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Introduction

Most economic models use traceable, easy-to-interpret parameters to illustrate ba-
sic economic concepts. The use of models helps us to get a grasp of the underlying,
complex processes, without having to worry where the parameters stem from. From
a policy point-of-view, it is common to map model predictions based on parameters
into policy recommendations. Consequently, to produce clear policy recommenda-
tions, we need sound estimates of the underlying statistics. This holds true especially
if the traditional assumption of rational agents - the Homo Economicus - fails. How
much attention do we pay to the costs of certain goods? How do we react to price
changes? How dowe react to different economic policies? To answer these questions,
we need real-world analyses of human behavior in economic contexts.
By using real-world data and exploiting quasi-random variation, I estimate cru-

cial parameters of economic models, such as the salience parameter and price sensi-
tivities in electricity consumption and job seeker responses to different governance
policies. This dissertation consists of three independent chapters that seek to fill
several gaps in the economic literature.
The first two chapters are connected by an overarching question: Can we use the

electricity price to incentivize electricity consumption when it is plentiful and elec-
tricity conservation when it is scarce? At the current stage, electricity cannot easily
be stored on a large scale and thus has to be produced when it is needed. And while
fossil fuels can be stored to be used when needed, most renewable energy sources,
such as solar and wind energy, are not available at all times, with their availability
fluctuating in patterns with limited predictability. So far, policymakers have been fo-
cusing on the supply side of this challenge: During consumption spikes, additional
fuel plants generate the electricity that is needed. But for microeconomists, the more
interesting question to ask is: Can we approach the challenge from the demand side?
In Chapter 1 (joint with Lorenz Goette), I show that the effectiveness of energy

prices to control electricity demand crucially depends on how much attention
households pay to their electricity costs. Using high-frequency household electricity
consumption data from a field experiment in Zurich, Switzerland, we first show
that providing households with smart meters and In-Home-Displays to monitor
their electricity consumption reduces domestic energy consumption. By exploiting
a nonlinearity in the Swiss energy pricing mechanism, we show that feedback
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provision increases households’ energy price sensitivity by more than 40 percent.
We conceptualize these findings using a framework for GMM estimation. We
find that due to salience bias, households behave as if they perceive less than
70 percent of their actual electricity costs. Heterogeneity analyses show that the
treatment effect of feedback provision on the price sensitivity is increasing in
pre-treatment baseline energy consumption and In-Home-Display usage. We also
observe low-education and low-income households to be stronger biased than
their highly educated, high-income counterparts. Finally, we show that the welfare
implications of IHD-introduction differ significantly from pure monetary gains.

In Chapter 2 (joint with Lorenz Goette), I investigate the price elasticity of
demand for households, which self-selected into a real-time electricity pricing
tariff. Providing an explicit estimate of households’ price sensitivities in a real-time
pricing tariff allows for an even more precise prediction of electricity grid loads.
We use hourly household consumption data from 899 households provided by a
utility that passes hourly changing wholesale electricity prices on to the consumers.
Using hourly wind energy production in Germany as an instrument for the hourly
electricity price, we find that households indeed react strongly to real-time pricing.
Using different levels of fixed-effects, we find that households react more strongly
to price variation over the day than across days, with implied intra- and inter-day
price elasticities of −1.67 and −.45, respectively. This implies that, while house-
holds are highly price sensitive, they show even stronger demand responses when
consumption adjustment requires electricity load shifting within the day than across
several days. Our results indicate that significant load shifts over the day can be
achieved by using time-varying energy prices, which opens the possibility to offset
energy consumption and production fluctuations using monetary incentives. Price
reactions are strongest when prices are low, indicating that households evaluate
price changes on their relative size to the price.

The third chapter (joint with Amelie Schiprowski and Patrick Arni) discusses a
different policy-relevant question: How restrictively should the Public Employment
Service (PES) manage job seekers? In many countries, the PES micro-manages job
seekers’ search behavior. This policy aims to ensure a quick reintegration into em-
ployment. However, it ignores many additional dimensions of job search, such as
job match quality and externalities of job search. We study the effects of increasing
the job search autonomy of job seekers on unemployment and labor markets. We
exploit a policy change in the Swiss canton Bern, which strongly reduced search
requirements and abolished mandatory vacancy referrals. Using detailed adminis-
trative data, we find that the policy change led to a reduction and narrowing of
average job search. We set up a difference-in-differences design to estimate effects
on labor market outcomes. Our results show that the policy change increased the
average duration of unemployment spells in Bern by about 8%, while increasing av-
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erage re-employment earnings by about 3%. Moreover, we find that effects are most
pronounced among job seekers whose effort is predicted to decrease more strongly
due to the reform. We also observe that the size of the effect depends on labor mar-
ket conditions, such as labor market tightness or competition from job seekers from
the remaining cantons. Finally, we find evidence that job seekers at the other side
of the border benefited from the decrease in effort provided by job seekers in Bern
by finding jobs at a faster rate.
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Chapter 1

Quantifying the Salience Bias of
Electricity Using Smart Meter Data

Joint with Lorenz Goette

1.1 Introduction

Over the last decades, growing concerns regarding climate change, energy security
and sustainability have altered the public view of energy policy. With increasing
political potential, energy efficiency concepts are rapidly rising in policymakers’ pri-
ority. A central aspect of most energy sustainability concepts is a shift from from
fossil-fuel energy towards wind and solar energy. Production from these sources,
however, is not as easily controllable over time as their fossil-counterpart. Hence, in
order to push forward sustainable energy production, a major future task for both
researchers and policymakers alike will be to find ways to incentivize electricity de-
mand to follow its supply. One of the main instruments to control energy demand is
the electricity price, which in turn can be manipulated through levies, taxes and sub-
sidies. These seem like powerful tools: In Germany as well as other European coun-
tries, a large portion of the energy price consists of taxes and levies.1 This provides
a starting point for interventions from policymakers to control aggregate energy
consumption by manipulating the price. It is tempting to look at energy prices and
price elasticities the same way as we look at other consumption goods: Increasing
the price should decrease demand and hence, consumption. However, in reality, elec-
tricity consumers exhibit a remarkably low price elasticity (Reiss and White (2005),
Allcott (2011), Ito (2014)). The reason for this low elasticity is subject to an ongoing
debate.

1. Source: Bundesnetzagentur, (https://www.bundesnetzagentur.de/DE/Beschlusskammern/
BK08/BK8_06_Netzentgelte/BK8_NetzE_basepage.html). Last visited Jan 9, 2022.

https://www.bundesnetzagentur.de/DE/Beschlusskammern/BK08/BK8_06_Netzentgelte/BK8_NetzE_basepage.html
https://www.bundesnetzagentur.de/DE/Beschlusskammern/BK08/BK8_06_Netzentgelte/BK8_NetzE_basepage.html
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In this paper, we explore what we believe to be one of the main underlying mech-
anisms determining domestic electricity consumption by quantifying how much at-
tention households pay to electricity costs compared to more conspicuous, imme-
diate costs. We present evidence from a randomized field experiment in Zurich,
Switzerland and enhance the original design with a strategy to identify electric-
ity price elasticities. In the original setting, 1’176 households were provided with
smart meters, which recorded electricity consumption in 15-minute intervals, and
In-Home-Displays (IHDs), which allowed households to receive continuous feedback
about their current and past electricity consumption and to set personal consump-
tion goals (Degen, Efferson, Frei, Goette, and Lalive (2013)). We extend the orig-
inal experiment’s empirical strategy by exploiting the nonlinear electricity pricing
mechanism on weekends in Zurich to compare electricity price elasticities with and
without real-time feedback, using households with an installed smart meter, but no
feedback through IHD as a control group. We then impose a theoretical framework
to quantify howmuch attention consumers pay to electricity costs before IHDs make
them fully salient.
Following IHD-introduction we find a reduction of electricity consumption dur-

ing the day by 0.316 kWh, or 5 to 6 percent of total daily consumption and a some-
what ambiguous effect on nighttime electricity consumption. Using a framework
with a quadratic utility function and variation in the daytime electricity price for
different days of the week, we find negative price elasticities for both daytime and
nighttime electricity consumptionwith respect to the daytime electricity price. Build-
ing up on our results, we estimate that households only perceive 68 percent of the
actual costs incurred from electricity consumption. We hypothesize that the intro-
duction of IHDs makes electricity costs more salient and hence, incentivises house-
holds to shift energy consumption from high-costs days of the week to low-costs
days of the week, while load shifting between different times of the day is subject
to spillover-effects.
This paper contributes to the literature on the application of social and be-

havioral sciences to research on energy consumption (Abrahamse, Steg, Vlek, and
Rothengatter (2007), Ehrhardt-Martinez (2008), Ehrhardt-Martinez and Laitner
(2010), Ueno, Sano, Saeki, and Tsuji (2006), Wilson and Dowlatabadi (2007), Steg
and Vlek (2009)) and shrouded attributes of resource consumption (Gabaix and
Laibson (2006), Sunstein (2015)). More fundamentally, we expand the literature
on price elasticities of energy consumption (Lijesen (2007), Al-Faris (2002), Aigner,
Newman, and Tishler (1994), Filippini (1995), Patrick and Wolak (2001), Allcott
(2011), Ito (2014), Jessoe and Rapson (2014), Reiss and White (2005)) by explor-
ing the mechanisms behind the low price elasticities found in the literature.
Previous empirical work has shown in various contexts that electricity consumers

exhibit a remarkably low price elasticity (Reiss and White (2005), Allcott (2011),
Ito (2014)). There are two apparent reasons why consumer demand may be inelas-
tic: first, the underlying preferences may be such that demand responses to price
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changes are indeed inelastic. In that case, taxes and subsidies on household electric-
ity consumption would only lead to small changes in electricity consumption. On
the other hand, there is also increasing evidence that that individuals’ demand may
be inelastic due to inattention to their electricity use and costs. This inattention bias
towards the less salient at the time of decision making has been found in a variety of
fields and is a second potential driver behind low price elasticities (Chetty, Looney,
and Kroft (2009), Jessoe and Rapson (2014)).
In many settings, some features of a decision are vivid and salient, while others

are less present and harder to quantify. This imbalance in the salience of some fea-
tures of a consumption decision disproportionately engages our attention and hence,
distorts our economic decision making, resulting in a salience bias. Electricity con-
sumption is especially prone to the salience bias: The benefits from using energy
(watching television, boiling water etc.) are felt immediately. The costs, however,
are incurred with a delay and are thus not as salient. When turning on an elec-
tric device, consumers do not open their purse and pay so-and-so many cents per
kilowatt-hour used. Instead, they receive a bill at the end of the month or at the end
of the year. This makes the costs of electricity consumption less salient than they are
in most economic contexts in which consumers pay upfront. A growing branch of
the behavioral economics literature on resource consumption has thus focused on
feedback provision as a means to close the salience gap between benefit and costs
(Attari, DeKay, Davidson, and Bruine de Bruin (2010), Attari (2014), Allcott and
Mullainathan (2010)). Indeed, feedback has been shown to reduce energy- and wa-
ter consumption by making their respective costs more salient.
Why does feedback play such an important role for conservation efforts? In many
ways, electricity differs from other consumption goods. It is no visible product, nei-
ther when it is produced, nor when it is used. Consumers do not see a “diminishing
stock” of electricity when turning on the television, nor do they have a precise idea
how the energy they are using was produced. Not being able to directly perceive
the financial implications makes it difficult for consumers to develop awareness or
involve in such an abstract concept. This yields special economic mechanisms for
electricity markets: For example, as electricity is no directly visible good, branding
mechanisms work differently (Hortaçsu, Madanizadeh, and Puller (2017), Rutter,
Chalvatzis, Roper, and Lettice (2018)). This makes it harder for green energy to be
a “lifestyle-element” that can be shown around, such as organic food or eco-clothing
(Birzle-Harder and Götz (2001)). Additionally, in most developed countries, electric-
ity shortages usually do not occur. Hence, consumers see electricity as a seemingly
unlimited, barely tangible resource, which they do not consume directly, but rather
as an input for electronic devices. The inconspicuous nature of household electricity
consumption thus rarely begs questions regarding its origin, usage or costs, espe-
cially since electricity costs only make up a small share of household expenditures.
While information provision strategies prove to be effective tools for consumption
reduction in many environmentally relevant contexts, feedback appears to be among
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the most effective. Fischer (2008) points out that successful feedback features high
frequency, long runtime and appliance-specific breakdown, is presented in a clear
way and uses a certain degree of interaction with the consumer. The most appeal-
ing way to satisfy these requirements seems to be smart metering and the use of
In-Home-Displays (IHDs) to enable households to continuously monitor their elec-
tricity consumption. This can potentially avoid the cyclical pattern of “action-and-
backsliding” found by Allcott and Rogers (2014), where strong reactions to feedback
provision are quickly followed by a return to old behavioral patterns following in-
frequent electricity feedback. In some cases, the IHDs are able to break down the
feedback on appliance level, enabling consumers to see exactly which appliance uses
how much energy, or provide normative feedback in the form of social comparisons
(Andor, Gerster, and Goette (2020)).
The remainder of this paper is structured as follows: In Section 1.2, we develop a

simple model of domestic electricity consumption. Section 1.3 provides an overview
of the field experiment conducted in Zurich, Switzerland. In Section 1.4, we describe
our methodology to identify the framework developed in Section 1.2 and present
the results. Section 1.5 presents the welfare implications of our findings. Section 1.6
concludes.

1.2 The Theoretical Framework

In this section we introduce a model of household energy consumption to illustrate
and discuss the underlying parameters and mechanisms. Our model simplifies and
loosely builds up on several concepts introduced by DellaVigna (2009) and Chetty,
Looney, and Kroft (2009). Using the concepts introduced here, we will track the
components that determine a household’s energy consumption decision to motivate
our empirical strategy. Later, we will use this framework to quantify the salience
bias of the average household. In order to do so, we will make stricter assumptions
on the form of the utility function. For now, we will keep the framework as sim-
ple and general as possible: A household can consume different quantities of two
distinct goods: Daytime electricity consumption and nighttime electricity consump-
tion. In most countries, electricity consumption during the day costs more than at
night.2 Hence, we can treat daytime and nighttime electricity consumption as differ-
ent goods with different prices to investigate the underlying price and substitution
effects.

1.2.1 Basic Setup

Let a household’s utility be determined by its consumption of electricity at different
times of the day. To keep the framework simple and to match it to the existing

2. We will discuss the reasons for this pricing mechanism in Section 1.4.
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pricing mechanism, we will only distinguish electricity consumption during the day
(denoted as x1) and during the night (denoted as x2).
A household’s utility is defined as

U(x1, x2, p1, p2) = u(x1, x2) − θ(p1x1 + p2x2)

Where u denotes the utility from consuming electricity (e.g. watching TV or show-
ering). The parameter θ < 1 is the household’s level of attention to energy costs,
as in Chetty, Looney, and Kroft (2009) or DellaVigna (2009). The intuition in our
research context is that while the utility from electricity consumption is felt immedi-
ately and correctly, the associated resource use is difficult to perceive. As in Chetty,
Looney, and Kroft (2009) and Chetty (2009), we assume that individuals only give
weight θ to the energy costs due to limited attention. As θ → 1, the quantity, and
hence, the cost of consumption is correctly perceived.
This specification for attention in a demand model is reduced-form in the sense

that it does not specify a deeper micro foundation. A plausible interpretation, along
the lines of Enke and Graeber (2019), is that individuals need to pay attention to per-
ceive their true electricity use: they observe a signal z= x+ u, where x ∼ N(xD,σ2

x)
is the distribution of their perceived electricity use, and u∼ N(0,σ2

u,t) is a percep-
tion error due to limited attention that is centered around zero. Given a signal z, the
individual rationally infers that her electricity use x is

E(x|z) = θx + θu
︸ ︷︷ ︸

≡θz

+(1 − θ)xD.

Thus, the attention parameter can be thought of as the signal-to-noise ratio θ =
σ2

x

σ2
x+σ

2
u,t
, arising from this signal-extraction problem under limited attention.3 We

make the following assumptions:

Assumption 1. (Assumptions on u, θ and p):
• (i) 0< θ < 1
• (ii) ∂ u

∂ xi
= ui > 0, i= 1,2

• (iii) ∂ 2u
∂ x2

i
= uii < 0, i= 1, 2

• (iv) ∂ 2u
∂ x1∂ x2

= uij < 0

• (v) u11 −
u2

12
u22
< 0

• (vi) p1 > p2

3. Tiefenbeck, Goette, Degen, Tasic, Fleisch, et al. (2016) show that, in the context of water
consumption, individuals with below-average water use tend to over-estimate their water use, while
individuals with above-average water use tend to underestimated their water use.
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The first two conditions are self-explanatory: Consumers are salience-biased,
and utility should be increasing in energy consumption. Note that (iii) and (iv) en-
sure constant and negative second derivatives, and (vi) assumes nighttime electricity
to be cheaper than daytime electricity. Taking derivatives, the first-order conditions
deliver:

u1(x∗1, x∗2) = θp1 (1.1)
u2(x∗1, x∗2) = θp2 (1.2)

This induces the following comparative statics:

∂ x1

∂ θ
=

p1 −
u12
u22

p2

u11 −
u2

12
u22

∂ x2

∂ θ
=

p2 −
u12
u11

p1

u22 −
u2

12
u11

∂ x1

∂ p1
=

θ

u11 −
u2

12
u22

∂ x2

∂ p2
=

θ

u22 −
u2

12
u11

∂ x1

∂ p2
= −

u12

u11

∂ x2

∂ p2

∂ x2

∂ p1
= −

u12

u22

∂ x1

∂ p1

In particular, the effect of correcting the salience bias (exogenously manipulating θ)
in daytime and nighttime electricity consumption depends on the respective prices
p1, p2 and substitution effects. We can also express the treatment effect as a function
of the salience parameter θ and the price effects:

∂ x1

∂ θ
=

1
θ

�

p1
∂ x∗1
∂ p1

+ p2
∂ x∗1
∂ p2

�

(1.3)

∂ x2

∂ θ
=

1
θ

�

p2
∂ x∗2
∂ p2

+ p1
∂ x∗1
∂ p2

�

(1.4)

1.2.2 Introducing Smart Metering

Introducing smart meters and In-Home-Displays allows households to receive real-
time feedback on their energy consumption and thus, provides variation in the
salience parameter θ .
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Proposition 1. (Consumption effect of IHD-introduction):
Manipulating θ can have positive or negative effects on electricity consumption:

∂ x1

∂ θ

(

< 0 for p1 >
u12
u22

p2

≥ 0 otherwise

∂ x2

∂ θ

(

< 0 for p2 >
u12
u11

p1

≥ 0 otherwise

The intuition behind this proposition is as follows: While the price effect of cor-
recting the salience bias should decrease daytime and nighttime energy consump-
tion, the substitution effect may work in a different direction: If the price of night-
time electricity is much lower than the price of daytime electricity (p2 ≤

u12
u11

p1),
households will excessively reduce expensive daytime energy consumption and sub-
stitute it with cheaper nighttime energy consumption. Introducing IHDs would then
increase x2. This load shifting effect is regularly found in the literature.
In the following, we will assume that IHD-introduction fully resolves the salience
bias, setting θ to 1. Note that we can easily relax this assumption and instead as-
sume that providing households with feedback instead sets θ to some θ FB < 1. In
that case we would identify the salience parameter as θ̃ = θ FB · θ , where θ denotes
the salience parameter we would have identified if we had assumed feedback to fully
resolve the salience bias.

1.2.3 Identifying the Salience Bias in a Concrete Framework

In order to identify the salience parameter θ outlined above, we have to make
stronger assumptions on u(x1, x2).
Let u(x1, x2)= α1x1 +α2x2 + γx1x2 − β1x2

1 − β2x2
2.

Additionally, we need a few regularity conditions on the model parameters:
Assumption 2. (Assumptions on the utility function parameters):
• (i) |γ|< 2

p

β1β2

• (ii) α1 > α2 > 0
• (iii) β2 ≥ β1 > 0

(i) ensures concavity of the utility function. (ii) and (iii) imply that daytime
energy consumption generates higher utility than nighttime energy consumption.⁴
Again, taking derivatives yields the first-order conditions:

4. Of course, some implications of the quadratic utility function we chose (such as constant
derivatives with respect to the salience parameter or electricity prices), may appear odd. To see this,
consider two households that hugely differ in baseline electricity consumption: One household exhibits
a baseline of 4 kWhs per day, the second household 10 kWhs per day. Increasing the electricity price
should have a larger effect on the second household, as it exhibits higher incentives and a larger scope
for consumption reduction. We do not consider this possibility. We will, however provide results based
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x∗1 =
1

4β1β2 − γ2
[2β2(α1 − θp1) + γ(α2 − θp2)] (1.5)

x∗2 =
1

4β1β2 − γ2
[2β1(α2 − θp2) + γ(α1 − θp1)] (1.6)

This delivers the following comparative statics:

∂ x∗1
∂ θ

= −
1

4β1β2 − γ2
(2β2p1 + γp2) < 0 (1.7)

∂ x∗2
∂ θ

= −
1

4β1β2 − γ2
(1β1p2 + γp1)

∂ x∗1
∂ p1

= ψ∗11 = −
1

4β1β2 − γ2
(2β2θ) < 0

∂ x∗1
∂ p2

=
∂ x∗2
∂ p1

= ψ∗21 = −
1

4β1β2 − γ2
(γθ)

Proposition 2. (Constant Derivatives)
Assuming a quadratic utility function, the derivatives of x1 and x2 with respect to
their prices and the salience parameter θ are constant in x1 and x2.

In order to identify θ , we will define the price- and cross-elasticities for daytime
electricity consumption (i.e. x1) under feedback. Note that we can do this analo-
gously for x2 (nighttime electricity consumption). However, in the data, our price
variation is limited to the daytime electricity price, which is why we will restrict our
theoretical analysis to identifying θ using price variation in daytime electricity. We
now define the elasticities:

εFB
1 = ψFB

11

�

p1

x1

�

=
2β2

H

�

p1

x1

�

φFB
1 = ψFB

21

�

p2

x1

�

=
γ

H

�

p1

x1

�

with H = γ2 − 4β1β2.
Using our assumption that feedback fully resolves the salience bias and sets θ to 1,
and that the derivative ∂ x∗1

∂ θ is constant in x1, we have

∂ x∗1
∂ θ

=
∆x∗1

1 − θ

on baseline consumption tercile splits in Section 1.4.7. Additionally, one can see the utility function
we chose as a second order approximation of the true utility function.
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Where ∆x∗1 denotes the change in daytime electricity consumption following the
introduction of IHDs, and 1− θ denotes the increase in salience following IHD-
introduction.
Then, equation (1.7) delivers

θ = 1 −
∆x∗1

p1ψ
FB
11 + p2ψ

FB
12

= 1 −
∆x∗1

p1ψ
FB
11 + p2ψ

FB
21

(1.8)

Looking at our theoretical framework, we can find an alternative method to identify
the salience parameter θ . To see this, consider the expression for ψ∗11 from Sec-
tion 1.2.3 and letψFB

11 denote the derivative of daytime electricity consumption with
respect to the daytime electricity price. Then:

ψ∗11 = −
1

4β1β2 − γ2
(2β2θ) (1.9)

ψFB
11 = −

1
4β1β2 − γ2

(2β2) (1.10)

Naturally, this allows us to extract θ as the ratio of the two expressions:

θ =
ψ∗11

ψFB
11

=
∆x∗,p1

1

∆xFB,p1
1

(1.11)

Where ∆x∗,p1
1 denotes the change in pre-intervention DT-consumption following a

change in p1 and the second equality uses our assumption of constant derivatives.
Since ∆p1 does not change over time, it cancels out in the expression above. Hence,
the inattention parameter can be identified as the ratio of the price sensitivities
before and after IHD-installation. Intuitively, the more inattentive a consumer is
towards electricity costs (pre-intervention), the smaller the pre-intervention price
sensitivity should be relative to the post-intervention price sensitivity under full
attention.

1.2.4 Consumer Surplus Analysis

In our framework, households are salience-biased. With θ < 1, a household does
not optimize with respect to the consumer surplus, but underestimates the costs of
electricity consumption.
A household’s unbiased utility, i.e. the consumer surplus, is defined as

W(x1, x2, p1, p2) = u(x1, x2) − p1x1 − p2x2

With u(x1, x2) defined as above. Plugging in the optimal choices of x1 and x2 under
salience bias from (1.5) and (1.6) and deriving with respect to θ gives us the surplus
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effect of introducing smart metering and IHDs and thus, correcting the salience
bias.⁵

∂W(θ)
∂ θ

= −(1 − θ)

�

p1
∂ x∗1
∂ θ
+ p2

∂ x∗2
∂ θ

�

(1.12)

Integrating with respect to θ and taking differences gives us:

W(1) −W(θ) = −
�

p1
∂ x∗1
∂ θ
+ p2

∂ x∗2
∂ θ

�∫ 1

θ

(1 − s)ds

= −
1
2

(1 − θ)(p1∆x∗1 + p2∆x∗2) (1.13)

Plugging in our expression for θ from equation (1.8) delivers:

W(1) −W(θ) = −∆x∗1
(p1∆x∗1 + p2∆x∗2)

2
�

p1ψ
FB
11 + p2ψ

FB
21

� (1.14)

Proposition 3. (Surplus effects of IHD-introduction)
The surplus effect of resolving the salience bias does not simply equal the savings
from using less electricity, but is scaled by the substitution effects of daytime- and
nighttime consumption and is dampened by the fact that consuming less energy also
decreases utility.

1.2.5 The Role of Heterogeneity in Consumer Surplus Gains

We can also express the surplus effect of IHD-introduction in terms of the salience
parameter θ and the electricity price effects. Using equations (1.3) and (1.4), we
can write

∂W(θ)
∂ θ

= −(1 − θ)

�

p2
1

∂ xFB
1

∂ p1
+ 2p1p2

∂ xFB
1

∂ p2
+ p2

2

∂ xFB
2

∂ p2

�

And so

W(1) −W(θ) =
1
2

p0Hp · (1 − θ)2 (1.15)

with p0 = (p1, p2) and H =

 

∂ xFB
1

∂ p1

∂ xFB
1

∂ p2
∂ xFB

1
∂ p2

∂ xFB
2

∂ p2

!

5. For clarity reasons we will change notation such that W(xFB
1 , xFB

2 , p1, p2)=W(1) and
W(x∗1, x∗2, p1, p2)=W(θ)
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Taking expectations yields

E[∆W] =
1
2

p0Hp · E[(1 − θ)2]

=
1
2

p0Hp · E
�

(E[1 − θ])2 + V(1 − θ)
�

Proposition 4. (The role of heterogeneity)
For a given mean bias, heterogeneity in the salience parameter θ increases the wel-
fare gains from resolving the salience bias.

1.3 The EWZ Field Experiment

In this section, we present the randomized field experiment conducted by Degen
et al. (2013) and augment their strategy with our empirical approach. 85.955 ran-
domly selected costumers of the electric power company in Zurich (EWZ) were con-
tacted and invited to participate in a study. If they were interested, they were asked
to register online and give their consent for a data protection statement. Households
were then randomly selected into one of five intervention groups and 26 starting co-
horts⁶, respectively. Of the total study population, 1.176 households (out of which,
1’105 households completed the study and 920 delivered usable data and completed
all surveys throughout the study) were provided with a smart meter device and an
In-Home-Display. Hence, their electricity consumption could be recorded and house-
holds received continuous feedback on their electricity consumption. The smart me-
ter recorded electricity consumption in 15-minute intervals for several weeks before
the IHD was installed (to document baseline consumption) and more than one year
after installation of the IHD. After IHD-installation, households could, at any time,
see their current and past electricity consumption. For a more detailed illustration
of the IHD-interface, see Appendix 1.A. Before presenting our empirical approach,
we will take a short look at the original implementation of the field experiment, the
treatment interventions, the data structure and descriptive statistics.

1.3.1 Setting and Implementation

The city of Zurich is the capital of the Swiss canton with the same name, with a
population of roughly 372.000 in 2010, when the experiment started.⁷ The imple-
mentation of the field experiment followed three steps:

6. Each cohort started the study at a different point in time as delivery and installation of the
smart meters and In-Home-Displays could not be managed for all households at the same time.

7. Source: Department of Statistics, Canton Zurich (https://statistik.zh.ch, last visited: Jan 9,
2022).

https://statistik.zh.ch
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1. Recruitment of households: Households were mailed invitations to participate
in the study.

2. Selection of households and first survey: After registration, out of the households
which were willing to participate, 5.000 were selected and sent a first survey
regarding the household’s demographics.

3. Assignment to treatment groups: Participants were assigned to one of five exper-
imental groups. The objective of the assignment algorithm was to minimize the
variance of baseline energy consumption between the experimental groups. The
experimental groups were:
– G0 Control Group: No intervention was implemented here. Note that for
our empirical analysis, we will use a different control group, consisting of
households with a smart meter, but no IHD.⁸

– G1 Smart Metering Group: This group of households received a smart meter
and, after several weeks, an In-Home-Display to continuously receive feed-
back on their energy consumption. Households in this group were also ran-
domly selected into squadrons, each starting the study at a different time,
due to delivery constraints with the smart meters and IHDs. We will focus
our analysis on this treatment group.

– G2 Consulting Group: Households in this treatment group received profes-
sional advice on electricity conservation.

– G3 Social Competition Group: Each household in this treatment group was
assigned to a similar household in terms of baseline energy consumption
and household characteristics. The households then received monthly, and
later quarterly, feedback regarding their own and their partner’s electricity
consumption. Both parties knew about their partner’s information set.

– G4 Social Comparison Group: Each household was assigned a comparable
household from the control group G0 and could compare their and their
partner’s electricity consumption. Feedback for this intervention group was
one-directional, the partner household did not receive any information.

Figure 1.1 illustrates the timeline (in weeks) for G1-households. Rollout of the IHDs
occurred between January 2011 and July 2012, and was set several weeks (in most
cases eight weeks) after installation of the smart meters. This means that T does not
refer to a specific point in time that is the same for all households. Instead, it denotes
a squadron-specific date between January 2011 and July 2012. The assignment to
these dates within the G1-group was random. Our consecutive analysis uses this
fact and exploits that during a substantial part of the experiment, a large portion of
the smart meters was already installed, but not yet linked to the IHDs, providing us

8. We will evaluate on this point in Section 1.4.
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Figure 1.1. Timeline For G1-Households
This figure presents the timeline for households in the G1 Smart Metering Group. Households in this group
received a smart meter several weeks before IHD-installation to collect information on baseline consump-
tion. At this point in time, the smart meters started collecting consumption information on the households,
but households did not receive real-time feedback until IHD-installation. Once the IHDs were installed (at
time T), households could see and evaluate their electricity consumption continuously.

with an additional control group for the smart meter analysis: households with an
installed smart meter but without IHD provide high-frequency data on electricity
consumption for households without IHD, whereas the regular control group G0
does not provide high-frequency data. We will return to this point when presenting
the graphical evidence and our empirical strategy in Section 1.4.

1.3.2 Data Overview

In the following, unless otherwise specified, we will exclusively focus on the Smart
Metering Group G1. Our data contains not only information on electricity consump-
tion in 15-minutes intervals, but also on IHD usage activity as well as survey data
on household characteristics, such as number of household members, household in-
come, education level, environmental attitudes etc.
The smart meters record 15-minute-interval meter readings for daytime and night-
time electricity consumption. Note that each household in Zurich has two electricity
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readers: One records total daytime consumption, the other records total nighttime
consumption since installation. This mechanism is used to distinguish daytime- and
nighttime consumption when billing the household.

1.3.3 Summary Statistics

Table 1.1. Household Characteristics

G0 G1 G2-G4
Control Smart Other Zurich

Meter Treatments

Demographics

Female 0.362 0.370 0.380 0.504
Agea

0-19 0.30 0.09 0.17 19.90
20-39 42.98 43.71 43.36 26.30
40-64 46.15 44.79 43.99 35.00
64+ 10.57 11.40 12.49 18.80

Nationality
Swiss 0.838 0.802 0.818 0.675
German 0.090 0.119 0.109 0.081
Italian 0.012 0.015 0.016 0.035
Serbian 0.002 0.003 0.001 0.008

Household Information

Household Size 2.128 2.073 2.078 1.990
Tenancyb 0.888 0.894 0.903 0.900
Pre-treatment-per-day-
consumption (kWh per day) 6.107 6.343 6.020 ≈ 7.534

N (Age) 1’012 1’105 2’994 372’000

Notes: This table presents household characteristics in our sample, compared to the average household in
Zurich and Switzerland. (Source for the Zurich demographics: Swiss Federal Office of Statistics (https://www.
bfs.admin.ch/bfs/de/home/statistiken/bevoelkerung/stand-entwicklung/bevoelkerung.html, last visited
Dec 20, 2021), the Canton of Zurich (https://www.zh.ch/de/planen-bauen/raumplanung/immobilienmarkt/
wohnungsmieten.html, last visited Jan 10, 2022), and Swiss Agency for Energy Efficiency)
aNumbers in our sample refer to the share of survey respondents falling into the respective age category
b0 = Homeowner/Condominium; 1 = Rented Apartment

https://www.bfs.admin.ch/bfs/de/home/statistiken/bevoelkerung/stand-entwicklung/bevoelkerung.html
https://www.bfs.admin.ch/bfs/de/home/statistiken/bevoelkerung/stand-entwicklung/bevoelkerung.html
https://www.zh.ch/de/planen-bauen/raumplanung/immobilienmarkt/wohnungsmieten.html
https://www.zh.ch/de/planen-bauen/raumplanung/immobilienmarkt/wohnungsmieten.html
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Table 1.1 presents the household characteristics in our sample by experimental
groups and compares them to official data from Zurich.⁹ We first see that females
are underrepresented in our sample. Swiss citizens are overrepresented in the study,
as are Germans, while Italians and Serbs are underrepresented. This can mostly be
attributed to the fact that the study was conducted in German. On average, a house-
hold in our sample has more members than the average household in Zurich, but
the difference is negligible. Finally, note that the distribution of the age of survey
respondents does not perfectly translate into Zurich demographics, as household
heads in our sample, who are usually the surveys’ respondents, are naturally usu-
ally older than 19 years and we do not have information on the age of the remaining
household members. Figure 1.2 presents the distribution of baseline electricity con-
sumption.
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Figure 1.2. Distribution of Daily Baseline Consumption
This figure presents the distribution of average daily baseline consumption per household on Saturdays and
Sundays during the weeks before IHD-installation. The red and blue line denote the 33 and 66-percentile
of baseline electricity consumption, respectively.

1.4 The Empirical Analysis

In this section, we present our strategy to identify the necessary statistics to evaluate
the theoretical framework developed in Section 1.2. To this end, we will first present
the electricity pricing mechanism used in Zurich and then show how we exploit the
price variation to identify the statistics outlined above.

9. Source: Department of Statistics, Canton Zurich: https://statistik.zh.ch, last visited: Decem-
ber 20, 2021 and Swiss Federal Office of Statistics: https://www.bfs.admin.ch, last visited: December
20, 2021

https://statistik.zh.ch
https://www.bfs.admin.ch


20 | 1 Quantifying the Salience Bias of Electricity Using Smart Meter Data

1.4.1 The Pricing Mechanism

In Switzerland, like in many other countries, households do not pay the same price
for electricity during each hour of the day. At night (during the night tariff NT), elec-
tricity consumption is substantially cheaper than during the day (day tariff, or DT)
(during our sample period, this price difference was 0.0973 CHF/kWh, with house-
holds paying on average approximately 0.21 CHF per kWh during the DT and 0.11
CHF per kWh during the NT). This has efficiency reasons: Electricity cannot easily be
stored: It has to be produced when it is actually needed. Electricity plants and grids
thus have to be prepared for peak hours, i.e. the time, when electricity demand is
highest. The peak hours are a substantial cost driver for operators, both on the elec-
tricity production and on the transportation side, as plants are usually not flexible
enough to quickly adapt their production to demand. In order to smooth aggregate
electricity consumption over the day (and thus capacities of the power grids) by
incentivising electricity consumption during off-peak hours, plants set lower prices
when aggregate demand is low (during the night, i.e. 10 p.m. - 6 a.m.). The price
differential between the DT and NT is thus foremost an incentive for households to
shift electricity consumption towards the NT.
The DT lasts from Monday to Saturday, from 6 a.m. to 10 p.m. - leaving Sundays in
the NT and making electricity consumption during the day on Sundays substantially
cheaper than on Saturdays. The reason for this is the fact that heavy industry rests
on Sundays, as opposed to Monday through Saturday. This generates an excess sup-
ply of energy, so that plants lower electricity prices on Sundays as well. This provides
us with the exogenous price variation we need for our theoretical framework: While
DT-consumption on Saturday costs between 0.1945 and 0.243 CHF/kWh (depend-
ing on the electricity product1⁰), it costs 0.0973 CHF/kWh less on Sundays, while
the nighttime price stays constant across the two days. Figure 1.3 illustrates the
price variation used in our framework. On average, DT-consumption costs roughly
0.21 CHF per kWh for each day of the week (in contrast, NT-consumption only costs
around 0.11 CHF per kWh on average), whereas it costs only around 0.11 CHF per
kWh on Sundays.
Note that we will focus our analysis on the price variation between Saturday

and Sunday, as we believe these days are similar enough to allow for a direct com-
parison.11 In order to identify the salience parameter from equation (1.11) we only
need to assume that any differences in electricity consumption between Saturday
and Sunday are structural and do not differ based on treatment status (except, of
course, any load shifting that is done to exploit the pricing mechanism). This as-
sumption is fairly weak and easy to justify: In a difference-in-differences setup it

10. For a detailed overview of the different tariffs, see Table 1.A.7 in Appendix 1.A.
11. However, we also present evidence on the effect of price variation between Sunday and Mon-

day using an empirical approach that is adapted to account for the structural differences between
Sunday and Monday (as opposed to Saturday-Sunday price variation).
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Figure 1.3. Price Chart over Days of the Week
This figure presents the average pricing schedule for households in CHF per kWh. The price of electricity
is calculated as a weighted average of the prices of the oekopower, naturpower, and mixpower-electricity
products. Daytime electricity consumption is more expensive than nighttime electricity throughout the week
and on Saturdays. On Sundays, however, the daytime electricity price stays at the nighttime-level. The non-
linearity generates a price difference in the DT-electricity price between Saturday and Sunday, while the
NT-electricity price stays constant over both days.

would be the equivalent to the parallel-trends assumption.
Identifying the salience parameter from equation (1.8), however, requires that dif-
ferences in electricity consumption between Saturday and Sunday are only due to
the price differences between the two days. Note that this assumption is still justi-
fiable, but much stronger. It would be unlikely that it would hold it we compared
a weekday to Sunday: Households behave differently during weekdays, as people
work or are out of the house for other reasons. However, we can assume that energy
consumption behavior on Saturdays and Sundays allows for a direct comparison.
Figure 1.4 supports our line of though: Here, we plot the average pre-treatment
electricity load profiles over the day for different days of the week. We observe sub-
stantially different load profiles over the day for the weekend and weekdays: While
on weekdays, electricity consumption is lower for almost every time of the day, it
jumps up between 5 and 7 p.m. as people are preparing to leave for work. After
this initial early jump, electricity consumption stagnates until 12 p.m., whereas on
weekends, it continuously increases. The load profiles for Saturdays and Sundays,
however, look alike. They indicate that people get up later during the weekend, but
stay at home, resulting in higher average consumption over the day. Their profiles
look very similar in shape, though consumption is higher in the evening on Sundays
than on Saturdays. We argue that the differences between the Saturday and Sunday
load profiles are mostly due to the existing price differences between the two days.
In all three graphs, we observe a sharp increase after 4 p.m. until 8 p.m. as peo-
ple return from work, start to prepare dinner etc. The higher level in consumption
on weekends, which is especially pronounced between 8 a.m. and 4 p.m. can be
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Figure 1.4. Electricity Load Profiles for Different Days of the Week
This figure presents the average electricity load profiles in kWh per hour on Saturday, Sunday and weekdays
before IHD-installation. For this graph, we aggregated the consumption data of households on an hourly
level. Note that the unit of measurement is kWh/hour = kW for each hour of the day.

explained by more people being at home instead of being at work (note that this
pattern, though less pronounced, even extends up to 6 or 8 p.m.). Hence, while
weekends are certainly not representative of a household’s energy consumption pro-
file in terms of consumption, we have to focus on Saturdays and Sundays to make
sure we do not mix up price- and weekday-effects.12

1.4.2 Graphical Evidence

In this subsection, we will present graphical evidence that will illustrate the conser-
vation efforts and load shifting households undergo after being introduced to the
In-Home-Displays. This will also pave the path to our identification strategy for the
salience parameter θ , on which we will elaborate in Section 1.4.5.
Figure 1.5 illustrates the treatment effect of installing an IHD using the aver-

age daily load profiles for households before and after IHD-installation (counting
the first 50 days after IHD-installation). Note that we can clearly see a reduction in
electricity consumption for Saturdays, especially during the DT from 6 a.m. to 10
p.m., whereas the effect of the IHDs on Sunday consumption seems to be somewhat
ambiguous. The differences in consumption before and after IHD-installation may
seem small at first, but remember that the unit of measurement is kWh/hour = kW
for each hour of the day. In order to take a closer look at the treatment and price

12. Additionally, we will exclude households with Solartop-pricing-rate, as these rates have a
much higher price per kWh and do not discriminate between DT- and NT-consumption. Also note
that the observations excluded by leaving out Solartop-households only make up 0.37% of the total
sample.
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Figure 1.5. Change in Electricity Load Profiles After IHD-installation
The figure presents the average electricity load profiles before and after IHD-installation (counting the first
50 days after IHD-installation) for Saturdays and Sundays. Note that the unit of measurement is kWh/hour
= kW for each hour of the day.

effects in the data, we will now zoom in on the deviations of the IHD-households
from the control households (that is, households with an installed smart meter, but
no feedback through an IHD, yet). We normalize all observations by the average
per-hour-consumption of a household to filter out individual fixed effects and by
the average per-hour-consumption in the control group to filter out time fixed ef-
fects.13 Remember that control group refers to households with smart meter, but
without IHD at the corresponding date and hour of the day. Figure 1.6 illustrates
the deviations from the hourly mean in the first 50 days after IHD-installation.
The two dashed lines denote the normalized average consumption of the control

group, which, unsurprisingly, fluctuates around 0, as this is the group we used to nor-
malize the data.1⁴ Looking at the two other graphs, we first see massive reductions
in energy consumption, which, in light of Figure 1.4 are most pronounced during the
peak consumption hours (especially between 6 p.m. and 9 p.m.). We also observe a
slight increase in consumption between 12 a.m. and 4 a.m. or 8 a.m., respectively for
Saturday and Sunday. This suggests electricity load shifting from DT- to NT-hours:
Following IHD-introduction, households exploit the energy pricing mechanism by
shifting electricity consumption from the expensive DT to the cheaper NT. Although
Figure 1.4 clearly shows higher baseline consumption on Sundays compared to Sat-

13. Note that including fixed-effects makes our results more precise, but can slightly alter the
deviation-graphs due to the unbalanced IHD-roll-out. Thus, while the deviation-graphs indeed repre-
sent the results found in the load profile-graph in Figure 1.5, they may differ in small details.

14. Note that the “before” graphs do not exactly equal 0 because we filtered out fixed effects
before restricting our sample to the 50 days before and after IHD-installation.
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Figure 1.6. Deviations from the Hourly Average in kWh per Hour
Deviations from the hourly mean in the first 50 days after IHD-installation on Saturdays and Sundays. The
two dashed lines denote the normalized average consumption of the control group, that is, households with
smart meter, but no IHD, yet.
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Figure 1.7. Deviations from the Hourly Average of Untreated Households in Percent of Pre-
Treatment Energy Consumption
This figure presents the deviations from hourly average consumption of pre-IHD-installation households in
percent for Saturdays and Sundays during the first 50 days after IHD installation. We can see that during the
daytime tariff, a nearly constant percentage of hourly consumption is conserved after IHD-installation. This
explains the larger absolute decrease in consumption during the evening hours following IHD-installation.

urdays, we observe the largest reductions in energy consumption on Saturdays, not
on Sundays.1⁵

15. In Appendix 1.C, we additionally illustrate the average treatment effect for each hour of the
day using a Difference-in-Difference specification on Saturdays, Sundays and weekdays, respectively.
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Figure 1.8. Deviations from the Daily Average in kWh per Day
This figure presents the deviations from the pre-IHD-installation daily average in kWh per day and illustrates
the persistence of the treatment effect of IHD-installation.

Figure 1.7 reveals the reason for this: At each hour during the DT, households re-
duce hourly electricity consumption by a constant fraction of roughly 5 to 10 per-
cent on Saturdays and considerably less on Sundays (though still substantial). This
is first evidence for a stronger reaction to feedback if energy prices deliver an ad-
ditional incentive. We would expect higher baseline consumption on Sundays to
result in higher reductions on Sundays, given that higher consumption leaves more
scope and larger incentives for conservation efforts, but the highest reductions are
achieved during the expensive Saturday-DT.
Figure 1.8 illustrates the persistence of the treatment effect for Saturdays and

Sundays, respectively. Again, the results (which include household-fixed effects) are
normalized by the daily mean for each date. After IHD-installation, we see an im-
mediate drop of electricity consumption, which persists even beyond the 50 days
(≈ 7 weeks), to which we restricted our previous graphs. We also observe that the
response for Saturdays seems to be a little more pronounced than the response for
Sundays, though the difference is not significant.

1.4.3 Putting Framework and Data Together

Looking at Section 1.2 and the respective equations to identify the salience param-
eter θ , there are several statistics we have to recover from the data:

• ∆x∗1: The average effect on DT-consumption of correcting the salience bias. Us-
ing our assumption that installing an IHD fully corrects the salience bias, this
becomes the average treatment effect of IHD-installation on DT-consumption.
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• ψFB
11: The reaction of DT-consumption (under feedback) to a change in the
daytime price. In our framework, this is constant in x1 (and x2), such that
ψFB

11 =
∆x

FB,p1
1
∆p1

. We thus only need to identify ∆xFB,p1
1 , i.e. the increase in DT-

consumption between Saturday and Sunday due to the decrease in p1.
• ψ∗11: The reaction of DT-consumption without feedback to a change in the day-
time price. Like above, we only need to identify ∆x∗,p1

1

• ψFB
21: The reaction of NT-consumption (under feedback) to a change in the
daytime price. This will give us an idea of the relationship of DT- and NT-
consumption (i.e. if and to what degree they are substitutes or complements).
As above, our framework implies that the derivative is constant in x1 and x2,
such that ψFB

21 =
∆xFB

2
∆p1
. Again, we thus only need to identify ∆xFB

2 , i.e. the re-
duction/increase in NT-consumption between Saturday and Sunday due to the
decrease in p1.

1.4.4 Reduced Form Evidence

Before turning to a General Method of Moments (GMM) framework in order to esti-
mate our model, we will first present the reduced-form results of a simple difference-
in-differences estimation. In order to avoid implementation and coordination prob-
lems, the smart meters and IHDs had to be rolled out over the course of the year,
meaning that each household belonged to a squadron of households receiving the
IHD at a certain time of the study (for most households, this was approximately eight
weeks after the installation of the smart meter). This staggered roll-out has some
important implications for our empirical design: In order to identify the necessary
statistics, especially ∆x∗1, i.e. the average treatment effect of installing an IHD on
DT-consumption, we cannot simply compare average consumption before and after
IHD-installation, as this would mix up the actual treatment effect with time effects
on electricity consumption. For example, higher use of air conditioning during the
summer or leaving the lights on during the winter would give us different treatment
results for the same household, depending on the date of IHD-installation. Hence,
we need to filter out the time effects induced by the staggered roll-out. For this, we
need a control group, consisting of untreated households (i.e. who do not receive
feedback yet). As noted in Section 1.3.1, the control group for our empirical strategy
will consist of households with an installed smart meter, but no installed IHD. The
IHD roll-out was distributed across squadrons over the period from January 2011
to July 2012 (according to the timeline from Figure 1.1). The point in time T on the
x-axis does not refer to a single date that is identical for all households but rather
a squadron-specific date of IHD-installation. These dates (and hence the weeks of
baseline consumption recording) are distributed over the course of the study, allow-
ing us to include time-fixed effects in our analysis. Note that assignment to the IHD-
installation and hence treatment timing was random. Figure 1.9 illustrates the roll
out. We plot the share of households with smart meter, but without IHD. Note that
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Figure 1.9. Share of Households with Smart Meter, but without IHD
This graph displays the share of households with an installed smart meter, but no IHD installed, yet.

the share does not, as one might expect, fall monotonically, but first increases due
to smart meter installation and then decreases due to IHD-installation. The graph
thus illustrates the size of our control group.
Hence, in order to identify the average treatment effect of IHD-introduction

(and thus, resolving the salience bias) for each combination of day-of-the-week and
time-of-the-day, we conduct a simple difference-in-differences regression on each
corresponding subset of observations. Note that we will subsume the weekdays from
Monday to Friday as “Weekdays” instead of analyzing each day separately. Before
linking our data to the theoretical framework, we run the following difference-in-
differences specification for Saturdays, Sundays and Weekdays, respectively, and
separately for daytime (DT) and nighttime energy consumption (NT).

ySa,DT
it = αSa,DT

i + βSa,DT
w(t) + δ

Sa,DTDi,t + ε
Sa,DT
it

That is, if we restrict our sample to observations on Saturday during the DT, the
coefficient on the dummy Di,t (which is 1 if observation t of individual i is recorded
after IHD introduction) gives us the average treatment effect of IHD-introduction on
Saturdays during the DT. The control group in this framework consists of households
with an installed smart meter, but no feedback through IHDs. We include αSa,DT

i and
β

Sa,DT
w(t) for household- and time fixed effects (on a weekly level). We can conduct the
regression on each set of observations corresponding to each of the six combinations
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between Saturday, Sunday and Weekdays and Daytime and Nighttime tariff. This
gives us the following set of regression equations:

ySa,DT
it = αSa,DT

i + βSa,DT
w(t) + δ

Sa,DTDi,t + ε
Sa,DT
it (1.16)

ySa,NT
it = αSa,NT

i + βSa,NT
w(t) + δ

Sa,NTDi,t + ε
Sa,NT
it (1.17)

ySu,DT
it = αSu,DT

i + βSu,DT
w(t) + δ

Su,DTDi,t + ε
Su,DT
it (1.18)

ySu,NT
it = αSu,NT

i + βSu,NT
w(t) + δ

Su,NTDi,t + ε
Su,NT
it (1.19)

yWe,DT
it = αWe,DT

i + βWe,DT
w(t) + δWe,DTDi,t + ε

We,DT
it (1.20)

yWe,NT
it = αWe,NT

i + βWe,NT
w(t) + δWe,NTDi,t + ε

We,NT
it (1.21)

Then, the δ-coefficients deliver the average treatment effect of IHD-introduction
on each day-of-the-week and time-of-the-day. Table 1.2 presents the results from the
regressions described above.

As in Figure 1.6, we observe large, highly significant reductions in average energy
consumption during the DT for all three day categories following IHD-introduction:
The strongest conservation potentials are achieved on Saturdays, when baseline con-
sumption is high compared to weekdays, and the energy pricing structure provides
additional incentives for conservation efforts. For Saturdays during the DT, con-
sumption decreased by 0.316 kWhs (≈ 6 percent) on average. Although baseline
consumption is lowest during weekdays, we observe the second largest reduction in
consumption on these days during the DT (≈ 0.247 kWhs, or 5% on average). Note
that the high daytime price provides additional incentives for energy consumption
reduction despite the smaller scope for conservation efforts. The smallest, though
still significant, reduction in energy consumption is achieved on Sundays. On Sun-
days, we estimate a reduction in DT consumption of 0.203 kWhs (≈ 4 percent) on
average, even though baseline consumption is highest and hence, the scope for en-
ergy conservation should be the larger on Sundays than on Saturdays and weekdays.
However, as DT consumption is substantially cheaper on Sundays, households are
faced with weaker financial incentives for conservation efforts, likely causing the
weaker treatment effect of IHD-introduction.
The results are especially interesting in the light of Figure 1.7, where we see that
following feedback provision, households reduce energy consumption by a nearly
constant fraction during the DT, such that, if price incentives were not a large driver
of our results, we would expect the treatment effect to be monotonous in baseline
electricity consumption with respect to Saturdays, Sundays and weekdays.
We do not find any evidence of increased nighttime electricity consumption after
IHD-introduction for any day of the week, so we find no reduced form evidence
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Table 1.2. Average Treatment Effect for Each Day of the Week and Time of the Day

(1) (2) (3) (4) (5) (6)
Dependent Variable Consumption Consumption Consumption Consumption Consumption Consumption
Treatment Effect Saturday DT -0.316***

(0.072)
Treatment Effect Saturday NT -0.042

(0.025)
Treatment Effect Sunday DT -0.203***

(0.069)
Treatment Effect Sunday NT -0.048*

(0.025)
Treatment Effect Weekday DT -0.247***

(0.048)
Treatment Effect Weekday NT 0.007

(0.020)
Individual-FEs Yes Yes Yes Yes Yes Yes
Week-FEs Yes Yes Yes Yes Yes Yes
Observations 43’554 43’590 43’420 43’474 217’915 218’137
R

2
within

0.055 0.010 0.059 0.009 0.045 0.007
R

2
between

0.012 0.000 0.015 0.002 0.014 0.000
R

2
overall

0.029 0.003 0.030 0.001 0.024 0.003
Clusters 978 978 977 977 979 979

Notes: This table presents results from the DiD-regressions based on equations (1.16)-(1.21). Dependent variable: Daily DT or NT electricity consumption, respectively. The
estimated coefficients denote mean deviations from pre-treatment baseline consumption, based on indicators for each combination of day-of-the-week and DT/NT-tariff. The
control group in this framework consists of households with an installed smart meter, but no feedback through IHDs. Each column reports the mean deviation (= average treatment
effect) for each day-of-the-week based on equations (1.16) - (1.21). Each treatment effect was estimated in a separate DiD regression. The control group in each specification
consists of households with an installed smart meter, but which do not receive feedback through an IHD, yet. All specification include week-of-sample- and household fixed
effects. Standard errors (in parentheses) are clustered at the household level.
*** p < 0.01, ** p < 0.05, * p < 0.1
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of load shifting using our difference-in-differences specifications. However, we do
not observe any significant reductions in energy consumption during the night on
weekdays and Saturdays, either. More interestingly, we find significant evidence of
reductions in nighttime electricity consumption of 0.048 kWhs during the NT on
Sundays (when the pricing schedule provides no price differential between DT- and
NT consumption), but not on Saturdays and weekdays.
Of course, looking at Figure 1.6, we would expect at least some evidence of load
shifting. However, note that our reduced form analysis is conducted on the daytime-
nighttime-level rather than analysing each hour of the day separately. Hence, it may
be subject to spillover effects from one hour to another. We will further explore this
channel in Section 1.4.6 and in Appendix 1.B by excluding the cutoff-hour between
9:30 and 10:30 p.m.
As the overidentification of the salience parameter θ in our framework allows

for θ to be identified via a GMM-Setup, we will now turn to a GMM identification
strategy to evaluate the model set up in Section 1.2.

1.4.5 GMM Estimation

Our theoretical framework from Section 1.2 yields several specifications of the
derivatives of electricity consumption with respect to the electricity prices and the
salience parameter θ . As mentioned in Section 1.2.3, we can identify the salience
parameter θ via two independent methods. Since our model is overidentified, we
can thus invoke a GMM-estimation framework.
The framework from Section 1.2 gives us

∂ x∗1
∂ θ

=

�

p1
∂ xFB

1

∂ p1
+ p2

∂ xFB
2

∂ p1

�

(1.22)

∂ x∗2
∂ θ

=

�

p2
∂ xFB

2

∂ p2
+ p1

∂ xFB
2

∂ p1

�

(1.23)

and

∂ x∗1
∂ p1

= θ
∂ xFB

1

∂ p1
(1.24)

∂ x∗2
∂ p1

= θ
∂ xFB

2

∂ p1
(1.25)

While our data is generated as follows:
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x1it = αi + δw(t) + xSa,DT,before +
∂ x∗1
∂ θ

(1 − θ) · 1Sa,DT,After

+
∂ x∗1
∂ p1

∆p1 · 1Su,DT,Before

+

�

∂ x∗1
∂ θ

(1 − θ) +
∂ xFB

1

∂ p1
∆p1

�

· 1Su,DT,After

+ ε1it (1.26)

and

x2it = αi + δw(t) + xSa,NT,before +
∂ x∗2
∂ θ

(1 − θ) · 1Sa,NT,After

+
∂ x∗2
∂ p1

∆p1 · 1Su,NT,Before

+

�

∂ x∗2
∂ θ

(1 − θ) +
∂ xFB

2

∂ p1
∆p1

�

· 1Su,NT,After

+ ε2it (1.27)

The data generating process is illustrated in Figure 1.10. Excluding household-
and time fixed effects α and δ and restricting the sample to observations on Sat-
urdays and Sundays, the difference in average energy consumption on Saturdays
during the DT before IHD-installation and after IHD-installation (i.e. the average
treatment effect of IHD-introduction) is denoted by ∆x∗1. The average difference
in energy consumption between Saturday and Sunday during the DT before IHD-
installation, i.e. the average pre-treatment price effect from lowering the DT-energy
price from 0.21 CHF per hour to 0.11 CHF per hour, is denoted by ∆x∗,p1

1 . Similarly,
the average difference in energy consumption between Saturday and Sunday during
the DT after IHD-installation is denoted by∆xFB,p1

1 . The data generating process for
NT-energy consumption works analogously.

The rationale behind equations (1.26) and (1.27) is as follows: Household i’s electric-
ity consumption on date t during the day x1it and during the night x2it is determined
by the individual household’s baseline consumption αi, time-fixed effects δw(t), an
indicator for the day of the week and an indicator for IHD-installation status (before
or after) along with the average difference in consumption associated with each
day-of-the-week-tariff combination. For each time of the day {DT, NT}, there are
four possible combinations of day-of-the-week and treatment status, each one with
their own indicator.1⁶

16. Note that for this analysis, we restrict the sample to observations on Saturdays and Sundays
to only exploit the price variation between Saturdays and Sundays.
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Saturday DT Before

Sunday DT Before

Saturday DT After

Sunday DT After

∆x
∗
1

∆x
∗,p1
1

∆x
∗
1 + ∆x

FB,p1
1 ∆x

FB,p1
1

Figure 1.10. The Data Generating Process
Diagram of the data generating process. For example, the difference in electricity consumption between Sat-
urday during the DT before intervention and Saturday during the DT after intervention (i.e. the DT treatment
effect) is denoted by ∆x

∗
1. Similarly, the difference between consumption on Saturday during the DT before

intervention and Sunday during the DT before intervention (i.e. the demand response to the price change
between Saturday and Sunday during the DT before intervention) is denoted by ∆x

∗,p1
1 . By the same logic,

the same demand response after intervention is denoted by ∆x
FB,p1
1

Assuming constant derivatives and plugging in equations (1.22), (1.23), (1.24) and
(1.25) gives us

x1it = αi + δw(t) + xSa,DT,before +

�

p1
∂ xFB

1

∂ p1
+ p2

∂ xFB
2

∂ p1

�

(1 − θ) · 1Sa,DT,After

+
∂ x∗1
∂ p1

∆p1 · 1Su,DT,Before

+

��

p1
∂ xFB

1

∂ p1
+ p2

∂ xFB
2

∂ p1

�

(1 − θ) +
∂ xFB

1

∂ p1
∆p1

�

· 1Su,DT,After

+ ε1it (1.28)

and

x2it = αi + δw(t) + xSa,NT,before +

�

p2
∂ xFB

2

∂ p2
+ p1

∂ xFB
2

∂ p1

�

(1 − θ) · 1Sa,NT,After

+
∂ x∗2
∂ p1

∆p1 · 1Su,NT,Before

+

��

p2
∂ xFB

2

∂ p2
+ p1

∂ xFB
2

∂ p1

�

(1 − θ) +
∂ xFB

2

∂ p1
∆p1

�

· 1Su,NT,After

+ ε1it (1.29)
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Where xSa,DT,before denotes energy consumption on Saturdays before IHD-
installation during the DT and xSa,NT,before denotes energy consumption on
Saturdays before IHD-installation during the NT, as we left the corresponding
indicators out of the equation as a baseline category. That is, equation (1.28) de-
notes the moment condition for DT consumption and equation (1.29) denotes the
moment condition for NT consumption. We then fit equations (1.28) and (1.29) in a
GMM estimation framework. Finally, we cluster all standard errors at the household
level. Additionally, we conduct a difference-in-differences analysis to identify the
statistics needed to calculate the salience parameter θ . The framework and results
are presented in the Appendix 1.F. We use the results from the DiD-analysis as
starting values for the GMM analysis in the following section.

1.4.6 Main Results

The results from our GMM analysis are presented in Table 1.3. We estimate the
salience parameter θ to be 0.681. That is, in our sample, we estimate that house-
holds behave as if they only perceive 68 percent of their electricity costs. The esti-
mated derivative of DT-energy consumption with respect to its price is −4.370. That
is, increasing the DT-electricity price by 1 CHF decreases DT-energy consumption by
4.37 kWhs per day on average. Note that we assume this derivative to be constant in
energy consumption. In our sample, average post-treatment electricity consumption
during the DT on Saturdays is 4.60 kWhs. We can thus calculate a post-treatment
price elasticity of −0.200.
Our estimate of -0.703 for the derivative of NT-energy consumption with respect to
its own price is not statistically significant. There are two simple explanations for
the ambiguous estimate of this parameter: First, the data does not allow for it to be
observed directly. The point estimate is a “byproduct” of our estimation framework,
but note that we do not observe any variation in p2. The second explanation lies in
the baseline of NT-energy consumption: With a much lower baseline consumption
during the NT, households have little scope for consumption adjustment during the
night.

We estimate a cross-price derivative of NT consumption with respect to the DT price
of -0.660. The sign of the estimated derivativemay appear puzzling: Basic economics
tells us that a negative sign of the cross-derivative indicates complements, whereas
we would expect DT- and NT-energy consumption to be substitutes. However, as
Figures 1.5 and 1.6 show, most energy consumption adjustment (following IHD-
introduction or price variation) occurs during high consumption hours between 5
and 11 p.m. This also means that some adjustments that address DT-consumption
are partially attributed to nighttime consumption (e.g. using the washing machine
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Table 1.3. GMM Results

Estimate

θ 0.681***
(0.072)

ψ
FB

11 -4.370***
(0.442)

ψ
FB

21 -0.660***
(0.107)

ψ
FB

22 -0.703
(0.659)

Test for θ = 1: 0.000

Hansen’s J χ
2 2.718

p-value Hansen’s J: 0.257

Observations 163’028
Clusters 907

Notes: The table presents the results for the salience parameter θ and the price sensitivitiesψ from the GMM
estimation based on the moment conditions that underlie the GMM framework, 1.28 and 1.29. Standard
errors (in parentheses) are clustered at the household level. To estimate θ, a weighted average of different
prices (depending on the electricity product) was used to approximate p1 and p2. A Wald-test tests whether
the estimate for θ is significantly different from 1. Hansen’s J statistic is used to test the validity of the
overidentifying restrictions in a GMM model. We do not reject the null hypothesis that the model is correctly
specified.
*** p < 0.01 ** p < 0.05 * p < 0.1

or dishwasher during a different time of the day). In other words: During a short
time window, DT- and NT-energy consumption can be seen as complements. To illus-
trate this, consider a dishwasher that usually runs from 9:45 to 10:30 p.m. (e.g. after
people had dinner, watched a movie and start to prepare to go to bed). Then, be-
tween 9:45 and 10:30 p.m., DT and NT electricity consumption for the dishwasher
are indeed complements, as it has to run the full time to clean the plates. Similar
mechanisms hold, for example, for washing machines. If an energy intensive device
runs during the DT-cutoff time at 10 p.m. (which is likely given the high average
consumption during this time), this would render DT- and NT-energy consumption
complements rather than substitutes.1⁷ Any reductions in DT-consumption around
the cutoff would then spill over into the night tariff, where their relative magnitude
would blur the “actual” reduction effects of the NT due to the higher consumption
baseline at 10 p.m. compared to the rest of the NT. In Appendix 1.B, we thus run

17. Our theoretical framework can easily be extended to a more realistic three-good case, with
the third good being electricity consumption in the evening. Of course, since we do not observe price
variation for certain hours of the day, we would not be able to apply this framework to our real setting.
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our regressions again, leaving out all observations between 9:30 and 10:30 p.m.
The results support our intuition, as we observe an estimate for ψFB

21 of a smaller
magnitude, which is still significantly negative. There remains some uncertainty re-
garding the mechanisms driving the substitution effects of DT- and NT-energy con-
sumption. Note, however, that our theoretical framework allows to identify θ via
two methods: As the ratio of the price sensitivities before and after feedback and
as a complex function of the IHD-treatment effect and the price elasticities of DT-
and NT-consumption.1⁸. While the first method does not require any knowledge of
the cross-derivative of NT energy consumption with respect to the DT energy price
at all, method 2 indeed uses ψFB

21. However, even here, the effect of ψFB
21 barely car-

ries any weight, relative to ∆x∗1 and ψFB
11 as it is scaled down by the low nighttime

price. Hence, even if our estimate for ψFB
21 was flawed, it would barely affect our es-

timate for θ . Lastly, Hansen’s J-statistic (which is used to determine the validity of
the overidentifying restrictions in a GMM model) is not significant, indicating that
our model is well-specified.

1.4.7 Exploring Heterogeneity in the Results

A natural question that comes to mind when looking at our results is how they
change for different households. Our data contains information on household char-
acteristics such as household size, income, tenancy status, environmental attitudes
and more. Furthermore, the IHDs record the number of interactions with the dis-
plays and hence, provide a measure of IHD-usage. Table 1.4 reports the dimensions
along which we explore heterogeneity in our results and provides the correlation
structure between the heterogeneity variables.

An important implication of our framework might appear puzzling: consumption
derivatives with respect to energy prices and salience are implied to be constant in
current energy consumption. However, a household with a baseline consumption of
10 kWhs per day should clearly exhibit a higher conservation potential than a house-
hold with a baseline consumption of 4 kWhs per day due to the larger scope (and
incentives) for conservation efforts. Note that without our assumption, we would
not be able to identify the key parameters in our model. But in order to explore
the potential shortcomings of our framework, we conduct our analysis on different
subsets of the sample, based on the terciles of the initial (baseline) consumption dis-
tribution of all households in the smart-metering treatment group, to see how the
estimates differ. In order to avoid endogeneity concerns regarding the baseline split,
we conduct the baseline consumption tercile split for this analysis based on the days
we left out of our main analysis, i.e. Monday through Friday.

18. See equations (1.8) and (1.11)
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Table 1.4. Correlation Structure Between Key Characteristics

IHD- Baseline Income Household Education
Interactions Consumption Size

IHD-Interactions 1
Baseline Consumption 0.0872∗∗ 1
Income 0.0396 0.236∗∗∗ 1
Household Size 0.0585 0.453∗∗∗ 0.303∗∗∗ 1
Education -0.0238 -0.128∗∗∗ 0.243∗∗∗ 0.0653∗ 1
∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table presents unconditional correlations between several household characteristics. Income lev-
els correspond to the levels depicted in Figure 1.A.4 (< 3000CHFs/Month, 3000 − 3999CHFs/Month, 4000 −
5999CHFs/Month, 6000 − 6999CHFs/Month, 7000 − 7999CHFs/Month, 8000 − 8999CHFs/Month, 9000 −
9999CHFs/Month, 10000 − 11999CHFs/Month, 12000 − 14999CHFs/Month, 15000 + CHFs/Month), corre-
sponding to the values 1-11. Education levels are ordered according to the order pictured in Figure 1.A.6 (No

Education, Obligatory Schooling, 2-3 Years General Schooling, Apprenticeship, Federal Vocational Baccalau-

reat, A-Level, College, University and Others), excluding the category “other”, corresponding to the values
1-8.
* p < 0.1, ** p < 0.05, ***p < 0.01

Additionally, we take a look at households that frequently used the IHD compared
to households which used them less frequently. In light of the concerns expressed
by Fischer (2008) and Buchanan, Russo, and Anderson (2015) regarding the impor-
tance of user interaction, we expect the results to be amplified for high IHD usage
households, but not rendered insignificant for low IHD usage households.

Table 1.5 reports the results from our heterogeneity analysis. Column (1) reports
the results from our baseline sample as in Table 1.3. Columns (2), (3) and (4) show
the results from the baseline consumption heterogeneity analysis. For this we split
up the sample into households with an average daily energy consumption above and
below the 33 and 66 percentile. Figure 1.2 illustrates the tercile split.
As we would expect given the large scope for conservation efforts, high baseline-
consumption households consumption tend to be the most price sensitive after IHD-
introduction. The pattern we observe in our heterogeneity analysis suggests that
post-feedback price sensitivity is increasing in baseline electricity consumption. As
mentioned above, this is not surprising, as higher baseline consumption implies both
a larger scope and incentives for consumption adjustment.
We also estimate the salience parameter θ to be decreasing in baseline electric-
ity consumption, which is not surprising, either: The more biased a household is,
the higher we would expect pre-treatment electricity consumption. Appendix Table
1.G.1 reports the p-values for our hypothesis tests of equality of the θ -estimates.
Both the difference between the estimated θ for the high- and low-, as well as the
difference in the estimated salience parameter for the high- and medium baseline



1.4
The

Em
piricalAnalysis

|
37

Table 1.5. GMM Heterogeneity Results

Baseline Consumption IHD-interaction
(1) (2) (3) (4) (5) (6) (7)

Overall High Medium Low High Medium Low

θ 0.681*** 0.439*** 0.884*** 1.179*** 0.559*** 0.645*** 0.793***
(0.072) (0.141) (0.071) (0.103) (0.133) (0.122) (0.135)

ψ
FB

11 -4.370*** -5.548*** -4.743*** -2.486*** -5.043*** -4.287*** -3.499***
(0.442) (1.038) (0.645) (0.505) (0.836) (0.720) (0.610)

ψ
FB

21 -0.660*** -0.523* -0.872*** -0.429*** -0.599*** -0.773*** -0.601***
(0.107) (0.290) (0.122) (0.074) (0.159) (0.229) (0.139)

ψ
FB

22 -0.703 -1.477 2.068 -0.321 -1.105 -0.732 -2.244
(0.659) (1.019) (2.259) (0.713) (0.903) (1.060) (1.858)

p-value “θ = 1”: 0.000 0.000 0.104 0.082 0.001 0.004 0.124

Hansen’s J χ
2 2.718 3.038 0.481 2.809 1.725 0.342 3.719

p-value Hansen’s J: 0.257 0.219 0.786 0.245 0.422 0.843 0.156

Observations 163’028 53’256 55’796 53’976 62’555 56’569 43’546
Clusters 907 302 304 301 303 312 289

Notes: This table presents the results for the salience parameter θ and the price sensitivities ψ from the GMM estimation based on the moment conditions that underlie the GMM
framework, 1.28 and 1.29. The GMM estimation results in columns (2) - (7) are based on the tercile splits in the distributions of average baseline consumption and the number
of interactions with the IHDs during the first 30 days after IHD-installation, as depicted in Figures 1.2 and 1.A.3. To estimate θ, a weighted average of different prices (depending
on the electricity product) was used to approximate p1 and p2. A Wald-test tests whether the estimates for θ are significantly different from 1. Hansen’s J statistic is used to test
the validity of the overidentifying restrictions in a GMM model. All standard errors (in parentheses) are clustered at the household level. In Table 1.G.1 in the appendix, we test
for the equality of θ across baseline consumption- and IHD-interaction cohorts.
*** p < 0.01 ** p < 0.05 * p < 0.1
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households are significant at the 1 percent level, respectively.
Perhaps the most surprising result is our estimate for the salience parameter θ for
low baseline households, as it is larger than one, indicating that low baseline house-
holds pay disproportionately more attention to their monetary electricity costs and
exhibit a lower price sensitivity after IHD installation than before. This may appear
surprising. Our theoretical framework is intentionally held very simple in order to
make it as easy as possible to track the mechanisms that determine energy consump-
tion and price responses.1⁹ The application process for the EWZ, however, provides
starting points for more complex mechanisms. Like many other electricity providers,
the EWZ offers an electricity costs calculator when applying for an electricity prod-
uct, based on household size, tenancy status etc. This sets up a reference value for
electricity costs and provides several potential starting points for mental accounting
and reference dependence. At the end of the year, actual electricity consumption is
compared to the reference value. Households thus set up a mental account for elec-
tricity costs and a reference point for consumption. Exceeding the reference point
triggers loss aversion and provides incentives to conserve energy, whereas staying
below it gives incentives to consume more energy to fully exploit the mental account
for energy costs. As this possibility is not featured in our framework and beyond the
scope of this paper, we will not further evaluate at this point.
Using equation (1.11) to recover the pre-treatment price sensitivitiesψ∗11, we calcu-
late −2.474, −4.251 and −2.970 for high-, medium-, and low baseline households,
respectively. We cannot explain why medium baseline households exhibit a substan-
tially higher pre-treatment price sensitivity than high- and low baseline consumption
households, but we can see that pre-treatment price sensitivity does not seem to be
systematically related to baseline electricity consumption. However, after making
households aware of their electricity consumption and the monetary savings po-
tential of the Saturday/Sunday-pricing mechanism, high-baseline households (who
show the highest savings potential) react the strongest, and low-baseline households
react the weakest to the pricing mechanism. The heterogeneity in our results shows
that some implications of our theoretical framework, such as the constant deriva-
tives, are oversimplifications that are needed for identification, but do not perfectly
reflect reality. For the sake of simplicity and identification, we assume a quadratic
utility function and point out the potential shortcomings using the heterogeneity
analysis.
Columns (5), (6) and (7) show the results from the IHD-usage tercile split. For this
we split up the sample into households that interacted with the IHD by more or less
than the 33 and the 66 percentile during the first 30 days after IHD-installation,
according to Figure 1.A.3. By “IHD-interaction” we refer to the usage of an IHD,
namely, by looking at current or past consumption, checking up on the (self-set)

19. Including reference-dependent utility (Kőszegi and Rabin (2006)) is generally possible, but
would make the model too convoluted and is not the focus for this paper.
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goal achievement progress or going into the “settings”-menu.
We first observe that our estimates for the salience parameter θ differ for high-,
medium- and low-interaction households, though this difference is not statistically
significant. We find that strongly biased households used the IHDs more than less
biased households, indicating that biased households seek to “correct” their bias by
using the IHD more frequently than their less biased counterparts and showing that
households are - to some extend - aware of their own salience bias. IHD-interaction
appears to be a driver of post-feedback price sensitivity. We estimate households
that interacted with the IHDs a lot to be the most post-feedback price sensitive,
whereas pre-feedback price sensitivity does not differ much across the three sub-
groups, with ψ∗11 = −2.837, −2.775 and −2.949, respectively for high-, medium-
and low-interaction households. Our results indicate that biased households actively
use the IHD to resolve the salience bias and that post-feedback price sensitivity is
increasing in IHD-interaction. One might argue that households that actively sought
out to use the IHD are also more determined to exploit the EWZ pricing structure,
but note that we do not find large differences in the price sensitivities between
households before the IHDs were installed.
So far, we have shown that IHD-interaction and pre-treatment baseline consumption
are important mediators of the (cost) effectiveness of feedback-provision. However,
it is likely that both characteristics are functions of even more fundamental sources
of heterogeneity, such as household characteristics. In Appendix 1.D, we thus also
analyze the underlying heterogeneity with respect to household income and the
education level of the household head.

1.5 Consumer Surplus Implications

We now turn to the surplus implications of the feedback intervention, especially
with respect to households’ ability to adapt to the pricing schedule after being able
to monitor their own consumption. Before diving into the analysis, an important
remark is in order: The main motivation for this paper is not to analyze individual
consumer surplus, but rather to quantify the salience bias and to show that feed-
back interventions are an effective tool to increase electricity price sensitivity and
do not negatively affect the consumer surplus. Additionally, wewant to show that the
overall welfare gains through more flexible consumption adaption are not weighted
down by individual surplus losses. As we will see in this section, households sig-
nificantly save money by reducing their electricity consumption following feedback
introduction, but experience much smaller gains in terms of consumer surplus. As
suggested earlier this does not mean that feedback provision fails in terms of surplus
gains. Individual surplus gains are a welcome side-effect of the more flexible energy
adjustment of households, but not the main driver of the policy implications of this
paper. As mentioned in Section 1.2.4, our theoretical framework allows us to cal-
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culate the surplus effects of IHD introduction based on our estimates. We can now
plug in the estimated parameters from Table 1.3 in equation (1.14). A major advan-
tage of the utility function we chose for our framework is the fact that it is linear
in electricity costs. Hence, individual utility and consumer surplus are expressed in
monetary units. Using the Delta-Method to recover the necessary statistics from our
estimation results, we can calculate the implications of IHD-installation as follows:

W(1) −W(θ) = −∆x∗1
(p1∆x∗1 + p2∆x∗2)

2
�

p1
∂ xFB

1
∂ p1
+ p2

∂ xFB
2

∂ p1

� ≈ 0.011 CHF per day

As consumption is defined on a daily level, this denotes the daily surplus gains of
a household following IHD-installation. The total welfare gains accumulate to ≈ 4
CHF per year. Two remarks are in order: First, as announced earlier, observe that
this number differs from pure cost savings, which are

∆x∗1 · p1 +∆x∗2 · p2 ≈ 0.074 CHF per day

Which amounts to 27 CHF per year. Though still positive, the surplus gains from
providing households with feedback are substantially lower than the pure consump-
tion savings, as households consume less energy and thus derive less utility from en-
ergy consumption. This is a substantial consumer surplus driver we must not ignore.
However, remember that the main motivation for our analysis was not to evaluate
individual consumer surplus as defined in Section 1.2.4. Instead, we try to adapt
total energy consumption to the energy supply to relieve electricity plants and grids
at peak consumption hours, thus increasing overall welfare. Hence, the main ob-
jective of our welfare analysis is to show that households’ consumer surplus is not
negatively affected by the intervention despite lower energy consumption.

1.5.1 Heterogeneity in Consumer Surplus Effects

How differently is a household’s surplus affected by the intervention, conditional
on household characteristics? If we were able to quantify the surplus effect on dif-
ferent subsets of households, we could be able to tailor the pricing schedule to the
households in order to maximize both the pricing effect and surplus gains.2⁰ Table
1.6 presents the monetary savings and consumer surplus gains for each subset of
households analyzed in Section 1.4.7 based on equation (1.14).

20. Note that in this section, unless otherwise specified, the “treatment effect of IHD-introduction”
refers to the treatment effect on DT-consumption, as this is the main driver of our welfare analysis.
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Table 1.6. Daily Consumer Surplus Gains

(1) (2)

Monetary Savings CS Gains
Overall 0.074*** 0.011**

(0.017) (0.006)

High Baseline Consumption 0.160*** 0.067*
(0.037) (0.036)

Medium Baseline Consumption 0.026 0.002
(0.018) (0.002)

Low Baseline Consumption -0.024* 0.001
(0.013) (0.001)

High IHD usage 0.116*** 0.032*
(0.030) (0.018)

Medium IHD usage 0.083 0.014
(0.031) (0.012)

Low IHD usage 0.043 0.003
(0.026) (0.004)

Notes: The table presents approximations of daily monetary savings and daily gains in consumer surplus
using the Delta Method based on equation (1.14) and the estimates from Tables 1.3 and 1.5 (in CHFs per
day).
*** p < 0.01 ** p < 0.05 * p < 0.1

As expected, we observe the consumption savings to be increasing in the treat-
ment effect of IHD-introduction and the estimated salience bias: The high baseline
consumption- and high IHD-interaction households drastically adapt their consump-
tion behavior after being introduced to consumption feedback and hence, experience
the largest savings. If the treatment effect is negative (i.e. if feedback increases con-
sumption), the consumption savings are negative, as can be seen for low baseline
consumption households. The consumer surplus gains from IHD-introduction are
also increasing in the treatment effect and post-feedback price sensitivity, but ex-
hibit a much smaller magnitude, with the surplus gains being significantly positive
only for high IHD interaction and high baseline consumption households. As pointed
out in Section 1.2.4, we observe that the weighted sum of the surplus gains exceeds
the surplus gains for the whole sample:

0.33 · 0.067 + 0.33 · 0.002 + 0.33 · 0.001 ≈ 0.023 > 0.011
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1.6 Discussion and Conclusion

The externalities of excessive fossil and nuclear energy production have been demon-
strated in the form of pollution, climate change and nuclear disasters and clearly
show the necessity for a more structured approach to sustainable energy manage-
ment. In order to facilitate the transition towards renewable energy sources, it will
be necessary to reduce aggregate energy consumption and to flexibly adapt energy
demand to the contemporaneous energy supply. By extending the strategy of a ran-
domized field experiment conducted in Zurich, Switzerland, and by exploiting the
nonlinear pricing mechanism used by the local electricity provider, we are able to
quantify how much attention households pay towards energy prices. Additionally,
we are able to quantify the conservation potential of electricity price variation in
combination with the installation of smart meters and In-Home-Displays.
Our results indicate that, on average, consumers perceive less than 70 percent of

the electricity costs they actually incur. In line with current literature, we argue that
this salience bias arises from the discrepancy in the salience of energy consumption
and energy costs, which are usually incurred with delay. We find that, on average,
IHD-introduction decreases daytime consumption on Saturdays by 0.32 kWh (≈ 6
percent of average energy consumption during the daytime tariff), on Sundays by
0.21 kWh (≈ 4 percent) and on weekdays by 0.24 kWh (≈ 5 percent) and has a
somewhat ambiguous, though insignificant effect on nighttime electricity consump-
tion. This indicates that feedback induces households to exploit the existing pricing
schedules. Additionally, we find that IHD-introduction increases price sensitivity: Be-
fore intervention, a price increase of 1 CHF decreased daytime energy consumption
by 3.1 kWhs per day on average, and after intervention by 4.4 kWhs per day.
Our findings are subject to substantial heterogeneity in household characteris-

tics, with our heterogeneity analysis suggesting the salience bias to be stronger for
households with high baseline consumption, low education level and low income.
Our finding that IHD interaction indeed mediates treatment and price effects con-
firms earlier results that consumers need to engage with the IHDs to realize the best
outcomes. Conversely, the results are not rendered insignificant if they do not.
The results hold important implications for both policymakers as well as future

research: When introducing taxes or manipulating the energy price to reduce energy
consumption and evaluating welfare effects, policymakers have to acknowledge the
importance of salience of electricity prices. As Chetty, Looney, and Kroft (2009),
Finkelstein (2009) and Taubinsky and Rees-Jones (2017) point out: for most cases
of taxation, consumer inattention and the resulting low price elasticity is actually de-
sirable: Basic economics tells us that low price elasticities minimize the deadweight
loss inherent to taxation. But corrective taxes, such as carbon taxes on electricity
consumption, are not primarily aimed at generating tax revenue, but decreasing de-
mand and hence, consumption (Allcott, Lockwood, and Taubinsky (2019)). Keeping
the balance between minimizing welfare losses and regulating energy consumption
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demands a deep understanding of consumer inattention and price elasticities. This
study provides a starting point on this front by quantifying the level of inattention
towards electricity prices. Even further, we are able to quantify consumer surplus ef-
fects by pointing out the discrepancy to simple conservation effects. Our straightfor-
ward framework allows future research to easily replicate and extend our framework
using different datasets and to compare the results to ours. Differences in daytime
and nighttime prices are common in most countries - it is likely that other electric-
ity providers use a similar pricing mechanism as the EWZ. Hopefully, the simplicity
of our design initiates further scientific work that investigates the importance of
feedback on the electricity demand sensitivity with respect to the price. The most
compelling extension to our theoretical framework and the empirical setting would
be a three-good framework, in which electricity consumption over the day is further
split up into different hours of the day. Using this approach, it would be possible to
further shed light on our surprising findings regarding the sign of the derivative of
daytime electricity consumption with respect to the nighttime electricity price. The
nature of the price variation in this setting does not allow for such an approach.
The data structure and the simplicity of our structural approach have, of course,

some shortcomings: As we see in Figure 1.4, Saturday and Sunday load profiles dif-
fer from regular weekday load profiles. By restricting our analysis to Saturdays and
Sundays we ignore these differences. This may raise questions regarding the external
validity of our design, as we cannot easily extend our results to weekdays. However,
by showing that the treatment effect of IHD-introduction on weekdays in extremely
similar to the treatment effect on Saturdays we believe that our results can - at least
to some extend - be generalized to weekdays. Our robustness check confirms this:
The price variation between Saturdays and Sundays does not allow for a GMM ap-
proach (as Sundays and Mondays are too different to be compared directly), but a
Difference-in-Differences framework can be imposed on the data and the Sunday-
Monday price variation can be used to estimate the salience parameter θ . As Table
1.F.3 reveals, this does not change our estimate for the salience parameter substan-
tially. Our description of the salience bias in this setting remotely resembles the
Present Bias (Laibson (1997)): Consumers disproportionately undervaluing future
costs could also be explained by time-biased preferences and hyperbolic discounting.
While our framework does not distinguish between the two possibilities, we believe
the feedback intervention to only have a sizable effect on electricity consumption if
not time-biased preferences, but limited salience to future costs is the main driver
of excessive pre-treatment energy consumption. This paper contributes to the liter-
ature on interventions used in environmental psychology (Steg and Vlek (2009))
and aimed at pro-environmental behavior. Future research could further pursue the
welfare implications of our empirical strategy and our theoretical framework. The
possible extensions to our framework and strategy include taxation effects under
salience bias and the development of treatment effects and load shifting over time.
As electricity pricing mechanisms are nonlinear in many countries, our analysis can
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also be conducted on a variety of already existing datasets that - much like in the
presented case for Degen et al. (2013) - are generated to examine the consumption
outcomes after feedback provision, without taking a closer look at price effects.



Appendix 1.A Additional Figures | 45

Appendix 1.A Additional Figures

Figure 1.A.1. In-Home-Display Interface
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Figure 1.A.2. In-Home-Display Interface
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Figure 1.A.3. Distribution of the Number of IHD Interactions
This figure presents the distribution of the number of IHD-interactions per household during the first 30
days after IHD-installation. For clarity reasons, we exclude households with more than 4000 interactions.
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Figure 1.A.4. Distribution of Household Income
This figure presents the distribution of household income. Note that -3999 is short for 3000-3999, -4999
is short for 4000-4999 and so on. For the correlation Table 1.4, we assign to each income category a value
between 1 and 11.
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Figure 1.A.5. Distribution of Household Size
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Figure 1.A.6. Distribution of Education Level
This figure presents the distribution of the highest education level of the household heads. The included
education levels are: No Education, Obligatory Schooling, 2-3 Years General Schooling, Apprenticeship, Fed-

eral Vocational Baccalaureat, A-Level, College, University and Others. For the correlation Table 1.4, we assign
to each education category (except other) a value between 1 and 8 according to the education hierarchy
displayed in this graph.
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Figure 1.A.7. Electricity Products and Prices
Electricity products and their respective prices on Sundays and every other day of the week. Note that we
excluded households with the SolarTop-tariff from our analyses as their pricing schedule is different from
the standard pricing schedule. Additionally, they make up only a small fraction of our total sample (0.35%).
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Appendix
1.B

Robustness
Check:Analysis

W
ithoutCutoff

Hour

Table
1.B.1.Average

Treatm
entEffectforEach

Day
ofthe

W
eek

and
Tim

e
ofthe

Day
W

ithoutthe
DT

Cutoff
Hour(9:30

-10:30
p.m

.)

(1) (2) (3) (4) (5) (6)
Dependent Variable Consumption Consumption Consumption Consumption Consumption Consumption
Treatment Effect Saturday DT -0.298***

(0.071)
Treatment Effect Saturday NT -0.020

(0.022)
Treatment Effect Sunday DT -0.193***

(0.066)
Treatment Effect Sunday NT -0.032

(0.021)
Treatment Effect Weekday DT -0.230***

(0.047)
Treatment Effect Weekday NT 0.016

(0.017)
Individual-FEs Yes Yes Yes Yes Yes Yes
Week-FEs Yes Yes Yes Yes Yes Yes
Observations 41’577 41’617 41’446 41’506 208’033 208’269
R

2
within

0.055 0.008 0.057 0.009 0.040 0.006
R

2
between

0.007 0.000 0.009 0.000 0.007 0.001
R

2
overall

0.028 0.003 0.029 0.003 0.021 0.002
Clusters 941 941 940 940 942 942

Notes: This table presents results from the DiD-regressions based on equations (1.16)-(1.21). Dependent variable: Daily DT or NT
electricity consumption, respectively. In all estimations we exclude observartions during the cutoff hour 9:30 - 10:30 p.m. The esti-
mated coefficients denote mean deviations from pre-treatment baseline consumption, based on indicators for each combination
of day-of-the-week and DT/NT-tariff. The control group in this framework consists of households with an installed smart meter,
but no feedback through IHDs. Each column reports the mean deviation (= average treatment effect) for each day-of-the-week
based on equations (1.16) - (1.21). Each treatment effect was estimated in a separate DiD regression. The control group in each
specification consists of households with an installed smart meter, but which do not receive feedback through an IHD, yet. All
specification include week-of-sample- and household fixed effects. Standard errors (in parentheses) are clustered at the house-
hold level.
*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 1.B.2. GMM Results without the DT Cutoff Hour (9:30 - 10:30 p.m.)

Estimate

θ 0.680***
(0.074)

ψ
FB

11 -4.149***
(0.427)

ψ
FB

21 -0.425***
(0.079)

ψ
FB

22 -0.553
(0.564)

p-value θ = 1: 0.000

Hansen’s J χ2 2.633
p-value Hansen’s J: 0.268

Observations 164’331
Clusters 918

Notes: This table presents the results for the salience parameter θ and the price sensitivity ψ from the GMM
estimation based on the moment conditions that underlie the GMM framework, 1.28 and 1.29, excluding
observation during the DT cutoff hour 9:30 - 10:30 p.m. All standard errors (in parentheses) are clustered
at the household level. To estimate θ, a weighted average of different prices (depending on the electricity
product) was used to approximate p1 and p2. A Wald-test tests whether the estimates for θ are significantly
different from 1. Hansen’s J statistic is used to test the validity of the overidentifying restrictions in a GMM
model.
*** p < 0.01 ** p < 0.05 * p < 0.1
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Appendix 1.C Average Treatment Effect over the Day

In this section, we present reduced form evidence on the treatment effect of
IHD-installation for each hour of the day. That is, we estimate the Difference-in-
Differences framework presented in equation (1.C.1) separately for Saturdays, Sun-
days and weekdays. The control group consists of households with an installed smart
meter, but who did not receive feedback through an IHD, yet. The outcome variable
is hourly electricity consumption. We include household and week-of-sample fixed
effects as well as hour-of-the-day fixed effects. The δ-coefficients then deliver the
average treatment effects for each hour of the day. The results closely resemble our
results in Figure 1.6, in that, following IHD-installation, we observe the largest re-
ductions in consumption during the peak hours in the evening and on Saturdays
(not on Sundays, when consumption is highest). Additionally, we find reductions of
similar magnitude on weekdays.

yith = αi + βw(t) +
23
∑

x=0

δafter
x I(h=x & after) +

23
∑

x=0

γxI(h=x) + εith (1.C.1)

The estimated coefficients are displayed in Figure 1.C.1c.
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(a) Average Treatment Effect over Saturdays
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(b) Average Treatment Effect over Sundays
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(c) Average Treatment Effect over weekdays

Figure 1.C.1. Averagte Treatment Effect over the Day on Different Days of the Week
This figure presents the estimated treatment effect for each hour of the day for Saturdays, Sundays, and
weekdays respectively, based on equation (1.C.1). The outcome variable is hourly electricity consumption.
We include household and week-of-sample fixed effects as well as hour-of-the-day fixed effects. The control
group consists of households with smart meter, but no feedback through IHDs, yet. Shaded bars indicate
statistical significance at the 10-, 5-, and 1-percent level, respectively. Whiskers denote the standard error
(clustered at the household level). This graph was inspired by Andor, Gerster, and Goette (2020)
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Appendix 1.D Heterogeneity with Respect to Income and
Education Level

Table 1.D.1 reports our results from the household income heterogeneity analy-
sis. Figure 1.A.4 presents the income distribution across all households in our sam-
ple. Looking at Table 1.4, note that income is strongly correlated with initial base-
line consumption, household size and education level. Column (1) in Table 1.D.1
reports the GMM results for the overall sample; columns (2), (3) and (4) report the
results for low-, medium- and high income households. We estimate low-income
households to be the most biased households in our sample. The difference in the
estimate for the salience parameter between low- and medium income households
is mostly driven by the large difference in pre-treatment price sensitivity. After be-
ing introduced to the IHDs, we observe little differences in the price sensitivities
of both subsets, indicating that low-income households show little sign of adaption
to the pricing schedule pre-treatment, but adapt their consumption behavior once
they are made aware of the savings potential. Interestingly, the largest pre- and post
feedback price sensitivities can be found in the high income households. Taking a
look at the correlation structure between baseline consumption and income helps
us to better understand the results in Table 1.D.1.
Table 1.D.2 presents our estimation results based on the education level of the

survey respondent. Figure 1.A.6 displays the distribution of the education levels of
the survey respondents. Table 1.4 reveals that education level is negatively correlated
with baseline consumption. Note that education is a categorical variable, and includ-
ing it in a correlation table implicitly requires that we can form a hierarchy consisting
of the different education levels. We assume this hierarchy to correspond to the order
in which the education levels are reported in Figure 1.A.6 (excluding “Others”). Col-
umn (2) presents the results for households in which the survey respondent stated
that they finished an apprenticeship, the Federal Vocational Baccalaureat, A-Level
or College; Column (3) presents the results for university-educated households. In
the following, we will refer to them as low and high education households. We do
not observe any significant differences in the post-feedback price sensitivities be-
tween low and high education households. However, we find that low-education
households are stronger biased than high education households, with the difference
being significant at the 10 percent level (p= 0.05)
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Table 1.D.1. GMM Heterogeneity Estimation Results Based on Income

(1) (2) (3) (4)
Income Cohort

Overall < 6000CHF/Month 6000 − 8999CHF/Month ≥ 9000CHF/Month

θ 0.681*** 0.409** 0.848*** 0.836***
(0.072) (0.204) (0.240) (0.079)

ψ
FB

11 -4.370*** -2.801*** -2.401*** -7.503***
(0.442) (0.552) (0.926) (0.918)

ψ
FB

21 -0.660*** -0.402*** -0.286 -1.244***
(0.107) (0.136) (0.204) (0.224)

ψ
FB

22 -0.703 0.091 0.163 -0.665
(0.659) (0.482) (2.336) (2.705)

p-value “θ = 1”: 0.000 0.004 0.528 0.037

Hansen’s J χ
2 2.718 1.728 1.656 0.756

p-value Hansen’s J: 0.257 0.422 0.437 0.685

Observations 163’028 40’242 43’550 54’179
Clusters 907 219 233 301

Notes: This table presents the results for the salience parameter θ and the price sensitivities ψ from the GMM estimation based on the moment conditions that underlie the GMM
framework, 1.28 and 1.29. The GMM estimation results in columns (2) - (4) are based on household income cohorts. In column (2), we present the results for households earning
less than 6000 CHF per month, in column (3), only households earning between 6009 - 8999 are included, and in column (4), we only include households earning 9000 CHF per
month or more. To estimate θ, a weighted average of different prices (depending on the electricity product) was used to approximate p1 and p2. A Wald-test tests whether the
estimate for θ is significantly different from 1. Hansen’s J statistic is used to test the validity of the overidentifying restrictions in a GMM model. In Table 1.G.1 we test for the
equality of θ across income cohorts. All standard errors (in parentheses) are clustered at the household level *** p < 0.01 ** p < 0.05 * p < 0.1
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Table 1.D.2. GMM Heterogeneity Results Based on Education

(1) (2) (3)
Education Cohort

Overall “Low” Education “High” Education

θ 0.681*** 0.526*** 0.844***
(0.072) (0.137) (0.088)

ψ
FB

11 -4.370*** -4.020*** -4.488***
(0.442) (0.742) (0.603)

ψ
FB

21 -0.660*** -0.338** -0.969***
(0.107) (0.152) (0.162)

ψ
FB

22 -0.703 -0.391 0.115
(0.659) (0.523) (2.113)

p-value “θ = 1”: 0.000 0.000 0.075

Hansen’s J χ
2 2.718 3.323 2.511

p-value Hansen’s J: 0.257 0.190 0.285

Observations 163’028 67’909 80’481
Clusters 907 365 445

Notes: This table presents the results for the salience parameter θ and the price sensitivities ψ from the
GMM estimation based on the moment conditions that underlie the GMM framework, 1.28 and 1.29. Col-
umn (1) presents the results for households in which the survey respondent stated that they finished an
apprenticeship, the Federal Vocational Baccalaureat, A-Level or College, Column (2) presents the results
for university-educated households. Households of the other-category are excluded from the analysis. To
estimate θ, a weighted average of different prices (depending on the electricity product) was used to ap-
proximate p1 and p2. A Wald-test tests whether the estimate for θ is significantly different from 1. Hansen’s
J statistic is used to test the validity of the overidentifying restrictions in a GMM model. In Table 1.G.1 we
test for the equality of θ across education cohorts. All standard errors (in parentheses) are clustered at the
household level.
*** p < 0.01 ** p < 0.05 * p < 0.1
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Appendix 1.E Average Treatment Effect: Heterogeneity

Table 1.E.1 presents the average treatment effects of IHD-introduction on Saturday
DT electricity consumption for the three subsamples of high baseline, medium base-
line and low baseline households. We applied the same estimation equation (1.16)
we used to receive the estimates in tables 1.2 and 1.B.1.We observe significant reduc-
tions following IHD-introduction only for the high baseline households. We can also
see that low baseline households increased electricity consumption. Although this
effect is not significantly different from zero, we see that it is significantly different
from the average treatment effect on the high baseline households. We also test for
equality among the treatment effects for each baseline consumption tercile and re-
port the corresponding p-values. Finally, we run the same analysis for a tercile split
on the number of IHD-interactions during the first 30 days after IHD-installation
and find that households in all terciles significantly reduced consumption, but even
more so in the high-IHD-interaction tercile (though the difference to the remaining
terciles is not statistically significant).
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Table 1.E.1. Average Treatment Effect for Each Baseline Tercile

Estimate

Treatment Effect High Baseline -0.824***
(0.136)

Treatment Effect Medium Baseline -0.119
(0.087)

Treatment Effect Low Baseline 0.045
(0.088)

p-values

High vs. Medium 0.000

Medium vs. Low 0.109

High vs. Low 0.000

Individual-FEs Yes
Week-FEs Yes
Observations 41’180
R

2
within

0.057
R

2
between

0.222
R

2
overall

0.005
Clusters 920

Notes: This table presents the average treatment effects of IHD-introduction on Saturday DT electricity con-
sumption for the three subsamples of high baseline, medium baseline and low baseline households. Each
treatment effect was estimated in one DiD regression based on equation (1.16). The tercile split is displayed
in figure 1.2. Standard errors (in parentheses) are clustered at the household level. The p-values stem from
simple Wald-tests testing the equality of the estimated average treatment effects of IHD-installation.
*** p < 0.01 ** p < 0.05 * p < 0.1
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Table 1.E.2. Average Treatment Effect for Each IHD-interaction Tercile

(1)
Estimate

Treatment Effect High IHD Usage -0.426***
(0.125)

Treatment Effect Medium IHD Usage -0.285***
(0.107)

Treatment Effect Low IHD Usage -0.276***
(0.091)

p-values

High vs. Medium 0.342

Medium vs. Low 0.940

High vs. Low 0.285

Individual-FEs Yes
Week-FEs Yes
Observations 41’180
R

2
within

0.054
R

2
between

0.002
R

2
overall

0.024
Clusters 920

Notes: This table presents the average treatment effects of IHD-introduction on Saturday DT electricity con-
sumption for the three subsamples of high- medium, and low IHD-interaction. Each treatment effect was
estimated in one DiD regression based on equation (1.16) and a tercile split on the number of IHD interac-
tions during the first 30 days after IHD installation. The tercile split is presented in figure 1.A.3. Standard
errors (in parentheses) are clustered at the household level. The p-values stem from Wald-tests testing the
equality of the estimated average treatment effects of IHD-installation.
*** p < 0.01 ** p < 0.05 * p < 0.1
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Appendix 1.F Robustness Check: Difference-in-Differences Setup

Using a difference-in-differences setup, we can check whether our results are robust
to different specifications. Note that the difference-in-differences analysis was con-
ducted before the GMM analysis was implemented and provides the starting values
for the parameters identified in Section 1.4.6.
Using the restriction of the data to Saturdays and Sundays, the random assign-

ment to the control group and the assumptions of constant derivatives and full res-
olution of the salience bias under feedback from the theoretical framework, we can
estimate the necessary statistics in the fixed-effects model presented in equation
(1.F.1).

yitτ = αi +ωw(t)

+
∑

j(t)∈{Sa,Su}

∑

τ∈{DT,NT}

∑

γ∈{before,after}

β jτγDij(t)τγ − βSa,DT,before + εitτγ (1.F.1)

That is, household i’s consumption at date t at time τ ∈ {DT, NT} is determined
by the day of the week j(t), its respective pricing structure for the DT and NT (de-
noted by τ) and by the provision of feedback through IHDs (denoted by before or
after). The idea behind equation (1.F.1) is as follows: Dij(t)τγ is an indicator, which is
equal to 1 if an observation for household i falls on a certain day of the week j(t) (Sa
or Su), in a certain time tariff τ ∈ {DT, NT} and in the time before or after feedback,
denoted by γ. Hence, for each household, there are 23 = 8 possible combinations
of weekday-time-feedback. For each combination, we include a dummy variable. To
avoid perfect collinearity (because exactly one of these indicators will, by construc-
tion, be 1), we exclude the dummy for Saturday during the DT before (Sa, DT, before)
intervention, as this will serve as the reference category in our regression. Finally,
we include household fixed-effects αi and week-of-the-year fixed effects ωw(t) and
cluster all standard errors on the household-level. Table 1.F.1 presents the results
from the regression described above.
Before interpreting the results, we will translate the coefficients on the dummy-
variables from equation (1.F.1) to fit our model. Using the fact that consumption on
Saturday during the DT before intervention serves as the reference category, we see
that the coefficient on Di,Sa,DT,after gives us the average treatment effect of providing
feedback on Saturdays during the DT. In other words: the coefficient on Di,SA,DT,after

gives us ∆x∗1. To see this, remember that the coefficients in Table 1.F.1 report mean
deviations from the reference category, meaning that the coefficient on Di,Sa,DT,after

denotes how much more or less energy the average household consumes on Satur-
day during the DT after intervention compared to the reference category Saturday
DT before intervention.
Using the same logic, we can find the DT-price sensitivity of the average household
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under feedback (ψFB
11). From the pricingmechanism, we already know∆p1 = 0.0973

CHF. ∆xFB
1 can be calculated as β̂Su,DT,after − β̂Sa,DT,after, meaning that the change

from Saturday during the DT after the intervention to Sunday during the DT after
intervention can be calculated as the difference between the coefficients on these
dummies. Analogously, we can calculate ∆xFB

2 as β̂Su,NT,after − β̂Sa,NT,after.
Note that in order to estimate θ from the data using equation (1.11), we have to
estimate a nonlinear function of our estimated coefficients. We will thus make use
of the Delta-Method.

Table 1.F.1. Main Results from Difference-in-Differences Specification

Estimate

β
Sa,DT,after -0.401***

(0.066)
β

Sa,NT,before -3.358***
(0.093)

β
Sa,NT,after -3.328***

(0.096)
β

Su,DT,before 0.292***
(0.056)

β
Su,DT,after 0.017

(0.075)
β

Su,NT,before -3.295***
(0.095)

β
Su,NT,after -3.264***

(0.098)

Individual-FEs Yes
Week-FEs Yes
Observations 164’554
R

2
within

0.344
R

2
between

0.004
R

2
overall

0.234
Clusters 920

Notes: This table presents estimation results based on equation (1.F.1). The reported coefficients denote
mean deviations from the reference category Saturday DT before Intervention. Standard errors (in parenthe-
ses) are clustered at the household level.
*** p < 0.01 ** p < 0.05 * p < 0.1

We can now calculate
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∆xFB,p1
1 = β̂Su,DT,after − β̂Sa,DT,after = 0.017 − (−0.401) = 0.418

∆xFB,p1
2 = β̂Su,NT,after − β̂Sa,NT,after = −3.264 − (−3.328) = 0.064

Next, we can calculate the price derivatives of DT- and NT-consumption under feed-
back with respect to the DT-price:

∂ xFB
1

∂ p1
=
∆xFB,p1

1

∆p1
=

0.419
−0.0973

= −4.306 (1.F.2)

and
∂ xFB

2

∂ p1
=
∆xFB,p1

2

∆p1
=

0.064
−0.0973

= −0.658 (1.F.3)

Table 1.F.2 reports all approximations using the Delta Method. The salience
parameter θ is reported twice, θ1 reports the calculated salience parameter based
on equation (1.8) while θ2 is based on equation (1.11).
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Table 1.F.2. Calculated Statistics from DiD-Setup

Coefficient

∆x
∗
1 -0.401***

(0.066)

∆x
FB,p1
1 0.419***

(0.044)

∆x
FB,p1
2 0.064***

(0.011)
∆x
∗,p1
1 0.292***

(0.056)

ψ
FB

11 -4.306***
(0.456)

ψ
FB

21 -0.654***
(0.111)

ψ
∗
11 -3.001***

(0.578)

θ1 0.588***
(0.076)

p-value θ1 = 1 0.000
θ2 0.699***

(0.117)
p-value θ2 = 1 0.010

N 164’554

Notes: This table presents the calculated statistics from the baseline difference-in-differences regression
presented in Table 1.F.1 needed to calculate the salience parameter θ based on equations (1.8) and (1.11).
To approximate these statistics, we used the Delta Method and the framework laid out earlier in this section.
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Table 1.F.3. Results from Sunday-Monday Difference-in-Differences Specification

Estimate

β
Su,DT,after -0.285***

(0.063)
β

Su,NT,before -3.589***
(0.092)

β
Su,NT,after -3.560***

(0.094)
β

Mo,DT,before -0.574***
(0.068)

β
Mo,DT,after -0.959***

(0.081)
β

Mo,NT,before -3.715***
(0.095)

β
Mo,NT,after -3.672***

(0.095)

θ 0.852***
(0.080)

p-value θ = 1 0.065

Week-FEs Yes
Observations 164’165
R

2
within

0.342
R

2
between

0.003
R

2
overall

0.237
Clusters 919

Notes: This table presents estimation results based on equation (1.F.1). Reported coefficients denote mean
deviations from the reference category Sunday DT before Intervention. Coefficients are estimated using
OLS. The difference to the estimation above is that in this estimation, we only include observations on
Sundays and Mondays and thus exploit the price difference during the DT between Sunday and Monday. As
we cannot plausibly assume that Sunday and Monday are structurally similar enough to allow for for a direct
comparison in energy consumption, we cannot use the identification of θ according to equation (1.8) for the
calculation. Instead, θ is approximated using the Delta Method, based on equation 1.11. θwas approximated
using the Delta Method. Standard errors (in parentheses) are clustered at the household level.
*** p < 0.01 ** p < 0.05 * p < 0.1
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Appendix 1.G Hypothesis Tests

Table 1.G.1. p-values for Heterogeneity Analyses

Hypothesis Test p-values

p-value

Baseline Consumption

θHigh = θMedium 0.005
θMedium = θLow 0.018
θHigh = θLow 0.000

IHD-Interaction

θHigh = θMedium 0.635
θMedium = θLow 0.416
θHigh = θLow 0.216

Income Cohort

θHigh = θMedium 0.165
θMedium = θLow 0.961
θHigh = θLow 0.052

Education Level

θHigh = θLow 0.051

Notes: In this table, we display p-values for Wald tests of equality of coefficients according to the estimation
results from Tables 1.5, 1.D.1 and 1.D.2. We test whether the estimate for the salience parameter θ differs
between certain subgroups in our sample.
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Chapter 2

Do Households Shift Electricity
Consumption? Evidence from a
Real-Time Pricing Tariff
Joint with Lorenz Goette

2.1 Introduction

Electricity suppliers and grid operators face a complicated logistical challenge: At
all times, the grid-wide electricity demand has to be met. Electricity cannot easily
be stored, and hence, has to be produced when it is needed. While most fossil fu-
els can be used when needed, most renewable energy sources, such as solar and
wind energy, are not available at all times. In addition, their fluctuating availabil-
ity cannot be fully predicted. In the power market, predictable fluctuations in elec-
tricity demand and supply are usually offset by fuel plants producing electricity if
needed. Short-time fluctuations are met by oil and gas plants, which can be started
and stopped relatively quickly. Using such back-up plants to offset fluctuations in
energy availability and demand, however, requires additional capacities in electric-
ity production that are rarely used. Their marginal (and marginal social) costs of
production, however, are high, especially at full capacity. So far, policymakers have
mostly been focusing on adapting the electricity supply to the electricity demand.
However, adapting electricity demand to the electricity supply could ease the prob-
lem and would reduce the need for back-up plants, increasing the efficiency in the
electricity market.
In this paper, we examine the effectiveness of residential real-time electricity

pricing (RTP) as a mechanism to adjust electricity demand to the contemporaneous
electricity supply. In RTP schemes, households do not pay a fixed price for electric-
ity at all times. Instead, electricity prices vary by hour in non-fixed patterns - for
example, to follow the marginal costs of electricity provision, which vary in real-
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time.1 We investigate the RTP mechanism set by an electricity provider operating in
Austria and Germany, which passes wholesale electricity prices from the European
Power Exchange (EPEX) on to the customer households. These prices are generated
based on supply and demand predictions and are set for each hour of the next day.
Consequently, households in our sample do not pay a flat rate, but hourly changing
electricity prices that, at each hour, reflect the marginal costs of electricity provision.
Time-varying energy pricing (TVP) has often been proposed to close the gap be-

tween the marginal costs of energy provision and the electricity price (Ito, Ida, and
Tanaka (2018)). Yet, TVPmechanisms are still uncommon (Borenstein (2005)). Cus-
tomers are used to being charged a flat rate, and they are naturally suspicious of
new pricing schemes. Hence, while electricity providers and grid operators are gen-
erally aware of the beneficial impact of dynamic pricing on consumption smoothing
over the day, they often fear the potential backlash of customers if the price design
is perceived as too complicated or too opaque. On the other hand, the idea of dy-
namic electricity pricing is not new. The daytime-/nighttime-tariffs used by many
electricity providers are motivated by the same logic: With total electricity consump-
tion dropping during the night, plants that cannot easily adjust their capacity over
the day overproduce. In order to provide incentives to use more electricity during
the night and less during the day, electricity providers charge less per kWh dur-
ing the nighttime hours.2 Introducing customers to dynamic pricing mechanisms
with time-varying prices can provide incentives to reduce or shift consumption from
peak-hours to off-peak hours, smoothing total electricity consumption over the day.
In contrast to most TVP mechanisms, the RTP mechanism in our setting generates
electricity prices that change hourly in non-fixed patterns, but are known since the
day before.
We use individual-level hourly consumption data of almost 900 German house-

holds, which were exposed to electricity RTP based on EPEX wholesale prices. Our
observationwindow spans the period between April 1, 2019 andDecember 31, 2020.
In our sample, we identify four clusters of households that can be categorized with
respect to their electricity consumption profile over the day. Excluding households
with extremely high overall and large nighttime consumption leaves us with our
final sample of 830 households.
As the wholesale electricity price is the result of grid-wide electricity production

and demand, it is endogenous with respect to domestic consumption patterns. To
address this challenge, we instrument for the hourly electricity price using hourly
wind production in Germany. Hourly wind energy production exhibits a strong neg-

1. Customers usually know the electricity prices they are facing in advance.
2. Such daytime- and nighttime tariffs are called time-of-use (TOU) pricing designs. Thesemech-

anisms feature electricity prices that are higher during peak periods and lower during off-peak periods,
but (in contrast to RTP) move according to a predictable pattern. Peak periods can be defined as sea-
sons, months or - in the case of daytime-/nighttime tariffs - time of the day.
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ative relation with the hourly electricity price on the first stage: One additional GW
in wind production is associated with a 0.1 cent-drop in the electricity price. On the
other hand, wind energy production is unlikely to be correlated with domestic elec-
tricity consumption patterns, conditional on the electricity price (especially when
controlling for local weather). In addition to our analyses, we run the same analy-
ses on a panel of 130 control households spanning the period between January 1,
2019 and January 31, 2020.
We find that households in our sample, in contrast to households in our con-

trol sample, show a strong overall sensitivity to hourly changing electricity prices,
with an estimated overall price elasticity of -0.676. Estimated price sensitivities are
stronger for low electricity prices. More importantly, we find that households show
stronger demand reactions in response to the electricity price varying over the day
than in response to the electricity price varying across several days: Zooming in on
our results by adding date fixed effects, we estimate an intra-day price elasticity of
-1.668. By adding date fixed effects, we only exploit variation in the electricity price
that occurs within the day. Zooming out of our results by collapsing electricity con-
sumption on a daily level (and thus ignoring any within-day price variation) delivers
an estimate for the inter-day price elasticity of -0.453, indicating that the scope for
demand responses to price variation crucially depends on the time horizon of con-
sumption. Households in our sample react more strongly to price variation over the
day than price variation across days by shifting electricity consumption within the
day rather than over several days. Possible examples for this could be showering in
the morning instead of showering during the expensive evening hours or cooking
earlier. The scope to shift such activities over several days is limited. These results
are robust to a large number of different specifications and sample restrictions and,
although the estimated price sensitivities are larger on weekends, are still highly
significant during weekdays. Finally, estimating household level price sensitivities
reveals that our estimates are driven by a large share of households, rather than just
a few highly elastic ones.
As households in our sample self-selected into the real-time pricing scheme, we

also assess the external validity of our results. Since we have no household-level
information about the households in our sample other than their zipcode, we use
information on sociodemographic and socioeconomic variables on the zipcode level,
provided by the data provider microm to investigate their sociodemographic and so-
cioeconomic environment.While we find statistically significant differences between
Germany and our sample (for example, in the share of homeowners, education, in-
come and family structures), we also find that only for a few of these variables
the differences are large in absolute terms. Still, we report that households in our
sample live in zipcode areas with a higher average socioeconomic status and more
children-centered family structures.
Our findings provide real-time demand elasticity estimates for different time

horizons, thus contributing to the evaluation of the effectiveness of different types
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of dynamic electricity pricing. In order to estimate the effectiveness of such pricing
mechanisms and develop an appropriate pricing system, it is crucial to know the
consumers’ demand responsiveness with respect to the electricity price (Reiss and
White (2005)). However, universally applicable empirical work on price elasticities
is scarce. While there is a large strand of empirical literature on electricity price
elasticities, different data structures yield different estimates for the price sensitiv-
ity. Andruszkiewicz, Lorenc, and Weychan (2019) provide an elaborate overview of
estimated price elasticities of electricity demand analyses. Most studies analyze ag-
gregate electricity consumption on an annual or quarterly level (Holtedahl and Joutz
(2004), Boonekamp (2007), Alberini and Filippini (2011), Boogen, Datta, and Fil-
ippini (2017), Filippini (2011), Okajima and Okajima (2013)), with the estimated
price elasticities depending on the granularity of the available data.
Our study, which uses individual-level hourly consumption data, contributes to

the literature on household price elasticities (Harding and Sexton (2017)). Only few
studies use individual-level consumption data (Schulte and Heindl (2017), Silva,
Soares, and Pinho (2018), Boogen, Datta, and Filippini (2014), Volland and Tilov
(2018)) to estimate price elasticities, and even fewer use hourly consumption data
(Lijesen (2007), Patrick and Wolak (2001), Allcott (2011)).
Other studies analyze individual-level, high-frequency consumption data, but

instead of RTP rather focus on critical peak pricing (CPP) mechanisms, which intro-
duce (often infrequent, unanticipated) price spikes (Bollinger and Hartmann (2020),
Faruqui and George (2005), Faruqui, Sergici, and Akaba (2012), Jessoe and Rap-
son (2014), Ito, Ida, and Tanaka (2018)). Additionally, since most of the previous
empirical work on high-frequency demand responses stems from field experiments,
previous estimates are naturally limited with respect to sample sizes and thus, pre-
cision.
Two notable studies that explicitly address both household-level, residential elec-

tricity consumption and hourly changing prices are Allcott (2011) and Fabra, Rap-
son, Reguant, and Wang (2021). Allcott (2011) analyzes an energy pricing plan
in Chicago in 2003, which exposes residential consumers to RTP. Using hourly
household-level consumption data, he finds significantly negative price elasticities,
which, however, stem from energy conservation during peak price hours, with no
net increase in consumption when the price is low - indicating a limited scope for
shifting consumption over the day. He also emphasizes the importance of technol-
ogy facilitating the access to hourly prices to make RTP a viable option. Fabra et al.
(2021) are among the first to analyze a large-scale roll-out of RTP. Starting in 2015,
households in Spain defaulted into an RTP tariff, setting the hourly electricity price
according to the wholesale electricity market outcomes. They find an average price
elasticity of zero, listing lack of awareness of RTP, costly information acquisition,
and small potential gains of demand response to price variation as possible reasons.
In contrast to their sample, households in our sample actively sought out a real-time
pricing scheme and are thus less likely to be constrained by these barriers.
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The remainder of this paper is organized as follows: In Section 2.2, we explain
in detail the process at the European Power Exchange EPEX, in which electricity
wholesale prices are determined. Section 2.3 gives an overview over the data used.
Section 2.4 presents descriptive statistics and discusses the representativeness of our
sample. Section 2.5 lays out the empirical challenges of the estimation framework
discusses our empirical approach. In Section 2.6, we present the results. Section 2.7
concludes.

2.2 The European Power Exchange

To get a better grasp of our empirical strategy, it helps to take a closer look at how
electricity prices are generated. In Germany, approximately 75% of the electricity
price consist of flat-rate taxes and fees, which are fixed over time. The remaining
25% consist of the wholesale price, at which electricity is sold at the European Power
Exchange EPEX.
At the current stage, electricity cannot be easily stored at a large scale. It has to
be used when it is produced. This is why electricity production usually has to move
with electricity demand to avoid power outages. As the energy grid does not allow
for large deviations in power load, the largest entities in the energy market (the
largest electricity producers and consumers) announce, how much energy they are
going to produce or consume at each time of the next day. From these reports the
grid operators can roughly calculate the electricity load of their grids for the next
day. This process is called Dispatching. If this process reveals large, systematic dis-
parities between electricity production and demand at any point, these can then be
easily balanced out. Small short-run deviations in electricity consumption and pro-
duction due to unforeseen consumption spikes or weather anomalies are balanced
out in a process called Redispatching.
The electricity itself is traded at the EPEX. The European Power Exchange is the
electric power exchange for central Europe, including Austria, Belgium, Denmark,
Finland, France, Germany, Great Britain, Luxembourg, the Netherlands, Norway,
Poland, Sweden and Switzerland. Here, electricity is traded via three different chan-
nels, each targeting a different time horizon:

• Power Derivatives Market: In the Power Derivatives Market long-run energy de-
liveries up to six years in the future are traded.

• Day-Ahead-Market: Day-ahead markets are operated through a blind auction
which takes place once a day for all hours for the following day, during each
day of the year. Before the order book closes at 12 p.m., market participants log
two types of orders into the system: Firstly, orders for each time interval for the
next day reflecting their willingness to buy or sell as a volume for all relevant
price ticks. Secondly, block orders spanning multiple time intervals. The algo-
rithm employed by the EPEX then generates a demand curve based on the buy-
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Figure 2.1. Supply and Demand Curves at EPEX
This figure shows a screenshot from the EPEX-website, displaying the supply and demand curves generated
at the EPEX on Sep 26, 2021, and the resulting market clearing price for the period from 1 p.m. to 2 p.m.
Source: EPEX (https://www.epexspot.com/en/market-data?market_area=DE-LU&trading_date=2021-12-
18&delivery_date=2021-12-19&underlying_year=&modality=Auction&sub_modality=DayAhead&product=
60&data_mode=aggregated&period=, last visited Sept 27, 2021)

orders and a supply curve based on the sell-orders for each hour of the following
day. The market clearing prices (MCPs) are then defined at the intersections of
both curves for each hour of the day (See Figure 2.1). These prices are avail-
able to households in our sample at 2 p.m. for the next day. Once the MCPs are
determined, there is one price for each market participant, i.e. all buyers who
submitted volumes at a higher price pay only the MCP and all sellers who sub-
mitted orders at a lower price still receive the MCP. Consequently, like in most
textbook commodity markets, the electricity price at the Day-Ahead-Market is
determined by energy production and energy demand.

• Intraday-Market: The Intraday-Market is the most fine-grained form of electric-
ity trading: Market participants trade continuously, while electricity is delivered
on the same day. Trades are executed as soon as buy- and sell-orders match, and
can be executed up to 5 minutes before delivery. The Intraday-Market is usually
used to balance out sudden deviations in energy demand and is an essential tool
in grid load control.

In our analysis, we will focus on the day-ahead market prices, which are used by
the electricity supplier and are thus fixed and available at the electricity provider’s
website at 2 p.m. the day before delivery.

2.3 Data

We use hourly data provided by an electricity provider operating in Germany and
Austria. According to the company website, the electricity provider is one of the
first providers in Germany with hourly moving electricity prices. In order to ensure

https://www.epexspot.com/en/market-data?market_area=DE-LU&trading_date=2021-12-18&delivery_date=2021-12-19&underlying_year=&modality=Auction&sub_modality=DayAhead&product=60&data_mode=aggregated&period=
https://www.epexspot.com/en/market-data?market_area=DE-LU&trading_date=2021-12-18&delivery_date=2021-12-19&underlying_year=&modality=Auction&sub_modality=DayAhead&product=60&data_mode=aggregated&period=
https://www.epexspot.com/en/market-data?market_area=DE-LU&trading_date=2021-12-18&delivery_date=2021-12-19&underlying_year=&modality=Auction&sub_modality=DayAhead&product=60&data_mode=aggregated&period=
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Figure 2.2. Information Set Timeline
The figure shows which information sets are available to the households at every time. Our example time-
frame covers February 13, 10 p.m. to February 16, 8 a.m.
At 12 p.m., the EPEX order book closes and the algorithm, which generates the demand- and supply curve,
is launched and produces 24 market clearing prices for the next day. These prices are made public to the
households on the electricity provider’s website at 2 p.m. Hence, from 2 p.m. onwards, a household knows
all electricity prices for the following day. The electricity prices for the current day are already known since
the previous day, 2.p.m.

a maximum level of transparency in the price setting process the electricity provider
sets the market clearing prices generated at the EPEX as net prices for the customers.
With taxes and fees, the variable share of the electricity price is approximately 25%.
This pricing design is captured in the HOURLY-tariff. In order to be eligible to use
this tariff, customers need to have a smart meter installed to capture high-frequency
electricity consumption. This ensures that the provider can assign the customers’
consumption to each hour of the day. Customers can see the electricity prices for the
next day at 2 p.m. on the provider’s website. A timeline describing when households
know which prices is displayed in Figure 2.2.
As the electricity provider is operating in Austria and Germany, we have data

on customers from both countries. Our data include each household’s electricity
consumption in 15-minute intervals between April 1, 2019 and December 31, 2020
as well as the hourly day-ahead prices determined at the EPEX. The panel consists
of approximately 900 households in Germany and 1’200 households in Austria. As
the resulting hourly panels over such a long period are very large, we will primarily
focus on the German dataset.
We then merge hourly electricity production data provided by AGORA3 to our

dataset and use the households’ zipcode to merge daily local weather data⁴, pro-

3. AGORA Energiewende (2021). The original data can be requested at info@agora-
energiewende.de See also https://www.agora-energiewende.de/service/agorameter/chart/power_
generation/01.01.2019/31.12.2020/, last visited Jan 13, 2022

4. For this, we use information on the five weather stations closest to a household’s zipcode
maintained by the German Meteorological Service: https://opendata.dwd.de/climate_environment/
CDC/observations_germany/climate/daily/kl/historical/, last visited July 24, 2021

mailto:info@agora-energiewende.de
mailto:info@agora-energiewende.de
https://www.agora-energiewende.de/service/agorameter/chart/power_generation/01.01.2019/31.12.2020/
https://www.agora-energiewende.de/service/agorameter/chart/power_generation/01.01.2019/31.12.2020/
https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/kl/historical/
https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/kl/historical/
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vided by the German Meteorological Service and sociodemographic information at
the zipcode level, provided by the data providermicrom, to our dataset. Thus, while
we do not have household-level information about the households in our sample,
we have information about the socioeconomic environment each household lives in.
This information contains, for example, the share of homeowners, electric cars and
non-German household heads as well as age, family, education and income struc-
tures at the zipcode level. The Austrian dataset additionally contains information on
whether a household used a solar panel or a heatpump. In total, our panel contains
consumption data for 1’204 households in Austria and 899 households in Germany
between April 1, 2019 and December 31, 2020 totaling approximately 6 million ob-
servations in Germany and 13 million observations in Austria. From now on, unless
mentioned otherwise, we restrict our analysis on the German sample for computa-
tional ease.
Finally, we use a panel of 130 households, spanning the period between January

1, 2019 to January 31, 2020, from a field study conducted in Germany.⁵ The house-
holds in this sample did not receive any treatment in the original study, but were
equipped with smart meters to serve as a control group. In particular, they were not
exposed to real-time pricing and hence, by providing high-frequency consumption
data without being exposed to treatment, compose the control group in our em-
pirical approach. Because, for households in this sample, we have geolocation data
at the state level, we use the households’ state to merge daily weather data to the
control sample.

2.4 Descriptive Statistics

Before diving into the analysis, we take a closer look and compare the households in
our sample to the average German household. Unfortunately, we have no individual-
level information on household characteristics other than the zipcodes. We can, how-
ever, analyze where the households in our sample live to rule out geographical se-
lection and use aggregate socioeconomic variables on the zipcode level to inform
about the socioeconomic environment our sample households live in. Additionally,
we can compare electricity consumption in the analyzed households to average con-
sumption profiles.

2.4.1 Hourly Consumption Profiles

Figure 2.3 displays the average electricity load profile over the day for the German
households in our sample, the average electricity load profile for control households
in a field experiment in Zurich, Switzerland in 2012 (Degen, Efferson, Frei, Goette,

5. doi:10.5281/zenodo.3855575. See Beyertt, Verwiebe, Seim, Milojkovic, and Müller-
Kirchenbauer (2020) for the whole paper.

https://doi.org/10.5281/zenodo.3855575
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and Lalive (2013)), two standard consumption profiles for German households pro-
vided by an electricity provider located in Berlin, Germany and the average load
profile of the 130-household control group of a study conducted in Germany⁶. 95%
confidence intervals are also included. Both German standard consumption load
profiles were generated based on standard consumption data provided by a Berlin-
based electricity provider.⁷ The standard consumption data was then scaled down to
fit the average annual electricity consumption of a two-person- and a three-person
household, respectively.⁸ Note that the generated standard consumption profiles do
not distinguish between households of different sizes other than through the mag-
nitude of consumption. That is, consumption patterns are assumed to be the same
across households for the standard profiles.
The German standard profiles clearly reflect familiar daily patterns in house-

holds: People get up between 5 and 8 a.m. and start preparing the day: With show-
ering and preparing breakfast electricity consumption jumps up quickly in the morn-
ing. At noon, the first spike is reached, when children are returning from school and
lunch is prepared. Consumption then first decreases until people return from work,
start preparing dinner etc. This results in a second consumption spike between 6
and 10 p.m. This standard load profile is fairly consistent over time, with differences
arising from different daily schedules on weekends and higher average consumption
during the winter months, but the overall bimodal shape with a stronger spike in the
evening hours is common in most industrial nations.⁹ We can also see that the load
profiles generated by the German and Swiss control households closely resemble
the consumption patterns suggested by the German standard profiles, though the
absolute consumption magnitude differs.
When comparing the load profile of the average German or the average Zurcher

household with the average load profile of the households in our sample, two re-
sults are immediate: Firstly, we can observe that overall consumption in our sample
is much higher than for the remaining households, even if we assume an average
household size of three people.1⁰ Additionally, the shapes of the load profiles differ.

6. doi:10.5281/zenodo.3855575
7. https://www.stromnetz.berlin/netz-nutzen/netznutzer, last visited Sep 27, 2021
8. The average annual electricity consumption of a two-person household is 2’500 kWhs, that of

a three-person household 3’500 kWhs. The average household size in Germany is 1.99. Source: Bun-
deszentrale für Politische Bildung, https://www.bpb.de/nachschlagen/zahlen-und-fakten/soziale-
situation-in-deutschland/61584/bevoelkerung-und-haushalte, last visited Jan 5, 2022

9. Still, electricity providers use a polynomial to generate the data on which these graphs are
based. That is, the underlying consumption pattern over the day is adapted with respect to days of
the week, months of the year and cyclical patterns. This dynamization generates the profiles’ standard
errors.

10. Note that it is plausible to assume a higher-than-average number of household members, as
owning a smart meter, a prerequisite to use the HOURLY-tariff, is more frequent among homeowners
than among tenants. This can explain the higher overall consumption in our sample compared to the
control households. Additionally, as shown in Table 2.A.4, households in our sample live in zipcode
areas with more family- and children-centered family structures.

https://doi.org/10.5281/zenodo.3855575
https://www.stromnetz.berlin/netz-nutzen/netznutzer
https://www.bpb.de/nachschlagen/zahlen-und-fakten/soziale-situation-in-deutschland/61584/bevoelkerung-und-haushalte
https://www.bpb.de/nachschlagen/zahlen-und-fakten/soziale-situation-in-deutschland/61584/bevoelkerung-und-haushalte
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Figure 2.3. Daily Consumption Profile: Sample vs. Average German Household
This figure displays different average electricity load profiles over the day (in kWh per hour). That is, it
shows average consumption for each hour of the day. The orange line represents the load profile for all
households in our sample. The black solid line represents households in our regression sample. For our
analyses, we excluded households with extremely high consumption and an exceptional spike in nighttime
consumption by using a K-Means clustering algorithm based on a household’s daily consumption profile.
The black dashed line represents households in the “low consumption” cluster of our sample. The blue and
red lines represent a standard two- and three-person household, respectively, according to the German
energy provider. Finally, the green and purple profiles represent control households from smart metering
studies in Zurich, Switzerland (Degen et al. (2013)) and Germany (Beyertt et al. (2020)), respectively. The
latter comprise a control sample for our study. The light bands denote 95% confidence intervals.

While the daytime- and evening-consumption patterns are somewhat similar, we ob-
serve a remarkable nighttime consumption spike in our sample. Since our sample
does not contain households with the regular fixed electricity price, we cannot eas-
ily tell whether the differences in the consumption profiles are due to differences
in the composition of the households in our sample and the average German house-
hold or due to the pricing mechanism. In order to find out if the household compo-
sition indeed differs from the average German household composition in terms of
consumption patterns, we generate clusters of households in Section 2.5.1, based on
consumption patterns to uncover if the unusual load profiles are driven by just a few
households. Indeed, we find that the majority of the households in our sample ex-
hibit load profiles similar to the control households. The “low-consumption”-cluster,
represented by the dashed line in Figure 2.3, which makes up more than 67% of
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Table 2.1. Hourly Electricity Consumption

Total Two Three Ext. Zurich Sampleb

Samplea Person Person Study
Mean Consumption .591 .285 .399 .360 .265 .530

(.000) (.001) (.001) (.000) (.000) (.000)
Median Consumption .308 0.298 .417 .221 .130 .300
25-Percentile .125 0.179 .250 .117 .070 .123
75-Percentile .645 0.363 .508 .427 .300 .612
Observations 6’004’525 17’543c 17’543c 1’235’390 1’057’891 5’583’500
Households 899 1c 1c 130 1’009 830

aIncluding all Households
bIncluding only Households in the Regression Sample
cNote that this is a sample profile based on representative consumption data.

Notes: This table displays average consumption and 25-, 50-, and 75-percentiles of hourly household
consumption from different data sources. In the first column, we show consumption in our total sample,
columns 2 and 3 show consumption from a representative household profile over the sample period, based
on consumption data from a Berlin-based electricity provider. Column 4 shows consumption in our con-
trol sample, consisting of 130 households from a different study conducted between January 1, 2019 and
January 31, 2020 in Germany. Column 5 shows consumption for control households in a field experiment
in Zurich, Switzerland in 2012 (Degen et al. (2013)). Column 6 shows consumption in our final regression
sample, which excludes households with extremely high overall and high nighttime consumption.

the households in our total sample, still exhibits a remarkable nighttime consump-
tion spike, but total consumption is much lower. In our final analysis, we will focus
on the two clusters with the lowest consumption in our sample, represented by the
solid black line, in order to ensure the representativeness of our sample in terms of
baseline consumption.

2.4.2 Hourly Price Profiles

We will also analyze the day-ahead electricity prices generated at the EPEX. As out-
lined in Section 2.2, the day-ahead electricity price is a result of forecast electricity
production and demand. Figure 2.4 shows that this results in an hourly electric-
ity price profile that closely resembles the electricity profile of the average German
household. As we would expect from the pricing mechanism, the electricity price is
high when overall consumption is high and low when overall consumption is low.
As the electricity price is also influenced by industrial electricity demand, the first
peak in the electricity price is reached earlier than the household consumption peak,
namely, when industrial electricity consumption hits the high level it maintains un-
til the evening. The second spike is then mostly caused by the spike in household
consumption in the evening.
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Figure 2.4. Electricity Price Profile
This figure shows the average net EPEX electricity price profile over the day between January 1, 2019 and
December 31, 2020. The black line denotes average EPEX prices over the day in ct/kWh. The blue bands
denote the 10, 25, 75, and 90-percentiles of EPEX prices.

2.4.3 Representativeness of Households in the Sample

The high average consumption and the shape of the consumption load profile of
the households in our sample may raise questions about the representativeness of
our sample. Especially the high consumption magnitude of households in our sam-
ple appears to limit the external validity of our analysis. Two remarks are in order:
In order to be eligible for the HOURLY-tariff, households need to have an installed
smart meter - otherwise the electricity provider would not be able to bill households
according to their hourly consumption. So far, the only consumers who are by law
required to have a smart meter installed (regardless of their energy provider), are
households using more than 6000 kWhs per year, producer-consumers producing
more than 7 kW using, for example, solar panels, and households with an interrupt-
ible meter.
However, as representatives of one of the largest smart meter-suppliers in Germany
confirm, the share of homeowners (and thus, households with more-than-average
members) among households with a smart meter is very high. This has several rea-
sons:

• Tenants are still hesitant to install a smart meter if it is not required, as many
believe that the electricity meters of each apartment belong to the landlord. A
frequently asked question for smart meter-providers is whether their landlord
can prohibit the installation (which they cannot).



2.4 Descriptive Statistics | 81

• Landlords, on the other hand, have no incentive to proactively install a smart
meter, as the electricity bill is usually paid by the tenant.

• Smart Meters cannot easily move if the tenant does. Hence, if a tenant moves
to a new apartment, they have to install a new smart meter, if it is not installed,
yet.

Hence, with a higher share of homeowners among smart meter users, we ex-
pect the share of homeowners in our sample to be very high. Based on consumption
data from Zurich between 2011 and 2013, we can show that homeowners exhibit
much higher electricity consumption than tenants.11 As Table 2.1 shows, average
consumption in Zurich was roughly .265 kWhs per hour. For homeowners, average
consumption was much higher, with .331 kWhs, which is almost 25% higher than
overall average consumption, and more than 40% higher than average consumption
for tenants (.231 kWhs per hour). We thus believe that the high electricity consump-
tion in our sample is most likely be driven by an overrepresentation of homeowners
in our sample.
As the electricity provider’s customers are self-selecting into our sample, we need

to make sure they do not represent a special kind of niche customers. Unfortunately,
we only have information regarding the households’ zipcodes, with no individual-
level demographic information. However, as Figure 2.5 shows, households in our
sample are not restricted to a geographical area, although the share of customers is
slightly higher in western Germany than in eastern Germany.
Based on the households’ zipcodes, we use information on sociodemographics

on the zipcode level, obtained from the data provider microm12 to characterize the
socioeconomic environment of the households in our sample. Based on this informa-
tion, we analyze how representative households in our sample are. In Appendix 2.A,
we analyze the representativeness with respect to sociodemographics, education, in-
come, family structures and socioeconomic status. As Table 2.A.1 shows, zipcodes
with a high share of homeowners are significantly overrepresented in our sample,
as are zipcodes with a high share of households, in which the household head has
reached the A-Level (Abitur). Conversely, zipcodes with a high share of non-German
household heads and zipcodes with a high share of household heads over the age of
60 or under the age of 30 are underrepresented. The zipcodes in our sample do not
significantly differ with respect to the share of electric or hybrid cars. Table 2.A.2
reveals that the zipcodes in our sample also slightly differ with respect to income.
Overall, the zipcodes in our sample seem to exhibit a higher average income than
the German average. Tables 2.A.3 and 2.A.4 show that in the zipcodes in our sample
the share of families is significantly higher than the German average. In line with

11. This is most likely due to the higher number of household members.
12. microm Micromarketing-Systeme und Consult GmbH. The datasets used here can be re-

quested under info@microm.de

mailto:info@microm.de
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Figure 2.5. Wind Production and Energy Prices
This figure shows a heatmap of where the households in our sample are located on a county level, based
on their zipcode information. Panel (a) is based on the absolute number of households in our sample per
county. Panel (b) is based on the number of sample households in each county relative the number of
residents in that county.

the previous findings, we find in Table 2.A.5 that households in the zipcodes in our
sample fall into higher socioeconomic categories than the German average. Overall,
the results differ significantly between Germany and the zipcodes in our sample,
but we also see that households in our sample are not limited to only a few niche
zipcodes in Germany.
In conclusion, we find significant differences in sociodemographics, education,

income- and family structures between the German average and the zipcodes in our
sample. As expected, households in our sample live in zipcode areas with a higher
share of homeowners and families, higher average education, income and socioeco-
nomic status, a lower share of non-German household heads and households heads
above the age of 60 or below the age of 30. We thus cannot say that our sample
is representative of German households. However, also note that, while statistically
significant, the absolute differences are relatively small for most variables analyzed.
The only differences we describe as economically significant are the differences in
the share of homeowners, income and family structures.
Finally, note that to draw meaningful inference on the policy implications of

RTP, households in our sample do not necessarily have to be representative of the
German population. While the external validity of our sample cannot be guaranteed,
the policy implications are not automatically affected by this. With the planned roll-
out of smart meters in every household in Europe13, it is possible to offer the option
for RTP to every household and let them self-select into treatment. According to a
survey conducted by Forsa, only 40 percent of consumers have ever heard of time-
varying electricity prices, but more than half are willing to use TVP tariffs. Almost

13. Source: European Commission, https://ses.jrc.ec.europa.eu/smart-metering-deployment-
european-union, last visited Jan 6, 2022

https://ses.jrc.ec.europa.eu/smart-metering-deployment-european-union
https://ses.jrc.ec.europa.eu/smart-metering-deployment-european-union
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30 percent expect to financially benefit from TVP, and more than 60 percent would
be willing to shift electricity consumption from peak consumption hours to off-peak
hours in response to TVP. Young consumers are especially interested in such tariff
models (Forsa (2015)), indicating that acceptance could be high if such tariffs were
offered to customers.

2.5 Empirical Strategy and Results

2.5.1 Clustering Households

In order to identify the households that drive the surprising shape of the electric-
ity load pattern shown in Figure 2.3, we generate clusters of households according
to electricity consumption during different times of the day. We calculate average
hourly electricity consumption for each household and use K-means clustering, one
of the most popular unsupervised machine learning algorithms, to partition house-
holds into clusters of households with similar consumption patterns over the day. K-
means clustering is an algorithm used to partition n data points into a fixed number
of clusters, while trying to minimize the residual sum of squares within the clusters
(Within Sum of Squares WSS), that is, trying to minimize the following expression:

WSS =
K
∑

k=1

∑

xi∈ck

||xi − µk||2 (*)

Where µk denotes the cluster centroid and xi denotes individual i’s data point. In
our case, xi is a 24-dimensional vector of electricity consumption during each hour
of the day. The algorithm then proceeds as follows:

• 1. Randomly choose K households from the set of households with average con-
sumption vectors x1, · · · , xK

• 2. Assign each household i with average consumption vector xi to the cluster, for
which the second sum of expression (*) is minimized. The initial cluster centroid
is just the consumption vector of the initial household in the cluster from step 1.

• 3. Calculate the new cluster centroid, including the newly assigned households
• 4. Repeat steps 2 and 3 until the assignment of households to clusters does not
change anymore

The K-means clustering algorithm is a very appealing approach to handling the
heterogeneity in household’s consumption patterns (Trotta (2020)). Its simplicity
and ease of implementation ensure transparency and allow for analyses of large
datasets. However, despite falling into the category of unsupervised learning algo-
rithms, the number of clusters K used for the K-means algorithm has to be chosen by
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the researcher. We choose to generate four clusters of households. This approach has
been used by Trotta (2020) after applying the same argument to danish domestic
electricity consumption data.1⁴
Using the clustering algorithm, we can classify households according to four

different consumption profiles.

• Households exhibiting an average consumption profile similar to the consump-
tion profile of the average German household, both in terms of consumption
magnitude and pattern. They make up more than 67% of the households in our
sample. (Low Cluster)

• Households exhibiting a similar consumption pattern, but with higher absolute
magnitude. We will label these medium-consumption households, though their
consumption magnitude is significantly higher than consumption for the con-
trol households. They make up almost 25% of the households in our sample.
(Medium Cluster)

• Very high consumption households with consumption 5 to 6 times as high as
the average German household. These households also exhibit a different load
pattern over the day, with consumption staying relatively low over the night,
increasing in the morning and staying constant until the evening. They make up
6% of the households in our sample. (High Cluster)

• Households using more energy than the average German household, with a re-
markable spike during the night (Nighttime Cluster). These households mainly
drive the surprising consumption spike during the night depicted in Figure 2.3,
despite making up less than 1.5% of the households in our sample. (Night Clus-
ter)

Figure 2.6 displays the average electricity load profiles for each of the four clus-
ters of households generated by the clustering algorithm. The high nighttime con-
sumption for the nighttime cluster is most likely driven by the usage of interruptible
electricity meters (IM) or an Application Programming Interface (API). These allow
households to automatically turn on electric devices or charge the electric car when
the price is low, which is usually during the night. The electricity provider offers an
option to automatically exploit the energy price variations. On their website, they
host an API-datafeed providing the electricity prices for the next day, which can then
be fed to smart household appliances. Additionally, the provider collaborates with
several suppliers of heatpumps, that are able to recognize the electricity prices.
Unfortunately, the German data set does contain information on whether a

household uses an electricity meter with an API or whether it uses a heatpump.
Luckily, we have information on the usage of interruptible electricity meters (IMs)

14. Note that in our case, including more clusters only adds more clusters with load profiles
between the low- andmedium cluster load profiles, which does not addmuchmeaningful information.
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Figure 2.6. Daily Consumption Profiles by Clusters
This figure shows the average electricity load profiles of household clusters generated by the K-Means clus-
tering algorithm. The high- and nighttime cluster will be excluded from further analyses, unless otherwise
specified. Analyzing the high-cluster households yields limited external validity due to the extremely high
baseline consumption, while the spike in nighttime consumption for the nighttime cluster households is
likely driven by heatpumps. The light bands denote 95% confidence intervals.

and heatpumps in the Austrian data. We have information on whether a household
uses an IM, which in turn is usually linked to an electronic heatpump. Since heating
is very energy intensive, the spikes from using electricity through the IM are usually
clearly visible in the load profiles of households with IM. Figure 2.7 displays the
electricity consumption profiles from the Austrian dataset for households with and
without an IM. We clearly see the pronounced consumption spike during the night
for households with an IM, while consumption over the day is substantially lower
than for households without IM. This indicates that excluding the nighttime cluster
from Figure 2.6 from our sample indeed helps to alleviate concerns regarding the
role of automated demand responses. While we do not have information whether
households in our sample use a heatpump, the similarity to the load profile of house-
holds in the Austrian sample makes us confident that excluding households from the
nighttime cluster excludes any automated demand response.
Since the use of IMs and APIs does not constitute a behavioral reaction to real-

time electricity pricing, we will exclude households from the nighttime cluster from
the analysis. 874 households remain. Additionally, we exclude households from the
“very high”-consumption cluster, as they are extreme outliers, even in a sample with
very high average consumption, giving us a final RTP-sample of 830 households.
However, in Appendix 2.D.4, we also conduct our main analyses on the full sam-
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Figure 2.7. Daily Consumption Profiles with and without Heatpump
This figure shows the average electricity load profiles for households in Austria with and without heatpump.

ple and in Appendix 2.D.5 we do the same using only households from the “low
consumption” cluster.

2.5.2 The IV Approach

Since the day-ahead market clearing prices (MCPs) for each hour-of-the-day are
defined at the intersections of the respective supply- and demand curves, a simple
regression of hourly electricity consumption on the real-time electricity price would
yield biased estimates of price reactions. As shown in Figure 2.4, prices are high
when overall consumption is high, that is, in the evening and especially during the
cold season. Even though we don’t expect the small number of households in our
sample to have any significant effect on grid loads and thus electricity prices, their
consumption patterns still resemble those of most households. Since electricity con-
sumption patterns over the day influence the electricity price, we face a classical
problem of reversed causality.
The empirical challenge inherent to this is to find a suitable instrument for the elec-
tricity price, which influences electricity consumption only through its effect on the
electricity price, but is otherwise uncorrelated with domestic electricity consump-
tion. We focus on the supply side of the electricity price, with exogenous shifts in
electricity supply being attractive candidates. A similar approach is used by Fabra
et al. (2021) in the Spanish electricity market.
Wind energy production made up almost 25% of the electricity mix in Germany in
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Figure 2.8. Wind energy Production Profile
This figure presents the hourly wind energy production profile over the day in GW between January 1, 2019
and December 31, 2020. The blue band denotes the 95% confidence interval.

2019.1⁵ Shifts in wind energy production are thus substantial drivers of overall elec-
tricity production and in turn the electricity price and are, conditional on the electric-
ity price and weather conditions, unlikely to be correlated with domestic electricity
consumption. Figure 2.8 shows the electricity production profile from wind energy.
We observe slight variations in electricity production over the day. These variations
are exclusively due to exogenous weather conditions. One possible explanation for
variations in wind energy production would be the systematic switching on and off
of wind turbines in response to the electricity price and grid loads. This would, of
course, pose a problem for the exclusion restriction of our instrument. However, as
part of the renewable-energies-law (Erneuerbare-Energien-Gesetz EEG), wind turbine
operators are guaranteed to receive a fixed price for the electricity they feed into
the grid. As the marginal costs of operating a wind turbine are very low, wind tur-
bine operators have no incentive to ever actively shut down wind turbines, making
variations in wind energy production a result of wind alone.
One could make an argument for weather conditions influencing wind en-

ergy production also influencing households electricity consumption, for example
through summer and winter cycles, households’ tendency to spend the day outside
etc. We therefore also control for time fixed effects and local weather for each house-

15. Source: Fraunhofer-Institut,
https://www.ise.fraunhofer.de/de/presse-und-medien/news/2019/oeffentliche-
nettostromerzeugung-in-deutschland-2019.html, last visited: Jan 5, 2022

https://www.ise.fraunhofer.de/de/presse-und-medien/news/2019/oeffentliche-nettostromerzeugung-in-deutschland-2019.html
https://www.ise.fraunhofer.de/de/presse-und-medien/news/2019/oeffentliche-nettostromerzeugung-in-deutschland-2019.html
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hold through daily temperature, sun hours and air pressure based on daily weather
data provided by the weather station closest to the household. To estimate the sen-
sitivity with respect to price changes, we propose a modification of the following
model1⁶:

pt,h = αh + βdow(t) + γm(t) + ζTt + η ∗ St + θ ∗ Pt + ι ∗Wh + ε
1
t,h (2.1)

yi,t,h = κh + λdow(t) + µm(t) + νi + ξ ∗ Ti,t + π ∗ Si,t + ρ ∗ Pi,t + σ ∗ pt,h + ε
2
i,t,h

(2.2)

pt,h denotes the electricity price at date t at hour h and is instrumented with wind
energy production W in the first stage, as shown in equation (2.1). Wind energy
production is measured in GW. The outcome variable yi,t,h denotes household i’s
electricity consumption in kWhs at date t in hour h.
We also include hour-of-the-day-, day-of-the-week-, samplemonth-, and house-

hold fixed effects. Finally, we control for local weather in household i’s zipcode area
using daily average temperature T in degree Celsius, hours-of-sunshine S per day,
and average air pressure P (in hPA) on date t. The coefficient of interest is the coef-
ficient σ in the second stage equation (2.2). It denotes the average marginal effect
of increasing the EPEX day-ahead price by 1 ct per kWh, induced by fluctuations in
wind energy production, on hourly electricity consumption.
Note that the first stage presented here does not exactly represent the first stage

we will use in the final regressions. The reason for this is the panel structure of our
data. The most intuitive 2SLS approach would simply estimate equation (2.1) on a
time series of hourly EPEX prices between January 2019 and December 2020 and
then plug in the predicted values for the EPEX prices into equation (2.2) (which is
estimated on the whole panel), while adjusting the standard errors to reflect the
correct residual variance estimator. However, we additionally include local weather,
such as sun hours, air pressure and temperature on household-date-level in the sec-
ond stage. Including them in the first stage is econometrically correct and necessary,
but requires a separate first stage regression for each household panel. We thus
estimate the following model on the whole panel using 2SLS:

16. Note that the specification laid out here does not exactly represent the specification we will
ultimately use, but is rather meant to illustrate the intuition behind the 2SLS-approach used in the
actual specifications (2.3) and (2.4)
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pi,t,h = αh + βdow(t) + γm(t) + δi + ζ ∗ Ti,t + η ∗ Si,t + θ ∗ Pi,t + ι ∗Wt,h + ε
1
i,t,h

(2.3)
yi,t,h = κh + λdow(t) + µm(t) + νi + ξ ∗ Ti,t + π ∗ Si,t + ρ ∗ Pi,t + σ ∗ pi,t,h + ε

2
i,t,h

(2.4)

That is, we treat the first stage as if it was determined at the household level. Hence,
even though pi,t,h = pj,t,h for all households i, j in our sample, we distinguish between
households in the first stage and control for local weather phenomena as if the first
stage was determined at the household level.
In a next step, we can exploit the within-day variation in the hourly electricity

price to estimate intra-day price elasticities. In this approach, the identifying vari-
ation would only stem from the hour-to-hour variation in the electricity price, not
from price variation across days. To do so, we include date fixed effects in regres-
sions (2.3) and (2.4)1⁷:

pi,t,h = α
w
h + β

w
t + δ

w
i + ζ

w ∗ Ti,t + η
w ∗ Si,t + θ

w ∗ Pi,t + ι
w ∗Wt,h + ε

1,w
i,t,h (2.5)

yi,t,h = κ
w
h + λ

w
t + ν

w
i + ξ

w ∗ Ti,t + π
w ∗ Si,t + ρ

w ∗ Pi,t + σ
w ∗ pi,t,h + ε

2,w
i,t,h (2.6)

Using this specification, we estimate the daily price reactions stemming from
intra-day fluctuations in wind energy production. By adding date fixed effects, we
exploit price variation that only occurs over the day, leaving us with intra-day iden-
tifying variation. This way, we can be confident to say that the price reactions we
estimate are not long-run consumption shifts but actually short-term reactions to
previously announced price variation induced by fluctuations in wind energy produc-
tion. They are thus the statistics needed for effective demand side management.1⁸
Finally, aggregating consumption on a daily level also allows to exploit the across-

day variation in the electricity price. That is, we estimate equations (2.3) and (2.4),
dropping the index h by aggregating electricity consumption on a daily level and
using the average hourly electricity price over the day as the (endogenous) regres-
sor. Aggregating consumption on a daily level thus eliminates all load shifting that
happens within the day and instead focuses on load shifting across days. Equations
(2.7) and (2.8) present the corresponding first- and second stage1⁹:

17. We add the superscript w (for within) to indicate the difference to the coefficients in the
model outlined before.

18. Note that short- and long-term price reactions here refer to intra- and inter-day price sen-
sitivities and do not coincide with long- and short-run price sensitivities estimated in the common
literature on price elasticities.

19. We add the superscript a (for across) to indicate the difference to the coefficients in themodels
outlined above.
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Figure 2.9. Price Variation and Effect of Wind on Price
Histogram of EPEX prices and first stage. Figure 2.9a shows that EPEX prices can be negative and bunch at 0.
The histogram in 2.9b displays the density of residuals of wind energy production (on the left y-axis). These
residuals stem from a regression of wind energy production on hour-, samplemonth- and day-of-the-week
fixed effects. The red line plots a linear regression of the residual prices (based on a regression of the hourly
electricity price on hour-, samplemonth- and day-of-the-week fixed effects) on the wind energy production
residuals. The grey area denotes the 95% confidence interval. This graph is inspired by Dahl, Kostøl, and
Mogstad (2014).

pi,t = β
a
dow(t) + γ

a
m(t) + δ

a
i + ζ

a ∗ Ti,t + η
a ∗ Si,t + θ

a ∗ Pi,t + ι
a ∗Wt,h + ε

1,a
i,t (2.7)

yi,t = λ
a
dow(t) + µ

a
m(t) + ν

a
i + ξ

a ∗ Ti,t + π
a ∗ Si,t + ρ

a ∗ Pi,t + σ
a ∗ pi,t + ε

2,a
i,t (2.8)

In Figure 2.9, we present evidence regarding the validity of our instrument. To
show the relevance of the first stage, we first present a histogram of the EPEX day-
ahead prices in panel (a). Prices are neither topcoded nor winsorized. Panel (b)
presents the residual variation in EPEX day-ahead prices on the x-axis, relative to the
residual variation in wind energy production, conditional on hour-, samplemonth-
and day-of-the-week fixed effects, on the right y-axis. Residuals are cut off for values
larger than 20 or smaller than -20. We first see that both without and with condition-
ing on time- and individual fixed effects there is considerable variation in electricity
prices. Secondly, we clearly see the highly significant, negative relationship between
wind energy production and the electricity price, illustrated by the solid red line in
panel (b).

2.5.3 Estimating Individual Price Reactions

The panel structure of our data allows us to additionally estimate individual house-
hold price reactions. To see this, we can rewrite equations (2.3) and (2.4) as follows
for each household i2⁰:

20. We add the superscript i (for individual) to indicate the difference to the coefficients in the
models outlined above.
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pt,h = α
i
h + β

i
dow(t) + γ

i
m(t) + ζ

i ∗ Tt + η
i ∗ St + θ

i ∗ Pt + ι
i ∗Wt,h + ε

1,i
t,h (2.9)

yt,h = κ
i
h + λ

i
dow(t) + µ

i
m(t) + ξ

i ∗ Tt + π
i ∗ St + ρ

i ∗ Pt + σ
i ∗ pt,h + ε

2,i
t,h (2.10)

Where the notation stays the same as before, but the index i and the corre-
sponding fixed effect is dropped. Intuitively, we now estimate σ separately on 899
different time series instead of a panel containing 899 households.

2.6 Results

In order to get a better grasp of our results, we first present results from a naive OLS
regression of electricity consumption on electricity prices as a baseline. Of course,
these results are expected to be biased due to the reversed causality and omitted
variable bias discussed earlier. In particular, consumption patterns shown by most
households affect both electricity consumption of the households in our sample and
the electricity price set at the European Power Exchange. OLS should thus underes-
timate the magnitude of price reactions, especially if we do not control for hourly
and seasonal consumption patterns that affect the electricity price the most.

2.6.1 OLS Estimates

Table 2.2 reports results from simple OLS estimations of hourly electricity consump-
tion on the hourly electricity price per kWh. In each specification, we subsequently
add fixed effects and local weather controls. Finally, in the last specification, we run
the regression on a different sample of households, namely, the control households
from a study conducted between January 2019 and February 2020 in Germany. This
dataset includes the consumption data of 130 households in 15-minute intervals as
well as state-level geolocation data. Using the center point of the respective state
and merging the weather data of the closest weather station of that center point, we
can run the same set of regressions on this separate dataset.
In our main sample, without controlling for hour- or month fixed effects, es-

timation results report a significantly positive coefficient for the EPEX spot price
on hourly electricity consumption. Without controlling for time fixed effects, an
increase in the hourly price of 1 ct/kWh is associated with an average increase in
hourly electricity consumption of .006 to .012 kWh. After controlling for hour-of-the-
day fixed effects and local weather, this association becomes significantly negative.
Together, the results imply a strong positive bias of simple OLS estimates, that is
partially corrected when controlling for time and local weather, which are closely
related to both the electricity price and wind production.
Running the same OLS regression on the set of control households returns a

positive, significant estimate for the electricity price effect, while the coefficients on
local weather effects work in the same direction and stay significant. Note, however,
that their absolute magnitude is lower as average consumption in the control sample
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is significantly lower. Table 2.C.1 in the appendix presents the whole OLS regression
table for the control sample. The change in coefficients after adding fixed effects
hints at the influence of daily- and seasonal household consumption patterns.

2.6.2 IV Estimates

We now turn to the causal analysis of electricity price sensitivities. Table 2.B.1 in
the appendix delivers summary statistics of the electricity price, wind production
and weather controls. Table 2.3 presents the IV estimation results from regression
equations (2.3) and (2.4). In column 1, no fixed effects are included, in column 2,
we add day-of-the-week fixes effects, column 3 adds hour-of-the-day fixed effects,
column 4 adds sample month fixed-effects and in column 5, we additionally control
for local weather. We see that estimates are significantly negative across all specifi-
cations, confirming our initial suspicion that OLS estimates may be biased due to the
reversed causality between consumption patterns and electricity prices. The change
in the reported estimates between columns 4 and 5 underlines the importance of
time trends in our sample. With variations in wind production and aggregate elec-
tricity demand over time, we see that ignoring these time trends would produce
biased results. After controlling for sample month fixed-effects, estimates are con-
sistent across specifications and significantly negative. In our preferred specification
in column 6, we find that an increase in the electricity price of 1 ct/kWh decreased
hourly electricity consumption by .016 kWh, or approximately 3% of hourly elec-
tricity consumption on average. This estimate is highly significant. With an average
(after taxes and levies) electricity price of 23.9 ct/kWh (in our sample) and an av-
erage hourly consumption of .530 kWhs, this translates into a price elasticity of
−0.016× 23.9/0.53≈ −0.676.
In contrast, running the same analysis on the sample of the control households re-
turns a statistically insignificant, positive coefficient on the EPEX price. The effect
of local weather patterns points in the same direction as before, but shows a smaller
magnitude, which is partially explained by the lower consumption baseline and dif-
ferent geolocation data level in the control sample.
To illustrate our results and to check for potential nonlinearlities in the relation-

ship between the electricity price and electricity consumption, we present a resid-
ual plot in Figure 2.10. We plot the residuals of a regression of hourly electricity
consumption on household-, hour-of-the-day-, samplemonth-, and day-of-the-week
fixed effects as well as local weather controls against the predicted price, based on a
regression of the EPEX spotprice on wind production, hour-of-the-day, samplemonth-
and day-of-the-week fixed effects as well as local weather controls. We then fit an
OLS model of residualized consumption on the predicted and squared predicted
price. We can clearly see the negative relationship between the predicted price and
consumption residuals. Including the squared predicted price reveals that house-
holds react stronger to changes in the electricity price if the price is low.
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Table 2.2. Effect on Electricity Consumption: OLS Estimates

Dependent Hourly Electricity Consumption
Variable (1) (2) (3) (4) (5) (6) (Control)
EPEX Spot Price .007*** .007*** .012*** .006*** -.013*** -.015*** .002***

(.002) (.002) (.002) (.002) (.002) (.002) (.001)
Daily Temperature -.081*** -.012*

(.007) (.006)
Hours of Sunshine -.050*** -.005*

(.004) (.003)
Air Pressure -.005*** -.004**

(.001) (.002)
Household fixed-effects No Yes Yes Yes Yes Yes Yes
DOW FEs No No Yes Yes Yes Yes Yes
Hour FEs No No No Yes Yes Yes Yes
Sample Month fixed-effects No No No No Yes Yes Yes
Local Weather Controls No No No No No Yes Yes
R

2
within

0.0003 0.0003 0.0017 0.0075 0.0370 0.0388 0.0825
R

2
between

0.0474 0.0474 0.0458 0.0461 0.0548 0.0606 0.0192
R

2
overall

0.0005 0.0005 0.0019 0.0069 0.0355 0.0367 0.0703
Observations 5’583’500 5’583’500 5’583’500 5’583’500 5’583’500 5’360’395 1’102’116
Households 829 829 829 829 829 796 116

Notes: For readability, local weather controls (measured in degrees celsius, hours, and hPA, respectively) are divided by 10. That is, the effect on hourly electricity consumption
of an increase in temperature by one degree celsius is β̂

temp
/10

Results stem from OLS regression of hourly electricity consumption on the hourly electricity price per kWh, based on equation (2.4), without instrumenting for the hourly electricity
price. We subsequently add household-, day-of-the-week-, hour-of-the-day- and sample month fixed effects. Finally, we add local weather controls in column (6), based on the
weather data provided by the closest weather station. In the last column, we run the same regression displayed in column (6) on the control sample. Standard errors are clustered
at the household level.
*** p < 0.01 ** p < 0.05 * p < 0.1
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riff Table 2.3. Effect on Electricity Consumption: IV Estimates

Dependent Hourly Electricity Consumption
Variable (1) (2) (3) (4) (5) (6) (Control)
EPEX Spot Price -.073*** -.072*** -.074*** -.071*** -.014*** -.016*** .001

(.000) (.004) (.004) (.004) (.002) (.001) (.001)
Daily Temperature -.081*** -.013**

(.007) (.006)
Hours of Sunshine -.050*** -.004*

(.004) (.002)
Air Pressure -.005*** -.003**

(.001) (.002)
Household fixed-effects No Yes Yes Yes Yes Yes Yes
DOW FEs No No Yes Yes Yes Yes Yes
Hour FEs No No No Yes Yes Yes Yes
Sample Month fixed-effects No No No No Yes Yes Yes
Local Weather Controls No No No No No Yes Yes
R

2
within

- - - - 0.0370 0.0388 0.0824
R

2
between

- 0.0474 0.0472 0.0469 0.0548 0.0606 0.0194
R

2
overall

- 0.0005 0.0008 0.0005 0.0355 0.0367 0.0703
Observations 5’583’500 5’583’500 5’583’500 5’583’500 5’583’500 5’360’395 1’102’116
Households 829 829 829 829 829 796 116

Notes: For readability, local weather controls (measured in degrees celsius, hours, and hPA, respectively) are divided by 10. That is, the effect on hourly electricity consumption
of an increase in temperature by one degree celsius is β̂

temp
/10

Results stem from an IV regression of hourly electricity consumption on the hourly electricity price per kWh, based on equation (2.4), with the hourly electricity price being
instrumented for using hourly wind production in Germany according to equation (2.3). We subsequently add household-, day-of-the-week-, hour-of-the-day- and sample month
fixed effects. Finally, we add local weather controls in column (6), based on the weather data provided by the closest weather station. In the last column, we run the same
regression displayed in column (6) on the control sample. Standard errors are clustered at the household level.
*** p < 0.01 ** p < 0.05 * p < 0.1
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Figure 2.10. Scatterplot of Predicted Price and Predicted Consumption Residuals
This figure presents a scatterplot of residualized consumption from a regression of consumption on local
weather controls, hour-, samplemonth-, day-of-the-week- and household-fixed effects against predicted
price bins, based on a regression of the electricity price on the same set of covariates plus wind energy pro-
duction. The red line plots fitted consumption residuals, based on a regression of residualized consumption
on the predicted and squared predicted price. Note that each dot represents an interval of .01 cent on the
x-axis, with the y-values being collapsed within that interval to keep the number of dots manageable.

A similar pattern can be found if we analyze the reaction to price changes for
different hours of the day. We run the same IV estimation outlined in equations (2.3)
and (2.4) separately for each hour of the day.21 Figure 2.11, panel (a) displays the
price effect profile over the day. We observe the largest price reactions during the
night and afternoon, when overall consumption is low. This may seem counterintu-
itive given that the largest scope for consumption adjustment can be found when
consumption is high, but it is in line with our findings in Figure 2.10: Households
are more price sensitive if the baseline price is low. For high prices, which are preva-
lent during the morning- and evening hours (see Figure 2.4), consumers react less
to changes in the price, indicating that the relative size of the price change is an
important determinant of the price sensitivity. Figure 2.C.1 in the appendix reveals
that we do not find a similar pattern in the control sample - the estimated price
sensitivity remains small and insignificant over the day.
Figure 2.11, panel (b) reveals that the price effect pattern over the day is driven

by the reduced form, which varies by a factor larger than 4 over the day, instead of
the first stage, which only varies between −.08 and −.12. To see this relationship,
recall that the classic 2SLS estimator can be written as the ratio of the effect of the

21. Naturally, we leave out hour-of-the-day fixed effects in this specification.
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(b) Association of Wind Production and Electric-
ity Consumption

Figure 2.11. Price Effect and Association of Wind Production and Electricity Consumption
Figure 2.11a presents the estimated price effect for each hour of the day. The dashed line denotes the
95%-confidence interval. Figure 2.11b shows that this effect is driven by the reduced form, not the first
stage. The red line represents the first stage results over the day, measured on the left y-axis. The blue line
represents the reduced form results, measured on the right y-axis. The specifications include local weather
controls and individual-, sample month- and day-of-the-week-fixed effects. Standard errors are clustered
at the household level.

instrument on the outcome (the reduced form) to the effect of the instrument on
the endogenous regressor (the first stage).

β̂IV =
�

z0x
�−1

z0y

=

�

z0z
�−1

z0y

(z0z)−1 z0x

=
dy/dz
dx/dz

(2.11)

Two explanations may arise as to why price reactions are strongest during the
night and afternoon. Intuitively, we would expect price reactions to be largest when
consumption is highest, that is, during the morning and evening hours, because
that is when the scope for load shifting is largest. However, households may sim-
ply see no scope for consumption reduction during the high price hours, as workers
go to work in the morning and come back in the evening, with little wiggle room
for time adjustments around those particular hours, whereas nighttime and after-
noon consumption can be easier shifted across hours. Another explanation relates
to Figure 2.10: Households may be more attentive to price changes, the larger the
price change is compared to the electricity price. Thus, the price sensitivity would be
driven by the baseline electricity price instead of baseline consumption. To find out
which factor drives our results, we run the same analysis separately for each day of
the week. The results are presented in Figure 2.12. We find households to be more
price sensitive during the weekend than on regular days. That is, we find stronger
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Figure 2.12. Price Effect and Association of Wind Production and Electricity Consumption
Figure 2.12a presents the estimated price effect over the week. The dashed line denotes the 95%-confidence
interval. Figure 2.12b shows that again, the effect is driven by the reduced form instead of the first stage,
with its relative magnitude being significantly larger. As before, the red line represents the first stage results
over the week, measured on the left y-axis. The blue line represents the reduced form results, measured
on the right y-axis. The specifications include local weather controls and individual-, sample month- and
hour-of-the-day-fixed effects. Standard errors are clustered at the household level.

effects when baseline consumption is high and prices are low, indicating that indeed
the low baseline price is decisive for the price sensitivity and baseline consumption
may not the driving factor of its magnitude. Figure 2.C.2 in the appendix reveals
that we do not find a similar pattern in the control sample.

2.6.2.1 Price Reactions for Different Time Horizons

So far, we cannot inform whether electricity price changes induce overall consump-
tion patterns to change across days and weeks or whether the price effect in electric-
ity consumption is driven by hourly adjustment of consumption. That is, do house-
holds rather react to expensive days by shifting electricity consumption from one
day to another, or do they react to expensive hours of the day by shifting electricity
consumption to cheaper hours of the day?

Intra-Day Price Effects. To answer this question, we zoom in on our analysis by
including even finer grained time fixed effects. Instead of sample month fixed ef-
fects, we now use date fixed effects as illustrated in equations (2.5) and (2.6) and
thus assess only the effect of within-day price variation. Table 2.4 reports the esti-
mated price sensitivities. While the estimated price sensitivity in the control house-
holds remains unchanged, the estimated intra-day price effect in our sample is more
than twice the size of the overall estimated price effect in Table 2.3. In our pre-
ferred specification in column (6), we report that an increase in the hourly elec-
tricity price of one Cent significantly decreases hourly electricity consumption by
0.037 kWhs, or 7% on average. Our estimates imply an intra-day price elasticity
of −0.037× 23.9/0.53= −1.668. This is especially interesting, because it suggests
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that households react even stronger to short-term electricity price fluctuations over
the day than fluctuations across days.

Inter-Day Price Effects. In order to assess the possibility of electricity load shift-
ing over several days, we can also estimate price effects on daily level data. That is,
we aggregate daily consumption and estimate the model outlined in equations (2.7)
and (2.8). By aggregating consumption on the daily level, this approach ignores any
within-day price variation and thus any intra-day load shifting and instead focuses
purely on the price sensitivity linked to electricity load shifting across days, for exam-
ple through appliances whose usage can be adjusted across days (such as washing
machines or dryers). Table 2.5 presents the results. In our preferred specification
in column (5), we estimate that an increase in the average hourly electricity price
over the day of one Cent significantly decreases daily electricity consumption by
.241 kWhs, or 1.8% on average. Using the average daily electricity consumption of
12.71 kWhs, our estimate for the price effect implies an inter-day price elasticity of
−.241× 23.9/12.710= −0.453, which is significantly smaller than the overall price
elasticity based on the original price sensitivity estimated on the hourly dataset and
the calculated intra-day price elasticity.
Two possible explanations arise: First, the scope for intra-day price reactions is

larger than inter-day price reactions. Some activities, such as cooking or showering,
can, to a certain extend, be shifted within a day. A person can decide to shower in the
morning instead of the evening, or to cook at 5 p.m. instead of 7 p.m., but the scope
for load shifting across several days is limited for many such activities. A second
explanation comes to mind when we take a closer look at the information channels
for customers. As we showed in Section 2.3, customers can see the electricity prices
for the next day at 2 p.m. on the electricity provider’s website. This means that
from 2 p.m. it is possible to plan electricity consumption for the next day, whereas
consumption planning further in the future is much harder, as households cannot
reliably plan with electricity prices across days.22 Price security within a day allows
households to easily shift loads over the day, but meaningful inter-day load shifting
with knowledge of future prices is only possible after 2 p.m.
The policy implications of this result are large: The general consensus of the

previous literature on electricity price elasticities, both in households and businesses
was that short-term price elasticities are much lower than long-run elasticities, to the
point of being insignificant for policymakers. This often led to the conclusion that
intra-day price variation is not an effective tool for demand side management. How-
ever, it is important to note that this conclusion is confusing two different concepts,
namely short-term- and intra-day price elasticities. The former describes intra- and
inter-day price elasticities in the short-term window after TVP introduction, the lat-

22. Though they can as least use the general price pattern described in Figure 2.4.



2.6
Results

|
99

Table 2.4. Effect on Electricity Consumption: IV Estimates of Intra-Day Price Effects

Dependent Hourly Electricity Consumption
Variable (1) (2) (3) (4) (5) (6) (Control)
EPEX Spot Price -.073*** -.072*** -.069*** -.015*** -.037*** -.037*** .001

(.000) (.004) (.003) (.002) (.002) (.003) (.001)
Daily Temperature -.101*** .005

(.019) (.018)
Hours of Sunshine -.055*** -.003

(.005) (.004)
Air Pressure -.005 -.005

(.008) (.010)
Household fixed-effects No Yes Yes Yes Yes Yes Yes
Hour FEs No No Yes Yes Yes Yes Yes
Sample Month fixed-effects No No No Yes Yes Yes Yes
Date fixed-effects No No No No Yes Yes Yes
Local Weather Controls No No No No No Yes Yes
R

2
centered

- -0.0362 -0.0249 0.0011 0.0006 0.0012 0.0001
R

2
uncentered

- -0.0362 -0.0249 0.0011 0.0006 0.0012 0.0001
Observations 5’583’500 5’583’500 5’583’500 5’583’500 5’583’500 5’360’395 1’102’116
Households 829 829 829 829 829 796 116

Notes: For readability, local weather controls (measured in degrees celsius, hours, and hPA, respectively) are divided by 10. That is, the effect on hourly electricity consumption
of an increase in temperature by one degree celsius is β̂

temp
/10

Results stem from IV estimation of hourly electricity consumption on the hourly electricity price per kWh, based on equation (2.6), with the hourly electricity price being instru-
mented for using hourly wind production in Germany according to equation (2.5). We subsequently add household-, hour-of-the-day-, sample month- and date-fixed effects.
Finally, we add local weather controls in column (6), based on the weather data provided by the closest weather station. In the last column, we run the same regression displayed
in column (6) on the control sample. Standard errors are clustered at the household level.
*** p < 0.01 ** p < 0.05 * p < 0.1
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ter describes the price elasticity following sudden price variation over the day. Our
estimation results help us to separate both concepts, as we estimate the latter.
Overall, we find highly significant demand responses to electricity price changes

for each hour of the day and each day of the week, with the magnitude of the es-
timated price sensitivity changing significantly over the day and week. Our results
indicate that households react stronger to price changes if the baseline price is low.
Additionally, we find that the resulting price elasticity with respect to hourly chang-
ing electricity prices over the day is significantly larger than the price elasticity with
respect to daily changing electricity prices.
These results are robust with respect to various specifications and sampling: In Ap-
pendix 2.D, we report the estimated intra- and inter-day price sensitivities for a
series of robustness checks. We find that our results are robust to the exclusion of
observations during the night, confirming that the estimated negative price sensitiv-
ity is not mainly driven by excessive nighttime consumption. In order to assess the
role of staying at home for the price elasticity of demand, we also run the analyses
separately on observations before the first lockdowns of the COVID-19 pandemic
and during the pandemic. With the higher average socioeconomic status of the zip-
codes in our sample, we expect that household members in our sample are more
likely to work in home office compatible jobs with an increased possibility of stay-
ing at home, which potentially increases the scope for load shifting over the day -
especially during weekdays. While we do find slight changes in the estimated price
sensitivity before and during the pandemic, these differences are extremely small.
We also estimate households to be significantly more price sensitive on weekends
than on weekdays. While the estimated price sensitivity in the control sample is
small and insignificant for both weekends and weekdays, we find that in our sam-
ple, both the intra- and the inter-day price elasticities on weekends are almost twice
as large as the price elasticities during the week. Including all clusters of house-
holds in our analysis increases the magnitude of the estimated price sensitivity as
well as the resulting price elasticities. Including only the “low consumption”-cluster
decreases the magnitude of the estimated price sensitivity, but - due to the lower
baseline consumption - results in a larger estimated price elasticity. We also show
that our results are robust to using the wind energy production day-ahead forecast
as the instrument (instead of actual wind energy production). Finally, in Appendix
2.E, we use the difference in hourly electricity consumption, the hourly electricity
price and hourly wind production and their respective 24-hour lags as the outcome,
regressor, and instrument, respectively in equations (2.3) and (2.4). We thus ad-
dress the endogeneity inherent to the EPEX prices and include daily and seasonal
time trends indirectly. Using this approach, we estimate a slightly smaller (in ab-
solute terms), yet still significantly negative price sensitivity for the households in
our sample, and a small, positive price sensitivity for the households in the control
sample.
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Table 2.5. Effect on Daily Electricity Consumption: IV Estimates

Dependent Daily Electricity Consumption
Variable (1) (2) (3) (4) (5) (Control)
EPEX Spot Price -1.838*** -1.837*** -1.903*** -.187*** -.241*** .026

(.093) (.093) (.100) (.037) (.035) (.026)
Daily Temperature -1.855*** -.313**

(.170) (.136)
Hours of Sunshine -1.195*** -.100*

(.099) (.058)
Air Pressure -.133*** -.086**

(.033) (.042)
Household fixed-effects No Yes Yes Yes Yes Yes
DOW FEs No No Yes Yes Yes Yes
Sample Month fixed-effects No No No Yes Yes Yes
Local Weather Controls No No No No Yes Yes
R

2
within

0.0021 - - 0.1449 0.1523 0.0709
R

2
between

0.0462 0.0462 0.0459 0.0529 0.0581 0.0193
R

2
overall

0.0027 0.0027 0.0047 0.0993 0.1026 0.0362
Observations 232’992 232’992 232’992 232’992 223’683 45’936
Households 829 829 829 829 796 116

Notes: For readability, local weather controls (measured in degrees celsius, hours, and hPA, respectively) are divided by 10. That is, the effect on daily electricity consumption of
an increase in temperature by one degree celsius is β̂

temp
/10

Results stem from IV estimation of daily electricity consumption on the average hourly electricity price per kWh over the day, based on equation (2.8), with the average hourly
electricity price over the day being instrumented for using average hourly wind production over the day in Germany according to equation (2.7). We subsequently add household-,
day-of-the-week- and sample month-fixed effects. Finally, we add local weather controls in column (5), based on the weather data provided by the closest weather station. In
the last column, we run the same regression displayed in column (5) on the control sample. Standard errors are clustered at the household level.
*** p < 0.01 ** p < 0.05 * p < 0.1
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Figure 2.13. Distribution of Individual Price Effects
This figure presents a histogram and kernel density of estimated household level price sensitivities esti-
mated according to equations (2.9) and (2.10). That is, for this figure, we estimate a separate overall price
sensitivity for each household in our sample (including all clusters of households).

2.6.3 Individual Price Sensitivities

So far, we have estimated the electricity price effect on consumption on the whole
sample. However, estimating one parameter for the whole population ignores the
potential heterogeneity in the parameter of interest, which can be defined at the
individual level. As we can see in Figure 2.6, electricity consumption is subject to
substantial heterogeneity, with not only the absolute magnitude in consumption,
but also consumption patterns differing between households.
The panel structure of our dataset allows us to estimate individual-level price

sensitivities for each of the 899 households in our sample. To do so, we estimate the
model outlined in equations (2.9) and (2.10). For this approach, we include all 899
households in our sample and estimate 899 separate electricity price sensitivities.
Figure 2.13 presents the distribution of estimated price sensitivities as well as kernel
density plots. We observe the sensitivities to be centered close to zero, though with
significantly more probability mass in the negative range. We can thus say that the
negative price sensitivity estimated earlier is not driven by a few highly price elastic
households or households using an IM, but by a large portion of the households in
our sample.
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2.7 Conclusion

Residential households’ sensitivity to the electricity price is crucial information to
evaluate the effectiveness of time-varying electricity prices. This paper provides em-
pirical estimates of households’ real-time price elasticities of electricity demand. We
use real-world high-frequency data on households’ electricity consumption along
with hourly electricity prices, provided by an electricity provider operating in Ger-
many and Austria, which passes hourly electricity prices determined at the European
Power Exchange EPEX on to its customers, thus providing households with a real-
time-pricing tariff. Applying a simple K-means clustering algorithm to the sample of
the provider’s customers reveals a cluster of households apparently using an auto-
mated demand response to low prices during the night.
Using hourly wind production as an instrument for the electricity price in a 2SLS

framework to overcome the endogeneity inherent to simple OLS due to the EPEX
pricing mechanism, we estimate a significantly negative overall household price elas-
ticity of−0.69. Our results additionally reveal important nonlinearities in the housh-
olds’ demand response to price variations. While demand is fairly price elastic for
low electricity prices, we find that demand responses to price changes are smaller in
magnitude when prices are high. These benchmark results show that households in
our sample are indeed highly price elastic and that, if real-time pricing is adapted,
hourly changing electricity prices can be an successful strategy to control electricity
consumption.
By exploiting the within-day price variation in the electricity price, we find an

even larger intra-day price elasticity of −1.668. In contrast, aggregating our data on
a daily level, we find a significantly smaller inter-day price elasticity of −0.453. That
is, households in our sample react more strongly to price variation over the day than
price variation across days by shifting electricity consumption within the day rather
than across days. These important results indicate that load shifting of activities
that usually have to be done each day (e.g. cooking, showering etc.) is an important
driver of the households’ demand response to price changes. This has important
welfare implications for policymakers: While dynamic electricity price tariffs are
often discarded as unreasonable and inexpedient (Forsa (2015)), we show that in
our sample, households not only strongly react to time-varying prices, but they do
so even more stongly in a short time horizon. Conversely, while we still observe
a highly significant demand response to price changes across days, this response
is significantly smaller. Policymakers should thus consider the time frame if they
hope real-time pricing to achieve electricity load shifting: continuously high prices
over several days have limited potential of shifting electricity over time and should
thus be handled with care, while short-term grid-wide consumption spikes can be
partially absorbed by load shifting induced by real-time pricing.
Moreover, as shown in Appendix 2.F, we can show that, for mean-preserving

hourly changing electricity prices, risk-neutral households are weakly better off than
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for constant electricity prices: For a given mean price, flexible electricity prices in-
crease the consumer surplus of risk-neutral households. Due to the mean-preserving
spread of electricity prices and risk-neutrality, the consumer surplus from fixed
prices is the same as the surplus from flexible prices if households were forced to
consume the same amount of energy they would have used if prices were fixed at
the mean price. But allowing households to react and optimize their electricity con-
sumption with respect to the electricity price makes households better off compared
to the fixed price case. Similar mechanisms of welfare-increasing dynamic pricing
have been shown, for example, in the context of airfares (Williams (2021)).
Finally, robustness checks excluding the nighttime hours between 10 p.m. and

6 a.m. reveal that our estimates are not driven by excessive nighttime consumption.
We also find that households are more price elastic during weekends than during
weekdays, which we believe is due to household members being at home and having
a larger scope and more possibilities to adjust consumption. Interestingly, however,
we do not find that households became more price elastic over the course of the
COVID-19 pandemic and the consequent widespread roll-out of working from home.
We also find that our results are robust with respect to different specifications (such
as using the difference in 24-hour lags of the outcome, regressors and instrument as
the outcome, regressors and instrument), sample compositions (including all house-
hold clusters or only the “low consumption”-cluster) and instruments (using the
wind production forecast instead of actual wind production as the instrument).
As a cautionary note, it is important to acknowledge that the households in our

sample most likely do not represent the average German household. Our results can
thus not easily be generalized to a larger population. Using zipcode level information
on sociodemographics, we find that the zipcodes in our sample exhibit a higher aver-
age socioeconomic status, a higher share of homeowners and families, a lower share
of non-Germans as well as household heads over the age of 60 or under 30. How-
ever, except for the variables determining the socioeconomic status and the share of
homeowners and families, these differences are small in absolute terms. Thus, while
we cannot say much about the sociodemographics of the households in our sample,
we can present evidence regarding their sociodemographic and socioeconomic envi-
ronment. Note, however, that for a meaningful interpretation of our results on the
policy implications of real-time pricing, households in our sample do not need to be
representative. With the planned roll-out of smart meters in Europe, offering RTP
to households and letting them self-select into treatment becomes a viable option -
and a large share of potential customers are open to the idea of time-varying prices
(Forsa (2015)).
This paper contributes to the still growing literature on real-time electricity de-

mand price elasticities. The scarcity of such tariffs results in few data sources and
only a handful of papers explicitly addressing dymanic electricity price elasticities.
Previous work on this front is mostly based on experimental data (Wolak (2011), All-
cott (2011), the only exception we are aware of being Fabra et al. (2021)) and thus
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seldom analyzes the price sensitivities to actually implementable pricing schemes.
Our empirical analysis hopefully provides a base for future research to assess the
effectiveness of dynamic electricity pricing schemes in different contexts and time
periods and to further evaluate on the welfare implications of real-time pricing.
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Appendix 2.A Representativeness of the Sample

To investigate the external validity of our results, we analyze the representative-
ness of our sample with respect to several sociodemographics and socioeconomic
variables. Unfortunately, we do not have household-level information on these vari-
ables of interest for the households in our sample. However, we use information on
sociodemographic variables on the zipcode level, provided by the data provider mi-
crom. Thus, while we do not have household-level information we have information
about the socioeconomic environment each household lives in, which allows us to
analyze whether a household’s environment, which is a proxy for household charac-
teristics, is representative of all households in Germany. In this section, we provide
information on sociodemographic averages on zipcode level as well as distributions
on income, family structures and socioeconomic status.

Table 2.A.1. Representativeness with Respect to Sociodemographics

Characteristic Germany Sample p-value

Share of Homeowners 46.589 57.067 0.000
Share of HHs with A-level 23.551 25.042 0.000
Share of HHs with electric or hybrid cars 0.716 0.720 0.662
Share of HHs with non-German heads 12.287 10.39 0.000
Share of HHs with head under 30 years old 20.172 18.912 0.000
Share of HHs with head over 60 years old 34.061 33.609 0.003

Notes: This table shows the average share (in percent) of households falling into certain characteristics cate-
gories in Germany and in the zipcode areas the households in our sample live in. The displayed averages are
generated as weighted averages, with the weights for Germany being calculated as the zipcode population
divided by the total population of households in Germany (≈ 41 million). For the sample, the weights are
calculated as the number of households living in a zipcode area divided by the total number of households
in our sample. The p-values stem from two-sided t-tests using the described weights.
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Table 2.A.2. Representativeness with Respect to Income

Characteristic Germany Sample p-value

Share of HHs w/ Income less than 1’100EUR p. Month 0.105 0.075 0.000
Share of HHs w/ Income between 1’100 and 1’500EUR p. Month 0.099 0.076 0.000
Share of HHs w/ Income between 1’500 and 2’000EUR p. Month 0.129 0.110 0.000
Share of HHs w/ Income between 2’000 and 2’600EUR p. Month 0.139 0.132 0.000
Share of HHs w/ Income between 2’600 and 4’000EUR p. Month 0.231 0.254 0.000
Share of HHs w/ Income between 4’000 and 7’500EUR p. Month 0.237 0.283 0.000
Share of HHs w/ Income higher than 7’500EUR 0.056 0.067 0.000

Notes: This table shows the average share (in percent) of households falling into different income categories
for Germany and for our sample. The averages are generated as weighted averages, with the weights for Ger-
many being calculated as the zipcode population divided by the total population of households in Germany
(≈ 41 million). For the sample, the weights are calculated as the number of households living in a zipcode
area divided by the total number of households in our sample. The p-values stem from two-sided t-tests
using the weights described earlier.

Table 2.A.3. Representativeness with Respect to Family Structures

Characteristic Germany Sample p-value

Share of HHs falling into family structure category 1 11.109 5.130 0.000
Share of HHs falling into family structure category 2 11.109 6.774 0.000
Share of HHs falling into family structure category 3 11.109 8.185 0.000
Share of HHs falling into family structure category 4 11.109 9.729 0.000
Share of HHs falling into family structure category 5 11.109 11.381 0.216
Share of HHs falling into family structure category 6 11.109 12.851 0.000
Share of HHs falling into family structure category 7 11.109 13.973 0.000
Share of HHs falling into family structure category 8 11.109 15.049 0.000
Share of HHs falling into family structure category 9 11.119 16.920 0.000

Notes: This table shows the average share (in percent) of households falling into different family struc-
ture categories for Germany and for our sample. The averages are generated as weighted averages, with
the weights for Germany being calculated as the zipcode population divided by the total population of
households in Germany (≈ 41 million). For the sample, the weights are calculated as the number of house-
holds living in a zipcode area divided by the total number of households in our sample. The p-values stem
from two-sided t-tests using the weights described earlier. The categories 1-9 are defined as percentiles
in the German population of households, which explains why the shares falling into each category are the
same. This categorization results in the following thresholds for the share of single-households: Category 1:
16.95%, Category 2: 15.05%, Category 3: 13.86%, Category 4: 12.85%, Category 5: 11.63%, Category 6: 9.11%,
Category 7: 9.02%, Category 8: 6.60%, Category 9: 4.90%
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Table 2.A.4. Representativeness with Respect to Children

Characteristic Germany Sample p-value

Share of HHS in Children Category 1 5.137 3.762 0.000
Share of HHS in Children Category 2 11.867 12.927 0.000
Share of HHS in Children Category 3 11.850 11.703 0.289
Share of HHS in Children Category 4 11.866 10.533 0.000
Share of HHS in Children Category 5 11.850 11.147 0.000
Share of HHS in Children Category 6 11.863 11.687 0.010
Share of HHS in Children Category 7 11.855 12.129 0.000
Share of HHS in Children Category 8 11.853 13.032 0.000
Share of HHS in Children Category 9 11.857 13.079 0.000

Notes: This table shows the average share (in percent) of households falling into different “share of chil-
dren per household”-categories for Germany and for our sample. The averages are generated as weighted
averages, with the weights for Germany being calculated as the zipcode population divided by the total
population of households in Germany (≈ 41 million). For the sample, the weights are calculated as the num-
ber of households living in a zipcode area divided by the total number of households in our sample. The
p-values stem from two-sided t-tests using the weights described earlier. The categories 1-9 are defined by
the average share of children in the households in a zipcode area. The thresholds are kept confidential by
microm, but the categories are defined such that, with the exception of category 1, the share of households
in each category is roughly the same for Germany. The categories are thus defined as follows: Category 1:
Share of households with the lowest share of children per household, Category 2: Share of households with
the share of children per household very far below the average, Category 3: Share of households with the
share of children per household far below the average, Category 4: Share of households with the share of
children per household below the average, Category 5: Share of households with the share of children per
household slightly below the average, Category 6: Share of households with an average share of children
per household, Category 7: Share of households with the share of children per household slightly above
the average, Category 8: Share of households with the share of children per household above the average,
Category 9: Share of households with the highest share of children per household
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Table 2.A.5. Representativeness with Respect to Socioeconomic Status

Characteristic Germany Sample p-value

Share of HHs falling into Status Category 1 11.110 5.624 0.000
Share of HHs falling into Status Category 2 11.110 7.480 0.000
Share of HHs falling into Status Category 3 11.110 9.533 0.000
Share of HHs falling into Status Category 4 11.110 11.363 0.290
Share of HHs falling into Status Category 5 11.110 12.991 0.000
Share of HHs falling into Status Category 6 11.110 13.664 0.000
Share of HHs falling into Status Category 7 11.110 13.677 0.000
Share of HHs falling into Status Category 8 11.110 13.496 0.000
Share of HHs falling into Status Category 9 11.120 12.171 0.077

Notes: This table shows the average share (in percent) of households falling into different socioeconomic
status categories for Germany and for our sample. The averages are generated as weighted averages, with
the weights for Germany being calculated as the zipcode population divided by the total population of
households in Germany (≈ 41 million). For the sample, the weights are calculated as the number of house-
holds living in a zipcode area divided by the total number of households in our sample. The p-values stem
from two-sided t-tests using the weights described earlier. A household’s status is defined as an index value
based on education and income. The categories 1-9 are again defined as percentiles of the Germany-wide
distribution of this index, explaining why the shares of households in Germany falling into each category
are approximately the same. The higher the category, the “higher” the status.

Table 2.A.6. Education and Income by Socioeconomic Status

Status Share with Share with Share with Avg. Net Income
Category Secondary School A-Level University Education per Month

1 12.71 5.86 4.37 1.667
2 12.31 6.42 4.88 2.009
3 13.80 8.24 8.64 2.271
4 11.80 8.07 7.38 2.469
5 12.68 11.84 10.79 2.636
6 11.20 11.46 12.71 2.811
7 9.72 13.38 14.38 3.009
8 9.73 14.01 13.30 3.022
9 6.05 20.71 23.55 3.630

Notes: This table shows the share of household heads with a secondary school education (Hauptschule),
with an A-Level education (Abitur) and the share of household heads who went to university as well as
average net income by socioeconomic status category. We clearly see that, the higher the education level
and income, the higher the status category. This is a mechanical result from how the status variable and
categories are generated. Source: microm (2021)
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Appendix 2.B Summary Statistics

Table 2.B.1. Summary Statistics

Mean Min Max Observations
Hourly Pricea 3.86 -10.711 23.205 5’583’500
Hourly Wind Productionb 14.23 0.136 46.137 5’583’500
Daily Average Temperaturec 11.08 -10.300 31.700 5’583’500
Sunshine Hours per Day 4.95 0.000 16.783 5’545’518
Daily Average Air Pressured 984.14 815.190 1044.870 5’389’395

Notes: This table presents summary statistics of the (net) electricity price, wind production and weather
controls. Note that for readability all weather controls are divided by 10 in our regressions. Here, we kept
them as they are reported by the German Meteorological Service.
aNet price in Cent. The final price depends on taxes and local levies. On average, these amount to approxi-
mately 20 Cent.
bIn GW
cIn degree Celsius
dIn hPA

Appendix 2.C Price Effects in Control Sample

2.C.1 OLS-Estimates of the Control Sample

In this section, we present the OLS estimates of the original regression based on Table
2.2 for the control sample. We subsequently add different levels of fixed effects to
underline their importance by showing that we would indeed estimate a positive
price sensitivity if we would not include them.
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Table 2.C.1. Effect on Electricity Consumption: OLS Estimates, Control Sample

Dependent Hourly Electricity Consumption
Variable (1) (2) (3) (4) (5) (6)
EPEX Spot Price .017*** .017*** .022*** .003*** -.002*** .002***

(.001) (.002) (.001) (.001) (.001) (.001)
Daily Temperature -.012*

(.006)
Hours of Sunshine -.005*

(.003)
Air Pressure -.004**

(.002)
Household fixed-effects No Yes Yes Yes Yes Yes
DOW FEs No No Yes Yes Yes Yes
Hour FEs No No No Yes Yes Yes
Sample Month fixed-effects No No No No Yes Yes
Local Weather Controls No No No No No Yes
R

2
within

0.0000 0.0000 0.0156 0.0759 0.0831 0.0825
R

2
between

0.0000 0.0000 - - - 0.0192
R

2
overall

0.0075 0.0075 0.0129 0.0625 0.0685 0.0703
Observations 1’235’130 1’235’130 1’235’130 1’235’130 1’235’130 1’102’116
Households 130 130 130 130 130 116

Notes: For readability, local weather controls (measured in degrees celsius, hours, and hPA, respectively) are divided by 10. That is, the effect on hourly electricity consumption
of an increase in temperature by one degree celsius is β̂

temp
/10

Results stem from OLS regression of hourly electricity consumption on the hourly electricity price per kWh, based on equation (2.4), without instrumenting for the hourly electricity
price. We subsequently add household-, day-of-the-week-, hour-of-the-day- and sample month fixed effects. Finally, we add local weather controls in column (6), based on the
weather data provided by the closest weather station. Standard errors are clustered at the household level.
*** p < 0.01 ** p < 0.05 * p < 0.1
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2.C.2 Price Effects Over the Day and Over the Week

In order to underline that we indeed do not observe any price effect in our control
sample, we recreate the same regressions on which Figures 2.11 and 2.12 are based
on in the control sample. As Figure 2.C.1 shows, we clearly see that the estimated
price effect is not significant for any hour of the day and that the relative magnitude
of the variation in the reduced form dominates the variation in the first stage in
both specifications. We also do not find any significant price effects for any day of
the week, as shown in Figure 2.C.2.
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Figure 2.C.1. Price Effect and Association of Wind Production and Electricity Consumption
Figure 2.C.1a presents the estimated price effect for each hour of the dayin the control sample. The dashed
line denotes the 95%-confidence interval. At no hour of the day we estimate a significant price effect. At
the same time, Figure 2.C.1b reveals that the first stage pattern found in the original sample is almost
unchanged. The red line represents the first stage results over the day, measured on the left y-axis. The
blue line represents the reduced form results, measured on the right y-axis. Standard errors are clustered
at the household level.
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Figure 2.C.2. Price Effect and Association of Wind Production and Electricity Consumption in Con-
trol Sample
Figure 2.C.2a presents the price effect for each day of the week in the control sample. The dashed line
denotes the 95%-confidence interval. During no day of the week, we estimate a significant price effect.
At the same time, Figure 2.C.2 reveals that the first stage pattern found in the original sample is almost
unchanged compared to Figure 2.12a. As before, the red line represents the first stage results over the
week, measured on the left y-axis. The blue line represents the reduced form results, measured on the right
y-axis. Standard errors are clustered at the household level.

Appendix 2.D Robustness Checks

In order to investigate the robustness of our results, we conduct several sensitiv-
ity checks on different subsamples of our datasets. In particular, we will analyze
whether our results hold up if we restrict our analysis to certain hours of the day
and days of the week. This, along with Figures 2.11a and 2.12a ensures that our
estimates are not driven by hours and days of particularly high price elasticity. Addi-
tionally, we will run separate analyzes on observations before and during the COVID-
19 pandemic in order to analyze whether the increased necessity and possibility of
working from home affected the price sensitivity. We also conduct our main analyses
on different sets of household clusters according to our cluster analysis in Section
2.5.1. Finally, we also check whether our results hold up for different specifications
and choice of instrument and clustering level.

2.D.1 Estimation Without the Nighttime Hours

Excluding the hours between 11 p.m. and 6 a.m. from the regression allows us to
ensure that our findings are not driven by households using excessive amounts of
energy during the cheap nighttime hours, for example by using an API. Even though
we conduct a cluster analysis in Section 2.5.1 and use the Austrian dataset to show
the load profiles of households using an API or an IM, excluding the nighttime hours
from the analysis helps to ensure the validity of our results. Tables 2.D.1 and 2.D.2
show that our results hold up even if we exclude observations during the night from
10 p.m. to 6 a.m.
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Table 2.D.1. Effect on Electricity Consumption: IV Estimates of Intra-Day Price Effects, excluding nighttime consumption

Dependent Hourly Electricity Consumption
Variable (1) (2) (3) (4) (5) (6) (Control)
EPEX Spot Price -.073***a -.072*** -.066*** -.013*** -.028*** -.028*** .001

(.000) (.003) (.003) (.001) (.002) (.002) (.002)
Daily Temperature -.100*** .013

(.019) (.020)
Hours of Sunshine -.080*** -.006

(.006) (.004)
Air Pressure -.005 -.004

(.008) (.010)
Household fixed-effects No Yes Yes Yes Yes Yes Yes
Hour FEs No No Yes Yes Yes Yes Yes
Sample Month fixed-effects No No No Yes Yes Yes Yes
Date fixed-effects No No No No Yes Yes Yes
Local Weather Controls No No No No No Yes Yes
R

2
centered

- -0.0489 -0.0337 0.0016 0.0001 0.0013 -0.0000
R

2
uncentered

- -0.0489 -0.0337 0.0016 0.0001 0.0013 -0.0000
Observations 3’957’396 3’957’396 3’957’396 3’957’396 3’957’396 3’799’268 780’912
Households 829 829 829 829 829 796 116

Notes: For readability, local weather controls (measured in degrees celsius, hours, and hPA, respectively) are divided by 10. That is, the effect on hourly electricity consumption
of an increase in temperature by one degree celsius is β̂

temp
/10

Results stem from IV estimation of hourly electricity consumption on the hourly electricity price per kWh, based on equation (2.6), with the hourly eletricity price being instru-
mented for using hourly wind production in Germany according to equation (2.5). For this specification, we exluded observations during the nighttime hours between 11 p.m.
and 6 a.m. We subsequently add household-, hour-of-the-day-, sample month- and date-fixed effects. Finally, we add local weather controls in column (6), based on the weather
data provided by the closest weather station. In the last column, we run the same regression displayed in column (6) on the control sample. Excluding nighttime electricity
consumption from the estimation (naturally) delivers (given that average hourly electricity consumption excluding nighttime consumption is 0.541 and the average hourly EPEX
price exluding these hours is 24.2 ct/kWh) delivers an electricity price elasticity of −1.263 (compared to the calculated price elasticity of −1.668 for the whole day). Standard
errors are clustered at the household level.
*** p < 0.01 ** p < 0.05 * p < 0.1
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Table 2.D.2. Effect on Daily Electricity Consumption: IV Estimates, excluding nighttime consump-
tion

Dependent Daily Electricity Consumption
Variable (1) (2) (3) (4) (5) (Control)
EPEX Spot Price -1.227*** -1.226*** -1.273*** -.131*** -.155*** .023

(.061) (.061) (.066) (.023) (.023) (.020)
Daily Temperature -1.349*** -.247**

(.122) (.098)
Hours of Sunshine -1.130*** -.126**

(.086) (.052)
Air Pressure -.067*** -.074**

(.023) (.030)
Household fixed-effects No Yes Yes Yes Yes Yes
DOW FEs No No Yes Yes Yes Yes
Sample Month fixed-effects No No No Yes Yes Yes
Local Weather Controls No No No No Yes Yes
R

2
within

0.0012 - - 0.1388 0.1474 0.0722
R

2
between

0.0520 0.0520 0.0517 0.0606 0.0675 0.0139
R

2
overall

0.0021 0.0021 0.0042 0.0978 0.1023 0.0387
Observations 232’984 232’984 232’984 232’984 223’675 45’936
Households 829 829 829 829 796 116

Notes: For readability, local weather controls (measured in degrees celsius, hours, and hPA, respectively)
are divided by 10. That is, the effect on daily electricity consumption of an increase in temperature by one
degree celsius is β̂

temp
/10

Results stem from IV estimation of daily electricity consumption on the average hourly electricity price
per kWh over the day, based on equation (2.8), with the average hourly eletricity price over the day being
instrumented for using average hourly wind production over the day in Germany according to equation
(2.7). We exclude observations during the nighttime hours between 22 p.m. and 6 a.m. for this analysis.
We subsequently add household-, day-of-the-week- and sample month-fixed effects. Finally, we add local
weather controls in column (5), based on the weather data provided by the closest weather station. In the
last column, we run the same regression displayed in column (5) on the control sample. Given that average
daily electricity consumption excluding nighttime consumption is 9.183 kWhs and the average hourly price
is 24.2 ct/kWh, this delivers an electricity price elasticity of −0.408 (compared to the calculated inter-day
price elasticity of −0.453 using observations over the whole day). Standard errors are clustered at the
household level.
*** p < 0.01 ** p < 0.05 * p < 0.1
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2.D.2 Interaction with COVID Pandemic

The COVID-19 pandemic affected many aspects of our life. In particular, due to lock-
downs and social distancing, working from home becamemore andmore viable over
the course of 2020. As shown in Section 2.A, we find that the environment of the
households in our sample indicates a higher socioeconomic status, which likely cor-
relates with White Collar jobs that can be done from home. We now analyze how
this increased availability of working from home affected households’ price sensitiv-
ity. For this, we conduct our main analyses on two separate samples, consisting of
observations before and after March 20, 2020.
Tables 2.D.3, 2.D.4, 2.D.5 and 2.D.6 show that intra-day demand elasticities in-
creased slightly in magnitude over the course of the pandemic, whereas inter-day
demand elasticities decreased slightly. This indicates that households were now able
to shift electricity consumption during hours in which they usually were not at home,
while not being able to shift electricity consumption across days as much as before.
However, note that the absolute differences in the estimated price sensitivities are
small.
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Table 2.D.3. Effect on Electricity Consumption: IV Estimates of Intra-Day Price Effects, before Covid-Pandemic

Dependent Hourly Electricity Consumption
Variable (1) (2) (3) (4) (5) (6)
EPEX Spot Price -.062***a -.052*** -.049*** -.011*** -.034*** -.035***

(.001) (.005) (.004) (.003) (.004) (.002)
Daily Temperature -.099***

(.024)
Hours of Sunshine -.062***

(.008)
Air Pressure -.007

(.011)
Household fixed-effects No Yes Yes Yes Yes Yes
Hour FEs No No Yes Yes Yes Yes
Sample Month fixed-effects No No No Yes Yes Yes
Date fixed-effects No No No No Yes Yes
Local Weather Controls No No No No No Yes
R

2
centered

- -0.0033 0.0005 0.0010 0.0009 0.0016
R

2
uncentered

- -0.0033 0.0005 0.0010 0.0009 0.0016
Observations 1’410’690 1’410’690 1’410’690 1’410’690 1’410’690 1’368’058
Households 377 377 377 377 377 368

Notes: For readability, local weather controls (measured in degrees celsius, hours, and hPA, respectively) are divided by 10. That is, the effect on hourly electricity consumption
of an increase in temperature by one degree celsius is β̂

temp
/10

Results stem from IV estimation of hourly electricity consumption on the hourly electricity price per kWh, based on equation (2.6), with the hourly electricity price being instru-
mented for using hourly wind production in Germany according to equation (2.5). We subsequently add household-, hour-of-the-day-, sample month- and date-fixed effects.
Finally, we add local weather controls in column (6), based on the weather data provided by the closest weather station. We only include observations up to March 1, 2020 for
this analysis. As all observations in the control sample fall in this period, we exclude the control sample from this analysis. Given that average hourly electricity consumption in
our sample before March 1, 2020 was 0.551 kWh and the average hourly EPEX price before March 1, 2020 was 24.0 ct/kWh, we calculate a price elasticity of −1.484. Standard
errors are clustered at the household level.
*** p < 0.01 ** p < 0.05 * p < 0.1
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riff Table 2.D.4. Effect on Electricity Consumption: IV Estimates of Intra-Day Price Effects, during Covid-Pandemic

Dependent Hourly Electricity Consumption
Variable (1) (2) (3) (4) (5) (6)
EPEX Spot Price -.072***a -.064*** -.062*** -.016*** -.038*** -.038***

(.001) (.003) (.003) (.001) (.002) (.003)
Daily Temperature -.103***

(.020)
Hours of Sunshine -.052***

(.005)
Air Pressure -.002

(.008)
Household fixed-effects No Yes Yes Yes Yes Yes
Hour FEs No No Yes Yes Yes Yes
Sample Month fixed-effects No No No Yes Yes Yes
Date fixed-effects No No No No Yes Yes
Local Weather Controls No No No No No Yes
R

2
centered

- -0.0372 -0.0261 0.0010 0.0002 0.0008
R

2
uncentered

- -0.0372 -0.0261 0.0010 0.0002 0.0008
Observations 4’172’810 4’172’810 4’172’810 4’172’810 4’172’810 3’992’337
Households 820 820 820 820 820 787

Notes: For readability, local weather controls (measured in degrees celsius, hours, and hPA, respectively) are divided by 10. That is, the effect on hourly electricity consumption
of an increase in temperature by one degree celsius is β̂

temp
/10

Results stem from IV estimation of hourly electricity consumption on the hourly electricity price per kWh, based on equation (2.6), with the hourly electricity price being instru-
mented for using hourly wind production in Germany according to equation (2.5). We subsequently add household-, hour-of-the-day-, sample month- and date-fixed effects.
Finally, we add local weather controls in column (6), based on the weather data provided by the closest weather station. We exclude observations up to March 1, 2020 for this
analysis. As all observations in the control sample fall in this period, we exclude the control sample from this analysis. Given that average hourly electricity consumption starting
March 1, 2020 was 0.523 and the average hourly EPEX price after March 1, 2020 was 23.8 ct/kWh, we calculate a price elasticity of −1.729. Standard errors are clustered at the
household level.
*** p < 0.01 ** p < 0.05 * p < 0.1
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Table 2.D.5. Effect on Daily Electricity Consumption: IV Estimates, before Covid

Dependent Daily Electricity Consumption
Variable (1) (2) (3) (4) (5)
EPEX Spot Price -1.272*** -1.268*** -1.306*** -.090 -.299***

(.117) (.118) (.125) (.073) (.069)
Daily Temperature -1.489***

(.255)
Hours of Sunshine -1.203***

(.167)
Air Pressure -.009

(.049)
Household fixed-effects No Yes Yes Yes Yes
DOW FEs No No Yes Yes Yes
Sample Month fixed-effects No No No Yes Yes
Local Weather Controls No No No No Yes
R

2
within

0.0098 - - 0.1190 0.1205
R

2
between

0.0256 0.0256 0.0256 0.0509 0.0581
R

2
overall

0.0081 0.0081 0.0081 0.0739 0.0769
Observations 58’930 58’930 58’930 58’930 57’150
Households 377 377 377 377 368

Notes: For readability, local weather controls (measured in degrees celsius, hours, and hPA, respectively)
are divided by 10. That is, the effect on daily electricity consumption of an increase in temperature by one
degree celsius is β̂

temp
/10

Results stem from IV estimation of daily electricity consumption on the average hourly electricity price
per kWh over the day, based on equation (2.8), with the average hourly electricity price over the day being
instrumented for using average hourly wind production over the day in Germany according to equation (2.7).
We subsequently add household-, day-of-the-week- and sample month-fixed effects. Finally, we add local
weather controls in column (5), based on the weather data provided by the closest weather station. We
only include observations up to March 1, 2020 for this analysis. As all observations in the control sample
fall in this period, we exclude the control sample from this analysis. Given that average daily electricity
consumption before March 1, 2020 was 13.184 kWhs and the average hourly price before March 1, 2020 was
24.0 ct/kWh, we calculate a price elasticity of −0.544. Standard errors are clustered at the household level.
*** p < 0.01 ** p < 0.05 * p < 0.1
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Table 2.D.6. Effect on Daily Electricity Consumption: IV Estimates, during Covid

Dependent Daily Electricity Consumption
Variable (1) (2) (3) (4) (5)
EPEX Spot Price -1.638*** -1.634*** -1.689*** -.219*** -.224***

(.078) (.078) (.083) (.035) (.035)
Daily Temperature -1.955***

(.175)
Hours of Sunshine -1.165***

(.100)
Air Pressure -.169***

(.037)
Household fixed-effects No Yes Yes Yes Yes
DOW FEs No No Yes Yes Yes
Sample Month fixed-effects No No No Yes Yes
Local Weather Controls No No No No Yes
R

2
within

0.0060 - - 0.1502 0.1594
R

2
between

0.0679 0.0679 0.0676 0.0644 0.0677
R

2
overall

0.0080 0.0080 0.0114 0.1071 0.1105
Observations 174’062 174’062 174’062 174’062 166’533
Households 820 820 820 820 787

Notes: For readability, local weather controls (measured in degrees celsius, hours, and hPA, respectively)
are divided by 10. That is, the effect on daily electricity consumption of an increase in temperature by one
degree celsius is β̂

temp
/10

Results stem from IV estimation of daily electricity consumption on the average hourly electricity price per
kWh over the day, based on equation (2.8), with the average hourly electricity price over the day being
instrumented for using average hourly wind production over the day in Germany according to equation
(2.7). We subsequently add household-, day-of-the-week- and sample month-fixed effects. Finally, we add
local weather controls in column (5), based on the weather data provided by the closest weather station.
We exclude observations up to March 1, 2020 for this analysis. As all observations in the control sample
fall in this period, we exclude the control sample from this analysis. Given that average daily electricity
consumption starting on March 1, 2020 was 12.550 kWhs and the average hourly price starting on March
1, 2020 was 23.8 ct/kWh, we calculate a price elasticity of −0.423. Standard errors are clustered at the
household level.
*** p < 0.01 ** p < 0.05 * p < 0.1



Appendix 2.D Robustness Checks | 121

2.D.3 Weekends and Weekdays

We additionally conduct our analyses separately during weekends and weekdays. Of
course, we expect the estimated demand elasticities to be significantly larger during
the weekends, as people are at home on weekends, which not only drives up aver-
age consumption during the weekend, but also increases the scope for consumption
shifting due to people being able to actively react to prices. As expected, we find sig-
nificantly larger price elasticities (both intra- and inter-day) during the weekends
than during weekdays.
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riff Table 2.D.7. Effect on Electricity Consumption: IV Estimates of Intra-Day Price Effects on Weekends

Dependent Hourly Electricity Consumption
Variable (1) (2) (3) (4) (5) (6) (Control)
EPEX Spot Price -.073***a -.073*** -.068*** -.023*** -.055*** -.054*** .001

(.001) (.004) (.003) (.002) (.004) (.004) (.002)
Daily Temperature -.105*** .008

(.022) (.017)
Hours of Sunshine -.060*** -.001

(.007) (.007)
Air Pressure -.010 -.004

(.008) (.010)
Household fixed-effects No Yes Yes Yes Yes Yes Yes
Hour FEs No No Yes Yes Yes Yes Yes
Sample Month fixed-effects No No No Yes Yes Yes Yes
Date fixed-effects No No No No Yes Yes Yes
Local Weather Controls No No No No No Yes Yes
R

2
centered

- -0.0244 -0.0158 0.0020 0.0019 0.0026 0.0001
R

2
uncentered

- -0.0244 -0.0158 0.0020 0.0019 0.0026 0.0001
Observations 1’588’102 1’588’102 1’588’102 1’588’102 1’588’102 1’524’651 311’576
Households 829 829 829 829 829 796 116

Notes: For readability, local weather controls (measured in degrees celsius, hours, and hPA, respectively) are divided by 10. That is, the effect on hourly electricity consumption
of an increase in temperature by one degree celsius is β̂

temp
/10

Results stem from IV estimation of hourly electricity consumption on the hourly electricity price per kWh, based on equation (2.6), with the hourly electricity price being instru-
mented for using hourly wind production in Germany according to equation (2.5). We subsequently add household-, hour-of-the-day-, sample month- and date-fixed effects.
Finally, we add local weather controls in column (6), based on the weather data provided by the closest weather station. In the last column, we run the same regression displayed
in column (6) on the control sample. We only include observations on Saturdays and Sundays for this analysis. Given that average hourly electricity consumption on weekends
is 0.564 kWhs and the average EPEX price is 22.9 ct/kWh, we calculate a price elasticity of −2.193. Standard errors are clustered at the household level.
*** p < 0.01 ** p < 0.05 * p < 0.1
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Table 2.D.8. Effect on Electricity Consumption: IV Estimates of Intra-Day Price Effects on Weekdays

Dependent Hourly Electricity Consumption
Variable (1) (2) (3) (4) (5) (6) (Control)
EPEX Spot Price -.076***a -.074*** -.072*** -.008*** -.025*** -.025*** .001

(.001) (.004) (.004) (.001) (.002) (.002) (.001)
Daily Temperature -.100*** .001

(.019) (.020)
Hours of Sunshine -.052*** -.004

(.006) (.004)
Air Pressure -.001 -.009

(.009) (.011)
Household fixed-effects No Yes Yes Yes Yes Yes Yes
Hour FEs No No Yes Yes Yes Yes Yes
Sample Month fixed-effects No No No Yes Yes Yes Yes
Date fixed-effects No No No No Yes Yes Yes
Local Weather Controls No No No No No Yes Yes
R

2
centered

- -0.0445 -0.0324 -0.0001 -0.0003 0.0004 0.0001
R

2
uncentered

- -0.0445 -0.0324 -0.0001 -0.0003 0.0004 0.0001
Observations 3’995’398 3’995’398 3’995’398 3’995’398 3’995’398 3’835’744 790’540
Households 829 829 829 829 829 796 116

Notes: For readability, local weather controls (measured in degrees celsius, hours, and hPA, respectively) are divided by 10. That is, the effect on hourly electricity consumption
of an increase in temperature by one degree celsius is β̂

temp
/10

Results stem from IV estimation of hourly electricity consumption on the hourly electricity price per kWh, based on equation (2.6), with the hourly electricity price being instru-
mented for using hourly wind production in Germany according to equation (2.5). We subsequently add household-, hour-of-the-day-, sample month- and date-fixed effects.
Finally, we add local weather controls in column (6), based on the weather data provided by the closest weather station. In the last column, we run the same regression displayed
in column (6) on the control sample. We exclude observations on Saturdays and Sundays for this analysis. Given that average hourly electricity consumption on weekdays is 0.517
kWhs and the average EPEX price is 24.3 ct/kWh, we calculate a price elasticity of −1.175. Standard errors are clustered at the household level.
*** p < 0.01 ** p < 0.05 * p < 0.1
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Table 2.D.9. Effect on Daily Electricity Consumption: IV Estimates, Weekends

Dependent Daily Electricity Consumption
Variable (1) (2) (3) (4) (5) (Control)
EPEX Spot Price -1.687*** -1.685*** -1.696*** -.354*** -.353*** .008

(.089) (.089) (.090) (.047) (.049) (.027)
Daily Temperature -2.156*** -.491**

(.205) (.154)
Hours of Sunshine -1.225*** -.122*

(.140) (.097)
Air Pressure -.284*** -.162**

(.051) (.054)
Household fixed-effects No Yes Yes Yes Yes Yes
DOW FEs No No Yes Yes Yes Yes
Sample Month fixed-effects No No No Yes Yes Yes
Local Weather Controls No No No No Yes Yes
R

2
within

0.0006 - - 0.1335 0.1419 0.0716
R

2
between

0.0441 0.0441 0.0441 0.0525 0.0510 0.0173
R

2
overall

0.0012 0.0012 0.0015 0.0918 0.0908 0.0385
Observations 66’231 66’231 66’231 66’231 63’585 12’992
Households 829 829 829 829 796 116

Notes: For readability, local weather controls (measured in degrees celsius, hours, and hPA, respectively)
are divided by 10. That is, the effect on daily electricity consumption of an increase in temperature by one
degree celsius is β̂

temp
/10

Results stem from IV estimation of daily electricity consumption on the average hourly electricity price per
kWh over the day, based on equation (2.8), with the average hourly electricity price over the day being
instrumented for using average hourly wind production over the day in Germany according to equation
(2.7). We exclude observations during the nighttime hours between 22 p.m. and 6 a.m. for this analysis.
We subsequently add household-, day-of-the-week- and sample month-fixed effects. Finally, we add local
weather controls in column (5), based on the weather data provided by the closest weather station. In the
last column, we run the same regression displayed in column (5) on the control sample. We only include
observations on Saturdays and Sundays for this analysis. Given that average daily electricity consumption
on weekends is 13.522 kWhs and the average hourly EPEX price is 22.9 ct/kWh, we calculate a price elasticity
of −0.598. Standard errors are clustered at the household level.
*** p < 0.01 ** p < 0.05 * p < 0.1
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Table 2.D.10. Effect on Daily Electricity Consumption: IV Estimates, Weekdays

Dependent Daily Electricity Consumption
Variable (1) (2) (3) (4) (5) (Control)
EPEX Spot Price -2.028*** -2.026*** -2.029*** -.082** -.171*** .028

(.110) (.110) (.111) (.038) (.036) (.036)
Daily Temperature -1.776*** -.275**

(.171) (.147)
Hours of Sunshine -1.185*** -.088

(.100) (.066)
Air Pressure -.074** -.052

(.035) (.043)
Household fixed-effects No Yes Yes Yes Yes Yes
DOW FEs No No Yes Yes Yes Yes
Sample Month fixed-effects No No No Yes Yes Yes
Local Weather Controls No No No No Yes Yes
R

2
within

0.0109 - - 0.1496 0.1567 0.0572
R

2
between

0.0439 0.0439 0.0439 0.0522 0.0588 0.0203
R

2
overall

0.0097 0.0097 0.0095 0.1006 0.1048 0.0273
Observations 166’761 166’761 166’761 166’761 160’098 32’944
Households 829 829 829 829 796 116

Notes: For readability, local weather controls (measured in degrees celsius, hours, and hPA, respectively)
are divided by 10. That is, the effect on daily electricity consumption of an increase in temperature by one
degree celsius is β̂

temp
/10

Results stem from IV estimation of daily electricity consumption on the average hourly electricity price per
kWh over the day, based on equation (2.8), with the average hourly electricity price over the day being
instrumented for using average hourly wind production over the day in Germany according to equation
(2.7). We exclude observations during the nighttime hours between 22 p.m. and 6 a.m. for this analysis.
We subsequently add household-, day-of-the-week- and sample month-fixed effects. Finally, we add local
weather controls in column (5), based on the weather data provided by the closest weather station. In
the last column, we run the same regression displayed in column (5) on the control sample. We exclude
observations on Saturdays and Sundays for this analysis. Given that average daily electricity consumption
on weekdays is 12.388 kWhs and the average hourly EPEX price is 24.3 ct/kWh, we calculate a price elasticity
of −0.335. Standard errors are clustered at the household level.
*** p < 0.01 ** p < 0.05 * p < 0.1
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2.D.4 Including All Four Clusters of Households

To show that excluding the high-consumption- and nighttime cluster from our anal-
ysis does not disproportionately distort our results, we also conduct our analyses
on the whole sample, including households from all clusters. As Tables 2.D.11 and
2.D.12 show, including both clusters increases our estimates in magnitude. This re-
sult comes as no surprise, especially if we look at Figure 2.6. Households in the two
clusters, which we originally excluded excessively using electricity during the night
when it is cheap drives the negative estimate of the price sensitivity downwards.
However, keep in mind that we purposely excluded both clusters from our analysis,
as we believe the high-consumption cluster (≈ 6% of our total sample) to consist of
unrepresentative households and that the nighttime consumption cluster (≈ 1.5%)
does not necessarily allow for an analysis of behavioral mechanisms (for example,
due to the usage of IMs).
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Table 2.D.11. Effect on Electricity Consumption: IV Estimates of Intra-Day Price Effects, including all household clusters

Dependent Hourly Electricity Consumption
Variable (1) (2) (3) (4) (5) (6)
EPEX Spot Price -.086***a -.082*** -.079*** -.018*** -.046*** -.046***

(.001) (.004) (.004) (.002) (.003) (.003)
Daily Temperature -.121***

(.024)
Hours of Sunshine -.061***

(.006)
Air Pressure -.004

(.009)
Household fixed-effects No Yes Yes Yes Yes Yes
Hour FEs No No Yes Yes Yes Yes
Sample Month fixed-effects No No No Yes Yes Yes
Date fixed-effects No No No No Yes Yes
Local Weather Controls No No No No No Yes
R

2
centered

- -0.0294 -0.0223 0.0010 0.0009 0.0015
R

2
uncentered

- -0.0294 -0.0223 0.0010 0.0009 0.0015
Observations 6’004’525 6’004’525 6’004’525 6’004’525 6’004’525 5’758’445
Households 899 899 899 899 899 861

Notes: For readability, local weather controls (measured in degrees celsius, hours, and hPA, respectively) are divided by 10. That is, the effect on hourly electricity consumption
of an increase in temperature by one degree celsius is β̂

temp
/10

Results stem from IV estimation of hourly electricity consumption on the hourly electricity price per kWh, based on equation (2.6), with the hourly electricity price being instru-
mented for using hourly wind production in Germany according to equation (2.5). We subsequently add household-, hour-of-the-day-, sample month- and date-fixed effects.
Finally, we add local weather controls in column (6), based on the weather data provided by the closest weather station. We include all households in the sample for this analysis.
That is, we also include households from the high consumption and nighttime consumption clusters displayed in Figure 2.6. Given that average hourly electricity consumption in
our sample including all clusters is 0.591 kWhs and the average hourly EPEX price is 23.9 ct/kWh, we calculate a price elasticity of −1.860. Standard errors are clustered at the
household level.
*** p < 0.01 ** p < 0.05 * p < 0.1
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Table 2.D.12. Effect on Daily Electricity Consumption: IV Estimates, including all household clus-
ters

Dependent Daily Electricity Consumption
Variable (1) (2) (3) (4) (5)
EPEX Spot Price -2.083*** -2.082*** -2.171*** -.224** -.300***

(.106) (.106) (.114) (.041) (.038)
Daily Temperature -2.283***

(.234)
Hours of Sunshine -1.312***

(.118)
Air Pressure -.170***

(.035)
Household fixed-effects No Yes Yes Yes Yes
DOW FEs No No Yes Yes Yes
Sample Month fixed-effects No No No Yes Yes
Local Weather Controls No No No No Yes
R

2
within

0.0025 - - 0.1312 0.1395
R

2
between

0.0416 0.0416 0.0412 0.0430 0.0493
R

2
overall

0.0030 0.0030 0.0048 0.0784 0.0879
Observations 250’567 250’567 250’567 250’567 240’298
Households 899 899 899 899 861

Notes: For readability, local weather controls (measured in degrees celsius, hours, and hPA, respectively)
are divided by 10. That is, the effect on daily electricity consumption of an increase in temperature by one
degree celsius is β̂

temp
/10

Results stem from IV estimation of daily electricity consumption on the average hourly electricity price
per kWh over the day, based on equation (2.8), with the average hourly electricity price over the day being
instrumented for using average hourly wind production over the day in Germany according to equation (2.7).
We subsequently add household-, day-of-the-week- and sample month-fixed effects. Finally, we add local
weather controls in column (5), based on the weather data provided by the closest weather station. We
include all households in the sample for this analysis. That is, we also include households from the high
consumption and nighttime consumption clusters displayed in Figure 2.6. Given that average daily electricity
consumption in our sample including all clusters is 14.164 kWhs and the average hourly EPEX price is 23.9
ct/kWh, we calculate a price elasticity of −0.506. Standard errors are clustered at the household level.
*** p < 0.01 ** p < 0.05 * p < 0.1
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2.D.5 Including only the Low-Consumption Cluster of Households

We also conduct our analysis on a sample only consisting of households belonging to
the low consumption cluster. As Tables 2.D.13 and 2.D.14 show, we find that house-
holds are less price sensitive in absolute terms, but with lower average consumption
in the low consumption cluster, the estimated price sensitivity translates to slightly
stronger price elasticities, though the differences are small.
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riff Table 2.D.13. Effect on Electricity Consumption: IV Estimates of Intra-Day Price Effects, including only the low consumption cluster

Dependent Hourly Electricity Consumption
Variable (1) (2) (3) (4) (5) (6)
EPEX Spot Price -.061***a -.060*** -.059*** -.015*** -.030*** -.029***

(.000) (.004) (.003) (.002) (.002) (.003)
Daily Temperature -.071***

(.016)
Hours of Sunshine -.047***

(.004)
Air Pressure -.001

(.007)
Household fixed-effects No Yes Yes Yes Yes Yes
Hour FEs No No Yes Yes Yes Yes
Sample Month fixed-effects No No No Yes Yes Yes
Date fixed-effects No No No No Yes Yes
Local Weather Controls No No No No No Yes
R

2
centered

- -0.0391 -0.0267 0.0016 0.0007 0.0013
R

2
uncentered

- -0.0391 -0.0267 0.0016 0.0007 0.0013
Observations 4’285’562 4’285’562 4’285’562 4’285’562 4’285’562 4’141’446
Households 606 606 606 606 606 584

Notes: For readability, local weather controls (measured in degrees celsius, hours, and hPA, respectively) are divided by 10. That is, the effect on hourly electricity consumption
of an increase in temperature by one degree celsius is β̂

temp
/10

Results stem from IV estimation of hourly electricity consumption on the hourly electricity price per kWh, based on equation (2.6), with the hourly electricity price being instru-
mented for using hourly wind production in Germany according to equation (2.5). We subsequently add household-, hour-of-the-day-, sample month- and date-fixed effects.
Finally, we add local weather controls in column (6), based on the weather data provided by the closest weather station. We include only the “low consumption”-cluster for this
analysis. Given that average hourly electricity consumption in the “low consumption”-cluster is 0.401 kWhs and the average hourly EPEX price is 23.9 ct/kWh, we calculate a price
elasticity of −1.728. Standard errors are clustered at the household level.
*** p < 0.01 ** p < 0.05 * p < 0.1
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Table 2.D.14. Effect on Daily Electricity Consumption: IV Estimates, including only the low con-
sumption cluster

Dependent Daily Electricity Consumption
Variable (1) (2) (3) (4) (5)
EPEX Spot Price -1.563*** -1.562*** -1.615*** -.224** -.250***

(.081) (.081) (.086) (.041) (.036)
Daily Temperature -1.193***

(.139)
Hours of Sunshine -1.029***

(.081)
Air Pressure -.072**

(.029)
Household fixed-effects No Yes Yes Yes Yes
DOW FEs No No Yes Yes Yes
Sample Month fixed-effects No No No Yes Yes
Local Weather Controls No No No No Yes
R

2
within

0.0016 - - 0.1599 0.1657
R

2
between

0.0231 0.0231 0.0229 0.0364 0.0366
R

2
overall

0.0017 0.0017 0.0035 0.1247 0.1246
Observations 178’817 178’817 178’817 178’817 172’804
Households 606 606 606 606 861

Notes: For readability, local weather controls (measured in degrees celsius, hours, and hPA, respectively)
are divided by 10. That is, the effect on daily electricity consumption of an increase in temperature by one
degree celsius is β̂

temp
/10

Results stem from IV estimation of daily electricity consumption on the average hourly electricity price per
kWh over the day, based on equation (2.8), with the average hourly electricity price over the day being
instrumented for using average hourly wind production over the day in Germany according to equation
(2.7). We subsequently add household-, day-of-the-week- and sample month-fixed effects. Finally, we add
local weather controls in column (5), based on the weather data provided by the closest weather station. We
include only the “low consumption” cluster for this analysis. Given that average daily electricity consumption
for the low cluster is 9.610 kWhs and the average hourly EPEX price is 23.9 ct/kWh, we calculate a price
elasticity of −0.622. Standard errors are clustered at the household level.
*** p < 0.01 ** p < 0.05 * p < 0.1
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2.D.6 Using Wind Energy Production Forecast As the Instrument

As the day-ahead energy prices are generated based on wind production forecasts, it
also helps to use wind production forecasts instead of actual wind production as the
instrument in our specifications. With a correlation coefficient of 0.94 (p=0.000)
we do not expect the corresponding results to differ much from our main results.
Indeed, as Tables 2.D.15 and 2.D.16 confirm, our results are also robust to this al-
ternative specification. The wind production forecast data used for this approach is
provided by the information platform of the German transmission system operators
(TSO)23 and comprise day-ahead forecasts of the expected wind energy supply in
the respective control area after direct marketing.

23. https://www.netztransparenz.de/Weitere-Veroeffentlichungen/Windenergie-Prognose, last
visited Sep 27th, 2021

https://www.netztransparenz.de/Weitere-Veroeffentlichungen/Windenergie-Prognose
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Table 2.D.15. Effect on Electricity Consumption: IV Estimates of Intra-Day Price Effects, using wind energy production forecast as the instrument

Dependent Hourly Electricity Consumption
Variable (1) (2) (3) (4) (5) (6) (Control)
EPEX Spot Price -.058***a -.059*** -.057*** -.018*** -.033*** -.033*** .001

(.000) (.004) (.003) (.002) (.003) (.003) (.001)
Daily Temperature -.071*** .005

(.016) (.018)
Hours of Sunshine -.047*** -.003

(.004) (.004)
Air Pressure -.001 -.005

(.007) (.010)
Household fixed-effects No Yes Yes Yes Yes Yes Yes
Hour FEs No No Yes Yes Yes Yes Yes
Sample Month fixed-effects No No No Yes Yes Yes Yes
Date fixed-effects No No No No Yes Yes Yes
Local Weather Controls No No No No No Yes Yes
R

2
centered

- -0.0367 -0.0257 0.0015 0.0005 0.0011 0.0001
R

2
uncentered

- -0.0367 -0.0257 0.0015 0.0005 0.0011 0.0001
Observations 4’285’562 4’285’562 4’285’562 4’285’562 4’285’562 4’141’446 1’102’116
Households 606 606 606 606 606 584 116

Notes: For readability, local weather controls (measured in degrees celsius, hours, and hPA, respectively) are divided by 10. That is, the effect on hourly electricity consumption
of an increase in temperature by one degree celsius is β̂

temp
/10

Results stem from IV estimation of hourly electricity consumption on the hourly electricity price per kWh, based on equation (2.6), with the hourly electricity price being instru-
mented for using the hourly wind production forecast in Germany according to equation (2.5). We subsequently add household-, hour-of-the-day-, sample month- and date-fixed
effects. Finally, we add local weather controls in column (6), based on the weather data provided by the closest weather station. In the last column, we run the same regression
displayed in column (6) on the control sample. Given that average hourly electricity consumption is 0.530 kWhs and the average hourly EPEX price is 23.9 ct/kWh, we calculate a
price elasticity of −1.488. Standard errors are clustered at the household level.
*** p < 0.01 ** p < 0.05 * p < 0.1
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Table 2.D.16. Effect on Daily Electricity Consumption: IV Estimates, using daily average hourly
wind energy production forecast as the instrument

Dependent Daily Electricity Consumption
Variable (1) (2) (3) (4) (5) (Control)
EPEX Spot Price -1.522*** -1.522*** -1.562*** -.297** -.292*** -.029

(.081) (.081) (.085) (.041) (.040) (.028)
Daily Temperature -1.221*** -.309**

(.139) (.134)
Hours of Sunshine -1.031*** -.100*

(.081) (.058)
Air Pressure -.065** -.086**

(.029) (.043)
Household fixed-effects No Yes Yes Yes Yes Yes
DOW FEs No No Yes Yes Yes Yes
Sample Month fixed-effects No No No Yes Yes Yes
Local Weather Controls No No No No Yes Yes
R

2
within

0.0016 - - 0.1595 0.1655 0.1655
R

2
between

0.0231 0.0231 0.0229 0.0364 0.0367 0.0367
R

2
overall

0.0017 0.0017 0.0034 0.1244 0.1249 0.1249
Observations 178’817 178’817 178’817 178’817 172’804 172’804
Households 606 606 606 606 584 116

Notes: For readability, local weather controls (measured in degrees celsius, hours, and hPA, respectively)
are divided by 10. That is, the effect on daily electricity consumption of an increase in temperature by one
degree celsius is β̂

temp
/10

Results stem from IV estimation of daily electricity consumption on the average hourly electricity price per
kWh over the day, based on equation (2.8), with the average hourly electricity price over the day being
instrumented for using the average hourly wind production forecast over the day in Germany according to
equation (2.7). We subsequently add household-, day-of-the-week- and sample month-fixed effects. Finally,
we add local weather controls in column (5), based on the weather data provided by the closest weather
station. In the last column, we run the same regression displayed in column (5) on the control sample. Given
that average daily electricity consumption is 12.710 kWhs and the average hourly EPEX price is 23.9 ct/kWh,
we calculate a price elasticity of −0.470. Standard errors are clustered at the household level.
*** p < 0.01 ** p < 0.05 * p < 0.1
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2.D.7
Clustering

Standard
Errors

atthe
Datetim

e-and
Date

Level

Table
2.D.17.Effecton

Electricity
Consum

ption:IV
Estim

ates
ofIntra-Day

Price
Effects,S.E.clus-

tered
atthe

Date
×

HourLevel

Dependent Hourly Electricity Consumption
Variable (1) (2) (3) (4) (5) (6) (Control)
EPEX Spot Price -.073*** -.072*** -.069*** -.015*** -.037*** -.037*** .001

(.000) (.003) (.002) (.001) (.002) (.003) (.001)
Daily Temperature -.101*** .005*

(.003) (.003)
Hours of Sunshine -.055*** -.003*

(.002) (.002)
Air Pressure -.005*** -.005***

(.002) (.001)
Household fixed-effects No Yes Yes Yes Yes Yes Yes
Hour FEs No No Yes Yes Yes Yes Yes
Sample Month fixed-effects No No No Yes Yes Yes Yes
Date fixed-effects No No No No Yes Yes Yes
Local Weather Controls No No No No No Yes Yes
R

2
centered

- -0.0362 -0.0249 0.0011 0.0006 0.0012 0.0001
R

2
uncentered

- -0.0362 -0.0249 0.0011 0.0006 0.0012 0.0001
Observations 5’583’500 5’583’500 5’583’500 5’583’500 5’583’500 5’360’395 1’102’116
Households 829 829 829 829 829 796 116
Notes: For readability, local weather controls (measured in degrees celsius, hours, and hPA, respectively) are divided by
10. That is, the effect on hourly electricity consumption of an increase in temperature by one degree celsius is β̂

temp
/10

Results stem from IV estimation of hourly electricity consumption on the hourly electricity price per kWh, based on
equation (2.6), with the hourly electricity price being instrumented for using the hourly wind production forecast in
Germany according to equation (2.5). We subsequently add household-, hour-of-the-day-, sample month- and date-fixed
effects. Finally, we add local weather controls in column (6), based on the weather data provided by the closest weather
station. In the last column, we run the same regression displayed in column (6) on the control sample. Given that average
hourly electricity consumption is 0.530 kWhs and the average hourly EPEX price is 23.9 ct/kWh, we calculate a price
elasticity of −1.488. Standard errors are clustered at the date × hour level.
*** p < 0.01 ** p < 0.05 * p < 0.1
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Table 2.D.18. Effect on Daily Electricity Consumption: IV Estimates, S.E. clustered at the Date ×
Time Level

Dependent Daily Electricity Consumption
Variable (1) (2) (3) (4) (5) (Control)
EPEX Spot Price -1.858*** -1.837*** -1.903*** -.187** -.241*** .026

(.287) (.253) (.270) (.074) (.055) (.016)
Daily Temperature -1.855*** -.313***

(.161) (.067)
Hours of Sunshine -1.195*** -.100*

(.094) (.053)
Air Pressure -.133*** -.086***

(.057) (.021)
Household fixed-effects No Yes Yes Yes Yes Yes
DOW FEs No No Yes Yes Yes Yes
Sample Month fixed-effects No No No Yes Yes Yes
Local Weather Controls No No No No Yes Yes
R

2
centered

-0.0931 -0.1274 -0.1333 -0.0002 0.0092 0.0016
R

2
uncentered

0.5144 -0.1274 -0.1333 -0.0002 0.0092 0.0016
Observations 232’992 232’992 232’992 232’992 223’683 45’936
Households 829 829 829 829 796 116

Notes: For readability, local weather controls (measured in degrees celsius, hours, and hPA, respectively)
are divided by 10. That is, the effect on daily electricity consumption of an increase in temperature by one
degree celsius is β̂

temp
/10

Results stem from IV estimation of daily electricity consumption on the average hourly electricity price per
kWh over the day, based on equation (2.8), with the average hourly electricity price over the day being
instrumented for using the average hourly wind production forecast over the day in Germany according to
equation (2.7). We subsequently add household-, day-of-the-week- and sample month-fixed effects. Finally,
we add local weather controls in column (5), based on the weather data provided by the closest weather
station. In the last column, we run the same regression displayed in column (5) on the control sample. Given
that average daily electricity consumption is 12.710 kWhs and the average hourly EPEX price is 23.9 ct/kWh,
we calculate a price elasticity of −0.470. Standard errors are clustered at the date level.
*** p < 0.01 ** p < 0.05 * p < 0.1
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Appendix 2.E Differences as Outcome, Regressor and Instrument

Another way to estimate the daily price effect is to use a different outcome variable,
regressor and instrument. That is, instead of regressing hourly electricity consump-
tion on the electricity price, which is instrumented for with wind production, we
regress the difference in hourly electricity consumption and the 24-hour lag in elec-
tricity consumption on the difference in the hourly electricity price and its 24-hour
lag, which is instrumented with the difference in hourly wind production and its
24-hour lag. The advantage of this approach lies in its robustness to time trends.
As Table 2.E.1 shows, time fixed effects do not change the results. We still estimate
a significantly negative price sensitivity for households in our sample, whereas the
estimates price sensitivity in the control sample is (though significant) small and
positive.
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Table 2.E.1. Effect on Electricity Consumption Difference: IV Estimates of Price Effects

Dependent Hourly Electricity Consumption Difference to Day Before
Variable (1) (2) (3) (4) (5) (6) (Control)
EPEX Spot Price -.029***a -.029*** -.028*** -.028*** -.028*** -.028*** .002**

(.002) (.002) (.002) (.002) (.002) (.002) (.001)
Daily Temperature -.009*** -.000

(.002) (.000)
Hours of Sunshine -.038*** -.000

(.003) (.000)
Air Pressure -.004*** -.000

(.001) (.000)
Household fixed-effects No Yes Yes Yes Yes Yes Yes
DOW FEs No No Yes Yes Yes Yes Yes
Hour FEs No No No Yes Yes Yes Yes
Sample Month fixed-effects No No No No Yes Yes Yes
Local Weather Controls No No No No No Yes Yes
R

2
within

0.0031 0.0031 0.0033 0.0033 0.0033 0.0035 0.0019
R

2
between

0.0452 0.0452 0.0268 0.0268 0.0456 0.0003 0.0019
R

2
overall

0.0032 0.0032 0.0033 0.0033 0.0033 0.0034 0.0019
Observations 5’561’865 5’561’865 5’561’865 5’561’865 5’561’865 5’339’665 1’098’984
Households 829 829 829 829 829 796 116

Notes: Note: For readability, local weather controls are divided by 10. That is, the effect on hourly electricity consumption of an increase in temperature by one degree celsius
is β̂

temp
/10. Results stem from IV estimation. We use the difference in hourly electricity consumption and the 24-hour lag in electricity consumption as the outcome and the

difference in hourly electricity price and its 24-hour lag, which is instrumented with the difference in hourly wind production and its 24-hour lag as the regressor. Standard errors
are clustered at the household level.
*** p < 0.01 ** p < 0.05 * p < 0.1
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Appendix 2.F Surplus Implications of Real-Time Pricing

While the advantages and possible drawbacks of dynamic electricity pricing for the
energy market have been extensively discussed in Section 2.1, we also want to shed
light on the implications on consumer surplus. For this exercise, we assume risk-
neutral households and an electricity pricing scheme built around K electricity prices
pk, each being realized with probability qk, such that, for the original price pM, we
have pM =

∑

k qkpk. We can denote the expected change in consumer surplus from
changing from a fixed-price to a dynamic pricing scheme as the sum of the consumer
gains for each realized electricity price pk, weighted by their respective probabilities
qk:

E [∆CS] =
∑

k

∆CSk = −xM
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Where xM denotes electricity consumption in the case of the original price pM,
∆pk denotes the difference pk − pM and ∆xk denotes the difference xk − xM. Note
that the expected change of the consumer surplus is always positive for a mean-
preserving spread of the electricity prices. This result has a tangible intuition: For
risk-neutral households, a fixed electricity price pM results in the same surplus out-
come as a mean-preserving spread of electricity prices while forcing households
to always consume xM, that is, forcing them to consume the same amount of en-
ergy they would have consumed if the price would have been fixed at pM =

∑

k qkpk.
However, with varying electricity prices, households can also adjust their electricity
consumption, allowing them to be strictly better off as long as pk ̸= pM for at least
one k.
To illustrate this result, consider the two-prices case with probability qk = 0.5 and
∆pH = −∆pL. Then:
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Figure 2.F.1. Daily Consumption Profile: Sample vs. Average German Household
This figure shows the effect of a high-low electricity pricing scheme on consumer surplus, assuming that
prices increase and decrease with probability 0.5 by the same amount as compared to the original, fixed
(= average) price. Note that xL denotes consumption in case of a low price pL, not low consumption per se.
The same applies to xH. The loss in consumer surplus in case of a high price is denoted by the dark blue
trapezoid. The gain in consumer surplus in case of a low price is denoted by the red rectangle and the yellow
triangle.
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Chapter 3

Job Search Autonomy

Joint with Patrick Arni and Amelie Schiprowski

3.1 Introduction

Modern unemployment policies tend to follow a paternalistic approach when it
comes to the provision of job search effort. In many countries, Public Employment
Services (PES) restrict the choice of effort through minimum application require-
ments and mandatory vacancy referrals. Such restrictions on the decision of how
much and how broadly to search are commonly motivated by the concern that job
seekers might under-provide search effort, for instance due to the disincentive ef-
fects of unemployment insurance (e.g., Schmieder, Wachter, and Bender (2016))
or behavioral phenomena, such as over-optimism (e.g. Spinnewijn (2015); Mueller,
Spinnewijn, and Topa (2021)) or hyperbolic time preferences (e.g. DellaVigna and
Paserman (2005)).
The degree of autonomy left to job seekers is a controversial policy choice. On

the one hand, search effort is a key input to the process that matches unemployed
individuals to jobs. Therefore, enforcing high effort may successfully foster labor
market re-integration. At the same time, restrictions on search effort carry the risk of
reducing intrinsic motivation and self-efficacy.1 Moreover, effort restrictions involve
an important general equilibrium dimension. Making all job seekers in a given labor
market exert high effort will affect labor market tightness if job creation does not
fully adjust. Depending on the relative importance of changes in individual effort
versus changes in labor market tightness, it is unclear how the large-scale enforce-
ment of search effort ultimately translates into job finding. Finally, there potentially
exists a trade-off between the speed of job finding and job quality. If job seekers use

1. For evidence on intrinsic motivation, self-efficacy and self-regulation in the job search process,
see Bandura (1977), Zimmerman, Boswell, Shipp, Dunford, and Boudreau (2012) and Guan, Deng,
Sun, Wang, Cai, et al. (2013).
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their autonomy to successfully direct their search towards higher paying jobs, this
can have meaningful consequences for the individual and fiscal trade-offs involved.
In this paper, we provide comprehensive empirical evidence on the labor market

effects of a large-scale policy change which reduced job search restrictions. The pol-
icy change BernTop! was implemented over the year 2012 in the Swiss canton Bern.
It had the declared goal to promote the autonomy and self-efficacy of unemployed
job seekers. Moreover, it aimed at reducing the administrative burden and improv-
ing the image of the PES. This resulted in a substantial reduction in the number of
required job applications that job seekers faced. Job search requirements decreased
by about 25% on average and mandatory vacancy referrals were almost completely
abolished. These changes translated into a roughly proportional decrease in pro-
vided job applications. Moreover, job seekers reduced the occupational broadness of
their job search, focusing on a smaller set of different occupations.
We estimate the reform’s effect on labor market outcomes based on individual-

level data from Swiss unemployment insurance and social security records. We set
up a difference-in-differences framework, using job seekers registered in the rest of
Switzerland as the control group. Before the reform, average labor market outcomes
of job seekers inside and outside Bern evolved in a parallel way.
We first analyze how the average duration of unemployment spells was affected.

We find that the reform-induced reduction in effort comes along with an increase
in the length of unemployment spells by about 14 days (8%) on average. To fix
ideas about the forces underlying this average effect, we discuss a simple concep-
tual framework. The framework illustrates the decomposition of the overall reform
effect into a behavioral effect due to the decrease in individual effort and a tightness
effect due to the decrease in aggregate effort. Moreover, the framework yields impli-
cations regarding the expected reform effect under different circumstances, which
we assess with analyses of heterogeneity. First, we expect a higher decrease in job
finding among job seekers whose individual effort decreased more strongly due to
the reform. This conjecture is strongly supported in the data, where we observe that
effects are most pronounced among job seekers whose effort is predicted to decrease
most strongly due to the reform. Second, we expect job finding to react more in lo-
cal labor markets with a higher initial labor market tightness. In the data, we we
find suggestive evidence of stronger effects in labor markets with a high pre-reform
vacancy-to-unemployed ratio. Third, we expect job finding to decrease more in local
labor markets where the expected change in tightness due to the reform is lower. In
line with this notion, we observe that the effect is strongest in labor markets with
low commuting time to one of the adjacent cantons. In these markets, tightness is
expected to decrease less, due to a higher exposure to commuters from outside Bern,
whose search effort remains unchanged after the reform. We also find suggestive ev-
idence that job seekers at the other side of the border benefited from the decrease
in effort provided by job seekers in Bern and exited unemployment at a faster rate.
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Taken together, the evidence suggests that tightness effects play a non-negligible
role for the net effect of policies that target search effort.
We then study whether the increase in autonomy came at the benefit of higher

re-employment earnings. In a model with directed search (e.g. Nekoei and Weber,
2017), the reform’s effect on earnings is ambiguous: an increased duration of un-
employment may reflect that job seekers become more selective about the jobs they
apply to. This would on average result in higher post-unemployment earnings. On
the other hand, a longer unemployment duration can lower average wage offers,
for instance due to negative signaling. Our results suggest that the first effect dom-
inates, as we estimate that the policy change increased average earnings by about
2.5 log points on average.
In a final step, we use our estimates to discuss the monetary trade-offs related

to the reform’s average effects. The aim is to quantify how the individual and
fiscal costs of longer unemployment spells compare to the benefits of higher
post-unemployment earnings. A simple back-of-the envelope calculation suggests
that the earnings gains need to persist for about 6-7 years to offset the fiscal costs of
longer unemployment spells. In turn, the worker’s individual earnings losses due to
longer unemployment are amortized after about 5 months if earnings gains persist.

This study relates to the literature on the effects of unemployment policies. A
large body of literature has shown the positive relationship between UI generosity
and unemployment duration (e.g., Card and Levine, 2000; Chetty, 2008; Lalive,
2008; Schmieder, Wachter, and Bender, 2012). This empirical relationship usually
motivates the control which Public Employment Services (PES) exert over job seek-
ers’ effort in most OECD countries (Venn (2012)). With job search requirements
and monitoring being a central measure in the toolbox of the PES, their impact has
been studied in a multitude of contexts, with results mostly pointing towards a re-
duced length of unemployment spells (e.g., Johnson and Klepinger, 1994; Meyer,
1995; Klepinger, Johnson, and Joesch, 2002; Ashenfelter, Ashmore, and Deschênes,
2005; Van den Berg and Van der Klaauw, 2006; McVicar, 2008; Manning, 2009;
McVicar, 2010; Van den Berg and Vikström, 2014; Arni and Schiprowski, 2019).
We contribute with the comprehensive analysis of a large-scale policy change that
drastically increased autonomy for all job seekers in a large, well-defined area. This
distinguishes our setting from most previous studies, which typically rely on sources
of variation that affect only a subset of job seekers in a given labor market. As real-
world labor market reforms typically apply to the vast majority of job seekers in a
given market, it is key to understand the effect of such large-scale changes, which
affect not only individual behavior, but also labor market tightness. As our results
show, these tightness effects matter for the outcomes of treated and untreated job
seekers competing in the same labor market. As a result, the effect of changes in
search effort is likely to be over-estimated when treatment and control group search
in the same market.
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By accounting for the relevance of tightness effects, we further relate to recent
studies which acknowledge and estimate job search externalities. In the context
of UI, market externalities have been shown to have an important impact on the
optimal level of UI (Landais, Michaillat, and Saez, 2010; Landais, Michaillat, and
Saez, 2018). Recent empirical evidence addresses this notion by documenting vary-
ing externalities of UI extensions (Lalive, Landais, and Zweimüller, 2015; Johnston
and Mas, 2018) and job search assistance (Crépon, Duflo, Gurgand, Rathelot, and
Zamora, 2013; Gautier, Muller, Klaauw, Rosholm, and Svarer, 2018; Cheung, Ege-
bark, Forslund, Laun, Rodin, et al., 2019). While our study does not have the goal to
separately identify the size of job search externalities, it shows that the local scope
for search externalities through changes in labor market tightness is decisive for the
average effect of large-scale changes in the search intensity of job seekers.
We proceed as follows: In Section 3.2, we describe the institutional setting and

data, Section 3.3 describes the policy change and Section 3.4 presents the empirical
design and discusses the results. Section 3.5 discusses the reform’s monetary trade-
offs and Section 3.6 concludes.

3.2 Data and Institutional Background

3.2.1 Data

Our empirical analysis is based on individual-level data from the Swiss UI registers
provided by the Swiss State Secretariat for Economic Affairs (SECO), merged to so-
cial security records. The sample covers all unemployment spells starting between
2009 and 2015 of job seekers aged between 28 and 60. Additionally, we use data on
the monthly job requirements set by the caseworkers for the cantons Bern, Fribourg,
Solothurn and Tessin. These cantons cover about 22% of all UI recipients and three
different geographic and language regions in Switzerland (Arni and Schiprowski,
2019). Overall, the dataset covers the date of registration for unemployment, the
date and reason for deregistration from unemployment, the number of monthly ap-
plication requirements in the mentioned cantons, the number and date of official
referrals for each spell as well as rich information on socio-demographics and mu-
nicipality level geolocation data of the place of residence of each job seeker in the
dataset.2 Moreover, we observe the history of pre- and post-unemployment earnings
up to the end of 2015.

2. Note that the number of applications reported does not necessarily perfectly reflect actual
job search effort. If the marginal costs for job seekers to report their search effort (i.e. reporting one
additional application) are significant, then job seekers may only report as many applications as they
have to, even if they sent out more. However, we assume that the marginal costs of reporting one
additional application are sufficiently low such that job seekers also report applications that exceed
the application requirements. This is also supported by our observation that on average, job seekers
report more applications than required.
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3.2.2 The Swiss Unemployment Insurance

In Switzerland, unemployed individuals are entitled to unemployment benefits if
they contributed for at least twelve months during the two years prior to unem-
ployment. To be eligible for the full benefit period, the contribution period extends
up to 18 months for job seekers up to 55. Usually, the maximum potential benefits
duration is 1.5 years for prime age workers, with variation with respect to the job
seeker’s employment history, age, and family situation. The replacement rate ranges
between 70% and 80% of gross previous earnings, depending on the job seeker’s
family situation.
The process to claim unemployment benefits is strictly organized. As soon as

an individual knows about her (upcoming) unemployment, she registers at the lo-
cal Public Employment Service (PES) office, called the Regionale Arbeitsvermittlung
(RAV). After registration, job seekers are assigned to a caseworker. Through reg-
ular meetings, caseworkers provide advice and counseling in the search process.
Caseworkers also set application requirements and refer job seekers to vacancies
according to general guidelines, which are set at the canton level.

3.2.3 The Application Requirements

The first caseworker meeting usually takes place around two to three weeks after
registration. During this meeting, the caseworker sets the first application require-
ment, that is, the minimum number of monthly job applications which the job seeker
must submit to avoid benefit cuts. Job seekers document their application activity in
a monthly “protocol of search effort”, which includes all types of applications made.
The protocols are submitted on a monthly basis to the canton or to the PES office
(depending on the canton), where they are collected and registered centrally. Job
seekers are required to send in copies of their applications together with the proto-
cols. Upon receiving the protocol, cantons or PES offices record the total number
of applications in the central database. Caseworkers are legally obliged to assess
whether the provided number of applications satisfies the requirement. They also
check whether a minimum quality standard is met. Moreover, caseworkers occa-
sionally verify the truthfulness of reported applications by calling the prospective
employer. Once non-compliance with the search requirement is detected, a sanction
can be imposed if the job seeker had no special reason or circumstance justifying
the non-compliance.

3.2.4 The Referral Process

Caseworkers can officially refer job seekers to job openings if they believe to have
found a fitting match in the PES database. These official referrals are, once made,
mandatory to apply to and consist of several forms to be filled out both by the job
seeker and the potential employer.
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Among policy makers in Bern, the practice of requiring potential employers to
give feedback on the applications was perceived as generating a burden to potential
employers and leading to fewer employers actually reporting job openings to the
PES database in order to avoid the additional administrative burden. Moreover, the
vacancy referrals were considered to worsen the job prospects of job seekers through
negative signaling effects.

3.3 The BernTop! Policy Change

Over the course of 2012, the department for economic affairs of the canton Bern
enacted a policy change, BernTop!, which changed the strategy of the PES. The two
main goals were to promote the autonomy and to increase the attractiveness of
job seekers for employers, by improving the transparency in the job search process
and minimizing “demotivators” in the job search process. Application requirements
and vacancy referrals were regarded as the two major demotivators. Their use was
decreased substantially.

• One of the most frequently mentioned demotivators and a controversial topic in
the PES policy overall were the application requirements. In the official guide to
the policy change, the PES notes that “We do not see the expedience of canton-
wide application requirements. They do not improve the attractiveness of job
seekers for potential employers, do not improve the PES’ image and are inef-
ficient from an administrative point-of-view.” Over the course of BernTop!, the
application requirements were reduced by approximately 25 %.

• The second “demotivator" tackled was the use of mandatory vacancy referrals.
Through BernTop!, referrals were almost completely abolished.

• The number and definition of occupations a job seeker declared to search in
was changed. Before BernTop!, job seekers had a vague catalogue of potential
occupations to choose from. Over BernTop!, this catalogue was trimmed and job
seekers were asked to only fill in occupations they saw as fitting and realistic to
achieve.

• The time frame for the policy changewas fromAugust to December 2012. During
this time, the PES offices trained their caseworkers to adapt the new policy.

3.3.1 Effects of the Policy Change in the Data

The reform BernTop! affected both ongoing and incoming unemployment spells. As
a result, job seekers entering in 2013 were fully treated and job seekers entering
in the previous months were partially treated. We therefore expect the change in
requirements and vacancy referrals to become gradually visible. Panel (a) of Figure
3.1 is in line with this notion. During the years 2010 and 2011, the average require-
ment amounted to about 9 applications per month in Bern. Over the course of 2012,
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Figure 3.1. Required and Reported Applications
This figure shows the evolution of average required and reported applications in Bern and the other cantons.
The x-axis denotes the month of registration for unemployment. As not all cantons report requirements in
the data, the figure only includes Bern, Tessin, Fribourg and Solothurn. Note that BernTop! affected both
ongoing and incoming spells, explaining the decrease in applications for spells registered in 2012.

this number fell down to about 6.5 applications per month for job seekers registered
in 2013 or later. Panel (b) reveals that the drop in average application requirements
translated to a comparable drop in average reported applications. Over the same
time period, requirements and reported applications stayed roughly constant in the
other cantons. Appendix Figure 3.B.1 additionally shows how the distribution of
requirement and provided applications changed after the reform.
Figure 3.2a plots the share of unemployment spells that received at least one

vacancy referral for Bern and the remaining cantons by month of registration. While
this share stayed constant in the remaining cantons, it dropped from about 50%
down to about 5% of spells over the course of the reform implementation (again,
note that also spells registered prior to BernTop! are affected).
Finally, Figure 3.2b shows that the number of different occupations in which

a job seeker states to search in decreased with the introduction of BernTop!. As a
result, the self-reported occupational broadness of search also decreased, as shown
in Appendix Figure 3.B.3.
In sum, we can see that as an immediate result of the reform, job search intensity

decreased, vacancy referrals were stopped and job seekers started searching in fewer,
more similar occupations.

3.4 Empirical Analysis

We aim at providing a comprehensive evaluation of the reform on the outcomes of
unemployed job seekers. We consider two main aspects: (1) the effect on the dura-
tion of unemployment spells; and (2) the effect on post-unemployment earnings.
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Figure 3.2. Measures of the Policy Change
Panel 3.2a shows the share of unemployment spells that received at least one referral. Panel 3.2b shows
the average number of occupations job seekers declared to search in during their first meeting with a case-
worker. Note that BernTop! affected both ongoing and incoming spells, explaining the decrease in referrals
for spells registered in 2012.

3.4.1 Empirical Framework

We estimate the effect of the policy change on labor market outcomes using a
difference-in-differences framework. The control group consists of all unemploy-
ment spells in Switzerland starting between January 2009 and December 2015
that were not located in Bern. We estimate the following dynamic difference-in-
differences specification:

Yi =
2015
∑

s=2009

γBern
s I(y=s & k=Bern) + δI(k=Bern) + τt + X0

iβ + εi (3.1)

Yi describes a given labor market outcome of job seeker i. Indicators I(y=s & k=Bern)

equal one when a spell started in year s in the canton of Bern. As the reform’s roll-out
started in 2012, we use the year 2011 as the omitted baseline period. The indica-
tor I(k=Bern) equals one for all spells started in the canton of Bern and controls for
time-constant differences between Bern and the other cantons. τt includes calen-
dar month fixed effects, which control for aggregate time shocks in Switzerland.
Controls for job seeker covariates are included in xi (see summary statistics in Table
3.C.1 in Appendix 3.C). The difference-in-differences coefficients γBern

s measure how
outcomes in Bern changed compared to 2011, relative to the control group. Their
causal interpretation for post-reform years relies on the key assumption that out-
comes in Bern would on average have evolved in parallel to those in the other Swiss
cantons. The estimates of γBern

s for s=2009 and s=2010 inform about the relevance
of this assumption during the pre-reform period.
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Figure 3.3. Effect on Exit from Unemployment and Unemployment Duration
Estimated coefficients of a dynamic Diff-in-Diff framework (equation (3.1)). In panel (a), the outcome is the
probability to exit unemployment within 12 months after entry. In panel (b), the outcome is the duration
of unemployment (top-coded at 520 days). The treatment group includes unemployment spells registered
in Bern, the control group includes unemployment spells registered in the rest of Switzerland. Regressions
include controls for job seeker characteristics. The dashed lines denote 95% confidence intervals. Standard
errors are clustered at the PES level (N=150).

We cluster standard errors at the level of the Public Employment Service (PES)
office, which is the level at which requirement and referral policies are implemented.

3.4.2 Effect on Average Duration of Unemployment

Figure 3.3 shows the estimates of γ̂Bern
s . The baseline period is the pre-reform year

2011. Panel (a) reports effects on the probability to exit unemployment within 12
months after entry and panel (b) reports effects on the average duration of unem-
ployment (top-coded at 520 days). Results show that the overall effect of the policy
change on unemployment exit is negative. Among partially treated spells that started
in 2012, the probability to exit within 12 months decreases by roughly two percent-
age points. The effect amounts to about four percentage points for spells starting in
2013 or later, after the reform was fully implemented. Accordingly, the duration of
unemployment prolongs by about ten days on average for job seekers registered in
2012 and by about 12-18 days for job seekers registered thereafter.
Table 3.1 shows the corresponding pooled difference-in-differences estimates,

excluding spells in 2012, whichwere partially treated. On average, the policy change
prolonged the duration of unemployment by about 12.2 (columns 1, without con-
trols) to 14.5 days (column 2, with controls). Compared to the pre-reform mean in
Bern, this corresponds to an increase by 8%. As shown by columns (3) to (4), the
effect seems to operate mostly during the first year of unemployment, although it re-
mains negative and significant even when considering a time window of 18 months.
Appendix Table 3.E.1 shows that the results are robust to various levels of clustering
and fixed effects as well as different specifications and the inclusion of unemploy-
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Table 3.1. Effect on Unemployment Duration and Exit: Pooled Diff-in-Diff Estimates

UE Duration P(Exit, 6 mon.) P(Exit, 12 mon.) P(Exit, 18 mon.)

(1) (2) (3) (4) (5)

DiD 12.231∗∗∗ 14.472∗∗∗ -0.033∗∗∗ -0.038∗∗∗ -0.027∗∗∗

(4.679) (3.728) (0.010) (0.009) (0.009)

Controls No Yes Yes Yes Yes

Outcome Mean 266.27 266.27 0.45 0.66 0.80
R

2 0.026 0.114 0.093 0.086 0.094
N 348’448 348’448 348’448 348’448 348’448

This table reports estimates from a pooled version of the Difference-in-Differences framework defined by
equation (3.1), excluding job seekers who registered in the year 2012. The treatment group includes unem-
ployment spells registered in Bern, the control group includes unemployment spells registered in the rest of
Switzerland. In columns (1) and (2), the outcome is the average unemployment duration in days (top-coded
at 520 days). In columns (3) to (6), outcomes are the probability to exit unemployment after 6, 12, or 18
months, respectively. Summary statistics on control variables are reported in Appendix 3.C. Standard errors
are clustered at the PES level (N=150). *** p < 0.01, ** p < 0.05, * p < 0.1

ment spells starting in 2012. Anticipating the possibility of search externalities on
job seekers registered outside of Bern, a further robustness check excludes from the
control group job seekers in municipalities within less than 40 minutes commuting
time to Bern. We observe only a small decrease in the results. Finally, Appendix Table
3.G.1 shows the effects on different sub-groups of job seekers. We observe particu-
larly strong effects on the average unemployment duration of male job seekers, job
seekers in Blue Collar occupations, low-skilled job seekers and job seekers without
a Swiss nationality.

3.4.3 Role of Individual Effort and Labor Market Tightness

So far, the estimates have shown how the reform affected the average unemployment
duration of job seekers in Bern. The size of this overall effect is likely determined
twomain forces: a decrease in individual-level effort provision and a change in labor
market tightness due to the fact that job seekers in Bern collectively decrease their
effort. In the following, we provide heterogeneity analyses that inform about the
importance of these two counteracting forces.
To fix ideas, Appendix 3.A presents a simple conceptual framework regarding

the reform’s expected effect, based on Zweimüller (2018). The framework illustrates
that the overall effect of the policy change can be decomposed into a Behavioral Effect
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due to changed individual-level search effort and a Tightness Effect due to changing
labor market conditions:3

epostf(θpost) − epref(θpre)
︸ ︷︷ ︸

Overall Effect

= [epost − epre]f(θpre)
︸ ︷︷ ︸

Behavioral Effect

+ epost[f(θpost) − f(θpre)]
︸ ︷︷ ︸

Tightness Effect

(3.2)

In this expression, e denotes a job seeker’s effort and f(θ) its return, which
depends on labor market tightness θ . As θ describes the ratio of vacancies over
total search effort in the labor market, it is also affected by the policy change.
The behavioral effect denotes the difference in job finding rates that is solely

attributable to the change in search effort at the individual level, keeping labor mar-
ket conditions constant. The tightness effect, in turn, denotes the difference in the
(potential) job finding rates of job seekers in post-reform versus pre-reform labor
markets, keeping individual search effort constant. That is, the tightness effect de-
notes the difference in the job finding rate that is solely attributable to the change
in labor market conditions.
Based on the simple framework, we now investigate heterogeneity in the reform

effect along three dimensions: (1) individual-level effort change; (2) pre-reform
labor market tightness; and (3) competition from untreated job seekers.

Individual-level effort change. We first analyze how the treatment effect varies
with respect to the expected change in individual search effort. As a proxy for the
expected effort change, we use predicted application requirement levels. Intuitively,
if job seeker characteristics predict a high level of job search requirements in the
absence of a policy change, then these job seekers would have been more restricted
in their job search without the policy change. We thus regress the average number of
application requirements per month on a vector of job seeker characteristics (same
as xi in equation (3.1)), using only the pre-reform data of job seekers in Bern. Us-
ing the estimates from this regression, we predict the individual average number of
monthly application requirements that a job seeker would have gotten had she regis-
tered in Bern before the policy change. In Appendix 3.D, we show how predicted and
actual requirements correlate with several control variables and with each other.
Based on the predicted individual average number of monthly application require-
ments, we conduct a median split. Figure 3.4 plots the actual individual average
number of monthly application requirements for job seekers for whom we predicted
a high level of application requirements and for those for whom we predicted a low
level of application requirements. The drop in average required applications is larger
for job seekers for whomwe predict a high level of application requirements without

3. Note that we use this decomposition only to describe the different channels affecting the
reform’s effect. The variation in our data does not allow to separately estimate the behavioral effect
and the tightness effect.
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Figure 3.4. Application Requirements for High- vs Low-predicted Requirement Spells by Month
of Registration into Unemployment
This figure displays how actual application requirements developed in Bern and shows the results from
a median split based on the number of predicted monthly application requirements. We plot the average
number of required applications per spell per month in Bern separately for UE-spell for which we predicted
a high level of application requirements (red) and for those for which we predicted a low level of application
requirements (blue), based on the pre-BernTop! data.

the policy change. That is, the job search effort for this group experiences a larger
drop due to the reform.
Column (1) of Table 3.2 reports the results from a pooled Difference-in-

Differences regression for individuals with high versus low predicted requirement
levels (median split). The results show that the reform’s effects are indeed about
twice as strong for job seekers with a high versus low predicted pre-reform job
search requirement level, supporting the idea that the size of the individual-level
effort change is decisive for the reform’s effect.

Pre-reform labor market tightness. As a second insight from Section 3.A, we
expect the overall reform effect to increase with pre-reform local labor market
tightness. Intuitively, effort changes matter more if there are more vacancies per
job seeker available. To assess the relevance of this conjecture, we interact the
Difference-in-Differences term with a median split on the pre-reform labor market
tightness at the municipality level. Despite a lack of statistical significance, Column
(1) of Table 3.2 shows suggestive evidence that the reform had a stronger effect in
municipalities with a high tightness, i.e., where the ratio of vacancies over unem-
ployed was more favorable from the job seekers’ perspective.
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Table 3.2. Effect on Unemployment Duration: Heterogeneity

UE Duration

(1) (2) (3)

DiD 9.785∗∗ 11.005∗∗ 12.567∗∗∗

(4.016) (4.334) (3.473)

DiD x (High treatment intensity) 9.462∗

(5.231)

DiD x (High LM tighness) 6.524
(4.799)

DiD x (Close to border) 8.467∗∗

(4.043)

Controls Yes Yes Yes

Outcome Mean 266.27 266.27 266.27
R

2 0.114 0.116 0.114
N 348’448 348’431 348’431

The table reports estimates from a pooled version of the Difference-in-Differences framework defined by
equation (3.1), excluding job seekers who registered in the year 2012. The outcome is the average unem-
ployment duration in days (top-coded at 520 days). In column (1), “High treatment intensity" equals one if
a job seeker’s predicted requirement without BernTop! is at or above the median. In column (2), “High LM
tightness" equals one if the vacancy-to-job seeker ratio in a job seeker’s local labor market region is at or
above the median. In column (3), “Close to border" equals one if the job seeker’s municipality has a travel
time of 15 minutes or less to the cantonal border. Standard errors are clustered at the PES level (N=150).
*** p < 0.01, ** p < 0.05, * p < 0.1.

Change in labor market tightness. The tightness effect sketched out in Section
3.A arises because job seekers in Bern collectively decrease their job search effort,
positively affecting the probability of the individual job seeker to find a job and thus
counteracting the behavioral effect. However, the smaller the share of job seekers
in a labor market who decrease search effort, the smaller should the impact of this
channel be.
As all job seekers who live in Bern are treated by the reform, an interesting source
of variation in the share of treated job seekers stems from job seekers from other
cantons searching for a job in Bern. We expect the tightness effect to matter more
in labor markets with less competition from job seekers outside of Bern, who do not
decrease their search. Intuitively, consider a closed labor market with no competition
from job seekers from outside of the canton. Then a policy change as BernTop!would
affect all job seekers in this closed labor market, who would collectively reduce their
job search effort following the introduction of the policy change.
In contrast, consider Bern to be an open labor market where job seekers living in
Bern compete with job seekers from neighboring cantons due to the possibility of
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commuting.⁴ In such an open labor market, we expect the tightness effect to be
smaller, as not all job seekers are treated by the reform.
While we cannot estimate the reform’s effect under the scenario of a closed

labor market, we can make use of the variation in the local competition from job
seekers outside Bern. The simplest source of variation is the commuting time from
a job seeker’s home to the border of Bern and to one of the adjacent cantons. The
calculation of commuting times is explained in Appendix 3.F. In the center of Bern,
where commuting times to other cantons are longer, the share of job seekers from
other cantons who are competing for the same jobs is lower. Indeed, as Figure 3.B.4
in the appendix shows, travel time and the share of commuters from the adjacent
cantons are significantly negatively correlated.
To exploit this variation, we perform a split of the commuting time to the border

of the canton. As before, we interact this split with the Difference-in-Differences co-
efficient. Column (3) of Table 3.2 shows that the reform had an about 30% stronger
effect on job seekers in municipalities with a travel time of 15 minutes or less to the
border. This result supports the idea that the average effect of policies that target
search effort depend on the relative importance of tightness effects.

3.4.4 Externalities on Job Seekers in Adjacent Cantons

Given the finding that job seekers in Bern are more affected if they live closer to the
border, it is natural to ask whether job seekers at the other side of the border were
positively affected by the policy change. Intuitively, if job seekers in Bern decrease
their effort, this could have positive externalities on the job finding prospects of job
seekers outside Bern, who partially compete with job seekers from Bern. To test for
potential externalities, we estimate the following regression on the population of
job seekers outside Bern:

Yi =
2015
∑

s=2009

γclose
s I(y=s & close=1) + πm + λy×c + σt + X0

iκ + ϵi (3.3)

The indicators I(y=s & close=1) equal one if a job seeker enters unemployment in
year s and lives in a municipality with low commuting time to Bern.⁵ The calculation
of commuting times is explained in Appendix 3.F. πm includes municipality fixed
effects and λy×c are canton-year fixed effects. As in equation (3.1), σt are calendar

4. The share of workers living in Bern and commuting to a different canton is 10%. The share
of commuters from other cantons working in Bern is 14%. Source: https://www.bve.be.ch/bve/de/
index/mobilitaet/mobilitaet_verkehr/mobilitaet/grundlagen_mobilitaet/Pendlerstatistik.html, last
visited: Jan 17, 2021

5. Figure 3.B.5 shows that commuting time and the share of job seekers in a municipality, who
commute to the canton of Bern, are significantly negatively correlated.

https://www.bve.be.ch/bve/de/index/mobilitaet/mobilitaet_verkehr/mobilitaet/grundlagen_mobilitaet/Pendlerstatistik.html
https://www.bve.be.ch/bve/de/index/mobilitaet/mobilitaet_verkehr/mobilitaet/grundlagen_mobilitaet/Pendlerstatistik.html
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month fixed effects and Xi are job seeker covariates. In this specification, we cluster
standard errors at the level of the municipality, which defines the travel time to Bern.
The framework compares how the outcomes of job seekers close to the border

evolve over time, relative to those of job seekers in the same canton, but further
away from the border. This also means that cantons that are non-adjacent to Bern
do not serve as a control group, but only identify the effect of covariates and
aggregate time factors.

Figure 3.5 plots the estimates of γclose
s , where “close" is defined by municipalities

with a travel time of 30 minutes or less to the border of Bern and has the same lan-
guage as the bordering municipality in Bern.⁶ Although imprecisely estimated, the
coefficients point towards a slight decrease in the average unemployment duration
of job seekers in closeby municipalities. This is confirmed by the estimates from a
pooled version of equation (3.3), as reported in Table 3.3.
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Figure 3.5. Effect on UE Duration of Job Seekers in Adjacent Municipalities (≤ 30 minutes travel
time to Bern)
Estimated coefficients of a dynamic Diff-in-Diff framework (equation (3.3)). The outcome is the duration
of unemployment (top-coded at 520 days). Spells registered in Bern are excluded. The treatment group
includes spells located in a municipality that is no more than 30 minutes (by car) away from the border of the
canton of Bern and coincides with the language spoken in the corresponding part of Bern. The corresponding
municipalities are displayed in Figure 3.B.2b. The dashed lines denote 95% confidence intervals. Standard
errors are clustered at the municipality level. *** p < 0.01, ** p < 0.05, * p < 0.1.

3.4.5 Effect on Average Earnings

So far, the results have shown that the increased autonomy in job search prolongued
the average duration of unemployment spells. For a comprehensive evaluation of
the reform and its monetary trade-offs, it is key to also understand how job match

6. Most often, this requires a municipality to be German speaking. An exception are muncipali-
ties in the Cantons Jura and Neuchatel, which border the French-speaking part of Bern. In Appendix
3.F, we describe in detail how the commuting times from each municipality to the border of Bern were
calculated.
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Table 3.3. Effect on Unemployment Duration: Adjacent Cantons

≥20 Mins ≥30 Mins ≥40 Mins

(1) (2) (3)

DiD 0.727 -7.076∗ -6.727∗∗

(4.332) (3.626) (3.255)

Controls Yes Yes Yes

Outcome Mean 268.21 268.21 268.21
R

2 0.085 0.085 0.085
N 317’120 317’120 317’120

Notes: This table shows the estimated coefficients based on a pooled Diff-in-Diff regression. For this specifi-
cation, we excluded observations from the canton of Bern and instead only used unemployment spells from
the remaining cantons. As before, the outcome for this specification is unemployment duration (top-coded
at 520 days). To produce the displayed coefficients, we generate a DiD-term based on a dummy variable that
takes on the value 1 if an unemployment spell is located in a municipality that is no more than 20, 30 or
40 minutes (by car) away from the border of the canton of Bern and coincides with the language spoken in
the corresponding part of Bern. The corresponding municipalities are displayed in Figure 3.B.2b. Standard
errors are clustered at the municipality-level.
*** p < 0.01, ** p < 0.05, * p < 0.1.

quality was affected: did job seekers use their autonomy to successfully direct search
towards longer-lasting, higher-paying jobs?
To shed light on this question, we study how post-unemployment earnings were

affected by the reform. The effect of increased search autonomy on re-employment
earnings is not easy to predict, even if the effect on the duration of unemployment is
known. In amodel with directed search (e.g. Nekoei andWeber, 2017), an increased
duration of unemployment may reflect job seekers becoming more selective about
the jobs they apply to. This would on average result in higher post-unemployment
earnings. On the other hand, a longer unemployment duration has been shown to
decrease the wage offers. With both effects working in opposite directions, the net
effect is an empirical question.
We estimate the reform’s effect on post-unemployment earnings by using the

same dynamic difference-in-differences model as outlined in equation (3.1). Instead
of unemployment duration, we now use log re-employment earnings from social
security records as the outcome. Figure 3.6 presents the results. We estimate an
increase in post-unemployment earnings between two and four log points on aver-
age –pointing towards the dominance of the first mechanism. It appears that search
autonomy can yield the benefit of allowing individuals to find better job matches.
Unfortunately, we have a limited observation window after the reform was imple-
mented and post-unemployment effects started to show. We thus cannot inform
about the persistence of these earnings effects. Extending the time window will be
an important part of ongoing and future work.
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Figure 3.6. Estimated Dynamic Effect on log Post-Unemployment Earnings
This figure displays the estimated coefficients based on the dynamic Diff-in-Diff regression (3.1). The out-
come is the log of post-unemployment monthly employment earnings. The dashed lines denote 95% con-
fidence intervals. Standard errors are clustered at the PES level.

Table 3.4 presents the results from pooled Difference-in-Differences regressions
corresponding to the results in Figure 3.6. The pooled regression delivers an esti-
mate of the earning effect of 2.4 log points. Additionally, we estimate a decrease
in the probability to incur an earnings loss compared to the pre-unemployment
earnings of 2.6 percentage points. Finally, we take a look at post-unemployment
job stability: We estimate the effect of the reform on the probability to register as
unemployed again after less than 6 months. We find suggestive evidence that post-
unemployment job stability increased following the reform, though the estimate
is statistically insignificant. Note, however, that the post-unemployment analysis of
job stability is subject to a limited observation window, that extends until late 2015.
Thus, post-unemployment job stability can only be assessed for job seekers enter-
ing unemployment shortly after the reform, which significantly decreases the size
of the treatment group. Table 3.E.2 in the appendix shows that the estimated ef-
fect on post-unemployment earnings (and its statistical significance) is robust with
respect to bootstrapped standard errors, clustering of the standard errors at the can-
ton level, including spells that entered unemployment in 2012, including canton- or
RAV-fixed effects and restricting the control group to zipcode areas with more than
40 minutes commuting time to the canton of Bern.
Table 3.G.2 presents results for several job seeker sub groups. We find that the pos-
itive earnings effect is mostly driven by female job seekers, job seekers in White
Collar occupations and the Service Sector and job seekers of Swiss Nationality. In
particular, the earnings effect appears to be especially strong for those groups of job
seekers for whom we estimated a weak average effect on unemployment duration.
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Table 3.4. Estimated Pooled Effect on Post-Unemployment Outcomes

Log Earnings P(Earnings Loss) P(Empl. < 6 Mon.)

(1) (2) (3) (4)

DiD 0.027∗∗∗ 0.024∗∗∗ -0.026∗∗ -0.006
(0.010) (0.009) (0.011) (0.008)

Controls for Prev. Earnings Yes Yes Yes Yes

Controls No Yes Yes Yes

Outcome Mean 8.47 8.47 0.54 0.16
R

2 0.372 0.396 0.132 0.021
N 187’490 187’490 187’490 213’358

Notes: This table reports estimates from a pooled version of the Difference-in-Differences framework de-
fined by equation (3.1), excluding job seekers who registered in the year 2012. Additionally, we restrict the
sample to job seekers who entered unemployment before July 2014 and found a job in less than 520 days.
The outcome in columns (1) and (2) is the log of post-unemployment monthly employment earnings. In
column (3), the outcome is the probability to enter a job with lower monthly earnings than the average
monthly earnings during the 12 months prior to unemployment. In column (4), the outcome is the probabil-
ity to exit employment after less than 6 months. That is, in this column, we analyze the effect on job stability.
All specifications control for previous earnings. Standard errors are clustered at the PES level (N=150).
*** p < 0.01, ** p < 0.05, * p < 0.1.

3.5 Monetary Trade-Offs

3.5.1 Fiscal Trade-Off

When estimating the average effect of a policy change on unemployment dura-
tion and post-unemployment earnings, a natural follow-up analysis concerns the
fiscal trade-off inherent to the policy change. A meaningful analysis of the fiscal
gains or losses encompasses multiple components we need to consider: The effect
on unemployment, the effect on post-unemployment earnings, the effect on post-
unemployment job stability and the persistence of all these effects. Since our obser-
vation window covers unemployment spells only up to late 2015, any analysis of
post-unemployment job stability or the persistence of the effect of the policy change
on earnings would have limited informative value. However, our estimates regarding
unemployment duration and post-unemployment earnings allow for a back-of-the-
envelope calculation and provide a starting point for a fiscal cost-benefit analysis.
Note that for this calculation, we ignore any externalities in the remaining cantons
in Switzerland and instead only focus on the canton of Bern. The fiscal costs the av-
erage job seeker generates from staying unemployed for 14.5 additional days are⁷

7. Note that we use the data on pre-unemployment earnings and replacement rate to retrieve
the average daily wage and replacement rate in our sample.
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14.5
︸︷︷︸

Effect on avg. UE duration
× 165 CHF
︸ ︷︷ ︸

avg. daily wage
× (0.75

︸ ︷︷ ︸

avg. benefit rate

+ 0.2
︸︷︷︸

avg. income tax
(1 − 0.75))

= 10914 CHF

That is, a job seeker staying unemployed 14.5 days longer (earning 165 CHF
per day on average if she were not unemployed) results in forgone tax revenues
of 14.5× 165× 0.2= 495 CHF. Through unemployment benefits the fiscal costs in-
crease by 15× 165× 0.75= 1856.25 CHF, based on an average replacement rate
of 0.75. On the other hand, job seekers in Switzerland pay taxes on unemployment
benefits, resulting in tax revenues of 15× 165× 0.75× 0.2= 371.25 CHF.
In contrast, the fiscal gain from job seekers finding higher-paying jobs can be quan-
tified using the effect on job stability, the effect on post-unemployment earnings
and its persistence. We estimate that job seekers experience an increase in post-
unemployment earnings of 2.4 log points:

0.024
︸ ︷︷ ︸

Effect on avg. wage
× 165 CHF
︸ ︷︷ ︸

avg. daily wage
× 0.2

︸︷︷︸

avg. income tax
= 0.792 CHF

That is, the additional daily fiscal gains from income taxation through increased
income amount to 0.79 CHF per day on average. As our data does not allow for
a meaningful analysis regarding job stability or the long-term persistence of the
wage effect, we cannot include them in this calculation. Instead, we assume that the
estimated effects persist indefinitely and exclude the notion of job stability from our
analysis. Instead of quantifying the effect of the reform on job stability, we calculate
how long it would take the fiscal gains of the reform to break even with its fiscal
costs. With average fiscal costs of 1’914 CHF per spell and average daily fiscal gains
of 0.792 CHF, we calculate that the earnings effect would (in the absence of an effect
on job stability) cancel out the fiscal costs after 10914/0.792= 20417 days (≈ 6.6
years).

3.5.2 Worker Trade-Off

We now complement the fiscal trade-off with the monetary trade-offs faced by in-
dividual workers. While workers also incur forgone income from longer unemploy-
ment, the benefits from finding a better paying job carry a relatively higher weight
compared to the forgone income than in the fiscal trade-off. A job seeker’s costs
from remaining 14.5 more days in unemployment can again be calculated from the
estimation results in Table 3.1:

165 CHF × [(1 − 0.2)(1 − 0.75)] × 14.5 = 478.5 CHF
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That is, the average job seeker incurs forgone income of 165 CHF× (1− 0.2)×
14.5= 10914 CHF, but gets compensated with a 75 percent replacement rate:
10914 CHF× (1− 0.75)= 478.5 CHF. After leaving unemployment, job seekers ex-
perience income gains of 2.4 log points on average. This results in daily gains of:

165 CHF × 0.024 × (1 − 0.2
︸︷︷︸

avg. income tax
) = 3.168 CHF

As before, we can calculate how long it would take a job seekers income gains
to cancel out the forgone income from staying unemployed for 14.5 more days on
average. These are 478.5 CHFs/3.168 CHFs per day ≈ 151 days. This indicates that
the income gains amortize the forgone income after 5 months.

3.6 Conclusion

We analyze the effects of increasing the job search autonomy of unemployed work-
ers. We exploit a policy change in the Swiss canton Bern, during which application
requirements were drastically reduced and the use of official job referrals was almost
completely abolished. We find that, on average, unemployment duration increased
by about 8%. The effect is larger among job seekers whose effort is predicted to
reduce more strongly due to the reform. Moreover, we find that the changes in local
labor market tightness due to the fact that job seekers collectively decrease their
effort mitigate the effect of individual effort changes.
Finally, we present evidence on the reform’s effect on post-unemployment earn-

ings. We estimate that post-unemployment earnings increased by 2 to 4% on aver-
age. Apparently, the decreased pressure through increased search autonomy allowed
job seekers to find slightly better matching and better paying jobs.
In sum, our estimates indicate that increasing the autonomy and self-

responsibility of job seekers carries the risk of prolonging unemployment spells, but
these adverse effects can, from a fiscal point-of-view, be eventually compensated by
an increase in post-unemployment earnings. Furthermore, results suggest that the
success of policies which lead to collective changes in search effort depends on the
local scope for tightness effects and search externalities. In the context of this study,
the behavioral effect of a decrease in individual effort was apparently the dominat-
ing force. It is open whether this also holds in other labor markets with less favorable
labor demand conditions.
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Appendix 3.A Conceptual Framework

Setup. Let post denote the labor market after the reform and pre denote the labor
market before the reform. We start by assuming the canton Bern to be a closed labor
market, such that all job seekers in the post labor market are treated. Let V denote
the number of vacancies and E the aggregate amount of search effort provided by job
seekers in Bern. Thereby, θ = V/E ∈ {θpost,θpre} describes labor market tightness in
the post and pre labor market, respectively. The individual search effort of post and
pre job seekers is defined by epost and epre. Assuming that every job offer is accepted,
the job finding probability e× f(θ) depends on individual job search effort e and a
function f that is increasing in labor market tightness θ , with f 00(·)< 0. If the reform
induces job seekers to exert less (but still positive) search effort, we have epost < epre.
The overall effect of the policy change can be decomposed into a Behavioral Effect

due to changed individual-level search effort and a Tightness Effect due to changing
labor market conditions.

epostf(θpost) − epref(θpre)
︸ ︷︷ ︸

Overall Effect

= [epost − epre]f(θpre)
︸ ︷︷ ︸

Behavioral Effect

+ epost[f(θpost) − f(θpre)]
︸ ︷︷ ︸

Tightness Effect

(3.A.1)

The behavioral effect denotes the difference in job finding rates that is solely
attributable to the change in search effort at the individual level, keeping labor
market conditions constant. The tightness effect, in turn, denotes the difference
in the (potential) job finding rates of job seekers in post-reform versus pre-reform
labor markets, keeping individual search effort constant. That is, the tightness
effect denotes the difference in the job finding rate that is solely attributable to the
change in labor market conditions.

The relationship between the overall effect, the behavioral effect and the tight-
ness effect sketched out in equation (3.A.1) is illustrated in Figure 3.A.1. We plot
the job finding rate as a function of the job search effort e and the labor market
tightness θ . In tighter labor markets (high θ), job seekers face less competition
for the existing vacancies, which increases the individual job finding rate. Hence,
the job finding rate increases in θ . Secondly, the job finding rate increases in the
exerted search effort. Thus, when job seekers decrease search effort following the
introduction of BernTop! (epost < epre), the individual job finding rate decreases for
every potential labor market tightness, as depicted by the blue graph staying below
the red graph for all values of θ . Finally, we assume that the returns of labor market
tightness to the individual job finding rate diminish, resulting in a concave function.
The (negative) behavioral effect of the policy reform denotes the difference in

the job finding rate in the pre-reform labor market between treated and untreated
job seekers, that is, the effect of decreasing job search following the introduction of
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Figure 3.A.1. Decomposition of Reform Effect
We display the graphical decomposition of the overall effect of a policy change that decreased job search
effort for all job seekers in a closed economy. The (negative) behavioral effect denotes the decrease in the
job finding rate that is purely attributable to the decrease in job search effort from ePRE to ePOST , evaluated at
the pre-reform market tightness θPRE. The (positive) tightness effect denotes the increase in the job finding
rate that is purely attributable to changing the labor market tightness from θPRE to θPOST , evaluated at the
post-reform search effort ePOST .

BernTop!. The tightness effect denotes the difference between the job finding rate of
a post-reform job seeker in a post-reform and a pre-reform labor market, that is, the
effect of changing labor market conditions, while keeping individual search effort
constant. The overall effect is the sum of the two effects, which work in opposite
directions.

Insights for the Empirical Analysis. This simple decomposition yields insights
regarding the expected effect of the policy change under different labor market
conditions.
First, it is straight-forward to expect that the overall effect on job finding will be

more pronounced for job seekers who reduced their search effort more than others
due to the reform, as we expect a stronger behavioral effect for these job seekers.
Second, we expect the policy change to have a weaker effect in slack labor mar-

kets, where many job seekers compete for few vacancies, than in tight labor markets
with an abundance of vacancies. Intuitively, reducing search effort in a slack labor
market with few vacancies per job seeker does not decrease the job finding rate as
much as in a tight labor market. This scenario is similar to a game of musical chairs,
in which many people try to sit on far too few chairs. If one person exerts less effort
to sit on one of the free chairs, the probability to get the free chair, which was al-
ready low to begin with, did not decrease much. This scenario is illustrated in Figure
3.A.2, panel (a). The behavioral effect of reducing job search effort from epre to epost

on the job finding rate is smaller in slack labor markets than in tight labor markets.
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The derivative of the expected overall effect with respect to pre-reform labor market
tightness θpre is derived in Section 3.A.1.
Third, the framework implies that the overall effect decreases with the change

in local labor market tightness due to the reform.⁸ For illustration, consider a labor
market in which only some job seekers are treated by the reform. The lower the
share of untreated job seekers, the higher the share of job seekers who decrease
search effort. Hence, we expect the tightness effect to play a relatively larger role in
labor markets with a high share of treated job seekers. In these markets, we expect
the average effect of the policy change on treated job seekers to be lower. This is
illustrated in Figure 3.A.2, panel (b). If the difference in the labor market tightness
between treated and untreated labor markets is large, the (positive) tightness effect
negates the (negative) behavioral effect.

8. This result is derived in Appendix 3.A.1 under the assumption that the change in labor market
tightness θpost − θpre consists only of variation in pre- or post-reform labor market tightness, keeping
post- and pre-reform labor market tightness constant, respectively.
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(a) Micro Effect in Tight vs. Slack Labor Markets
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(b) The Positive Externality Offsets the Negative Micro Effect

Figure 3.A.2. Effect of Labor Market Conditions
This figure show the expected effect of the reform in different labor market conditions. Panel (a) displays the
expected behavioral effect in tight vs. slack labor markets, that is, in competitive vs. less competitive labor
markets (from a job seeker’s perspective). Panel (b) shows how the overall estimated effect can change,
depending on the change in labor market conditions that comes along with the policy change.

3.A.1 Derivations

We assume that f 0 > 0, f 00 < 0.
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OE
︸︷︷︸

Overall Effect
= [epost − epre]f(θpre) + epost[f(θpost) − f(θpre)]

⇒
∂OE
∂ θpre

= [epost − epre]f
0(θpre) + epost

�

f 0(θpost)
∂ θpost

∂ θpre
− f 0(θpre)

�

We will assume that ∂ θpost

∂ θpre
= 1 and thus

∂OE
∂ θpre

= [epost − epre]
︸ ︷︷ ︸

<0

f 0(θpre)
︸ ︷︷ ︸

>0

+epost



f 0(θpost) − f 0(θpre)
︸ ︷︷ ︸

<0





︸ ︷︷ ︸

<0

Note that the TE is negative, so a negative derivative indicates in increase in
magnitude of the TE. But also important:

∂OE
∂∆θ

= [epost − epre]
︸ ︷︷ ︸

<0

f 0(θpre)
︸ ︷︷ ︸

>0

∂ θpre

∂∆θ
+ epost



f 0(θpost)
︸ ︷︷ ︸

>0

∂ θpost

∂∆θ
− f 0(θpre)
︸ ︷︷ ︸

>0

∂ θpre

∂∆θ





(3.A.2)

With θpost − θpre > 0, we will/should assume that ∂ θpost

∂∆θ ≥ 0 and ∂ θpre

∂∆θ ≤ 0 and thus

∂OE
∂∆θ

= [epost − epre]
︸ ︷︷ ︸

<0

f 0(θpre)
︸ ︷︷ ︸

>0

∂ θpre

∂∆θ
︸ ︷︷ ︸

≥0
︸ ︷︷ ︸

≤0

+epost






f 0(θpost)
︸ ︷︷ ︸

>0

∂ θpost

∂∆θ
︸ ︷︷ ︸

≥0

− f 0(θpre)
︸ ︷︷ ︸

>0

∂ θpre

∂∆θ
︸ ︷︷ ︸

≤0







︸ ︷︷ ︸

≥0

(3.A.3)

Finally, we can simplify the expression by assuming ∂ θpre

∂∆θ = 0 or ∂ θpost

∂∆θ = 0, re-
spectively, such that either

∂OE
∂∆θ

= epost f 0(θpost)
︸ ︷︷ ︸

>0

∂ θpost

∂∆θ
︸ ︷︷ ︸

≥0
︸ ︷︷ ︸

≥0

(3.A.4)

or
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∂OE
∂∆θ

= [epost − epre]
︸ ︷︷ ︸

<0

f 0(θpre)
︸ ︷︷ ︸

>0

∂ θpre

∂∆θ
︸ ︷︷ ︸

≤0
︸ ︷︷ ︸

≥0

+ epost






− f 0(θpre)
︸ ︷︷ ︸

>0

∂ θpre

∂∆θ
︸ ︷︷ ︸

≤0







︸ ︷︷ ︸

≥0

(3.A.5)
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Appendix 3.B Additional Figures

(a) Distribution of Required Search Effort in Bern (b) Distribution of Required Search Effort in the
Remaining Cantons

(c) Distribution of Reported Search Effort in Bern (d) Distribution of Reported Search Effort in the
Remaining Cantons

Figure 3.B.1. Distribution of Search Effort
This figure shows the distribution of required and reported search effort (applications) in Bern and the other
cantons with data on required and provided effort (Fribourg, Solothurn and Tessin), before and after the
reform was implemented.
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(a) Closeness to Border in Bern (b) Closeness to Border in the Adjacent Cantons

Figure 3.B.2. Closeness to Border
This figure shows the zipcode areas in our sample which were used for the distance analyses presented in
Section 3.4.4. In Figure 3.B.2a, we show the canton of Bern and mark the zipcode areas close to the border
of Bern. We split the zipcode areas by travel time to the next canton, according to Google Maps. We define
a zipcode area as “close” to the border if it takes less than 15 minutes to reach the border by car. In Figure
3.B.2b we mark the zipcode areas close to the canton of Bern. We define a zipcode area as “close” to the
canton of Bern, if it takes less than 30 minutes to reach the canton of Bern by car and if the language
region in the zipcode area coincides with the language region in the corresponding part in Bern. Using this
additional criterion, we make sure that these commuters indeed search in the same labor markets as the
commuters in Bern and are not restricted by language barriers. Our split defines the southern regions in
Bern as well as the regions south of Bern as “not close”. This is due to the “Bernese Alps”, a mountain range
in the south of Bern, which only leaves a handful of passes between the southern canton of Valais and Bern
and thus makes commuting between both cantons very time consuming.
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Figure 3.B.3. Broadness of Job Search
This figure displays the average broadness in the classified occupations job seekers declared to search
in. Occupational broadness is defined as the variation in the first two digits of the BN-2000 codes of the
occupations a job seeker states to search in. BernTop! also prescribed caseworkers not to push job seekers
towards searching in occupations too far outside their experience and competence. During the first meeting
with the caseworkers, job seekers fill in a form stating in which occupations they are searching for a job.
These occupations are then classified according to the BN-2000 nomenclature, which classifies occupations
using a 5-digit code. Each of the first three digits further specifies an occupation in a lexicographic fashion,
while the last two digits pin it down. For example, the occupation of a mason is classified by the code “41101”
as follows: “4” denotes “Occupations in Construction & Mining”, “4.1” denotes “Occupations in Construction”,
“4.1.1” denotes “Occupations in Core Construction” and “4.1.1.01” denotes “Masons”. Hence, the more similar
two occupations are, the more of the first digits of their BN-2000 codes coincide.
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Figure 3.B.4. Travel Time and Share of Outside Commuters
This figure shows a scatterplot of the commuting time to the border of Bern in minutes on the x-axis to
the share of commuters from other cantons for each municipality in Bern. For clarity reasons, we generated
bins of travel times. For the travel times, we used the same weighted distances based on the zipcode travel
times we used in the externality Section 3.4.4. The correlation coefficient between both variables is -0.258
(p-value=0.000).
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Figure 3.B.5. Travel Time and Share of Commuters to Bern
This figure shows a scatterplot of the commuting time for each municipality in the remaining cantons except
Bern to the border of Bern in minutes on the x-axis to the share of commuters from that municipality to
Bern. For clarity reasons, we generated bins of travel times. For the travel times, we used the same weighted
distances based on the zipcode travel times we used in the externality Section 3.4.4. The correlation coeffi-
cient between both variables is -0.426 (p-value=0.000).
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Appendix 3.C Summary Statistics

Table 3.C.1. Summary Statistics of Key Covariates

Mean Min Max Observations
Age 40.965 28 60 417’780
Age Squared 1757.216 784 3600 417’780
No other Person Affecteda 0.650 0 1 417’780
One Person Affecteda 0.158 0 1 417’780
One to Three Persons Affecteda 0.175 0 1 417’780
More than Three Persons Affecteda 0.017 0 1 417’780
German Language Proficiency Score 2.217 1 4 417’780
French Language Proficiency Score 2.666 1 4 417’780
Sexb 0.353 0 1 417’780
Low Educationc 0.285 0 1 417’780
Medium Educationc 0.392 0 1 417’780
High Educationc 0.323 0 1 417’780
Potential Benefits Duration 400 Days 0.163 0 1 417’780
Married 0.492 0 1 417’744
Single, Widowed or Divorced 0.508 0 1 417’780
Non-Swiss 0.486 0 1 417’780
Non-Permanent Resident 0.207 0 1 417’780
Employment in Last 24 Months prior to UEd 21.517 2 24 417’780
Employment in Last 30 Months prior to UEd 26.415 2 30 417’780
Log Average Wage over the last 24 Months 8.500 5 13 417’780
Log Average Wage over the last 30 Months 8.494 5 13 417’780
German language region 0.624 0 1 417’780
French language region 0.315 0 1 417’780
Italian language region 0.058 0 1 417’780
Rhaeto-Romanic language region 0.004 0 1 417’780
Occupation in Production 0.151 0 1 417’780
Occupation in Engineering 0.068 0 1 417’780
Occupation in Construction 0.132 0 1 417’780
Occupation in Sales 0.088 0 1 417’780
Occupation in Gastronomy/Tourism 0.212 0 1 417’780
Occupation in White Collar or Health 0.319 0 1 417’780

Notes: This table presents summary statistics for the covariates used in all previous specifications.
a: Number of persons affected = Household size - 1
b: 0: Male, 1: Female
c: Low Education: Max. Compulsory High School, Medium Education: Max. Vocational Training, High Education:
Max. College
d: Number of Months of Employment During the Last X Months prior to Unemployment
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Appendix 3.D Correlation Structures

Table 3.D.1. Correlation Structure Between Key Characteristics

Actual Monthly Predicted Monthly
Requirements Requirements

Actual Monthly Requirements 1.000
Predicted Monthly Requirements 0.396∗∗∗ 1.000
Age -0.065∗∗∗ -0.226∗∗∗

Native Language: German -0.214∗∗∗ -0.421∗∗∗

Native Language: French -0.033∗∗∗ 0.020∗∗∗

Nr. of Affected Persons 0.003 0.017∗∗∗

Sexa 0.036∗∗∗ 0.093∗∗∗

Low Educationb 0.102∗∗∗ 0.261∗∗∗

High Educationb -0.136∗∗∗ -0.432∗∗∗

Potential Benefit Durationc -0.059∗∗∗ -0.178∗∗∗

Single -0.028∗∗∗ -0.005
Married 0.037∗∗∗ 0.036∗∗∗

Widowed 0.006 0.007
Divorced -0.015∗∗∗ -0.047∗∗∗

Non-Swiss 0.133∗∗∗ 0.308∗∗∗

Employment in 6 Months before UEd 0.019∗∗∗ 0.054∗∗∗

Employment in 12 Months before UEd -0.062∗∗∗ -0.139∗∗∗

Employment in 24 Months before UEd -0.086∗∗∗ -0.214∗∗∗

Notes: This table shows unconditional correlations between job seeker/unemployment spell characteristics
and the predicted and actual number of application requirements per month set by the caseworkers. ***
p < 0.01, ** p < 0.05, * p < 0.1
a: 0: Male, 1: Female
b: Low Education: Max. Compulsory High School, Medium Education: Max. Vocational Training, High Educa-
tion: Max. College
c: In Days
d: In Months
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3.D.1 t-test by Categorical Variables

Table 3.D.2. Predicted and Actual Requirements

Predicted Requirements Actual Requirements
0 1 p-value 0 1 p-value

Occupationa 8.941 8.241 0.000 8.393 8.018 0.000
Marriedb 8.568 8.616 0.000 8.182 8.303 0.000
Educationc 9.260 7.574 0.000 8.620 7.785 0.000
Over 40 Years 8.838 8.333 0.000 8.405 8.050 0.000
≤ 1 Person Affected 8.595 8.589 0.026 8.213 8.261 0.045
Native Speaker 8.872 8.400 0.000 8.228 8.249 0.379
Nationalityd 8.311 8.888 0.000 7.920 8.588 0.000
Non-Permanent Resident 8.503 8.931 0.000 8.141 8.749 0.000

Notes: This table shows the average predicted- and average actual application requirements per month set
by the caseworkers for job seekers with different characteristics. The p-values are based on t-tests on the
equality of means.
a: 0: Blue Collar/Low Paid Service Sector, 1: White Collar
b 0: Single/Widowed/Divorced 1: Married
c 0: “High” education (Max. degree: College) 1: “Low” education (Max. degree: Compulsory high school)
d 0: Swiss, 1: Non-Swiss
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Table
3.E.1.Robustness

Checks
forthe

M
ain

Difference-in-Differences
Results

Pooled With Clustering on With With With >40 Mins
DiD Bootstrapped SEs Canton Level 2012 Canton FEs RAV FEs Traveltime

(1) (2) (3) (4) (5) (6) (7)

DiD 14.472∗∗∗ 14.472∗∗∗ 14.472∗∗∗ 14.601∗∗∗ 12.489∗∗∗ 10.661∗∗∗ 13.752∗∗∗

(3.728) (2.270) (3.498) (3.358) (3.675) (3.352) (3.828)

Controls Yes Yes Yes Yes Yes Yes Yes

Outcome Mean 266.27 266.27 266.27 265.98 266.27 266.27 263.67
R

2 0.114 0.114 0.114 0.113 0.142 0.153 0.115
N 348’448 348’448 348’448 417’780 348’448 348’448 300’508

Notes: This table shows the results from several pooled Difference-in-Differences regressions. The basis for the analyses
are the regressions shown in Table 3.1. We treat job seekers from Bern, who entered unemployment in 2012 or later in
Bern, as treated. Job seekers entering unemployment in 2012 or later in the remaining cantons are used as the control
group. We use the same set of covariates used in equation (3.1). In column (1), we show the estimated DiD-coefficients
from the basic pooled Diff-in-Diff analysis in Table 3.1. In column (2), we use bootstrapped standard errors (50 bootstrap
replications). In column (3), we cluster all standard errors at the canton level. In column (4), we include observations from
the year 2012, which we previously left out. In columns (5) and (6), we add canton- and RAV fixed effects (in addition to
controlling for the canton of Bern in the DiD-framework). In column (7), we only include observations from Bern and from
municipalities with a commuting time longer than 40 minutes.
*** p < 0.01, ** p < 0.05, * p < 0.1
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Table
3.E.2.Robustness

Checks
forthe

Difference-in-Differences
Earnings

Results

Pooled With Clustering on With With With >40 Mins
DiD Bootstrapped SEs Canton Level 2012 Canton FEs RAV FEs Traveltime

(1) (2) (3) (4) (5) (6) (7)

DiD 0.024∗∗∗ 0.024∗∗∗ 0.024∗∗∗ 0.023∗∗∗ 0.025∗∗∗ 0.024∗∗∗ 0.024∗∗∗

(0.009) (0.007) (0.003) (0.006) (0.009) (0.009) (0.009)

Controls Yes Yes Yes Yes Yes Yes Yes

Outcome Mean 8.47 8.47 8.47 8.47 8.47 8.47 8.47
R

2 0.396 0.396 0.396 0.400 0.396 0.398 0.401
N 187’490 187’490 187’490 234’864 187’490 187’490 162’359

Notes: This table shows the results from several pooled Difference-in-Differences regressions. The basis for the analyses
are the pooled DiD regressions on post-unemployment wages shown in Table 3.4. We treat job seekers from Bern, who
entered unemployment in 2012 or later in Bern, as treated. Job seekers entering unemployment in 2012 or later in the
remaining cantons are used as the control group. We use the same set of covariates used in equation (3.1). In column
(1), we show the estimated DiD-coefficients from the basic pooled Diff-in-Diff analysis in Table 3.1. In column (2), we use
bootstrapped standard errors (50 bootstrap replications). In column (3), we cluster all standard errors at the canton level.
In column (4), we include observations from the year 2012, which we previously left out. In columns (5) and (6), we add
canton- and RAV fixed effects (in addition to controlling for the canton of Bern in the DiD-framework). In column (7), we
only include observations from Bern and from municipalities with a commuting time longer than 40 minutes.
*** p < 0.01, ** p < 0.05, * p < 0.1
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Appendix 3.F Distance Calculation

In this section, we describe in detail how the travel distances and travel times used
for the analysis in Section 3.4.4 were calculated. We first calculate the travel dis-
tances and -times based on zipcode level and then use a weighted average of zipcode
travel distances and -times for each municipality, at which the geolocation informa-
tion for each unemployment spell is defined. The corresponding weights to assign
zipcodes to municipalities are defined as the percentage of buildings in a municipal-
ity belonging to the corresponding zipcode area. The weights are provided by the
Swiss Federal Office of Statistics.⁹
To calculate the travel distances and -times, we use a two-step-procedure: In

the first stage, for each zipcode in Switzerland, we use the latitude/longitude-
geolocation data generated by the Nominatim()-function contained in the
pgeocode Python library to calculate the center point (or point of the largest vil-
lage, respectively) for each zipcode area. Using the latitude/longitude-geolocation
data and geojson-files containing geodata of the Swiss cantons, we calculate the
shortest (air-)distance from a zipcode area to the border of Bern. Using this proce-
dure, we generate the start- and end points to calculate travel distances and -times
in a second step. Figure 3.F.1 illustrates how the closest point on the border of Bern
(in this example for the zipcode area 3237 (Brüttelen)). Note that in the first stage
of calculating travel distances and -times, we do not yet account for geographical
special cases like mountains or road difficulties. However, executing the first stage
with traveling distances and -times would require to calculate these for every point
on the border of Bern, which is not feasible.

Figure 3.F.1. Calculation of Closest Point on Border
This figure shows an example of how the border point closest to a zipcode was calculated. The point deliv-
ered by pgeocode is the starting point for the calculation. We then calculate the air distance to every point
on the border of Bern (Blue Line) and continue with the point for which this distance is the smallest.

9. https://www.bfs.admin.ch/bfs/de/home/statistiken/kataloge-datenbanken.assetdetail.
7226419.html, last visited: Jan 10, 2022

https://www.bfs.admin.ch/bfs/de/home/statistiken/kataloge-datenbanken.assetdetail.7226419.html
https://www.bfs.admin.ch/bfs/de/home/statistiken/kataloge-datenbanken.assetdetail.7226419.html
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In the second stage, we use the assignment of each zipcode centerpoint in
Switzerland (both inside and outside of Bern) to the closest point on the Bern border
to calculate the travel distance and travel time (by car) between both points using
the Google Maps Distance Matrix API. This service by Google allows for large travel
calculation queries for a series of locations. Using this approach, we can account for
the special geography of Switzerland, with many mountain ranges and lakes that
create a discrepancy between air distance and commuting distance. In particular,
this approach reveals that, for example, the canton of Valais, despite sharing a large
portion of the border, does not allow for quick commuting between both cantons.
This is due to the “Bernese Alps”, a mountain range in the south of Bern, which only
leaves a handful of mountain passes between both cantons and thus makes com-
muting between them very time consuming. This mountain range is also the reason
why, for some zipcodes, the travel distances and -times cannot be calculated using
an API, because the closest point on the Bern border lies on a point in the moun-
tain range, which cannot be reached by car. For these special cases, we calculate the
travel distances and travel times by hand based on the closest feasible point (This
is the case for some zipcodes in Valais and Grisons). Once the travel distances and
-times are calculated, we aggregate them on a municipality level using the weights
provided by the Swiss Federal Office of Statistics.

Appendix 3.G Heterogeneity with Respect to Sociodemographics
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Table 3.G.1. Heterogeneity with Respect to Sociodemographics: UE Duration

Pooled Female Male LPPSa Blue White Marr. Unmarr. Low Medium High Non- Swiss
DiD Collar Collar Edu. Edu. Edu. Swiss

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

DiD 14.472∗∗∗ 8.318∗ 17.069∗∗∗ 17.069∗∗∗ 24.620∗∗∗ 6.053 17.267∗∗∗ 11.197∗∗∗ 26.069∗∗∗ 12.606∗∗∗ 3.347 21.827∗∗∗ 8.282∗∗

(3.728) (4.715) (4.174) (4.174) (4.483) (7.774) (4.826) (3.789) (7.008) (4.299) (4.413) (4.956) (4.061)

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Outc. Mean 266.27 280.05 258.74 258.74 244.24 295.71 276.26 256.57 278.34 254.41 270.21 265.88 266.62
R

2 0.114 0.106 0.125 0.125 0.165 0.123 0.126 0.113 0.179 0.107 0.106 0.144 0.107
N 348’448 123’162 225’286 225’286 120’824 53’991 171’637 176’811 99’211 137’941 111’296 167’251 181’197

Notes:
a: Low Paid Service Sector

This table shows the results from pooled Difference-in-Differences regressions, conditional on job seeker/unemployment spell characteristics. The outcome in all specifications
is unemployment duration, top-coded at 520 days. In column (1), we display the results from our original Diff-in-Diff specification. Columns (2) and (3) contain the results for
female and male job seekers, respectively. In columns (4) - (6), we display the results for White Collar-, Blue Collar-, and Low Paid Service Sector workers, respectively. Columns
(7) and (8) present the results for married and unmarried workers, and columns (9) - (11) present the results for low education-, medium education- and high education workers,
respectively. Note the definition of these categories below. Columns (12) and (13) present the results for non-Swiss citizens and Swiss Citizens, and columns (12) and (13) for
German and French native speakers, respectively.
Low Education: Max. Compulsory High School, Medium Education: Max. Vocational Training, High Education: Max. College
*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 3.G.2. Heterogeneity with Respect to Sociodemographics: Post-UE Earnings

Pooled Female Male LPPSa Blue White Marr. Unmarr. Low Medium High Non- Swiss
DiD Collar Collar Edu. Edu. Edu. Swiss

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

DiD 0.024∗∗∗ 0.044∗∗∗ 0.016 0.041∗∗∗ 0.005 0.025∗ 0.025∗∗ 0.027∗∗ 0.024 0.025∗∗ 0.022 0.002 0.035∗∗∗

(0.008) (0.009) (0.014) (0.014) (0.012) (0.015) (0.012) (0.011) (0.019) (0.012) (0.015) (0.012) (0.009)

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Outc. Mean 8.47 8.32 8.54 8.56 8.47 8.12 8.47 8.46 8.28 8.41 8.69 8.40 8.53
R

2 0.396 0.401 0.364 0.410 0.306 0.224 0.460 0.338 0.336 0.286 0.401 0.402 0.382
N 187’490 64’175 123’315 94’153 67’148 26’189 89’331 98’159 49’496 77’185 60’809 88’061 99’429

Notes:
a: Low Paid Service Sector

This table shows the results from pooled Difference-in-Differences regressions, conditional on job seeker/unemployment spell characteristics. The outcome in all specifications
is log earnings after leaving unemployment. In column (1), we display the results from our original Diff-in-Diff specification. Columns (2) and (3) contain the results for female
and male job seekers, respectively. In columns (4) - (6), we display the results for White Collar-, Blue Collar-, and Low Paid Service Sector workers, respectively. Columns (7)
and (8) present the results for married and unmarried workers, and columns (9) - (11) present the results for low education-, medium education- and high education workers,
respectively. Note the definition of these categories below. Columns (12) and (13) present the results for non-Swiss citizens and Swiss Citizens, and columns (12) and (13) for
German and French native speakers, respectively.
Low Education: Max. Compulsory High School, Medium Education: Max. Vocational Training, High Education: Max. College
*** p < 0.01, ** p < 0.05, * p < 0.1
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