
 

Institut für Lebensmittel- und Ressourcenökonomik (ILR) 

_____________________________________________________________________________ 

Advances in technology evaluation and decision 
support studies using bio-economic farm models 

D i s s e r t a t i o n 

zur 

Erlangung des Grades 

Doktor der Agrarwissenschaften 

(Dr.agr.) 

der 

Landwirtschaftlichen Fakultät 

der 

Rheinischen Friedrich-Wilhelms-Universität Bonn 

von 

Christoph Pahmeyer 

aus 

Halle (Westf.) 

 

Bonn, 2022  



 

 

 Referent:     PD Dr. Wolfgang Britz 

 Korreferent:     Prof. Dr. Thomas Heckelei 

 

 Tag der mündlichen Prüfung:   25.03.2022 

 
Angefertigt mit Genehmigung der Landwirtschaftlichen Fakultät der Universität 
Bonn



 I 

Danksagung 
An dieser Stelle möchte ich mich bei meinen Kollegen-/innen, Verwandten und Freunden-
/innen bedanken, die mich bei der Fertigstellung dieser Dissertation tatkräftig unterstützt haben. 
Für die Betreuung meiner Dissertation, Projekttreffen kombiniert mit Campingausflügen, die 
Freiheiten bei der Themensetzung sowie das entgegengebrachte Vertrauen möchte ich mich 
herzlich bei PD Dr. Wolfgang Britz bedanken. Herrn Prof. Dr. Thomas Heckelei möchte ich 
für das entgegengebrachte Vertrauen im PhenoRob Projekt sowie die Übernahme des 
Korreferats danken. Darüber hinaus danke ich meinen Kollegen-/innen vom Institut für 
Lebensmittel- und Ressourcenökonomik (ILR) für vier wunderbare Jahre, spannende 
Diskussionen und After-Work-Events. Ein großes Dankeschön geht sowohl an die Mensa-Gang 
für die entspannenden und sättigenden Mittagspausen, als auch an das gesamte Mensapersonal, 
das mich über Jahre mit Nudeln, Pesto und ACE-Saft versorgt hat. 

Ein besonderer Dank gilt Till Kuhn, ohne dessen Ratschläge, Ideen und Kreativität die 
Dissertation vermutlich erst deutlich später fertigstellt worden wäre. Auch möchte ich mich bei 
meinen zukünftigen Co-Autoren/-innen Lin Mei Chang, Sebastian Rasch und Hugo Storm für 
die vielen spannenden inhaltlichen Diskussionen sowie das thematische Feedback bedanken. 
Meiner Bürokollegin Julia Heinrichs danke ich für den vielen Spaß im Büro, Feedback auf dem 
kurzen Dienstweg und Unmengen an Schokolade. Lennart Kokemohr danke ich insbesondere 
für die vieljährige Unterstützung im SustainBeef-Projekt sowie die schönen Stunden außerhalb 
des Büros auf dem Rad und beim Kochen. Bei Rienne Wilts möchte ich mich für das 
unermüdliche Korrekturlesen, ihr offenes Gehör sowie die ein oder andere Kuchenpause 
bedanken. 

Nicht zuletzt möchte ich mich für die jahrelange Unterstützung bei meiner Familie bedanken. 
Bei meinen Geschwistern Christine, Marlene und Simon und ganz besonders bei meinen Eltern 
dafür, dass sie mir den Spaß und das Interesse an der Landwirtschaft vermittelt, meine 
Begeisterung gefördert und erhalten haben und mir immer wieder gezeigt haben, worauf es 
wirklich ankommt. 

Abschließend möchte ich mich bei meiner Freundin Sophia für die Unterstützung während 
meiner Promotionszeit, ihrer Toleranz bezüglich meines schlechten Zeitmanagements, aber vor 
allem für ihren aufmunternden Charakter und die vielen schönen Ablenkungen von der Arbeit 
bedanken.   



 II 

Abstract 
The use of so-called bio-economic farm models makes it possible to determine the most cost-
effective adaptation strategy to novel policy measures and to evaluate whether the use of new 
technologies can be economically viable for a farm. This thesis aims to show potential ways for 
modeling novel policies and technologies in the existing farm model FarmDyn as well as the 
decision support system ‘Fruchtfolge’ developed in the context of the thesis. 

As an example of a novel technology with far-reaching consequences on a farm's production 
process, the thesis highlights the economical optimal use of sex-sorted semen and crossbreeding 
among a dairy farm population from the German federal state of North Rhine-Westphalia. 
Using the holistic farm model FarmDyn, potential profit increases ranging from 0 €/cow/year 
to 568 €/cow/year, with an average of 79 €/cow/year are shown. The results demonstrate that 
modern breeding technologies have the potential to improve dairy farm profits, although they 
must be viewed in the context of farm-specific production settings.  

To assess a policy with measures targeting single fields of a farm in a bio-economic farm model, 
the thesis presents a novel decision support system called ‘Fruchtfolge’. The model assists 
farmers with finding a cost-minimal adoption strategy to the newly revised Fertilization 
Ordinance in Germany. The decision support system presents farmers a cropping choice and 
fertilization management recommendation for each of their fields. In a case study application 
involving a farm managing fields both outside and inside of a nitrate sensitive area, the DSS is 
shown to mitigate the farms' compliance costs to the revised Fertilization Ordinance by more 
than 5% when compared to the former optimal resource allocation.  

A major difference between the models FarmDyn and ‘Fruchtfolge’ lies in the spatial resolution 
of the cropping decision. To quantify the influence of the spatial resolution on the simulation 
results, high-resolution farm data are required. In the context of the thesis, a methodology for 
generating such a dataset for the German federal state of North Rhine-Westphalia is presented 
and used to analyse the aforementioned influence on the simulation results of bio-economic 
models. The findings indicate that crop choices per farm differ by 11% on average, resulting in 
profit differences ranging from -306 €/ha to 434 €/ha when explicitly modeling single plots of 
a farm, compared to a traditional approach where crop shares on all arable land are modeled.  

The bio-economic models presented in this thesis can contribute to both ex-ante and ex-post 
analysis of the economic impact of novel policies and technologies on farms. They can also be 
applied to other research questions and may help to disseminate knowledge to farmers and farm 
advisers.  
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Kurzfassung 
Der Einsatz sogenannter bioökonomischer Betriebsmodelle ermöglicht es, die 
kosteneffizienteste Anpassungsstrategie an neue Politikmaßnahmen zu bestimmen und zu 
evaluieren, ob die Nutzung neuer Technologien für einen landwirtschaftlichen Betrieb 
ökonomisch sinnvoll sein kann. Das Ziel der vorliegenden Arbeit ist es, Fallbeispiele für 
Politik- und Technologieevaluierungen mithilfe des bestehenden Betriebsmodells FarmDyn 
sowie des im Rahmen der Arbeit neu entwickelte Entscheidungshilfesystems „Fruchtfolge“ 
aufzuzeigen. 

Als ein Beispiel für eine Technologieevaluierung wird der ökonomisch optimale Einsatz von 
sogenanntem gesextem Sperma sowie von Kreuzzüchtungen in Nordrhein-Westfälischen 
Milchviehbetrieben beleuchtet. Anhand der Anwendung des Betriebmodells FarmDyn zeigen 
sich potenzielle Gewinnsteigerungen von 0 €/Kuh/Jahr bis 568 €/Kuh/Jahr bei einem 
durchschnittlichen Gewinnzuwachs von 79 €/Kuh/Jahr. Die Ergebnisse verdeutlichen, dass 
moderne Züchtungstechnologien das Potenzial haben, Profite in der Milchviehwirtschaft zu 
steigern, jedoch stets im speziellen Kontext einzelner Betriebe evaluiert werden müssen.  

Um eine Politikmaßnahme mit speziellen Reglementierungen auf Schlagebene abzubilden, 
wird das Entscheidungshilfesystem „Fruchtfolge“ vorgestellt, welches Landwirt(e)-/innen 
dabei unterstützt, die kostengünstigste Anpassungsstrategie an die letzte Revision der 
Düngeverordnung zu finden. Dabei erstellt das System eine Anbau- und Düngeempfehlung für 
jede Fläche des Betriebs. Für einen Fallstudienbetrieb mit Flächen sowohl innerhalb als auch 
außerhalb eines nitratbelasteten „roten Gebietes“ kann gezeigt werden, dass der aus der 
Anwendung resultierende Anbauplan ca. 5% geringere Anpassungskosten aufweist als der 
vorherige Anbauplan des Betriebes.  

Die Betriebsmodelle FarmDyn und „Fruchtfolge“ unterscheiden sich vornehmlich in Bezug auf 
die räumliche Auflösung der Anbauplanungsentscheidung. Um den Einfluss der räumlichen 
Auflösung auf die Simulationsergebnisse zu quantifizieren, werden hochaufgelöste 
Betriebsdaten benötigt. Im Rahmen der Arbeit wird eine Methodik zur Generierung eines 
solchen Datensatzes beispielhaft für Nordrhein-Westfalen vorgestellt und dieser verwendet, um 
den zuvor genannten Einfluss in bioökonomischen Modellen zu analysieren. Die Ergebnisse 
verdeutlichen, dass die Kulturanteile zwischen einem Ansatz auf Schlagebene verglichen mit 
einem aggregierten Ansatz im Durchschnitt um 11% abweichen, mit einhergehenden 
Profitunterschieden zwischen -306 €/ha bis 434 €/ha.  

Die im Rahmen der Arbeit vorgestellten bioökonomischen Modelle können sowohl zur Ex-
ante- als auch zur Ex-post-Analyse der ökonomischen Auswirkungen von neuen 
Politikmaßnahmen und Technologien auf landwirtschaftliche Betriebe beitragen. Ebenfalls 
können sie auf andere Forschungsfragen übertragen werden und helfen, die gewonnenen 
Erkenntnisse an Landwirt(e)-/innen weiterzugeben.
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Chapter 1  
Introduction 
Farming systems are known to be a major driver of environmental 
degradation (Springmann et al., 2018). As one of the results of 
environmental degradation, the total utilized agricultural area is shrinking 
throughout the world (Bruinsma, 2017). Despite this circumstance, a 
growing world population needs to be fed which is challenging the 
agricultural sector to simultaneously become more sustainable and resilient, 
as well as more productive (Bruinsma, 2017). In order to reach these goals, 
policies regimenting farming practices associated with negative 
externalities, and fostering practices enabling higher productivity and 
sustainability are implemented throughout the world (Troost et al., 2015). In 
the European Union (EU) for instance, the Green Deal and farm-to-fork 
policy initiatives, as well as the renewed Common Agricultural Policy 
(CAP) (2023-2027) present targeted emission reduction goals, as well as 
desired farming practices for the years to come. On the federal level, member 
states have to implement the EU Nitrates Directive aiming to protect the 
water quality across Europe (European Commission, 2010). 

Furthermore, novel technologies and innovations targeting an increase in 
productivity while reducing the environmental burden enter the agricultural 
market (Sparrow and Howard, 2021). Such technologies and innovations 
cover a wide range of possible applications in the agricultural domain, 
spanning from innovative breeding methods over autonomous field 
equipment to digital tools such as decision support systems (DSS) 
(Lowenberg-DeBoer et al., 2020; Rose et al., 2016; Vishwanath and 
Moreno, 2018).  
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Especially from an economic point of view, these novel policies and 
technologies pose substantial challenges for farmers (Beckman et al., 2021). 
Finding a cost-minimizing compliance strategy to a policy or deciding 
whether adopting a new technology or farming practice is viable can be a 
challenging task, which has to be evaluated in the specific context of an 
individual farm (Chavas and Nauges, 2020; Kuhn et al., 2019). A further 
aspect that complicates the evaluation is the (spatial) resolution of the 
aforementioned policies and technologies: More often, they target specific 
production processes or (sub-) regions, thus affecting each farm differently. 
The effects vary depending on the contribution of the production process to 
the overall farm profitability or the share of the farms plots falling into a 
region targeted by the policy. Given the complexity and far reaching impacts 
these policies and technologies can have on a farm, assessing their economic 
impact is not only crucial to farmers. Policy makers seeking to alleviate 
economic losses induced by environmental policies or interested in fostering 
novel potentially sustainable farming technologies can also benefit from 
these assessments (Janssen and van Ittersum, 2007). 

From a technical point of view, assessing the potential economic impact of 
a policy or a technology on a farm can be challenging. Given the 
interdependences of processes and resources, conceptual models are 
required in order to reduce the overall complexity to a comprehensible level 
(Sørensen et al., 2010). In the context of policy and technology evaluation, 
especially bio-economic farm models (BEFM) are frequently employed in 
the scientific literature. A BEFM is “defined as a [mathematical] model that 
links formulations describing farmers’ resource management decisions to 
formulations that describe current and alternative production possibilities in 
terms of required inputs to achieve certain outputs and associated 
externalities” (Janssen and van Ittersum, 2007, p. 623). In addition to being 
used in studies concerning the evaluation of policies or technologies, 
BEFMs often form the basis for DSS for farmers and farm advisors (Jones 
et al., 2017). Such models can show potential profit maximizing adaptation 
strategies to a policy, or whether a technology could be economically 
profitable for a specific farm or not (Antle et al., 2017). 
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1.1 Motivation 

Given their fine-grained resolution, the aforementioned novel policies and 
technologies challenge the way BEFMs are developed and used in their 
current generation (Britz et al., 2021). For a thorough economic analysis, the 
underlying bio-economic relationships need to be incorporated in high 
detail, while still reflecting a holistic image of the farm. Balancing these 
conditions in policy and technology evaluation studies, as well as DSS, 
poses new challenges regarding data-, resource-, and technology 
requirements. In the context of these studies, extensions to existing BEFMs 
are required that integrate the policies and technologies in the needed level 
of detail, but also allow for an evaluation of these on a whole farm 
population scale in order to capture farm heterogeneity. In the context of 
DSS, where BEFMs have the potential to mitigate potential compliance 
costs to novel policies, they are required to improve the communication of 
results to their users in order to increase adoption levels (Jones et al., 2017). 

A further issue concerning both DSS and BEFMs used in technology and 
policy adoption studies is a lack of adequate and detailed data (Jones et al., 
2017). This lack concerns both the availability of data considering farms and 
their endowments, as well as general farm planning data required to 
parameterise the BEFMs (Reidsma et al., 2018). Considering the required 
level of detail of many novel policies and technologies, such data is needed 
in order to analyse the impact of these policies and technologies on a whole 
farm population. However, with the increasing availability of public datasets 
that encompass agriculturally relevant data, new possibilities for 
overcoming the issues caused by data scarcity emerge. One the one hand, 
linked-open-datasets concerning farm planning data can be utilised in order 
to improve the depiction of technical details and varying farm characteristics 
in BEFMs (Martini et al., 2014). On the other hand, existing farm typologies 
(e.g. Kuhn and Schäfer (2018)) can be extended with spatial data concerning 
i.a. plot geometries and soil qualities in order to attain spatially explicit farm 
populations that allow for a more detailed analysis of the impact of the 
aforementioned novel policies and technologies. 
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With better data availability, possibilities for depicting certain on-farm 
decision processes with higher accuracy emerge. An example for a central 
on-farm decision process that is depicted in both BEFMs used for policy and 
technology evaluation, as well as in DSS, is the choice of crops planted on 
a farms fields. Traditionally, BEFMs depict the choice of crops using crop 
shares of a farms aggregate land endowment, whereas highly detailed farm 
data allow for a depiction of the decision problem on a single plot level. 
However, with an increasing level of detail, data- and resource requirements 
of a BEFM may also drastically increase. Furthermore, result interpretation 
can become more complex, as additional variables and interdependencies 
are entered into the model. Depending on the use-case and research question, 
this additional level of detail may therefore not always lead to substantial 
additional insights. Consequently, there is a need for a study clarifying 
which type of analysis or use-case can benefit from the higher level of 
simulation detail, and for which scenarios the higher level of detail may not 
be required. 

1.2 Research aims 

The dissertation aims to show potential ways for modeling highly detailed 
policies and technologies in BEFMs used for policy and technology analysis 
as well as for decision support. As the methodological focus of the 
dissertation primarily lies in the development, extension, and application of 
BEFMs, use-cases for both existing and novel BEFMs are explored. 

For the further development of an existing BEFM, the model FarmDyn 
(Britz et al., 2018) is used in the dissertation. The BEFM FarmDyn is a 
highly detailed single farm model. It has originally been developed for 
assessing marginal abatement costs of greenhouse gases on dairy farms 
(Lengers et al., 2014). Since its inception, multiple extensions to the model 
have been made, introducing support for new farm branches (Garbert, 2013; 
Schäfer et al., 2017), fertilizer- and environmental policies (Kuhn et al., 
2019), as well as optional integrations with other agricultural systems 
models (Kuhn et al., 2020). FarmDyn can be used to model a wide range of 
agricultural systems out-of-the-box, while extensions to the model can be 
integrated due to its template based design (Britz et al., 2018). As proposed 
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by Reidsma et al. (2018), using an existing and established BEFM for policy 
and technology evaluation studies should be encouraged over creating a new 
model, as model development time can be augmented on the given research 
problem at hand, and simulation results can be validated more easily.  

By design, the FarmDyn BEFM is primarily aimed to be operated by 
researchers. With its multiple methodological extensions and included farm 
branches, the model is well suited for policy and technology evaluation 
studies, but less fitting as a basis for a DSS. Since DSS are generally aimed 
to be operated by farmers and farm advisers, and specifically target a certain 
decision problem, the multi-purpose BEFM FarmDyn can be considered a 
less suitable option with regards to DSS. In the context of the thesis, a novel 
DSS called ‘Fruchtfolge’ is established. ‘Fruchtfolge’ is a web-based DSS 
specifically focusing on the crop choice and accompanying fertilization 
decision problem. Opposing the methodology used in FarmDyn, 
‘Fruchtfolge’ depicts the crop choice problem and related fertilization 
management on the individual plot level. Farm endowments and planning 
data are automatically queried from various linked open databases. 
However, ‘Fruchtfolge’ does not explicitly incorporate animal husbandry, 
investments, or other farm branches found in holistic farm models such as 
FarmDyn.  

In order to fulfil the research aims, the thesis gives practical examples for 
implementing BEFMs given the various use-cases: As an example for a 
novel technology with far reaching consequences on a farms production 
process, the dissertation highlights how an advanced cattle breeding 
technology can be incorporated in a BEFM considering its complex 
interactions on bio-physical as well as economic processes of a farm. As a 
specific example of such a technology in the dairy sector, the dissertation 
focuses on the inclusion of so-called "sexed semen”, as well as 
crossbreeding as two novel cattle breeding strategies in the existing model 
FarmDyn. Therefore, the aim of the first article presented in Chapter 2 can 
be summarized as: 
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I. Implement novel breeding technologies and strategies with highly 
detailed underlying biological relationships in FarmDyn as a 
holistic farm model. 

A further goal of the dissertation is to show a potential way for modeling a 
novel policy in a BEFM. In this regard, the dissertation shows the novel DSS 
‘Fruchtfolge’ that helps farmers to find a cost minimal adoption strategy to 
the revised version of the German Fertilizer Ordinance (FO) with minimal 
effort. As a policy, the German FO (revision of 2020) is chosen, as it 
incorporates both measures targeting the farm as whole, as well as detailed 
measures targeting individual plots of a farm (BMEL, 2020). Considering 
this policy, the question of which crops to grow on which plot, as well as 
how these crops should be fertilized becomes more complex for decision 
makers. As finding a cost-minimal abatement strategy to the policy is far 
from trivial, a DSS can help reduce the additional burden on decision 
makers, and potentially also lower compliance costs. In the context of the 
DSS, especially the communication of the simulation results to end users, as 
well as a simplified interface for including the endowments of a specific 
farm are targeted as a central research point. In order to achieve this goal, 
the web-based DSS ‘Fruchtfolge’ is established, incorporating the depiction 
of crop choices on the single plot level, as well as automated data acquisition 
and a user-centered design (Rose et al., 2016). Therefore, the research aim 
of the second article presented in Chapter 3 is: 

 
II. Develop a DSS for cropping choices based on big data and user-

centered design, and illustrate the benefits of the DSS in a case study 
application on the German FO. 

Policies such as the revised version of the German FO do not only introduce 
measures targeting farms as a whole, but also measures targeting single plots 
of a farm. Given the overall scarcity of highly detailed single farm data 
mentioned earlier, this additional level of detail proves it difficult to assess 
the impacts of such a policy on a whole farm population. In order to 
overcome this data limitation, the dissertation aims to provide a 
methodology as well as an accompanying dataset merging an existing farm 
typology (Kuhn and Schäfer, 2018) with spatially explicit open datasets in 
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order to achieve a synthetic farm population. For those reasons, the research 
aim of the third article presented in Chapter 4 is: 

 
III. Provide data and a methodology for creating a synthetic farm 

population with single farm data of the German federal state of 
North Rhine-Westphalia (NRW). 

A major motivation for the inception of the ‘Fruchtfolge’ DSS is the detailed 
depiction of the cropping choice and related fertilization management 
problem on the single plot level. Opposed to this approach, holistic farm 
BEFMs such as FarmDyn frequently involve a certain level of land 
aggregation, as spatially explicit data for modeling the crop choice problem 
on the individual field level are rarely available. Given the highly detailed 
synthetic farm population, new possibilities for the analysis of novel policies 
and technologies emerge. From a methodological point of view, many of 
these policies and technologies directly or indirectly affect the choice of 
crops in a BEFM. The effect of these different levels of land aggregation on 
the simulation results has not been studied yet. Therefore, the research aim 
of the fourth article presented in Chapter 5 is: 

 
IV. Evaluate the current approaches to model crop choices in BEFMs, 

and assess how these approaches affect BEFM simulation results in 
both technology and policy evaluation studies as well as DSS. 

1.3 Proceedings 

The dissertation is structured as follows: Chapter 2 implements and assesses 
the impact of the novel breeding technology “sexed semen”, as well as the 
breeding strategy crossbreeding on dairy farms in the German federal state 
of North Rhine-Westphalia. Chapter 3 presents the novel DSS 
“Fruchtfolge”, and evaluates its potential to mitigate compliance costs for a 
case-study farm under different scenarios in the German federal state of 
North Rhine-Westphalia. Chapter 4 gives a methodology for creating a 
synthetic farm population using a farm typology and other spatially explicit 
datasets. Chapter 5 analyses the difference in BEFM simulation results 
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between different levels of detail with regards to crop choices, and gives 
recommendations for which option to use for which research question. 
Eventually, Chapter 6 concludes.  
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Chapter 2  
Economic opportunities of using 
crossbreeding and sexing in 
Holstein dairy herds1 
Abstract 

With the increasing availability of sexed semen, farms have the opportunity 
to select genetically superior dams for producing their replacement animals 
and produce crossbred calves for beef production of higher economic value 
from the remainder of the herd. However, higher costs and reduced fertility 
of sexed semen complicate the decision of when and to which extent sexed 
semen should be applied in a herd. The objective of this study was to explore 
the economically optimal sexed semen and crossbreeding utilization among 
North Rhine-Westphalian dairy farms in a holistic single farm model. For 
the analysis, a representative sample of farms was derived from Latin 
Hypercube sampling, based on the observed distribution of farm 
characteristics from the official North Rhine-Westphalian Farm Structure 
Survey (FSS) data. Market- and technology-related input parameters such as 
output prices and sexed semen accuracy and fertility were included in the 
sampling procedure. Modeling results of the systematic sensitivity analysis 
were evaluated in a statistical meta-model. We found that the profit 
maximizing sexed semen and crossbreeding utilization was highly 
heterogeneous among the farms. Farms with lower stocking densities < 2 

 
1 This chapter is published in the Journal of Dairy Science as: 

Pahmeyer, C., Britz, W., 2020. Economic opportunities of using crossbreeding and sexing in Holstein 

dairy herds. Journal of Dairy Science 103, 8218–8230. https://doi.org/10.3168/jds.2019-17354 
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LU/ha were generally found to produce excess heifers for sale, while farms 
with stocking densities > 2 LU/ha were producing crossbred calves and 
using sexed semen only to produce replacement animals. On average, female 
sexed dairy semen was used on 25.3% of all inseminations. Beef semen 
(both sexed and conventional) for producing crossbred calves was used on 
an average of 21.5% of the inseminations. The combination of sexed semen 
and crossbreeding increased profits from €0 to €568 per cow per year, with 
an average of €79.42 per cow per year. Farms characterized by low stocking 
densities (< 2 LU/ha) and above average replacement rates (> 40%) were 
found to have higher profit increases as a result of selling more heifers from 
the use of sexed semen. Overall sexed semen and crossbreeding adoption 
were most sensitive to stocking density and average cow longevity, as well 
as additional costs for sexed semen and sexed semen accuracy. Our results 
show the potential of modern breeding technologies to improve dairy farm 
profits and the need to judge their profitability in the light of farm-specific 
production settings. 

Keywords 

sexed semen, crossbreeding, farm model, economics 

2.1 Introduction 

The average lifespan of cows has slightly increased over the past decades. 
However, cow vitality and fertility remain important issues in German high-
input/high-output dairy herds (Martens, 2016; Römer et al., 2018). On 
average, Holstein cows are culled after only 2.7 lactations in Germany, with 
almost 30% leaving during the first lactation (Arbeitsgemeinschaft 
Deutscher Rinderzüchter, 2018; Römer et al., 2009). As a consequence, herd 
replacement rates remain high, and without the use of sexed semen almost 
all female offspring is required for replacements in the milking herd (De 
Vries et al., 2008). 

The potential for economic issues in such a limited lifespan of dairy cows is 
high. A high replacement rate causes considerable rearing and replacement 
costs per cow. As a by-product of the necessary purebred female offspring, 
a high share of purebred male calves per average cow is produced with low 
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weight gains and reduced meat quality compared to their beef breeds 
counterparts. The male calves are subsequently of relatively low economic 
value and contribute little to overall farm profits (Wolfová et al., 2007). A 
high number of rearing heifers relative to the productive herd also implies 
higher nutrient excretion per productive cow with related costs required in 
order to comply with environmental legislation, such as the recently revised 
Fertilization Ordinance (FO) in Germany. There is also higher feed 
consumption per productive cow, again with detrimental impacts on 
environmental performance (Weiske et al., 2006). 

In the recent past, the application of sexed semen has been growing rapidly 
in the dairy industry (Holden and Butler, 2018). Sexed semen allows pre-
determining the sex of a calf with an accuracy around 90% (Seidel, 2014), 
which opens new possibilities to address the aforementioned issues. 
However, in comparison to conventional semen, prices for sexed semen 
remain higher (Schneichel, 2017), and lower conception rates of ca. 70-90% 
(DeJarnette et al., 2011; Healy et al., 2013; Maicas et al., 2020) increase the 
number of required inseminations (Seidel, 2014).  

In addition to using sexed semen, farmers may use beef semen in order to 
produce dairy-beef crossbred calves. The resulting crossbred calves perform 
better in fattening systems, yielding higher sales value (Wolfová et al., 2007) 
and improve the overall efficiency of the dairy-beef chain. Combining the 
use of sexed semen and crossbreeding constitutes a promising alternative to 
conventional breeding methods. It may improve economic results, deliver a 
higher proportion of female calves, and allow for selecting only the 
genetically highest ranking cows for replacements. Crossbred calves that 
perform better in fattening may be produced from the remaining dams of the 
herd. 

Different aspects of sexed semen with and without crossbreeding have been 
addressed in the literature. McCullock et al. (2013) studied the influence of 
key variables such as market, management, and technology on the 
profitability of using sexed semen in a high yielding Holstein herd in 
Colorado. Their results suggested that management variables (e.g. 
conception rates) and the price of dairy heifer calves had a significant effect 
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on the net present value gain per cow, whilst the cost of sexed semen and 
the milk price showed relatively little effect on profitability. Potential effects 
on the rate of expansion for heifers and lactating cows in a pasture-based 
system using sexed semen were modeled by Murphy et al. (2016). Five 
different breeding strategies were analyzed, showing that the scenario where 
sexed semen was used on heifers and a targeted group of cows facilitated the 
fastest possible expansion. A stochastic, bioeconomic spreadsheet model 
was employed by Cottle et al. (2018) in order to analyze the profitability of 
using sexed semen in a high-input/high-output dairy herd. Their findings 
suggested that inseminating both heifers and cows with sexed semen was the 
most profitable in the simulation. The study emphasizes the relatively 
elevated effect of pregnancy rate and the genetic value of dairy bulls for 
determining the financial advantages of sexed semen usage. Ettema et al. 
(2017) combined the two simulation models SimHerd (Østergaard et al., 
2005) and ADAM (Pedersen et al., 2009) to study the hypothesis, that sexed 
semen increased the genetic gain and overall net return depending on herd 
management. The hypothesis that the potential for beef semen to increase 
genetic level would be herd-specific was supported by their findings. 
However, they concluded that none of the scenarios modeled were profitable 
under Danish circumstances when the value of the increased genetic level 
was not included. 

Given that the existing literature found large differences regarding the 
driving factors for the profitability of sexed semen and beef semen use for 
different types of dairy farms, a proper assessment should incorporate a 
population of farms and their characteristics for the evaluation of 
profitability. However, a detailed whole-farm analysis studying the profit 
maximizing shares of sexed dairy semen, sexed beef semen and 
conventional beef semen (crossbreeding) depending on farm-characteristics 
is still missing. The objectives of this paper were therefore three-fold. First, 
we determined the extent to which dairy farms in our study region would use 
either sexed dairy semen, sexed beef semen, conventional beef semen or a 
combination of these under profit-maximizing behavior. Second, we 
explored factors explaining differences in the adoption rates of sexed dairy 
semen and beef semen (both sexed and conventional beef semen) between 
different farms or market conditions or both. Third, we studied the potential 
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economic benefits for different types of dairy farms and the extent to which 
they rely on market conditions. 

2.2 Materials and Methods 

A three-step modeling framework was used to assess the profit maximizing 
shares of sexed semen and beef semen use (Figure 2.1).  

The method was largely based on a meta-modeling approach proposed by 
Lengers et al. (2014) and Kuhn et al. (2019).  

At first, a representative sample for the farm population including draws for 
input and output prices and sexed semen characteristics was generated by 
Latin Hypercube Sampling (LHS). The sampling was based on data from 
official agricultural statistics. In a second step, each of the sample farms was 
simulated in the single farm optimization model FarmDyn. In order to depict 
the economic effects of using sexed dairy semen and (sexed) beef semen, 

Figure 2.1 Overview of modeling framework, adapted from Kuhn et al. 
(2019) and Lengers et al. (2014). 
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the model was solved two times for each farm. First, the model was solved 
without the possibility to use sexed dairy semen and beef semen for 
crossbreeding (baseline). In a second run, both sexed semen and beef semen 
(both conventional and sexed beef semen) were made available. Note that 
the share of sexed dairy, sexed beef, and conventional beef semen was an 
endogenous variable in our optimization model such that the model would 
simulate optimal usage intensity (which may also be zero) to address the 
research questions. In a third step, a statistical meta-model was derived to 
explain overall sexed semen/beef semen share and profit deltas resulting 
from sexed semen and beef semen usage. 

2.2.1 Sampling procedure 

Our analysis examined specialized dairy farms in the German federal state 
of North Rhine-Westphalia (NRW). Roughly 10% of the German dairy 
population is based in NRW, with more than 4,300 farms specialized on 
dairy production (Statistisches Bundesamt, 2018). Selling their male calves 
two weeks after birth, these farms generally produce their own replacement 
heifers. Additional heifers might be sold for replacements or slaughter. 
Distributions reflecting single farm data for the study region were used from 
the German Farm Structure Survey (FSS) 2016 as reported by Kuhn et al. 
(2019). The data covered factors regarding farm endowments, such as farm 
sizes, grassland shares, stocking densities, and manure storage capacities as 
explanatory factors. Regional data regarding crop production, such as maize 
silage and grassland yields, were taken from KTBL (2019). Ranges of input 
coefficients for animal prices, milk yields, lactation lengths, and first calving 
ages were derived from KTBL (2018). Data on sexed semen accuracy, and 
additional insemination efforts (IE) when using sexed semen (sexed semen 
conception rate) were drawn from Seidel (2014) and Butler et al. (2014). The 
explanatory factors and their ranges are depicted in Table 2.1. As empirical 
distributions for input parameters not covered in the FSS were not available, 
uniform distributions for these parameters were assumed. The correlation 
between these parameters was assumed to be zero, reducing the risk of multi-
collinearity in the statistical meta-model. In order to depict the whole value 
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range of the model input parameters, a sample of the farm population of ca. 
1700 farms was generated using LHS (McKay et al., 1979). 

 

Explanatory 
factor Minimum Median Maximum Data source 

Farm size [ha] 8.14 61.24 221.35 FSS 2016 in Kuhn 
et al. (2019) 

Grassland share 
[%] 

6 51 100 FSS 2016 in Kuhn 
et al. (2019) 

Grassland yield 
[t DM/ha] 

6.19 6.94 7.69 KTBL (2019) 

Maize Silage 
yield [t FM/ha] 

42.9 46.55 50.2 KTBL (2019) 

Stocking 
density [LU/ha] 

0.63 1.75 5.94 FSS 2016 in Kuhn 
et al. (2019) 

Milk Yield [kg 
ECM/a] 

6800 9400 12000 KTBL (2018) 

Avg. cow 
longevity [ 
lactations/cow] 

1.7 4.15 6.6 KTBL (2018) 

Calving interval 
[d] 

365* 408.5 452 KTBL (2018) 

Additional costs 
female sexed 
semen doses 
[€/n] 

13 24.5 36 Besamungsverein 
Neustadt (2019) 

Additional 
insemination 
effort sexed 
semen [n] 

0 0.575 1.15 Own calculation 
based on Butler et 
al. (2014) 

Sexed semen 
accuracy [%] 

75 87.5 100 Seidel (2014) 

Price heifer 
[€/head] 

1040 1490 1940 KTBL (2018) 
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Beef bull calf 
[€/head] 

70 195 320 KTBL (2018) 

Beef heifer calf 
[€/head] 

40 145 250 KTBL (2018) 

Dairy heifer calf 
[€/head] 

10 50 90 KTBL (2018) 

Dairy bull calf 
[€/head] 

10 80 150 KTBL (2018) 

 
Table 2.1 Characterization and sources of explanatory factors.*The 

minimum calving interval was set to 365 days in order to fit the 
assumptions made in the materials and methods section 

2.2.2 Farm modeling  

For the farms derived from the sampling procedure, the adoption and 
economic gain of sexed semen and crossbreeding were estimated. For the 
analysis, we enhanced the dynamic, mixed-integer linear programming 
model FarmDyn (T. Kuhn et al., 2019a; Lengers et al., 2013, 2014) to 
incorporate adequate representations of herd dynamics and breeding 
techniques. FarmDyn is an open-source and open-access bio-economic 
single farm model written in the General Algebraic Modeling Language 
(GAMS Development Corporation, 2019). For further technical information 
regarding the model FarmDyn, see the technical documentation (Britz et al., 
2016). Its modular structure (illustrated in Figure 2.2) allows simulating 
different farming types, including dairy, suckler, beef, and arable farms. 
Indivisibilities in investments and labor use, such as buildings and 
machinery, are captured by the use of integer variables (mixed-integer linear 
programming (MILP)). Farm management decisions, e.g. feeding, use of 
sexed semen or crossbreeding, manure management and labor distribution 
are modeled with a monthly resolution (partially bi-weekly). The model is 
parameterized for German conditions with the use of detailed farm planning 
data provided by KTBL (2018) and LfL Bayern (2018). Model results were 
validated with individual project case study data. 
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For the current study, the deterministic comparative static version of the 
model was utilized which maximizes the net present value (NPV) over a 
predefined planning horizon of farms using farm-household resources 
(labor, land, financial assets). A rational, fully informed, and risk-neutral 
decision maker was assumed. We refrained from modeling risk and risk 
behavior as we lacked any defendable source to parameterize risk behavior 
in the required detail. Moreover, as no closed-form determination of 
variance-covariance matrices for the decision variables was possible, the 
application of a mean-variance analysis (Markowitz, 1952) was not feasible. 
The influence of variability in input coefficients across farms on the overall 
NPV and other factors was analyzed by a structured sensitivity analysis. 

As investment decisions were not at the core of our analysis, we performed 
a comparative-static analysis where continuous reinvestments for machinery 
and sunk costs for housing were assumed and related costs annualized. 
Investments in new housing were disabled in order to capture the short-term 
effects of sexed semen and crossbreeding usage. Consequently, herd 
dynamics were depicted in a steady-state model as described in the following 

Figure 2.2 Simplified flowchart illustrating the main modules of the model 
FarmDyn. Source: Britz et al. (2016). 
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section such that impacts of the advanced breeding methods on an average 
production year were depicted. The model was constrained by available 
resources, possible production processes, allowed crop rotations, off-farm 
working opportunities and two restrictions relating to agri-environmental 
legislation. These were the German FO as the implementation of the 
European Nitrates and Water Framework Directives and the greening 
obligations under the First Pillar of the Common Agricultural Policy.  

The dairy module characterized one of the possible farm branches in the 
model. Here, mass flows as feeds, manure, and animals were described, and 
linked to the economic optimization part of the model. Feed rations were 
optimized endogenously according to the nutrient and dry matter constraints 
defined by the Zifo2 feed optimization application (LfL Bayern, 2016). 
Also, different feeding regimes such as grazing, partial grazing or non-
grazing were accounted for, depending on the endowments present on the 
farm. Manure handling was assumed to be outsourced to a contractor and 
may have been spread on own fields or, with additional costs, exported to 
other farms. Land leasing and buying of forages were disallowed in order to 
depict the short-term effects of sexed semen and crossbreeding usage only. 

The model differentiated between calf-, heifer-, and cowherds of different 
sex and ages. Each animal of a herd represented an average animal of the 
herd in the model. Therefore, production parameters such as milk yield, 
lactation profile, breeding value, number of services, and pregnancy rate 
were equal among animals within each herd group.  

Default modeling parameters were specified in order to reflect the range of 
dairy farms in the study area. Milk yields between 6,800 up 12,000 kg ECM 
were realized (KTBL, 2018). The roughage intake was assumed to be at least 
60% of the total dry matter intake of the cows. Cows were not given access 
to pastures, and year-around calving was assumed. The availability of grass 
and maize silage per cow as an endogenous variable reflected the individual 
farms' endowments (as mentioned above). 

For heifers, an average number of 1.6 services, and for cows 2.3 services per 
pregnancy were assumed when conventional semen was used, implying a 
fixed heat detection rate of 70% (Römer et al., 2013). Cows and heifers being 
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culled due to reproductive (exceeded maximum number of services) or 
nonreproductive (e.g. lameness, mastitis) reasons were implicitly captured 
by an exogenously assumed average cow longevity in the herd. In addition, 
an annual mortality rate of 5% was applied to the model (KTBL, 2018).  

Depending on the specific farm characteristics, sufficient replacement 
heifers were reared targeting 23 to 25 months as age of first calving. 
Depending on the age of first calving, feed composition, labor requirements 
and final weight were adapted accordingly. Surplus calves were assumed to 
be sold to the market at < 1 month of age.  

2.2.3 Implementation of sexed semen and crossbreeding 

In addition to conventional dairy semen, the opportunity to use sexed dairy, 
sexed beef, or conventional beef semen was introduced into the above-
described farm model as an endogenous decision.  

For the conventional and sexed beef semen, it was assumed that Belgian 
Blue sires were used for crossbreeding. Costs for conventional beef semen 
were assumed to be equal to conventional dairy semen in the model. 
Similarly, sexed beef semen was assumed to be equal in costs and fertility 
as sexed semen of a Holstein sire. Crossbred calves were assumed to be sold 
right after birth, additional on-farm fattening was not considered.  

Regarding sexed semen (both dairy and beef sexed semen), it was assumed 
that when sexed semen was used on the first service, it was used throughout 
the remaining services until a pregnancy was achieved. The conception rate 
of sexed semen for both heifers and cows varies in the analysis (as 
mentioned above) and was assumed to be 75 – 100% of the conception rate 
of unsorted conventional semen (Butler et al., 2014). In order to determine 
the effect of the reduced conception rate of sexed semen on the average 
number of services required for a pregnancy (IE), conception rates 
depending on the service number by Kuhn et al. (2006) were evaluated for 
heifers, while for cows a fixed conception rate of 35% was assumed for 
conventional unsorted semen. It was assumed that for a successful 
insemination using sexed semen, the same cumulative probability that any 
of the inseminations have been successful as with conventional unsorted 
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semen would be required. Given the average of 1.6 services for heifers, and 
2.3 services for cows, an additional average increase of 0 – 1.15 services 
(again varied in the analysis) was derived when sexed semen was used. This 
way, the higher conception rates of using sexed semen on heifers compared 
to multiparous cows were reflected in the model. Herd specific parameters 
that vary in the analysis are displayed in Table 2.1, while default static input 
values are presented in a supplementary material file (Supplemental Table 
S1; https://doi.org/10.3168/jds.2019-17354). 

The additional number of services when using sexed semen had a number of 
implications on the model: On heifers, the average first calving age was 
(involuntarily) shifted upwards when sexed semen was used. Consequently, 
additional feed and labor were required, leading to an increase in rearing 
costs. On multiparous cows, the involuntarily extended lactation length led 
to a change in the lactation profile and fewer calvings per year. For both 
heifers and cows, the additional input costs per successful sexed semen 
insemination were assumed to be the total IE multiplied by the price 
premium of sexed semen. Further technical aspects of the specific 
calculation of herd sizes and calving distributions within the modeling 
framework are presented in the Supplementary Material; 
https://doi.org/10.3168/jds.2019-17354. 

Among other impacts, the use of sexed semen and beef semen has an effect 
on dystocia (Norman et al., 2010). In order to depict the effect of differing 
dystocia risk among heifers and cows regarding bull calves, heifer calves, 
and beef calves, we used dystocia risk scores and related costs as described 
by McCullock et al. (2013) (Supplemental Table S1; 
https://doi.org/10.3168/jds.2019-17354). 

Literature has shown the importance of genetic improvement as an economic 
factor for the use of sexed semen or beef semen or both (Cottle et al., 2018; 
Ettema et al., 2017; McCullock et al., 2013). In general, genetic 
improvement is obtained by mating animals so that their offspring is 
genetically superior compared to the population in terms of the breeding goal 
(De Vries, 2017). Through the use of sexed semen, genetically superior 
animals can be selected to produce the next generation of replacement 
heifers, thus improving the genetic level of the herd. To increase the genetic 
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level even further, beef semen can be used on genetically inferior 
multiparous cows, so that their offspring does not enter the milking herd. 
We based the calculation of genetic merit on the results outlined by Ettema 
et al. (2017). Similar to their approach, we valued one genetic standard 
deviation of the Nordic Holstein breeding goal with €89 per cow-year. 
Improvements in genetic level for using sexed dairy semen on heifers and 
beef semen (sex sorted and unsorted) cows were derived from their results 
by linear regression. Breeding 1% of all heifers with sexed semen resulted 
in an estimated genetic increase of ca. 0.001 standard deviation units of the 
breeding goal while breeding 1% of all multiparous cows with beef semen 
resulted in a genetic increase of ca. 0.0017 standard deviation units of the 
breeding goal respectively. The resulting economic value of differences in 
the genetic level induced by sexed semen and beef semen use (genetic 
return) was then calculated by multiplying the difference in genetic standard 
deviation units by €89. 

2.2.4 Statistical meta-modeling 

In order to quantify which factors significantly impact the adoption of sexed 
semen, beef semen, as well as the profit gain resulting from sexed semen 
and beef semen use, a statistical meta-model was constructed for each of the 
three cases. The meta-models approximated the input and output 
transformations of the FarmDyn model, resulting in a simplified statistical 
model summarizing all simulations runs of the sample population. The meta-
models were specified as multiple linear regression models, where the 
explanatory factors displayed in Table 2.1 were defined as the independent 
variables, and the share of sexed semen, beef semen, and profit gain from 
sexed semen and beef semen use as the dependent variables respectively. 
The statistical analysis was conducted with the software R (R Core Team, 
2017).  

2.3 Results 

We found the profit maximal sexed semen and crossbreeding application 
among the studied farm population to be highly heterogeneous, reflecting 
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the distribution of farm characteristics and input coefficients described in 
Table 1. Under these assumptions, 93.3% of the farms were simulated to use 
female-sexed dairy semen (X-chromosome enriched) on heifers at least 
once. Furthermore, 6.4% of the farms were simulated to use male-sexed beef 
semen (Y-chromosome enriched) on heifers at least one time. Female-sexed 
dairy semen used on cows was found to be profit maximal in 6.9% of the 
farms to some extent. Male-sexed beef semen on cows was found to be 
utilized in 0.1% of all farms. Beef semen use, both sexed and conventional, 
was found to be used in 49% of the farms for at least one insemination. On 
the farms that used beef semen, an average of 76.2% of the cows and 13.3% 
of the heifers were bred with beef semen. 

Female-sexed dairy semen was used on an average of 25% of all 
inseminations in the optimum. An average of 66% of all heifers were bred 
with female-sexed dairy semen, and 5% of all cows. The average herd 
replacement rate was 22%, with an average cow longevity of 4.46 lactations 
per cow among the sample population.  

Using beef semen for crossbreeding (both conventional and sexed semen) 
was found to be profit maximal for an average of 21% of all inseminations. 
Conventional beef semen was used on an average of 37% of all cow 
inseminations, and 6.5% of all heifer inseminations. 

On average 2% of all heifers and less than 1% of all cows were bred with 
sexed beef semen in the simulation results.  

2.3.1 Drivers of overall sexed semen and crossbreeding usage 

In order to identify the main drivers of these profit maximal shares of sexed 
semen and crossbreeding usage, the statistical meta-model described in the 
previous section was analyzed. The standardized regression coefficients for 
the explanatory variables are displayed in Table 2.2. While many of the 
explanatory variables were found to have a significant impact on the 
dependent variables, a few explain a greater part of the variance. This was 
expected given the high number of observations and the absence of 
measurement and reporting errors. In the case of the relative share of female-
sexed dairy semen used on all inseminations on a farm, the 𝛽-coefficients of 
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management factors such as cow longevity, as well as technology factors 
such as conception rates (expressed through additional required IE), and 
general farm endowment factors as the overall stocking density were found 
to have the largest absolute impact on the overall profit maximal adaptation. 

 Dependent variable (β-coefficients): 

 
Share sexed 
dairy semen  

[all 
inseminations] 

Share beef 
semen  

[all 
inseminations] 

Profit delta sexed 
semen and 

crossbreeding 

 (1) (2) (3) 

Cow longevity  
[n lactations/cow] -0.471*** 0.091*** -0.307*** 

Additional IE sexed 
semen [n] -0.418*** -0.070*** -0.287*** 

Stocking density 
[LU/ha] -0.307*** 0.689*** -0.455*** 

Calving interval [d] -0.279*** -0.047*** -0.188*** 

Dairy bull calf 
[EUR/head] -0.073*** -0.079*** -0.070*** 

Beef bull calf 
[EUR/head] 0.062*** 0.124*** 0.106*** 

Additional costs 
female sexed semen 
doses [EUR/n] 

-0.047*** -0.010 -0.037** 

Milk Yield [kg 
ECM/a] -0.046*** 0.093*** -0.032* 

Price heifer 
[EUR/head] 0.032** -0.048*** 0.220*** 

Grassland share [%] 0.025* -0.066*** 0.081*** 

Sexed semen 
accuracy [%] 0.022 0.027* 0.076*** 
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Farm size [ha] 0.014 -0.079*** -0.133*** 

Beef heifer calf 
[EUR/head] 0.013 0.167*** 0.080*** 

Maize Silage yield  
[t FM/ha] 0.012 0.002 0.026 

Manure storage 
capacity [m] -0.010 -0.013 -0.010 

Dairy heifer calf 
[EUR/head] -0.005 -0.001 -0.001 

Grassland yield  
[t DM/ha] -0.003 -0.014 0.019 

Constant -0.000 -0.000 -0.000 

Observations 1,736 1,736 1,736 

R2 0.616 0.621 0.505 

Adjusted R2 0.613 0.617 0.500 

Residual Std. Error 
(df = 1718) 0.622 0.619 0.707 

F Statistic  
(df = 17; 1718) 162.442*** 165.411*** 103.150*** 

Note: *p<0.1; **p<0.05; ***p<0.01 
 

Table 2.2 Multiple linear regression model output (meta-model of the 
single farm model FarmDyn) on overall sexed semen share, beef semen 

share and profit deltas resulting from sexed semen and crossbreeding usage 
(dependent variables) for North Rhine-Westphalian dairy farms 

The top half of Figure 2.3 shows the simulated relative share of female sexed 
dairy semen used on the farms, depending on the farms' individual stocking 
density and average cow longevity. In addition, Supplemental Figure S2; 
https://doi.org/10.3168/jds.2019-17354 displays the same graph, however 
showing the sexed semen conception rates (expressed as additional 
insemination effort) on the color axis. From the two graphs, it can be seen 
that very high sexed semen utilization shares up to 100% of all insemination 
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were found to be profit maximal for farms with stocking densities < 1.5 
LU/ha, combined with below average cow longevity (< 3 lactations per 
cow), and high sexed semen conception rates (> 90% of conventional semen 
conception rate, requiring fewer additional inseminations when sexed semen 
was used). As indicated by the 𝛽-coefficient displayed in Table 2.2, herds 
with high average cow longevity (> 3 lactations per cow) were in general 
found to be utilizing sexed semen significantly less than farms with below 
average cow longevity. Farms using sexed semen on few inseminations were 
mostly characterized by higher stocking densities (> 2 LU/ha), combined 
with above average cow longevity (> 4 lactations per cow), and low sexed 
semen conception rates (< 80% of conventional semen conception rate). 
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The bottom half of Figure 2.3 displays the simulated relative share of beef 
semen (sexed and conventional beef semen jointly considered) used on the 
farms for producing crossbred calves, again depending on the farms' 
individual stocking density and average cow longevity. Farms with stocking 
densities > 2 LU/ha, together with average cow longevities > 5 lactations per 
cow were simulated to have high uptakes of beef semen mostly ranging from 
70-80% of all inseminations in the optimum. Farms with lower stocking 
densities < 2 LU/ha or lower than average cow longevity (< 3 lactations per 
cow) or both, on the other hand, were simulated to have a wider range of 
beef semen uptake between 0-60%. As displayed by the 𝛽-coefficients in the 
“Share beef semen” column of Table 2.2, apart from the stocking density a 
multitude of market factors such as beef heifer calf and beef bull calf prices 
had a positive impact on overall beef semen uptake, while overall farm size 
(ha), dairy bull and heifer prices, as well as sexed semen conception rates, 

Figure 2.3 Profit maximizing share of female sexed dairy semen used on 
all inseminations (upper part), compared to the share of beef semen (sum 
of sexed beef semen and conventional semen) used on all inseminations 

(bottom part) in the North Rhine-Westphalian study population. Each dot 
represents a farm in the sample population. LU = livestock units. 
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had a negative impact on the overall uptake. When beef semen was used in 
a farm, the share of sexed beef semen on all beef semen used was ranging 
from 0-100% among the simulated population. On average, 2.7% of the beef 
semen used was sexed beef semen.  

2.3.2 Effects on farm profitability 

The potential economic benefits of using sexed semen and crossbreeding 
were again found to be highly heterogeneous within the North Rhine-
Westphalian dairy farm population, ranging from €0 to €568/cow and year. 
On average, farms in the population sample could increase their profits by 
€79.42/cow and year (median €59.52 per cow and year) by applying sexed 
semen, crossbreeding or both. Multiplied with a simulated average herd size 
of 91 cows, the mean sexed semen and crossbreeding induced profit increase 
would add up to a total of ca. €7,225 per farm per year. When only sexed 
and conventional dairy semen (no crossbreeding) was made available to the 
farms, the average profit increase was €65.35 per cow (median €40.44 per 
cow) compared to the baseline. In the run where only conventional beef 
semen and conventional dairy semen (no sexed semen) was made available 
to the farms, the average profit increase was €10.06 per cow (median €8.33 
per cow), with a range of €0 to €227 per cow among the sample population, 
reflecting the possibility to use crossbreeding. 

Table 2.2 reports on a meta-model that analyzed these profit differences. The 
variable coefficients in the third column indicate that the economic benefits 
of utilizing sexed semen and crossbreeding were driven by market factors 
such as heifer, beef bull calf and beef heifer calf prices. On the other hand, 
increasing stocking densities, as well as cow longevity and lower sexed 
semen conception rates were found to diminish additional profit gains 
compared to the baseline, where neither sexed semen nor crossbreeding was 
used on the farms. 
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Figure 2.4 shows additional profits per cow when sexed semen and 
sexed/conventional beef semen were made available to the farm population, 
compared to the baseline. The largest profit increases of more than €500 per 
cow were observed in farms where below average stocking densities (< 2 
LU/ha), together with below average cow longevity (< 3 lactations per cow) 
were prevalent. On the other hand, farms with stocking densities > 2 LU/ha 
and high average cow longevity (> 5 lactations per cow) were most often 
found to have profit gains in the range of €0 to €30 per cow. 

The economic impact of the change in genetic level induced by sexed semen 
and beef semen use (genetic return) was ranging from €0 to €21 per cow, 
with an average genetic return of €4.98 per cow (median €2.16 per cow) 
among the sample population. Changes in costs linked to dystocia were 
ranging from €3.80 per cow to €12.45 per cow, with an average change of 
€0.31 per cow. 

Figure 2.4 Simulated profit increase (€ per cow) induced by the profit 
maximal use of sexed dairy semen and sexed/conventional beef semen 
among the North Rhine-Westphalian dairy farm population. Each dot 

represents a farm in the sample population. 
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2.4 Discussion 

2.4.1 Results 

Our results imply that a profit-maximizing utilization of crossbreeding and 
sexed semen among North Rhine-Westphalian dairy farms could improve 
profits from €0 to €568 per cow per year. We found that almost half of the 
simulated farm population could increase their profits by using female-sexed 
dairy semen on heifers for replacement heifer production and using beef 
semen on cows to some extent. However, potential economic gain of sexed 
semen and crossbreeding utilization, as indicated in the results section, 
varied greatly depending on individual farm endowments such as stocking 
density and average cow longevity, among other factors. In line with the 
findings of McCullock et al. (2013), the strategy of producing excess heifers 
for sale with the use of sexed dairy semen was found to be profit-
maximizing, though only for farms with below average stocking densities (< 
1.5 LU/ha). Especially when a high grassland share was present, rearing 
excess heifers was a profitable opportunity for these farms, as often no 
production alternative for grassland was present. The overall highest 
potential economic gains of up to €568 per cow were observed when below 
average stocking density, an average cow longevity < 3 lactations per cow, 
high heifer prices and favorable sexed semen parameters (high conception 
rates and accuracy of sexed semen) were jointly present. For these farms, 
using sexed semen on all heifers, as well as all cows was found to be most 
profitable, confirming the findings of Cottle et al. (2018) for such types of 
farms. 

Farms with higher average cow longevities were generally rearing excess 
heifers even before the introduction of sexed semen into the model, and thus 
had a smaller profit gain from the new technology. Given increased profits 
per cow, many of these farms would have potentially invested in new cattle 
housing in order to further expand their herd in the model. However, as 
stated in the previous sections, investments in new cattle housing were 
disabled in order to depict the rather short-term effects of sexed semen and 
crossbreeding usage. 
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With increasing stocking densities, feed competition among animal groups 
within the farm increased. As buying of roughages from the market was 
disallowed in the analysis, farms that could barely sustain their cow herd 
size due to limited own fodder production had little incentives to produce 
excess heifers. In order to rear excess heifers, these farms would have needed 
to reduce their cow herd, increasing the marginal production costs of heifers 
by the opportunity costs of the cows that could have been fed instead. Farms 
with stocking densities > 2 LU/ha and milk yields > 10,000 kg ECM were 
therefore rarely found to produce more heifers than required for their own 
replacements. These findings support the results of Ettema et al. (2017), 
where the profitability of excess heifers was largely determined by 
additional heifer rearing costs. 

Farms with higher stocking densities were often found to be using beef 
semen in order to produce crossbred calves instead of excess heifers. As the 
crossbred calves were assumed to be sold right after birth, these animals 
were not competing for additional feed with any additional heifers raised on 
farm. This way, fodder could be valorized by the cow herd with higher 
marginal returns.  

Farms with average cow longevity well above the mean (> 5 lactations per 
cow), and limited roughage availability (stocking densities > 2 LU/ha) 
showed the highest beef semen uptake shares of 60 to 80%. Within this 
particular group, farms exposed to higher crossbred calf prices (> 
€200/head) and sexed semen conception rates of > 90% of conventional 
semen conception rates were particularly likely to show high rates of sexed 
beef semen usage. Due to the relatively low replacement rates induced by 
the high average cow longevity, these farms were able to take specific 
advantage of crossbred calf price premiums. In scenarios with high prices 
for crossbred calves, farms with limited fodder availability (stocking 
densities > 2 LU/ha) were generally producing their replacement animals by 
using sexed semen on the genetically superior heifers in order to be able to 
produce more crossbred calves. Farms with average cow longevity < 5 
lactations per cow together with stocking densities > 2 LU/ha were most 
often using a similar breeding strategy. However, due to their higher demand 
for female calves for replacements, the average beef semen uptake of these 
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farms was clearly lower. Among the farms that used beef semen in order to 
produce crossbred calves, sexed beef semen was found to only play a minor 
role. On average, only 3.3% of all heifers, and 0.1% of all cows were 
inseminated using sexed beef semen in the part of the sample that used beef 
semen.  

As the change in genetic level due to sexed semen and beef semen use was 
simulated based on the results outlined by Ettema et al. (2017), the range of 
genetic returns from €0 to €21 per cow reflected their findings. On average, 
the genetic return made up for 13.10% of the sexed semen and beef semen 
induced profit gain. These results indicate the importance of incorporating 
the genetic return when assessing the profitability of sexed semen and beef 
semen use. 

Crossbreeding remained profitable for almost half of the farms within the 
sample population to some extent, even when increased dystocia risk and 
related costs were considered. However, as farms were able to reduce 
dystocia risk by using female-sexed dairy semen (especially on heifers), the 
increased dystocia risk when using beef semen on cows was partially offset. 

Despite the presented findings, sexed semen and crossbreeding played a 
minor role in North Rhine-Westphalian dairy production systems at the time 
of writing. As noted previously, sexed semen was used in only 6% of all 
Holstein heifer inseminations in Germany in 2018 (Arbeitsgemeinschaft 
Deutscher Rinderzüchter, 2018). Figures for multiparous cow inseminations 
with sexed semen and beef semen inseminations were not available. The 
method of sexed semen favorable heifers and cows for replacements and the 
remaining herd with beef semen has been proposed in a series of agricultural 
magazine articles in Germany (Elite Magazin, 2009; Thomsen, 2016). The 
discrepancy between its profitability found in research and the limited 
uptake in practice asks for further research, for instance, considering 
additional transaction costs for marketing crossbred calves or looking into 
differences between perceived risks by farmers and the risks assumed in 
studies. 
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2.4.2 Methodological approach 

Our approach extends the existing literature in multiple aspects. Firstly, we 
applied a highly detailed farm-scale model instead of a model at process 
scale in order to consider the impacts of varying stocking densities. 
Secondly, we drew on empirical distributions for the dairy farm population 
in our study region, and, thirdly, performed systematic sensitivity analysis 
as well as post-model statistical analysis. The approach could be seen as a 
more general methodology to estimate potential adaptation rates in a farm 
population for a technology for which technological parameters and related 
costs and benefits can be derived from literature, but sufficient farm 
observations on adaptation are (not yet) available.  

Using a holistic single farm optimization model for the analysis has a set of 
advantages over simulation approaches where fewer variables are 
endogenous. The FarmDyn model endogenously optimizes multiple 
decision variables simultaneously. These variables include herd entry and 
exit dates, fodder production and use of concentrates, grassland 
management, manure storage, and management, allocation of labor to cash 
crops and herd management, stable and machinery utilization, as well as 
inputs required for crop production. Instead of a simplified simulation 
approach, where levels of (certain) decision variables (e.g. feed uses, heifer 
breeding strategies, and crop allocation) are pre-determined in scenarios, we 
simulate profit-maximizing levels. The resulting profit-maximizing 
strategies for crossbreeding and sexed semen are therefore showing the full 
potential of the considered options, as they incorporate the complexity of the 
decision on the whole farm level. While previous studies reported on 
important drivers of sexed semen (and partially beef semen) adoption for 
specific farm types given fixed farm endowments (Cottle et al., 2018; Ettema 
et al., 2017; McCullock et al., 2013), our approach highlights the importance 
of studying the whole variety of farms in a population. 

However, considering more endogenous variables comes at the price of a 
more complex model, introducing more assumptions and possibly uncertain 
parameters. It also might mean reducing model detail in other aspects. For 
instance, in an effort to reduce complexity FarmDyn only models an average 
animal in each herd, instead of individual animals of a certain genetic level. 
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As previously stated, empirical distributions for parameters not present in 
the FSS were not available. For reasons of simplicity, but without loss of 
generality, uniform distributions without correlations were assumed for 
these input parameters. Recent data by KTBL (2018) report a spread of the 
avg. cow longevity between 1.7 and 6.6 lactations per cow (see Table 2.1) 
which results in an in-going sample mean of 4.15 lactations. This is higher 
than the average of 2.7 lactations stated by Römer et al. (2009), which could 
not be incorporated in the LHS approach due to missing information on the 
underlying distribution.  

Upon availability, future research should incorporate observed distributions 
for all endogenous model parameters in order better reflect the underlying 
statistical population. 

The combination of the LHS with the economic model endogenously 
removes draws from the LHS which are implausible from an economic 
viewpoint. Specifically, for 13.2% of the farms in the LHS sample the 
economic model found that herding cattle was not profitable. In these cases, 
no cow herd and related profit maximal management choices such as rates 
of sexed semen use can be observed. Not surprisingly, many of such dropped 
observations comprise farms with quite high replacement rates. The 
analyzed sample with positive profits, only, still contains the entire input 
range of the replacement rates. However, the avg. cow longevity increased 
from 4.15 to 4.46 lactations in the usable observations, matching a 
replacement rate of approx. 22%. 

Under profit maximization, the model will switch to production alternatives 
compared to the status quo even if the additional profit gain is marginal. To 
give an example, the model would choose to produce crossbred calves as 
soon as their relative profitability surpasses that of purebred ones, as long as 
other constraints (required replacement heifers, available housing places, 
etc.) are met. However, in these cases where one production option is found 
to be only slightly more profitable than another, farmers may decide to 
remain with their “traditional” production portfolio due to personal 
preference, additional hidden costs, or other unknown factors. As the 
average sexed semen and crossbreeding induced relative profit increase was 
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found to be €79.42/cow and year, the effect can be seen as substantial 
enough to be considered an advantageous production option. 

With the relatively high simulated share of crossbred animals produced 
within the farm population, feedback of the supply increase on the producer 
price of crossbred calves as discussed by De Vries et al. (2008) could be 
expected. That feedback cannot be considered in FarmDyn as a supply-side 
model characterized by exogenous input and output prices. Here, also the 
systematic sensitivity analysis (meta-model) does not help. Market models 
such as (partial) equilibrium models incorporate such market feedback by 
design but miss the detailed depiction of technical production processes 
required by the present study. 

2.5 Conclusion 

The profit-maximizing sexed semen and beef semen (for crossbreeding) 
utilization of North Rhine-Westphalian dairy farms were found to be highly 
heterogeneous. Farms with lower stocking densities were maximizing 
profits using sexed semen in order to produce excess heifers for sale, while 
farms with higher stocking densities were instead producing crossbred 
calves for sale and using sexed semen on heifers in order to produce 
replacement animals. Furthermore, sexed semen and crossbreeding usage 
was found to depend on farm characteristics such as average cow longevity, 
sexed semen-related parameters such as sexed semen conception rate and 
accuracy, as well as market factors such as the prices of replacement heifers 
and crossbred calves. Due to continuous improvements to the sex-sorting 
technology, and the economic benefits found in our analysis, sexed semen 
adoption is likely to increase further among the study population. Our results 
highlight the importance of studying a whole variety of farms in a study 
population, as driving factors for sexed semen and beef semen adoption were 
shown to differ substantially among farms. 
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Chapter 3  
‘Fruchtfolge’: A crop rotation 
decision support system for 
optimizing cropping choices with 
big data and spatially explicit 
modeling1 
Abstract 

Deciding on which crop to plant on a field and how to fertilize it has become 
increasingly complex as volatile markets, location factors as well as policy 
restrictions need to be considered simultaneously. To assist farmers in this 
process, we develop the web-based, open source decision support system 
‘Fruchtfolge’ (German for ‘crop rotation’). It provides decision makers with 
a crop and management recommendation for each field based on the solution 
of a single farm optimization model. The optimization model accounts for 
field specific location factors, labor endowments, field-to-farm distances 
and policy restrictions such as measures linked to the EU Nitrates Directives 
and the Greening of the EU Common Agricultural Policy. ‘Fruchtfolge’ is 
user-friendly by automatically including big data related to farm, location 
and management characteristics and providing instant feedback on 
alternative management choices. This way, creating a first optimal cropping 

 
1 This chapter is published in the journal Computers and Electronics in Agriculture as: 

Pahmeyer, C., Kuhn, T., Britz, W., 2021. ‘Fruchtfolge’: A crop rotation decision support system for 

optimizing cropping choices with big data and spatially explicit modeling. Computers and Electronics 

in Agriculture 181, 105948. https://doi.org/10.1016/j.compag.2020.105948 
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plan generally requires less than five minutes. We apply the decision support 
system to a German case study farm which manages fields outside and inside 
a nitrate sensitive area. In the year 2021, revised fertilization regulations 
come in force in Germany, which amongst others lowers maximal allowed 
nitrogen applications relative to crop nutrient needs in nitrate sensitive areas. 
The regulations provoke profit losses of up to 15% for the former optimal 
crop rotation. The optimal adaptation strategy proposed by ‘Fruchfolge’ 
diminishes this loss to 10%. The reduction in profit loss clearly underlines 
the benefits of our support tool to take optimal cropping decisions in a 
complex environment. Future research should identify barriers of farmers to 
apply decision support systems and upon availability, integrate more 
detailed crop and field specific sensor data. 

Keywords 

big data, Decision Support System, Nitrates Directive, Fertilization 
Ordinance, farm level simulation model  

3.1 Introduction 

Every year, farmers need to decide anew which crops to plant on each of 
their fields. Their choices need to reflect a growing number of determinants. 
On the individual field level, location factors such as soil types and crop 
rotational effects, as well as technological, structural, and economical 
factors need to be considered (Kuhlmann, 2015). At farm scale, the cropping 
plan needs to fit to the farmer's labor and machinery endowments. 
Furthermore, command-and-control measures related to agri-environmental 
legislation need to be considered. The German implementation of the EU 
Nitrates Directive as the core regulation to protect water bodies from nitrate 
emissions from agriculture provides a striking example. It prescribes 
complex field specific management standards, for instance depending on the 
chosen crop, its yields, and the nitrogen content of the soil.  

In the past, multiple attempts at assisting decision makers with the ‘cropping 
choice problem’ have been made. Methodologically, mathematical 
programming (including linear programming) has proven to be a powerful 
tool for the analysis of resource allocation choices (Hazell and Norton, 
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1986). McCarl et al. (1977) used linear programming to create an income 
maximizing cropping pattern for commercial grain farms in the Midwest. 
Their approach required farmers to fill an input form with their data, 
subsequently being evaluated by researchers. However, without research 
extension interaction, farm planning use of the model was found to be not 
generally practical. 

Subsequent approaches focused on extensions to linear programming 
models as the inclusion of risk modeling (Mußhoff and Hirschauer, 2004, 
2006a), or applications in the context of policy analysis (Galán-Martín et al., 
2015; Louhichi et al., 2010). However, all the models solely returned 
optimal crop shares at farm scale. Compared to optimizing the spatially 
explicit crop allocation, this significantly reduces data needs and model 
complexity but disregards the heterogeneity of the individual fields and their 
spatial characteristics. It eventually leads to a sub-optimal solution to the 
original planning problem and, when used as DSS, leaves the decision taker 
with the daunting task to allocate the proposed optimal shares at farm scale 
to individual fields. Only Radulescu and Radulescu (2012) describe a DSS 
based on a portfolio selection model for crop planning under risk, that 
provides the user with a crop recommendation on a per field basis. However, 
their approach requires manual input for all crop and field related data and 
does not incorporate policy restrictions and manure allocation.  

Despite these efforts, models to support cropping choices based on 
mathematical programming have rarely been adopted by farmers and farm 
advisers (Mußhoff and Hirschauer, 2016). As one of the main reasons for 
the relatively low uptake of such models, referred to as decision support 
systems (DSS) when focused on supporting farmers’ management choices, 
Mußhoff and Hirschauer (2016) identify the high data requirements of 
mathematical programming. 

In the underlying manuscript, we present the web-based DSS ‘Fruchtfolge’ 
(German for crop rotation) which supports farmers' in making optimal crop 
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and crop management choices in a complex environment 2 . Fruchtfolge 
provides its users with a crop recommendation and manure application 
strategy for each of their fields, automatically incorporating big data from 
multiple sources related to farm, location, and management characteristics. 
By combining these datasets, a highly detailed single farm model is created 
and solved in real-time in the background, without requiring extensive user 
input. The model automatically adheres to legal restrictions from the 
German Fertilization Ordinance (FO), implementing the Nitrates Directive, 
and the Greening obligations of the EU Common Agricultural Policy. 
Following best practices of ‘user-centered design’ (Parker and Sinclair, 
2001; Rose et al., 2017, 2016), the maximum required time to create an 
initial optimal cropping plan is targeted at 5 minutes, including application 
signup and data entry. 

The contribution of the paper is twofold. First, we present Fruchtfolge as an 
innovative and unique DSS targeting (German) farmers and farm advisors. 
Second, we apply it to an exemplary farm which faces tighter measures of 
the FO, mainly coming in force from 2021 onwards, in order to illustrates 
the benefits of Fruchtfolge to find optimal cropping plans in complex 
environments. 

3.2 Materials and Methods 

3.2.1 Overview of the decision support system “Fruchtfolge” 

“Fruchtfolge” is built in an effort to create a user-centered, simple to use 
DSS to provide profit maximal field specific cropping choices and 
fertilization strategies. Its development is based on best practices in 
agricultural DSS design outlined by Rose (2016), and experiences from 
established DSS such as ValorE (Acutis et al., 2014) or vite.net® (Rossi et 

 

2 The Fruchtfolge DSS is hosted at the following URL: https://fruchtfolge.agp.uni-

bonn.de/. Please see the supplementary video for a short overview of the Fruchtfolge DSS 

[English], as well as the user documentation hosted at https://fruchtfolge.agp.uni-

bonn.de/documentation/ [German] 
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al., 2014). Emphasis is put on the DSS core factors ‘performance’ and ‘ease-
of-use’. 

Figure 1 displays a systematic overview of Fruchtfolge. Three main steps 
are required in order to receive a first optimization result by the DSS. First, 
the user needs to initially sign-up on the website choosing a password, 
providing an E-Mail address as its user-id and the address of the farm 
premises. The address is required for the calculation of farm-to-field 
distances at a later stage. Like other web services, upon completion of the 
initial signup, users can later login again to the DSS using their E-Mail 
address and password and find all so far entered input and results. In a 
second step, users are asked to enter their so-called customer reference 
number (CRN, ZID number in Germany) which is available for every farm 
having applied for direct payments under the EU Common Agricultural 
Policy. Subsequently, the necessary data to optimize a cropping plan is 
downloaded automatically in the background and combined to a first version 
of the mixed integer linear programming (MILP) model without further 
action required from the user. Once this initial model is solved, the user is 
presented with the optimal cropping plan in a table and a map view with 
supporting graphs. In addition, a so-called fertilizing planning sheets as 
required by the German Fertilization Ordinance (FO) are generated. Next, 
the user can adjust input parameters such as prices, costs, yields, or crop 
share constraints and re-run the model. In the following, the technical 
procedure of the data acquisition is further explained. 
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3.2.2 Graphical User Interface and technical implementation 

The Graphical User Interface (GUI) of the Fruchtfolge DSS enables the 
communication between the user, the data base and the underlying bio-
economic model. The GUI shields off details of the technical 
implementation from the user, allowing them to successfully use the DSS 
without requiring in-depth knowledge about the underlying model (Britz, 
2014). As illustrated in the top part of Figure 1, the GUI is divided into three 
main parts: 1) The landing or login page, 2) data input pages (divided into 
sub-pages for fields, crops and constraints), and 3) the results page. 
Technically, the Fruchtfolge DSS is built as a progressive web application 
written in Node.js (server side) and JavaScript (client side). Opposed to 
traditional desktop applications which users have to download and install on 
their PC, progressive web applications are loaded on the fly and have the 
benefit of being portable across a whole range of devices (computers, tablets, 

Figure 3.1 System architecture of Fruchtfolge. Further descriptions of the 
data sources can be found in Table 3.1 
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smartphones) and operating systems without requiring substantial changes 
to their codebase.  

Users also automatically use the most up-to-date version of the DSS when 
visiting the website. A progressive web application requires constant 
internet access to deliver all of its features. According to a survey by the 
digital association Bitkom (2020), 82% of the German farmers already use 
digital technologies on their farm. Therefore, internet access and familiarity 
with digital technologies cannot be considered as a serious restriction 
regarding the use of a progressive web application. Fruchtfolge is open 
source and open access. Development of the application and its different 
sub-modules is steered from a public code versioning repository3. 

3.2.3 Farm data import and big data use 

Detailed planning data is required for the optimization of a field specific 
farm cropping plan. In order to minimize manual data input, an importing 
routine in Fruchtfolge gathers automatically default information as detailed 
as possible for each field, crop and the farm as a whole. Users are free to 
overwrite each piece of information. 

The different data sources automatically imported are displayed in Table 3.1 
and in the bottom part of Figure 3.1. The CRN (ZID) provided by the user 
to gives access to the North Rhine-Westphalian IACS (Integrated 
Administration and Control System) database to collect data on the crops 
grown in previous years on each of the farm’s fields along with their 
georeferenced locations and geometries. Jointly with the farmstead’s 
address, this allows for calculating field specific farm-to-field distances 
based on Open Street Maps routing data. In addition, the import routines 
queries soil type, quality, and humus content for each field from the BGR 
database (BGR, 2016). Data from ELWAS-WEB (MULNV, 2020) locate 
fields in so called ‘red’ areas, i.e. nitrate sensitive zones with additional 
obligations according to the FO 2020 proposal.  

 
3 The main code versioning repository, as well as technical documentations of the different 

modules used in ‘Fruchtfolge’ can be found under: https://github.com/fruchtfolge 
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For each of the crops cultivated on the farm in the past, regionally specific 
(NUTS-2 level) yields, prices, and direct costs as elements of the Standard-
Gross-Margin are gathered from the KTBL Standard-Gross-Margin 
database (KTBL, 2020) for the past 10 years, complemented by crop specific 
data on field operations from the KTBL database (KTBL, 2018). 

 

Name Description URL of the 
data 

Application 
programming 
interface 
(API) to 
Fruchtfolge 

IACS 
databas
e 

The IACS (Integrated 
Administration and 
Control System) 
database includes field 
geometries as well as 
previous crops 
cultivated on the field 
for each farm in North 
Rhine-Westphalia. 

https://www.l
wk-
verfahren.de/
DownloadPo
rtal/pages/ind
ex.action 

 

https://github.
com/fruchtfol
ge/elan-api 

 

 

KTBL 
databas
e 

The KTBL 
(Kuratorium für 
Technik und Bauwesen 
in der Landwirtschaft) 
provides open data 
access to farm planning 
data such as 
regionalized historical 
yields, prices, and 
direct costs as well as 
field working 
operations depending 
on farm-field distances, 
soil types and field 
sizes. 

https://srv.ktb
l.de/doc/dev.
en.html 

 

https://github.
com/fruchtfol
ge/KTBL-
APIs 
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BGR 
maps 

The BGR (Bundesamt 
für Geowissenschaften 
und Rohstoffe) 
provides maps 
regarding soil types, 
quality as well as 
humus contents. 

https://www.
bgr.bund.de/
EN/Themen/
Boden/boden
_node_en.ht
ml 

 

https://github.
com/fruchtfol
ge/BGR-APIs 

 

OSM OSM (Open Street 
Maps) data is used to 
compute the field to 
farm distance for each 
field, relying on OSRM 
(Open Source Routing 
Machine). 

https://github
.com/Project-
OSRM/osrm-
backend 

 

- 

ELWAS
-WEB 

Outlines of ‘red’ areas 
according to the 
specification of 
Fertilization Ordinance 
at federal state level 

https://www.
elwasweb.nr
w.de/elwas-
web/index.jsf
# 

 

- 

CropRo
ta 
model, 
BOKU 

The CropRota model 
(Schönhart et al., 2011) 
developed at the BOKU 
Vienna provides a 
value point matrix for 
different previous and 
subsequent crop 
combinations. 

https://wpr.b
oku.ac.at/wpr
_dp/DP-45-
2009.pdf 

 

- 

 
Table 3.1 Source and description of external data used in the Fruchtfolge 

DSS 

The KTBL database reports on time and machinery requirements, as well as 
variable and fixed costs depending on soil types, farm-to-field distances, 
yield levels and field sizes for individual field operations. The data is 
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available for almost 100 crops, resulting in over 6,000,000 available data 
points. The time requirements for the single field operations allow 
estimating the required work time for a cropping plan in each month. 
Furthermore, the database also provides an estimate for the monthly 
available field working days depending on the field operation and region 
which can be interactively updated on demand. If the farmer enters available 
work hours per month, these data allow introducing monthly labor use 
constraints in the model. Basic parameters relating to cropping choice such 
as minimum rotational break years, previous crop effects (crop rotation 
matrix), and minimum soil requirements are taken from the CropRota model 
(Schönhart et al., 2011).  

Nutrient contents, loss factors for the manure(s) and manure output per pig 
housing place are chosen according to the FO (BMEL, 2017). Along with 
the number of animal places provided by the user, this allows calculating the 
quantity of manure (liquid and solid) at farm level. The model depicts 
different nitrogen fertilizing levels and related yields for each crop based on 
N-response curves from Heyn & Olfs (2018). This is especially relevant 
under the FO 2020 where farmers have to reduce nitrogen fertilizer below 
the crop needs as in ‘red’ areas. Fruchtfolge either considers the restrictions 
of the FO 2017 or the FO 2020, depending on the farmer’s choice. Primarily, 
both FO restrict the amount of manure and mineral fertilizer applied, as well 
as the legal time window of the application. As the regulations are part of 
the case study analysis, they are described in section 3.3.1. 

The combination of the different data sources allows calculating gross 
margins and monthly labor requirements for each individual field and crop. 
For each field, the calculation reflects farm-to-field distance and size along 
with yield differences based on its soil quality and previous crop effects. The 
values are further differentiated for the following management options: 
varying levels of liquid and solid manure, cultivation of a catch crop 
(Boolean), manure application in autumn (Boolean), and different levels of 
nitrogen fertilizer reduction. Manure spreading options range from 0 m³ ha-

1 to 60 m³ ha-1 in 5 m³ steps reflecting typical manure barrel sizes.  

Data on agronomic as well as on legislative constraints complements the 
information on farming operations and location characteristics. The field and 
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crop specific minimum rotational breaks are complemented by maximum 
crop shares at farm level to avoid an overspecialization on the most 
profitable crops in the current year - the only one subject to optimization. To 
give an example, a minimum rotation break of two years for a crop on a field 
results in a maximum share of 33% (1 (𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛	𝑏𝑟𝑒𝑎𝑘 + 1)	⁄ ) of the crop 
on the farms total cultivation area. Furthermore, the rules from the Greening 
obligation of the Common Agricultural Policy regarding minimum crop 
diversity and ecological focus area are considered in the DSS. 

3.2.4 Decision problem and optimization 

The calculations detailed above populate a matrix of all possible 
management options for each crop and field. All calculations are performed 
automatically in the background when new data are entered. An example of 
such a matrix is shown in Table 3.2. Each column of the matrix represents 
the (theoretically) possible cultivation options for one crop and field 
combination, characterized by the amount of manure to be spread, whether 
manure is applied in autumn, and whether a catch crop is cultivated before 
the main crop. If the FO 2020 proposal is active, an additional column 
indicates whether nitrogen fertilization should be reduced (and if yes, to 
which extent) for all fields that lie within a ‘red’ area as designated by the 
FO 2020. 

This matrix depicts the decision space of the farmer. Without the support of 
the DSS, the decision maker would need to pick exactly one of these many 
options for each field, considering agronomic, economic, market, and legal 
constraints, partly at field, partly at farm level. Using a mathematical 
programming model, Fruchtfolge finds the optimal solution from the matrix 
which simultaneously considers all of these constraints. Based on its 
solution, Fruchtfolge proposes to the user (1) which crop to plant and (2) 
how much manure and mineral fertilizer to apply on each field. 
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Field Crop Manure 
[m3/ha] 

Autumn 
fertilization 

Catch crop 

Field 1 Winter wheat 0 no no 

Field 1 Winter wheat 5 no no 

Field 1 Winter wheat 5 yes no 

…     

Field 20 Silage maize 60 yes yes 

 
Table 3.2 Example of a cropping matrix showing all possible cropping 

options for each field, crop, and manure combination. 

As an example, a farm endowed with 20 fields and considering 5 different 
crops results in matrix with 5,200 columns, given 13 fixed manure spreading 
amounts, and the options of using or not manure application in autumn and 
a catch crop: 20 ∙ 5 ∙ 13 ∙ 2 ∙ 2 = 5.200. If these 20 fields were located in a 
‘red’ area, the matrix would even comprise 26,000 columns considering five 
possible N-reduction levels for each former option. Each column could 
either be chosen or not (Boolean), as we do not consider mixing crops or 
options on a field. This results in 2!,#$$ or even 2#%,$$$ potential farm plans. 

To address this complex decision problem for the user, a mixed integer linear 
programming model (MILP) is created and solved on the server side of the 
application. This offers a controlled technical environment with access to 
higher computing power, ensures that time for model generation and solve 
are independent from the user’s hardware, and avoids installing the software 
for model generation and solution on the farmer’s computer. As a first step, 
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the matrix containing individual gross margins for each field, crop, manure 
amount, catch crop, and autumn fertilization option is created. Besides the 
gross margin, each column comprises entries which relate to farm-wide 
constraints: monthly labor needs, ecological focus area factors, as well as 
fertilizer demand. The resulting matrix enters a model which maximizes the 
farm’s gross margin as the sum of the individual gross margins by field, 
crop, manure, catch crop, and autumn fertilization option multiplied with the 
(binary) decision variable indicating whether this option is active on the field 
or not. The model is written in the GAMS programming language (GAMS 
Development Corporation, 2019), and solved using the CPLEX MILP solver 
(IBM ILOG CPLEX, 2009). The source code of the model can be found in 
the supplementary material file4.  

For simplicity but without loss of generality, we summarized the manure 
amount, autumn fertilization, and catch crop options under the label k.  

Following the notation used by Hazell and Norton (1986), the model can be 
written as follows: 

max
&!,#,$

𝑡𝑐𝑚 = 	===𝑐𝑚',(,) ∙ ℎ𝑎) ∙ 𝑣',(,)

*

)+,

-

(+,

.

'+,

 

subject to 

===𝑎/,',(,) ∙ ℎ𝑎) ∙ 𝑣',(,) ≤ 𝑏/ , ∀	𝑟 = 1,2, … , 𝑅
*

)+,

-

(+,

.

'+,

 

where 

tcm Total expected contribution margin of the farm 

𝑐𝑚',(,) Expected contribution margin per ha for crop j combined with 
management option k on field l 

ℎ𝑎) Size of field l in ha 
 

4  The source code of the model is available in the following versioning repository: 

https://github.com/fruchtfolge/model. The model version used in the manuscript can be 

found under the following DOI reference: 10.5281/zenodo.3626740. 
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𝑣',(,) Binary variable stating if crop j combined with management 
option k is present on field l 

𝑎/,',(,) Coefficient of crop j combined with management option k on 
field l relating to resource or legal constraint r 

𝑏/ Level of resource or legal constraint r 

3.2.5 Output 

Solving the model generally requires only a couple of seconds. Once the 
model is solved on the server, results are retrieved, processed and presented 
to the farmer in a sub page of the web application. An exemplary results 
page is displayed in Figure 3.2. The results page offers (1) a table showing 
the crop recommendation for each field, (2) a box indicating compliance 
with the greening legislation, (3) a pie chart with crop shares at farm level 
and information on the deviation from the optimal program when farmers 
adjust the cropping choice and management option (section 3.2.6), (4) two 
line charts, one displaying for the current year the monthly required work 
load and manure storage levels and a second one depicting profits over the 
last ten years under current year’s plan at observed historic yields and prices, 
and finally (5) a map showing the spatial allocation of the different crops 
and the manure allocation. Furthermore, Fruchtfolge provides farmers with 
a field specific nitrogen and phosphate fertilizing planning sheet as required 
by the FO. 
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The results page offers (1) a table showing the crop recommendation for each field, (2) a pie chart 

with crop shares at farm level, (3) a box indicating deviations against constraints and the influence of 

the violation on the farm profit, as well as compliance with the greening legislation when farmers 

adjust the recommended cropping choice and management, (4) line charts displaying the monthly 

required work load, monthly manure storage levels, as well as profits at observed historic yields and 

prices for the last ten years, and finally (5) a map showing the spatial allocation of the different crops 

and the manure allocation.  

Figure 3.2 Exemplary results page of the Fruchtfolge DSS 
(translated). 
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3.2.6 Data adjustment and individualization 

Following the optimization, users are given two options of adjusting the 
optimization results. First, they may change the crop, manure application, 
catch crop, autumn fertilization, or N-reduction levels post simulation in the 
results page. When the user selects e.g. a different crop for a field, the results 
page is updated immediately, and a new info box is displayed. The info box 
will show the difference between the former optimized total contribution 
margin and the one reflecting the user’s change. Note that an increase against 
the optimized total contribution margin is only possible if some constraint is 
violated. In that case, warnings show these violations, for instance exceeding 
maximal cropping shares or non-compliance with a measure from the FO. 
Hence, users can quickly perform ‘what-if’ scenarios and compare them 
with the optimization results. Providing the possibility of an ad-hoc 
sensitivity analysis aims to increase credibility in the DSS, and to reduce the 
black-box character of the underlying linear programming approach. 

As a second adjustment option, users may alter the input data for the model. 
Opposed to the post simulation changes described before, changes to the 
input data are reflected in subsequent optimization runs. As previously 
stated, all the automatically acquired data can be changed. To give an 
example, users may add or remove fields, alter their geometries, change 
previous crops or mineralized nitrogen (Nmin) contents. Regarding the crops, 
expected prices, yields, costs, maximum crop shares, labor requirements and 
previous crop effects can be adapted to the user’s needs. In addition, 
fertilizing planning data such as target nitrogen amounts, manure nutrient 
contents, maximum manure application rates, and mineral fertilizer 
equivalents of manure can be changed. 

3.3 Case study 

In order to test the DSS and to illustrate its capabilities of finding the optimal 
crop and management choices in a complex environment, a hypothetical 
case study farm is generated. It is assumed to be located in the Borken region 
within the federal state of North Rhine-Westphalia, known for intensive 
livestock (mainly pig fattening) production (LWK NRW, 2014). The case 
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study farm is assessed under varying policies, the FO 2017 as well as the FO 
2020. The FO consists of numerous, partly interlinked measures which 
restrict the fertilizer management of farmers. The FO 2020 adds to the 
former version mainly additional restrictions in ‘red’ areas in which nitrate 
concentration targets are exceeded (see following section 3.3.1).  

For the case study, three scenarios are modeled (see Table 3.3). The 
reference scenario (FULL-OPT-17) optimizes a cropping plan and 
fertilizing strategy under the FO 2017. It serves as a benchmark to calculate 
changes provoked by the FO 2020 as reflected in two additional scenarios. 
The first of these introduces the stricter obligations of the FO 2020 and 
evaluates their effect under the field specific cropping choice of the 
reference scenario. It is called FERT-OPT-20 as it only optimally adjusts the 
fertilization strategy to comply with new FO legislation but not the cropping 
plan. In the third scenario (FULL-OPT-20), Fruchtfolge finds the optimal 
cropping plan adaptation strategy under the proposed FO 2020 which 
minimizes compliance costs considering both changes in cropping choices 
and manure applications. All three scenarios use the same prices, yields as 
well as previous crops on each of the fields. Manure quantities not applied 
on the farm have to be exported and the related costs are added to the 
objective. Manure export costs of 12 € per m3 are assumed (T. Kuhn et al., 
2019b). The scenarios under FO 2020 are further differentiated by 
considering different shares of fields being situated in a red area. 
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Scenario Description Fertilization 
Ordinance  

Farmland 
in ‘red’ 
area 

FULL-OPT-17 Full optimization 2017 0% 

FERT-OPT-20 

Crop to field allocation 
fixed to reference 
scenario 
Fertilization strategy 
optimally adjusted to 
new Fertilization 
Ordinance 

2020  
0%, 50%, 
100% 

FULL-OPT-20 
Full optimization 2020 

0%, 50%, 
100% 

 
Table 3.3 Schematic overview of the scenario setup for the case study. 

 

3.3.1 German Fertilization Ordinance 2017 and 2020 

The FO implements the Nitrates Directive in Germany and was revised in 
2017 after water quality benchmarks have been missed. The EU commission 
however sees the measures of the FO 2017 as insufficient to reach the 
environmental goals related to nitrate in ground and surface waters (Agra-
Europe, 2019). Therefore, the FO has been anew revised in 2020 comprising 
distinct stricter measures (see Table 3.4). 
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 Fertilization 
Ordinance 2017 

Fertilization Ordinance 2020 

 General 
changes 

General 
changes 

Additional 
restrictions in 
‘red’ areas 

Nutrient balance Obligatory soil 
surface balance, 
surplus restricted 

Nutrient balance 
abolished 

- 

Manure application Limited to 170 
kg N (nitrogen) 
ha-1 a-1 

 Restriction 
applies at field 
instead of farm 
level 

Fertilizing activities Obligatory and 
predefined 
fertilizing 
planning based 
on N and P2O5 
(phosphate) 
plant needs 

Only 10% of the 
autumn 
fertilization 
needs to be 
accounted for in 
the fertilizing 
planning 
calculation of the 
following year 

Obligatory 
fertilizing 
planning and 
recording of 
every fertilizer 
application. 

Autumn 
fertilization has 
to be fully 
accounted for in 
the fertilizing 
planning 
calculation of the 
following year 

Minimum 
fertilizer 
efficiency 
coefficients for 
manure 
increased 

- 
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Fertilizing restriction Calculated plant 
need must not be 
exceeded 

Minimum 
fertilizer 
efficiency 
coefficients for 
manure 
increased 

Calculated plant 
need has to be 
undercut by 20% 

Banning periods Winter rape, 
winter barley, 
and catch crops 
can be fertilized 
in autumn with 
up to 60 kg N ha-
1 a-1 

- Winter rape, 
winter barley, 
and catch crops 
forbidden to 
fertilize in 
autumn 

Catch crops - - Obligatory catch 
crop cultivation 
for allowance of 
fertilizer 
application to 
following 
summer crops 

 
Table 3.4 Overview on core changes from Fertilization Ordinance 2017 

(BMEL, 2017) to 2020 (BMEL, 2020). 

The FO consists of numerous, partly interlinked measures. Most changes 
from the FO 2017 to the FO 2020 are linked to so-called ‘red’ areas, which 
describe areas above groundwater bodies exceeding the target nitrate 
concentration or showing increasing trends. Already under the Fertilization 
Ordinance 2017, farmers had to fulfil additional measures in ‘red’ areas 
which were however little restrictive and not relevant for the assessed 
decision problem (see Kuhn (2017) for detailed description of Fertilization 
Ordinance 2017). 

In the FO 2020, a prescribed and detailed fertilizing planning approach plays 
a major role and replaces former restrictions on nutrient surpluses. The 
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fertilizer application, covered by manure or mineral fertilizer, is constrained 
based on each crop’s need after subtracting different nutrient sources such 
as spring mineralization. The plant need is lowered by 20% for fields in ‘red’ 
areas, resulting in reduced fertilizer application. This reduction however 
applies in average on the affected fields, only, allowing for complex shifting 
between crops. Furthermore, the application of manure is restricted to 170 
kg N (ha-1 a-1, a threshold calculated at farm average under the FO 2017 and 
2020. In ‘red’ areas, however, the threshold has to be met at field level. In 
addition, the mineral fertilizer equivalents of manure are increased in the 
fertilizing planning in the FO 2020. Finally, nitrate leaching in autumn 
should be reduced by the banning of fertilizer application to rape seed, 
winter barley and catch crops in spring as well as the obligatory catch crop 
cultivation before summer crops in the ‘red’ areas. 

The measures of the FO 2020 render decisions on cropping choices and 
fertilizing more complicated. The described thresholds are added to the 
optimization process described in section 3.2.3. Also, the temporal 
limitations of fertilizer application are introduced as additional restrictions, 
returning the farm’s optimal gross margin when meeting the requirements 
of the FO. The DSS thereby addresses the decision farmers have to take in 
the light of the stricter regulations of the FO 2020 such as (1) the adaption 
of cropping choice and fertilizer allocation inside and outside read areas, 
taking into account that N yield responses differ between crops, (2) the 
change of manure allocation on farm and manure export due to stricter 
application thresholds and banning of application in autumn, and (3) the 
economic assessment of summer crops due to costly obligatory catch crop 
cultivation. 

3.3.2 Case study farm characteristics 

To assess impacts of this spatially differentiated fertilizing restriction, the 
case study farm is given arbitrary 10 fields inside and 10 fields outside of a 
nitrate sensitive ‘red’ area in our medium scenarios. While the 20 fields are 
chosen arbitrarily for this case study, their shapes, previous crops, soil type, 
and quality correspond to actual fields. In total, the farm cultivates approx. 
100 ha with an average field size of 5.6 ha outside and of 4.2 ha inside of the 
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‘red’ areas boundaries. Due to the shape of the ‘red’ area, the average field-
to-farm distance is only 2 km for the fields inside and 6 km outside of it. Soil 
qualities and types are rather homogenous among the fields, with an average 
soil quality rating (Mueller et al. (2014)) of 64 inside and 57 outside of the 
‘red’ areas boundaries. As discussed in section 3.2.3, regional crop yields, 
prices and direct costs were obtained from the KTBL-SGM database 
(KTBL, 2020). In the underlying assessment, the 10-year average of these 
values is considered as expected values for the planning period. Nmin values 
for the fields are obtained from the North Rhine-Westphalian chamber of 
agriculture (LWK NRW, 2020a). To prohibit the generation of cropping 
plans that exceed the available labor endowment, peak labor constraints 
based on the previous year’s cropping plans are introduced. 

As previously stated, the case study farm is located in the livestock intensive 
region of Borken, Germany. The case study farm is given 2,000 pig fattening 
places which reflects the average in the region (Kreis Borken, 2020). It is 
assumed that the pigs are fattened using feed with reduced nitrogen and 
phosphate content (LWK NRW, 2018). Furthermore, a higher mineral 
fertilizer equivalent of 72% of the pig manure (compared to 60% stated in 
the FO) is assumed for the fertilizing planning, as suggested by planning 
data from the North Rhine-Westphalian chamber of agriculture (LWK 
NRW, 2020b). Due to the longstanding manure use in the area, N-target 
values are adapted accordingly (agrarheute, 2015). 

The scenarios presented in Table 3.3 present different assumption on where 
fields are located: First, it is assumed that none of the fields are within a ‘red’ 
area. Second, half of the fields are in- and outside of the ‘red’ areas 
boundaries (reflecting the currently proposed boundaries). Third, all of the 
case study farms fields are simulated to be in a ‘red’ area. While the concept 
of ‘red’ areas has already existed in the FO 2017, the additional measures 
only included slightly stricter measures (BMEL, 2017). The varying size of 
the red area is therefore not included for the scenario FULL-OPT-17.  
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3.3.3 Case study results 

For the given case study, we find profit losses induced by the stricter 
measures of the FO 2020 to vary largely depending on how many fields are 
situated in the ‘red area’. The losses range between 1,500 € and 13,650 € for 
the given case study farm. By following Fruchtfolge’s recommended 
cropping choices and fertilization strategies, the losses can be reduced by up 
to 4,700 € (see Figure 3.3).  

Under the FULL-OPT-17 scenario, the farm has a simulated profit of 90,506 
€ and faces manure export costs of 3,635 €. The farm grows maize on 44%, 
winter wheat on 18%, sugar beets on 20%, and potatoes on 17% of its land 
(Table 3.5). The farm cultivates about 26 ha of catch crops before seeding 
maize which allows to spread almost all available manure in autumn to avoid 
costly manure exports in this period. 

In the FERT-OPT-20 scenarios, cropping choices are fixed to the results of 
FULL-OPT-17 scenario. This isolates the effects of the revised FO on the 
profit maximal fertilizing strategy and excludes the optimization of the 
cropping choices as a core feature of Fruchtfolge. The identical cropping 
plans of the FERT-OPT-20 and FULL-OPT-17 scenarios are displayed in 
the upper part of Figure 3.4. Under the FO 2020, instead of 10%, now 100% 

Figure 3.3 Total farm profits of the different scenarios depending on the 
share of fields in a ‘red’ area. 
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of the nitrogen applied in autumn must be accounted for in the next year (see 
Table 3.4). Using catch crops to enable autumn fertilization of maize is no 
longer economically attractive. If no fields are located in a ‘red’ area, 
growing of catch crops is reduced to the point where it just fulfils the 5% 
minimum ecological focus area obligation under the Common Agricultural 
Policy. While this saves costs for catch crop cultivation, the manure not 
spread in autumn must be exported instead, leading to a net loss in profit of 
1,591 € (-1.76% compared to the reference). 

In the case of 50% of the case study farms fields being in a ‘red’ area, net 
profit loss increases to 8,850 € (-9.78% compared to the reference), driven 
mainly by two of the FO 2020 measures in ‘red’ areas. First catch crop 
cultivation is now mandatory before growing a summer crop such as maize 
and sugar beet. As maize and sugar beets may not be fertilized with manure 
in autumn under the FO 2020 obligations, manure exports in autumn 
increase. Second, the requirement to reduce the calculated plant need for 
nitrogen by an average of 20% reduces both crop yields and the total amount 
of manure which can be spread. While the yield loss leads to diminishing 
revenues, the reduced amount of manure that can be spread is additionally 
driving up manure export costs. These effects are amplified in the scenario 
where 100% of the case study farms fields are in a ‘red’ area: the net loss in 
profit is further increased to 13,658 € (-15.09% compared to the reference). 

In the FULL-OPT-20 scenarios, cropping choices as well as manure 
allocation are optimized, illustrating the full potential of Fruchtfolge. In the 
simulation run where no fields are situated in a ‘red’ area, the farm can 
increase its profits by 188 € compared to the FERT-OPT-20 with no fields 
in the ‘red’ area. The profit increase is realized by an increase in the maize 
share at the expense of the wheat share (Table 3.5). As in the FERT-OPT-
20 scenario with no fields in a ‘red’ area, autumn fertilization and related 
catch crop cultivation are completely abandoned. Giving up catch crop 
cultivation to a large degree and shifting manure application partly to spring 
frees labor in a peak period in autumn and allows for slightly increasing the 
maize share. While the expected gross margin for potatoes is higher than the 
one for maize, the freed labor allows for a higher return when the maize 
share is increased. This can be explained by the relatively high labor 
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requirement of the potatoes, which (on average) require about 36 h/ha in 
autumn compared to 7.3 h/ha in maize. 

In the FULL-OPT-20 simulation run where 50% of the fields are situated in 
a ‘red’ area, Fruchtfolge is able to increases the farms profits by 3,204 € 
compared to the respective simulation run in the FERT-OPT-20 scenario. 
The profit gain is realized by decreasing the maize share and expanding 
wheat and potato cultivation (see middle panel of Figure 3.4). These profit 
maximal adjustments reflect several interactions between crops due to labor 
constraints as well as subtle impacts of changes in the FO. This favors an 
expansion of wheat in ‘red’ areas as the farmer can apply more manure 
without exceeding application limits and avoid costly manure exports. 
Furthermore, in opposite to maize and potatoes as summer crops, wheat does 
not face costs of mandatory catch crop cultivation in a 'red' area of around 
105 €/ha. Additionally, expanding the wheat share frees labor which can be 
used to increase potato cultivation. 

In the FULL-OPT-20 simulation run where 100% of the fields are situated 
in a ‘red’ area, a profit increase of 4,710 € is realized by Fruchtfolge when 
compared to the same simulation run in the FERT-OPT-20 scenario. Similar 
to the simulation run with 50% of the fields in a ‘red’ area, the farm further 
decreases its maize share, and increases wheat and potato shares to their 
maximal shares at farm level (see bottom panel of Figure 3.4). 
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Scenario
s 

Fertilisatio
n 
Ordinance 

Fields in 'red' 
area [%] 

Maiz
e 

Whea
t 

Sugarbee
t 

Potatoes 

Referenc
e / 
FERT-
OPT 

2017 / 
2020 

0%, 50%, 
100% 

44% 18% 20% 18% 

FULL-
OPT 

2020 0% 45% 17% 20% 18% 

FULL-
OPT 

2020 50% 30% 28% 20% 22% 

FULL-
OPT 

2020 100% 24% 32% 20% 24% 

 

Table 3.5 Optimal crop shares resulting from the optimization for the 
Reference and OPT scenario given different shares of fields in a ‘red’ area. 
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The top of the image is showing the optimal cropping plan under the FO 2017 (reference and FERT-
OPT scenarios), the middle panel the optimal cropping plan under the FO 2020 with 50% of the fields 
in a ‘red’ area (FULL-OPT), and the bottom panel the optimized cropping plan with 100% of the 
fields in a red area (FULL-OPT).  

Figure 3.4 Optimized cropping plans as resulting from the 
Fruchtfolge DSS for the case study farm. 
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3.4 Discussion 

3.4.1 Scope and technical implementation of Fruchtfolge 

The Fruchtfolge DSS supports farmers both with proposals for optimal 
cropping choices as well as fertilization strategies in accordance with the 
revised German FO. This renders Fruchtfolge not only useful for arable 
farmers, but also for livestock farmers optimizing their manure allocation 
while ensuring that certain shares of arable land are used for fodder 
production. 

While the automatic farm data import was solely available for the state of 
North Rhine-Westphalia in Germany at the time of writing, future versions 
of the Fruchtfolge DSS will include automatic data import for all federal 
states of Germany, and possibly other countries as well. This feature is made 
publicly available by the harmonie5 software package, which harmonizes 
farm subsidy application files across (federal) boundaries. 

To the best of our knowledge, Fruchtfolge is the first cropping choice DSS 
to follow principles of user centered design outlined by Rose (2017, 2016), 
considering features of established DSS such as the sustainable vineyard 
management DSS vite.net® (Rossi et al., 2014).  

This relates to fully automated data collection which only requires users to 
provide their CRN to access EU direct payment applications of their farm 
for an initial optimization. A user-friendly and visually attractive interface 
eases the communication between the DSS and the user, shielding it from 
details of the underlying economic programming model. Similar to 
vite.net®, Fruchtfolge aims at assisting the decision-maker by making 
recommendations which can be quickly explored with regard to alternatives 
and their consequences. Finally, as highlighted by vite.net®, providing the 
DSS as a web application enables continuous updates by the provider, and 
flexible access for decision makers. All these elements aim at overcoming 
the often-observed underuse of DSS at farm-scale. 

 
5 Hosted at https://github.com/fruchtfolge/harmonie 
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Fruchfolge captures a wide range of factors driving crop allocations to 
individual fields such as differences in gross margins, previous crop effects, 
minimal waiting times and restrictions related from command-and-control 
measures.  

However, we deliberately do not expand Fruchfolge to cover diet 
optimization of animal herds and its interaction with optimal cropping 
choices. Far less automated data import is possible regarding the details of 
herd and, for instance, grass land management. Dynamics in livestock 
production and the inclusion of necessary intra-annual management options 
introduce numerous new aspects in the decision problem and require much 
more reflection on farm specifics. 

Interactions with farmers and advisors revealed that constraints on minimal 
feed crop shares captured in Fruchtfolge are deemed as transparent and 
sufficient for a DSS with a focus on crop allocation and manure 
management. 

Providing tools which help to understand why a certain solution of a larger 
programming model is economically optimal remains a challenge. 

Fruchtfolge offers different views on the results (Figure 3.2) which also 
highlight interactions between cropping choices. It allows “challenging” the 
optimal solution and exploring consequences of alternative ones. Infeasible 
solutions, e.g. when choosing a crop and a field that would surpass a labor 
constraint for a certain month, are avoided by the introduction of slack 
variables with high penalties. Still, the optimal solution to the mixed integer 
problem underlying the Fruchtfolge DSS might remain a black box to some 
degree, which can undermine the trust of users in the DSS (Jakku et al., 
2019). Further interviews with users can research this point and identify 
additional options for result analysis or automated support. 

3.4.2 Case study results 

The case study farm can increase its profits by 180 € up to 4,710 € by using 
the Fruchtfolge DSS when compared to an unchanged crop allocation 
reflecting the restrictions from the previous FO 2017. Increases in real 
world-cases are most likely considerably higher as users will also improve 
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their crop and manure allocation at the benchmark (Mußhoff and Hirschauer, 
2006b). The profit increases certainly outweigh the costs for the approx. 5 
minutes of time required for a first optimal solution already tuned to farm 
specifics. 

The announcements of the stricter measures outlined in the FO 2020 lead to 
nationwide protests from farmers in Germany, as reported in the media 
(Daily Mail, 2019). Due to Fruchtfolge’s ability to outline a cost minimal 
compliance strategy for the FO 2020, the DSS may help to increase the 
acceptance of the stricter measures. 

The case study highlights key drivers of farm-level impacts of the FO 2020. 
Compliance costs can be considerable and strongly depend on the share of 
farmland in ‘red’ areas. Therefore, our tool is shown to be of particular 
interest for farmers and farm advisers managing fields in such a ‘red’ area.  

For the analysis, it was assumed that labor use should not exceed the labor 
use of the previous year’s cropping plans. We found that the marginal 
profitability of an additional hour of labor in September could reach up to 
around 90 €. Case study results are hence rather sensitive to the available 
labor endowment in autumn. In interactive use, a farmer would probably 
allow for higher labor input in this period. This underlines the usefulness of 
interactive data updates and also points at new possibilities to exploit the 
dual solution as well to develop recommendations in future releases. 

As previously stated, the assumed reduced N-requirements of the crops 
reflect long-standing manure fertilization present in the case study. This 
assumption dampens yield reductions and profit impacts of the required 20% 
reduction of nitrogen fertilizer application in a ‘red’ area. Given less 
efficient fertilizer management, optimization gains realized by Fruchtfolge 
will be higher. Note that all fertilizing parameters can be interactively 
adjusted in Fruchtfolge (section 3.2.6) in order to precisely reflect farm 
characteristics and famer’s preferences.  

Similar to the findings of Kuhn et al. (2019b), our results including 
compliance cost are quite sensitive to parameters related to fertilizer use. In 
this regard, literature finds strong efficiency differences in farm samples 
(LWK NRW, 2018; Osterburg and Techen, 2012) which can only partly be 
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related to farm type and locational factors such as soil and climate. 
Compliance costs with the FO 2020 will therefore differ across farms as well 
as potential benefits from using Fruchtfolge. Both also depend on the 
assumed manure export costs as to some degree manure export is a central 
compliance strategy to the FO 2020. The costs chosen in the case study 
reflect current conditions for manure exports such as average transport 
distances. However, some cost increases are likely under the FO 2020 as 
many German livestock farms will need to expand exports, driving up 
transport distances and thus costs. Both the assumed high fertilizing 
efficiency in the case study and using current manure export cost render the 
reported compliance costs rather lower limits for actual ones in our case 
study farm. Again, the possibility to interactively change these assumptions 
in the DSS renders Fruchtfolge useful for evaluating possible impacts of 
higher manure exports costs on a particular farm.  

3.4.3 Implementation in practical use 

Musshoff and Hirschauer (2016) state that despite ongoing research efforts, 
mathematical programming methods have barely been adopted by farmers 
and farm advisers in Germany. As one of the main reasons, they argue that 
high data requirements impede the adoption of DSS using mathematical 
programming. Incorporating automation in data collection, following best 
practices of user centered design and lessons learned from established DSS, 
Fruchtfolge aims to overcome this implementation gap.  

Our case study underlines the usefulness of applying a constrained 
optimization framework to determine which crop to grow on which field and 
how to fertilize it, especially in the light of a complex regulatory 
environment. Farmers may use “Fruchtfolge” to identify optimized 
production alternatives to their current production program which comply 
with the updated legislation and reflect manifold farm and field specific 
characteristic and restrictions. “Fruchtfolge” thus helps farmers to minimize 
compliance cost for the newest revision of the FO 2020. Also, Fruchtfolge 
helps farmers to avoid penalties due to accidental violations against legal 
frameworks, as the optimized cropping plan will automatically adhere to 
them and will warn farmers about violations. 
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Ongoing tests of the DSS with farmers are promising. Especially younger 
farmers (digital natives) show a high acceptance. Future research should 
evaluate the usefulness, design, and eventually the adoption of the 
Fruchtfolge DSS with farmers and lead the further development of the 
application. Multiple extensions to the current functionality are possible: 
future versions of the DSS could for example help farmers evaluate the 
profitability of agri-environmental measures on their farm, and thus improve 
the environmental footprint of the farm while increasing income. At present, 
the German agricultural administration digitizes reporting obligations and 
services for farmers. This process offers the chance to link DSS like 
Fruchtfolge to existing and widely-used digital platforms, and thereby 
promote the use of DSS in farming. 

3.5 Conclusion 

The Fruchtfolge DSS provides farmers with an economically optimal 
cropping and fertilizing plan without the need of time-consuming data input. 
In our case study, profit gains ranging from 180 € up to 4,710 € can be 
realized by using the DSS. Fruchtfolge reflects various legal constraints and 
thus helps farms to comply with the new FO in a cost minimal way. Due to 
its flexibility and design, farmers can easily carry out what-if scenarios and 
challenge the results of the underlying mathematical optimization model. 
This allows for “informed decisions” about alternative cropping and 
fertilizer management choices based on the economic, agronomic, and legal 
consequences compared to the optimized plan proposed by the DSS. 
Incorporating experiences from the literature about best practices in the 
design and implementation of a DSS, Fruchtfolge offers an attractive user 
interface and fast response times to overcome the “implementation gap” 
often prevalent with other DSS. With the increasing availability of site-
specific sensor data, Fruchtfolge can be enhanced to incorporate even higher 
detailed farm specific data without requiring additional user interaction. 
Fruchtfolge is free and open source, and welcomes contributions to its 
codebase and documentation. 
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Chapter 4  
Data on a synthetic farm 
population of the German federal 
state of North Rhine-Westphalia1 
Abstract 

Farm-scale and agent-based models draw typically on detailed and 
preferably spatially explicit single farm data. Data protection standards 
however restrict or exclude their access, as for example in Germany. We 
provide data on a synthetic farm population of the German federal state of 
North Rhine-Westphalia, mainly based on the German Farm Structure 
Survey 2016 and plot specific crop data from 2019/2020. The population is 
derived from farm typology at administrative unit level to which the 
observed plots are allocated afterwards. The data contains 25,858 farms and 
covers 1.3 million ha of agricultural land, provided at plot scale in a 
geospatial vector and at farm scale in tabular format. For each plot, the 
managing farm (including the estimated farm’s location), the number of 
livestock, the cultivated crop, as well as the corresponding administration 
units are indicated. Furthermore, spatial data such as yield information, soil 
characteristics, as well as monitoring data on environmental status are 
attached. The provided data allows for diverse analysis on the farm 
population in the federal state of North Rhine Westphalia with farm, agent-

 
1 This chapter is published in the journal Data in Brief as: 

Pahmeyer, C., Schäfer, D., Kuhn, T., Britz, W., 2021. Data on a synthetic farm population of the 

German federal state of North Rhine-Westphalia. Data in Brief 36, 107007. 

https://doi.org/10.1016/j.dib.2021.107007 
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based or different bio-physical models. Furthermore, it can serve as a test 
data set for models which require detailed and spatially explicit farm data. 

Keywords 

Synthetic farm population, farm typology, Germany, North Rhine-
Westphalia, farm modelling, agent-based modelling 

4.1 Data description 

The data set provides a synthetic farm population with single farm data of 
the German federal state of North Rhine-Westphalia, derived by combining 
different secondary data sources. This is particularly useful for single farm 
and agent-based (ABM) models that often require spatially explicit and 
highly detailed single farm data. The resulting population covers 25,858 
single farms and 1.3 million ha of agricultural land in the state. This 
corresponds to approximately 77% of all farms and 89% of all agricultural 
land. The state covers a diverse farm population, comprising approximately 
8,600 specialized arable farms, 4,800 specialized pig farms, 9,500 
specialized cattle farms, and 3,100 mixed farms, of varying sizes. They are 
distributed over different landscapes, such as fertile plains dominated by 
specialized arable farms, sandy plains with are large share of intensive 
animal production, and low-mountain ranges characterized by permanent 
grassland and cattle production. For every farm, estimations of its location, 
of its managed plots with observed crops and of its livestock numbers are 
provided. Single farm data at this level of detail is required for spatial 
explicit or population-wide analysis. However, it is usually not available in 
Germany due to data protection guidelines. If access is granted, publication 
of results is restricted, and the handling of the data is governed by complex 
rules. The synthetic population presented here provides an alternative which 
reflects key characteristics of the actual farm population without drawing on 
detailed single farm, data protected information. The provided farms, 
including their location, do not correspond to observed real-world farms. 
Instead, they reflect the distribution of key characteristics in the true 
population and correspond, in their entity, to observed statistical 
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measurements. All underlying data sources are published and publicly 
available. 

Different data sources are combined to derive the presented population 
(Table 4.3). The core sources are a farm typology from Kuhn and Schäfer 
(2018) and frequency tables of farms at commune level (LAU - Local 
Administrative Units), both based on the German Farm Structure Survey 
2016. It is complemented by spatial explicit land use for the crop year 
2019/2020, taken from the Integrated Administration and Control System 
(IACS) for the direct payments of the EU Common Agricultural policy. This 
land use data is linked to further spatial data such as yield information, soil 
characteristics, or monitoring data on environmental status. 

The derived farm population is supplied at two scales and data formats at a 
Mendeley repository (DOI 10.17632/75wngh8x4j.1). First, single farm data 
for the population is provided in CSV format, with one row per farm. The 
variables, reported in the columns (Table 4.1), cover a unique farm ID, 
administrative units, longitude and latitude of the hypothetical farm location, 
livestock numbers, land use, information on plot size and plot-farmstead-
distance, and a list of the managed plots. Second, data for each plot is 
provided in Shapefile format, reporting its exact spatial location as a 
polygon. The related attribute table contains additional information per plot 
(Table 4.2), covering among others plot and farm ID, plot size, cultivated 
crop, administrative units, soil parameters, environmental parameters, and 
regional crop yields. Linkage of the data set can draw on the unique farm ID 
provided for every plot in the shapefile, or the list of plot IDs reported for 
each farm in the CSV file. 
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Variable Type Description 
farmId Nominal Unique ID for each farm 
farmTypeCategory Nominal Groups farms according to their 

main farming activities which 
are defined based on the relative 
contribution of farming 
activities to the standard output 
following the EU typology 
(European Commission, 2008) 

scr Nominal Soil-climate-region of the 
location of the farmstead 

NAME Nominal LAU name of the location of the 
farmstead 

LAU Nominal LAU code of the location of the 
farmstead 

nuts3 Nominal NUTS 3 code of the location of 
the farmstead 

lng Continuous Longitude of the location of the 
farmstead 

lat Continuous Latitude of the location of the 
farmstead 

cows Continuous Number of cows [heads] 
bulls Continuous Number of bulls2 [heads] 
pigs Continuous Number of pigs [heads] 
sows Continuous Number of sows [heads] 
farmSize Continuous Total farmland endowment [ha] 
arableLand Continuous Arable land endowment [ha] 
grassLand Continuous Permanent Grassland 

endowment [ha] 
Wheats Continuous Cereal cultivation area [ha] 

 
2 Number of bulls calculated based on livestock units provided by Kuhn and Schäfer (2018). 

Abbreviations: LAU - Local Administrative Units, NUTS - Nomenclature of Territorial 

Units for Statistics 
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RootCrops Continuous Root crops cultivation area [ha] 
ArableFodder Continuous Arable fodder cultivation area 

[ha] 
Oilseeds Continuous Oilseeds cultivation area [ha] 
ProteinCrops Continuous Protein crops cultivation area 

[ha] 
OrnamentalPlants Continuous Ornamental plants cultivation 

area [ha] 
EnergyCrops Continuous Energy crops cultivation [ha] 
avgPlotSize Continuous Average plot size of farm [ha] 
medianPlotSize Continuous Median plot size of farm [ha] 
deviationPlotSize Continuous Standard deviation of plot sizes 

of farm [ha] 
avgPlotDistance Continuous Average plot-farmstead distance 

of farm [km] 
medianPlotDistance Continuous Median plot-farmstead distance 

of farm [km] 
deviationPlotDistance Continuous Deviation from average plot-

farmstead distance of farm [km] 
plots Nominal List of unique plot IDs assigned 

to the farm, separated by semi-
colons 

 
Table 4.1 Variables of data at farm-level (file 

Farm_Population_NRW_farm_data) 

 
Variable Type Description 
id Nominal Unique plot ID 
farmId Nominal Unique farm ID of the farm 

managing the plot 
plotSize Continuous Size [ha] 
Distance Continuous Plot-farmstead distance [km] 
FLIK Nominal Unique field block ID 
cultivation Nominal Crop cultivated 

NUTS1 Nominal Federal state 

NUTS2 Nominal Administrative district 
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NUTS3 Nominal County 
LAU Nominal LAU code 

NAME Nominal LAU name 

N-content soil Continuous Total N in soil [g kg-1] 

P-content soil Continuous Total P in soil [g kg-1] 

K-content soil Continuous Extractable K in soil [g kg-1] 

LC0_Desc Nominal Description of the most 
proximate location where N-/P-
/K data was obtained from 

Bodenzahl Continuous Soil value (German: 
Bodenwertzahl) 

SQR Continuous Müncheberg soil quality rating 

soilType Nominal Soil type 

soilCode Nominal Soil type code 

humus Ordinal Humus content [%] 

redArea Nominal Plot in red zone (nitrate 
pollution hotspot according to 
DVO 2020) 

eutrophicArea Nominal Plot in eutrophic area 
(phosphate pollution hotspot 
according to DVO 2020) 

water_erosion_code Discrete Water erosion risk classes (0 = 
no risk, 1 = medium risk, 2 = 
high risk) 

water_erosion_lvl Ordinal Water erosion risk classes in 
textual form (German) 

wind_erosion Nominal High risk of wind erosion 

slopeGradient Ordinal Slope gradient class [%] 

WHG Nominal Affected according to §38a 
WHG (with distance 
indication)1 

DVO Nominal Affected according to 
fertilization regulation §5 (with 
distance indication)1 
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slopeBufferMarginArea Continuous Area of the plot that is affected 
by either WHG and / or DVO 
[ha]3 

slopeBufferMarginPoly - A GeoJSON polygon outlining 
the part of the plot affected by 
the slope gradient scenery 1 

sugarbeets_yield Continuous Average sugar beet yield at 
NUTS 3 level [dt ha-1] 

oats_yield Continuous Average oat yield at NUTS 3 
level [dt ha-1] 

summer_barley_yield Continuous Average summer barley yield 
at NUTS 3 level [dt ha-1] 

triticale_yield Continuous Average triticale yield at 
NUTS 3 level [dt ha-1] 

winter_wheat_yield Continuous Average winter wheat yield at 
NUTS 3 level [dt ha-1] 

potatoes_yield Continuous Average potato yield at NUTS 
3 level [dt ha-1] 

corn_silage_yield Continuous Average corn silage yield at 
NUTS 3 level [dt ha-1] 

winter_rye_yield Continuous Average winter rye yield at 
NUTS 3 level [dt ha-1] 

rapeseed_yield Continuous Average rapeseed yield at 
NUTS 3 level [dt ha-1] 

winter_barley_yield Continuous Average winter barley yield at 
NUTS 3 level [dt ha-1] 

 
Table 4.2 Variables of data at plot-level (file 

Farm_Population_NRW_plot_data) 

 
3 Variable not presented if not applicable for the plot. Abbreviations: DVO – German 
Fertilization Ordinance, K - potassium, LAU - Local Administrative Units, N - nitrogen,  
NUTS - Nomenclature of Territorial Units for Statistics, P - phophorus, WHG - German 
Federal Water Act. 
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4.2 Materials and Methods 

In the following, we document the methodology for creating the synthetic 
farm population for the German federal state of North-Rhine Westphalia. 
The population generation can be understood as descriptive research as we 
aim at characterizing and depicting the farm population in North Rhine-
Westphalia without testing any hypothesis or drawing conclusions. It 
consists of three major steps as outlined in Figure 4.1. First, we generate 
farm frequency tables at LAU level. Second, we process the contingency 
tables sourced from the farm typology by Kuhn and Schäfer (2018), match 
it to a fitting farm from the previously generated frequency tables at LAU 
level, and create a spatially implicit farm population. Third, the farms are 
assigned random locations within the boundaries of their LAU. Finally, the 
observed plots, sourced from the publicly available IACS dataset, are 
assigned to the individual farms, based on their aspired farm size, crop 
cultivation specialization, and grassland endowment. The latter steps then 
turn the spatially implicit into a spatially explicit farm population. The 
created synthetic farm population is linked to further spatial data on yields, 
soil characteristics, and monitoring data on environmental status. 

The data sources used in our methodology are outlined in Table 4.3. The 
creation of the synthetic population draws on two sources, the German Farm 
Structure Survey and the IACS data on land use. The Farm Structure Survey, 
carried out every three to four years, provides single farm data for all farms 
above a certain size threshold. It is the basis for the typology by Kuhn and 
Schäfer (2018) as well as the official farm statistics which are used to create 
the frequency tables. The typology contains only the most important farm 
types and, therefore, the estimated population does cover neither all farms 
nor all agricultural land in North Rhine-Westphalia (see Kuhn and Schäfer 
(2018) for details). IACS data on land use for each plot are reported annually 
by the farmers to determine direct payments from the EU Common 
Agricultural Policy. The agency collecting the data offers public access to 
them, however without information on the farmer managing the plot, and 
aggregating single crop information mostly to group of crops. As the data 
are spatially explicit, further spatial data relevant for agricultural land use 
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can be attached as reported in Table 4.3. Note that except for the farm 
typology created by Kuhn and Schäfer (2018), most dataset are readily 
available in other German federal states as well. 
 

Name Description Source of data 

Sources for population creation 

Farm typology by Kuhn 
& Schäfer [1] 

A farm typology for the 
German federal state of 
North Rhine-Westphalia 
based on the Farm Structure 
Survey 2016 

http://www.ilr.uni-
bonn.de/agpo/ 
publ/dispap/download/disp
ap18_01.pdf 

Integrated 
Administration and 
Control System 
(IACS/INVEKOS) data 
2019/2020 

Declared and verified 
eligible parcels for the EU 
funding, open data from the 
Chamber of Agriculture 
North Rhine-Westphalia 

https://www.opengeodata.
nrw.de/ 
produkte/umwelt_klima 
/bodennutzung/landwirtsch
aft/ 

Official farm statistics 
from IT NRW 2018 

Official farm statistics on 
LAU and NUTS 3 levels 
based on the Farm Structure 
Survey 2016 

https://www.it.nrw/statistik
/wirtschaft-und-
umwelt/land-und-
forstwirtschaft/struktur-
der-landwirtschaftlichen-
betriebe 

Spatial data linked to plots 

Administrative location 
units (variables NUTS 1, 
NUTS 2, NUTS 3, LAU) 

Spatial data on 
administrative location units 
at NUTS 1, NUTS 2, NUTS 
3 and LAU level 

https://github.com/eurostat
/Nuts2json 
https://www.opengeodata.
nrw.de/produkte/geobasis/
vkg/dvg/dvg1/ 

Nutrient content soil 
(variables N-content soil, 
P-content soil, K-content 
soil) 

Total N (defined using ISO 
11261:1995 method), total P 
(defined using ISO 
11263:1194 method), 
extractable K (defined using 
USDA−NRCS, 2004 

https://esdac.jrc.ec.europa.
eu/content/lucas2015-
topsoil-data#tabs-0-
description=1 
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method) based on LUCAS 
2015 TOPSOIL data 

Soil value  
(variable Bodenzahl) 

German soil quality ranking 
between 0 and 100  

https://www.geoportal.nrw
/suche?lang=de&searchTer
m=3E7CC528-6560-
4BBE-AAB0-
7DE2417EF993 

Soil quality rating  
(variable SQR) 

Müncheberg soil quality 
rating, indicator-based 
assessment of soil quality 
and crop yields potential 
described by Mueller et al. 
(2014) 

https://www.bgr.bund.de/
DE/Themen/Boden/Ressou
rcenbewertung/Ertragspote
ntial/Ertragspotential_node
.html 

Soil type  
(variables soilType, 
soilCode) 

Soil type and corresponding 
code based on the 
classification of the LUFA 
NRW 

https://www.geoportal.nrw
/suche?lang=de&searchTer
m=3E7CC528-6560-
4BBE-AAB0-
7DE2417EF993 

Humus content of soil 
(variable humus) 

Median content of organic 
matter in the topsoil, given 
in percent classes (e.g. ‘1-
<2%’) 

https://www.bgr.bund.de/
DE/Themen/Boden/Inform
ationsgrundlagen/Bodenku
ndliche_Karten_Datenban
ken/Themenkarten/HUMU
S1000OB/humus1000ob_i
nhalt.html 

Nitrate and phosphate 
pollution hot spots 
(variables redArea, 
eutrophicArea) 

Area defined as nitrate and 
phosphate pollution hot 
spots in accordance with $13 
DVO 

https://www.opengeodata.
nrw.de/produkte/umwelt_k
lima/wasser/duev/ 

Erosion risk 
(variables 
water_erosion_code, 
water_erosion_lvl, 
wind_erosion) 

Risk classes for water 
erosion and areas at risk for 
wind erosion linked agri-
environmental measures 

https://www.opengeodata.
nrw.de/produkte/umwelt_k
lima/bodennutzung/landwi
rtschaft/ 

Slope and distance to 
surface waters 
(variables slope gradient, 
WHG, DVO, 

Sloped areas neighboring 
surface waters with 
management restrictions 
according to WHG §38a and 
DVO §5  

https://www.opengeodata.
nrw.de/produkte/umwelt_k
lima/bodennutzung/landwi
rtschaft/ 
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slopeBufferMarginArea, 
slopeBufferMarginPoly) 

Regional yields Regional yield level for 
main arable crops based on 
data from 2014-2017 

https://flf.julius-
kuehn.de/webdienste/webd
ienste-des-
flf/ernteertraege.html 

 
Table 4.3 Data sources 

Abbreviations: DVO – German Fertilization Ordinance, K - potassium, LAU - Local 

Administrative Units, N – nitrogen, NUTS - Nomenclature of Territorial Units for Statistics, 

P – phosphorus, WHG – German Federal Water Act. 
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Figure 4.1 Overview on the synthetic farm population generation for the 
German federal state of North-Rhine Westphalia. 
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4.2.1 Generation of frequency tables at municipality level 

This section presents the development of frequency tables which contain the 
frequencies of different farm types and size classes at the LAU level. The 
underlying code in the programming language GAMS is provided in a 
software versioning system4. Official statistics provide frequency tables for 
farm type and size classes, total utilized agricultural land, and agricultural 
land differentiated by land use at NUTS 3 and higher level, only. At LAU 
level, only vectors on the frequency of different farm types and size classes 
are reported. Our approach estimates probable frequency tables at LAU 
level, drawing on the frequency tables at NUTS 3 level and the vectors at 
LAU level. We use solely data from IT NRW 2018 for the estimation (Table 
4.3). 

The constraints of the estimation framework relate to adding up conditions 
at LAU level. Let xs,c,t denote the unknown number of farms of a certain size 
class s and type of specialization t in each of the 396 LAU. c, ds,c and dt,c 
are the given data on the number of farms of a certain size class, respectively, 
type, and dc on the total number of farms. The following adding up 
conditions (eq. 4.1-4.3) should hold for any estimated frequency table of the 
farming population at LAU level xs,c,t: 

=𝑥0,1,2 = 𝑑2,1
0

 (4.1) 

=𝑥0,1,2 = 𝑑0,1
2

 (4.2) 

=𝑥0,1,2 = 𝑑1
0,2

 (4.3) 

After defining the adding up conditions on LAU level, we apply the same 
approach on NUTS 3 and 2 level as sometimes cells in frequency tables are 
left blank due to data protection rules. Let k denote county (NUTS 3, Kreis, 
29 units) and r district (NUTS 2, Regierungsbezirk, 5 units) which are the 

 
4  The code is hosted at the following Github repository: https://github.com/MS-

Dave/farms_nrw  
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two administrative units above LAU level where frequency tables on the 
number of farms by size class and type are available. Taking this additional 
information into account, we can add the following adding up conditions 
(eq. 4-5) from LAU to NUTS 3 and from NUTS 3 to NUTS 2 to the 
estimation framework. 

= 𝑥0,2,1
1	∈	(

=	𝑑0,2,( = 𝑥0,2,( (4.4) 

=𝑥(,2,1
1	∈	/

=	𝑑0,2,/ = 𝑥0,2,/ (4.5) 

The estimation problem is defined as a highest posterior density problem 
(HPD) 5 . We assume a-priori the relative, but unknown shares of the 
distribution by size class and type at LAU level are equal to the observed 
one at NUTS 3 level. Thus, s in the objective function (eq. 6) denotes the 
shares describing the empirical distribution observed at NUTS 3 level:  

min=
𝑥0,2,1
𝑑1

− 𝑠0,2,1
0,2,1

 (4.6) 

The resulting estimates for x are real numbers and not counts, as required for 
the frequency tables. In order to convert them into a distribution of integers, 
we introduce bounds around each estimated xs,t,c representing its floor and 
ceiling values. We next construct a new estimator where equation 6 is 
replaced by an objective function which shifts the value towards an integer. 
To do that the estimator minimizes the squared difference between the 
estimates of xs,t,c and a number which is smaller than its lower bound if it is 
closer to the lower bound or higher than its upper bound otherwise. Any xs,t,c 

which is already an integer is automatically fixed as its floor and ceiling are 
identical. The additional estimation is repeated several times until all 
estimates x take on integer values 

 
5 For further discussion on HPD estimators please refer to Heckelei et al. (2008). 
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4.2.2 Generation of the farm population 

Given the number of farms at LAU level in each category, we start to 
generate the spatially explicit farm population. The corresponding code, as 
well as the linkage of spatial data to the farm population is written in the 
programming language Node.js, and provided in a software versioning 
repository6.  

As stated previously, the analysis builds on the North-Rhine Westphalian 
farm typology published by Kuhn & Schäfer [1]. It differentiates farm types 
according to (1) type of farming, (2) size class in ha und (3) livestock density 
in livestock units (LU) per ha in different classes, and reports their numbers 
at the level of so-called soil-climate-regions (SCRs, generally consists of 
multiple NUTS 3 regions), which reflect zones of similar farming 
conditions. 

The typology reports for each farm type the number of farms as well as 
statistics (mean, median, standard deviation) on core farm characteristics, 
including among others farm size in ha, arable and grassland endowment, 
and livestock density in LU, in total and for the animal categories pigs, sows, 
dairy cows, and other cattle. Based on the frequency tables, a sampling 
approach generates a matching farm population, and attaches characteristics 
according to the information found in the farm typology to each farm. The 
information on size and livestock density in the farm typology refers to 
certain classes (e.g. 0-50 ha, or 0-1 LU), accordingly, a truncated normal 
distribution is assumed when drawing these characteristics for a hypothetical 
farm in a cell of the typology. 

In order to determine the nonparametric skew ( 𝑆 ) of each farm 
characteristics, we calculate the skew using 

𝑆 = 	
𝜇 − 𝜈
𝜎  

where 𝜇  is the populations mean, 𝜈  the populations median, and 𝜎 is the 
populations standard deviation for the given variable. 

 
6 The code is hosted at the following Github repository: https://github.com/chrispahm/farm-

population-nrw 
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Due to data protection, statistics on farm characteristic for some farm types 
has been blackened in the farm typology. In these cases, average values 
given the farms size cluster are assumed for the variables with missing 
distribution data. For instance, farms in a size cluster between 0 ha and 50 
ha would be assigned to 25 ha. Detailed comments in the relevant code 
sections report further assumptions made in the sampling approach. 
Following this sampling approach, a spatially implicit farm population 
containing a list of farms with specific values for each farm characteristic is 
generated (Figure 4.1). 

So far, the location of a farm can only be assigned at SRC level. To advance 
here, the farm frequency tables at LAU level described in the section 4.2.1 
are used. For each farm in the farm population, a farm at LAU level is 
matched , considering a) its farm type, b) its size class (e.g. 10-30 ha) and c) 
that the LAU falls in the SCR of the farm. Once a matching farm from the 
frequency tables is found, the LAU property from the match is added to the 
respective farm of the farm population. Thereby, the number of farms in the 
frequency table of this LAU that are not yet distributed is decreased. The 
LAU frequency tables and the farm typology are not completely 
harmonized, even if they stem originally from the same raw data source. 
Therefore, few farms cannot be matched, as each farm in the frequency table 
is at SCR level only used once in the matching procedure. In these cases, a 
farm is chosen for which solely the SCR and size cluster matches.  

4.2.3 Linking spatial data to the farm population 

Once each farm is assigned to a LAU, specific farm locations are designated 
to the farms of the generated farm population. Farm locations are assumed 
to be a random vertex from an arbitrarily chosen field (polygon) within the 
boundaries of the LAU the farm belongs to. If more than 50% of the farm’s 
land endowment is arable land, only arable plots are considered for the farm 
location. Respectively, if more than 50% of the farms land endowment is 
grassland, only grassland plots are considered. If a vertex has already been 
defined as a farm location, the algorithm is recursively called until a new, 
unused farm location is found. 
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In a final stage of the generation of the spatially explicit farm population, 
individual plots are assigned to the farms. The plots in the federal state are 
shuffled to guarantee a random order, and afterwards evaluated for their 
suitability for a given farm. The assignment procedure generally 
differentiates between grassland and arable plots. 

For grassland plots, farms that are within a 30 km driving radius around the 
plot are filtered and sorted by distance in ascending order. To maximize the 
efficiency of the algorithm, filtering of the farms is done using a spatial index 
based on a flat k-d tree as proposed by Bentley (1975). Subsequent to the 
farm filtering, the closest farm is searched for where the sum of the current 
plot and the current grassland endowment of the farm does not exceed the 
aspired grassland endowment of the farm (including a buffer of 5%). Also, 
a check is incorporated prohibiting a farm to exceed its farm size cluster. If 
a matching farm is found, the current plot is added to the farm, otherwise the 
plot is added to a list of unused plots. 

For arable plots, farms within close proximity (5 km) are filtered and sorted 
based on their suitability for the given crop cultivated on the current plot. 
This is done to increase the probability of e.g. a specialized cereal producing 
farm to obtain plots cultivated with cereals. Again, a farm is searched for 
where the sum of the current plot and the current arable land endowment of 
the farm does not exceed the aspired arable land endowment of the farm 
(including a buffer of 5%). In addition to the check prohibiting the farm to 
exceed its farm size cluster, another check is incorporated prohibiting farms 
above 10 ha (the threshold where the EU Greening obligation becomes 
binding) to exceed certain crop shares. In case no suitable farm is found 
within 5 km for the given plot, the radius is increased to 30 km. Also, the 
sorting is solely based on the farm to field distance. If a matching farm is 
found, the current plot is added to the farm, otherwise the plot is added to 
the list of unused plots. 

Farms that are within 95% of their aspired farm size are labelled as finished 
and removed from the list of farms considered in the evaluation of the 
following plots. After the first round of the assignment procedure, the list of 
unused plots is iterated over again. 
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In this second round, the plots are assigned to the most proximate farm as 
long as adding the plot to the farm does not exceed the farms overall aspired 
farm size. Here, the aspired arable and grassland properties are ignored, 
allowing for a deviation of these values in case no sufficient arable or 
grassland is available in the region of the farm. 

Using the approach outlined in this section, matching the approx. 700.000 
plots and 25.500 farms in the federal state of North Rhine-Westphalia takes 
less than 10 minutes. 
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Chapter 5  
Single plots or shares of land - 
How modeling of crop choices in 
bio-economic farm models 
influences simulation results1 
Abstract 

In bio-economic farm models, crop choices are generally depicted as shares 
of land types which are aggregates of plots with similar characteristics. The 
ongoing process of digitalization allows access to highly detailed, spatially 
explicit farm data and facilitates to represent single plots instead. In our 
paper, we examine how different approaches to model crop choices 
influence the results of an arable farm in a bio-economic model. Three 
possible approaches are considered: ‘single plots’ with one crop per season, 
crop shares of land differentiated by soil type, called ‘categorized’, and crop 
shares on all arable land, termed ‘aggregate’. The analysis is conducted 
using a highly detailed, spatially explicit dataset of 8,509 arable farms 
located in the German federal state of North Rhine-Westphalia. Our analysis 
indicates that the ‘aggregate’ and ‘categorized’ land endowment approaches 
produce similar simulation results, which however diverge from the ‘single 
plot’ approach. We find that on average, crop choices per farm differ by 11% 
between the spatially explicit ‘single plot’ and the ‘aggregate’ land 

 
1 This chapter is published in the “Food and Resource Economics, Discussion Paper” series as: 

Pahmeyer, C., Kuhn, T., Britz, W. (2021): Single plots or shares of land - How modeling of crop 

choices in bio-economic farm models influences simulation results. Discussion Paper 2021:1. 



104  5.1 Introduction
 

 

endowment approach in our case study region. Total work requirements are 
found to be on average 10% higher in the ‘aggregate’ approach compared to 
the ‘single plot’ approach, while energy requirements are relatively similar 
(average difference of 2.2%). Among other factors, we find the difference to 
be highly correlated with the number of plots a farm is endowed with. For 
instance, the average difference in crop choices increases from the sample 
average of 11% to 20.8% for those farms that are endowed with less than 10 
plots (~ 50% of the case study population). Differences in simulated farm 
profits when comparing the ‘aggregate’ land endowment approach to the 
‘single plot’ approach are found to range between -306 €/ha to 434 €/ha 
(mean: 4.57 €/ha, median: - 9.93 €/ha, S.D.: 71.47 €/ha). Our results suggest 
that for bio-economic farm analyses focusing on aggregate results over a 
larger sample of farms, both the ‘aggregate’ and ‘categorized’ land 
endowment approaches are sufficiently accurate in case of similar average 
numbers of plots per farm as in our study. If single farm results or variability 
in the population are targeted, we propose to incorporate the ‘single plot’ 
approach in bio-economic farm analyses. The same holds for decision 
support systems focusing on individual farm responses to policy changes or 
technology adoption. 

Keywords 

Land aggregation, Land fragmentation, spatial resolution, farm model, 
BEFM 

5.1 Introduction 

A farm’s land endowment is generally composed of multiple individual plots 
(Di Falco et al., 2010), defined as the smallest homogeneously managed 
areas of land in the sense that on each plot one single crop is cultivated 
(Nesme et al., 2010). Depending on their spatial dispersion, plots may differ 
in size, soil type and quality, as well as farm-to-field distance. The dispersion 
of plots over a given area is commonly referred to as land fragmentation 
(King and Burton, 1982). Higher degrees of land fragmentation are frequent 
among farming systems around the world, exhibiting both negative and 
positive consequences in different dimensions (Di Falco et al., 2010; 



5.1 Introduction  105
 

  

Geppert et al., 2020; Latruffe and Piet, 2014). While higher land 
fragmentation fosters biodiversity through crop diversification and 
increased amount of field margins and hedges (Di Falco et al., 2010; Geppert 
et al., 2020; Latruffe and Piet, 2014), farm profitability is reduced, as labor 
requirements and variable costs of cultivation are generally found to be 
increasing (Di Falco et al., 2010; Janus and Markuszewska, 2017; Latruffe 
and Piet, 2014; Lu et al., 2018). 

Despite these implications, bio-economic farm models (BEFM) rarely 
consider single plots and resulting indivisibilities in crop choices. Instead, 
they typically simulate shares of each crop or crop rotation on land 
endowments, depicted by (in)equality constraints. This neglects possible 
effects of land fragmentation and does not represent the decision problem 
faced by farmers, as illustrated by the following example. Suppose a farm is 
endowed with 15 ha of land divided into three plots of 7.5, 5 and 2.5 ha, on 
which three possible crops can be cultivated (wheat, rapeseed, and barley). 
A BEFM depicting the farm’s land endowment by a single constraint, and 
considering additionally maximal crop shares or labor use, may yield 
optimal crop acreages such as 3.75 ha of rapeseed (25%), 5.625 ha of wheat 
(37.5%), and 5.625 ha of barley (37.5%). These crop shares cannot be 
realized without dividing the given plots into smaller units, which may not 
be feasible or sensible due to technical or management constraints. 

Until recently, data on single plots, such as size, soil quality and crop choice, 
were rarely available as public datasets. BEFMs were therefore forced to 
model crop choices by shares on aggregate land constraints. However, 
detailed and spatial explicit plot data become increasingly available for 
research, for instance based on the digital applications for direct payments 
under the Common Agricultural Policy which became mandatory in 2016 
(European Commission, 2014). To receive financial support, farmers 
annually report their planned crop choices for each plot based on geo-
referenced land registers (cadasters). Such geo-referenced data at plot level 
can be linked to high resolution maps, for instance on soil type, soil quality 
or climate (Martini, 2018; Martini et al., 2014). Such increasingly available 
data allow depicting single plots and related decision taking in BEFMs. The 
availability of detailed data also increases the potential to use BEFMs in the 



106  5.1 Introduction
 

 

context of decision support systems (DSS) which aim at supporting farm 
management decisions. Using a farm’s single plots instead of its total land 
endowment represents more accurately the actual decision problems farmers 
face (Pahmeyer et al., 2021a) and, thus, potentially increase the acceptance 
of DSS. 

Depicting crop choices on the single-plot level in a BEFM also allows for a 
better representation of plot related policy measures. Command-and-control 
instruments as part of agri-environmental policies increasingly prescribe 
management restrictions depending on a plot’s location and further 
characteristics. For instance, the German implementation of the EU Nitrates 
Directive comprises restrictions in nitrate sensitive areas at single-plot level. 
Equally, farmers might specifically enrol plots with lower productivity in 
agri-environmental opt-in measures. Productivity differences across plots 
and their consequences for crop choices are also discussed in the literature 
relating to BEFMs (linear programs). For instance, in his seminal on Positive 
Mathematical Programming Approach (PMP), Howitt (1995) mentions land 
heterogeneity as a key reason why linear models with an aggregate land 
constraint cannot be properly calibrated to observed crop allocation choices. 

The simplified modeling of the crop choice problem based on shares of land 
(type) constraints likely introduces an aggregation bias. The bias is related 
to plot heterogeneity, i.e. the difference between mean values of plot 
characteristics as depicted by an aggregate constraint and the values of the 
individual plots represented by the aggregate. Furthermore, modeling of 
crop shares on aggregates of land neglects the indivisibility of plots. The 
magnitude and implications of these two effects have not been studied yet, 
as it requires a model depicting individual plots and a matching dataset as a 
benchmark. This paper aims to fill this gap. First, we present and discuss the 
current state-of-the-art approaches to model crop choices in BEFMs as used 
for policy and technology evaluation studies and in decision support systems 
(DSS). Second, we demonstrate how these different approaches affect 
BEFM model results in a case study consisting of arable farms in the German 
federal state of North Rhine-Westphalia. 
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5.2 Material and Methods 

5.2.1 Depicting competition for land in BEFMs 

Our analysis focuses on so-called ‘mechanistic’ BEFMs which, according to 
Janssen and van Ittersum (2007), build on existing theory and knowledge, as 
opposed to ‘empirical’ BEFMs whose functions are estimated from observed data 
(Austin et al., 1998). Mechanistic BEFMs are mostly optimization models, 
frequently based on mathematical programming, either (mixed integer) linear 
programming (MILP, LP) or quadratic (mixed integer) programming (QMIP, QP) 
(Janssen and van Ittersum, 2007). Three options to depict the crop choice 
problem are found in BEFMs as presented in Figure 5.1 

The first approach depicts the crop choice problem based on a resource 
constraint relating to a single aggregate land endowment and is therefore 
referred to as the ‘aggregate’ (land endowment) approach (Figure 5.1, right 
panel). Accordingly, the sum of the cultivation areas 𝑋' (in ha) of crops 𝑗 is 
required to be less than the total land endowment 𝑏. Given gross margins of 
each crop 𝑐' (in €/ha), a simple, total gross margin (𝑍) maximizing farm LP 
may be written as follows (following the notation from Hazel and Norton 
(1986)): 

 
max𝑍 ==𝑐' ⋅ 𝑋'

5

'

 (5.1) 

Figure 5.1 Three approaches to depict the land endowment in a BEFM 
based on mathematical programming. 
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such that 

 
=𝑋' ≤ 𝑏
5

'

 (5.2) 

and  

 𝑋' ≥ 0,	for all 𝑗 = 1	to	𝑛 (5.3) 

In this approach the cultivation area designated to a certain crop (𝑋') is given 
as a share of the aggregate land endowment 𝑏. 

The second approach, referred to as the ‘categorized’ (land endowment) 
approach, extends the first by disaggregating the total land endowment into 
sub-categories. The land endowment can for instance be differentiated by 
type of land (arable, grassland), soil type, soil-climate-zone or a combination 
of these. For each subcategory of land 𝑠, different sets of allowed crops 𝑗0 
may be defined and gross margins for each crop might differ across land 
sub-categories, i.e. 𝑐',0. Incorporating these changes, the LP depicted by Eq. 
5.1 – Eq. 5.3 may be extended as follows: 

 
max𝑍 ===𝑐',0 ⋅ 𝑋',0

6

0

5

'

 (5.4) 

such that 

 =𝑋',0 ≤ 𝑏0

5

'

,	for all 𝑠 = 1	to	𝑜 (5.5) 

and  

 𝑋',0 ≥ 0,	for all 𝑗 = 1	to	𝑛 (5.6) 

Both approaches apply the same modeling principle of designating a fraction 
of (a subcategorized) land endowment to a certain crop, rendering 𝑋',0 or 𝑋' 
positive, continuous variables.  

The third approach considers single plots by using binary variables instead. 
Gross margins for each crop 𝑗 can now be differentiated for each plot 𝑘 
(figure 𝑐',( , in €/ha). A binary variable 𝑉',(  indicates whether crop 𝑗  is 
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selected (=1) or not (=0) for plot 𝑘. The gross margin realized on a plot is 
the plot specific gross margin 𝑐',( per ha of the selected crop times the plot 
size 𝑥(  in ha. The introduction of the binary variables 𝑉',(  leads to a so-
called ‘binary integer programming’ or ‘mixed-integer programming’, the 
latter if the BEFM also contains continuous variables. 

The resulting (mixed) integer program, referred to as the ‘single plot’ (land 
endowment) approach, may be written as follows:  

 max𝑍 ===𝑐',( ⋅ 𝑥( ⋅ 𝑉',(

7

(

5

'

 (5.7) 

such that 

 =𝑉',(

5

'

= 1,	for all	𝑘 = 1	to	𝑚 (5.8) 

and  

 𝑉',( ∈ {0,1},	for all 𝑗, 𝑘 = 1	to	𝑛,𝑚 (5.9) 

The ‘categorized’ approach could allow for plot specific analyses if each 
plot received its own land sub-category 𝑠. However, as this approach uses 
continuous variables, it returns optimal shares of crops on each plot (𝑋',0) 
and implies that plots may be split arbitrarily. We do not consider this further 
as splitting plots breaks their definition as the smallest homogeneously 
managed units of land. 

The differences in the simulation results using the ‘aggregate’ or 
‘categorized’ approach compared to the ‘single plot’ approach relate to two 
main effects. First, the aggregation bias resulting from the aggregation over 
plot characteristics as a measure of land fragmentation (plot size, soil 
quality, farm-to-field distance). In the case of the ‘categorized’ approach, 
the aggregation bias will largely be driven by the number of categories, and 
whether the model results are sensitive to the choice of categorization (e.g. 
categorization by soil type, soil quality, single plots). Second, the effect of 
considering indivisibility in the ‘single plot’ approach compared to the 
fractions allowed in the ‘aggregate’ and ‘categorized’ approach. Here, the 
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assumption that plots refer to the smallest homogenously managed units of 
land plays a central role, as this implies that the plots cannot be divided into 
smaller sub-units in our analysis. 

Table 5.1 gives examples of BEFMs identified from the literature for each 
of the three approaches. As noted by Janssen and van Ittersum (2007), many 
BEFMs are developed for specific case studies and are rarely reused. For the 
sake of simplicity and relevancy, the overview presented in Table 5.1 is 
limited to some frequently used BEFMs in Europe, mainly drawing on the 
review article of Britz et al. (2021).  

 

Approach Used by (selection of BEFMs) Primary use cases 

‘Aggregate’ CAPRI-FT (Gocht et al., 2017, 
2013; Gocht and Britz, 2011; 
Schroeder et al., 2015) 

IFM-CAP (Louhichi et al., 2018, 
2015; M’barek et al., 2017) 

Regional/Sectoral 
policy analysis 

‘Categorized’ FSSIM (Kanellopoulos et al., 
2014; Louhichi et al., 2010; van 
Ittersum et al., 2008) 

ORFEE (Mosnier et al., 2017) 

FARMDYN (Kuhn et al., 2019, 
2020; Lengers, 2012; Lengers et 
al., 2014, 2013; Pahmeyer and 
Britz, 2020; Seidel and Britz, 2019) 

Ex-ante on-farm 
analysis of policy 
and technology 
adoption 

‘Single plot’ MINRISK (Radulescu and 
Radulescu, 2012) 

FRUCHTFOLGE (Pahmeyer et al., 
2021a) 

Decision support 

 
Table 5.1 Use of the different land endowment approaches in the literature, 

mainly based on Britz et al. (2021). 
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5.2.2 Design of experiments 

For the underlying analysis, the BEFM FRUCHTFOLGE (Pahmeyer et al., 
2021a) is used to examine how the different land endowment approaches 
affect the simulation results. FRUCHTFOLGE is chosen as it incorporates the 
technically demanding ‘single plot’ approach as its default. As the 
‘categorized’ and ‘aggregate’ approaches are simplifications of the ‘single 
plot’ approach, these can be modeled in the FRUCHTFOLGE BEFM without 
requiring changes to the codebase of the model. Technically, we redefine the 
𝑉',(  as fractional variables and define one or multiple categorized larger 
plots, which depict the average characteristics of the single plots and their 
summed-up size. FRUCHTFOLGE is an open-source software, and available in 
a public code versioning repository2. 

The ‘categorized’ land endowment approach allows for varying level of 
detail. Considering the BEFMs outlined in Table 1, all models distinguish 
between arable and permanent grassland, and some additionally between 
soil types (ORFEE and FARMDYN). According to the focus of this paper, only 
arable farms without livestock are considered to isolate the effects of the 
varying plot characteristics and land endowment approaches on the results. 
Therefore, differentiation between arable and permanent grassland is not 
used in the ‘categorized’ approach, instead we depict the more evolved 
differentiation by soil type. 

The arable farms are given the option to cultivate nine of the most frequently 
cultivated crops in the case study area, jointly accounting for more than 78% 
of the total arable land (IT.NRW, 2019). Prices and direct costs (seeds, 
fertilizers, plant protectants) for each crop represent averages of the past 18 
years within the case-study region (KTBL, 2020). Plot specific yields are 
calculated based on a linear regression function including the soil quality as 
an independent variable3, estimated from average yields and soil quality 
ratings in the 45 NUTS 2 regions in Germany over 19 years. In the 

 
2 The code is hosted at the following GitHub repository: https://doi.org/10.5281/zenodo.4765941  
3  See the following notebook for details: https://observablehq.com/@chrispahm/influence-of-soil-

quality-and-soil-moisture-index-on-crop-yi. The regression results can also be found in the appendix, 

Table A3. 
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‘categorized’ approach, crop yields are calculated for each soil type category 
of the farm, using the average soil quality of the plots within the category. 
In the ‘aggregate’ approach, whole farm average yields are calculated based 
on the average soil quality of the plots.  

Machine costs are calculated using the regression model from Heinrichs et 
al. (2021) which considers farm-to-field distances and plot sizes. In the 
‘single plot’ approach, the individual farm-to-field distance and plot size of 
a plot are reflected in the calculations. In the ‘categorized’ approach, average 
farm-to-field distances and plot sizes for each soil type category are 
considered, while in the ‘aggregate’ approach, whole farm averages are 
taken. For all crops, a fixed gross wage rate of 19.19 €/h (net wage rate of 
13.5 €/h) is assumed (KTBL, 2020). The calculation of the labor costs per 
crop follows the same concept as the calculation of the machine costs for 
each land endowment approach. 

The profitability per ha for a crop is calculated as the difference between 
crop revenues and direct costs as well as costs for machinery and labor. 
Figure 5.2 illustrates the resulting difference between the ‘aggregate’ and 
the ‘single plot’ approach using the example of winter wheat. In the 
‘aggregate’ and ‘categorized’ approach, the profitability of a crop is 
independent of the chosen share, reflecting the constant returns to scale of 
the technology underlying the Leontief production function used in a LP. 
This is not the case for the ‘single plot’ approach. Here, the average realized 
profit per ha of a crop changes depending on which plot the crop is cultivated 
on. Ordering the plots from highest to lowest profitability in Figure 2 shows 
that this implies decreasing return to scale, similar to the convexity found in 
quadratic programming approaches typically used with PMP (Heckelei et 
al., 2012). 
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Table 5.2 gives an overview of the input-output coefficients for each crop, 
including minimum and maximum values for the case study region, 
reflecting varying soil qualities, farm-field-distances and plot sizes4. 
  

 
4  The data may be explored interactively in the following notebook: 

https://observablehq.com/@chrispahm/crop-gross-margins-in-

germany?collection=@chrispahm/agriculture/2 

Figure 5.2 Marginal profitability per hectare of wheat cultivation for all 
plots of an exemplary farm in both the ‘aggregate’ (straight line), and 

‘single plot’ (stepped line) approach, sorted by descending order. Plots 
exhibiting the highest marginal profitability are generally characterized by 

higher soil qualities, larger plot sizes, and closer proximity to the farm. 
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Crop Price 
(€/dt) 

Yield 
(dt/ha) 

Revenues 
(€/ha) 

Costs 
(€/ha) 

Profit 
(€/ha) 

Field beans 18.52 26.57 
45.02 

492.08 
833.77 

820.5 
1315.3 

-823.2 
13.3 

Wheat 16.95 58.61 
97.35 

993.44 
1650.08 

986.6 
1656.2 

-662.8 
663.5 

Rye 15.69 47.85 
66.38 

750.77 
1041.50 

899.1 
1410.7 

-659.9 
142.4 

Barley 16.01 44.87 
85.48 

718.37 
1368.53 

925.4 
1508.2 

-789.9 
443.2 

Maize - 
Corn 

17.38 79.36 
113.38 

1379.28 
1970.54 

1562.6 
2109.4 

-730.1 
407.9 

Rapeseed 36.53 30.99 
44.82 

1132.06 
1637.27 

1020.9 
1529.6 

-397.6 
616.4 

Sugar beets 3.54 675.68 
814.10 

2391.91 
2881.91 

1404.1 
1879.7 

512.2 
1477.8 

Maize - 
Silage 

2.80 388.18 
510.22 

1086.90 
1428.62 

1315.4 
2093.2 

-1006.3 
113.2 

Summer 
oats 

15.13 36.75 
58.87 

556.03 
890.70 

709.0 
1209.0 

-652.9 

181.7 

Table 5.2 Economic figures for each crop allowed to be cultivated in the 
BEFM. If present, multiple rows per column indicate minimum (top row) 

and maximum (bottom row) values. Data based on KTBL (2020) and 
Heinrichs et al. (2021). 

Note: For the underlying minimum and maximum values of soil quality, plot size and farm-

to-field distance, see the following section (section  2.3). 

Constraints controlling maximum allowed crop shares are introduced in the 
BEFM for all three land endowment approaches, they reflect minimum 
waiting period between years where the same crop is cultivated on a plot 
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(see Table A1 in the appendix). Due to the agronomic intolerance of sugar 
beets and rapeseed in crop rotations, their combined maximum share is 
limited to 33% (ISIP, 2021). Further constraints reflect obligations from the 
EU’s so-called “greening” measures: Farms above 10 ha and below 30 ha 
need to cultivate at least two crops, with the major crop not covering more 
than 75% of the arable land. Farms above 30 ha need to cultivate a minimum 
of three crops, with the major crop not covering more than 75%, and the sum 
of the two major crops not covering more than 95% of the arable land. 
Furthermore, farms endowed with more than 15 ha need to devote 5% of 
their arable land to a so-called ecological focus area. For the farms affected 
by this measure, the constraint needs to be fulfilled by cultivating 5% of field 
beans in our simplified model. A detailed description of the greening 
measures is provided by Gocht et al. (2017). 

Each farm is simulated once for each of the three land endowment 
approaches and subsequently, results of the ‘categorized’ and ‘aggregate’ 
approaches are compared with the results of the ‘single plot’ approach. The 
provided indicators depict agronomic (‘Summed difference in crops 
shares’), social (‘Difference in total work load’), environmental (‘Difference 
in cumulative energy requirement’), and economic (‘Difference in profit per 
ha’) differences. The ‘Summed difference in crops shares’ indicator for a 
farm is calculated as follows. First, the absolute differences of the area 
allocated to each crop 𝑗 under the aggregate approaches (𝑋_𝑎𝑔𝑔', both for 
the ‘categorized’ and ‘aggregate’ approaches) and the ‘single plot’ 
𝑋_𝑏𝑖𝑛' 	approach are summed up. Second, to account for farm size, the 
resulting sum is divided by the farm’s total land endowment 𝑏. And third, as 
a deviation in the share for a crop implies a deviation in the opposite 
direction for other crops, the average absolute deviation it divided by two: 

 

Summed difference in crop shares (%) = 

1
2=

`𝑋_𝑏𝑖𝑛' − 𝑋_𝑎𝑔𝑔'`
𝑏 	

5

'

 
(5.10) 

Following this calculation, the ‘Summed difference in crop shares’ indicator 
results in a percentage value defined in the range [0,100%]. 
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In order to evaluate which farm characteristics drive differences of indicator 
results, ordinary least squares (OLS) regressions are performed in R, 
Version 3.6.1 (R Core Team, 2019).   

5.2.3 Case study region 

Our analysis builds on a synthetic farm population of the German federal 
state of North-Rhine Westphalia (Pahmeyer et al., 2021b) of which all 8,509 
specialized arable farms are considered. As the classification is based on 
shares of revenues by farm branch in total farm revenues (Kuhn and Schäfer, 
2018), specialized arable farms might still be involved, for instance, in 
fattening of ruminants and manage some grasslands. However, the 
management of permanent grassland is left out of the analysis as animal 
husbandry is not considered. Figure 5.3 gives an overview of the spatial 
dispersion of the main farm characteristics such as average soil quality 
depicted by the “Muencheberg soil quality rating” (SQR) (Mueller et al., 
2014), farm-to-field distances, plot sizes and number of plots per farm in 
North-Rhine Westphalia. Figure 5.4 gives an overview of the distribution of 
these farm characteristics among the population. The arable land 
endowments of the farms range between < 1 ha to 490 ha. The mean farm 
size is 42 ha, the median farm size is 23 ha. The farms’ average SQRs range 
from 23 to 95, with a median value of 68 (mean: 68). The deviation of SQR 
values within a farm is up to 42.40, with a median value of 4.04 and a mean 
value of 7.05. Average field-to-farm distances range from 0.07 km to 17.77 
km (median: 0.84 km, mean: 1.33 km). The average standard deviation 
(S.D.) of the farm-to-field distances is 1.29 km (median: 0.59 km). Plot sizes 
range from 0.06 ha to 33.20 ha (median: 2.5 ha, mean: 2.76 ha), and have an 
average S.D of 2.24 ha (median: 1.94 ha). The number of plots the farms are 
endowed with range between 1 and 202, with a mean of 14 plots and a 
median value of 9 plots. 
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Figure 5.3 Distribution of average soil quality ratings (SQR), plot (farm-to-
field) distances, plot sizes, and number of plots per farm within the case 

study region of North Rhine-Westphalia. 
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5.3 Results 

Simulation results for the four considered indicators under the ‘aggregate’ 
and ‘categorized’ approach are found to be largely equal. The crop allocation 
results between the two approaches are the same for 99.8% of the simulated 
farm population. Also, the farm profits (€/ha) are found to be largely equal 
for a greater part of the population, with 75% of the farms expressing a 
difference of less than 9 €/ha and 95% of the farms expressing a difference 
of less than 39 €/ha. A detailed comparison of the indicator results of the 
‘aggregate’ and ‘categorized’ approach is shown in Figure A1 in the 
appendix.  

Figure 5.4 Histograms of selected farm characteristic among the case-
study farm population. 
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For brevity, the results section therefore focuses on the difference between 
the ‘aggregate’ and ‘single plot’ approach, as depicted in Figure 5.5. On 
average, the summed difference in crop shares between the two approaches 
is 11.15% (median: 2.23%, S.D.: 19.65%). The average difference in 
workload is 10.8%, while the median is 7.56% (S.D.: 11.86%), i.e., the 
‘aggregate’ approach overestimates the required labor needs in the sample. 
The opposite is found for the cumulative energy requirement which is on 
average 2.23% lower in the ‘aggregate’ approach compared to the ‘single 
plot’ approach (median: 0.4%, S.D.: 7.35%). The simulated average farm 
profits are found to be slightly higher in the ‘aggregate’ approach when 
compared to the ‘single plot’ approach (4.57 €/ha, median: -9.93 €/ha, S.D.: 
71.47€ /ha). This effect is likely related to the relaxation of the indivisibility 
underlying the ‘aggregate’ approach, and the corresponding different crop 
shares. Despite the overestimated labor needs and thus costs in the 
‘aggregate’ approach, which go along with higher machinery hours and 
costs, the average farm profits are on a par with the ‘single plot’ approach. 
This implies that the share of crops with larger revenues is higher under the 
aggregate approach which can also be seen in Figure 5.7. The histograms in 
Figure 5.5 reveal that the differences of the indicator values are found to be 
relatively small for a high share of farms. However, for a small part of the 
population, the simulation approaches show large differences for the 
indicators, especially for farm profits. 
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The indicator values resulting from the comparison of the ‘categorized’ 
approach with the ‘single plot’ approach are very similar to the results of the 
‘aggregate’ approach, see Figure A1 in the appendix.  

In order to illustrate how the different land endowment approaches 
combined with the varying characteristics of land fragmentation lead to 
differences in the crop shares, Figure 5.6 displays the crop choices resulting 
from the different land endowment approaches for an exemplary farm 
endowed of 12.07 ha. Since all of the farm’s plots are of the same soil type, 
the simulation results of the ‘aggregate’ and ‘categorized’ approach are the 
same for this farm. However, note that plots are still heterogeneous 
considering their soil quality and field-to-farm distance. While the crop 
shares of wheat and rapeseed are also mainly similar between the ‘single 
plot’ and the ‘aggregate’ approach, larger differences are found for rye and 
maize. Considering the farm’s average soil quality, field-farm-distance, and 
plot size, the average profit of cultivating maize is -223.66 €/ha, while it is -
309.95 €/ha for rye. In order to maximize profits (or minimize losses in this 
case), maize is selected over rye in the ‘aggregate’ (and ‘categorized’) 
approach. Despite their same soil type, the plots in the far east of the farm 
exhibit a very low soil quality of 26 (SQR) (farm median: SQR of 69). On 

Figure 5.5 Histograms of differences in indicator levels comparing the 
simulations results of the 'aggregate' approach with the results of the 'single 

plot' approach in the farm population. 
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these plots, the losses of -436.27 €/ha for rye are smaller than for maize with 
-476.95 €/ha, reversing the order compared to the average. The BEFM 
therefore selects rye on these fields instead of maize in the ‘single plot’ 
approach. Given that the farm is endowed with 20 plots, the indivisibility of 
plots can largely be disregarded as a factor influencing the crop share 
differences, as many different combinations of plots are present to come 
close to a desired crop share. The example rather shows how the aggregation 
bias from the ‘aggregate’ approach is caused by differences between average 
and plot specific values of plot characteristics.  

Table 5.3 presents the results of standardized multiple linear regression 
models (OLS) on differences of the four chosen indicators between the 
‘aggregate’ and ‘single plot’ approach. The similar results for the 
‘categorized’ approach can be found in the appendix (Table A2). For 
(highly) auto-correlated land fragmentation and farm characteristics (e.g., 
farm size and number of plots, or mean and median values of the same 
parameter), the characteristics with the highest-ranking Pearson’s 
correlation coefficient are used in the regression models (Figure A2 in the 

!"#$%&'()&*+,(-)).*-/0 !1%%.'%-+',(-$2
!3-+'%*.#4'2,(-)).*-/0

Figure 5.6 Crop choice results of the three land endowment approaches for 
an exemplary farm. The blue marker in the left panel displays the farms 

location. 
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appendix). The number of plots is log transformed due to the stronger 
influence of fewer plots on the indicator values.  

Table 5.3 suggests that the number of plots present on a farm is the main 
driver for the ‘Summed difference in crop shares’ indicator. Farms endowed 
with fewer plots generally express greater differences in the optimal crop 
allocation between the two approaches, which reflects the impact of the 
assumed indivisibility of the plots. Furthermore, also the S.D. in the plot 
sizes of the farm, the mean plot size, as well as plot radii are found to have 
a stronger influence on the difference of the results in this indicator, 
displaying the influence of these factors on the aggregation bias. While 
higher values of the S.D. in plot sizes, as well as higher mean plot radii are 
found to increase the overall difference in crop allocation results, higher 
mean plot sizes, as well as S.D. in plot radii decrease the difference. 

Considering the difference in workload among the different land endowment 
approaches, again the number of plots, but also the mean- and S.D. of plot 
sizes within a farm are found to have a stronger influence. While the S.D. of 
plot sizes is found to increase the difference in the workload simulation 
results, both an increasing number of plots as well as an increasing mean 
plot size are found to decrease the difference in the simulation results. 

Also, the difference in profit per ha between the two land endowment 
approaches is mainly influenced by the number of plots (effect of 
indivisibility), followed by the mean- and S.D. of plot sizes, and the farms 
S.D. in farm-to-field distances (aggregation bias). While larger mean plot 
radii and plot sizes per farm tend to have a positive influence on the profit 
difference (higher profits in the ‘aggregate’ approach simulation results 
compared to the ‘single plot’ approach), the number of plots, S.D. in plot 
radii, as well as the S.D. in plot sizes have a negative influence on the profit 
difference (higher profits in the ‘single plot’ approach, compared to the 
‘aggregate’ approach). 

Similar to the differences in profit, also the differences in the cumulative 
energy requirement (CER) are mostly depending on the number of plots, as 
well as the farms mean- and S.D. of plot sizes. In this indicator, the number 
of plots, mean plot size, as well as the S.D. in plot radii is found to have 
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positive influence on the difference in simulation results. On the other hand, 
the farms mean plot radius, S.D. in plot sizes, as well as the mean soil quality 
is found to have a negative impact on the difference in CER simulation 
results. 

 
Dependent variable: 

 OLS 

 ‘Aggregate’ vs ‘single plot’ approach 

     

 Summed diff. in 
crop shares (%) 

Diff. 
workload (%) 

Diff. profit 
(EUR/ha) 

Diff. CER 
(%) 

Mean plot 
radius farm 
[km] 

0.150*** -0.049*** 0.122*** -0.158*** 

Dev. plot radius 
farm [km] 

-0.094*** 0.111*** -0.130*** 0.108*** 

ln(Number of 
plots [n]) 

-0.674*** -0.232*** -0.584*** 0.575*** 

Mean plot size 
farm [ha] 

-0.156*** -0.475*** 0.205*** 0.146*** 

Dev. plot size 
farm [ha] 

0.303*** 1.209*** -0.304*** -0.188*** 

Mean soil 
quality farm 
[SQR] 

0.027*** 0.021*** 0.060*** -0.160*** 

Dev. soil quality 
farm [SQR] 

0.040*** 0.008 -0.007 0.057*** 

Constant -0.035*** -0.022*** -0.010 0.027*** 
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Observations 8,409 8,409 8,409 8,409 

R2 0.474 0.741 0.420 0.350 

Adjusted R2 0.474 0.740 0.420 0.349 

Residual Std. 
Error  
(df = 8401) 

0.651 0.510 0.716 0.748 

F Statistic  
(df = 7; 8401) 

1,081.725*** 3,424.726*** 870.023*** 645.777*** 

Note: *p<0.1; **p<0.05; ***p<0.01 
 

Table 5.3 Standardized regression results (beta coefficients) for different 
indicators comparing the BEFM simulations results from the 'aggregate' 

and 'single plot' land endowment approach. 

Figure 5.7 displays the summed cultivation area in the farm population 
resulting from the simulation of the ‘aggregate’ and ‘single plot’ approaches. 
Mainly due to the indivisibility effect, the total cultivation area of the more 
profitable crops, namely wheat, sugar beets, as well as winter rape is higher 
in the simulation results of the ‘aggregate’ approach compared to the ‘single 
plot’ approach. On the other hand, the cultivation area of field beans, (corn) 
maize, oats, silage maize, winter barley, and winter rye is higher in the 
‘single plot’ simulation results. 

In the ‘aggregate’ approach, 64% of the total farm population hit the 
maximum crop share constraint for sugar beets (20% max. crop share), and 
36% of the population do so for winter rape (also 20% max. crop share). Due 
to the indivisibility of plots, these figures cannot be reliably calculated for 
the ‘single plot’ approach. 
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Table 5.4 displays the standardized regression coefficients measuring the 
impact of various farm characteristics on the relative difference in the total 
cultivation area for each crop between the ‘aggregate’ and ‘single plot’ 
approach. For all crops with a notable difference in the summed total 
cultivation area between the two approaches (see Figure 7), the number of 
plots as a measure of the indivisibility effect, the mean plot size, as well as 
the intra-farm S.D. of plot sizes are found to have the greatest influence on 
the relative difference in the crop shares. For oats, also the mean, as well as 
the S.D. of soil qualities is found to have an impact on the relative difference 
in the total cultivation area. 

 
Dependent variable: 

 
Aggregate vs 'single plot' (rel. diff) 

 
OLS 

Figure 5.7 Total simulated cultivation area per crop in the aggregate (A, 
blue) and single plot (B, orange) approach. 
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 Field 
beans 

Wheat Rye Barley 
Maize - 

Corn 
Rape 

Sugar 
beets 

Maiz
e - 

Silag
e 

Oats 

Mean 
plot 
radius 
farm 
[km] 

-
0.059**

* 

-
0.138**

* 
0.001 -0.006 

0.154**
* 

-
0.130**

* 

-
0.087**

* 
0.007 0.012 

Dev. plot 
radius 
farm 
[km] 

0.016 
0.070**

* 
-0.028 -0.008 

-
0.085**

* 

0.106**
* 

0.078**
* 

-
0.010 

-0.023 

ln(Numb
er of 
plots [n]) 

-
0.169**

* 

0.555**
* 

-
0.069*
** 

-
0.056*
** 

-
0.621**

* 

0.657**
* 

0.459**
* 

-
0.024
*** 

-
0.113**

* 

Mean 
plot size 
farm [ha] 

0.439**
* 

0.311**
* 

0.108*
** 

0.050*
* 

-
0.209**

* 

-
0.157**

* 

-
0.187**

* 

-
0.035
** 

0.009 

Dev. plot 
size farm 
[ha] 

-
0.195**

* 

-
0.434**

* 

-
0.070*
** 

0.144*
** 

0.331**
* 

0.037**
* 

0.072**
* 

0.027
** 

-
0.049**

* 

Mean 
soil 
quality 
farm 
[SQR] 

-0.011 -0.001 
-0.099 
*** 

0.016 
0.092 
*** 

-
0.061**

* 

-
0.109**

* 

-
0.030
*** 

-0.185 
*** 

Dev. soil 
quality 

0.035 
*** 

-0.005 
0.085 
*** 

0.001 -0.015* 
-0.028 

*** 

-0.069 
*** 

0.004 
0.120**

* 
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farm 
[SQR] 

Constant 0.018* 
0.041 
*** 

0.008 
-

0.000
1 

-0.037 
*** 

0.013 
0.0000

1 

-
0.016
** 

0.008 

Observat
ions 

8,409 8,409 8,409 8,409 8,409 8,409 8,409 8,409 8,409 

R2 0.095 0.356 0.029 0.033 0.415 0.405 0.198 0.005 0.079 

Adjusted 
R2 

0.094 0.355 0.028 0.032 0.415 0.405 0.197 0.004 0.078 

Residual 
Std. 
Error  
(df = 
8401) 

0.954 0.724 0.982 0.990 0.685 0.732 0.855 0.676 0.962 

F 
Statistic 
(df = 7; 
8401) 

125.84
9*** 

662.73
0*** 

36.14
7*** 

40.42
3*** 

852.56
5*** 

818.59
4*** 

296.28
3*** 

5.533
*** 

102.35
8*** 

Note: *p<0.1; **p<0.05; ***p<0.01 
 

Table 5.4 Standardized regression results (beta coefficients) comparing the 
relative difference in crop cultivation area for each crop between the 
BEFM simulations results from the 'aggregate' and 'single plot' land 

endowment approach.  
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5.4 Discussion 

Our results empirically quantify the effects of different aspects of land 
fragmentation on the simulation results of a mechanistic BEFM. The 
regression analysis shows that the smaller the number of plots, the larger the 
differences between the binary choice model with plots depicting land 
heterogeneity and the LP which optimizes crop shares under a constraint 
assuming homogenous land. This suggests that the effect of indivisibility 
dominates over the aggregation bias. As the aggregation bias rather increases 
with growing numbers of plots in a farm, the opposite effect would be found 
in the regression analysis if the aggregation bias was the major driver of 
differences. 

Most of the indicator values tested in our study are centered around a mean 
difference being close to zero (see Figure 5). Therefore, analysis focusing 
on findings for a whole farm population will likely attain similar average 
results between the ‘single plot’ and the ‘aggregate’ land endowment 
approach. However, as seen from the relatively wide range in indicator 
values, especially for the profitability of crop cultivation per hectare, 
simulation results for the selected farms under the two approaches can differ 
substantially. Therefore, for studies focusing on selected case study farms 
and their responses to new policies or technologies, either the ‘single plot’ 
approach or the ‘categorized’ approach using a sufficient number of 
categories is recommended. In the context of DSS however, solely the 
‘single plot’ approach is recommended as it depicts the decision problem 
farmers face more accurately (see Pahmeyer et al., 2021a). Furthermore, as 
the ‘single plot’ approach also considers the actual required workload for 
each specific plot, compared with farm averages over all plots, this approach 
is deemed more appropriate in a decision support context. However, it has 
to be considered that such heterogeneity requires integer crop choices, which 
renders model calibration far more difficult (Britz, 2021) compared to 
established approaches such as PMP (Heckelei et al., 2012). Equally, using 
integers to depict crop choices increases the ‘jumpiness’ in the allocative 
responses, and the overall higher model detail also implies that model result 
interpretation is rendered more demanding. 
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In our dataset, the shares of the three dominant crops (winter wheat, sugar 
beet and rape seed) are mostly driven by maximal crop rotational constraints, 
which means that their profitability advantages over other crops do not 
(much) depend on soil quality, plot size or farm-to-field distance. Output 
price fluctuations for crops are not necessarily highly correlated, take sugar 
beets and cereals as an example. Hence, crops might be found as dominant 
or not depending on the considered years when calculating the profitability 
of each crop. The importance of this effect is therefore likely case-study 
dependent. The closer the profitability of crops are to each other under 
average plot characteristics of a farm, and the larger the heterogeneity of the 
plots, the more likely it is to find aggregation bias in the ‘aggregate’ and 
‘categorized’ approach in relation to the optimal crop shares.  

In order to reproduce empirically observed crop shares in the baseline model 
results, BEFMs are commonly calibrated using either PMP (Heckelei et al., 
2012) or by some more or less automated approach to adjust coefficients in 
MILPs or LPs (Britz, 2021). Among others, Howitt (1995) states 
heterogeneous land quality and the corresponding variations in crop yields 
as a likely reason for the need of calibration, such that linear models are not 
well suited to recover observed crop allocation changes. 

No attempt is made here to calibrate the three competing modelling 
approaches which, if successful, would remove the differences at least with 
regard to crop choices. Our findings certainly do not imply that an integer-
based, normative crop choice model depicting single plots generally leads to 
allocative responses more closely resembling empirically observed crop 
shares. It is however clear that its calibration against observed allocative 
responses is more demanding (Britz, 2021), whereas PMP based models 
using crop shares can be calibrated relatively straightforward against given 
price elasticities (Mérel and Bucaram, 2010). We also assume in all three 
models that labor is bought (or sold) at a given price, by considering its costs 
in the profitability per hectare. A BEFM might instead comprise annual or 
sub-annual labor constraints, which likely restrict the solution space further 
and thus potentially reduce differences between the three modelling 
approaches. However, these points mostly apply to BEFMs being used in a 
positive, policy or technology evaluating context. BEFMs used for decision 
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support are generally not calibrated to empirically observed crop shares, as 
they aim to explore optimal solutions to the allocation problem given a farm 
specific, constrained set of resources, and therefore do not aim to predict 
farmers behavior (Reidsma et al., 2018). 

In our analysis, the profitability of a crop solely depends on plot attributes, 
not on farm or farmer’s characteristics. This allows analyzing impacts of the 
aggregation bias caused by plot heterogeneity and indivisibility 
independently of other effects. In empirical analysis, especially farm size is 
likely closely correlated with the number of plots present in a farm. This 
makes it harder to disentangle effects of the number of plots and plot 
heterogeneity from effects of farm size. Farm size likely affects crop 
profitability and crop choice, for instance, by size depending on differences 
in the costs of depreciation, in transaction costs, or in mechanization level. 
Such effects are not considered in our analysis. Farm size also likely affects 
farmer’s behavior, such as via impacts of wealth on risk behavior (Sulewski 
et al., 2020), whereas our models assume risk neutrality. More generally, the 
importance of plot indivisibility for crop choices challenges the usual 
assumption on differentiable functions and error term distributions in 
empirical work in this field. 

Note that differences between the simulation results of the different land 
endowment approaches reported in this manuscript assume an ideal 
parameterization for each farm. Lacking farm specific information, many 
BEFMs only adjust prices and sometimes yield levels for individual farms, 
and use regional averages for other parameters, such as variable costs of crop 
production. For instance, recent studies applying BEFMs to German farms 
use a farm-field-distance of 2 km and a plot size of 2 ha defined as the default 
values found in planning data collections (Kuhn et al., 2020; Lengers et al., 
2014; Pahmeyer and Britz, 2020; Schäfer et al., 2017). The difference in the 
simulation results between the ‘aggregate’ land endowment approach using 
such default values compared to the results of the ‘single plot’ is higher than 
reported in our manuscript, as our analysis still reflects in the aggregate 
approaches farm specific plot averages. 
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5.5 Summary and Conclusion 

The aims of our manuscript are to identify approaches to model crop choices 
in BEFMs and to quantify differences in their results, based on a case study 
consisting of arable farms in the German federal state of North Rhine-
Westphalia. Our findings suggest that results may vary substantially 
between the approaches. While we find quite limited differences between 
the ‘aggregate’ and ‘categorized’ approaches, their results are systematically 
different from the ‘single plot’ approach. The results of a regression analysis 
suggest that differences are mainly driven by the number of plots a farm is 
endowed with, while other characteristics such as the intra-farm S.D. of soil 
qualities, plot sizes, and driving distances show a significant, but less 
relevant influence. Thereby, the indivisibility of plots is the major driver for 
the differences in our results. Accordingly, the heterogeneity of plots and the 
corresponding aggregation bias is of minor importance in our analysis. 

Following our simulation results, we suggest that both the ‘aggregate’ and 
‘categorized’ land endowment approaches yield sufficiently accurate results 
for studies involving policy analysis or technology adoption for a whole 
farm population. For BEFMs used in policy and technology analysis, effects 
of plot heterogeneity can likely be considered by a sufficiently large number 
of land categories in the ‘categorized’ approach, and our analysis suggests 
that especially soil quality differences can be relevant here. 

Recommendations are likely different for BEFMs targeting single farm 
results or variability in the farm population, as well as DSS. Considering the 
wide range of profit differences between the ‘single plot’ and ‘aggregate’ 
approach among the population, studies targeting single farms and DSS 
should incorporate spatially explicit, single plots to better capture the 
decision problem and provide accurate decision support for every individual 
farm.  
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Chapter 6  
Conclusion 
The overall research aim of this thesis is to show potential ways for modeling 
highly detailed policies and technologies in BEFMs used for policy and 
technology analysis as well as for decision support. The following chapter 
summarizes the contributions of the previous chapters in the thesis. In 
addition, the methodologies applied in the different chapters are critically 
analysed, and a research outlook is provided. 

6.1 Major contributions of the thesis 

The major contributions of the thesis are three-fold: First, the thesis presents 
practical examples for modeling highly detailed technology innovations, 
policy regulations, and DSS that may serve as a basis for fellow researchers 
seeking to study similar topics in other regions or contexts. Second, it 
provides a general methodology for deriving a highly detailed synthetic farm 
population together with an actual dataset for the German federal state of 
North Rhine-Westphalia. Third, the thesis explores how different levels of 
detail regarding the depiction of crop choices influence the results of a 
BEFM, and gives recommendations for which types of use-cases can benefit 
from higher levels of detail. 

As an example for modeling a highly detailed technology innovation in a 
BEFM, the thesis analyses the economically optimal use of sex sorted semen 
(called “sexed semen”) and crossbreeding among a dairy farm population 
from the German federal state of North Rhine-Westphalia. Given the high 
level of detail in the implementation of the technology, the analysis reveals 
that the profit maximizing sexed semen and crossbreeding utilization is 
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highly heterogeneous among the farms in the study area. Farms endowed 
with stocking densities lower than 2 LU/ha are in general found to produce 
excess heifers for sale, whereas farms endowed with stocking densities of 
more than 2 LU/ha are found to be producing crossbred calves and using 
sexed semen solely to produce replacement animals. Approximately 25.3% 
of all inseminations are found to involve female sexed dairy semen. 
Furthermore, beef semen (both sexed and conventional) for producing 
crossbred calves is found to be used in approximately 21.5% of the 
inseminations. Combining sexed semen with crossbreeding is found to 
increase profits from 0 €/cow/year to 568 €/cow/year, with an average of 
79.42 €/cow/year. As a result of using sexed semen, farms with stocking 
densities below 2 LU/ha and above average replacement rates of 40% are 
found to showcase higher profit increases as a result of selling more excess 
heifers. Crossbreeding adoption and overall sexed semen adoption are most 
affected by stocking density and (farm) average cow longevity, as well as 
additional costs for sexed semen and sexed semen accuracy. These results 
demonstrate that modern breeding technologies have the potential to 
improve dairy farm profits, although they must be viewed in the context of 
farm-specific production settings. For policy makers, it is interesting to note 
that sexed semen can mitigate the issue of male calves being born that are of 
almost no economic value. In the context of an ongoing debate about animal 
welfare, the technology may help to reduce the socio-ethical concerns raised 
by the production of male dairy calves (Balzani et al., 2021). Furthermore, 
the intensification of beef production originating from dairy systems has 
been shown to produce less greenhouse gas emissions per unit of product 
compared to traditional suckler systems, thus highlighting the potential of 
the combination of sexed semen and crossbreeding (Hietala et al., 2014). 

As an example for modeling a policy with measures targeting single fields 
of a farm in a BEFM, the thesis presents a novel DSS called ‘Fruchtfolge’ 
assisting farmers with finding a cost minimal adoption strategy to the newly 
revised FO (revision of 2020) in Germany. The DSS shows a potential way 
for providing decision makers with a crop and management recommendation 
for each of their fields based on the solution of a BEFM. In order to provide 
recommendations in the level of detail required by the policy, the BEFM 
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accounts for field specific location factors, labour endowments, field-to-
farm distances and relevant policy measures. With the ‘Fruchtfolge’ DSS, 
farm, location and management characteristics are automatically 
incorporated into a user-friendly tool. Users are provided with instant 
feedback about alternative management options, and may generally create a 
first economically optimal cropping plan in less than five minutes. In a case 
study application involving a farm managing fields both outside and inside 
of a nitrate sensitive area according to the revised FO, the DSS is shown to 
mitigate the farms compliance costs to the revised FO by more than 5%. 
These results demonstrate that the ‘Fruchtfolge’ DSS presented in the thesis 
can aid decision makers in optimizing cropping choices in complex 
environments and reduce potential losses of profits. For policy makers it is 
interesting to note that the ‘Fruchtfolge’ DSS can also help to reduce 
bureaucratic obstacles, as the DSS automatically provides the fertilizer 
planning sheets required by the FO 2020 without any manual data entry. As 
a result, using the ‘Fruchtfolge’ DSS which provides the fertilizer planning 
sheets as well as an optimized cropping and fertilization plan is arguably 
faster than filling out the respective sheets manually. Furthermore, as the 
DSS provides farmers with the most cost-effective adoption strategy towards 
the regulations of the new FO, and will also push notifications when farmers 
select management options that are non-compliant, they are nudged to 
comply with the legislation which may help to reduce negative externalities 
otherwise caused by violations. 

As previously stated, the thesis also provides data and a methodology for 
creating a synthetic farm population of the German federal state of North 
Rhine-Westphalia. The synthetic farm population outlined in the thesis is 
largely based on the German Farm Structure Survey 2016, as well as plot 
specific crop data from 2019/2020. The underlying farm population is 
derived from a farm typology at administrative unit level to which observed 
plots are allocated after the initial farm assignment. The resulting dataset 
contains 25,858 farms and covers 1.3 million ha of agricultural land, 
provided at single plot scale in multiple digital formats. The single plot data 
includes information regarding the managing farm including the randomly 
assigned farm location, the number of livestock the farm is endowed with, 
the cultivated crop on the plot, as well as the corresponding administration 
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units. In addition, relevant spatial data such as yield information, soil 
characteristics, as well as monitoring data on environmental status are 
included. By making use of the data provided by the synthetic farm 
population, a variety of analyses involving farm, agent-based, and bio-
physical models can be carried out. The dataset can also serve as a test 
dataset for a variety of farm models requiring spatially explicit information. 
Due to its general design, the methodology for creating the farm population 
can be transferred to other regions where access to individual farm data 
records is restricted. 

With regards to the methodological contributions of the thesis, a thorough 
assessment of the prevalent ways for modeling crop choices in BEFMs, as 
well as their influence on simulation results is given. In the thesis, three 
possible approaches for modeling crop choices motivated from the literature 
are considered: ‘single plots’ with one crop per season, crop shares of land 
differentiated by soil type, called ‘categorized’, and crop shares on all arable 
land, termed ‘aggregate’. The analysis is conducted using the previously 
mentioned, highly detailed synthetic farm population from North Rhine-
Westphalia. The results of the comparative analysis indicate that the 
‘aggregate’ and ‘categorized’ land endowment approaches produce similar 
simulation results, which however diverge from the ‘single plot’ approach. 
The results indicate that crop choices per farm differ by approximately 11% 
between the spatially explicit ‘single plot’ and the ‘aggregate’ land 
endowment approach in the case study region of North Rhine-Westphalia. 
Total work requirements are found to be on average 10% higher in the 
‘aggregate’ approach compared to the ‘single plot’ approach, while energy 
requirements are relatively similar (average difference of 2.2%). Among 
other factors, the results indicate that this difference is highly correlated with 
the number of plots a farm is endowed with. For instance, the average 
difference in crop choices increases from the sample average of 11% to 
20.8% for those farms that are endowed with less than 10 plots (~ 50% of 
the case study population). Differences in simulated farm profits when 
comparing the ‘aggregate’ land endowment approach to the ‘single plot’ 
approach are found to range between -306 €/ha to 434 €/ha. The results 
suggest that for analyses using BEFMs with a focus on aggregate results 
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over a larger sample of farms, both the ‘aggregate’ and ‘categorized’ land 
endowment approaches are sufficiently accurate in case of similar average 
numbers of plots per farm as in our study. If single farm results or variability 
in the population are targeted, we propose to incorporate the ‘single plot’ 
approach in bio-economic farm analyses. The same holds for DSS focusing 
on individual farm responses to policy changes or technology adoption. For 
policy makers it is interesting to note that solely BEFMs operating on the 
single plot level can accurately depict restrictions targeting individual plots, 
such as the fertilization management restrictions imposed by the FO 2020 
enacted in so-called ‘red areas’. Studies capturing the potential 
environmental benefits of agri-environmental measures could also profit 
from the depiction of individual plots, potentially including further spatial 
dimensions such as proximity to forests or waterways. 

6.2 Methodological discussion and research outlook 

The dissertations methodological focus primarily lies in the development, 
extension, and application of BEFMs used for policy and technology 
evaluation as well as decision support. BEFMs are especially suited for ex-
ante policy and technology evaluation, and have a few advantages over other 
methods used for impact assessments as outlined by Jannsen and van 
Ittersum (2007): First, BEFMs are based on a constrained optimization 
procedure, and thereby reflect farmers situation striving to improve their 
operation with limited resources. By design, the BEFMs FarmDyn and 
‘Fruchtfolge’ follow different approaches for the specification of a farm’s 
available resources. In FarmDyn, available resources are specified 
exogenously based on data collected from case study farms, farm typologies 
(Kuhn and Schäfer, 2018) or the synthetic farm population outlined in 
Chapter 4. ‘Fruchtfolge’ on the other hand follows a participatory approach, 
presenting assumptions with regards to farm planning data as a default that 
can interactively be adjusted towards the situations in which the decision 
makers find themselves. Given the available resources, both models proceed 
to find the economically optimal resource allocation with respect to the 
given prices, yields, and costs.  
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Second, BEFMs can simultaneously consider multiple possible production 
activities, restrictions, new production techniques, and may include 
(indirect) linkages between crop and livestock production. These linkages 
are especially well depicted in the holistic BEFM FarmDyn, as it allows for 
the specification of multiple farm branches including livestock. Considering 
the inclusion of novel technologies (see Chapter 2), these linkages allow for 
analysing research questions that involve a competition among intra-farm 
resources across farm branches. As the ‘Fruchtfolge’ BEFM does not 
incorporate livestock or other farm branches, the intra-farm competition for 
resources can only be considered among different crops and their associated 
management options. 

Third, BEFMs allow for an analysis of changing parameter values through 
sensitivity analysis. In the context of the thesis, sensitivity analysis is 
primarily used to identify factors that are most influential for the economic 
viability of a technology (Chapter 2), and to assess which factors influence 
the difference in BEFM simulation results induced by the different 
depictions of cropping choices Chapter 5). While a framework for a 
structured sensitivity analysis using Latin Hypercube Sampling (LHS) is an 
integral part of the FarmDyn model (Chapter 2), the ‘Fruchtfolge’ DSS does 
not incorporate a pre-defined tool for such an assessment. Since the 
‘Fruchtfolge’ DSS follows a participatory approach, users may interactively 
adjust parameters in the user-interface and immediately observe the effects 
of the changes on the results. However, as the BEFM backing the 
‘Fruchtfolge’ DSS can also be utilized without its user-interface, a 
systematic sensitivity analysis can be performed as demonstrated in Chapter 
5. 

Fourth, BEFMs may in general be used for both short-term predictions and 
long-term trend analysis. While FarmDyn supports fully (recursive) 
dynamic simulations, the thesis solely makes use of the comparative static 
version of the model as investment decisions are not specifically targeted in 
the analysis. Similarly, also the ‘Fruchtfolge’ DSS deliberately focuses on a 
planning horizon of a single year, indirectly including long-term effects 
through the inclusion of maximum crop shares and crop waiting periods. As 
pointed out by Jannsen and van Ittersum (2007), the long-term predictive 
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power of normative mechanistic BEFMs such as FarmDyn and ‘Fruchtfolge’ 
is restricted, rendering the rather short term analysis as done in this thesis 
more appropriate for this particular type of BEFM. 

Furthermore, as noted by Blanco (2016), farm-level analyses using BEFMs 
allow for greater modeling flexibility for capturing farm heterogeneity, 
environmental effects, and economic performance than for instance other 
types of mathematical programming models such as partial and general 
equilibrium models. In the context of the underlying thesis, these 
methodological advantages facilitate some of the major findings and 
underline their scientific contributions.  

With regards to the technology evaluation study presented in Chapter 2, 
applying the highly detailed BEFM FarmDyn for assessing the impacts of 
novel breeding technologies such as sexed semen poses few advantages over 
process-based approaches frequently employed in the literature. As 
previously stated, the FarmDyn BEFM endogenously optimizes multiple 
decision variables simultaneously. These variables include herd entry and 
exit dates, fodder production and use of concentrates, grassland 
management, manure storage and management, allocation of labour to cash 
crops and herd management, animal housing and machinery utilization, as 
well as inputs required for crop production. Opposed to a static simulation 
approach where the levels of few decision variables such as feed uses, heifer 
breeding strategies, and crop allocation are mostly pre-determined, using a 
BEFM such as FarmDyn allows for exploring the profit-maximizing levels 
of these variables for each farm. The resulting profit-maximizing strategies 
for crossbreeding and sexed semen use are therefore demonstrating the full 
potential of the available options since the BEFM incorporates the 
complexity of the decision at the whole farm level.  

Considering the heterogeneity of the results regarding the economically 
optimal sexed semen and crossbreeding usage among the farms, the 
approach for studying technology innovations outlined in the thesis 
highlights the importance of studying the whole variety of farms in a 
population. In combination with the large scale sensitivity analysis 
conducted with regards to the various bio-economic parameters influencing 
the adoption decision (also called meta-modeling in this context (see Kuhn 
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et al., 2019; Lengers et al., 2014; Seidel and Britz, 2019)), the given 
approach can be seen as a general methodology to estimate potential 
economic returns for a technology for which technological parameters and 
related costs and benefits cannot be derived from real farm observations yet. 

Despite these advantages, BEFMs also suffer from shortcomings. By design, 
the BEFMs considered in this thesis solely depict the supply side, thus 
treating market dependant figures such as input and output prices as 
exogenous factors. By disregarding potential market effects resulting from 
the supplier’s decision, potential feedback loops of the supply side 
production decision on input and output prices cannot be captured by the 
BEFMs as used in this thesis. Considering the concrete example of sexed 
semen and crossbreeding uptake presented in Chapter 2, feedback of the 
simulated supply increase of crossbred animals on the producer price of 
crossbred calves as discussed by De Vries et al. (2008) could be expected. 
As stated earlier, market models such as (partial) equilibrium models 
incorporate such market feedback by design, however miss the detailed 
depiction of technical production processes required by technology 
evaluation studies such as the one outlined in Chapter 2.  

Another shortcoming is the fact that the BEFMs used in this thesis do not 
consider technology diffusion as a factor, despite its known implications on 
the adoption of novel technologies (Barbuto et al., 2019). As a result, the 
BEFMs may instantaneously switch to the novel technology upon 
availability in the model. However, as the thesis does not aim to predict 
actual responses from farmers to a novel policy or technology, but rather 
show promising and economically feasible alternatives, this shortcoming 
does not affect the results presented in the thesis.  

A further issue of mechanistic BEFMs as used in this thesis is their tendency 
of overspecialization in production decisions (Gocht et al., 2016; Janssen 
and van Ittersum, 2007). By design, these (mixed-integer) LP models will 
select the most profitable production option until all required resources are 
exhausted or another constraint becomes binding. To give a concrete 
example in the context of the thesis, a (mixed integer) LP model will choose 
sexed semen over conventional semen for artificial insemination of a dairy 
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cow if its use increases the farms profits at least marginally. Considering no 
other constraints limiting sexed semen uptake, the LP will subsequently 
select sexed semen for all dairy cows of the farm. In order to limit the 
overspecialization behavior of an LP, the PMP approach can be applied in 
situations were observed levels of decision variables are available (Heckelei 
et al., 2012; Howitt, 1995). However, as the focus of the underlying thesis 
rather lies in the exploration of feasible, profit maximizing production 
alternatives, and not in the prediction of future uptake values, this limitation 
does again not apply to the results outlined in this thesis.  

Another criticism regarding BEFMs as used in this thesis is their behavioral 
assumption of a fully informed, rational, profit maximizing decision maker 
(Malek et al., 2019; Reidsma et al., 2018). Many studies suggest that, despite 
being an important factor, economic rationale is only one consideration out 
of many that influence the decision process (An, 2012; Levine et al., 2015; 
Malek et al., 2019; Nualnoom et al., 2016). In response to this limitation, 
alternative model types such as agent-based models (ABM) have been 
developed (Huber et al., 2021; Seidel and Britz, 2019). Opposed to 
traditional LPs as used in this thesis, in an ABM each decision maker 
presents an agent that can interact with surrounding agents. By including 
these agents, ABMs allow for the inclusion of behavioral factors as well as 
cognitive, emotional, personal and social processes, thus depicting a more 
realistic decision process compared to simple LPs (Huber et al., 2021). As 
the main purpose of ABMs again lies in improving the quality of studies 
aiming to predict farmers behavior, the criticism is less relevant with regards 
to the BEFMs used in the underlying thesis exploring economically viable 
production alternatives. As a final remark, it has to be acknowledged that 
throughout the thesis deterministic BEFMs have been used 1 . In the 
deterministic models, no parameters are stochastic, and therefore also no 
variables are state-contingent. Therefore, volatility in yields as well as input 
and output prices are not endogenously considered in the BEFMs used in the 
thesis. While a large-scale sensitivity analysis such as the one conducted in 

 
1 While the BEFM FarmDyn includes a module covering several risk models such as value at risk 

(VaR), MOTAD (Hazell, 1971), and Target MOTAD (Tauer, 1983), the risk module has not been 

used in the underlying thesis. 
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Chapter 2 generally captures the overall volatility of the parameter ranges in 
the deterministic model, it cannot endogenously reflect the associated 
variance in farm income. Using a deterministic BEFM with the assumption 
of risk neutrality poses a few issues with regard to the selection of the 
(mathematically) optimal activities, as these may not reflect the utility 
maximizing activities a real farmer would prefer (Musshoff and Hirschauer, 
2007). Among others, Sulewski et al. (2020) show that farmers are rather 
risk-averse than risk-neutral. Subsequently, they prefer to reduce the (semi-
) variance in their expected farm income when maximizing their utility 
(Rosa et al., 2019). The results of a deterministic BEFM assuming risk-
neutrality might therefore showcase higher income variance than acceptable 
by the decision maker, thus rendering the solution not optimal considering 
the decision makers risk preferences.  

While again this limitation affects exploratory studies such as the one 
outlined in Chapter 2 only to a lesser extent, it does affect BEFMs used for 
decision support such as the ‘Fruchtfolge’ DSS presented in Chapter 3. In 
the DSS, only expected yields and prices are considered in the optimization, 
without considering their inherent variances. Depending on the user’s 
attitude towards risk, the presented solution might therefore exceed the 
income variance threshold accepted by the user. However, in order to 
incorporate the user’s attitude towards risk in the DSS, the user’s individual 
risk aversion coefficient would need to be determined. Determining farmers’ 
risk aversion coefficients has been proven to be a challenging task (Cao et 
al., 2011; Sulewski et al., 2020). Musshoff and Hirschauer (2007) present a 
practical approach for determining the willingness to accept risks by taking 
the variance of the total gross margin inherent to the crop choices and 
activities chosen by the farmer in previous years. This empirically observed 
variance in total gross margin is then set as a constraint when maximizing 
the expected total gross margin of the farm. As the previously selected 
cropping choices by the farmer, as well as price and yield variations are 
already present in the ‘Fruchtfolge’ DSS, this approach could be 
incorporated in future versions of the DSS. 

Besides these limitations, novel aspects of the BEFMs developed in this 
thesis also contribute to the literature in multiple aspects. Especially with 
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regards to the use of BEFMs in DSS as outlined in Chapter 3, few 
methodological concepts can be mentioned. For instance, the ‘Fruchtfolge’ 
DSS is among the first BEFMs aimed at optimizing cropping choices to 
follow principles of user-centered design as outlined by Rose (2017, 2016). 
Among others, the user-centered design aspects relate to fully automated 
data collection solely requiring users to provide their CRN to access EU 
direct payment applications of their farm for an initial optimization. In the 
context of the thesis, this functionality has been made publicly available in 
a separate open-source software repository2. As highlighted by Britz (2014), 
adding a user-interface (the DSS) on top of a BEFM also eases the 
communication between the BEFM and the user, shielding away details of 
the underlying economic programming model. The user-friendly and 
visually attractive interface of the ‘Fruchtfolge’ DSS can therefore help to 
communicate the results of the optimization in a more efficient manner. 
Furthermore, the user-interface of the ‘Fruchtfolge’ BEFM allows for 
quickly exploring alternative cropping and management choices as well as 
their consequences on total gross margin and fertilization strategies. This 
interactive approach to presenting the model results to users has already been 
proposed by McCown (2001), improving dialogue between the model and 
the users and thus building trust and confidence in the results. In order to 
provide users with meaningful error messages and assistance in case their 
farm specification turns the model mathematically infeasible, slack variables 
are introduced for each decision variable in the underlying BEFM. Also, as 
the DSS is provided as a web application, it enables continuous updates by 
the provider, and flexible access for decision makers. However, a thorough 
assessment of whether these novel approaches will help at overcoming the 
often-observed underuse of DSS at farm-scale (Rose et al., 2016) is still 
missing. Future research should therefore test whether decision makers are 
willing to accept and use the DSS, and find potential room for improvement. 
Also, potential integrations of the ‘Fruchtfolge’ DSS with other farm 

 
2 The open-source software package harmonie aimed at harmonizing the various EU direct payment 

application files can be found under following software versioning repository: 

https://github.com/fruchtfolge/harmonie 
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management tools could be imagined, allowing for a better alignment to the 
established planning routines of farmers and their advisers. 

The synthetic farm population presented in Chapter 4 is largely based on a 
farm typology presented by Kuhn and Schäfer (2018) which in turn is based 
on official statistical data from the Farm Structure Survey 2016, and the 
Census of Agriculture. While these data sources cover a majority of the 
farms and their farm characteristics, they express a few shortcomings that 
affect the quality and reliability of the resulting synthetic farm population. 
First, the distribution of farm characteristics queried for the creation of the 
original farm typology excludes few specific farm types. Especially farms 
specialized in vegetable or perennial crop production are not explicitly 
covered in the dataset, and are therefore also not part of the synthetic farm 
population. Due to these missing farms, the synthetic farm population does 
not cover all of the farms in the federal state of North Rhine-Westphalia, but 
rather 77% of the farms cultivating 89% of the agricultural area. Since the 
farm frequency tables provided at LAU level include all of the farms instead, 
some farms presented in the frequency table cannot be matched to a 
corresponding farm from the Farm Structure Survey dataset. Second, farms 
that are split into multiple smaller legal units, but managed as a single farm 
in practice cannot be detected in the dataset. As a result, there may be more 
farms in the population than actual farms operating in reality. Accordingly, 
the farms in the synthetic farm population may expose smaller endowments 
and farm characteristics than their real counterparts. When using the 
synthetic farm population in policy or technology evaluation studies, the 
share of smaller farms within the farm population may be overestimated. 
Resulting from these limitations, a potential update to the synthetic farm 
population should therefore incorporate all farm types present in the recently 
released Farm Structure Survey 2020. Furthermore, it should be extended 
using surveys and expert knowledge in order to mitigate the issue of single 
farms being split into smaller units as present in the synthetic population. 

The comparison of the possible approaches for depicting cropping decisions 
in BEFMs outlined in Chapter 5 highlights the influence of the chosen 
approach on the simulation results. The results of the analysis suggest two 
distinct effects that influence the difference between the three identified 
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cropping choice approaches. On the one hand, the ‘aggregate’ land 
endowment approach, treating a farm’s land endowment as a homogenous 
land mass with equal characteristics (e.g. soil quality, farm-field-distance, 
size), may suffer from an aggregation bias when compared to the spatially 
explicit ‘single plot’ approach. On the other hand, the assumption of 
indivisibilities of plots in the ‘single plot’ approach introduces an 
‘indivisibility bias’ compared to the ‘aggregate’ and ‘categorized’ approach. 
Aggregation bias has been acknowledged as a more serious problem in 
BEFMs used for sectoral analysis for decades (Buckwell and Hazell, 1972; 
Day, 1963; Önal and McCarl, 1991; Paris and Rausser, 1973). It has to be 
mentioned that the term “aggregation bias” as coined by the literature 
generally discusses the bias introduced by aggregating farms within a region 
into a single farm cluster, which is in turn solved by a BEFM. However, the 
aggregation bias as dealt with in Chapter 5 rather specifies the bias 
introduced by aggregating a single farms plots into a single land mass, thus 
being an intra-farm- opposed to an inter-farm bias. In this context, 
formulating conditions potentially reducing the aggregation bias to zero (as 
done by Paris and Rausser (1973)) is far from trivial, as each of the possible 
cropping options react differently to changes in plot characteristics such as 
plot size, distance to the farmstead, and soil quality. While previously, a lack 
of data on the single farm level made aggregating farms into a single farm 
cluster necessary, the provision of highly detailed farm populations (as 
described in Chapter 4) allows for such micro level analysis as the one 
conducted in Chapter 5. Opposed to the aggregation bias, the indivisibility 
bias ascribed to the assumption of plots being indivisible can be considered 
as more debatable though. In the context of the thesis, the definition of a plot 
follows Nesme et al. (2010), stating that a plot is the smallest 
homogeneously managed unit a farmer operates on. Since the plots 
contained in the synthetic farm population are the actual plots (including 
their geometries and characteristics) farmers have used in their applications 
for the EU direct payments, it is assumed that these plots already present 
practically optimal, manageable units of land which should not be split into 
smaller units. However, when comparing the plots entered into the EU direct 
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payment application program for a few years3 , it can be observed that 
farmers indeed split some of their fields into smaller units from time to time. 
Future research should therefore elicit if the ‘single plot’ approach using 
binary variables is more appropriate in order to correctly depict the crop 
planning decision problem, or whether a highly detailed ‘categorized’ 
approach using continuous variables is better suited. 

The methodologies applied in this thesis can contribute to both ex-ante and 
ex-post analysis on the economic impact of novel policies and technologies 
on farms. Policy initiatives such as the European Green Deal,  the upcoming 
revision of the Common Agricultural Policy, as well as novel technologies 
as for instance agricultural robots pose several potential areas of applications 
for the BEFMs presented in the context of the thesis. Furthermore, the 
extended use of DSS may help to disseminate insights gathered by the use 
of BEFMs to farmers and farm advisers.  

 
  

 
3 The official datasets can be obtained from IT.NRW (2021) 
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Chapter 7  
Appendix 
7.1 Appendix Chapter 2 

All herds (ℎ, being cows, heifers, calves) are differentiated by age and sex 
(elements of the set ℎ), breeds (𝑏 , being Holstein and the beef breed), 
feeding regime (𝑓) and month (𝑚) in a year (𝑡), which is fixed to a single 
year in the underlying analysis.  

Each animal in a herd is described by the same herd average characteristics 
for values such as  

The current size of a standing herd 𝛼 summed up over all feeding regimes is 
defined as the number of animals that enter the herd at the beginning of the 
production process 𝑁, subtracted by the leaving ones 𝐾 (see Equation 1). 

=𝛼8,9,:,7,2
:

= 𝑁8,9,7,2 − 𝐾8,9,7,2 

A production process (and the corresponding herd) may refer to a fattening 
phase or a performance group. The heifers are differentiated by a minimum 
of two production processes, starting at the final weight of a female calf and 
ending at the starting weight of the young dairy cows. This way, daily weight 
gains, first calving ages, and the corresponding feeding requirements can be 
modeled in great detail. Additional processes may be added to reflect 
different first calving ages or differences in weight gains. 

In order to maintain a steady herd balance, new animals need to enter a 
production process. The number of new animals joining a production 
process reflects the level of suitable delivery processes (𝐷) which refer to 
the previous fattening/growing phase (in the case of heifers) or replacements 
(for cows). Also, new calves serve as a delivery process for either the first 
stage phase of heifers or bulls. 

The number of animals joining a herd at the beginning of a production 
process (𝑁) is described as follows: 
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𝑁8,9,7,2 = 𝐷8,9,7,2 + 𝐵8,9,7,2 − 𝑆8,9,7,2 −=𝑁8,,9,7,2
8,

 

The number of animals stemming from a suitable delivery process (𝐷), 
including animals bought to the herd from the market (𝐵), minus animals 
sold to the market (𝑆), and the sum of other production processes competing 
for the same delivery process (ℎ1 ⊆ ℎ). This concept can be illustrated by 
the following example: Suppose a female calf is born on the farm which 
might be used in a heifer process for the own dairy replacements or be sold 
after an initial rearing period of three weeks. The amount of animals that 
enter the farm’s heifer growing process (𝑁) is then equal to the newborn calf 
(= 1), subtracted by the calves sold to the market (= 0 or 1), ignoring any 
additional animals bought from the market. Through this approach, 
flexibility in the herd dynamics is ensured to simulate economic optimal 
decisions. 

In the comparative static setting, the number of animals entering a 

production process is additionally corrected by the production length of the 

process (𝑙 = ,
;<=>?@AB=C	DECFAG

). This way, different amounts of lactations and 

lactation lengths that affect cow replacement rates are mapped correctly to 

an average year. The adjusted formula characterizing the number of animals 

entering a production process can then be specified as follows: 

𝑁8,9,7,2 =
𝐷8,9,7,2 + 𝐵8,9,7,2 − 𝑆8,9,7,2 − ∑ 𝑁8,,9,7,28, ⋅ 𝑙8,,9,7,2

𝑙8,9,7,2
 

The amount of calves being born in a month is defined by the sum of cows 
entering the cow herd throughout the simulation period multiplied with the 
probability of having a calf (𝑝n7) in that particular month: 

𝐷1H)&I0,9,7,2 = = 𝑁16J0,9,7,,2,
@=KL,A,,M,,MNBLA

⋅ 𝑝n7 (cows,mDist) ∀	mDist

= 𝛥mDist2,7,2,,7, 

where 
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calves, cows	 ⊆ ℎ
𝑡1 ≡ 𝑡
𝑚1 ≡ 𝑚

mDist = Consecutive	months	in	the	simulation	period
𝛥mDist2,7,2,,7, = Difference	in	months	between	year	t, month	m, and	year	t1,month	m1	

 

The calving distribution is largely dependent on the average calving interval 
(𝜇) and amount of inseminations needed for conception (IE, insemination 
effort). The calving interval is defined by the calving to conception period 
plus the duration of the gestation. Depending on the required insemination 
effort (IE), the calving to conception period (CC) may be equal to the calving 
to first service period (CFS) or additionally prolonged by the additional 
service interval (ASI). If the IE is equal to one, the cow conceives at the first 
insemination, and the ASI is equal to zero. Any additional insemination is 
assumed to increase the ASI by 30 days, respectively (Römer et al., 
2013).For a given average calving distribution (𝜇) and average insemination 
effort (AIE), the calving to first service period of a herd is calculated as 

CFS = 𝜇 − (30 ⋅ (AIE − 1)) 

A CI of 408 days (~13.38 months), and a herd average IE of 2.3 (Römer et 
al., 2013; Volkmann et al., 2014) subsequently result in a constant CFS of 
88 days for our given example herd. Consequently, the calving distribution 
of a single animal is solely driven by its individual IE in this simplified 
model. The maximum IE is assumed to be 3.6 (Römer et al., 2013).  

The above excursus highlights the importance of the insemination effort on 

the calving interval and thus the calving distribution of the herd. In order to 

depict the resulting uncertainty in the model FarmDyn, a maximum entropy 

estimator is used for the estimation of calving probabilities for a particular 

month (𝑝n7). Given an average calving interval of a herd (𝜇), the a priori 

information assumes that calving is equally likely between the two months 

𝑚D= = ⌊ O
P$.!

⌋  and 𝑚?; = ⌈ O
P$.!

⌉  surrounding the average calving interval. 

Therefore, a calving interval of 408 days (~13.38 months) as in our example 

would assume a priori equal likelihood of calvings in the months 𝑚D= = 13 
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and 𝑚?; = 14. The actual average interval is then recovered by forcing the 

sum of the probabilities 𝑝n7 multiplied with the corresponding month (here 

either month 13 or 14) to be equal to the average calving interval 𝜇 , 

maximizing the entropy which can be interpreted as picking the posteriori 

probabilities closest to the a priori ones: 

max	 𝐻n = −=𝑝n7

R

7

	ln	
𝑝n7
𝑁

 

subject	to    

=𝑝n7

R

7

= 1

=𝑝n7

R

7

⋅ 𝑚 =
𝜇
30.5  ∀	𝑚 = 𝑚)6 , 𝑚ST

𝑝n7 ≥ 0

 

The recovered probabilities for the two months 𝑚D=  and 𝑚?;  are then 
prolonged for possible future lactations lact = 1. . . 𝑁  by a binomial 
expansion 

𝑝n7 = = �
lact ⋅ (𝑚ST −𝑚)6)
𝑚 − (𝑚)6 ⋅ lact)

�
R

DU@A	∀	M=CAGW=XU@A%,$

⋅ 𝑝n7$&

DU@AY7Y(7$&⋅DU@A)

⋅ 𝑝n7'(

DU@AY7Y(7'(⋅DU@A) 

where 

monthToLact7,) ⊆ 𝑚, 𝑙  ∀	𝑚 ≥ 𝑚)6 ⋅ 𝑙 ∧ 𝑚 ≤ 𝑚ST ⋅ 𝑙 

As the comparative static version of the model FarmDyn simulates an 
average planning year instead of a dynamic horizon, the calving distribution 
needs to be adapted in order to depict an average calving coefficient over all 
lactations. Here, all calvings that occur in the same month of the year (e.g. 
January) are aggregated, and calvings after the 12th month are removed. 
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𝑝n7 = = 𝑝n7,

]

7,	∀	7	M=>	,#	≡	7,	M=>	,#

⋅
12
𝑙@=KL

𝑝n7 = 0 ∀	𝑚 > 12
 

where 
𝑚1 ⊆ 𝑚

𝑙@=KL = Average	production	length	of	cows	in	months 

In the model, the default proportion of males to females is assumed to be 
50.8% (Foote, 1977). The calculation of the sex ratio is displayed in the 
following formula: 
𝐷:1H)&I0,9,7,2

0.492 + 2 ⋅ 𝛿H11(𝑛70I_ − 𝑛:0I_) + 0.492𝑛:0I_ − 0.508𝑛70I_

=
𝐷71H)&I0,9,7,2

0.508 + 2 ⋅ 𝛿H11(𝑛70I_ − 𝑛:0I_) + 0.492𝑛:0I_

− 0.508𝑛70I_ 

where 
𝑛70I_ = Amount	of	male	beef	breed	sexing	inseminations
𝑛:0I_ = Amount	of	female	sexing	inseminations
𝛿H11 = Sexing	accuracy

 

The amount of female calves (left hand side of the equation) and male calves 
(right hand side of the equation) are divided by their respective default sex 
proportion, enforcing the ratio when the equation is satisfied. With the use 
of sexed semen, the (default) proportion can be shifted towards more 
females or males respectively. However, the sexing accuracy parameter 
(𝛿H11) reduces the sex bias accordingly. As a consequence of the reduced 
fertility of sexed sperm, the IE is assumed to increase in the model when 
sexed sperm is used. This both affects the number of calves being born in a 
year due to the (involuntarily) prolonged calving interval, as well as the input 
costs per successful sexing insemination. 
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Table S1: Assumed static input parameters for the FarmDyn model. 

Parameter Value Source 

Births per lactations 0.98 KTBL (2018) 

Living calves per birth 1.04 KTBL (2018) 

Calf losses (%) 5 KTBL (2018) 

Average cow weight (kg) 580 KTBL (2018) 

Dressing percentage old cow (%) 50 KTBL (2018) 

Price old cow (€/kg meat) 2.15 KTBL (2018) 

Fat content milk (%) 4.1 KTBL (2018) 

Protein content milk (%) 3.4 KTBL (2018) 

Milk price (€/kg ECM) 0.32 KTBL (2018) 

Concentrates, 12% crude protein, 
(€/t) 

220 KTBL (2018) 

Concentrates, 18% crude protein, 
(€/t) 

230 KTBL (2018) 

Concentrates, 18% crude protein, 
(€/t) 

270 KTBL (2018) 

Soybean meal (€/t) 338 KTBL (2018) 

Dystocia risk bull calves, cows (%) 7 McCullock et al. 
(2013) 

Dystocia risk bull calves, heifers (%) 24 McCullock et al. 
(2013) 

Dystocia risk heifer calves, cows (%) 4 McCullock et al. 
(2013) 

Dystocia risk heifer calves, heifers 
(%) 

14 McCullock et al. 
(2013) 

Dystocia risk beef calves, cows (%) 8 McCullock et al. 
(2013) 
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Dystocia risk beef calves, heifers (%) 25 Assumption based on 
McCullock et al. 
(2013) 

Loss from dystocia score > 3, cows 
(€) 

73 McCullock et al. 
(2013) 

Loss from dystocia score > 3, heifers 
(€) 

93 McCullock et al. 
(2013) 
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Figure S2: Profit maximizing share of female sexed dairy semen used on all 
inseminations (upper part), compared to the share of beef semen (sum of 
sexed beef semen and conventional semen) used on all inseminations 
(bottom part) in the North Rhine-Westphalian study population. Each dot 
represents a farm in the sample population. The color of the dots display the 
required additional insemination effort when sexed semen is used. 

7.2 Appendix Chapter 3 

The GAMS code of the Fruchtfolge model used in the article can be 
downloaded under the following permanent URL: 

https://zenodo.org/badge/latestdoi/149515311 

7.3 Appendix Chapter 5 

Table A1: Assumed waiting periods per crop and resulting maximum crop 
shares in the rotation. Source: Baeumer (1990). 
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Crop Waiting 
period 

(years) 

Maximum crop 

share (%) 

Field beans 4 20% 

Wheat 0.5 66% 

Rye 0.5 66% 

Barley 0.5 66% 

Maize - Corn 0 100% 

Rapeseed 4 20% 

Sugarbeets 4 20% 

Maize - Silage 0 100% 

Oats 0.5 66% 
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Figure A1: Histograms of differences in indicator values between the results 
of both the ‘aggregate’ (blue) and ‘categorized’ (orange) land endowment 
approach compared to the results of the ‘single plot’ approach. 
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The average, summed difference in crop shares between the ‘categorized’ 
approach and the ‘single plot’ approach is 11.17% (median: 2.24%, S.D.: 
19.65), while the average difference in workload is 10.8% (median: 7.56%, 
S.D.: 11.86%). The difference in cumulative energy requirement is on 
average -2.03% (median: 0.4%, S.D.: 7.39%). Compared to the ‘aggregate’ 
approach, the average difference in profit is slightly lower, with an average 
profit difference of -1.8 €/ha, a median difference of -15.48 €/ha and a S.D. 
of 73.06 €/ha. A positive difference in profit indicates that simulated profits 
for a farm are higher in the ‘aggregate’ approach compared to the ‘single 
plot’ approach, and vice versa.  
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Figure A2: Pearson correlation coefficients between farm characteristics and 
difference in indicator values for the different land endowment approaches. 
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Table A2: Standardized regression results for different indicators comparing 
the BEFM simulations results from the ‘categorized’ and 'single plot' land 
endowment approach. 

 
Dependent variable: 

 OLS 

 ‚Categorized‘ vs ‚single plot‘ 

 Summed diff. in crop 

shares (%) 

Diff. work load 

(%) 

Diff. profit 

(€/ha) 

Diff. CER 

(%) 

Mean plot radius farm 

[km] 
0.173*** -0.040*** 0.115*** -0.170*** 

Dev. plot radius farm 

[km] 
-0.117*** 0.095*** -0.080*** 0.100*** 

ln(Number of plots [n]) -0.752*** -0.276*** -0.647*** 0.649*** 

Mean plot size farm [ha] 0.021* -0.248*** 0.217*** -0.011 

Dev. plot size farm [ha] 0.138*** 1.015*** -0.284*** -0.052*** 

Mean soil quality farm 

[SQR] 
0.039*** 0.026*** 0.067*** -0.160*** 

Dev. soil quality farm 

[SQR] 
0.028*** 0.001 0.016* 0.055*** 

Constant 0.000 0.000 0.000 -0.000 

Observations 8,509 8,509 8,509 8,509 

R2 0.502 0.684 0.477 0.399 

Adjusted R2 0.501 0.684 0.477 0.399 

Residual Std. Error (df 

= 8501) 
0.706 0.562 0.723 0.775 
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F Statistic (df = 7; 8501) 1,222.284*** 2,629.876*** 1,109.137*** 807.859*** 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Table A3: Regression coefficients presenting the influence of the soil quality rating (SQR) on the yield of a crop. 
 

Depedent variable: 
 

Yield 
 

OLS 
 

Fieldbeans    Wheat    Rye    Barley    Maize - 
Corn    

Rapeseed    Potatoes    Sugarbeets    Maize - 
Silage    

Summer 
oats    

SQR  0.264*** 
(0.026)   

 0.553*** 
(0.047)   

 0.265*** 
(0.056)   

 0.580*** 
(0.040)   

 0.486*** 
(0.086)   

 0.198*** 
(0.027)   

 4.676*** 
(0.392)   

 1.977*** 
(0.608)   

 1.743*** 
(0.456)   

 0.316*** 
(0.046)   

Constant  18.660*** 
(1.580)   

 42.012*** 
(2.992)   

 39.906*** 
(3.406)   

 27.468*** 
(2.448)   

 64.773*** 
(5.407)   

 25.065*** 
(1.757)   

 123.584*** 
(24.720)  

 616.356*** 
(38.244)  

 335.873*** 
(29.087)  

 27.276*** 
(2.809)   

Observations 306    306    306    306    306    306    306    306    306    306    

R² 0.247    0.309    0.068    0.404    0.095    0.150    0.319    0.034    0.046    0.132    

Adjusted R² 0.245    0.307    0.065    0.402    0.092    0.147    0.317    0.030    0.043    0.129    

Residual Std. Error 1.294(df = 
304) 

1.186(df = 
304) 

1.315(df = 
304) 

1.186(df = 
304) 

1.100(df = 
304) 

1.000(df = 
304) 

1.146(df = 
304) 

1.125(df = 
304) 

1.243(df = 
304) 

1.326(df = 
304) 

F Statistic 99.874(df = 
1;304) 

136.056(df = 
1;304) 

22.135(df = 
1;304) 

205.821(df = 
1;304) 

32.057(df = 
1;304) 

53.757(df = 
1;304) 

142.501(df = 
1;304) 

10.573(df = 
1;304) 

14.612(df = 
1;304) 

46.362(df = 
1;304) 

Note: *p<0.1; **p<0.05; ***p<0.01 

  

 


