as the top priorities of wheat breeding 

programs (Baum et al., 2015; Mondal et al., 2016). Different approaches have been used to determine the 

breeding progress or the rate of genetic gain for grain yield and other traits. However, the method of 

linear regression of genotypes means over their year of release has been widely used in the literature 

(Sharma et al., 2012; Voss-Fels et al., 2019a; Lichthardt et al., 2020). (Tadesse et al., 2013) have 

determined a breeding progress of 110 kg/ha/year (R
2
 = 0.66; P = 0.001) for the grain yield of the best 

line (BL) while the trial mean (TM) increased at a rate of 91.9 kg/ha/year (R
2
 = 0.53; P = 0.007) 

indicating a continuous yield improvement at the International Winter Wheat Improvement Program 

(IWWIP). Breeding progress for grain yield was consistent across three various nitrogen cropping 

systems regardless of the baking quality classification (Voss-Fels et al., 2019). Recently, (Lichthardt et 

al., 2020) have reported a breeding progress of 9.85 t/ha/year when compared the cultivars from a 

European germplasm released between 1970 and 2010. 

The assessment of the breeding progress in yield-related traits is valuable to recognize which of them 

are associated with GY, identify yield-limiting factors, and specially to plan future effective approaches to 

increase the genetic gains of GY in breeding programs. In addition, a regular assessment and upgrade of 

the yield progress are necessary to evaluate the performance of breeding programs on a global scale and 

incorporate new breeding strategies adapted to the new scenarios (Gerard et al., 2020). Given the current 

scenarios of climate change imposing drought stress in agricultural areas, evaluation of the breeding 

progress for grain yield and related traits is important to predict future genetic gain accordingly.  

1.4.2. Association mapping 

Association mapping is based on linkage disequilibrium (LD) and requires the use of a large number of 

genome-wide markers (Turuspekov et al., 2017). Based on the objectives of research, association 

mapping can be separated into two categories: candidate-gene association mapping and genome-wide 

association studies (GWAS) (Figure 1.12). Contrary to candidate-gene association mapping in which 

polymorphisms within candidate genes are correlated with the measured traits of interest, GWAS 

correlates the polymorphisms scanned across the whole genome to the measured traits (Risch and 

Merikangas, 1996). 

LD is the non-random association of alleles at different loci in a given population. It is influenced by 

several factors such as selection, mutation rate, population structure, system of mating, sample size, 
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genetic drift, genetic recombination and diversity within a population (Chao et al., 2010). LD may be 

estimated different methods that are to some degree, confounded with allele frequencies or genetic 

diversity and are related to D, the coefficient of linkage disequilibrium. A commonly used method to 

quantify LD is with r
2 
(Ramakrishnan, 2013) that ranges between 0 and 1. The value r

2
 = 0 means that the 

loci are in complete linkage equilibrium, while r
2
 = 1 means that the loci are in complete LD. The LD 

may decay over a long or short distance based on the population under study and the chromosomal region. 

The low costs for high throughput genotyping have enabled the discovery of high-density SNP 

marker across wheat genome that empower GWAS approaches for the detection of QTL (quantitative trait 

loci) associated with wheat traits of interest (Lopes et al., 2015; Cericola et al., 2017; Turuspekov et al., 

2017). A QTL is a location on the genome that, in conjunction with other locations on the genome, is 

responsible for the variation of a quantitative characteristic (Collard et al., 2005). Compared to 

conventional linkage mapping, association mapping has three advantages: (1) it saves time and cost of the 

construction of a familly-based segregating population that preserves only two variations of an allele, and 

it makes use of existing populations that comprise a wide diversity of genetic background; (2) it is able to 

detect multi-allelic variation, and thus helps to identify the most favorable alleles contributing to a target 

trait in a single analysis; and (3) its higher resolution resulting from exploration of all the ancestral 

recombination events present in a plant species, is more powerful for fine mapping of quantitative trait 

loci for several important traits (Breseghello and Sorrells, 2006; Atwell and Huang, 2010; Shi et al., 

2017).  

However, GWAS can exhibit higher rates of false positives than biparental populations (Yu and 

Buckler, 2006). To minimize the detection or occurrence of spurious or false-positive associations that 

might arise as a consequence of an unbalanced allele frequency distribution among individuals of diverse 

geographic origin or breeding, it is recommended to assess the population structure of an association 

panel and account for it in associations studies (Gajardo et al., 2015a; Zhang et al., 2018). Although, 

several models has been developed and used for QTL identification in association studies, the mixed 

linear model (equation 2) accounting for the population structure (Q) and the kinship among individuals 

(K) is more effective in the identification of true positive (Yue et al., 2006). 

Y=Xα+Qβ+Kµ+Ɛ         (Equation 1.2) 

where Y is the phenotype of a genotype; α and β are unknown vector containing fixed effects; X the 

matrix of fixed effect of the SNP; Q the matrix of fixed effect of population structure given by PCA or Q 

from STRUCTURE-analysis; K the random effect of relative kinship among individuals, and Ɛ the error 

term, which is assumed to be normally distributed with mean = 0 and variance δ
2
e. 
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FIGURE 1.12 | Scheme of contrast of GWAS and candidate-gene association mapping. The inclusion of 

population structure (Q), relative kinship (K), or both in final association analysis depends on the genetic 

relationship of the association mapping panel and the divergence of the trait examined. E: residual 
variance. Source: (Zhu et al., 2008a). 
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1.5. Research hypothesis and objectives 

1.5.1. Hypothesis of this study 

1. There is genetic variation in response to drought for agronomic traits. 

2. Wheat photosynthesis efficiency related traits under different water regimes is genotypes specific 

and has an effect on the final biomass yield. 

3. Breeding has contributed to improve wheat photosynthesis efficiency and agronomic performance. 

4. There is a genetic variation in NUE, which is affected by N input levels, fungicide application, 

water limitation and root architectural traits. 

1.5.2. Research objectives  

Drought is a major abiotic stress factor causing prominent yield reduction in wheat, hence threatening the 

project to assure food security for the growing population by 2050 (Mohammadi, 2018). The 

development of drought tolerant and N use efficient genotypes has proven to be the most promising and 

economically sound strategy to increase wheat yield under new environmental constraints imposed by 

drought stress and political regulations to reduce nitrogen input. Therefore, gaining understanding of the 

agronomic, physiological, and the genetic basis underlying drought tolerance and NUE is of paramount 

importance to reach the desired breeding goal of developing high yielding wheat genotypes. 

The major goal of this study was to determine the genetic variation among the studied wheat 

germplasm and evaluate the breeding progress in traits related to drought tolerance and NUE, and to 

identify genotypes and genomic regions with promising characteristics that can be exploited in breeding 

programs. The identification of superior genotypes and the dissection of the genetic architecture of 

relevant traits related to drought tolerance and NUE are the prerequisite for the application of marker 

assisted selection in the development of high yielding wheat genotypes. 

The specific objectives of the proposed study were: 

1. To assess and understand the genetic variation for drought tolerance in agronomic traits and dis-

sect their genetic architecture; 

2. To identify the growth stage where plant photosynthetic efficiency significantly impacts the final 

above ground yield and identify the relevant genetic markers associated with photosynthesis ac-

tivity; 

3. To evaluate the NUE and determine how it interacts with N input level, fungicide application, 

water-limitation, and root architectural traits; 
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4. To quantify the breeding progress made in agronomic and physiological traits under rainfed and 

drought stress, and in various nitrogen cropping systems; 

5. To explore the candidate genes in the identified QTL regions for agronomic traits; drought toler-

ance, NUE and photosynthesis efficiency. 

6. To identify the allelic variation in the promotor region of the gene NADH-ubiquinone oxidore-

ductase activity which is in the vicinity of the SNP marker AX-158576783 associated with the 

photosynthesis activity. 

The result of the study is divided into four chapters. 

Chapter 2: Breeding driven enrichment of genetic variation for key yield components and grain starch 

content under drought stress in winter wheat. 

Chapter 3: Chromosome 3A harbors several pleiotropic and stable drought-responsive genes for 

photosynthesis efficiency selected through breeding of wheat. 

Chapter 4: Genome wide dissection and in-silico transcript analysis provides candidate loci for improved 

drought tolerance and nitrogen use efficiency in Winter Wheat. 

Chapter 5: Fungicide application affects nitrogen utilization efficiency and grain yield and quality of 

winter wheat. 
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2.1. Abstract 

Drought is one of the major abiotic stress factors limiting wheat production worldwide, thus threatening 

food security. The dissection of the genetic footprint of drought stress response offers strong opportunities 

toward understanding and improving drought tolerance in wheat. In this study, we investigated the 

genotypic variability for drought response among 200 diverse wheat cultivars (genotypes) using 

agronomic, developmental, and grain quality traits, and conducted genome-wide association studies 

(GWAS) to uncover the genetic architectures of these important traits. Results indicated significant 

effects of genotype, water regime and their interactions for all agronomic traits. Grain yield was the most 

drought-responsive trait and was highly correlated with kernels number per meter square. GWAS 

revealed 17 and 20 QTL regions under rainfed and drought conditions, respectively, and identified one 

LD block on chromosome 3A and two others on 5D associated with breeding progress. The major 

haplotypes of these LD blocks have been positively selected through breeding and are associated with 

higher starch accumulation and grain yield under drought conditions. Upon validation, the identified QTL 

regions caring favorable alleles for high starch and yield will shed light on mechanisms of tolerance to 

drought and can be used to develop drought resistant cultivars. 

Keywords: Breeding progress, drought, GWAS, LD block, MTAs, QTL, yield components  
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2.2. Introduction 

Global crop production needs an increase of nearly 70% to meet demand by 2050 (Mohammadi, 2018; 

Semenov et al., 2014). Wheat is one of the world‘s most important staple food crops with an annual yield 

of 765.77 million tones in 2019 (FAO, 2021). Wheat plays a major role in global food security. However, 

its production is highly sensitive to climatic and environmental variations (Porter and Semenov, 2005; 

Semenov et al., 2014) and to various abiotic stress factors such as drought, excessive water, salinity, cold, 

etc. It is estimated that abiotic stress can lead to an average yield loss of more than 50% for most major 

crop plants (Boyer, 1982; Bray, 2000). Drought is one of the major stress factors limiting wheat yield in 

arid, semi-arid as well as temperate regions around the world (Hoseinlou et al., 2013; Nezhadahmadi et 

al., 2013). Compared to other natural disasters, drought has the largest spatial extent with nearly 80% of 

the total cultivated area worldwide (Mohammadi, 2018) and has the longest duration (Sheffield and 

Wood, 2012). 

Drought affects the plant-water relations at all levels from molecular, cellular, and organ, to the 

whole plant levels (Oyiga et al., 2020). Moreover, drought stress affects plant nutrient uptake, as water is 

the transport medium from which nutrients are taken up by the plant root systems. Following drought 

incidence, stomata close progressively with a parallel decline in net photosynthesis owing to metabolic 

limitations and oxidative damage of chloroplasts (Farooq et al., 2014). The immediate consequence is the 

production of smaller organs, increased, flower abortion, and reduction in the grain filling period, which 

subsequently affect crop yield. 

Grain filling has a significant effect on final grain production and greatly depends on photosynthesis 

and redistribution of assimilates from vegetative tissue to the reserve pools. Terminal drought accelerates 

leaf senescence and reduces photosynthesis (Farooq et al., 2011). Cultivars with the ability to stay green 

under prolonged drought remain photosynthetically active; thereby possess high spike fertility, which is 

often highly correlated to the number of kernels per spike (Reynolds et al., 2017; Würschum et al., 2018). 

Spike fertility and grain filling are major complex traits that could reduce grain yield by 58-92% under 

severe drought conditions (Dhanda & Sethi, 2002; Farooq et al., 2014). Modern cultivars had higher spike 

fertility hence, increased. grain number per spikelet than old ones due to their higher assimilates 

partitioning during pre-flowering periods (Royo et al., 2007). These characteristics are desired and useful 

in breeding programs (Tshikunde et al., 2019), to improve drought tolerance in cereals. 

Although water deficit stress can occur at any time during the crops growing season, Liu et al. (2005) 

reported that water deficit at reproductive phase causes the most yield loss. Plants adopt various structural 

and functional adjustments to overcome the negative effects of water stress, ranging from their 

phenology, morphology, and anatomical structures to their physiological and biochemical reactions (Fang 
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and Xiong, 2015). These adjustments leading to plant tolerance involve four mechanisms, drought 

avoidance (DA) (or ‗‗shoot dehydration avoidance‘‘), drought tolerance (DT), drought escape, and 

drought recovery (Fang and Xiong, 2015). DA and DT are the two major mechanisms employed by plants 

to tolerate mild, moderate, and severe drought (Yue et al., 2006). DA refers to morphological change such 

as leaf rolling, increasing wax accumulation, deep rooting system, and phenological change resulting in 

reduction or extension of the vegetative stage, while DT is the capability of plants to maintain 

physiological activities through regulation of genes to reduce or repair damages from drought stress (Yue 

et al., 2006; Luo, 2010). Presently, irrigation of agricultural areas is also employed to prevent substantial 

yield reduction imposed by drought. However, it is economically costly for small-scale farmers and a 

threat to the environment as water from irrigation could arouse land degradation and soil salinization 

(Stockle, 2001; Muli, 2014). The most relevant and economically sound solution is to breed crops with 

higher water use efficiency (WUE). Increasing plant water uptake and use efficiency for cultivation in 

drought-prone environments would require a broad understanding of the morphological, genetic, and 

physiological mechanisms adopted by plants to cope with water shortage. 

The discovery of the genetic basis of grain yield (GY) and its component traits is essential for 

providing breeders with the tools necessary for the development of drought stress-tolerant cultivars 

(Kadam et al., 2018). Genetic dissection of complex traits such as GY and related traits has been possible 

through genome-wide association study (GWAS) based on linkage disequilibrium (Contreras-Soto et al., 

2017; Fang et al., 2017). Recent technology developments have led not only to the identification of a high 

number of DNA-markers but also the production of the whole genome sequence draft of several crops 

including wheat with its large size of ~17 gigabases (Shi and Ling, 2018). Several QTL associated with 

yield related traits in winter wheat under drought stress conditions have been reported (Li et al., 2019; Xie 

et al., 2017; Xu et al., 2017). However, to the best of our knowledge this is the unique study done to 

uncover the genetic architectures of traits that are contributing to improved GY over the wheat breeding 

history between 1946 to 2013. QTL associated with water stress responses are valuable resources for 

exploitation in developing drought-tolerant (Farooq et al., 2009, Ashraf, 2010) and high-yielding 

cultivars. Recent findings suggest that breeding has increased GY through conserving favorable genetic 

factors and haplotypes involved in stress adaptation (Voss-Fels, Stahl, Wittkop et al., 2019). 

In this research, we used a diversity panel of 200 winter bread wheat cultivars released from 1946 to 

2013, and widely used in breeding programs around Germany to screen the genotypic variation in 

agronomic and grain quality traits under different water stress conditions. The main goal was to identify 

drought-tolerant cultivars and relevant QTL as well as shed some light on the drought tolerance 

mechanisms in wheat. The specific objectives of this study were to: (i) identify agronomic and 

developmental traits that contribute to enhance GY under drought conditions; (ii) highlight the role played 
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by breeding to enhance GY under drought conditions; (iii) identify QTL region linked to breeding 

progress and drought tolerance using years of release, agronomic, developmental and grain quality traits. 
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2.3. Materials and Methods 

2.3.1. Plant materials and growth conditions 

In this study, we tested 200 winter wheat cultivars originating from Europe, mostly Germany, USA, 

South America, and Asia, and previously described for their productivity under contrasting agrochemical 

input levels (Voss-Fels et al., 2019). The years of release of cultivars in the core set ranged from 1963 to 

2013 including at least three cultivars per decade. These cultivars were assessed under drought and non-

drought (control) conditions in 2016-2017 and 2017-2018 growing seasons. The drought stress treatment 

was under a rainout shelter and the control treatment under rainfed conditions, both at the same location 

in the experimental station of Campus Klein-Altendorf, University of Bonn (50.61° N, 6.99° E, and 187m 

above sea level). The plots under rainout shelter were irrigated by moveable overhead sprinklers set to 

deliver 36 L/m² water per week at the first 2-4 weeks of the experiment to enable germination and early 

establishment of the plants. Water stress was introduced by withholding water at BBCH40 [Biologische 

Bundesanstalt, Bundessortenamt und CHemische Industrie (Lancashire et al., 1991)], corresponding to 

the pre-booting growth stage and continued until harvesting (BBCH99). The difference of the volumetric 

content of water between rainfed and drought treatments was around 7% volume of soil, around heading 

growth stage (Figure 2.S1). The soil type of the experimental site is a Haplic Luvisol (World Reference 

Base for Soil Resources, WRB) derived from loamy silt (Perkons et al., 2014). 

The plots were arranged in a randomized sub-block design with three repetitions. To reduce neighbor 

effects due to considerable differences among the cultivars in plant height and maturation period, the 

randomization was done within subgroups according to Voss-Fels et al. (2019). Each plot with a single 

row of 0.90 m and 60 seeds was assigned to one genotype, and a space of 0.20 m was kept between rows. 

To avoid border effects and plant damage by the machine while performing regular maintenance, four 

rows plots were flanked by two border rows. The weather data of the experimental site and the soil 

moisture content (0-30 cm) and temperature are provided in Figure 2.S1. 

2.3.2. Phenotyping of agronomic, developmental, and grain quality traits 

Agronomic traits included plant height (PH), spike number per meter square (SNms), shoot dry matter 

weight (SDW) which corresponded to the whole plant dry biomass weight (PBW) without grain yield 

(GY). Thousand kernels weight (TKW) was estimated as mean value multiplied by 2 after counting three 

repetitions of 500 seeds using an automatic seed counter. Harvest index (HI) was calculated as the ratio of 

GY to PBW which included grain yield. Visual scorings of developmental traits such as plant health state, 

homogeneity of growth, leaf rolling, and leaf greenness were done according to the methods described by 

Pask et al. (2012). The developmental growth stages of a core set of 20 cultivars that was selected by 

principal component analysis based on SNP makers to represent the genetic diversity of the wheat panel 
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were visually scored following the BBCH scale to assess the effect of drought on the duration of each 

stage. The grain quality traits (GQT) included ratios of grain protein content (GPC), grain starch content 

(GSC), and the neutral detergent fiber (NDF) measured using near infra-red spectrometry (NIRS) with 

Diode Array 7250 NIR analyzer (Perten Instruments, Inc., USA., 2021) by following the manufacturer‘s 

guidelines. Full description of evaluated traits is provided in Table S1. 

2.3.3. Phenotypic data analyses 

A mixed-linear-model was used to carry out a year-specific analysis of variance (ANOVA) to determine 

the effects of water regimes, cultivars (genotypes), and their interactions using SAS software (SAS 

Institute, 2015). Errors due to planting positions (row-and-column effects) in the field plots were 

corrected by including ―Replication/Row*Column‖ (Gilmour et al., 1995): rows crossed with columns 

nested within replication in the restricted maximum likelihood (REML) approach as random effects; 

whereas, the genotype and water regime treatment effects were considered to be fixed. Variance 

component estimation was based on REML (Searle et al., 2009). The best linear unbiased estimates 

(BLUEs) were computed across each year for each water regime and cultivar according to the model 

(equation 2.1) and the resulting values were used in all the subsequent analyses. 

 

(Equation 2.1) 

where Pijm is the response phenotype such as GY of the ith genotype, under the jth water regime, and the 

mth repetition. µ, the general mean of the study, Gi the fixed effect of the ith genotype, Tj, the fixed effect 

of water regime, GTij, the fixed effect of the ith genotype under the jth water regime. Rm, the random ef-

fect of the mth repetition nesting row, column and Row*Column, while εijm is the error term. 

The variance components due to genotypic (ζ
2

g) and water regime (ζ
2
e) effects were estimated using 

a mixed model procedure (SAS Institute, 2015) with both components set as random. The broad-sense 

heritability (H
2
) for all traits were calculated within each regime using equation 2.2 as described by 

Gitonga et al. (2014), and across water-regimes using equation 2.3 described by Piepho and Möhring 

(2007). 

           (Equation 2.2) 

 

           (Equation 2.3) 

where r is the number of replications of each genotype; 𝜎p
2
,
 
the phenotypic variance; 𝜎ge
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the residual error variance, and m, the number of water regimes. 
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Pearson correlation analysis of genotypic means was performed to assess the correlation between 

traits using the package Performance Analytics and the principal component analysis (PCA) was done by 

Factominer and Factoextra, both also implemented in R software (R Core Team, 2020). Thereafter, the 

relationships between GY and traits of interest under each water regime were evaluated with a regression 

model to quantify the contribution of the trait to GY. The regressions were conducted using lm function 

in R software. 

2.3.4. Drought stress tolerance estimation and quantification of the breeding progress in evaluated 

traits  

The stress weighted performance (SWP) described by Saade et al. (2016) was used to identify the 

cultivars  ́drought tolerance status using the following formula. 

  P =      P         (Equation 2.4) 

where YS and YP are the means values of the trait of interest of the considered cultivar under drought 

stress and rainfed conditions, respectively. The 200 cultivars were ranked for each trait from the highest 

down to the lowest trait´s SWP values and were classified as drought-tolerant and sensitive according to 

their overall SWP ranking as described by Oyiga et al. (2016). 

The breeding progress was investigated by the absolute (ABP) and the relatives (BPr) indices using a 

panel of 192 cultivars with known release years. The absolute breeding progress (increase per year) was 

the slope (a) of the linear regression line between the traits of interest against the release years. The rela-

tive three decades breeding progress (Lichthardt et al., 2020) was considered as the result of changes in 

traits performance over years, and was calculated using the formula BPr=(Pi2010- Pi1980)/Pi1980; where 

Pi2010 and Pi1980 were determined using the coefficients obtained with the following equation from the 

regression model of the absolute breeding progress. 

P    =    +            (Equation 2.5) 

where x corresponds to 2010 or 1980; a is the slope representing the absolute breeding progress, and b, 

the intercept. For a trait of interest, we also test the significant difference between the means values of 

contrasting year of release cultivars groups to confirm the three decades breeding progress in the wheat 

panel. The group of oldest cultivars were released before 1980 (31 cultivars) and the newest were released 

after 2010 (30 cultivars).  

2.3.5. Genetic analysis of the 200 wheat diversity panel 

We used for the genetic analysis, a set of 24216 SNP markers evenly covering all 21 chromosomes of 

wheat as described by Dadshani et al. (2021). Detailed information of SNP genotyping, population 

structure (PS), linkage disequilibrium (LD) analyses of the diversity panel, and the marker–trait 
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association tests through GWAS have been described in Koua et al. (Unpublished data). Briefly, the 

structure in the wheat panel was analyzed using Population structure of the wheat panel was inferred 

using the model-based clustering method implemented in STRUCTURE software (Pritchard and 

Przeworski, 2001; Falush et al., 2007), along with the delta K approach to identify the true K (Evanno et 

al., 2005). 

The GWAS was performed with two software programs: TASSEL 5.2.13 (Bradbury et al., 2007) and 

rrBLUP package in R (R Core Team, 2020). Both GWAS were conducted following the model: 

 =   + P +  µ +           (Equation 2.6) 

where Y is the phenotype of a genotype; α and β are unknown vector containing fixed effects; X the fixed 

effect of the SNP; P the fixed effect of population structure given by PCA matrix that included the first 

three components; K the random effect of relative kinship among cultivars, and Ɛ the error term, which is 

assumed to be normally distributed with mean = 0 and variance δ
2
e. Both Kinship matrix and PCA matrix 

were generated in TASSEL. GWAS for breeding progress was run with cultivars years of release used as 

phenotypic values. The congruent significant (P<10
-4

) SNP loci identified by both programs were 

accepted as significant marker-traits associations. Also, FDR correction (Mangiafico, 2015) was applied 

to accept or reject MTAs with P<10
-4

 obtained from only Tassel or rrBLUP. The Pvalue threshold of 

P<10
-4

 to accept significant associations was determined based on the Q-Q plots and distribution of P-

values. 

Detection of significant loci interacting with water regimes through genome-wide locus by water regimes 

interactions was surveyed using the PROC MIXED procedure in SAS 9.4 (SAS Institute, Cary, NC, 

USA) which also included the Kinship matrix and PCA matrix from TASSEL. The P-value cutoffs for 

accepting highly significant marker*treatment interaction associated with a trait were set at 1×10
−5

 for 

PBW, SNms, and GY and at 1×10
−4

 for kernels number per meter square (KNms), kernels number per 

spikes (KNSp), GPC, and GSC. 

2.3.6. SNP clustering and candidate gene analysis 

The detected marker-trait associations (MTAs) were considered to be in LD if they are located within the 

interval defined by the chromosomal LD (Breseghello & Sorrells, 2006; Pasam & Sharma, 2014), and 

were grouped in one SNPs-cluster according to Oyiga et al. (2019). The associated chromosomic regions 

were further explored using scripts written in R program to identify the probable functionally annotated 

putative candidate genes (iwgsc_refseqv1.0_ FunctionalAnnotation_v1__HCgenes_v1.0-repr.TEcleaned. 

TAB). The searches were performed in the genome assembly of Triticum aestivum cv. Chinese Spring 

(IWGSC et al., 2018) and only high confident genes were retained. 
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2.4. Results 

2.4.1. Agronomic and grain quality traits were affected by drought stress 

A mixed model ANOVA was carried out to estimate the variation components genotype (G), water 

regime (T) and their interaction effects on evaluated traits (Table 2.1). In both growing seasons, the 

agronomic and grain quality traits differed significantly (P<0.001) between water regimes (T) and among 

genotypes (G) exept for SNms and NDF in 2018. Genotypes and water regimes were highly interacting in 

2017, except for GSC and NDF, meanwhile, in 2018, G*T interaction effects were highly significant for 

GY, kernels number per spike (KNSp), TKW, and GSC. Considering the combined ANOVA of both 

years, water regimes and genotypes, and their interactions effects were detected for all evaluated traits. 

Drought caused significant reductions in genotypes performance in most of the traits evaluated, and 

ranged from 0.11 (NDF) to 79.63% (GY) and from 2.25 (NDF) to 60.42% (GY) in 2017 and 2018, 

respectively. GY and KNms were the most affected traits by drought stress with 68.71% and 66.05% 

reduction, respectively. Furthermore, drought has significantly decreased the time to reach heading, 

anthesis, and fruit development growth stages compared to rainfed conditions (Table 2.S1B). The 

coefficients of variation (CV) for all traits were higher under drought compared to rainfed treatment in 

both years, except for TKW in both years and for PH, NDF in 2017. Broad-sense heritability (H
2
) 

estimates for some traits such as PBW could differ from control to drought treatment. Interestingly, GY 

recorded a consistently moderate H
2
 under control and drought conditions. Across both conditions, the 

higher H
2
 were obtained by PH, TKW, GPC, and GSC in both years. The developmental traits evaluated 

under drought conditions revealed a highly significant difference among genotypes with high CV of 30.07 

and 55.86% in 2017 (Table 2.S2), for the relative healthy state (HSr) and relative leaf rolling (LRr), 

respectively. 

The genetic relationship among traits under each water regime were evaluated using Pearson 

correlation coefficients based on cultivar means. Results showed significant (P<0.001) correlations 

among most of the traits under rainfed and water stress in 2017 and 2018 growing seasons (Figure 

2.S2AB). The strongest associations were obtained between PBW and GY in 2017 (r=0.91) and 2018 

(r=0.84) under rainfed conditions. However, under drought conditions, the highest associations were 

observed between PBW and GY (r=0.87) in 2017 and between GY and KNms (r=0.95) in 2018. 

Interestingly, the yield component KNms recorded the highest and consistent correlation with GY under 

both water regimes and growing seasons. However, in both planting seasons it was higher under drought 

compared to rainfed conditions. Among grain quality traits, GSC and NDF were positively correlated, and 

both exhibited negative associations with GPC under the two water regimes across growing seasons. For 

the developmental traits assessed under drought, leaves unrolled state (LRr) were significantly (P<0.001) 
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associated with LGr in both years. LRr recorded the strongest relationship with GY in 2017, while LGr 

was the most correlated to GY in 2018 (Figure 2.S2CD). 

The PCA performed showed the relationship among evaluated traits in growing seasons (Figure 2.S3). 

The first two principal components (PC1 and PC2) explained more than 50% of the total genetic variation 

under control and drought conditions in 2017 and 2018. The total variance explained by these two 

components is higher under drought stress when compared to rainfed conditions. The genotypic variation 

in the PC1 was explained by PBW, GY, and SDW under rainfed conditions in both years, while under 

drought stress, PC1 was consistently explained by PBW, GY, and KNms. The PC2 was explained by 

GPC, GSC, and PH under drought, whereas under rainfed it was differently explained in both years. 

Generally, PC1 characterized agronomic traits, while PC2 the grain quality traits (Figure 2.S3). 

2.4.2. Contribution of traits to grain yield  

The multiple linear regression approaches were exploited to ascertain the relative contribution of each 

yield component trait to GY. Under rainfed conditions, most agronomic traits such as SNms, KNms, 

KNSp, TKW and SDW contributed to GY in both years except SDW in 2018. However, under drought 

stress conditions, PH did not affect GY, but KNms and TKW had higher effects on GY in 2018 (Table 

2.S3). Further, simple regression analysis confirmed that the yield components contribution to GY and to 

its variance differs upon water regimes. The variation in KNms, KNSp, and SNms significantly explained 

the variation in GY under drought rather than under rainfed conditions, whereas TKW and SDW 

explained rather the change in GY under rainfed than under drought conditions (Figure 2.S4). The 

regression GY intercepts under both water regimes were highly different, whereas the slopes under both 

conditions differed for KNms and TKW. The slope of KNms was higher under drought compared to the 

control conditions, while the contrary scheme was observed for TKW (Table 2.S5). 
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TABLE 2.1 |ANOVA and descriptive statistics on agronomic, grain quality traits of 200 wheat genotypes (G) evaluated in two water regimes (T) across 2017 

and 2018 years (Y). 

Year Statistics Water Regime 

Agronomic traits   Grain quality  

PH 
(cm) 

GY 
(g/row) 

SDW 
(g/row) 

PBW 
(g/row) 

TKW 
(g) 

SNms KNms KNSp HI 

 

GPC (%) GSC (%) NDF (%) 

2017 

Mean 
Rainfed 78.93 203.99 192.42 396.21 39.10 708.16 27900 40.79 0.51   14.47 72.24 18.31 

Drought 56.47 41.51 66.17 109.20 34.74 286.42 6260 21.34 0.37   14.26 71.38 18.29 

  Reduction (%) 28.46 79.65 65.61 72.44 11.15 59.55 77.56 47.68 27.21 
 

1.46 1.19 0.11 

CV (%) 
Rainfed 10.81 13.30 12.60 11.80 10.07 13.60 14.40 16.49 5.81   5.28 1.64 7.40 

Drought 8.59 31.40 20.70 24.20 9.70 17.23 38.30 24.49 16.38   6.65 1.67 4.81 

Heritability 

Rainfed 0.95 0.51 0.75 0.65 0.87 0.68 0.50 0.70 0.42 

 

0.72 0.28 0.33 

Drought 0.41 0.43 0.12 0.24 0.72 0.19 0.57 0.63 0.67 
 

0.51 0.59 0.43 

H2 0.62 0.06 0.08 0.10 0.73 0.24 0.10 0.34 0.08 
 

0.52 0.44 0.57 

Treatment 
effect 

T *** *** *** *** *** *** *** *** *** 

 

** *** ns 

G *** *** *** *** *** *** *** *** *** 

 

*** *** *** 

T*G *** *** *** *** *** *** *** *** ***   * ns ns 

                  

   (Continues) 
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TABLE 2.1 | (Continued) 

Year Statistics 
Water 

Regime 

Agronomic traits   Grain quality  

PH (cm) GY (g/row) SDW (g/row) PBW (g/row) TKW (g) SNms KNms KNSp HI   GPC (%) GSC (%) NDF (%) 

2018 

Mean 
Rainfed 85.44 272.84 302.80 573.44 47.92 771.05 30307 39.98 0.48 

  
14.26 72.91 18.20 

Drought 76.88 107.71 134.05 241.64 42.13 414 13500 32.76 0.44   12.31 73.34 17.79 

  Lost (%) 10.02 60.52 55.73 57.86 12.07 46.31 55.45 18.05 7.34 
 

13.63 -0.58 2.25 

CV (%) 
Rainfed 10.81 13.30 12.60 11.80 7.52 12.31 15.20 13.73 8.22 

  
5.30 1.39 4.11 

Drought 8.59 31.40 20.70 24.20 6.90 14.46 22.70 17.62 10.53   7.55 1.54 6.56 

Heritability 

Rainfed 0.67 0.32 0.06 0.17 0.72 NA 0.27 0.43 0.16 
 

0.59 0.61 0.22 

Drought 0.77 0.46 0.42 0.49 0.46 0.32 0.49 0.43 0.22 
 

0.53 0.55 0.04 

H2 0.85 0.33 0.34 0.39 0.68 0.12 0.39 0.22 0.42 
 

0.65 0.64 0.12 

Treatment 
effect 

T *** *** *** *** *** *** *** *** *** 
 

*** *** *** 

G *** *** ** *** *** ns *** *** *** 

 

*** *** ns 

T*G ns ** ns ns * ns ns *** ns 

 

ns * ns 

Overall 

Mean 

Rainfed 82.18 238.415 247.61 484.825 43.51 739.60 29100 40.38 0.50   14.36 72.58 18.25 

Drought 66.67 74.61 100.11 175.42 38.44 350.21 9880 27.05 0.41   13.29 72.36 18.04 

Lost (%) 18.87 68.71 59.57 63.82 11.66 52.65 66.05 33.01 17.62 
 

7.50 0.30 1.18 

Factors 
effect 

Year (Y) *** *** *** *** *** *** *** *** *** 
 

*** *** *** 

T *** *** *** *** *** *** *** *** *** 
 

*** ** *** 

G *** *** *** *** *** *** *** *** *** 
 

*** *** *** 

T*G * *** *** *** *** *** *** *** *** 
 

*** * ns 

Y*T *** ns *** *** *** *** *** *** *** 
 

*** *** * 

Y*G ns ** *** ** ns * ns ** ** 
 

* ns ns 

Y*T*G ns ** ns ** ns ns ns *** ***   ns ns ns 

Abbreviations: PH, plant height; GY, grain yield; SDW, shoot dry weight; PBW, plant biomass weight; TKW, thousand kernels weight; SNms, spike number per meter square; 

KNms, grain number per meter square; KNSp, grain number per spike; HI, harvest index, GPC, grain protein content; GSC, grain starch content; NDF, neutral detergent fiber; CV, 

coefficient of variation; H2, trait heritability estimates; The significance level: *P<0.05, **P<0.01, ***P<0.001; ns = non-significant. 
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2.4.3. Modern cultivars perform better under both drought stress and control conditions 

The absolute breeding progress (ABP) in the diversity panel was estimated by testing the significance of 

the slope (increase per year) from the regression model of the trait of interest against the years of release 

of cultivars. The results (Figure 2.1, Figure 2.S5) revealed three ABP patterns when the slopes of rainfed 

and drought treatments are compared (Table 2.S4). The first and second patterns were observed when 

both slopes are either positive or negative, while the third pattern occurs when the slope under drought is 

opposite sign compared to the one under rainfed (Table 2.S4). Although, GY was increasing with year of 

release in both control and drought conditions, the increase under drought was higher than under rainfed 

(Figure 2.1A). We didn´t observe any case where breeding increased cultivars performance under rainfed 

while reducing it under drought. As shown in the scatter plots (Figure 2.1), the observed variation among 

cultivars across all regression lines was higher under drought than under control conditions. The relative 

three decades of breeding progress [BPr (%)] was described by the ratio between the trait value in 2010 

and the one in 1980 (Table 2.S4). The highest increase was observed for GY and KNms with 12.16% and 

9.27%, respectively under drought. Breeding has increased the HI, both under rainfed and drought 

conditions with a relative increase of 4.52% and 6.32%, respectively. The regressions models of traits vs 

year of release comparing the rates of breeding progress under both water regimes showed that the 

coefficients (intercepts and slopes) observed under drought significantly differed from the ones under 

rainfed conditions for PBW, SDW, PH, and SNms (Table 2.S5). 

We compared the performance of the modern cultivars that are the newest (released after 2010) vs 

oldest (released before 1980) ones under each water regime using t-test of traits mean values between 

these two contrasting years of release (Figure 2.2, Figure 2.S6). Modern cultivars consistently performed 

better under both rainfed and drought stress conditions for yield components, GSC and NDF, except for 

PH and GPC where old cultivars recorded the highest performance (Figure 2.2, Figure 2.S6). SDW of 

old cultivars was higher than modern cultivars under rainfed while no significant difference was found 

under drought stress. Modern cultivars developed more spikes per m
2
 than oldest cultivars under drought 

stress, whereas under rainfed conditions both groups did not show significant differences.  

Further, we calculated the drought stress-weighted performance (SWP) to evaluate the drought 

tolerance status within the evaluated germplasm. Following the SWP index, cultivars with higher SWP 

values performed better under rainfed conditions and were more drought tolerant than cultivars with 

smaller values. As shown in Figure 2.3A, fifty cultivars obtained a SWP above the third quartile (20.62) 

and were considered drought-tolerant, whereas fifty cultivars with SWP average of 15.75 had their SWP 

smaller than the first quartile (16.95), hence were considered drought sensitive. The consistently selected 

tolerant (20) and sensitive (20) from the three categories of traits (agronomic, development, and grain 
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quality), and are presented in Table 2.S6. Among them, modern cultivars had the highest SWP indices, 

indicating they are more tolerant to drought (Figure 2.3B). The PC1 that explained 50.3% of the total 

variation in the PCA analysis separated the 20 tolerant and the 20 sensitive cultivars. The parameters that 

contributed to the difference between cultivars were KNms, GY, PBW, LGr, LRr, and GSC with the 

highest to the lowest in that order (Figure 2.3C). 
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A B C 

FIGURE 2.2 | Comparison of breeding progress in agronomic and grain quality traits between two con-

trasting years of release groups under rainfed (control) and drought stress conditions. The oldest cultivars 
were released before 1980 (gold color) while the modern were released after 2010 (dark green). A, B, and 

C are illustrating the comparison of GY, KNms, and HI, respectively. 

FIGURE 2. 1 | Regression plots showing breeding progress in agronomic traits on Blues values for two 

growing seasons. Each dot represents a BLUE value of a cultivars and the colored area represents the 
confidence interval of the regression line. The slopes of the linear regression lines (green lines for rainfed 

conditions and orange values for droughts stress field) are referred to absolute breeding progress and the 

relative breeding progress is the ratio between the values in 2010 and 1980 as show in Table 2.S4. A, B, 

and C are breeding progress in GY, KNms, SDW, respectively. The abbreviations of traits names are 
given in the legend of Table 2.1. 
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A B 

C 

FIGURE 2.3 | Representation of the studied cultivars based on SWP. (A) SWP representation of all the 

200 cultivars classified into four drought tolerance groups. The dotted line represents the average SWP 
value of the entire population (SWP=18.96). (B) The number of selected twenty drought-tolerant and 

twenty drought-sensitive cultivars. Selected cultivars were classified into Newer (released in/or after 

2000) or older (released before 2000). The selection was based on SWP of agronomic and grain quality 

traits, and the visual scores of developmental traits under drought stress conditions. (C) Scatter plot 
showing clustering of the tolerant (green) and sensitive (red) cultivars based on the PCA analysis of their 

SWP rankings of evaluated traits. 
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2.4.4. Marker-trait associations (MTAs) detected under both water regimes and markers 

interacting with water regimes 

GWAS identified 78 significant MTAs (P<10
−04

) across 26 QTL regions based on the chromosomal LD 

(Table 2.Sxl1; Table 2.Sxl2; Table 2.Sxl4). In total, 53 MTAs were found under drought and 26 under 

rainfed conditions. All QTL found under stress conditions are drought responsive since they were not 

detected under control conditions. The proportion of phenotypic variance explained (PVE) given by all 

SNP markers averaged 8.27% ranging from 6.84 to 10.27% under rainfed, and averaged 8.26% ranging 

from 6.12 to 11.29% under drought stress (Table 2.S7; Table 2.Sxl1). Chromosomes 7B, 1D, and 5D 

harbor the highest number of detected MTAs under drought conditions (Figure 2.S7). Interestingly, SNP 

maker AX-109506123 on chromosome 5D at 528.819 Mbp exhibited a pleiotropic effect on SWD and 

PBW (Table 2.Sxl3). Among the 26 QTL regions, 9 and 4 of them comprised SNP-clusters with at least 

two MTAs, under drought and control conditions, respectively. The other 13 QTL regions included single 

MTAs (Table 2.Sxl4). A hotspot of 17 MTAs in SNP-clusters associated with SDW under drought 

conditions was found on chromosome 7B in a chromosomic region of 32 Mbp length, while under control 

conditions a hotspot of 7 MTAs for KNSp was found on 5A. The genetic region on 5D from 542.108 to 

546.910 Mbp was a QTL hotspot for GSC under drought comprising 5 MTAs in the cluster (Figure 

2.S7). 

A total of 19 QTL regions comprising 87 MTAs were significantly interacting with water regimes 

for seven agronomic and grain quality traits. Among them, 10 harbor SNP-clusters, while 9 QTL regions 

comprised each a single MTAs (Table 2.Sxl6). PBW had the highest number of MTAs in SNPs-cluster 

on chromosome 2A (23) and 5D (16) in a region from 675.080 to 677.043 and from 559.729 to 562.834 

Mbp, respectively. The SNP-cluster involved in GY was co-located with the QTL detected for PBW on 

chromosome 5A, which contained the highest number of interacting effect MTAs associated with GY, 

PBW, KNms, and GPC. 

2.4.5. Polymorphisms in relationship to breeding progress (BP)  

GWAS identified 28 congruent significant MTAs comprising 12 MTAs significant at P<10
-4

 and 16 

(P<10
-3

) associated with breeding progress (Figure 2.4A,B). SNP markers explained from 5.86 to 11.34% 

of the observed phenotypic variation (R
2
) (Table 2.Sxl1). Among them, six and two SNPs detected on 

chromosomes 3A and 5D, respectively, were verified after FDR correction at Q=0.05 (Figure 2.4A). The 

associated SNPs on 3A were in a LD block located at 500.988–503.027 Mbp (Figure 2.4C). The ones on 

5D were located within a chromosomal region composed of two LD blocks between 107.584 Mbp and 

192.270 Mbp. The first LD block covers 15.58 Mbp interval, while the second LD block is 86.492 Mbp 

(Figure 2.4D). 
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We performed a principal component analysis based these 28 identified MTAs to determine the 

genetic relationship among cultivars from high and low SWP values. The PCA clearly separated the 

wheat cultivars based on their drought tolerance status (Figure 2.5). Most of the recently released 

cultivars were drought-tolerant and belong to one group, whereas the old cultivars were the drought-

sensitive. The first three PCs explained 82.75% of the observed genetic variation. The PC1 accounted for 

66.63% of the variation and mostly depicted the difference between drought-tolerant new and drought-

sensitive old cultivars. This component obtained higher loadings values from SNPs makers located on 

chromosomes 3A and 5D. The biplot PC1 vs PC3 displayed drought-tolerant modern cultivars in the 

down left quadrant, whereas drought-sensitive, which were old released cultivars, were scattered 

randomly in the whole biplot. 
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FIGURE 2.4 | Association mapping for year of release. (A) Manhattan plot from association mapping 

using the MLM. The top 13 SNPs are shown in gray or dark gray (bigger size circle) and the SNPs ex-
ceeding the significance threshold of Q=0.05 FDR correction are shown in red; the MTAs in dotted red 

squares are in common with GSC. (B) QQ plot of expected and observed P values. (C) The peak region 

on chromosome 3A span in a region of 0.643 Mbp from 502.398 to 503.027 Mbp harbored 6 MTAs in 

LD block. (D) The peak region on chromosome 5D spanning in a region of 15.58 Mbp size had two 
MTAs TA002565_0478 and wsnp_Ex_rep_c67164_65655648 in the first block, while the second block 

of 86.492 Mbp size comprised three MTAs wsnp_Ex_c65985_64188864, 

wsnp_Ku_rep_c72922_72561803, and Excalibur_c10046_579. In (C) and (D), pair-wise LD between 
SNP markers is indicated as r

2
 values: dark red indicates a value of 1 and white indicates 0. The dotted 

squares in (C) and (D) denote the linkage blocks that contain high significant SNPs on 3A and 5D. The 

color scaled legends at the right side of the Manhattans plots in c and d indicate the SNP density in a 

chromosomal region. 
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FIGURE 2.5 | Principal component analysis (PCA) plot using a PCA matrix (Tassel 5.2) estimated 

with data from 30 SNPs involved in breeding progress of drought-tolerant (green color) and drought-
sensitive (red color) wheat cultivars previously identified among the studied population. 
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2.4.6. Haplotype CC selected through breeding has enhanced grain GSC and drought tolerance 

Comparison of detected MTAs (P<10
-3

) associated with BP and the ones associated with agronomic and 

grain quality traits under both water regimes revealed chromosome 3A harbors SNPs with pleiotropic 

effect on BP and GSC (Table 2.Sxl8). Moreover, the QTL on chromosomes 3B and 4B showed drought 

inducible effect and were associated with GSC under drought conditions (Table 2.Sxl8). The haplotype 

block on chromosome 3A located at 496.991 Mbp (Figure 2.4C), detected with AX-158576764 and AX-

111076088 SNPs was associated with GSC under control and drought conditions (Figure S8). The 

haplotype representing their major allele (CC) significantly contributed to higher GSC than the minor 

allele (TT) under both water regimes (Figure 2.6A,B). Likewise, that major allele (CC) has contributed to 

higher GY under drought stress. However, under rainfed conditions, the difference between both alleles 

of the haplotype was not significant for GY (Figure 2.S9). The analysis of the allele frequencies of the 

associated haplotype-block 3A revealed that the allele "CC" conferring higher GSC were favorably 

selected against the alleles "TT" that is associated with low GSC throughout the wheat breeding history 

(Figure 2.6C, Figure 2.S9).   
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FIGURE 2.6 | Allele AX-158576764 effect on GSC under (A) rainfed and (B) drought conditions. (C) 

The trend in the allele frequency of the haplotype block including the markers AX-158576764 and AX-
111076088 over years of release of the cultivars is displaying an increase in the haplotype frequency 

(number of cultivars) having the favorable alleles or haplotype (CC). 
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2.4.7. Identification of candidate genes located in QTL intervals 

High confidence (HC) candidate genes at the vicinity of the detected SNP-clusters were retrieved from 

the genome assembly of Triticum aestivum cv. Chinese Spring. Under rainfed conditions, 94 HC genes 

were retrieved from six QTL regions (on 1D and 2A), whereas, under drought stress, 323 HC genes were 

obtained from nine QTL regions (on 4A, 4B, 4D, 5A, 5D, 7B). The chromosomal regions underlying 

breeding progress (BP) contain mostly antiporters and transmembrane proteins and are enriched in genes 

involved signal transduction, in redox homeostasis and detoxification, and included those associated with 

defense mechanisms against biotic and abiotic stress. Likewise, under drought conditions, the genes 

category that were present for BP were also significantly detected under drought conditions. However, 

under rainfed conditions, those genes were not notably present in the vicinity of the detected SNPs 

(Figure 2.7). 

Specifically, QTL regions underlying traits under drought stress conditions were co-located with 

genes involved in primary metabolism such as photosynthesis activity namely electron transport, 

dehydrogenase, and oxidoreductase activity (GO:0004616; GO:0016491; GO:0055114) as well as cation 

and zinc transporter in stress response mechanism (Table 2.Sxl5). The genetic region of chromosome 7B 

associated with SDW (488.412 to 520.418 Mbp) with AX-109411217 and AX-109328820 as MTAs peak 

harbored 177 HC genes. Under rainfed conditions, marker AX-108905462 on 5A for KNsp, AX-

109506123 on 5D for PWB, and BS00101408_51 on 7B co-segregate with genes involved in molecule 

transport activity such as oligopeptide, heavy metal, sugar, and nucleobase ascorbate transporter, and 

UDP-glycosyltransferase activity. 

The analyses of the genomic regions of the SNP-clusters interacting with water regimes indicated 

that most of the candidate genes identified in this region belong to categories of genes involved in 

metabolic processes (GO:0008152), transferase activity (GO:0046912), and genes encoding for drought-

responsive proteins. Further, chromosomal regions on 2B and 5D associated with KNms and PBW co-

segregate with genes involved in disease resistance whose gene ontology (GO:0043531) terms are related 

to protein and ADP binding (Table 2.Sxl7). 
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The QTL regions on 3A, which underlaid the breeding progress, harbors 8 HC candidate genes 

(Table 2.S2), including those whose functions are related to carbohydrate metabolic process 

(GO:0005975), protein phosphorylation (GO:0006468), and GTPase activity (GO:0003924). The 

chromosomic region on 5D, which showed significant association with BP, contains 267 HC genes, 

including some involved in stress response mechanism (GO:0006950), disease resistance, starch synthase, 

and photosynthesis activity including several dehydrogenases involved in oxidoreduction process 

(GO:0015979) (Table 2.Sxl5). 

  

FIGURE 2.7 | Genes annotation and ontological classifications of the associated DNA sequences under-
lying breeding progress and the traits of interest under drought and rainfed conditions using GWAS.  
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2.5. Discussion 

The aim of this study was to evaluate the genetic variation for developmental, key yield components and 

grain quality traits, and link the observed phenotypic variation to QTL contributing to high GY, grain 

quality and improved drought tolerance in wheat. To the best of our knowledge, this is the first study 

using different types of quantitative traits and breeding progress information in a diverse wheat 

germplasm to identify drought tolerant genotypes and drought responsive QTL regions. The presented 

results reveal wide phenotypic variation in most of the agronomic, developmental, and grain quality traits 

evaluated and the detected heritability estimates ranged from low to high. This suggests that these traits 

can be exploited in developing drought-tolerant wheat cultivars. 

2.5.1. Reduction of cultivars performance in agronomic, developmental, and grain quality traits 

under drought stress 

Drought stress significantly reduced the GY by 68.71% and yield components, especially KNms by 

66.05% compared to control conditions. The highest impact of drought on the GY may be partly due to 

the cumulative effects it exerts on the yield-related traits as well as the flowering and grain filling stage 

(Farooq et al., 2014, Mohammadi, 2018; Sallam et al., 2019). For instance, reports indicated that drought 

stress caused a significant reduction in yield component traits like plant growth, spike number due to 

early death of tillers, spike size, and TKW (Harris et al., 2002; Ozturk & Aydin, 2004; Daryanto et al., 

2016). Following heading, prolonged drought can reduce the pollination of the ovary because of an 

increased ABA concentration in the spike, leading to an increased seed abortion and thus to a reduced 

seed set (Weldearegay et al., 2012). It is also known that drought can cause significant limitations during 

grain filling due to reduced net photosynthesis caused by oxidative damage to chloroplasts and stomatal 

closure (Farooq et al., 2014). As an example of limitations, we observed that drought stress has reduced 

time to reach growth stages, hence it has stimulated plant growth, which negatively impacted GY as 

reported in several previous studies (Barnabás et al., 2008; Munjonji et al., 2016; Sukumaran et al., 2018). 

Although, we did not measure the grain filling duration, the drought stress imposed at early growth stage 

may have reduced this stage, thus GY more in 2017 than in 2018 under drought conditions. The reduction 

in GY and yield-related traits under drought stress is a common phenomenon and is controlled by several 

complex molecular, physiological, and morphological factors across plant growth stages (Mohammadi, 

2018; Kadam et al., 2018). 

In the present study, drought had negative effect on GSC, as already reported (Barnabás et al., 2008), 

and also on GPC. Generally, drought stress reduces starch accumulation and increases the protein content 

(Flagella et al., 2010). The decrease of GPC detected in our study may be due to the application of 

drought at very early stage of plant development. Indeed, it has been reported that the effect of drought 
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stress on grain quality highly depends on its intensity and when it occurs (Rakszegi et al., 2019). Larger 

phenotypic variations were observed among the wheat cultivars under drought stress when compared to 

the rainfed conditions as indicated by higher CV and more dispersed scatter points across regression lines. 

That would suggest the existence of substantial genotypic differences in the response to drought in the 

studied population. This high genetic diversity is a valuable resource providing the fundaments for future 

breeding for drought tolerance (Frei, 2015; Oyiga et al., 2016). Under rainfed field, it was not obvious to 

detect visually the difference between the genotypes for their developmental traits. Contrary to that, under 

drought conditions, a clear estimation of the genotypes´ response to drought was possible. The visual 

scored developmental traits showed the highest CV in the study, hence confirmed the existence of huge 

genetic variation when plants are under stress conditions as reported (Oyiga et al., 2016). The lower 

heritability values observed under drought compared to rainfed conditions reflect the higher variation 

among repetitions. Also, the heritability calculated across treatments was generally lower compared to 

heritability within treatments. That could be explained by the significance difference between genotypes 

performance under drought and rainfed conditions. 

The correlation between GY and KNms was higher under drought than under rainfed. Monneveux et 

al. (2012) reported that KNms is the most relevant trait among yield components contributing to high GY. 

The highest slope from the regressions GY vs KNms was found under drought conditions, suggesting the 

increase of KNms would enhance more the GY under drought than under rainfed conditions. Moreover, 

an increase in the grain starch correspondingly increased the GY, particularly under drought stress. Thus, 

could serve as an important proxy when breeding for drought tolerance. High starch deposition could be 

connected to higher photosynthetic activity and photosynthates assimilation, which would increase KNms 

and consequently GY. Starch availability is essential during embryo development, and sufficient starch 

greatly increases the number of fertile floret, hence the KNms (Boyer and Westgate, 2004). Our finding 

of lower correlation between TKW with GY observed under drought conditions compared to rainfed has 

been previously reported by Del Pozo et al. (2016) and that could be due to the decrease of TKW under 

drought conditions. NDF showed negative correlation with GPC, and positive association with GSC 

under both water regimes, but inconstantly associated with agronomic traits across water regimes. 

Drought effect on NDF was not significant in 2017, but it significantly decreased this nutritional 

parameter in 2018 in which no genotypic effect was observed. The effect of drought on fiber utilization 

by animals are less clear and limited (Ferreira and Brown, 2016; Vincent et al., 2005; Ferreira et al., 

2021). 

The present study showed that the relative values of leaf greenness were positively associated with 

the relative leaf rolling which is due to the loss of cell turgor pressure in leaves. Both traits were highly 

correlated with GY under drought treatment. The stay green of flag leaf provides insights on the ability of 
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leaves to remain photosynthetically active due to delayed senescence (Thomas and Howarth, 2000), and 

has been reported to be highly correlated with water use efficiency during grain development and with 

GY under drought conditions (Christopher et al., 2016). Cultivars with prolonged stay green ability are 

high yielding because up to 50% of the photosynthates needed during grain filling are contributed by flag-

leaf photosynthesis (Larbi & Mekliche, 2004; Sylvester-Bradley et al., 1990). 

2.5.2. Breeding contribution to cultivars performance and drought tolerance  

Contrary to the belief that crop improvement has reduced their potential to adapt to future challenges such 

as drought (Byrne et al., 2018; Swarup et al., 2020), our results showed that breeding has improved 

cultivars performance under both water regimes. We discovered that breeding has increased the KNms, 

HI, and GY production under both rainfed and drought conditions as previously reported (Royo et al., 

2007). Drought-tolerant cultivars differed from sensitive ones by showing higher performance under 

drought conditions, hence having higher SWP values. Interestingly, most of the identified drought-

tolerant cultivars are the recently released cultivars. They showed high yielding potential than older 

cultivars under drought stress conditions. Reports have also shown that modern cultivars are higher 

yielding compared to older ones under low nitrogen application owing to accumulated genetic variants 

conferring favorable effects on key yield traits (Voss-Fels et al., 2019; Slafer & Araus 2007). Breeding 

has improved yield potential under optimum conditions as well as under stressful conditions through 

developing semi-dwarf cultivars with reduced plant height, which has improved resource allocation and 

increased green canopy duration (Lichthardt et al., 2020). Under rainfed conditions, the breeding progress 

for GY was low, whereas Voss-Fels et al. (2019) found high breeding progress for this trait under both 

limited conditions (drought, low agrochemical inputs) and optimal conditions (irrigated, high 

agrochemical inputs) using the same wheat panel. The low breeding progress obtained for GY under 

rainfed in the current experiment may be due to the small plot size, which in the absence of any stress 

may not favor detection of differences, as shown by low CV under rainfed than under drought conditions. 

The breeding progress on GPC was decreasing over years as reported in Voss-Fels et al. (2019). using the 

same panel. However, they found an increase of the total protein content per ha over year of release. 

2.5.3. Marker traits association and SNP clustering  

The association mapping identified 25 and 53 MTAs under rainfed (PVE= 6.84-10.27%) and under 

drought (PVE= 6.12-11.29%) conditions, respectively. The higher PVE recorded under drought is 

indicating that the related genes are explaining more the observed variation under this condition than 

under control. This suggests that breeding for drought prone environment using genetic markers is 

achievable and promising to improve GY (Kumar et al., 2008; Mohammadi et al., 2014). The threshold 

for significant SNP set P<10
-4

 enabled the identification of SNPs with strong effects on evaluated traits. 
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SNP-clusters under drought carried more MTAs than rainfed conditions, indicating an activation of great 

variety of genes with synergistic effect (Yang et al., 2010). As previously reported, drought stress is a 

major external stimuli that causes the overproduction of oxidative reactive oxygen species (ROS), which 

leads to the disruption of cells membrane integrity and later reduction in plant growth (Mohammadi, 

2018). Plants respond to drought stress by producing several antioxidant enzymes such as catalase (CAT), 

ascorbate peroxidase (APX), guaiacol peroxidase (GPX) playing important role in ROS scavenging 

(Dudziak et al., 2019). 

We found on 4B (marker AX-110400483), a QTL affecting PH. The homeologous locus on 4D, that 

led to a reduction of plant height has been recently reported (Alqudah et al., 2020). Likewise, the 

haplotype block on chromosome 4B including SNP markers associated with breeding progress, has 

reducing effect on plant height and TKW, but increased grain starch content and yield. The chromosome 

4B and 4D have been reported to harbor the genes Rht-B1b (formerly Rht1) and Rht-D1b (Rht2) in wheat 

(Börner et al., 1996; Hedden, 2003).  

2.5.4. Genetic regions with hotspot QTL affecting multiple traits and related candidate genes 

The GWAS performed revealed that the QTL region on chromosome 3A has a pleiotropic effect on BP 

and GSC. QTL regions for grain quality traits such as seed loaf volume and crumb quality were identified 

on chromosome 3A (Kuchel et al., 2006). It has been reported that that chromosome 3A played an 

important role in wheat yield and harbors genes related to morphological and physiological traits such as 

tiller inhibition, a shoot architecture influencing trait (Araus et al., 2008; Kuraparthy et al., 2008; 

Czyczyło-Mysza et al., 2011; Farooq et al., 2014). The in silico analyses showed that this region located 

at 500.988–503.027 Mbp interval contains 8 HC genes, whose biological functions specify them as the 

probable candidate genes for the observed drought stress response (Table 2.Sxl5). These genes were 

found to regulate carbohydrate metabolic process, protein phosphorylation, and GTPase activity, etc. in 

wheat/or plant species, and might play a role in higher starch content in newer released genotypes. 

Likewise, some transcription factors like WRKY which mediates several abiotic stress responses (Phukan 

et al., 2016) and RING binding protein genes affecting ubiquitin protein ligase activity (GO:0005515; 

GO:0008270) were identified in the same chromosomic region. 

QTL region on chromosome 5A spanning from 586.153 to 589.296 Mbp with the peak marker AX-

108905462, which included a hotspot MTAs for KNSp under rainfed conditions, has been previously 

reported to have an association with leaves bronzing score (LBS) and ozone tolerance (Begum et al., 

2020). QTL mapped for LBS of rice under ozone stress positively affected agronomic traits such as GY 

(Wang et al., 2014) and grain quality (Jing et al., 2016). Previous studies revealed the association of 

chromosomic 5A region to KNSp, GY, and flag-leaf rolling index (Czyczyło-Mysza et al., 2011; Farooq 
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et al., 2014). Therefore, the highest MTAs hotspot under rainfed in our study could be of high interest to 

increase the number of the kernel per spike, which has an important effect on wheat yield. 

The linkage block on 5D detected also for breeding progress has been reported as a region harboring 

QTL associated with KNSp, TKW, and GY (Czyczyło-Mysza et al., 2011; Farooq et al., 2014). This 

linkage group co-segregates with genes involved in photosynthesis activity such as protein disulfide 

oxidoreductase activity, electron carrier activity and contains PSII reaction center protein complex that 

produces the ATP and reduces the NADP+ to NADPH. Both ATP and NADPH are converted into 

glucose in the light-independent reaction of photosynthesis (Shi & Schröder, 2004). Reduction of net 

photosynthesis caused by oxidative damage to chloroplasts and stomatal closure under drought (Farooq et 

al., 2014) can cause significant limitations during grain filling, hence a limiting factor of higher yield. 

However, the activation of various drought responsive genes under enable some wheats genotypes to 

maintain physiological activities (Yue et al., 2006; Luo, 2010) and tolerate drought stress. The identified 

drought-responsive QTL regions and related candidate genes unraveled in our study should warrant 

further investigation as they may facilitate the molecular breeding of drought-tolerant wheat, thereby 

contributing to global food security.  
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2.6. Conclusion 

The present study identified KNms as the key component that importantly contributes to GY 

under drought stress conditions and uncovered genetic loci underlying GY under drought stress 

and rainfed conditions. The high density of SNPs mapped across the 21 chromosomes has 

enabled with precision the identification (less than 10 Mbp) of the genetic region associated with 

traits of interest. SNP-clustering approach was useful to identify chromosomal regions harboring 

QTL hotspots of MTAs with synergic effects. Our findings demonstrated the existence of huge 

genetic variation in the evaluated germplasm that could be used to develop drought-tolerant 

cultivars. Cultivar performance particularly for GY has been increased by breeding under rainfed 

and drought conditions through improving key yield components such as SNms and KNms, and 

incrementing favorable alleles for high grain starch accumulation, which afterward positively 

affects wheat yield. Breeding has contributed to conserve genomic regions that contain important 

genes playing role in detoxification against oxidative stress and in defense mechanisms against 

drought stress. Upon validation, these favorable alleles regulating these traits can be effectively 

used in breeding programs to improve yield under drought-prone environments. 
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3.1. Abstract: 

Key message Breeding has selected multiple pleiotropic and stable drought-responsive alleles on 

chromosome 3A conferring higher photosynthesis activity and grain yield under drought stress in winter 

wheat. 

Water deficit is the most severe stress factor in agricultural crop production threatening global food 

security. In this study, we evaluated the genetic variation among 213 wheat cultivars for photosynthetic 

traits under different field drought stress scenarios. Significant genotypic, treatment and their interaction 

effects were detected for chlorophyll content and florescence parameters. Drought has reduced 

photosynthesis activities such as effective quantum yield of photosystem II (YII) from anthesis growth 

stage on. Leaf chlorophyll content (SPAD) were significantly correlated with YII and non-photochemical 

quenching under drought conditions measured at anthesis growth stages. Hence, it is an indicator of plant 

drought tolerance status that can be used for high throughput screening of plant physiological status. 

Breeding has significantly contributed to the increase in photosynthesis efficiency as newer released 

genotype had higher YII and SPAD values than the older ones. Genome-wide association study identified 

a QTL on chromosome 3A for YII under drought, while under rainfed conditions another QTL on 

chromosome 7A for SPAD across both growing seasons. Alleles TT of the haplotype-block on 3A, 

selected through breeding has significant contribution to higher YII and grain yield. 

Keywords: Wheat, breeding progress, drought, GWAS, photosynthesis, SPAD, effective quantum yield 

of photosystem II 
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3.2. Introduction 

Frequent drought events is the most severe stress factor in agricultural crop production (Basu et al., 2016; 

Bray, 1997). It is estimated that by 2025 about 65% of the world population will be affected by drought 

conditions (Hoseinlou et al., 2013, Nezhadahmadi et al., 2013). Agriculture accounts for 80-90% of 

existing freshwater used by humans, mostly for crop production (Morison et al., 2008). Such use of water 

resources are considered unsustainable, especially in dry areas under increased pressure and water 

demand for other purposes (Schlosser et al. 2014; Munjonji et al., 2016). Due to the growing world 

population, expected to reach 9 billion by 2050, the global water and food production demand will 

undoubtedly continue to rise. FAO (2009) has predicted that an increase by at least 50% of the current 

food production is necessary to meet demand. Crop performance under water-limited conditions is 

determined by genetic factors controlling yield potential, drought resistance, and water use efficiency 

(Blum, 2005). Understanding the physiological basis and mechanisms involved in drought resistance is 

therefore of paramount importance. 

Drought resistance can be achieved through several strategies that allow plants to adapt under 

different episodes of drought stress (Fang & Xiong, 2015). These strategies include drought avoidance 

(DA), drought tolerance (DT), drought escape (DE), and drought recovery (Levitt, 1972; Kneebone et al., 

1992; Yue et al., 2006; Luo, 2010; Lawlor, 2013; Fang & Xiong, 2015). Often, plants combine different 

mechanisms to withstand water-deficit stress. Thus, breeding cultivars with high water use efficiency and 

drought tolerance are practical, economical and have shown promising results to enhance yield under 

stress conditions (Liu et al., 2010). However, the major challenge facing wheat breeders and geneticist are 

the lack of evaluation of appropriate traits (Araus et al., 1998), and the polygenic nature of traits 

associated with drought tolerance (Peleg et al., 2009). Various research programs aimed at improving 

wheat drought tolerance were mainly focused on direct selection for yield (Makino, 2011). Nonetheless, 

the improvement by physiological breeding which involves an indirect and rapid evaluation, selection, 

and mapping of genes for drought tolerance can be efficiently exploited. 

Photosynthetic capacity and water use efficiency play a major role in wheat growth and productivity 

under drought conditions (Xu et al., 2017; Sallam et al., 2019). Moreover, Reynolds et al., (2000) have 

shown that grain yield is significantly and positively correlated with both photosynthetic rate and stomatal 

conductance. Makino (2011) and Sánchez et al. (2019) reviewed that more than 90% of crop biomass is 

derived from photosynthetic products. They reported that a genotype with improved photosynthetic 

activity under stress conditions could produce more biomass, suggesting that improving photosynthetic 

adaptation to environmental conditions will help to enhance crops biomass production. Drought is a major 

limiting factor of photosynthesis due to the effect of drought stress on the CO2 diffusion as a result of 
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early stomatal closure. Hence it declines net CO2 assimilation rate and restricts crop biomass 

accumulation (Centritto et al., 2009; Chaves et al., 2003). Other limiting factors are the decreased 

photochemical efficiency of photosystem II considering the decline in chlorophyll pigments under 

drought and the reduced activity of photosynthetic enzymes (Pandey & Shukla, 2015). Although the 

decrease of stomatal conductance as a result of stomatal closure limits transpirational water loss and aids 

plants to conserve water status under drought stress conditions. 

Sensor-based phenotyping has been successfully used to evaluate simultaneously high numbers of 

genotypes for physiological traits associated with drought tolerance in wheat and barley (Araus et al. 

2014, Ghanem et al., 2015). However, the cost and the lack of skilled personal in many institutes across 

the globe remain a major hindrance to using these new technologies in plant science. The most used 

method to phenotype plant physiological traits and evaluate drought tolerance under field or controlled 

conditions is the visual scoring of traits, such as leaf rolling, stay green, leaf wilting, etc. (Sallam et al., 

2019).  

To date, few studies have investigated the effect of drought on photosynthesis and transpiration rate 

across several growth stages on a wheat diversity panel that has been cultivated in the past 50 years. 

Given the importance of photosynthesis in plant growth, assimilates partition within the plant, and 

increasing yield production, it is essential to understand the genetics and gene action influencing this trait. 

The discovery of new traits and genetic markers associated with photosynthetic responses of wheat to 

drought will facilitate the identification of new genetic resources for increased yield and drought 

tolerance. 

Recent technology developments have led not only to the identification of high numbers of DNA-

markers but also the production of whole-genome sequence drafts of several crops including wheat with 

its large size of ~17 gigabases (Shi and Ling, 2018). Genome-wide association studies (GWAS) have 

been used in the past decade to dissect the genetic architecture of polygenic traits and identify significant 

marker-trait associations (MTAs). Compared to bi-parental mapping populations, GWAS panels can be 

developed faster and provide access to a wider range of alleles (Zhu et al., 2008). 

In this research, we screened several photosynthetic related traits and evaluated their relationship 

with the aboveground yield and uncover the SNPs associated with photosynthesis activity under drought 

and rainfed conditions. The objectives of this study were to (1) evaluate the genotypic and drought effects 

on photosynthesis and transpiration dynamics and unravel the growth stage that mainly impacted the final 

aboveground biomass; (2) to provide information and highlight the key role played by breeding in 

improving photosynthesis activity; and (3) uncover the genetic architecture underlying photosynthesis-

related traits.  
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3.3. Materials and Methods 

3.3.1. Plant materials, growth conditions, and management 

The 200 wheat cultivars diversity panels and the experimental setup used in this study and the weather 

conditions have been described in Koua et al. (unpublished). Succinctly, the germplasm was grown under 

two water regimes in 2017 and 2018 growing seasons at the experimental station of Campus Klein-

Altendorf, University of Bonn (50.61° N, 6.99° E, and 187m above sea level, Germany). 

Among the 200 genotypes, a subset of 20 genotypes (core set) were selected based on the SNP 

markers data to represent the genetic diversity of the wheat panel (Figure 3.S1). This core set was used to 

phenotype the dynamic in photosynthetic traits across three and five growth stages in 2017 and 2018 

planting seasons, respectively. 

3.3.2. Phenotyping of photosynthesis, agronomic, and grain quality traits 

We screened several photosynthesis traits (Table 3.S1-3.S2) including the leaf chlorophyll content 

(SPAD) quantified by the SPAD-502Plus (Konica, Minolta, Japan) and the chlorophyll a fluorescence 

parameters (CFP) measured using MINI-PAM II (Mini-PAM; Effeltrich, Germany). Measurements were 

done on the core set at various growth stages considering pre-booting (BBCH30-39), booting (BBCH40-

49), heading (BBCH50-59), anthesis (BBCH60-69), and postanthesis (BBCH70-85). At anthesis, we 

measured these photosynthesis traits on the 200 genotypes set.  

Diffusion promoter leaf stomatal conductance (LSCp, mol.m
−2

.s
−1

) was measured using AP4-Porometer 

(AP4-Delta-T Eijelkampt, Giesbech, The Netherlands), while InfraRed Gas Analyzer (IRGA) based 

stomatal conductance (LSCl, mol.m
−2

.s
−1

), net photosynthetic rate (A, μmol.m
−2

.s
−1

), intercellular CO2 

concentration (Ci, µmol.mol
-1

), transpiration rate (E, mmol.m
−2

.s
−1

), and leaf temperature (T, °C) were 

measured using LI-6800 (LI-COR, Lincoln, USA). 

We performed visual scorings of developmental traits such as plant health state, homogeneity of 

growth, leaf rolling, and leaf greenness according to the methods described by Pask et al. (2012). 

Agronomic traits included grain yield (GY), shoot dry weight (SDW), plant biomass weight (PBW). 

3.3.3. Drought stress tolerance estimation 

The stress weighted performance (SWP) status (Saade et al., 2016) was used to identify the genotypes´ 

drought tolerance level for GY, SDW, SPAD and effective quantum yield of photosystem II (PSII) (YII) 

using the following formula  

  P =                (Equation 3.1) 

where YS and YP are the trait phenotypic value under drought and rainfed conditions, respectively. 
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Thereafter, the genotypes were ranked for each trait from the highest down to the lowest trait´s SWP 

values and were separated into drought-tolerant and sensitive according to their overall SWP ranking as 

described by Oyiga et al. (2016). 

3.3.4. Statistical analyses of the phenotypic data 

A general linear model was used to carry out an analysis of variance (ANOVA) to determine the 

difference between water regimes (T), genotypes (G) as well as their interactions (T*G) using R software. 

Proc Mixed (SAS Institute, 2015) adopting restricted maximum likelihood (REML) was used to compute 

the best linear unbiased estimates (BLUEs) across each year for each water regime and genotype while 

errors due to planting positions (row-and-column effects) in the field plots were corrected by including 

―Replication/Row*Column‖ (Gilmour et al., 1995). These BLUEs were used in downstream analysis 

including GWAS.  

The broad-sense heritabilities were calculated within each treatment, using the following equation 

as described by Gitonga et al. (2014). 

           (Equation 3.2) 

where ζ
2

g the variance components due to genotypes, set as random in the mixed model procedure (SAS 

Institute, 2015) ζ
2
e,the residual and r the number of replicates of each genotype in a treatment. 

Narrow sens or marker-based estimation of heritability (h
2
) which included the kinship-matrix calculated 

in TASSEL (available at: http://www.maizegenetics.net/tassel) was estimated using the package 

―heritability‖ implemented in R software (Kruijer et al., 2015). 

Correlation coefficients (r) for each pair of evaluated traits from obtained using the R program with the 

package performanceAnalytics and the corrplot package was used to visualize the results. The principal 

component analysis of photosynthetic related and developmental traits was done with the package 

FactoMineR and the results were represented in a biplot using the package using the package factoextra. 

To evaluate the representation of a variable on the principal component, the square cosine (Cos
2
) for all 

variables was plotted using the corrplot package. 

3.3.5. Evaluation of the breeding progress in evaluated traits 

The breeding progress in physiological traits was investigated through linear regression of the trait of 

interest against the years of release of the genotypes. The adjusted mean values of each genotype under 

each water regime and growing season were used in the regression analysis. The absolute breeding 

progress (increase per year) was the slope of the linear regression line between the trait of interest and the 

year of release (Lichthardt et al., 2020). 

H2= (𝜎g)2 / [𝜎g2+ 𝜎e2/r] 

http://www.maizegenetics.net/tassel
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3.3.6. SNP genotyping, population structure and linkage disequilibrium (LD) analysis 

The diversity panel was genotyped with 15K Illumina Infinium iSelect chip, and with the 135K Affymet-

rix genotyping array at TraitGenetics GmbH (SGS GmbH Gatersleben, Germany) and described by (Dad-

shani et al., 2021). We used for the genetic analysis, a set of 24,216 SNP markers evenly covering all 21 

chromosomes of wheat. 

Population structure of the diversity set was determined using 2,769 unlinked SNPs (r
2
<0.7) 

selected through SNP pruning with Plink software, which adopted the indep-pairwise algorithm 

considering a window of 3500 SNPs that shifted by 350 SNPs forward after each calculations (Purcell, 

2010). The admixture model using the Bayesian clustering method implemented in STRUCTURE v.2.3.4 

(Pritchard et al., 2000) was run with the obtained 2,769 SNPs, with the inferred number of sub-population 

K ranging from 1 to 10, with 10 replications in each test. The true number of K was determined in the 

structure harvester (Evanno et al., 2005; Earl 2012). Principal component analysis (PCA) was performed 

using TASSEL with 24,216 SNP markers set to identify the genetic relatedness behind the existing sub-

populations. Prior imputation of missing SNP values by the mean was done before the PCA analysis. 

The linkage disequilibrium (LD) among SNP pairs within a defined sliding window equal to 10% of the 

total number of SNPs on the considered chromosome was estimated for A, B, and D genomes in 

TASSEL. The LD decay was determined by plotting LD (r
2
) values against the distance (megabase pairs) 

between SNPs on the same chromosome. Thereafter, we deployed a non-linear regression function 

(Remington et al., 2001) to fit the trend of LD decay across chromosomes, and A, B, and D genomes. The 

genetic distance corresponding to r
2 

= 0.1 for each genome and chromosomes was estimated and was 

considered as the critical distance up to which a QTL could extend. 

3.3.7. GWAS and genetic relationship among drought tolerance contrasting wheat cultivars 

To determine the marker-trait associations (MTAs), we used the mixed linear model (MLM-P+K) 

accounting for population structure (P-matrix) calculated by the PCA and kinship (K-matrix), both 

implemented in software program TASSEL 5 (Yu et al., 2005; Zhang et al., 2010). Variance component 

analysis was set to P3D and compression level was set to the optimum level. The association tests were 

also performed using rrBLUP R package (Endelman 2011). Both GWAS studies were conducted 

following the model: 

 =   + P +  µ +           (Equation 3.3) 

where Y is the phenotype of a genotype; α and β are unknown vectors containing fixed effects; X the 

fixed effect of the SNP; P the fixed effect of population structure given by PCA matrix that included the 

first three components; K the random effect of relative kinship among cultivars, and Ɛ the error term, 
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which is assumed to be normally distributed with mean = 0 and variance δ
2
e. GWAS for breeding 

progress was run with cultivars years of release used as phenotypic values.  

To minimize false positives, only congruent significant (P<10
-4

) MTAs in both analyses were retained 

and reported as significant MTAs in the present study. Thereafter, Benjamini–Hochberg algorithm, which 

is the false discovery rate (FDR) correction procedure adopted in rrBplup (Mangiafico, 2015) was used to 

remove false positive at Q=0.05 using the equation: 

 =       ,          (Equation 3.4) 

where i is the SNP p-value‘s rank, from the smaller to the biggest, m the total number of tests 

corresponding to the total number of SNP 24,216 Q the false discovery rate at 0.05 significance level. 

We compared significant MTAs (10
-3

) underlying agronomic, photosynthesis traits, and BP to identify 

SNPs that have pleiotropic effects on these traits and/or are collocating in the same genomic region. 

Detected SNP loci associated with breeding progress were subsequently used in a principal-components 

analysis (PCA) performed in Tassel to analyze the genetic relationships among older and newer released 

cultivars vis-à-vis their tolerance level. The significant (P<10
-4

) SNP loci detected at genetic intervals 

defined by the chromosomal LD were considered to be in LD (Breseghello and Sorrells 2006; Pasam and 

Sharma 2014) and were grouped into one SNP cluster. 

Genome-wide locus by water regimes interactions was surveyed to detect significant loci 

interacting with water regimes using the PROC MIXED procedure in SAS 9.4 (SAS Institute, Cary, NC, 

USA). The mixed model included the Kinship matrix and PCA matrix calculated in TASSEL as already 

described. The FDR Q-value cutoffs for accepting highly significant marker*treatment interaction 

associated with a trait were set at 1×10
−4

 and only the first fifty significant SNP within this threshold for 

each trait were reported. We also performed a genome-wide SNP-SNP epistatic interaction through 

multilocus approach (Afsharyan et al., 2020). The LogP value cutoff was set at 4 under control to retain at 

least some significant interactions loci against 15 drought conditions to retain the most significant 

interactions. The interaction graph was drawn using the package Circlize implemented in R (Gu et al., 

2014). 

3.3.8. Identification of candidate genes in QTL intervals 

We searched for candidate genes in the interval region of stable or pleiotropic MTAs that were in LD with 

the peak SNP markers. We took the positions of adjacent SNPs that were not in LD with the SNP–cluster 

or with the MTAs of interest as the boundary. The searches were performed in the genome assembly of 

Triticum aestivum cv. Chinese Spring (IWGSC et al., 2018) and only high confident (HC) genes were 

retained. 
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3.3.9. Analysis of the promoter regions of NADH-ubiquinone oxidoreductase genes 

To understand the mechanistic regulation of photosynthesis efficiency, we amplified and analyzed the 

promoter region of the genes TraesCS3A02G287600 (Figure 3.1) located near the marker AX-158576783 

(515.889 Mbp) that is associated with high YII under drought conditions. This gene encodes for 

oxidoreductase activity, NADH dehydrogenase (ubiquinone) activity, and involved in electron transport 

coupled proton transport. It starts from 515.886 until 515.890 Mbp, and is made of three exons 

TraesCS3A02G287600.1-E1, 490 Bp; TraesCS3A02G287600.1-E2, 379 Bp and 

TraesCS3A02G287600.1-E3, 30 Bp. 

We extracted genomic DNA from two selected drought-tolerant cultivars Gourmet (T057), 

Inspiration (T080), respectively released in 2013 and 2007, and two drought-sensitive ones Mironovska 

808 (S176) and Ivanka (S190), released in 1963 and 1998, respectively (in chapter 2, Table 2.S6; Figure 

3.S3). The DNA extraction was done from leaf using a PeqGold plant DNA extraction kit (Peqlab, 

Erlangen, Germany). The PCR amplification reactions were performed in a 25 μL reaction volume 

containing 100 ng of genomic DNA, 5×Taq DNA polymerase reaction buffer, 10 μM of forward and 

reverse primers, 100 μM of dNTP, and 0.5 unit of Taq DNA polymerase (NEB, Frankfurt, Germany). The 

PCR were conducted in thermocycler Flex cycler (Analytik GmbH, Jena, Germany). The following 

conditions were used for the amplification PCR, Heat lid to 110.0°C; 95°C for 4 min and 40 cycles of 

94°C for 30 s, 58°C for 50 s, and 72 °C for 1.5 min, followed by an additional 72°C extension for 10 min, 

and the sample was stored forever at 4°C. The primer sequences were 5′-

CATGTGCAAAAGGGGAAGAT-3′ (forward) and 5′-AAGCATACAGGAGGGGTGTG-3′ (reverse). 

The PCR profiles were visualized by electrophoresis on a 1 to 2% agarose gel stained with ethidium 

bromide. Then, the PCR product was purified using an Invitrogen PureLink Genomic Plant DNA 

Purification Kit (Fisher Scientific GmbH, Germany). Finally, the purified DNA was sequenced using 

thestrand of the primers used for the PCR. The obtained sequences analyzed were using MAFFT software 

(Katoh et al., 2019), SeqMan Pro sowftare, Bioedit (https://bioedit.software.informer.com/7.2/ ), MegaX 

alignment explorer and expasy for DNA to protein translation (https://web.expasy.org/translate/ ), and 

insilico.ehu ( http://insilico.ehu.eus/translate/index2.php ). The transcription factors binding sites were 

analyzed insilico using PlantRegMap/PlantTFDB v5.0 (Jin et al., 2016) and the function Gene Group 

Analysis of PlantPAN 3.0 (Chow et al., 2019). 

  

https://bioedit.software.informer.com/7.2/
https://web.expasy.org/translate/
http://insilico.ehu.eus/translate/index2.php
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Chr 3A; 515,886,480-515,890,148 = 3668 bp A 

B 

FIGURE 3.1 | NADH-ubiquinone oxidoreductase genes TraesCS3A02G287600. (A) Overview of 

drought-responsive genes in QTL intervals in chromosome 3A in the vicinity of the maker AX-

158576783 detected associated with effective quantum yield of PSII. (B) The three exonomic regions 

of the genes. The chromosome regions were retrieved from Ensembl Plants release and expasy web 

application. 
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3.4. Results 

3.4.1. The dynamic in photosynthesis-related traits are affected by drought stress  

To determine the effect of drought stress on the photosynthesis efficiency, we measured the chlorophyll 

content and fluorescence, several photosynthetic-related traits across growth stages under rainfed and 

drought conditions in 2017 and 2018 growing seasons. Analysis of variance indicated significant effects 

of water regimes (T), genotypes (G), and their interactions (W*G) on SPAD in 2017 and on YII and other 

fluorescence parameters in both years and across growth stages (Figure 3.2; Table 3.S3-3.S4). Drought 

stress application has significantly reduced SPAD values from heading growth stage afterwards. The 

effective quantum yield of PSII was declined by 13.95% from booting (in 2017) and heading by 12.08% 

(2018), whereas, under control conditions, it was increasing from heading till anthesis and postanthesis in 

both years (Figure 3.2AB). The non-photochemical quenching (NPQ) which describes plants' protection 

from excess absorbed light, was decreased by almost 50% under drought stress in both years (Table 

3.S4). 

The diffusion-based leaf stomatal conductance (LSCp) declined from booting by 60.21% to anthesis 

and by 72.78% to postanthesis under drought stress, while it was increasing significantly under control 

conditions (Figure 3.2C; Table 3.S5). IRGA-based leaf stomatal conductance (LSCl), photosynthetic 

rate (A), transpiration rate (E), and intercellular CO2 (Ci), were significantly (P<0.01) decreased by 50.23, 

29.53, and 8.95%, respectively, under drought stress at anthesis (Figure 3.2D; Table 3.S6). 

The standard deviations of traits under drought were higher than the ones under rainfed conditions 

(Figure 3.2). The CV among the genotypes ranged from 5.95% for SPAD at booting to 67.41% for Fmin 

at heading under rainfed and from 6.20% (SPAD) to 79.87% (Fmin) under drought conditions. The 

broad-sense (H
2
) and narrow-sense heritability (h

2
) ranged from low values for Fmin under drought 

(h
2
=4.38%) to high values for SPAD under control (H

2
=92.57%) (Table 3.S3).  
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FIGURE 3.2 | Drought stress effect on the photosynthesis related traits across growth stages. (A) Chloro-
phyll content in 2017; (B) effective quantum yield of PSII under drought (red curve) vs control (green 

curve), in 2017 (circle-shaped) and 2018 (squared shaped). (C) Diffusion porometer based leaf stomatal 

conductance in 2018. (D) Drought stress effect on photosynthetic rate (stars filled barplot) and leaf sto-

matal conductance (full colored barplot). The significance between both water regimes is given above the 
graphs in Table S3. In sub-panel A, the first line of significance level is for 2017, while the second line is 

for 2018. The error bars of the curves represent the standard deviation. The thicker one is under drought 

conditions. 
  

        **               *** *** 

      ***            ***               ***   ns       *** 
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3.4.2. Relationship between photosynthetic traits and drought tolerance in wheat 

Pearson coefficient correlation and PCA analysis were performed to examine the relationship between the 

photosynthetic traits and the wheat response to prolonged drought. Results indicate that SPAD was 

significantly correlated with NPQ, FV/FM and YII under drought, and negatively correlated to NPQ under 

rainfed conditions (Figure 3.3, Figure 3.S2). Leaf temperature (DTLA) correlate negatively with 

transpiration rate (E), photosynthesis rate (A) and IRGA-based stomatal conductance (LSCl) under both 

water regimes, and with NPQ and FV/FM under drought conditions. Leaf greenness significantly and 

positively correlated with NPQ and FV/FM, but negatively associated with DTLA under drought stress. 

Photosynthesis rate correlated significantly with LSCl and transpiration rate under control and drought 

stress conditions. The slopes of the regressions A vs LSCl and A vs E indicated that one unit increase in 

LSCl and E enhanced the photosynthetic rate under much more drought than under control conditions 

(Figure 3.3AB). The first two principal components (PC) explained 50.2% of the cumulative variance in 

eleven photosynthesis traits and four developmental traits scored under drought stress conditions (Figure 

3.3CD). PC1 constituted a gradient of drought tolerance oriented from the left with sensitive genotypes 

(Ivanka, BCD_1302/83, and Mironovska_808) towards the right side of the biplot with tolerant genotypes 

(Einstein, Gourmet, and Zentos). Comparison of PCA biplot under drought and control conditions 

revealed that genotypes could show different performance across both water regimes (Figure 3.S3).   
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FIGURE 3.3 | Relationship between photosynthesis rate vs (A) stomatal conductance; (B) and transpira-

tion rate after anthesis growth stage in 2018 growing season. Red diamond-shape and green circle-shape 
indicate the genotypes data points under drought and rainfed conditions, respectively. (C) Principal com-

ponent analysis biplot using 11 photosynthesis related variables and 4 visual scored developmental traits 

under prolonged drought stress condition. Cosines square of the variables contributing to the newly con-
structed principal components (D). The size of the circle in Figure D indicates the intensity of the varia-

ble. The abbreviations of traits name are listed in Table S2. 
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3.4.3. GY is significantly related to plant photosynthesis traits at post-anthesis under drought 

stress 

To evaluate the relationship between photosynthesis traits with plant biomass weight (PBW) and grain 

yield, Pearson correlation coefficients based on cultivars means under each water regime were calculated. 

We observed that the correlation between GY and YII measured at postanthesis i.e. grain filling stage was 

stronger than the ones of GY and YII measured at earlier stages under control conditions (Figure 3.4A). 

Similarly, associations between GY with YII measured at earlier growth stage were lower than the one 

with YII screened at grain filling under drought conditions. Under this condition, significant correlations 

were detected between FV/FM with GY and PBW at anthesis. Although not significant, NPQ had higher 

correlation with GY under drought than under control conditions (Figure 3.4A). Further regression 

analysis between GY vs YII and FV/FM showed that YII significantly explained the variation in GY under 

rainfed, while under drought the change in GY was rather explained by FV/FM. The dispersions of scatter 

points across the regression lines indicated higher genetic variation for both traits under drought than 

rainfed conditions (Figure 3.4B).  



Chapter 3. Chromosome 3A harbors pleiotropic and stable alleles for photosynthesis efficiency 

76 
 

 

  

A 

FIGURE 3.4 | Relationship among evaluated traits. (A) Pearson correlation coefficient of photosynthesis traits 

vs aboveground yield (grain yield and plant biomass weight) under rainfed control (up panel) and drought con-

ditions (down panel). The legend on the right indicates the correlation coefficients. (B) Relationship between 
GY vs YII and FV/FM. The abbreviations of traits name are listed in Table S2-S3. 



Chapter 3. Chromosome 3A harbors pleiotropic and stable alleles for photosynthesis efficiency 

77 
 

3.4.4. Breeding progress has contributed to improve photosynthesis and drought stress tolerance in 

wheat 

We investigated the contribution of breeding to photosynthesis and drought tolerance in wheat by comparing 

slopes of the linear regression between the year of release and the cultivars mean value of the traits of 

interest. The result indicated that breeding from 1963 to 2014 has improved the effective quantum yield of 

PSII (Figure 3.5A). The newer released cultivars showed higher photosynthetic activity potential than the old 

cultivars across all growth stage (GS), with the highest slopes detected at anthesis under drought conditions. 

The years of release significantly explained 32% of the variations (R
2
) observed for YII at anthesis and 23% 

at booting under drought stress. Under rainfed conditions, year of release explained 62%, and 18% of the 

variation for YII at anthesis, and booting, respectively. Moreover, the modern (newest) cultivars had 

significantly higher in YII and SPAD than older ones when their values were compared. Interestingly, for YII 

the difference between the newest and oldest cultivars groups is higher under drought than rainfed conditions 

(Figure 3.5BC). In addition, recently released cultivars were all among the ones with higher leaf greenness, 

healthiness, and leaf unrolling traits scores, suggesting their higher resilience to drought over the older 

cultivars (Figure 3.5D).  
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FIGURE 3.5 | Illustration of breeding progress of evaluated traits. (A) Regression plots showing temporal 

trends in effective quantum yield of PSII among 20 winter wheat cultivars in relation to the year of cultivar 
registration under two contrasted water regimes. The slopes of the linear regression lines (orange line for 

drought and green line for rainfed) are referred to as absolute breeding progress. Boxplots of oldest vs newest 

released cultivars under rainfed and drought conditions for (B) YII, and (C) SPAD screened at head-
ing/anthesis for the whole population; (D) Heatmap representation of the average of visual scores of devel-

opmental traits screened over both experimental years showing a gradient of cultivar with lower relative score 

in red (sensitive cultivars) to high relative scores in blue (tolerant cultivars). 
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3.4.5. Genome-wide association studies uncover QTL of photosynthetic traits for drought 

tolerance on chromosome 3A 

The analysis of the genetic data revealed the subgenome B had the highest number of SNP markers 

(11,887) with chromosome 5B being the largest (2,131), while Genome D (2,364), especially 4D (104) 

had the lowest number of SNPs (Figure 3.S4). The LD decay which determines the resolution of 

association mapping was estimated at 19, 38, and 17.5 megabase pairs (Mbp) to background level of r
2
 = 

0.1, across the A, D and B genome, respectively (Table 3.Sxl1; Figure 3.S5). 

Relative kinship within the diversity panel was evaluated based on pairwise kinship between 

cultivars calculated with 24,216 SNP markers set. From 19,900 pairwise kinships calculated among 

cultivars of the panel, 61.20% of the total number of kinship estimates were below 0, and 38.35% were 

higher than 0 and less than 1 (Figure 3.S6A). The decline in the frequency of higher pairwise kinship 

coefficient was continuous till 1, and few estimates were higher than 1, suggesting a weak genetic 

relationship among the cultivars of the panel (Figure 3.S6B). Population structure inferred using the 

STRUCTURE algorithm and Evano test (ΔK) methods indicated two sub-populations within the 200 

wheat cultivars (Figure 3.S7AB), with the first and second PCs explaining 11.09 and 4.15% of the 

genetic variance, respectively. With membership coefficient allotments of Q>0.8, 99 and 25 cultivars 

were inferred to belonging to sub-population 1 and 2, respectively, and 76 cultivars with Q<0.8 were 

designated as admixture. The two distinct defined sub-groups related to the origins of the cultivars with 

sub-group 1 comprising entries originating from Europe (Fst=0.3133), while sub-group 2 included entries 

outside Europe (Fst=0.0745). The cultivars were colored coded according to this structure result and 

plotted with PC1 vs. PC2 (Figure 3.S7C). The Q1 values of ancestry coefficient (Q matrix) given by 

population structure analysis at K=2 were color coded and mapped with the geographic origins of 

cultivars (Figure 3.S7D). 

GWAS were conducted to identify QTL that are significantly (P<10
-4

) associated with the response 

of the photosynthetic traits to drought stress (Table 3.Sxl2). A total of 51 and 117 MTAs, representing 11 

and 23 QTL regions, respectively, were significantly associated with the photosynthetic traits under 

control and drought conditions, respectively. All the detected 117 MTAs were induced by drought effect 

as they were not present under control conditions. The highest number of significant MTAs was obtained 

for YII under both water regimes (Table 3.Sxl2). The drought inducible QTL interval ranging from 

510.691 to 533.624 Mbp on chromosome 3A was associated with Fmax and YII traits (Figure 3.6; Table 

3.Sxl2). The QTL regions on chromosome 7A covering genetic interval between 267.570-286.152 Mbp 

was associated with SPAD under control conditions (Figure 3.S8), while another one spanning on 10.480 

Mbp length from 583.204 to 593.684 Mbp was detected for YII (Table 3.Sxl2).   
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FIGURE 3.6 | Presentation of GWAS results for YII and SPAD. (A) Cmplot for YII under control (inside 
track) and drought (outside track) including significant MTAs in 2017 and (B) 2018 showing drought in-

ducible QTL on chromosome 3A. (C) Manhattan plot showing a hotspot of associated SNPs on 3A region 

of 22 Mbp length delimited from AX-158597824 (510.691 Mbp) to wsnp_Ex_rep_c66865_65263145 

(533.624 Mbp) associated with YII under drought stress in 2017 and 2018. The legends on the right side 
show the SNP density per chromosomal region 
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3.4.6. Analysis of QTL involved in marker by treatment and SNPs epistatic interactions for 

photosynthetic traits 

GWAS was run to detect QTL involve in marker by treatment interactions effect. Eleven QTL regions 

involving 128 significant markers (FDR<10
-4

) were interacting with water-treatment for SPAD, Fmax and 

YII (Table 3.Sxl3). The highest number (100) of marker*treatment interactions was detected on 

chromosome 3A for SPAD, Fmax and YII traits (Table 3.Sxl3-4). The marker*treatment interaction 

effect analysis on the associated chromosome 3A LD-block between the interval (515.889-516.803 Mbp) 

with the SNP peak AX-158576783 indicated that genotypes with major alleles (TT) recorded significantly 

higher values than those with minor alleles (CC) under drought conditions, whereas the contrary pattern 

was observed under rainfed condition (Figure 3.S9). 

Drought has triggered 19 epistatic interactions between SNP loci at 25 QTL regions for both YII and 

SPAD (Figure 3.7; Table Sxl8). Specifically, 26 SNPs located on 12 chromosomes were involved in 15 

epistatic interactions for effective quantum yield of photosystem II, while 4 epistatic interactions included 

7 SNPs on 6 chromosomes for SPAD. Among SNPs with epistatic interactions were 4 SNPs that as well 

detected for the main-effects in the GWAS analysis performed for YII (Table 3.Sxl8). SNP locus AX-

111134276 located at 556.662 Mbp on 3A, which had significant effect on YII via GWAS under drought 

conditions exerted high epistatic interactions with wsnp_Ku_c28854_38769308 at 690.958 Mbp on 6B. 

Likewise, the locus AX-111134276 interacted epistatically with AX-158588791 at 695.492 Mbp on 6B for 

SPAD. Both wsnp_Ku_c28854_38769308 and AX-158588791 are located in the same QTL region. 

Analysis of the effect of the interacting SNP pairs [wsnp_Ku_c28854_38769308 (G/A) at 690.958 

Mbp on 6B and AX-111134276 (G/A) at 556.662 Mbp on 3A] on YII indicated that combination A*G 

(minor allele* major allele) increased the YII value with 17.72% higher than the combination G*A (major 

allele* minor allele) which decreased it. In the same order, the combination of G*G (minor allele* major 

allele) of SNP pairs [AX-158588791 (T/G) at 695.492 Mbp on 6B and AX-111134276 (G/A) at 556.662 

Mbp on 3A] increased the SPAD by 14.60% compared to T*A combination (Table Sxl8). In addition, 

AX-109950638 (G/A) interacted epistatically with AX-109950638 (G/T) at 699.434 Mbp on 2A for YII. 

Genotypes with alleles pairs G*G (major allele*major allele) had higher YII than the one with A*G and 

A*T (Table 3.Sxl8).  
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FIGURE 3.7 | Circular plot showing the epistatic interactions SNPs with the corresponding positions on 

the genetic map of wheat. Wheat chromosomes 1A–7D are shown in a clockwise direction in the Circos 

diagram. Green colored connections represent epistatic loci on chromosome 3A controlling YII (left pan-

el) and SPAD (right panel). Gray colored connections represent epistatic interactions on other chromo-

somes. The first track line after the chromosome name track is showing the significant (10
-4

) epistatic loci 

detected under rainfed while the following track is showing the ones detected under drought conditions. 
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3.4.7. Breeding has improved genetic factors involved in photosynthesis and drought tolerance 

Stable QTL that were detected in 2017 and 2018 trials and/or showed pleiotropic effect on several traits 

including SDW, PBW, and GY were identified and further analyzed. A total of 57 and 15 SNPs located 

on chromosome 3A and 7A, respectively were stable QTL and/or exhibited pleiotropic effects on the 

traits (Table 3.Sxl5). A QTL region spanning 5.847 Mbp from RFL_Contig4399_956 (496.705 Mbp) to 

AX-111076088 (503.027 Mbp) on chromosome 3A had a pleiotropic effect on BP and YII (Figure 

3.8AB). The LD analysis performed showed that the associated genomic region on chromosome 3A that 

showed pleiotropic effect on YII and BP are in high LD (r
2
>0.86) (Figure 3.8C). Comparison of the 

allelic effects on traits of the SNPs in 3A haplotype-block region (peak marker AX-158576783 at 515.889 

Mbp) revealed that genotypes with TT (major) alleles significantly contributed to higher YII and GY 

when compared to genotypes with the CC (minor) alleles. The observed allele effect was found to be 

stronger under drought conditions (Figure 3.9; Figure 3.S10A-D). Further analysis showed that the 

favorable (TT) alleles were prominently present in the newer released cultivars, whereas the unfavorable 

alleles (CC) were present in old cultivars (Figure 3.9EF). The mean GY and YII of genotypes with TT 

alleles are 76.68 g/row and 0.66, respectively, while the genotypes with CC alleles had 65.92 and 0.53 for 

GY and YII, representing 16.33% (GY) and 23.11% (YII) increase in crop productivity between 1963 and 

2013 (Figure 3.9). 

The drought tolerance status of the cultivars in the studied panel were calculated for GY, SDW, 

PDW, SPAD and YII using the SWP index and cultivars were ranked as tolerant (highest SWP) to 

sensitive (lowest SWP). Based on the SWP index, 10 cultivars with SWP index > 31.99 were considered 

tolerant, while those with SWP index < 27.03 were identified as sensitive genotypes. Interestingly, most 

selected drought tolerant cultivars were recently released, while the old release cultivars were mostly 

observed in the sensitive group (Figure 3.10AB). PCA constructed with the selected tolerant and 

sensitive cultivars using the SNP markers associated with breeding progress trait separated the cultivars 

into two groups. The first two components explaining 75.01% of the total variation and the grouping was 

based on the drought tolerance status of the cultivars. The recently released cultivars being drought 

tolerant (in green/circle-shaped) were mostly clustered in the left side of the plot, while the old released 

cultivars and most sensitive were distributed at the right side of the plot (Figure 3.10C).  
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FIGURE 3.8 | Representation of most pleiotropic SNPs detected under drought. (A)  Pleiotropic SNP 

involved in breeding progress. (B) Map positions of drought inducible SNPs associated with evaluated 

traits. Map distance (in base pairs) is shown on the left. ‗Underlined and bold‘ SNPs are pleiotropic and 

the numbers of stars indicated the number of traits the SNP was underlying; The color of SNPs indicated 

the category of traits the SNP is associated with [―red‖ = agronomic traits (SDW, PDW or GY); ―green‖ 

= photosynthesis traits (SPAD, Fmin, Fmax or YII); ―blues‖ = breeding progress (BP); ―light-blue‖ = 

pleiotropic Agro+Physio; ―purple‖ = BP+Physio; ―dark-red‖ = Agro+Physio+BP]. (C) Chromosomic 

region of 5.847 Mbp length on 3A from RFL_Contig4399_956 (496.705 Mbp) to AX-111076088 

(503.027 Mbp) harbored six SNPs (grey square) associated with BP progress and YII. Two haplotypes 

blocs were found in this region, pairwise D  ́between SNPs of LD block are displayed. 
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FIGURE 3.9 | Allelic effect of AX-158576783 on YII and GY. (A) Allelic effect on YII under 

drought and (B) rainfed; and on GY under drought (C) and rainfed (D); (E-F) Chromosome 3A 

SNPs AX-158576783 (515.889-516.804 Mbp) alleles distribution by cultivars year of release in 

the wheat panel. Two-sample t-test P-value shows significant difference between major (TT) 
and minor (CC) alleles. 
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FIGURE 3.10 | Representation of forty contrasting cultivars. (A) Barplot of 20 drought-tolerant (green) 

and 20 drought-sensitive cultivars groups based on their SWP estimates; the Pvalue indicates significant 
difference between both groups. (B) Barplot of new (green) and old (dark-read) released cultivars based 

on SWP estimates. the dark-red color showed new released cultivars are prominent among the drought-

tolerant cultivars while older ones are mostly present in the drought-sensitive group. (C) Principal com-

ponent analysis based on 28 MTAs of BP separating thirteen drought-tolerant and new released (in green 
circle) and ten drought-sensitive and old cultivars (dark-red square). 
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3.4.8. Candidate genes in the chromosomic regions harboring stable and pleiotropic MTAs 

The candidate genes in the region harboring stable and pleiotropic MTAs were retrieved and the result is 

presented in Table 3.Sxl6. A total of 225 HC genes including 58 on chromosomes 3A were retrieved 

from associated QTL regions. The associated region for YII spanning 12.912 Mbp on chromosome 3A 

contain 42 genes involved in response to oxidative stress. The 3A AX-158576783 haplotype-block 

(515.889-516.804 Mbp) contains genes whose gene ontology (GO) terms are related to cellulose synthase, 

electron transport, coupled proton transport mitochondrial respiratory chain complex I assembly, contain 

WRKY transcription factors, and chaperone protein dnaJ which protect proteins from external stress. 

Chromosomic region of the stable SNP peak Excalibur_rep_c68899_1400 on chromosome 2B underlying 

GY, YII harbored 31 genes (Table 3.Sxl3) mainly involve in peroxidase and non-specific 

serine/threonine protein kinase kinase activity, and stress protector genes such as heat shock 70 kDa 

protein. SNP peak RFL_Contig2257_810 on chromosome 7D, although not in LD block with other 

significant candidate loci was pleiotropic for Fmax, YII and GY under drought. This SNP co-segregates 

with 13 HC genes majorly involved in carbonic anhydrase and oxidation-reduction process heme binging, 

carbonate dehydratase activity, ATP binding protein BP: protein phosphorylation; recognition of pollen. 

The in silico analysis of the 3A and 5B chromosomic regions with high interaction marker*treatment 

effect revealed high sequence homologies to genes involved in drought stress response and 

photosynthesis activity (Table 3.Sxl7). A total of 536 HC genes were found in the five regions where 

SNP peak for interaction effect were located. Thirty-two of these genes are involved in plant response to 

environmental stress and defense mechanisms including heat shock protein and transcription factors, zinc 

finger C3H1 domain, disease resistance protein. We found genes category involved in phosphorylation, 

glycerol metabolic process, electron transport, whose actions play important role in photosynthesis 

activity. 

BLAST searches indicate that most of significant epistatic loci are located in the vicinity of genes 

involved in photosynthesis activity, particularly in oxidation-reduction process and phosphogluconate 

dehydrogenase (decarboxylating). These QTL regions harbor ferredoxin reductase-type FAD-binding 

domain and alternative NADH-ubiquinone oxidoreductase which catalyzes the oxidation of mitochondrial 

NADH. In addition, universal stress proteins, disease resistance protein and nucleotide-diphospho-sugar 

transferases were found (Table 3.Sxl9).   
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3.4.9. Allelic variation in the promoter regoins of NADH-ubiquinone oxidoreductase genes 

Comparison of the four sequences of the TraesCS3A02G287600 promoter region with reference sequence 

revealed four polymorphic sites +70, +212, +241, and +435. The drought-tolerant cultivars possess the 

allele A, C, G, and A at the positions +70, +212, +241, and +435, respectively like the reference allele, 

whereas the drought sensitive had G, T, A, and G at these respective positions (Figure 3.11). The 

similarity among the promoter sequences of the contracting cultivars were assessed through comparison 

of their amino acid sequences. The sequences of drought-tolerant cultivars were more similar; hence, they 

clustered together, while the drought sensitives were clustered in another group (Figure 3.12). 

Analysis of the transcription factors binding sites (TFBS) in the promoter region of 

TraesCS3A02G287600 using PlantTFDB indicated six TFBS overlapping with the polymorphisms site at 

+212 and eight TFBS at +435 (Table 3.Sxl11). Most of the TFBS were in the family of 

APETALA2/ETHYLENE RESPONSIVE FACTOR transcription factors (AP2/ERFs) (Table 3.Sxl11). 

For, instance, the transcriptions factors TFmatrixID_0719 (ID: AT5G18560) binding sites located at +212 

is an ethylene-responsive transcription factor involved in the regulation of gene expression by stress 

factors and by components of stress signal transduction pathways.  
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A 

B 

C 

FIGURE 3. 11 | DNA alignment displaying positions of allelic variation in the promoter region of two 
groups of contrasting cultivars. Alignment were made using SeqMan Pro (A), BioEdit (B), and MAFFT 

(C). In panel A, ―.‖ indicate nucleotide exchanges marked by the red boxes showing non-conserved sub-

stitutions. ―*‖ indicates the identical nucleotide in all sequences. 

+435 
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FIGURE 3.12 | Dendrogram displaying similarities among the four cultivars based on the amino-

acid sequence of the promoter region analyzed with MAFFT. The drought-sensitive cultivars 
[Mironovska 808 (S176) and Ivanka (S190)] are classified in one group and the drought-tolerant 

[Gourmet (T057), Inspiration (T080)] were in another group. 
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3.5. Discussion 

Water stress is a major threat on wheat yield thus threatening global food security. The use of diverse 

wheat panel is important to assess plant physiological and morphological response under prolonged 

drought stress and uncover new genetic variants that contribute to drought tolerance. Considerable effort 

has been made to quantify drought effect on yield lost, but few studies have focused on unveiling the 

genetic factors underlying breeding progress for drought tolerance vis-a-vis physiological traits i.e. 

photosynthesis activity. In this research, we aimed to investigate the genetic variation and dynamic in 

photosynthesis activity of wheat traits under drought stress, identify pleiotropic and stable QTL over the 

two years underlying photosynthesis traits and yield, and shed a light on the contribution of breeding to 

drought tolerance. 

3.5.1. Phenotypic variation in response to drought stress 

Drought has significant effect on chlorophyll content and fluorescence parameters across GS with the 

observed effect of 3.47 and 27.03%.for chlorophyll content and effective quantum yield of PSII, 

respectively. Drought caused a significant effect on plant photosynthesis rate (29.53%), resulting in 

reduced crop productivity. The reduction of photosynthetic parameters under prolonged drought 

conditions is expected at several levels as drought affects all biological processes in chloroplast including 

disorder of the electron transfers in PSII (Yang et al., 2007; Balla et al., 2014). Excessive drought may 

rise leaf temperature which was the case in our study. High temperature caused accelerated aging, leading 

to the activation of proteolytic enzymes, protein degradation, and chlorophyll losses (Harding et al., 

1990). The reduction of chlorophyll content leads to a decrease in the chlorophyll fluorescence level, 

which in turn lessened the effective quantum yield of PSII and prevented the reduction of NADP
+
 to 

NADPH and the formation of ATP (Pinto et al., 2020). Another reason for the reduction of 

photosynthesis under stress conditions is the stomatal closure to prevent water loss, leading to a lower 

internal CO2/O2, hence making carbon assimilation less efficient during the Calvin Cycle reaction of 

photosynthesis (Araus et al., 2008). Under drought stress conditions, the correlations among 

photosynthetic- related traits was higher than those under rainfed, suggesting drought stress would affect 

most physiological mechanisms. Specially, chlorophyll content exhibited higher correlations with CFP 

under drought conditions, suggesting that high leaf chlorophyll content, which maintain ―leaf stay-green‖ 

properties, was very important to tolerate dehydration in wheat as previously reported (Yang et al., 2007). 

The CV among the genotypes ranged from 5.95 to 67.41% under controlled condition and from 6.20 to 

79.87% under drought conditions. The recorded heritability estimates of the traits ranged from moderate 

to high, with the exception of Fmin that showed low heritability, suggesting that the observed trait 

response to drought can be attributed to the genotypic effect. Thus, can be exploited for drought tolerance 
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characterization among the studied genotype. The marker based heritability which is relevant in dissection 

of complex traits (Kruijer et al., 2015) revealed that a larger portion of phenotypic variance is ascribed to 

genotypic variance for SPAD and Fmax. These results highlight the existence of high variability in 

cultivar's responses to drought stress that can be exploited through GWAS to develop drought tolerant 

cultivars (Oyiga et al., 2019). 

The presented investigations revealed plant photosynthetic-related traits such as YII, FV/FM, and NPQ 

at the post-anthesis growth stage were strongly correlated with the plant biomass weight and grain yield. 

Higher photosynthetic activity of plants at anthesis and post-anthesis GS is relevant for increased GY as it 

affects the key yield components, the number of grains per spike, and per square meter (Lichthardt et al., 

2020). Similar relationships between photosynthetic related traits namely chlorophyll content, leaf CO2 

assimilation (A), and effective quantum yield of PSII and grain yield were reported in previous studies on 

triticale and bread wheat under drought stress in Mediterranean climates, (Méndez-Espinoza et al., 2019). 

Their research revealed that triticale obtained higher yield than bread wheat owing to his higher 

photosynthesis activity at grain filling stage. The assimilates necessary for filling the grain are provided 

by photosynthesis in the leaves (Evans et al., 1975) and spikes (Tambussi et al., 2007; Maydup et al., 

2012), and the redistribution of reserves stored in vegetative tissues during the pre- and/or post-anthesis 

periods, which are translocated to the growing grains (Schnyder, 1993; Zhang et al., 2006). Farooq et al. 

(2014) reported the principal reasons for lower yield under drought conditions are reduced rates of net 

photosynthesis owing to metabolic limitations, oxidative damage to chloroplasts and stomatal closure, 

causing poor grain set and development. Reduction of photosynthesis activity under drought stress is 

caused by accelerated leaf senescence due to the breakdown of chlorophyll molecules, affecting the stay 

green state of the plant, particularly the flag leaf (Yang et al., 2001). Almost half of the photosynthates 

needed during grain filling in wheat are contributed by flag-leaf photosynthesis, which reduction induced 

the dilution of sucrose in the ear and floret abortion and subsequent low yield (Sylvester-Bradley et al., 

1990; Barnabás et al., 2008). 

We detected a strong correlation between SPAD and other photosynthetic-related traits such as NPQ, 

FV/FM, and YII traits mainly at post anthesis under drought conditions. These results suggest SPAD, non-

invasive and rapid assessment of leaf chlorophyll content could be a suitable surrogate to screen plant 

physiological status of the plant under drought condition. Particularly under drought conditions where 

water and nutrient uptake are limited, cultivars with largest root mass, hence high nitrogen status at grain 

filling would have higher photosynthesis activity, assimilate partition and higher yield (Kaggwa, 2013). 

An increase in the photosynthesis efficiency correlated with the breeding progress. Modern cultivars 

have higher chlorophyll content and effective quantum yield of PSII values than the old cultivated culti-

vars as shown by their significant positive slopes (Figure 4). The latter exhibited a high correlation with 
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grain yield under drought conditions, indicating that the effective quantum yield of PSII is positively as-

sociated with grain yield. Previous studies reported high yield performance of modern over older cultivars 

owing to their higher photosynthetic capacity or canopy longevity, radiation use efficiency, stay green 

traits during the milk-grain stage to maturity (Araus et al., 2008; Sanchez-Garcia et al., 2015). Since grain 

growth is supported by transient photosynthesis and translocation of assimilates stored in vegetative or-

gans prior to anthesis (Maydup et al., 2010; Sanchez‐Bragado et al., 2014). Similar to our findings, 

Lichthardt et al. (2020) reported SPAD value around anthesis as one of the relevant traits for progress in 

German winter wheat breeding in the past five decades. Comparison of SPAD and YII values of cultivars 

released before 1980 vs the ones released after 2010 confirmed that modern cultivars have significantly 

higher values in both photosynthetic parameters. Interestingly, for YII the difference between these two 

contrasting groups was higher under drought than under control, suggesting breeding might even have 

increased cultivars photosynthetic efficiency under drought than under control condition. Breeding has 

accumulated genetic variants conferring favorable effects on photosynthetic activity, and disease re-

sistance, which subsequently have enhanced GY under less optimal conditions (Voss-Fels et al., 2019). 

3.5.2. Population structure and linkage disequilibrium pattern 

We identified two main sub-populations relating to the geographic origin of cultivars including Europe 

and outside Europe clusters, and an admixture group between both sub-populations. The FST value among 

cultivars originating from Europe was weak (0.3133), while the one outside Europe was weaker (0.0745). 

This result is an indication of high genetic diversity in this set due to germplasm exchange between 

breeding programs, and limited selection pressure and genetic drift (Chao et al., 2017; UPOV, 1991). The 

low intra-population FST values suggested a week population structure in the evaluated panel and the 

individuals in both subpopulations share a high number of alleles. Assessing the population structure of a 

diversity panel is relevant to minimize the occurrence of spurious or false-positive associations (Gajardo 

et al., 2015). Therefore, we included three first principal components as population structure matrix and a 

kinship matrix in the mixed model for association mapping. The LD of the studied wheat panel decayed 

after 19.0, 38, and 17.5 Mbp for A, B, and D genomes, respectively, revealing that the LD decay of 

genome B was slower than A and D. Similar trends in the genomes LD decay were found in earlier 

studies performed the same germplasm genotyped with 15K chip SNP marker set (Voss-Fels, Stahl, 

Wittkop et al., 2019). 

3.5.3. Genetic variant with improved photosynthesis activity has conferred drought tolerance 

GWAS of chlorophyll content and fluorescence parameters identified 51 MTAs and 117 MTAs 

corresponding to 11 and 23 QTL regions under rainfed and drought, respectively, with the highest number 

of MTAs on chromosome 3A. Most of the detected MTAs were only present under drought stress 
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conditions, suggesting that they might be drought inducible QTL. The genetic control of CFP could vary 

considerably between drought-stressed and non-stressed plants (Czyczyło-Mysza et al., 2011), indicating 

that the identified QTL performed different expression patterns under rainfed and drought conditions. 

Previous research successfully mapped CFP on almost all chromosome under well-watered, moderate, 

and severe drought using a double haploid biparental population. Interestingly, chromosome 3A harbored 

QTL associated with all evaluated CFP under drought conditions as found in our study for Fmax and YII 

(Czyczyło-Mysza et al., 2011). However, some chromosomes such as 1B, 7A, 7B and 7D has similarly 

been mapped for important physiological traits including chlorophyll content, water use efficiency, 

osmotic adjustment, and chemical desiccation tolerance in several studies (Börner et al. 2003; Hao et al. 

2003, Cao et al. 2004). Contrary to the present research, most of these QTL mapping for physiological 

traits used biparental mapping population consisting of double haploids (Christopher et al., 2016; 

Czyczyło-Mysza et al., 2011). Although, chromosome 3A was not found in many reported studies, the 

consistency of the QTL hotspot in the chromosomic region from AX-158597824 (510.691 Mbp) to 

wsnp_Ex_rep_c66865_65263145 (533.624 Mbp) in the present study make this region a good candidate 

for higher photosynthetic activity under drought conditions. The analysis of the promoter region of the 

genes TraesCS3A02G287600 near AX-158576783 (515.889 Mbp) has revealed several TFBS including 

APETALA2/ETHYLENE RESPONSIVE FACTOR transcription factors (AP2/ERFs) that overlapped 

with the polymorphic sites. The AP2/ERFs are known as key regulators of various stress responses, and 

they improved plant survival during stress conditions (Xie et al., 2019). Similar to our results, 

chromosome 7A (263.733 to 285.609 Mbp) harbored QTL hotspot constantly associated with SPAD, YII 

under rainfed conditions as reported in previous studies (Börner et al. 2003; Hao et al. 2003, Cao et al. 

2004). 

The identified QTL in our study are quite conclusive as they co-segregate with genes involved in 

plant response to abiotic stress such as production of stress-related proteins under drought stress 

conditions and in oxidation-reduction processes and Carbohydrate metabolism-related proteins (Cheuk et 

al., 2020). Specifically, on chromosome 7D, RFL_Contig2257_810 pleiotropic for Fmax, YII, and GY 

co-segregated with carbonate dehydratase activity and β-galactosidase activity. With reduced 

photosynthetic activity, it has been observed that the galactosidase activity could enhance sugars needed 

as energy source when photosynthates production is lower (Pandey et al., 2017).  
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3.6. Conclusion 

Prolonged drought has resulted in a reduction of chlorophyll content, fluorescence parameters, and 

photosynthetic capacity. Significant genotypic variation was found in plant physiological and 

morphological response to drought stress. The positive relationship between most photosynthetic traits 

such as SPAD, YII, FV/FM screened at anthesis or post anthesis GS and the plant biomass weight and 

grain yield confirm the importance of high photosynthesis in increasing biomass production not only 

under well-watered field but under drought prone environment. Our results suggest the combination of 

physiological traits and agronomic traits under drought can efficiently to select for drought tolerant 

cultivars. Comparatively to most yield components and GY, breeding has significantly contributed to 

improve photosynthetic related traits across all growth stages, but importantly at anthesis, under 

prolonged stress. GWAS unravel a hotspot of stable QTL on chromosome 3A involved in effective 

quantum yield of PSII, which is directly link to photosynthesis activity under drought conditions. 

Interestingly, several MTAs in LD block on 3A associated with breeding history showed pleiotropic 

effects with YII. Some of these MTAs had significant allelic effect on GY under drought condition and 

co-segregate with genes related to response to oxidative stress, cellulose synthase, aerobic respiration, and 

electron transport rate in the PSII chain. The loci and candidate genes identified in this study may 

facilitate the molecular breeding of drought-tolerant wheat, and improve wheat production under drought 

prone environment. 
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4.1. Abstract 

Key message A genome wide association study has identified haplotypes on chromosomes 1B and 

5A associated with drought tolerance in winter wheat, whose neighboring genes showed higher 

transcript abundance under various biological conditions including drought. 

Nitrogen (N) is the crucial nutrient element for plant growth and productivity. Climate change across 

the globe is the source of extreme conditions like prolonged drought, which result in higher yield 

losses due to its effect on nutrients uptake, including nitrogen. The understanding of the mechanistic 

basis of nitrogen use efficiency (NUE) under drought conditions, is essential to improve wheat yield. 

Here, we evaluated the genetic variation of NUE-related traits and photosynthesis response in 

diversity panel of 200 wheat genotypes under drought and nitrogen stress to identify quantitative trait 

loci (QTL) underlying these traits through genome-wide association study (GWAS). The results 

indicated significant genetic variations in the response to drought and nitrogen deprivation in the 

evaluated traits. Drought has reduced more the plant performance than N deprivation due its effect on 

water and nutrients uptake. A total of 27 potential QTL with main effect were detected by GWAS, 

while 10 QTL regions were interacting with N availability. Significance differences were found 

between both haplotypes variants on chromosome 1B that included SNP markers associated with N 

uptake and use efficiency. The transcript abundance analysis showed that the cold shock protein gene 

expression was higher under various biological conditions including drought. Upon validation this 

genomic could be used as N and drought adaptive marker simultaneously. 

Keywords: Drought, nitrogen deficiency, GWAS, root architecture, photosynthesis, allele effect, 

transcript abundance. 
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4.2. Introduction 

Winter wheat (Triticum aestivum L.) is one of the most widely cultivated crops in the world with an 

area of around 215.902 million hectares (FAO, 2020). Both nitrogen (N) and water availability have a 

strong influence on the wheat yield. Nitrogen deficiency and drought stress lead to severe yield losses 

(Farooq et al., 2014; Han et al., 2015). To increase crop production, the amount of N fertilizer supply 

has increased in the recent times. Meanwhile, about 50% of the N fertilizer applied to cropping 

systems is not absorbed by plants, but is lost as ammonia (NH3), nitrate (NO3
-
), and nitrous oxide 

(N2O) (Ciampitti & Vyn, 2014; Maeoka et al., 2020). Therefore, the extensive use of nitrogen 

fertilizers, which was largely responsible for the large increase in yields of the last few decades, has 

nonetheless negatively threatened the environment. Nitrogen leaching and runoff contaminate ground 

and surface water causing eutrophication, soil salinization and threatening the quality of air (Han et 

al., 2015; Thompson et al., 2019). When eutrophication occurs, biodiversity decreases and drinking 

water production is endangered. N pollution poses an even greater challenge than carbon (C), because 

of the complex effects of reactive N cascade through its many chemical forms (Xu et al., 2012). 

In the past, the focus in plant breeding was on increasing yields and improving quality. The 

introduction of the ―dwarfing genes‖ and the improvement in the use of nitrogen fertilizers resulted in 

yield rise by the Green Revolution (Good and Beatty, 2011). For instance, the production of cereal 

crop tripled during this period, with only 30% increase in land area cultivated (Wik et al., 2008; 

Pingali, 2012). By reducing plant height, the resistance to lodging was increased and the plants were 

able to absorb more nitrogen and translocate it to the grain (Le Gouis, 2011), hence increasing the 

harvest index (Jobson et al., 2019). The current focus of plant breeding is the improvement of the 

nitrogen use efficiency (NUE), the reduction of fertilizer use and the maintenance or increase of the 

yield under abiotic stress conditions such as drought (Hirel et al., 2011). Breeding cultivars with high 

nutrient use efficiency for grain production would require breeding for high N uptake and utilization 

efficiency. This breeding approach is not only important for developing countries with drought prone 

environments and nutrient-deficient soils, but it is essential for developed countries due to the 

environmental consequences of extensive nitrogen fertilizer use. Improved NUE will contribute to 

reduce the environmental problems and costs associated with N fertilization and increase yield to face 

the increasing global demand for food. Increased crop productivity at low N supply is associated with 

higher N uptake, whereas yield gain under high N supply is more associated with the ability of crops 

to convert N fertilizer into grain dry matter (Nehe et al., 2018). The challenge is therefore to improve 

the N uptake and N utilization efficiency in the context of reduced water availability due to drought 

(Lawlor, 2002). The mobility of N in the soil-plant system is controlled by factors and complex 

interactions, including the soil moisture content and the plant root system architecture (Fageria et al., 

2010). 
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Optimization of the root system architecture (RSA), especially under low input and drought 

conditions, will significantly improve crop productivity (Zhu et al., 2011; Xie et al., 2017). The root 

system provides the plant anchorage, competitiveness and adaptation to stress. Furthermore, roots also 

have significant roles in soil exploration, stand establishment, belowground carbon sequestration, soil 

structure improvement and maintenance of soil fertility by driving microbial processes (Siddiqui et 

al., 2020; Richard et al., 2015; Kaggwa, 2013). Improving RSA-traits such as root length, biomass 

and area have shown positive effects on plant photosynthetic features like high stomata density and to 

lower canopy temperature. These effects on the aboveground tissues contribute to increase drought-

tolerance status. Despite the importance of roots, direct selection for optimal RSA characteristics in 

the field has not been routine because of the complex interactions between the root system and 

rhizosphere. 

To date, few studies have focused on the nitrogen mobility from soil to the grain under drought 

stress conditions. To the best of our knowledge, there is not much studies carried out to uncover QTL 

underlying NUE-related traits in wheat, especially under drought conditions. Therefore, our present 

study was conducted to (1) evaluate the genetic variation for nitrogen use-related traits under drought 

and rainfed conditions, (2) assess the root system attributes under drought and nitrogen deprivation to 

determine its key role in improving plant photosynthetic traits, and (3) identify the QTL associated 

with these traits and their plausible candidate genes.   
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4.3. Materials and methods 

4.3.1. Plant Material 

A total of 200 winter wheat cultivars were grown at the experimental station of Campus Klein 

Altendorf, University of Bonn (50.61° N, 6.99° E, and 187m above sea level, 113 Germany) in 2017 

and 2018 seasons. The soil of the experimental site was a Haplic Luvisol (World Reference Base for 

Soil Resources, WRB) derived from loamy silt (Perkons et al., 2014). Two water regimes (drought 

stress under rainout shelter and a rainfed treatment), and two nitrogen applications rates including a 

medium N supply (MN) which corresponded to 110 kg/ha and high N supply (HN) with 220 kg/ha, 

both adjusted to the Nmin in soil. In 2017, only the variant 220 kg/ha was applied. The experimental 

set-up of the water supply under rainout shelter and drought treatment is described in Koua et al. 

(unpublished). 

A pot experiment was grown in the Poppelsdorf Campus of the University of Bonn (50.73° N, 7.09° 

E, and 63 m above sea level) in 2019, including 30 selected winter wheat cultivars from which 20 

genotypes represented the genetic diversity of the panel, five were drought-tolerant and five drought-

sensitive (Table 4.S1). This experiment was carried with the two water regimes and two nitrogen 

levels as described for the field trial (Figure 4.1). We aimed to investigate the influence of drought on 

NUE and root architectural features. The NUE-related traits were calculated according to the formula 

described in Foulkes & Murchie (2011). The traits evaluated are fully described in Table 4.S2. 

4.3.2. Above-ground biomass and root architecture features 

The aboveground parts of the plants were harvested at postanthesis (BBCH70-85) [Biologische 

Bundesanstalt, Bundessortenamt und CHemische Industrie (Lancashire et al., 1991)] followed by the 

fresh biomass weight (FPBW) measurement. Thereafter, the samples were dried in oven for three 

days at 65 °C for the dry plant biomass weight (DPBW) estimation. The belowground part of the plant 

(root) was also harvested and gently washed. The fresh and dry biomass of the roots of two plants per 

pot was weighed as described for the aboveground part. The root angle was measured using a 

shovelomics scoreboard (Trachsel et al., 2011). The part within 5 cm from the crown down the root 

system of one plant was cut off and placed on the scoreboard to measure the right (α) and left (β) 

angles (Figure 4.1). Thereafter, the root area was calculated using the following formula. 

          =                     +                  (Equation 4.1) 
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A 

FIGURE 4.1 | Overview of experimental setup and phenotyping tools. Picture of the ―polytunnel‖ with 
watered plants and plants under drought stress (A), chlorophyll fluorometer MINI-PAM II (Walz) with 

leaf cleap (B), Polypen Rp410 (C), Shovelomic template for root angle measurement (D) 
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4.3.3. Estimation of plant nitrogen content 

The N content in dry grinded shoot and grain was determined using the near-infrared spectrometer 

(NIRS) from Perten (Perten Instruments, Inc., USA). The measurement of the nitrogen content was 

performed in leaves harvested at anthesis growth stage (BBCH61-69) with the C/N analyzer (Euro EA 

3000, EuroVector S.p.A., Italy). Before the C/N measurement, the leaves were dried in an oven at 65 

°C for three days and ground. Thereafter, the samples were cut into pieces and added to 2ml 

microtubes with two small metal balls to finely grind the tissue in the MM400 vibrating mill from 

Retsch (Retsch AG, Arzberg, Germany) or in the Tissue Lyser II from Qiagen (Qiagen, CA, USA) for 

10 to 15 minutes at 30 tours/s. The grounded tissue was dried again overnight at 65 ° C in order to 

remove the residual moisture. For the measurement, two technical replicates of 1.75 ± 0.25 mg were 

weighed for each sample with 1.10 ± 0.10 mg from the acetanilide standard in tin cups. 

4.3.4. Identification of drought-tolerant or NUE-efficient genotypes 

To identify high performing cultivars under drought and low N input conditions, the stress weighed 

performance (SWP) index (Saade et al., 2016) was calculated using the following formula:  

  P =  P   P         (Equation 4.2) 

where Ps is the mean value of the cultivar for a trait under stress (drought stress or reduced N 

fertilization), and Pk is the mean value of the cultivar for the trait under control conditions (rainfed or 

full N-fertilization). The mean values of the SWP of all trait was calculated and ranked. The cultivars 

with the higher indices were defined as the most stress-tolerant. 

4.3.5. Statistical analyses 

The analysis of variance (ANOVA) for each trait of interest was performed including the factors 

water regimes, nitrogen levels, and genotypes in R software (R Core Team, 2020) and the best linear 

unbiased estimates (BLUEs) per genotypes within treatments was generated. For the field experiment 

of 2017, the ANOVA included the factors water regimes and genotypes as we had only one N level.  

The correlation between traits was evaluated with the BLUEs values using the ―chart.correlation‖ 

function from the “PerformanceAnalytics” package implemented in R software (R Core Team, 2020). 

The Principal component analysis (PCA) of the SWP index of N use relevant traits was used to 

evaluate the relationship among cultivars vis-à-vis their nitrogen use efficiency under rainfed and 

drought stress conditions. The cultivars with contrasting NUE traits were determined according to 

their SWP values. 

4.3.6. Genome wide association study for marker-traits association (MTAs) identification 

GWAS with 24,216 informative SNP markers with defined physical positions (Dadshani et al., 2021) 

was carried out for NUE-related traits under the different water regimes and N treatments to 
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determine genomic regions (QTL) associated with these traits. The SWP index for each trait under 

rainfed and drought-stress conditions was used as phenotypic data in the GWAS model to uncover the 

QTL interacting with the nitrogen treatment. 

The GWAS was performed with the mixed linear model (MLM-P+K) as described in Koua et al. 

(unpublished) including the population structure (P-matrix) and kinship (K-matrix) (Yu et al., 2005; 

Zhang et al., 2010). To minimize false positives, only congruent SNPs in both TASSEL (Bradbury et 

al., 2007) and “rrBLUP” package in R (Endelman, 2011) were reported. The GWAS threshold of –

log(p) = 3 which was determined based on the Q-Q plots and distribution of p-values was set to 

declare significant associations (Sukumaran et al., 2018). Both analyses followed the model: 

  =     +     +     +          (Equation 4.3) 

where Y is the vector phenotypic value of a genotype; α and β are unknown vectors that contain fixed 

effects including genetic marker SNP and population structure; X is the fixed effect of the SNP; P is 

the fixed effect of the population structure given by the PCA matrix containing the first three 

components; K is the random effect of the relative relationship between the genotypes and Ɛ is the 

error term which is assumed to be normally distributed with mean = 0 and variance δ
2
e. 

4.3.7. Identification of candidate genes in the regions with identified QTL and Gene Ontology 

(GO) enrichment analysis 

The detected MTAs within a LD threshold of r
2 
> 0.8 were assigned to one LD block delimited by the 

position of two adjacent SNPs. Thereafter, the candidate genes within the LD block were downloaded 

from the Ensemble Plants database (https://plants.ensembl.org/Triticum_aestivum/Info/Index/). For 

MTAs that were not in a LD block, the chromosome segment with a span of 1 megabase pairs (Mbp) 

upstream and downstream the position of the considered marker was examined for genes retrieval. 

The gene annotation was retrieved from the Uniprot database (https://www.uniprot.org/uniprot/). The 

GO enrichment analysis of the genes in the QTL regions was performed using the ShinyGO graphical 

gene-set enrichment tool (Ge et al., 2020), to classify them according to the underlying molecular 

pathways and functional categories. This GO tool implemented a multiple testing correction analysis 

to control the false discovery rate (FDR) with adjusted P-value ≤ 0.05 (Benjamini and Hochberg, 

1995). The expressions levels of 24 candidate genes involved in stress response such as chemical, 

biotic and abiotic stimulus, and molecule transport, were analyzed using the transcriptome evaluated 

under multiple biological conditions, and available in the expVIP database (Borrill et al., 2016) and 

Expression Atlas (available at https://www.ebi.ac.uk/gxa/home ;Papatheodorou et al., 2020) 

databases. Some of the studies corresponded to the temporal transcriptome profiling of homeologous 

genes contributing to heat and drought acclimation in wheat (Liu et al., 2015) and the analysis of 

seedlings grown under PEG-simulated drought stress (Borrill et al., 2016).   

https://plants.ensembl.org/Triticum_aestivum/Info/Index/
https://www.uniprot.org/uniprot/
https://www.ebi.ac.uk/gxa/home
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4.4. Results 

4.4.1. Phenotypic variation in response to drought stress and nitrogen deficiency 

The analysis of variance (ANOVA) was carried out to assess the effect of genotype (G), water 

regimes (W), nitrogen (N) treatments, and their interactions on the phenotypic variation (Table 4.1). 

In 2017 and 2018 growing seasons, the variation in the SPAD, YII, GY, PBW, and most NUE-related 

traits differed significantly among genotypes (G; P<0.001) and treatments (W and N, P<0.01). The 

interactions W*G and W*N were significant for most of the studied traits, while N*G and W*N*G 

interactions were not significant except for N harvest index (NHI) (P<0.01). The detailed descriptive 

statistics of these traits revealed that drought significantly decreased genotype performance, and the 

highest reductions were observed for GY and NUE-traits such as NUEGr, NupE and NAB (Table 

4.2). When comparing the coefficient of variation (CV) of treatments combination rainfed plus 

medium N (RMN) vs drought plus medium N (DMN) and rainfed plus high N (RHN) vs drought plus 

high N (DHN), the highest CV among genotypes occurred under drought conditions, independently of 

the nitrogen levels. The Tukey HSD comparison showed that the treatment combination DHN and 

DMN are in the same group of lowest means (group a) for SPAD, YII, PBW and GY, while for NUE-

related traits, both DHN and DMN were in different groups (Figure 4.2). 

To analyze how the different traits were interrelated, we conducted a correlation analysis based 

on the BLUEs values (Figure 4.3). Significant and strong correlations were observed between GY 

and NUEBio, NUEGr, and PBW under all four treatments. As expected NHI index was positively 

correlated with grain N content and negatively correlated with N content in straw. Year of release was 

positively associated with SPAD, YII, and NUEGr but had negative correlation with NGr. The YII 

was positively correlated to NUE-related traits under drought conditions (low N and high), but had 

low associations with these traits under rainfed conditions.   
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TABLE 4.1| ANOVA and descriptive statistics on agronomic, grain quality traits of 200 wheat genotypes (G) evaluated under two water regimes (T) in 2017 and 2018.  

Growing seasons 2017 2018 

Treaments Water (W) Genotype (G) W*G Water (W) Nitrogen (N) Genotype (G) W*G W*N N*G W*N*G 

Traits 

SPAD *** *** *** *** *** *** * ** ns ns 

YII *** ns ns ***  *** *** ns ns ns 

PBW *** *** *** *** *** *** *** *** ns ns 

GY *** *** *** *** ** *** *** ns ns ns 

SDW *** *** *** *** *** *** * *** ns ns 

NUEBio *** *** *** *** *** *** *** *** ns ns 

NUEGr *** *** *** *** *** *** *** *** ns ns 

NUpE *** ns ns *** *** *** ns ** ns ns 

NUtE * ns ns ns *** *** ns *** ns ns 

NAB *** ns ns *** *** *** ns *** ns ns 

NLf NA NA NA *** *** *** ns ns ns ns 

NSt *** *** 
 

*** * *** * *** ns ns 

NGr ** *** * *** *** *** *** *** ns ns 

NRE NA NA NA 
 

*** ** * *** ns ns 

NHI *** *** 
 

*** 
 

*** ** *** ** ns 
PBW, Plant biomass weight; GY, Grain yield, SDW, Shoot dry weight; SWaP, Shoot water potential at anthesis; SPAD, Clorophyll Content; YII, Effective photochemical quantum yield of PS 

II; NUEBio, Nitrogen use efficiency for Biomass production; NUEGr, Nitrogen use efficiency for Grain Yield production; NAB, Nitrogen in aboveground plant biomass; NUpE, Nitrogen 

uptake efficiency; NUtE, Nitrogen utilization efficiency; NGr, N content in grain; NSt, N content in straw; NLf, N content in leaves at anthesis; NRE, Nitrogen remobilization efficiency; NHI, 

Nitrogen harvest index. The significance level *P<0.05, **P<0.01, ***P<0.001; ns is not significant at 0.05. NA means not available.   
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TABLE 4.2 | Descriptive statistics of evaluated traits in the field experiment from 2018 under drought and N stress. 

STATS Treatment SPAD* YII PBW* GY SDW NUEBio NUEGr NUpE NUtE NAB NLf NSt NGr NRE NHI 

Mean 

RHN 54.73 c 0.62 b 573.38 c 272.87 b 302.12 c 120.66 b 57.42 c 1.84 c 35.55 a 405.00 c 4.18 d 0.53 d 2.51 d 0.87 a 0.83 a 

DHN 52.25 a 0.58 a 241.10 a 107.69 a 134.23 a 50.60 a 22.6 a 0.66 a 38.18 c 144.74 a 3.56 b 0.40 a 2.20 a 0.88 b 0.85 c 

Reduction (%) 4.53 6.45 57.95 60.53 55.57 58.06 60.64 64.26 -7.39 64.26 14.87 24.53 12.28 -1.48 -2.41 

RMN 53.37 b 0.62 b 545.52 b 264.73 b 280.18 b 262.39 c 127.33 d 2.19 d 39.24 d 358.86 b 3.83 c 0.46 c 2.34 c 0.88 b 0.84 b 

DMN 51.82 a 0.59 a 241.30 a 105.36 a 137.00 a 116 b 50.68 b 0.91 b 36.51 b 149.72 a 3.26 a 0.42 b 2.25 b 0.87 a 0.84 b 

Reduction (%) 2.89 4.84 55.77 60.20 51.10 55.79 60.20 58.28 6.96 58.28 14.80 8.70 3.70 1.31 0.00 

CV (%) 

RHN 4.9 3.93 15 16 25.71 15 16 24.76 12.83 24.76 15.50 12.47 5.47 3.05 2.14 

DHN 7 15.9 19 22 24.08 19 22 28.52 11.36 28.52 12.19 12.71 7.6 2.62 1.92 

RMN 4.1 4.12 14 15 21.33 14 15 21.78 12.19 21.78 16.20 12.97 5.89 2.64 2.43 

DMN 5.5 15.59 20 25 22.73 20 25 24.85 12.89 24.85 13.85 9.81 8 2.84 1.68 

* The traits names are given in caption of Table 4.1; RHN, rainfed high N; DHN, drought high N; RMN, rainfed medium N; DMN drought medium N supply 

 



Chapter 4. GWAS detected loci for improved drought tolerance and NUE in wheat 

108 
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D C 

FIGURE 4.2 | Comparison of means between both N treatments under rainfed and drought for (A) 
SPAD; (B) NUE for grain production; (C) nitrogen harvested index. (D) Means comparison of the four 

levels of combined treatments for NUE for grain production.HN and MN mean high N and medium N 

supply, respectively. 
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FIGURE 4.3 | Pearson correlation matrix for phenotypic traits of 200 different wheat genotypes grown 

under 4 treatments. (A) Rainfed with high nitrogen; (B) drought with high nitrogen; (C) rainfed with low 

nitrogen; (D) drought with low nitrogen. Asterisk indicates statistically significant correlation at *p < 0.05; 

** p < 0.01; n = 200. 
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4.4.2. Variation in plant biomass and root architectural traits under drought and nitrogen 

deficiency 

The ANOVA from the pot experiment indicated that the water regime and genotype had a significant 

effect on all shoot and root traits, and also on NDVI. For the other photosynthesis-related traits, only 

G had effect on YII variation while W influenced NDVI and SPAD (Table 4.3). The W*G interaction 

affected all shoot, root and photosynthesis-related traits, except root area and YII. N application had 

significant effect on YII, SPAD and shoot traits. Interactions W*N, N*G, and W*N*G were 

significant for NLf. Drought stress has significantly reduced plant shoot and root traits under high N 

and low N treatments. However, reduction due to N deprivation under each water regime was not 

significant (Table 4.4, Figure 4.4). The shoot and root biomass were significantly higher under 

control than under drought stress treatment. The ratio of the root biomass weight over the total 

biomass was significantly higher under water deficiency (55.87%) than under control conditions 

(37.25%) (Figure 4.4). suggesting the ratio root/shoot was higher under drought than watered 

conditions. N treatment did not affect the root area (RA), as the variants high N and medium N were 

classified the same Tukey mean group, both under control and drought treatments. The Tukey HSD 

comparison showed that with high N supply, control and drought treatments were in two different 

groups, which indicate an effect of drought on RA (Table 4.4). 

The highest NLf content (3.42%) was observed under drought with high N, while the lowest value 

(2.07%) was under rainfed with low N. When both nitrogen fertilization treatments are compared. 

Also, the treatments with high N application presented the highest N content in leaves (Table 4.4). 

Pearson correlations were calculated to assess the relationship among the evaluated traits of 

wheat genotypes grown under rainfed and drought stress conditions with a high nitrogen level (Figure 

4.5). The strongest correlations were observed among different shoot traits, or among different root 

traits. The photosynthesis-related traits were significantly and positively correlated between each 

other under both water regimes. Likewise, the NDVI trait showed higher associations with shoot and 

root traits under drought than under control conditions (Figure 4.5). 
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TABLE 4.3 | Anova table for the root and shoot traits of the pot experiment 2019. 

 Traits 
Water 

(W) 

Nitrogen 

(N) 
Genotypes W*N W*G N*G W*N*G 

Shoot traits 

FSW *** * *** ** *** ns ns 

SDW *** ns *** ns *** ns ns 

SWaP *** *** *** *** ***   

NLf *** *** *** *** *** *** *** 

Root traits 

FRW *** ns *** Ns * ns ns 

RDW *** NA *** NA *** NA NA 

RWaP *** NA *** NA * NA NA 

Root area (RA) *** ns *** Ns ns ns ns 

Photosynthesis related traits at anthesis growth stage 

SPAD ns *** ** Ns * ns ns 

YII *** * ns ** ns ns ns 

NDVI *** NA *** NA *** NA NA 

FSW, fresh shoot weight; SDW, shoot dry weight; SWaP, shoot water potential; NLf, N content in leaf; FRW, Fresh root weight; DRW, Root dry weight; RWaP, Root water potential; RA, root 

area; SPAD, Clorophyll Content; YII, Effective photochemical quantum yield of PS II; NDVI, Normalized difference vegetation index The significance level *P<0.05, **P<0.01, ***P<0.001, ns 

and NA mean non-significant and not available, respectively. 

TABLE 4.4 | Descriptive statistics for the root and shoot traits of the pot experiment 2019. 

Stats Env SPAD YII NDVI FSW SDW SWaP NLf RA FRW RDW RWaP 

Mean 

CHN 49.36 bc* 0.38 c 0.71 b 194.84 c 78.30 b 116.20 c 2.90 b 82.24 b 114.30 b 23.71 b 93.20 b 

DHN 50.53 c 0.28 b 0.57 a 49.68 a 25.84 a 23.85 a 3.42 d 70.74 a 65.25 a 13.75 a 50.24 a 

Reduction (%) -2.37 24.90 19.67 74.50 67.00 79.48 -17.94 13.98 42.91 42.00 46.09 

CMN 45.61 a 0.36 c NA 184.13 b 77.21 b 106.92 b 2.07 a 83.33 b NA NA NA 

DMN 46.46 ab 0.19 a NA 51.12 a 26.56 a 24.56 a 3.18 c 68.81 a NA NA NA 

Reduction (%) -1.86 48.37 NA 72.24 65.60 77.03 -53.70 17.42 NA NA NA 

CV (%) 

CHN 8.77 22.16 5.01 13.00 12.12 14.86 10.52 14.55 23.91 29.24 23.20 

DHN 21.91 28.58 24.90 11.96 11.50 15.28 19.89 18.29 20.69 20.81 21.78 

CMN 11.36 23.78 NA 13.03 12.22 14.90 14.41 15.41 NA NA NA 

DMN 26.60 43.66 NA 13.67 11.03 19.16 18.44 14.30 NA NA NA 
* Turkey groups of means comparison between treatments for each trait. Group a is the lowest mean value while group d is the highest mean. CHN, control high N; drought high N; CMN, control 

medium N, DMN, drought medium N. Traits names are on given in Table 3.  
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FIGURE 4.5 | Phenotypic correlations of 30 different wheat genotypes. (A) under control watered 

with high nitrogen; (B) drought with high nitrogen. Asterisk indicates statistically significant 

correlation at *p < 0.05; ** p < 0.01; n = 60. 
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4.4.3. Genome wide association study for drought and nitrogen deficiency tolerance related 

traits in wheat 

The GWAS performed on 15 phenotypic traits during the growing seasons of 2017 and 2018 under 

rainfed + high nitrogen (RHN), drought + high nitrogen (DHN), rainfed + medium nitrogen (RMN), 

and drought + medium nitrogen (DMN) conditions identified 442 MTAs. These associations involved 

372 SNP markers explaining from 5.10 to 14.99% of the phenotypic variation (R
2
) in traits (Table 

4.Sxl1). A total of 73, 179, 60 and 130 MTAs were detected in both growing seasons for DMN, DHN, 

RMN and RHN, respectively. The MTAs detected for traits of interest measured under drought or 

medium N were induced by stress conditions as they were not detected under control environments 

(Table 4.Sxl1). A total of 27 QTL regions harbored SNPs with pleiotropic effects on the evaluated 

traits (Table 4.Sxl2). For instance, the QTL region spanning from 470.936 to 489.207 Mbp on 1B 

contained nine pleiotropic SNPs for NAB and NUpE. The genotypes with the allele TTTTCC from 

the haplotype (Hap1B) had higher NUpE under drought stress than those with the variant GGCCAA 

(Figure 4.6A,B). This haplotype included the marker Tdurum_contig59449_249 and two adjacent 

pleiotropic SNPs. On the other hand, the marker AX-111561744, located on chromosome 2D (23.416 

Mbp), displayed pleiotropic effects on six traits under drought and on SPAD under control conditions 

(Table 4.S3; Table 4.Sxl3). Some genomic regions, such as the interval in the vicinity of AX-

108817594 (575.723 Mbp) on 1B, were associated with NAB and NUpE under DMN while under 

RMN they influenced PBW, NUEBio and SDW variation. 

GWAS was performed on SWP for NUE-related traits to identify significant SNP markers that 

were interacting with the N supply level. From the 639 MTAs that interacted with nitrogen levels, 321 

(266 SNPs) were exclusively detected under drought and 318 (239 SNPs) under rainfed conditions. 

Therefore, these MTAs were water regime-specific. The R
2
explained by these markers ranged from 

5.37% to 18.36%. The highest number of N level-interacting MTAs were found on chromosome 5A 

(49 MTAs) and 1A (94 MTAs) under drought and rainfed conditions, respectively (Figure 4.S1). The 

markers Tdurum_contig50355_269 and Tdurum_contig29280_216 located in the same QTL region 

(1A from 33.021 to 33.376 Mbp) were interacting with N treatment in four traits under rainfed (i.e. 

NAB, NUE, NUpE, and GY) (Table 4.S3; Table 4.Sxl4). The chromosomal region on 5A, 

comprising the SNPs wsnp_Ex_c23795_33033150 and wsnp_Ex_c23795_33033010, interacted with 

the N supply level for NUEGr and GY under drought conditions. The genotypes containing the minor 

allele (GGCC) from the haplotype produced by these two SNPs (i.e. Hap5A), had significantly 

increased NUEGr under low N conditions (Figure 4.6C,D). The average NUEGr value estimated for 

these genotypes was 36.86, compared to the mean calculated for the genotypes with the major allele 

AATT (32.48), representing an increase of 13,49% (Figure 4.6D). However, these alleles of the 

haplotype Hap5A did not show significant difference for NUpE and NUEGr under both water regimes 

plus high N supply (Figure 4.6C; Figure 4.S2A,B). These results indicate that low N supply induced 



Chapter 4. GWAS detected loci for improved drought tolerance and NUE in wheat 

115 

 

the activity of this genomic region under drought conditions. The analysis of the year of release from 

the cultivars revealed that the genotypes carrying the haplotype GGCC are more recent than the ones 

with AATT haplotype (Figure 4.S2C,D).  
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FIGURE 4.6 | Allelic effects of the haplotype Hap1B and Hap5A. (A) Hap1B effect on NUpE under 
rainfed with high nitrogen and (B) drought with high nitrogen; (C) Hap5A effect on NUEGr under 

rainfed with medium nitrogen and (D) drought with medium nitrogen. 
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4.4.4. Candidate genes in the vicinity of pleiotropic QTL regions 

We retrieved the candidate genes in the vicinity of MTAs which had pleiotropic effects on the 

evaluated traits. A total of 2,653 genes were present in the 27 QTL regions harboring significant 

pleiotropic SNPs detected in the GWAS under each treatment (Table 4.Sxl5). The genes ontology 

(GO) enrichment analysis performed in ShinyGO (P-value FDR cutoff =0.05) classified 1469 genes in 

diverse categories. Among them, 19.67% (289 genes) were involved in response to stress and abiotic, 

endogenous, exogenous and chemical stimuli, followed by 18.45% (271 genes) that were involved in 

cellular component organization and biogenesis. Some genes were classified in the detoxification 

category (11 genes) (Figure 4.8; Table 4.Sxl6). Regarding the biological process, pathways related to 

regulation and transcription contained the highest number of genes with 1817 entries. A total of 103 

genes (Enrichment FDR = 3.1E-03) were involved in carbohydrate metabolism process (Figure 

4.S3A; Table 4.Sxl7). In terms of the molecular function sub-ontology, 17.15% (218 genes) of 

retrieved genes were involved in transporter and transmembrane transporter activity and 24 % in 

transferase activity (Figure 4.S3B; Table 4.Sxl8). The genomic intervals of 21 MTAs of interest, 

including five markers with pleiotropic effects, six induced by medium N supply, and ten that showed 

an interaction with nitrogen level in soil, were further analyzed (Table 4.S3). For instance, the region 

in the vicinity of Tdurum_contig59449_249 on chromosome 1B harbored 96 genes, which 

corresponded to Myb transcription factor, aminotransferase, cytochrome P450, F-box and cold shock 

protein families (Table 4.S3; Table 4.Sxl9). The QTL region of AX-158577204 located at 714.294 

Mbp on chromosome 3A, marker with pleiotropic effect on NAB, NUEGr, NUpE and GY harbored 

genes such as TraesCS3A02G484700 encoding for amino acid transporters (AATs) (Table 4.S3, 

Table 4.Sxl4). 

The in silico analysis of 10 QTL regions that interacted with nitrogen supply under both water 

regimes revealed they co-located with 221 genes (Table 4.S3; Table 4.Sxl9). Among those 10 QTL, 

the one including the haplotype block Hap5A harbored transcription factors, kinase family and 

endoribonuclease dicer-like proteins.   
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FIGURE 4.7 | Gene Ontology classification group of 2653 genes retrieved from 27 QTL regions. The 

genes are grouped by functional categories defined by high-level GO terms. 
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4.4.5. Transcript abundance pattern of candidate genes 

The transcript abundance associated to 24 candidate genes in the category of response to stress and 

chemical, abiotic, endogenous and external stimuli was investigated in two databases (in expVIP and 

Expression Atlas). The results (Figure 4.9) showed that the gene TraesCS1B02G273000, which co-

segregated with the haplotype Hap1B, was abundant under all biological conditions. This gene coding 

a cold shock protein, intervenes in the regulation of transcription and has a zinc-binding role. Another 

one, TraesCS7A02G429600 in the neighboring of Excalibur_c20307_654 on 7A is an Adaptin ear-

binding coat-associated protein is upregulated under septoria, magnaporthe diseases conditions 

(Figure 4.9). The gene TraesCS1B02G352400, located within the interval of AX-108817594 on 

chromosome 1B, showed the highest transcript abundance under drought+heat conditions. This gene 

codes for an ATP-dependent chaperone ClpB which intervene in protein metabolic process. In 

addition, the neighboring region of the previous MTAs is enriched with genes encoding for 

peroxidase, cytochrome P450, WRKY transcription factor, senescence regulator, ABC (ATP-binding) 

transporter, sugar transporter SWEET and magnesium transporter protein types. According to the 

Expression Atlas database, TraesCS1B02G273000 obtained the highest transcript abundance at two 

nodes visible stage and inflorescence stage, in most plant tissues and developmental stage. While 

TraesCS7A02G429600 was higher in the whole plant fruit formation stage 30-50%, and in leaf 

(Figure 4.S4).  
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FIGURE 4.8 | Transcript abundance of 24 candidate genes under different biological conditions deposited in the expVIP database (Borrill et al., 2016). 
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4.5. Discussion 

This study evaluated the cumulative effect of drought and nitrogen stress on agronomic traits, and the 

effect of drought on nitrogen use efficiency related traits. We aimed to link the observed phenotypic 

variation with genetic markers to uncover promising candidate genes controlling NUE, particularly under 

drought conditions. The key findings of this research are discussed below. 

4.5.1. Drought and nitrogen treatments effect on evaluated under field and glasshouse 

The existence of high genetic variation in our wheat panel is supported by the significant genotypic effect 

on the evaluated traits in response to water regime and nitrogen application, and the high values of 

coefficient of variation calculated under drought. High genetic variation in a diversity panel is required 

for dissecting the genetic architecture of complex traits through GWAS (Hall et al., 2010; Rasheed and 

Xia, 2019). Compared to the nitrogen deficiency condition, drought stress resulted in a higher reduction 

of plant‘s performance for all measured traits. Although, an effect of N supply on the traits was detected 

under rainfed conditions, no significant differences were observed between both nitrogen levels under 

drought stress, for most traits. These results corroborate that plant nitrogen uptake and use strongly 

depend on the soil moisture. The dynamic of nutrients in soil and plant water uptake are limited under low 

soil moisture, which result in low nutrient uptake independently of nutrient availability (da Silva et al., 

2011; Kaggwa, 2013). The values of the NUE-relevant traits (i.e. NUpE, NUtE; NRE, NUEBio, and 

NUE) were lower with high nitrogen fertilization, as described in various articles, reporting low NUE 

traits, as the result of low values of the numerator, and high denominator (available N or applied N) in 

NUE calculation (Voss-Fels et al., 2019). NUpE, NUEGr and NUEBio values decrease with increasing 

nitrogen fertilization, as these indices are calculated as a ratio of harvested biomass or grain to the 

available nitrogen. Despite considerable available N in the soil under high nitrogen supply, the N uptake 

could be limited by drought; while under rainfed the nitrogen uptake is not remobilized and used for grain 

production. In fact, higher NUE is a product of higher N uptake and utilization, particularly under drought 

conditions. 

Similar to the field conditions, in the glasshouse, plants exposed to the cumulative effects of drought 

and medium nitrogen supply showed lower performance than plants under watered conditions plus high 

nitrogen. Under drought conditions, N content in leaves was higher with low N input than with high N 

fertilization. This outcome is explained by the dilution effect, which refers to increase of the mineral 

concentration due to low water content (Guttieri et al., 2015).  

Drought stress has resulted in the reduction of the root biomass and root area. As the drying rate is 

more pronounced in superficial than in the deeper soil layers, plants tend to develop a deeper root system 

to obtain more water under drought conditions (Alsina et al., 2010; Ding et al., 2018). The proportion of 
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the root mass in the total biomass was significantly higher under DHN than under CHN conditions, 

indicating the importance of favoring root over shoot development under drought to increase drought 

tolerance. However, nitrogen application levels did not affect root traits. The examination of roots from 

plants growing in pots may have prevented their full development in depth and diameter. This and other 

difficulties such as extracting the entire root system as it is in field to evaluate its features been reported 

(Garnett et al., 2009). The correlations between YII and root system traits were significant and stronger 

under drought stress than under control conditions. This result highlight the key role played by root in the 

photosynthesis efficiency, especially under drought conditions.  

4.5.2. Genetic architecture controlling NUE and candidate genes for drought-nitrogen deficiency 

tolerance 

The GWAS threshold was set at P-value <0.001 for accepting significant MTAs (Sukumaran et al., 2018), 

and identifying the MTAs exerting pleiotropic effect on evaluated traits. Significant and strong 

correlations among some traits at phenotypic level, were confirmed with the GWAS analysis by the 

detection of common MTAs regulating those traits. For instance, strong relationships were found at both 

levels between GY & NUEGr, NUEBio & PBW, and NAB & NUpE. Besides, cultivars year of release 

was positively associated with NUEGr, SPAD and YII. That findings were approved at genetic level. For 

example, the haplotype form GGCC of Hap5A, which has been selected through breeding at the detriment 

of the AATT form (Figure 4.S2), increased significantly the NUEGr under drought conditions with 

medium N (Figure 4.6D). Selection by breeding of increment favorable alleles for a trait explain the 

higher performance of newer released cultivars over the older ones (Voss-Fels et al., 2019). 

Several genes adjacent to the identified MTAs with pleiotropic effects, play a role in transport or 

response to stress. For, instance, a sugar transporter from the SWEET family, which co-located with the 

marker Tdurum_contig59449_249 on chromosome 1B, has been reported to play crucial roles in plant 

development and stress responses in wheat (Gautam et al., 2019). Under severe drought stress, wheat 

genotypes accumulate more soluble sugars that become an essential replacement for water (Farshadfar et 

al., 2008; Hussain et al., 2018; Sallam et al., 2019). This phenomenon of sugars accumulation is known as 

osmotic adjustment, allows cells to manage their dehydration and membrane structural integrity to give 

tolerance against drought and cellular dehydration (Loutfy et al., 2012). In previous report on expression 

analysis involving both insilico and in planta, the TaSWEET, a subgroup of SWEET genes, was 

upregulated in water/heat sensitive and leaf rust resistant genotypes (Gautam et al., 2019; Han et al., 

2015). Besides, the number and effectiveness of the transporters play a major role in the uptake and 

translocation of nitrogen (Xu et al., 2012). An ABC transporter encoded by the TraesCS1A02G051800 

gene, is located on chromosome 1A and shares homology sequence with the marker 
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Tdurum_contig29280_216, that was interacting with N treatment under rainfed conditions. This marker 

could be used to develop NU efficient genotypes under rainfed conditions. 

The genomic region in the vicinity of AX-158577204 located at 714.294 Mbp on chromosome 3A, 

pleiotropic marker for NAB, NUEGr, NUpE and GY harbored genes such as TraesCS3A02G484700 

encoding for amino acid transporters (AATs) (Table 4.S3, Table 4.Sxl9). AATs are relevant in the 

uptake of asparagine synthetase (AS) from the soil, in their transport over great distances, their 

remobilization from the vegetative tissue, and their accumulation in the grain. Much of the nitrogen in the 

grain comes from the remobilization of AS from the vegetative tissues. Almost 70% of the remobilized 

nitrogen is translocated into the grain (Wan et al., 2017). The markers wsnp_Ex_c23795_33033150 and 

wsnp_Ex_c23795_33033010 could be associated to N-efficiency and drought stress tolerance, as they are 

within a region of genes encoding for protein kinases and transcriptions factors (MADS-box and basic 

helix-loop-helix). Protein kinases belong to a large superfamily that play an important role in plant 

development, plant growth and stress tolerance. These include biological processes such as mitosis, cell 

wall biosynthesis, regulation of the time of flowering, photosynthesis and the hormone response (Wei and 

Li, 2019). 

The expression atlas analyses highlighted a gene coding a cold shock protein 

(TraesCS1B02G273000) in the region of the haplotype Hap1B, with a higher transcript abundance under 

most biological conditions, including drought, heat and pathogen infection. This gene could play 

important role in response to external and endogenous stress. Overexpression of exogenous cold shock 

proteins (i.e. SeCspA and SeCspB) in transgenic arabidopsis lines increased germination and survival 

rates, and increased primary root length compared to control plants under drought and salt stress (Yu et 

al., 2017; Kim et al., 2013), and in maize (Castiglioni et al., 2008). The analysis of several stress-related 

traits in SeCspA and SeCspB transgenic wheat lines evidenced stress tolerance characteristics such as 

lower malondialdehyde (MDA) content, lower water loss rates, lower relative Na
+
 content, higher 

chlorophyll and proline content than the control wheat plants grown under drought and salt stresses (Yu et 

al., 2017).  
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4.6. Conclusion 

Improving NUE is a foremost target of plant breeding owing to the ecological consequences of excessive 

N application and the economic advantages of reducing N fertilization. This improvement can be 

achieved by combining genetic selection with crops management practices. This study has shown that 

wheat yield loss, and reduction in shoot and root traits due to drought stress were significantly higher than 

nitrogen deprivation, because drought affect plants water uptake and nutrient uptake, which depends on 

the availability of water in soil. Also, we have found that cultivars genetic make-up also plays important 

role in NUE under low N, and high N when plants are exposed to drought. We demonstrated through 

GWAS that genetic factors on chromosome 1B and 5A have contributed to higher NUE under drought 

conditions. These regions harbor candidate genes such as amino acid transporters, cold shock proteins and 

transcription factors that are relevant for drought tolerance and NUE. Upon validation, these genes can be 

used to develop drought-tolerant and N use-efficient genotypes. Similarly, particular attention should be 

paid to the root system characteristics, as this organ is the most important contributing to N uptake and 

drought stress tolerance. 
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5.1. Abstract 

Key message: Synergistic effect of nitrogen and fungicide on grain yield (GY) and the differences in 
yield stability levels of (recently released) winter wheat cultivars across three cropping systems (CS) sug-

gest that resource use efficiency can be improved via cultivar selection for targeted CS. 

Nitrogen (N) is a vital component of crop production. Wheat yield varies significantly under different soil 

available N. Knowing how wheat responds to or interacts with N to produce grains is essential in the 

selection of N use efficient cultivars. We assessed in this study the variations among wheat genotypes for 

productivity-related traits under three CS, high-nitrogen with fungicide (HN-WF), high-nitogen without 

fungicide (HN-NF), and low-nitrogen without fungicide (LN-NF) in 2015, 2016, 2017 seasons. ANOVA 

results showed genotypes, CS, and their interactions significantly affected the agronomic traits. The grain 

yield (GY) increased with higher leaf chlorophyll content, importantly under CS without N and fungicide 

supply. Yellow rust disease reduced the GY by 20% and 28 % in 2015 and 2016, respectively. Moreover, 

averaged over growing seasons, GY was increased by 23.78% under CS with N supply, while it was 

greatly increased by 52.84%, under CS with both N and fungicide application, indicating a synergistic 

effect of N and fungicide on GY. Fungicide supply greatly improved the crop ability to accumulate N 

during the grain filling, hence the grain protein content. Recently released cultivars outperform the older 

ones in most agronomic traits including GY. Genotype performance and stability analysis for GY 

production showed differences in their stability levels under the three CS. 

Key-words: Nitrogen fertilization, fungicide treatment, cropping systems, yield components, yield 

performance, yield stability  
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5.2. Introduction 

Wheat is one of the world‘s most important staple food crops (Oyiga et al., 2019), and it plays a major 

role in global food security. Thus, improving wheat grain yield is germane towards feeding the growing 

population (Ma et al., 2019). Nitrogen fertilizer is a key factor in the determination of the cropping system 

(CS), and has a strong effect on plant metabolism and biological processes that regulate plant growth and 

development (Gregory, 2011; Barraclough et al., 2014). It also affects wheat grain quality including 

gluten, protein, and starch contents (Wang et al., 2004). 

Considering the importance of nitrogen (N) in ensuring higher crop yield and productivity, farmers 

tend to overuse it (Yadav et al., 1997; Good and Beatty, 2011), but paying little attention on important 

aspects like plant N uptake and utilization. An excessive application of nitrogen may lead to over-

stimulation of tillering and plant vegetation (i.e., haying-off) that locks up the carbohydrates in the 

structural materials rather than transporting them to the storage organs for later use at the grain filling 

stage. Effectively, only one third of the applied N is utilized by plants for grain production, resulting in a 

huge waste of resources that would harm the environment (Hawkesford, 2017; SHEN et al., 2017). 

Buckwell and Nadeu (Buckwell and Nadeu, 2016) reported that based on estimations between 2004 and 

2011, apart from the northeast regions of Europe and mountain areas, most of the European Union (EU) is 

characterized by surpluses of nitrogen in agricultural land with an average of 49 to 80 kg. ha
-1
. 

Wheat cultivation and productivity are limited by diverse biotic and abiotic stress factors such as soil 

water content, soil and air temperatures, and disease occurrence (Hailu and Fininsa, 2007). A direct 

relationship has been established between the N application and the incidence of yellow rust (Puccinia 

striiformis f. sp. tritici) (Danial and Parlevliet, 1995; Bryson et al., 1997), indicating that application of 

fungicides would decrease pathogen-related yield losses, especially under CS with higher amounts of 

fertilizers (Carlton et al., 2012). Improvement of wheat yield would require development of resilient CS 

(Lamichhane et al., 2015), including selection of genetic resources that would significantly increase plant 

productivity under limited and optimal nitrogen and agrochemical inputs. In the context of political and 

environmental constraints on agrochemical inputs and climatic changes, the reduction of agricultural 

inputs will contribute to reducing the negative impacts of agriculture on the environment (Gregory, 2011). 

Therefore, breeding to increase crops nitrogen use efficiency (NUE) in different crop management 

systems will assure high productivity along with lower economical costs and environmental threat (Ma et 

al., 2019). 

A better understanding of the relationships existing among wheat productivity related traits, N 

fertilization and fungicides application would facilitate the identification and selection of high yielding 

cultivars for different targeted N application rates and CS. Several studies have revealed key components 

of NUE including N uptake and N use efficiency (Barraclough et al., 2014; Hawkesford, 2017). They 
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indicated that genetic variation exists among cultivars for traits related to NUE and recommended the use 

of broader germplasm including new and old varieties, landraces, and wild relatives to gain insights into 

NUE in crops. The breeding progress in wheat has resulted in increasing yield under less optimum 

condition via the identification and conservation of favorable genetic factors and haplotypes involved in 

stress adaptation in crops while eliminating detrimental genetic variants (Voss-Fels et al., 2019). On 

contrary, it has been also reported that newer released wheat cultivars perform poorly under less optimal 

conditions compared to the older released wheat cultivars (Kahiluoto et al., 2019). To date, few studies 

have investigated the main and cumulative effects of fungicide and nitrogen on wheat productivity as well 

as their interactions under different CS at vegetative and reproductive stages. In the context of breeding 

for low and high input CS, sufficient research information needs to be provided to wheat growers to 

improve productivity under both conditions. In this study, 220 winter wheat cultivars released from the 

last 50 years with variable phenotypic traits were grown in three CS including one conventionally 

managed system with high nitrogen, fungicides and growth hormones. The aims of this study were to (1) 

explore the genetic variability existing among 220 cultivars for agronomic traits, disease response, and 

seed grain quality under effect of nitrogen and fungicide CS; (2) identify the GY most contributing traits 

among its components under each CS and (3) provide information on the breeding progress made in 

important traits to assure high productivity under less and high input conditions.  
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5.3. Materials and Methods 

5.3.1. Plant material, experimental design, and treatment 

A total of 220 winter wheat cultivars described by Voss-Fels et al. (2019) were used in this study. They 

were grown in the field at the Campus Klein-Altendorf, University of Bonn (50.61° N, 6.99 ° E, and 187 

m above sea level) in 2014/2015, 2015/2016 and 2016/2017 growing seasons. The experiments were 

performed in an alpha design consisting of 1,320 plots under three CS with two replications each, using 

plot-in-plot systems. The CS treatments adopted were: LN-NF (no N fertilization, without fungicide), 

HN-NF [semi-intensive system with 220 kgN.ha
-1

 mineral fertilizer adjusted for soil mineral nitrogen 

(Nmin),
 
plant growth regulators, and no fungicide application], and HN-WF (intensive system with 220 

kgN.ha
-1

 adjusted for soil Nmin, plant growth regulators plus fungicide application. The soil information 

including Nmin of the experimental site, the amount of N fertilizer applied, and the agro-chemical input 

including fungicide are provided in Table S1, S2 and S3, respectively. Each plot was 6 m long and 2.5 m 

wide with a sowing density of 330 viable seeds per m
2
 in rows spaced by 10.4 cm and the harvested plot 

was 5.0 m long and 1.65 m wide. The weather conditions during the experimental periods are summarized 

in Figure S1. 

5.3.2. Soil sampling and fertilization 

After seed sowing, soil samples were taken from 0 to 90 cm depth in 30 cm increments and analyzed for 

the available Nmin in the soil. Soil Nmin was determined by micro-Kjeldhal digestion method (Jackson, 

1958). Ammonium N (NH4
+
N) was extracted by 2 M KCl and analyzed by using phenate method (Apha, 

1985). Nitrate N (NO3
-
N) was extracted by 1g/100ml CaSO4 and analyzed by phenol disulphonic acid 

method (Jackson, 1958). The soil characteristics of the experimental site are shown in Table S1. 

5.3.3. Phenotypic evaluation 

The traits evaluated include: agronomic [plant height (PH), heading date (HD), spikes per m
2
 (SNms), 

kernels per spikes (KNSp), kernels per m
2
 (KNms), thousand kernels weight (TKW), harvest index (HI), 

plant biomass per m
2
 weight (PBWms), and GY], physiological [chlorophyll content (SPAD)], disease 

response [yellow rust visual score (YR)], and grain quality [grain crude protein (GPC), grain starch 

content (GSC) and sedimentation]. The heading date (HD) indicated the duration of vegetative period 

from germination until heading growth stage at BBCH59 (Biologische Bundesanstalt, Bundessortenamt 

und CHemische Industrie (Lancashire et al., 1991)). The severity of yellow rust was scored in 2015 and 

2016 growing seasons under all three cropping systems according to Pask et al. (2012). The full 

description of evaluated traits is given in Table S4. 
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5.3.4. Statistical analyses of the evaluated traits 

The analysis of variance (ANOVA) for all the traits was performed with a mixed-linear-model to 

determine the effect of CS, genotypes (cultivars), and their interactions across the three growing seasons. 

Restricted maximum-likelihood (REML) was adopted to estimate the variance parameters, and the best 

linear unbiased estimate (BLUEs) of all traits for each genotype under different CS were generated. The 

resulted BLUEs were used for the subsequent downstream analyses. BLUEs of three CS for each trait 

were compared using Tukey‘s honestly significant differences (HSD) test to obtain significance groups 

(Sheskin, 2020). A three ways analysis of variance was carried out especially for GY and GNY to 

estimate the existence of variation among genotypes, CS, years, and their interaction effects using 

ANOVA Procedure in SAS software (SAS Institute, 2015). 

A mixed-linear model with restricted maximum-likelihood (REML) was used to estimate the 

variance components due to genotypes (ζ
2

g), CS (ζ
2
e), and their interaction G*CS (𝜎ge

2
). These 

components were set as random effects in the model (SAS Institute, 2015). Thereafter, the broad-sense 

heritability (H
2
) for all traits across growing seasons were calculated as described by Piepho and Möhring 

(Piepho and Möhring, 2007) ) using the equation 

 H
2
=𝜎g

2
/𝜎p

2
          (Equation 5.1) 

with 𝜎p
2
=𝜎g

2 
+ 𝜎ge

2
/m + 𝜎2

/rm 

where 𝜎p
2 

is the phenotypic variance, m the number of studied CS, r the number of replicates per CS and 

𝜎2
 the residual error variance. 

Pearson correlation analysis of genotypic means was performed using “Performance Analytics” 

package in R (R Core Team, 2020) to assess the correlation between evaluated traits. We tested the 

significant difference among CS correlation coefficients of GY and its components through r.test function 

for two independent correlations in a Fisher´s z-test in “psych” R package. Thereafter, the relationships 

between GY and traits of interest were evaluated using linear regression to quantify the contribution of 

the trait to GY. The regressions were conducted using lm function as implemented in R and path models 

analysis using “lavaan” and “semPlot” packages as described by Rosseel (Rosseel, 2012). The 

differences among regression coefficients namely slopes and intercepts of the three CS were tested using 

linear regression models which included CS as categorical variables. 

5.3.5. Effects of nitrogen and fungicide on the evaluated traits  

The effect of nitrogen and fungicide on the evaluated traits was calculated with traits average values 

under each CS using the following formula. 
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Neff = [P(HN-NF)- P(LN-NF)] / P(LN-NF)        (Equation 5.2) 

NFeff = [P(HN-WF)- P(LN-NF)] / P(LN-NF)       (Equation 5.3) 

Feff = [P(HN-WF)- P(HN-NF)] / P(HN-NF)       (Equation 5.4) 

Where: Neff, represents the nitrogen effect; NFeff, the combined nitrogen plus fungicide effect and Feff the 

fungicide effect under high nitrogen CS. 

Two indicators including NUE (Nitrogen use efficiency) and NAE (Nitrogen agronomy efficiency) 

were estimated according to (Ma et al., 2019), and used to determine the N requirements for GY 

production. NUE and NAE were calculated as: 

     
  

  
 =        ⁄           (Equation 5.5) 

     
  

  
 =          ⁄         (Equation 5.6) 

where YNav (kg) is the GY harvested under respective CS; Nav (kg) the available nitrogen (Fertilizer and 

Nmin) in respective CS; YN (kg) indicates the GY under high N; Y0 (kg) the GY obtained under low N; AN 

the amount of applied N fertilizer under high N. 

The effect of fungicide on NAE under HN-NF and HN-WF was investigated to evaluate how 

fungicide application could improve N use. We defined four classes of NAE depending on the amount of 

N used for GY production. The genotype with the highest GY under HN-NF or HN-WF was considered 

as having converted 100% of the available nitrogen into GY, hence had the highest NAE (NAEmax). A 

genotype i was class one (class1) when k=NAEi / NAEmax *100 was less than 25%, class2 when k was 

more than 25% and less than 50%, class3 when k was between 50% and 75%, and with k greater than 

75% was assigned class4. 

5.3.6. Estimation of the breeding progress using the wheat diversity panel 

The breeding progress in the winter wheat panel for each trait was investigated with 209 cultivars whose 

year of release are known by the linear regression function. The BLUEs values of each genotype averaged 

over three years growing seasons were used in the regression analysis. The absolute breeding progress 

(increase per year) was the slope of the linear regression line between the year of release and the trait of 

interest as described by Lichthardt et al. (2020). 

5.3.7. GY performance and stability analysis 

To measure the GY performance of each genotype under three CS across three years, the genotype 

performance measure (Pi) was calculated as described by Lin and Binns (1988) as: 
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  = ∑ 
   

          

  
         (Equation 5.7) 

where Pi of a genotype i under a CS or agro-environment j is defined as the mean square between the 

genotype´s GY (Xij) and the maximum harvested GY (Mj) in the CS (j), averaged over the total number 

of CS (q) for the three years of trial. The smaller the mean square, higher achievement in GY is the 

genotype. The Pi were ranked and twenty-two cultivars with smallest Pi values were selected in each of 

the three CS. 

Thereafter, the GY stability under each CS was carried out with 46 consistently high yielding 

cultivars previously selected with Pi measure. The stability of these cultivars was ascertained under each 

CS in the three years taken as environments. A combined analysis with the three CS over three years was 

carried out to estimate the cultivars  ́ stability performance under all CS. Genotype stability index was 

estimated using the GEA-R software program as described by Pacheco et al. (2015). Francis coefficient of 

variation CV (%) and the mean value were used as stability and performance indices, respectively 

(Francis and Kannenberg, 1978). With this approach, cultivars with high GY and low CV across 

environments are considered high yielding and stable. 

The additive main effects and multiplicative interaction (AMMI) model analysis of variance for GY 

from the 46 selected high yielding cultivars was performed by GEA-R (Pacheco et al., 2015) to evaluate 

the cultivars and CS interactions. The model was 

   = µ +    +     + ∑         +    
 
    

       (Equation 5.8) 

where Yij is the yield of the i-th genotype (i=1,..,I) in the j-th yearly CS considered as environment 

(j=1,...,J); µ the grand mean; gi and ej are the genotype and CS deviations from the grand mean, 

respectively; τn the eigenvalue of the PC analysis axis n; γin and δjn the genotype and environment 

principal components scores for axis n; N the number of principal components retained in the model and 

εij the error term. GGE biplots were generated by R with the Package GGEBiplotGUI using the first two 

principal components (IPCA1 and IPCA2) that explained the higher variation in the AMMI analysis for 

visual interpretation of GxE interaction. 

The CS were classified based on the predicted means obtained from the AMMI analysis and the 

Biplot were visualized. Thereafter, the function which won where was used to identify best cultivars and 

group CS with high similarity. The biplots were based on an environment-centered (centering = 2) G by E 

table without any scaling (scaling = 0), and it was environment-metric preserving (SVP = 2) and the axes 

were drawn to scale (default feature of GGEbiplot). 
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5.3.8. Cropping system performance and discriminating level 

We classified CSs based on their performance indices and identified the least discriminative CS. The least 

discriminative CS is the CS where cultivars better utilized the available nitrogen. We calculated two CS 

performance indices. The first used the whole set of 220 cultivars, while the second used the set of 46 

high yielding cultivars. The CS performance indices were calculated using the following formula. 

     = ∑ 
   

  

 
          (Equation 5.9) 

where P(cs) is the performance index of the CS, n the total number of considered cultivars, Pi the 

performance index of jth genotype as described by Lin and Binns (Lin and Binns, 1988).   
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5.4. Results 

5.4.1. Nitrogen and fungicide application effect on phenotypic traits  

The phenotypic traits expression differed significantly (P< 0.001) among genotypes and CS (Table 5.S5). 

The interactions of G*CS across the three growing seasons were also significant (P< 0.001). Means 

comparison by Tukey HSD test showed that the cultivars grown under HN-WF and HN-NF showed better 

performance for most traits evaluated than cultivars grown under LN-NF (Figure 5.1; Figure 5.S2; 

Table 5.S6). GY ranged from 6.455 Mg.ha
-1

 under LN-NF in 2016 to 11.225 Mg.ha
-1

 under HN-WF in 

2015 (Table 5.S7). GY was increased due to N, NF and F applications, with a range from 6.39% for Neff 

in 2016 to 68.03% for NFeff in 2015 (Figure 5.2A,C; Table 5.S6,S7). Results indicated that kernel 

number per m
2
 (KNms) was highly increased by N (30.24% in 2016 and 27.94% in 2017) and by NF 

(53.21% in 2016 and 32.81% in 2017), while TKW was reduced by N and NF applications (Table 5.S6). 

SPAD values increased under HN-NF and HN-WF in 2016, indicating an increasing effect of 

nitrogen and fungicides on leaves chlorophyll content. However, a decrease (-2.2%) of chlorophyll 

content due to fungicide effect was observed in 2017. The yellow rust (YR) effect on the cultivars 

reduced by 26.59% and 32.3% under HN-NF compared to LN-NF in 2015 and 2016, respectively. In 

addition, the cultivation under HN-WF reduced plant rust infection by 41.29% in 2015 and 38.08% in 

2016. In 2017 season, the infection of yellow rust was not observed, therefore, it was not scored. 

Regarding grain quality traits, N, NF, and F had an increasing effect on grain crude protein content with 

NF having the highest effect followed by N effect. Sedimentation volume was significantly increased by 

N application over the three growing seasons, whereas it was not affected by fungicide application in 

2015 and 2017. However, grain starch content was decreased by nitrogen and fungicide applications 

(Table 5.S6).  

Coefficient of variation of evaluated traits ranged from 0.237% for kernels per spike in 2017 to 

62.73% for YR in 2016. Heritability estimates (H
2
) ranged from 0.22 for biomass in 2015 to 0.95 for 

Heading date (HD) in 2017. H
2
 estimates for YR were consistently high with 0.84 in 2015 and 0.92 in 

2016 (Table 5.S5). 

We further investigated yield performance through three ways ANOVA and variance components 

analysis with year (Y), Genotypes (G) and CS as factors, to evaluate the effect of each factor and identify 

the highest source of variation in yield. Results revealed significant (P< 0.001) differences among years, 

cropping systems, genotypes, and their interactions (Table 5.S8,S9). Cropping system was the most 

important source of variation in grain yield, with 54.45% followed by the genotypes and years, explaining 

16.22% and 10.38% of the total variance, respectively (Figure 5.2D; Table 5.S9).   
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FIGURE 5. 1 | Differences between the three cropping systems. (A) leaf chlorophyll content, plant re-

sponse to yellow rust, and GY traits. (B)Three years averaged grain yield production (Mg.ha-1) of 220 cul-
tivars under the three cropping systems. The dashed lines indicate the GY mean under each CS: blue: LN-

NF (6.850 Mg.ha
-1
); green: HN-NF (8.507 Mg.ha

-1
), and red: HN-WF (10.447 Mg.ha

-1
). The symbol ** 

means significant at p=0.01. 

A 

B 
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FIGURE 5.2 | Contribution of nitrogen and fungicide to grain yield (Mg.ha
-1

) production in 2015, 2016, 

and 2017 growing seasons and variance components of each factor. (A) blue bars are showing the grain 
yield harvested under LN-NF and green/white bar above is showing grain yield gained from additional 

fertilization. (B) Blue bars are grain yield from HN-NF used as control and the above red/white show 

gained grain yield owing to fungicide application. (C) Blue bars are grain yield harvested under LN-NF 

(Control) and the above red/green bars show gained grain yield due to combined effect of additional 
nitrogen fertilization and fungicide application. (D) Proportion of the variance components of factors 

years (Y), cropping systems (CS), and genotypes (G) and their interactions. 
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5.4.2. Application of nitrogen and fungicide improve GY and grain N yield (GNY) 

The NUE and NAE estimates were used to examine the proportion of N used for grain production. The 

results indicated that both estimates varied significantly (p< 0.001) among genotypes and CS in the three 

growing seasons. Significant G*CS*Y interactions were also observed (Table 5.S10A). NUE was twice 

higher under LN-NF than under HN-NF and HN-WF, indicating that higher amounts of N fertilization do 

not lead to an increase in NUE. The estimates of NAE was significantly higher under HN-WF when 

compared to the HN-NF (Figure 5.3). Moreover, the classification of cultivars based on their NAE values 

revealed that a total of 14, 10 and 73 cultivars are efficient N utilizers nitrogen for grain production under 

HN-WF in 2015, 2016, and 2017, respectively. However, under HN-NF, only 12 cultivars efficiently 

utilized the available nitrogen in 2017 (Figure 5.S3). The grain nitrogen yield (GNY) differed 

significantly among cultivars, CS, and years. Similarly, a significant Y*G*CS and G*CS interaction was 

detected for GNY (Table 5.S10A). Compared to LN-NF, GNY increased under HN-NF and HN-WF in 

all growing seasons. Nitrogen plus fungicide increased the GNY compared to the system when N was 

supplied alone across the three years of trials (Figure 5.S4A). GNY strongly correlated with GY under all 

CS (HN-NF = 0.98; HN-WF = 0.90, LN-NF = 0.97) (Table 5.S10). 

  

FIGURE 5.3 | (A) Nitrogen use efficiency; (B) Agronomy efficiency of Nitrogen in three years of trial. 
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5.4.3. Genetic relationship between GY and evaluated traits  

The genetic relationship between GY and each traits of interest across cropping systems was evaluated 

through Pearson correlations coefficients and linear regression analysis based on cultivar means. For cul-

tivars response to yellow rust infection, we noticed that an increase in the disease infection reduced the 

GY in 2015 (r=-0.52***) and 2016 (r=-0.51***) seasons (Figure 5.S5). The response to YR explained 

36.4%, 31.7%, and 11.14% of the variation in GY under LN-NF, HN-NF and HN-WF, respectively. Un-

der LN-NF and HN-WF, GY decreased 0.5333 and 0.4517 Mg.ha
-1
 per unit increase in YR infestation. 

Whereas, GY reduction was significantly higher under HN-NF with 0.9665 Mg.ha
-1

 decrease per unit 

increase in YR infestation compared to HN-WF and LN-NF (Figure 5.4A; Table 5.S11). Cultivars with 

low YR infestation recorded higher yield under all three CS (Figure 5.S4B). 

The correlation and regression analyses performed showed significant and positive relationships 

between GY and leaf chlorophyll content (SPAD) in 2016 (r= 0.62***) and 2017 (r= 0.33***) (Figure 

5.S5; Figure 5.S6A,B). Independent of the CS, leaf chlorophyll content explained 41.52% and 3.56% of 

the variation in GY in 2016 and 2017, respectively. The increase in GY was estimated to 0.2098 Mg.ha
-1

 

in 2016 and 0.0747 Mg.ha
-1

 in 2017 per unit increase in SPAD value (Figure 5.S6A,B). Leaf chlorophyll 

content more explained the variation in GY under LN-NF (R
2
 = 0.4196 in 2016 and R² = 0.059 in 2017) 

than under HN-NF and HN-WF (Figure 5.4B,C). In 2016, GY increased equivalently under LN-NF and 

HN-NF with 0.1332 and 0.1518 Mg.ha
-1

 per unit increase in SPAD, respectively, and both were 

significantly higher than the one observed s under HN-WF which amounted to 0.0717 Mg.ha
-1

.SPAD
-1

 in 

the same year (Table 5.S12). Cultivars with higher SPAD obtained higher GY than the ones with lower 

SPAD values under LN-NF (Figure 5.S4C). 

HD was positively correlated with GY (r= 0.19**, r= 0.33***; r= 0.41*** in 2015, 2016 and 2017, 

respectively), while negative correlations were detected between GY and PH (r= -0.46***, r= -0.26*** 

and r= -0.51*** in 2015, 2016 and 2017, respectively) (Figure 5.S5). Longer vegetative period due to 

delay of HD was beneficial to increase cultivar GY, more importantly under LN-NF with an increase of 

0.2607 Mg.ha
-1

 per one additional day. The delay in HD equally affected GY under HN-WF and HN-NF 

(Figure 5.4D; Table 5.S12). On the other hand, the increase in PH reduced GY under all three CS, 

including a pronounced yield reduction under HN-WF with 0.0669 Mg.ha
-1

 decrease per cm increase in 

PH. The reduction in GY per increase in PH was significant only when compared HN-WF to LN-NF 

(Figure 5.S6C; Table 5.S12). 

GY positively correlated with most of the yield components across the three growing seasons (Fig-

ure 5.S5). Result indicated that GY is positively and significantly (P<0.001) correlated with kernels per 

spike (r= 0.35- 0.42), and KNms (r= 0.52-0.53). GY exhibited positive correlation with HI (r= 0.59-0.79) 

and with PBWms (r= 0.41-0.64) across the growing seasons. Under each CS, GY recorded significant and 
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positive correlations with its key components, especially with KNms (r= 0.36-0.56), except SNms and 

TKW (under HN-WF) as shown in Figure 5.5. Like KNms, GY harvested under one CS positively and 

significantly correlated with the ones from the two other CSs (Figure 5.S5D,E). Results of the compari-

sons among correlations (GY vs its components) coefficients from the three CS indicated significant (P< 

0.001) differences. Correlation coefficients obtained under HN-WF was different with, HN-NF and LN-

NF for PBWms, TKW, and KNms. The cropping system did not affect the relationship between SNms 

and GY as shown by insignificant differences among correlations coefficients (Table 5.S11). 

The genetic link between GY and grain quality traits such as grain protein (GPC), grain starch 

(GSC), and sedimentation investigated revealed significant positive associations between GY and GSC 

(r= 0-34-0.65, P<0.001) across growing seasons. However, GY negatively correlated with GPC (r= -

0.18**, r= -0.46***, r= -0.27**) and sedimentation (r= -0.19**, r= -0.22**, r= -0.30***) across three 

years (Figure 5.S5). The regression analysis revealed that the variation in GSC significantly explained the 

variation in GY across all three CS, but importantly under HN-WF with 48.13% of variance (R
2
) ex-

plained in GY (Figure 5.S6D). A unit increase in GSC enhanced GY by 0.8573, 0.7954 and 0.7765 

Mg.ha
-1

 under HN-NF, HN-WF, and LN-NF, respectively, whereas GY decreased by 1.5502, 1.0854 and 

1.2532 Mg.ha
-1

 when GPC increased by one unit under LN-NF, HN-NF, and HN-WF, respectively (Fig-

ure 5.S6E; Table 5.S12). GY reduction per unit increase in GPC was significantly higher under LN-NF 

than under HN-NF, and HN-WF. Therefore, the highest trade-off relationship between GY and grain pro-

tein content occurred under LN-NF.  
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FIGURE 5.5 | Correlations between GY and yield components traits under each CS. Traits were meas-

ured in a wheat population containing 220 cultivars grown under three CS between 2015 and 2017. The 
correlations coefficients are ranged low values (blues color) to high values (red colored). The numbers 

crossed with minus
 (-)

 are not significant at P< 0.05. 

FIGURE 5.5 | Relationship between GY and evaluated traits. (A) Response to yellow rust (score); (B) 

SPAD in 2016; (C) SPAD in 2017; (D) Heading date. Colour-shape symbols: green-triangle for the crop-

ping system LN-NF, blue-circle for HN-NF, and red-square for HN-WF. The regressions equations, the 
significance of the slopes and comparison among slopes of the three CS is given in Table 5.S12. 
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5.4.4. GY was significantly affected by indirect effects of several agronomic traits  

Full regression and path analysis were used to quantify the effect of several agronomic traits on GY 

(Table 5.S13A). The full regression model captured 86.2, 81.6, and 84.7% of the total variation in GY 

under HN-NF, HN-WF, and LN-NF, respectively. HD, SPAD, YR, HI, PBWms, and GSC had significant 

(p< 0.001) effects on GY. As revealed by the path coefficients (Table 5.S13B), most traits had higher 

indirect effects on GY than direct effects, except HI and PBWms under all CS. The path correlation 

coefficients relating YR to GY were made of sizeable negative indirect effects (-0.405 under HN-NF; -

0.179 under HN-WF and -0.359 under LN-NF) via other traits, and direct effects (-0.158 under HN-NF; -

0.128 under HN-WF and -0.243 under LN-NF). 

5.4.5. Few cultivars achieved maximum yield under HN-NF, the most discriminating CS 

We defined least discriminative CS as the CS under which most cultivars had theirs GY close to the 

highest yielding cultivar, hence having a CS performance index (Pcs) close to zero. Pcs describes how 

well, cultivars come to achieve the maximum yield potential under a CS. The Pcs calculated with 220 

cultivars (Figure 5.6A) and with 46 high yielding cultivars (Figure 5.6B) showed similar trends in the 

performance of the CS. Averaged over three years, LN-NF recorded the lowest performance index, 

therefore was more suitable for many cultivars to reach a GY close to the maximum yield, and HN-WF 

was the second least discriminative CS. While, HN-NF recorded the highest Pcs indices calculated with 

220 cultivars (12,154), and with 46 cultivars (591), therefore the most discriminating CS. Further biplots 

from AMMI analysis revealed the discriminating ability and the representativeness of tested CS taken as 

different environments (Figure 5.6C). The two first principal components of the biplots explained 

83.67% of the total variation of the environment-centered G by E table (G+GE) and revealed that LN-NF 

is more representative of other tested CS, thus less discriminating. The length of the vectors of HN-NF is 

greater than LN-NF and HN-WF indicating that HN-NF had the highest discriminating ability. Thereafter, 

the function ―which won where” identified high similarity between LN-NF and HN-NF, making then one 

mega environment with cultivars Hybery and Tabasco as winning cultivars. The cropping system HN-WF 

was considered as one mega environment with Tobak as winning cultivars. 

5.4.6. High yielding cultivars showed different stability level under the three cropping systems 

The performance index of Lin and Binns (1988) was used to identify high performing cultivars across 

growing seasons under different CS. A total of 81 cultivars highest yielding were selected across the three 

CS over the three growing seasons. Among them, 46 were selected at least under 5 agro-environments, 

and comprised 43 newer and 3 older released cultivars (Figure 5.S8). Results of GY stability (Francis 

CV) of these 46 high yielding cultivars are presented in Figure 5.S9, and Table 5.S14. Among them, 19 
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recently released (after 2000) cultivars showed higher GY and higher stability index (low CV) under HN-

NF, while 14 (all recently released) and 10 (with 8 newer plus 2 older) were stable under HN-WF and 

LN-NF, respectively. Fourteen cultivars (13 newer plus 1 older) exhibited high stability when considering 

combined three CS (Table 5.S14). GY average values of stable cultivars ranged from 7.866 Mg.ha
-1
 for 

cultivar Hyland under LN-NF to 12.288 Mg.ha
-1

 for Tobak under HN-WF, while the lowest and the 

highest CV were obtained by Edward under HN-WF (0.2543%) and Atomic under combined CS 

(18.80%). The Venn diagram revealed that only the cultivar Hyland out of the 32 stable cultivars was 

high performing and stable under all CS. Among the other 31 cultivars, seven were stable under two CS 

(Table 5.S14; Figure 5.S9). 
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FIGURE 5.6 | Graphical representation of CS performance index of (A) 220 genotypes and (B) high 

yielding genotype; (C) Biplot of discriminativeness vs. representativeness of test environments (left 

panel) and the identification of winning cultivars and their related CS (right panel). 
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5.4.7. Newer released cultivars outperformed older cultivars in most traits and GY under all CS 

The breeding progress in the studied wheat panel was quantified by the slope of the regression between 

years of release of 209 cultivars and the values of traits of interest. Under each CS, breeding progress for 

all traits evaluated were significant, except for the HD and SNms. Breeding had increased GY via 

increasing the key yield components, most importantly on KNSp and KNms, while reducing the PH and 

the response to disease over years (Figure 5.7; Figure 5.S7). For SPAD and YR, significance differences 

of the breeding progresses among the three CS were detected, which indicate that cultivars behaved 

differently under the three CS depending on their years of release. The highest increase in breeding 

progress trends for SPAD was observed under LN-NF, while the breeding progress for YR observed 

under HN-WF was the weakest among the three CS (Table 5.S15). For GY, the breeding progress was 

significantly higher under HN-NF than both HN-WF and LN-NF, where the breeding progresses recorded 

similar trend (Figure 5.7A). Breeding has also decreased the coefficient of variation of GY, hence it has 

increased the yield stability (Figure 5.7B). KNms and sedimentation recorded slow breeding progress 

under LN-NF than under HN-NF and HN-WF (Figure 5.S7). The correlations between cultivars years of 

release and the evaluated traits were significant and almost equal under all three CS, suggesting that 

breeding had increased the cultivar adaptability under low, semi, and high input CS (Figure 5.7C). 

 

FIGURE 5.7 | Temporal trends observed in traits of interest. (A) GY; (B) GY coefficient of variation in 

relation to year of registration among 220 cultivars under three CS, HN-WF in green, HN-NF in red and 

LN-NF in blue color. (C) Correlations coefficients between year of release and fourteen traits of interest 
under three CS. The center lines represent the regression lines and the shaded regions in A and B repre-

sent the 95% confidence intervals. The ns means not significant at 0.05; (*) (**) significant at 0.05 and 

0.01, respectively. 
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5.5. Discussion 

Few studies were done on the joint effect nitrogen with other important crop management element like 

fungicide. The main aim of this study was to evaluate the genotypic response of 220 cultivars released in 

the last five decades to nitrogen and fungicide application, in order to provide information on substantial 

resource loss when cultivars and CS elements are not adequately managed. The key findings from our 

research are discussed below. 

5.5.1. Variation in agronomic traits and GY under the effect of nitrogen and fungicide 

Nitrogen and fungicide application increased wheat yield. Higher GY following N fertilization was due to 

the increase of grain number (Gooding and Davies, 1997; Litke et al., 2018). GY improvement under 

intensive CS could be explained by a synergistic effect of nitrogen and fungicide to increase grain 

numbers (kernel per m2, kernel per spike). Fungicide supply positively contributed to GY owing to the 

maintenance of green leaf area particularly flag leaf life extension after anthesis, affecting photosynthates 

partitioning within the plant, which enhances grain weight (Gooding et al., 2005; Royo et al., 2007). In 

fact, fungicide application contributed to plant protection against disease invasion, particularly YR which 

was more pronounced in the two first years of trial, and very known for his effect on yield lost (FAO, 

2017). In 2017 growing season, the infection of yellow rust was not observed; hence it was not scored. 

The lower infestation yellow rust could be related to the weather conditions at the experimental site 

(Figure 5.S1) which was drier in 2017 with higher temperatures and lower rainfall compared to 2016 and 

2015 growing seasons. Lower temperatures and high relative humidity increase the infection levels with 

yellow rust (Te Beest et al., 2008). Nitrogen application enhanced plant resilience to YR infestation, 

whereas earlier studies reported higher rust infestation under high N application rates owing to increased 

plant canopy size (Danial and Parlevliet, 1995; Bryson et al., 1997; May et al., 2020). Our result could 

find explanation in the fact that we supplied N fertilization in the form of ammonium, which decreases 

stem and YR, while nitrate-N increases them (Neumann et al., 2004). Plant height was decreased under 

nitrogen and fungicide supply due to the application of growth regulator hormones in these CS (Tripathi 

et al., 2004).  

Most evaluated traits recorded moderate to high heritability (H
2
) estimates across the three growing 

seasons, thus, they can be exploited to identify QTL underlying variation in traits in the evaluated 

diversity panel using the GWAS approach (Oyiga et al., 2019). GY recorded high H
2
 across all growing 

seasons suggesting that selecting for high yielding cultivars for each CS could be simplified in our panel, 

particularly TKW with H
2
= 0.84 were observed under several nitrogen supply experiments (Guttieri et al., 

2015). 
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5.5.2. Nitrogen and fungicide application effects on N flow from soil to the grain 

Nitrogen and fungicide lead to increased leaf chlorophyll content and grain quality. Under high N input 

CS, the amount of nitrogen molecule required for the constitution of chloroplasts was satisfied, and 

sufficient nitrogen would imply high chlorophyll molecules (Tucker, 2004). Besides, nitrogen has large 

effect on leaf growth, increases leaf area, and the intensity of photosynthesis (Bojović and Marković, 

2009). In line with the present study, Bryson et al. (1997) have reported that fungicide sprayed on wheat 

plants increased chlorophyll content of leaves. 

Nitrogen and fungicide are contributing to high GPC and GNY, owing to high N relocation from the 

shoot to the growing grain (Gooding et al., 2005). Fungicide application increased the grain N 

accumulation through the improvement of nitrogen uptake from soil, and the remobilization of nitrogen 

from plant green tissues to the grain (Gregory et al., 2005). We obtained 13.95%, 13.66%, and 11.17% 

GPC under HN-WF, HN-NF, and LN-NF. However, the standard minimum GPC for bread baking is 

12%, which required an amount of 180 kg.ha
-1
 fertilized N (Litke et al., 2018). Lowest grain crude protein 

(GPC) and grain N yield (GNY) recorded under LN-NF CS would indicate a deficiency of most cultivars 

to remobilize N to the grain in the absence of sufficient nitrogen and fungicide (Table 5.S15A). Even 

under sufficient N, the use of high yielding genotype is a requisite to obtain higher GNY (Table 5.S15B). 

Hawkesford (Hawkesford, 2017) reported that only a third of nitrogen inputs to cereal crops worldwide 

are recovered in grain for consumption. These findings attest the necessity to breed for cultivars with 

improved N use efficiency and confirm that high nitrogen supply is not synonymous with high yields. 

Cultivation of cultivars adapted and selected for low input CS i.e. organic farming resulted in 

improvement of GY under this CS (Reganold and Wachter, 2016). However, growing of less N uptake 

efficient cultivars will result in high amount of residual N. Likewise, higher GNY obtained under HN-WF 

compared to HN-NF although they had the same amount of N indicated the existence of important 

residual N that was not removed from HN-NF. 

Ladha et al. (2016) reported that wheat harvested total N comprised 48% of applied fertilizer N and 

52% of other source like non-symbiotic N2 fixation (24%), manure (14%), and atmospheric deposition 

(6%). Therefore, almost half of 155, 165 and 135 kg.ha
-1

 N fertilizer applied in 2015, 2016, and 2017, 

respectively (Tables 5.S2) were recovered in grain, resulting in a loss of 80.6 , 85.8 and 70.2 kg.ha
-1

 N 

fertilizer in the agro ecosystem that later can undergo N leaching, runoff or erosion (Reganold and 

Wachter, 2016). Nitrogen loss from N fertilizer is increasing with the increasing amount of applied 

fertilizers (Reganold and Wachter, 2016). (Angus, 2001) reported ~20 kg.ha
-1

 N (including all sources of 

N) is needed to produce one tone of wheat grain, and 6 kg.ha
-1
 N for one tone of straw production. 

According to this benchmark of 20 kg.ha
-1
 N, under our field conditions, a total of 25.86 and 21.07 kg.ha

-1
 

N was utilized to produce one tone of grain out of the available 220 kg.ha
-1
 N for HN-NF and HN-WF, 
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respectively, whereas 9.56 kg.ha
-1

 N was utilized out of 65.43 kg.ha
-1

 for LN-NF (Table 5.S15c). 

Therefore, higher amount of N under HN-NF was required N to produce the same quantity of grain 

compared to HN-WF and LN-NF, showing low NUE under HN-NF. Moreover, nitrogen loss in the agro-

ecosystem following over fertilization which decreased the NUE is reported (Hawkesford, 2017). In a 

previous report on global nitrogen budgets in cereals, total amount of N input in the agro-ecosystem 

consisted of 51% of N fertilizer, 15% and 19% of biological fixation and manure, respectively, followed 

by crop residue (8%) and deposition (about 7%). Considering the importance of N in increasing GY and 

the environmental damage following huge N rate application, combining N application with fungicide 

(May et al., 2020), using the optimum amount of N (Ma et al., 2019) or exploring other sources of N like 

biological N2 has lately raised interest in agriculture (Roper and Gupta, 2016). The estimates of NAE was 

significantly higher under HN-WF when compared to the HN-NF, implying that fungicide had an 

increasing effect on NAE, and that demonstrates a synergic effect of N and F on cultivars performance to 

produce grain. 

A trade-off relationship was observed between GY and grain protein content (GPC). The negative 

correlation between GY and grain quality parameters, particularly GPC is well known and constitute a 

constraint in breeding for high GPC and GY (KOKSAL et al., 2007). Genetic factors may be responsible 

for the undesirable associations between these traits (Stuber et al., 1962; Miezan et al., 1977). That could 

be a consequence of a dilution effect that caused a reduction in GPC as yield increased (Guttieri et al., 

2015). To select high GY while maintaining high GPC, the deviation from the GPC–yield relationship 

(GPD) has been suggested as a metric for selection (Oury and Godin, 2007). The GPD is related to post-

anthesis N uptake, and might be associated to genotypic differences in access to soil N (Bogard et al., 

2010). Under low N CS, nitrogen would primarily be allocated to GY, which was a primary breeding goal 

in cereals during last decades (Michel et al., 2019). However, eleven cultivars comprising three new 

released and six old cultivars, and two unknown released years were among the low yielding cultivars and 

had their GPC 12.14%, 14.40, and 15.03% under LN-NF, HN-NF, and HN-WF, respectively. 

5.5.3. Agronomic traits contribution to GY across cropping systems  

Most of the agronomic traits exhibited higher indirect effects than direct effects on GY, except HI under 

the three CS and biomass under HN-NF and HN-WF, which direct effects were significantly higher as 

previously reported (Mansouri et al., 2018). Our results revealed that GY was more influenced by kernels 

number per m
2
 rather than kernels' weight and number of spikes among its components, independently of 

the CS. Nevertheless, Mansouri et al. (2018) reported spikes number as the most significant variable, 

influencing GY under south Mediterranean conditions. However, low correlation observed between 

spikes number and GY in some cases is due to the number of infertile florets on spikes (Royo et al., 
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2007). The delay in HD was beneficial to high GY under the three CS, importantly under LN-NF. Early 

HD of a genotype may lead to early maturity, which is a limiting factor for high GY due to reduced time 

period for assimilates translocation to the grain. Increased GY obtained from late heading cultivars are 

attributed to the increased number of fertile florets as a result of higher assimilate accumulation during the 

pre-flowering period (Royo et al., 2007). 

SPAD index measured at heading growth stage as an indication of leaf nitrogen content was 

positively correlated with GY as reported in several studies (Islam et al., 2014; Sanchez‐Bragado et al., 

2014). The variation in the leaf chlorophyll content highly explained the variation in GY under LN-NF, 

and cultivars with higher SPAD obtained higher GY under this CS. These results showed that leaf 

chlorophyll content under low nitrogen is a physiological indicator to select nitrogen uptake and 

utilization efficient cultivars. 

GY was negatively correlated with the susceptibility of cultivars to YR infestation, consistently 

across CS. Similarly to our results, it has been reported that YR disease is a major cause of wheat yield 

loss worldwide (Chen et al., 2014). Although, YR infestation under HN-NF was lower compared to LN-

NF, its effect on GY reduction under the former was greater. Similarly, previous research reported 

significant negative effects of YR on GY under high nitrogen input CS. High nitrogen increases crop size 

and canopy density, which creates favorable conditions for YR invasion (Danial and Parlevliet, 1995; 

Bryson et al., 1997). To control the negative effect of YR and other diseases (Gregory et al., 2005) 

suggested the use of fungicide, and the use of YR tolerant cultivars is a valuable resource to increase GY.  
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5.5.4. Breeding progress in agronomic traits and yield stability across cropping systems 

The regression results together with the correlation between traits and genotype release year provide 

evidence that breeding has enhanced genotype performance not only under optimal conditions but under 

production systems with reduced agrochemical inputs. Breeding has accumulated genetic variants 

conferring favorable effects on key yield parameters, photosynthetic activity, and disease resistance, 

which subsequently have enhanced GY (Voss-Fels et al., 2019). GY was negatively correlated with PH, 

which can be due to the reduction in PH through incorporating the dwarfing genes (Rht1 (Rht-B1b), Rht2 

(Rht-D1b), Rht-D1c, and Rht8) in modern high yielding cultivars (Mashilo et al., 2019). 

The contribution of breeding to GY was not related to the increase in HD, because as opposed to GY, 

day to heading has not been increased in the breeding history, even though, a strong correlation occurred 

between vegetation duration with high GY. Although not shown, our results revealed a low decline in the 

shoot dry weight over years. Similarly, it has been reported that breeding improved GY by increasing the 

HI through allocation of resource to grain number per m
2
 rather than shoot biomass production (Maeoka 

et al., 2020). Despite significant, the breeding progress in TKW was lower compared to other yield 

components. Similar results were found by Lichthardt (Lichthardt et al., 2020), reporting that TKW is not 

affected by breeding, unlike other traits such as green canopy duration and other source components that 

have increasing effects on GY. 

The highest yielding cultivars across CS comprised only three old and 43 recently released cultivars 

registered in/or after 2000. This result highlighted the tremendous role played by breeding in increasing 

GY. These improved cultivars showed differences in theirs stability levels under the three CS, indicating 

high interaction G*CS, and support the necessity to use convenient cultivars for targeted CS. Kadhem and 

Baktash (Kadhem and Baktash, 2016) have reported that selecting for promising cultivars must include 

the criteria of high yield and the stability performance of the genotype, because some cultivars may be 

high yielding but unstable across growing seasons and/or CS. We defined least discriminative CS as the 

one with most cultivars having their GY means closed the highest yielding genotype, hence a CS with 

performance index (Pcs) close to zero. HN-NF was the most discriminative CS, indicating that most 

cultivars could not make use of the available nitrogen fertilizer. Under HN-NF CS, N use efficient 

cultivars are more likely to achieve high yield. It has been recommended to use superior cultivars for the 

best use of the available nitrogen and other resources to avoid resource waste (Kaggwa, 2013). 

The results of AMMI analysis are very useful in determining specific adaptation, genotype stability, 

and choice of the best CS (Gauch Jr, 2006; Zhe et al., 2010). The association of LN-NF and HN-NF into 

one mega CS could be explained by the absence of fungicide which was a determinant factor in the 

agronomy efficiency use of nitrogen. Under these two CS, many cultivars could not adequately use the 

available nitrogen and express their yielding potential. Further study should be done with several nitrogen 
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application levels to identify the optimum level of N input to obtain better GY and grain quality as 65.43 

kg.ha
-1

 was too low, while 220 kg.ha
-1

 was too high. 

5.6. Conclusion 

The present study revealed that the leaf chlorophyll content measured by SPAD meter around heading 

growth stage could serve as a proxy to estimate GY under low nitrogen conditions. The results showed 

that nitrogen and fungicides have synergistic effects on GY production and grain protein content (GPC). 

In the absence of fungicide application, YR highly decreased GY, mostly under high nitrogen input CS. 

Under our field conditions, most cultivars obtained an average GY close to the cultivars with maximal 

yield under LN-NF and HN-WF compared to HN-NF. HN-NF was more selective in GY production as 

few cultivars were close to the highest yielding cultivar. HN-WF achieved the best GY production 

because of fungicide that played an important role in extending plant life cycle, and photosynthesis 

activity. Among 46 high performing cultivars used in the stability analysis, 19, 14, and 10 cultivars were 

stable under HN-NF, HN-WF, and LN-NF, respectively. The leaf chlorophyll content and the cultivar 

resilience to YR infection played an important in enhancing GY. Therefore, selection for these traits and 

identification of genetic factor underlying them could be considered in wheat breeding program in future 

genetic studies to improve GY. The AMMI Analysis confirmed the discriminating power of HN-NF, 

indicating that fewer cultivars could make use of the additional fertilizer. These results suggest and 

recommend the cultivation of nitrogen use efficient cultivars, and to associate different nitrogen levels 

with fungicide to maximize nitrogen use and avoid resource waste. New breeding strategies for high GY 

should promote selection of cultivars for specific CS i.e. for high and low input CS, and include leaf 

chlorophyll content and resilience to YR as selection criteria. Released cultivars should be labeled with 

their NUE level and its favorable CS to enable organic or conventional agriculture farmers make a better 

choice when growing a cultivar.   
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Chapter 6 

General Discussion 

Drought is the major abiotic stress factor causing prominent yield losses in wheat due to its effects on 

plant water and nutrients uptake (Mohammadi, 2018). Nitrogen (N) is the most important nutrient for 

plants to maintain high yield (McElrone et al., 2013b; Nezhadahmadi et al., 2013). Developing drought 

tolerant genotypes with an efficient utilization of nitrogen is the most promising strategy to increase 

wheat GY under the new environmental constraints imposed by water deficit and regulations to reduce N 

fertilization. The available genetic variability could help to evaluate plants traits in response to drought 

and to select tolerant genotypes that could serve as parents in breeding programs. The main aim of this 

study was to evaluate the phenotypic variation for agronomic, photosynthesis-related and grain quality 

traits under effect of drought, to highlight the breeding progress on these traits in the last 70 years and link 

the observed traits variations to genetic region using GWAS. Knowing the complexity of drought 

tolerance which depends not only on the plant physiology, genetics and molecular mechanisms but also 

on the growth stage of at which the stress occurs, stress tolerance evaluation should be considered at 

different developmental stage in a breeding program (Sallam et al., 2019). To the best of our knowledge, 

this is the first study of drought-N stress tolerance that includes different types of traits such as agronomic 

and photosynthesis-related. Besides, the study considers the breeding history of the germplasm, coupled 

with GWAS in winter wheat to identify drought tolerant genotypes, drought responsive QTL and genomic 

regions regulating N stress tolerance. 

6.1. Drought stress has reduced plant agronomic performance by reducing photosynthe-

sis efficiency 

In chapter 2, we found that drought reduced plant performance, from stem elongation to grain filling 

growth stages, resulting in a reduction of key yield components and grain yield. This reduction was 

especially important for grain number per meter square. Likewise, drought has significantly decreased the 

number of tillers compared to rainfed conditions. The reduction of this key yield component explained the 

lower GY under drought. Our results were in line with previous studies reporting that yield reduction 

under drought was due to the cumulative effects it exerts on yield-related traits (Farooq et al., 2014a; 

Mohammadi, 2018; Sallam et al., 2019). A possible explanation for the reduction of key yield 

components, is the increase of infertile florets under drought conditions due to the increase of abscisic 

acid (ABA) concentration in the spike, which led to an increased seed abortion (Weldearegay et al., 

2012). Also, the photosynthesis efficiency of the genotypes under drought plays a significant role in grain 
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filling, thus on the seed set. Oxidative damage of chloroplast and stomatal closure under drought would 

reduce net photosynthesis activity (Farooq et al., 2014). To find out at which growth stage the 

photosynthesis efficiency mostly influenced yield and its components, we evaluated in chapter 3 the 

dynamic of the photosynthesis access growth stages. We found that photosynthetic-related traits measured 

at post-anthesis, such as the effective quantum yield of photosystem II (PSII), the maximum quantum 

yield of PSII, and NPQ, had strong correlation with the final aboveground yield (i.e. GY and plant 

biomass weight). Similar results were found in a previous study, highlighting the importance of 

photosynthesis efficiency during grain filling for higher yield (Evans et al., 1975; Méndez-Espinoza et al., 

2019). 

6.2. Breeding has increased yield through improving photosynthesis performance over 

years  

We estimated the breeding progress for each trait of interest through regression analysis. The use of linear 

regression algorithm to calculate the breeding progress has been previously used to determine the genetic 

gain over years of breeding (Sharma et al. 2012, Voss-Fels et al. 2019, Lichthardt et al. 2020). For 

agronomic traits in chapter 2 and for photosynthesis related traits in chapter 3, newly released genotypes 

have shown better performance than older released ones. Contrary to most traits, the shoot dry weight has 

decreased over year of breeding, while the GY have and the harvest index have been increased. The 

increase in the harvest index is the result of the improvement of the photosynthetic machinery, the green 

canopy duration, and the radiation use efficiency (Tian et al., 2011; Lichthardt et al., 2020). This 

improvement in plant physiological features resulted in the improvement of key yield components such as 

kernel number, tiller number, and consequently the grain yield as previously reported (Sanchez-Garcia et 

al., 2015; Würschum et al., 2018). The higher performance of recently released genotypes was not only 

observed under optimal conditions, but also under drought or reduced N input as shown in chapter 5. 

Similar to the study of Voss-Fels et al.(2019), we found out that the genetic improvement of wheat to 

maintain high yield under environmental constraint is due to the increment of genetic regions and alleles 

with increased effect on grain yield, whereas detrimental alleles have been reduced or lost over breeding. 

6.3. Population structure and linkage disequilibrium pattern 

The identification of the structure of a population, including the number of subpopulations in the GWAS 

model, enables to control false positives and reduce spurious marker-traits associations (Haldar and 

Ghosh, 2012; Dodig et al., 2012; Zhao et al., 2014). In chapter 3, we identified two main sub-populations 

through the STRUCTURE algorithm and PCA analyses that were implemented based on SNP markers 

data. The cultivars were clustered according to their geographic origin as European or non-European, and 
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additionally there was an admixture group between both sub-populations. The FST values among cultivars 

originating from Europe was weak (FST=0.3133), while the one outside Europe was weaker (FST=0.0745). 

These results are an indication of high genetic diversity in this panel due to germplasm exchange among 

breeding programs, limited selection pressure and genetic drift (Chao et al., 2017; UPOV, 1991). The low 

intra-population FST values suggested a weak population structure in the evaluated panel and suggests that 

the genotypes in both subpopulations share a high number of alleles. Assessing the population structure of 

a diversity panel is relevant to minimize the occurrence of spurious or false-positive associations (Gajardo 

et al., 2015). Therefore, we included the three first principal components of PCA as the population 

structure matrix and a kinship matrix in the mixed model for association mapping. The LD from genome 

B decayed after 38 Mbp, which was slower than for A (19.0 Mbp) and D (17.5 Mbp) genomes. Similar 

trend in the LD decay was found in an earlier study performed with the same germplasm genotyped with 

a 15K SNP chip set (Voss-Fels et al., 2019). 

6.4. Genome wide association scan analysis 

GWAS for agronomic, photosynthesis, and NUE-traits were performed under rainfed and drought 

regimes to identify chromosomal regions associated with the observed trait variation. Moreover, the 

added value of our study was the identification of genomic regions associated with the breeding history 

through GWAS. The inclusion of the population structure (PCA matrix) and relatedness (kinship matrix) 

in the GWAS multilocus mixed linear model (Zhao et al., 2007), has improved our mapping resolution 

and reduced the detection of false positives. We excluded from the genotypic dataset all the alleles that 

had less than 5% of minor allele frequency (Dadshani et al., 2021), as these rare variants are more likely 

to result in the detection of false positives in the GWAS (Broer et al., 2015; Abondio et al., 2019). We 

performed GWAS using TASSEL software and rrBLUP package in R, and reported only congruently 

detected marker-traits association from both analyses, which is beneficial for the detection of true 

positives (Oyiga, 2017). The SNP-clustering method adopted in this study enabled the identification of 

hotspot QTL regions linked to trait variation. In each chapter, one of the objectives was to dissect the 

genetic architecture underlying the traits of interest. These results were presented and discussed in 

chapters 2, 3, and 4 highlighting the important genomic regions associated with phenotypic variations. In 

chapter 2, significant MTAs for breeding history (i.e. release year) were found on chromosomes 3A and 

5D. The SNPs associated with this trait were in a LD block and have exerted pleiotropic effects on grain 

starch content under drought conditions. Change of allele frequency over years of breeding confirmed the 

increment of favorable alleles and the loss of detrimental alleles for starch accumulation. This result is in 

line with a previous study using the same population (Voss-Fels et al., 2019). An added value of our study 

was the estimation of markers by treatment interactions effects, and SNP-SNP epistatic interactions, 
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which rarely are included on GWAS models. An added value of our study was the estimation of markers 

by treatment interactions effects, and SNP-SNP epistatic interactions analyzed with Proc mixed SAS. 

That is very unique and few studies adopting such approaches were found in the literature. The classic 

GWAS model that analyzed the marker by treatment effect, confirmed that chromosomes 3A harbors 

drought-responsive alleles. 

6.5. Candidate gene in the region of associated polymorphisms 

The in-silico analysis of the DNA sequence harboring detected MTAs has facilitated the discovery of 

high confident genes controlling drought stress tolerance and plant abiotic stress responses. Most of the 

detected QTL regions co-located with genes involved in the regulation of metabolic processes. The 

transcription factor family WRKY is known to mediate several abiotic processes. One member of that 

family was found in the genomic region (chromosome 5D) associated with breeding progress. WRKY 

transcription factors TaWRKY1 and TaWRKY33 have been reported to enhance drought tolerance in wheat 

and tobacco (Wang et al., 2013; He et al., 2016; Kulkarni et al., 2017). The linkage block associated with 

breeding progress on chromosome 5D contained genes involved in photosynthesis activity categories 

such as protein disulfide oxidoreductase activity, electron carrier activity and PSII reaction center protein 

complex. In chapter 3, genes involved in cellulose synthase, serine acetyltransferase, NADH 

dehydrogenase (ubiquinone) activity, and from the WRKY family were discovered in the vicinity of the 

SNP AX-158576783 on chromosome 3A. This region from 515.741 to 516.804 Mbp also included novel 

candidate loci for photosynthesis activity. The presence of these genes in pleiotropic QTL regions with 

effects on breeding progress, agronomic traits or photosynthesis related traits, can explain the contribution 

of the favorable alleles in that region to higher yields under drought conditions as shown in chapter 3. In 

chapter 4, GWAS coupled with the analysis of transcript abundance from candidate genes targeted loci on 

chromosome 1B and 5A in haplotype blocks associated with higher NUE under drought conditions. 

In conclusion, the present study has demonstrated that the available genetic variation can be successfully 

used to breed for drought tolerance and NUE. In chapiter 2, we showed that there is significant genetic 

variation in the studied germplasm in reponse to drought for agronomic traits. Our first hypothesis under 

study was accepted. Similarly, in the chapter 3, we tested the hypothesis of signgificant genetic variation 

for the photosynthesis efficiency. It has been found significant differences among evaluated cultivars for 

phyotynthesis efficiency, both under drought and rainfed conditions. We identified post-anthesis as the 

growth stage where plant photosynthetic efficiency significantly affects the final aboveground yield. In 

the whole study, we analyzed the contribution of breeding to drought tolerance. We found breeding has 

contributed to genetic gain in traits partly due to the accumulation of genetic regions with favorable 

alleles and the loss of deleterious alleles. We proved that alleles whose frequencies have been increased 
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over years showed higher allelic effect on traits than deleterious alleles. The drought/nitrogen SWP index 

calculated for each trait was useful to select the most drought-tolerant and drought-sensitive genotypes of 

the wheat panel at the phenotypic level. Subsequent GWAS performed for traits of interest identified 

relevant QTL regions. The exploration of candidate genes within QTL intervals identified the presence of 

transcriptions factors of drought responsive genes, which are genetic factors explaining drought tolerance. 

Further allelic variation analysis in the promoter regions of the gene TraesCS3A02G287600 coding an 

NADH-ubiquinone oxidoreductase activity which in the vicinity of the SNP marker AX-158576783 

contributed to higher photosynthesis activity. The presense of polymorphic sites in the binding sites of 

transcriptions factors in the promoter regions of this gene might explain the lower photosynthesis in both 

sensitive genotypes. Upon validation at the expression level, this locus can be used to develop genotypes 

with higher photosynthesis and hence higher GY under drought conditions. In chapter 4 and 5, we tested 

and acted the hypothesis of existence of genetic variation for NUE. We showed that NUE is affected by 

the N and/or fungicide supply in the agrosystem. Moreover, water limitation in soil had significant effect 

on NUE. The discovery of genetic regions associated with high NUE under drought stress conditions 

(chapter 4) is of great importance to improve simultaneously NUE and drought tolerance.  
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FIGURE 2.S1 | Above ground and underground weather data. (A) Graph of minimum and maximum 

temperature and daily precipitation sum during the experimental periods of 2017 and 2018; (BCD) Soil 

moisture content and soil temperature (0–30 cm depth) at latter stress time point under rainfed and 

drought stress of the experimental plots in the 2017 and 2018 growing seasons. 
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FIGURE 2.S2 | Pearson correlation coefficients between evaluated traits in 2017 under rain fed field (Panel A) and drought stress (Panel B) and in 

2018 under rain fed field (Panel C) and drought stress (Panel D) conditions. Phenotypic traits with their histograms are given in the diagonal panel. 

Lower diagonal panel represents the scatter plot with red line depicting the best fit. The upper panel represents the Pearson correlation coefficient 

value and size of the correlation coefficient is proportional to the strength of the correlation. The correlation coefficient significance level *P<0.05, 

**P<0.01, ***P<0.001. The abbreviations of traits names are given in Table S1.   
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FIGURE 2.S3 | The principal component analysis of evaluated traits with first t wo principal components 

(PC1 and PC2) under rainfed (A, C) and drought stress (B, D) during 2017 (A, B) and 2018 (C, D). The 

contribution of a trait to the principal components is showed by intensity of the color, ranging from the 

green (lower contribution) to red (higher contribution). Abbreviations: see legend of Table 1. 
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FIGURE 2.S4 | Linear regression of GY on yield components traits showing the proportion of the 

variance in GY explained by the variation in each component trait (R
2
). (A) Shoot dry weight; (B) 

Kernels number per spike; (C) Kernels number per meter square; (D) Spike number per meter square; (E) 

Thousand kernels weight. 
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FIGURE 2.S5 | Regression plots showing breeding progress in agronomic traits and grain quality on 

Blues values for two growing seasons. Each dot represents a blue value of a cultivars and the colored area 

represents the confidence interval of the regression line. The slopes of the linear regression lines (green 

lines for rainfed conditions and orange values for droughts stress field) are referred to absolute breeding 

progress and the relative breeding progress is the ratio between the values in 2010 and 1980 as show in 

Table 1.  
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FIGURE 2.S6 | Comparison of breeding progress in agronomic and grain quality traits between two 

contrasting years of release groups under control and drought stress conditions. The oldest genotypes 

were released before 1980 while the newest were released after 2010. 
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FIGURE 2.S7 | Number of SNP-clusters with defined number of MTAs, illustrating the SNP-clusters 

having only one MTAs to SNP-clusters with 20MTAs. 
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FIGURE 2.S8 | Circular Manhattan plots displaying association mapping for GSC. (A) GSC under both 

conditions in 2017; (B) GSC under both conditions in 2018; (C) GSC mean under drought and rainfed; 

(D) GSC overall mean. The dotted square highlighted significant (P<10
-3

 in green color and P<10
-4
 in red 

color) and consistent MTAs were detected on chromosomes 3A and 5D.  
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FIGURE 2.S9 | Effect of AX-158576764 haplotype bloc of chromosome 3A on (A) GSC and (B) GY 

under drought stress conditions; (C) GSC and (D) GY under control conditions. 
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FIGURE 3.S1 | Genetic diversity of 200 winter wheat cultivars (in blue) including the core set of 20 

genotypes (in red). 
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FIGURE 3.S2 | Pearson correlation coefficients between photosynthesis related under rainfed conditions (panel A). Correlation between 

photosynthesis related traits (grey square) and scored developmental traits under prolonged drought stress conditions (panel B). Lower diagonal 

panels represent the scatter plot with red line depicting the best fit. The upper panel represents the Pearson correlation coefficient value and size of 

the correlation coefficient is proportional to the strength of the correlation. The correlation coefficient significance level *P<0.05, **P<0.01, 

***P<0.001. The abbreviations of traits names are given in Table S2.  
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FIGURE 3.S3 | Principal component analysis biplot using 11 photosynthesis and transpiration related 

variables under (A) rainfed, and (C) prolonged drought stress condition and the cosines square of the 

variables contributing to the newly constructed principal components under rainfed (B) and (D) prolonged 

drought stress conditions. The abbreviations of traits name are found in Table S2.  
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FIGURE 3.S4 | SNP density across genomes of the studied winter wheat genotypes. (A) the number of 

SNP on each genome and the total number of SNP. (B) illustrates the number of SNP on each 

chromosome (from chromosome 1A to 7D). (C) Heatmap of the number of SNPs within 1 Mb window 

size per chromosome. 
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FIGURE 3.S5 | Sliding windows showing the rate of linkage disequilibrium decay among the 200 

genotypes of the diversity set across A, B, D genomes. The last window shows all three genomes in plot 

(non-fitting curve of genome A, B and D are colored in red, green and blue, respectively). The genetic 

distance corresponding to r
2
 =0.1 were 19.0, 38.5 and 17.5 Mbp respectively for A, B and D genomes, 

and was considered as the critical distance up to which a QTL could extend. 

FIGURE 3.S6 | (A) Classification of pairwise relative kinship into 3 classes; (B) Distribution of pairwise 

relative kinship estimates among 200 wheat genotypes.  
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FIGURE 3.S7 | Representation of the wheat panel population structure. (A) Inferred population structure 

based on the change of LnP(D) between consecutive K method developed by Evanno et al. (2005). (B) 

Display of ancestry coefficient Q of two subpopulations at K = 2 from STRUCTURE analysis. (C) 

Principle components analysis (PCA) of individual cultivars of the diversity set. Legend indicates 

cultivars originated from Europe (green), out of Europe (red) and admixed (blue). (D) Geographical 

representation of ancestry coefficient Q1 at K=2 showing country of origin of the two subpopulations 

(Europe included Germany, Great Britain, France, and Austria, while Out-Europe comprised USA, 

Serbia, Ukraine, Australia, Moldavia, Mexico, and Australia).  
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FIGURE 3.S8 | Manhattan plot for SPAD under control including  significant MTAs in (A) 2017 and (B) 

2018. (C) Haplotype block on chromosome 7A comprising five SNPs [AX-94760655 (725), AX-

158600987 (738), AX-108905937 (741), AX-158601006 (743), and AX-158591424 (744)] associated with 

SPAD in both years. (D) Manhattan plot showing a hotspot of 5 stable SNPs of CHR 7A region of 18 

Mbp length delimited from AX-94760655 (267.570 Mbp) to AX-158591424 (286.152 Mbp) associated 

with SPAD in 2017 and 2018.  
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FIGURE 3.S9 | Illustration of marker by treatment interactions on photosynthesis related traits: (A) 

effective quantum yield of photosystem II; (B) maximum chlorophyll fluorescence; (C) chlorophyll 

content. Major alleles (TT) had higher values than the minor alleles (CC) under drought conditions 

whereas the contrary schema was observed in control under rainfed conditions.  
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FIGURE 3.S10 | Allelic effect of Excalibur_rep_c76510_255 on YII under drought (A) and rainfed 

(B); allelic effect on GY under drought (C) and rainfed (D). Two-sapmle t-test P-value shows 

significant allelic effect difference with reference to major and minor allele.  
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FIGURE 4.S1 | Distribution of MTAs number across chromosomes. 

FIGURE 4.S2 | Allelic effects of the haplotype Hap5A on NUEGr under (A) rainfed high N and (B) 

drought high nitrogen. Comparison of year of release of cultivars caring the two haplotypes forms of 

(C) Hap5A and (D) Hap1B.  
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FIGURE 4.S3 | (A) Hierarchical clustering tree summarizing the correlation among significant 

pathways listed in the Enrichment tab showing the biological process of 2653 genes retrieved from 27 

QTL regions. Pathways with many shared genes are clustered together. Bigger dots indicate more P-

values that are significant.  
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FIGURE 4.S3 | (B) Hierarchical clustering tree summarizing the correlation among significant 

pathways listed in the Enrichment tab showing the molecular function of 2653 genes retrieved from 27 

QTL regions. Pathways with many shared genes are clustered together. Bigger dots indicate more P-

values that are significant.  
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FIGURE 4.S4 | Differential genes expression (DEG) pattern estimated in TPM (transcripts per kilobase million) of 24 candidate genes.   
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FIGURE 5.S1 | Weather conditions data from the experimental site illustrating significant differences 

in rainfall (pink bars) and temperature (red curves) among growing seasons 2015, 2016, and 2017 at 

reproductive stage (dotted rectangle).
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FIGURE 5.S2 | Significant differences among the three cropping systems (CS) for evaluated traits 

with LN-NF in gray, HN-NF in green, and HN-WF in red color. NS means not significant at p=0.05, 

** significant at p=0.01, and *** significant at p=0.001.  
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FIGURE 5.S3 | Agronomy efficiency use of Nitrogen supplied. The red bar charts are the number of 

cultivars belonging to the defined class of NAE index. The blue bar charts are showing the average 

percentage of NAE.  
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FIGURE 5.S4 | (A) Grain N yield (GNY) under three CS (HN-NF in green color, HN-WF in red 

color, LN-NF in blue color) across the three years (abc) above the boxplots denotes the groups means 

with a the highest and c the lowest means GNY; (B) Resilience to YR infestation of GY contrasting 

cultivars; (C) Chlorophyll content (SPAD) of GY contrasting cultivars. NS means not significant at 

p=0.05 and *** significant at p=0.001.  
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FIGURE 5.S5 | Pearson correlation coefficients and associated probability among evaluated traits 

based on of the genotype mean from the three tested cropping systems in three years of trials 

(A)=2015; (B)=2016; (C)=2017. (DE) Correlation among the three CS for GY and KNms. All traits 

were measured in a wheat population containing 220 breeding lines grown in three cropping systems 

between 2015 and 2017. The number of stars indicates the significance level, *P<0.05; **P<0.01 and 

∗∗∗ P<0.001.  
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FIGURE 5.S6 | Relationship between GY and traits of interest. (A) average SPAD in 2016; (B) 

average SPAD in 2017; (C) plant height (cm); (D) grain starch content (%); (E) grain crude protein 

content (%) under each CS. The regressions equations, the significance of the slopes and comparison 

among slopes of the three CS is given Table S14.   

y = 0.2098x - 3.0236 

R² = 0.4152, p*** 
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FIGURE 5.S7 | Temporal trends observed in evaluated traits in relation to year of registration among 

209 cultivars under three CS, HN-WF in green, HN-NF in red and LN- NF in blue color. The center 

lines represent the regression lines and the shaded regions represent the 95% confidence intervals. The 

signs ns stands for the slope is not significant at 0.05; * is significant at 0.05; **is significant at 

0.01¸***is significant at 0.001.   
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FIGURE 5.S8 | Graphical representation of selected cultivars based on performance index. The 46 

cultivars comprised between 1 and 216 (colored in green) were used in the stability analysis. Among 

46 high performing cultivars, only three cultivars colored in orange (Apache=179, Claire=4, and 

Gaucho=48) were older released cultivars (released before 2000).  
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FIGURE 5.S9 | Biplot of the Coefficient of variation (Y-axis) plotted against mean yield (X-Axis) of 

GY of 46 winter wheat cultivars under HN-NF (A with 19 psg), HN-WF (B 14 with psg), LN-NF (C 

with 10 psg) and combined 3 CS over three years (D 14 psg); psg means performant and stable 

cultivars. (B) Venn diagram is showing cultivars that were at least once selected (down-right quadrant) 

from the above biplots.  
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Supplementary Tables 

TABLE 1.S1 | QTL and association mapping of drought tolerance traits in wheat. Source:(Kulkarni et 

al., 2017). 

Drought tolerance traits 
Mapping 

approach 

Chromosomal 

location of 

QTLs Wheat type 
Stress 

conditions References 

Root development QTL mapping 7AS Emmer Drought 

Merchuk-Ovnat 

et al., 2017 

Days to anthesis, grain filling 

period, 1,000 kernel weight 

(TKW) QTL mapping 5A, 7A Bread 

Rainfed 

conditions 

Gahlaut et al., 

2017 

Seeds per spike, number of 

spikes per, plant, TKW, grain 

yield QTL mapping 3A, 1A, 7A Bread Drought Xu et al., 2017 

Plant Height, days to heading, 

spike length, seeds per spike, 

number of spikes per plant 

Association 

mapping 

5A, 5B, 6B, 2D, 

2B, 6B, 7A, 1B, 

4B Bread Drought 

Mwadzingeni et 

al., 2017 

Photosynthesis, TKW, grain 

yield 

Association 

mapping 5D, 6D, 7D Bread Drought Saeed et al., 2017 

Early ground cover QTL mapping 6A Bread 

Rainfed 

conditions 
Mondal et al., 

2017 

Plant Height, days to heading, 

spike length, TKW, grain yield 

Association 

mapping 

1B, 2B, 3B, 

4B,5B,6B, 7B Durum  

Soriano et al., 

2017 

Root traits 

Association 

mapping 2B, 5B, 7B, 6D Bread 

Not 

applicable 

Ahmad et al., 

2017 

Cell wall bound phenolics QTL mapping 4B, 6R Triticale Drought Hura et al., 2017 

Root length QTL mapping 

1BL, 2DS, 5AL, 

6AL, 7BL, 3AL 

Synthetic 

hexaploid/Spring 

wheat Water stress 

Ayalew et al., 

2017 

Root and shoot traits QTL mapping 4B Durum/T.dicoccum 
Not 

applicable 

Iannucci et al., 

2017 

Yield, root morphology 

Association 

mapping 1A, 1B, 4B, 6B Durum PEG stress Lucas et al., 2017 

Leaf water content, leaf dry 

weight, chlorophyll fluorescence QTL mapping 1,2,3 

Brachypodium 

distachyon Drought Jiang et al., 2017 

Stem water soluble 

carbohydrates QTL mapping 4A, 2D Bread Drought stress Nadia et al., 2017 

Water soluble carbohydrates 

Association 

mapping 1A, 1B,1D, 4A Bread Rainfed 

Ovenden et al., 

2017 

Seedling root traits QTL mapping 4B, 7A, 7B 

Tibetan semi-

dwarf wheat Hydroponics Ma et al., 2017b 
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TABLE 1.S2 | Identification of candidate genes for drought tolerance through transcriptome and 

proteome profiling, and genetic manipulation. Source:(Kulkarni et al., 2017). 

Transcriptome or proteome 

profiling or genetic 

manipulation studies 
Differential expression/regulation 

of genes, pathways Phenotypes References 

Silicon application for drought 

tolerance enhancement in wheat 

Upregulation of antioxidant, 

ascorbate—glutathione and 

phenylpropanoid pathway genes 

Elevated drought tolerance due 

to increased chlorophyll content 

and lower H2O2, ascorbate and 

glutathione Ma et al., 2016 

Succinate dehydrogenase inhibitor 

(SHI) fungicide spray under 

drought stress 

Cell wall expansion, wax, and 

defense genes Enhanced drought tolerance 

Ajigboye et al., 

2017 

Overexpression of the wheat 

expansin gene TaEXPA2 for 

improved drought tolerance Overexpression in tobacco 

Enhanced drought tolerance, 

increased seed production 
under drought stress in 
tobacco 

Chen et al., 
2016 

Dehydration and rehydration 

proteomic analysis 

Induction of pathways related to 

carbohydrate and amino acid 

metabolism, antioxidants and defense, 

and ATP synthesis Drought tolerance 
Chen et al., 
2016 

Overexpression of TaWRKY1 Overexpression in tobacco 

Slower water loss from leaves, 

higher biomass accumulation, 

enhanced osmolyte, and 

antioxidant accumulation leading 

to drought tolerance in tobacco Ding et al., 2016 

Pre-treatment of wheat seedlings 

with NaHS (sodium 

hydrosulphide) under drought  
SOD, transport, CDPK, ABA, Auxin, 

ribosome biogenesis 

Improved drought tolerance in 

wheat seedlings Li et al., 2017 

Durum wheat micro-RNA targets 

Target genes of micro-RNAs under 

drought stress: ARFs, HD-Zip, SOD, 

ROS, HSPs Modulated drought response 

Liu H. et al., 

2017 

Drought response genes in 

developing wheat glumes 

Enhanced expression of 

phenylpropanoid biosynthesis pathway 

genes in wheat glumes Enhanced drought tolerance 

Liu C. et al., 

2017 

Splice variation in wheat as an 

effect of drought 

HSFA1FD, HSFA6B, Heat Shock 

Protein DnaJ alternatively spliced Drought tolerance 

Liu Z. et al., 

2017 

Wheat transcriptome changes 

under drought stress LTPL38 and alpha-Amylase3 genes 

Enhanced drought tolerance at 

reproductive phases Ma et al., 2017a 

Response of He-Ne laser 

pretreated wheat seedlings to 

drought stress 

 Altered expression of genes related to 

photosynthesis, nutrient uptake, and 

transport 

Enhanced drought tolerance in 

wheat Qiu et al., 2017 

Aegilops longissima substitution 

lines in Chinese spring 

Increased expression of ascorbate 

peroxidase, serpin-Z2B, and alpha 

amylase genes under drought stress 
Drought tolerance trait 

introduced from wild resources 

Zhou et al., 

2016 
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TABLE 3.S3 | Examples of transcriptional activators involved in modulation of drought response. 

Source:(Kulkarni et al., 2017). 

Gene 
Identified in 

plant species Functional validation Phenotype References 

DEEPER 

ROOTING 

(DRO1) Rice 

Overexpression in 

Arabidopsis, Prunus 

species Deeper roots 

Uga et al., 2011, 

2013; Guseman et al., 

2017 

MORE ROOT Wheat 

Overexpression in rice 

and Arabidopsis 

More crown roots in rice and more 

lateral roots in Arabidopsis Li et al., 2016 

TaER1 and 

TaER2 Wheat 

Expression pattern in 

wheat flag leaves Higher transpiration efficiency Zheng et al., 2015 

ERECTA Arabidopsis Arabidopsis mutation 

Increase stomata density and reduced 

size, carbon isotope discrimination, 

photosynthesis Masle et al., 2005 

GTL2-LIKE1 

(GTL1) Arabidopsis Arabidopsis mutation 

Reduced stomatal density and lowered 

transpiration without any effect on 

biomass Yoo et al., 2010 

TaERF3 Wheat 

Overexpression in 

wheat Drought and salinity tolerance Rong et al., 2014 

TaERF1 Wheat 

Overexpression in 

Arabidopsis 

Drought, salt, and low temperature 

tolerance Xu et al., 2007 

AtERF019 Arabidopsis 

Overexpression in 

Arabidopsis 

Drought tolerance, smaller stomata 

aperture, and lower transpiration rate Scarpeci et al., 2017 

DREB1A Arabidopsis 

Stress induced 

expression in wheat Delayed water stress symptoms 

Pellegrineschi et al., 

2004 

TAZFP34 Wheat 

Overexpression in 

wheat roots Increased root:shoot ratio Chang et al., 2016; 

TaWRKY10 Wheat 

Overexpression in 

tobacco Enhanced drought tolerance Wang et al., 2013 

TaWRKY1 and 

TaWRKY33 Wheat 

Overexpression in 

Arabidopsis Enhanced drought and heat tolerance He G.-H. et al., 2016 

TaWRKY1 Wheat 

Overexpression in 

tobacco 

Enhanced drought tolerance and 

higher biomass under drought stress Ding et al., 2016 

TaWRKY93 Wheat 

Overexpression in 

Arabidopsis 

Enhanced drought, salt, and low 

temperature tolerance Qin et al., 2015 

TaWRKY44 Wheat 

Overexpression in 

tobacco 

Drought, salt, and osmotic stress 

tolerance Wang F. et al., 2015 

RAP2.1 Arabidopsis Mutation in the gene Enhanced drought and frost tolerance Dong and Liu, 2010 

TaRAP2.1 Wheat 

Mutant overexpression 

in wheat Drought tolerance Amalraj et al., 2016 

SodERF3 Sugercane 

Overexpression in 

tobacco Drought and osmotic tolerance Trujillo et al., 2009 

OsERF4a Rice Overexpression in rice Enhanced drought tolerance Joo et al., 2013 
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TABLE 2.S1 A | Complete description and abbreviation of evaluated traits in the study. 

Traits Abbreviation Descriptions 

Agronomic traits 

Plant height 

PH 

Plant height was measured from three different plants of 

every plot at physiological maturity from the soil surface 

to the tip of the head, excluding awns (cm) and mean 

values were generated for further analysis 

Grain yield 
GY 

The plots were harvested and the grains cleaned and 

weighed and the grain yield in Kg/ha was calculated. 

Shoot dry weight 
SDW 

Dry shoot weight (g), dried shoot sample in oven set at 

65°C for 3 days and the weight in Kg/ha was calculated 

Aboveground plant biomass weight 

PBW 

After drying, plant Biomass weight (Biomass) and seed 

weight was recorded to estimate the HI as the ratio of 

seed weight to total biomass weight 

Spike number per meter square 
SNms 

Spike numbers were counted for a genotype within 

90centimeter row from all genotypes one by one before 
harvesting, and were used to calculated the SNms. 

Kernels number per meter square  KNms Grain number per m2, grain number per spike were 

calculated based on the Thousand kernel weight, Spike 

numbers per meter square, grain weight per meter square 
Kernels number per spike 

KNSp 

Harvest index HI Ratio =GY/ PBW 

Thousand kernel weights 
TKW 

Weight of a thousand well developed whole grains dried 

sample (g) 

Developmental traits 

Relative plant healthiness 
HSr 

The score of each trait was given with the customized 

scale from 1 to 5 equivalent to 0, 25, 50, 75 and 100% of 

damage, where the score 1 was 0 % of bad phenotype 

indicating the best performance while 100% of bad 

phenotype was the full expression of worst performance. 

For example, the leaf greenness was scored as follow 1 

means 0 % leaves were yellow and 100% were green; 2 

means 25% leaves were yellow, 75% leaves were green 

and 5 means 100% leaf are yellow. For leaf rolling and 
greenness, observations were done on the flag leaves and 

second youngest leaves. The relative value of each 

developmental trait was calculated as the inverse function 

of the visual scored value. The greater the relative value, 

the higher was the performance of the genotype. 

Relative plants homogeneity of growth 
HGr 

Relative plant leaves greenness 
LGr 

Relative plant leaves rolling state 

LRr 

Grain quality 

Grain protein content ratio GPC The grain quality were analyzed using NIRS instrument 

(Perten, DA 7250) following the manufacturers guidelines 

(the values are given in %) 

Grain starch content ratio GSC 

Neutral detergent fiber ratio NDF 
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TABLE 2.S1 B | Duration of developmental growth stages. 

Year 
Sowing 

date 

Starting of 

drought (in 

DAS) 
Havesting date 

(*DAS) 

Duration 

prebooting 

(Start of 

drought) to 

harvesting  

Growth stage 
Duration (days 

after sowing, 

DAS Anovab) 

Ds Rf Ds Rf Ds Rf 

2017 
29.11.2

016 

15.04.2017 

(137) 

28.06.2
017 

(211) 

28.07.2
017 

(241) 

74 104 

Prebooting   170 

Booting 170 175 

Heading 174 187 

Anthesis 178 191 

Fruit Development 191   

2018 
02.11.2

017 

14.04.2018 

(163) 

03.07.2

018 

(243) 

19.07.2

018 

(259) 

80 96 

Prebooting 188 191 

Booting 189 197 

Heading 192 197 

Anthesis 191 217 

Fruit Development 218   

DAS means date after sowing 

* Duration from sowing to harvesting;  

b Anova of water regime on developmental traits duration 

Water Regime treatment T (P<0.001) 

Growth stage GS (P<0.001) 

Interaction W*GS (P<0.001) 
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TABLE 2.S2 | ANOVA and descriptive statistics developmental (Dev) traits of 200 wheat genotypes 

evaluated in two water regimes across 2017 and 2018 growing seasons. 

Developmental traits 

  Drought stress 2017 

 

Drought stress 2018 

Statistics HSr HGr LGr LRr 

 

HSr HGr LGr LRr 

Mean 0.811 0.634 0.475 0.459 

 

- - 0.617708 0.714052 

CV (%) 30.07 37.08 45.26 55.86 

 

- - 42.38 35.91 

Heritability - 0.29 0.25 0.21 

 

- - 0.43 0.28 

G effect ns ** ** * 

 

- - *** ** 

The abbreviations of traits names are given in Table S1. CV means coefficient of variation. The significance level 

*P<0.05, **P<0.01, ***P<0.001;   
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TABLE 2.S3 | Multiple linear regression of GY vs evaluated traits under rain fed and drought 

stress conditions during 2017 and 2018. Note that PBW and HI were not included in the regression 

because PBW is the sum of SDW and GY, and not an independent component. HI is the ratio of GY to 

PBW weight. 

Years Treatment Control Drought 

Statistics Pvalue Sig Adj. R-squared (%) Pvalue Sig Adj. R-squared(%) 

2017 

PH 0.0449 * 

78.85 

0.269   

78.92 

SNms <0.001 *** <0.001 *** 

KNms <0.001 *** 0.036978 * 

KNSp <0.001 *** <0.001 *** 

SDW <0.001 *** <0.001 *** 

TKW <0.001 *** <0.001 *** 

NDF 0.885   0.638   

GPC 0.033 * 0.791   

GSC 0.451   0.073 . 

HSr -   0.831   

HGr -   0.055 . 

LGr -   0.267   

LRr -   0.059 . 

2018 

PH 0.048 * 

96.17 

1.000   

98.08 

SNms <0.001 *** 0.436   

KNms <0.001 *** <0.001 *** 

KNSp <0.001 *** 0.983   

SDW 0.165   0.692   

TKW <0.001 *** <0.001 *** 

NDF 0.892   0.838   

GPC 0.221   0.110   

GSC 0.838   0.292   

HSr -   -   

HGr -   -   

LGr -   0.678   

LRr -   0.228   

The significance level *P<0.05, **P<0.01, ***P<0.001; The abbreviations of traits names are given in Table S1. 
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TABLE 2.S4 | Summary statistics of breeding progress (absolute and relative) of GY related traits and grain quality for 2017 and 2018 growing 

seasons together (Lsmeans) and the type of dynamic in the ABP. 

Tratits Lsmeans 

  

Control   Drought 
Pattern 

Typesα 
Mean Mean Sig 

(p) 

ABP 

(slope) 
R² RBP (%) 

  Mean Mean Sig 

(p) 

ABP 

(slope) 
R² RBP 

Oldest Newest Oldest Newest 

PH (cm) 87.11 78.23 *** -0.24 0.22 -7.59   69.82 65.01 *** -0.14 0.15 -5.77 Types II 

GY (g/row) 226.67 238.54 ns 3.5 1E-3 0.83   65.07 76.42 *** 16 0.09 12.16 Types I 

SDW 

(g/row) 
251.06 230.76 *** -46 0.14 -9.41   96.47 96.72 ns -2.8 2.3E-3 -1.46 Types II 

PBW 

(g/row) 
476.62 469.30 ** -42 0.05 -4.65   162.19 173.26 ns 13 0.02 4.55 Types III 

TKW (g) 43.97 42.81 ns -0.03 0.02 -1.91   39.22 38.19 * -0.03 0.02 -2.41 Types II 

SNms 750.28 737.01 * -0.75 0.02 -3.15   338.07 365.91 * 0.57 0.05 5.2 Types III 

KNms 28152.74 30184.73 ns 26 0.01 2.74   9394.34 10895.8 ** 32 0.04 9.27 Types I 

KNSp 38.65 41.95 ** 0.07 0.04 4.91   26 28.84 ** 0.06 0.04 7.07 Types I 

HI 0.48 0.51 *** 7.6E-4 0.16 4.52   0.39 0.43 *** 9.3E-4 0.11 6.32 Types I 

GPC 14.58 14.05 ** -0.01 0.04 -1.86   13.67 12.89 *** -0.02 0.11 -4.37 Types II 

GSC 72.31 72.92 ** 0.01 0.04 0.46   71.85 72.72 *** 0.02 0.08 0.78 Types I 

NDF 18.09 18.38 ** 0.01 0.05 2.07   17.97 18.31 ** 0.01 0.05 2.05 Types I 

α
 The regression results (Figure 2, Figure S5) revealed three types of patterns in the absolute breeding progresses when compar ing the slopes of control and drought treatments as 

indicated in Table S4. The pattern type I is when breeding has increased genotypes achievements under both water regimes. In this group were found GY (Figure 2A) and its key 

components, namely KNms (Figure 2B) and KNSp (Figure S5E), HI (Figure 2C), GSC and NDF (Figure S5HI); Type II means negative slopes, which indicated a decrease in trait 

performance brought by breeding (SDW, PH, TKW and GPC in Figure S5ACFG), while Type III indicated a positive slope under drought and a negative slope under control 

conditions. * P-value tests the significance of the slope. While the third pattern included PBW SDW, and SNms (Figure S5ABD), where breeding has increased genotypes 

performance under drought but reduced it under control. 
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Means oldest and newest are the average value of genotypes released before 1980 and after 2010, respectively. Absolute (ABP) and relative (RBP) breeding progress were derived 

from regression models. Sig (p) gives the significance level of the slopes (*** means significant at 0.001, *** at 0.01 and * at 0.05 and ns. indicates not significant at 0.05). 

Relative breeding progress is expressed in percent (%).  
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TABLE 2.S5 | Pairwise comparison of regressions coefficients (intercepts and slopes) of model GY vs 

yield components, and traits of interest vs year of release under both water regimes. 

Traits Intercepts+ Slopes+ 

GY vs Yield components 

SDW 7.9e-14 *** 0.834 ns 

KNSp 2.96e-14 *** 0.324 ns 

KNms 0.000381 *** 0.038531 * 

SNms 2.38e-08 *** 0.433 ns 

TKW 0.107211 0.000206 *** 

Traits vs Year of release 

PBW 6.82e-05 *** 0.000497 *** 

SDW 6.19e-07 *** 4.50e-06 *** 

GY 0.0506 0.1485 ns 

KNms 0.451 ns 0.771 ns 

KNSp 0.8916 ns 0.9508 ns 

HI 0.3748 ns 0.4826 ns 

PH 0.0103 * 0.0173 *  

SNms  0.000354 *** 0.001800 **  

TKW  0.885043 ns 0.973138 ns 

GPC  0.08446 0.06561 

GSC  0.2141 ns 0.2196 ns 

NDF 0.98461 ns 0.98461 ns 

+ the numbers are displaying the P values from the comparisons.  
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TABLE 2.S6 | Drought-tolerant and Drought-sensitive genotypes identified based on the SWP values of 

agronomic, developmental and grain quality (GQ) traits. 

Tolerant   Sensitive 

Entry name 
Releas

e Year 

Agr

o 

Dev 
G

Q 

Times 
selecte

d 

  Entry name 
Releas

e Year 

Agr

o 

Dev 
G

Q 

Times 
selecte

d 
Trait

s 

Trait

s 

Claire 1999 1     1   Estivus 2012 1 1   2 

Zappa 2009 1   1 2   Kronjuwel 1980 1     1 

Meister 2010 1     1   Mulan 2006 1 1   2 

KWS 
Santiago 

2011 1 1   2   
Solstice 

2001 1     1 

Brigand 1979 1   1 2   Arktis 2010   1 1 2 

Edward 2013 1     1   Joss 1972 1     1 

Jenga 2007 1   1 2   Rektor 1980 1     1 

TJB 990-15 
1980 1 1 1 3   

Cappelle 

Desprez 
1946 1     1 

Gourmet 2013 1 1   2   Tiger 2001 1     1 

Kalahari 2010 1     1   Ibis 1991 1     1 

Intro 2011 1 1   2   Aszita 2005 1   1 2 

Primus 2009   1 1 2   Kobold 1978 1   1 2 

Inspiration 2007 1     1   Benno 1973 1 1   2 

SY Ferry 
2012 1 1   2   

Benni 

multifloret 
1980 1   1 2 

Terrier 2001 1     1   Caphorn 2000 1   1 2 

Xanthippe 2011 1   1 2   Soissons 1987   1 1 2 

Knirps 1985 1     1   BCD 1302/83 NA 1   1 2 

Akteur 2003 1 1   2   Sonalika 1967 1 1 1 3 

Diplomat 1966 1     1   Cajeme 71 1971 1 1   2 

Basalt 1980 1 1   2   Siete Cerros 66 1966 1 1 1 3 

Average 
Release year 

2000.8     
Average 
Release year 

1985.6   
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TABLE 2.S7 | Summary of SNP markers significantly associated with evaluated traits under both water 

regimes. 

Traits 

Rainfed Drought Both Water regimes 

MTAs number MTAs R
2
 (%) MTAs number MTAs R

2
 (%) MTAs number MTAs R

2
 (%) 

PH 5 8.13 14 7.68 19 7.80 

GY     2 8.45 2 8.45 

PBW 1 7.44 1 9.63 2 8.54 

SDW 1 8.11 23 8.76 24 8.74 

HI     1 7.84 1 7.84 

KNSp 17 8.41 5 8.80 22 8.50 

SNms     2 7.29 2 7.29 

TKW 1 7.65     1 7.65 

GSC     5 7.13 5 7.13 

Grand Total 25 8.27 53 8.26 78 8.26 
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TABLE 3.S1 | List of measured leaf chlorophyll a fluorescence parameters. 

Extracted Parameter 

(Abbreviation) 

Formula explanation Sample State Description 

Minimum fluorescence level 

(FMin or F0) 

 Dark  Measured by very low intensity of 

measuring light to keep PS II 

reaction centers open 

Maximum fluorescence level 

(FMax or FM) 

 Dark Measured by a pulse of saturating 

light (Saturation Pulse) which 

closes all PS II reaction centers  

Minimum fluorescence level 

(Fmin or F) 

 Light The F corresponds to the 

momentary fluorescence level (Ft) 

of an illuminated sample measured 

shortly before application of a 

Saturation Pulse 

Maximum fluorescence level 

(Fmax or FM´) 

 Light The FM’ is induced by a Saturation 

Pulse which temporarily closes all 

PS II reactions centers. 

Maximum photochemical 

quantum yield of PS II (FV/FM) 

FV/FM= (FM–F0)/ FM Dark Demonstrates the ability of PSII to 

perform photochemistry (QA 

reduction) 
Effective photochemical 

quantum yield of PS II (YII) 

YII= (FM´–F)/ FM´ Light 

Non photochemical fluorescence 

quenching (NPQ) 

NPQ= (FM/FM´)-1 Dark and 

Light 

Estimates the non-photochemical 

quenching from FM to FM´. 

Monitors the apparent rate 

constant for heat loss from PSII. 
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TABLE 3.S2 | Complete description and abbreviation of evaluated traits in the study. 

Traits Abbreviation Descriptions 

Agronomic traits 

Grain yield GY 
The plots were harvested and the grains cleaned and weighed and the 

grain yield in Kg/ha was calculated. 

Shoot dry weight SDW 
Dry shoot weight (g), dried shoot sample in oven set at 65°C for 3 days 

and the weight in Kg/ha was calculated 

Plant biomass weight PBW 

After drying, plant Biomass weight (Biomass) and seed weight was 

recorded to estimate the HI as the ratio of seed weight to total biomass 

weight 

Developmental traits 

Relative plant 

healthiness 
HSr 

The score of each trait was given with the customized scale from 1 to 5 

equivalent to 0, 25, 50, 75 and 100% of damage, where the score 1 was 

0 % of bad phenotype indicating the best performance while 100% of 

bad phenotype was the full expression of worst performance. 

For example, the leaf greenness was scored as follow 1 means 0 % 
leaves were yellow and 100% were green; 2 means 25% leaves were 

yellow, 75% leaves were green and 5 means 100% leaf are yellow. For 

leaf rolling and greenness, observations were done on the flag leaves 

and second youngest leaves. 

Relative plants 

homogeneity of growth 
HGr 

Relative plant leaves 

greenness 
LGr 

Relative plant leaves 

rolling state 
LRr 

Table S2 Continues 
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Table S2 Continued 

  

Physiological and functional traits 

Clorophyll Content SPAD SPAD and MINI-PAM measurements were made at the mid-point of a 

fully expanded leaf, on three plants randomly chosen within a plot using 

a SPAD 502 instrument (Konica Minolta, Osaka, Japan). During the 

measurements, special care of leaves angle or shading was observed to 

avoid change of the ambient state of the leaves (Rascher et al., 2000). 

The average of the three SPAD measurements per genotype per 

repetition was calculated and used for the analysis, while the nine data 

points per genotype from three repetitions were used for analyses. The 

Chlorophyll a fluorescence parameters evaluated (Walz, 2014) are fully 

described in Table S1. 

Effective quantum 

Yield of Photosystem II  
YII 

Maximum quantum 

Yield of Photosystem II  
FV/FM 

Maximum fluorescence 

level (of light and dark 

adapted samples)  
Fmax; FMax 

Minimum fluorescence 

level (of light and dark 

adapted samples)  
Fmin; FMin 

Nonphotochemical 

fluorescence quenching 
NPQ 

Diffusion porometer 

based Leaf stomatal 

conductance 
LSCp 

Diffusion based leaf stomatal conductance (gsLSCp) was measured 

across four growth stages, prebooting, booting, anthesis and 

postanthesis by diffusion porometer (AP4-Delta-T Eijelkampt, 

Giesbech, The Netherlands) with limits operating of 0 to 50 °C 

temperature and 10 to 90% relative humidity (Devices, n.d.). Readings 

were done on the second youngest leaves at prebooting and booting, and 

on flag leaves at anthesis and post-anthesis. Three measurements within 

a plot of one genotype were made as mmol H2O m-2 s-1 exciting water 

vapor at full clear air conditions between 10:00 am and 16:30 pm, with 

about 1500 PAR light intensity and 1000 hPa pressure. 

Photosynthetic rate A 
Net photosynthetic rate (APR, μmol CO2 m−2 s−1), an IRGA based 

stomatal conductance (gswLSCl, mol H2O m−2 s−1), intercellular CO2 

concentration (CiIntCO2, µmol CO2 mol-1), transpiration rate (ETR, 

mmol H2O m−2 s−1) and the leaf temperature (T, °C) were investigated 

using LI-6800 (LI-COR, Lincoln, USA) in open system from 10:00 a.m. 

to 14:00 a.m. at anthesis growth stage. The photosynthetic active 

radiation (PAR) of LI-6800 was set as 1000 μmol m−2 s−1. For each 

line, the flag leaves of three plants in the middle of the plot were 

selected and the readings were taken at the midpoint part. The difference 

in temperature (ΔT) was calculated with the formular ΔT=Tleaf- Tair. 

Leaf instantaneous water use efficiency (LWUE, μmol/ mmol) was 

calculated as follows LWUE = A/E where A is photosynthetic rate, E is 

transpiration rate as described by Munjonji et al. (2016). 

Interceluar CO2 Ci 

Transpiration rate E 

IRGA based Stomatal 

conductance 
LSCl 

Leaf instantaneous 

water use efficiency 
LWUE = A/E 

Difference temperature 

Leaf-Air 

DTLA 
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TABLE 3.S3 | Chlorophyll content and fluorescence ratio parameters across growth stages in 2017 and 2018 growing seasons. 

Physio 

logical 

Traits 

Statistic 

Water regime 

BBCH growth stage in 2017 BBCH growth stage in 2018 
Heritability 

(%) 

GS40-49 GS50-59 GS60-69 GS30-39 GS40-49 GS50-59 GS60-69 GS70-85 H2 h2 

SPAD 

Mean 

Control 52.72 53.24 52.86     54.00   
 

92.57 47.33 

Drought 52.12 53.24 51.03     52.78     67.07 35.22 

Reduction 

(%) 
1.13 0.00 3.47   2.26     

CV (%) 
Control 5.95 7.06 10.19 

  
7.83 

  
  

Drought 7.48 6.20 14.03 
  

8.50 
  

  

Treatment 

effect 

Water (W) ** ns *   
 

ns 
  

  

Genotype (G) *** *** *   
 

** 
  

  

W*G * *** ns     ns       

Fmin 

Mean 

Control 772.61 623.39 270.35 480.00 452.17 399.17 342.64 351.67 0 5.71 

Drought 195.09 479.53 813.68 454.49 415.08 389.49 385.87 413.61 0 4.38 

Reduction 

(%) 
74.75 23.08 -200.97   2.43     

CV (%) 
Control 52.71 67.41 25.93 22.71 27.65 22.14 23.42 43.50   

Drought 16.27 79.87 58.52 30.27 21.52 19.23 21.67 28.18   

Treatment 
effect 

W *** *** *** ns ** ns *** ***   

G *** *** *** ** *** *** *** ***   

W*G *** *** *** *** ns *** * ***   

Fmax 

Mean 

Control 1903.15 1584.45 1095.20 1194.82 1106.13 981.58 897.45 971.08 4.74 15.23 

Drought 500.77 1128.55 1703.27 1188.41 1117.09 1072.82 1059.79 992.52 29.66 22.70 

Reduction 

(%) 
73.69 28.77 -55.52   -9.30     

CV (%) 
Control 39.53 41.99 31.50 18.60 23.16 26.07 18.03 34.81   

Drought 8.48 63.11 31.97 18.40 16.91 21.00 18.00 26.91   

Treatment 

effect 

W *** *** *** ns ns *** *** ns   

G *** *** *** ns ** *** *** *   

W*G *** *** * *** ns * * **   
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Table S3 (Continued) 

 

Physio 

logical 
Traits 

Statistic 

Water regime 

Measured BBCH growth stage in 2017 Measured BBCH growth stage in 2018   

GS40-49 GS50-59 GS60-69 
GS30-

39 
GS40-49 GS50-59 GS60-69 GS70-85   

YII 

Mean 

Control 0.61 0.63 0.74 0.60 0.59 0.58 0.62 0.64 0 8.69 

Drought 0.61 0.59 0.54 0.62 0.63 0.63 0.63 0.56 0 6.37 

Reduction 

(%) 
0.00 6.35 27.03 -3.33 -6.78 -8.62 -1.61 12.50   

CV (%) 
Control 20.60 21.88 8.55 9.05 10.06 11.25 9.96 12.02   

Drought 9.35 23.05 34.75 11.26 9.40 9.66 8.56 24.53   

Treatment 

effect 

W ** *** *** *** *** *** ns ***   

G *** *** *** ** * ** *** **   

W*G * *** *** *** ns * ns ns   

GS30-39: Prebooting growth stage; GS40-49: Booting; GS50-59: S3_Heading; GS60-69: Anthesis, GS70-85: Postanthesis, Fmin, Fmax are respectively the minimum and 

maximum fluorescence of light acclimated sample; YII is the effective photochemical, Significance levels: *P < 0.05, **P < 0.01, ***P < 0.001, ns means not significant.  
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TABLE 3.S4 | Dark and light adapted chlorophyll fluorescence ratio parameters measured at anthesis stage. 

Statistic Water regime 

2017 2018 

FMin FMax Fv/ FMax NPQ FMin FMax Fv/FMax NPQ 

Mean 

Control 245.40 946.29 0.77 0.54 286.78 1676.32 0.83 0.95 

Drought 311.60 1408.45 0.75 0.26 321.68 1667.20 0.80 0.49 

Reduction (%) -26.97 -48.84 3.25 50.77 -12.17 0.54 3.56 47.90 

CV (%) 
Control 6.20 5.39 3.77 46.70 5.21 6.23 1.16 31.87 

Drought 26.76 10.78 3.61 113.51 16.05 16.65 8.38 54.61 

Treatment effect 

W *** *** *** *** *** ns *** *** 

G ns *** ns * *** *** *** * 

W*G ns *** ns *** ** *** ** *** 

FMin, FMax are respectively the minimum and maximum fluorescence of dark adapted sample; Fv/FMax is the maximum photochemical quantum yield of PSII, 

NPQ in the non-photochemical quenching. Significance levels: *P < 0.05, **P < 0.01, ***P < 0.001, ns means not significant. 
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TABLE 3.S5 | Stomatal conductance (gsw) dynamic across growth stage in 2018. 

Statistic Water Regime 
Stomatal conductance (gsw) (mol m⁻² s⁻¹) 

GS30-39 GS40-49 GS60-69 GS70-85 

Mean 

Control 0.24 0.22 0.33 0.28 

Drought 0.32 0.22 0.13 0.09 

Reduction (%) -33.33 0.00 60.61 67.86 

CV(%) 
Control 85.45 203.70 36.21 25.28 

Drought 156.92 60.32 44.69 77.64 

Treatment 

effect 

T ns ns *** *** 

G ns ns * ns 

T*G *** ns ns ns 

GS30-39: Prebooting growth stage; GS40-49: Booting; GS60-69: Anthesis, GS70-85: Postanthesis, 

TABLE 3.S6 | Photosynthesis related parameters measured with the Licor 6800 at anthesis growth stage. 

Water regime A (µmol m⁻² s⁻¹) E (mol m⁻² s⁻¹) 
 

LWUE (µmol/mol) Ci (µmol/mol) LSCl (mol m⁻² s⁻¹) 

Control 10.089 0.003 

 

3835.472 304.520 0.232 

Drought 7.110 0.001 

 

5279.863 277.275 0.115 

Reduction (%) 29.53 66.67  -37.66 8.95 50.43 

Drought effect (P-Value)  0.007 ** <0.001 *** 
 

0.011* 0.034 * <0.001 *** 
A = Photosynthetic rate; E = Transpiration rate; LWUE = Leaf instantaneous water use efficiency; Ci = Intercellular CO2; LSCl = IRGA based Stomatal conductance. Significance 

levels: *P < 0.05, **P < 0.01, ***P < 0.001, ns means not significant. 
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TABLE 4.S1 | List of the thirty winter wheat cultivars grown in pot experiment in 2019. 

BRISONr. Cultivars names Year of release Origine of cultivars Selection type* 

1 Einstein 2004 GBR Diversity panel 

4 Claire 1999 GBR Diversity panel 

8 Zappa 2009 Deutschland Drought-tolerant 

13 KWS Santiago 2011 GBR Drought-tolerant 

14 Brigand 1979 GBR Drought-tolerant 

57 Gourmet 2013 Deutschland Diversity panel 

59 Ritmo 1993 Deutschland Diversity panel 

79 Brilliant 2005 Deutschland Diversity panel 

80 Inspiration 2007 Deutschland Diversity panel 

84 Maris Huntsman 1975 Deutschland Diversity panel 

98 Severin 1980 Deutschland Diversity panel 

108 Herzog 1986 Deutschland Diversity panel 

117 Pantus 1966 Deutschland Diversity panel 

119 Joss 1972 Deutschland Diversity panel 

127 Tambor 1993 Deutschland Diversity panel 

129 Sokrates 2001 Deutschland Drought-tolerant 

135 Monopol 1975 Deutschland Diversity panel 

149 Zentos 1989 Deutschland Diversity panel 

150 Diplomat 1966 Deutschland Drought-tolerant 

153 Kormoran 1973 Deutschland Diversity panel 

170 Centurk 1971 USA Drought-sensitive 

172 Benni multifloret 1980 USA/Indiana Drought-sensitive 

176 Mironovska 808 1963 Ukraine Diversity panel 

177 Caphorn 2000 Frankreich Diversity panel 

190 BCD 1302/83 - Moldawien Diversity panel 

194 Cajeme 71 1971 Mexico Drought-sensitive 

196 Ivanka 1998 Serbien Diversity panel 

205 Highbury 1968 GBR Diversity panel 

206 Siete Cerros 66 1966 Mexiko Drought-sensitive 

210 NS 46/90 - Serbien Drought-sensitive 

* The selection type column described the selection process, cultivars of Diversity panel are selected to 

represent the genetic diversity in the panel. Other cultivars are either drought-tolerant or drought-sensitive.  
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TABLE 4.S2 | Traits description for field trials in 2017 and 2018 and pot experiment in 2019. 

Traits 
Abbreviati
ons (unit) 

Descriptions and units 

Agronomic traits 

Plant biomass weight  
PBW 

(g/row) 

The aboveground plant part per plot was harvested 

at maturity (BBCH99). After drying in oven at 65°C 

for three days, the PBW was measured. The sample 

was then thrashed and the cleaned grains were 

weighed to determine GY. The thrashed product 
without grains corresponded to SDW. To determine 

SWaP from the pot experiment, the aboveground 

plant biomass was harvested at anthesis (BBCH60-

69) to estimate the shoot fresh biomass weight 

(SFW) and then dried as described previously to 

measure the shoot dried biomass weight (SDW).  

Grain yield 
GY 

(g/row) 

Shoot dry weight SDW 

Shoot water potential at anthesis SWaP 

Photosynthesis related traits 

Clorophyll Content SPAD 

SPAD and YII measurements were made at the mid-
point of a fully expanded leaf using a SPAD-502 

instrument (Konica Minolta, Osaka, Japan) and the 

MINI-PAM II flurometer (Walz, 2014), 

respectively. During the measurements, special care 

of leaves angle or shading was observed to avoid 

change of the ambient state of the leaves (Rascher et 

al., 2000). The average of the SPAD measurements 

of three plants per genotype per repetition was 

calculated and used for the analysis, while the nine 

data points per genotype from three repetitions were 

used for YII analyses. 

Effective photochemical quantum yield of 

PS II (YII) 
YII 

Normalized difference vegetation index NDVI 

NDVI = (NIR-RED)/(NIR+RED) according to 
Rouse et al. (1974), Tucker & Sellers (1986), and 

(Liu, 2005). NIR stands for Near-infrared 

wavelength (750-1100 nm) and RED stands for the 

visible red wavelength (600–750 nm). 

Nitrogen use related traits 

Nitrogen use efficiency for Biomass 

production 

NUEBio 
NUEBio = PBW / available N [equivalent of 

medium N input (110 Kg/ha) or high N input ( 220 

Kg/ha)]. 

Nitrogen use efficiency for Grain Yield 

production 
NUEGr NUEGr = GY / available 𝑁 = NUtE × NUpE  

Nitrogen in aboveground plant biomass  
NAB 

Grain yield × (N content in seed/100) + Shoot dry 

weight × (N content in straw /100 ) 

Nitrogen uptake efficiency  NUpE NAB / available N 

Nitrogen utilization efficiency  NUtE GY / NAB 

N content in grain  
NGr 

NGr = Grain protein content / 5.7 (Gauer et al., 

1992) 

N content in straw  NSt Nst was measured by NIRS machine 

N content in leaves at anthesis 
NLf  

The N content in leaves harvested at anthesis 

(BBCH60-69) 

Nitrogen remobilization efficiency  NRE NRE = 1 – (NGr/NLf) 

Nitrogen harvest index  
NHI 

NHI= N content in seed / (N content in seed + N 

content in straw) 
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Root architectural traits 

Fresh root weight at anthesis FRW 
The fresh root biomass weight (FRW) of two plants per 

pot after washing was weighed, then dried in oven at 65°C 

and the dry root weight (DRW) was measured. The root 

water potential corresponds to the difference between 

FRW and DRW. 

Root dry weight at anthesis DRW 

Root water potential 
RWaP 

Root area  

RA 

The part within 5 cm from the crown down the root system 

of one plant was cut off and placed on the scoreboard to 
measure the right (α) and left (β) angles (Figure 1). 

Thereafter, the root area was calculated using the equation 

1 in the main text. 
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TABLE 4.S3 | SNP loci showing multiple and interacting effects on the evaluated traits and the corresponding underlying genes. 

Marker Peak code (region) Marker name 
Ch

r 
Pos Block 

Total 

genes 
 Human readable description of genes 

Pleiotropic markers 

W15_AOWZ 

Tdurum_contig594

49_249 1B 487407563 

Block 

(470936325-

489206981) 

96 

Myb transcription factor; Protein NRT1/ PTR FAMILY 1.1; F-box 

family protein; Cold shock protein; Amino acid permease; Cytochrome 

P450; Aminotransferase; Protein NRT1/ PTR FAMILY 5.5 

W135_BCLB 

AX-111561744 2D 23416219 

No block 26 

Cytochrome P450 family protein; Cystathionine gamma-synthase; 

Short-chain dehydrogenase/reductase; transmembrane protein, putative 

(DUF594); F-box protein family-like 

W135_EQVM AX-158577204 3A 714294127 No block 40 

B3 domain-containing protein; Beta-1,3-glucanase; Amino acid 

permease; RNA-binding protein, putative; BTB/POZ domain containing 

protein, expressed; GRAS family transcription factor containing protein 

W135_HPIW AX-89650364 3A 8213038 

Block 

(8213038-

8686717) 

26 

Kinase family protein;Receptor-kinase, putative; Disease resistance 

protein (TIR-NBS-LRR class);  Disease resistance protein RPM1; 

Disease resistance protein (NBS-LRR class) family; NBS-LRR-like 

resistance protein 

W135_EBWG AX-158567084 7A 692900585 No block 30 

Chaperone protein dnaJ; Histone-lysine N-methyltransferase; 

Bidirectional sugar transporter SWEET; Photosystem II reaction center 

PsbP family protein; Peptide transporter; Patatin 

Nitrogen deficiency induced markers ( under drought) 

W135_ACAD AX-108817594 1B 575723086 Block 2 Magnesium transporter; Cleavage stimulation factor subunit; 
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(575868657-

575723086) 

magnesium transporter NIPA (DUF803) 

W135_ALNQ (NRE) AX-109874485 2A 747160989 

Block 

(747088588-

747611742) 

6 
Receptor-like protein kinase; Antimicrobial peptide; 3-oxoacyl-

reductase; Heterogeneous nuclear ribonucleoprotein U-like protein 1 

W15_AKXT (NRE) 

RAC875_c2437_1

569 5B 479025051 

Block 

(478758747-

479200398) 

5 Beta-glucosidase; CCR4-NOT transcription complex subunit 2 

W15_AJKR (NAB NUptE) Kukri_c4780_395 6B 667071383 

Block 

(665516798-

667773729) 

9 

SRF-type transcription factor; DNA topoisomerase (Pfam=GRF zinc 

finger); AGAMOUS-like MADS-box protein (Pfam=SRF-type 

transcription factor); CCR4-NOT transcription complex family protein 

W135_CNBZ (NRE) AX-158539517 7A 33187933 

Block 

(32805151-

33246377) 

3 
Receptor protein kinase; Cell cycle regulated microtubule associated 

protein; LOB domain-containing protein, putative 

W135_EBWH AX-158567085 7A 692019147 

Block 

(692019147-

696821540) 

48 

Bidirectional sugar transporter SWEET; Alkaline alpha-galactosidase 

seed imbibition protein; Patatin; Peptide transporter ; Beta-catenin-like 

protein 1; Photosystem II reaction center PsbP family protein; 

Cytochrome P450 family protein, expressed; Histone-lysine N-

methyltransferase; Protein kinase; Cytochrome b561 and DOMON 

domain-containing protein; WRKY transcription factor 

Nitrogen deficiency Interaction markers (under drought) 
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W15_AQTM  
wsnp_Ex_c23795_

33033150 
5A 679665943 

Block 

(679665943-

679666083) 

6 

MADS-box transcription factor; 2-oxoglutarate (2OG) and Fe(II)-

dependent oxygenase superfamily protein;Basic helix-loop-helix 

transcription factor;  Kinase family protein; Endoribonuclease Dicer-like 

protein 3 

W15_ACLA  BS00081951_51 5A 677631836 

Block 

(677135858-

679666083) 

20 

Pectin lyase-like superfamily protein; F-box protein; Receptor-like 

protein kinase, putative; Beta-1,3-N-acetylglucosaminyltransferase 

lunatic fringe; Sugar transporter, putative; 2-oxoglutarate (2OG) and 

Fe(II)-dependent oxygenase superfamily protein; Basic helix-loop-helix 

transcription factor 

W135_AJWO AX-109506123 5D 528818863 

Block 

(528818863-

529854459) 

40 

Receptor lectin kinase; Sugar transporter family protein, putative, 

expressed;  Protein NRT1/ PTR FAMILY 5.5; Disease resistance 

protein (NBS-LRR class) family; Pectin acetylesterase; UDP-

glycosyltransferase; Calmodulin-binding protein, putative, expressed; 

Cytochrome P450 

W135_APNO AX-110366518 6B 665737258 

Block 

(665715744-

667884690) 

11 

AGAMOUS-like MADS-box protein (Pfam= SRF-type transcription 

factor (DNA-binding and dimerisation domain); carboxyl-terminal 

peptidase (DUF239); Zinc finger protein VAR3, chloroplastic; MADS-

box transcription factor family protein; Two-component response 

regulator; DNA topoisomerase (GRF zinc finger) 

W135_AOSG  AX-110038525 7A 736688441 

Block 

(736555653-

736688441) 

2 

RNA-binding family protein (Pfam: RNA recognition motif. (a.k.a. 

RRM, RBD, or RNP domain); Phosphatidylinositol-4-phosphate 5-

kinase, core) 

Nitrogen deficiency Interaction markers (under rainfed) 
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W15_AOFR ; W15_AORH  

Tdurum_contig292

80_216; 

durum_contig5035

5_269 

1A 
33375555; 

33020906 

Block 

(33020906-

33375555) 

2 F-box family protein; Protein aluminum sensitive 3 

W135_EFVY (for NUE, Seed yield; 

Peak; High Sigh) AX-158569780 1A 333880952 

Block 

(320336587-

355344855 

70 

Cytochrome P450 family protein, expressed;  Serine carboxypeptidase 

S28 family protein; Serine carboxypeptidase S28 family protein; Zinc 

finger CCCH domain protein; Serine carboxypeptidase S28 family 

protein; Cytochrome b5; Pectinesterase; Glutathione S-transferase,  

W15_AFBX  
Excalibur_c20307_

654 7A 621320529 

Block 

(620533841-

641435870) 

35 

Chlororespiratory reduction 42; Phosphate import ATP-binding protein 

PstB (ABC transporter); 3-oxoacyl-reductase (short chain 

dehydrogenase); Peroxidase; carboxyl-terminal peptidase (DUF239); 

Zinc finger family protein (C2H2-type zinc finger) 

W15_ACHH  BS00076743_51 7A 545056389 

Block 

(544255244-

545544574) 

9 

F-box protein Phloem protein 2;Protein phosphatase 2C; Zeaxanthin 

epoxidase, chloroplastic; CAAX amino terminal protease family 

protein; CAAX amino terminal protease family protein; Auxin-

responsive protein 

W135_AADV   AX-108731092 3B 722362075 

 

block(7223620

75-719443875 

26 

Glutathione S-transferase; zinc knuckle (CCHC-type) family protein; 

Myb transcription factor; glycosyltransferase family exostosin protein; 

RING/U-box superfamily protein; Ubiquitin-conjugating enzyme E2, 

putative; Disease resistance protein RPM1 
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TABLE 5.S1 | Year wise soil information of the experimental site. 

Level (cm) Nmin (kg/ha). 2015 Nmin (kg/ha). 2016 Nmin (kg/ha). 2017 

0-30 13.6 22.2 27.1 

30-60 24.3 10.8 36.1 

60-90 27.0 10.1 25.1 

Total 64.9 43.1 88.3 

Soil (mg)/100 g    

  P2O5   15 20 13 

  K2O   21 17 19 

  MgO  8 9 9 

PH 6.6 6.8 7.0 

Org. subs (%) 1.8 1.6 2.4 

TABLE 5.S2 | Fertilizer application, amount and the developmental stage of crop. 

Date of 

Application 
Treatments N- Fertilizer

a
 BBCH

b
 

Amount of 

Fertilizer(kg/ha) 

12/3/2015 HN-NF, HN-WF KAS 22 50 

15/4/2015 HN-NF, HN-WF KAS 30 45 

27/5/2015 HN-NF, HN-WF KAS 49-65 60 

17/3/2016 HN-NF, HN-WF KAS 25 50 

6/4/2016 HN-NF, HN-WF KAS 30 55 

27/5/2016 HN-NF, HN-WF KAS 51-59 60 

24/3/2017 HN-NF, HN-WF KAS 25 50 

19/4/2017 HN-NF, HN-WF KAS 31-32 25 

29/5/2017 HN-NF, HN-WF KAS 49-69 60 
a The treatment LN-NF did not receive further nitrogen fertilization; 

KAS means Kalkammonsalpeter (Calcium ammonium nitrate). It contains 27 kg N/100 Kg (dt) KAS fertilizer, including 13.5 

kg/dt for each of NH4 and NO3, and 55 kg CaO (calcium oxide) per 100 kgN and 4 kg MgO (magnesium oxide) per 100 kgN. 

b
 BBCH means Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie.  
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TABLE 5.S3 | Application of herbicide, fungicide, and growth regulators on different developmental stages of the wheat. 

Year Treatment 

Plant protection/Growth regulator 

Application round Date (d.m.Y) Amount Spraying agents (ative ingredients
a
) 

2015 

low nitrogen, no 

fungicide (LN_NF) 
1st herbicide 17.03.2015 150 gr/ha + 0..7 l/ha + 1.5 l/ha  

Broadway 68.3 g/kg Pyroxsulam + 22.8 g/kg Florasulam + 

68.3 g/kg Cloquintocet-Mexyl (Safener) + FHS 

(mesosulfuron) + Arelon Top (isoproturon) 

2nd herbicide 11.05.2015 1.5 l/ha MCPA (2-methyl-4-chlorophenoxyacetic acid) 

1st insecticide 12.06.2015 75 ml/ha Karate Zeon (250 g/L Lambda-Cyhalothrin; Oxiran) 

high nitrogen, no 

fungicide (HN_NF) 

1st herbicide 17.03.2015 150 gr/ha + 0.7 l/ha + 1.5 l/ha  Broadway + FHS + Arelon Top 

2nd herbicide 11.05.2015 1.5 l/ha MCPA 

1st insecticide 12.06.2015 75 ml/ha Karate Zeon 

1st growth regulator 07.04.2015 1.0 l/ha CCC (Chlormequat-chloride) 

2nd growth regulator 16.04.2015 0.5 l/ha + 0.3 l/ha CCC + Moddus (Trinexapac-ethyl) 

high nitrogen, with 

fungicide 

(HN_WF) 

1st herbicide 17.03.2015 150 gr/ha + 0.7 l/ha + 1.5 l/ha  Broadway + FHS + Arelon Top 

2nd herbicide 11.05.2015 1.5 l/ha MCPA 

1st insecticide 12.06.2015 75 ml/ha Karate Zeon 

1st fungicide 07.04.2015 1.1 l/ha 

Diamant (114 g/l Pyraclostrobin (F 500) + 43 g/l 

Epoxiconazol + 214 g/l Fenpropimorph) 

2nd fungicide 17.04.2015 1.75 l/ha 

Capallo (75 g/litre metrafenone+ 62.5 g/litre epoxiconazole + 

200 g/litre fenpropimorph) 

3rd fungicide 11.05.2015 1.25 l/ha 

Input classic (160 g/l Prothioconazol 

300 g/l Spiroxamine) 

4th fungicide 27.05.2015 1.0 l/ha + 1.0 l/ha 

Osiris (37.5 g/l Epoxiconazol + 27.5 g/l Metconazol)  + 

SkywayXpro (75 g/L bixafen, + 100 g/L prothioconazole + 
100 g/L tebuconazole). 

1st growth regulator 07.04.2015 1.0 l/ha CCC 

2nd growth regulator 16.04.2015 0.5 l/ha + 0.3 l/ha CCC + Moddus 

2016 low nitrogen, no 

fungicide (LN_NF) 

1st herbicide 16.11.2015 4.0 l/ha Malibu (300 g/l Pendimethalin + 60 g/l Flufenacet) 

2nd herbicide 08.04.2016 180 g/ha 

Hoestar super (125 g/kg Amidosulfuron + 12.5 g/kg 

Iodosulfuron-methyl-natrium + 125 g/kg Mefenpyr-diethyl) 

1st insecticide 10.06.2016 75 ml/ha Karate Zeon 

high nitrogen, no 1st herbicide 16.11.2015 4.0 l/ha Malibu 
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fungicide (HN_NF) 2nd herbicide 08.04.2016 180 g/ha Hoestar super 

1st insecticide 10.06.2016 75 ml/ha Karate Zeon 

1st growth regulator 12.04.2016 0.5 l/ha + 0.3 l/ha  CCC + Moddus 

high nitrogen, with 

fungicide 

(HN_WF) 

1st herbicide 16.11.2015 4.0 l/ha Malibu 

2nd herbicide 08.04.2016 180 g/ha Hoestar super 

1st insecticide 10.06.2016 75 ml/ha Karate Zeon 

1st fungicide 12.04.2016 2.0 l/ha Capallo 

2nd fungicide 20.04.2016 0.2 l/ha + 1.0 l/ha  Alto (Cyproconazole ) + Bravo (500 g/l chlorothalonil) 

3rd fungicide 02.05.2016 1.2 l/ha + 1.0 l/ha 

Adexar (62.5 g/l epoxiconazole+ 62.5 g/litre fluxapyroxad); 

Credo (100g/l picoxystrobin + 500g/l chlorothalonil) 

4th fungicide 19.05.2016 1.0 l/ha Input classic 

1st growth regulator 12.04.2016 0.5 l/ha + 0.3 l/ha CCC + Moddus 

2017 

low nitrogen, no 

fungicide (LN_NF) 

1st herbicide 03.11.2016 4.0 l/ha Malibu 

2nd herbicide 15.05.2017 1.5l/ha MCPA 

1st insecticide 02.06.2017 75 ml/ha Karate Zeon 

high nitrogen, no 

fungicide (HN_NF) 

1st herbicide 03.11.2016 4.0 l/ha Malibu 

2nd herbicide 15.05.2017 1.5 l/ha MCPA 

1st insecticide 02.06.2017 75 ml/ha Karate Zeon 

1st growth regulator 23.03.2017 1.0 l/ha CCC 

2nd growth regulator 21.04.2017 0.5 l/ha + 0.3 l/ha  CCC + Moddus 

high nitrogen, with 

fungicide 

(HN_WF) 

1st herbicide 03.11.2016 4.0 l/ha Malibu 

2nd herbicide 15.05.2017 1.5 l/ha MCPA 

1st insecticide 02.06.2017 75 ml/ha Karate Zeon 

1st fungicide 24.04.2017 2.0 l/ha Capallo 

2nd fungicide 15.05.2017 1.75 l/ha +1.0 l/ha  Adexar + Credo 

3rd fungicide 31.05.2017 1.25 l/ha + 1.0 l/ha  Osiris + Skyway Xpro 

1st growth regulator 23.03.2017 1.0 l/ha CCC 

2nd growth regulator 21.04.2017 0.5 l/ha + 0.3 l/ha  CCC + Moddus 
a the active ingredient of the chemical is given in bracket the first time it appeared in the Table.  
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TABLE 5.S4 | Description of the measured variable in the experiments. 

Traits 

Category 
Traits Symbols Method to measure 

Yield related 

traits 

Grain yield  GY (Mg/ha) 

Harvesting of central part of each plot was done at the end of the growing season and GY (in Mg. ha-1) was recorded 
automatically with the help of combine harvester. 

Grain moisture was immediately measured after trashing at the end of maturity phase (BBCH99) and GY was corrected to 
standard moisture of 14%.  

Spike number per 
meter square 

SNms Spike numbers were counted for within one meter from all cultivars one by one before harvesting and after flowering. 

Kernels number per 
spike 

KNSp 
Kernels per spike, Kernels per m2 were calculated based on the Thousand kernel weight, Spike numbers per meter square, 

seed weight per meter square 
Kernels number per 
meter square 

KNms 

Thousand kernel 
weight 

TKW (g) 
TKW was calculated in 2016 and 2017. Three replicates of five hundred seeds were counted with the help of automatic seed 
counter and weighed. The average of the three replicates was multiplied by two to calculate thousand kernel weight. 

Harvest index 
HI, PBWms (g/m2) 

Plants in one-meter row of every plot were manually harvested after maturity (BBCH 99) used by Voss-Fels et al. (2019) 
and dried in oven at 65°C for 3 days. After drying, plant biomass weight (shoot dry weight plus grain weight) and seed 
weight was recorded to estimate the HI as the ratio of seed weight to total biomass weight Plant biomass weight,  

Heading date HD (Days) 
Visually recorded as number of days from 1st of January to the date when the ears from approximately 70 % of total tiller in 
each plot came out from flag leaf sheath at around BBCH59 

Plant height  PH 
The measurement was taken from soil to the top of the spike of the main tiller of the plant between BBCH 65-69 growth 
stage 

Physiological 
trait  

Leaf chlorophyll 
contents  

SPAD 

SPAD were measured at BBCH 45-49 using SPAD 502 Plus Chlorophyll Meter (Konica Minolta, Japan) from 3 different 

plants of each plot. 
The SPAD values were recorded based on light absorption by chlorophyll between the wave length of 650 nm to 940 nm  

Disease 
incidence 

Yellow rust YR 

YR severity (leaf area covered by rust pustules) was visually scored using linear phenotyping scale from 1 to 9 according 
Pask et al. (2012), where 1 is the most resistant and 9 the most susceptible genotype. Scores for each plot (genotype) were 
estimated by reflection of the average leaf area covered with disease as well as the plot area covered by the yellow rust and 
their severity. 

Grain quality 

traits 

Grain crude protein 

content 
GPC (%) 

The grain quality were analyzed using NIRS instrument (Perten, DA 7250) following the manufacturers guidelines. 
Grain starch content GSC(%) 

Sedimentation Sedimentation (%) 

Grain N yield GNY (kg.ha-1) 
The grain N yield was calculated by dividing the grain crude protein yield by the wheat-specific protein factor of 5.7, and 

multiply the result by the GY 
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TABLE 5.S5 | Summary of analysis of variance of agronomic and grain quality traits of 220 

genotypes tested in three different environments. 

Year Traits 
Wald statistic  

CV (%) H
2
 

G CS G*CS 

2015 

Agronomic traits         

GY  6891.7*** 2396.56*** 2290.12*** 26.66 0.73 

SNms 619.17** 313.14** 403.97ns 24.59 0.66 

KNSp - - - - - 

KNms - - - - - 

TKW - - - - - 

HD 3875.16** 131.73** 452.34ns 1.88 0.94 

PH 2853.91** 519.06** 393.14ns 10.82 0.96 

HI 5625.89** 143.5** 3065.83** 13.13 0.73 

PBWms 413.41** 365.87** 449.19 ns 29.72 0.44 

Physiological trait         

SPAD - - - - - 

Disease incidence         

YR 1497.98** 91.29** 466.34ns 50.97  0.84 

Grain quality traits     

GPC 2083.91** 3655.31** 519.8ns 12.04 0.87 

GSC 899.82** 316.97** 431.9ns 2.12 0.76 

Sedimentation 227.99 ns 408.07** 431.09ns 38.77 0.22 

2016 

Agronomic traits         

GY  13408.46*** 4810.61*** 2557.78*** 25.6 0.8 

SNms 395.81** 254.37** 488.64ns 19.13 0.39 

KNSp 32.4E4*** 34.4E3*** 39.2E4*** 0.301 0.38 

KNms 11.3E5*** 65.8E4*** 98.1E4*** 0.32 0.55 

TKW 9751.16** 4636.41** 2154.6** 13.49 0.87 

HD 881.68** 119.44** 504.05ns 0.71 0.69 

PH 5712.85** 369.1** 1099.83** 10.66 0.91 

HI 1619.80** 725.85** 557.05** 12.16 0.69 

PBWms 396.77** 63.09** 389ns 26.62 0.5 

Physiological trait         

SPAD 216.1** 512.66** 416.66ns  10.3  0.60 

Disease incidence         

YR 3848.78** 308.45** 579.39** 62.73 0.92 

Grain quality traits 
    

GPC 6861.23** 4956.56** 1532.27** 10.7 0.89 

GSC 574.71** 23.74** 399.47ns 1.41 0.66 

Sedimentation 980.55** 195.82** 595** 24.1 0.95 
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Table S5 (continued) 

Year Traits 
Wald statistic  

CV (%) H2 
G CS G*CS 

2017 

Agronomic traits         

GY  4001.76*** 1413.27*** 1103.88*** 17.36 0.75 

SNms 339.53** 99.85** 343.16ns 17.79 0.48 

KNSp 13.1E4*** 13651.95*** 15.4E4*** 0.237 0.43 

KNms 25.7E5*** 15.6E4*** 28.5E4*** 0.24 0.46 

TKW 14852.82** 190.71** 1898.15** 8.04 0.93 

HD 4327.21** 271.57** 412.95ns 1.46 0.95 

PH 10147.78** 362.09** 888.29** 11.71 0.95 

HI 1533.21** 575.06** 539.66** 8.44 0.82 

PBWms 375.31** 25.44** 467.58ns 20.01 0.38 

Physiological trait         

SPAD 901.86** 88.85** 529.39ns 9.46   0.70 

Disease incidence         

YR - - - - - 

Grain quality traits     

GPC 5857.53** 9955.66** 761.25** 11.39 0.93 

GSC 2574.5** 665.49** 699.41** 1.26 0.86 

Sedimentation 9302.4** 2909.79** 3171.77** 38.91 0.83 

** Significant at the 0.01 probability level 

*** Significant at the 0.001 probability level 

† ns, nonsignificant at the 0.05 probability level 
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TABLE 5.S6 | Arithmetic mean and treatments effect of agronomic and grain quality traits of 220 genotypes tested in 3 different CS over three growing seasons. 

Traits 

2015 2016 2017 

Means Treatment effect (%) Means Treatment effect (%) Means Treatment effect (%) 

HN-NF HN-WF LN-NF N NF FHN HN-NF HN-WF LN-NF N NF FHN HN-NF HN-WF LN-NF N NF FHN 

GY(Mg/ha) 8.976b
* 11.225a 6.680c 34.36 68.03 25.06 6.867b 9.583a 6.455c 6.39 48.46 39.55 9.678b 10.525a 7.410c 30.61 42.03 8.75 

SNms 501.69a 493.90a 336.88b 48.92 46.61 -1.55 497.44b 525.12a 415.20c 19.81 26.48 5.57 464.65a 455.75a 391.67b 18.63 16.36 -1.92 

KNSp - - - - - - 30.87b 34.81a 28.70c 7.54 21.25 12.76 42.94b 45.24a 39.66c 8.28 14.09 5.36 

KNms - - - - - - 15171.13b 17847.11a 11648.78c 30.24 53.21 17.64 19562.48b 20307.22a 15290.47c 27.94 32.81 3.81 

TKW (g) - - - - - - 39.83c 47.57b 49.14a -18.94 -3.18 19.44 46.22c 47.36b 48.78a -5.25 -2.91 2.46 

HD (days) 150.30a 150.20a 148.27b 1.37 1.3 -0.07 154.04b 154.73a 153.54c 0.33 0.77 0.45 148.56a 148.74a 147.06b 1.02 1.15 0.12 

PH (cm) 91.61a 90.01b 92.50a -0.96 -2.69 -1.75 91.12c 93.66b 99.43a -8.36 -5.8 2.79 87.47b 87.86b 94.48a -7.43 -7.01 0.45 

HI 0.51b 0.55a 0.48c 5.97 15.05 8.57 0.46b 0.51a 0.45c 2.01 13.43 11.19 0.58b 0.60a 0.54c 6.69 10.83 3.89 

PBWms (g/m2) 1566.62b 1774.60a 1031.14c 51.93 72.1 13.28 1302.53b 1661.50a 1266.59b 2.84 31.18 27.56 1561.35a 1596.43a 1382.99b 12.9 15.43 2.25 

SPAD - - - - - - 50.50b 55.43a 46.15c 9.41 20.09 9.77 52.40a 51.25b 47.99c 9.18 6.78 -2.2 

YR 2.17b 1.73c 2.95a -26.59 -41.29 -20.02 1.58b 1.44b 2.33a -32.3 -38.08 -8.54 - - - - - - 

GPC (%) 14.42b 14.63a 11.61c 24.22 26.03 1.46 12.35b 12.61a 10.41c 18.71 21.18 2.08 14.20b 14.60a 11.51c 23.39 26.85 2.8 

GSC (%) 74.25a 72.38b 72.44b 2.49 -0.08 -2.51 73.67a 73.32b 73.27b 0.55 0.07 -0.47 74.04b 73.17c 74.32a -0.37 -1.54 -1.18 

Sedimentation (%) 34.56a 34.71a 16.20b 113.31 114.24 0.44 34.6b  35.7a 25.3c  36.76 41.11 3.181 39.37a 38.22a 19.41b 102.82 96.87 -2.93 

* Means values within a year in the same row line with different letters indicate a significant difference at P < 0.05 

N means nitrogen effect, NF means nitrogen plus fungicide effect, and FHN means fungicide effect under low and high nitrogen 
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TABLE 5.S7 | GY (Mg.ha
-1

) statistics for the applied cropping systems and the years of experiments. 

Year CS  Mean Maximum Minimum Range CV (%)* 

2015 

HN-NF 8.976 12.511 2.051 10.46 22.47 

HN-WF 11.225 14.073 7.916 6.157 9.54 

LN-NF 6.68 9.62 2.155 7.465 18.79 

2016 

HN-NF 6.867 9.645 1.239 8.406 23.03 

HN-WF 9.524 12.217 4.127 8.09 13.43 

LN-NF 6.393 8.569 1.751 6.818 19.25 

2017 

HN-NF 9.678 11.996 5.856 6.14 10.97 

HN-WF 10.525 12.367 7.619 4.748 7.72 

LN-NF 7.41 9.424 4.635 4.989 11.16 

Average of 

three years 

HN-NF 8.507 11.384 3.049 8.335 18.82 

HN-WF 10.425 12.886 6.554 6.332 10.23 

LN-NF 6.828 9.204 2.847 6.424 16.4 
*CV stands for coefficient of variation 
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TABLE 5.S8 | Detailed analysis of variance of GY of winter wheat genotypes in cropping systems (CS) by year (Y). 

Year 2015 2016 2017 

Source DF Anova SS Mean Square 
% Variance 

Explained 
Anova SS Mean Square 

% Variance 

Explained 
Anova SS Mean Square 

% Variance 

Explained 

Cropping 

systems (CS) 
2 454374.824 227187.4121*** 70.9 250658.57 125329.2852*** 61.36 228223 114111.6963*** 77.15 

Genotype(G) 219 221449.968 1011.1871*** 19.67 208916.91 953.9585*** 29.85 83031.4 379.139*** 16.36 

CS*G 438 66754.6403 152.4079*** 9.44 37041.749 84.5702*** 8.8 21640.8 49.4083*** 6.5 

Error 660 9913.6521 15.0207 
 

2135.0851 3.235 
 

3818.17 5.7851 
 

*** Significant at the 0.0001 probability level, DF=Degree of freedom 

TABLE 5.S9 | Three ways ANOVA of GY of winter wheat genotypes (G) in three cropping systems (CS) across three years (Y). 

Source DF Anova SS Mean Square % Variance 

Explained 

F Value 

Y 2 198589.9929 99295.00*** 10.38 12390.8 

CS 2 855052.0568 427526.03*** 54.45 53350.1 

G 219 439141.9294 2005.21*** 16.22 250.23 

Y*CS 4 78204.7304 19551.18*** 7.89 2439.75 

Y*G 438 74256.3878 169.5351*** 3.3 21.16 

CS*G 438 80519.4934 183.83*** 4.03 22.94 

Y*CS*G 1314 44917.7155 51.2759 *** 3.74 11.32 

Error 1980 
15866.908 8.014***  
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TABLE 5.S10 | N flow related analysis of variance and statistics.  

(A) Combined ANOVA of NUE, NAE, and Grain N yield of winter wheat genotypes (G) in three 

cropping systems (E) across three years (Y). 

*** Significant at the 0.001 probability level 

 

(B) Cultivars harvested GY (Mg.ha
-1

) and grain nitrogen yield (GNY in kg.ha
-1

) under the three CS. 

Genotypes 
Briwecs Number GY

a
(HN-NF

)
 GY(HN-WF) GY(LN-NF) GNY

b
 (HN-NF GNY (HN-WF) GNY (LN-NF) 

Name 

Einstein 1 9.789 11.019 7.455 229.7 264.23 145.05 

Oakley 2 6.093 12.2 7.033 133.1 264.43 124.74 

Jafet 3 9.973 10.406 7.055 235.14 263.43 138.36 

Claire 4 9.771 11.46 8.394 228.36 269.04 150.07 

Rebell 5 10.455 10.847 8.031 260.26 266.48 156.5 

Memory 6 10.153 10.821 7.826 238.57 245.86 151.55 

Kurt 7 9.377 11.743 7.804 221.58 291.37 145.69 

Zappa 8 10.836 11.179 7.976 251.64 271.29 155.82 

Chevalier  9 9.334 10.335 7.242 228.16 250.84 142.95 

Gordian 10 9.785 10.591 7.253 246.12 245.53 135.58 

Mentor 11 10.382 11.541 7.276 247.91 279.7 134.75 

Meister 12 8.488 11.161 7.511 203.72 282.75 143.09 

KWS Santiago 13 9.041 12.11 7.818 205.44 272.84 138.24 

Brigand 14 8.453 10.281 7.21 213.16 256.41 141.54 

Profilus 15 9.134 10.778 7.418 213.35 259.19 137.59 

Durin 16 8.238 9.858 7.197 201.91 248.61 137.96 

KWS Pius 17 10.184 11.152 8.101 248.01 277.55 159.21 

Paroli 18 8.473 11.259 7.521 199.16 271.37 142.86 

Estivus 19 9.227 11.013 7.849 218.13 268.56 148.11 

Kronjuwel 20 7.636 9.34 6.022 184.56 242.31 125.79 

Desamo 21 9.559 10.521 7.283 232.69 258.41 141.05 

Carenius 22 9.242 11.057 7.252 216.88 259.18 141.7 

Mulan 23 9.751 11.286 7.922 232.07 267.58 144.09 

Anova Factors 

Fvalue (NUE) Fvalue (NAE) 

Fvalue (Grain N 

yield) 

Year (Y)*** 156.94*** 4.16E+09*** 9523.02*** 

Cropping System (CS) 35649.5*** 1.35E+10*** 29853.64*** 

Genotype (G) 28.76*** 1.27E+07*** 42.78*** 

Y*G 3 7661408 6.32*** 

Y*CS 1103.28*** 8.13E+08*** 1030.96*** 

CS*G 6.18*** 1.67E+07*** 7.57*** 

Y*CS*G 1.32*** 2867525*** 2.18*** 
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Kredo 24 9.435 11.364 7.495 232.72 264.91 143.86 

Nelson 25 9.63 10.287 6.396 239.39 263.93 127.06 

Patras 26 10.03 10.789 7.355 243.5 267.27 145.41 

Götz 27 8.211 10.083 6.024 200.6 256.67 120.72 

Robigus 28 5.874 11.276 6.216 137.01 267.76 118.96 

Anapolis 29 10.438 11.478 7.705 255.14 275.73 144.51 

Solstice 30 8.194 10.76 7.256 199.13 253.68 139.82 

Biscay 31 9.448 11.566 7.612 223.04 271.69 141.37 

Capone 32 10.092 10.652 7.994 246.89 254.56 153.39 

Tabasco 33 10.862 12.019 8.315 242.94 280.31 156.22 

Kometus 34 7.485 11.117 6.699 184.25 266.67 126.81 

Cubus 35 9.76 10.812 7.204 231.55 255.77 137.04 

Edward 36 9.397 11.603 8.134 226.86 284.69 158.91 

Famulus 37 9.155 9.979 6.749 223.1 252.75 132.06 

Dekan 38 8.715 10.781 7.864 203.62 259.88 154.86 

SW Topper 39 9.39 10.126 6.446 233.44 265.69 129.11 

Matrix 40 8.061 11.093 7.036 194.89 271.6 136.76 

Jenga 41 8.977 11.156 7.933 208.69 263.64 148.17 

Linus 42 10.432 11.566 7.823 253.39 271.97 152.52 

TJB 990-15 43 9.382 10.264 7.009 227.1 250.95 141.3 

Forum 44 9.869 11.085 7.426 232.37 272.2 146.54 

Colonia 45 9.983 11.062 7.486 240.34 268.37 148.08 

Transit 46 8.76 10.684 7.533 213.66 271.93 147.13 

Potenzial 47 9.463 10.85 7.337 223.98 256.72 145.92 

Gaucho 48 9.878 11.623 8.034 234.99 275.68 148.99 

Tarso 49 8.976 10.332 6.649 215.78 266.14 133.3 

Hermann 50 8.224 10.637 7.091 195.11 266.72 137.79 

Glaucus 51 9.646 10.959 7.575 245.09 269.1 147.89 

Tuareg 52 9.538 11.3 7.419 225.92 278.18 134.91 

Atomic 53 10.285 11.314 7.739 247.33 270.89 151.74 

Tobak 54 9.937 12.288 8.571 225.36 293.89 156.24 

Pionier 55 9.464 10.932 7.248 228.62 259.93 139.9 

Manager 56 8.847 10.883 7.709 218.08 256.15 142.14 

Gourmet 57 8.933 10.047 6.311 226.29 255.11 123.66 

Limes 58 9.702 10.984 7.399 238.72 281.05 146.55 

Ritmo 59 8.741 10.701 6.942 209.23 264.24 135.74 

Kalahari 60 10.057 11.121 7.56 232.07 267.23 147.95 

Intro 61 10.263 11.064 7.925 242.29 261.65 151.59 

Oxal 62 9.868 10.893 7.632 239.2 263.68 142.6 

Zobel 63 8.289 10.866 6.525 197.78 268.29 126.51 

Event 64 9.46 10.615 6.469 225.46 257.36 133.76 

Joker 65 9.453 10.663 7.403 222 249.04 147.51 

Global 66 9.513 11.666 7.498 222.8 273.48 141.29 

Elixer 67 10.566 11.706 7.759 251.89 280.35 151.9 

Fedor 68 9.946 10.76 7.899 227.1 254.94 152.88 

Türkis 69 9.108 11.1 7.337 210.74 255.32 140.76 

Skagen 70 9.327 10.79 7.66 223.77 262.48 147.69 

Greif 71 9.364 10.46 7.56 225.3 249.83 144.55 

Esket 72 10.023 10.661 7.013 236.46 254.33 138.05 
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Primus 73 8.796 11.116 7.257 201.9 261.34 139.16 

Skalmeje 74 9.672 11.343 7.368 222.88 266.47 139.98 

Genius 75 9.59 10.49 6.776 237.83 263.78 135.68 

Enorm 76 8.867 10.011 6.621 216.54 250.14 131.7 

Florian 77 9.257 10.192 7.118 223.88 255.29 151.14 

Skater 78 7.447 10.984 6.846 169.58 257.52 133.21 

Brilliant 79 9.025 10.824 7.346 210.54 266.26 140.78 

Inspiration 80 9.421 11.143 7.448 216.82 270.71 146.08 

Apertus 81 10.026 11.025 7.634 239.07 269.44 149.45 

Ellvis 82 9.231 10.698 8.053 226.04 267.53 158.47 

Edgar 83 10.04 11.296 7.829 234.89 274.87 148.85 

Maris Huntsman 84 8.671 10.713 6.627 208.79 265.4 130.73 

SY Ferry 85 10.082 11.147 8.167 245.13 275.58 155.86 

Landsknecht 86 8.204 11.698 7.317 189.48 264 136.09 

Sponsor 87 8.39 10.462 7.49 200.37 245.85 144.36 

Impression 88 9.792 11.123 7.707 236.81 267.68 148.76 

Winnetou 89 8.59 11.504 6.932 207.06 271.48 131.56 

Toronto 90 8.7 10.227 6.973 222.66 256.68 140.21 

Torrild 91 9.621 10.74 7.342 230.47 265.91 141.41 

Contra 92 8.81 11.107 7.797 209.69 274.9 152.94 

Schamane 93 8.676 10.475 6.63 206.3 261.38 129.56 

Granada 94 4.274 10.113 4.711 101.69 240.93 93.44 

KWS Cobalt 95 10.259 11.057 8.461 236.1 250.43 162.71 

Tommi 96 9.611 10.71 7.468 233.35 270.77 147.95 

Saturn 97 8.225 10.47 6.797 194.34 246.99 131.59 

Severin 98 6.576 9.556 5.862 162.41 242.07 121.32 

JB Asano 99 7.571 10.881 6.558 174.03 266.89 126.96 

Kerubino 100 8.77 11.145 6.879 206.99 265.84 137.03 

Arktis 101 8.789 10.543 6.914 211.02 247.81 129.18 

Urban 102 7.942 9.809 6.547 192.17 243.56 125.74 

Orestis 103 8.687 10.718 7.355 204.72 254.26 137.71 

Flair 104 7.594 10.532 6.727 177.16 252.72 122.55 

Anthus 105 9.527 11.304 8.027 222 266.13 146.97 

Bombus 106 9.416 11.398 7.728 224.85 272.9 143.67 

Lucius 107 9.047 10.399 6.722 216.4 254.47 132.55 

Herzog 108 8.263 10.673 7.014 193.2 254.6 128.94 

Sorbas 109 8.278 9.903 6.471 205.3 253.02 131.41 

Tabor 110 8.307 9.112 6.35 207.74 227.11 124.89 

Terrier 111 8.199 10.854 7.405 189.91 255.85 137.29 

Magister 112 8.007 9.959 6.11 199.81 255.2 117.74 

Altos 113 9.195 9.993 6.507 219.15 254.08 130.17 

Progress 114 8.558 9.796 6.667 206.3 238.67 126.72 

Xanthippe 115 8.968 11.44 7.062 212.42 269.51 132.87 

Avenir 116 9.64 10.631 7.35 231.44 252.47 146.83 

Pantus 117 7.415 10.573 6.47 176.38 256.57 128.06 
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Drifter 118 8.822 11.031 8.027 212.61 263.52 151.36 

Joss 119 8.555 9.596 6.305 207.68 244.45 126.49 

Kranich 120 7.429 9.666 6.223 178.63 233.57 117.72 

Sperber 121 9.274 10.279 6.404 227 260.71 124.43 

Discus 122 8.09 10.601 7.096 195.28 263.67 138.94 

Helios 123 3.709 9.675 4.265 92.02 239.49 84.71 

Obelisk 124 8.588 10.956 6.872 213.13 265.53 129.52 

Magnus 125 8.315 10.856 6.977 192.3 259.04 141.31 

Disponent 126 8.447 10.49 6.81 203.15 269.15 135.97 

Tambor 127 8.801 10.051 6.555 215.76 252.24 133.37 

Boxer 128 8.936 11.161 7.215 203.03 264.25 136.74 

Sokrates 129 9.194 11.199 7.042 222.95 267.57 135.82 

Carisuper 130 7.854 9.295 6.231 192.03 235.43 127.07 

Rektor 131 7.112 9.906 6.086 168.08 248.37 122.81 

Alves 132 9.876 10.923 8.01 231.5 257.97 151.65 

NaturaStar 133 7.431 9.694 6.176 176.75 243.22 124.53 

Alidos 134 8.819 9.906 6.313 217.37 251.09 130.26 

Monopol 135 7.485 9.272 6.189 176.5 233.55 128.64 

Akratos 136 9.051 11.191 7.445 208.53 272.46 149.84 

Knirps 137 7.319 9.729 6.453 180.21 241.65 126.5 

Bussard 138 8.143 9.74 6.336 199.58 249.85 127.95 

Oberst 139 7.541 10.419 6.251 183.5 256.65 125.91 

Cappelle Desprez 140 7.73 8.66 6.209 197.59 234.27 127.77 

Tiger 141 9.248 10.632 7.186 222.05 267.44 148.16 

Ibis 142 9.308 10.127 7.185 231.05 244.22 147.42 

Batis 143 8.74 10.593 7.29 202.28 257.78 140.55 

Topfit 144 8.013 9.722 6.695 191.95 245.72 132.79 

Akteur 145 8.055 10.292 6.432 196.54 268.13 131.7 

Ludwig 146 8.973 10.625 7.058 218.75 260.98 140.41 

Asketis 147 8.222 10.826 6.721 192.14 256.14 131.04 

Aristos 148 7.983 10.524 7.077 192.5 257.09 138.42 

Zentos 149 8.529 10.107 6.914 202.26 253.21 133.17 

Diplomat 150 7.499 9.344 6.39 182.22 231.56 127.35 

Astron 151 8.365 9.867 6.907 204.17 256.91 142.09 

Basalt 152 7.318 9.462 6.465 175.01 233.51 124.87 

Kormoran 153 7.815 9.845 6.477 192.28 247.67 131.09 

Aron 154 8.264 10.067 6.696 203.71 255.35 137.4 

KWS Milaneco 155 8.062 9.926 6.507 197.99 242.28 133.13 

Aszita 156 7.499 8.503 5.72 193.23 234.97 122.42 

Kobold 157 8.136 9.408 6.309 196.08 245.23 122.94 

Carimulti 158 8.313 9.116 6.395 206.32 246.06 127.47 

Admiral 159 7.955 9.489 6.31 188.95 237.45 124.86 

Vuka 160 7.056 9.903 6.08 167.89 248.4 121.45 

Benno 161 7.345 9.693 6.526 181.22 247.04 135.78 

Apollo 162 8.33 10.387 6.795 198.63 250.95 132 

Aquila 163 6.79 10.095 5.942 159.86 245.36 115.4 

Kanzler 164 7.279 10.337 6.269 168.75 259.29 126.58 

Kraka 165 7.401 10.178 6.433 178.02 245.45 125.86 

Caribo 166 7.377 9.835 6.258 182.64 250.12 126.14 
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Butaro 167 7.674 8.671 5.637 199.24 238.01 119.78 

Konsul 168 7.203 8.435 5.822 186.78 225.28 122.55 

Ares 169 7.319 10.339 6.238 170.8 256.13 125.47 

Centurk 170 4.704 8.449 4.75 122.13 219.48 96.95 

NS 22/92 171 7.844 8.621 6.783 202.24 223.01 137.98 

Benni multifloret 172 4.837 7.77 4.37 121.17 202.76 90.54 

Hope 173 5.18 8.176 4.201 127.71 213.32 90.24 

Vel 174 5.795 7.504 4.646 157.25 205.81 102.71 

Phoenix 175 4.395 8.4 3.926 110.69 226.47 83.93 

Mironovska 808 176 6.081 8.51 4.455 158.22 224.71 92.92 

Caphorn 177 9.759 10.607 7.375 244.79 264.01 147.6 

Cordiale 178 9.041 10.782 7.581 211.57 251.57 152.62 

Apache 179 9.883 11.452 7.248 239.75 271.63 138.2 

Premio 180 10.124 11.167 6.926 249.21 275.08 131.76 

Isengrain 181 9.511 10.766 7.035 235.19 253.93 139.45 

Alixan 182 8.099 11.274 6.667 188.09 275.59 130.8 

Boregar 183 9.424 11.271 7.712 226.11 268.61 148.52 

Renesansa 184 6.04 8.861 5.444 154.53 230.71 113.57 

Tremie 185 8.933 11.082 7.201 214.43 264.09 140.42 

KWS Ferrum 186 8.916 11.654 7.549 216.93 264.79 141.17 

Triple Dirk "S" 187 6.807 8.951 5.305 170.99 223.34 106.49 

Cardos 188 7.424 10.217 6.24 183.44 253.63 127.19 

Soissons 189 8.858 9.973 6.384 223.88 244.81 126.82 

BCD 1302/83 190 5.377 9.47 5.019 136.92 248.82 104.38 

Arlequin 191 10.018 11.435 8.054 230.96 259.5 150.34 

Sonalika 192 6.703 9.554 5.983 160.06 226.35 116.87 

Camp Remy 193 8.608 10.06 6.379 217.92 250.74 130.42 

Cajeme 71 194 3.308 8.943 3.714 83.32 239.35 76.34 

Avalon 195 8.147 9.11 6.318 203.67 227.38 133.77 

Ivanka 196 3.694 9.577 3.768 87.57 236.34 76.6 

Pobeda 197 6.686 9.038 5.337 175.02 244.23 114.35 

NS 66/92 198 7.683 8.908 5.682 199.15 230.21 118.14 

Mexico 3 199 7.482 9.315 5.804 187.43 235.55 118.41 

Orcas 200 7.966 10.869 7.239 189.29 269.99 143.3 

Nimbus 201 6.016 9.96 5.415 147.12 241.5 113.91 

Muskat 202 10.449 10.994 7.592 265.96 262.59 143.71 

Florida 203 6.939 9.063 5.549 177.29 230.96 113.86 

Rumor 204 9.129 11.713 7.404 219.85 267.09 143.45 

Highbury 205 7.139 8.341 5.637 184.61 221.44 119.2 

Siete Cerros 66 206 4.03 9.378 4.632 104.28 245.57 95.12 

Kontrast 207 8.883 9.973 6.409 220.64 256.69 133.28 

WW 4180 208 8.904 10.454 6.808 218.88 253.84 132.37 

INTRO 615 209 7.077 8.521 6.017 182.59 215.37 124.93 

NS 46/90 210 4.592 9.434 3.926 122.7 257.33 84.52 

Mex. 17 bb 211 7.003 8.35 5.504 181.65 218.75 113.11 

Labriego-Inia 212 6.627 9.401 4.731 163.5 237.98 96.92 

Pegassos 213 8.172 10.589 6.818 195.51 254.66 135.27 

Hybred 214 9.655 11.119 7.221 226.74 261.38 140.75 

Hyland 215 9.89 11.721 7.866 231.32 266 154.36 

Hybery 216 10.741 12.043 8.268 253.75 272.97 154.85 

Hystar 217 10.314 11.729 7.691 248.35 269.3 143.87 

Hylux 218 10.18 11.803 8.711 234.84 263.24 155.86 
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Piko 219 8.949 9.734 6.626 221.59 233.09 127.76 

SUR 99820 220 9.074 11.329 7.748 207.38 261.31 144.05 

(C) Summary of three years averages of grain nitrogen yield (GNY in kg.ha
-1

) under the three CS. 

Yielding Status GNY (HN-NF) GNY(HN-WF) GNY(LN-NF) 

High Yielding 234.16 269.45 148.89 

Low Yielding 197.56 252.10 130.04 

Mean 215.86 260.775 139.465 

Difference (High-

Low) 36.60 17.36 18.84 

 (D) Summary of three years averages nitrogen flow under the three CS and correlations coefficient 

between GY and GNY under each CS. 

Treatment 

GY 

(Mg/ha) 

GNY 

(kg/ha) 

Nitrogen 

available 

(kg/ha) 

Applied 

N 

fertilizer 

a Utilized 

N from 

fertilizer 

(kg/ha) 

Lost N 

from N 

fertilizer 

(kg/ha) 

b N utilized 

for 1 Mg 

grain 

Corr 

 

HN-NF 8.51 205.21 220.00 151.67 72.8 78.87 25.86 0.98 

HN-WF 10.44 255.72 220.00 151.67 72.8 78.87 21.07 0.90 

LN-NF 6.84 133.98 65.43 0.00 0.00 0.00 9.56 0.97 
a Utilized N from fertilizer (kg/ha) to grain N yield is equal to 48% of the applied n fertilizer according to Ladha et al. [43]; b 

N utilized for 1t grain calculated according to Angus [44] 

Corr: Correlation coefficient between GY and GNY.  
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TABLE 5.S11 | Pairwise comparison of GYs and its components correlation coefficients among 

cropping systems. 

P-values HN-NF HN-WF 

PBWms 

HN-WF 0.001*** 1 

LN-NF 0.001*** 0.001*** 

HI 

HN-WF 0.06 1 

LN-NF 0.01** 0.56 

TKW 

HN-WF 0.001*** 1 

LN-NF 0.8 0.001*** 

KNms 

HN-WF 0.01** 1 

LN-NF 0.36 0.01** 

KNSps 

HN-WF 0.01** 1 

LN-NF 0.45 0.08 

SNms 

HN-WF 0.14 1 

LN-NF 0.67 0.06 

The table displays p-values and significance levels 
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TABLE 5.S12 | Pairwise comparison of coefficients (intercepts and slopes) of regressions model GY 

vs traits of interest under three CS. 

  Regresssion Equation Rsquare ; Pvalue HN-NF HN-WF 

Chlorophyll content (GY vs SPAD in 2016) 

HN-NF y = 0.1518x – 0.7986 R² = 0.3042; p*** intercepts Slopes intercepts Slopes 

HN-WF y = 0.0717x + 5.5511 R² = 0.0369; p*** 2.03e-05
a 
*** 0.00341 ** 

    

LN-NF y = 0.1332x + 0.2681 R² = 0.4196; p*** 0.25763 0.336 0.0001 *** 0.0154* 

Chlorophyll content (GY vs SPAD in 2017) 

HN-NF y = 0.0375x + 7.4074 R² = 0.0079 intercepts Slopes intercepts Slopes 

HN-WF y= 0.0319x + 8.6046 R² = 0.0112 0.514 0.866     

LN-NF y = 0.0795x + 0.31376 R² = 0.059; p*** 0.020* 0.218 0.001 *** 0.108 

YR (Yellow rust) 

HN-NF y = -0.966x + 10.317 R² = 0.317, p*** intercepts Slopes intercepts Slopes 

HN-WF 
y = -0.451x + 11.142 R² = 0.1114, p*** 

0.001*** 2.93e-05 *** 
 2.93e-05 

***   

LN-NF y = -0.533x + 8.2365 R² = 0.364, pns < 2e-16 *** 1.20e-05 *** < 2e-16 *** 0.396 

HD (Heading Date) 

HN-NF y = 0.257x – 30.389 R² = 0.1293, p*** intercepts Slopes intercepts Slopes 

HN-WF y = 0.150x – 12.247 R² = 0.0669, p* 0.035 * 0.058     

LN-NF y = 0.260x – 32.151 R² = 0.229, p*** 0.826 0.959 0.008 **  0.027 * 

PH (plant height) 

HN-NF y = -0.059x + 13.826 R² = 0.113, p*** intercepts Slopes intercepts Slopes 

HN-WF y = -0.067x + 16.489 R² = 0.376, p*** 0.012 * 0.495     

LN-NF y = -0.043x + 10.918 R² = 0.222, p*** 0.003** 0.129 8.39e-13 *** 0.003 ** 

GPC (grain protein content) 

HN-NF y = -1.085x + 23.33 R² = 0.127*** intercepts Slopes intercepts Slopes 

HN-WF y = -1.253x + 27.91 R² = 0.631*** 0.419 0.615     

LN-NF y = -1.550x + 24.16 R² = 0.491*** 0.626 0.545 0.723 0.846 

GSC (grain starch content) 

HN-NF y = 0.857x – 54.91 R² = 0.1775*** intercepts Slopes intercepts Slopes 

HN-WF y = 0.7953x – 47.6 R² = 0.481*** 0.052 0.326     

LN-NF y = 0.776x – 50.12 R² = 0.295*** 0.733 0.017 * 0.012* 0.015* 
a Pvalue of the comparison between both intercepts and slopes 

* Significant at the 0.05 probability level  

** Significant at the 0.01 probability level 

*** Significant at the 0.001 probability level 

ns, nonsignificant at the 0.05 probability level 
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TABLE 5.S13 | Full regression (A) and path models (B) with direct and indirect effects of 13 

independent variables on GY of 220 cultivars tested in 3 different CS over three growing seasons. 

A 

Full regression model 

  HN-NF HN-WF LN-NF 

Variable 
bα 

± std 

Error 
Probsig b 

± std 

Error 
Probsig b 

± std 

Error 
Probsig 

Constant 

-

232.20 69.76 0.001 ** 

-

95.24 56.63 0.094 

-

209.5 51.92 0 *** 

HD 0.82 0.24 0.001 *** 0.81 0.22 0 *** 0.7 0.19 0 *** 

SPAD 0.28 0.14 0.04 * 0.04 0.13 0.738  0.36 0.1 0 *** 

YR -2.71 0.58 0 *** -1.66 0.42 0 *** -2.08 0.28 0 *** 

PH -0.06 0.06 0.382  -0.07 0.05 0.176  0.04 0.04 0.332  

SNms 0.00 0.01 0.837  -0.01 0.01 0.134  0.03 0.01 0.032 * 

KNSp -0.21 0.14 0.128  -0.12 0.09 0.201  0.11 0.12 0.347  

KNms 0.00 0.00 0.206  0 0 0.747  0 0 0.312  

TKW 0.16 0.15 0.294  0.24 0.11 0.034 * 0.13 0.11 0.206  

HI 161.30 14.70 0 *** 86.37 13.16 0 *** 94.32 13.49 0 *** 

PBWms 0.03 0.00 0 *** 0.01 0 0.026 * 0.01 0 0.001 *** 

GPC -1.06 1.20 0.379  -5.75 0.88 0 *** -3.69 0.93 0 *** 

GSC 1.26 0.63 0.047 * 1.51 0.53 0.004 ** 1.69 0.51 0.001 ** 

Sedimentation -0.13 0.08 0.137  -0.13 0.06 0.03 * 0 0.1 0.986  

R square (%) 86.2 81.6 84.7 
α regression slope  

* Significant of the slope at the 0.05 probability level 

** Significant of the slope at the 0.01 probability level 

*** Significant of the slope at the 0.001 probability level 

ns, nonsignificant of the slope at the 0.05 probability level 
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B 

 

  

Path Analysis model 

  HN-NF HN-WF LN-NF 

Variable Direct effect 

Indirect 

effect ri/j Probsig Direct effect 

Indirect 

effect 
ri/j Probsig Direct effect 

Indirect 

effect 
ri/j Probsig 

HD 0.11 0.175 0.285 0*** 0.127 -0.014 0.113 0*** 0.132 0.330 0.462 0*** 

SPAD 0.064 0.426 0.490 0.032* 0.012 0.198 0.210 0.729 0.13 0.433 0.563 0*** 

YR -0.158 -0.405 -0.563 0*** -0.128 -0.179 -0.307 0*** -0.243 -0.359 -0.602 0*** 

PH -0.031 -0.304 -0.335 0.365 -0.067 -0.541 -0.608 0.16 0.042 -0.522 -0.480 0.314 

SNms 0.009 0.153 0.162 0.831 -0.079 0.102 0.023 0.12 0.131 0.065 0.196 0.026* 

KNSp -0.115 0.556 0.441 0.114 -0.101 0.334 0.233 0.185 0.077 0.307 0.384 0.33 

KNms -0.112 0.666 0.554 0.19 0.029 0.329 0.358 0.738 -0.093 0.649 0.556 0.295 

TKW 0.047 0.375 0.422 0.277 0.092 0.006 0.098 0.027 0.056 0.345 0.401 0.19 

HI 0.51 0.275 0.785 0*** 0.354 0.346 0.700 0*** 0.389 0.278 0.667 0*** 

PBWms 0.447 0.298 0.745 0*** 0.118 0.090 0.208 0.02* 0.214 0.314 0.528 0*** 

GPC -0.035 -0.321 -0.356 0.362 -0.38 -0.414 -0.794 0*** -0.172 -0.532 -0.704 0*** 

GSC 0.062 0.359 0.421 0.039* 0.137 0.546 0.683 0.003** 0.122 0.426 0.548 0.001** 

Sedimentation -0.056 -0.287 -0.343 0.123 -0.098 -0.480 -0.578 0.024* 0.001 -0.430 -0.429 0.985 

R square 86.2 81.6 84.7 
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TABLE 5.S14 | Summary of winning genotypes in the three environments and their year of release. 

Genotypes 

(Name) 

Briwecs 

Number 

Release 

Year 
Selected_HN-NF Selected_HN-WF Selected_LN-NF 

all 3 

CS 

Score 

Summary 

Memory 6 2013 1 0 0 0 1 

KWS 

Santiago 
13 2011 0 1 0 0 1 

Mulan 23 2006 0 0 1 0 1 

Patras 26 2012 1 0 0 0 1 

Biscay 31 2000 0 1 0 0 1 

Colonia 45 2011 1 0 0 0 1 

Gaucho 48 1993 0 0 1 0 1 

Tobak 54 2011 0 1 0 0 1 

Fedor 68 2007 1 0 0 0 1 

Bombus 106 2012 0 1 0 0 1 

Alves 132 2010 0 0 1 0 1 

Rumor 204 2013 0 1 0 0 1 

Hybery 216 2010 0 1 0 0 1 

Hystar 217 2007 0 1 0 0 1 

Hylux 218 2012 0 0 0 1 1 

Claire 4 1999 0 0 1 1 2 

Mentor 11 2012 1 1 0 0 2 

KWS Pius 17 2010 1 0 0 1 2 

Capone 32 2012 1 0 1 0 2 

Edward 36 2013 0 1 0 1 2 

Atomic 53 2012 1 0 0 1 2 

Elixer 67 2012 1 1 0 0 2 

Edgar 83 2010 1 0 0 1 2 

KWS 

Cobalt 
95 2013 1 0 0 1 2 

Rebell 5 2013 1 0 1 1 3 

Zappa 8 2009 1 0 1 1 3 

Anapolis 29 2013 1 1 0 1 3 

Tabasco 33 2008 1 1 0 1 3 

Linus 42 2010 1 1 0 1 3 

Intro 61 2011 1 0 1 1 3 

SY Ferry 85 2012 1 0 1 1 3 

Hyland 215 2009 1 1 1 0 3 

The digits 0, 1, 2, 3 indicate the number of selection times of a high yielding genotype under the defined CS 
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TABLE 5.S15 | Pairwise comparison of coefficients (intercepts and slopes) of regressions model traits of 

interest vs years of release under three CS. 

Traits  Treatment 
HN-NF HN-WF 

intercepts Slopes intercepts Slopes 

HD 
HN-WF 0.352 0.359 

  LN-NF 0.482 0.523 0.0865 0.103 

SPAD 
HN-WF 0.32005 0.34407 

  LN-NF 0.00763 ** 0.01061 * 0.000188 *** 0.000354 *** 

YR 
HN-WF 0.38921 0.4043 

  LN-NF 0.00173 ** 0.00218 ** 9.33e-05 *** 0.000136 *** 

PH 
HN-WF 0.43362 0.43585 

  LN-NF 0.00488 ** 0.00573 ** 0.0532 0.0591 

SNms 
HN-WF 0.402 0.406 

  LN-NF 0.627 0.517 0.727 0.8558 

KNSp 
HN-WF 0.0694 0.0755 

  LN-NF 0.7736 0.7488 0.12285 0.14113 

KNms 
HN-WF 0.0574 0.0640 

  LN-NF 0.0609 0.0475 * 0.978 0.889 

TKW 
HN-WF 0.1817 0.21242 

  LN-NF 0.78471 0.69281 0.0926 0.0861 

HI 
HN-WF 0.0568 0.0701 

  LN-NF 0.3039 0.2786 0.356 0.443 

PBWms 
HN-WF 4.99e-05 *** 6.97e-05 *** 

  LN-NF 0.00795 ** 0.00584 ** 0.1164 0.1715 

GY 
HN-WF 0.000247 *** 0.000486 *** 

  LN-NF 0.000609 ***  0.000340 *** 0.761 0.904 

GPC 
HN-WF 0.00181 **  0.00215 ** 

  LN-NF 0.32759 0.1585 0.0384 *  0.108 

GSC 
HN-WF 0.0587 0.0759 

  LN-NF 0.7434 0.8002 0.126 0.137 

Sedimentation 
HN-WF 0.5219 0.4838 

  LN-NF 0.0072 ** 0.0103 * 0.0332 * 0.0522 
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