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Summary 

 

New and innovative bio-based products of today are regularly inspired by a long-known 

and traditional use of plants. One such example is the taste modifying phyllodulcin (PD), a 

dihydroisocoumarin (DHC) only present in tea-hortensias (Hydrangea macrophylla subsp. ser-

rata). For industrial applications of DHCs like PD or its precursor hydrangenol (HG) in the 

field of innovative taste-modifying solutions or medicine, establishment of cultivation on a 

large scale and selection of best cultivars are needed. Therefore, a targeted quality-assessment 

towards DHC content and plant performance to optimize yield is imperative. 

Experiments on tea-hortensia cultivation at INRES – Renewable Resources and Campus Klein-

Altendorf, Germany revealed that while ornamental Hydrangea benefits from shading, sun ex-

posure does neither influence biomass accumulation nor HG and PD in tea-hortensias. Still, 

higher symptoms of stress under high sun exposure were detected via non-invasive phenotyp-

ing. This trial was the first to indicate that HG and PD are genetically predetermined but not 

significantly affected by external stressors except for seasonal changes. 

Investigations of 12 sub-experiments within the second major experiment were used to develop 

a chemometric marker for the conversion of HG into PD. Analogue to Vegetation Indices, the 

chemometric Normalized Difference Phyllodulcin Index (cNDPI) could be a reliable and accu-

rate tool for quantifying HG-into-PD conversion with utilization as a marker in plant breeding.  

In order for farmers to identify optimized harvest dates, a third experiment investigated the 

possibilities of non-invasive measurements to quantify HG and PD contents via hyperspectral 

modeling. While highly accurate models on a single-leaf scale were not obtained, approxima-

tions on a field-scale showed great potential.  

The achieved results allow for a quality-assessment via non-invasive methods. Thus, environ-

mental and management-related factors can be evaluated while parallelly estimating the quality 

of plant material in regard to PD content and synthesis (cNDPI). In the future, the combination 

in one hand-held spectrometer could bring all three compartments together to provide a holistic 

assessment of plant traits for farmers and breeders working with tea-hortensias. 

 

 

 



 

5 

 

Zusammenfassung 

 

Lang bekannte und traditionelle Verwendungen von Pflanzen dienen heutzutage oftmals 

als Inspiration für neue und innovative biobasierte Produkte. Ein Beispiel hierfür ist das ge-

schmacksmodulierende Phyllodulcin (PD), ein Dihydroisocumarin (DHC), das nur in Teehor-

tensien (Hydrangea macrophylla subsp. serrata) vorkommt. Für industrielle Anwendungen von 

DHCs wie PD oder seinem Vorläufer Hydrangenol (HG) im Bereich innovativer geschmacks-

verändernder Lösungen oder der Medizin sind die Etablierung eines Anbaus in großem Maß-

stab sowie die Auswahl der geeignetsten Kultivare erforderlich. Daher ist eine gezielte Quali-

tätsbewertung im Hinblick auf den DHC-Gehalt und die Performance der Pflanzen zur Opti-

mierung des Ertrags unerlässlich. 

Experimente zum Anbau von Teehortensien am INRES – Nachwachsende Rohstoffe und Cam-

pus Klein-Altendorf, Deutschland, zeigten, dass die Zierhortensie von Beschattung profitiert, 

während die Sonneneinstrahlung weder Biomasseakkumulation noch HG und PD der Teehor-

tensien beeinflusst. Dennoch wurden mittels nicht-invasiver Phänotypisierung stärkere Stress-

symptome bei starker Sonneneinstrahlung festgestellt. Dieser Versuch war der erste, der darauf 

hindeutet, dass HG und PD genetisch determiniert sind und durch externe Stressfaktoren, mit 

Ausnahme von saisonalen Veränderungen, nicht signifikant beeinflusst werden. 

Die Untersuchungen von 12 Unterexperimenten innerhalb des zweiten Hauptversuchs wurden 

genutzt, um einen chemometrischen Marker für die Umwandlung von HG in PD zu entwickeln. 

Analog zu Vegetationsindizes könnte der chemometric Normalized Difference Phyllodulcin 

Index (cNDPI) ein zuverlässiges und genaues Instrument zur Quantifizierung der Umwandlung 

von HG in PD sein und als Marker in der Pflanzenzüchtung eingesetzt werden.  

Damit Landwirte optimale Erntetermine ermitteln können, wurden in einem dritten Versuch die 

Möglichkeiten nicht-invasiver Messungen zur Quantifizierung des HG- und PD-Gehalts mittels 

Modellierung basierend auf Hyperspektraldaten untersucht. Während präzise Modelle im Ein-

zelblattmaßstab nicht erreicht wurden, zeigten Abschätzungen für den Feldmaßstab großes Po-

tenzial.  

Die erzielten Ergebnisse ermöglichen eine Qualitätsbeurteilung mittels nicht-invasiver Metho-

den. So können umwelt- und managementbezogene Faktoren bewertet werden, während gleich-

zeitig die Qualität des Pflanzenmaterials im Hinblick auf PD-Gehalt und -Synthese (cNDPI) 

abgeschätzt werden kann. In Zukunft könnte die Kombination in einem Handspektrometer alle 

drei Bereiche zusammenführen, um Landwirten und Züchtern, im Bereich der Teehortensien, 

eine ganzheitliche Bewertung von Pflanzenmerkmalen zu ermöglichen. 
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Abbreviations 

 

2D Two-Dimensional 

3D Three-Dimensional 

Al Aluminum 

AMP Adenosin Monophosphate 

ANOVA Analysis of Variance 

ARI1 Anthocyanin Reflectance Index 1 

BMEL Federal Ministry of Food and Agriculture 

C Carbon 
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cNDPI chemometric Normalized Difference Phyllodulcin Index 

CO2 Carbon Dioxide 
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E Environment 
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G Greenness Index 

H Hydrogen 
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HPLC High Performance Liquid Chromatography 
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K Potassium 

LAI Leaf Area Index 

LUE Light Use Efficiency 

MCARI1 Modified Chlorophyll Absorption in Reflectance Index 1 
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MLR Multiple Linear Regression 

Mn Manganese 

MRI Magnetic Resonance Imagers 

N Nitrogen 
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NIPALS Non-Linear Iterative Partial Least Squares 
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O Oxygen 
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p Prediction Set 

PAR Photosynthetic Active Radiation 

PD Phyllodulcin 

PET Positron Emission Detectors 

PKS Polyketide Synthase 

PLS Partial Least Square 

PLSR Partial Least Square Regression 

PPFD Photosynthetically Active Photon Flux Density 

PRESS Predicted Residual Sum of Squares 

PRI Photochemical Reflectance Index 

PRI Photochemical Reflectance Index 

P-Spline Penalized Basis Spline 

PSRI Plant Senescence Reflectance Index 
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r Correlation Coefficient 

R² Coefficient of Determination 

REIP1 Red-Edge Inflection Point 1 

RMSE Root Mean Square Error 

S Sulfur 

S1–S8 Supplementary Material 1–8 for Chapter 2 

SD Standard Deviation 

SE Sub-Experiment 

SG Savitzky-Golay 

SIPI Structure Insensitive Pigment Index  

SNV Standrd Normal Variate 

SWIR Sort Wavelength Infrared 

total Overall Model 

UAV Unmanned Aerial Vehicle 

UPLC Ultra Performance Liquid Chromatography 

UV Ultra Violet 

UV-A Radiation from 380–315 nm 
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UV-C Radiation from 280–100 nm 

v Validation Set 

VI Vegetation Index 

VIP Variable Influence on Projection 

VIS Visual Light Spectrum 

VOC Volatile Organic Compounds 

X Predictors 

y Response 
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Chapter 1 – General Introduction 

 

Over time, numerous innovative renewable resources were researched and developed. Some of 

those plants were formerly used as ornamental plants or were not cultivated at all, as only wild 

forms were collected. One of these innovative renewable resources is the “tea-hortensia” (Hy-

drangea macrophylla subsp. serrata) that gained industrial interest because of their secondary 

metabolites hydrangenol (HG) and phyllodulcin (PD). For the successful cultivation of tea-

hortensia, profound knowledge on physiological effects of cultivation is imperative. Therefore, 

non-invasive plant phenotyping can be beneficial to quantify plant responses. This general in-

troduction builds the foundation for the in-depth scientific details presented in the following 

chapters and ends on the research objectives of this thesis. 

1.1 Development towards new renewable resources 

Renewable resources are defined as crops that are used for purposes other than food production 

(Eggersdorfer et al., 1992). They recently gained more attention as a mitigation strategy in re-

gard to climate change (Owusu and Asumadu-Sarkodie, 2016), even though some critique about 

social pressure in regard to renewable resources can be put forward (Tavoni et al., 2012). Still, 

plants that are used as renewable resources are impacted by climate change as well (Gernaat et 

al., 2021). In addition to a sole use of whole plants, plant compartments like leaves can be used 

as packing materials (Kora, 2019). New and innovative ways to utilize known plants is a key 

field of research towards new plants as renewable resources. One prominent example is Mis-

canthus, a perennial C4 grass that can be used in material production (Moll et al., 2020). Before 

its usage as a renewable resource, Miscanthus is long known as an ornamental plant with low 

input requirements, a broad climate tolerance, and a multitude of different cultivars (Dougherty 

et al., 2014). The way of plants being used as ornamentals and later finding use as renewable 

resources is a common one. Maybe the most prominent examples of plant species that are being 

used as ornamentals and renewables are rose (Rosa L.), poppy (Papaver L.), and crocus (Crocus 

sativus L.). The latter is prominently known as feedstock for saffron, the red stigma of the 

crocus plant. Saffron is the most expensive spice worldwide and known as the “king of the 

spices” (Cardone et al., 2020). Besides that, medicine, dye, and perfume were also products 

made of saffron, but nowadays the food and spice utilization is prioritized (Basker and Negbi, 

1983) with the largest area of cultivation being in Iran, Spain and India (Negbi, 2005). Poppy 

is one of the oldest medicinal plants, prominently used for opium production. Still, poppy con-

tains a large number of interesting constituents and is used as an ornamental plant (Duke, 1973) 
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while content and composition of Papaver somniferum oil and seeds are highly influenced by 

variety used (Luhmer et al., 2021). Roses as renewable resource are mainly used for oil and 

seeds (Özcan, 2002) and are rich in essential oils, as well as phenolics, flavonoids, and carote-

noids (Ghazshazi et al., 2010). The usage as feedstock for essential oils puts forward some key 

challenges, as essential oil content and composition are heavily affected by external effects 

(Baydar and Baydar, 2005). 

Aromatic plants are a distinct group within the renewable resources. Other names for aromatic 

plants are “herbs” or “spices” with some examples being anise (Pimpinella anisum) basil ( Oci-

mum basilicum) oregano (Origanum vulgare) and rosemary (Salvia rosmarinus or synony-

mously Rosmarinus officinalis) (Christaki et al., 2012) and are also used as ornamentals (Bertoli 

et al., 2010; Rinaldi et al., 2014). Besides their usage in the food sector or ornamental plants, 

aromatic plants fulfill a wide range of industrial applications, ranging from essential oil pro-

duction, dye and colorant production, cosmetics, and plant protection products or the use as 

medicinal plants (Lubbe and Verpoorte, 2011). Aromatic plants are often closely linked to me-

dicinal plants (Rao et al., 2004; Bogers et al., 2006; Lubbe and Verpoorte, 2011). The medicinal 

use results from the potential use of extracts and essential oils from aromatic plants (Christaki 

et al., 2012) and could even provide potential benefits against COVID-19 (Mani et al., 2020). 

To advance towards new genotypes in the spectrum of aromatic and medicinal plants, multiple 

strategies are applicable. First, the natural biodiversity with its natural mutations sets the foun-

dation and is followed by targeted selection. Crossing (inter- and intraspecific) and polyploidi-

zation are profound tools to improve plant traits and therefore plant performance. Lastly, ge-

netic engineering can be applied to generate new genotypes in aromatic and medicinal plants 

(Bernáth, 2002). For high-quality production, intercropping and agroforestry systems can be 

beneficial for the cultivation of aromatic and medicinal plants and simultaneously being envi-

ronmentally friendly in comparison to monoculture (Rao et al., 2004). One of the environmental 

benefits is biodiversity, that is irreversibly linked to functional and sustainable agroecosystems 

(Altieri, 1999) and the interaction of pollinator-plant networks (Blüthgen and Klein, 2011).  

As mentioned above, plant-based aroma and taste are important characteristics for the food 

industry. A 2015 review article illustrated the importance of medicinal and aromatic plants in 

poverty reduction in developing countries due to high product value. This high value leads to 

medicinal and aromatic plants being highly interesting in business developments (Kala, 2015) 

as their return on investment is much higher than for traditional crops (Mittal and Singh, 2007). 

A prominent functional component that fulfilled the new arising demand of plant-based sweet-

eners introduced into the food industry was Stevia rebaudiana (Savita et al., 2004) with its 
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steviol glycosides (Tanaka, 1982). Stevia as a sugar substitute for diabetics is safe, as blood 

sugar levels are not affected. Additionally, there are no side effects that can be attributed to 

artificial sweeteners. As other aromatic plants, Stevia possesses multiple positive side effects 

that make it interesting for herbal medicines (Goyal et al., 2010). As Stevia gained popularity, 

further optimization was carried out by using mutation, polyploidy, and heterosis breeding to 

improve plant quality and expression of desired plant traits and bioactive functions (Yadav et 

al., 2011). Generally, consumer acceptance of Stevia-based products is high when being in-

formed about it (Kamarulzaman et al., 2014; Saharudin et al., 2020). Still, the acceptance of 

agricultural products is of mayor importance, as food production is more and more seen as a 

black box for consumers (Siegrist and Hartmann, 2020). On the other hand, chocolate-milk 

sweetened only with stevia in comparison to sucrose only and sucrose-stevia mixtures showed 

that acceptance of stevia-only sweetened chocolate milk was significantly lower (Bordi et al., 

2016). A bitter and licorice after taste of Stevia-derived sweeteners is one key limitation for its 

usage in beverages and other products (Bawane Adesh et al., 2012). Additionally, high prices 

as well as the perception of established synthetic sweeteners as being healthy and safe are hard 

to overcome for natural products to replace synthetics (Neacsu and Madar, 2014). Two primary 

types of consumers were identified (1. Label-conscious and 2. Flavor-driven). Based on this, 

natural products would benefit immensely by labels to establish their market share (Parker et 

al., 2018). Even though the terms “artificial” and “synthetic” are generally connotated nega-

tively, synthetic flavor solutions could still be a targeted and well-designed product for specific 

purposes (Ulloa, 2018). Besides natural sweeteners and taste-modifiers, synthetically derived 

sweeteners are found numerously, ranging from Acesulfame-k, to Xylitol (Chattopadhyay et 

al., 2014). Besides sweeteners, other taste-modifying solutions are commonly known. The most 

prominent example in the western world is monosodium glutamate associated with the taste of 

Umami (Bellisle, 1999). Besides known taste-modifying solutions, a new plant-based constitu-

ent gains further interest: phyllodulcin, a dihydroisocoumarin that is only present in some Hy-

drangea cultivars being traditionally used as a ceremonial tea in Japan. The history-related 

overview will be presented in Chapter 2. The general introduction to the Hydrangea and sec-

ondary plant metabolites will be given in Chapters 1.2 and 1.3 respectively. 

 

A multitude of plants are known to combine their ornamental usage with indus-

trial applications. One representative of these plants is the hortensia – Hydrangea 

macrophylla and its subspecies H. macrophylla subsp. serrata 
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1.2 Introduction to the Hydrangea species 

More than 10 million hortensias are sold in the US alone each year, with around 1,000 species, 

hybrids and cultivars (Fulcher et al., 2016). Generally, the Hydrangea is one genus of the Hy-

drangeaceae. According to Takhtajan, 2009, the taxonomy can be illustrated as follows: 

➢ Phylum  Magnoliophyta (Flowering Plants) 

➢ Class   Magnoliopsida (Dicotyledons) 

➢ Subclass VII  Asteridae 

➢ Superorder  Cornanae 

➢ Order 108  Loasales (Hydrangeales) 

➢ Familiy 1  Hydrangeaceae 

One of the most prominent examples within the family of Hydrangeaceae is the Hydrangea 

macrophylla (Dirr, 2004). Hydrangea macrophylla expresses a decussate phyllotaxis. Plants 

with a terminal inflorescence have 6–12 nodes, H. macrophylla without inflorescence 10–20 

nodes. Internode length varies according to the plant’s height (Zhou and Hara, 1988). One sub-

species of H. macrophylla is H. macrophylla subsp. serrata, also called “tea-hortensia” that 

will be introduced in more detail in the introductory parts of the following chapters.  

1.2.1 Flowering 

Hydrangea are well known for their impressive flowers. The color of flowers is mainly depend-

ent on the total amount of Al in the soil and soil pH that affects the accessibility of aluminum 

(Al). Low soil pH (4.5–5.5) leads to blue flowers due to higher Al accumulation while higher 

soil pH results in pink flowers (Yeary and Fulcher, 2013). Most H. macrophylla cultivars flower 

in early summer, some throughout the growing period. Some cultivars will not produce blue 

flowers even given the right framework of soil-pH (4.4–5.5) and total Al (Halcomb and Reed, 

2012; Yeary and Fulcher, 2013). General blooming characteristics are cultivar dependent 

(Weiler, 1980). Anthocyanin content in the sepal is no sufficient indicator for the flowers col-

oring, because the latter is mainly dependent on abiotic environmental factors, e.g. pH, Al-

availability, light exposure (Hariri and Balqis, 2013). Besides photoperiod, air humidity, nutri-

ents, irradiance, and temperature supposedly affect the number and quality of flowers (Eid et 

al., 2016) while plants with a high amount of leafy biomass and thick stems are more likely to 

induce blossoms (Struckmeyer, 1950). If not completely sterile, mophead and lacecap horten-

sias express sterile flowers on the outside and fertile flowers on the inside of the umbel. This 

was shown to be highly dependent on cultivars as well (Reed, 2005). The sterile decorative 

flowers were mainly developed to attract pollinators and are highly specific in different Hy-

drangea species and cultivars (Wong Sato and Kato, 2019). Generally, the mainly sterile sepals 
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of Hydrangea macrophylla do not attract pollinators like bees the way other flowering plants 

do (Mach and Potter, 2018).  

1.2.2 Shaping and pruning 

Regarding growth and flowering different cultivars react differently to environmental factors 

(e.g. day-length, irradiance etc.). It is advised to choose the cultivar accordingly and adjust the 

micro-climate to be as fitting as possible (Nordli et al., 2011). In order to keep a Hydrangea in 

shape only little pruning has to be done to allow for a better light-transmission and air circula-

tion between the leaves without depression of growth (Yeary and Fulcher, 2013). Hydrangea 

can be cultivated in containers or in the field. Independent of the cultivation system, the sub-

strate has to be well-drained in order to prevent waterlogging (Owen et al., 2016). For the pro-

duction of container-grown plants with high biomass accumulation, larger container sizes are 

advised, as these lead to higher biomass production (Poorter et al., 2012) which was separately 

investigated for Hydrangea as well (Artetxe et al., 1997) as bigger pots also influence the shoot–

root ratio and promotes flower initiation. Contrary, the smaller the pot, the more leaves were 

found in the bud. (Yeh and Chiang, 2001). Not only pot size, but pot composition influences 

plant performance, as bioplastic pots showed a more uniform root-growth in the pot as well as 

larger and darker leaves, in comparison to petroleum pots, which might be caused by light 

transmission through the pot into the growing medium (Huda and Roh, 2014).  

1.2.3 Nutrient and water requirements 

Symptoms of nutrient deficiencies are not yet clearly defined for different Hydrangea cultivars. 

Still, there are some indicators that are generally recognized. Owen et al. compiled a list of 

deficiency symptoms for Hydrangea. Nitrogen (N) deficiencies lead to chlorotic, or more yel-

low older leaves that might express dying tips. Younger leaves will express red leaf margins 

and grow smaller. Young leaves express shortened growth when being exposed to phosphorus 

(P) deficiencies, while older leaves start to express a purple color. Potassium (K) deficiencies 

lead to leaf necrosis and slim leaves. A lack of magnesium (Mg), manganese (Mn) or iron (Fe) 

leads to interveinal chlorosis. Calcium (Ca) deficiency can be recognized by light green to yel-

low leaves that might be necrotic or disformed. A shortage in sulfur (S) is relatively similar to 

the one of N. Additionally, the shoot elongation will be reduced which leads to shorter inter-

nodes. Profound levels of S deficiencies lead to defoliation (Owen et al., 2016). High amounts 

of N (210 mg/L and 280 mg/L) led to highest plant biomass, height, number and size of flowers 

as well as leaf area and chlorophyll content. Still concentration and time of application need 

further investigation (Bi et al., 2008). Hydrangea can be grown on marginal soils, although 
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ideal growing parameters are a moist but not waterlogged soil with high amounts of organic 

matter. Over-irrigation can cause serious damage to the roots (e.g. root rot) and lead to a short-

age in growth (Yeary and Fulcher, 2013). Water restriction leads to plants with less leafy bio-

mass (g/plant and leafs/plant), a lower leaf area and a lower average height (Morel, 2001).  

Plant age, leaf area and light intensity influence the water needed by the plant. Using a water 

supply-model from one year to predict the next years water supply needed showed to be chal-

lenging. This is mainly due to variations in plant growth and irradiance and might lead to dras-

tically performed over or under irrigation (O'Meara et al., 2013). Different species react differ-

ently on the drying of the soil. Water availability of Hydrangea macrophylla as well as soil 

media have to be considered when trying to find their optimal irrigation regimen (O’Meara et 

al., 2014). 

1.2.4 Sun exposure and cold hardiness 

Sunshine is needed for Hydrangea cultivation but can lead to wilting if the plants are exposed 

to direct sunshine. Shading is advised whereas to much shade will decrease the number of flow-

ers produced. High amounts of N will do the same thing but additionally increase the leafy 

biomass (Yeary and Fulcher, 2013). Still, different cultivars show different levels of sun toler-

ance (Rinehart et al., 2008) and most favour a cool placement that still allows for enough light 

to reach the plant (Weiler, 1980).  

Hortensias require a cold period (chilling) in order to develop a flower bud. Forcing is possible 

and leads to an increase in plant height under short day conditions. Under long day photoperiods 

forced Hortensias grow smaller than unpinched ones (Anderson et al., 2009). A cold period of 

four weeks is sufficient to produce plants with good quality parameters in flowering and plant 

height, although some cultivars show better results after three weeks of cooling period (Vidalie, 

1986). In USDA climate zone 6 (-23.3°C to -17.8°C) the lack of cold hardiness leads to a dam-

aging of the flower buds which results in a decreased number of flowers. Even in USDA climate 

zone 7 (-17.8 to -12.2°C) late spring freezes may cause damage in flower buds (Reed, 2000). 

Generally, H. macrophylla can survive in the USDA climate zones 5B to 9A and can grow up 

to 0.9–1.8 m in height and diameter. H. macrophylla requires shade, shows moderate drought 

tolerance and low soil-salt tolerance. 0.9–1.52 m of plant spacing are required for optimal 

growth (Gilman, 1999). Hydrangea is also referred to being cold hardy in zones 6–9, and grow-

ing between 0.9–1.8 m, reaching even up to 3 m while being as wide as high or wider (Halcomb 

and Reed, 2012). In comparison to H. paniculata, H. macrophylla is prone to chilling injuries. 

For both species, temperatures of presumably less than 4°C are needed to start the development 

of cold hardiness (Pagter et al., 2008).  
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1.2.5 Pests and diseases 

Crop losses can be caused by two separate factors, abiotic and biotic factors. Abiotic impacts 

on plant performance are irradiation, nutrient supply, temperature, and water supply, while bi-

otic impacts are more diverse but can be summarized into animal pests, pathogens (e.g. fungi, 

bacteria, viruses), and weeds (Oerke, 2006). Shading-effects on resistance towards leaf-spot 

diseases were measured under three shading regimens: full shade, full sun and partial shade. H. 

macrophylla subsp. serrata was “moderately resistant” or “resistant” to leaf-spot diseases under 

full shade. The data collected indicates that H. macrophylla subsp. serrata is slightly less sus-

ceptible to leaf-spot diseases than H. macrophylla subsp. marcophylla (Li et al., 2016). Pow-

dery mildew and bacterial and fungal-caused leaf spots are common diseases in Hydrangea, 

while optimized pruning techniques offer feasible mitigation strategies. Furthermore, several 

ring spot viruses can occur. If the soil is waterlogged root rot can become a problem. Arthropod 

pests like aphids, japanese beetles, leaf tiers, rose chafers and spider mites rarely cause signifi-

cant damage. (Yeary and Fulcher, 2013). Resistant H. macrophylla subsp. serrata cultivars 

against powdery mildew are ‘Amagi Amacha’, ‘Diadem’, ‘Komachi’, ‘Omacha’ and ‘Shi-

rofuji’. ‘Blue Bird‘, ‘Coerulea’, ‘Grayswood’, and ‘Intermedia’ are highly susceptible to pow-

dery mildew (Windham et al., 2011).  

In their collection “Diseases of Hydrangea” Hagan and Mullen collected the most typical dis-

eases that are recorded for Hydrangeas: anthracnose, armillaria root rot (mushroom root rot), 

botrytis blight (also known as gray mold), cercospora leaf spot (also reported by Yoshikawa 

and Yokoyama, 1992 and Nakashima et al., 2010), Phytophthora root rot and powdery mildew 

(Hagan and Mullen, 2001). A similar list was published by Baysal-Gurel, Kabir and Blalock in 

2016: Anthracnose, Alternaria Leaf Spot, Botrytis Blight, Cercospora Leaf Spot, Phyllosticta 

Leaf Spot, Powdery mildew and Rust. In addition, the authors listed bacterial and viral diseases. 

In the first category bacterial leaf spot and bacterial wilt were classified as important, but mainly 

infect H. quercifolia, H. macrophylla and H. arboreacens. In the latter category there are 15 

different viruses listed: Alfalfa mosaic virus, Arabis mosaic virus, Cherry leaf roll virus, Cu-

cumber mosaic virus, Hydrangea mosaic virus, Hydrangea latent virus, Hydrangea ringspot, 

Hydrangea chlorotic mottle virus, Impatiens necrotic spot virus, Tobacco necrosis virus, To-

bacco rattle virus, Tobacco ringspot virus, Tomato blackring virus, Tomato ringspot virus and 

Tomato spotted wilt virus (Baysal-Gurel et al., 2016). Hydrangea ringspot virus, alfalfa mosaic 

virus and tobacco ringspot virus occur on different Hydrangea species and mainly infect certain 

cultivars (Chiko and Godkin, 1986). Significant pests during Hydrangea production are spider 

mites (Tetranychus kanzawai), as well as garden thrips (Frankliniella intonsa), and aphids 
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(Aphis gossypii) that cause enough damage to be eligible for plant protection techniques (Ma et 

al., 2015). 

Besides pests and diseases known for a long time, new ones are constantly found. Thus, Ram-

ularia hydrangeicola, causing leaf spots on H. serrata f. acuminata was first described in 2016 

(Park and Shin, 2016). Recently, Telimena hydrangea, a tar spot fungus was described (Mar-

dones et al., 2018) as well as the the population dynamics of Tetranychus kanzawai (kanzawa 

spider mite) by Gotoh and Gomi (Gotoh and Gomi, 2000). 

1.2.6 Propagation 

There are mainly three ways of propagation for Hydrangea species, each presenting its own 

advantages and disadvantages: Propagation by seeds, stem cuttings, and micropropagation. 

Propagation by seeds is mainly used for breeding and selection for specific plant characteristics. 

The handling of the very small seeds can be rather challenging. Generally, no pre-treatments 

are needed for Hydrangea species to germinate within 10–30 days. Germination speed can be 

increased by stratification for 30–90 days. Seeding in a greenhouse under controlled humidity 

is advised (Owen et al., 2016). Besides other parameters (e.g. soil parameters), the date of cut-

ting is of mayor importance when propagating Hydrangea via cuttings. Softwood cuttings are 

a lot more likely to root (80% rooting) and produce longer roots (mean 0.9 cm) compared to 

hardwood cuttings (20% rooting; 0.6 cm mean root length) (Park and Kim, 1993). Cuttings 

from end of June grew significantly higher, produced more side branches than cuttings from 

mid of August, and generally reached a higher quality ranking than cuttings from August 

(Midcap, 2005). Soft wood cuttings are ideally collected earlier in the season in order to achieve 

faster growing and robust plants, but might grow asymmetrically in comparison to microprop-

agated plants. Micropropagation allows to produce a high number of symmetrical plants in a 

short time, that show shorter internodes and a full canopy with many branches and a balanced 

root–shoot ratio. Furthermore, micropropagated plants show higher survival rates when being 

transplanted which might be due to more developed root systems and more axilliary buds. 

Downsides of micropropagated plantlets for Hydrangea production are that acclimatization can 

be problematic and the plants are more fragile than plants from seeds or stem cuttings. Addi-

tionally, they require more shade and irrigation when being acclimated (Owen et al., 2016).  
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Hydrangea is mainly known as an ornamental plant and was studied in this regard 

intensively. Some cultivars contain the dihydroisocoumarin phyllodulcin that ena-

bles the plant to be categorized as a taste-modifier within the renewable resources 

as well. 

 

1.3 Introduction to secondary metabolites and dihydroisocoumarins 

The tea-hortensia possesses a unique feature in the synthesis of phyllodulcin, a secondary me-

tabolite which makes it so interesting as an industrial crop. Secondary metabolites in plants are 

frequently affected by biotic and abiotic stressors, e.g. habitat, water and nutrient availability, 

UV radiation or leaf damage (Gobbo-Neto and Lopes, 2007) and play a significant role in de-

fense mechanisms, while being environmentally as well as genetically influenced (Ramakrishna 

and Ravishankar, 2011; Lattanzio, 2013). Light is an important factor in addressing secondary 

metabolites, as not only Photosynthetically Active Radiation (PAR, 400–700 nm) contributes 

to their composition, but Physiologically Active Radiation (300–800 nm) as well (Thoma et al., 

2020). Medicinal plants are rich in secondary metabolites which leads to their usage for phar-

macological purposes (Savithramma et al., 2011). Furthermore, the beneficial contribution to 

health improvement by plant material like cereals, vegetables or fruits is heavily attributed to 

phenolic compounds (Cheynier, 2012; Khoddami et al., 2013).  

Phenolic compounds are an overview term for aromatic substances with an aromatic ring and 

at least one hydroxyl substituent. Phenolic compounds usually occur in glycosides with the 

largest group of phenolic compounds being flavonoids (Harborne, 1973). Phenolic compounds 

are omnipresent in plants (Balasundram et al., 2006) and can be grouped into three categories, 

simple phenols and phenolic acids, derivatives of hydroxycinnamic acid, and flavonoids (Ho, 

1992). Synthesis of phenols is driven by the shikimate/phenylpropanoid pathway which 

branches off to the flavonoid branch pathway or the “polyketide” acetate/malonate pathway 

(Lattanzio, 2013). One compound build via the shikimate-phosphate pathway is coumarin  

(Yang et al., 2018). Isomers of coumarin are called isocoumarins and are grouped according to 

their oxygen or carbon substituents at the lactonic or benzene rings. The saturated analogue of 

isocoumarin is the 3,4-dihydroisocoumarin (DHC): 3,4-dihydro-1H-2-benzo[c]pyran-1-one 

(Saeed, 2016). DHCs are present in bacteria, fungi, marine organisms, and higher plants (Shabir 

et al., 2021). One of these 3,4-dihydroisocoumarins is hydrangenol (HG), which is the precursor 

of phyllodulcin (PD) (Yagi et al., 1977), the main contributor to the taste of the traditional tea 

from H. macrophylla subsp. serrata (Yasuda et al., 2004). The yield of hydrangenol and 
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phyllodulcin can be optimized via targeted post-harvest treatment. Destructive treatment of 

leaves can increase the turnover from phyllodulcin glycosides into their aglycones (Jung et al., 

2016). Additionally, post-harvest treatments (fermentation or freezing) of leaf material can 

counteract negative effects of high drying temperatures (Moll et al., 2021a). Phyllodulcin 

(C16H14O5) holds a lot of synonyms with the most commonly known being (R)-8-Hydroxy-3-

(3-hydroxy-4-methoxyphenyl)isochroman-1-one. While the general pathway of synthesis is 

known, detailed information on enzymes and intermediates remains unclear and further inves-

tigations are needed.  

 

Figure 1. Structural formula of hydrangenol (A) and phyllodulcin (B) according to PubChem,  

visualized using ChemDraw Prime (PerkinElmer Informatics) 

 

As more than 400 isocoumarins are known today (Yin et al., 2010; Saeed, 2016) and multiple 

review articles dealt with their pharmacological as well as taste or flavor properties (Barry, 

1964; Hill, 1986; Pal et al., 2011; Saddiqa et al., 2017). Phenolic compounds in general are a 

major contributor to sensory and nutritional quality of foods (Ho, 1992) and as part of this, the 

same holds true for isocoumarins and dihydroisocoumarins like phyllodulcin (Kim et al., 

2016b). Still, besides the commonly known pharmacological properties, innovative ways of 

usage are an extensive field of research as well (Vaishnav and Demain, 2011). While absorp-

tion, metabolism and excretion of phenolic compounds was researched intensively, other pa-

rameters like impact of food matrix and the combination with other foods as well as nutrients 

is still subject to further research (Velderrain-Rodríguez et al., 2014). 

Spectral methods are well usable for identification and quantification of such structures and is 

possible in the ultra violet (UV) as well as infrared (IR) region (Harborne, 1973). Near infrared 

(NIR) spectroscopy seems to be a promising tool for the determination of phenolic compounds 

(Pissard et al., 2018) by combining a reference method (HPLC, UV-VIS, chemical) with the 

infrared method (Cozzolino, 2015). This quality control in regard of phenolics can be performed 
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in raw materials and finished products in a wide range of cosmetics, food industry, and phar-

maceuticals (Acosta-Estrada et al., 2014). 

 

Secondary metabolites fulfill multiple purposes in plants and can be exploited for 

human use as well. Detection of these metabolites can be performed via laboratory 

analytics and the arising technologies of hyperspectral analysis. 

 

1.4 Non-invasive plant phenotyping 

The possibilities of non-invasive phenotyping form one pillar in the methods used in this thesis. 

From measuring plant biomass to modeling of hydrangenol and phyllodulcin contents, a multi-

tude of techniques were used. In this part, the fundamentals of non-invasive phenotyping are 

presented to lay the foundation for later chapters with their respective practical hands-on meas-

urements in tea-hortensias. 

1.4.1 Introduction and definitions  

The terminology of “phenotyping” is commonly used for the description of the plant phenotype. 

The quantitative description of plant properties (anatomy, ontogeny, physiology, and biochem-

istry) is a key feature of plant phenotyping (Walter et al., 2015). For this work, the definition 

of Fiorani and Schurr will be used as it defines phenotyping as “the set of methodologies and 

protocols used to measure plant growth, architecture, and composition with a certain accuracy 

and precision at different scales of organization, from organs to canopies” with a special focus 

on non-invasive phenotyping (Fiorani and Schurr, 2013). Examples for commonly used de-

structive measurements are root morphology investigations or yield-related parameters (Chilu-

wal et al., 2018). Non-invasive phenotyping aims at combining qualitative and quantitative es-

timations of plant parameters (Mahlein et al., 2019). Generally, two types of non-invasive phe-

notyping are possible: non-imaging and imaging techniques.  

The first group relies on the interaction of light with the plants structures to be measured. Light 

can traverse the leaf (transmittance), be absorbed by chemicals in the leaf (absorbance) or re-

flected by structures of the leaf surface (reflectance) (Mahlein et al., 2018). The light used for 

such applications differs in wavelength depending on the structures that are to be measured, 

ranging from UV, (100-380 nm) (Brugger et al., 2019), to visible (400–780 nm) and infrared 

(800–25,000 nm) light (Cozzolino, 2015; Asgari et al., 2020). Physics of such applications re-

volve around the Kubelka-Munk-Theory while many physical theorems play a role in reflec-

tance spectroscopy (Simmons, 1975; Clark and Roush, 1984) which will not be discussed in 
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this context. Reflectance spectroscopy is not limited to plants or material sciences but is also 

used in human medicine (Wallace et al., 2009). 

The second group (imaging phenotyping) is based on a multitude of different techniques that 

partially overlap with non-imaging techniques as well. A comprehensive overview of imaging 

techniques was given by Li et al. (2014). Imaging techniques can be used in two-dimensional 

(2D) and three-dimensional (3D) formats. 2D uses threshold based, edge based, region based, 

clustering based, or deep learning methods. 3D images on the other hand require a different 

processing, starting with image acquisition and image processing before image analysis final-

izes this procedure (Li et al., 2020). Imaging techniques can be classified in visible light imag-

ing, fluorescence imaging, thermal imaging, near infrared (NIR) imaging, hyperspectral imag-

ing, 3D imaging, and laser imaging. Li et al. incorporate magnetic resonance imagers (MRI), 

positron emission detectors (PET) and X-ray computed tomography (CT) in their review as 

well (Li et al., 2014). This list can be extended for the different sensors used for such applica-

tions as compilated by Qiu et al.: stereo vision systems, lidar/laser sensors, range cameras, spec-

tral sensors and cameras, thermography, fluorescence and ultrasonic sensors as well as ther-

mometers (Qiu et al., 2018). In short, plant phenotyping aims at “uncovering the hyperspectral 

language of plants” (Wahabzada et al., 2016). 

1.4.3 Areas of utility 

Non-invasive and rapid phenotyping provides a profound tool for a lot of applications. A par-

ticularly interesting one is the forecasting of yield and ideal harvest time (Koirala et al., 2019; 

Anderson et al., 2021) as well as food or product quality (Cen and He, 2007; Cozzolino, 2015). 

Yield optimization is the most intensively researched aspect in plant optimization via pheno-

typing (Rascher et al., 2011). Additionally, stress and stress tolerance can be quantified (Chilu-

wal et al., 2018; Fujita et al., 2018). Non-invasive phenotyping allows for the simultaneous 

quantification of parameters to investigate interactions, e.g. stress and photosynthesis (Jansen 

et al., 2009) and presents a promising way in the field of phytopathology (Mahlein, 2016; 

Mahlein et al., 2018) as well as vitality monitoring during plant production (Ruett et al., 2022). 

Investigations on photosynthesis allow for a precise irrigation management and therefore an 

increased water use efficiency (Haworth et al., 2018). Phenotyping is not limited to photosyn-

thesis or yield prediction, but the right equipment also allows for plant height, leaf area index 

(LAI), chlorophyll, water stress, and biomass assessment (Qiu et al., 2018). Based on reflec-

tance spectra, qualitative and quantitative information can be obtained via simple and effective 

algorithms resulting in vegetation indices, or “VIs” in short (Xue and Su, 2017). While the 

computation is simple, the interpretation of such indices requires knowledge of input variables 
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as well as the basics of index calculation. If used correctly, VIs reveal information regarding 

biomass, water status, different stresses and health (Jackson and Huete, 1991). The reflectance 

spectroscopy not only is performed by hand-held devices but can be performed via remote sens-

ing as well (Huete, 2012). By choosing the suited sensor for the respective application, on-farm 

measurements can be performed throughout the day with close to none limitations (Souza et 

al., 2021). 

The linkage of plant phenotype and genotype is a particularly interesting development within 

plant phenotyping (Mishra et al., 2016). Monitoring known traits and discovering new ones 

during plant selection processes is a promising way in plant breeding (Großkinsky et al., 2015a) 

and presents the possibility to close the gap between genotype and phenotype (Großkinsky et 

al., 2015b). Genetic loci for salinity tolerance in rice (Oryza sativa L.) were identified using 

plant phenotyping (Al-Tamimi et al., 2016) while growth related parameters in maize (Zea mays 

L.) were also revealed via non-invasive phenotyping (Muraya et al., 2017). Still, non-invasive 

measurements have to be validated and re-investigated in a lab to ensure quality of measure-

ments. A prominent example of this are photosynthetically active pigments, e.g. chlorophylls, 

carotenoids and tocopherols (Junker and Ensminger, 2016).  

The incorporation of Unmanned Aerial Vehicles (UAVs) solves a fundamental problem in plant 

phenotyping: the time consumption of data collection. Consequently a new problem arises by 

the amount of data: the data processing (Kefauver et al., 2017). Deep learning techniques enable 

extraction of relevant information from complex and multidimensional datasets (Koirala et al., 

2019) by being applicable for identification, classification, quantification, and prediction (Singh 

et al., 2018). The combination of quantitative and qualitative traits can only be successful by 

linking sensor data, machine learning (or other statistical analysis) with the specific knowledge 

on plant traits (Mahlein et al., 2019). This linkage could lead to a cycle from phenotyping, 

computation, analysis to breeding selection to start the next cycle consecutively (Shakoor et al., 

2017). Additionally, networks and collaborations of stakeholders in plant phenotyping are 

needed to provide the highest amount of benefit by maximizing the value of generated data 

(Rosenqvist et al., 2019; Morisse et al., 2022). The investigations of samples in an agricultural 

context are not limited to plants and products but extend to soil properties as well. The latter 

can be quantified using NIR reflectance spectroscopy in combination with adequate statistical 

analysis (Chang et al., 2001). 

As ever new phenotypic markers and phenotyping technologies are developed to understand 

plants better, the following two examples provide an outside-the-box view on phenotyping: the 

emission of volatile organic compounds from plants (Niederbacher et al., 2015) as well as the 
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emitting of sound in the range of 20–100 kHz as shown for drought stress (Khait et al., 2018) 

under stress. Besides the development of new techniques, new and purpose-adapted sensors are 

a key component for the future of plant phenotyping (Pieruschka and Schurr, 2019). Setups 

based of commercially available components can be assembled into a reliable “phenotype col-

lection system” for grow chambers for around $250 (Tsaftaris and Noutsos, 2009).  

 

Plant phenotyping provides a multipurpose toolbox for a wide range  

of applications that enables researchers to answer a wide range  

of scientific questions. 

 

1.5 Importance and research objectives 

The main objective of this thesis is to provide insight into basic cultivation and quality assess-

ment for tea-hortensias, H. macrophylla subsp. serrata. Based on the literature review in Chap-

ter 1, the following chapters go into more detail on the specifics regarding the aspects presented 

in the respective chapters. The investigations are based on multiple experiments presented in 

those chapters.  

First, the effect of shading on three different tea-hortensia cultivars was investigated to evaluate 

the impact of shading on biomass accumulation as well as HG, PD, and DHC contents. For the 

estimation of plant performance, hyperspectral data was used as basis for calculating Vegetation 

Indices. Those VIs allow for a fast and simple estimation of plant health and performance 

(Chapter 2). Additionally, this chapter established basic knowledge on hydrangenol and phyl-

lodulcin contents for the cultivars used throughout this thesis. 

 

 

Hypothesis I and II: 

Tea-hortensia cultivars require shading for optimal productivity 

Cultivars react differently to increased light exposure 
 

 

As a special focus of this study lies on the dihydroisocoumarin phyllodulcin, the dynamics of 

hydrangenol and phyllodulcin are investigated in chapter 3. External effects (abiotic and biotic 
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stress, bio-rationals, etc.) seem to play a minor role as the genetic preposition of PD synthesis 

seems predetermined. In the chain of synthesis, the step from hydrangenol to phyllodulcin is a 

key turning point, as most of H. macrophylla accumulate HG, but only tea-hortensia synthesizes 

PD from it. A quantitative estimation of this conversion is needed and could be highly beneficial 

for plant breeding, as not only total PD content but also the relative conversion from HG to PD 

is a beneficial trait for future crosses with tea-hortensias. This trait can be estimated by calcu-

lating an index of tea-hortensia PD-synthesis, the chemometric Normalized Difference Phyl-

lodulcin Index – cNDPI (chaper 3). After understanding the HG and PD contents in tea-horten-

sia cultivars under different shading levels, this chapter adds the quantification of dihydroiso-

coumarin conversion.  

 

 

Hypothesis III and IV: 

Tea-hortensia cultivars produce HG and PD at different ratios that can be used 

as chemometric marker 

The proposed index “cNDPI” is a feasible and reliable tool for plant selection 

during breeding 
 

 

Besides as basis for the calculation of VIs, hyperspectral data can be used to estimate HG and 

PD contents in the leaves via statistical modeling. This modeling enables a farmer to predict 

optimal harvest dates, as no invasive measurements are to be taken and long-lasting laboratory 

analysis are not needed. The modeling of hyperspectral data is presented in Chapter 4 to inves-

tigate the possibilities and limitations of such models as a decision support for harvesting as 

well as fast estimation of treatment-reaction interaction for research purposes. Additionally, the 

impact of measurement conditions as well as the possibilities of sole cultivar differentiation are 

investigated (Chapter 4).  
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Hypothesis V and VI: 

Measurement conditions influence model accuracy 

VIS-NIR models are suitable to predict HG and PD contents 
 

 

The three research objectives with their six hypotheses lead to the first overview on the possi-

bilities of quality assessment for tea-hortensias and the impact of cultivation techniques. The 

contents of this overview can be seen as first indicators for farmers and producers that want to 

enter the market of dihydroisocoumarin or especially phyllodulcin production and plant breed-

ers for the production of highly productive tea-hortensias. 
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Chapter 2 – Dihydroisocoumarin Content and Phenotyping of Hydrangea 

macrophylla subsp. serrata under different shading regimes 

Marcel Dieter Moll, Alena Sophia Vieregge, Charis Wiesbaum, Maria Blings, Frederik Vana, 

Silke Hillebrand, Jakob Ley, Thorsten Kraska, and Ralf Pude 

In: Agronomy 2021, 11, 1743. https://doi.org/10.3390/agronomy11091743 

Supplementary Material is available online: https://www.mdpi.com/2073-4395/11/9/1743 

 

1. Introduction 

Hydrangea macrophylla subsp. serrata originates in Japan, where it is used as Amacha (which 

is Japanese with 甘い = amai = sweet, 茶 = cha = tea), a sweet-tasting tea in rituals surrounding 

ceremonies on the birthday of the Buddha, Hanamatsuri in Japanese (Yasuda et al., 2004). The 

originally wildly growing plant is nowadays cultivated in smaller gardens (Ujihara et al., 1995). 

Various common names have been proposed for H. macrophylla subsp. serrata, such as San-

soogook, Mountain Hydrangea, Tea of Heaven (Shin et al., 2019) and Amacha (Kawamura et 

al., 2002), to make it more distinguishable from other species of the same genus. 

To distinguish the phyllodulcin (PD)-containing H. macrophylla subsp. serrata from other 

plants from the genus Hydrangea, different parameters are to be considered. First, a taxonomic 

and genetic clarification is needed. The nomenclature of Hydrangea was revised by McClintok, 

as the genus Hydrangea can be found around the world, from eastern Asia to northern America 

as well as tropical regions on the northern and southern hemispheres. Adding to this spreading 

of Hydrangea in connection to a multitude of different cultivars has led to a confusion in the 

nomenclature (McClintock, 1957). This revision concluded 23 species in   the genus of Hy-

drangea. One of these is H. macrophylla subsp. serrata, also known as H. serrata. Additional 

revisions and reviews tried to clarify the status of the genus of the hortensias (e.g., van Gelderen 

and van Gelderen, 2004; Ohba and Akiyama, 2013, 2014)). Whilst the nomenclature is not 

clearly defined, H. macrophylla subsp. serrata seems to be the appropriate nomenclature in 

scientific publications.  Second, on a morphological level, a separation of H. serrata and H. 

macrophylla might be justified. H. macrophylla subsp. serrata seems to be the scientifically 

substantiated nomenclature from a genetic point of view (Reed and Rinehart, 2006). Still, H. 

serrata is used frequently in scientific writings (e.g., Matsuno et al., 2008; Ryu et al., 2010; Yin 

et al., 2010; Meeboon and Takamatsu, 2015; Suyama et al., 2015; Owen et al., 2016) and for 

convenience (van Gelderen and van Gelderen, 2004; Reed and Rinehart, 2006). 

https://doi.org/10.3390/agronomy11091743
https://www.mdpi.com/2073-4395/11/9/1743
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Third, besides the taxonomic clarification, the possible usage for Amacha tea is the main crite-

rion for a Hydrangea to qualify as a H. macrophylla subsp. serrata. The characteristic taste of 

the Amacha is mainly formed by phyllodulcin (PD), a dihydroisocoumarin (DHC) derivate 

(Yasuda et al., 2004). PD yield varies within a cultivar over the year, with the highest reported 

amounts in July, followed by August and June. Additionally, different parts of the plant contain 

different amounts of PD, as sepals of display flowers and buds contain significantly more PD 

than young and old leaves (Ujihara et al., 1995). Dihydroisocoumarins are biosynthetically syn-

thesized, starting from the shikimic acid pathway via coumaric acid as well as from mevalonate 

with a specific PKS-type enzyme with stilbenecarboxylates as intermediates, as reported by 

Kindl (Kindl, 1971). Besides PD, hydrangenol (HG), a precursor of PD (Yagi et al., 1977) that 

is also present in other Hydrangea species (e.g., H. macrophylla ‘Engel’s White’) (Asen et al., 

1960), is of interest in this context. In the context of the present study, the occurrence of PD is 

the main criterion for a Hydrangea to be eligible for grouping as tea-hortensia. 

The lighting regime, and especially UV lighting, is an important factor for improving produce 

quality in horticultural production (Loconsole and Santamaria, 2021). Abiotic stress caused by 

high light intensity can be managed through shading (Ferrante and Mariani, 2018). In commer-

cial Hydrangea production, shading is essential to prevent wilting, but higher levels of shading 

will decrease flowering (Yeary and Fulcher, 2013) or could lead to flower greening 

(Kesumawati et al., 2009). It has been found that in the medicinal plant guaco (Mikania glom-

erata), coumarin content could be increased by reduced UV-A and UV-B radiation (Castro et 

al., 2006). Moreover, short wavelength radiation (UV-C and UV-B) was shown to have an in-

creasing effect on isocoumarins in fresh-cut carrots, which was higher when combined with 

wounding (Surjadinata et al., 2017). This combinatorial effect of PAR and UV in the lighting 

regime on plant growth and DHC synthesis in H. macrophylla subsp. serrata has to be consid-

ered, because light quality as a cultivation factor can be used to control product quality and 

yield (Rouphael et al., 2018). Therefore, it seems possible that light exposure may in part have 

an influence on DHC content and, hence, produce quality. Shading reduces the photosyntheti-

cally active radiation (PAR, 400–700 nm). This reduction is the main criterion to differentiate 

shading materials (Castellano et al., 2008). The reduction of UV radiation limits plant stress 

and promotes healthy and vital plants (Müller-Xing et al., 2014). Shading is used to decrease 

evaporation, control plant growth and manipulate the microclimate by reducing day tempera-

ture, increasing night temperature and affecting water vapor and CO2 concentration (Stigter, 

1984). During the production of ornamental plants, the influence of light scattering, mainly for 

shaping and flowering control, is used (Nissim-Levi et al., 2008). 
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Plant phenotyping provides a tool for health assessment in plants, for example, by monitoring 

leaf traits (Scharr et al., 2015), photosynthesis (Jansen et al., 2009) or stress (Masuka et al., 

2012). Vegetation indices provide information about a multitude of different plant parameters. 

These indices are calculated using different mathematical operations on reflectance spectra 

(Bannari et al., 1995). One of the commonly used vegetation indices is the Normalized Differ-

ence Vegetation Index (NDVI). The interpretation of the NDVI allows for assessments of plant 

health and productivity by assessing chlorophyll and nitrogen content and PAR absorption, as 

well as potential photosynthetic activity (Gamon et al., 1995). The Plant Senescence Reflec-

tance Index (PSRI) is calculated to illustrate plant senescence during a vegetation period and is 

most sensitive toward the end of plant development (Hatfield and Prueger, 2010). The Photo-

chemical Reflectance Index (PRI) is mainly used as a proxy for light-use efficiency (Garbulsky 

et al., 2011). Leaf pigment-related indices can be grouped according to Roberts et al. to distin-

guish chlorophyll, carotenoids and anthocyanin (Roberts et al., 2011). The Red Edge Inflection 

Point is mainly dependent on chlorophyll but is also responsive to additional biological features, 

such as plant species and cultivar, plant age and leaf N content (Horler et al., 1983; Boochs et 

al., 1990). Pigment changes can also be measured by leaf color (Greer, 2005), which can be 

described by hue angle (h°). Hue angle illustrates a color gradient from 0 or 360° hue (red) to 

180° hue (green) (McGuire, 1992). 

We hypothesized that H. macrophylla subsp. serrata may require at least some shading to op-

timize plant performance and biomass production to gain higher PD content and higher PD 

yield per area. In this context, the main focus lies on DHC yield as a function of DHC content 

in the leaves and leafy biomass. Moreover, the lighting regime directly affects plant perfor-

mance and biomass yield and that the three different cultivars (‘Amagi Amacha’, ’Oamacha’ 

and ’Odoriko Amacha’) react differently to the increased sun exposure. To evaluate the re-

sponse of H. macrophylla subsp. serrata to different light exposures, non-invasive plant phe-

notyping was carried out. 

In this study, we compare for the first time three different H. macrophylla subsp. serrata culti-

vars, their response to three different lighting regimes on biomass production and DHC content. 

Non-invasive sensor measurements were used to characterize the lighting effects in more detail. 

 

 

 

 



 

28 

 

2. Materials and Methods 

2.1. Plant Material/Cultivation 

Terminal cuttings of Hydrangea macrophylla subsp. serrata cultivars ‘Amagi Amacha’, ‘Oa- 

macha’ and ‘Odoriko Amacha’ were obtained in spring from Kötterheinrich-Hortensienkul-

turen e.K. (Lengererich, Germany). The cuttings were planted in 3 l pots in “Einheitserde 

ED73” substrate (Einheitserdewerke Werkverband e.V., Sinntal-Altgronau, Germany) and cul-

tivated in a greenhouse until the start of the experiment. For both years, 2018 and 2019, the 

experiments started with new cuttings that were trimmed to a homogenous height of approxi-

mately 15 cm before the experiment. Measurements started on day of year (DOY) 228 in both 

years. Different shading regimes were implemented on DOY 232 in 2018 and DOY 228 in 

2019. From these DOYs, on dates are referred to as DALE (days after light exposure). Accord-

ingly, DOY 233 in 2018 equals 1 DALE. In 2018, the experiment ended on 264 DOY (32 

DALE) and in 2019 on DOY 260 (32 DALE). Conversions of DOY, DALE and dates can be 

found in the Supplementary Materials. Figure1 illustrates hours of sunshine over the course of 

the experiment in 2018 (mean hours of sunshine: 9.48) and 2019 (mean hours of sunshine: 

9.37). Figure 2 displays mean daily temperatures in 2018 and 2019. Except for daily variations, 

both years showed similar development in hours of sunshine and temperatures. 

2.2. Experimental Setup 

The experiments were conducted in August and September 2018 and 2019 at Campus Klein-

Altendorf, University of Bonn, Germany. Plants were exposed to three different levels of light 

intensity in field experiments. One-third of the plants were exposed to natural sun light (no 

shade). Partial shade for plants was achieved by using the Haygrove tunnel. The last third of 

hortensias were cultivated in a Haygrove tunnel with an added black shading net (full shade). 

A full scheme of the experimental setup is displayed in Figure 3.  

Shading levels were quantified with a Gigahertz-Optik X12 Optometer (Gigahertz- Optic; 

Member of the GERGHOF GROUP, Türkenfeld, Germany).  UV-A and UV-B were measured 

in W m−2 and PAR in photosynthetic photon flux density (PPFD) in µmol m−2 s−1. For each 

lighting treatment, a total of 15 plants were cultivated. From these, a total of five plants were 

randomly selected by chance before the start of the experiment and used for measurements. 

Measurements were taken between 8:00 a.m. and 12:00 p.m. CET with the same sequence of 

measurements to prevent the effects of daytime. A Sartorius LE1003S scale (Sartorius AG, 

Göttingen, Germany) was used to perform biomass quantification after cutting plants on ground 

level. 



 

29 

 

2.3. Plant Phenotyping 

For hyperspectral measurements, the PolyPen RP 400 (UV–VIS) by Photon Systems Instru-

ments (Brno, Czech Republic) was used. This non-imaging spectroreflectometer displays re-

flectance in a range of 380–780 nm. From the achieved spectra, different vegetation indices as 

proxies for plant status and stress were calculated. In this study, the last day of measurements 

was at 32 DALE, as the plants response to different lighting regimes was expected to be the 

most prominent at this point. Vegetation indices over the course of the trial can be found in the 

Supplementary Materials. The vegetation indices used in this study can be found in Table 1.  

In addition to the PolyPen RP 400 (UV–VIS), color measurements, presented by hue°, were 

performed using an X-Rite i1 pro (Grand Rapids, MI, USA). Hue° was calculated based on 

McGuire (McGuire, 1992) using MS Excel 2019. 

 

Figure 1. Hours of sunshine (hour of sunshine >120 W m−2) in 2018 (light gray) and 2019 (dark gray) 

over the course of the experiment (in DOY). Dotted lines represent mean hours of sunshine for the 

years. Complete data are available via the Supplementary Materials (Table S1). 
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Figure 2. Mean daily temperature (°C) in 2018 (A) and 2019 (B). Shaded area indicates minimum and 

maximum temperatures. Complete data are available via the Supplementary Materials (Table S1). 

 

 

No shade 

 

Partial shade Full shade 

 

UV-A 32.06 ± 8.63 100% 21.33 ± 4.41 67% 11.11 ± 1.85 35% 

UV-B 0.75 ± 0.21 100% 0.5 ± 0.08 66% 0.26 ± 0.04 35% 

PAR 1433.33 ± 496.1 100% 1026.6 ± 276.09 72% 509.4 ± 115.72 36% 

 

Figure 3. Shading quantification of no shade, partial shade and full shade for UV-A (W m−2), UV-B 

(W m−2) and PAR (µmol m−2s−1) in absolute values including standard deviation and in relative 

measures to no shade conditions. Irradiation data can be found in the Supplementary Materials (Table 

S2, irradiation data). 
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Table 1. Hyperspectral vegetation indices of leaf-based plant phenotyping used in this study,  

including equations and references. 

 

Category1 Vegetation Index Abbreviation and Equation² Reference 

Structure Normalized Difference Ve-

getation Index 

 

𝑁𝐷𝑉𝐼 =
(𝑅𝑁𝐼𝑅 −  𝑅𝑅𝐸𝐷)

(𝑅𝑁𝐼𝑅 + 𝑅𝑅𝐸𝐷)
 

(Rouse et al., 

1974) 

Chlorophyll Modified Chlorophyll Ab-

sorption in Reflectance In-

dex 1 

 

𝑀𝐶𝐴𝑅𝐼 1 = 1.2 ∗ (2.5 ∗ (𝑅790 − 𝑅670)
− 1.3 ∗ (𝑅790 −  𝑅550)) 

(Haboudane et 

al., 2004) 

Chlorophyll Greenness Index 

 
𝐺 =  

𝑅554

𝑅677
 

(Zarco-Tejada 

et al., 2005) 

Anthocyanins Anthocyanin Reflectance In-

dex 1 

 

𝐴𝑅𝐼 1 =  
1

𝑅550
−  

1

𝑅700
 

(Gitelson et 

al., 2001) 

Carotinoids Carotinoid Reflectance In-

dex 1 

 

𝐶𝑅𝐼 1 =  
1

𝑅510
−  

1

𝑅550
 

(Gitelson et 

al., 2002) 

Light use Photochemical Reflectance 

Index 

 

𝑃𝑅𝐼 =  
(𝑅531 −  𝑅570)

(𝑅531 +  𝑅570)
 

(Gamon et al., 

1992) 

Stress Plant Senescence Reflec-

tance Index 

 

𝑃𝑆𝑅𝐼 =  
𝑅678 − 𝑅500

𝑅750
 

(Merzlyak et 

al., 1999) 

Stress Red-Edge Inflection Point 1 
𝑅𝐸𝐼𝑃 1 = 700 + 40 ∗ (

(
𝑅670+ 𝑅780

2
)− 𝑅700

𝑅740− 𝑅700
) 

(Clevers et al., 

2002) 
1 Indices are grouped according to Roberts et al., 2011). ²In this study: RED = 630, NIR = 780 

 

2.4. DHC Quantification 

For the quantification of DHC content, namely HG and PD, the upper two (fully developed) 

leaves were harvested by hand on DOY 261 in both years (with an additional late harvest on 

DOY 281 in 2018) and dried at 40 °C for 72 h. Subsequently, samples of at least 10 mg were 

homogenized using a mortar and were moistened and fermented before being analyzed. Fer-

mentation was carried out by adding water (200 µL) and finally stopped with methanol (1800 

µL), followed by ultrasonic extraction (BANDELIN SONOREX, Berlin, Germany) for 30 min 

and filtration (membrane filter Chromafil XtraPTFE- 20/25). UPLC analyses of samples were 

performed on a Waters Acquity UPLC® I-Class System equipped with an Acquity UPLC ελ 

PDA detector and a commercially available reversed phase C18 column (Luna Omega 1.6 µm 

Polar C18 50 x 2.1 mm). A binary solvent system consisting of acidified water (0.1% formic 

acid; A) and acetonitrile (B) was used. The details on the gradient and evaluation program are 

given in Table 2. The detection wavelength was set at 254 nm, and the chromatographic data 

were processed by Empore™ 3 Pro 2010. 
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Table 2. Gradient table of the UPLC evaluation program. 

 

Time Flow (ml/min) %A %B 

0.00  0.8  70%  30%  

2.00  0.8 66%  34%  

2.01  0.8  05%  95%  

3.01  0.8  05%  95%  

3.02  0.8  70%  30%  

4.00 0.8  70%  30%  

 

2.5. Statistical Analysis 

The experiments were conducted in a randomized design, with five replications per treatment 

(n = 5) and each replicate consisting of four independent measurements. In all figures and ta-

bles, data are presented as mean and standard deviation (x̅ ± σ) and the number of replicates (n) 

are given. One-way analysis of variance (ANOVA) was used to compare means of treatments. 

Under the given normal distribution (Kolmogorov-Smirnov test) and homoscedasticity (Levene 

test), a Tukey-HSD test or Scheffé test was used as a post hoc procedure to determine homoge-

neous subgroups at a p-value of p ≤ 0.05. A t-test was conducted for color measurement at a p-

value of p ≤ 0.05, and significant differences are marked with an asterisk (*). Exact p-values 

for each experiment are reported in Tables S6 and S7. All statistical analyses were performed 

using IBM SPSS 26.0 software. 

3. Results and Discussion 

All results presented are shown with respect to light intensity as influenced by different shading 

regimes. With a sum of global radiation (Wh/m2) of about 132,200 in 2018 and 137,500 in 2019 

and hours of sunshine of approximately 312 h in 2018 and 309 in 2019, both years revealed 

similar values from DOY 228 (4 DALE in 2018 and 0 DALE in 2019) until DOY 260 (28 

DALE in 2018 and 32 DALE in 2019). The growth degree analysis showed that 2018 achieved 

172.7 h above 12 °C and 2019 reached 163.0 h. From these calculations and the data for hours 

of sunshine (Figure 1) and temperatures (Figure 2), it can be concluded that the differences 

between both years do not have a major impact on the outcome of the measurements. Therefore, 

differences in weather are not be discussed. 
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3.1. DHC Content 

H. macrophylla subsp. serrata cultivars used as a feedstock are mainly compared for their PD 

content. A study by Ujihara et al. (1995) analyzing different leaf ages regarding PD content 

revealed that younger leaves contain higher percentages of PD in leaf dry matter than older 

leaves, while flowers and buds had significantly higher content (µg/g FW) than leaves (Ujihara 

et al., 1995). Because of these reported differences, the effect of leaf age was investigated in 

2018 for three cultivars under different lighting regimes. In general, it was confirmed that 

younger leaves from the upper third of the plant contain more PD than leaves that were taken 

from the middle or lower third of the plants (Figure 4). With the exception of ‘Amagi Amacha’, 

the differences between leaves taken from the middle third and lower third were lower. There 

was a strong effect of cultivar regarding PD content. ‘Amagi Amacha’ showed the highest PD 

content, followed by ‘Oamacha’ and ‘Odoriko Amacha’ for all shading treatments and leaf age. 

The results for leaf age are in accordance with published data (Ujihara et al., 1995). A multi-

variate testing of the main effects showed only significant interactions for cultivar and leaf 

position (Table S7), but not for shading and leaf position or for cultivar, shading, and leaf po-

sition (Table S7), a detailed analysis of leaf position was only performed in 2018. 
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Figure 4. Content (%) of (A,B) hydrangenol (HG) and (C,D) phyllodulcin (PD) for three H. macro-

phylla subsp. serrata cultivars (green: ‘Oamacha’, orange: ‘Odoriko Amacha’, purple: ‘Amagi Ama-

cha’) and (E,F) for HG, PD and DHC content pooled over all cultivars depending on three shading 

scenarios in leaf dry matter for two different harvest dates in 2018 ((A,C,E): 18 September 2018 and 

(B,D,F): 8 October 2018). (A–D): Shading scenarios (bright coloring: no shade, light coloring: partial 

shade, dark coloring: full shade). (E,F): Differences for leaf position depending on shading pooled 

over all cultivars (bright gray: no shade, light gray: partial shade, dark gray: full shade). Significant 

differences for leaf position (left: upper third, middle: middle third, right: lower third) of each cultivar 

(A–D) or pooled by cultivar (E–F) and year calculated by ANOVA and Tukey HSD (n = 5, α = 0.05) 

are indicated by different letters. Detailed statistical results can be found in the Supplementary Materi-

als for the multivariate analysis (Table S7) and ANOVA tables (Tables S6 and S8). 

 

Besides PD, HG was also assayed for different leaf stages on the plants. HG content was sig-

nificantly higher in ‘Odoriko Amacha’ in comparison to that of ‘Amagi Amacha’ and ‘Oama-

cha. ‘Oamacha’ and ‘Odoriko Amacha’ contained higher percentages of HG in young leaves 
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compared to old leaves (Figure 4). ‘Amagi Amacha’ did not show significantly different con-

tents of HG due to very low HG levels (Figure 4). To some extent, HG exhibits positive pro-

tective effects against pathogens such as Pythium (Dietrich and Valio, 1973). Besides that, HG 

seems to have nearly no beneficial biological activity for the plant (Asen et al., 1960). 

Interestingly, there were no statistical significant differences between the three shading re-

gimes. It is shown here for the first time that the content of PD and HG for each cultivar tested 

is not affected by shading. While shading could be important for plant growth (Yagi et al., 

1977), it will not influence PD or HG content as a quality parameter. 

Pooling data for cultivar and lighting regime by calculating the mean over all three cultivars 

and shading scenarios (Figure 4 E,F) showed the same dependency of PD and HG content in 

younger versus older leaves as observed for single cultivars under different lighting regimes. 

To compare PD and HG content, it is a prerequisite to investigate the same leaf age. In further 

studies, we used the upper leaves, because the highest PD and HG content would reveal differ-

ences more easily. The results on differences in HG, PD and DHCs between cultivars can be 

found in Figure5, with columns of the same coloring representing different leaf ages, from the 

upper third leaves (left column) to leaves taken from the middle third (middle column) and 

lower third (right column). 

PD content varied significantly between the three cultivars, with ‘Amagi Amacha’ containing 

the highest amount of PD in leaf dry matter under partial and full shade conditions in 2018 and 

partial shade in 2019 (Figure 5). The mean PD content over all shading scenarios and years was 

4.2% compared to 3% in ‘Oamacha’ and 1.6% in ‘Odoriko Amacha’. The PD within a cultivar 

(regardless of lighting treatment) only displayed significant differences between the years in 

‘Amagi Amacha’. PD content shows to be mainly influenced by cultivar. Using H. macrophylla 

subsp. serrata as a feedstock for PD or tea, the cultivar selection seems more important than 

the managing factors. Figure 5 illustrates the PD content in relation to cultivar, sun exposure 

and year when harvested in mid-September. 

Significant differences in HG content in leaf dry matter were only observed between the three 

cultivars or year but not for shading scenarios. H. macrophylla subsp. serrata ‘Odoriko Ama-

cha’ yielded the highest HG content of the three cultivars (2.9 ± 0.58%), with significantly 

higher HG in 2019 (3.16 ± 0.44%) compared to 2018 (2.61 ± 0.73%) when pooled over all 

treatments. ‘Amagi Amacha’ seems to convert HG into PD at a very high rate, as only 0.1 ± 

0.04% of HG was found in leaf dry matter, in combination with high PD content (Figure 5). 

Over all treatments and years, ‘Amagi Amacha’ yielded significantly lower HG than both other 

cultivars. Additionally, the results presented show that higher amounts of HG or PD do not 
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influence total DHC content, as the high HG cultivar ‘Odoriko Amacha’ and high PD cultivar 

‘Amagi Amacha’ only expressed significantly different DHC content under no shade conditions 

in 2019. In 2018, shading did not affect PD, HG and DHC content. HG, PD and DHC content 

related to cultivar, shading treatment and year are illustrated in Figure 5. 

3.2. Fresh Biomass 

The total biomass of hortensia cultivars is shown in Figure 6. Pooled over all treatments, 

‘Amagi Amacha’ yielded significantly less biomass in 2018, whereas no statistical differences 

were found in 2019, except for ‘Amagi Amacha’ with no shading, which differ only to ‘Odoriko 

Amacha’ with full shading. Differences in year might be due to differences in plant material, 

provided by the commercial breeder. Environmental effects seem neglectable based on the cli-

mate data presented in Figures 1 and 2. The combination of cultivar and sun exposure showed 

no clear impact of radiation level for the two years. This is in accordance with a study on colored 

shading nets for H. macrophylla, where no significant effects on plant height (cm) and LAI 

from cultivation under black, red and blue shading were found for most of the cultivars tested 

(Nesi et al., 2013). For ‘Amagi Amacha’, full shade conditions seem optimal for higher bio-

mass; for ‘Oamacha’ and ‘Odoriko Amacha’, no clear advice has been given. In 2018, no shade 

cultivation expressed the highest biomass, while in 2019, (partial) shade yielded higher bio-

mass. For high-yield production, older plants would be used. Therefore, plant growth in this 

young state of plant development seems unreasonable as a decision parameter for cultivar se-

lection or a final determination of light management. Light exposure over the duration of the 

experiments (measured in mean hours of sunshine) did not reveal significant differences be-

tween 2018 and 2019 and is therefore not responsible for differences between years. 
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Figure 5. Content (%) of A, B Hydrangenol (HG), C, D Phyllodulcin (PD) and E, F Dihydroisocou-

marin (DHC) in leaf dry matter of tea-hortensia cultivars (green: ‘Oamacha’, orange: ‘Odoriko Ama-

cha’, purple: ‘Amagi Amacha’) in two different years (A, C, E: 2018 and B, D, F: 2019) at the end of 

two growing periods under three different light conditions (light coloring: no shade, darker coloring: 

partial shade, dark coloring: fullcshade). Significant differences within a year and constituent calcu-

lated by ANOVA and Tukey-HSD (n=5, α=0.05) are indicated by letters (a-d). 

 

Different content of the DHCs (HG and PD) in Hydrangea macrophylla subsp. serrata presents 

challenges in yield estimation. As a function of biomass and DHC content, further research is 

needed to estimate the possible PD yield per plant or under practical conditions in the field. 

Additionally, further understanding of plant age and growth stage on PD content is needed to 

optimize harvest dates and PD yield over the growing cycle in H. macrophylla subsp. serrata 

cultivation management by inducing branches to increase the number of young leaves per plant 

or other measures such as targeted fertilization to increase PD. Branching can be induced by 
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pruning or the application of dikegulac sodium, benzyladenine or ethephon (Cochran and Ful-

cher, 2013). Combinations of pinching or pruning and dikegulac sodium influence not only 

branch numbers but also leaf area (Sun et al., 2015). Therefore, a clear management of branch-

inducing techniques is necessary to achieve the maximum leaf biomass of young H. macro-

phylla subsp. serrata leaves. Additionally, further analysis is needed to validate the yield in-

crease of branch-inducing treatments for total PD yield per plant. Phytotoxicity and residues of 

chemical treatments might be an issue for plant health and product processing. The phytotoxi-

city of Augeo, Configure and Florel induced damage in Hydrangea macrophylla ‘Merritt’s Su-

preme’ and ‘Nikko Blue’, as well as H. paniculata ‘Limelight’, and the plants recovered from 

six weeks after treatment (Hester et al., 2013). 

 

Figure 6. Total fresh biomass (g) of H. macrophylla subsp. serrata (green: ‘Oamacha’, orange: ‘Odor-

iko Amacha’, purple: ‘Amagi Amacha’) in two different years ((A): 2018 and (B): 2019) at the end of 

two growing periods under three different light conditions (bright coloring: no shade, light coloring: 

partial shade, dark coloring: shade). Significant differences within a year calculated by ANOVA and 

Tukey HSD (n = 5, α = 0.05) are indicated by letters (a–d). Mean ± standard deviation values can be 

obtained via the Supplementary Materials Table S3. 

 

3.3. Plant Phenotyping 

High amounts of radiation can lead to a typical leaf browning in Hydrangea (Yagi et al., 1977). 

To characterize this effect for the H. macrophylla subsp. serrata, leaf color measurements were 

performed. These leaf color measurements revealed differences between cultivars (Figure 7). 

‘Odoriko Amacha’ only manifested significant differences between the first and last measure-

ments in 2018. Differences in ‘Oamacha’ were the highest of the three cultivars, with significant 

differences under full sun and partial shade in both years. ‘Amagi Amacha’ showed significant 

differences in all three light scenarios in 2018, while differences in 2019 were only significant 
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under partial shade conditions. Still, most of the cultivar-shading combinations revealed tenden-

cies of decreasing hue angles over the time of the trial (Figure 7). 

This shift can be related to a typical leaf browning reaction of hortensias to high levels of sun 

exposure that lead to wilting (Yeary and Fulcher, 2013). Sun tolerance of Hydrangea macro-

phylla has been shown to be cultivar dependent (Condon, 2017). Therefore, ‘Odoriko Amacha’ 

seems to be the genotype that copes with UV stress best, as differences were only significant in 

2018, while ‘Amagi Amacha’ and ‘Oamacha’ expressed lower adaptation. This color shift can 

also be seen using the vegetation indices CRI and ARI (see Figure 9), which are related to the 

redness of the leaves. The change in hue angle from the first to last measurement over all treat-

ments and years was the lowest in ‘Amagi Amacha’ (11.01° under no shade conditions in 2018) 

and the highest in ‘Oamacha’ (34.36° under no shade conditions in 2018). The results indicate 

that differences depend on genotype and light intensity. Differences by year were not based on 

hours of sunshine, as no significant differences were observed (Figure 1). 

Leaf color changes are derivable from reflection spectra by visual interpretation and the calcu-

lation of different vegetation indices. The reflection spectra expressed differences between cul-

tivars as well as between shading scenarios. Additionally, differences from the first to last day 

of measurements could be observed. An overview of the reflectance spectra from H. macro-

phylla subsp. serrata is presented in Figure 8. Because the interpretation of pure reflectance 

spectra regarding multiple plan parameters is not trivial, multiple VIs derived from the reflec-

tance spectra were analyzed. Generally, the reflectance response curves of the three cultivars 

showed that the effect depends on cultivar, year and shading regime. The observed differences 

were lower in 2019 in comparison to 2018. For ‘Odoriko Amacha’, the differences between the 

first and last day of measurements were more pronounced than for the other two cultivars, es-

pecially in 2018. Higher reflectance could be observed around 550 nm (Figure 8 A2, B2, C2) 

at the last day in 2018. This shift was also observed for ‘Oamacha’ and ‘Amagi Amacha’ but 

to a lesser extent. 
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Figure 7. Hue angle of three different H. macrophylla subsp. serrata cultivars (green: ‘Oamacha’, or-

ange: ’Odoriko Amacha’, purple: ‘Amagi Amacha’) at first (dark coloring) and last (light coloring) 

day of measurements in two cultivation periods ((A): 2018; (B): 2019). Shading regimes are indicated 

by PAR values (100% PAR: no shade, 72% PAR: partial shade, 36% PAR: full shade). Significant dif-

ferences are highlighted by letters. Differences within cultivar at first (1) and last (3) day of measure-

ments and differences within light regime at first (2) and last day (4) of measurements were calculated 

by ANOVA and Tukey HSD (n = 5, α = 0.05). Differences between first and last day of each treat-

ment (5) were calculated by Student’s t-test with significant differences marked by asterisk (*). 

ANOVA tables can be found in the Supplementary Materials Table S6. 

 

The Anthocyanin Reflectance (ARI1) as an indicator for leaf redness illustrates significantly 

higher values under full sun exposure in ‘Oamacha’ in 2018 and ‘Amagi Amacha’ in 2019 

(Figure 9 A,B). Anthocyanins can function as a reducing factor for photoinhibition and leaf 

damage (Steyn et al., 2002). Therefore, the photoinduction of anthocyanins via UV, Vis and 

far-red wavelengths has been described (Chalker-Scott, 1999). In addition to the photoinhibi-

tion-related effects, nutrient deficiencies in phosphorus (P) or nitrogen (N) are indicated by 

purpling due to anthocyanin accumulation (Steyn et al., 2002). 
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The CRI 1 as an indicator for carotenoids only showed significant differences between no shade 

and (partial) shade in ‘Oamacha’ (Figure 9 C,D; Table S5). It was shown that carotenoids can 

be an indicator for high irradiance adaptation of leaves (Sarijeva et al., 2007). Therefore, 

‘Oamacha’ seems to adapt to high sun exposure better than ‘Amagi Amacha’ and ‘Odoriko 

Amacha’ when using CRI 1 as an indicator. 

Chlorophyll and the general greenness of Hydrangea macrophylla subsp. serrata leaves were 

estimated using the vegetation indices MCARI1 (Figure 9 G,H) and the Greenness Index, G 

(Figure 9 E,F). While differences in MCARI1 were not significant in 2019, 2018 displayed 

significantly lower values for ‘Oamacha’ under full sun conditions in comparison to the other 

cultivars and treatments at the end of the experiment (Table S5). The lowest values for ‘Amagi 

Amacha’ were found under partially shaded conditions. Higher chlorophyll-related index val-

ues in ‘Amagi Amacha’ under full shade conditions compared to partial shade were also meas-

ured by the Greenness Index (G). In 2018, the difference of full shade to no shade was not 

significant, while in 2019, significant differences were observed (Table S5). While not signifi-

cant in 2019, 2018 showed significantly higher chlorophyll content under (partially) shaded 

conditions compared to full sun exposure, with full shade reaching the highest values. High 

amounts of UV radiation have negative effects on chlorophyll due to higher concentrations of 

carotenoids and anthocyanin  (Strid and Porra, 1992; Marwood and Greenberg, 1996; Mah-

davian et al., 2008). 
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Figure 8. Reflectance spectra of three different H. macrophylla subsp. serrata cultivars (1: ‘Oama-

cha’, 2: ’Odoriko Amacha’, 3: ‘Amagi Amacha’) under three different shading regimes ((A): no shade, 

(B): partial shade, (C): full shade). Full lines represent 2018 and dotted lines 2019, with dark coloring 

representing first and light coloring representing last day of measurements. Full data of reflectance 

spectra can be found in the Supplementary Materials Table S4. 

 

Different shading regimes influencing not only stress-related radiation (UV-B) but also effects 

on the photosynthesis of H. macrophylla subsp. serrata due to reduced PAR were expected. 

Light use as indicated by PRI increased significantly with each shading level in 2018 in ‘Oama-

cha’ (Figure10 A,B, Table S5). Significant increases were measured under full sun conditions 

compared to under full shade conditions in ‘Amagi Amacha’, and under (partial) shade condi-

tions compared to full sun conditions in ‘Odoriko Amacha’ in 2018. In 2019, full shade yielded 

a higher PRI compared to full sun in all H. macrophylla subsp. serrata cultivars. PRI can be 

used as a proxy for water stress. This is only applicable under controlled conditions under low 

or moderate stress levels (Thenot et al., 2002). Therefore, the use of PRI as a proxy for water 

stress might be difficult to interpret in the presented experimental setup. PRI can be interpreted 

as an indicator for light-use efficiency (LUE) with an R2 of around 0.6 for leaves as well as full 

canopy (Angert et al., 2005). Generally, the PRI is a reliable proxy for photosynthetic efficiency 

(Garbulsky et al., 2011). In conclusion, higher amounts of shading seem to increase photosyn-

thetic efficiency in the experiments. This effect should be evaluated in further studies over a 
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complete growing season to investigate if this leads to statistical differences over a growing 

cycle as well as yield differences over the span of the cultivation. 

 

Figure 9. Pigment-based vegetation indices for H. macrophylla subsp. serrata cultivars (green: 

‘Oamacha’, orange: ‘Odoriko Amacha’, purple: ‘Amagi Amacha’) under different shading conditions 

(dark coloring: full shade, medium coloring: partial shade, light coloring: no shade) in 2018 (A,C,E,G) 

and 2019 (B,D,F,H). Full display of significant differences is reported in the Supplementary Materials 

Table S5. 
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Figure 10. Performance-based vegetation indices for H. macrophylla subsp. serrata cultivars (green: 

‘Oamacha’, orange: ‘Odoriko Amacha’, purple: ‘Amagi Amacha’) under different shading conditions 

(dark coloring: full shade, medium coloring: partial shade, light coloring: no shade) in 2018 (A,C,E,G) 

and 2019 (B,D,F,H). Full display of significant differences is reported in the Supplementary Materials 

Table S5. 

 

The NDVI as a general indicator for plant performance revealed general tendencies that differ 

within the two years 2018 and 2019 (Figure10 C,D). In 2018, ‘Amagi Amacha’ expressed the 

lowest values of the three cultivars with a decrease over time in all three treatments. Sun 
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exposure had no significant effect. In 2019, no significant differences were observed between 

the cultivars. Still, significant differences resulting from full sun exposure in comparison to full 

shade were found in ‘Oamacha’ and ‘Amagi Amacha’ at the last day of measurements (Table 

S5). NDVI as an indicator for plant health and productivity indicates no differences by cultivar 

but showed a significant decrease in the no shade scenario in 2019. With an increase in UV-B, 

yield of crops is reduced (Soheila, 2000). High amounts of UV-B radiation result in lower chlo-

rophyll content (Kakani et al., 2004). This negative effect of higher solar radiation was con-

firmed for H. macrophylla subsp. serrata, as NDVI values were significantly lower under no 

shade conditions in 2019 and tendencies of lower values in 2018 were found. Therefore, (par-

tial) shading is advised to reduce the negative effects of solar radiation on plant performance. 

The position of the REIP is determined by the amount of chlorophyll (Collins, 1978; Filella and 

Peñuelas, 1994). In addition, the red edge is affected by severe water deficiency (Filella and 

Peñuelas, 1994). Similar to the other greenness and chlorophyll measurements (e.g., SPAD or 

greenness-related VIs), this chlorophyll assessment allows for an estimation of the nitrogen 

status (Boochs et al., 1990). The Red Edge Inflection Point (REIP 1) yielded no significant 

differences between light intensities within a cultivar in 2018 (Figure 10E). In 2019, all three 

H. macrophylla subsp. serrata cultivars yielded longer wavelengths for the inflection point un-

der full shade in comparison to full sun exposure (Figure 10F; Table S5). For ‘Odoriko Ama-

cha’, the differences between partial shade and no shade were also significant. 

UV-B radiation has the potential to influence leaf age and senescence (Kakani et al., 2004). 

Leaf senescence (as indicated by PSRI) defined by chlorophyll, leaf protein and nitrogen loss, 

as well as decreased photosynthesis (Noodén et al., 2004), presents the counterpart of NDVI. 

The mean PSRI over all cultivars increased significantly under full sun exposure compared to 

full shade conditions toward the end of the field trial in 2018 (Figure 10G; Table S5). In 2019, 

a significant increase in senescence was observed in ‘Amagi Amacha’ (Figure 10H; Table S5). 

PSRI in the no shade scenario of ‘Oamacha’ on DALE 11 and 18 was not significantly different 

from partial shade and full shade conditions, while tendencies of higher PSRI values were ob-

vious. The same negative effects of UV-B radiation as shown for NDVI apply for PSRI. The 

combination of NDVI and PSRI supports the hypothesis that cultivars react differently toward 

sun exposure. Based on both indices, shading seems to provide benefits, while not being nec-

essary for a successful cultivation. 
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4. Conclusions 

Shading and light quality have been described to be necessary for the cultivation of Hydrangea 

to avoid excessive wilting (Yeary and Fulcher, 2013) and in consequence preventing negative 

impacts on yield parameters. This could affect phyllodulcin (PD) content as well as PD yield 

per area in H. macrophylla subsp. serrata. In the present study, we compared the effects on 

three different cultivars. It was shown that cultivar determines the PD content, with ‘Amagi 

Amacha’ showing the highest content followed by ‘Oamacha’ and ‘Odoriko Amacha’. For HG, 

the order was reversed. Therefore, cultivar selection is a prerequisite in Hydrangea cultivation 

to achieve high PD yield per area. 

Leaf age was the second factor determining PD content. Younger plant parts have higher PD 

than older plant parts. This effect of leaf age on PD content was similar for all cultivars. It can 

be concluded that leaf age has to be considered when harvesting Hydrangea to optimize PD 

yield per area in general, but it is not a factor for cultivar selection. 

It could be shown that shading had little influence on PD content. Only for ‘Amagi Amacha’ 

could higher PD content be found by shading in 2019. However, shading could have beneficial 

effects on plant performance during cultivation to mitigate light stress. In this context, the color 

and hyperspectral analysis showed a more complex response of the three cultivars, which have 

to be investigated in more detail in the future. Understanding the differences in the pattern of 

vegetation indices (e.g., NDVI or ARI where ‘Amagi Amacha’ could be distinguished) could 

be important for management strategies to predict plant performance. 

The results of this study showed that the selection of cultivar is more important than the man-

agement factor (in this case shading levels) for DHC production. Still, the analysis of vegetation 

indices revealed a higher stress response in non-shaded H. macrophylla subsp. serrata. The 

effect of plant age and growth stage has to be considered as a factor in perennial crops for 

genotype selection, as the cultivars used in this study could develop differently over multiple 

growing seasons. 
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1. Introduction 

Hydrangea macrophylla subsp. serrata has gained interest in the food industry and pharmacol-

ogy due to the dihydroisocoumarin (DHC) content of hydrangenol (HG) and phyllodulcin (PD). 

PD is of interest for its uses in functional foods, pharmacological properties or its traditional 

use in Japan as a sweet seasoning (Kawamura et al., 2002). HG could be used in medicine (Kim 

et al., 2016a; Gho et al., 2019). Hydrangea L. belongs to the family of Hydrangeaceae within 

the dicotyledonous flowering plants (Takhtajan, 2009). The taxonomic classification of H. mac-

rophylla subsp. serrata has been discussed controversly though. The name “H. serrata” might 

be justified on a morphological level (Reed and Rinehart, 2006) and is commonly used for 

simplicity (van Gelderen and van Gelderen, 2004). Some authors refer to the common name 

“Amacha” (Suzuki et al., 1977; Fujii and Yoshida, 2005), which could be misleading, because 

it is also describing the provenience of Hydrangea species, cultivars, as well as the product 

derived from the leaves. Tachibana et al. used the name “Sweet Hydrangea” based on its tradi-

tional use as sweet tea from fermented leaves (Tachibana et al., 1974). As shown in a previous 

study, cultivars of. H. macrophylla subsp. serrata differ in their DHC content (Moll et al., 

2021b). For developing PD-rich cultivars, it is important to understand the effectiveness of PD 

production in plants and how this could be assessed, evaluated and described. For further ex-

ploitation of DHC it is crucial to analyze the content within hortensias in detail. To screen a 

large number of plants, destructive chemical analysis is often too time consuming to allow for 

fast decisions. Non-invasive phenotyping tools have been developed to quantify dynamic plant 

traits across scales based on sensor measurements like hyperspectral imaging (Cendrero-Mateo 

et al., 2017). In analogy to well established vegetation indices, we suggested and evaluated a 

chemometric Normalized Difference Phyllodulcin Index (cNDPI). In the context of PD con-

taining Hydrangea species we used the collective term “tea-hortensia” as previously introduced 

by Moll et al. (2021b). 
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1.1 Phyllodulcin and hydrangenol  

In tea-hortensias, DHCs are synthesized via the shikimic acid pathway and coumaric acid. A 

specific polyketide synthase enables the mevalonate pathway with stilbenecarboxylates as in-

termediates (Kindl, 1971). PD is a product of the precursor molecule HG (Yagi et al., 1977). 

The DHC derivate PD is the main taste-influencing component in Amacha (in Japanese 甘い = 

amai = sweet, 茶 = cha = tea). This traditional tea is used during Hanamatsuri, the ceremonies 

surrounding the birthday of the Buddha (Yasuda et al., 2004). The characteristic taste of the tea 

arises from PD, that expresses a similar taste as dihydrochalcones (Shin et al., 1995). Besides 

the usage for tea, PD was investigated for being anti-fungal (Nakajima et al., 1979), anti-bac-

terial (Braca et al., 2012), anti-ulcer and anti-allergic (Yamahara et al., 1994), anti-inflamma-

tory (Dilshara et al., 2013) and a treatment against malaria (Kamei et al., 2000). PD is a potent 

inhibitor for lipid peroxidation in vitro and on microsomal level (Yamahara et al., 1994). Ad-

ditionally, PD might reduce obesity-related symptoms in mice (Kim et al., 2017; Kim et al., 

2018). In bovine adrenocortical cells, PD was found to enhance cyclic AMP-induced steroido-

genesis (Kawamura et al., 2002). 

In tea-hortensias, HG and PD are present in glycosylated form. A targeted post-harvest man-

agement can increase the enzymatic activity for deglycosylation and therefore increase PD yield 

(Jung et al., 2016). Highest concentrations of HG were found in roots, which contained 2 to 3-

fold more HG than flowers (Ibrahim and Towers, 1960). On the contrary, highest PD concen-

trations were found in sepals followed by buds and young leaves (Ujihara et al., 1995). A recent 

study found higher PD concentrations in young leaves compared to older leaves in different 

tea-hortensia cultivars grown under different cultivation conditions (Moll et al., 2021b). Fur-

thermore, the PD content is affected by season. Highest concentrations were found in June, 

although plant’s characteristic PD contents were stable at different locations (Ujihara et al., 

1995).  

1.2 Evaluation by using indices 

Description of different biological and biodiversity-related data can be performed by using in-

dices (Davari et al., 2011), which can support decisions of scientists and political actors (Rib-

audo et al., 2001). “Normalized Difference”-indices are characterized by the general formula  

Index value = (a-b)/(a+b)  

and are commonly used for a broad range of agricultural and environmental applications such 

as the widely used Normalized Difference Vegetation Index – NDVI (Rouse et al., 1974) or the 
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Normalized Difference Bareness Index – NDBaI (Zhao and Chen, 2005), which distinguishes 

areas with vegetation from areas with less or no vegetation, or the Normalized Difference Water 

Index – NDWI (Ji et al., 2009) for differentiation of land from water bodies. Also, different 

vegetation indices (VIs) used this formula structure to describe non-invasive qualitative assess-

ment of plant traits, e.g. the Normalized Phaeophytinization Index – NPQI (Barnes et al., 1992), 

the Photochemical Reflectance Index – PRI (Gamon et al., 1992), the Normalized Pigment 

Chlorophyll Index – NPCI (Peñuelas et al., 1994), and the Structure Insensitive Pigment Index 

– SIPI (Peñuelas et al., 1995). Besides agricultural and environmental usage, indices are also 

found in chemometric analyses of plant-based (Riahi et al., 2009) and animal-based products 

(Cheng et al., 2016). As stated by Struber et al. (1999), the synergy of empirical breeding, 

marker-assisted selection, and genomics is a key for future breeding (Stuber et al., 1999). Now-

adays, indices form a valid addition to improve plant breeding (Céron-Rojas and Crossa, 2018). 

They are widely used in non-invasive phenotyping methods on autonomous platforms like 

drones as a versatile tool to describe a large number of plant trait data under different conditions 

(Cendrero-Mateo et al., 2017), like growth or health (Thomas et al., 2018). 

1.3 Aim of the study 

We assumed that beside the total content of DHC in plants, the conversion efficiency of the 

precursor HG into PD can be used to distinguish cultivars and offspring plants. More efficient 

plants would be promising candidates for further breeding independent from the total content 

measured. We hypothesized that different tea-hortensia cultivars produce HG and PD at differ-

ent ratios and that the ratio of HG:PD can be used as a chemometric marker for PD-synthesis 

as the PD content in plants seems to be more independent to external effects except seasonal 

changes. Based on former results obtained in studies presented in 1.1, PD synthesis seems to be 

mainly genetically determined. In this study we propose a new chemometric Normalized Dif-

ference Phyllodulcin Index (cNDPI) to classify PD-producing Hydrangea species based on HG-

PD conversion efficiency which is a major driver of PD synthesis. Therefore, multiple sub-

experiments (SEs) using the three tea-hortensia cultivars (‘Amagi Amacha’, ‘Oamacha’, and 

‘Odoriko Amacha’) were re-evaluated to investigate the feasibility and reliability of such an 

index. In addition, we tested the robustness of this index using 50 plants of a F1 population from 

a cross ‘Odoriko Amacha’ x ‘Yae Amacha’ with varying HG and PD contents. 
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2. Material and Methods 

2.1 Plant material 

The H. macrophylla subsp. serrata cultivars ‘Amagi Amacha’, ‘Oamacha’ and ‘Odoriko Ama-

cha’ were used for all SEs. Plants were obtained as rooted cuttings from Kühne Jungpflanzen, 

Claus Kühne (Dresden, Germany) and Kötterheinrich Hortensienkulturen e.K. (Lengerich, Ger-

many). After transplanting into new pots, plants were cultivated in a greenhouse until usage for 

the different SEs. Plant age, height, substrates and pot size varied depending on the specific SE. 

In addition, a F1 population derived from a cross between the tea-hortensia cultivars ‘Odoriko 

Amacha’ and ‘Yae Amacha’ was investigated regarding cNDPI. F1 plants were potted in 2018 

in 3 L pots filled with Einheitserde ED73 (Einheitserdewerke Werkverband e.V., Sinntal-Alt-

gronau, Germany) and were cultivated in a frost-free greenhouse as well as a Haygrove tunnel. 

All experiments were performed at Campus Klein-Altendorf in Rheinbach, Germany. 

2.2 Data collection 

The data used for index calculation was obtained in 12 sub-experiments (SE01–SE12) based 

on the cultivars ‘Amagi Amacha’, ‘Oamacha’ and ‘Odoriko Amacha’. The sub-experiments 

were performed from August 2018 until October 2020 to study the reaction of tea-hortensias to 

different abiotic stressors and the effect of harvest time, plant age and post-harvest treatments 

on HG and PD content. Each of these sub-experiments included these three cultivars. In total, 

1,291 measurements based on leaf samples were obtained: 405 for ‘Oamacha’, 442 for ‘Odoriko 

Amacha’ and 444 for ‘Amagi Amacha’. Leaf samples of F1 plants were harvested in June 2019 

(E1), September 2019 (E2) and June 2020 (E3). In E1, plants were cultivated in a greenhouse, 

whereas the same plants were cultivated in a Haygrove tunnel in E2 and E3.  

2.3 HG, PD and DHC quantification 

The quantification of total HG and PD content (glycosides and their aglycones) was performed 

using a Waters Acquity UPLC® I-Class System. Sample preparation and HG, PD and DHC 

quantification were performed as described by Moll et al. (2021b). 

2.4 Index calculation 

For the calculation of the proposed chemometric Normalized Difference Phyllodulcin Index 

(cNDPI) the formula-structure “(a-b)/(a+b)” was used (see 1.2 evaluation by using indices). 

This operation leads to  

cNDPI = (PD-HG)/(PD+HG)  
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with PD = Phyllodulcin [% DM] and HG = Hydrangenol [% DM]  

resulting in index values between -1 and +1 where -1 indicates a plant only containing HG (no 

conversion into PD) and +1 a plant converting all HG into PD. For the calculations, all 1,291 

measurements where included regardless of possible mistakes during data acquisition to prevent 

an overfitting of data by removing datapoints retrospectively. Additionally, the effect of treat-

ment was not taken into consideration to ensure that the cNDPI would still classify cultivars 

correctly over a wide range of possible applications. For the breeding population, only F1 plants 

were considered for the index calculation that produced PD in all three environments. 

2.5 Statistical Analysis 

Statistical analysis was performed using JMP Pro 16 (2021, SAS Institute Inc.). For the analysis 

of variance (ANOVA), the different genotypes were considered as fixed factors, while sub-

experiments and the environments E1–E3 were considered as random factors. HG and PD con-

tents were applied as metric values. Tukey-HSD was used as post-hoc test to determine homog-

enous subgroups at α = 0.05. For the comparison of cNDPI values between cultivars, a linear 

discriminant analysis was performed for all SEs separately as well as the complete dataset over 

all SEs. To test for significant differences between environments in the F1 population, a two-

sided t-test with a Bonferroni correction (p = 0.05/3) was performed. A linear regression for the 

F1 population was carried out to determine the predictability of HG, PD, DHC and cNDPI be-

tween different environments.  

3. Results and Discussion 

3.1 Hydrangenol and phyllodulcin content 

The basis of the cNDPI calculation are the contents of HG and PD determined for each SE as 

well as the F1 population for E1–E3. The cultivars investigated in this study showed significant 

differences in HG and PD content (Figure 1). Generally, the HG content was highest in ‘Odor-

iko Amacha’ and lowest in ‘Amagi Amacha’, whereas the PD content was highest in ‘Amagi 

Amacha’ and lowest in ‘Odoriko Amacha’. In contrast, ‘Oamacha’ showed medium values of 

both of them, HG and PD. Total DHC contents were significantly lower in ‘Oamacha’ com-

pared to the other cultivars, whereas the total DHC contents of ‘Odoriko Amacha’ and ‘Amagi 

Amacha’ showed no significant differences. Significant differences between for HG, PD and 

DHC were observed between SEs in all three cultivars. These differences refer to different 

treatments and harvest dates as well as seasonal fluctuations during plant growth. These fluctu-

ations were similar in all cultivars. Previous studies found seasonal differences in PD content 
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as well as PD differences depending on the plant organ, the leaf age and shading regimes (Uji-

hara et al., 1995; Moll et al., 2021b). However, the effects of treatments were comparably low, 

supporting the hypothesis of genetics and harvest date being the main driver of PD synthesis. 

 

Figure 1. Hydrangenol (HG), phyllodulcin (PD), total dihydroisocoumarin (DHC) content and cNDPI 

in tea-hortensia cultivars for SE 01–SE12 assembled for cNDPI calculation. Significant differences 

between SEs for each constituent and cNDPI and cultivar were determined by ANOVA and Tukey-

HSD (p ≤ 0.05). Significant differences within a cultivar are indicated by letters a–f. 

 

The analysis of the F1 population showed that the PD contents of F1 individuals ranged from 

0.001% up to 6.916% with a mean PD content of 2.635% in E1, 1.809% in E2 and 2.223% in 

E3. Lower content of HG was found, ranging from 0.077% to 5.567%, with 1.738% in E1, 

1.580% in E2 and 1.633% in E3. Over all environments, mean DHC content was 4.373% in E1, 

3.390% in E2 and 3.861% in E3, ranging from 0.375% to 8.012%. The paired t-tests of the F1 

population revealed significant differences between environments in HG contents for all three 

environment-comparisons. Besides the comparison of E1 and E2, differences in PD and DHC 

content were significant as well. This differentiation of constituent contents fits the seasonal 

fluctuations stated earlier (1.1).  
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Figure 2. Hydrangenol (HG), phyllodulcin (PD) and total dihydroisocoumarin (DHC) content of 50 F1 

plants derived from a cross ‘Odoriko Amacha’ x ‘Yae Amacha’ determined in three different environ-

ments (E1–E3) assembled for cNDPI calculation. 

 

3.2 Cultivar-specific cNDPI 

The distribution of cNDPI values for each cultivar is shown in Figure 3. The cNDPI ranged 

from 0.318 to 0.999 in ‘Amagi Amacha’, from 0.133 to 0.915 in ‘Oamacha’, and -0.623 to 

0.724 in ‘Odoriko Amacha’. ‘Amagi Amacha’ showed on average the highest cNDPI over all 

sub-experiments with a mean of 0.922 ± 0.083, followed by ‘Oamacha’ 0.618 ± 0.143 and 

‘Odoriko Amacha’ -0.326 ± 0.147. cNDPI values do not overlap at 10% and 90% quantiles 

between the three cultivars, although outliers were included in the analysis. Some SEs forced 

extreme reactions of plants. Still, the cNDPI for each cultivar fits in a range that allows for a 

differentiation of cultivars. This shows the robustness of the index and its applicability.  
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Figure 3. Violin plots of cNDPI for three H. macrophylla subsp. serrata cultivars ‘Amagi Amacha’, 

‘Oamacha’, and ‘Odoriko Amacha’. 

 

The discriminant analysis showed that only 75 out of 1,291 (5.8%) cNDPI values assigned the 

cultivars incorrectly. This is mainly explained by overlapping values of ‘Amagi Amacha’ and 

‘Oamacha’ and extreme values of ‘Odoriko Amacha’ as well as ‘Amagi Amacha’. ‘Oamacha’ 

showed the most incorrect assignments with 53, followed by ‘Amagi Amacha’ with 16 and 

‘Odoriko Amacha’ with 6. Nevertheless, 96% and 99% cNDPI values of ‘Amagi Amacha’ and 

‘Odoriko Amacha’, respectively, were assigned correctly as well as 87% of ‘Oamacha’. As 

multiple biotic and abiotic influences on plant performance were included via SEs, cNDPI 

showed to be a stable classification system for the three tea-hortensia cultivars as well as de-

scriptor for HG–PD conversion.  

Nevertheless, HG is a key factor for plant breeding, because it is the precursor of PD. In order 

to increase the PD content, plants with high cNDPI values might be crossed with HG rich plants 

to achieve PD rich offspring. Also, DHC rich plants might be used for breeding, because they 

contain the genetic resources to synthesize PD, besides high amounts of HG. Plants with a 

cNDPI value below 0 may not be suitable for plant breeding as they show a low conversion of 

HG to PD.  

3.3 cNDPI in SEs 

The range of cNDPI values differed partially between SEs most likely due to treatment-related 

or seasonal effects (e.g. SE06 and SE07). Nevertheless, the cNDPI allowed a resilient differen-

tiation and identification of the three studied cultivars. The lowest and the highest 10% quan-

tiles, respectively, were 0.792 (SE04) and 0.991 (SE06) for ‘Amagi Amacha’, 0.345 (SE04) 
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and 0.907 (SE11) for ‘Oamacha’ and -0.566 (SE04) to 0.087 (SE06) for ‘Odoriko Amacha’ 

(Figure 4). The distribution of cNDPI values for every SE in relation to the corresponding con-

tents of HG, PD and DHC is illustrated in Figure 1. 

 

Figure 4. Distribution of cNDPI values for ‘Amagi Amacha’ (purple), ‘Odoriko Amacha’ (orange) 

and ‘Oamacha’ (green) based on 12 sub-experiments (SE01–SE12). SE00 marks the pooled data for 

all SEs. 

 

The discriminant analysis showed that the percentage of correct assignments of cultivars by 

cNDPI was depending on the SE, with all SEs assigned at least 92.9% correctly. SE03, SE06, 

SE11 and SE12 showed 100% correct assignments. In SE01, SE05, SE07, SE08, SE10, 99.9–

95% of the assignments were correct. In SE04 93.5%, SE02, 93.3% and SE09 92.9% of culti-

vars were grouped correctly. This data shows that cNDPI values of different cultivars were 

mostly stable over time and experiment. Therefore, this index is able to describe the genetically 

controlled synthesis of PD from HG unaffected by environmental fluctuations caused by e.g. 

season, management techniques or stress. Thus, the cNDPI provides a feasible and simple tool 

for the description of PD conversion efficiency from HG, and therefore, is a helpful selection 

criterion. 
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3.4 cNDPI application in a segregating F1 population 

As mentioned in 3.1 and shown in Figure 5, HG, PD and DHC contents of F1 plants varied 

significantly between environments. Conversion of HG into PD, as described by cNDPI, is only 

significantly different between E2 and E3 (paired t-test: p = 0.258). Therefore, we assume that 

the HG, PD and DHC contents vary over time, whereas the conversion rate might be more 

stable.  The correlation analysis confirms this assumption. Comparisons of HG, PD and DHC 

contents between environments resulted in R² values ranging from 0.3 to 0.7. Contrary, com-

parisons of cNDPI values between the environments resulted in R² > 0.9 in all three compari-

sons (Figure 5 J–L). These results strongly indicate that HG, PD and DHC contents vary, while 

the conversion rate is highly stable. Furthermore, cNDPI differences between environments 

were determined for each single F1 plant. The cNDPI differences ranged between 0.008 and 

0.552, on average 0.179 ± 0.111. 75% of plants showed cNDPI differences of maximum 0.227, 

emphasizing the stable, genotype-specific HG to PD conversion. 

 

Figure 5. Correlation of HG, PD and DHC contents and cNDPI in three environments (E1–E3) based 

on 50 F1 plants including correlation coefficients (r) and coefficients of determination (R2). HG: hy-

drangenol (A–C); PD: phyllodulcin (D–F); DHC: dihydroisocoumarin (G–I); cNDPI: chemometric 

Normalized Difference Phyllodulcin Index (J–L). E1 ~ E2: A, D, G, J; E1 ~ E3: B, E, H, K; E2 ~ E3: 

C, F, I, L. 
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4. Conclusions 

The proposed chemometric Normalized Difference Phyllodulcin Index (cNDPI) provides a fea-

sible and simple tool for the description of PD conversion efficiency from HG. In targeted plant 

breeding, it will support the selection of plants with a high PD conversion efficiency. The results 

of this study demonstrate that the cNDPI allows a significant and reliable differentiation of the 

tea-hortensia cultivars ‘Amagi Amacha’, ‘Odoriko Amacha’ and ‘Oamacha’ under different 

experimental settings. The results indicate, that cNDPI values >0.9 seem reasonable as a target 

value while cNDPI values up to 0.999 were achieved by ‘Amagi Amacha’. Based on the results, 

the index can be used in plant breeding as a chemometric marker to select plants with an effi-

cient PD synthesis. Besides PD synthesis efficiency, HG seems to be a limiting factor in PD 

synthesis as well. As long as the genetics of PD synthesis as well as precise synthesis pathway 

are unclear, the cNDPI provides a promising tool for description of HG-to-PD conversion. In 

future studies, it is intended to combine the cNDPI with hyperspectral high-throughput pheno-

typing of tea-hortensias to predict DHC contents in plants by non-invasive methods.  
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1. Introduction 

Hydrangea macrophylla subsp. serrata has shown to be of interest for containing dihydroiso-

coumarin (DHC) glycosides hydrangenol (HG) and phyllodulcin (PD). Synthesis of DHCs in 

H. macrophylla subsp. serrata are driven by the shikimic pathway and coumaric acid. Interme-

diates during synthesis are stilbenecarboxylates in the mevalonate pathway that is enabled by a 

specific polyketide synthase (Kindl, 1971). During synthesis of PD, HG functions as a precursor 

(Yagi et al., 1977). HG and PD contents are influenced by seasonal changes and leaf age and 

seem to be predetermined by genetics than environment (Ujihara et al., 1995; Moll et al., 

2021b). The popular name for H. macrophylla subsp. serrata “tea-hortensia”, as proposed by 

Moll et al. (Moll et al., 2021b), is based on the plants original use for ceremonial tea. The 

tradition of the Hanamatsuri, the ceremonies surrounding the birthday of the Buddha, use the 

tea from fermented and dried leaves of H. macrophylla subsp. serrata (Suzuki et al., 1978). The 

characteristic taste of Amacha (Japanese for 甘い = amai = sweet, 茶 = cha = tea) is caused by 

PD (Shin et al., 1995). In addition to the characteristic taste, HG and PD provide multiple pos-

itive benefits. Besides others, HG enhances the growth-promoting activity from gibberellin 

(Asen et al., 1960). Analogue to PD, HG shows anti-fungal effects (Nozawa et al., 1981), but 

also affects the activation of Hyaluronidase and possesses anti-allergic activities (Kakegawa et 

al., 1988). In BV-2 microglial cells, HG inhibits the lipopolysaccharide-induced nitric oxide 

production (Kim et al., 2016a). Inhibition of proliferation, migration and invasion of EJ bladder 

cancer was investigated for HG (Shin et al., 2018) as well as UV-induced skin damage reduction 

in mice (Myung et al., 2019). Leaf extracts from Hydrangea macrophylla L. showed to be a 

potent fertilizer for mungbean – Vigna radiata L. (Sanjeewani et al., 2019). Beneficial activities 

of PD include being anti-fungal (Nakajima et al., 1979), anti-ulcer and anti-allergic (Yamahara 

et al., 1994), anti-bacterial (Braca et al., 2012) and anti-inflammatory (Dilshara et al., 2013). In 

vitro and on a microsomal level, PD is a potent inhibitor for lipid peroxidation (Yamahara et 

al., 1994). Additionally, further animal experiments investigated enhancement of cyclic AMP-



 

59 

 

induced steroidogenesis in bovine adrenocortical cells (Kawamura et al., 2002) while obesity-

related symptoms in mice could be reduced (Kim et al., 2017; Kim et al., 2018). Positive effects 

of PD as a malaria treatment were investigated as well (Kamei et al., 2000). 

Until now, quantification of HG and PD is performed using Ultra Performance Liquid Chro-

matography (UPLC), with one possible protocol introduced by Moll et al. (2021). While provid-

ing advantages in comparison to conventional HPLC, the analysis can be time consuming, de-

pending on the specific compounds (Swartz, 2005), even if UPLC showed to be up to nine times 

faster than HPLC (Nováková et al., 2006). Besides being advantageous in comparison to other 

techniques (Kumar et al., 2012), UPLC is not suitable to be performed by farmers for real-time 

estimations in field for PD content quantifications or prediction.  

Hyperspectral modeling of the VIS-NIR and NIR regions showed to be able to model leaf con-

stituents in natural products (Cozzolino, 2009) over a wide range of plants (coffee, tea, cocoa, 

tobacco) and spices, medicinal and aromatic plants in general (Schulz, 2004) or the shelf life of 

products (Giovenzana et al., 2014). Additionally, the discrimination of plants using a NIRS-

based chemometric evaluation presents a promising field of research (Ercioglu et al., 2018a). 

On a leaf-based level, contents of flavonoids (Wulandari et al., 2020) or terpenoids (Ercioglu 

et al., 2018b) were investigated using infrared spectroscopy and chemometrics. NIR modeling 

is used for modeling volatile organic compounds (VOC) in Mentha (Schulz et al., 1999). Be-

sides constituent analysis and estimation, yield presents a field of research as well, for instance 

in alfalfa - Medicago sativa L. (Noland et al., 2018) or wheat - Triticum aestivum (Pantazi et 

al., 2016). For rice yield, the possibilities of multispectral data from drones was investigated as 

well (Stroppiana et al., 2015). 

In the system of hyperspectral measurements, three factors influence the data acquisition: the 

scene (the observable space in front of the spectrometer), the sensor system, and the processing 

system (Landgrebe, 1997). Portable devices allow for satisfying results from VIS-NIR spectra 

as well (Giovenzana et al., 2014).  

We hypothesized that measurement conditions do not influence model accuracy, and that it is 

possible to use VIS-NIR spectrometers to model for HG and PD contents. Based on these results 

the suitability of models based on the handheld PolyPen RP400 is to be investigated as a simple 

and fast proxy for HG and PD contents on a field scale. This would enable farmers to find 

optimized harvest dates during the season and acts as a decision support in tea-hortensia culti-

vation. 

This article provides the first assessment of hyperspectral modeling as a decision support for 

farmers as well as for scientific purposes in the field of tea-hortensias and the 
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dihydroisocoumarins hydrangenol and phyllodulcin. Seasonal changes (Ujihara et al., 1995) 

lead to uncertainties of ideal harvest time, as peaks in PD accumulation might differ between 

cultivars. Therefore, a fast quantification of HG and PD is needed on a field-scale. Additionally, 

the study further investigated the possibilities of cultivar differentiation as well as the impact 

of measurement condition on model quality. 

2. Materials and methods 

2.2 Spectrometer set-up  

Multiple set-ups of spectrometers were used for the experiments presented in this study. First 

(in 2019), two spectrometers from Ocean Insight (Orlando, FL, USA) were used, namely the 

“Red Tide USB650 Fiber Optic Spectrometer” (350-1,000 nm), from now on shortened to “Red 

Tide”, and the “Flame-NIR Miniature Spectrometer” (950-1,650 nm), in this study shortened 

to “Flame-NIR”. Red Tide provides a resolution of 651 pixels per spectrum (2 nm Full-Width 

at Half-Maximum (FWHM)), equal to one datapoint per nm with a signal-to-noise ratio of 

250:1. The Flame-NIR signal-to-noise ratio is 6,000:1 providing 128 datapoints for the spec-

trum with a resolution of 10 nm FWHM. Both spectrometers were connected to an external 

Ocean Insight Tungsten Halogen Light Source HL-2000-HP using a QR200-12-MIXED fiber 

optic. “SMA connector” was inserted at maximum and the “Attenuator” was pulled out at max-

imum. The probe was fixated 1 mm above the sample at an angle of 90° to leaf surfaces (spec-

ular reflectance) using an RPH-1 reflection probe holder. Spectra were collected in reflectance 

mode and calibration was performed using the Spectroscopy Application Wizard build into the 

OceanView 1.6.7 software and using a WS1-Diffuse Reflectance Standard. In the first experi-

ment, the spectrometers were used separately measuring four spots per leaf. Integration time 

was set to 50 ms and 733 ms for Red Tide and Flame-NIR respectively. Additionally, both 

spectrometers were used with 2 scans to average and a boxcar width of 5. Spectra of the four 

scanning spots were then averaged for further calculations.  

In the second experiment (in 2021) the spectrometers were used simultaneously to measure the 

same spot on a sample. Integration time was set to 6 ms for Red Tide with 25 scans to average 

and 320 ms for Flame-NIR with 5 scans to average. Again, a boxcar width of 5 was adjusted. 

Re-calibration was done after about 20 to 30 measurements storing a white reference and a dark 

spectrum. Data collection and processing was performed using OceanView 1.6.7 and Microsoft 

Excel 2019. 

Besides stationary spectrometers, the handheld PolyPen RP400 (UV-VIS), from now on  

“PolyPen”, by Photon Systems Instruments (Brno, Czech Republic) covering a detection range 
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from 380-780 nm with 256 datapoints and a resolution of 8 nm Half-Width at Half-Maximum 

was used to investigate reflectance spectra. Data collection and processing for the PolyPen was 

performed via SpectraPen 1.0.0.5 and Microsoft Excel 2019. 

2.3 Plant material and cultivation 

Plant material was obtained from commercial breeders for both experiments. For the first ex-

periment Kühne Jungpflanzen, Claus Kühne (Dresden, Germany) delivered the plants, and for 

the second experiment Kötterheinrich Hortensienkulturen e.K. (Lengerich, Germany). Plant 

material for the first measurements was delivered to the Institute of Crop Science and Resource 

Conservation – renewable resources in May 2019 as rooted cuttings in 6 x 8 multipot trays and 

potted in Jiffy-Pots #130 (Jiffy Products International BV, Zwijndrecht, Netherlands) in June 

2019. Until measurement, all plants were cultivated under the same conditions in a greenhouse 

and irrigated daily. A total of 5,000 plants per tea-hortensia cultivar ‘Amagi Amacha’, ‘Oama-

cha’ and ‘Odoriko Amacha’ were cultivated in this regime. In May 2019 plants from the same 

production cycle were delivered to Symrise AG (Holzminden, Germany) as well. Those plants 

from tea-hortensia cultivar ‘Oamacha’ were planted as part of a small exhibition garden. 

2.4 Experimental design 

The study comprised two separate measurement dates. The first measurement was part of an 

experiment carried out on July 9th 2019 to gain understanding of measurement specifics. There-

fore, three tea-hortensia cultivars (‘Amagi Amacha’, ’Oamacha’, ‘Odoriko Amacha’) were an-

alyzed using a black and a white background plate separately. Additionally, fresh leaves were 

measured after harvest and after drying at 40°C for 72 hours. Sample selection was performed 

by randomly taking 20 plants from a plant stock consisting of 5,000 plants per cultivar and 

measuring both upper fully developed leaves for each background and leaf water status.  

Based on the first results a second trial was performed. The second block of measurements was 

part of an experiment carried out on August 20th in 2021 using in-field cultivated H. macro-

phylla subsp. serrata ‘Oamacha’, again using Red Tide and Flame-NIR. In this trial a total of 

304 single fully developed upper leaves were taken to be measured as fresh leaves on a black 

background. To avoid wilting, 30 to 40 samples were collected immediately before data acqui-

sition, so that the time slot between harvest and measurement was no longer than 30 minutes. 

Sample selection again was carried out by randomly taking leaves from in-plants. Reflectance 

spectra from 61 of these leaves were additionally taken using the PolyPen whereby the mean 

value of four measurements was calculated.    
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2.5 Analysis of hydrangenol and phyllodulcin 

The analysis of hydrangenol and phyllodulcin was performed at Symrise AG (Holzminden, 

Germany) on a Waters Acquity UPLC® I-Class. An Acquity UPLC ελ PDA detector combined 

with a commercially available reversed phase C18 column (Luna Omega 1.6 µm Polar C18 50 

x 2.1 mm) was used. The procedure was performed according to the protocol for hydrangenol 

and phyllodulcin quantification for tea-hortensias (Moll et al., 2021b). 

2.6 Outlier detection and spectra pre-processing  

Errors in a dataset, disturbing effects like spectral noise and many other factors influence data 

analysis and can affect model quality, thus data pre-processing has proven to be advisable 

(Famili et al., 1997). First, DHC contents (HG and PD) were checked for outliers. Samples with 

values exceeding three times the interquartile range of the 0.25 tail quantile were excluded from 

further calculations. Furthermore, the raw spectra were graphically examined and samples with 

curves strongly shifted on the x-axis were removed manually. In addition, a penalized basis 

spline (P-Spline) model, which minimizes residuals and avoids overfitting at the same time 

(Aguilera and Aguilera-Morillo, 2013; Aguilera-Morillo and Aguilera, 2015), was fitted to the 

reflectance measurements to detect multivariate outliers within the score plot of the first and 

second principal components. To get a first overview, models were developed using leave-one-

out cross validation. Hereby the model is developed with n-1 training data (n corresponds to 

the number of samples) and the holdout sample is used for calibration. This process is repeated 

n times (Haaland and Thomas, 1988). After cross validation, another sample was discarded due 

to a high Hotellings T2-statistic (α = 0.05). This method is suitable for correlated variables and 

is considered as enhancement of Student's t-distribution for multivariate data sets (Hotelling, 

1931). The procedures resulted in 40 spectra for ‘Oamacha’ and ‘Odoriko Amacha’ and 35 for 

‘Amagi Amacha’ in 2019, as well as 296 spectra for the Ocean Insight spectrometers and 60 

spectra for modeling with the PolyPen data in 2021.  

Standard Normal Variate (SNV) transformation and Savitzky-Golay (SG) filters including 

smoothing, or first- and second order derivatives were the pre-processing methods in this study. 

SNV transformation corrects slope variations and scatter effects by first centering the individual 

spectra and then dividing them by their standard deviation (Barnes et al., 1989). Smoothing 

methods are suitable for reducing spectral noise (Barak, 1995). Based on the moving average 

method, polynomial smoothing, also known as Savitzky-Golay (SG) smoothing, fits a polyno-

mial function to the data of a chosen smoothing interval so that these are entered with different 

weighting in the calculation of the value to be smoothed. This preserves the structure and 
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spectral information even with larger smoothing intervals (Savitzky and Golay, 1964). In addi-

tion, the aligned SG polynomial functions fitted to the smoothing intervals can be derived (Luo 

et al., 2005). The obtained derivatives of the spectra remove baseline shifts (O'Haver, 1979). 

The optimal preprocessing methods have to be adapted individually for each model (Barbin et 

al., 2012). Here, it was found that SNV transformation before SG processing showed the best 

results. Due to strong noise (graphical inspection) of the SNV transformed spectra of the Red 

Tide spectrometer in 2021, the wavelength range below 400 nm was excluded from calcula-

tions. Afterwards, SG algorithms with 2nd to 8th degree polynomials with window points rang-

ing from 11 up to 61 were tested. A summary of the methods and wavelength ranges used for 

modeling can be found in Table 1. Pretreatments were conducted in JMP Pro 16. 

 

Table 1. Wavelength ranges and preprocessing methods (Standard Normal Variate (SNV) 

 transformation and Savitzky-Golay (SG) filters) used for modeling of hydrangenol (HG) and  

phyllodulcin (PD). 

Spectrometer 

(Year of experi-

ment)  

Wavelength range 

[nm] for SNV trans-

formation 

Wavelength range 

[nm] for SG filter 
Preprocessing method        

(DHC compound)  

Red Tide (2019) 350–938 360–928 

SNV + SG smoothing:  

5th polynomial order; distance 

to right/left filter edge = 10 

(HG, PD) 

Red Tide (2021) 350–1,000 420–918 

SNV + SG smoothing:  

5th polynomial order, distance 

to right/left filter edge = 20 

(HG, PD)  

Flame-NIR 

(2021) 
940–1,664  - SNV 

Red Tide + 

Flame-NIR 

(2021) 

400–1,664  - SNV  

PolyPen (2021) 325–792  

353–765 

 

 

382–740 

SNV + SG 2nd derivative:  

7th polynomial order; distance 

to right/left filter edge = 15 

(HG)  

SNV + SG 1st derivative:  

7th polynomial order; distance 

to right/left filter edge = 30 

(PD) 

 

2.7 Model development  

Models were implemented in JMP Pro 16 (SAS) by Partial Least Squares Regression (PLSR). 

PLSR has proven to be a practical and widely used tool for investigating spectroscopic data 
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(Aleixandre-Tudo et al., 2015; Huang et al., 2020; Sanaeifar et al., 2020). In contrast to Multiple 

Linear Regression (MLR), this method enables processing of a large number of X-variables 

(here the wavelengths, also "predictors" or X), which can be intercorrelated and sometimes 

show strong noise (Wold et al., 2001). The aim is to establish a relationship between the pre-

dictors and at least one Y-variable (here the HG or PD content, also “response” or y), which 

allows predictions of the latter (Dunn et al., 1984). Performing a principal component analysis 

of both the predictors and responses and intercorrelating them reduces the number of variables 

to a few PLS principal components (also “factors” or “latent variables”), which simplifies mod-

eling and separates relevant information (Geladi and Kowalski, 1986). In order to determine 

the appropriate number of factors and prevent overfitting or underfitting, validation of the 

model is required (Haaland and Thomas, 1988). Therefore, the samples were randomly split 

into three subsets: training, validation and test that will later result in a calibration, validation, 

and prediction model. The training set (composed of 70% of the samples) was used to estimate 

calibration model parameters, the validation set (20%) was used within the algorithm to opti-

mize the calibration model, whose ability to predict was assessed with the separate test set 

(10%) not involved in the model building process. For calibration model development, data 

were scaled to unit variances (standard deviation of 1 by dividing the data by their variables 

standard deviation) and centered to mean value zero (by subtracting variables average values 

from the data) (Wold et al., 2001). Subsequently, all variables had the same impact on modeling 

in terms of variation and interpretation was simplified. NIPALS (Non-linear Iterative Partial 

Least Squares) was chosen as the algorithm. As Hu et al. (2020) reported, model performance 

can be affected by variable selection. So-called Variable Influence on Projection (VIP) (Wold 

et al., 1993) values describe the importance of a variable (x) in explaining both X and y (Wold 

et al., 2001). According to Wold et al. variables below a threshold of 1.0 can be removed. Mod-

els in this study were pruned until all variables were weighted with a factor greater than 0.8 

(Wold et al., 1993). 

2.8 Statistical Analysis  

Parameters based on the determination of so-called residuals (ei) can be used to assess the good-

ness of fit. Residuals are defined as the difference between the actually measured (yi) and pre-

dicted analyte concentrations (ŷi) and represent the remaining variance in the data that cannot 

be explained by the principal components (Wold et al., 2001). In this study, both Root Mean 

Square Error (RMSE) as well as the coefficient of determination (R2) were specified for the 

different subsets: training set, which equals to the calibration model (Rc
2 and RMSEC); valida-

tion set (Rv
2 and RMSEV); test set, which equal to the prediction set in common terminology 
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(Rp
2 and RMSEP) and the overall model (Rtotal

2 and RMSEtotal). Equations are given in (1) and 

(2). Models with a low RMSE/root mean PRESS and a high R2 score were considered to be 

good. 

RMSE = √
∑i=1

n (yi−ŷi)2

n
 (1) 

R2 =  1 −
∑i=1

n (yi − ŷi)
2

∑i=1
n (yi − ȳ)2

 (2) 

n = number of samples (spectra), yi = measured reference value of the sample 

i, ŷ = predicted value of the sample i, ȳ = mean value of all samples   

 

Statistical analysis of HG and PD contents in the three cultivars and comparison of models R2 

regarding the spectrometers used and the partition of the sample sets was performed via Anal-

ysis of Variance (ANOVA) with Tukey-HSD as post hoc procedure to determine homogenous 

subgroups at a p-value of p ≤ 0.05. Differences between ‘Oamacha’ datasets for Red Tide + 

Flame-NIR and PolyPen were investigated via t-test (p ≤ 0.05) with significant differences 

marked with asterisk (*). 

For the detection of cultivars via hyperspectral models and the impact of measurement back-

ground, a discriminant analysis was performed using the cultivars, leaf water status or back-

grounds as category and HG, PD and both simultaneously from UPLC analysis as well as pre-

diction models as covariables.   

3. Results 

3.1. Hydrangenol and phyllodulcin contents 

The analysis of hydrangenol and phyllodulcin revealed significant differences between culti-

vars in 2019. HG contents were highest in ‘Odoriko Amacha’ (4.787% ± 1.066%), followed by 

‘Oamacha’ (1.514% ± 0.649%) and ‘Amagi Amacha’ (0.293% ± 0.142%). Phyllodulcin did not 

show significant differences between ‘Oamacha’ (3.642% ± 0.692%) and ‘Amagi Amacha’ 

(3.906% ± 0.480%). Both cultivars yielded higher contents of PD than cultivar ‘Odoriko Ama-

cha’ (1.794% ± 0.323%). In 2021 only ‘Oamacha’ was investigated. For both spectrometer set-

ups used (Red Tide + Flame-NIR and PolyPen), different samples were taken out of the mod-

eling process as described in the Material and Methods part regarding data pre-treatment and 

data elimination. Therefore, different means for HG and PD contents were calculated. For trial 

I (Red Tide + Flame-NIR) a mean HG content of 0.515% ± 0.133% and a mean PD content of 

4.409% ± 0.264% were recorded. The analysis for Trial II (PolyPen) revealed 0.545% ± 0.145% 
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HG and 4.448% ± 0.270% PD. The statistical analysis determined no significant differences in 

mean constituent contents for HG and PD in ‘Oamacha’ that could be a result of different sam-

ples taken out of the calculations. The distribution of HG and PD contents by harvest year, trial 

and cultivar is illustrated in Figure 1. 

 

Figure 1. Hydrangenol (HG) and phyllodulcin (PD) contents of three tea-hortensia cultivars harvested 

on 9th July 2019 (Trial 2019) and 20th August 2021 (Trial 2021 I and 2021 II). Trial 2021 I represents 

data used for modeling based on the Ocean Insight spectrometers, while trial 2021 II indicates HG and 

PD contents for modeling PolyPen data. Differences in data used for models in 2021 occur according 

to data preprocessing described in 2. Material and Methods. Significant differences were determined 

by ANOVA and Tukey-HSD as post-hoc procedure (p = 0.05) and are indicated by letters (a–c) for 

2019 while trials in 2021 were investigated by t-test (p = 0.05) with significant differences indicated 

by asterisks (*). 

 

3.2. Differentiation of Cultivars 

The first objective in modeling HG and PD from tea-hortensia cultivars was the differentiation 

of ‘Amagi Amacha’, ‘Oamacha’ and ‘Odoriko Amacha’. Basic observation of the reflectance 

spectra (Figure 2) in combination with knowledge of HG and PD contents did not allow for a 

simple solution. Therefore, a linear regression of predicted content values in comparison to 

measured values was performed showing a strong relationship (Figure 3). Prediction of HG and 

PD was performed according to Table 1, using the Red Tide (2019) dataset. Statistical indica-

tors for regression quality are shown in Table 2 in comparison to the other model set-ups in this 

study. For all three R² calculations (training, validation and test set) Rtotal² > 0.9 was calculated 

for HG, resulting in Rp² = 0.998 for the test set. Similarly, Rp² = 0.910 for PD was calculated 
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for the test set. RSMEP for HG resulted in 0.116 while higher values for PD were calculated 

with RMSEP = 0.340. 

Hydrangenol seems to be a reasonable component for classification of cultivars. Based on the 

UPLC analytics, 90.4% of samples are classified correctly for all samples taken into the exper-

iments. In this, ‘Amagi Amacha’ showed 100%, ‘Odoriko Amacha’ 95%, and ‘Oamacha’ 

77.5% accuracy. Usage of modeled HG contents seems to be reasonable as well, as 91.6% of 

samples were classified correctly. ‘Oamacha’ and ‘Odoriko Amacha’ were classified correctly 

in 100% of samples. ‘Amagi Amacha’ showed 75% accuracy.  

The discriminant analysis revealed that predicted PD seems to be prone to errors when it comes 

to accessing cultivars correctly. Still, 29.6% of false classifications fall into the same range of 

wrong classifications based on predicted values in comparison to 32.2% when grouped accord-

ing to actually measured PD contents in the lab. The overlap of ‘Amagi Amacha’ and ‘Oama-

cha’ in PD contents resulted in a high overlap in cultivar classification as well. ‘Odoriko Ama-

cha’ is classified correctly for 100% of inputs based on lab analysis as well as modeled PD. 

80% of PD is classified correctly when only the test set is observed, again being explained by 

the overlap of actual PD contents measured via UPLC. 

Based on lab analytics, the combination of HG and PD as covariables for classification of cul-

tivars showed the highest accuracy, with 93% of correct classifications. No false classification 

was observed in ‘Odoriko Amacha’, one wrong grouping in ‘Amagi Amacha’ (97% accuracy) 

and 82.5% accuracy for ‘Oamacha’. 
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Figure 2. Averaged raw spectra of H. macrophylla subsp. serrata cutivars (green: ‘Oamacha’ (n = 

40), orange: ‘Odoriko Amacha’ (n = 40), purple: ‘Amagi Amacha’ (n = 35)) measured with Red Tide 

spectrometer in 2019 using fresh leaf samples and a black measuring background. A shows the aver-

aged spectra while B–D show the average value ± SD of the respective cultivar. 

 

 

Figure 3. Regression of predicted and measured (Red Tide, 2019) contents of HG (A) and PD (B) for 

three tea-hortensia cultivars (purple: ‘Amagi Amacha’; green: ‘Oamacha’; orange: ‘Odoriko Amacha’) 

including coefficient of determination. Different symbols indicate the training (o), validation (∆) and 

test (*) set (HG: training (n = 86), validation (n = 18), test (n = 11); PD: training (n = 80), validation (n 

= 26), test (n = 9)). 
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3.3 Impact of measurement conditions 

For the transferability and replicability of the models for tea-hortensia cultivar differentiation 

as well as HG or PD assessment, the influence of measurement background and leaf water status 

was investigated. While reflectance spectra of ‘Oamacha’ (Figure 4) showed obvious differ-

ences in curve structure, the influence of leaf water status and background color on calculated 

regressions was neglectable. Background color influenced the shape of reflectance spectra in 

tea-hortensia cultivar ‘Oamacha’, with higher reflectance on white backgrounds in comparison 

to black ones for fresh and dried leaves. In the range from 400-700 nm effects of measurement 

background were more pronounced for fresh leaves than for dried leaves. Contrary, in the region 

of red-edge until 1,000 nm, differences were larger for dried leaves.  

 

Figure 4. Averaged raw spectra ± SD (n = 40) of H. macrophylla subsp. serrata ‘Oamacha’ samples 

measured under different conditions with Red Tide spectrometer in 2019. Green coloring indicates 

fresh leaves (A), grey coloring indicates dried leaves (B). Continuous lines represent a black measur-

ing background while hatched lines represent a white measuring background. 

 

Linear regression for ‘Oamacha’ samples is depicted in Figure 5. The training data were repro-

duced most accurately, for validation samples the prediction did not appear satisfactory. Rp
2 

was 0.253 and 0.935 for HG and PD, respectively. As no differences between the measurement 

conditions could be observed from the model’s discriminant analysis was conducted. Measure-

ment conditions seem to not have an important impact on model predictions. For ‘Oamacha’, 

the discriminant analysis on black and white measurement backgrounds showed that 62% of 

HG model predictions and 50% of PD model predictions were grouped correctly. For the leaf 

water status, fresh or dried leaves, 54% of HG predictions but 75% of PD predictions were 
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performed correctly. Based on this data, only leaf water status seems relevant in PD modeling. 

Contrary, for ‘Amagi Amacha’, 46% of the fresh and dried leaves were grouped correctly, while 

73% of the predicted PD values were classified correctly in terms of the background color. For 

‘Odoriko Amacha’, 69% and 54% of PD predictions were classified correctly with regard to 

the measurement background and leaf water status, respectively.  

 

Figure 5. Regression of predicted and measured (Red Tide, 2019) contents of HG (A) and PD (B) for 

H. macrophylla subsp. serrata ‘Oamacha’ including coefficient of determination. Different symbols 

indicate the training (o), validation (∆) and test set (*/x) (HG: training (n = 119), validation (n = 28), 

test (n = 13); PD: training (n = 118), validation (n = 26), test (n = 16). Green coloring indicates fresh 

leaves, grey coloring indicates dried leaves. Filled symbols represent a black measuring background 

(test set: *), not filled symbols represent a white measuring background (test set: x). Boxplots illustrate 

the variation of the measured DHC contents among the validation- and test set. 

 

3.6 Effect of spectrometer  

After the differentiation of cultivars appeared to be feasible and measurement conditions did 

not seem particularly influential on modeling, the following experiment (2021) continued with 

a larger data set of in-field plants of ‘Oamacha’ using fresh leaf samples and a black measure-

ment background. The aim was to generate models with reflectance spectra recorded by three 

different spectrometers and to gain a deeper understanding of wavelengths relevant for PLSR. 

HG and PD showed great consistency concerning the VIP wavelengths of the reflectance rec-

orded by the Ocean Insight devices. The range of 530–599 nm and between 697 and 737 nm 

within the VIS spectrum and the ranges of 940–1470 nm and 1497–1664 nm within the NIR 

spectrum were relevant for both compounds. VIP wavelengths relevant only to HG were 
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400 nm, 115–116 nm and 616–644 nm. The range between 1470–1497 nm was only relevant to 

PD (Figure 6).  

 

Figure 6. Individual raw spectra of ‘Oamacha’ samples (n = 296) measured in 2021 with Ocean In-

sight spectrometers. Colored ranges indicate VIP wavelengths using Red Tide (blue) and Flame-NIR 

(red). Depending on the DHC compound, ranges have different shading (HG: light shade, PD: dark 

shade, DHC (HG + PD): medium shade). 

 

With external validation, these VIPs could be confirmed for the most part, and in some cases, 

variables were added or removed. From here on, models will be named according to the spec-

trometer used for data acquisition (“Red Tide” and “Flame-NIR”). 

In the following sample set, DHC contents were spread across a small range, so that a zoomed-

in plot of the linear regressions was required. Predictions based on measurements using the two 

Ocean Insight spectrometers (Red Tide and Flame-NIR, Figure 7 and Figure 8) showed a strong 

relationship with the reference analytics of the training data. This was also evident from the 

statistics of the overall model, as the training sets accounted for a large proportion (70%) of the 

samples. Rtotal² (training + validation + test set) was between 0.75 and 0.80 for the two DHCs. 

The performance of the validation and test sets, on the other hand, was poor, ranging between 

0.006 and 0.236 for Rp². Contents close to the average value were predicted more accurately, 

while contents differing from this scattered far outside the regression line. The comparison of 

Rp² revealed that HG contents were modeled slightly more accurately than PD. Additionally, 

“Flame-NIR” resulted in higher Rp² than “Red Tide”. More precisely, “Red Tide” yielded 

Rp² = 0.105 with a RMSEP of 0.121 and Rp² = 0.006 with a RMSEP of 0.274 for HG and PD, 

respectively. “Flame-NIR” resulted in Rp² = 0.236 with RMSEP of 0.127 for HG and 

Rp² = 0.115 with RMSEP of 0.230 for PD. Modeling with measurements from both Ocean In-

sight spectrometers at the same time (Red Tide + Flame-NIR) resulted in Rp = 0.118 for HG. A 

slightly higher value of Rp = 0.230 was determined for PD. It should be noted that the measured 

contents showed only little variation, which could have made modeling difficult. Nevertheless, 
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the laboratory DHC contents of the validation and test samples within the 25th to 75th percentiles 

(box shown) were estimated with a precision of ± 0.1% (HG) and ± 0.2% (PD) of the dry matter. 

However, the exact determination of HG and PD on a leaf-level did not seem possible. 

 

Figure 7. Regression of predicted and measured (Red Tide, 2021) contents of HG (A, B) and PD (C, 

D) for H. macrophylla subsp. serrata ‘Oamacha’ including coefficient of determination and a zoomed-

in version (B, D). Different symbols indicate the training (o), validation (∆), and test set (*) (HG: 

training (n = 221), validation (n = 50), test (n = 25); PD training (n = 211), validation (n = 64), test 

(n = 21)). Boxplots illustrate the variation of the measured DHC contents among the validation- and 

test set. 
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Figure 8. Regression of predicted and measured (Flame-NIR, 2021) contents of HG (A, B) and PD 

(C, D) for H. macrophylla subsp. serrata ‘Oamacha’ including coefficient of determination and a 

zoomed-in version (B, D). Different symbols indicate the training (o), validation (∆), and test (*) set 

(HG: training (n = 215), validation (n = 57), test (n = 24); PD: training (n = 215), validation (n = 53), 

test (n = 28)). Boxplots illustrate the variation of the measured DHC contents among the validation- 

and test set. 

 

3.4 Use of handheld PolyPen RP400 

To simulate measurements on the part of a farmer, a handheld device was used as a third device. 

By using the PolyPen measurements, VIPs could be reduced to a few, but modeling with just 

these variables was only possible within a specific division of the samples into the three sets 

(training, validation and testing) and did not provide reproducible results. Linear regressions of 

the reference analytics and modeled values are depicted in Figure 9. For the dataset in 2021, 

“PolyPen” yielded the highest R2 values for both Rtotal² and Rp². Modeling of HG resulted in 

Rtotal² = 0.889 with a RMSEtotal of 0.049 and Rp² = 0.422 with a RMSEP of 0.096. As with Ocean 

Insight spectrometers, HG contents of the validation and test samples could be determined with 
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an accuracy of nearly ± 0.1% within the interquartile range (25th to 75th percentile). For pre-

dicted and measured PD values Rtotal² was 0.904 with a RMSEtotal of 0.084 and Rp² = 0.582 with 

a RMSEP of 0.104 showing the most precise result in 2021. For PD, the prediction accuracy of 

the validation and test samples within the interquartile range was increased to ± 0.1% of the dry 

matter content. Although the test set consisted of only of five samples, the minimum and max-

imum content were included in this, showing a representative random sample. Despite, the ac-

tual spread of the contents (min. to max. = 1.32%) was reduced by the prediction explaining 

only 0.216% of the variability. 

 

Figure 9. Regression of predicted and measured (PolyPen, 2021) contents of HG (A, B) and PD (C, 

D) for H. macrophylla subsp. serrata ‘Oamacha’ including coefficient of determination and a zoomed-

in version (B and D). Different symbols indicate the training (o), validation (∆), and test (*) set (HG: 

training (n = 42), validation (n = 11), test (n = 7); PD: training (n = 43), validation (n = 12), test (n = 

5)). Boxplots illustrate the variation of the measured DHC contents among the validation- and test set. 
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To determine whether significantly better models could be generated using the PolyPen, Rc
2, 

Rv
2 und Rp

2 as well as RMSEC, RMSEV and RMSEP of the three spectrometers were com-

pared. In addition, the influence of the proportion of the training set on both parameters was 

investigated. An overview of the results for the coefficient of regression is shown in Figure 10. 

For Rp (test set), significant differences were found between the PolyPen and the Ocean Insight 

spectrometers with a training data proportion of ≥ 70%. Mean values for Rp
2 of the PolyPen 

models were comparatively significantly higher than those of the Red Tide and Flame-NIR 

models, namely 0.624 compared to 0.033 and 0.107. Moreover, different ratios of the sample 

sets influenced the coefficient of determination Rp. The higher the proportion of training data, 

the higher the Rp
2. It was also shown that the variance of R2 increased with an increasing pro-

portion of the training data, but was higher overall for the PolyPen. RMSE (Figure not shown) 

had a lower variance overall, which also tended to increase as the proportion of training in-

creased. As with Rp
2, a significant difference between the handheld device and the other spec-

trometers was observed for the test set (RMSEP) when using a training proportion of 70%. 

RMSEP was lower for the PolyPen. At the same time, modeling with measurements from the 

handheld device proved to be more error-prone. Out of 25 PLSR-trials, with the samples divided 

into 70% training, 20% validation and 10% test, a model was successfully built 13 times, com-

pared to 23 models with the Ocean Insight devices. 
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Figure 10. Coefficient of determination (R2) for PLSR models of phyllodulcin (PD) developed using 

measurements of H. macrophylla subsp. serrata samples in 2021. Different coloring indicates the 

spectrometers used (blue: Red Tide, red: Flame-NIR, yellow: PolyPen). Letters a-g represent different 

splitting of the sample set (ratio Training/Validation/test set: a = 2/5.3/2.7; b = 3/4.7/2.3; c = 4/4/2; d = 

5/3.3/1.7; e = 6/2.7/1.3; f = 7/2/1; g = 8/1.3/0.7). N = 5 except letter f (ratio used for modeling): Red 

Tide n = 23; Flame-NIR n = 23; PolyPen n = 13. Significant differences were determined by ANOVA 

and Tuckey-HSD as post-hoc procedure (p = 0.05) and are indicated by letters (a, ab, b). Letters above 

the boxplots refer to differences between the ratios (row), letters below the boxplots refer to differ-

ences between the spectrometers within a ratio (box). 

 

As models for a single cultivar did not allow conclusions to be drawn about the exact content 

of individual leaves, mean contents of the lab analytics and the predicted values (test set) were 

used for comparison. As shown in Figure 11, box plots of the reference analytics from 2021 

were well represented by the modeled DHC contents. For both HG and PD, the measured and 

predicted values agreed to within one decimal place. For HG, differences of 0.002% (Red Tide), 

0.012% (Flame-NIR) and 0.038% (PolyPen) of the dry matter content were determined. Mod-

eled PD contents deviated < 1% from the reference analytics, resulting in differences of 0.004% 

(Red Tide), 0.007% (Flame-NIR) and 0.017% (PolyPen) in the dry matter content. 
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Consequently, the PLSR models established appeared suitable to adequately reproduce an av-

erage value of sampled in-field plants. Greater discrepancies were found for the models “meas-

urement conditions” and “cultivar differentiation”. When using the “measurement conditions” 

data, the mean HG content of 1.514% was well modeled (1.472%), whereas the values for PD 

were on average 0.234% lower than lab contents. The highest variance (0.332%) was observed 

when comparing the mean values of PD of "cultivar differentiation", which was due to the 

unequal distribution of cultivars into training and test samples.  

 

Figure 11. DHC (HG: hydrangenol; PD: phyllodulcin) contents from chemical analysis via UPLC 

(filled box) and modeled contents (test set, colorless box) for different models computed and compi-

lated in this study based on the five models shown in this study. 
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Table 2. Statistical evaluation of the goodness of fit modeling hydrangenol (HG) and phyllodulcin 

(PD) including coefficient of determination (R2) and Root Mean Square Error (RMSE) for the calibra-

tion- (Rc
2/RMSEC), validation- (Rv

2/RMSEV) and prediction (test) sets (Rp
2/RMSEP) and the overall 

model (Rtotal
2/RMSEtotal) consisting of all three sets. 

 

4. Discussion 

This experiment investigated the possibilities of hyperspectral modeling for in-field applica-

tions. Therefore, known difficulties and restrictions of hyperspectral measurements of field 

conditions in comparison to laboratory conditions (Udelhoven et al., 2001) were purposefully 

taken into account as well. This led to a simulation of practicability for rapid in-field measure-

ments in combination with model quality for HG and PD. For this purpose, the accurate depic-

tion of mean HG and PD contents via hyperspectral modeling was sufficient.  

The UPLC analysis of DHC contents revealed that the three cultivars show distinct patterns of 

HG and PD contents. ‘Odoriko Amacha’ yielded the highest HG contents and lowest amounts 

of PD. ‘Amagi Amacha’ expressed the contrary pattern with high contents of PD while yielding 

the lowest contents of HG. Tea-hortensia cultivar ‘Oamacha’ was the middle-ground in regard 

of HG and yielded PD contents that were at the same level as the ones of ‘Amagi Amacha’. A 

similar pattern for these three cultivars was previously found with one key difference as ‘Amagi 

Amacha’ yielded significantly higher PD contents than ‘Oamacha’ (Moll et al., 2021b). This 

overlap might be due to a known pattern of seasonal changes (Ujihara et al., 1995). 

Model DHC  Calibration  Validation Prediction Overall model 

  Rc
2 RMSEC Rv

2 RMSEV Rp
2 RMSEP Rtotal

2 RMSEtotal 

Cultivar differ-

entiation 

HG 0.919 0.569 0.998 0.099 0.998 0.116 0.941 0.496 

PD 0.910 0.340 0.893 0.344 0.910 0.340 0.921 0.305 

Measurement 

conditions 

HG 1.000 0.007 0.239 0.523 0.253 0.549 0.816 0.273 

PD 0.861 0.261 0.762 0.297 0.935 0.196 0.856 0.261 

Red Tide 2021 
HG 0.959 0.028 0.276 0.101 0.105 0.121 0.804 0.059 

PD 0.989 0.029 0.114 0.221 0.006 0.274 0.767 0.128 

Flame-NIR 

2021 

HG 0.989 0.014 0.087 0.124 0.236 0.127 0.752 0.066 

PD 1.000 0.001 0.024 0.229 0.115 0.230 0.802 0.118 

Red Tide + 

Flame-NIR 

HG 1.000 0.001 0.173 0.129 0.118 0.134 0.753 0.066 

PD 0.998 0.012 0.076 0.219 0.230 0.225 0.820 0.112 

PolyPen 2021 
HG 0.991 0.015 0.863 0.062 0.422 0.096 0.889 0.049 

PD 0.998 0.015 0.194 0.182 0.582 0.104 0.904 0.084 
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Additionally, this pattern of seasonal changes is more pronounced for ‘Amagi Amacha’ than 

for other cultivars (unpublished data). This overlap is one major factor influencing the cultivar 

differentiation via hyperspectral modeling. Besides HG and PD contents, morphological and 

physiological differences of the three cultivars could lead to the possible differentiation of cul-

tivars. Leaf hairs (Ge et al., 2012) and leaf wax (Lu, 2013) influence the reflectance and there-

fore could allow for the distinction of cultivars. Additionally, adaxial and abaxial surface influ-

ence hyperspectral modeling for chlorophyll (Lu and Lu, 2015) while nitrogen and chlorophyll 

(Yamashita et al., 2020), as well as general nutrient status (Gong et al., 2002) are common 

parameters to be modeled. During the interpretation of such VIS-NIR models, two parameters 

have to be taken into consideration besides plant morphology, accuracy and representativity of 

measurements. UPLC generally performs at a reasonably well accuracy (Saviano et al., 2015), 

but as the dynamics of hydrangenol and phyllodulcin in leaves of tea-hortensias are not clear 

yet, hyperspectral measurements might weaken model quality. This could be due to a lack of 

representativity of point-measurements on the leaves or an uneven distribution of dihydroiso-

coumarins in the leaf. 

As the contents of HG and PD in relation to the respective cultivars performed similarly well 

for measured and modeled contents, the modeling of HG and PD for the purpose of cultivar 

differentiation was successful. The results also show that accurate determinations of HG and 

PD are not possible from the models developed in this study, while the best results were ob-

tained with the hand-held spectrometer (Table 2). Other spectrometers detecting in the UV and 

short wavelength infrared (SWIR) regions have previously been investigated for the detection 

of phenolic compounds and reached R² = 0.91 for UV and R² = 0.99 for SWIR (Tschannerl et 

al., 2019). Based on these results, different spectrometers that cover other spectral ranges or 

spectrometers that cover smaller ranges but yield a higher resolution might lead to more accu-

rate models.  

The VIP wavelengths for HG and PD overlap to a large extent. Still, key wavelengths that only 

yield information for HG or PD were identified. This leads to the assumption that further re-

search in the field of HG and PD modeling could yield more precise models based on lesser 

wavelengths. The models shown in this study show two important features. On the first sight, 

the model quality does not allow for an approximation of HG and PD in single plants for tea-

hortensia cultivar ‘Oamacha’. The regression clearly indicates R² values that show that no re-

lation of measured and modeled constituent contents was achieved. Consequently, the models 

are not yet feasible to replace the well-established UPLC analysis. The major feature of such 

models in this study was to give farmers a decision support. The comparison of mean HG and 
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PD values via UPLC and the models shown in this study reveal that the Red-Tide modeled 

mean HG and PD highly accurate in the test-set. Hence, the purpose of the models in this study 

was successfully achieved as Red-Tide models provide a clear overview of HG and PD contents 

in the field overall. As single plants are not of interest for farmers, this overview is the key 

feature necessary for harvest date decisions. The quality of models might be negatively influ-

enced by heterogeneity of plant material as well. This phenomenon would be ever-present for 

such applications and is therefore considered for HG and PD models for farmers applications. 

The results of this study indicate that it is possible to differentiate tea-hortensia cultivars via 

hyperspectral modeling. Parallel, the approximation of mean HG and PD contents were suc-

cessful as well. Based on these results further research regarding in-field measurements with 

more cultivars under different environments and stages during the production cycle are needed. 

Also, the implementation of spectrometers covering different wavelengths could improve 

model quality. This would enable more precise applications for research surrounding tea-hor-

tensias. Especially breeding and the faster selection based on HG and PD contents would benefit 

from accurate models. For the in-field cultivation the incorporation of UAVs presents further 

improvements, as the detection of wavelengths for multiple plants could be performed in one 

flight. 

5. Conclusions 

Dihydroisocoumarin (DHC) contents of hydrangenol (HG) and phyllodulcin (PD) in tea-hor-

tensias have been shown to express seasonal changes (Ujihara et al., 1995) as well as cultivar 

specific concentrations and reactions to the environment (Moll et al., 2021b). Chemical analysis 

of HG and PD are no sufficient option for farmers to determine optimal harvest dates. Three 

different spectrometers were investigated for their suitability to model HG and PD contents in 

three different tea-hortensia cultivars (‘Amagi Amacha’, ‘Oamacha’, and ‘Odoriko Amacha’). 

Special focus was put on feasibility and robustness of spectrometer setups for a farm-based 

application. The differentiation of cultivars based on model predictions showed to be as accu-

rate as predictions based on actual HG and PD contents while the effect of measurement back-

ground as well as leaf water status (fresh or dried) seems neglectable for such applications. 

Model quality for all three spectrometers tested did not provide sufficient accuracy to predict 

HG and PD for lab applications. Still, the models allow for an estimation of mean HG and PD 

contents on a field scale to give farmers an indication for higher or lower DHC contents to 

support decision-making in regard to harvest dates. 
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Chapter 5 – General Conclusions 

 

The main objective of this work was to investigate the possibilities of quality assessment for 

tea-hortensias via non-invasive phenotyping. This was performed with the use of tea-hortensias 

as feedstock for phyllodulcin and their optimized cultivation with regard to shading. For this, 

three H. macrophylla subsp. serrata cultivars (‘Amagi Amacha’, ‘Oamacha’, and ‘Odoriko 

Amacha’) as well as a segregating F1 breeding population from a cross of ‘Odoriko Amacha’ 

and ‘Yae Amacha’ were investigated. 

The results described in chapter 2 revealed that, in contrast to the cultivation of H. macrophylla 

as an ornamental flowering plant, shading seems unnecessary for a successful cultivation of 

tea-hortensias as an industrial plant to gain high biomass accumulation and PD content. Still, 

the three cultivars showed different accumulation of HG and PD as well as different physiolog-

ical reactions towards sun exposure. This leads to the conclusion that HG and PD may not be 

influenced by sun exposure and the different microclimates under different shading regimes. In 

conclusion, the hypothesis of the necessity of shading for tea-hortensia cultivation can be re-

jected. The second hypothesis is confirmed, as the experiment also leads to the conclusion that 

different tea-hortensia cultivars show different reaction towards sun exposure. Additionally, the 

experiment revealed that HG and PD contents are primarily predetermined by genetics and ex-

ternal stressor only   

Chapter 3 builds on the results described in chapter 2 to identify the interaction of environment 

and PD content as well as the conversion rates of HG into PD. This was performed with the 

three cultivars used in chapter 2 while adding the F1 breeding population as a further pool of 

information. Data from 12 distinct sub-experiments (SEs) was used to investigate HG and PD 

contents under different environmental and artificial stressors. Observations build on the 

chemometric Difference Phyllodulcin Index (cNDPI) revealed that while absolute contents of 

dihydroisocoumarins underlie seasonal changes, the conversion rate is highly stable for each 

cultivar. This was also successfully shown for the breeding population (F1 from ‘Odoriko Ama-

cha’ x ‘Yae Amacha’) in three distinct environments. Additionally, H. macrophylla subsp. ser-

rata ‘Amagi Amacha’, ‘Oamacha’, and ‘Odoriko Amacha’ were investigated over the course 

of the 12 SEs to determine the reliability of the cNDPI and therefore the information of the 

underlying biological information. A significant differentiation of cultivars is possible, with 

low rates of misclassification. This finding based on the cNDPI investigations confirms the 

third hypothesis that the conversion of HG into PD is cultivar dependent and can be used as a 

chemometric marker. Additionally, the investigations of cNDPI confirmed the idea that 
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contents of PD are highly stable towards external effects (while being affected by seasonal 

fluctuations) and are mainly genetically determined. Furthermore, conversion of HG into PD is 

stable for the cultivars as well as the breeding population. Based on this information, cNDPI is 

a suited proxy in plant breeding, especially when combined with QTL analytics. Therefore, the 

fourth hypothesis regarding feasibility and reliability of cNDPI for plant breeding can be con-

firmed as well. This enables for a new perspective in targeted plant breeding for high perfor-

mance tea-hortensias when inbreeding H. macrophylla for their robust growth and larger leaves. 

Still, the quantifications of HG and PD for the preceding trials had to be performed in a lab. 

Especially in plant breeding large numbers of plants would have to be screened to find the 

“best” plant to develop further.  

Chapter 4 tried to find a solution to the arising problem from chapters 2 and 3: the number of 

chemical analyses needed for clear results in cultivar optimization and plant selection for plant 

breeding. Therefore, the possibility of hyperspectral modeling of HG and PD was investigated. 

While it was possible to set up a model that enables farmers and growers of tea-hortensias to 

identify optimal harvest dates, the accuracy was not yet sufficient to combine hyperspectral 

modeling and cNDPI to allow for a non-invasive determination of cNDPI. Additionally, the 

effect of measurement conditions showed to have an impact. Therefore, the fifth hypothesis of 

model accuracy being influenced by measurement conditions is to be accepted. Hypothesis six 

regarding suitability of VIS-NIR spectroscopy for modeling is either rejected or accepted de-

pending on application purposes. Highly accurate and reliable measurements were not possible, 

while measurements as a proxy for the field level were successfully achieved.  

The results presented in this work reveal several fields of research. First, optimization of hy-

perspectral model quality is needed to make cNDPI calculations faster, as no lab analyses would 

be needed. This would enable plant breeders in the field of tea-hortensias to use such models in 

the selection process by quantifying PD contents as well as conversion efficiency. The experi-

ments compiled in this work did not show any influence of external effects on PD contents. 

Still, further research is needed to possibly find factors to increase PD synthesis and yield. As 

shown in chapter 1.2.2, flowering showed to decrease biomass production in Hydrangea. There-

fore, flower-inhibition is needed for optimal yield. Additionally, targeted nutrient application 

and fertilization management could increase biomass production and therefore total PD yield 

which was not investigated here. Based on the results in this work, the cultivation of tea-hor-

tensias in Europe on an industrial scale seems non-problematic. But not only cultivation and 

quality-assessment are to be considered when putting a holistic view on tea-hortensias as feed-

stock for PD. The chain of synthesis of HG and PD is not fully understood yet and therefore 
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potential points of optimization remain unclear. Consumer acceptance showed to be a highly 

discussed topic in regard to Stevia rebaudiana, as discussed in chapter 1. The same topic needs 

to be addressed for phyllodulcin from tea-hortensia as well.  

Finally, this thesis was the first attempt to combine different types of quality assessment of tea-

hortensias. Chemical analysis and a new chemometric index (cNDPI) were used for DHC con-

tent and conversion efficiency of HG into PD. Vegetation indices and modeling of complex 

hyperspectral analyses were used to develop feasible and reliable proxies to predict HG and PD 

contents in tea-hortensias. The establishment of such quality assessment tools opens the way 

for the successful transformation of an ornamental plant with a traditional usage (tea-hortensia), 

into an industrial crop to produce bio-based high value products (hydrangenol, phyllodulcin). 

The combination of the CNDPI and hyperspectral modeling could enable breeders in their ef-

forts for breeding and selecting a robust and high-yielding tea-hortensia. Additionally, the im-

plementation of vegetation indices and hyperspectral modeling combined with traditional ag-

ronomic know-how would enable farmers and producers of tea-hortensias to establish not only 

a successful cultivation but at the same time monitor tea-hortensia quality. The results presented 

in this work build the foundation of optimization and quality assessment of the renewable re-

source “tea-hortensia” as feedstock for dihydroisocoumarins.  
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