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Abstract

Exploiting quantum effects in the communication between different systems promise great
capabilities as distributed quantum computing or provably secure communication. In this
thesis we present the realisation of a memory-based quantum network node as a basic
building block for quantum communication. The network node comprises of a single
trapped ion as a stationary qubit, which is coupled to a light-matter interface linking
the ion to a photonic communication channel. We present the application of an optical
resonator, which consists of two opposing mirrors that we have realised at the end of
two optical fibres. The small resonator volume (mode volume) increases the light-matter
interaction rate, allowing a high bandwidth for the distribution of quantum information
in a network via optical photons. In addition, the fibre-based resonator provides intrinsic
coupling of the photons to optical fibres, which greatly simplifies their distribution in a
network.
We demonstrate the first generation of quantum entanglement between a stationary

qubit and a photon, with an optical fibre resonator as the interface between both qubits.
Since a quantum state cannot be copied and transmitted classically, entanglement is essen-
tial for the purpose of quantum communication. We show that even at a distance (about
1.5m) the ion and the photon share a common entangled quantum state with a high fi-
delity of (90.1± 1.7) %. The entangled state is generated on-demand by the deterministic
excitation of the ion, where we achieve a detection rate of 62Hz, enabled by the efficient
interface between ion and photon.

The presented entanglement between an atom and a photon as two different types
of qubits allows us to combine the advantages of information storage (atom) and long
range distribution of quantum information (photon). In this context, we demonstrate
the first implementation of a provably secure quantum key distribution (QKD) between
two remote parties involving an entangled memory qubit. The presented method hereby
addresses two principal challenges of quantum key distribution, namely key generation and
long-range application. We show that the fundamental quantum mechanical properties of
the entangled two-qubit state allow us to generate a key with certifiable randomness,
which in this strong form is not possible classically. Furthermore, the presented methods
of memory-based key distribution are particularly applicable in the context of quantum
repeaters, in which quantum information is temporarily stored before further distribution.
This enables long-range key distribution even beyond the point-to-point limit of optical
quantum communication, which results from the absorption properties of optical photons
as information carriers.
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1 Introduction

Exploring the potential of quantum effects is currently one of the main research areas in
modern science and establishes a whole new category of technology [41]. Applications
that employ quantum effects can be far superior to their classical counterparts in solving
specific computational problems [3] or, in the domain of cryptography, offer alternative
methods that can ensure provable security through the rules of quantum mechanics [182,
155, 89, 47]. The communication between different systems via a quantum channel plays
a central role in this context because, on the one hand, a quantum channel enables a
new type of information transmission between classical systems that employs the excellent
cryptographic properties of distributed quantum keys [140]. On the other hand, it enables
the connection of two distant quantum systems [121, 143], which in turn has the potential
to create new applications in the field of quantum technology, such as distributed quantum
computing [84, 39], remote quantum sensing [136] or true random number generation [138].
For the communication between individual quantum systems, the properties of quan-

tum information must be taken into account. Unlike its classical counterpart, a quantum
bit (qubit) can be in a superposition of its two basis states, which results in extraordi-
nary properties for information processing. To extend this capability with the underlying
properties of quantum information across multiple nodes of a network, it is necessary to
distribute quantum states coherently across the network.
Since a quantum state cannot be cloned [182], quantum information can only be dis-

tributed by entangling the endpoint of a communication channel with that communication
channel [23]. This makes entanglement a key resource for quantum technology, but also
eliminates the possibility of transmitting quantum information as in classical networks by
measuring a state, encoding it into a signal and transmitting it over the network. The
architecture of a quantum network, therefore, has to differ substantially from that of a
classical network and requires the distribution of entanglement between the nodes.
For the purpose of entanglement distribution, photons are excellent candidates. These

fast information carriers can be guided through optical fibres which support their distri-
bution in complex and long-distance networks. Furthermore, quantum information can
be encoded, for example, in the time [50], frequency [56] or polarisation [23] degrees of
freedom of a photon. However, in practical applications, photons usually travel through
a medium, which implies a potential loss of an information carrier through absorption.
This leads to an absolute distance limit for practicable point-to-point links in quantum
communication [137]. The properties of a quantum network are thus strongly coupled to
the respective communication channel, but are defined in particular by the capabilities of
the network nodes.
To exploit the potential of quantum networks, information processing nodes are required

which can send, receive and store quantum information [143]. The excellent properties of
matter qubits for quantum information processing favour their use as stationary qubits
at the nodes of a quantum network. There have been several approaches towards the
experimental realisation of quantum network nodes with matter qubits, for example, using
trapped ions [23, 164, 24, 163, 37], neutral atoms [180, 175], nitrogen-vacancy centres [167]
or silicon-vacancy centres [124] in diamond, and semiconductor quantum dots [40, 56].
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1 Introduction

Each system has its advantages and especially with regard to large-scale quantum net-
works, the use of long-lived stationary qubits with the ability to store quantum information
is desirable. In particular, to establish a practical network, the distribution of entangle-
ment between the nodes has to be faster than its loss in the network. Therefore, the
so-called memory qubits allow to overcome the limit of point-to-point quantum communi-
cation [21] by caching quantum information at the nodes of a network. This enables the
realisation of long-distant quantum communication even despite the absorption properties
of optical photons as information carriers. In particular, memory qubits could enable the
realisation of a so-called quantum repeater, in which the quantum information is tem-
porarily stored before further distribution [172].
For use as memory qubits, trapped ions have advantageous properties. Due to their

decoupling from the environment, they offer long storage intervals of quantum information
and individual addressing for example via laser beams for state manipulation and readout.
Moreover, their long trapping times facilitate their use in quantum networks [121] and for
quantum information processing [183].
In a quantum network node, linking the stationary qubit to the quantum communication

channel is essential to combine the capabilities of the stationary information processing
and storage qubit with the remote distribution of quantum information via a travelling
qubit. For this purpose, efficient light-matter interfaces operating at the quantum limit are
required that couple travelling qubits and stationary qubits in the network, see Figure 1.1.

Memory qubit
Matter

Travelling qubit
Photon

Coupling

Light-matter 
interface

Figure 1.1: The joint use of light and matter in a quantum network requires interfaces for the
exchange of quantum information.

Experimental approaches to light-matter interfaces have ranged from collecting light with
high numerical aperture objectives [24, 161, 167, 2, 58, 175] to embedding emitters in
macroscopic optical cavities in order to increase the light-matter coupling rate [180, 99,
164, 158, 143]. With optical cavities, the rate at which entanglement can be distributed
across a quantum network can be greatly enhanced, for example by taking advantage of
the improved photon collecting ability or the tunability of entanglement parameters [127].
The effective coupling of light and matter is an advanced property of optical cavities

but requires, especially with respect to a single atom, the development of cavities that
have small mode volumes. This generally entails small cavity lengths and positioning of
the mirrors close to the atom, which becomes particularly difficult in combination with
trapped ions, as the possible formation of stray electric charges on the dielectric surfaces
of the mirrors affects trapping stability [65, 6].
A particularly elegant approach is the fabrication of mirror structures with small radii

of curvature on the tips of optical fibres, which allows a miniaturised cavity to be re-
alised that require only a small amount of dielectric material. This device consists of a
pair of optical fibres whose micromachined end facets are coated with a highly reflective
optical coating. Invented by Jakob Reichel’s group in 2006 [160, 69], fibre-based cavi-
ties achieved a remarkable reduction of the mode volume due to mirror separations on
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the order of 10–300µm. They combine the best of two worlds: on the one hand, they
are optical microresonators with small mode volume and on the other hand the cavity
mode is directly fibre-coupled. Since they promise a large coupling strength between light
and matter, coupling to fibre cavities has already been shown for neutral atoms [54, 36],
nitrogen-vacancy centres [1] and semiconductor quantum dots [122]. In particular, the
embedding of trapped ions in fibre cavities benefits from the miniaturised mirror surfaces.
However, due to the numerous (mostly technical) challenges, only a few research groups
have successfully combined fibre cavities with trapped ions [158, 165, 28].

In this thesis, we utilise a fibre cavity resonant to the principal ultraviolet (UV) tran-
sition of a trapped Ytterbium ion (Yb+) as a light-matter interface to efficiently collect
photons which are emitted by the ion together with a fast extraction of these information
carriers. We demonstrate for the first time the generation and detection of an entan-
gled light-matter state from a fibre cavity, which allows us to combine the advantageous
properties of the trapped ion as a memory qubit with the fast distribution of quantum
information offered by optical photons. This makes the presented system potentially ap-
plicable as a node in a large-scale quantum network or in a quantum repeater (see Figure
1.2).

Fibre

Ion

Entangled two-qubit
state

PhotonFibre cavity

Figure 1.2: Sketch of a quantum network in which photons are guided as travelling qubits through
optical fibres. The network node presented in this thesis is shown as a basic building block of the
sketched network (box). For entanglement-based communication, phase coherence is distributed
across the network nodes and must be maintained to sustain the entanglement. Efficient light-
matter interfaces enable the scaling of the network in terms of nodes and distance.

In particular, the long-range application of quantum communication is of high inter-
est in order to solve the so-called key distribution problem between two communication
partners. Key distribution is most commonly realised using asymmetric cryptography in
classical information theory, which is considered to become insecure in the post-quantum
era [154]. The so-called quantum key distribution (QKD), offers a paradigm-changing
solution to the key distribution problem [110], which is based on a quantum communi-
cation channel and for which several protocols and architectures have been proposed so
far. Due to its simple prepare-and-measure architecture, the one-qubit BB84 protocol
[14] was the first QKD protocol realised in an experimental setup. However, implemen-
tations of QKD protocols that require a direct link between the communication parties

3



1 Introduction

(e.g. BB84) naturally encounter a physical limit when the loss of the communication
channel over distance is considered [166]. As introduced by A. K. Ekert in 1991 [47], the
concept of entanglement-based QKD is able to utilise fundamental quantum mechanical
properties of entangled states that offer additional benefits, such as the application with
memory-enhanced quantum communication capable of overcoming the rate-distance limit.

x n

x n Entangled two-qubit
state

Private & 
public key

EncryptionDecryption

Secret key

Public key

Public channel

Classical key distribution
using asymmetric cryptography

Quantum key distribution
using two-qubit entanglement

Authenticated processing

Authenticated channel

x n

Ion Photon

Figure 1.3: Classical and quantum approach for the distribution of a secret secret key between
two remote communication parties. The classical approach most commonly utilises asymmetric
cryptography based on computationally hard problems. Quantum key distribution as presented
in this thesis utilises n measurements of an entangled two-qubit quantum state. The key can be
distributed secure and generated certifiable random even when assuming an attacker with unlimited
resources.

In this thesis, we present the first realisation of a true single-photon quantum key
distribution protocol between two remote parties involving an entangled memory qubit
(see Figure 1.3). The setup enables us to securely distribute a secret key between both
endpoints of the quantum communication channel (see Figure 1.3). The derived key can
be used for encryption with the andvanced encryption standard (AES), for example. This
combination of QKD and AES is expected to provide secure remote communication even
in the post-quantum era [26].
In addition to a potential long-range application of secure key distribution, the pre-

sented system has another outstanding feature from the perspective of information secu-
rity. When it comes to the generation of secret keys, cryptographically secure random
number generators are an essential building block of secure systems. However, true ran-
dom numbers are hard to generate and even harder to verify. We demonstrate that we can
certify the randomness of the distributed quantum key using the fundamental non-local
properties of our entangled state, which in this strong form is not possible classically. Even
when using quantum systems for the distribution of keys (e.g. in the context of BB84),
true randomness of those quantum keys is only achieved for systems that exhibit a viola-
tion of the Bell inequalities [11, 138]. In total, we show that a secret key derived by both
communication parties was distributed secure and generated with certified randomness,
which combines the fundamental requirements on a shared secret quantity. The capability
of the system to cache the required quantum information in a memory qubit potentially
allows this key to be distributed over arbitrarily large distances in the framework of an
ideal quantum repeater [172].

4



Thesis Structure

The following chapters of this thesis focus on different aspects of the presented quantum
network node.
Chapter 2 briefly introduces the basic terminology used in this thesis, such as quantum

bits, quantum states, entanglement and related specific quantum mechanical properties
such as superposition and non-locality.
Chapter 3 introduces the main experimental techniques by which a single Ytterbium ion

can be isolated and confined in a spatial region, allowing the addressing and manipulation
of the atomic matter at the quantum mechanical level. The experimental setup used for
this purpose is presented, together with the technical infrastructure for the measurements
carried out in the context of this thesis.
Chapter 4 presents a novel approach to create an empirical model of an experimental

apparatus employing machine learning. We apply this methodology to the trapping time
optimisation of the ion by disturbance cancellation.
Chapter 5 introduces the fibre Fabry-Pérot cavity as an advanced light-matter interface

in quantum network applications. In this context, we also introduce the photon as a
travelling qubit.
Chapter 6 describes the usage of the trapped Yb+ as a memory qubit with focus on the

application in a quantum network. In this context, we present the requirements for the
generation of entanglement between the trapped ion and an emitted photon.
Chapter 7 presents generation and detection of the ion-photon state. As a basic building

block for entanglement-based quantum communication, we characterise the ion-photon
state by performing a full state tomography and evaluating in detail the contributions of
errors in generation and detection.
Chapter 8 describes the application of the generated ion-photon state for the purpose of

provably secure quantum key distribution (QKD) exploiting the fundamental properties
of quantum mechanics . We present the non-locality of our state as a highlight for the
generation of a certifiable random key.
Chapter 9 concludes the work with a summary of the results and an overview of possi-

ble improvements. We put the presented setup in the context of a long-term perspective
in quantum communication, where we point out the role of entanglement-based commu-
nication for large-scale networks, especially with regard to the realisation of a quantum
repeater.
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2 Theory of two-qubit entanglement

2 Theory of two-qubit entanglement

Contents
2.1 Quantum bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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2.1 Quantum bits

One can encode information in certain states of a system. This statement holds for classical
information technology as well as for quantum technology. However, there is an important
difference between a classical bit and a quantum bit (qubit). While the former occupies
a single and defined state (e.g. charge (1) / no charge (0)) at a certain point in time,
the latter can be in a superposition of states enabled through the quantum nature of the
underlying system. For example, a quantum two-level system can be realised with two
distinct energy levels in case of an atomic qubit or with different polarisations of light in
case of a photonic qubit. We describe a quantum bit as a quantum mechanical two-level
system where we can define an orthogonal basis of the corresponding state space known
as Hilbert space. Analogously to a classical system where the states are named 0 and 1,
we introduce for a quantum bit the states |0〉 and |1〉 as an orthogonal basis.
A quantum state |Ψ〉 of the system can be expressed through the probability p0/1 to

find the state |Ψ〉 in one of the states |0〉 / |1〉 as

|Ψ〉 = c0 |0〉+ c1 |1〉 with p0/1 = |c0/1|2, (2.1)

where the probabilities fulfil p0 + p1 = 1 for a pure state. In the experiment, we can
obtain these probabilities from the expectation value

〈
Ô
〉
of a measurement operator1 Ô.

However, in general, a measurement Ô projects the quantum state |Ψ〉 to the eigenstates
of the operator Ô (’von Neumann measurement’).
For a quantum two-level system, a complete set of operators with orthogonal eigenstates

are given by the Pauli operators (Pauli matrices):

σ̂x = |1〉 〈0|+ |0〉 〈1| =
(

0 1
1 0

)
with eigenstates |Ψ±x〉 = 1√

2
(|1〉 ± |0〉) ,

σ̂y = −i |1〉 〈0|+ i |0〉 〈1| =
(

0 −i
i 0

)
with eigenstates |Ψ±y〉 = 1√

2
(|1〉 ± i |0〉) ,

σ̂z = |1〉 〈1| − |0〉 〈0| =
(

1 0
0 −1

)
with eigenstates |Ψ+z〉 , |Ψ−z〉 = |1〉 , |0〉

(2.2)
and

σ̂j |Ψλ·j〉 = λ · |Ψλ·j〉 . (2.3)

1 In quantum mechanics, measurements on a state are described by Hermitian operators to account for
the possibility of a measurement to change the quantum state
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The matrix representation of the Pauli operators can be derived from a vector represen-
tation of the qubit state

|Ψ〉 =
(
c1
c0

)
. (2.4)

The expectation value of the σ̂z operator is given by the probabilities p0/1 as

〈σ̂z〉 = 〈Ψ| σ̂z |Ψ〉 = p1 − p0 (2.5)

which gives 〈σ̂z〉 = −1 for a state with p0 = 1 and 〈σ̂z〉 = 1 for p1 = 1, where the basis
states |0〉 / |1〉 are also the eigenstates of the operator σ̂z.

Using p0 + p1 = 1, we can rewrite a pure qubit quantum state |Ψ〉 as

|Ψ〉 = cos (θ/2) |1〉+ eiφ sin (θ/2) |0〉 with 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, (2.6)

where we neglect any global phase of the quantum state, since it is not required to describe
the state. The angular representation is reminiscent of spherical coordinates and indeed
we can represent a two-level system state on a sphere (the so-called Bloch sphere) using
the expectation values of the Pauli operators to form a basis for the representation as a
vector (the so-called Bloch vector2):

x = 〈σ̂x〉 , y = 〈σ̂y〉 and z = 〈σ̂z〉 . (2.7)

Figure 2.1 shows a representation of a pure state |Ψ〉 on the Bloch sphere3 including the
corresponding angles according to equation (2.6) and the eigenstates of the Pauli operators
according to equations (2.2).

x y

|0

|1

θ

φ

|Ψ

x

y

z

|0

|1

1

2
(|1 + |0 )

1

2
(|1 |0 )

1

2
(|1 + i|0 )

1

2
(|1 i|0 )

a) b)

Figure 2.1: a) Example qubit state |Ψ〉 according to equation (2.6) with θ = 1/4·π and φ = 3/4·π
visualised on the Bloch sphere. b) Bloch sphere representation of the eigenstates of the Pauli
operators σ̂x/y/z which are shown as arrows (blue/grey/yellow). The arrows are labelled with the
corresponding state

∣∣Ψ±x/y/z〉.
2.1.1 State transformation

A pure state |Ψ〉 can be transformed into any pure state |Ψ′〉 by rotating it with an angle
α around a certain vector ~r on the Bloch sphere∣∣Ψ′〉 = R̂~r |Ψ〉 , (2.8)
2 Bloch vector and Bloch sphere named after Felix Bloch. Also known as Poincaré sphere in optics
3 We use the package qutip in Python for the Bloch-sphere plots
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where the general rotation operator R̂ is given by

R̂α~r = exp

− iα2 · ~r ·
 σ̂x
σ̂y
σ̂z


 . (2.9)

Here, σ̂x,y,z are the Pauli-matrices and the rotation operator has to fulfil R̂†R̂ = R̂R̂† = I
and ||~r|| = 1.

x

y

|1

|0

0.0

0.5

1.0

|
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|2
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t

0.0
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1.0

|
|0

|2

x

y

|1

|0

0.0

0.5

1.0

|
|1

|2

0 10 20 30 40 50
t

0.0

0.5

1.0

|
|0

|2

a) b)

c) d)

|Ψ

|Ψ'

|Ψ

|Ψ'

/ arb. units

/ arb. units

Figure 2.2: Rotation of a state |Ψ〉 to a state |Ψ′〉 according to equation (2.8). a) Evolution of
the expectation values of the state projection to the basis states |0〉 and |1〉 for R̂πêx

. b) Evolution
of the state on the Bloch-sphere. The initial state |Ψ〉 = |0〉 is shown as grey arrow and the final
state |Ψ′〉 = |1〉 as blue arrow. The trace of the state on the Bloch-sphere is shown as blue points.
The rotation axis ~r = êx is shown as orange arrow. c) Same as in a) but for R̂π−êz

with ~r = êz.
Note that the expectation values of measuring the |0〉 or the |1〉 state do not change. Instead the
phase φ changes from π/2 to −π/2. d) Same as in b) but for R̂π−êz

.

Figure 2.2 shows two fundamental qubit rotations: a)+b) a state flip, where the unit
probability of measuring the |0〉 state is fully transferred to a unit probability of measuring
the |1〉 state. c)+d) The relative phase φ of a superposition state flips sign without affecting
the expectation values of measuring the |0〉 or |1〉 state. However, as is not evident from
the shown expectation values of the latter example, there is still information encoded in
the phase of the quantum state. The ability of the qubit to retain phase information
is also called phase coherence and is a fundamental quantum mechanical property. It
distinguishes a pure quantum state from a statistical mixed state.
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2.2 Entanglement between two quantum bits

For a combined two-qubit system comprising of the qubits A and B, we have to consider a
four-dimensional Hilbert spaceH = Ha⊗Hb as a tensor product of the two two-dimensional
Hilbert spaces Ha and Hb of the subsystems A and B. We name the state of the subsystem
of qubit A |φ〉a and |φ〉b for qubit B, where we assume pure states. We name the two-qubit
quantum state |φ〉a,b.
A particular interesting class of two-qubit states are entangled states which show non-

classical correlations between the two qubits and are intrinsically linked to quantum phe-
nomena. Nowadays, entanglement constitutes a key resource for quantum computing and
quantum communication. In particular, the entanglement between light and matter is a
key part of this thesis.
We can define entangled states by their opposite, non-entangled states. If the pure state
|φ〉a,b of the combined two-qubit system can be separated into a product state of the two
individual subsystems A and B as

|φ〉a,b = |φ〉a ⊗ |φ〉b , (2.10)

the state |φ〉a,b is not entangled, e.g. |φ〉a,b = |1〉a |1〉b is a non-entangled two-qubit state.
However, if we cannot find a state |φ〉a/b that separately describes the system A/B, the
state |φ〉a,b is not a product state and is considered to be an entangled state [9]. The
so-called Bell-states constitutes maximally entangled states and are given by:∣∣∣Φ+

〉
a,b

= 1√
2

(|0〉a |0〉b + |1〉a |1〉b)∣∣Φ−〉a,b = 1√
2

(|0〉a |0〉b − |1〉a |1〉b)∣∣∣Ψ+
〉
a,b

= 1√
2

(|0〉a |1〉b + |1〉a |0〉b)∣∣Ψ−〉a,b = 1√
2

(|0〉a |1〉b − |1〉a |0〉b) .

(2.11)

The Bell-states are clearly not separable into a product state of qubit A and B.
Two-qubit entanglement can be realised, for example, between the polarisation states

of photons [100] and also between the internal states of material qubits [170]. However,
entanglement between light and matter, e.g. using trapped ions [23], allows to connect
material qubits as quantum memories to a photonic communication channel, which is
crucial for the realisation of quantum networks [84]. We discuss this in detail in chapter 7.

2.3 Non-locality

In 1935, Einstein, Podolsky and Rosen published what they considered to be a dilemma
(EPR dilemma) [45] in which they describe the conflict between the ideas of a classical de-
scriptive theory and quantum mechanical effects arising, for example, from entanglement.
From their point of view, a physical theory should imply: completeness (’every element
of the physical reality must have a counterpart in the physical theory’), realism (if one can
predict with certainty the value of a physical quantity, there must exists an element as a
counterpart in reality) and locality (physical systems can be spatially separated such that
they are independent from each other, i.e. interactions can be neglected) .
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However, if we consider two entangled quantum systems A and B that are far away from
each other, a measurement on one system directly affects the other system, regardless
of the distance between them: considering the maximally entangled state

∣∣Φ+〉
a,b from

equations (2.11), a measurement in basis σ̂z on system A with result −1 (corresponding
to state |0〉a) directly changes the two-qubit state to |0〉a ⊗ |0〉b where the qubit on side
B gets projected to the state |0〉b (similar for σ̂x/y and ± 1 measurement outcome). This
change occurs instantaneously and seems to conflict with the idea of special relativity that
no signal can propagate faster than light. Hence, the property of non-locality has been
given to entangled states to reflect the conflict with local realism (Qubit A and B exists
regardless if they are measured and no signal can propagate faster than light) [9]. The
EPR paradox is at least partially solved by the no-signalling theorem (Ghirardi, Rimini
and Weber 1980), which states that the possible outcomes of measurements on side B are
not influenced by a measurement on side A [9].

2.4 Bell’s inequalities

The approach of describing quantum systems using so-called local hidden-variable models
(LHVMs), which introduce deterministic correlation to the systems, leads to the Bell
inequalities [11] which constitute a quantitative version of the EPR paradox.
In the following, we introduce a version of the Bell inequalities proposed by Clauser,

Horne, Shimony and Holt (CHSH) [33], where the measurements outcomes are statisti-
cally determined by local hidden variables λ according to a local realistic theory. We
define observables A(~a, λ) = ±1 and B(~b, λ) = ±1 as outcome of a state measurement on
side A/B (locality) with the basis setting ~a/~b (reality). The expectation value of a joint
measurement is given by

E(~a,~b) =
∫
p(λ)A(~a, λ)B(~b, λ)dλ, (2.12)

where p(λ) is the probability distribution with
∫
p(λ)dλ = 1. With the alternative bases

~a′ and ~b′ we can derive the CHSH version of Bell inequality by considering

E(~a,~b)− E(~a,~b′) =
∫
p(λ)

[
A(~a, λ)B(~b, λ)−A(~a, λ)B(~b′, λ)

]
dλ

=
∫
p(λ)A(~a, λ)B(~b, λ)

[
1±A(~a′, λ)B(~b′, λ)

]
dλ

−
∫
p(λ)A(~a, λ)B(~b′, λ)

[
1±A(~a′, λ)B(~b, λ)

]
dλ

(2.13)

according to [9]. Finally, we find the following inequality:

|E(~a,~b)− E(~a,~b′)| ≤ 2±
[
E(~a′,~b′) + E(~a′,~b)

]
. (2.14)

Quantum mechanically, the expectation value of a measurement performed on the en-
tangled Bell state |Ψ−〉 is given by [9]

E(~a,~b) =
〈
Ψ−
∣∣~a · ~̂σ ⊗~b · ~̂σ ∣∣Ψ−〉 = −~a ·~b, (2.15)

with ~̂σ = (σ̂x, σ̂y, σ̂z). For an appropriate choice of the measurement bases (Figure 2.3)
one can derive

gqm = |E(~a,~b)− E(~a,~b′)|+ |E(~a′,~b′) + E(~a′,~b)| = 2
√

2, (2.16)
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which violates the CHSH version of the Bell inequalities derived from LHVM in equa-
tion (2.14).

x

y

a

a'

b

b'

Figure 2.3: Choice of bases for a maximum violation of the CHSH inequality according to equa-
tion (2.14).

The first experiments showing a violation of the CHSH Bell-inequality were performed
with photons [179, 4] and later, as in this thesis (section 8.4), also with entangled atom-
photon states [120, 164]. However, all these experiments suffer from experimental short-
comings that open loopholes for a local realistic description.

2.4.1 Loopholes

The Bell inequalities can be utilised to proof systems for local causality. However, violating
equation (2.14) in an experiment does not rule out every local realistic description. There
could be still loopholes present (no matter if they are likely or not) which can enable a
local realistic description.

• Locality
Assuming that no signal can travel faster than the speed of light, the separation of
the qubits has to be larger than the time it takes to perform the state measurement
multiplied by the speed of light (Each qubit is outside the light cone of the other
qubit).

• Detection
In the optimal case, each realisation of the entangled state is measured. Otherwise,
it could be that the subset of measured entanglement realisations violates the Bell
inequality while the whole set does not. Usually, the experimental restrictions of
limited detection or collection efficiencies are assumed to discard random events,
leading to the assumption that the measured subset is representative of the entire
set of entanglements generated (fair sampling assumption).

• Random bases
To exclude any predetermined effects on the qubits, a random and independent
choice of the measurement bases on side A and B is required.

A loophole-free test of the Bell inequalities requires closing all loopholes in a single
experiment which was demonstrated in 2015 by B. Hensen et al. [66] using two entangled
NV-centres.
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The ability to confine a single charged particle in three spatial dimensions using oscillating
electric fields was discovered by Wolfgang Paul in Bonn in the 1950s and the ion trap
technique was awarded the Nobel Prize in 1989 [125]. The combination of a laser-cooled
single ion in a Paul trap together with fluorescence-based detection was reported in 1980
by Neuhauser et al. in [123] and became a basic building block in many research fields,
like precision spectroscopy [76] and quantum information [23, 8, 73]. In the presented
experiment, we make use of a single Ytterbium ion (Yb+) confined in a radiofrequency
Paul trap as a memory qubit, which is embedded into a fibre Fabry-Pérot cavity acting as
light-matter interface (see Figure 3.1).

Paul trap electrodes

DC electrode

Fibre inside 
steel tube 

a) b)

0.5 mm2.5 mm

Fibre inside 
steel tube 

Figure 3.1: Realisation of a Paul trap with two needle-shaped electrodes. The trap is combined
with a fibre cavity as ion-photon interface (see chapter 5). Trap and cavity were built in [6] and are
shown here as an example because they are clearly visible from outside the vacuum chamber, in
contrast to the setup used for the measurements presented in this thesis. However, both traps work
according to the same principle and are similar in their construction. a) Full view. b) Enlarged
section from a), marked with a white square. The needle-shaped electrodes are visible centrally in
the upper and lower half of the photo. The blue reflected flash from the right-hand fibre tip mirror
is visible centrally in the photo.

We choose Ytterbium as the element for trapping since it has one valence electron in
the singly ionised state4 and thus providing a comparably simple energy level structure.
Furthermore, the level structure allows for Doppler cooling with a closed cooling cycle
and optical state preparation, manipulation and readout. Due to a first-order magnetic
field decoupled qubit, the isotope 171Yb+ can be used to store quantum information with

4 Yb+ has the ground state configuration [Xe]4f146s
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coherence times on the order of seconds to minutes [129, 178]. For this reasons, trapped
171Yb ions have been used successfully in experiments for atomic clocks [76], quantum
simulations [73], quantum computing [183] and quantum networks [121].
We introduce the experimental techniques for trapping and cooling Yb+ in section 3.1

and present the experimental setup in section 3.2.

3.1 Experimental techniques

In this section, we present the general experimental techniques required to trap a single Yb
ion. The working principle of a Paul trap is discussed in subsection 3.1.1. Ionisation and
state selective loading of an Yb ion into the trap are presented in subsection 3.1.2. The
relevant energy level scheme and transitions of Yb+ are introduced in subsection 3.1.3.

3.1.1 Ion trapping and micromotion

For the observation and manipulation of individual particles, it is desirable to confine them
to a spatial area. For charged particles, confinement via purely electrostatic fields is not
possible due to Laplace’s equation

∆Φ = 0. (3.1)

It states that a static electric potential Φ in three dimensions cannot have a local minimum
(or maximum) in a charge-free spatial region. However, it was discovered by Wolfgang
Paul that oscillating electric fields can be used for confining a charged particle in three
spatial dimensions [132]. To this end, an oscillating radio frequency (RF) voltage is applied
to a set of electrodes to form an electrical quadrupole field, which changes the direction
of particle confinement for each half of an oscillation period.
One way of building a Paul trap is to use three electrodes to form a three-dimensional,

cylindrically symmetric quadrupole field, with the electrodes shaped according to the
equipotential lines of the field (see Figure 3.2 a)). The RF signal is applied to the top
and bottom endcap electrodes while a ring electrode is set to zero potential (GND). In
our setup we use a special case of this cylindrically symmetric trap by extending the
ring electrode (formally) to the infinite while narrowing the top and bottom endcaps to
needle-shaped electrodes (see Figure 3.2 b)). This provides improved optical access to the
trapped particle.

GND

x3

x2

x1

d
RF Ion

~

a) b)

RF~

Figure 3.2: a) Cylindrically symmetric configuration of a Paul trap with a trapped ion (yellow
dot). The electric field (blue arrows) between the endcaps (grey, top and bottom) and the grounded
ring electrode is sketched for the positive half period of the applied radio frequency (RF) voltage
(endcaps: +). b) A Paul trap in the needle configuration with the same colour coding as in a).
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The ideal electrical quadrupole potential near the centre of a cylindrically symmetric
Paul trap in needle configuration (Figure 3.2 b)) is given by [102]

Φ(~x, t) = (U0 + U∼ cos (Ωt)) · x
2
1 + x2

2 − 2x2
3

4d2 , (3.2)

assuming the boundary condition Φ(x1 = x2 = 0, x3 = d, t = 0) = (U0 + U∼)/2 according
to [115]. We define U0 + U∼ cos (Ωt) as the driving field5 applied to the top and bottom
electrodes which have a distance of 2d along x3. The classical equation of motion for an
ion with mass m and charge Z|e| is given by [102]

m~̈x = Z|e| ~E(~x, t) = −Z|e|∇Φ. (3.3)

Defining the parameters
a1 = a2 = −1

2a3 = 2Z|e|U0
md2Ω2 (3.4)

and
q1 = q2 = −1

2q3 = Z|e|U∼
md2Ω2 , (3.5)

brings the differential equation to the form

ẍi + [ai + 2qi cos (Ωt)] Ω2

4 xi = 0, (3.6)

which is known as Mathieu’s equation. The parameters a and q are related to stability
regions of the trapping potential. In presence of an external DC electric stray field ~Estray
equation (3.6) changes to [19, 60]

ẍi + [ai + 2qi cos (Ωt)] Ω2

4 xi = Q · Estray,i
m

, (3.7)

where Estray,i is the ith spatial component of the stray field vector ~Estray which is assumed
to be static and gradient-free6. Equation (3.7) can be solved in adiabatic approximation
(|ai|, q2

i � 1) [19, 60] as

xi ≈ [x0,i cos (ωit+ φi)]
(

1 + qi
2 cos (Ωt)

)
+ xstray,i + qi · xstray,i

2 cos (Ωt) , (3.8)

where ~xstray is the average spatial displacement of the ion originating from the stray field
~Estray.
From equation (3.8) we can infer that the ion undergoes a superposition of different pe-

riodic oscillations (see Figure 3.3). The slower oscillation with period ωi = Ω/2
√
ai + q2

i /2
is called the secular motion and is related to an approximation of the trap potential as an
harmonic pseudo potential (see equation (3.9)). The faster oscillation exhibits the period
of the driving RF field Ω and is called (intrinsic) micromotion of the ion. It exhibits a
much smaller amplitude than the secular motion.

5 With DC part U0 and RF part U∼ cos (Ωt)
6 One can make these assumptions since the region of interest is small compared to the trap setup and
the drift of a stray field in the experiment occurs on a time scale of several hours

14



3.1 Experimental techniques

The pseudo potential of the trap can be obtained by time averaging over one period of
the secular motion. Using equation (3.8) with no external stray field, i.e. ~xstray = 0, we
obtain for the kinetic energy in one spatial direction [19]

< Ekin >i=
1
2m < ẋ2

i >≈
1
4mω

2
i x

2
0,i

(
1 + q2

i

q2
i + 2ai

)
. (3.9)

For the needle trap used in this thesis, the ion is confined with trap frequencies of
ω1 ∼ 2π · 3MHz, ω2 ∼ 2π · 5MHz (cavity axis) and ω3 ∼ 2π · 7MHz (trap axis) by ap-
plying a driving RF field of Ω ≈ 2π · 21MHz. We measured the trap frequencies using
parametric excitation of the ion’s motion by modulating a weak sideband on the driving
RF field and observing the heating of the ion via fluorescence detection [70].
From equation (3.8) it becomes clear that the micromotion is the reason for the spatial

confinement, since the energy of the ion increases with increasing |~x| along all spatial
directions. Since the amplitude of the micromotion is determined by the amplitude of the
secular motion, both can be reduced by lowering the potential energy (temperature) of the
ion, e.g. by laser cooling in the case of ~xstray = 0. A cooling of the ion corresponds to a
damping of the oscillation in the pseudo-potential picture of the Paul trap as a harmonic
oscillator.
Figure 3.3 shows trajectories of an ion in the Paul trap, which we simulated numerically7

according to equation (3.7). In the undisturbed case, i.e. without a stray field ~Estray, the
trap centre is the midpoint of the ion’s trajectory. For an external stray electric field
~Estray 6= 0, the centre position of the trajectory gets shifted from the trap centre by [60]

~xstray ≈
Q

m

3∑
i=1

Estray,i
ω2
i

exi , (3.10)

with the unit vector exi along the ith spatial component.
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Figure 3.3: Ion trajectories in the x1-x2 plane as numerical solution to equation (3.7) without
a stray field (orange curves) and with a stray field along the x1 axis (blue curves). The shift
due to a stray electric field ~xstray is indicated as arrow. The starting point of the simulation
is x1(t = 0) ≡ x1,0. The dashed lines with lighter colour constitutes simulations with a starting
condition x′1,0 of the ion closer to the origin, i.e. x′1,0 < x1,0.
7 We use the Python package scipy.integrate for this purpose

15



3 Trapping of Yb+

Due to the shifted position, the ion experiences a stronger amplitude in the oscillating
electric field which induces additional motion to the ion. The additional motion is called
excess micromotion and is a driven oscillation as can be seen from equation (3.8). For
this reason, it is difficult to reduce the excess micromotion by laser cooling. For an
efficient reduction of the ion’s energy, a compensation of the electric field reducing ~xstray is
crucial. In chapter 4, we present strategies for the detection and compensation of (excess)
micromotion.

3.1.2 Isotope selective loading

Different isotopes of Ytterbium have different capabilities for specific experimental tasks.
Therefore, it is important to load only the desired isotope into the trap. For quantum
communication tasks, we use 171Yb+ because its hyperfine splitting of energy levels due
to a nuclear spin of I = 1/2 offers a number of interesting properties, as described in
chapter 6. However, for certain tasks not related to the specific level structure of 171Yb+,
it may be advantageous to trap 174Yb+ instead, as it has a simpler level structure. For this
isotope, trapping and cooling is less challenging and more fault-tolerant than for 171Yb+.
This makes 174Yb+ ideal for calibration tasks, which are not related to a specific isotope.
In each case, the deterministic selection of the isotope to be loaded into the Paul trap is
important.

For isotope selective loading of an ion into the trap, we use resonance-enhanced two-
photon ionisation [87]. To this end, we drive the optical 1S0 ↔ 1P1 transition of neutral
Ytterbium at 398.9 nm. The ionisation of the excited neutral atom from the 1P1 state
is done via a second laser8 at 370 nm, which at the same time is resonant to the cooling
transition of Yb+ and directly acts as a cooling laser for an ionised Yb atom.

The neutral Yb atoms thermal evaporate from a foil located in a heated steel tube
(Yb oven), which produces a diverging atom beam leaving the heated tube at its open
end. Since the beam axis of the 398.9 nm laser and the tube axis are aligned perpendicular
to each other, we probe the neutral atoms almost Doppler-free with this laser. In Figure
3.4 the spectrum of neutral Yb is shown, which was recorded by tuning the frequency of
the 398.9 nm laser while monitoring the rate of photons scattered by the atoms on the
1S0 ↔ 1P1 transition. By selecting the resonant frequency of a certain isotope for the
first ionisation laser, we perform the isotope selective loading. For 171Yb, we choose the∣∣1S0, F = 1/2

〉
↔
∣∣1P1, F

′ = 3/2
〉
transition for the first ionisation step.

For loading an ion into the trap, we continuously turn on atomic beam, 370 nm and
399 nm laser for up to 50 s. It takes some time for the atomic beam to reach a sufficient
density of atoms, so we turn on the heating of the steel tube ∼ 40 s before the lasers.

8 The wavelength of the second ionisation laser has to be . 394nm [130]
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Figure 3.4: Resonances of the 1S0 ↔ 1P1 transition for multiple isotopes of neutral Ytterbium
(Yb) measured on a separate spectroscopy cell [20]. For isotopes exhibiting a non-zero nuclear spin
the F/F ′ quantum numbers are given for the ground/excited state. The isotopes were assigned to
the resonances using [6].

The absolute measurement of our frequencies9 in the laboratory varies over ∼ 100MHz
on a daily basis, which is a multiple of the natural linewidth of 2π · 28.9MHz [135] of
neutral Yb. Therefore, we have to perform a daily calibration of the 1S0 ↔ 1P1 transition
frequencies in order to maintain a high ionisation efficiency. For this purpose, we use a
separate spectroscopy cell that automates the spectroscopy. This allows us to leave the
main setup untouched, which is beneficial due to the high optimisation of this setup for
the detection of 370 nm fluorescence.

3.1.3 Cooling of 174Yb+ and 171Yb+

Doppler-cooling was initially proposed in [181] and makes use of photons having slightly
less energy than the atomic resonance. In terms of energy, the absorbance of photons
having less energy than the on average emitted photons cools down the ion. In terms
of momentum, the absorbance of photons coming from one direction and the isotropic
emission of photons into 4π solid angle slows down the atom with a propagation direction
opposite to that of the photons.
This subsection gives an introduction to the Doppler cooling of 174Yb+ and 171Yb+,

which is used to counteract the heating rate of the ion inside the trap but also enables
the probing of the ion in the trap using the amount of scattered photons as a response.
Throughout this thesis, we use the rate of photons scattered on the cooling transition
as feedback from the ion, making this quantity one of the most important experimental
observables.
Laser cooling requires a closed cycle of the atomic population to ensure a stable steady

state population of the energy levels of the cooling transition. For Yb+ we investigate
the level structure in the following. The valence electron of Yb+ can be excited from the
9 Wavemeter WS7 from HighFinesse
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3 Trapping of Yb+

6s orbital to the 6p orbital with a transition resonant radiation wavelength of 369.54 nm
[114]. The total angular momentum given by the LS-coupling results in the fine structure
states 2S1/2, 2P1/2 and 2P3/2 for these orbitals. We use the 2S1/2 ↔ 2P1/2 transition for
Doppler-cooling. Due to a finite branching ratio of the 2P1/2 excited state manifold to
the 2D3/2 manifold, we close the cooling cycle by using a 935.2 nm laser to repump the
population from the 2D3/2 levels [114] (see Figure 3.5 a)).
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Cooling
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Figure 3.5: Relevant energy levels of a) Yb+ and b) more specific for 171Yb+. The light grey
arrows indicate the allowed transitions between the hyperfine levels but do not consider mF quan-
tum numbers of the states. The branching ratios are taken from [129, 159]. Transition frequencies,
allowed transitions and wavelength are taken from [114, 129]. Lifetimes from [17, 185, 128].

Due to a nuclear spin of I = 1/2 and the resulting hyperfine structure of en-
ergy levels, cooling of 171Yb+ requires additional effort (see Figure 3.5 b)). Here,
the 2P1/2 manifold splits up into a F ′ = 0 and a F ′ = 1 manifold. We use
the

∣∣∣2S1/2, F = 1
〉
↔
∣∣∣2P1/2, F

′ = 0,mF = 0
〉

transition as the cooling transition for
171Yb+. From the excited state of the cooling transition the decay into the∣∣∣2S1/2, F = 0,mF = 0

〉
≡ |0〉 state is forbidden due to dipole selection rules. But trap-

ping of population in the |0〉 dark state is possible through off-resonant scattering on
the

∣∣∣2P1/2, F
′ = 1

〉
levels. To avoid population trapping in the |0〉 state, we modulate a

14.7GHz sideband to the cooling laser using an electro-optic-modulator (EOM) acting as
a hyperfine repump of population back to the cooling cycle from that state. A detailed dis-
cussion of the allowed 2S1/2 ↔ 2P1/2 transitions for 171Yb+ including the Clebsch-Gordan
coefficients can be found in Appendix B.
Also the repumping of population from the 2D3/2 manifold at 935 nm requires additional

effort for 171Yb+. The repumping is necessary due to the finite probability of the excited
state of the cooling transition

∣∣∣2P1/2, F
′ = 1,mF = 0

〉
to decay into the

∣∣∣2D3/2, F = 1
〉

state. From the
∣∣∣3D[3/2]1/2, F ′ = 0

〉
state, a transition to the dark |0〉 state is forbidden,

which makes the repumping of the trapped
∣∣∣2D3/2, F = 1

〉
population to the cooling tran-

sition via this level desirable by using the 935 nm laser. In order to clear out accidental
population of the

∣∣∣2D3/2, F = 2
〉
level, a ∼ 3GHz sideband is modulated to the 935 nm

repumping laser.
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3.2 Experimental setup

Coherent population trapping
For the cooling transition of 171Yb+, a higher degeneracy of the ground state than that
of the excited state leads to the formation of coherent dark states in the (2S1/2, F = 1)
manifold [18]. This coherent population trapping effect reduces the fluorescence of the ion
and becomes stronger especially for lower magnetic fields and a decreasing Zeeman split-
ting of the mF hyperfine states. We observe a drastic decrease of the ion fluorescence to
∼ 25 % of the full value for magnetic fields lower than 1G (∼ 2π · 3MHz splitting between
the mF = ±1 levels). There are a few experimental techniques, which we found to at
least partly destroy the dark states. Due to a formation mainly at low magnetic fields, it
is possible to destroy the dark states by increasing the magnetic field. However, due to
the inductance of the magnetic field coils, which are designed to generate a constant and
stable offset magnetic field, a minimum ramping time of the magnetic field of 10ms was
achieved. This switching time between two magnetic field values potentially reduces the
repetition rate of sequences that require, for example, a low magnetic field in the main
time and a high magnetic field towards the end, e.g. for readout purposes of the atomic
state. Using a second cooling laser through a different beam port with different polari-
sation compared to the main cooling beam turns out to be a better option. This ’bright
pump’ laser is able to partly destroy the dark states and recovers the fluorescence of the
ion to ∼ 50%. However, also a fast modulation of the polarisation of a single cooling laser
can be used to destroy the dark states [18].
The reduced fluorescence of the ion is important for the detection of spin-photon en-

tanglement in chapter 7. There, it requires a trade-off between the phase evolution of the
superposition spin states due to Larmor precession (less timing precision required for low
magnetic fields) and the state detection fidelity of the ion based on fluorescence (better
for high magnetic fields).

3.2 Experimental setup

Since 2009 the experimental system is under construction and continuously progress. The
coupling of a trapped ion to a single mode of a fibre cavity was demonstrated in the
infrared spectral regime in [158, 159]. Subsequently, a fibre resonator working in the UV
spectral regime was integrated into a newly built second ion-trap setup in [6] and the
coupling of this resonator to the principal UV transition of Yb+ was demonstrated.

At this point, the research phase of this PhD project started with the goal of realising a
quantum network node that employs the fibre resonator as a light-matter interface for the
distribution of quantum information in the form of ion-photon entanglement. However,
the previously existing fibre cavities had some known shortcomings, and to address these,
we have developed a new fibre cavity in the context of this thesis, in which we have
implemented the previous findings, especially on stability and mirror degradation (for
details, see section 5.2). The new cavity was then assembled as part of a master’s thesis
in [29].
In parallel, we successfully performed first correlation measurements between the pho-

tonic and atomic qubit state in the σ̂z-basis on the existing ion-cavity setup built in
[6], where we bypassed a cavity-microwave incompatibility using a two-photon Raman-
transition for the manipulation of the atomic qubit. On this setup, we reworked the hard
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3 Trapping of Yb+

and software of the data acquisition and data analysis to implement, among other things,
conditional real-time branching of fast experimental sequences (see subsection 3.2.4).
After assembly, we combined the new UV cavity with an existing Paul trap originally

built in [115, 157] and installed the infrastructure of this new trap-cavity setup, where
we implemented what we have learned so far. In particular, this includes: i) an improved
imaging system of the ion using a high NA objective, ii) a stable beam pointing for all lasers
due to the implementation of stable beam paths and a continuous monitoring, iii) a low
noise magnetic field generation (see Appendix D) and iv) a setup generating phase stable
microwave pulses (see subsection 6.4.3). Fortunately, the final assembled new fibre cavity
has a much better microwave compatibility than the one used so far and we switched from
qubit manipulation with two-photon Raman transitions to the use of microwave pulses,
since we achieved higher rotation fidelities with the latter. Furthermore, we added passive
and active magnetic field shielding to the setup (see subsection 6.6.2) and built a setup for
polarisation-resolved detection of photons leaving the fibre cavity (see subsection 5.5.1).
We also had to implement the hardware and software for data collection and analysis at
the same level we had achieved with the second setup.
We present most of these points in the following subsections in detail. The remaining

parts are discussed in the stated subsections of other chapters.

3.2.1 Laser system

The control of matter using coherent light is a fundamental part of the experiment. Most
interactions with the trapped ion are taking part via optical transitions and (near) resonant
light. As a source of coherent radiation, lasers enable trapping, cooling, state control and
readout of the atomic qubit. But they can also serve as a frequency reference for cavities
and other lasers.
The laser system was built up step by step and parts were added in [115, 6, 157] and

during this work. However, with a few exceptions10, the entire laser system of both traps
was gradually reworked or rebuilt in the context of this thesis. Figure 3.6 shows a sketch of
the laser system, which is distributed over two optical floating tables to dampen vibrations
(photo see Figure 10.4). All tables, lasers and cavities are temperature stabilised.

10 transfer lock and continuous wave frequency doubling (ring cavity)
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Figure 3.6: Simplified sketch of the laser setup, which is extended over two optical tables (indi-
cated as two big rectangles). The radiation wavelengths of the lasers are given. The frequency and
power stabilisation of the lasers are indicated, if available. For the sake of clarity, we omit almost
all optical elements in the sketch. For completeness, the position of the second trap setup with the
corresponding cooling and repumping laser is indicated as part of the second table and the Raman
laser pair as part of the first table (less opaque). Details of the pulsed laser setup are given in
subsection 6.3.3. Details of the fibre cavity reference lasers f1 and f2 are given in subsection 5.3.2.

For Doppler-cooling, micromotion detection, state readout and state initialisation of
the ion, we can generate up to 80mW laser light at 369.54 nm from a frequency doubled
Ti:sapphire laser11 running at 740 nm. The 740 nm Ti:sapphire and the 935.2 nm repumper
diode laser are locked via a transfer cavity to a Rubidium cell providing an atomic fre-
quency reference at 780 nm according to the locking scheme presented in [115, 157].
We use two 399 nm lasers resonant with neutral Ytterbium (one for the spectroscopy

cell, one for ionisation in the experiment) and three 370 nm reference lasers, two of which
are used for calibration and locking of the fibre cavity (see section 5.3). The third one
is used for calibration and coupling purposes of a picosecond pulsed laser. The setup of
this mode-locked Ti:sapphire laser requires a separate discussion, which is given in sub-
section 6.3.3. The 399 nm and 370 nm lasers are free running diode lasers and frequency
stabilised at a low bandwidth (∼ 1 s) to the wavemeter12, which provides us with a fre-
quency measurement of our lasers. A second 780 nm laser is locked to an ultra-stable
reference cavity and serves as a frequency reference for the pulsed laser setup.
The power regulation of the lasers is realised using acousto-optic modulators (AOMs)

which also allows to turn the continuous wave lasers on and off within ∼ 1µs.

11 SolsTiS from M Squared lasers, frequency doubling from [115]
12 Wavemeter WS7 from HighFinesse
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3 Trapping of Yb+

3.2.2 Optical access

The used experimental techniques for controlling the trapped ion with coherent light ben-
efit from well-aligned laser beams to achieve the desired experimental precision. In partic-
ular, a high fluorescence signal and a low noise floor is important while driving the cooling
transition 2S1/2 ↔ 2P1/2 at 370 nm, since we use this signal as a main feedback from the
ion. A high signal-to-noise ratio can be achieved with small beam waists at the position
of the trapped ion in order to enhance light-matter coupling and to suppress accidental
illumination of the trap components which could cause stray light.

Position and focus
Due to a potential charging of trap elements, the UV lasers require a high degree of beam
alignment. The best sensor for beam alignment is the trapped ion and for the 370 nm
laser, we can find the optimal beam position by having the ion at the trap centre and
optimising the rate of scattered photons from the (weakly13) driven ion. However, we
do not have such feedback available for the 399 nm ionisation laser. We send the 399 nm
beam together with the main cooling beam (beam 1) to the ion, but due to the dispersion
of the optical elements, we have to optimise its position and performance separately by
monitoring the time needed to load an ion into the trap on the one hand and the charging
of the trap elements on the other hand.
We can measure the charging effect of the 399 nm beam by using the so-called Doppler

correlation method. To this end, the ion is continuously driven by the main cooling
laser at 370 nm and the 399 nm laser is turned on for a defined time interval. A possible
formation of a stray electric field due to the charging of trap elements would subsequently
displace the ion from the trap centre, which in turn would manifest itself as an increased
amplitude of the ion’s motion. An increased micromotion amplitude can be detected
using the correlations between the trap RF and the scattering rate of photons by the ion
according to subsection 4.1.1. Figure 3.7 shows charging and discharging of trap elements
for two different positions of the 399 nm beam focus. We observed that a discharge of trap
elements can take a comparatively long time, but also that the charging can be minimised
by beam alignment.
The loading efficiency of an ion into the trap is mainly determined by the overlap of

the 370 nm and 399 nm lasers and the relative position of the resulting ionisation region
to the trap centre [130]. In the experiment, we find the optimal overlap iteratively. The
overlap of the 399 nm laser and the thermal atomic beam, however, can be taken as given
due to the large diameter of the atomic beam.

13 A higher driving power due to a better beam alignment could also result in a reduced scattering rate
of photons for 171Yb+ if the power of the probing laser is initially set too high, as described in [46]
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Figure 3.7: Estimation of the charging of trap elements during a 10 s pulse of the 399 nm laser at
40 uW. The time interval of the 399 nm pulse is shown as a grey shaded area. The offset correlation
for a minimised motion of the ion is shown as a black line with the standard error as shaded area.

We usually operate the lasers at low power (∼ 0.5µW–40µW) in continuous wave mode.
As an exception, the 935 nm repumping laser allows for a higher beam power (∼ 300µW)
and at least one magnitude lower positional an focal alignment precision. This is due to
the experimental setup being insensitive to infrared radiation in terms of static charging
and stray light.
The experimental setup exhibits three non-collinear 370 nm laser beam paths used for

interaction with the 2S1/2 ↔ 2P1/2 transition of the Yb ion (referred to as beam 1/2/3,
see Figure 3.8). In particular, the minimisation of the ion’s motion benefits from this
setup (see subsection 4.1.1). However, trapping and cooling of an ion works also with only
one beam (beam 1 in our case). We monitor radial profile, position and focus of each
beam using so-called ’beam microscopes’. We image each of the beams on a CCD camera
focused to the trap plane and showing the needles as a sharp image14 (see Figure 3.8).
We align the optical axis of each microscope to the corresponding beam axis using a set of
apertures, since we found this to be crucial for correct estimation of the beam profile. For
a focal alignment of the laser beams, we can find the correct position of the focusing lens
up to a few millimetres by minimising the beam diameter on the CCD image. However,
small readjustments using the fluorescence signal of the trapped ion are usually necessary.
Beam 1 and beam 2 are focused with a f = 150mm lens to the ion allowing for a minimal
beam waist (1/e2 radius) of

ω0 ≈
2λ
π

f

D
∼ 7µm, (3.11)

which we verify approximately using the CCD camera (see inset in Figure 3.8). We
calculate ω0 by matching the total angular spread of a diverging Gaussian beam in vacuum
θ = 2λ

πω0
to the angle of aperture of the lens θ/2 ≈ tan (θ/2) = D/2

f . We hereby assume a
collimated input beam with diameter of D ∼ 5mm.

Beam 1 and beam 3 incident perpendicular to the quantisation axis (cavity axis) with
α = 90◦ (see Figure 3.8). The angle between beam 2 and the quantisation axis is α = 75◦.

14 We use collimated laser light or incoherent LED light for focusing the beam microscopes to the trap
plane
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Since beam 2 has a component along the cavity axis, static charging of the cavity mirrors
due to incident UV light is the strongest for this beam.
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Figure 3.8: The vacuum chamber with beam ports and imaging access is sketched. The Paul
trap is sketched as grey needles with DC electrodes in yellow. Using an external magnetic field, we
set the quantisation axis along the cavity axis (z-axis). The windows of the viewports are angled
by 7 degree in order to mitigate back reflections may causing stray light at the trap [157]. Note
that the positioning of the lenses behind the final adjustment mirror is non-optimal for the radial
beam profile. We accept slightly imperfect beam profiles for gaining smaller beam waists by being
able of using smaller focal lengths of the focusing lenses. On the top left corner, a recorded image
of the main cooling beam on the corresponding CCD camera is shown. The image also shows
the shadows of the trap needles (bottom/top shadows) and cavity steel-tubes (left/right shadows).
Due to the viewing angle, the distance of the needles appears to be reduced with respect to the
cavity mirror distance.

Polarisation
Each beam is coupled through a single-mode fibre before being directed towards the trap
to ensure a high initial spatial mode quality. After out coupling, each beam is polarisation
cleaned using a polarising beam splitter (PBS). For all beams, we adjust the polarisation
right before the trap using a λ/2 and a λ/4 wave plate.

The optimal polarisation of each beam depends on the specific isotope of Yb. A maximal
scattering rate of photons and hence optimal Doppler cooling for a 171Yb ion can be
achieved when driving all three polarisation components (π, σ±) approximately equal in
their amplitude [46]. Here, equal coupling15 to all ground states of the (2S1/2, F = 1)
manifold is achieved. In order to compute the required polarisation orientation of each
beam, we assume linearly polarised light with the electric field vector having an angle φ
with respect to the quantisation axis (see Figure 3.8). The incident angle of the beam α is
considered with respect to the quantisation axis of the ion as well. We compute the relative
strengths of the polarisation components π, σ+ and σ− (with unit vectors êπ, êσ+ , êσ−) of

15 The Clebsch-Gordan coefficient of the involved couplings are equal
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a certain polarisation state S using the Jones matrix formalism as

Dx(S) = r(S, êx) with x ∈
{
π, σ+, σ−

}
(3.12)

using the polarisation state overlap

r(u,v) = |u†eve|
2 with the unit vectors ue = u

|u|
and ve = v

|v|
. (3.13)

We define the combined contrast of all polarisation components as

χ = |Dπ −Dσ+ |+ |Dσ− −Dπ|+ |Dσ+ −Dσ− |. (3.14)

If all components have equal strengths, the combined polarisation contrast is χ = 0. In
Figure 3.9 the angular dependence of χ is shown.
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Figure 3.9: The combined polarisation contrast χ is shown as a function of the beam incident
angle α and the angle φ of the linearly polarised electric field, both with respect to the quantisation
axis (see Figure 3.8). A contrast of χ = 2 indicates a pure π, σ+ or σ− polarisation, whereas at
χ = 0 all polarisation components have equal strengths.

We can derive an expression in terms of φ and α for which the polarisation components
are equal in their relative strengths:

(cosφ · sinα) ≈ cos (54.7◦) . (3.15)

For the pulsed excitation of the ion (see section 6.3), we aim to drive only the ∆mF = 0
transition by using linearly polarised light parallel to the quantisation axis. Since the
pulsed laser and cooling beam 3 share a common beam path, we use motorised waveplate
mounts to adjust the beam polarisation according to the intended use (see Figure 3.8).

3.2.3 Free-space imaging

The ability to detect photons scattered by the ion into free space is a basic requirement for
running the experiment. The access to several information depends on the photon statistic
received from the ion, such as its optimal position within the trap (subsection 4.1.1),
frequency and position calibration of the lasers and readout of the ion state (section 6.2).
In this subsection, we introduce and characterise the imaging system used for collection
and detection of parts of the light scattered by the ion at 369.5 nm into 4π solid angle.
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3 Trapping of Yb+

Since the ion can be seen as an ideal point source isotropically emitting light into 4π
solid angle, the point spread function (PSF) of an optical system can be used straight
forward to evaluate the imaging system. The PSF describes the spatial optical transfer
characteristics of an ideal point source as an input of an imaging system to its output [146].
From the PSF it can be deduced whether an imaging system is limited by diffraction16 or
whether, even with a perfectly aligned lens system, the imperfections of the optical path
reduce the imaging quality.
From the evaluation17 of the PSFs for different imaging setups, we know that varying

optical path lengths for different beam incidence angles on a vacuum chamber window lead
to a limitation of the usable numerical aperture (see Figure 3.10 c)). For a vacuum chamber
window of ∼ 6mm thickness, a maximum NA of 0.32 was calculated in [6], at which the
imaging system becomes diffraction limited. For the presented experiment, we aimed for
an even higher usable NA of 0.48. We need a high collection efficiency of scattered photons
for a high fidelity detection of the atomic qubit state (see subsection 6.2.2), which directly
is determined by the usable NA. Therefore, we had to think about alternatives to the
previous used imaging setups.

To avoid the effect of varying optical path lengths for the setup presented in this thesis,
we placed the light collecting objective18 inside the vacuum chamber to achieve parallel
rays for light collected from the ion as a point source (see Figure 3.10 a),b) & d)). In this
case, the numerical aperture is solely limited by the geometry of the objective lens and the
image quality is even insensitive to a tilted chamber window as long as the point source
is in focus of the light collecting objective. Otherwise, we can observe strong astigmatism
for a focused beam travelling non-perpendicular through a window.

16 Light entering the objective from a point source is focused to a radius of the central airy disc of
1.22λ/(D/f) in the imaging plane with the objective aperture diameter D and focal length f (Rayleigh
criterion)

17 Using OSLO from Lambda Research Corporation
18 AFL25-25-S-U from Asphericon
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Figure 3.10: a) Sketch of the free-space imaging of the ion fluorescence. The objective is placed
inside the vacuum chamber (grey circle). b) Greyscale data recorded with the EMCCD (blue
coloured) at full achievable NA (∼ 0.47) superimposed with an image recorded on an APS-C
sensor using a 150mm macro objective. A single Yb ion is trapped centrally between the needles
(top and bottom) and scatters light at 370 nm. The needles scatter the laser light as well. The
tubes containing the cavity fibres are visible on the left and right hand side respectively. Inset:
original sensor data of the EMCCD cropped to the position of the ion (30 × 30 pixel). The pixel
size of the EMCCD is 4µm × 4µm. c) Optical beam path for light emitted by a point source
(black dot). A glass window is placed between source and the light collecting objective. While
for small NA the rays are approximately parallel behind the objective, the imaging error for the
outermost rays (high NA) increases. d) Same as in c) but with the objective being placed in front
of the glass window. All rays passing the window in parallel in the ideal case.

We optimise the alignment of the objective lens within the chamber by using the ion as a
true point source. To this end, the lens is mounted19 tiltable around the z-axis and y-axis
and is movable along the x-axis.

We split the collected ion fluorescence using 30% of the light for imaging on an elec-
tron multiplying CCD sensor20 (EMCCD) and detect the remaining light on a single
photon counter21 (SPC) (see Figure 3.10 a)). We use a variable and movable aperture
(ø∼ 100µm) to crop the part visible to the SPC to the ion fluorescence in order to sup-
press stray light (e.g. from the needles, see Figure 3.10 b)). Furthermore, we apply a
10 nm spectral filtering22 with ∼ 92 % transmittance in advance to the SPC. We end up
in total with a dark count rate of ∼ 120 counts

s on the SPC.

Measurement of the collection efficiency
In order to quantify the performance of the imaging system, we measure the detection
efficiency of the whole setup by pumping a trapped 174Yb ion into the 2D3/2 manifold.
From the decay constant of the population in the bright state and the branching ratios
of the transitions, we can calculate the rate of scattered photons by the driven ion (see
Figure 3.11 a)). To this end, we drive the ion on the 2S1/2 ↔ 2P1/2 transition and disable
the 935nm repump laser at a certain point in time (see Figure 3.11 b)).
Since the branching ratio of the excited state manifold 2P1/2 into the 2D3/2 manifold

is 0.501(15) % [129], the probability Pbright(t) to find the ion after N = R4π · t photon

19 PA35-H Port-Aligner from UHV-Design
20 Luca EMCCD from Andor
21 H7360-01 from Hamamatsu. Dark counts per second typ. 15, max. 80 according to the manufacturer
22 FF01-370/10-25 from Semrock
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3 Trapping of Yb+

scattering events still within the 2S1/2 manifold is

Pbright(t) = 0.995R4π ·t. (3.16)

Here, R4π is the rate of scattered photons on the driven atomic transition into free space.
With ηD being the detection efficiency of the whole free space imaging setup, we detect a
fractional rate of photons · s−1 of

D0 = ηD ·R4π (3.17)

on the single photon counter.
For a single experimental run, the ion is either in the 2S1/2 manifold and still coupled

to the 370 nm driving laser field or in the 2D3/2 manifold, where it remains dark and does
not scatter photons any more. Averaging the detected free space photons over 50,000
repetitions of the sequence shown in Figure 3.11 b), we obtain an average detection rate
of photons D(t) = D0 ·Pbright(t) which decays exponentially according to equation (3.16).
The decay constant τ is then given by

τ = 1
R4π · ln (0.995) . (3.18)

The detection efficiency is calculated from the decay of the detection rate D(t) as shown
in Figure 3.11 b) using equations (3.17) and (3.18) as follows:

ηD = D0
R4π

= D0 · τ · ln (0.995) = 0.46(1) % with τ = 10.13(9)µs. (3.19)
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Figure 3.11: a) Relevant energy levels of 174Yb+ according to Figure 3.5 a). b) Binned photon
detection times (blue dots) for 50,000 repetitions of the shown sequence (top). The standard error
is given as error bar for each data point (mostly not visible on this scale). The solid black horizontal
lines constitute the averaged measured detection rates for a bright ion (top line), where the 935 nm
laser is enabled (grey shaded area) and for a dark ion pumped to the state 2D3/2 (bottom line),
where the 935 nm laser is turned off. The thickness of the lines reflects the standard deviation of
the rates. From the difference of the rates, we extract the detected scattering rate of photons D0
for a bright ion. A least-square fit of an exponential decay function is shown as orange solid line
with decay constant τ .
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3.2 Experimental setup

If the light is emitted by a point source isotropically into 4π solid angle and the imaging
system is adjusted such that it is only limited by diffraction, then the following equation
applies for the collection efficiency ηC of the light [6]:

θ = 2 arccos (−2 · ηC + 1) . (3.20)

Here, θ is the maximum angle of a light cone coming from the point source that can enter
the imaging lens according to Figure 3.10 a). The numerical aperture NA of the lens is
given by

NA = sin (θ/2) . (3.21)

From equations (3.20) and (3.21) we can compute an effective numerical aper-
ture of the setup by using the estimated collection efficiency of the objective
ηC = ηD/(ηpath · ηspc) = 5.9(2) %, where we determined the optical path efficiency to be
ηpath = (54± 1.5) % from evaluating the transmission coefficients23 of each optical ele-
ment shown in Figure 3.10 a). The single photon counter (SPC) quantum efficiency
is ηspc = 0.145 according to the manufacturer. We obtain for the effective numerical aper-
ture

NAeff = 0.471(7). (3.22)

The value is close to the nominal24 numerical aperture of the objective lens
of NAnom = 0.48, which states that we have aligned the whole imaging system close to the
optimal diffraction-limited situation.

3.2.4 Data acquisition and experimental control

The acquisition of experimental data and the execution of preparatory tasks require the
use of automated experimental control sequences. We distinguish between fast control
sequences of the experiment and slow sequences (e.g. loading an ion into the trap). For
the former, TTL pulses (≥ 10ns) are distributed over high-frequency point-to-point links
for experimental control with an accuracy of . 1µs, while for the latter we use TCP
Ethernet communication, which has higher latency but is easier to scale. Figure 3.12
shows a block diagram of the experimental control setup, which has a modular structure.
Groups of hardware devices are controlled via micro severs running on microcontrollers or
small computers. This allows for distributing the hardware load and increases the failure
safety of the whole experiment, since single modules can be replaced and added with low
impact for the whole experiment. Furthermore, for future applications including two or
more ion traps, hardware could be shared between the setups and experimental control
could be distributed among multiple control computers.

23Asphericon AFL25-25-S-U 8mm fused Silica: T = 0.95, Thorlabs vacuum chamber window 5mm
NBK7: T = 0.954, Thorlabs Lens LA4782-UV 4.4mm UV fused Silica: T = 0.97, Edmund optics
30/70 BS: T = 0.95 · 0.7, Thorlabs lens 9mm NBK7: T = 0.92. An error of ∆T = 0.01 is assumed.

24 According to Asphericon
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Figure 3.12: Block diagram of the experimental control. Elements of the fast experimental control
system (FECS) with a precision of . 1µs are coloured according to their role (yellow: experimental
control, blue: data acquisition).

We use a field-programmable gate array25 (FPGA) for application of fast control se-
quences, where we upload and execute the sequences from the control computer. The
FPGA exhibits number of 20 TTL compatible output channels and two input channels,
which we access as binning counters from the control computer. The inputs can be fur-
ther used as real-time decision branching during the execution of a sequence, where the
condition is formed by the number of events impinging within a certain time window to
the inputs.
A time-to-digital converter26 (TDC) assigns continuous 48-bit time stamps to incoming

pulses originating for example from the single photon counters with a time resolution of
< 35 ps. As a result, the string of time stamps has to be chunked in post-processing
according to the corresponding sequences executed by the FPGA (see Figure 3.13). To
this end, three of the eight input channels of the TDC are used for synchronisation with
the FPGA.

25 XEM6001 from Opal Kelly
26 TDC8HP from RoentDek
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Figure 3.13: Post-processing of recorded TDC data. The data gets divided into chunks according
to the control sequences executed by the FPGA which are numbered consecutively with k ≥ 0. The
sync pulse indicates the point in time when the FPGA started executing the control sequences. In
conditional mode, the FPGA outputs a 2-bit sequence fingerprint in addition.

We distinguish between two modes of FPGA operation: i) In the sequential mode, the
FPGA runs a fixed number n of repetitions of one control sequence with a fixed length l.
In the post-processing of the data, a sync pulse sent out from the FPGA at the beginning
of the sequences is used to determine the point in time for the definition of t = 0 within the
measured data of the TDC. From here, the data is split into n chunks of length l, which
are numbered with an integer k < n. ii) Using the conditional mode, multiple branches of
a sequence are programmed into the FPGA and their executions are based on real-time
input conditions. In particular, this speeds up the experimental repetition rate if one
longer sequence is based on the success of a shorter sequence. This mode is used for the
presented spin-photon entanglement measurement and the quantum key distribution (see
chapters 7 and 8). In the conditional mode, the post-processing is applied according to a
2-bit value recorded on the TDC allowing for a fingerprinting of three different sequences.
The 2-bit value comprises of two TTL pulses which were sent out simultaneously at two
different channels of the FPGA27. Based on the occurrences of these fingerprints and a
subsequent sanity check, the TDC data is split into the corresponding sequences.

27 The fingerprint bit size can be extended at the cost of available output channels on the FPGA and
available input channels on the TDC
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4 Optimising experimental calibration tasks with machine learning

4 Optimising experimental calibration tasks with machine
learning

Successful acquisition of data requires careful calibration and correction of environmental
influences, as can be seen from the previous chapter. However, this also applies to many
other experimental setups. Across the fields of atomic and condensed matter physics,
the continuously increasing requirements regarding the precision of experiments entail the
need for ever better cancellation of disturbances. Detecting and reacting to an external
noise source, which drives an experimental system out of its optimal state is a frequent
challenge for many experimental platforms. This can be particularly cumbersome when
the timescale required for readjustment of the setup is comparable to the timescale of
the temporal deviation of the noise source. Therefore, efficient and fast methods for the
detection and compensation of external perturbations are of high importance.
In this chapter, we present the use of two machine learning algorithms to create an

empirical model of an experimental apparatus capable of predicting an experimental pa-
rameter set for the compensation of an external perturbation from a minimised number
of measurements of the perturbation. Due to the large number of different experimental
setups and the large number of calibration tasks, we first describe these tasks in general.
We consider an experimental system driven out of its optimal operation condition by

noise sources Ni which add up to N =
∑m
j Nj (Figure 4.1 a)). The noise is considered as

vector in the parameter space of the compensation control parameters. Furthermore, there
are no cross-correlations assumed between the noise sources. In particular, the goal of any
compensation task is the cancellation of the noise N by applying a compensation C which
itself consists out of a k-dimensional set of control parameters Ci (see Figure 4.1 b)). Ex-
amples would be magnetisation of parts of the experimental setup, heating from a defined
source or, as relevant in our case, electrical charging of elements in a setup. Since the ex-
ternal noise sources disturbing the experimental system have a predictable physical origin,
we assume that the resulting disturbance is not inherently random. We explicitly exclude
the cancellation of any random noise from the applicability of the presented methods (e.g.
white noise).
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Figure 4.1: a) The experimental system (blue ball) is disturbed by a set of noise sources Nj
(grey). b) The noise sources drive the system out of the equilibrium position (red ball). The
external disturbance can be cancelled using in total k control parameters Ci, i ∈ {1, ..., k} (orange
trace). c) Classification of various methods which can be used for a compensation. We classify
measurement and developing effort of a method. Figures a) and b) have been published in a similar
manner in [93].
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Systematic search
In the most general case, the desired set of compensations {Ci} can be found by scanning
a k-dimensional hypercubic grid with n steps along each axis i ∈ {1, ..., k}. The value
of n is determined by the required precision. This systematic search scales with nk re-
quired data points exponentially in the dimension of control parameters. As soon as the
perturbation changes, the same search has to be performed again because no knowledge
about the system itself was gained. While this method is able to compensate even random
perturbations, it is inefficient for experiments which are facing (partly) predictable noise.
It is not necessary to apply the whole systematic search procedure for a compensation by
having knowledge of how to predict the noise manifestation.
Complete model of the setup
In principle, a changing compensation could be predicted with minimal measurement effort
from a model including the origin of perturbation and all unique features of the experimen-
tal system. Such a model constitutes the opposite to the systematic search approach, as it
requires minimal measurement effort but maximal development work (see Figure 4.1 c)).
However, such a simulation is usually impossible since it would require deep knowledge of
all special characteristics of the setup and the noise sources. When weighting up effort and
gain of a universal applicable simulation to a systematic search for optimal compensation,
the latter wins in most cases regardless the fact that it can only cover the current temporal
deviation.
Data describing models
A compromise between these two approaches are data models that use certain underlying
physical aspects of the noise and control parameters to introduce dependencies between
them. As an example, extrapolating the remaining experimental disturbance as a function
of the control parameters Ci allows to find a parameter setting where N is compensated
with reduced effort. These data describing models can be found heuristically or on the
basis of physical effects. Data describing (heuristic) models can greatly reduce the amount
of measurements needed for a compensation since they do not require a lengthy explo-
ration through parameter space. Usually the measurement effort then reduces to a linear
dependence and can be described as

Y = amodel · n · k, (4.1)

where Y is the total number of measuring points and n represents the number of data
points of a one-dimensional line segment in a k-dimensional hypercube in the control
parameter space. The factor amodel measures the specific scaling of a model.
Combining the best features
In the following, we introduce a method capable of combining the generality of the sys-
tematic search with the reduced measurement effort of a complete model having precise
knowledge about the system. To this end, we utilise methods to reveal information hid-
den in a large dataset originating from machine learning research, which in recent years
has found its way into the domain of physics [32]. For example, reinforcement learn-
ing techniques have been utilized to systematically scan large potential parameter spaces
in search for optimal values [169] and supervised learning techniques yielded improved
measurements and optimised critical parameters [112].
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In the following, we present a new approach based on machine learning that creates an
accurate empirical model of the underlying experimental system that allows us to access
the correlations between parameters induced, for example, by the geometry of the setup.
The presented methodology yields improvements for two distinct cases:
(1) Approaching a general compensation problem when no data model of the system

exists. Prominent examples of such tools are systematic search and gradient descent
optimisation. We add a supervised learning approach to this toolkit making use of a feed
forward artificial neural network (ANN) and benchmark its performance with respect to
the systematic search and gradient descent optimisation.
(2) If a data model is known, we demonstrate that we can even outperform the state-

of-the art models in terms of required number of measurements and hence time needed
to perform a compensation. Using unsupervised learning, namely Principal Component
Analysis (PCA), we are able to reveal hidden correlation between the compensation pa-
rameters in order to cover the origin of disturbance and not only its compensation.
In section 4.1, we introduce the task of excess micromotion minimisation in a Paul

trap by external stray field cancellation and discuss the common strategies to find a com-
pensating electric field. In order to test the accuracy of the prediction of the various
optimisation procedures, we define a measure σ as the standard deviation of predicted
compensation points for a common manifestation of a stray electric field. The standard
deviation is calculated in terms of the Euclidean distance of the predicted points in the
parameter space of applied compensation electric fields. We have verified that the actual
compensation point is located in at least 68% of the cases within one standard deviation
from the predicted one. For reference, the typical range of compensation drift averages to
∼ 600V/m over a few months28.

In section 4.2 we create an empirical model of the setup using the presented machine
learning approach. We show that the ANN performs on par with a PCA-enhanced heuristic
model and we see that by taking accuracy measures into account, the amount of input data
can be reduced to a minimum in the case of the ANN, which is even below the principle
minimum of k data points of the PCA.

4.1 The task of stray field cancellation

An experimental task frequently arising in the presented setup of a radio frequency Paul
trap is the compensation of electric stray fields building up at the ion’s position. Stray
electric fields push the ion away from the symmetry point of the quadrupole field and
increase the temperature of the ion in terms of micromotion. This limits the trapping
time and thus also, on a practical level, the time available for data acquisition. But it
also reduces the general usability of the ion as a stationary qubit in a quantum network.
Furthermore, cold ions are not only required in quantum information processing [22] but
also in precision spectroscopy like for atomic clocks [81].

In this section we present the detection and minimisation of micromotion along one
spatial direction leading to the complex problem of minimising the micromotion along all

28 We determine the drift by using an arithmetic mean of the measured compensation points in the
parameter space of applied electric fields and computing the standard deviation of their Euclidean
distance to that point.
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4.1 The task of stray field cancellation

three spatial directions. In this context we benchmark two approaches to find the point of
minimal motion in three dimensions, namely gradient descent optimisation and a heuristic
model making use of hyperplanes in the parameter space of applied compensation voltages.

4.1.1 Micromotion detection and compensation along one spatial direction

The working principle of a Paul trap and the influence of a stray electric field to the
micromotion of a trapped ion is discussed in subsection 3.1.1. In this subsection, we
introduce the experimental techniques available for the compensation of a stray electric
field. In general, we intent to apply an electric field ~Ecomp which cancels the stray field
~Estray. We are able to apply an electric field ~Edc along any spatial direction using three sets
of grouped DC electrodes (see Figure 4.2 a)+b)). The resulting electric field is determined
by the geometry of the electrodes as a linear combination of the electrode groups and was
measured in [157]. It can be computed in units of V/m as

~Edc(Vx1 , Vx2 , Vx3) = (−250± 30) · Vx3 + (389± 11) · (Vx1 + Vx2), (4.2)

where (Vx1 , Vx2 , Vx3) denotes the DC voltage applied to the respective electrode group
representing the three spatial directions. Hence, the compensation field can be written as

~Edc(Vx1c, Vx2c, Vx3c) = − ~Estray ≡ ~Ecomp. (4.3)

We refer to the voltage set ~Vc = (Vx1c, Vx2c, Vx3c) as compensation point in the following.
Various methods have been developed to determine the compensation point. These

methods are based on measuring the equilibrium position of the ion [60], parametric exci-
tation of the ion [70] or correlation measurements between the photon scattering rate of
the ion and the trap RF frequency [151]. The latter is known as the Doppler correlation
method and was first demonstrated in [19].

Driving laser
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 Yb+

Photon detection
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k
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,Vx3
)
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a) -Vx3

+Vx3

Ex3 -Vx1
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-Vx2

+Vx2
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Ex1

Imaging system
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Figure 4.2: a) Sketched side view of the trap including the DC electrodes (yellow). Applying DC
voltages to a group of electrodes results in an electric field at the ion’s position. For an electric
field along the trap axis (Ex3) top and bottom electrode groups are set to a negative and positive
potential respectively. b) Top view of the trap (x1-x2 plane). The axes of the imaging and the
fibre cavity are shown for the sake of completeness. c) The Yb ion is driven by a laser beam with
wave vector ~k. The rate of scattered photons into free space R depends on the velocity of the ion
according to equation (4.5) and hence on the applied DC voltage.

We utilise the Doppler correlation method as a starting point for our optimisation. To
this end, we illuminate the ion with a laser beam and measure the rate of photons R
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4 Optimising experimental calibration tasks with machine learning

scattered by the ion into free space (see Figure 4.2 c)). The Doppler effect connects the
motion of the ion along the driving laser beam axis to a modulation of the scattering rate R
of photons. This is due to a variation of the detuning between the driving laser frequency
fl and the resonance frequency of the atomic transition fres given by ∆ = fl− fres. In the
motional frame of the ion, the laser frequency

fl,ion = fl,lab

(
1− ~v · ~k

c · |~k|

)
(4.4)

varies according to the current velocity of the ion ~v = ~̇x. Using the steady state solution
of the scattering rate of a driven two-level system from equation (6.28) together with
equation (4.4), we obtain

R(~v,~k) = Γ
2 ·

I/I0

1 + I/I0 + 4
(

2π·∆lab−~v·~k
Γ

)2 . (4.5)

According to above equation, the scattering rate of photons depends on direction and
velocity of the ion’s motion. From equation (3.8) we know that the oscillation frequency
of the (excess) micromotion is equal to the frequency Ω of the driving trap RF field.
Therefore, the amplitude of the cross-correlation between the arrival times of scattered
photons on the detector and the trap radio frequency Ω directly measures the excess motion
of the ion along the wave vector ~k of the driving laser field according to equation (4.5) 29.

The presented method requires the saturation parameter I/I0 to be approximately con-
stant over the region of interest, which limits the range of applicable DC voltages. More-
over, it requires a well aligned cooling beam centred to the ion’s position.
We measure the cross-correlations for a duration of 1 s by using the time-to-digital

converter and a FPGA according to [189] and [157]. Upon scanning the electric field
components, one can find a minimum of correlations (see Figure 4.3 a)). This reveals a set
of ~Vm = (Vx1m, Vx2m, Vx3m) for which the motion of the ion is minimal along the driving
beam axis ~k. We determine the electric field ~Edc(~Vm) with a measurement accuracy of
(54 ± 3)V/m, which we infer from the measurement uncertainty in terms of applied DC
voltages and equation (4.2). It is important to understand that this methodology so far
only provides information about the component of the ion’s motion that is parallel to the
wave vector of the laser beam, while the motion along orthogonal axes cannot be detected.
Therefore, by minimising the motion along this axis, likely additional motion is induced
along directions orthogonal to the beam axis (Figure 4.3 b)).

29 Note that equation (4.5) is more an approximation in this case since Ω� Γ is not true in our experiment.
Furthermore, the scattering rate of photons follows a more complicated dependence for the isotope
171Yb+ which is described in [46].
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Figure 4.3: a) Correlation measurement between the trap frequency Ω and the scattering rate of
photons R(Vx1 , Vx2 , Vx3) while varying Vx2 (trajectory 1 in c)) and assuming an external stray field
~Estray 6= 0. The dashed line denotes the voltage setting of minimal motion of the ion Vx2,m along
the driving beam axis ~k (the grey area depicts the measurement uncertainty). b) A simplified
sketch of the ion’s motion displaced by the stray field from the trap centre is shown for no applied
compensation field (Vx2 = 0) and minimised correlation (Vx2 = 12.4(1)V ≡ Vx2,m). For the latter,
likely additional motion is induced along directions orthogonal to the beam axis (~v ⊥ ~k, orange
arrows). c) The ion is driven with a laser beam with wave vector ~k which exhibits a waist larger
than the region of interest. A set of three ion trajectories is sketched in the x1-x2 plane upon
variation of the corresponding electric field. The corresponding measurable correlations as shown
in a) for trajectory 1 are indicated as red area. The three dimensional voltage settings of minimum
correlation are denoted with ~Vm1/2/3.

Figure 4.3 c) shows three simplified trajectories of the ion in the radial plane of the
trap (x1-x2) upon variation of the DC electrode voltages Vx1 and Vx2 . A scan of Ex2

ends up with trajectory 1 leading to ~Vm1 as a point of minimised motion. However, we
gain no further information by just switching the direction of the scan for example to Ex1

(trajectory 2: ~Vm1 = ~Vm2). New information about the system is obtained by changing
an electric field component which is not currently scanned. Changing Ex2 with respect to
trajectory 2 and scanning Ex1 gives a new set of voltages ~Vm3 where the motion of the ion
is minimal along the probing beam axis (trajectory 3). We present in subsection 4.1.3 that
all points for which we detected minimal motion along one probe laser beam axis, form a
hyperplane in parameter space for the investigated region. But this still only covers one
component of the ion’s motion.
A full three-dimensional minimisation of the micromotion is equal to a full compensation

of all three stray electric field components and requires three non-collinear laser beams to
detect the three spatial components of the ion’s motion. However, the complex relation
between the direction of the stray field and the direction of the ion’s motion, the relative
orientation of the laser beams, trap geometry and direction of applied electric DC fields
complicate an intuitive approach to the problem.
To solve this rather complex optimisation problem, a very general approach is the sys-

tematic search of the correct voltage set ~Vc to minimise the ion motion along all three
spatial directions by just scanning all three components of the compensation field over a
cubic grid. However, the systematic search is inefficient due to an exponential scaling in
the dimensions k of the parameter-space (here k = 3). We present more efficient methods
in the following sections.
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4.1.2 Gradient descent optimisation

The performance of gradient descent optimisation (GDO) strongly depends on the spe-
cific problem. Benchmarking the performance of GDO for the presented compensation
problem using the real experimental setup would take several weeks due to the large
amount of measurements required. Therefore, we fully simulated the three-dimensional
stray field compensation problem starting from a Paul trap and adding the ion trajectory,
DC electrodes, Doppler correlation measurement and beam vectors according to the real
experimental setup using equations (3.7), (4.2) and (4.5) and the beam orientations from
Figure 3.8. We tested the simulation for consistency with real experimental data.
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Figure 4.4: Trace of a single gradient descent optimisation (GDO) of the electric stray field com-
pensation using the BFGS algorithm. We take the correct compensation point as an offset to the
shown parameter space of applied compensation voltages such that the ion exhibits minimal motion
at the origin. Steps of the GDO are shown as triangular coloured points. The starting point of the
compensation is shown at the lower right (single red triangle) and converges to the optimal com-
pensation point located at the origin. A linear interpolation between the algorithm steps is shown
as grey dashed line. Small coloured points indicate the total micromotion amplitude of the ion at
this point in parameter space according to the simulation and are given as additional information.
For a better visibility we provide 3 simulation layers containing a 10x10 grid respectively.

We use the algorithm of non-linear conjugate gradient by Polak and Ribiere (CG) and
the quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) as de-
scribed in [126] on top of our simulation for minimisation30 of the three-dimensional cor-
relations (see Figure 4.4). We observe that both algorithms failed in ∼ 1/3 of all attempts
to converge to the compensation point. For the remaining attempts, the performance av-
eraged over 27 successful compensations31 is shown in Figure 4.11. We choosed the BFGS
algorithm as a benchmark for GDO, since it showed a slightly better performance than
the CG algorithm for our optimisation problem.

4.1.3 Plane model

In subsection 4.1.2 we have seen an optimisation strategy (GDO) for the compensation
problem which works without any data describing (heuristic) model. However, data de-
scribing models can drastically reduce the amount of measurements needed for a compen-

30 We use the function scipy.optimize.minimize in python. See documentation for details.
31 We use the same stray electric field manifestation as for the PCA and ANN benchmarks
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4.1 The task of stray field cancellation

sation. In the following, we introduce a heuristic model for our compensation problem,
which makes use of the observation that all points for which we detect minimal motion
along one probe laser beam axis, form a hyperplane in the parameter space of (Vx1 , Vx2 , Vx3)
for the investigated region (see Figure 4.5 a)). The intersection point of three planes in
k = 3 dimensions constitutes the optimal setting ~Vc for the compensation electrodes. Using
this model, we are able to predict the compensation point with a measurement accuracy
of ∼ 54V/m with 8 · k = 24 measurements.
The plane model is based on the assumption that the stray field at the position of the

ion is gradient free and linear in direction, which is true for an investigated spatial region
that is small compared to the trap geometry. The point of minimal ion motion along
the investigated transversal direction of the beam can therefore be expressed as a linear
equation of three non-collinear spacial directions. Consequently, the points of minimal
correlation ~Vm along one the probe beam axis form a hyperplane in parameter space with

~n · ~Vm − c = 0, (4.6)

where ~n is the normal vector of the plane and c is the offset of the plane. We confirm
the validity of this model by evaluating the distances of the measured points to the fitted
plane. They distribute around zero Euclidean distance with a maximal standard deviation
of (173± 20)V/m in the case of beam 2 (see Figure 4.5 b)).
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Figure 4.5: a) Side view of a hyperplane in the parameter space of applied compensation electric
fields (visible as line). We fitted the plane to the points of minimal correlation (dots), which were
measured using the first probe beam (Beam 1 in Figure 4.6). b) Fit of a Gaussian distribution (solid
line) to the binned Euclidean distances of the measured points to the corresponding hyperplane
for each of the three probe beams respectively. The standard deviation σ is extracted from the
fits.

The orientation of a plane depends on the coupling between the experimental parameters
and needs not to be orthogonal to the corresponding beam axis. Figure 4.6 shows the three
planes of the three separate laser beams, whose k-vectors are non-collinear. The planes
do intersect in one point in the three-dimensional parameter space of applied DC volt-
ages, which constitutes the optimal setting for the compensation electrodes. This method
enables us to detect and compensate for an arbitrary electric field in three dimensions.
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Figure 4.6: Schematic of the Paul trap and the compensation of one stray field manifestation
using the plane model approach. The three cooling laser beams illuminate the trapped ion and
the fluorescence counts are detected on a single-photon counter. The correlation between photon
counts and supplied radio frequency measures the ion movement along the illuminating laser beam
axis. Points of minimal detected correlations lie on a plane for each beam. The intersection point
of the three planes is the optimal stray field compensation (denoted by a green X). Paul trap,
cooling beams, DC electric fields and the planes of minimal motion are shown consistent according
to their real orientation in the experiment. Distances are not to scale.

From a purely geometric point of view, the calculation of the plane parameters requires
a minimum of three correlation measurements per plane, so that a total of at least nine
measurements are required to determine the compensation point in three dimensions.
The minimal approach of nine measurements provides us with σ = 734V/m and therefore
the accuracy is worse than the typical range of compensation drift, which averages to
∼ 600V/m over a few months. The reason for this short-fall is that the quality of the
fitted plane parameters and hence the determination of their crossing depends critically
on the number of data points per plane. In practice, we have found that we require a
minimum of eight points per plane (i.e. 24 in total) to calculate the point of intersection
with a precision down to measurement accuracy (see Figure 4.7 and Figure 4.11). In this
case we obtain aplane · n = 8.
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Figure 4.7: Distance spread of the predicted compensation points with respect to the actual
measured compensation point using n = 8 points per plane for prediction. a) The spread is shown
in terms of electric field components. The standard deviation of the spread in terms of Euclidean
distance is σ = 54V/m and includes the measured compensation point (blue cross). b) Breakdown
of the prediction point spread to the three spatial axes. The actual measured compensation point
is shown as vertical blue line with the measurement error as grey area.

4.2 Machine learning enhanced stray field compensation

As discussed in the previous section on the example of a trapped ion, determination of
the compensation point for an external perturbation could be non-trivial. Like most
data describing models, the plane model introduced in subsection 4.1.3 outperforms the
systematic search and gradient descent optimisation approach (subsection 4.1.2) in finding
the optimal compensation point ~Vc for a specific external stray electric field. The accuracy
of the compensation prediction is limited by the measurement precision only for this model.
But as with most (heuristic) models, the applicability is limited to a specific problem.
We show in subsection 4.2.1 that using principal component analysis (PCA) as an

unsupervised machine learning approach, we can enhance the plane model by exploiting
previous unused hidden correlations in the model. In subsection 4.2.2, we present the
ability of building a model directly from the compensation datasets using an artificial
neural network (ANN), which does not require any predefined model such as the plane
model. Therefore, in terms of methodology, this approach is applicable to a general set of
problems.

4.2.1 Unsupervised machine learning using principal component analysis

The Principal Component Analysis (PCA) [133, 67] is an unsupervised learning algorithm
which can identify the direction of maximum variance within a dataset in parameter
space. In the best case, all deviations from the optimally compensated experiment can
be explained by one principal component êλ1 . In this case, the multiplicative factor aPCA
of equation (4.1) approaches aPCA = 1/k, which is equivalent to a search of the optimal
compensation point in one dimension. We can expect this, for example, for an electric or
magnetic field perturbing a very small object such that field gradients can be neglected.
Having access to an experimental observable directly related to the field components along
a full set of axes, it is possible to determine the field axis from a PCA. In this case, the task
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4 Optimising experimental calibration tasks with machine learning

of experimental optimisation can be reduced to the determination of a single value λ1 in a
transformed parameter space along the axis of the first principal component êλ1 . However,
the PCA method works even for more general and more complicated noise manifestations
and in the presented case, one cannot directly infer a field component from the amplitude
of the micromotion.
We apply the PCA to a training dataset containing the information about the plane ori-

entations from seven full compensation measurements, each representing a different charge
distribution in our setup and consisting in total out of 137 three-dimensional measured
data points ~Vm. For all sets of the training data we ensure the same environmental con-
ditions, i.e. beam angles, measurement method and trap geometry. We expect all these
conditions to have influence on the correlations between the compensation parameters.

We describe the planes obtained from the training dataset each with a normal vector ~n
and the offset c according to equation (4.6). For each plane, we have three independent
variables since the length of the normal vector |~n| = |(n1, n2, n3)| is not important. We
therefore set n3 = 1 without loss of generality. We train the PCA with the parameter sets
di = (n1, n2, c)i and stack the training datasets di to a vector

D =

 d1
...

d7

 =

 (n1, n2, c)1
...

(n1, n2, c)7

 (4.7)

for each beam. We centre the data around the origin by subtracting the main value of
each data column D = (n1, n2, c) from each row of the original data vector as

DN = D−D. (4.8)

Using eigendecomposition of the covariance matrix Σ = Cov
(
(DN )T

)
, we get for each

beam a decomposition into the eigenbasis (êλ1 , êλ2 , êλ3) ordered by the magnitude of their
eigenvalues (vλ1 , vλ2 , vλ3) with vλ1 ≥ vλ2 ≥ vλ3 . Note that for unsupervised training, no
’correct’ compensation point needs to be provided to the learning algorithm.
From a parameter set (n1, n2, c), we can calculate the corresponding point (λ1, λ2, λ3) in

the eigendecomposition space of the covariance matrix (êλ1 , êλ2 , êλ3) by applying following
transformation:  λ1

λ2
λ3

 =

 êλ1

êλ2

êλ3


T

·


 n1
n2
c

−D


T

. (4.9)

Conversely, we can transform any point (λ1, λ2, λ3) in the PCA eigenspace into parameter
space (n1, n2, c) by computing n1

n2
c

 =


 λ1
λ2
λ3


 êλ1

êλ2

êλ3



T

+ D, (4.10)

which defines a plane in the compensation voltage space.
For prediction of the compensation point, we need to compute the intersection point of

the three planes. We construct each plane from equation (4.10) by using only the first prin-
cipal component êλ1 in PCA eigenspace. Along the remaining axes we set λ2/3,plane-i = 0.

42



4.2 Machine learning enhanced stray field compensation

This reduces the task of finding the correct plane parameters to a single degree of free-
dom for each beam. The value of λ1,plane-i determines the plane orientation and we can
deduce it from one measured point of minimum correlation for each beam ~Vm,beam-i with
i = 1, 2, 3 (see Figure 4.8 a)). We choose the specific value of λ1,plane-i for which the back-
transformed plane in compensation voltage space comes closest to the respective point
of measured minimum correlation. The three planes subsequently intersect in one point
which is the optimal compensation point for the external disturbance. In the following,
we refer to the three planes as plane 1/2/3 for beam 1/2/3 respectively.

Figure 4.8: a) Variation of the plane orientation for beam 1 (also referred to as plane 1) in
compensation voltage space for different values of the first principal component λ1,plane-1 of this
plane in PCA eigenvalue space. b) Cumulative and individual explained variance of the training
dataset by the principal components of each plane respectively. Using just the first principal
component λ1,plane-i of each plane i = 1, 2, 3 explains 89% of the variance and reduces the plane
model dimensionality by a factor of 3.

This method allows for a prediction of a full compensation using one data point per beam
(i.e. aPCA·n = 1). Remarkably, this is below the minimal requirement of measurements for
the mathematical definition of a plane. With the self-learned correlations, which previously
were not covered by our data model, we are able to predict the correct compensation point
with an accuracy of σ = 42V/m. The PCA-enhanced plane model reduces the number
of measurements required by one order of magnitude, from 24 to 3, with even improved
values of σ. This advantage originates in the PCA method’s capability of revealing possible
correlations between the plane parameters without knowing the final optimal compensation
point. Using the first principal component λ1,plane-i of each plane i = 1, 2, 3 explains 89%
of the total data variance which shows that recurrent charge distribution originating from
any specific element being charged induces correlations between a subset of parameters
(see Figure 4.8 b)).
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4 Optimising experimental calibration tasks with machine learning

Interestingly, for this kind of machine learning algorithm, we are able to visualise what
has been learned by the algorithm. For this purpose, we feed a cubic grid of equal spaced
points in the combined PCA eigenspace of the first principal components for each plane
(êλ1,plane-1 , êλ1,plane-2 , êλ1,plane-3) into equation (4.10) and visualise the resulting intersection
points of the three planes in compensation voltage space (see Figure 4.9 a)). Using this
technique, we can visualise that the PCA-enhanced plane model identified the axis of the
fibre cavity as the main charging direction, which we also would expect from the large
amount of dielectric material being close to the trap. This finding is in agreement with
previous observations confirming the sensibility of trapped ions to dielectric surfaces [65].
The PCA-enhanced model has learned these hidden information about the direction of
charging from the bare plane model and we can use it to reduce the amount of needed
measurements for a compensation of the resulting stray electric field.

Figure 4.9: a) Cubic grid of equal spaced points within the eigenspace spanned by the three first
principal components êλ1,plane-i

of each plane i ∈ {1, 2, 3} respectively. The size of the cube in
terms of values λ1,plane-i is chosen precisely to contain all variances of plane orientation included
in the training dataset. b) The cubic grid in a) transforms to a set of predictions for stray field
cancellation in the compensation voltage space (blue dots) as described by equation (4.10). Using
the geometry of electrodes, we visualise the direction of the resulting compensating electric field
in real space. The dashed black line depicts the axis of the fibre cavity.
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4.2 Machine learning enhanced stray field compensation

Since the sources of disturbing noise are hard to locate and/or to simulate in general, we
expect that most (heuristic) models used for state-of-the-art compensation do not cover
the origin of disturbance but only its compensation which leaves important information
unused. We have demonstrated that unsupervised machine learning can reveal information
about the physical origin of these external disturbances. In the following subsection, we
present another method providing access to the hidden information, but this time even
without having any (heuristic) model by the hand: a supervised learning neural network.

4.2.2 Supervised machine learning using an artificial neural network

Inspired by the human brain, the simulation of neural events using an electronic circuit
was first realised in 1943 by W.S. McCulloch and W. Pitts [113]. With increasing compu-
tational power, the idea of machine learning through brain inspired networks got a boost
in recent years for various fields including physics and also quantum information.
The term ’learning’ means to adjust weights w of the connections between the neurons of

an input layer and the neurons of an output layer in order to produce a desired output on
the neurons of the output layer. Networks in which each neuron i of one layer is connected
to each neuron j of the following layer are called fully connected neural networks with
weights wij (see Figure 4.10 a)). As the information proceeds from the input layer to the
output layer, the network is called feed forward. We choose this kind of network because
it has a comparably simple architecture that supports rapid implementation and adaption
to a particular data representation.

The training effort depends on the size of the neural network (NN) and the number
of parameters to be optimised. The network used here includes a hidden layer with a
size of 16 neurons and an output layer with a size of 3 neurons representing the 3 spatial
components of the compensation point (see Figure 4.10 a)). For the input layer, we
compare two different sizes, namely 9 neurons representing three points ~Vm,i in parameter
space (one point per beam) and 4 neurons representing one point in parameter space and
the identification of the beamX along which the ions’s motion was minimisedX ∈ {1, 2, 3}.
We make use of the rectifier linear unit (ReLU) as activation function for each neuron,
since it was shown in [61] that purely supervised training of a deep neural network using
this activation function is efficient in terms of computational power and learning success.
In contrast to the self-learning PCA algorithm presented in subsection 4.2.1, we have

to provide ’correct’ labels for the training of the NN. We use the same training dataset as
for the unsupervised learning and label the data with the corresponding experimentally
measured compensation point as the ’correct’ output of the NN. For each training epoch,
we randomise the data and split it into batches containing 12(64) data points for the 9(4)
neuron input network.
For the purpose of training, the batches are fed to the input layer of the NN and

subsequently the Euclidean distance between the prediction on the output layer and the
provided ’correct’ compensation point is computed. This error is then fed backwards
through the network which is called back-propagation [147] (see Figure 4.10 b)). The
weights wij are adjusted for each data batch using gradient descent parameter update
through adaptive moment estimation (ADAM) [86]. Over-fitting of the NN occurs as soon
as the network starts to learn specific features of the training dataset to assign a correct
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4 Optimising experimental calibration tasks with machine learning

result. At this point, the prediction error on an unknown dataset starts to increase, as
the network prediction loses generality (see Figure 4.10 c)). The optimal stopping point
for training of the NN is reached when the prediction accuracies on the unknown dataset
and the training dataset become equal.
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Figure 4.10: a) Sketch of a neural network architecture having 9 input neurons. The network takes
three points of minimal ion motion measured along each of the three beam axes as an input (I). The
layers are fully connected and neurons are activated using the rectifier linear unit (ReLU) function
(inset). As an output (O), the neural networks predicts a three-dimensional set of voltages for the
DC electrodes to fully compensate the external stray electric field. b) Supervised training scheme
of the neural network. The deviation from the ’correct’ point is feed back through the network
and the internal parameters are updated using adaptive moment estimation based gradient descent
optimisation (ADAM GD). c) The Euclidean distance of the predicted compensation point to the
’correct’ point is shown for a full training on the training dataset (blue curve) and an unknown
dataset (orange curve). At ∼ 4200 epochs the training reaches its optimum, since afterwards an
over-fitting of the network can be observed (grey shaded area).

Due to its architecture, already the comparably small amount of data is sufficient to
train the network, such that the compensation point can be predicted on an unknown
dataset with σANN,9 = 34V/m for an input layer of 9 neurons. The unknown dataset is
the same one we used for benchmarking gradient descent optimisation (subsection 4.1.2)
and PCA (subsection 4.2.1).

As long as the environmental conditions do not change, we can react on a real-time
scale to a varying stray electric field, since the NN has learned the diversity of charging
distributions on a certain setup geometry. Upon a change of beam angles, measurements
method or trap geometry, we have to invest again in acquiring a training dataset, which
then is not real-time. We expect the same behaviour on other experiments dealing for
example with magnetisation, heating, charging or similar disturbances.
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4.3 Summary

In the case of a 4-neuron input network, the accuracy drops by about 30 % and shows
that the provided information of one data point is not sufficient to create a model as
precise as for a 9-neuron input. However, in cases where lower accuracy is acceptable
an additional factor of 3 can be gained in the number of measurements required. The
use of two hidden layers (each 16 neurons) for the neural networks brought no further
improvement.

4.3 Summary

In Figure 4.11 we compare the presented algorithms for determining a three-dimensional
compensation for an external stray electric field via measurements of the motion of an
ion in a Paul trap. The unbiased systematic sampling of applied compensation voltages
shows the slowest convergence as a function of the number of measurements, reaching
a compensation uncertainty of 60V/m only after 1,000 measurements. For comparison,
the model using the intersecting planes reaches a comparable accuracy already after 24
measurements. Even though this gain is quite impressive, the machine learning algorithms
achieved a further reduction in measurements of one order of magnitude.
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Figure 4.11: Comparison of the performance of the different compensation methods. The vertical
axis depicts the number of required measuring points. The diameter of the circles denotes the stan-
dard deviation of the spread σ of the method’s predicted compensation electric fields normalised to
the measurement accuracy of σmeas = (54± 3)V/m. The normalised standard deviation σ/σmeas
is annotated to the corresponding circle. For points where the size of the circle is too large for
the diagram, the circle is replaced by a grey ’X’. For reference, over three months of operation the
spread of measured compensation points amounts to 600V/m (σ/σmeas ≈ 11) which reflects the
changing environmental conditions in the apparatus. The data has been partially published also
in [93].
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The neural network (9-neuron input) compares to the PCA-enhanced plane model in
accuracy and amount of needed data (training data and data points needed for a predic-
tion). However, the big advantage of the neural network is that it does not take any model
such as the plane model into account and is therefore applicable even in cases where no
specific (heuristic) model is known. This makes the network comparable in terms of us-
ability with general approaches such as GDO and systematic search. In terms of required
measurements, however, the NN performs superior (see Figure 4.11).
Furthermore, the reduction to only one data point in case of the 4-neuron NN leads to a

significant simplification of the measurement process. In this case, we achieve a remarkable
reduction of aANN,4 · n · k = 1 which means that our system requires a smaller number
of data points than the dimension k of the problem. This is comparable to a perfect
k-dimensional mathematical model where just one unique point is enough to complete
the whole model and derive the compensation point from, except for the fact that with
the ANN we only have access to this single compensation point instead of the whole
point-space.
We have demonstrated the presented machine learning approach on a generic optimi-

sation problem and expect that the methodology is widely applicable to a broad range of
experimental settings. We found that the accuracy is solely limited by the quality of the
data provided to the machine learning algorithms.
Using the presented methodology to optimise the position of the ion in the Paul trap

makes it possible to increase the stability of trapping with a greatly reduced amount of
required data. This allows the ion trapping time to be extended to up to 60 minutes,
compared to 1–10 minutes for a non–ideal localisation of the ion. On the one hand, this
achievement supports data collection on this particular setup, as more time is available for
measurements. On the other hand, the availability of the ion enables the implementation
of scalable applications such as multipartite entanglement or long-range communication.
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The communication between different quantum nodes is central to many branches of quan-
tum technology, such as quantum computation [84] and secure communication [182, 155].
Quantum network nodes consist of an interface between a stationary qubit (usually matter)
and a travelling qubit (usually light). The development of effective light-matter interfaces
operating at the quantum limit and providing control of the quantum states of both the
travelling qubit and the stationary qubit is of great importance. For the use of cavities as
interfaces, the light-matter coupling strength g is an essential property and requires the
development of cavities that have small mode volumes. So far, for the usage of entangled
ions as quantum network nodes together with cavities as light-matter interfaces [164, 99],
the coupling strength g was increased by near-concentric optical resonator configurations
that minimised the mode waist of the resonators [142] but maintained a sufficient distance
between the mirrors and the ion in order to mitigate charging effects and to stabilise the
trapping. As a compromise between trap stability and light-matter coupling strength,
these experiments used cavities with a minimum length of ≈ 19mm [162, 99] reaching
mode waists of ω0 > 12µm. In contrast, micromachined fibre-based cavities require only
a small amount of dielectric material and offer a way to place the mirrors extremely close
to the ion (∼ 150µm), with mode waists of ω0 ≈ 3µm [6].
In the context of this thesis, we demonstrated the usage of a fibre cavity as a light–

matter interface for the realisation of a quantum network node. The fibre cavity is a key
element and allows us to collect the light emitted by the trapped ion with a high efficiency
and with a fast extraction of the collected photons, both of which are prerequisites for the
realisation of quantum networks with high bandwidth in terms of data transmission rate.
In addition, photons leaving or entering the fibre cavity exhibit a defined spatial mode due
to the optical single-mode fibre. For application in quantum networks, the inherent fibre
coupling of the photons enables efficient distribution to other elements of the network.
For this reason and due to their small mode volumes, fibre cavities are considered to be a
promising route for quantum communication [127].
This chapter provides a detailed discussion of the fibre cavity as a light-matter interface.

We constructed the cavity from two concave, highly reflective mirrors realised on the end
facets of two optical fibres. The fibres are facing each other and together form a Fabry-
Pérot resonator with a length of l ≈ 260µm (see Figure 5.1 and section 5.1). We choose a
symmetric confocal resonator design because this type of resonator has the lowest loss by
diffraction at the resonator mirrors and the highest robustness to alignment errors [142].
Further details of the fibre resonator design are discussed in sections 5.2 and 5.3.
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Figure 5.1: a) Sketch of the light-matter interface. The trapped ion (yellow dot) is embedded
into the fibre Fabry-Pérot cavity. The fibres are located within steel tubes which are electrically
grounded. Distances are not to scale. b) Fibre cavity and Paul trap combined within the vacuum
chamber.

We use the fibre cavity resonant to the principal UV transition of Yb+ to efficiently
collect photons emitted from the ion. The coupling of the ion to the cavity mode takes
place via the atomic dipole moment at 370 nm. For a similar configuration, we have
recently achieved the highest reported coupling strength to date of g ≈ 2π · 67(1)MHz
between a single ion and a single mode of a radiation field by more than one order of
magnitude [7]. Based on the theoretical description of the light-matter interaction in
section 5.4, we quantify the performance of the presented fibre cavity in the experiment in
section 5.5. In this last section of the chapter, we also introduce the photon as a travelling
qubit.

5.1 Fabry-Pérot resonator

5.1.1 Longitudinal mode

An optical resonator is formed by two opposing and partially reflecting mirrors at a dis-
tance l. In a simplified picture, due to the boundary conditions of the mirrors on the
electric field, the formation of a standing light wave inside the resonator can only occur if
the length of the resonator is an integer multiple of half the wavelength λ/2 of the standing
light wave. This leads to the relation

l = n · λ2 = nc

2ν , n ∈ N. (5.1)

As a consequence, light with frequency ν can be coupled into the resonator for different
lengths l which differ by λ/2. For a given l, the distance between two neighbouring
longitudinal modes (n, n ± 1) in terms of frequency is defined as the free spectral range
(FSR) of the cavity

∆νfsr = c/2l. (5.2)

An intuitive picture for the free spectral range is the round trip time for a photon in
the resonator which is given by τround = 2l/c = 1/∆νfsr. Considering coherence properties
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5.1 Fabry-Pérot resonator

of the electric field results in interference for multiple round-trips of the light within the
resonator. The power transmission of a cavity is then given as [149]

T (ν) = Tmax ·
1

1 + 4F2/π2 · sin2 (πν/∆νfsr)
, (5.3)

where the Finesse of the resonator

F = π 4√R1R2
1−
√
R1R2

(5.4)

is determined by the reflectivity of the two mirrors R1,2. From the frequency response
according to equation (5.3) the full width at half maximum (FWHM) of the transmission
peaks can be given as

∆νfwhm = ∆νfsr/F (5.5)

for F � 1.
For a high reflective mirror, we expect a low transmission of light T for reasons of energy

conservation
1 = T +R+ L, (5.6)

where L is the loss of photons accounting for imperfections of the mirror. Two high
reflective mirrors F � 1 forming a resonator enhance the power of light between them
as long as the power coupled into the resonator is equal to the transmitted power T (ν).
This is referred to as a pumped cavity. As soon as we switch off the pumping of the cavity
(instantaneously), the light field within the resonator decays due to the leakage of photons
through the mirrors. We can express this decay in terms of the light intensity I(t) stored
in the resonator as

˙I(t) = −(T1 + T2) · c2l I(t), (5.7)

where the transmission of each mirror is multiplied by the rate at which the photons
impinging on the mirror. The solution of the differential equation (5.7) is given by

I(t) = I0 · e−t/τcavity with τcavity = 1
(T1 + T2) · c2l

. (5.8)

Using the electric field decay rate κ, the decay constant τcavity can be further expressed as

τcavity = 1
2π ·∆νfwhm

= 1
2κ, (5.9)

which is more practicable if the linewidth of the cavity is known. The decay rate of the
electric field in the cavity κ sets the timescale for the resonator dynamics. Processes that
happen much faster with ∆t� τcavity can be seen as ’instantaneous’.

5.1.2 Transverse mode

Due to the high number of photon round trips in the cavity, the shape of the mirrors is
important in order to find a region of stability where the photons are confined within the
cavity. For this purpose, it is feasible to have concave and spherical mirror structures on
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5 A fibre Fabry-Pérot cavity as a light-matter interface

the fibre tips. The stability condition for the formation of a standing wave within the
resonator is given by [94]

0 <
(

1− l

R1

)(
1− l

R2

)
< 1, (5.10)

with the radii of curvature of the mirrors denoted with Ri for the two mirrors i = 1, 2. The
radius of curvature of the mode wavefront inside the cavity must match the curvature Ri
of the mirror i at its position. The lowest transverse electromagnetic (TEM) mode of the
cavity (TEM00) follows a Gaussian radial intensity profile. From the matching condition
of wavefront and mirror curvature, the 1/e2-intensity radius of the TEM00 mode at its
smallest size can be calculated as [94]

ω2
0 = λ

π
·
√
l · (R1 − l)(R2 − l)(R1 +R2 − l)

(R1 +R2 − 2l)2 (5.11)

For a symmetric cavity (R1 = R2 = R), the smallest mode waist ω2
0 = λ/(2π) ·

√
l(2R− l)

is located at half the distance between the mirrors (see Figure 5.2 a)). We define this
point as z = 0 and find the mirrors at positions z = ± l/2. The mode waist at the point
of the mirrors can be calculated as

ωc = ω(z = ± l/2) = ω0 ·

√
1 +

(
l/2
zR

)2
, (5.12)

using ω(z) = ω0 ·
√

1 +
(
z
zR

)2
with the Rayleigh range of the cavity mode zR = πω2

0/λ. If
the radius of curvature R is large compared to wc, the overlap εm between the resonator
mode and the mode of the fibre ωf can be approximated by [69]

εm ≈
(

2ωfωc
ω2
f + ω2

c

)2

, (5.13)

which is also known as mode matching of the cavity (see Figure 5.2 b)).

2w0,f

2ωf
2ωc

fibre-core

2ω0R2

R1

l

a) b)

Figure 5.2: a) The concave mirrors are located on top of a fibre tip and form a resonator
with length l. For symmetric radii of curvature R1 = R2 the smallest TEM00 mode waist ω0 is
located at the mid point between the mirrors. b) Due to different mode waists ωc and ωf the
in-/out-coupling of light is reduced by a mode matching factor εm (eq. (5.13)).

The mode volume Vm of a resonator becomes particularly important for the coupling
between the light mode and a two-level system located in the resonator (see section 5.4).
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5.2 Development and assembly of the fibre Fabry-Pérot cavity

The mode volume can be calculated as [98]

Vm =
∫
V ε(~r) ~E2(~r) d~r

max
[
ε(~r) ~E2(~r)

] , (5.14)

where the integration is performed over the quantisation volume V and we have assumed
optimal coupling of the two-level system to the resonator mode. Assuming a constant
permittivity of the resonator, i.e. ε(~r) = const, the mode volume Vm of the TEM00 mode
in a symmetric resonator (mirrors at z = ±l/2) can be obtained by integrating

f(ρ, z) =
(
ω0
ω(z)

)2
exp

(
− 2ρ2

ω2(z)

)
(5.15)

along the cavity axis z and the radial direction ρ using a volume integral in cylindrical
coordinates as

Vm =
∫ l/2

−l/2

∫ 2π

0

∫ ∞
0

f(ρ, z) · ρ · dρ dφ dz = π

2 · l · ω
2
0. (5.16)

5.2 Development and assembly of the fibre Fabry-Pérot cavity

In this section we present the details of the fibre resonator assembly. We chose the pa-
rameters of the cavity (e.g. mirror coatings) to fit our application of the cavity as a
light-matter interface and to provide a high collection efficiency of photons together with
a fast extraction from the cavity (see subsection 5.4.4). The final cavity was assembled in
context of a master’s thesis [29].

10 mm

b)

Piezo tube

Yb oven

Paul trap

Fibre

a)

Translation stages

Trap 
needle

DC 
electrode

Steel 

tube

Fibre

Ion

Cavity and trap

1 mm

Piezo tube

Steel 

tube

10 mm

Figure 5.3: a) 3D CAD model of the cavity-trap setup including contributions from M. Steiner,
H.M. Meyer, M. Link and M. Breyer. For the purpose of electric field shielding or application of
custom voltages, the fibres are inserted into electrically connected steel tubes for the last millime-
tres. b) The final assembled cavity-trap setup prior to insertion into the vacuum chamber. Photo
by H.M. Meyer.
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5 A fibre Fabry-Pérot cavity as a light-matter interface

In general, due to the small structures involved, building a stable fibre cavity is a challeng-
ing task which requires positional alignment and stability of the components in the range
of a few micrometres. Therefore, the design of the presented fibre cavity was developed in
several iterations steps [104, 90, 29]. A 3D CAD model32 and a picture of the full assembly
are shown in Figure 5.3.
The fibre Fabry-Pérot cavity itself composes of two optical single-mode fibres, each

having a concave mirror structure on its front facet. The usage of single-mode fibres
guarantees the coupling of photons into and out of the cavity in a single spatial mode. We
select the fibre tips from a pool of fibres on which we machined concave structures using a
pulsed CO2 laser [90] and applied a custom reflective coating33. The selected fibres have
approximately the same radii of curvature with an average of R = (280± 36)µm to form
a symmetric confocal cavity34. We chose this type of cavity because it has the highest
robustness to mirror misalignment, which is particularly advantageous for fibre cavities.
For stability reasons, the distance between the mirrors should be slightly smaller than the
radius of curvature of the mirrors [142]. We built the cavity at a mirror separation of
l ∼ 260µm. The fibres were inserted into steel tubes35, each of which allows an electrical
potential to be applied. Therefore, we can use the tubes as additional DC electrodes
that support the compensation of a potential stray electric field along the cavity axis (see
Figure 4.9) or enable a deeper trapping potential by applying DC offset voltages [6]. For
reasons of stray electric field shielding, however, we keep them electrically grounded for
the measurements presented.
During the fabrication of the fibres, we found that concave structures that are of good

quality over large areas can be achieved on the tips of photonic crystal fibres36 (PCF).
The usable area of the structure is important for building long fibre cavities in order to
avoid mode clipping or similar losses on the edges of the fibre mirror. In addition, due to
the larger mode diameter of the light within the PCF, we would expect a mode matching
efficiency with the cavity mode of εm ∼ 0.74 according to equation (5.13). Therefore,
we built the cavity using a PCF and a conventional single-mode fibre37 (see Figure 5.4).
Unfortunately, the PCF broke during the final assembly of the cavity, preventing us from
exploring the possibilities of PCFs in a fibre-based light-matter interface.

32 We use Inventor from Autodesk for the 3D model
33 Coated by Laseroptik
34 R1 = (255± 17)µm and R2 = (304± 34)µm according to the analysis in Figure 5.4
35 5mm × 254µm × 127µm (length × outer Ø × inner Ø) from VitaNeedles
36 LMA-8 from NKT-Photonics
37 S405-XP from Thorlabs
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Figure 5.4: Surface profile of the structure machined on the tips of the individual fibres using a
CO2 laser pulse. The profile is obtained from a phase-shifting interferometry. a) PCF LMA-8. b)
Conventional single-mode fibre S405-XP. The analysis has been performed with the tools presented
in [131].

The cavity exhibits an asymmetric mirror coating with transmissions of T1 = 500ppm
and T2 = 100ppm, respectively. From the measured finesse of F = 4700 ± 700 [29] we
estimate the losses of the mirror coatings to be L = (350± 100) ppm (see equation (5.4)),
in agreement with the manufacturer’s expectation. The round trip losses of the cavity
correspond to a cavity linewidth of κ = 2π · (58± 9)MHz (see Figure 5.5). This leads to
a decay time of the mode intensity of

τcavity = 1
2κ = 1.4(1)ns. (5.17)
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Figure 5.5: Reflection signal from the pumped fibre cavity while scanning the cavity length l

(yellow curve). The pump light has a narrow bandwidth � κ. We fit a Lorentzian profile to the
data (blue curve).

The asymmetric reflection coating of the fibre mirrors results in a directional extraction
probability of photons through the conventional single-mode fibre. The probability of a
photon to be extracted through the desired low-reflectivity cavity mirror is

ηext = T2
T1 + T2 + L1+2

= 0.53(6). (5.18)

The mode matching efficiency between the conventional single-mode optical fibre and the
TEM00 mode of the cavity can be computed according to equation (5.13) as [29]

εm = 0.44(3). (5.19)

55



5 A fibre Fabry-Pérot cavity as a light-matter interface

The setup has been developed to solve a number of known problems with previous fibre
cavities, which occurred particularly in the UV range: i) strong charging of the dielectric
surfaces, ii) increasing cavity losses due to degrading mirror coatings, iii) the need for
relative positional alignment of the two fibre tips after the final assembly, iv) heating of
the fibre cavity assembly when exposed to microwave radiation and v) general stability
and lock-ability of the cavity (see section 5.3.3). We discuss the points i)-v) in the
following.

i) Charging of the dielectric surfaces
From previous experiments with fibre cavities in the UV spectral regime [7] we know that
charging of the dielectric mirror surfaces can lead to serious problems with regard to trap
stability. There, we explored the regime of small mode-volumes in the UV regime with a
cavity length of 150µm and decided to aim for a larger cavity length in the future. For
this reason, the fibre cavity used in this work is slightly longer with l ∼ 260µm. In order
to minimise the amount of dielectric material next to the trap, we electrically ground the
steel tubes in which the fibres were inserted.

ii) Mirror degrading
Due to the small size of the structures machined on the fibre tips, their sensitivity
in terms of relative alignment is a few micrometres. Up to know, we found the best
way of building fibre cavities is gluing of at least one fibre using long curing glue with
a low deformation. Any mechanical approach of fixing the fibres has so far caused a
greater misalignment of the fibres than an alignment device with sufficient stability could
compensate for (e.g. solid piezo actuators). The drawback of the gluing method is the
evaporation of hydrocarbons or other organic compounds next to the cavity, which was
found to be the reason for a degrading cavity finesse over time [150]. Degradation of the
mirrors has been reported in several cavity based experiments [28, 55, 7] even despite a
protective SiO2 layer on the mirrors [7]. In [150], a fully mechanical macroscopic cavity
design solved the degrading issue even in the UV spectral range. For the fibre cavity
used in this thesis, a minimal glue approach was successful concerning the stability of the
cavity finesse. During ∼ 6 months of investigation, we did not observe a degradation of
the mirror coatings (see Figure 5.6).
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Figure 5.6: a) Investigation of the fibre cavity finesse for ∼ 6 months of operation. The mea-
sured round trip losses T + L = 1−R according to equation (5.4) are shown. Measurements were
performed by M. Breyer. The standard deviations are given as error bars.
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5.2 Development and assembly of the fibre Fabry-Pérot cavity

iii) Positional alignment
The ability to move the fibres relative to each other is particularly important for length
adjustment of the resonator along its axis (see section 5.3). Also in radial direction, the
relative alignment of the fibres becomes important when considering processes which might
misplace the fibres from optimal relative alignment like water evaporation of drying glue
or heating processes during the vacuum chamber bake out. For this purpose, a piezo
tube38 with a maximal radial displacement of ± 16µm (at ± 250V on opposite electrodes)
carries one of the two fibres. Axial displacement is provided by a stack of two shear piezo
actuators (CSAP03 from Noliac), each of which allows a maximum travel range of 1.5µm
(between ± 320V, according to the manufacturer). An overview of the relative alignment
capabilities of the fibres is shown in Figure 5.7 a). We place electrically grounded metal
shields between the piezo actuators and the ion in order to shield the ion from the electric
fields.

z

y

x

Fibre

a)

Steel tube

Fibre

Shear piezo stack

Electric field shielding
b)

1 mm2.5 mm

Figure 5.7: a) Relative alignment of the two fibres. The distance between the fibres is controlled
by a stack of shear piezo actuators (z-axis). The piezo tube controls the orthogonal axes. b) We
are able to move the cavity to optimise the ion position within the resonator mode.

The whole cavity can be moved along each spatial axis by using a set of positioning
stages39 (see Figure 5.3 a)). We use the stages to optimise the ion position within the
resonator mode (Figure 5.7 b)), but we are also able to move the cavity away from
the trap centre and even behind the DC gold electrodes. With the latter, the charge
sensitivity of the trap setup is drastically reduced and this increases the stability of
trapping. This is particular useful for bringing the setup into an operational mode for
the first time or doing a coarse optimisation of the setup.

iv) Cavity-microwave compatibility
In earlier cavity setups containing large stacks of piezo actuators, we observed a strong
heating of the setup even at small microwave radiation powers40. This made the

38 PT230.14 from PI Ceramic GmbH
39 Two ANPx101 and one ANPz101 from Attocube Systems AG
40 microwaves are used for the ion qubit state manipulation
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5 A fibre Fabry-Pérot cavity as a light-matter interface

simultaneous use of fibre cavities and microwave radiation impossible. In the newer
design, we have replaced the piezo stacks with the piezo tube for mechanical stability
reasons with regard to the cavity length. However, we found that this also dramatically
increased the tolerance of the assembly to microwave radiation.

5.3 Cavity lock and stability

In order to achieve a strong light-matter coupling and thus a high emission probability
of photons by the ion into the resonator mode, the resonance frequency of the cavity ωc
must be stabilised via the length of the cavity to the atomic transition ωa (see equations
(5.51), (5.53) and (5.60)). For this purpose, the distance l between the mirrors has to be
hold stable with a precision in the sub-wavelength regime (∼ nm).
Using a Pound-Drever-Hall (PDH) lock [43], the cavity length can be stabilised to a

reference laser which itself is stabilised to the atomic transition. For previous fibre cavity
designs, strong mechanical resonances at ∼ 2 kHz [6] prevent any of such stabilisation at-
tempts from being successful. Several iterations [90, 29] of the cavity design were necessary
to eliminate strong mechanical resonances for the purpose of length stabilisation. Even
for the presented setup, the mechanical stability is not optimal and reduces the effective
coupling to the Yb ion (see subsection 5.3.3).

5.3.1 Locking scheme

For length stabilisation of the cavity, we derive the error signal from a reference laser
coupled to the fibre cavity. We have to use the laser light reflected from the cavity, since
we broke one fibre while assembling the setup. On the first attempt, we realise a PDH
locking scheme using a current modulated reference laser at 8µW power coupled to the
fibre cavity. We were able to stabilise the length of the resonator using a PID-feedback
based on a PDH error signal.
Unfortunately, in combination with a trapped ion we were facing problems with charging

of the dielectric cavity mirror surfaces when light gets coupled into the resonator. This is
always the case as soon as the cavity is (near) resonant to the reference laser. A charging
of dielectric surfaces which are exposed to ultraviolet light has already been reported in
[65] for 375 nm by M. Harlander et al. For 422 nm, however, they observed a drop in the
charging beyond a measurable threshold. We observed charging of the cavity mirrors for
reference laser light at 370 nm, 393 nm, 401 nm and 405 nm. Based on these findings, we
decided to develop a different lock technique that works on a single photon level in order
to reduce charging. To this end, we superimpose the TTL output pulses of two single
photon counters41 (SPCs) and perform a time integration of the pulses on a low-pass filter
(integrator). The cut-off frequency of the low-pass filter is fLP ≈ 16 kHz and it outputs
a continuous voltage signal which is proportional to the actual total count rate of both
SPCs (see Figure 5.8). We chose the cut-off frequency to allow sufficiently fast feedback
under changing resonance conditions. We use both SPCs for the derivation of the signal
to be independent from the changing detection rates on the individual SPCs for changing
polarisation properties of the optical path (see subsection 5.5.1).
41 Of course, detecting the light using one SPC would work as well, but the polarisation-resolved detection

of single photons requires two SPCs (subsection 5.5.1)
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Figure 5.8: Important elements of the cavity length stabilisation setup. A low-pass filter acts as
an integrator (cut-off fLP ≈ 16 kHz). It converts a rate of TTL pulses (single photon detection
events) to a continuous voltage signal. The variable cavity length causes the intensity of the
reflected laser light to change due to the changing resonance condition. The continuous voltage
signal serves as an input to the PID-controller which provides the feedback signal for the stack
of shear piezo actuators. They control the position of one fibre along the cavity axis. For the
second fibre, mechanical oscillations orthogonal and parallel to the cavity axis are sketched. A
time snipped of the voltage signal obtained from the cavity reflection during length stabilisation is
shown as orange line.

Scanning the cavity length at 80Hz allows the resonance condition to be observed as a
dip in the integrator signal when reference laser light is coupled into the resonator. We
use a side-of-fringe locking to stabilise the cavity length to the side fringe of the cavity
resonance dip using a PID controller with a regulation bandwidth of ∼ 20 kHz. We conduct
the lock at ultra-low light levels of less than 50 pW going to the fibre cavity, which mitigates
the charging problem of the dielectric mirror surfaces exposed to ultraviolet light. Using
this method, we do not observe the formation of additional stray fields originating from
the cavity lock within the accuracy of our stray field measurement (see section 4.1).
For the detection of photons emitted by the ion into the cavity mode during an experi-

mental sequence, we switch off the cavity pump for a maximum of 2µs using an acousto-
optic modulator (AOM) (see Figure 5.10 a)). This is much faster than the bandwidth of
the PID-controller, but long enough to extract an emitted photon from the cavity and
detect it on one of the SPCs (see subsection 5.5.2). A high suppression of the reference
laser light of 10,000 : 1 is achieved for the ’on’ to ’off’ state of the AOM after 2.5m optical
path.

5.3.2 Reference laser calibration and measurement of the cavity length

For length stabilisation of the fibre cavity, we derive the error signal from a reference laser
coupled to the resonator (see Figure 5.8). The reference laser with frequency ωref = 2π · fref
can be either resonant to the atomic transition ωdecay or detuned in terms of integer
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multiple k of the free spectral range ∆νfsr of the fibre cavity (see equation (5.2)), which
leads to the expression

ωdecay = ωref + k · 2π ·∆νfsr, k ∈ N. (5.20)

In particular, we aim for the cavity being resonant to the
∣∣∣2P1/2, F

′ = 1
〉
↔
∣∣∣2S1/2, F = 1

〉
transition of the ion (see Figure 5.9 a)). If we choose k = 0, i.e. the reference laser being
resonant to the atomic transition (ωdecay = ωref), the pumped cavity induces a coupling
between the

∣∣∣2S1/2, F = 1
〉
and

∣∣∣2P1/2, F
′ = 1

〉
manifolds. This coupling is desired when

pumping the ion into the dark state |0〉 for initialisation (see section 6.1). However, we
want the coupling being present solely on this stage of the experimental sequence. To
avoid unnecessary dark pumping of the ion, we far detune the cavity reference laser from
the atomic transition by at least one free spectral range of the cavity ∆νfsr ∼ 500GHz (i.e.
k > 0 in eq. (5.20)). To determine a frequency of the cavity reference laser fref = ωref/(2π)
satisfying equation (5.20) with an integer k, we use a second laser resonant to ωdecay as
an atomic reference laser (see Figure 5.9 b)).
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Figure 5.9: Calibration of a laser with frequency f1 to the atomic decay transition∣∣2P1/2, F
′ = 1

〉
↔
∣∣2S1/2, F = 1

〉
. a) Relevant energy levels of 171Yb+. b) Measured rate of

photons scattered by the ion in steady state into free space while scanning the laser frequency of
the atomic reference laser f1. The frequency f1 is adjusted to be resonant to the atomic decay
transition fdecay = ωdecay/(2π) by pumping the ion into the dark state |0〉 (dashed line). Error
bars are given for the data, indicating the standard errors for the detection rate and the standard
deviation of the frequency measurement.

To calibrate the atomic reference laser, we employ a pumping of the ion to the dark
state |0〉 using this laser. In order to find the atomic resonance frequency, it is practical
to measure the pumping in a steady state configuration. Therefore, we drive the ion
simultaneously with the cooling laser. The resulting detected fluorescence of the ion in
steady state depends on several experimental parameters such as power, detuning and
polarisation of the reference laser pumping the ion to the dark state. Furthermore it
depends on 370 nm cooling and 935 nm repumping laser and the applied 14.7GHz sideband.
Therefore, the resulting fluorescence as a function of the dark pumping laser frequency
is non-trivial42, but we verified that it is symmetric around the resonance ωdecay . To
obtain this result, we solved the Hamiltonian combined with a list of collapse operators

42 The fluorescence signal does not necessarily has a minimum at resonance
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of the system numerically43 in the steady state and checked this result in the experiment.
Finally, we overlap the resonances of the atomic reference laser and the cavity-lock laser
in the reflection signal of the cavity (see Figure 5.10).
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Figure 5.10: Calibration of the cavity-reference laser with frequency f2 to the laser resonant to
the atomic decay transition (fdecay). Both lasers have to be resonant to the fibre cavity for the
same length l. a) Sketch of the laser setup containing the atomic and the cavity reference laser
(f1 and f2). The detection setup of the cavity reflection is shown as inset. b) The solid line (dark
blue) is a double Lorentzian fit to the measured cavity reflection data (red) from which we extract
the distance of the dips while scanning l.

For a daily calibration of the reference laser we usually stop at this point, however,
a deeper analysis of the overlap process allows for a precise measurement of the cavity
length l. Since the fibre cavity has a symmetric near confocal resonator design, we have
to consider an absolute frequency shift induced by the Gouy phase for a computation of
the resonator length as [142]

l = nc

2f + η · c2f , n ∈ N. (5.21)

The shift due to the Gouy phase can be computed as

η · c2f with η = 1
π

arccos(√g1g2) = 0.478± 0.226, (5.22)

where g1,2 = 1− l/R1,2 > 0 with the radii of curvature of the mirrors R1,2. For a perfectly
symmetric confocal resonator, we expect η = 0.5. Since we do not have accurate knowledge
about the cavity length at this point, we deduce a cavity length of l = (260± 20)µm from
previous measurements [29] for the calculation of η.

For a single laser coupled to the cavity, it is hard to determine the exact n in equa-
tion (5.21) because switching to the neighbour free spectral range, i.e n ± 1, requires a
length change of only half the wavelength. However, an approximate bound to the value
43 We use the Python package qutip.steadystate
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of n can be given. For two lasers with n1, f1 and n2, f2 fulfilling the resonant condition of
equation (5.21) at the same time, it follows

n1c

2f1
= n2c

2f2
. (5.23)

From the laser frequencies f1 = fdecay and f2 = fref both being resonant to the cavity
according to Figure 5.10, we obtain

n2
n1

= fref
fdecay

= 0.939137(1). (5.24)

The frequencies are measured to a relative precision of ∼ 2 × 10−7 (absolute 150MHz),
which allows a precise computation of the ratio of the number of standing wave nodes.
Within the bounds of the previously estimated cavity length of l = (260± 20)µm, we find
only one pair of n1,2 which fulfils equations (5.23) and (5.21):

n1 = 1327 and n2 = 1413. (5.25)

Using the exact integers n1 and n2, we get a precise cavity length from equation (5.21)
for this particular measurement of

l = 261.16(4)µm,

when both lasers are resonant to the cavity. The accuracy of the length determination is
limited by the error on the Gouy phase estimation.

5.3.3 Mechanical stability

In this subsection, we investigate the mechanical stability of the fibre cavity setup. A
stabilisation of the cavity mode frequency to the atomic transition requires the cancellation
of resonator length changes, which can originate, for example, from mechanical excitations
of the cavity structure. External noise or electronic noise of the control signal itself
can excite mechanical resonances. To mitigate electronic noise, we use three battery
boxes for the control of the piezo actuators (see Figure 5.11). The boxes consists of
stacked 9V block-batteries and their output can be tuned from -198V to 198V. For the
piezo tube, which controls the relative orientation of the fibres, one box each is used for
horizontal and vertical axis. The third box serves as voltage offset for the PID-controller
of the cavity length stabilisation, which can only output between -10V and 10V and thus
has a limited range of applicable feedback. This voltage offset turned out to be a good
compromise between electronic noise and locking bandwidth, as filtering a feedback signal
always reduces the bandwidth of the lock.
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Fibre Fibre
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Ubattery;off

Figure 5.11: Wiring of the piezo actuators. The piezo tube controlling horizontal and vertical
alignment of one fibre is powered by two battery-stacks. The position of the second fibre along the
cavity axis is determined by a stack of two shear piezo actuators, which are fine-tuned on a low
voltage level (± 10V) using a PID controller. A coarse voltage offset is supplied by a third floating
battery-stack. Sketched elements are not to scale.

For cavity length stabilisation, we use a stack of two shear piezo actuators that move
one of the fibres along the cavity axis (see section 5.2). However, mechanical oscillations
orthogonal to the cavity axis may also result in effective length changes of the cavity.
Counteracting these vibrations along the cavity axis, which is not the vibration axis, is
not optimal and can induce additional vibrations. Overall, it becomes clear that it is
important to minimise the influence of mechanical resonances already in the design phase
of the cavity setup.
This requires an accurate characterisation of the mechanical resonances. We did this for

the piezo tube using a lock-in amplifier [90]. This applies an alternating voltage signal with
variable frequency to the piezo while monitoring the voltage drop across the piezo tube
(Figure 5.12 a)). The capacitance of the piezo C together with a resistor forms a low-pass
filter, whose characteristic signal we obtain as the overall signal (Figure 5.12 b)). In the
frequency range close to a mechanical resonance of the piezo, the system can additionally
be described as a driven harmonic oscillator. In response to a force F resulting from
the driven mechanical oscillations, we can measure the induced charge Qi on the piezo
electrodes

Qi = d · F = Ui · C (5.26)

as a small induced voltage Ui, where d is a material-specific constant. The induced voltage
is observable as a small deviation from the expected low-pass signal. Using the differential
equation of a driven harmonic oscillator, we can infer the Q-factor of each resonance from
the data.
One approach to stabilise the assembly is to shift the mechanical resonances to higher

frequencies, which can reduce the probability of excitation if the spectrum of the excitation
noise follows a 1/f dependence (pink noise). Another approach is the damping of high Q
resonances because they have most influence on the vibration amplitude [6]. Figure 5.12 c)
shows the result of the design considerations, where we tried avoid high Q resonances of
the assembly at low frequencies in an early stage of the design process.
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Figure 5.12: Mechanical resonances of the assembly measured in an early stage of the design
process [90]. a) Wiring diagram of the test setup. Once the applied RF-signal hits a mechanical
resonance, the piezo actuator starts to oscillate which changes its impedance. b) Spectral response
of the setup sketched in a). Mechanical oscillations results in small deviations from an ideal low-
pass signal which can be analysed quantitatively. A cut out of the deviation from an ideal low-pass
signal is shown as inset where the investigated resonances are denoted with dashed vertical lines.
c) Quality factor of the investigated resonances based on the residual data shown in b).

In order to determine which resonances contribute to the mechanical instability of the
final assembled cavity setup, we investigate the signal obtained during side-of-fringe locking
(Figure 5.8). We obtain the vibrational frequencies using a fast Fourier transformation
(FFT) on the measured reflection signal of the cavity (see Figure 5.13). Since the reference
laser runs at fixed frequency fref, the changing resonant conditions originate from a varying
cavity length.
From the FFT analysis, we determine the dominant resonance to be at ∼ 400Hz and

observe further excitations mainly at lower frequencies. This is the expected behaviour for
a noise spectral density dependency of 1/f which mainly excites the mechanical resonances
at low frequencies of the excitation spectrum, which we expect for the final assembly to
be similar to that of Figure 5.12 c).
From the lower frequency excitation spectrum of the piezo tube, mechanical oscillations

orthogonal to the cavity axis as sketched in Figure 5.8 can be expected. We know that these
oscillations cause a change in the effective cavity length, which is then compensated by the
shear piezo stack along the cavity axis. We suppose that the mismatch between oscillation
and regulation axes makes a stable lock difficult to realise and that this could likely be
the reason for the remaining vibrations on the length stabilisation. These are important
results when considering the coupling between cavity and ion and can explain the deviation
from the measured to the expected coupling between light and matter investigated in the
next section.
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Figure 5.13: Resonance investigation of the final fibre cavity assembly. a) Reflected light intensity
during length stabilisation. b) Fast Fourier transformation (FFT) of the reflection signal. We
performed the analysis of resonances up to 10 kHz, but were not able to identify resonances above
3 kHz. We have indicated the corresponding frequencies of the identified resonances in each case.
In addition to the shown mechanical oscillations of the cavity setup, the measured signal in a)
exhibits noise originating from the measurement electronics. For the FFT analysis we remove the
noise contributions by subtracting an FFT spectrum of an idle signal.

5.4 Light-matter interaction

We present the application of the fibre resonator as a light-matter interface in this section.
To this end, we introduce a quantum mechanical formalism to describe the interaction
between a radiation field and an atomic system. We reduce the atomic system to a two-
level system |g〉 / |e〉, where ground and excited state gets near resonant coupled by the
radiation field. We start with a semi-classical approach, where we describe the radiation
field as a single-mode electric field interacting with the atomic two-level system in dipole
approximation (see subsection 5.4.1). In subsection 5.4.3, we consider the quantisation of
the radiation field over the resonator mode volume, which subsequently can be used to
describe the atom-cavity coupling in subsection 5.4.4. The resulting concept of coupling a
two-level system to a continuum of modes also allows the description of the spontaneous
decay of an excited level as introduced in subsection 7.1.1.

As a basis of the Hilbert space of the two-level system, we define the states
|g〉 = |n, l,m〉 and |e〉 = |n′, l′,m′〉 of the atom with the corresponding quantum numbers
and |e〉 〈e|+ |g〉 〈g| = I. The Hamiltonian for the unperturbed system is given by Ĥatom
which can be expressed in composition of its eigenstates |i〉 ∈ {|g〉 , |e〉} as

Ĥatom = ~
∑
i

ωi |i〉 〈i| . (5.27)

By setting the point of zero energy half between the ground state and the excited state,
we derive ωg = −ωa/2 and ωe = ωa/2 with ωa = ωe − ωg and obtain Ĥatom = ~ωa

2 σ̂z with
σ̂x,y,z being the Pauli matrices.
The interaction between the two-level system and the radiation field is described by a

Hamiltonian ĤI. Figure 5.14 shows a sketch of the different approaches used to describe
the atom-field interaction with the corresponding definitions.
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Figure 5.14: Overview of the different approaches used to describe atom-field interaction with
corresponding definitions. An atomic two-level system (circle) with Hamiltonian Ĥatom is coupled
to a radiation field (dashed box) via the interaction Hamiltonian ĤI . The operators σ̂+/− denotes
the atomic raising/lowering operators. The field can be described either in a semi-classical approach
using an oscillating electric field (box, top) or in the field quantisation approach, where we consider
a single photon |1k〉 as an excitation of a radiation mode ω = c|k| with wave vector k (box, bottom).
For the field quantisation approach, the energy of the field is considered in Ĥfield.

5.4.1 The electric dipole transition in a semi-classical description

In dipole approximation, the spatial variation of the electric field on the length scale of the
atom is neglected, since the length of the atomic dipole moment is assumed to be much
smaller than the wavelength of the electric field λ. In particular, |r| ∼ a0 (Bohr radius)
and exp (ik · r) = exp (i · 2π/λ · |r|) ≈ 1. Therefore, we can drop the spatial dependence
in the expression of the electric field and write a single mode of a linearly polarised electric
field as

E = E0 cos (ωlt) eE , (5.28)

where the field is oscillating along an axis with unit vector eE . The electron density of an
atom in state |g〉 gets displaced by the electric field and a superposition state of |g〉 and
|e〉 may be induced, which exhibits a dipole moment d̂ = −e · r̂ with elementary charge e
and the electron position r̂. The interaction Hamiltonian between radiation field and the
electric dipole is given by44

ĤI,s = d̂ ·E = −eE0 cos (ωlt) r̂ · eE . (5.29)

In order to better understand the physics behind this Hamiltonian, we express ĤI,s in
terms of the basis states of the Hilbert space |i〉 , |j〉 ∈ {|g〉 , |e〉} as

ĤI,s =
∑
i,j

|i〉 〈i| ĤI,s |j〉 〈j|

= −eE0 cos (ωlt) ·
∑
i,j

|i〉 〈i| r̂ · eE |j〉 〈j|
(5.30)

using |e〉 〈e|+ |g〉 〈g| = I and Â = IÂI for any operator Â. The value of 〈i| r̂ ·eE |j〉 depends
on the atomic wave function of |i〉 and |j〉 respectively. The expression 〈i| r̂ · eE |j〉 is only
non-zero for i 6= j and transitions |g〉 ↔ |e〉 complying with the electric dipole selection
rules.
In general, for computing 〈i| r̂ · eE |j〉, the overlap of the angular part of the wave

functions of |i〉 and |j〉 with the driving field has to be considered (see Clebsch-Gordan

44 The subscript ’s’ indicates the context of the semi-classical approach
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coefficients in Appendix B for details). In general, the driving electric field E could be
also a superposition of linear and circular polarisation components with a more complex
time dependence. However, for simplicity, we consider the linear field of equation (5.28)
in the following and define the polarisation axis eE as parallel to the atomic quantisation
axis, which has maximal overlap with an electric dipole transition of ∆m = m′ −m = 0.
From here on we take this condition as given for the investigated two-level system |g〉/|e〉.

We define dij = d∗ji = e 〈i| r̂ |j〉 and define following expression of the Rabi frequency:

ΩR = |dij | · E0
~

. (5.31)

Using this definition of the Rabi frequency and |dii| = |djj | = 0, the interaction Hamilto-
nian of equation (5.30) reads

ĤI,s = ~ΩR cos (ωlt) [|e〉 〈g|+ |g〉 〈e|]
= ~ΩR cos (ωlt) σ̂x.

(5.32)

Finally, we write the full Hamiltonian of the semi-classical description as

Ĥ = ~ωa
2 σ̂z︸ ︷︷ ︸
Ĥatom

+ ~ΩR cos (ωlt) σ̂x︸ ︷︷ ︸
ĤI,s

= ~
(

ωa/2 ΩR cos (ωlt)
ΩR cos (ωlt) −ωa/2

)
. (5.33)

5.4.2 Rotating wave approximation

According to equation (2.8), a two-level system state |Ψ〉2 can be transformed into a state
|Ψ′〉2 (t) rotating with frequency ω around any axis rr by applying a unitary transformation
T2 as ∣∣Ψ′〉2 (t) = T2 |Ψ〉2 (5.34)

with

T2 = cos (ωt/2) I + i sin (ωt/2) · rr ·

 σ̂x
σ̂y
σ̂z

 = exp

 iωt2 · rr ·

 σ̂x
σ̂y
σ̂z


 . (5.35)

However, this is also true for a general state |Ψ〉 with the corresponding unitary transfor-
mation T . The time evolution of |Ψ〉 is given by the time-dependent Schrödinger equation
as

i~
d

dt
|Ψ(t)〉 = Ĥ ′ |Ψ(t)〉 . (5.36)

Using the Schrödinger equation, one can show that if a state |Ψ〉 in the Schrödinger picture
transforms according to equation (5.34), the Hamiltonian transforms as

Ĥ ′ = TĤT † − i~T ∂T
†

∂t
. (5.37)

For the driven two-level system described in this subsection, we apply the transformation

T = exp
(
i
ωl
2 t |e〉 〈e| − i

ωl
2 t |g〉 〈g|

)
= exp

(
iωlt

2 · σ̂z
)
, (5.38)
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which is, according to equation (2.9), a rotation around the z-axis with frequency ωl. Ap-
plying the transformation of equation (5.37) to the Hamiltonian derived in equation (5.33),
we obtain

Ĥ ′ = ~
2 (−∆σ̂z + ΩRσ̂x) ≡ Ĥrwa. (5.39)

We hereby neglect fast oscillating terms of O(2ωl), which is known as the rotating wave
approximation (RWA). Furthermore, we introduce the detuning ∆ = ωl−ωa of the driving
field to the atomic transition.
From the driven two-level Hamiltonian of equation (5.39) with the ansatz
|Ψ〉 = ce(t) |e〉+ cg(t) |g〉 and using equation (5.36), we obtain a set of coupled differential
equations for a driven two-level system, whose analytical solution is well known [53]. The
probability to find the system in the excited state |e〉 is given as

ηexc(t) = |〈e|Ψ(t)〉|2 = |ce(t)|2 = Ω2
R

(Ω′R)2 ·
(1

2 −
1
2 cos

(
Ω′Rt

))
, (5.40)

with Ω′R =
√

Ω2
R + ∆2

R being the generalised Rabi frequency. Equation (5.40) describes an
oscillation of the excited state population with Ω′R · t, which is known as Rabi oscillation.

5.4.3 Field quantisation

In this subsection, we introduce the concept of field quantisation and the interaction with
a two-level system in the dipole picture and the rotating wave approximation, similar
as for the semi-classical approach in subsections 5.4.1 and 5.4.2. The concept of field
quantisation is essential for the description of two main aspects of this work. First, it
leads to a quantum mechanical description of spontaneous decay (see subsection 7.1.1) via
coupling to the electro magnetic vacuum. Second, the coupling of a two-level system to
a single mode of a radiation field quantised over the mode volume of an optical resonator
leads to the Purcell effect, which is important for understanding the working principle of
optical resonators acting as light-matter interfaces (see subsection 5.4.4).
We start with the Hamiltonian of the driven two-level system [152]

Ĥ = Ĥatom + ĤI,q +
∑

k
~ωk

(
â†kâk + 1

2

)
︸ ︷︷ ︸

Ĥfield

, (5.41)

that now includes a term describing the energy of the quantised field Ĥfield according to
Figure 5.14. We name45 the interaction Hamiltonian of the quantised field approach ĤI,q.
The operators a†k and ak each create and annihilate a photon with wave vector k in the
corresponding mode of the radiation field.
A linearly polarised electric field in dipole approximation at the position of the atom is

given by [152]
E =

∑
k

ekεk
(
âk + â†k

)
, (5.42)

with εk =
√
~ωk/2ε0V and V being the quantisation volume. In the case of a resonator, the

quantisation volume is equivalent to the mode volume Vm introduced in equation (5.16).
45 The subscript ’q’ indicates the context of the quantised field approach
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The interaction Hamiltonian then reads

ĤI,q = d̂ ·E = ~
∑
ij

∑
k
gijk

(
âk + â†k

)
|i〉 〈j| , (5.43)

with the light-matter coupling coefficient

gijk = |dij · ek|εk/~. (5.44)

We can see from equation (5.44) that a smaller cavity mode volume Vm enhances the
light-matter coupling strength. For a single mode of the field we can write

g ∝ 1/
√
Vm. (5.45)

Applying the rotating wave approximation to the Hamiltonian of equation (5.41) we
obtain [152]

Ĥ = ~ωa
2 σ̂z + ~

∑
k
gk
(
σ̂+âk + â†kσ̂

−
)

+
∑

k
~ωkâ

†
kâk, (5.46)

where we omitted the constant energy offset of Ĥfield and assumed gijk = gjik = gk. We
define σ̂+/− to be the atomic raising/lowering operator with σ̂+ = |e〉 〈g| and σ̂− = |g〉 〈e|.

The Hamiltonian of equation (5.46) describes the interaction between a two-level system
and multiple modes of a radiation field. Considering only a single mode of the radiation
field in equation (5.46) yields the so-called Jaynes-Cummings Hamiltonian.

5.4.4 A two-level system inside an optical resonator

In a simple classical picture, an optical resonator is able to increase the probability of
a photon to interact with an atom that is within the resonator mode by reflecting the
photon back and forth several times. The chance of the photon to ’hit’ the atom in the
resonator with mode area A = πω2

0 can be expressed as

Phit = σabs
A
· F
π
, (5.47)

where the atomic cross section is given by σabs = 3λ2

2π . The number of photon reflections is
twice the number of round trips 2 ·N = 2 · τcavity/τround = 2 · F2π , which is determined by
the finesse of the resonator F . Even in this simple picture, the advantage of the enhanced
light-matter interaction in a resonator becomes clear due to the increased number of round
trips compared to a free-space approach.
Also from a quantum mechanical point of view, the combination of optical resonators

with single emitters is well suited as a light-matter interface but requires a more sophisti-
cated description. To this end, we consider the coupling of an atomic two-level system to
a single mode of the cavity, which means in particular that we assume only one mode ωc
of the resonator to be near resonant to the two-level transition frequency ωa. Depending
on the properties of the resonator and the atom, there are several regimes in which the
combined atom-cavity system can be operated. For a description of these regimes, the
fundamental rates of the atom-cavity system are frequently used, see Figure 5.15. We
introduce these rates in the following.
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Figure 5.15: Sketch of a two-level system coupled to a resonator with mode volume Vm. The
fundamental rates describing the combined atom-cavity system are given as light-matter coupling
rate g, scattering rate of photons into free space Γ4π = 2γ and photon loss rate from the cavity
mode κ = κout + κloss.

In subsection 5.4.3, we derive the full Hamiltonian of the system, which we here constrain
to a single mode of the radiation field. The light-matter coupling rate of equation (5.44)
then reads

g =

√
|deg|2ωc
2ε0~Vm

, (5.48)

where ωc is the centre frequency of the resonator mode. The field decay rate γ of the
system to the free-space vacuum states is given by the linewidth of the atomic transition
as

Γ4π = 2γ. (5.49)

which is related to a scattering rate of photons R4π = Γ4π · ρssee into free space without a
cavity being present (see equation (6.28)). We have to explicitly differentiate between a
(near) resonant cavity being present or not, since we showed in [7] that we can enhance or
suppress the scattering rate of photons through coherent back action of the cavity field on
the position of the ion, i.e. R4π 6= R4π,c with R4π,c being the free space detected scattering
rate of photon with a (near) resonant cavity in place. The scattering of photons into free
space can be seen as a loss of energy, since photons are scattered out of the atom-cavity
system. Further losses are given by photon absorption or scattering on the cavity mirrors,
which is taken into account with κloss and together with the field decay rate κout of the
resonator mode through the mirrors gives the total loss rate of the cavity

κ = κloss + κout. (5.50)

In the context of this work, a fast extraction of photons from the resonator mode deter-
mined by κout is a desired property and can be seen as a loss only in terms of the energy
of the combined atom-cavity system. We chose the reflective coating of the fibre mirrors
accordingly to achieve a high κout so that the quantum information transmission rate in
a network is not limited by the photon storage time within the cavity.
Regarding the field rates of the system, we can distinguish between strong coupling

g � κ, γ and weak coupling g � κ, γ. In the strong coupling regime, the system
can be described by the Jaynes-Cummings Hamiltonian introduced in subsection 5.4.3
which leads to interesting quantum electro dynamic (QED) phenomena like atom-photon
quantum gates [141] or reversible mapping of quantum states between light and matter
[27]. In the weak coupling regime, the system is dominated by its loss rates. This regime
is particularly interesting for the implementation of quantum networks. Fast cavities,
where the dominant rate is the field decay rate of the resonator (κ > γ, g), provide fast
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access to the photons emitted by the stationary qubit into the resonator mode. In this
regime, we can describe the atom-cavity interaction via perturbation theory [53] as done
in the following.

Purcell effect
The coupling of a two-level system to a continuum of modes of an electro magnetic
field leads to a spontaneous decay of the excited state with time constant 1/Γ (see
subsection 7.1.1). The rate Γ can be obtained via Fermi’s golden rule using the density
of modes of the radiation field ρ(ω) (also called density of states) as

Γ = 2π
~2 |Meg|2ρ(ω), (5.51)

with |Meg|2 = | 〈d ·E〉 |2 = 1
3 |deg|

2ε2k being the transition matrix element46 [53] and using
the definition of εk from subsection 5.4.3 for a single field mode. In free space (4π solid
angle) the density of states is given by ρ4π(ω) = ω2V0

π2c3 [53] where V0 is the quantisation
volume, which leads to the same expression of Γ4π as derived in equation (7.6) for the
quantum mechanical treatment of spontaneous decay into free space

Γ4π = 1
4πε0

4ω3|deg|2

3~c3 . (5.52)

Considering the decay into a cavity mode, the density of states can be approximated by
a Lorentzian function with a FWHM of ∆ωc and the resonance frequency ωc as [53]

ρc(ω) = 2
π∆ωc

∆ω2
c

4(ω − ωc)2 + ∆ω2
c

. (5.53)

For an atomic transition with ωa, we have to evaluate ρ(ωa), which becomes at resonance

ρc(ωa = ωc) = 2Q
πωa

, (5.54)

where Q = ωc/∆ωc = ωc/(2κ) is the quality factor of the cavity. Using again Fermi’s
golden rule, we obtain for the time constant of photon emission into the cavity on resonance
(ωc = ωa)

Γc = 2π
~2 |Meg|2︸ ︷︷ ︸
|deg |2ε2k

= 2Q|deg|2

ε0Vm~
, (5.55)

where we assume the dipole to be oriented along the field direction [53].
The Purcell factor fp describes the ratio of the two decay rates

fp = Γc
Γ4π

= 3Qλ3

4π2Vm
, (5.56)

with ω/c = (2π)/λ. The total decay rate Γ′ of the atom-cavity system can be given as the
sum of the individual rates

Γ′ = Γ4π + Γc = Γ4π (1 + fp) , (5.57)
46 The factor of 1/3 comes from averaging all possible orientations of the atomic dipole with respect to

the field direction [53]
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since the cavity provides additional field modes along its axis and we assume that the
density of free space modes is mainly unaffected [53]. Using equations (5.48), (5.49) and
(5.52), one can further find the relation

fp = 2 · g
2

2κγ ≡ 2C0, (5.58)

with which we have derived a common expression of the so-called cooperativity C0 of the
cavity. The cooperativity is expressed through the fundamental rates of the atom-cavity
system. We can interpret the cooperativity in terms of the simple picture introduced at
the beginning of this subsection by using the probability Phit from equation (5.47). For
the TEM00 mode of a symmetric resonator configuration47 both expression are equivalent,
i.e.

C0 = Phit. (5.59)

Using the decay rates Γ4π and Γc, we can compute the important quantity of the prob-
ability of a photon to be emitted into the cavity mode

Pc = Γc
Γ′ = 2C0

2C0 + 1 , (5.60)

which is also called the collection efficiency of the cavity. From equation (5.60) it is clear
why the use of resonant cavities is advantageous for the collection of photons emitted by
an atom. Already in the medium coupling regime with C0 ≈ 1, the collection efficiency
of emitted photons becomes Pc,cavity ≈ 66 %. In contrast, state of the art high resolution
objective lenses can reach numerical apertures of about NA ∼ 0.92 [145], which gives a
collection efficiency of Pc,high NA ≈ 30 % according to equations (3.20) and (3.21).

Application in quantum networks
For an application of cavities as light-matter interfaces in a quantum network, a high
collection efficiency Pc along with a fast extraction of collected photons is desirable.
A single photon emitted into a mode of the cavity will remain within the cavity for a
finite time, which sets a lower limit on the time it takes for the photon to reach further
elements of the network. This sets the limit of the bandwidth of a quantum network node
in terms of data transmission rate to ∼ κ/2. After a time of ∆t = 1/(κ/2), about 2 % of
the photon intensity still remains in the resonator. From a quantum mechanical point of
view, this is the probability of finding the photon still within the resonator.
The cooperativity C0 of a resonator is therefore an important design factor as it deter-

mines Pc and includes the cavity decay rate κ as C0 ∝ 1/(κ · Vm). By building a small
resonator with a small mode volume Vm, we can realise fast light-matter interfaces where
κ is the dominant rate of the system and at the same time achieve efficient collection of
photons due to a cooperativity of C0 ≈ 1.

5.4.5 Ion position within the cavity mode

For the light-matter coupling, the position of the ion within the cavity mode is important.
Optimal coupling is achieved at high electric field amplitudes of the radiation mode, which
47 For which the mode volume Vm was calculated in eq. (5.16)
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is especially the case at the mode waist of the TEM00 mode. But also transversely, the
standing wave pattern of the cavity mode has to be considered.
Once we moved the cavity to the trap position, we are able to keep it in this position

and to load the ion into the trap with the cavity in place. This enables a durable fine
tuning of the ion’s position within the cavity mode by slightly moving the cavity with
respect to the ion. In order to enable a full optimisation, the whole cavity structure is
mounted on a three axes positioning stage. But there are also alternative approaches. In
other experiments dealing with trapped ions in fibre cavities, attempts were made to move
the ion with respect to the cavity by shifting the trap centre with additional RF electrodes
[78]. However, the additional electrodes worsen the optical access to the trapped ion and
the phase mismatch of the additional RF signals induce excess micromotion of the ion
which has to be compensated.
In our case, we have to perform several iterative steps of the optimisation strategy

described below, since the electric stray field situation in the trap changes due to the
movement of the cavity. After each step, we need to compensate the stray fields in
order to realign the position of the ion to the RF-null of the trap (see subsection 4.1.1).
Otherwise, a cavity optimisation to a non-optimal ion position could be the result.

Coarse alignment
Before we start with a precise cavity alignment using direct feedback from the ion, we
can estimate a good starting point for the iterative optimisation even without a trapped
ion. Previous experiments [116] have shown that placing objects within the cavity mode
introduce additional losses to the cavity system, which reduce the coupling efficiency
of light to the cavity mode. We use this method to determine the coordinates of the
triaxial positioning stage at which the coupling efficiency of the pump light into the
cavity decreases as a trap needle approaches the cavity mode. For a symmetric trap, the
ion is expected to be confined central between the two needles and we move the cavity to
the midpoint of the above determined needle positions. This method provides a sufficient
starting point for the following optimisation.

Transverse optimisation
We optimise the ion coupling to the TEM00 mode of the cavity by pumping this mode
with an external laser. The theoretical waist of the mode is ω0 = 4.1(2)µm at its smallest
size (equation (5.11)). To optimise the position of the ion inside the cavity, we drive the
ion with the cavity field and monitor the rate of photons R4π scattered by the ion into
free space. To this end, we tune the cavity-pump laser on resonance with the atomic
cooling transition 2S1/2 ↔ 2P1/2 of 174Yb+ and hold the cavity resonant to this laser.
According to equation (5.44), the coupling rate g between the cavity mode and the ion is
proportional to the cavity electric field amplitude E(r) at the position of the ion

g(r) ∝ E(r) ∝ e−
r2
w02 , (5.61)

where r denotes the radial position of the ion within the cavity mode (see Figure 5.16 a)).
The light-matter coupling strength allows for probing of the electric field at the ion’s
position and was first demonstrated in [64] for an optical cavity and a single ion.
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Figure 5.16: Optimisation of the light-matter coupling rate g(r) by adjusting the transversal
cavity mode to the ion’s position. a) Sketch of the TEM00 cavity mode with radial axes definition.
The cavity is pumped by a weak laser resonant to the 2S1/2 ↔ 2P1/2 transition of 174Yb+. The
z-axis is defined as the cavity axis. b) We continuously move the cavity along the x-axis while
monitoring the scattering rate of photons R4π into free space. c) Same as in b) but for the cavity
moving along the y-axis. b)+c) The error on the detection rate of photons can be estimated as
the standard deviation of the points which is determined by cavity oscillations and heating of the
ion.

We scan the position of the cavity with respect to the ion (see Figure 5.16 b)+c)) and
observe a maximum scattering rate if the light-matter coupling rate is maximal as well.
This is due to the dependence

R4π ∝ ρee ∝ g2(r) ∝ e−
2r2
w02 , (5.62)

where the steady state population of the 2P1/2 level ρee is proportional to g2(r) for a
weakly driven ion in a pumped cavity [6].
While continuously scanning the cavity position along the x-axis or the y-axis, we found

a clear maximum of the light-matter coupling rate g in both cases (see Figure 5.16 b)+c)).
Nevertheless, we cannot prove the expected Gaussian shape of the TEM00 mode for the
following reason. The movement of the cavity changes the conditions for trapping, i.e. the
magnitude and direction of the stray electric field at the position of the ion. Without a
recalibration of the compensation field, this leads to a heating of the ion and to a strong
Doppler broadening of the atomic resonance. Since we drive the ion slightly red detuned
from the resonance, this then increases the scattering rate R4π, which we can observe
especially in Figure 5.16 b) as a more flat falling slope on the right-hand side of the curve.
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Longitudinal optimisation
The effects we observe for the transverse displacement are even stronger for the longitu-
dinal displacement of the cavity (z-axis), as the cavity mirror moves directly towards or
away from the ion. Calibration of the ion’s position along this direction requires a more
stepwise approach with small adjustment steps and compensations in between. This
approach is limited by the hysteresis of the cavity positioning stage and we suspect that
the longitudinal alignment is not optimal.

In summary, with the positioning of the cavity, we achieved the maximal overlap of
transversal cavity mode and ion. However, the uncertainty in the longitudinal positioning
of the ion could lead to a reduced light-matter coupling. We investigate the light-matter
coupling in detail in the next section.

5.5 Photons as travelling qubits

Photons have advantageous properties for the distribution of quantum information be-
tween the nodes of a quantum network. These are, for example, the speed of light, coupling
to stationary qubits via the optical dipole moment and guiding through optical fibres. In
this thesis, we use the enhanced light-matter interaction in the fibre cavity to effectively
collect photons emitted from the trapped ion. Photons leaving the resonator mode are
intrinsically fibre coupled.
As a light-matter interface, the cavity must provide control over the quantum state of the

emitted photon. In this thesis, this requires that the photon is collected along a specific
axis (see subsection 7.1.3), since the entangled state between ion and photon depends
on the observation angle of the photon. This is due to the quantum information being
encoded in the polarisation degree of freedom of the photon. Due to its small solid angle,
the fibre cavity has the conceptual advantage of overcoming difficulties of orthogonality
of polarisations in light collection with high numerical aperture objectives [23, 161]. The
photons are collected and extracted in a defined spatial mode.
We present a polarisation state sensitive detection of these photons in subsection 5.5.1.

In addition, we show in subsection 5.5.2 that the extracted photons also have a defined
time profile. Based on this profile, we perform a detailed analysis of the achieved cavity
parameters including collection and detection efficiencies in subsections 5.5.2 and 5.5.3.
In subsection 5.5.4 we present how a projective measurement of the polarisation state of
the photon in an arbitrary basis can be realised.

5.5.1 Detection setup

We apply a magnetic field along the cavity axis in order to define the quantisation axis
and suppress emission into the cavity mode with a change of magnetic quantum number
of ∆mF = 0. Hence, only circular polarised photons are emitted by the ion into the
cavity mode. After ∼ 1.5m of fibre, we perform a detection of light leaving the cavity
mode at a single photon level. In order to perform a projective measurement of the
photon polarisation state, we use a polarising beam splitter (PBS) and two single photon
counters48 (SPCs), one on each exit path of the PBS, detecting horizontal (H) or vertical
48 H12775 from Hamamatsu
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(V ) polarised photons (see Figure 5.17). To suppress stray light, we apply a 10 nm spectral
filtering49 in front of the SPCs. The basis to which we project the photon state is defined
by a quarter-wave plate (QWP) and a half-wave plate (HWP), which are able to rotate
the polarisation qubit state to any state on the Bloch-sphere (subsection 5.5.4).

B Fibre cavity

Fibre

λ/2

λ/4

H-SPC

V-SPC

Paul trap

PBS

BS
95:5

σ±σ±σ±σ±

Reference laser
(fdecay and fref)

Figure 5.17: Sketch of the setup used for the detection of photons leaving the cavity mode. We
collect the single emitted photons along the quantisation axis using the resonant cavity. Photons
leaving the cavity through the single-mode fibre are projected to horizontal (H) and vertical (V)
polarisation on each arm of the polarising beam splitter (PBS) respectively. We use a reference
laser for stabilisation of the cavity length and calibration of the setup (yellow dashed line) (see
section 5.3 and subsection 5.5.4).

Electronic processing of SPC signals
The key role of the cavity photons for the experiment entails a number of requirements for
the detection setup. First, the length stabilisation of the fibre cavity requires a continuous
feedback generated from the reflected photons of a probe laser at a medium regulation
bandwidth (< 20 kHz). Second, the real-time feedback of single-photon detection events
is required for a conditional branching of experimental sequences, which is highly time-
critical (< 1µs). Furthermore, the suppression of false-positive events is crucial for high
fidelity detection of the entangled state (subsection 7.4.2). We achieve above requirements
with a real time electronic processing of the single photon counter TTL pulses (10 ns
width), see Figure 5.18.

H

TDC

Fibre cavity lock

Amplifier

Splitter

FECS

Combiner

Switch

V

Figure 5.18: Sketch of the electronic circuit which processes the TTL pulses from the cavity
SPCs. Photon counts are passed to the conditional sequence branching (FECS) and the TDC only
during a 1µs time window where photons from the trapped ion are expected.

The polarisation-resolved detection of the photons is performed by the SPCs in combi-
49 FF01-370/10-25 from Semrock
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nation with the TDC, where timestamps with a time resolution of < 35ps are assigned to
the photon counts. The fast experimental control system (FECS) (see subsection 3.2.4)
gates in-sequence decision branching and data acquisition on the TDC, while a separated
signal is generated for the fibre cavity lock from the TTL pulses of the SPCs. For this
purpose and for the purpose of conditional sequence branching at the stage of the FECS
no differentiation of photon detection events by polarisation is necessary.

5.5.2 Time profile of the extracted photons and characterisation of the light-matter
interface

In this subsection, the time profile of the photons extracted from the ion-cavity system
is investigated. The photons are emitted by the excited ion through spontaneous decay
of the

∣∣∣2P1/2, F
′ = 1,mF = 0

〉
≡ |e〉 excited state into a single mode of the resonator and

subsequently extracted through one of the fibre cavity mirrors (see Figure 5.17). The
natural lifetime of the |e〉 state is 8.12(2) ns [128]. We derive in subsection 7.1.2 that the
time profile of a photon emitted spontaneously during the decay process of an excited
state into free space has a characteristic exponentially decaying time shape whose time
constant is determined by the lifetime of the excited state. However, for the presented
measurement, the atom-cavity system as a whole determines the time profile of the ex-
tracted photons, which includes Purcell effect, cavity decay time and light-matter coupling
regime as discussed in the following.
We can measure the photon time profile as a statistic of arrival times on the SPCs over

multiple repetitions of atomic excitation and decay. In Figure 5.19 a) the binned arrival
times of the detected photons extracted from the cavity are shown for H- and V -detector
respectively. Due to an excitation pulse length of ∼ 130 ps, the population transfer to the
ion’s excited state can be seen as instantaneous (1/(130ps) � κ,Γ). We would expect a
sharp rising edge of the photon time profile from this condition, however, the time profile
is rounded by the cavity decay time (see equation (5.63)). Since the excitation pulse
of the ion is detuned by 12.6GHz from the resonance frequency of the cavity mode, we
can neglect stray-light originating from the pulse appearing in the photon statistic (see
section 6.3). The detection time stamp of each photon is synchronised to the arrival time of
the excitation pulse in order to reach a sufficient time measurement accuracy. Otherwise,
the 18.5 ns timing jitter of the excitation pulse would blur the time statistic of photon
detection events (see subsection 6.3.3).
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Figure 5.19: a) Binned detection times of the photons extracted through the fibre cavity on the
V /H-detector (blue triangles/orange dots). The detection times are synchronised to the arrival
time of the excitation pulse of the ion (’pulse sync’). The solid lines are fits according to two
convolved exponential decay functions (equation (5.63)). The blue/orange shaded area represents
a post-selection acceptance window of 10 ns. b) Measured detection probabilities of a photon per
ion excitation attempt for different acceptance windows as shown in a). The values include the
excitation probability ηexc = 0.99(1) of the ion (see equation (6.42)). The solid line represents a
fit to the measured data from which the the detection efficiency Pd,measured is extracted (dashed
line). The standard deviation error on Pd,measured is given as grey shaded area. The data in a)
have also been published in [92].

The time offset between H- and V -photon counts originate from a different wiring
between the photon detectors and the time-to-digital converter (TDC). The optical path
lengths for H and V are equal on the investigated timescale. The differing heights of the
photon statistics for H and V originate from the path efficiencies which differ due to a
beam splitter inserted for the reference laser into the H-path (see Figure 5.17).
We measure a full-width-at-half-maximum (FWHM) of the photon’s temporal profile

of 9.3(9)ns, which could be beneficial for impedance matching to further elements of a
quantum network, especially when considering a hybrid network with different kind of
nodes [117].
We can extract the Purcell-enhanced linewidth Γ′ of the exited state manifold 2P1/2

using the time profiles shown in Figure 5.19 a). The fast cavity regime (κ � γ, g) allows
us to describe the photon time profile by convolving two exponential decays f(t) = A·e−t/τ

for the cavity and h(t) = e−t·Γ
′ for the spontaneous emission of the ion with τ = 1/(2κ)

and Γ = 2γ as

S(t > 0) =
∫ t

0
f(x)h(t− x) · dx = −τ ·A · e

−t/τ − e−t·Γ′

1− τ · Γ′

and S(t ≤ 0) = 0.
(5.63)

The boundaries of the integral avoid causality issues for t < 0 and t − x < 0 for an ion
excitation at t = 0. The amplitude A has to be introduced as a global scaling for S(t)
only for one of the decay functions f or h. We extract the Purcell-enhanced linewidth Γ′

of the ion for the H- and V -detector signals respectively and average the two values to

Γ′ = Γ (1 + 2C0,eff) = 2π · 21.39(51)MHz. (5.64)
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We calculate the effective cooperativity to be C0,eff = 0.046(13) according to equa-
tion (5.57) and deduce the effective light-matter coupling rate from this value as

geff =
√
C0,eff · 2 · κ · γ = 2π · (7.2± 1.2) MHz , (5.65)

with the atomic linewidth Γ = 2γ = 2π · 19.6MHz [128]. The effective values include the
effects of imperfect light-matter coupling, which could be caused, for example, by short-
comings in locking the cavity to the atomic resonance (see subsection 5.3) or overlapping
the ion’s position with the cavity mode (see subsection 5.4.5).
Knowing C0,eff, we can calculate the probability of a photon to get emitted into the

cavity mode according to equation (5.60) as

Pc,eff = 2C0,eff
2C0,eff + 1 = (8.4± 2.2) %. (5.66)

From the characterisation of the cavity photon detection path, we determine the proba-
bility of detecting a photon on the single-photon counting modules per generation trial as

Pd,eff = ηexc · Pc,eff · ηext · εm · ηpath · ηDetector = 2.5(8)× 10−3 photons
generation attempt , (5.67)

where we used the excitation efficiency of the ion ηexc = 0.99(1) from equation (6.42),
the mode matching between fibre and cavity εm = 0.44(3) (eq. (5.19)), the extraction
probability through the desired cavity mirror ηext = 0.53(6) (eq. (5.18)) and the quantum
efficiency of the single-photon counters of ηDetector = 0.215 according to the manufacture’s
specifications. We estimate the path efficiency ηpath considering the transmission of the
focussing lens in front of the SPCs 0.93(3), spectral filter 0.92(2), the fibre coupler 0.92(4)
and the fibre 0.83(10) (per metre) [29] and calculate

ηpath = 0.60(11). (5.68)

The transmission loss on the wave plates is negligible.
The estimated value of the detection efficiency Pd,eff from equation (5.67) agrees with

the value of
Pd,measured = 2.58(6)× 10−3 photons

generation attempt (5.69)

obtained from the measured probabilities for different acceptance windows as shown in
Figure 5.19 b).

5.5.3 Discussion of the achieved cavity parameters

In order to better understand the measurement results of the previous subsection, we
calculate in the following which results we expect based on the design parameters of the
cavity. We start with a calculation of the achievable cooperativity based on the cavity waist
ω0. According to equation (5.11), we obtain for the TEM00 mode with R = (280± 36)µm
a waist of

ω0 = 4.1(2)µm. (5.70)
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Using equations (5.47) and (5.59) for the cooperativity, we derive

C0,g0,theo = σ

A
· F
π

= 1.9(4), (5.71)

with σ = 3λ2

2π being the cross section of the ion, A = πω0
2 the area of the cavity mode

at its smallest waist and the finesse of the cavity F = 4700± 700 [29]. The cooperativity
obtained from equation (5.71) assumes a light-matter coupling of g0, whereas for the σ±

decay we have to consider a factor of
(√

2
3

)2
coming from the Clebsch-Gordan coefficients

cσ± of the ∆mF = ±1 transitions (see Appendix B). This reduces the light-matter coupling
rate to

g2 = g0
2 ·

∑
k=σ+,σ−

ci ⇒ g =
√

2
3 · g0. (5.72)

We calculate the cooperativity corrected for the observation of photons along the cavity
axis as

C0,theo = 2
3 · C0,g0,theo = 1.3(3). (5.73)

From here, we perform the same calculation as for the effective values in the previous
subsection by computing the collection and detection efficiencies Pc,theo and Pd,theo. The
effective values calculated from the measurement of the Purcell-enhanced linewidth (sub-
section 5.5.2) and the theoretical values calculated from cavity parameters can be found
in Table 1 for a better comparison.

Experimental parameter Effective value Theoretical value
C0 0.046(13) 1.3(3)
Pc /% 8.4± 2.2 72± 5
Pd / 10−3 2.5± 0.8 21± 5
g

2π /MHz 7.2± 1.2 38± 5

Table 1: Effective experimental parameters calculated from the measurement of the Purcell-
enhanced linewidth and the theoretical values calculated from cavity parameters.

We measured significantly less coupling between the atom and the cavity than expected
from the cavity design parameters of the cavity. We suppose that the experimental short-
comings in the fibre cavity stabilisation and the ion localisation within the cavity mode
are the main reasons for this (see subsections 5.3.3 and 5.4.5).
A comparison of the presented fibre cavity system with previous realisations of cavities

as light matter interfaces for atom-photon entanglement generation can be found in Table
2. It is apparent that the advantages of the fibre cavity are primarily the basis rates of
the system and that a stable light-matter coupling can provide a collection efficiency on
par with previous implementations.
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Ref. Atom g
2π /MHz κ

2π /MHz γ
2π /MHz Pc ηext εm

[143] 87Rb ≤ 5 3 3 ≤ 0.6† 0.9 ≤ 0.9∗∗

[99] 40Ca+ 1.53(1) 0.070(2) 11.45 ≤ 0.75∗ 0.83(3) 0.5(1)∗∗

[164, 162] 40Ca+ 1.4 0.05 11.2 ≈ 1† 0.2 no fibre
This work 171Yb+ 7.2± 1.2 58± 9 9.8 0.08(2) 0.53(6) 0.44(3)

{38± 5} {0.72(5)}

Table 2: Characteristic parameters achieved with previous cavity-based atom-photon entangle-
ments. Theoretically achievable values for the presented experiment are written in curly brackets.
∗ Parameter calculated from g, κ,Γ. ∗∗ Equivalent fibre coupling efficiency is given for a macro-
scopic cavity. † Equivalent photon generation efficiency. Due to a different photon generation
scheme, there is no collection efficiency Pc in the sense of this thesis.

5.5.4 Projective measurement of the photonic qubit state

Due to the polarising beam splitter (PBS), the projective measurement of a photon’s
polarisation state always happens to the horizontal (H) and vertical (V ) polarisation basis
states. In order to project the photon state to an arbitrary basis, we have to rotate the
polarisation state along the optical path accordingly. This then determines the mapping
of the polarisation eigenstates of a given basis onto the linear H- and V - detection basis.
The mapping can be defined in general as a rotation on the Bloch-sphere, where HWP
and QWP implement distinct rotation operations. Since other elements of the optical
path can also rotate the polarisation state, we need to fully characterise the polarisation
properties of each optical element along the photonic path to enable the state detection
of the photon in a defined basis.
To describe the photonic path, we use the Jones matrix formalism and start with a

polarisation state of the photon Sin in the cavity mode and calculate the polarisation
rotation of the state along the optical path (Figure 5.17). The polarisation state after its
rotation and right before the PBS can be calculated as

Sout = HWP (θhwp) ·QWP (θqwp) ·Mfibre (θfibre, φ) · Sin. (5.74)

The influence of HWP and QWP on the polarisation state are well known, but additional
elements in the setup may rotate the polarisation state as well. Starting from a photon
state in the cavity, we summarise the state manipulation up to the position of the wave
plates as a single arbitrary phase retarder Mfibre

50. The rotation matrices of the path are
given as:

Mfibre (θfibre, φ) = Rz(θfibre) ·

 1 0 0
0 eiφ 0
0 0 1

 ·Rz(−θfibre), (5.75)

HWP (θhwp) = Rz (θhwp) ·

 1 0 0
0 −1 0
0 0 1

 ·Rz (−θhwp) , (5.76)

50 We assume that the fibre has the main influence there
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QWP (θqwp) = Rz (θqwp) ·

 1 0 0
0 i 0
0 0 1

 ·Rz (−θqwp) . (5.77)

The given Jones matrices allow a transformation of the polarisation state with respect to
the orientation of the amplitude vector of the electric field of a photon. However, they
must not be used for interference calculations of electric fields. We define the z-axis as
propagation direction of the photon. Furthermore, we define Rz (θ) as the rotation matrix
around the z-axis by an angle θ, which is used for rotation of the fast axis of a polarisation
element with respect to the x- and y-axis defining vertical and horizontal polarisation
respectively.
The PBS always projects the polarisation state Sout to the linear polarisation basis H

and V . By assigning a Jones vector SX to each detection arm of the PBS withX ∈ {H,V },
we infer the detection probability of an incoming photon on one of the detection arms from
the state overlap as

DX(Sout) = r(Sout,SX) with SH ≡

 0
1
0

 , SV ≡

 1
0
0

 . (5.78)

We calculate the state overlap of two Jones vectors u and v as

r(u,v) = |u†eve|
2 with ue = u

|u| and ve = v
|v| . (5.79)

In order to determine the free parameters in equation (5.74), we probe the photon path
using a weak laser (∼ 50 pW) coupled through the PBS into the fibre (see Figure 5.17).
Since the laser frequency is off-resonant by a few GHz with respect to the cavity mode,
it gets reflected on the first fibre mirror. Monitoring the count rate of reflected photons
on the V -SPC for different wave plate rotation angles leads to a heat map as shown in
Figure 5.20 a).
To reproduce this data with our model, we propagate an initial H-polarised photon

backwards through the path described in equation (5.74). Subsequently, we simulate the
reflection on a mirror and propagate again though the original path. We end up with a
polarisation state Sout of the photon for which we calculate the probability DV (Sout) to
trigger a count on the V -SPC using equation (5.78). Doing this for all measured wave
plate angles while performing a least square fit51 to the two-dimensional scalar data set,
we are able to determine the polarisation retardation of the fibre as well as the rotation
offset of the fast axes of our wave plates.

51 using the Python package scipy.optimize.curve_fit with standard parameters
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Figure 5.20: a) Characterisation of the polarisation rotation of the photon detection setup using
a reference laser as shown in Figure 5.17. The normalised count rate of reflected photons on the
V -detector for different wave plate angles is shown (top). Fit of the data assuming the fibre to be
an arbitrary polarisation element (bottom). b) Calculated correlation heat-map estimated from
the separability defined in equation (5.84) and optical path parameters determined from the fit
in a). We repeat the calculation for different starting polarisations Sin corresponding to different
atomic qubit readout bases. The corresponding wave plate settings for a photon readout in the
same basis are labelled accordingly with lower indices Hi/Vi with i ∈ (x̄, ȳ, z). For definition of
¯̂σx,y, see equation (5.87). The data have also been published in [92].

Once we have characterised the photon path, we use the obtained values to simulate
the propagation of a photon along this path using equation (5.74). In order to project
the photon state onto a certain basis σ̂j , the eigenstates of this basis given according to
equation (2.3) as

σ̂j |Ψλ·j〉 = λ · |Ψλ·j〉 (5.80)

must be mapped to the eigenstates of the projective measurement |H〉 and |V 〉. The
following calculations were made for the entangled atom-photon state

|Ψatom-photon〉 = 1√
2

(∣∣∣σ+
〉 ∣∣∣g+

〉
−
∣∣σ−〉 ∣∣g−〉) , (5.81)

which is generated in the presented experiment according to chapter 7. However, the
methodology is applicable to any definition of the basis states |Ψλ·j〉.
For the wave plate setting corresponding to a photon state detection in the σ̂z basis,

the eigenstates |σ±〉 are mapped to horizontal and vertical polarisation in a single pass of
the optical path as follows: ∣∣∣σ+

〉
≡ |Ψz〉 → |V 〉 ,∣∣σ−〉 ≡ |Ψ−z〉 → |H〉 .

(5.82)

Which circular polarisation state is mapped to which linear polarisation state is not im-
portant at this point at the beginning of the considerations. However, the mapping of the
remaining photonic bases and the mapping of the atomic state in chapter 6 must take this
definition into account.
The mapping described in equations (5.82) requires the optical path of the photon to act

in total as a quarter-wave plate. For the reflection of the initial H-polarised reference light,
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5 A fibre Fabry-Pérot cavity as a light-matter interface

this results in maximal counts on the V -SPC52 (local maximum in Figure 5.20 a)). For
this wave plate settings, a maximal correlation contrast between the detected photon state
and the detected ion state both measured in σ̂z basis can be expected for entanglement
between atom and photon (see Figure 5.20 b)).
We can use a purely classical description of the polarisation states, since each individual

particle of an entangled pair is not in a phase-coherent quantum state by itself, but in a
statistical mixed state [174]. Therefore, a quantum mechanical description including the
full ion-photon state is not necessary when focusing on the polarisation manipulation of
the photonic path.
To compute the expected correlation contrast, we propagate the two polarisation eigen-

states SΨ±j for a given basis σ̂j along the optical path using equation (5.74) and compute
how well the two output states Sout,±j separate at the two detection arms H and V of
the PBS for different angles of HWP and QWP (see Figure 5.20 b)). We calculate the
separation w as

wV -detector =
∥∥∥∥∥(DV (Sout,+j)−DV (Sout,−j)

(DV (Sout,+j) +DV (Sout,−j)

∥∥∥∥∥ and

wH-detector =
∥∥∥∥∥(DH(Sout,+j)−DH(Sout,−j)

(DH(Sout,+j) +DH(Sout,−j)

∥∥∥∥∥
(5.83)

from which we obtained the average separability as

wtot = (wV -detector + wH-detector)/2. (5.84)

The separability directly states the expected correlation contrast between atomic and
photonic state for a detection of the entangled state in the σ̂atom⊗ σ̂photon basis. The state
projection on the atomic side σ̂atom is reflected by the eigenstates SΨ±j , which were used
as a starting polarisation state Sin. The state projection on the photonic side σ̂photon is
defined by the remaining free parameters of equation (5.74).
The eigenstates of the σ̂z basis |Ψ±z〉 = |σ±〉 are represented by the polarisation state

vectors SΨ±z = Sσ± in the Jones-formalism as

Sσ+ = 0.5 ·

 1− i
1 + i

0

 and Sσ− = 0.5 ·

 −1 + i

1 + i

0

 (5.85)

For the rotated bases (σ̂x,y), a superposition of the polarisation basis states |σ±〉 has to
be mapped to horizontal and vertical polarisation as

|Ψx,y〉 = 1√
2

(∣∣∣σ+
〉

+ eiβx/y ·
∣∣σ−〉) →|V 〉 and

|Ψ−x,−y〉 = 1√
2

(∣∣∣σ+
〉
− eiβx/y ·

∣∣σ−〉) →|H〉 ,
(5.86)

with βx = 0 and βy = π/2, where β is controllable by the wave plates. This mapping
of the eigenstates preserves the corresponding eigenvalue (λ = ± 1) for all bases σ̂x/y/z
according to equation (5.80).
52 A path of QWP→mirror→QWP maps H to V polarisation for a fast axis rotated by 45 degree with

respect to the polarisation axis.
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5.5 Photons as travelling qubits

However, we found that defining the rotated bases as ¯̂σk, k ∈ (x, y) with the eigenstates

{
|Ψk̄〉 ,

∣∣∣Ψ−k̄〉} =
{ 1√

2

(∣∣∣σ+
〉

+ eiβk̄
∣∣σ−〉) , 1√

2

(∣∣∣σ+
〉

+ eiβk̄+π ∣∣σ−〉)} , (5.87)

where βx̄ = π/4 and βȳ = 3π/4 results in easily accessible angles of the wave plates as
shown in Figure 5.20 b).
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Figure 5.21: Basis definition of polarisation states on the Bloch-sphere. The eigenstates of ¯̂σx/y
from equation (5.87) are sketched as blue/red arrows.

The set of bases {¯̂σx, ¯̂σy, σ̂z} for which we present the measured correlations in sections
7.3 and 7.4 are shown in Figure 5.21. The same basis definition holds for the ion, since
detection of a photon projects the ion to the corresponding state. We verified from the sim-
ulation of the photon path that we project the eigenstate

∣∣∣Ψ±k̄〉 of the basis ¯̂σk according
to ∣∣∣Ψ+k̄

〉
→|V 〉 and∣∣∣Ψ−k̄〉 →|H〉 .

(5.88)

This ensures that also for this definition of the bases the mapping of the eigenstates
preserves the corresponding eigenvalue (λ = ± 1) for all bases σ̂x̄/ȳ/z.

5.5.5 Birefringence of the fibre cavity

Due to a potential elliptic shape, our fibre mirrors usually exhibit birefringence which
manifests itself in a frequency splitting ν∆HV of the linear polarisation modes H/V within
a fibre resonator. The frequency splitting due to a birefringent dephasing on the elliptic
paraboloidal mirrors can be calculated as [57]

ν∆HV = κ · λF2π2 ·
√
δ2

1 + δ2
2 + 2δ1δ2 cos(2θ) with δi = 1

Ra,i
− 1
Rb,i

, (5.89)

where Ra,i is the long and Rb,i the short radius of curvature (ROC) along the eigenaxes
of the mirror i ∈ {1, 2} and δi · λ2π � 1. The angle θ states the relative orientation of the
fast axes of the two mirrors. The fast axes of the first mirror is assumed to be parallel to
the vertical direction.
Since for our pool of fibres the ROCs were determined from the phase-shifting interfer-

ometry of the fibre tips with an accuracy of ∼ 30µm, we can chose a set of fibres which radii
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5 A fibre Fabry-Pérot cavity as a light-matter interface

of curvature result in ν∆HV being smaller than the cavity linewidth κ = 2π · (58± 9)MHz.
However, the splitting of the H/V modes could be in fact still much higher than the energy
splitting ωL ∼ 2π · 1.6MHz of the stationary qubit levels |g±〉 (see Figures 5.22 and 6.1).
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Figure 5.22: Estimated frequency splitting of the polarisation modes H/V in the cavity with
Finesse F ∼ 4700, linewidth κ ∼ 2π · 58MHz, (Ra,i + Rb,i)/2 ∼ 280µm and θ = 0. The grey
shaded area denotes the uncertainty region resulting from max [Ra,i −Rb,i] ≈ 60µm for i = 1, 2.
For the calculation we assumed Ra,1 = Ra,2 = Ra and Rb,1 = Rb,2 = Rb.

An energy splitting of the photonic modes of the entangled ion-photon state can cause
the phase of the the entangled state to rotate at the corresponding frequency. However,
for the emission of circularly polarised photons into the cavity mode, we do not observe
a significantly increased phase evolution of the ion-photon state. The measured results
are consistent to a phase evolution with a timescale being of the order of the atomic
level splitting (see subsection 7.4.2). We suppose that the equal superposition of linear
polarisation modes in a circular polarisation state cancel out a potential frequency splitting
ν∆HV in phase evolution. Nevertheless, the emission probability of circularly polarised
photons into the cavity mode could depend on the spectral overlap of the H- and V -
polarised resonator modes, which could reduce the rate of entanglement generation.

5.6 Summary

We have introduced a fibre Fabry-Pérot resonator as a light-matter interface, which con-
stitutes a key element of the quantum network node presented in this thesis. The fibre
cavity not only enables the efficient collection and extraction of photons in a defined spa-
tial mode, it also provides control over the polarisation state and time profile which are
prerequisites for an application of the collected photons as travelling qubits in quantum
communication.
We measure an effective light-matter coupling rate of geff = 2π · (7.2 ± 1.2)MHz and

a collection efficiency of photons of Pc,eff = (8.4 ± 2.2) % while maintaining a fast ex-
traction of photons out of the cavity of 1.4(1) ns. These properties are enabled by the
small resonator mode volume. Compared to previous cavity-based realisations of entan-
gled atom-photon states, we achieved to our knowledge the yet shortest temporal shape
of photons of 9.3(9)ns extracted through the cavity by more than one order of magnitude
[143, 99, 164] (see chapter 7 for the verification of entanglement). This is not only advan-
tageous for impedance matching to further nodes, but also allows the cavity to be used in
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networks with a high data throughput.
In the context of quantum communication, we presented the projective polarisation state

detection a photon extracted from the fibre cavity, where we achieved full insight into the
polarisation rotation of the detection setup are are able to project the state to an arbitrary
basis. Furthermore, we have shown that with the cavity assembly presented in this thesis
we have overcome some of the limiting shortcomings of previous fibre cavity realisations,
such as mirror degradation, lock-ability, microwave incompatibility and destabilisation of
the ion trapping. We identified mechanical low-frequency resonances of the piezo tube,
probably excited by 1/f noise, as the main problem for the length stabilisation of the
resonator. To this end, we investigated the excitation resonances of the cavity design
up to 10 kHz. For the length stabilisation, we realised a side-of-fringe locking scheme
working at ultra-low light powers of ∼ 50 pW, which mitigates the charging problem of
the dielectric mirror in combination with UV light.
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Memory qubits are a crucial part of quantum information processing. Besides the imple-
mentation of universal quantum computers [183], the ability to coherently store quantum
information allows overcoming the rate-distance limit of point-to-point quantum commu-
nication [137, 21] that arises from the absorption of information carriers in a medium.
Therefore, memory qubits enable the realisation of large-scale quantum networks.
In practice, there are important points to consider in order to successfully store quan-

tum information in a memory qubit: first, the qubit should be accessible to high-fidelity
initialisation, manipulation and readout. Second, the time span in which the coherent
information can be retrieved from the qubit with sufficiently low error (coherence time)
must scale with the characteristic timescale of the targeted application. In a quantum net-
work, this timescale is usually determined by the characteristic distance and the number of
nodes of the network. Third, in a quantum network, the efficient mapping of information
between the travelling qubit states and the long-lived memory qubit states is essential.
We introduced an effective light-matter interface for this purpose in the previous chapter.
In this chapter, we discuss the capabilities of the 171Yb ion with respect to an application

as a stationary memory qubit in quantum communication. The level scheme of 171Yb+

exhibits a hyperfine splitting of the 2S1/2 manifold of 12.6GHz which is well suited for
coherently storing and manipulating quantum information. From Figure 6.1, we identify
a total of three microwave-accessible two-level hyperfine transitions that enable encoding
of quantum information: |0〉 ↔ |g−〉, |0〉 ↔

∣∣g+〉 and |0〉 ↔ ∣∣g0〉, where we defined∣∣∣2S1/2, F = 1,mF = −1
〉
≡
∣∣∣g+

〉
,∣∣∣2S1/2, F = 1,mF = +1

〉
≡
∣∣g−〉 ,∣∣∣2S1/2, F = 1,mF = 0

〉
≡
∣∣∣g0
〉

and∣∣∣2S1/2, F = 0,mF = 0
〉

≡ |0〉 .

(6.1)

The first-order magnetic field insensitive transition between the |0〉 state and the
∣∣g0〉

state constitutes a so-called ’clock transition’ and is often used as a memory qubit, due to
achievable coherence times in the order of seconds to minutes [129, 178].
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Figure 6.1: Relevant energy levels of 171Yb+. The microwave transitions are shown as orange
arrows. Energy splitting not to scale.

We present in section 6.1 how we initialise a qubit state with high fidelity and in sec-
tion 6.2 how we read out a qubit state. In section 6.3, we present the deterministic
excitation of the ion using an ultra-fast laser pulse to an excited state |e〉. The precise
state manipulation together with the spontaneous decay of the excited level makes the
trapped Yb ion well suited as a deterministic single photon emitter. In addition, the long-
lived internal memory qubit states favour the creation of an entangled two-qubit state
between the ion and the emitted photon.
We present the manipulation of the atomic spin state using phase-coherent microwave

pulses in section 6.4 and introduce a theoretical model capable of describing the coherent
state manipulation and the mapping of information between the hyperfine qubits. This
enables quantum information processing with the atomic qubit and allows the projection
of the atomic state to an arbitrary basis. We measure the coherence time of the hyperfine
qubits |0〉 ↔ |g±〉 and |0〉 ↔

∣∣g0〉 and the Zeeman qubit |g−〉 ↔
∣∣g+〉 in section 6.5.

Finally, we use the magnetic field dependence of the two-level transitions as a sensor in
section 6.6 to characterise the magnetic field to an accuracy of ∼ 100µG, which we utilise
to improve the coherence time of the qubit transitions by noise reduction.

6.1 State initialisation

The majority of experimental sequences and techniques presented in this chapter requires
a defined state of the atomic qubit as a starting point for further operation. For state
initialisation, we optically pump the 171Yb ion to the |0〉 state. This state is far de-
tuned with ∼ 12.6GHz from the Doppler cooling light, which is near resonant to the∣∣∣2S1/2, F = 1

〉
↔
∣∣∣2P1/2, F

′ = 0
〉
transition with a natural linewidth of Γ = 2π · 19.6MHz.

Since electric dipole transitions with ∆F = 0 ∧ ∆mF = 0 are forbidden by selection
rules, coupling to the |0〉 state of 171Yb+ happens via scattering on the

∣∣∣2P1/2, F
′ = 1

〉
levels. For this purpose, we modulate a 2.1GHz sideband to the Doppler cooling light
which facilitates scattering on the

∣∣∣2P1/2, F
′ = 1

〉
levels (see Figure 6.2 a)). At the same

time, we switch off the 14.7GHz modulated sideband of the cooling laser, which transfers
population back from the |0〉 state to the cooling cycle (see subsection 3.1.3). Therefore,
population remains in the |0〉 state, which enables fast initialisation into this dark state
with fidelities exceeding 99% (see Figure 6.2 b)).
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Figure 6.2: State initialisation of the atomic qubit. a) Relevant hyperfine energy level scheme of
171Yb+. The ion is optically pumped to the |0〉 dark state (blue circle) using a 2.1GHz sideband
modulated to the Doppler cooling laser. The dashed circles denotes the populated energy levels
during the cooling process, which gets emptied during initialisation. b) The free-space detection
rate of scattered photons by the driven ion (blue line) decreases over time while the population
gets transferred from the bright states

∣∣2S1/2, F = 1
〉
to the |0〉 state. We fit an exponential decay

(orange line) with a decay constant of 0.662(5)µs to the binned photon detection events obtained
from 8.4× 106 initialisation runs. The initialisation starts at a time offset of 10.8µs.

We use the |0〉 state as a starting point for coherent manipulation of the hyperfine qubits
or for ultra-fast excitation of the ion. For any experimental sequence which includes a state
initialisation, the initialisation time constitutes a fundamental limit on the repetition rate
of the specific sequence. For the presented implementation of a quantum network node,
the data throughput is limited to ∼ 300 kHz as we can not generate entangled atom-photon
states faster than the minimal initialisation time of the atomic qubit of ∆t = 3.1(1)µs.
However, the initialisation time depends on the specific implementation. State preparation
times of a few hundreds of nano-seconds are possible with trapped ions [161]. In our case,
we could shorten the initialisation time by using, for example, a separate laser for pumping
the ion into the |0〉 state instead of a weak sideband on the cooling laser.

6.2 Fluorescence state detection

In addition to initialising the qubit, it is of course also important to access information
stored in the qubit with a high fidelity. To this end, we present in this section the readout
of the atomic state based on fluorescence detection.
A projective measurement of a state, also called ’von Neumann measurement’, describes

an observable quantity A represented by a Hermitian operator Â [9]. The eigenvalues λn
of the operator Â are possible results of the observable A and are related to the eigenstates
|λn〉 of the operator as

Â |λn〉 = λn |λn〉 . (6.2)

In the case of a bright |B〉 and a dark |D〉 state of an atom with respect to a driving laser
field, the observable A is given by the observation of a bright atom (scattered photons) or
a dark atom (no photons) (see Figure 6.3 a)). We define λB = +1 for the observation of a
bright ion and λD = −1 for the observation of a dark ion. If the eigenstates form a basis
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6.2 Fluorescence state detection

of the investigated Hilbert space, we can write

Â =
∑
n

λn |λn〉 〈λn| = |B〉 〈B| − |D〉 〈D| , (6.3)

where the probability of a measurement to give the result λn is given by [9]

P (λn) = 〈λn| ρ̂ |λn〉 = Tr(ρ̂ |λn〉 〈λn|). (6.4)

The density matrix ρ̂ represents the state ot the atom prior to the measurement. If the
measurement is repeated several times with the same realisations of the state ρ̂, then the
expected value of the measurement result is〈

Â
〉

=
∑
n

P (λn) · λn. (6.5)

The average population of the bright state |B〉 is then given as ρbright = P (λB), which for
our definition of λB

D
= ±1 can be written as

ρbright =
1 +

〈
Â
〉

2 . (6.6)

As an example, the mixed state ρ̂mixed = 1
2 (|B〉 〈B|+ |D〉 〈D|) gives

〈
Â
〉

= 0 and
ρbright = 0.5 on average. For a single measurement of the state, however, we measure
either a dark atom λD = −1 with a probability of P (λD) or a bright atom with proba-
bility P (λB) and λB = +1. In the subsections 6.2.1 and 6.2.2 we discuss the respective
experimental implementation of

〈
Â
〉
and Â in more detail, but we start with a presenta-

tion of the overall experimental framework in the following.
We use a 370 nm laser to perform a projective measurement of the atomic state by

driving the ion near resonant on the
∣∣∣2S1/2, F = 1

〉
↔
∣∣∣2P1/2, F

′ = 0
〉
transition in order

to distinguish between the
∣∣∣2S1/2, F = 1

〉
states and the |0〉 dark state. In the experiment,

we switch of the hyperfine repumping sideband at 14.7GHz, but keep the 935 nm repump
laser enabled to achieve that the

∣∣∣2S1/2, F = 1
〉
manifold and the |0〉 state are eigenstates

of the measurement operator Â (see subsection 3.1.3). However, off-resonant scattering on
the

∣∣∣2P1/2, F
′ = 1

〉
levels induce a coupling between the states, such that the eigenstate

assumption is violated for long measurement times (see subsection 6.2.2). We collect
photons emitted by the ion into free space using an objective with a geometric numerical
aperture of NA = 0.48 and a single photon counter (SPC) according to subsection 3.2.3
and Figure 6.3 b).

For the sake of simplicity, we introduced the bright state as a single state |B〉 so far. In
the experiment, however, the ’bright state’ is given by the

∣∣∣2S1/2, F = 1
〉
manifold as can be

seen in Figure 6.3 c) and we cannot distinguish between the orthonormal Zeeman states∣∣g+〉, |g−〉 and ∣∣g0〉. This corresponds to a number of eigenstates sharing the common
eigenvalue λB. The probability for the observation of a bright ion is then given by [9]

P (λB) = Tr(ρ̂P̂B) with P̂B =
∣∣∣g+

〉〈
g+
∣∣∣+ ∣∣∣g0

〉〈
g0
∣∣∣+ ∣∣g−〉 〈g−∣∣ . (6.7)

We have to be aware that using the fluorescence state detection, we project a pure state
|Ψ〉 onto the bright state manifold population as

| 〈Ψ|F = 1〉 |2 → |
〈

Ψ|g+
〉
|2 + |

〈
Ψ|g−

〉
|2 + |

〈
Ψ|g0

〉
|2. (6.8)
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Figure 6.3: a) Conceptional sketch of fluorescence state detection of an atom with the relevant
energy levels. b) Simplified sketch of the experimental implementation. c) Relevant energy levels
and driven transitions of 171Yb+.

6.2.1 Measurement of the expectation value

The state detection method presented this subsection makes use of multiple realisations
of the same state ρ̂ and averages the recorded data to an expectation value of the mea-
surement operator

〈
Â
〉
. For this purpose, we directly measure the population of the

(2S1/2, F = 1) manifold ρbright introduced in equation (6.6) using the rate of detected
photons scattered by the ion into free space R4π according to Figure 6.3 b)+c). For this
purpose, we need to normalise the detection rate R4π to the detection rate obtained during
Doppler cooling Rref as a reference for ρbright = 1, since we expect most of the ion’s steady
state population to be distributed among the cooling levels, i.e., the ion being ’100%
bright’ during cooling53. According to equation (6.6), the bright state population is then
given as

ρbright = P (λB) = R4π
Rref

. (6.9)

An experimental sequence used for the measurement of ρbright in the context of an
excitation pulse calibration is shown in Figure 6.4 as an example. It shows the binned
SPC data collected during 20,000 repetitions of an atomic state readout for the same
preparation of the state ρ̂.

53 We confirm this assumption to be valid up to a few percent in subsection 6.2.2
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Figure 6.4: Evaluation of the ion’s excited state population for one parameter set of an excitation
pulse. Binned photon detection statistics for 20, 000 repetitions of the same sequence are shown
(blue bars, sequence sketched at the top). We initialise the ion to the |0〉 state at ∼ 70µs. At
100µs a laser pulse drives coherent Rabi-oscillations on the |0〉 ↔ |e〉 transition. This is followed
by a 20µs readout of the excited state population. Due to the bin width being 1.3µs, excitation
and decay of the ion happens within one bin. The time windows used for determination of the
rates Rref and R4π and their values are shown as orange lines with the standard error of the rates
indicated by the linewidth. The standard errors of the binned detection rates are given as error
bars.

Since we use a 20µs time window for measurement of the scattering rate R4π per
sequence, we can neglect the decay of the ion to the |0〉 state during readout as described
in the following subsection. The quality of the average state detection is given by the error
on the measured rates, which gets improved for a higher number of repetitions.

6.2.2 Single shot readout

The measurement of
〈
Â
〉
as presented in the previous subsection makes use of multiple

realisations of the same state. However, certain applications require a measurement of a
single realisation of a quantum state generated in a single shot of an experiment, namely
Â |Ψ〉. Reading out a single quantum state requires gaining enough information in a single
shot of the experiment to allow discrimination between individual states. This makes a
single shot readout generally more challenging than measuring the expectation value of a
measurement operator on multiple implementations of the same state. In particular, when
measuring an entangled two-qubit state, correlations between the measurement results of
the individual qubits can only be observed for a particular realisation of the entangled
state, while the expectation value averages out to

〈
Â
〉

= 0 for each qubit state individually.
In order to determine the achievable contrast of the single-shot state detection in the

experiment, we initialise the ion in the respective eigenstates of the measurement operator
Â, which are |0〉 and |F = 1〉. Subsequently, we measure the number of detected pho-
tons N within a certain time window for a single shot of the experiment. By repeating
this measurement over many shots, we obtain the statistics of detected photons per shot,
which follows a Poisson distribution (see Figure 6.5 a)). The photon statistics depend on
the interplay of several factors such as magnetic field (formation of coherent dark states),
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6 The 171Yb ion as a memory qubit

driving laser intensity (scattering rate of the photons, also at unwanted transitions), read-
out time and initialisation fidelity. We discuss all these points in this and the following
subsection 6.2.3.
It is important to note that the following results do not distinguish between the ini-

tialisation fidelity of the respective initial states and the detection fidelity, i.e. the errors
introduced by the state detection itself. However, we take this into account later in this
subsection and present a method in subsection 6.2.3 to extrapolate the results to a perfect
initialisation.
For the measured photon statistics, we define the corresponding mixed states ρ̂bright/dark

as

ρ̂bright = a · |F = 1〉 〈F = 1|+ c · |0〉 〈0| and ρ̂dark = b · |0〉 〈0|+ d · |F = 1〉 〈F = 1| ,
(6.10)

where we distinguish between an initial preparation of the ion in a bright/dark state. These
states are not meant to describe the prepared initial state, but the overall detected state
and, as mentioned, include preparation and measurement imperfections, both of which mix
a portion of the ’wrong’ state into the detected state. This is reflected by the coefficients c
and d. The factors a and b denote the probabilities for detecting the ’correct’ state. Figures
6.5 b)+c) show statistics of the number of photon detection events obtained in each of the
single-shot readouts for a dark and a bright state preparation. For ρ̂bright, we observe a
significant contribution of a second Poisson distribution with amplitude η = 0.05(1) (dark
contribution), where the bright contribution has an amplitude of (1− η).
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Figure 6.5: a) Sketch of the experimental implementation of the single shot atomic state read-
out. We detect photons emitted into free-space while driving the ion near resonant on the∣∣2S1/2, F = 1

〉
↔
∣∣2P1/2, F

′ = 0
〉
transition. b) Photon statistic for the detected state ρ̂dark ob-

tained from multiple repetitions of single-shot readouts of an initial dark prepared ion during a
detection time window of 400µs and with I/I0 ≈ 0.25. The shown data includes 6,000 readout
shots. The optimal discrimination threshold of Nth = 2.5 between dark and bright ion is shown
as dashed line. The solid line is a fit according to a Poisson distribution of probabilities. c) Same
as in b) for ρ̂bright and 18,0000 shots. The values of a, b, c, d are given in Table 3 for both graphs.
The standard error on the bins shown in b)+c) are calculated according to Appendix A. The data
in b)+c) have also been published in [92].
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6.2 Fluorescence state detection

We define the discrimination fidelity of states as the average detected fidelity of each
qubit state with

F = 〈F = 1| ρ̂bright |F = 1〉+ 〈0| ρ̂dark |0〉
2 = a+ b

2 . (6.11)

The contrast of the readout is calculated as

Creadout =

P (N > Nth |F = 1)︸ ︷︷ ︸
a

+P (N < Nth | 0)︸ ︷︷ ︸
b

 /2
−

P (N < Nth |F = 1)︸ ︷︷ ︸
c

+P (N > Nth | 0)︸ ︷︷ ︸
d

 /2,
(6.12)

where P (α |β) is the probability of measuring condition α while preparing the ion into state
|β〉. For the conditions α the expression N > Nth denotes the probability of detecting more
photons in a single shot of the readout sequence than the bright-to-dark discrimination
threshold Nth. The readout contrast C is related to the discrimination fidelity F through
equation (6.11) as

C = a+ b− c− d
2 =

(
F − 1

2

)
· 2. (6.13)

For a high contrast readout, the distribution of detected photons have to separate clearly
for a dark and a bright ion in order to reduce the erroneous state detections c and d. Due to
off-resonant scattering, longer readout time windows do not improve the readout contrast
because |0〉 and |F = 1〉 can no longer be considered as eigenstates of the measurement
operator Â. However, a higher collection efficiency of the scattered photons supports the
contrast of the state discrimination. This can also allow for shorter readout times to
improve the contrast.
For the measurements shown in Figure 6.5, we achieve a contrast of

Cmeas = 0.938(8) (6.14)

including the preparation imperfections of the initial states. The conditional probabilities
obtained for this particular measurement are shown in Table 3 for a 400µs readout window.

Preparation bright Preparation dark
Above threshold N > Nth 0.947(4) 0.009(3)
Below threshold N < Nth 0.053(4) 0.991(4)

Table 3: Measured conditional probabilities for a single shot bright/dark hyperfine state discrim-
ination at 4.6G, I/I0 ≈ 0.25 and 400µs readout.

Using the data shown in Figures 6.5 b)+c), we can assign an expectation value to the
distribution of detected photons for a dark ion Ndark and a bright ion Nbright respectively.
From the fitted Poisson distributions, we obtain for this particular measurement

Ndark = 0.13(1) and Nbright = 10.2(1), (6.15)

which we use in the following to calculate the initialisation fidelity of the bright manifold.
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6 The 171Yb ion as a memory qubit

Initialisation fidelity of the bright state population
To get the pure detection fidelity of a state, we have to consider the non-perfect prepa-
ration fidelity f of the ion state to the bright (2S1/2, F = 1) manifold. This originates
from the initialisation of the population in the (2S1/2, F = 1) manifold by applying con-
tinuous Doppler cooling. For this purpose, repumping fields from the 2D3/2 dark states
(935 nm) as well as from the |0〉 dark state (14.7GHz) are applied. Due to a finite prob-
ability of the ion population to be in one of these dark levels, the initialisation fidelity of
the bright

∣∣∣2S1/2, F = 1
〉
manifold is worse than for the dark state |0〉, where we reach

initialisation fidelities exceeding 99 % (see section 6.1). In addition, a fraction of the pop-
ulation of the

∣∣∣2S1/2, F = 1
〉
manifold could also be trapped in a coherent dark state (see

subsection 3.1.3).
From a measurement as shown in Figure 6.5 b)+c), we can extract the photon statistic

obtained for the single-shot readouts. From the expectation values of the Poisson-statistics
for a dark and a bright ion N̄dark and N̄bright, we can compute the corresponding detection
rates R̄dark = N̄dark/∆treadout and R̄bright = N̄bright/∆treadout considering a readout time
window ∆treadout. The free-space detection rate of photons expected from the steady state
fluorescence of the ion during Doppler cooling can then be calculated as

Rcooling = f · R̄bright + (1− f) · R̄dark. (6.16)

The free parameter f is the fraction of population, which we expect to be in the bright
manifold and therefore, f is the fidelity of the initialisation of the bright states. We
extract Rcooling from the average measured detection rate of scattered photons during the
cooling part of all 6,000 readout sequences (similar to Rref in Figure 6.4). We obtain for
the presented measurement with I/I0 ≈ 0.25 and the parameters from equation (6.15)
a bright state initialisation fidelity of f = (94 ± 2) %. In subsection 6.2.3 we use this
method to: i) reproduce the data we measured in the experiment by implementing the
measured value of f into a simulation and ii) by running a second simulation where we
set f = 1 and from there can infer the pure detection fidelity. In order to realise such
a simulation, we first need to investigate the mechanism of off-resonance scattering, as
done in the following paragraph.

Off-resonant scattering on the
∣∣∣2P1/2, F

′ = 1
〉
level

In principle, measuring the fluorescence over a longer time range should improve the
separation of the Poisson distributions and thus the detection fidelity. However, this is
only partially true since off-resonant scattering on the

∣∣∣2P1/2, F
′ = 1

〉
level introduces a

weak coupling between bright and dark state which becomes important for longer readout
times. Since the detuning of the readout laser to the

∣∣∣2S1/2, F = 1
〉
↔
∣∣∣2P1/2, F

′ = 1
〉

transition is ∆b ∼ 2π ·2.1GHz, the transfer of bright population to the dark states happens
more likely than a dark ion to become bright. Here, the detuning is ∆d ∼ 2π · 14.7GHz
(Figure 6.6 a)). This implies that in addition to the initialisation fidelity, the errors of
the state detection itself contribute to the occurrence of two Poisson distributions for the
bright state detection, as shown in Figure 6.5 c).
For a weak coupling, i.e. ∆b/d � Γ, the rate of scattering a photon on the

∣∣∣2P1/2, F
′ = 1

〉
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6.2 Fluorescence state detection

level can be calculated according to equation (6.28) as

Rb/d = Γ
2 ·

I/I0

1 + I/I0 + 4
(∆b/d

Γ

)2 , (6.17)

with the intensity of the 370 nm readout laser I, the saturation intensity I0 and the
natural transition linewidth Γ = 2π · 19.6MHz. Due to the high detuning ∆b/d � Γ, the
off-resonant scattering rate depends critically on the power of the readout laser. The effect
of a potential driving laser detuning ∆readout is negligible for the off-resonant scattering
rate Rb/d, since ∆readout � ∆b/d (see Figure 6.6 a)).
Due to the weak coupling, the population of the bright manifold |F = 1〉 on

average approaches a steady state ρbright,ss � 1 when driving the ion on the∣∣∣2S1/2, F = 1
〉
↔
∣∣∣2P1/2, F

′ = 0
〉

transition. We determine this mixing effect of bright
and dark state to be the limiting factor of the atomic state readout.
The steady state population is determined by the ratio of the off-resonant scattering

rates Rb and Rd for a bright and a dark ion respectively. Using equation (6.17) we compute

ρbright,ss = 2/3
1/3 ·

Rb
Rd
≈ 4%. (6.18)

The additional factor of 2/3
1/3 in equation (6.18) comes from the Clebsch-Gordan coeffi-

cients of the involved transitions. On average, the ion state is transferred to a statistical
mixture of states with ∼ 96% occurrence of the |0〉 state during readout. We verify this
experimentally by measuring the transfer into the dark state over many repetitions of
the same experimental sequence as shown in Figure 6.6 b)). We obtain a decay constant
of τ = 2.8(2)ms for the bright state to approach the steady state at I/I0 ≈ 0.8.
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Figure 6.6: a) Relevant energy levels of 171Yb+ including the definitions of the detunings. b)
Measured time dependence of the average population of the |F = 1〉 manifold which couples to the
readout laser for a driving laser saturation parameter of I/I0 ≈ 0.8. We obtain the decay time τ
from fitting an exponential decay (orange solid line) to the time-binned measured detection rates
of photons scattered into free-space (blue dots) for 18,000 readout sequences. The standard errors
are given as error bars.

Note, that the steady state is only defined for an average of measurements. Within a
single experimental shot the ion can only switch between fully dark and fully bright as
described at the beginning of this section.
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6 The 171Yb ion as a memory qubit

6.2.3 Monte-Carlo simulation

In order to better understand what determines the readout fidelity of the fluorescence
state detection in the experiment, we employ a Monte-Carlo simulation of the single shot
ion readout. From the simulation, we obtain the statistic of detected scattered photons
as introduced in subsection 6.2.2. We include the weak coupling between bright and
dark state as described in equation (6.17) and the experimental fluorescence parameters
achieved for high and for low magnetic field respectively. We perform the simulation for two
different settings of the relative readout laser intensity I/I0 = 0.25 and I/I0 = 0.8. During
the measurements of the entangled state correlations, we had to switch from I/I0 ≈ 0.25
(σ̂z-basis) to I/I0 ≈ 0.8 (others) in order to improve cooling and trapping stability of the
ion.
The simulation reproduces a single readout of the ion in small time steps while calcu-

lating the probabilities of going dark or bright for each time step from equation (6.17),
respectively. Repeating this readout simulation 20,000 times results in the photon statis-
tics of the detected ion fluorescence for an initial state set to the beginning of each readout.
The simulated and measured readouts are compared in Figure 6.7 for different readout
time windows. In Figure 6.7 a) the readout fidelity dependence on the readout time win-
dow is shown for different driving laser and fluorescence conditions in accordance with the
conditions achieved during the correlation measurements of chapter 7. We have found that
we need to consider non-perfect state initialisation for the bright state, described by the
initialisation fidelity f as introduced in subsection 6.2.2, in order to consistently reproduce
the measured data of subsection 6.2.2. Taking this into account, we found the simulated
values to be in excellent agreement with the measured data. The dark-to-bright threshold,
which is shown as dashed line in Figure 6.7 b)+c) is adjusted to the optimal value for each
readout time window in terms of achievable contrast (simulation and experiment).
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Figure 6.7: Measured and simulated contrast of the atomic fluorescence state detection. The solid
lines are linear interpolations between the discrete results of a Monte-Carlo simulation comprising of
20,000 atomic readouts (per data point in a)). a) The blue dots denotes the measured experimental
data. The orange "x" are values obtained from the simulation based on the same parameters: 4.6G
magnetic field and bright state preparation fidelity of f = 0.94(2). The red crosses represents
simulated data for the lower magnetic field parameters (∼ 600mG) and f = 1. Standard errors
of the simulation are given as grey shaded areas around the curves. The dashed lines denote the
corresponding readout lengths which were used for correlation measurements in chapter 7. b)/c)
Simulated occurrence of the number of detected photons for a 400µs readout at I/I0 = 0.25 and
f = 0.94(2) (orange "x"). The measured probabilities are given as blue bars with the standard
error as black bars (same data as in Figure 6.5 c)/b)). The optimal discrimination threshold is
given as dashed line.

We can confirm the considerations of subsection 6.2.2 that off-resonant scattering on
the

∣∣∣2P1/2, F
′ = 1

〉
manifold mixes a significant contribution of the dark state to an initial

bright ion (Figure 6.7 b)), whereas for an ion initially prepared to the dark state, the
bright state contribution is small (Figure 6.7 c)).

Due to the excellent agreement of the simulated photon detection probabilities with
the experimental measured data, we use the simulation in the following to compute the
achieved readout contrast for the correlation measurements presented in chapter 7 with
the corresponding experimental parameters. We cannot use experimental data for this
purpose, since our preparation fidelity for the excited state is f < 1 (see subsection 6.2.2).

We achieve a dark count rate of (500 ± 50) counts/s and a bright ion fluorescence of
(29, 750 ± 750) counts/s in the optimal case in the experiment for high magnetic field
(4.6G) and I/I0 ∼ 0.25. According to the Monte-Carlo simulation with f = 1, the
readout contrast using a ∆treadout = 400µs time interval is given by

Creadout,z = 96.5(12) %. (6.19)

This result is on par with the values achieved previously on the 171Yb+ hyperfine qubit
[129, 46], where also the main limitation was the off-resonant scattering of photons on the
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6 The 171Yb ion as a memory qubit

∣∣∣2P1/2, F
′ = 1

〉
level.

For magnetic fields lower than 1G (∼ 3MHz splitting of |g±〉), we observe a drastic
decrease of the ion fluorescence in the experiment resulting from formation of coherent
dark states in the

∣∣∣2S1/2, F = 1
〉
hyperfine levels [18, 119]. Decreasing the magnetic field

into this range, however, is necessary to reduce the Larmor frequency and therefore improve
timing precision for a readout in the rotated bases54 ¯̂σx/y (see subsection 7.4.1). We are
able to partly recover the fluorescence of the ion to ∼ 50 % by using a second cooling
laser (see subsection 3.1.3). We achieve a dark count rate of (762 ± 25) counts/s and a
bright ion fluorescence of (12, 000 ± 500) counts/s in the optimal case for the correlation
measurements in ¯̂σx/y ⊗ ¯̂σx/y basis. For the readout contrast in the rotated bases, we get
from a Monte-Carlo simulation with I/I0 ∼ 0.8 and f = 1 a value of

Creadout,x̄/ȳ = 89.5(12) %, (6.20)

for ∆treadout = 800µs. Due to an increased cooling performance, I/I0 ∼ 0.8 was used for
correlation measurements in the rotated bases (instead of I/I0 = 0.25).

6.3 Pulsed excitation

For certain applications, the transfer of the population to an excited state is desired. In
particular, the spontaneous decay of an atomic state with a finite lifetime via an optical
transition enables the deterministic generation of a single photon. The emission probability
of the photon naturally depends on the population of the excited state. We derive in
subsection 6.3.1 that reaching unit excitation probability requires the excitation to be
much faster than the decay of the excited state. These ultra-fast Rabi-flops for state
preparation can be achieved using pico-second long laser pulses with high peak intensities
[121].
In this section, we introduce the theoretical framework to describe pulsed excitation in

general and derive an approximation to describe the dynamics of a two-level system driven
by an arbitrarily shaped ultra-short laser pulse. Furthermore, we present the experimental
implementation and the characterisation of the setup generating the pico-second long laser
pulses.

6.3.1 Optical Bloch equations

Based on the semi-classical description of a driven two-level system in subsection 5.4.1,
we derive in this subsection a set of coupled differential equations, which describe
the time evolution of the driven two-level system. With the so-called optical Bloch
equations we can geometrically represent the time evolution of any two-level state
|Ψ〉 = cg(t) |g〉+ ce(t) |e〉 as a vector on the Bloch sphere (see section 2.1), which for a
pure state with |cg(t)|2 + |ce(t)|2 = 1 always points to the surface of this unit sphere.
Here, we derive the formalism in the context of a driving electric field, however, the

representation of states on the Bloch sphere can be made for any two-level system and
the concept is used throughout this thesis to visualise two-level quantum states and their

54 See equation (5.87) for a definition of ¯̂σx/y

100



6.3 Pulsed excitation

time dynamics. For a state representation on the Bloch sphere, we use the expectation
values of the state projection to the eigenstates of the Pauli matrices as coordinates55:

x = 〈σ̂x〉 with eigenstates 1√
2

(|e〉 ± |g〉) ,

y = 〈σ̂y〉 with eigenstates 1√
2

(|e〉 ± i |g〉) ,

z = 〈σ̂z〉 with eigenstates |e〉 , |g〉 .

(6.21)

This is similar to the definitions of equations (2.2) and (2.7) and Figure 2.1 b), but with
different basis states |e〉 / |g〉 of the Hilbert space.
According to the Ehrenfest theorem, the time evolution of an operator’s expectation

value
〈
Â
〉
is given by

d

dt

〈
Â
〉

= i

~

〈[
Ĥ, Â

]〉
+
〈
∂A

∂t

〉
. (6.22)

Using the commutation relations of the Pauli matrices and the Hamiltonian of a driven two-
level system in a semi-classical description (equation (5.39)), we derive following equations
(Bloch equations):

ẋ = d

dt
〈σ̂x〉 = i

~
~
2 〈[−∆σ̂z, σ̂x] + [ΩRσ̂x, σ̂x]〉 = ∆ · 〈σ̂y〉 = ∆ · y,

ẏ = −∆ · x− ΩR · z,
ż = ΩR · y.

(6.23)

We can understand the evolution of a state on the Bloch sphere intuitively by rewriting
these equations into a vector cross product ẋ

ẏ

ż

 =

 ΩR

0
−∆

×
 x

y

z

 . (6.24)

The so-called optical Bloch equations can be obtained from equations (6.23) by including
relaxation of the states. We differentiate between the decay of the excited state |e〉 with
rate Γ = 1/T1 and the decoherence of the superposition states given by the x- and y-
components with rate 1/T2. The optical Bloch equations reads ẋ

ẏ

ż

 =

 ΩR

0
−∆

×
 x

y

z

−
 1/T2 · x

1/T2 · y
1/T1 (z + 1)

 . (6.25)

Steady state solution
The calculation of the steady state solution of equations (6.25) with ẋ = ẏ = ż = 0
provides important insights into the driven two-level system. In particular, it provides the
scattering rate of photons into 4π solid angle by a single driven two-level atom. For the
spontaneous decay of the excited state into the three-dimensional electromagnetic vacuum
T2 = 2 · T1 holds [53]. We derive the steady state solution of equations (6.25) as xss

yss

zss

 = 1
4∆2 + Γ2 + 2Ω2

R

·

 4ΩR∆
2ΩRΓ

−Γ2 − 4∆2

 . (6.26)

55 Note, that in literature the coordinates are often also named u, v, w
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We calculate the steady state excited state population as

ρssee = 1 + zss

2 = 0.5 · I/I0

1 + I/I0 + (2∆/Γ)2 with I

I0
= 2 |ΩR|2

Γ2 , (6.27)

where I0 is also known as the saturation intensity. Subsequently this result gives the
scattering rates of photons into free space as

R4π = Γ · ρssee. (6.28)

Furthermore, it follows from equation (6.27) that the population of the excited state ρssee
cannot exceed the population of the ground state in a driven steady state, i.e. ρssee < 0.5
even for high driving field intensity I/I0 � 1 and on resonance ∆ = 0. To achieve
population inversion or even complete transfer of the population from the ground state |g〉
to the excited state |e〉, we must not reach the steady state regime and instead drive the
two-level system coherently with ΩR � Γ = 2π · 19.6MHz on a time scale much shorter
than 1/Γ. This explicitly motivates the use of ultra-short laser pulses, as presented in the
next paragraph.

Fast dynamics
For a pulsed excitation of the two-level system, we are particular interested in the excited
state population

ρee(t) = 1 + z(t)
2 , (6.29)

which can be obtained in a general case from a numerical solution of the equations (6.25)
even for an arbitrarily shaped pulse. For an analytical solution, however, we constrain
ourselves to a square pulse with a duration of τpulse and Γ � 1/τpulse. Starting from
the ground state (ρee(0) = 0), we obtain the same preconditions as in subsection 5.4.2,
where we assumed that the driving field has a time constant amplitude which results in a
time constant Rabi frequency ΩR (eq. (5.31)). We then write the excitation probability
according to equation (5.40) as

ηexc = ρee(τpulse) = Ω2
R

(Ω′)2 ·
(1

2 −
1
2 cos

(
Ω′τpulse

))
with Ω′ =

√
Ω2
R + ∆2

pulse. (6.30)

For the general description of pulsed excitation, however, it would be advantageous if we
could adapt the analytical solution to an arbitrarily shaped excitation pulse. In subsec-
tion 6.3.2 we derive a formalism, which accounts for the pulse-shape, but allows us to
use equation (6.30) for the calculation of the excitation probability considering the entire
pulse.
For the sake of completeness, we also have to mention that an alternative expression

of equations (6.23) can be obtained without applying any of the standard approxima-
tions such as RWA by solving the coupled semi-classical Maxwell-Bloch system as done
numerically by R.W. Ziolkowski et al. in [188]. This approach accounts for the exact
electric field time dependence including the pulse envelope and therefore, provides a more
resolved study of the driven two-level dynamics. However, the results in [188] can be
well approximated with the optical Bloch equations derived in (6.25) even for ultra-short
pulsed excitations if one is not interested in the oscillation cycles of the pulsed electric
field.
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6.3 Pulsed excitation

6.3.2 Theory of pulse shapes

In general, a constant driving field amplitude |E0| is not given for the envelope of a
laser pulse. In particular, the pico-second laser pulses used here have an exponentially
decreasing electric field envelope due to spectral filtering (see subsection 6.3.4). In general,
the Rabi frequency of equation (5.31) as a function of the transition dipole moment d and
the linearly polarised electric field with amplitude E0(t) becomes time dependent

ΩR(t) = |d| · |E0(t)|
~

· cos(θ), (6.31)

with θ being the angle between the electric field vector and the dipole orientation.
Due to the short time profile of the pulses, their time resolved monitoring is experimental

challenging and could be achieved using autocorrelation measurements. However, in this
subsection, we derive a formalism which does not require the exact time dependence of
a pulse, but a known scaling factor a of the pulse envelope. We use this scaling factor
to compute the excited state population after the pulse has interacted with the two-level
system. To this end, the pulse energy is a useful quantity, which we can obtain from a low
bandwidth power measurement (equation (6.35)).
We separate the power Pp(t) of a single pulse into a time dependent part α(t) and a

constant envelope amplitude PA of the pulse as

Pp(t) = PA · α(t), where 0 ≤ α(t) ≤ 1. (6.32)

Furthermore, we can define a pulse length τpulse for a pulse shape α(t) such that∫ ∞
−∞

α(t)dt = a · τpulse. (6.33)

Combining equations (6.32)-(6.33), we can express the total energy carried by a single
pulse up as

up =
∫ ∞
−∞

Pp(t)dt = PA · a · τpulse, (6.34)

which is the equivalent to a square pulse. The parameters a and τpulse depend on the
corresponding time envelope of the pulse α(t). For an exponentially decaying time profile
starting at t = 0, it is straight forward to show that a = 1 in equation (6.34) if τpulse is
defined as the 1/e-decay constant.

In the experiment, we measure the pulse energy up using the average deposit power of
a train of pulses P̄train with a repetition rate R according to

P̄train = up ·R, (6.35)

where the bandwidth of the power measurement is much smaller than R.
Using equation (6.34), we can calculate the total spatial deposited energy per pulse

considering the power PA to be distributed according to a Gaussian beam shape [149] as

up = a · τpulse ·
∫ ∞

0
I(ρ, 0) · 2π · dρ︸ ︷︷ ︸

PA

= a · τpulse · I0 ·
1
2πω

2
0

with I(ρ, z) = I0

(
ω0
ω(z)

)2
exp

(
− 2ρ2

ω2(z)

)
,

(6.36)
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6 The 171Yb ion as a memory qubit

where ω0 is the 1/e2 radius of the beam intensity at the beam focus (z = 0).
Since the ion is located (ideally) in the centre of the Gaussian beam, the centre intensity

I0(t) = 1
2c0ε0|E0(t)|2 sets the Rabi frequency ΩR. We can now use this expression of

the electric field amplitude together with equation (6.36), where we have derived a time
independent expression of I0, to extract the time dependence of the pulse envelope from
the electric field amplitude (E0(t) → E0). In total, we find following expression for the
Rabi frequency:

ΩR = |d| · cos (θ)
~

·
√

4up
aτpulseπω2

0c0ε0
. (6.37)

For the investigated hyperfine transition, the computation of the transition matrix ele-
ment 〈0| r̂ |e〉 depends on the polarisation of the driving field and the quantum numbers of
ground and excited state (see Appendix B). As we intend to drive only the ∆mF = 0 tran-
sition of the ion, we align the linearly polarised electric field of the laser pulse parallel to
the quantisation axis (θ = 0). With the Clebsch-Gordan coefficient of the |0〉 ↔ |e〉 transi-
tion of cπ =

√
1
3 , the Rabi frequency for this particular π-transition becomes Ωπ =

√
1
3ΩR.

For simplicity, we denote Ω as the Rabi frequency in the following with Ω ≡ Ωπ. In
summary, we get following dependency for the Rabi frequency on the pulse energy up and
pulse duration τpulse:

Ω ∝
√

up
τpulse

. (6.38)
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Figure 6.8: Numerical calculation of the time evolution of the excited state population ρee (black
solid curve) according to equations (6.25) and (6.29) for: a) an exponential decay pulse envelope
with the decay constant τpulse = 134 ps (see eq. (6.40)), which is on resonance with the atomic
transition ∆pulse = 0 and b) the square equivalent pulse with a constant Rabi frequency according
to equation (6.37) calculated with the experimental parameters of a). The excitation pulse electric
field envelope is shown as blue coloured area in both cases with the corresponding Rabi frequency
as grey dotted line. The chosen parameters correspond to those of the real experiment. Both
pulses exhibit an energy of 3 pJ. Note the different scaling of the time axes.

Figure 6.8 illustrates the presented method using the example of an exponentially decay-
ing time profile with an energy of up = 3pJ, where the parameters were chosen according
to those of the real experiment. In Figure 6.8 a), a numerical solution to the optical
Bloch equations (equations 6.25) is shown with the electric field amplitude and the Rabi
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6.3 Pulsed excitation

frequency of the excitation pulse following an exponential decay function with a decay con-
stant of τpulse. For the same experimental parameters Figure 6.8 b) shows the response of
the system to a square pulse with a constant Rabi frequency according to equation (6.37).
Both pulses reach the same excited state population ρee for large times t. Hence, we can
treat the pulses as square pulses in the experiment using equation (6.37) in combination
with equation (6.30) for the calculation of the excitation probability after the pulse was
applied (t� τpulse). This is particularly useful for the calibration of the pulse parameters
as shown in subsection 6.3.5.

For the numerical simulation of the excited state population in Figure 6.8, we used
typical values achieved in the experiment. We obtain peak powers around 22mW for
∼ 3pJ pulses, after a spectral filtering of the pulses (see subsection 6.3.4). Together with
a beam waist of ∼ 12µm, we reach around 3.3 kV

cm electric field amplitude at the position
of the ion and Ω ∼ 2π · 3.5GHz 56.

6.3.3 Generation of pulses

The laser pulses are generated from a Kerr lens mode-locked Titanium-Sapphire laser57

near 740 nm and are subsequently frequency doubled to 370 nm using a plane-cut Bismuth
Triborate (BiBO) crystal [80]. The high peak intensities of the laser pulses support the
second-harmonic generation which enables conversion efficiencies around 30% [80]. In
the following, we present the basic parameters of the pulses, namely energy, timing,
centre frequency and spatial mode. A sketch of the setup is presented in the context of
frequency adjustment in Figure 6.10 as this involves multiple stages.

Pulse energy
The Ti:sapphire laser consists of a ring resonator pumped by 5–6W of laser light58 at
532 nm. For a deterministic extraction of single pulses, we extend the ring cavity with a
commercial available Bragg cell module59. This allows for controlled extraction of pulses
by applying a 7.5 ns long RF-pulse to the acousto-optic modulator. The amplitude of the
applied RF-signal determines the energy of the diffracted pulse.

Timing of the pulses
The RF-pulse to the Bragg cell is triggered by a TTL signal, which originates from the
fast experimental control system (FECS) (see Figure 6.9 a) and subsection 3.2.4). Due to
the round trip time of the ring resonator, a pulse cannot be extracted from the resonator
immediately, but the next available pulse is extracted. The mode-locked Ti:Sapphire
laser exhibits a resonator round trip frequency of ∼ 54MHz. Using the built in fast photo
diode of the pulsed laser, a seed signal is generated which reflects the exact cavity round
trip time. This signal is used internally to extract the next available pulse. However,
the maximum relative timing uncertainty between the extraction time of the pulse with
respect to the pulse request of the FECS is ∼ 1/54MHz = 18.5 ns. By synchronising the

56 |d|π = cπ · e
√

3c20
4αω3

a
·A0e [52] with the Einstein A-coefficient for unpolarised light of A0e = 1.23 × 108

(2S1/2 ↔ 2P1/2 transition) [96]
57 Mira optima 900 from Coherent
58 generated by a Verdi V12 from Coherent
59 Pulse switch from APE
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6 The 171Yb ion as a memory qubit

acquisition of data only to the FECS, the resulting jitter of the pulse arrival times at
the ion’s position blurs out time dynamics happening in the same order of magnitude, in
particular the decay of the |e〉 state with a lifetime of τ ∼ 8 ns (see Figure 6.9 b)).
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Figure 6.9: a) Sketch of the experimental setup used for synchronisation of the photon detection
time stamps to the pulsed laser round trip frequency. The internal cavity of the pulsed laser is
sketched as two mirrors confining the locked modes. b) Recorded time stamps of ∼ 3, 000 photon
detection events extracted through the fibre cavity (to suppress pulse stray light). The detection
timestamps are binned without a correction applied. c) Same data as in b) using the extraction
times of the excitation pulses timestamp-wise as an offset for the photon detection timestamps.
The x-axis of a) and b) shows the same scale to enable a comparison. The bin width is 1 ns.

The effect of blurred pulse arrival times can be reduced to an accuracy of 50 ps60 in post
analysis by using the 54MHz seed signal to generate a sync pulse that synchronises each
recorded photon timestamp on the TDC to the precise extraction time of the laser pulse
for this particular timestamp. Figure 6.9 c) shows binned detection timestamps that were
corrected by the recorded sync pulse. This data allow us to resolve the excited state decay.

Pulse centre frequency
For a coarse setting of the pulse centre frequency, we use a birefringent filter located
within the internal ring cavity of the laser (accuracy ∼ 20GHz). More accurate tuning
of the frequency (∼ 2GHz) is achieved via a Gires-Tournois interferometer, which also
generates the required group velocity dispersion for the 6 ps long pulses [34]. The fine
tuning of the pulse centre frequency is done by a self-built filter cavity cutting out
∼ 1GHz of spectral intensity from the ∼ 100GHz wide frequency-doubled pulse (see
Figure 6.10 a)). We discuss the spectral filtering of pulses in more detail in the next
subsection. For now, we focus on the stabilisation of the filter-cavity to the atomic
excitation transition |0〉 ↔ |e〉. For this purpose, we use a 780 nm reference laser locked
in a Pound-Drever-Hall (PDH) scheme [43] to a ultra stable reference-cavity with a
maximal frequency change of 0.5MHz/h [104] (see Figure 6.10 a)+b)). The filter-cavity
mirrors exhibit a finite reflectivity at 780 nm, which allows for the length stabilisation of
the filter-cavity using the 780 nm reference laser in a second PDH locking scheme. We
calibrate the length of the filter-cavity using a backwards-coupled reference laser resonant
to the |0〉 ↔ |e〉 transition of 171Yb+ (see next paragraph).

60 According to APE
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Figure 6.10: a) Important elements of the pulsed laser setup. The generated pulses are frequency
doubled using second-harmonic generation (SHG). The pulse width of ∼ 100GHz is spectral filtered
by a stabilised cavity with linewidth ∆νfwhm ≈ 2π ·1.19(1)GHz. A second laser at 780 nm is locked
to a length stabilised reference cavity and serves as reference for the centre frequency of the filter
cavity. b) Relevant hyperfine energy level scheme of 171Yb+. The ion is initialised in the |0〉
ground state. We adjust power, frequency and polarisation of the laser pulse to coherently excite
the ion to the |e〉 state.

Further adjustments
Due to the pulse spectral width being ∼ 100GHz before the filter cavity, the pulse couples
to multiple transversal modes of the cavity and the transmitted spatial shape of the pulse
is a mixture of TEM modes. The pulses are spatial filtered on a pinhole with ∼ 50 %
transmission in advance, however, the higher order mode coupling cannot be fully sup-
pressed. Due to their frequency spacing, only one of the transverse modes can be tuned
into resonance with the ion.
We guide the pulses to the ion using a 10m polarisation maintaining fibre61. The best

spatial coupling of the pulses to the single mode fibre can be achieved for the TEM00 mode
of the filter-cavity. However, the coupling between TEM00 mode and fibre cannot be
optimised using the transmitted pulses. Due to the mixture of spatial modes, there are
several local maxima in the transmission efficiency, which one could mistakenly assume to
be the optimum coupling of the TEM00 mode to the fibre. Instead, we couple a narrow
bandwidth laser from the ion-trap side backwards through the fibre and optimise the
coupling of the fibre’s TEM00 mode to the filter cavity TEM00 mode in transmission62,
where we achieve ∼ 60 % transmission of intensity.

Finally, we adjust the polarisation of the excitation pulse to be parallel to the quan-
tisation axis at the place of the ion in order to drive the ∆mF = 0 transition (see Fig-
ure 6.10 a)+b)). In total, we reach around 4 pJ pulse energy at maximum at the ion’s
position focused down to a beam waist of ∼ 12µm.

61 S405-XP from Thorlabs with a damping of 0.8(5)dB/m
62 Which was also done in [6]
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6 The 171Yb ion as a memory qubit

6.3.4 Spectral filtering of the pulses

From previous experiments we know that stray photons originating from an illuminating
laser beam could be scattered into the fibre cavity mode by elements of the trap setup
and subsequently cause accidental photon detection events on the cavity SPCs. This holds
even for a laser beam which impinges perpendicular to the cavity axis [157]. The ultra-
fast laser pulses with which we excite the ion cause noticeable stray photons at the trap
structure due to their comparably large peak powers (∼ 20mW). Moreover, due to the
excited state lifetime of the ion of ∼ 8ns and the cavity decay time of 1.4(1) ns, these stray-
photons mix up with photons emitted spontaneously by the ion on the SPCs. Adaption of
the post-processing acceptance window of the detected cavity photons could potentially
filter out these stray photons but at the cost of the travelling qubit detection efficiency
(see subsection 5.5.2). A more elegant approach is the reduction of the excitation pulse
linewidth, such that the photons are far detuned from the cavity resonance frequency.
At the same time, a reduction of the pulse energy reduces the pulse-broadening due to
non-linear effects in the guiding fibre [6].
We reduce the bandwidth of the pulses which exit the pulsed laser at a spectral band-

width of ∼ 100GHz using a filter cavity resonant to the atom and having a linewidth of
∼ 1GHz. The spectral bandwidth of the filtered pulses is small against the separation of
∼ 12.6GHz between cavity resonance frequency (

∣∣∣2S1/2, F = 1
〉
↔ |e〉) and atomic tran-

sition for pulsed excitation (|0〉 ↔ |e〉). We proof experimentally that this reduces the
level of stray photons on the cavity single photon detectors below their noise level (∼ 100
counts per second).
We built the symmetric filter-cavity from two concave mirrors with 98.5% reflectivity

(at 370 nm) and 100mm radius of curvature. This places the finesse of the cavity to
F ≈ 200. The mirrors are separated by a few micrometres and allow for smooth cavity
length adjustment using a ring piezo actuator glued to the backside of one mirror.

Influence of the spectral filtering to the time profile of the pulse
The time profile of the pulse is particularly interesting for the theoretical description of
the ion-pulse interaction (see subsection 6.3.2). The filter-cavity determines the time
profile of the spectral filtered pulse and we obtain the characteristic decay time of a
light field within the cavity by measuring the linewidth of the cavity. To this end, we
stabilise the cavity length to the reference laser at 780 nm while tuning the frequency of a
second laser coupled through the cavity at the TEM00 mode and running at 370 nm (see
Figure 6.11).
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Figure 6.11: Linewidth measurement of the filter-cavity stabilised to a 780 nm reference laser. a)
We probe the transmission of the cavity using a frequency scanned 370 nm probe laser coupled to
the TEM00 mode of the cavity. b) The linewidth is extracted from the Lorentzian-profile (solid
line) of the measured transmission (blue dots). The standard deviations are given as error bars.

We measure a linewidth of the filter cavity at 370 nm of

∆νfwhm = 1.19(1)GHz. (6.39)

For a pulse emitted by the Ti:Sapphire laser, the envelope of the electric field has a sech-
function time profile due to the optical Kerr-effect, which enables the mode-locking of
the laser in our case [97, 34]. The spectral filtering of the pulse changes the envelope
to an exponential decay since the length of the generated pulse of 6 ps (according to the
manufacturer) is much smaller than the cavity decay time of

τcavity = 1
2π ·∆νfwhm

= (134± 1) ps. (6.40)

Due to the approximately instant excitation of the cavity mode, the length of the spectral
filtered pulse is τpulse = τcavity.

6.3.5 Calibration of pulse parameters

We calibrate intensity and centre frequency of the laser pulses on a daily basis by driving
resonant Rabi oscillations on the |e〉 ↔ |0〉 transition after initialising the ion to the
|0〉 state as described in section 6.1. We measure the excitation probability of the ion
using the population of the (2S1/2, F = 1) manifold ρbright after the excited state decay
happened (see Figure 6.12 a)+b)). To this end, we measure the rate of detected photons
scattered by the ion into free space R4π while driving the ion on the cooling transition∣∣∣2S1/2, F = 1

〉
↔
∣∣∣2P1/2, F

′ = 0
〉
as described in subsection 6.2.1.
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Figure 6.12: a) Experimental sequence for measuring the excitation probability of the |e〉 state.
We initialise the ion to the |0〉 state as described in section 6.1. Subsequently, the laser pulse drives
coherent Rabi-oscillations on the |0〉 ↔ |e〉 transition. b) From the excited state |e〉, the ion decays
to the 2S1/2 manifold. c) Important elements of the experimental setup used for the measurement
of ρbright. CW: continuous wave.

Considering the Clebsch-Gordan coefficients of the involved transitions of the excited state
decay, we extract the excitation probability ηexc from the branching ratios of Figure 6.12 c)
as

ηexc = 3
2 · ρbright. (6.41)

It follows from equation (6.30) that the coherent transfer of population to the excited
state can only happen with unit probability, if the pulse centre frequency is resonant to the
atomic transition (∆pulse = 0). We hold the laser pulse resonant to the atomic transition
using the stabilised filter–cavity (see Figure 6.10 a)). For a calibration of the pulse centre
frequency, we monitor the excitation probability of the ion, while varying the length of
the filter-cavity. A calibration of the pulse frequency is shown in Figure 6.13 a), where we
achieve ∆pulse = 0 at the maximum excitation.

Furthermore, it follows from equation (6.30) that a full transfer of population to the
excited state with a resonant pulse requires Ω · τpulse = π · (2n + 1), n ∈ N. Due to
a fixed pulse length τpulse, we have to tune the Rabi frequency Ω in order to fulfil this
condition. We control the Rabi frequency Ω by changing the pulse energy according
to subsection 6.3.3. A measurement of the pulse energy uπ,p corresponding to a full
population transfer from the ground state |0〉 to the excited state |e〉 (π-rotation) is shown
in Figure 6.13 b). We achieve an excitation probability of

ηexc,π = (99± 1) % (6.42)

for a calibrated π-pulse with an energy of up ∼ 3 pJ.
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Figure 6.13: Measured excitation probability of the |e〉 state while driving ultra-fast Rabi flops on
the |0〉 ↔ |e〉 transition. The solid line is a fit according to equation (6.30). a) Calibration of the
pulse centre frequency performed at a pulse energy smaller than the energy required for a π-pulse
(uπ,p). We scan the centre frequency of the pulse by varying the length of the reference cavity
using a piezo actuator. Blue dots are measured data with the standard errors given as error bars.
b) Calibration of the pulse energy up (blue dots). The standard deviation of the pulse energy is
given as horizontal error bars, the standard error of the excitation probability is given as vertical
bars. The centre frequency of the pulse is adjusted to be resonant with the atomic transition, i.e.
∆pulse = 0 according to the measurement in a). We are able to drive a π-rotation on the atomic
two-level system at an energy of uπ,p ∼ 3 pJ. The x-axis accounts for the square-root dependence
of Ω on the pulse energy up (see eq. (6.38)). From the fit we extract ηexc(uπ,p) = (99± 1) %. The
pulse energy used for the calibration of the pulse centre frequency in a) is denoted with a dashed
line.

6.3.6 Deterministic generation of single photons

The quantum nature of many systems becomes particularly dominant for low excitation
states. Since a photon represents the lowest excited quantum state of a radiation field,
exploiting the quantum nature of light becomes possible with single photons. Therefore,
the realisation of single photon sources plays an important role across multiple fields
of quantum information. Examples are provably secure quantum communication [176]
or quantum information processing in linear optics, where single photons are needed as
qubits [88].
In order to generate single photons, ion-cavity systems are beneficial due to the localised

single emitter coupled to a defined mode of the optical fibre cavity. This allows for the
generation of photons with a defined profile and timing and has been realised in several
experiments using macroscopic cavities [82, 177, 111, 10]. The generation of single photons
from a fibre cavity by a continuously driven ion in the UV spectral range [7] and by a
deterministically excited ion in the IR spectral range [159] has also been demonstrated.
In this subsection, we present the on-demand generation of a single photon out of a fibre
cavity in the UV spectral range using ultra-short pulsed excitation of the trapped ion.
Using the detection times for a stream of emitted photons and the second-order temporal
correlation function g(2)(τ), we verify the emission of only one photon from the ion at a
time.
The normalised second-order temporal correlation function g(2)(τ) provides insight into
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6 The 171Yb ion as a memory qubit

the photon statistic of a source. In terms of intensity it is defined as

g(2)(τ) = 〈I(t)I(t+ τ)〉
〈I(t)〉 〈I(t+ τ)〉 , (6.43)

where for a source with constant average intensity 〈I(t)〉 = 〈I(t+ τ)〉 [53]. In a quantum
mechanical description, where the intensity is proportional to the expectation value of the
photon number operator 〈I〉 ∝ 〈n̂〉 =

〈
â†â

〉
, we can rewrite equation (6.43) as [118]

g(2)(τ) =

〈
â†(t)â†(t+ τ)â(t+ τ)â(t)

〉
〈â†(t)â(t)〉2

. (6.44)

Using the commutation relation
[
â, â†

]
= 1, we can find in the case of τ = 0 an expression

of equation (6.44) in terms of photon number operators which reads

g(2)(0) =
〈
n̂2〉− 〈n̂〉
〈n̂〉2

= 1 +

〈
(n̂− 〈n̂〉)2

〉
− 〈n̂〉

〈n̂〉2
. (6.45)

We find 〈n̂〉 to be the mean photon number of the investigated mode and
〈

(n̂− 〈n̂〉)2
〉
to

be the variance of the photon number. Considering non-classical sources of light without
any fluctuation, i.e.

〈
(n̂− 〈n̂〉)2

〉
= 0, above expression reads

g(2)(0) = 1− 1
〈n̂〉

< 1, (6.46)

which becomes g(2)(0) = 0 only for a true single photon source with 〈n̂〉 = 1. Therefore,
we can use equation (6.46) to test a light source for the emission of single photons.
In subsection 6.3.5, we presented the excitation of the ion with (99±1) % probability by

driving ultra-fast Rabi flops and in subsection 5.5.2, we verified that the spontaneous decay
of the excited state generates deterministic photon pulses with a defined time profile. In
order to verify that these light pulses each consist of a single photon, we use a measurement
setup similar to the Hanbury Brown and Twiss experiment [30], where we detect the
emitted photons on two single photon counters (SPCs) (see Figure 6.14 a)).
We perform in total N = 20× 106 excitations of the ion, separated by 61µs. The train

of emitted photons is chunked into sequences containing 200,000 excitation events with
∼ 1 sec interruptions in between the sequences, where we download the data. We reloaded
the ion once for this measurement which caused an interruption of ∼ 2 minutes. The
arrival times were binned with 1µs bin width and the cross-correlations were evaluated
between the two SPCs for each of the 100 streams containing 200,000 photon generation
attempts. The resulting second-order correlations are shown in Figure 6.14 b). We perform
the noise level correction of both detectors according to [82] by recording 2, 000 sets of
dark count detection sequences in order to reduce the shot noise. We use cross-correlations
between noise-noise and noise-signal sequences to perform the adjustment of the signal-
signal correlation baseline. This allows us to give a specific value for g(2)(0) of

g(2)(0) = 0.00(5), (6.47)

which is limited in accuracy by the standard deviation of the noise baseline (see Figure
6.14 c)). This enables us to use the photons produced in this setup for a secure transfer
of information by laws of quantum mechanics [182] (see chapter 8).
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Figure 6.14: a) Sketch of the experimental setup for single photon generation and verification.
The inset shows the relevant energy levels of 171Yb+ with annotated processes. A sequence of
atomic initialisation and excitation is repeated every 61µs. Emitted photons that are collected by
the fibre cavity are detected on two single photon counters (SPCs) and time stamps are assigned
to the detection events using a time-to-digital converter (TDC) b) Temporal second-order cross-
correlations of the photon arrival times on the two detectors with detector dark count correction
applied according to [82]. c) Binned values of the correlation baseline of b), where we extract the
mean (black solid line) and the standard deviation (black dashed lines) of the Gaussian noise (blue
curve as a fit) and finally obtain g(2)(0) = 0.00(5).

Together with the results of subsection 5.5.2, we can now confirm the on-demand gen-
eration of a single photon from the ion-cavity system with a short time profile of 9.3(9) ns
width.

6.3.7 Impact of the pulsed laser calibration on the generation of an entangled
spin-photon state

In this subsection, we discuss the role of the pulsed laser calibration on the generation of
the entangled ion-photon state conceptually. We consider the observation of the emitted
photon along the quantisation axis as sketched in Figure 6.15 a). A detailed analysis
including the numbers of a particular implementation of an ion-photon state measurement
can be found in subsection 7.3.2. In the following, we split our discussion into two parts:
i) the pulse detuning ∆pulse and pulse power up and ii) the polarisation alignment.

Detuning and power
Detuning and power influence the emission probability of a photon in the first place and
thus the generation rate of entanglement. The emission probability depends linearly
on the excitation probability ηexc of the atomic |e〉 state. If the ion gets not exited, no
spontaneous decay happens and no emitted photon can be detected for this attempt of
entanglement generation.
However, dark count noise on the single photon counters (SPCs) can trigger false-positive

detection events. These events contribute to the analysis of the state correlations between
atom and photon. Higher excitation probabilities lower the false-positive ratio on the
SPCs and therefore can enhance the detection fidelity of the entangled atom-photon state.
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6 The 171Yb ion as a memory qubit

Polarisation
In contrast to power and detuning, the polarisation alignment determines directly the
preparation fidelity of the excited state |e〉. For a high preparation fidelity, the pulsed
laser light has to be purely linearly polarised and parallel to the atomic quantisation
axis (see Figure 6.15 a)). Otherwise, the accidental driving of atomic transitions with
∆mF = ±1 has direct consequences on the fidelity of the generated atom-photon state
(see Figure 6.15 b)). In Figure 6.15 c) the desired decay of the ion from the |e〉 state is
shown. The decay from the |e〉 state happens in a superposition of decay channels. If
the emitted photon is collected along the quantisation axis, the atom-photon state can be
written as

|Ψatom-photon〉 = 1√
2

(∣∣∣σ+
〉 ∣∣∣g+

〉
−
∣∣σ−〉 ∣∣g−〉) (6.48)

because only circularly polarised photons can be observed. However, accidental excita-
tion of the |F ′ = 1,mF = ±1〉 states enables additional decay channels that reduce the
generation fidelity of the desired entangled state.
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Figure 6.15: a) Definition of the polarisation axes within the setup. Due to the magnetic field,
the quantisation axis is parallel to the cavity axis. Misalignment of the driving electric field
(black arrow) from an ideal π polarised driving field (grey arrow) results in a fractional driving of
∆mF = ±1 transitions (red arrow). b) The circularly polarised fraction of the pulse populates
the |F ′ = 1,mF = ±1〉 states (red arrows). c) Desired decay of the ion for the generation of atom-
photon entanglement. d)+e) Decay channels of the accidentally excited states. The transition to
the |0〉 state is off-resonant by ∼ 12.6GHz to the resonance frequency of the fibre cavity mode ωc,
which suppresses this decay channel for a photon emission into the cavity mode.

For a right-angled beam path with respect to the quantisation axis, the accidental excita-
tion probabilities of these two levels are equal. Photons emitted by a decay of these states
and collected by the resonant fibre cavity lead to a population of the |F = 1,mF = 0〉 state
(see Figure 6.15 d)+e)). This state is detected as bright state in the fluorescence-based
readout of the ion in any case (subsection 6.2.2). During the atomic readout sequence, the
|g−〉 state is mapped to the dark state |0〉 (see subsection 6.4.2). This results subsequently
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6.3 Pulsed excitation

in an accidental state attribution of |F = 1,mF = 0〉 to
∣∣g+〉 (bright ion) and a higher

probability of measuring a bright ion than a dark ion. This can be expressed in terms of
conditional probabilities for a state detection in σ̂z ⊗ σ̂z basis as

P (g+|σ−)P (g+|σ+) > P (0|σ+)P (0|σ−), (6.49)

where P (a|b) is the probability of detecting state a for a detection of state b. From the
error estimation of the σ̂z⊗ σ̂z correlation measurements presented in subsection 7.3.2, we
calculate the preparation fidelity to be (92± 5) %.
In terms of λ/2 wave plate alignment this corresponds to an accidental rotation of the

polarisation axis of (16 ± 5)◦ for a perfect linear polarisation impinging on the λ/2 wave
plate. We adjusted the polarisation angle of the beam using a polarising beam splitter
(PBS) at the beam exit port of the vacuum chamber. Therefore, alignment errors up to
some degrees seem reasonable, however, it is also likely that imperfect optical elements
such as wave plates and mirrors cause the circular polarisation components to be more
present. This assumption is supported by the observation that we cannot completely
suppress the intensity of the pulsed laser beam on one arm of the PBS at the exit of
the vacuum chamber. However, as long as the quantisation axis and the wave vector of
the pulsed laser beam enclose a 90 degree angle, this does not affect our assumption of
equal strengths of the circular polarisation components. Any other then a right-angled
alignment could cause one of the circular polarisations to become dominant resulting in
a violation of the assumptions made. However, we are able to verify this dependence on
a large scale, since we have designed the setup according to the required perpendicular
dependence between the two axes and conclude that the error in the alignment of the
beam axis is negligible compared to the alignment of the polarisation axis.

6.3.8 Summary

We have shown the experimental realisation of an ultra-fast transfer of an atomic ground
state population to an excited state with (99± 1) % probability using a laser pulse with a
length of τpulse = (134± 1)ps. Furthermore, we discussed the generation and application
of the laser pulses. We presented how to control and to calibrate the power, centre
frequency, spectral bandwidth, polarisation and timing of the pulses at the ion’s position.
We have demonstrated that the decay of the deterministically excited ion allows for

the on-demand generation of a single photon. We tested this method for the occurrence
of two photon events using a second-order correlation measurement, where we obtained
g(2)(0) = 0.00(5). The timescale on which the atomic excitation takes place is much shorter
than the lifetime of the excited state. Therefore, the time shape of the photons emitted
during the decay of the excited state is determined by the natural linewidth of the tran-
sition (see subsection 5.5.2). The resulting short photon time shape is particularly useful
for a low-noise detection of the entangled ion-photon state in chapter 7. In this context,
we discussed how a non-optimal calibration of one of the experimental pulse parameters
can affect the measurement of the entangled two-qubit state.

We derived an approximation that allows the application of an analytical solution for
the description of the measured excitation probabilities, on which we then based the
calibration of the pulse parameters.
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6 The 171Yb ion as a memory qubit

6.4 Hyperfine qubit manipulation

The coherent manipulation of information stored in a qubit is an essential part of quan-
tum information processing. The whole concept of universal quantum computation relies
on the application of high fidelity gate operations. Also in the context of quantum com-
munication, the ability to rotate a qubit state enables quantum information to be read
out in a controlled basis, which is, for example, the basic requirement for provably secure
entanglement-based communication [110, 89].
In this section, we first provide a theoretical framework before addressing the technical

implementation of qubit rotation operators.

6.4.1 Theory

The energy levels used for the encoding of quantum information are located within the
2S1/2 manifold of 171Yb+ (see Figure 6.1). Due to the separation of 12.6GHz between
the F = 1 and F = 0 hyperfine levels, we can coherently manipulate information encoded
in this states using microwave radiation. In particular, we focus on the |F = 0,mF = 0〉
state and the |F = 1,mF = ±1〉 states. The |F = 1,mF = ±1〉 states are important since
they contain the phase information of the entangled atom-photon state after decay (see
chapter 7) and the |F = 0,mF = 0〉 state is added to the system for initialisation and
readout purposes. Together, they form a so-called (inverted) lambda-system, which we
generalise using the orthogonal states |0〉 , |1〉 and |2〉 in the following (see Figure 6.16).
In this subsection, we derive the Hamiltonian of the lambda-system, which can be used in
the form of a Master equation to numerical simulate the time dependence of the system
using a Lindblad master equation solver63.

In the experiment, we set the quantisation axis of the system using a static magnetic
field ~B0 applied along the z-axis (cavity-axis). The field lifts the degeneracy between the
|F = 1,mF = ±1〉 states by ωL = 2π ·2·1.4 MHz

G according to equation (6.88), which results
in a precession of the atomic spin in the laboratory frame for superposition states of these
levels according to the Larmor-precession. In our model, we consider the static magnetic
field ~B0 by introducing an energy splitting between |1〉 and |2〉 resulting from the static
magnetic field as ĤB0 = −~̂µ · ~B0.

ωL=ω20-ω10

ω10-ωM1

=-ΔM1

ω20-ωM2

=-ΔM2

ΩM2,ωM2ΩM1,ωM1

|0

|1

|2

Figure 6.16: Energy levels and relevant frequencies of a driven three-level system.

63 We use the package qutip in Python for a numerical solving
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6.4 Hyperfine qubit manipulation

We describe a driving RF microwave field at the ion’s position by a time varying mag-
netic field ~B(t) with frequency ωM . The interaction of ~B(t) with the magnetic dipole
moment ~µ of the atomic spin is given by the dipole interaction Hamiltonian ĤI as

ĤI(t) = −~̂µ · ~B(t) = g
µB
~
~̂S · ~B(t) with ~̂S = ~

2

 σ̂x
σ̂y
σ̂z

 . (6.50)

Here, µB is the Bohr magneton, g is the dimensionless g-factor and σ̂x/y/z are the Pauli
matrices forming the spin operator ~̂S. Without loss of generality, we assume the mag-
netic field ~B(t) of the microwave RF radiation to oscillate along the x-axis of the spatial
coordinate system with a phase offset φ. We write the magnetic field as

~B(t) = Bx · cos (ωM t+ φ) . (6.51)

With ~B(t) from equation (6.51), the interaction Hamiltonian of equation (6.50) reads

ĤI = ~ΩM · σ̂x cos (ωM t+ φ) with ΩM = µBgBx
2~

(6.52)

being the Rabi-frequency.
Using equation (6.52), we derive the Hamiltonian of the driven lambda-system with

energy states |0〉 , |1〉 , |2〉 and two driving fields ~Bk(t), k ∈ 1, 2 as

Ĥ =
2∑
i=1

~ωi0 |i〉 〈i|+
2∑

k=1
ĤI,k (6.53)

with
ĤI,k = ~ΩMk · (σ̂x,k · cos (ωMkt+ φk)) , (6.54)

where we set the zero point of the energy scale to the |0〉 state by defining ω0 = 0.
Furthermore, we introduced the transition frequencies ωi0 for the two investigated atomic
transitions |i〉 ↔ |0〉 with i ∈ {1, 2}.

In equation (6.53), we assumed each magnetic field to interact near resonant with the
corresponding atomic transition and neglected cross-interactions of the fields with the
transitions. This is a valid assumption, since the energy splitting ωL between the |1〉 and
|2〉 states is much higher than the full width at half maximum γM of the central excitation
peak of the corresponding driven transition for ΩMk · t ≤ π (see Figure 6.23 b)). The
corresponding values in the experiments are

γM = 2ΩM ∼ 2π · 30 kHz� ωL = 2π · 1.690(2)MHz. (6.55)

Therefore, each field ~Bk(t) only applies to the corresponding transition and is far detuned
from the other transition.
In equation (6.53), the timescale of the described system dynamics is dominated by

the fast oscillating terms of O(ωi0) ∼ O(ωMk) ∼ 12.6GHz. Investigation of the system
becomes easier when transforming into a frame rotating at ∼ 12.6GHz. In analogy to the
transformation into a rotating frame in subsection 5.4.2 for a two-level system, we apply
a transformation for the presented three level system using the unitary transformation

T = eiωM1t|1〉〈1|+iωM2t|2〉〈2| (6.56)
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6 The 171Yb ion as a memory qubit

to the Hamiltonian of equation (6.53) according to equation (5.37) 64. Neglecting all
terms oscillating with O(2ωi0), we end up with the following expression of the transformed
Hamiltonian Ĥ ′ in the rotating wave approximation (RWA):

Ĥ ′ = −~ (ωM1 − ω10) |1〉 〈1| − ~ (ωM2 − ω20) |2〉 〈2|

+~
2ΩM1

[
eiφ1 |1〉 〈0|+ e−iφ1 |0〉 〈1|

]
+~

2ΩM2
[
eiφ2 |2〉 〈0|+ e−iφ2 |0〉 〈2|

]
.

(6.57)

Since the atomic resonance frequencies ωi0 depend on the offset magnetic field in the
experiment, they vary with the magnetic field noise. We can account for the magnetic
field noise in our model by defining the detuning of the driving fields with respect to the
corresponding atomic transition as time dependent. The detuning then reads

∆Mi(t) = ωMi − ωi0(t). (6.58)

Since the RF sources are locked to a 10MHz reference, it is intuitive to choose the driving
field frequencies ωMi as time stable. From a pure physical point of view, it does not matter
which system (atom or microwave) is defined to be frequency stable.
The expression ~

2ΩMk

[
eiφk |k〉 〈0|+ e−iφk |0〉 〈k|

]
of equation (6.57) with k ∈ 1, 2 de-

scribes a coupling between the |k〉 and the |0〉 state at rate ΩMk/2.. By rewriting equa-
tion (6.57) in matrix representation as

Ĥ ′ = ~

 0 ΩM1
2 [cos (φ1)− i sin (φ1)] ΩM2

2 [cos (φ2)− i sin (φ2)]
ΩM1

2 [cos (φ1) + i sin (φ1)] −∆M1(t) 0
ΩM2

2 [cos (φ2) + i sin (φ2)] 0 −∆M2(t)

 ,
(6.59)

we are able to identify the rotation axis of the coupling between the |k〉 and the |0〉 state
on resonance (∆Mk = 0) as

~rk(φk) = cos (φk) σ̂x + sin (φk) σ̂y (6.60)

using equation (2.9).
The phase φk of the driving field ~Bk(t) is an important parameter, since it defines

the orientation of the rotation axis ~rk in the equatorial plane of the Bloch-sphere upon
application of a resonant driving field (see Figure 6.17). The phase φk is measured in the
same reference frame as the phase βk of superposition states. Such a state on the |0〉 / |k〉
qubit reads

|Ψ〉 (θ, βk) = cos (θ/2) |k〉+ eiβk sin (θ/2) |0〉 with 0 ≤ θ ≤ π and 0 ≤ βk ≤ 2π (6.61)

according to equation (2.6). The state |Ψ〉 (θ = π/2, β1 = 0) = 1√
2 (|1〉+ |0〉) points along

the x-axis of the Bloch sphere and so does ~r1(φ1 = 0).
The orientation of the driving magnetic field vector defines the offset of the phase φk. If

we perform the previous calculations starting from equation (6.51) by solely changing the
magnetic field to oscillate along the y-axis instead of the x-axis, we end up with a similar
64 We used Mathematica 11.3 for this purpose
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result of equation (6.59) and equation (6.60) but with φk having a phase offset of π/2. In
particular, we can simply adapt both equations to a magnetic field oscillating along the
y-axis by substituting φk → φk + π/2. We discuss two applications of the above findings
in the following.
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Figure 6.17: Simulated time evolution of a state |Ψ〉 (t = 0) = |0〉 upon application of a resonant
microwave pulse on the |0〉 ↔ |1〉 transition with ∆M1 = 0, ΩM1 = 2π · 20 kHz and R̂~r(φ1=π/4)

(
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2
)

(see eq. (6.62)). a) Time evolution of the expectation values of a state projection to the basis
states |0〉 and |1〉. For simplicity, the |2〉 state is not shown since its expected population is zero
at all times. The duration of the pulse is visualised as coloured area. b) Evolution of the state
|Ψ〉 (t) on the Bloch-sphere of the two-level sub-system {|0〉 , |1〉}. The initial state |Ψ〉 (t = 0) is
shown as grey arrow and the final state |Ψ〉 (t > 12.5µs) = |Ψ〉 (θ = π/2, β1 = 3π/4) as blue arrow.
The trace of the state |Ψ〉 (t) on the Bloch-sphere is shown as blue points. The rotation axis of the
microwave pulse ~r(φ1 = π/4) is shown as orange arrow.

Driving one qubit transition at a time
For a microwave pulse resonant to a single qubit transition, the interaction time tM of
the radiation with the atomic qubit leads to a rotation of the qubit state. We are able to
assign a rotation operator R̂~r(φ)(α) to the microwave pulses according to equations (2.9)
and (6.59) as

R̂α~r(φ) = R̂ΩM ·tM
~r(φ) , (6.62)

with ~r(φ) defined according to equation (6.60). The rotation axis ~r(φ) becomes particularly
important when considering a sequence of rotations. A sequence can include rotation
operators for a single transition |0〉 ↔ |k〉 or rotations performed one after the other on
both transitions. We discuss this in detail in subsection 6.4.2, where we consider the
readout of the atomic part of an entangled spin-photon state.
For the less general case of near resonant driving of only one atomic transition with

an initial state |0〉, we can write the probability of finding the atom in the corresponding
excited state |k〉 as

ηexc(t) = |〈k|Ψ(t)〉|2 = Ω2
M

(Ω′M )2 ·
(1

2 −
1
2 cos

(
Ω′M t

))
, (6.63)

with Ω′M =
√

Ω2
M + ∆2

M being the generalised Rabi frequency65. We have seen this
65 We omit the index k for the Rabi frequency and detuning ΩMk, ∆2

Mk of the transition |k〉 ↔ |0〉
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expression in the context of a driven two-level system in equation (5.40) and indeed,
driving only a two-level sub-system of the lambda-system gives the same result. We use
this feature for the calibration of the individual microwave driving fields in subsection 6.4.4.
In this case of driving only a sub two-level system, we can derive the equivalent of the

Bloch-equations (eq. 6.24) as ẋ

ẏ

ż

 =

 cos(φ) · ΩM

sin(φ) · ΩM

−∆M


︸ ︷︷ ︸

~r(∆M ,ΩM ,φ)

×

 x

y

z

 , (6.64)

where we obtain the interesting expression of the rotation axis ~r(∆M ,ΩM , φ) of a
microwave pulse, which is not resonant to the atomic transition.

Simultaneous driving of both qubit transitions
Equation (6.63) leads to the Rabi oscillations which are well known for a two-level
subsystem. However, we can achieve something similar when driving the lambda-system
on both transitions |1〉 ↔ |0〉 and |2〉 ↔ |0〉 simultaneously (see Figure 6.18). For equal
driving power on resonance, i.e. ΩM1 = ΩM2 ≡ ΩM and ∆M1 = ∆M2 = 0, the effective
frequency Ωeff of the oscillation between a superposition state 1√

2

(
|2〉+ ei(φ2−φ1) |1〉

)
and

|0〉 is given by Ωeff =
√

2 · ΩM .
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Figure 6.18: Simulation of simultaneous driving of two atomic qubit transitions using ~B1(t) and
~B2(t) with ΩM1 = ΩM2 and ∆M1 = ∆M2 = 0. The driving field phases are set to φ1 = π/4 and
φ2 = π. a) Time evolution of the expectation values of the state projections to the basis states
|0〉 , |1〉 , |2〉. b) Bloch sphere representation of the state evolution on all three two-level subsystems.
The rotation axis ~r1(φ1) and ~r2(φ2) of the microwave driving is shown as orange arrows. The initial
state |Ψ〉 (t = 0) = |0〉 is shown as grey arrow, the final state |Ψ〉 (t = 100µs) as blue arrow and
the state evolution as blue dots.

This effect can be particular interesting when considering a readout strategy for a super-
position state

|Ψ〉 (t = 0) = 1√
2

(
|2〉+ eiβ |1〉

)
. (6.65)
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For a phase difference of the driving fields of

β = φ2 − φ1 (6.66)

the superposition state can be rotated to |0〉 for Ωeff·tM = π. However, for β = φ2 − φ1 + π

the superposition state remains unaffected from the driving fields. Considering the Zeeman
qubit |g±〉, this allows an eigenstate of a rotated basis to be mapped to the |0〉 dark state
while the orthogonal eigenstate remains ’bright’, which subsequently allows projective flu-
orescence state detection. This requires two phase stable driving fields ~Bk(t), k ∈ {1, 2}
which are applied simultaneously. We explored this strategy in an earlier stage of the ex-
periment, but found that phase stability was easier to achieve for distinct microwave pulses
in our setup. Therefore, for the results presented in this thesis, we used an alternative
readout strategy that uses two pulses, as described in the next subsection.

6.4.2 Basis selection of the atomic qubit readout

In this subsection, we present the readout of the atomic part of the entangled atom-photon
state. In particular, we focus on the atomic qubit manipulation, which has to be done in
advance to the projective fluorescence state detection (see subsection 6.2.2). We present
the mapping of the eigenstates of a desired readout basis to the eigenstates of the projective
state measurement.
Due to the entanglement generation scheme, the atomic part of the atom-photon state

is encoded in the Zeeman qubit
∣∣∣2S1/2, F = 1,mF = ∓1

〉
≡ |g±〉, as described in sub-

section 7.1.3. The projective measurement of the ion state, however, happens to the∣∣∣2S1/2, F = 0
〉
≡ |0〉 state and the

∣∣∣2S1/2, F = 1
〉
manifold as presented in section 6.2. In

other words, both Zeeman qubit states
∣∣g+〉 and |g−〉 couple to the driving laser field of the

state readout (see Figure 6.19). Therefore, we have to map the Zeeman qubit
∣∣g+〉↔ |g−〉

to one of the hyperfine qubits |g±〉 ↔ |0〉.
In principle, any of the two states |g±〉 can be mapped to the |0〉 state. However, due

to the microwave antenna alignment, we have a slightly higher driving Rabi-frequency on
the |0〉 ↔ |g−〉 transition. Therefore, we apply a microwave π-pulse with rotation operator
R̂π~r(φ) (see equation (6.62)) on this transition, which coherently transfers the information
from the Zeeman qubit to the hyperfine qubit |0〉 ↔

∣∣g+〉 (see Figure 6.19).
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6 The 171Yb ion as a memory qubit
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Figure 6.19: Illustration of the coherent state manipulation of the atom in advance to a fluo-
rescence state detection at 370 nm. The relevant energy levels of 171Yb+ are shown. The applied
rotations are indicated at the corresponding transitions. The bases for which they are applied are
given in brackets.

After the mapping π-pulse, the states
∣∣g+〉 and |0〉 are eigenstates of the operator

σ̂z acting on the hyperfine qubit
∣∣g+〉 / |0〉 and also eigenstates of the fluorescence state

detection66. Therefore, at this stage, a fluorescence state readout projects to the σ̂z basis
on the atomic side.
Also, for a state projection to one of the bases orthogonal to σ̂z (e.g. σ̂x/y), we need to

map the eigenstates of this measurement basis to the eigenstates of the fluorescence state
detection. But here, the eigenstates of the rotated bases are superposition states of the
Zeeman qubit basis states

∣∣g+〉 and |g−〉. Therefore, we have to care about the phases of
the mapping pulses with respect to the phase of the superposition state.
To develop a state mapping strategy, we consider the general Zeeman qubit superposi-

tion state
|Ψ〉 (α) = 1√

2

(∣∣∣g+
〉

+
∣∣g−〉 · eiα) , (6.67)

which we define as an eigenstate of one of the rotated bases σ̂k with

σ̂k |Ψ〉 (α) = +1 |Ψ〉 (α) (6.68)

according to equation (2.3). The second eigenstate of the basis σ̂k with eigenvalue λ = −1
is |Ψ〉 (α+ π). Examples are given by

σ̂x basis: α = 0,
σ̂y basis: α = π/2,[

(−σ̂x + σ̂y)/
√

2
]
basis: α = 3π/4.

(6.69)

For readout purposes, a π/2 rotation operation could map the state |Ψ〉 (α), to the corre-
sponding eigenstate of the σ̂z basis

∣∣g+〉. The corresponding rotation operator R̂π/2~r(φ=α−π/2)
with rotation axis ~r(α− π/2) rotates the state as

R̂
π/2
~r(φ) |Ψ〉 (α) φ=α−π/2−→

∣∣∣g+
〉
. (6.70)

66 Strictly speaking, the state
∣∣g+〉 is not an eigenstate of the fluorescence state detection because it

projects to the manifold |F = 1〉 according to the projection operator P̂B of equation (6.7). This has
no influence on the methods presented here, but should be mentioned.
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6.4 Hyperfine qubit manipulation

The second eigenstate of the rotated basis |Ψ〉 (α+π) is mapped to |g−〉 during this pulse
(see Figure 6.20). At this stage, projection and readout as described previously for the
σ̂z basis can be performed in principle. However, the realisation of R̂π/2~r(φ=α−π/2) on the
|g±〉 qubit would require a phase stable RF-pulse with respect to the generation time
of the entangled state, which in addition has to be resonant to the |g±〉 qubit energy
splitting (∼ 1.6MHz). This is experimentally challenging, as it requires the real-time
synchronisation of the pulse phase for each readout attempt with the generation time of
the entanglement. This approach is currently explored in the research group of J. Eschner
in Saarbrücken.

x
y

|g +

|g

r( = /2)

| ( = 3 /4)
| ( + )

Figure 6.20: Mapping of eigenstates of an example basis (−σ̂x + σ̂y)/
√

2 to the eigenstates of the
σ̂z basis. The Bloch sphere representation of the rotation R̂π/2~r(φ=α−π/2) described in equation (6.70)
is shown. The rotation axis ~r is shown as orange arrow. The two basis states are shown as grey
arrows. The traces of the transformations are shown as blue dots whereas the final states are
shown as blue arrows.

A more convenient solution is to first map the superposition state to one of the hyperfine
qubits, where the mapping π-pulse again can act on one of the two transitions |0〉 ↔ |g±〉
and we again choose the |0〉 ↔ |g−〉 transition (see Figure 6.19). A following π/2-pulse
maps the superposition state encoded in the hyperfine qubit |0〉 /

∣∣g+〉 subsequently to
the eigenstates of the fluorescence state detection. We present in the following that this
method has the advantage that we only need relative phase stability between the two
pulses 67 68.

We again start with the general Zeeman qubit superposition state |Ψ〉 (α) from equa-
tion (6.67). The first pulse acting on the |0〉 ↔ |g−〉 transition with R̂π~r(φ1) maps the state
encoded in the |g±〉 qubit to the |0〉 /

∣∣g+〉 hyperfine qubit and we obtain the state

|Φ〉 (α) = 1√
2

(∣∣∣g+
〉

+ |0〉 · ei(α−π/2+φ1)
)
. (6.71)

The second pulse with operator R̂π/2~r(φ2), which subsequently acts on the |0〉 ↔
∣∣g+〉 transi-

67 As an alternative, one could also drive both transitions simultaneously as described to the end of
subsection 6.4.1.

68 Note that in deviation from subsection 6.4.1, we name the phase φi, i ∈ {1, 2} of a pulse according to
the order of the applied microwave pulses instead of the corresponding atomic transition. We refer to
the atomic transition in the context of the corresponding rotation operator R̂.
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6 The 171Yb ion as a memory qubit

tion has to have a phase of

φ2 = (α− π/2 + φ1)− π/2 (6.72)

in order to map the state of equation (6.71) to the
∣∣g+〉 state (similar to equation (6.70)).

For the state mapping, it is important to rotate the eigenstates of the σ̂x/y/z operator∣∣∣Ψ±x/±y/±z〉 as follows: ∣∣∣Ψx/y/z

〉
→
∣∣∣g+

〉
∣∣∣Ψ−x/−y/−z〉 →|0〉 .

(6.73)

This mapping of the eigenstates preserves the corresponding eigenvalue λ = ± 1 for the
eigenstate |Ψλ·j〉 of all bases σ̂j with j ∈ {x, y, z} (equation (2.3)). This is similar to the
photon state mapping described in equations (5.82) and (5.86).
From equation (6.72), we finally obtain the important expression of the relative pulse

phase difference to realise above mapping for the rotated bases in the equatorial plane of
the Bloch sphere, which reads

∆φ = φ2 − φ1 = α− π. (6.74)

For the sake of completeness, we point out again that the state mapping for a readout in
σ̂z basis only requires the first π-pulse with an arbitrary69 phase φ1.

A simulation of a whole state mapping sequence is shown in Figure 6.21 for the basis
(−σ̂x + σ̂y)/

√
2 with eigenstates |Ψ〉 (α = 3π/4) and |Ψ〉 (α + π) as an example to clarify

the presented method. It is important to understand that the solution of equation (6.74)
does not require constant phases φ1/2 as long as they exhibit relative stability. In the ex-
periment, we program the relative phase into the arbitrary waveform generator generating
the pulses, see subsection 6.4.3. As we mix these pulses to the same carrier, the relative
phase is preserved. However, the carrier phase exhibits no fixed relation to the experimen-
tal sequence and consequently, no fixed relation to the phase of the generated entangled
atom-photon state. In total φ1 and φ2 indeed have different values for every experimental
shot of the state readout, but are stable in their relative difference ∆φ. Figure 6.21 b)
shows a possible rotation axis of the first pulse with φ1 = π/4 with the corresponding
phase of the second pulse φ2, but any other rotation axis for the first pulse located in the
equatorial plane of the Bloch sphere also works.

69 Here, the phase φ1 appears only global for the eigenstates of the σ̂z basis (
∣∣g+〉 and

∣∣g−〉), since no
superposition states are involved

124



6.4 Hyperfine qubit manipulation

0.0

0.5

1.0

|
|g

+
|2

0 5 10 15 20 25 30 35 40
t / s

0.0

0.5

1.0

|
|0

|2

x

y

|g +

|0

r( 2 = + 1 =0)

0.0

0.5

1.0

|
|g

|2

| ( )

| ( + )

x
y

|g +

|g

| ( = 3 /4)

x

y

|g +

|0

1

2 (|g +
+ |0 e i(

/2+
1))x

y

|g

|0

r( 1 = /4)

a)

b) c)

Figure 6.21: Example of a coherent qubit state manipulation to map the eigenstates
|Ψ〉 (α = 3π/4) and |Ψ〉 (α+ π) of the (−σ̂x + σ̂y)/

√
2 basis according to equation (6.67) to the

eigenstate |g+〉 and |0〉 of the fluorescence state detection according to equation (6.73). a) Time
evolution of the expectation values of the state projections to the basis states |0〉 , |g−〉 and |g+〉
(solid line: |Ψ〉 (α), dashed line: |Ψ〉 (α + π)). For the time of the blue shaded area the rotation
operator R̂π~r(φ1) is applied on the |g−〉 ↔ |0〉 transition. For the time of the yellow shaded area
R̂
π/2
~r(φ2) is applied on the |g+〉 ↔ |0〉 transition. The orientation of the initial superposition state
|Ψ〉 (α = 3π/4) on the |g±〉 Bloch-sphere is shown as inset. b) Bloch-sphere representations of the
first rotation (blue area in a)) with the trace of the state shown as blue points. The initial state
|Ψ〉 (α) is shown as grey arrow, the final state is shown as blue arrow. The rotation axis is depicted
with an orange arrow. c) Second rotation (yellow area in a)) represented on the Bloch-sphere
with same colour-coding as in b). Here, the blue dots represent the state trace during the whole
sequence.

Specifically for α = π/2, we deal with the eigenstates of the σ̂y basis: |Ψy〉 = |Ψ〉 (π/2)
and |Ψ−y〉 = |Ψ〉 (π/2 + π). They map for ∆φ = −π/2 to

∣∣g+〉 and |0〉 respectively. The
mapping of the eigenstates of the σ̂x basis can be obtained in a similar way by setting α = 0.

Timing of the pulses
In order to end up with the same superposition phase α for all experimental shots, we
need a precise timing of the microwave pulses, since the investigated superposition states
evolve with a time depended phase α(t) in the laboratory frame. The timing uncertainty
of the pulses needs to be much smaller than the time constant of the state evolution, which
is determined by the energy splitting of the Zeeman states given in terms of frequency as
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6 The 171Yb ion as a memory qubit

ωL = 2π · 1.690(2)MHz (see subsection 7.4.1). The impact of the microwave pulse timing
on the entangled state measurement is considered quantitatively in subsection 7.4.2.

6.4.3 Microwave setup

In this subsection, we discuss the setup that generates the microwave pulses. Since we
need to apply sequences of atomic state rotations, we need a setup that can switch between
the two transition frequencies of the ion

∣∣g+〉↔ |0〉 and |g−〉 ↔ |0〉 on a fast timescale. In
addition, a stable and tunable phase relationship ∆φ between the RF oscillations of the
applied pulses is required in order to set the correct rotation axes (see previous subsection).
A fast rise/fall time of the pulses and a low timing jitter completes the list of requirements.
We generate the pulses using an arbitrary waveform generator70 (AWG) which is locked

to a 10MHz reference signal. However, we do not generate pulses which are resonant to
the atomic transition, but at a frequency ωp ∼ 8MHz. These pulses get mixed to a carrier
signal at ωc ∼ 12.6GHz, which is red detuned from the frequencies ω|i〉↔|0〉, i ∈ {g+, g−}
of the atomic microwave transitions such that for the sideband of the +1 mixing order
following applies:

ω|i〉↔|0〉 = ωc + ωp,i −∆Mi, (6.75)

where ∆M,i is a controllable detuning of the sideband to the atomic resonance frequency.
The carrier is far detuned from the three hyperfine transitions of 2S1/2 ↔ 2P1/2 with
8MHz� 2ΩM ∼ 2π · 30 kHz.

Mixing the pulses to the same carrier preserves the relative phase ∆φ between the pulses.
This method has the advantage of needing only one high frequency source71 at 12.6GHz,
which itself needs not be phase locked, but frequency locked to the 10MHz reference.
Furthermore, the fast switching of pulses is technically cheaper in a MHz frequency regime.
We program the AWG using the maximum available sample rate of 1GHz, which results

in a rise/fall time of a pulse of 2.9 ns according to the manufacturer. The programmed
sequence of RF pulses is output upon the arrival of an external trigger72. The generated
pulses exhibit a timing jitter of < 320 ps according to the manufacturer.

For pulsed application of the microwave carrier signal, we use a slower switch with a
rise/fall time of 100 ns according to the manufacturer73. In the experiment, we switch the
carrier signal on and off with more than 200 ns buffer with respect to the AWG pulses. A
block diagram of the setup including a sketch of the pulse timing is shown in Figure 6.22.

70 Keysight 33600A
71 N5183A from Agilent
72 The jitter on the trigger arrival time is 50 ps according to subsection 6.3.3
73 RF-Lambda
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Figure 6.22: Sketch of the setup used for generation and application of microwave pulses. Pulses
are generated by a waveform generator (AWG) and modulated to a carrier using a mixer. Timing
of the carrier and AWG-pulses as well as the corresponding jitter of the pulse edges are shown as
inset (blue shaded areas). Inset: times and amplitudes are not to scale

6.4.4 Calibration of the microwave experimental parameters

For the driving microwave pulses, we need to calibrate radiation power, pulse length and
frequency. To this end, we initialise the ion into the |0〉 state and subsequently apply a
(near) resonant microwave pulse to one of the transitions |i〉 ↔ |0〉 , i ∈ {g+, g−}. We aim
for the radiation frequency of the pulse to be on resonance with the respective atomic tran-
sition, i.e. ∆Mi = 0 (see subsection 6.4.1). Subsequently, we measure the Rabi-frequency
ΩM for both transitions. We make use of equation (6.63) describing the excitation proba-
bility under the assumption of distinct atomic transitions (see equation (6.55)) and driving
of only one transition at a time. Using fluorescence state detection with a near resonant
laser as described in section 6.2, we are able to distinguish between the

∣∣∣2S1/2, F = 1
〉
man-

ifold and the dark state |0〉. Using the same technique as described in subsection 6.2.1 for
a measurement of the bright state population ρbright, we obtain the excitation probability
of a microwave pulse as

ηexc = ρbright = R4π
Rref

, (6.76)

where we use a time window of 50µs per sequence for the determination of the scattering
rates R4π and Rref over multiple repetitions of a sequence.

Figure 6.23 a) shows a simulation of the expected excitation probability according to
equation (6.63) in a two-dimensional parameter space, namely detuning to the atomic
transition frequency ∆M and duration of the applied microwave pulse tM . We program du-
ration and frequency of the microwave pulse into an arbitrary waveform generator (AWG)
which together with a 12.6GHz carrier forms a (near) resonant pulse (see subsection 6.4.3).
We operate the entire microwave setup at the maximum available power74 to keep the time
for the qubit manipulations as short as possible, which mitigates the phase decoherence
(see next section). For each set of parameters, we perform ∼ 10, 000 repetitions of the same
experimental sequence from which we obtain a measurement of the excitation expectation
value ηexc for this set of pulse parameters.
In Figure 6.23 b)+c), the pulse parameters were scanned one by one for the

∣∣g+〉↔ |0〉
transition. We extract the resonance frequency ∆M = 0 and Rabi-frequency ΩM of the
corresponding transition. For calibration of the resonance frequency we choose the rising
edge of the first excitation maximum of the Rabi-oscillations, i.e. ΩM · tM ≤ π, such that
74 Without saturating the involved devices, e.g. amplifiers
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6 The 171Yb ion as a memory qubit

we get a clear maximum at ∆M = 0. The Rabi-frequency ΩM is measured subsequently
at resonance by driving Rabi-oscillations. From these measurements, we can identify the
pulse parameters in order to form an arbitrary qubit rotation operator R̂~r(φ) (ΩM · tM ) as
described in equation (6.62).
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Figure 6.23: a) Calculated excitation probability according to equation (6.63). The traces of the
calibration measurements for ∆M and ΩM · tM are shown as dashed lines. b) Calibration of the
frequency of the applied microwave pulse by measuring the excitation probability ηexc(∆M ) for a
fixed ΩM ·tM ≤ π while varying the detuning ∆M to the atomic transition |g+〉 ↔ |0〉. The FWHM
of the central peak is γM = 2ΩM . c) Calibration of the applied microwave pulse duration tM by
driving Rabi-oscillations at resonance (∆M = 0) and measuring ηexc(tM ). For a π-pulse, we obtain
from the fit ηexc = 100.0(4) %. For b)+c), the measured data is shown as orange dots with the
theory according to a) as blue lines. Error bars show the standard error in b), c).

6.5 Coherence time

For the storage of coherent information in qubits, the time interval in which the information
can be retrieved from the qubit with an acceptable error is a crucial property and is
called the coherence time. Much effort is put into achieving long coherence times of
memory qubits [101, 178]. In quantum communication, the use of memory qubits at the
nodes of a network can enable better scaling of the network. The link efficiency in a
quantum network ηLink = Rentanglement/Rdecoherence gives the ratio of entanglement rate,
i.e. information distribution, and decoherence rate, i.e. information loss [68, 172]. The
link efficiency directly depends on the characteristic coherence time τ of the nodes with
Rdecoherence = 1/τ .

In this section, we investigate the coherence time of the Zeeman qubit |g±〉 and the
hyperfine qubits |0〉 /

∣∣g+〉 and |0〉 / ∣∣g0〉. To keep the following considerations general, we
call the basis states of the investigated qubit |0〉 and |1〉. We determine the coherence
time of the qubit using a Ramsey sequence with variable hold times thold, as shown in
Figure 6.24 a). To this end, we prepare the system into the state |0〉 and rotate it to the

128



6.5 Coherence time

equatorial plane of the Bloch-sphere using a resonant microwave pulse with rotation axis75

~r(φ1) (see Figure 6.24 b)), which can be expressed through the qubit rotation operator
R̂
π/2
~r(φ1). Subsequently, we let the superposition state evolve for the time thold. For each

hold time, we obtain the remaining coherence fraction by the visibility of a full scan of
the relative phase ∆φ between the pulses.
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Figure 6.24: a) Ramsey-like pulse sequence creating a superposition state that accumulates phase
during a hold time thold according to equation (6.77). The second pulse probes the time evolution of
the state. b) Bloch-sphere representation of the generation of the superposition state. The orange
arrow depicts the rotation axis ~r(φ) of the rotation operator of the applied pulse. The grey arrow
is the initial state. The final state after applying the rotation operator is shown as a blue arrow.
c) Time evolution of the superposition state on the Bloch-sphere for 11 different manifestations of
βnoise,k (blue arrows). The dark blue arrow represents the state evolution for vanishing magnetic
field noise, i.e. βnoise = 0. The second probing pulse is visualised for d) a maximum average
excitation ∆φmax = 0 and e) for minimum average excitation ∆φmin = π. Same colour coding of
the vectors as in b). For all Bloch-sphere representations, we assumed a vanishing detuning of the
driving field to the resonance frequency, i.e. ∆M = 0.

We consider the system in a rotating frame according to section 6.4. We write the phase
βk accumulated by a qubit superposition state within the hold time thold of sequence k as

βk =
∫ thold

0
[∆M + δM,k(t)] dt = ∆M · thold︸ ︷︷ ︸

β0

+βnoise,k (6.77)

where ∆M takes into account a potential detuning of the driving field to the atomic tran-
sition determined by the static offset field B0 as described in subsection 6.4.1. The offset
field B0 and ∆M are defined to be time independent. We assume that the noise contri-
bution βnoise,k is caused by an additional detuning δM,k(t) resulting from the magnetic
field noise Bnoise,k(t) which has affected the energy splitting of the qubit states during the
sequence k. Figure 6.25 shows an illustration of the above definitions.

75 We name the phase φi, i ∈ {1, 2} of a pulse according to the order of the applied microwave pulses. We
refer to the atomic transition in the context of the corresponding rotation operator R̂
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Figure 6.25: Detunings for different origins of frequency mismatch between driving field and
atomic transition |0〉 ↔ |1〉 according to equation (6.77).

The phase evolution of 11 different βnoise,k is shown in Figure 6.24 c) for ∆M = 0.
The second microwave pulse rotates the state around an axis ~r(φ2). After the second
pulse, we measure the excitation probability Pe of the state |1〉. For a sequence k, the
excitation probability is given as a function of the phase difference of the microwave pulses
∆φ = φ2 − φ1 as

Pe,k(∆φ) = cos2
(∆φ+ βk

2

)
. (6.78)

However, we cannot measure the excitation probability in a single-shot. As described
in subsection 6.2.1, the excitation probability is measured over multiple implementations
of the same measurement sequence. For each ∆φ we run ∼ 10, 000 sequences and the
excitation probability averages over all sequences k and all βnoise,k. For a specific ∆φ we
obtain the measurement result

P̄e(∆φ) = 1
N

N∑
k=1

Pe,k(∆φ). (6.79)

The average excitation P̄e reaches its maximum at ∆φmax = −∆M · thold + 2nπ (see
Figure 6.24 d)) and its minimum at ∆φmin = −∆M · thold + (2n+ 1)π (see Figure 6.24 e))
with n ∈ N0. However, the achievable excitation probability is reduced by summation
over the βnoise,k, which cause the phases βk to evolve faster or slower in some of the
sequences (see equation (6.77)). For increasing hold times, βnoise,k blurs out the phases
βk over multiple sequences and the maximal/minimal achievable excitation probabilities
approaching P̄e(∆φmax/min) = 0.5.
We measure the visibility

V = P̄e(∆φmax)− P̄e(∆φmin)
P̄e(∆φmax) + P̄e(∆φmin)

(6.80)

for several hold times thold and extract the coherence time τ from the decreasing visibility
V as shown in Figure 6.26 for the Zeeman qubit |g±〉 as

τ|g±〉 = (496± 42)µs (6.81)

and for the hyperfine qubit |0〉 ↔
∣∣g+〉 as

τ|0〉↔|g+〉 = (1020± 278)µs. (6.82)

Due to the contrary Zeeman shift of the two states
∣∣∣2S1/2, F = 1,mF = ∓1

〉
≡ |g±〉, the

energy splitting of this qubit is twice as sensitive to magnetic field fluctuations as for the
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|0〉 /
∣∣g+〉 hyperfine qubit, where only the energy of the

∣∣g+〉 state depends on the magnetic
field at first order. Consequently, if magnetic field noise is the main source of decoherence,
we expect the coherence time of the |g±〉 qubit to be half as long as that of the |0〉 /

∣∣g+〉
qubit. The given values of τ|g±〉 and τ|0〉↔|g+〉 indicate that.

We can confirm the strong influence of the magnetic field by investigating the coherence
time of the first-order magnetic field insensitive qubit |0〉 /

∣∣g0〉, where both states have
the quantum number mF = 0. For this transition, we obtain

τ|0〉↔|g0〉 = (12.4± 2.5)ms. (6.83)

The coherence time of the |0〉 ↔
∣∣g0〉 transition is by one order of magnitude longer as for

the magnetic field dependent transitions.
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Figure 6.26: Coherence time measurements with magnetic field shielding in place (see subsec-
tion 6.6.2). The experimental data show the decreasing visibility for different evolution times
between the two π/2-pulses of a Ramsey like sequence. The visibility for a certain evolution time
thold is determined by scanning the relative phase ∆φ between the pulses (inset). Blue circles:
Zeeman qubit |g±〉. Yellow triangles: hyperfine qubit |g+〉 / |0〉. Grey squares: First order mag-
netic field decoupled qubit

∣∣g0〉 / |0〉. Coherence times are extracted from fits (solid lines) with
the function exp (− (t/τ)). Error bars show the standard error. Parts of the data have also been
published in [92].

Details on the coherence time measurement of the Zeeman |g±〉 qubit
The methods and analyses shown above are already applicable to the Zeeman qubit. Only
the concrete experimental implementation of generating and reading out superposition
states differs in detail from the sequences presented above for the hyperfine qubits and
should be listed here for the sake of completeness. To determine the visibility V for
the Zeeman qubit, we require the experimental generation (and readout) of superposition
states having the form |Ψ〉 = 1√

2
(
|g−〉+

∣∣g+〉 · eiα), which we cannot realise from the |0〉
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6 The 171Yb ion as a memory qubit

initial state using a single microwave pulse with operator R̂π/2~r(φ=α−π/2). In order to realise a
R̂
π/2
~r(φ) operation on this qubit, we use two distinct microwave pulses on the two transitions
|0〉 ↔ |g±〉. The first pulse is doing a π/2-rotation R̂π/2~r1(ψ1) on the transitions |0〉 ↔

∣∣g+〉
with the initial state being |0〉. The second pulse transfers the remaining population to
the |g−〉 state with R̂π~r2(ψ2) acting on the |0〉 ↔ |g−〉 transition. The superposition state
is then given by |Ψ〉 = 1√

2

(
|g−〉+

∣∣g+〉 · ei(ψ2−ψ1)
)
. The rotation operator on the |g±〉

qubit resulting in this particular state is R̂π/2~r1(φ=ψ2−ψ1−π/2). For the readout, we apply the
reversed sequence with phases ψ3 and ψ4. In equation (6.78) one has to consider that the
phases φ1(ψ1, ψ2) and φ2(ψ3, ψ4) are determined by the phases of the sub-pulses.

6.6 Magnetic field control

High precision control of the magnetic field at the ion’s position is crucial for the usage of
the trapped ion as a memory qubit. The magnitude of the magnetic field determines the
energy splitting of the information encoding hyperfine states and therefore the stability
of the field is decisive for the time with which coherent information can be stored in the
Zeeman and the hyperfine qubits (see previous section). For the presented setup, we can
assume that the magnetic field noise is the main source of decoherence for the atomic
qubits. Moreover, the direction of the magnetic field vector sets the quantisation axis
and its orientation has to be controlled such that it precisely points along the cavity axis.
The applied spin-photon entanglement scheme relies on the suppression of emission of
π-polarised light into the cavity mode (section 7.2).
We discuss the stability of the magnetic field generation on a technical level in Ap-

pendix D. In this section, we present the calibration of the static magnetic field and
shielding of the magnetic field noise.

6.6.1 Orientation and magnitude of the magnetic field

The total magnetic field vector ~Bs at the position of the ion can be written as a static
offset field ~Boff superimposed with the generated magnetic field ~Bc originating from the
coils as

~Bs = ~Bc + ~Boff =

 Bc,x
Bc,y
Bc,z

+

 Boff,x
Boff,y
Boff,z

 . (6.84)

Due to the alignment of the coils, the magnetic field ~Bc can be expressed through the
current Ik running through the corresponding coil k ∈ x, y, z as

~Bc =

 ax · Ix
ay · Iy
az · Iz

 , (6.85)

where ak is a factor including the specific properties of the coil. The magnitude of the
total magnetic field is

| ~Bs| =
√ ∑
i∈{x,y,z}

(ai · Ii +Boff,i)2, (6.86)
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6.6 Magnetic field control

which we can rewrite as a function of the current through the coil k as

| ~Bs(Ik)| =
√√√√√√(ak · Ik +Boff,k)2 +

∑
i∈{x,y,z}∧i 6=k

(ai · Ii +Boff,i)2

︸ ︷︷ ︸
R

. (6.87)

For a single coil k ∈ {x, y, z} and R 6= 0, equation (6.87) has the form of a parabola with
the minimum being at I0,k = −Boff,k/ak and an offset of R at this point. The offset R
results from the offset magnetic field along the remaining two spatial directions.
Using the ion as a sensor, we can probe the absolute value of the static magnetic field
| ~Bs(Ik)| using the Zeeman shift of the |g±〉 state which is given by

∆ν± = ∓1 · µB · gF · | ~Bs(Ik)|. (6.88)

For the investigated states the Landé factor is gF = 1 and the shift is given by the
Bohr magneton in terms of frequency µB ≈ 1.4MHz/G. We measure the shift ∆ν± by
determining the resonance frequency of the ω|g±〉↔|0〉 transition as shown in Figure 6.23 b)
and subsequently computing

∆ν± = ω|g±〉↔|0〉 − ω|g0〉↔|0〉. (6.89)

We hereby neglect the second-order magnetic field dependence of the
∣∣g0〉 ↔ |0〉 transi-

tion76. Figure 6.27 a) shows the expected parabolic behaviour of the Zeeman shift ∆ν−.
We use equation (6.87) to do a best fit to the measured data and extract I0,x = −Boff,x/ax
for the x-axis. We performed a similar measurement also for the y-axis. Applying the
offset current values I0,x and I0,y to the corresponding coils cancels out the offset mag-
netic field along these directions. Figure 6.27 b) shows the expected linear behaviour of
the magnetic field value | ~Bs(Ik=z)| on the current Iz for a vanishing magnetic field offset,
i.e. R = 0 .
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Figure 6.27: Calibration of the magnetic field a) along the x-axis b) along the z-axis (cavity
axis). The latter was performed with zeroed field along the remaining directions (R = 0). All data
has been recorded without the magnetic field shielding (cobalt foil) in place. The orange points
are measured values of ∆ν− with the standard errors depicted as bars (mostly not visible on this
scale). The blue solid lines are fits to the measured Zeeman shifts according to equations (6.87)
and (6.88). The linewidth depicts the standard deviation of the parameters of the fits.

76 ∼ 300Hz/G2 [186]
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6 The 171Yb ion as a memory qubit

For the measurements presented in this thesis, we apply magnetic fields of
| ~Bs(Iz)| & 600mG along with R = 0 in order to set the quantisation axis parallel to
the cavity axis. We also refer to this field as B0.
After wrapping the vacuum chamber in a magnetic field shield consisting of cobalt

foil (subsection 6.6.2), we had to repeat the magnetic field calibration due to changing
environmental conditions. The results of both calibrations are summarised in Table 4.

Bare setup Cobalt foil
I0,z/A 0.018(3) −0.005(2)
I0,x/A −0.180(5) 0.069(4)
I0,y/A −0.036(6) 0.011(1)

Table 4: Applied coil current for a compensation of the magnetic offset field.

6.6.2 Stability of the magnetic field

In this subsection, we present the detection and the mitigation of magnetic offset field
fluctuations. To this end, we employed the ion as a precise magnetic field sensor in the
low frequency regime of 50Hz with an accuracy of ∼ 100µG.

We describe the magnetic field at the ion’s position as

~B(t) = ~B0 + ~B∼(t), (6.90)

where ~B0 is the static magnetic field we apply to define the quantisation axis along the
cavity axis (see subsection 6.6.1) and ~B∼(t) is a time dependent part describing the field
noise. Not only an imperfect generation of the custom magnetic field at the position of
the ion could cause the magnetic field vector to vary over time, but also external sources
of noise such as inductive transformers in power supplies.
The noise ~B∼(t) changes orientation and magnitude of the total magnetic field ~B(t).

The orientation of the quantisation axis is important for the definition of polarisa-
tion modes. However, the orientation change happens to a sub degree level with
arctan

(
| ~B∼(t)|/| ~B0|

)
. 10−2, which we can neglect. In contrast, the length change of

the magnetic field vector directly has influence to the Zeeman splitting of the hyperfine
states, where a relative change of 10−2 is in the order of a few kHz, which is noticeable
for the transition frequencies of the qubits. We find that

| ~B(t)| =
√
| ~B0|2 + | ~B∼(t)|2 ≈ | ~B0|+

| ~B∼(t)|2

2| ~B0|
for ~B0 ⊥ ~B∼(t) and | ~B∼(t)| � | ~B0|,

(6.91)
which is small compared to a direct length change of

| ~B(t)| = | ~B0|+ | ~B∼(t)| for ~B0 ‖ ~B∼(t). (6.92)

From above equations, we conclude that the magnetic field noise has most effect along the
axis of ~B0 (z-axis). Furthermore, we define

| ~B(t)| = | ~B0|+Bnoise(t), (6.93)
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6.6 Magnetic field control

with Bnoise(t) being the length change of the magnetic field vector caused by noise and
Bnoise(t) ≈ B∼,z(t) with B∼,z(t) being the noise component along the cavity axis.
To get an estimate of the magnetic field noise, we measure the magnetic field at a

distance of ∼ 10 cm from the position of the ion using a fluxgate sensor77 outside the
vacuum chamber. The sensor measures the field along the cavity axis (Bz(t)). At the
beginning of our noise investigations, we measured ∼ 10mG peak-to-peak noise at this
place which seems to be mainly 50Hz noise with a 150Hz harmonic on top (see Figure
6.28).
For the first approach of noise cancellation, we used the DC-suppressed sensor signal as

an input for a PID-feedback loop with set point zero (see Figure 6.28). The output of the
PID-controller was amplified using an audio-amplifier, which is well suited for high current
output and low impedance loads. By using a feedback coil with only 5 windings and thus
a higher bandwidth than the coils generating the static magnetic field B0, we applied a
magnetic field feedback. We observe that this method allows in principle for an accurate
real-time cancellation of the magnetic field fluctuations at the position of the sensor at
50–150Hz. However, at the position of the ion, the phases of the 50Hz and the 150Hz
noise contributions slightly differ, which results in a different total noise manifestation.
Consequently, the magnetic field noise at the ion’s position was not cancellable using a
single sensor with a distance of 10 cm from the ion78.
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Figure 6.28: Active cancellation of magnetic field noise B∼,z(t) along the the axis of the static
magnetic field B0. Dashed line: Method 1 uses a Fluxgate sensor, which measures the field along
this axis and applies a DC-suppressed feedback via a PID regulator to a feedback coil. The magnetic
field fluctuations of one noise period recorded on the Fluxgate sensor along the z-axis are shown
versus time. The data was recorded without any feedback applied. Solid line: Method 2 uses the
ion for magnetic field sensing.

In principle, the ion itself can be used as a precise magnetic field sensor by utilising the
Zeeman energy splitting of the

∣∣∣2S1/2, F = 1,mF = ±1
〉
levels. However, the sensing is

not real-time and requires measurement cycles of a few seconds in order to gain enough
statistic. If the magnetic field noise is time periodic and stable in its periodicity over
time, we can measure the signal by reordering the measurement sequences to match the
periodicity (and higher harmonics) in post-analysis. Therefore, we have to assume that the
duration of one measurement sequence is much shorter than the change of the magnetic
field noise Bnoise. Since we know that the dominant noise occurs in the ∼ 50Hz frequency
77 Mag-03IEL70 from Bartington
78 The use of further sensors distributed around the trap could allow extrapolation of the noise manifes-

tation at the position of the ion
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6 The 171Yb ion as a memory qubit

regime, we can assume the magnetic field amplitude | ~B| = | ~B0| + Bnoise to be constant
within the duration of . 1ms of one measurement sequence.

For a measurement of the magnetic field noise, we use the detuning that occurs between
the driving microwave radiation and the atomic resonance transition |0〉 ↔ |g−〉 as the
energy splitting between the two states changes. To this end, we use a variation of the
Ramsey-like sequence of section 6.5 with a fixed hold time thold = 50µs between the two
π/2 rotations on the |0〉 ↔ |g−〉 transition. Accordingly, we describe the accumulated
phase of a superposition state within the hold time of the kth sequence as

βk = (∆M + δM,k) · thold, (6.94)

where ∆M is the detuning of the driving field to the atomic transition given by B0.
Since the duration of the kth measurement sequence is much shorter than the variation
of the magnetic field noise, we can write the time dependent detuning δM (t) resulting
from the noise as discrete values79 δM,k = −1.4 MHz

G · Bnoise,k during the sequence k. The
sensitivity of the magnetic field measure depends on the hold time in which the phase of
the superposition state can evolve.
In analogy to section 6.5, we measure the excitation probability Pe(∆φ) for a given

∆φ = φ2−φ1 by repeating the Ramsey-sequence ∼ 10, 000 times. Also here, the sequence k
contributes as

Pe,k(∆φ) = cos2
(∆φ+ βk

2

)
(6.95)

to the measured excitation probability (see equation (6.78)).
In contrast to section 6.5, here we reorder all sequences in a 25ms time frame, since we

know that the periodicity of the magnetic field noise is an integer multiple of 50Hz. To this
end, we bin all sequences according to their relative time distance to a 50Hz power grid
synchronisation trigger, which we record during the measurements (see Figure 6.29 a)).
For the sequences contained in the ith bin, the average excitation probability P̄e(∆φ, t̄i)
is computed, where t̄i is the bin average time elapsed for the containing sequences since
the grid synchronisation trigger was recorded.

79 Note that an increasing magnetic field amplitude results in a more negative detuning for the |0〉 ↔
∣∣g−〉

transition according to equation (6.58)
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Figure 6.29: Reconstruction of the time dependence of the magnetic field noise. a) The rear-
rangement of measured sequence data (black boxes) is illustrated for two specific phase differences
of the microwave pulses ∆φ. A block of sequence data is combined within a bin i according to the
distance to a 50Hz synchronisation trigger (blue bar). Two example blocks, each giving a data
point in b), are highlighted (*, **). b) The average excitation probability P̄e(∆φ, t̄i) is shown for
the sequences contained within the bin i = 0 (blue points, with standard errors as bars). The
point of maximal excitation φ̄max,i=0 is extracted from a cosine fit (solid yellow line) and shown
as black vertical line with the standard error indicated as grey shaded area. c) Measured values
of φ̄max,i for the discrete time bins t̄i (blue dots). Using cubic interpolation of the data points,
the continuous function φ̄max(t) is derived (yellow line). The correction φ̄max(t = 0) != 0 is not yet
applied to the shown data for the sake of simplicity. The peak-to-peak amplitude of the magnetic
field noise Bnoise(t) can be inferred from the peak-to-peak amplitude of the acquired phase φ̄ pp

max
during state evolution.

The number of bins has to be sufficiently large to provide an accurate time sampling, but
also sufficiently small for the bins to contain enough sequences for an acceptable statistical
error. For each time bin i, we extract the phase difference φ̄max,i for which the excita-
tion probability P̄e(∆φ = φ̄max,i, t̄i) has reached its maximum (see Figure 6.29 b)+c)).
According to equation (6.95) this is the case at

φ̄max,i = −∆M · thold − δ̄M,t̄i · thold + 2nπ (6.96)

The detunings δM,k for all sequences k contained within the bin i average to discrete values
δ̄M,t̄i .

The discrete mapping of the average elapsed time to the average accumulated phase

t̄i −→ φ̄max,i (6.97)

is done according to Figure 6.29 c). Full rotations of the state vector on the Bloch-sphere
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6 The 171Yb ion as a memory qubit

(n→ n± 1 in equation (6.96)) are considered by ensuring continuity80 of the mapping. We
subsequently perform a cubic interpolation81 of the discrete data points from the mapping
of equation (6.97) and obtain a continuous function φ̄max(t).
From Figure 6.29 c), we infer a peak-to-peak difference of the Bloch-vector evolution

of ∆φ̄pp
max ≈ 380 deg = 2.1π rad within a hold time of thold = 50µs. The corresponding

detuning induced by the magnetic field noise is

∆δ̄ pp
M,t̄i

= ∆φ̄pp
max

2π · thold
≈ 20 kHz, (6.98)

which corresponds to 20 kHz
1.4MHz/G ≈ 14mG peak-to-peak ripple of Bnoise(t). This result is

consistent to the fluxgate measurement of the magnetic field noise described earlier in this
subsection.
For the sake of field noise cancellation, we programmed the obtained shape of Bnoise(t)

into an arbitrary function generator (AFG), which applied the waveform to the feedback
coil (see Figure 6.28). To this end, we defined φ̄max(t = 0) != 0, which corresponds to
a vanishing noise contribution at the zero crossing of the power grid AC voltage. We
iteratively optimised the amplitude and timing of the output signal to achieve maximum
noise compensation while repeating the measurement of φ̄max(t) to obtain ∆φ̄ pp

max for each
step. In the optimised case, we obtained ∆φ̄ pp

max = (58± 11) rad. From this (peak-to-peak)
ripple of the Bloch-vector oscillations, we calculated a residual magnetic field ripple of
2.3(4)mG as the lower limit of this active noise cancellation method while maintaining an
acceptable measurement effort. The limitations on the accuracy of the active cancellation
are given by the bandwidth of the feedback (amplifier and coil), precision of the feedback
signal itself and fluctuations in the power grid frequency around the nominal frequency of
50Hz.
In addition, we performed passive magnetic field stabilisation by identifying devices with

a high magnetic field noise amplitude in the first step and moving them as far away from
the vacuum chamber as possible. These were primarily devices in which AC transformers
were installed, in particular a digital-to-analogue converter that we built. At this point,
we reached already a remaining peak-to-peak ripple of the magnetic field of 3.0(6)mG
at the ion’s position without active stabilisation. Since this was close to the limit of the
active cancellation, we refrained from this method in the following. In a second step, we
surrounded the vacuum chamber with 3 layers of laminated cobalt foil82. In a separate
measurement, we found that this foil is able to damp magnetic field oscillations by a factor
of up to 20 in the regime of 50–150Hz. However, we are only able to put the shielding
on 5 out of 6 sides of the experiment, since the bottom side is occupied with cooling laser
optics. With the shielding in place, we achieve a damping of the 50–150Hz magnetic field
noise by a factor of 3 and end up with 0.9(1)mG remaining peak-to-peak ripple. We
double check this result using the fluxgate sensor located outside the vacuum chamber
but inside the shielding, where we measure ∼ 0.7mG noise amplitude. A summary of the
achieved noise suppression methods and the achieved residual noise amplitudes at 50Hz
at the ion’s position can be found in Table 5.

80 The absolute point-to-point difference has to be smaller than 180 deg
81 Using the Python package scipy.interp1d
82 MCL61
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6.7 Summary

Bnoise,pp / mG
No cancellation ∼ 14
Active cancellation 2.3(4)
Noise source identification 3.0(6)
Shielding + source identification 0.9(1)

Table 5: Comparison of magnetic field noise cancellation methods. The remaining peak-to-peak
amplitude of the noise Bnoise,pp at the ion’s position is compared.

6.7 Summary

We presented the central methods for the realisation of a quantum network node with a
single trapped 171Yb ion as a memory qubit. We demonstrated phase coherent storage
of a superposition state in the |0〉 /

∣∣g0〉 qubit for a maximum time interval of around
12ms. Furthermore, we demonstrated state initialisation of the ion within 3.1(1)µs using
optical pumping with fidelities exceeding 99%. Subsequently, we presented the ability
of quantum information processing on the atomic hyperfine qubits using phase coherent
microwave pulses to implement high fidelity gate operations. To understand the state
manipulation of the atomic spin and the mapping of information between the qubits,
we derived the full Hamiltonian of the system. This allows us to describe a sequence
of arbitrary state rotations on the system taking into account the phases of the driving
fields. We presented the mapping of the eigenstates of any basis to the eigenstates of the
projective state measurement. Based on free-space fluorescence detection, we achieved a
projective readout of the qubit state with a fidelity of 98.2(6) %. This value is on par with
similar experimental implementations using the hyperfine qubit of 171Yb+ [129, 46].

By employing the ion as a high precision magnetic field sensor at 50Hz with an accuracy
of ∼ 100µG, we stabilised the magnetic field noise actively and passively and achieved a
residual magnetic field noise of 0.9(1)mG at best.

In the context of quantum communication, we presented the generation of a single
photon on demand with (99 ± 1) % success probability by driving ultra-fast Rabi flops
on the atomic transition |0〉 ↔ |e〉 using a picosecond laser pulse and employing the
spontaneous decay of the |e〉 level. For the ion as triggered single photon source, we
measured the temporal second-order correlation of photons emitted into the fibre cavity
mode to be g(2)(0) = 0.00(5).
The combination of the trapped ion as a memory qubit with the fibre cavity as an

interface between light and matter (see chapter 5) gives us the basic tools for quantum
communication at hand and we continue with the generation and characterisation of an
entangled two-qubit state in chapter 7.
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7 Spin-photon entanglement
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Inextricably linked to quantum phenomena, entanglement not only enables communica-
tion between distant quantum systems [121] but is also used, for example, for quantum
computation [77] and quantum metrology [42]. Particularly for the purpose of quantum
communication, the entanglement between an atom and a photon as two different types
of qubits is beneficial because it allows to combine the advantages of information storage
(atom) with those of long-range distribution of quantum information (photon).
In this chapter, we present the realisation of a quantum network node that combines the

stable trapping and the quantum memory properties of the ion (chapters 3, 4 and 6) with
the capabilities of the fibre cavity as an efficient light-matter interface (chapter 5). We
demonstrate the generation and detection of entanglement between the trapped 171Yb+

ion and a photon emitted into the fibre cavity mode. So far, only macroscopic cavities
have been used as light-matter interfaces in this context. As a basic building block also
for future fibre-cavity based experiments, we characterise the achieved entangled state in
detail.
In section 7.1, we focus on the theoretical description of entanglement generation be-

tween the internal state of an atom and the polarisation degree of freedom of an emitted
photon. Subsequently, we introduce the corresponding experimental implementation in
section 7.2. We use the notation σ̂i ⊗ σ̂j for discussion, which refers to a measurement of
the atomic part of the combined atom-photon state in σ̂i basis, while the readout of the
photonic part is performed in σ̂j basis. In contrast to a statistical mixture of states, the
entangled state of two qubits exhibits a definite phase relation between them and quantum
correlations between the two qubit states are visible in any basis σ̂i⊗ σ̂i, which cannot be
explained classically. We present correlations between atom and photon state measured
in σ̂z ⊗ σ̂z basis in section 7.3 and in order to verify the occurrence of correlations in
different bases orthogonal to σ̂z, we rotated both qubits into the equatorial plane of the
Bloch sphere as presented in section 7.4. We perform a full quantum state tomography
in section 7.5, which gives us the density matrix of the two-qubit state, from which we
extract the detection fidelity and purity of the entangled state.

7.1 Generation of deterministic atom-photon entanglement

In this section, we introduce the spontaneous decay of an excited atomic level into several
ground states under emission of a single photon as a method for generating atom-photon
entanglement. Spontaneous decay of an excited level is a common technique for gener-
ating light-matter entanglement with ions [23, 24, 161, 37] and neutral atoms [175] and
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has also been used with quantum dots [40] and NV centres [167]. We present in the sub-
sections 7.1.1 and 7.1.2 that the single photon is emitted deterministically with a time
constant determined by the lifetime of the excited state. We have already given the exper-
imental verification of this result in subsection 5.5.2. We derive the entangled two-qubit
state for the presented system according to a decay to multiple ground states in subsection
7.1.3 and present the experimental implementation in subsection 7.1.4.

7.1.1 Spontaneous decay in a two-level system

As discussed in subsection 6.3.1, a two-level system can undergo transitions when a driving
field is applied, but even without the applied field, the system relaxes towards a ground
state. However, we added the relaxation of an excited state towards the ground state
only phenomenologically to the optical Bloch equations (eq. (6.25)). For an appropriate
description of spontaneous emission of a photon, we need to consider the decay of an
excited state into a continuum of modes (free-space or cavity modes).
The Hamiltonian of equation (5.43) describes the coupling of a two-level system to a

continuum of modes and reads in the interaction picture [152]

V = ~
∑

k

[
g∗kσ̂

+âke
i(ωa−ωk)t + H.c.

]
. (7.1)

The time dynamics of the two-level system’s excited state |e〉 can be derived using the
so-called probability amplitude method, where we write the time dependent state of the
whole system as

|Ψ(t)〉 = ce(t) |e, 0〉+
∑

k
cg,k(t) |g, 1k〉 . (7.2)

The system starts with the atom being in the excited state |e〉 and the electromagnetic
field being in the vacuum state |0〉, i.e. ce(t = 0) = 1 and cg,k(0) = 0,∀k. Using the
Schrödinger equation

∂

∂t
|Ψ(t)〉 = i

~
V |Ψ(t)〉 , (7.3)

we obtain ċe(t) and ċg,k(t) from equations (7.1) and (7.2) . By substituting the time
integral of ċg,k(t) into the expression of ċe(t), the time evolution of the excited state
population is given by the exact equation

ċe(t) = −
∑

k
|gk|2

∫ t

0
dt′ei(ωa−ωk)(t−t′)ce(t′). (7.4)

The time evolution of the excited state population can be approximated by rewriting the
sum over k as an integral83 under the assumption of closely spaced modes and a linear
polarisation basis of the radiation field as [152]

ċe(t) = − 4|deg|2

(2π)26~ε0c3

∫ ∞
0

dωk · ω3
k

∫ t

0
dt′ · ei(ωa−ωk)(t−t′)ce(t′), (7.5)

where |k| = ωk/c and the integral over the angular part has already been carried out.
Computing the remaining integrals in the Weisskopf-Wigner approximation (ωa ≈ ωk)

83 ∑
k
→ 2 V

(2π)3
∫ 2π

0 dφ
∫ π

0 dθ sin θ
∫∞

0 dk k2
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yields [152]

ċe(t) = −1
2

1
4πε0

4ω3
a|deg|2

3~c3︸ ︷︷ ︸
Γ

·ce(t), (7.6)

with the same expression of Γ as obtained from Fermi’s golden rule (see equation (5.52)).
This is a well known differential equation leading to the exponential decay of the population
in the excited state |e〉 towards the ground state. We can assign a lifetime τ = 1/Γ to the
excited state population.
Carrying out the time integral for ċg,k(t) leads to the following form of equation (7.2)

[152]84:

|Ψ(t)〉 = e−
Γ
2 ·t |e, 0〉+ |g〉

∑
k
gk

[
1− e−i(ωa−ωk)t−Γ

2 t

(ωk − ωa) + iΓ
2

]
|1k〉 . (7.7)

Above expression becomes for long times t� 1/Γ

|Ψ(t→∞)〉 = |g〉
∑

k
gk

[
1

(ωk − ωa) + iΓ
2

]
|1k〉 , (7.8)

which constitutes a combined atom photon state with the photon being in a linear su-
perposition state of different modes k with the probability amplitudes given by the mode
coupling gk of equation (5.44) (with gegk = ggek = gk).

7.1.2 Photon detection probability

For an experimental observation of the spontaneous decay in a two-level system, we can
get access to the atom-photon system via the detection of the emitted photon. The
probability of detecting a photon at time t on a detector at position r (with the atom at
position r0 = 0) is then given by the first-order correlation function [152]

G(1)(r, r; t, t) = 〈Ψ|E(−)(r, t)E(+)(r, t) |Ψ〉 = ω4
a|deg|2 sin2 θ

(4πε0c2)2
1
|r|3 ·Θ

(
t− |r|

c

)
e−Γ

(
t− |r|

c

)
,

(7.9)
where E(+)(r, t) =

∑
k ekεkake

−iωkt+ikr with the hermitian conjugate E(−)(r, t) and Θ
is the step function ensuring that the signal cannot move faster than c. Above equation
describes the angular dependence of the detection probability of an emitted linearly po-
larised photon85 with G(1)(r, r; t, t) ∝ sin2 θ, where θ is the angle between the dipole axis
and the emission direction of the photon.
Furthermore, equation (7.9) describes an exponential decay of the detection probability

in time with τ = 1/Γ. Given here in the context of a two-level system coupled to a
linearly polarised radiation field mode, the time dependent part of equation (7.9) can also
be transferred to a decay to multiple ground states as introduced in subsection 7.1.3. We
have confirmed this statement in subsection 5.5.2 from the measured time profile of the
spontaneously emitted photons for an atomic decay to multiple ground states.

84 The authors of [152] state e+i(ωa−ωk)t−Γ
2 t in their final expression. However, from their derivations it

should be e−i(ωa−ωk)t−Γ
2 t

85 Note, that we started with the Hamiltonian of equation (5.43) where we assumed a linear polarisation
of the radiation mode
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7.1 Generation of deterministic atom-photon entanglement

7.1.3 Spontaneous decay to multiple ground states

The coupling of a two-level system to a continuum of modes already leads to the sponta-
neous decay of the excited atomic state with the emitted photon being in a superposition
state of modes (subsection 7.1.1). However, in order to generate entanglement between
the atomic state and the photonic state, we have to consider multiple ground states of the
atom offering additional decay channels (see Figure 7.1).

s-s+

m=0m=-1 m=+1

π

|g2

ωa

|g1 |g3

|e

Figure 7.1: Sketch of the decay of an atomic excited state into several ground states
|gj〉 , j ∈ {1, 2, 3}, where we focus on the quantum number m. The emitted photons couple to
different polarisation modes according to angular momentum and parity conservation. Linear po-
larisation is denoted with π while the circular polarisation modes (usually denoted with σ±) are
named s± in order to avoid confusion with the atomic raising/lowering operators.

We can derive the state of the atom-photon system analogous to subsection 7.1.1 as

|Ψ(t)〉 = ce(t) |e, 0〉+
∑
µ

∑
k

[
cg1,k,µ(t)

∣∣g1, 1k,µ
〉

+ cg2,k,µ(t)
∣∣g2, 1k,µ

〉
+ cg3,k,µ(t)

∣∣g3, 1k,µ
〉]
,

(7.10)
where

∑
µ constitutes the summations over the polarisation modes. The interaction Hamil-

tonian of equation (7.1) reads

V = ~
∑
k,µ

[
g1∗

k,µσ̂
+
1 âk,µe

i(ωa−ωk)t + g2∗
k,µσ̂

+
2 âk,µe

i(ωa−ωk)t + g3∗
k,µσ̂

+
3 âk,µe

i(ωa−ωk)t + H.c.
]
,

(7.11)
where we define σ̂+

j = |e〉 〈gj | and neglect energy splitting between the ground level states,
i.e. ωe↔gj = ωa, ∀j ∈ {1, 2, 3}. We define gjk,µ = dej · ek,µ · εk/~ as the coupling between
the atomic transition |e〉 ↔ |gj〉 and the radiation field state with wave vector k and
polarisation mode µ with the unit vector ek,µ. This becomes especially important when
computing the coupling of a specific polarisation mode to an atomic transition under con-
servation of angular momenta and parity (see Clebsch-Gordan coefficients in Appendix B).
Using Schrödinger’s equation (7.3) with above definitions, one can derive an expression
for ċe(t) analogous to equation (7.4) as

ċe(t) = −
∑

k,µ,j

[
|gjk,µ|

2
∫ t

0
dt′ei(ωa−ωk)(t−t′)ce(t′)

]
. (7.12)

By carefully evaluating the coupling coefficients |gjk,µ|2, one can derive an expression of
the atom-photon state |Ψ(t)〉 for large t analogous to equation (7.8) as

|Ψ(t→∞)〉 = |g1〉
∣∣∣s+
〉∑

k
g1

k,s+Ak |1k〉+|g2〉 |π〉
∑

k
g2

k,πAk |1k〉+|g3〉
∣∣s−〉∑

k
g3

k,s−Ak |1k〉 ,

(7.13)
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where we already executed the summation over the polarisation modes considering the
system sketched in Figure 7.1 and absorbed remaining factors in the coefficient Ak. The
angular dependence of the observation of the atom-photon state is encoded in the coupling
coefficients gjk,µ. The radiation intensity profile is shown in Figure 7.2 derived according
to Appendix C using the spatial emission characteristics of a radiating dipole in a classical
picture.

0°

45°

90°

135°

180°

225°

270°

315°

0.5

1.0

Normalised radiation pattern
polarisation
± polarisation

z

x

y
z

a)

b)

c)
s

-

-

Figure 7.2: Emission characteristics of a radiating dipole in a classical picture. a) A localised
charge oscillating along the z-axis results in a time varying dipole moment. The electric field of
the emitted radiation is linearly polarised along the z-axis (π-polarised). b) The dipole moment
rotates in the x, y-plane. The electric field of the radiation is called to be circularly polarised
according to the direction of rotation (s±). c) Emission characteristics of π- and s-polarised light.
The average radiation power per unit solid angle is normalised considering the total average power
of the corresponding radiation mode.

The spatial photon emission patterns are given by the vector spherical harmonics [37]
and we can define the (un-normalised) polarisations states of the emitted photon according
to [23] as

|P0〉 =− sin(θ) |eθ〉 for ∆m = 0 (π-polarisation),

|P±1〉 = 1√
2
e±iφ [cos(θ) |eθ〉 ± i |eφ〉] for ∆m = ±1 (s∓-polarisation)

(7.14)

with the spherical polar/azimuthal angles θ/φ of the photon observation direction. Here,
the spherical coordinate unit vectors are named eθ/φ and the dipole axis points along ez
in accordance with Figure 7.2.
Using the polarisation states from equations (7.14), the state of equation (7.13) can be

expressed as a sum over all possible decay channels to the ground states |g1,2,3〉 as [23]

|∆mi = −1〉 ≡ |g1〉
|Ψ(t→∞)〉 =

∑
∆mic∆mi |P∆mi〉 |∆mi〉 with |∆mi = 0〉 ≡ |g2〉

|∆mi = +1〉 ≡ |g3〉

(7.15)

and c∆mi being the Clebsch-Gordan coefficients of the corresponding transition.
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We can apply above derivations to the spontaneous decay of 171Yb+ with levels:

|g1〉 ≡
∣∣∣g+

〉
=
∣∣∣2S1/2, F = 1,mF = −1

〉
, |g2〉 ≡

∣∣∣2S1/2, F = 0,mF = 0
〉
,

|g3〉 ≡
∣∣g−〉 =

∣∣∣2S1/2, F = 1,mF = +1
〉

and |e〉 ≡
∣∣∣2P1/2, F

′ = 1,mF = 0
〉
.

(7.16)

The Clebsch-Gordan coefficients of the transitions are derived in Appendix B as

c−1 = 1/
√

3 for |e〉 ↔
∣∣∣g+

〉
, c0 = 1/

√
3 for |e〉 ↔ |g2〉

and c+1 = −1/
√

3 for |e〉 ↔
∣∣g−〉 . (7.17)

Together with equation (7.15), we obtain for an observation of the state along the quan-
tisation axis (dipole axis) with θ = 0 deg an atom-photon state of

|Ψ(t→∞)〉 = 1√
2

(∣∣∣g+
〉 ∣∣∣s+

〉
−
∣∣g−〉 ∣∣s−〉) , (7.18)

which is a maximally entangled Bell-state (see section 2.2).

7.1.4 Experimental implementation

For the concrete application of the results from subsection 7.1.3, the fibre cavity ensures
photon collection in a defined spatial mode. For photons emitted into the cavity mode, the
decay channel into the ground state |0〉 with ∆m = 0 is suppressed due to the magnetic
field along the cavity axis (see Figure 7.3)).

F'=1

F'=0

F=1

F=0

2S1/2

2P1/2

| +g | -g

|0

b)

|e

mF=0

Yb+ 

B

σ± σ±
π

a)

π

σ-σ+ ωc

Figure 7.3: Spontaneous decay of the ion prepared in the |e〉 =
∣∣2P1/2, F

′ = 1,mF = 0
〉
state

under emission of a single photon at 370 nm. a) Due to the magnetic field applied along the
fibre cavity axis, the emission of π-polarised photons into the cavity mode is suppressed. The
angular emission profile of π-polarised photons is sketched as grey area. b) Relevant hyperfine
energy levels of 171Yb+. The ion decays in a superposition of decay channels from the excited
state |e〉 under emission of a single photon into the Zeeman states |g+〉 =

∣∣2S1/2, F = 1,mF = −1
〉

and |g−〉 =
∣∣2S1/2, F = 1,mF = 1

〉
. The possible decay channels are reduced to the emission of

circularly polarised light (blue) if photons are detected along the quantisation axis. In the ideal
case, the centre frequency of the cavity mode ωc is hold resonant to the atomic decay transition.

The external magnetic field leads to a level shift between the |g±〉 states, however, the
resulting frequency difference of ωL ∼ 2π · 2MHz between the two polarisation modes of
the emitted photon is much smaller than the atomic linewidth Γ = 2π · 19.6MHz and
the cavity linewidth κ = 2π · (58 ± 9)MHz, which preserves the capability to decay in a
superposition of channels.
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7 Spin-photon entanglement

From here on, we drop the notation s± for the circular polarisation modes and write the
ideal maximally entangled atom-photon state for a photon emitted into the cavity mode
as

|Ψatom-photon〉 = 1√
2

(∣∣∣σ+
〉 ∣∣∣g+

〉
−
∣∣σ−〉 ∣∣g−〉) . (7.19)

7.2 Experimental sequence

The experimental sequence for generation and verification of ion-photon entanglement
brings together the techniques discussed earlier in this thesis. We split the sequence into
two parts: i) the initialisation and excitation of the trapped ion as described in sections 6.1
and 6.3 and ii) the projective state readout of the ion as described in sections 6.2 and 6.4.
The execution of the readout part depends on whether we have successfully performed
a projective state measurement on the photon state, as described in section 5.5.4. Since
the photon is emitted spontaneously from the excited ion, we know the time frame of
the photon’s arrival at the SPCs to nanosecond precision (see subsection 5.5.2). In the
data analysis, we consider the exact time frame with a length of ∼ 10ns to suppress
false-positive detection events. However, within the experimental sequence, we use an
acceptance window of 1µs for the real-time decision branching. If no photon is detected
within a time window of 1µs after the excitation, the experimental sequence continues
with a new initialisation and excitation of the ion (see Figure 7.4). Splitting the sequence
and performing a conditional readout of the ion allows for higher repetition rates of the
experiment, as the atomic readout takes the longest time and we can only perform a
correlation analysis once both the photonic and atomic parts of the two-qubit state have
been detected.
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Decision branching
Cooling
30 µs

Initialisation
10 µs

Pulsed excitation

1 µs

Locked: 3.43 µs
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Initialisation Pulsed excitation Spontaneous decay Atomic readout

Figure 7.4: Experimental sequence for the generation of an entangled atom-photon state with
subsequent detection. The energy level schemes corresponding to the subprocesses of the sequence
are given in the bottom row and labelled accordingly. The sequence is split up into a state
generation part (blue shaded) and state readout part of the atom (orange shaded). The latter
is executed only for a successful state detection of the photon. The atomic state mapping is
synchronised to the excitation laser pulse (dashed square inset).

Due to the phase evolution of the superposition spin states with a frequency of ∼ 2MHz
given by the energy splitting of |g±〉, the readout of the atomic part has to be timed to
a precision of ∼ 1ns with respect to the generation of the entangled atom-photon state
(for details see subsections 7.4.1 and 7.4.2). A lower timing precision results in a lower
correlation contrast between atom and photon state, as sampling over multiple phases of
the state evolution becomes noticeable. As pointed out in subsection 6.3.3, the arrival time
of the excitation laser pulses and thus the generation time of the entangled state is blurred
by 18.5ns by the intra-cavity frequency of the pulsed laser. In order to mitigate this effect,
we fix the starting time of the atomic state mapping to the extraction of the excitation
laser pulse with a relative jitter of 0.37 ns (see Figure 7.4). This enables the mapping of
the atomic state to start at a fixed phase of the state evolution in each repetition of the
experiment. The state mapping is followed by a fluorescence state detection taking at
least 400µs (see subsection 6.2.2).

7.2.1 Experimental rate

As with classical communication, a high rate of information transmission is desired in
quantum communication. However, in entanglement-based networks, the rate of entangle-
ment generation affects the network as a whole. For entanglement-based communication,
phase coherence is distributed across the network nodes and must be maintained to sus-
tain the entanglement. For this purpose, the distribution of entanglement has to be faster
than its loss in the network given by the characteristic decoherence rate Rdecoherence.
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Hence, the characteristic distance of a network scales with the link efficiency

ηLink = Rentanglement,gen/Rdecoherence, (7.20)

which directly depends on the entanglement generation rate [172]. But also for the exten-
sion of networks to a higher number of nodes, the rate of entanglement generation must
be higher than the loss rate of phase coherence [68]. Therefore, quantum network nodes
with high bandwidth are particularly interesting for communication over long distances,
e.g. using a quantum repeater (see Outlook), but also for the generation of multipartite
entanglement, e.g. in distributed quantum computing.
We explicitly designed the light-matter interface of the presented network node for an

application in a high bandwidth quantum network (see subsection 5.4.4). While maintain-
ing a high collection efficiency of the emitted photons, the cavity design provides a fast
extraction of the collected photons. The efficiency of entanglement detection depends on
the excitation-, collection-, extraction-, mode-matching-, detector- and path-efficiencies
(see subsection 5.5.2) as

Pd,eff = ηexc · Pc,eff · ηext · εm︸ ︷︷ ︸
Psource

·ηdetector · ηpath+optics = 2.58(6)× 10−3, (7.21)

while the efficiency of entanglement generation depends on the source efficiency
Psource = (1.9± 0.6) %. Due to the minimum initialisation time of the atomic qubit
of τinit = 3.1(1)µs, the fast extraction of the collected photons from the cavity mode
(1.4(1) ns) has no influence on the achieved repetition rates, but is advantageous for the
entanglement detection fidelity (see subsection 7.4.2). With the system presented, we can
currently achieve a maximum ratio of entanglement generation rate to decoherence rate
of

Rentanglement,gen
Rdecoherence

=
τ|0〉↔|g0〉
τinit

· Psource = (12, 364± 2, 534)µs
(3.1± 0.1)µs · Psource = 76± 29 (7.22)

by assuming information encoding in the |0〉 ↔
∣∣g0〉 transition on the atomic side with a

coherence time of τ|0〉↔|g0〉 (see section 6.5). This ratio is significantly larger than 1 and
states that we can use the system as an efficient quantum communication node where the
distribution of phase coherence dominates its losses.
We can calculate the expected entanglement detection rate Rdetection based on the se-

quence of Figure 7.4 using the probability Pd for a photon detection event per entanglement
generation attempt. This directly gives the probability of performing an atomic state read-
out subsequently to an atomic excitation, where the readout lasts at least τa = 400µs. We
take into account a short cooling interval of the ion prior to its initialisation and excitation
by defining the preparation time of the ion as τprep = τinit + τcooling. The maximum rate
of entanglement generation attempts is then given as 1/τprep. In total, the average time
per sequence is τ̄s = Pd · τa + τprep and the experimental repetition rate is calculated as

Rexp = 1/τ̄s. (7.23)

The rate of detected entanglements is

Rdetection = Rexp · Pd. (7.24)
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The effective rates achieved in the experiment can be calculated considering the detec-
tion efficiency of a photon from equation (7.21) and the actual experimental parameters
τa = 1000µs 86 and τprep = 40µs. We obtain Rdetection = (60± 2)Hz, which is in good
agreement with the maximum rate of 58Hz we measured in the experiment. For compari-
son, the currently achieved success probability of detecting the atom-photon state per shot
of Pd = 2.58(6)×10−3 is an order of magnitude lower than the success rate of [161], who,
to our knowledge, reported the highest atom-photon entanglement measurement rate to
date of & 500Hz.

There are two major improvements that can significantly increase our entanglement
detection rate: first, we can use the shortest value allowed by atomic state initialisation of
3.1(1)µs as the duration of the preparation sequence τprep (see section 6.1). This is to be
understood as the lower limit of the ion preparation time, since the ion has to be cooled
from time to time and thus the effective entanglement rate becomes smaller. Second, the
actual detection efficiency suffers from an imperfect cavity stabilisation. Considering the
theoretically achievable collection efficiency of the cavity design (see subsection 5.5.3), we
compute an even higher rate of entanglement detection. For both cases mentioned, the
achievable values are summarised in Table 6.

Experimental parameter Current cavity lock Stable cavity lock
Pd /10−3 2.58± 0.06 21± 5
Rexp/kHz 242± 2 86± 14
Rdetection/Hz 624± 15 1830± 520

Table 6: Maximal achievable rates of experimental repetition Rexp and entanglement detection
Rdetection for τa = 400µs and τprep = 3.1(1)µs. The theoretical values for a stable cavity lock are
calculated from the cavity design parameters according to subsection 5.5.3.

7.3 Correlation measurements in the σ̂z ⊗ σ̂z basis

The projective readout of the photon state is done by two single photon counters (SPCs),
one on each exit path of a polarising beam splitter (PBS), projecting the photon state on
|H〉 and |V 〉 respectively as shown in Figure 5.17. For a photonic readout in σ̂z basis, we
map the circular polarisation modes |σ±〉 to a linear polarisation basis |H〉 / |V 〉 (and vice
versa) by a set of wave plates. According to subsection 5.5.4, the eigenstates of the σ̂z
basis transform as ∣∣∣σ+

〉
→|V 〉

and
∣∣σ−〉 →|H〉 .

(7.25)

The corresponding wave plate setting, where fibre, QWP and HWP act in total as a
quarter wave plate, is obtained from Figure 5.20. After state mapping of the photonic
part, the two-qubit state of equation (7.19) reads

|Ψatom-photon〉 = 1√
2

(
|Vz〉

∣∣∣g+
〉
− |Hz〉

∣∣g−〉) , (7.26)

where we denote the mapped photon states with Hz/Vz for the corresponding wave plate
setting.
86 we shorten the readout window to 400µs in post-analysis
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Upon successful detection of a photon, we apply a microwave π-pulse on the atomic
|g−〉 ↔ |0〉 transition in order to map the Zeeman qubit |g±〉 to the hyperfine qubit∣∣g+〉 / |0〉 (see subsection 6.4.2). We refer to these qubit basis states as the σ̂z basis of
the atomic qubit and write the combined atom-photon state after spin and polarisation
mapping as

|Ψatom-photon〉 = 1√
2

(
|Vz〉

∣∣∣g+
〉
− |Hz〉 |0〉

)
. (7.27)

The two atomic states
∣∣g+〉 and |0〉 separate in the fluorescence state detection for a

400µs window according to Figure 7.5 a) as

Ndark,σ̂z = 0.20(2) and Nbright,σ̂z = 11.9(3), (7.28)

where the subscript ’σ̂z’ denotes the experimental settings used for the σ̂z basis correlation
measurement.
In Figure 7.5 b), the correlations between atomic and photonic state in σ̂z ⊗ σ̂z basis

are shown with an applied correction for cavity SPC dark counts (see subsection 7.3.2).
We compute the correlation contrast as

Czz = P (0|Hz) · P (Hz) + P (g+|Vz) · P (Vz)− P (g+|Hz) · P (Hz)− P (0|Vz) · P (Vz)
= (90.7± 3.9) %.

(7.29)
The terms P (σ|λ) · P (λ) are the measured conditional probabilities for measuring the
atomic qubit in state |σ〉 upon detection of a photon in state |λ〉 (see Table 7).
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Figure 7.5: Spin-photon correlation in σ̂z⊗ σ̂z basis. a) Histogram of free-space photons detected
within a time window of 400µs in the single shot atomic readouts of 315 entanglement events.
The solid lines constitute fits to the Poisson distribution. b) Conditional probabilities corrected
for detector dark counts as bar chart. The data in b) have also been published in [92]. Error bars
show the standard error.
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Hz Vz

g+ 0.036(11) 0.538(6)
0 0.415(11) 0.011(6)
P (|λ〉) 0.451 0.549

Table 7: Conditional probabilities for a readout in σ̂z ⊗ σ̂z basis, corrected for detector dark
counts. The photon states are λ = {Hz, Vz}.

7.3.1 Time dependence of the σ̂z ⊗ σ̂z basis

The time evolution of the basis states in the Schrödinger picture is given by:∣∣∣g+
〉

(t) =
∣∣∣g+

〉
e−iEg+ t/~,∣∣g−〉 (t) =

∣∣g−〉 e−iEg− t/~,∣∣∣σ+
〉

(t) =
∣∣∣σ+

〉
e−iEσ+ t/~,∣∣σ−〉 (t) =

∣∣σ−〉 e−iEσ− t/~.
(7.30)

Inserting the time evolution of the eigenstates into equation (7.19) results in

|Ψatom-photon〉 = 1√
2

(∣∣∣σ+
〉 ∣∣∣g+

〉
−
∣∣σ−〉 ∣∣g−〉 · e−i(Eg−−Eg+ )t/~ · e−i(Eσ−−Eσ+ )t/~)

)
. (7.31)

Clearly, the time dependence cancels out for (Eg− − Eg+) = −(Eσ− − Eσ+).
In every case, a projective state measurement of the photon in σ̂z basis to the eigenstates
|σ±〉 projects the atom to the corresponding state

∣∣g+〉 or |g−〉. Independent from the
detection time of the atom (and the photon), we subsequently find the atom in one of
these two states regardless of any global phase evolution of the |g±〉 states. Therefore,
when measuring the atom-photon state correlations in the σz ⊗ σz basis, we do not have
to take into account the timing of the state detections.

7.3.2 Imperfections reducing the correlation contrast in σ̂z ⊗ σ̂z basis

In this subsection we summarise the effects that can lead to errors in the detection of the
entangled state in the σ̂z ⊗ σ̂z basis.

Atomic state mapping via microwave pulses
The transfer fidelity of the microwave π-pulse for the presented measurement was
95.7(7) % (measured according to subsection 6.4.4). The effect of a non-perfect π-pulse
manifest itself as an increased probability of measuring a bright ion, which can be
described by the inequality

P (g+|Hz) · P (g+|Vz) > P (0|Vz) · P (0|Hz) (7.32)

using the conditional probabilities introduced in this section.
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7 Spin-photon entanglement

Fluorescence state detection
The fluorescence state detection of the hyperfine qubit

∣∣g+〉 / |0〉 results in a correlation
contrast reduction of 3.5(12) %. The value was simulated according to subsection 6.2.2.

Entangled state generation through deterministic excitation of the ion
To obtain the state initialisation fidelity of the pulsed laser, we perform a calculation of
the probability amplitudes of the ion states after spontaneous decay for a polarisation
misalignment of the excitation pulse (Figure 7.6). We do this according to the considera-
tion of subsection 6.3.7. We also take the following imperfections into account: microwave
π-pulse fidelity (95.7(7) %), fluorescence state detection (3.5(12) %) and P (Hz) 6= P (Vz)
(see Table 7). We achieve consistent values with the conditional probabilities shown in
Figure 7.5 b) at an excited state preparation fidelity of

Fgen = (92± 5) %. (7.33)

We infer this value from Figure 7.6 b)+c). This imperfect preparation of the excited
state reduces the contrast of the correlation measurements by 4.2(28) % if no additional
imperfections of the correlation measurement are considered (yellow curve in Figure 7.6 a)).
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Figure 7.6: Calculation of the probability amplitudes of the ion states after spontaneous decay
for a polarisation misalignment of the excitation pulse. We thereby assume equal excitation proba-
bilities of the outer

∣∣2P1/2, F
′ = 1,mF = ±1

〉
levels. We consider the probability amplitudes after

state mapping. The values measured in the experiment are indicated in each case as black dashed
lines. The shaded areas indicate the standard error. The results of a simulation including mi-
crowave π-pulse fidelity (95.7(7) %), fluorescence state detection (3.5(12) %) and P (Hz) 6= P (Vz)
are given as blue lines. a) Correlation contrast according to equation (7.29). b), c), d) Con-
ditional probabilities. To be consistently with the experiment, we interpret a ’bright’ ion to be
in the |g+〉 state in the simulation, whereas it could also be in a mixture of the |g+〉, |g−〉 and∣∣g0〉 =

∣∣2S1/2, F = 1,mF = 0
〉
states, which is indistinguishable by fluorescence state detection (see

section 6.2).
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7.4 Correlation measurements in the rotated bases σ̂x/y

Cavity SPC dark counts
Dark counts of the photon detectors reduce the measured correlation contrast, since for
each of these false-positive photonic qubit detection events, a readout of the atomic qubit is
also performed. We lower the contribution of false-positive events to the correlation statis-
tics by applying a 10 ns time window to each detector in the post-analysis (Figure 5.19 a)),
for which the measured photonic and atomic states contribute to the correlation statistics.
Otherwise, we discard this shot of the experiment in the analysis.
We extract the remaining probability for the detection of a dark count within the 10 ns

acceptance window from the offset of the photon statistic in Figure 5.19 a) and obtain

Pd,dark = {1.7(3) | 3.1(6)} × 10−6 for the {H |V }-detector (σ̂z basis). (7.34)

From the number of total detected photons Ntotal,i on detector i we derive the ratio of
dark counts Ndark,i to the number of total detected events as

ξz,i = Ndark,i
Ntotal,i

= {1.4(3)|2.5(5)}% for {i = H | i = V }-detector. (7.35)

We estimate the reduction of the correlation contrast caused by dark counts by computing

ξz,H+V = Ndark,H+V
Ntotal,H+V

= 2.0(3) %, (7.36)

since we assume an equal probability for measuring a dark or bright ion for each false-
positive detection event87. We can make this assumption, since an entangled state was
likely generated for the investigated sequence but the corresponding single photon was not
detected. The generation of an entangled state happens with the excitation probability of
the laser pulse of > 90 % (see subsection 6.3.5).
In addition to a suppression of the false-positive events, we can correct for these events

in the post-analysis by subtracting half of the expected false-positives on the bright and
dark correlation side of the atom, since we expect an equal probability for a dark or
bright ion.

Other sources of errors
We sum up the errors that contribute to a reduction of the measurable correlation
contrast and compare this calculated value with the measured value (see Table 12). We
conclude that the influence of the remaining error sources on the correlation contrast is
in total / 1 %.

7.4 Correlation measurements in the rotated bases σ̂x/y

So far, the measured correlations could also be explained by considering a statistical mix-
ture of states. In contrast, for an entangled atom-photon state, the correlations between
atom and photon states are visible in every two-qubit basis σ̂i ⊗ σ̂i. In order to verify
entanglement in different bases orthogonal to σ̂z, we first need to understand how the
two-qubit state behaves in these bases. Starting from equation (7.19), we can rewrite the

87 It is to be understood that for ξz,H+V = 1 the correlation contrast disappears completely.
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photonic part of the entangled state in terms of general superposition states |β〉 similar to
a rotation around π/2 on the Bloch-sphere. To this end, we define the states

|β〉 = 1√
2

(∣∣∣σ+
〉

+ eiβ ·
∣∣σ−〉)

and |β + π〉 = 1√
2

(∣∣∣σ+
〉
− eiβ ·

∣∣σ−〉) , (7.37)

which together form a rotated basis in the equatorial plane of the Bloch-sphere (see Fig-
ure 7.7).

| +x

| x

| +y

| y

| +z | +

| z |

|

| + β

Figure 7.7: Visualisation of the photon states |β〉 (blue arrow) and |β + π〉 (black arrow) on the
Bloch-sphere with a definition of the angle β. The eigenstates

∣∣Ψ±x/±y/±z〉 of the bases σ̂x/y/z are
labelled according to equations (2.3) and (5.82).

By rewriting the eigenstates of the σ̂z basis |σ±〉 in terms of the rotated basis states |β〉
and |β + π〉 and inserting these expressions into equation (7.19), we get following equation:

|Ψ〉atom-photon = 1
2
[(∣∣∣g+

〉
−
∣∣g−〉 e−iβ) |β〉+

(∣∣∣g+
〉

+
∣∣g−〉 e−iβ) |β + π〉

]
= 1

2
(∣∣∣g+

〉
−
∣∣g−〉 e−iβ) · 1√

2

(∣∣∣σ+
〉

+ eiβ ·
∣∣σ−〉)

+1
2
(∣∣∣g+

〉
+
∣∣g−〉 e−iβ) · 1√

2

(∣∣∣σ+
〉
− eiβ ·

∣∣σ−〉) .
(7.38)

The angle β is determined by the rotation of the photon polarisation along its optical
path. It is controllable by a set of wave plates according to subsection 5.5.4.

Since we detect the photon first, a mapping of the polarisation state according to

1√
2

(∣∣∣σ+
〉

+ eiβ ·
∣∣σ−〉)→ |V 〉

and 1√
2

(∣∣∣σ+
〉
− eiβ ·

∣∣σ−〉)→ |H〉 (7.39)

projects the ion to the corresponding state. For selected values of β, these states are listed
in Table 8. For the sake of simplicity, time evolvement of the states is not included in this
description, but is considered in subsection 7.4.1.
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β Atom/ 1√
2 Photon/ 1√

2 Corresponding photon basis
0

∣∣g+〉− |g−〉 ∣∣σ+〉+ |σ−〉 σ̂x∣∣g+〉+ |g−〉
∣∣σ+〉− |σ−〉

π/2
∣∣g+〉+ i |g−〉

∣∣σ+〉+ i |σ−〉 σ̂y∣∣g+〉− i |g−〉 ∣∣σ+〉− i |σ−〉
π

∣∣g+〉+ |g−〉
∣∣σ+〉− |σ−〉 −σ̂x∣∣g+〉− |g−〉 ∣∣σ+〉+ |σ−〉

3π/2
∣∣g+〉− i |g−〉 ∣∣σ+〉− i |σ−〉 −σ̂y∣∣g+〉+ i |g−〉

∣∣σ+〉+ i |σ−〉

Table 8: Atom-photon state correlations in rotated bases before state mapping.

The results in Table 8 show that correlations between photonic and atomic states are
observable for projective measurements in the rotated bases. They also show, that mea-
suring the photon in one of the eigenstates |Ψ±x〉photon (eq. (2.3)) projects the atom to
the corresponding basis but with a flipped sign of x, i.e. |Ψ∓x〉atom. This results from the
minus sign in the expression of the entangled state.
In advance to the detection of the atomic state, we have to map the eigenstates of the

rotated bases to the eigenstates of the projective readout (see subsection 6.4.2). To this
end, we rotate the hyperfine qubit using a π/2-pulse subsequent to the mapping π pulse,
which we also applied for the σz ⊗ σz basis. The π/2-pulse has a phase of φ2 and a phase
difference of ∆φ = φ2 − φ1 with respect to the first π-pulse (φ1) which allows to select a
specific basis in the equatorial plane of the Bloch sphere (see equation (6.74)).
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Figure 7.8: Spin-photon correlations in the rotated bases. a) Parity oscillations for a photon
readout in ¯̂σx and ¯̂σy bases. The relative phase difference ∆φ = φ2 − φ1 of the microwave pulses
sets the readout basis of the atomic qubit in the equatorial plane of the Bloch sphere. Red crosses:
P (0|Hȳ) · P (Hȳ) + P (g+|Vȳ) · P (Vȳ) correlations. Blue dots: P (0|Hx̄) · P (Hx̄) + P (g+|Vx̄) · P (Vx̄)
correlations. The conditional probabilities are dark-count corrected. The data in a) have also been
published in [92]. b) Histogram of free-space photons detected within a time window of 800µs
in the single shot atomic readouts of 182 entanglement events measured in −¯̂σx,atom ⊗ ¯̂σx,photon
basis. The solid lines constitute fits to the Poisson distribution. The corresponding conditional
probabilities are given in Table 9. Error bars show the standard error.
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Figure 7.8 shows the oscillation of correlations between a photon readout in the basis
¯̂σx/¯̂σy and a varying atomic readout basis determined by ∆φ, also referred to as parity
oscillations (¯̂σk from equation (5.87)). We observe correlations with Cxx = (81.3±15.8)%
contrast for ¯̂σx ⊗ ¯̂σx and Cyy = (87.0± 2.6)% for ¯̂σy ⊗ ¯̂σy.

The measured conditional probabilities for the −¯̂σx⊗ ¯̂σx (¯̂σy⊗ ¯̂σy) correlations are listed
in Table 9 (10).

Hx̄ Vx̄

g+ 0.022(10) 0.500(15)
0 0.429(10) 0.049(15)
P (|λ〉) 0.451 0.549

Table 9: Conditional probabilities for the fluorescence-based state readout in −¯̂σx,atom ⊗ ¯̂σx,photon
basis after atomic state mapping, corrected for detector dark counts (see Figure 7.8 b)). The
photon states are λ = {Hx̄, Vx̄}.

Hȳ Vȳ

g+ 0.060(28) 0.433(22)
0 0.463(28) 0.045(22)
P (|λ〉) 0.522 0.478

Table 10: Conditional probabilities for the fluorescence state readout in ¯̂σy,atom ⊗ ¯̂σy,photon ba-
sis after atomic state mapping, corrected for detector dark counts. The photon states are
λ = {Hȳ, Vȳ}.

7.4.1 Time dependence of the rotated bases

For the σ̂z ⊗ σ̂z basis, the time evolvement of the eigenstates cancel out as global phases
(subsection 7.3.1), but in the rotated basis they become important due to the superpo-
sition states. Inserting the time evolution of the basis states from equations (7.30) into
equation (7.38) and defining the time of photon emission as t = 0 results in

|Ψ〉atom-photon (t) = 1
2
(∣∣∣g+

〉
−
∣∣g−〉 e−iβe−iωLt) · 1√

2

(∣∣∣σ+
〉

+
∣∣σ−〉 · eiβeiωLt)

+1
2
(∣∣∣g+

〉
+
∣∣g−〉 e−iβe−iωLt) · 1√

2

(∣∣∣σ+
〉
−
∣∣σ−〉 · eiβeiωLt) . (7.40)

The static magnetic field lifts the degeneracy between the |g−〉 and
∣∣g+〉 states, which

results in a precession of the atomic and photonic superposition states in the laboratory
frame with the frequency

ωL =
(
Eg− − Eg+

)
/~ = (Eσ+ − Eσ−) /~. (7.41)

Upon detection of the photon after the time td,p, the ion is projected to the state corre-
sponding to the detected photon state with an impressed phase of

α = β + ωL · td,p. (7.42)
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The combined atom-photon state collapses at the time td,p to the atomic state

|Ψ〉atom (td,p) = 1√
2

(∣∣∣g+
〉
±
∣∣g−〉 e−iα) (7.43)

according to equation (7.40). In contrast to the photonic phase, which is fixed in the
laboratory frame through detection, the atomic superposition spin state evolves further
for t ≥ td,p in the laboratory frame with

|Ψ〉atom (t) = 1√
2

(∣∣∣g+
〉
±
∣∣g−〉 e−iα · e−iωL(t−td,p)

)
. (7.44)

The phase of the atomic state depends on the time t elapsed since photon emission and the
rotation of polarisation of the photon along its path β with the corresponding projective
measurement. Equation (7.44) holds for detection of the photon in any basis orthogonal
to σ̂z. We find that the phase of the atomic state at its detection on time td,a reduces to

α+ ωL(td,a − td,p) = β + ωL · td,a ≡ γ. (7.45)

The correlation between atomic and photonic state changes according to the phase of
the atomic state γ and of course still depends on the choice of the atomic readout basis
with ∆φ. In order to perform the projective readout of the ion in a given basis and with
a stable phase γ, we must achieve stability of three parameters during all the repetitions
of the experiment performed for this purpose: i) The mapping microwave pulses have
to have a fixed timing td,a in the laboratory frame with respect to the photon emission
time. ii) The energy splitting ~ωL of the states

∣∣g+〉 and |g−〉 has to be constant for all
repetitions of the experiment, which requires a stable magnetic field. iii) The concrete
basis in which we perform the projective readout of the ion is set by the relative phase of
the microwave pulses ∆φ. In order to avoid sampling over different bases, ∆φ has to be
fixed for all repetitions of the experiment.

The time scale of the phase evolution is given by the external magnetic field of
603.6(7)mG, which is applied along the cavity axis to define the quantisation axis. This
results in a precession of the atomic and photonic superposition states in the laboratory
frame with frequency ωL = 2.8 MHz

G · (603.6 ± 0.7)mG = 1.690(2)MHz. Since the time
profile of the collected cavity photons is much shorter than the period of phase precession
of the superposition states (∼ 10 ns� 2π/ωL ≈ 590ns), we do not account for the photon
arrival times in the post-analysis in terms of phase stability (see subsection 7.4.2 for the
corresponding error estimation).
In contrast, there have been also experimental realisations of atom-photon entanglement

with longer time profiles of the emitted photons, which require post-selection of the photon
detection times to infer to which basis the atomic state was projected [25]. In general, the
need for precise timing of the correlation measurements in the rotated bases is common to
several experimental realisations of light-matter entanglement [167, 23, 180, 24]. However,
it can also be completely eliminated by using tailored methods to generate the entangled
atom-photon state [164], where the relevant phases evolve synchronously in time88.

88 Transferring this approach to the presented experiment, ∆φ would have to evolve synchronously with
γ for the atomic readout bases to be independent from td,a.
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7.4.2 Imperfections reducing the correlation contrast in the rotated bases

The sources of erroneous state detection discussed in subsection 7.3.2 for the σ̂z⊗ σ̂z basis
are applicable to the rotated bases as well and are briefly adapted to the rotated bases in
this subsection. Furthermore, we discuss effects arising only for correlation measurements
in the rotated bases.

Dark counts
We correct for false-positive photon detection events on the cavity SPCs in a similar
manner as for the σ̂z ⊗ σ̂z basis. Since we changed the photon readout setup in advance
to the presented measurements, we have to repeat the analysis of subsection 7.3.2 for the
rotated basis (¯̂σx,y). We observed slightly different values for the dark count analysis of
the SPCs (see Table 11).

H-detector V-detector
¯̂σy-basis
Pd,dark/10−6 2.1± 0.3 8.5± 1.0
ξy/% 1.8(3) 7.6(9)
¯̂σx-basis
Pd,dark/10−6 1.7± 0.5 5.1± 1.2
ξx/% 0.5(2) 1.6(4)

Table 11: Dark count characteristic of the cavity-photon detectors.

Fluorescence state detection
We noticed an increased error in the atomic state detection due to formation of coherent
dark states, as discussed in subsection 6.2.2. The photon number distribution for a dark
ion shifted noticeable to higher expected photon numbers Ndark,¯̂σx/y , due to the additional
laser used to destroy the dark states. Furthermore, the expectation value of detected
photons for a bright state was reduced to Nbright,¯̂σx/y , due the limited ability of the second
laser to destroy the dark states. The achieved values for a 800µs readout time window
are

Ndark,¯̂σx/y = 0.61(2) and Nbright,¯̂σx/y = 9.6(4). (7.46)

The readout contrast of the fluorescence atomic state detection is extracted from
Figure 6.7 as (89.5± 1.2)%.

Atomic state mapping
For the hyperfine qubit manipulation, an error estimation of the atomic state manipula-
tion requires a more sophisticated analysis than for the σ̂z ⊗ σ̂z correlation measurement.
Here, the qubit mapping microwave π-pulse and an additional π/2-pulse are applied,
which have to be calibrated accurately. Assuming a perfect calibrated π/2-pulse, the
fidelity of the π-rotation affects the measurable correlation contrast as described for the
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σ̂z ⊗ σ̂z correlation. For a non-perfect π/2-pulse, however, we find from a full simulation
of the atomic state manipulation according to subsection 6.4.1, how the measurable
correlation contrast can be estimated from the pulse parameter calibration (detuning,
length). Detuning of the pulses with respect to the atomic resonance tilts the rotation
axes ~r of R̂π/2~r and R̂π~r according to equation (6.64). The tilted rotation axes result in an
additional phase acquired during the pulse sequence, which changes the basis to which
the atomic state is projected. However, by re-calibrating the pulse phase difference ∆φ,
this effect can be mitigated. For an error estimation, we therefore focus on the pulse
length error of both pulses. For R̂π~r , we can infer the error directly from the rotation
fidelity 98.9(6) % [100.0(4) %] for the ¯̂σx⊗ ¯̂σx [¯̂σy⊗ ¯̂σy] basis setting. For R̂π/2~r , we consider
a calibration uncertainty of 1µs at a pulse lengths of ∼ 25µs. Using these values, we
obtain a maximal reduction in the measurable correlation contrast of 1.9 % [0.6 %] from
the simulation.

Time dependence of superposition states
The time dependence of superposition states in the rotated bases (subsection 7.4.1)
introduces the time dimension as a factor to the measurement, which has to be controlled
to a high precision (∼ 1 ns). In this subsection, the timing factor is discussed in detail
as a source of error for the correlation measurements. To this end, we investigate the
acquired phase of the atomic superposition state at its detection.
The phase γ introduced in subsection 7.4.1 determines the atomic state at time td,a.

By adding the noise amplitude δa to a variable a in form of a → a + δa we obtain from
equation (7.45)

γ + δγ = (β + δβ) + (ωL + δωL) · (td,a + δtd,a), (7.47)

where the expression δtd,a might seems unintuitive, but represents a timing uncertainty for
the phase determination, e.g., measuring the phase with a timing jitter. We assume that
the change of the photon polarisation originating from varying optical path conditions (δβ)
is negligible for the considered time range of a measurement (a few hours). However, we
observed a drift of the polarisation properties of the single-mode fibre with a time constant
of a few days. Since we assume the noise to be small in amplitude, we can neglect the
term δωL(t) · δtd,a as well. The remaining noise contribution to the atomic qubit phase at
the detection time td,a can be written as

δγ ≈ ωL · δtd,a︸ ︷︷ ︸
Timing: δT

+ δωL · td,a︸ ︷︷ ︸
B-field stability: δB

. (7.48)

The expression ωL·δtd,a describes everything related to a time uncertainty from the emis-
sion of the single photon to the detection of the atomic qubit state, which includes in par-
ticular the Purcell-enhanced decay of the excited state |e〉 with a lifetime of τ = 7.4(2) ns.
We fix the start of the atomic state detection sequence with respect to the arrival time of
the excitation pulse at the ion with a maximum jitter of 370 ps89 according to section 7.2
and Figure 7.4. We neglect the excitation pulse length of tpulse ≈ 140 ps (subsection 6.3.4).
According to equation (7.48), we end up with a phase uncertainty originating from timing

89 320 ps from trigger jitter of Keysight 33600A Waveform Generator. 50 ps from pulsed laser APE
pulse-switch.
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issues of

δT = ωL · δtd,a ≤ (370 ps + 7.4(2) ns) · 2π · 1.690(2)MHz = 0.026(7)π (7.49)

with the frequency ωL = 2π·1.690(2)MHz. The corresponding reduction in the measurable
correlation contrast90 is ≤ 0.7(1)%.

The second contribution to the phase uncertainty of the atomic qubit is represented by
the expression δωL · td,a, which is determined by the magnetic field noise along the quan-
tisation axis resulting in a varying Zeeman qubit transition frequency δωL of 2.8MHz/G.
The stability of the magnetic field is discussed in detail in section 6.6. From the results of
the Ramsey-like pulse sequences shown in Figure 6.26, we estimate the reduction of the
measurable correlation contrast due to magnetic field noise for a hold time of td,a = 3.7µs
(time between emission of the photon and readout of the ion) to be smaller than

1− exp
( −3.7µs

(496± 42)µs

)
= 0.7(1) %. (7.50)

From this value we obtain for the phase noise

δB = δωL · td,a ≤ 0.026(7)π. (7.51)

Decoherence during the microwave pulses is included in δB, since we use the same mi-
crowave sequence (π-pulse and π/2-pulse) for the atomic state mapping during the corre-
lation measurements as for the readout of the superposition states during the coherence
time measurements (see Figure 6.26). In the worst case, decoherence is even overestimated
here. The fact that the values for δB and δT match is a coincidence by chance.

7.5 Full quantum state tomography

The reconstruction of a full quantum state requires repeated measurements on multiple
realisations of the same quantum state, since a measurement generally changes the state.
We can express the quantum state of a single qubit in terms of the eigenstates of the basis
operators σ̂i (Pauli matrices). Measuring the expectation values of these operators, in
principle allows for a reconstruction of the state.
In order to map a single qubit state, projective measurements to the bases σ̂1,2,3 ≡ σ̂x,y,z

are required91. For a two-qubit state, there are 9 combinations of σ̂i ⊗ σ̂j with
i, j ∈ {1, 2, 3}. To calculate the expectation value of a specific projector, several mea-
surements must be made for the respective state projection. However, the experimental
implementations of the projectors may contain noise and imperfections and are not neces-
sarily in compliance with the corresponding σ̂i operator. This can lead to a limited ability
of measuring the quantum state. Maximum likelihood estimation (MLE) mitigates parts
of the problem by ensuring the measured state to be physical. From MLE we obtain the
most likely physical state which is able to describe the outcome of our projective measure-
ments. In addition, we need to ensure that the preparation of the quantum state does not
change for all sets of measurements.

90 Assuming the contrast reduction to be cos2 (δT ) for |δT | ≤ π/2
91 One can also use an equivalent set of bases that is able map the Hilbert state space
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7.5 Full quantum state tomography

7.5.1 Density formalism

The density operator of a quantum mechanical state is defined as [9]

ρ̂ =
∑
i

ai |φi〉 〈φi| , (7.52)

with normalisation
∑
i ai = 1 and φi being pure states. For the density matrix to be

physical (e.g., not to produce expectation values greater than 1), additional requirements
on ρ̂ are:

ρ̂† = ρ̂ and Tr(ρ̂) = 1. (7.53)

We can express the density matrix of a single qubit through the Pauli operators σ̂i and
Stokes-parameters si as [75]

ρ̂ = 1
2

3∑
i=0

siσ̂i. (7.54)

The Stokes-parameters can be given in terms of the projections Eλ·i = 〈Ψλ·i| ρ̂ |Ψλ·i〉 to the
eigenstates of the qubit bases σ̂i (see equation (2.3)), which reduces to Eλ·i = | 〈Ψλ·i|φ〉 |2

in case of a pure state |φ〉. The Stokes-parameters read [75]:

s0 = Ez + E−z, s1 = Ex − E−x,
s2 = Ey − E−y, s3 = Ez − E−z,

(7.55)

where s0 = Ez + E−z = Ex + E−x = Ey + E−y.
We can extend this formalism to a two-qubit state by combining the Hilbert spaces of the

two qubits (H1,H2) to a single Hilbert Htot space via the tensor product Htot = H1⊗H2.
This results in the following equation for the density matrix of the two-qubit state [75, 25]:

ρ̂ = 1
4

3∑
i,j=0

Si,j σ̂i ⊗ σ̂j , (7.56)

where the joint probabilities Si,j for a two-qubit system are given by the combination
si ⊗ sj analogous to the Stokes-parameters in the expression of the one-qubit density
matrix in equation (7.54).
In a matrix representation, we obtain a 4 × 4 density matrix with 15 independent real

entries for a two-qubit system (see equations (7.53)). Diagonal elements indicate the
probabilities for observing the system in the corresponding basis state. We define the
basis states of the atom-photon system (before mapping) in a vector representation as:

∣∣∣σ+, g+
〉

=


1
0
0
0

 ,
∣∣∣σ+, g−

〉
=


0
1
0
0

 ,
∣∣∣σ−, g+

〉
=


0
0
1
0

 and
∣∣σ−, g−〉 =


0
0
0
1

 ,
(7.57)

where we use the notation |σ±, g±〉 ≡ |σ±〉 |g±〉.
The advantage of the density matrix formalism is the ability to represent mixed and

pure quantum states. To clarify the difference between a mixed and an entangled state,
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7 Spin-photon entanglement

we first construct an atom-photon mixed state as an example

ρ̂mixed = 1
2
(∣∣∣σ+, g+

〉〈
σ+, g+

∣∣∣+ ∣∣σ−, g−〉 〈σ−, g−∣∣) =


0.5 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0.5

 . (7.58)

With this state, we would be able to observe correlations between the atomic and photonic
states in the σ̂z basis, since the atom-photon system in this example is prepared with
equal probabilities in

∣∣σ+, g+〉 or |σ−, g−〉. If we would change to a rotated basis (e.g.
σ̂x) for detection, the measurement results on the photonic and the atomic side would be
uncorrelated, since the state on both sides would be in a superposition of the respective
measurement basis states which, however, are projected independently on both sides.

In contrast, an entangled two-qubit state shows non-zero off-diagonal elements in ρ̂

which represent the phase coherence. As derived in equation (7.19), the spontaneous
decay of the |e〉 state prepares the atom-photon system in a maximally entangled state
(rather than in a statistical mixture), which reads

|Ψatom-photon〉 = 1√
2

(∣∣∣σ+, g+
〉
−
∣∣σ−, g−〉) . (7.59)

We compute the density matrix representation of the entangled atom-photon state using
equation (7.52) as

ρ̂target = 1
2 ·
(∣∣∣σ+, g+

〉
−
∣∣σ−, g−〉) · (〈σ+, g+

∣∣∣− 〈σ−, g−∣∣)

=


0.5 0 0 −0.5
0 0 0 0
0 0 0 0
−0.5 0 0 0.5

 .
(7.60)

The atom-photon state of the equation (7.60) shows a maximum correlation between the
ion state and the photon state for measurements where both qubits are projected onto the
same basis (σ̂k ⊗ σ̂k).

7.5.2 Quantum state reconstruction

Using equation (7.56), we reconstruct the density matrix from the joint expectation val-
ues Si,j for 16 different combinations of Pauli basis and tensor products σ̂i ⊗ σ̂j with
σ̂i/j ∈ {I, σ̂x, σ̂y, σ̂z} and I being the 2× 2 identity matrix. We calculate the joint proba-
bilities Si,j for the combined atom-photon state as

Si,j = si,atom ⊗ sj,photon (7.61)

analogous to the Stokes-parameter of a one-qubit system (equations (7.55)). Since our
mapping of the eigenstates of all qubit bases σ̂x/y/z to the eigenstates of the measurement
operators preserves the corresponding eigenvalue λ = ± 1 (see equations (5.86) and (6.73)),
we can map the expectation values in the expression of the Stokes-parameters to the
measured probabilities in the experiment for each detection basis σ̂i. For the photonic
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qubit system this reads Ei → P (Vi) and E−i → P (Hi). For the atom, we do it in a similar
manner according to the mapping described in equations (6.73). As an example, we derive

S3,3 = P (0|Hz) · P (Hz)︸ ︷︷ ︸
E−z,−z

+P (g+|Vz) · P (Vz)︸ ︷︷ ︸
E+z,+z

−P (0|Vz) · P (Vz)︸ ︷︷ ︸
E−z,+z

−P (g+|Hz) · P (Hz)︸ ︷︷ ︸
E+z,−z

(7.62)

as an expression based on the conditional probabilities measured in the experiment ac-
cording to section 7.3.
We make use of the symmetry of the off-diagonal elements for the x-, y- and z-bases

Sm,n = Sn,m for m/n ∈ {x, y, z} and m 6= n and set S00 = 1 due to normalisation. We
extract the values from the measurements shown in Figure 7.5 and Figure 7.8 and post-hoc
transform the matrix as described in subsections 7.5.3 and 7.5.4. Finally, we obtain the
most likely physical state described by our measured data. The corresponding density
matrix is shown in Figure 7.9 and reads

ρ̂′ =


0.54± 0.02 −0.01± 0.00 −0.00± 0.00 −0.43± 0.01
−0.01± 0.00 0.01± 0.02 0.01± 0.01 0.02± 0.00
−0.00± 0.00 0.01± 0.01 0.04± 0.02 −0.01± 0.00
−0.43± 0.01 0.02± 0.00 −0.01± 0.00 0.42± 0.02



+i


0.00± 0.00 −0.01± 0.01 0.00± 0.01 −0.00± 0.00
0.01± 0.01 0.00± 0.00 0.01± 0.00 −0.02± 0.01
−0.00± 0.01 −0.01± 0.00 0.00± 0.00 −0.02± 0.01
0.00± 0.00 0.02± 0.01 0.02± 0.01 0.00± 0.00

 .
(7.63)

|g + ,

|g ,

|g + , +

|g , +|g + ,
|g ,

|g + , +
|g , +

Im
a
g
in

a
ry

 p
a
rt

0.0

0.1

0.2

0.3

0.4

0.5

|g + ,

|g ,

|g + , +

|g , +|g + ,
|g ,

|g + , +
|g , +

R
e
a
l 
p
a
rt

0.4

0.2

0.0

0.2

0.4

b)a)

Figure 7.9: Real a) and imaginary b) part of the measured density matrix ρ̂′ obtained from
a full quantum state tomography (see equation (7.63)). The matrix is post-hoc transformed as
described in subsection 7.5.3 and represents the most likely physical state obtained from MLE
(subsection 7.5.5). Standard errors are indicated as white bars. The data have also been published
in [92].

7.5.3 Unitary transformations

Unintended unitary transformations of the experimentally generated entangled state can
lead to a reduction of the overlap with the expected maximally entangled state (equa-
tion (7.60)). These rotations of the state can be caused, for example, by misaligned wave
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plates in the photonic readout part of the setup. Also for the atomic part, an inaccurate
microwave π/2 pulse or phase difference ∆φ could potentially rotate the state.
A general representation of an unitary transformation acting on a local qubit is given

by [71]

UT (θ, φ, β) =
(

cos (θ/2) −eiβ sin (θ/2)
eiφ sin (θ/2) eiβ+iφ cos (θ/2)

)
. (7.64)

We apply this transformation to the bases σ̂i and σ̂j of each qubit in order to post-hoc
maximise the overlap of the measured density matrix from equation (7.56) with the target
state ρ̂target from equation (7.60). To this end, we iteratively search for the maximal
overlap92 of the measured density matrix with the target matrix. The result strongly
depends on the starting point of optimisation. It is not guaranteed that the solution is
global. Instead it could also be a local maximum.

Using the post-hoc rotated state matrix, we determine the contribution of unwanted
unitary rotations on the state fidelity to be less than 1 %. This upper bound indicates a
high degree of experimental control over atom and photon basis.

7.5.4 Ensure physical consistency using maximum likelihood estimation

Following James et al. [75], we perform a maximum likelihood estimation (MLE) to
ensure the measured density matrix to describe a valid physical state93. We use the
matrix obtained in subsection 7.5.3 as starting point for the MLE optimisation. Again,
as in subsection 7.5.3, it is not guaranteed that the solution found for the multivariate
optimisation of the likelihood function is global. We obtain the final density matrix ρ̂′

given in equation (7.63) from the MLE.

7.5.5 Entangled state fidelity

In this subsection, we investigate the detection fidelity of the atom-photon state using the
density matrix ρ̂′ after rotation optimisation (subsection 7.5.3) and MLE (subsection 7.5.4)
as presented in equation (7.63).
With the purity P = Tr

(
ρ̂′ 2
)

= (83.0± 3.0)% of the state, we can use the noise model
presented in [31] to calculate an upper bound for the entanglement fidelity Fmax. To do
so, we need to adapt the original calculations performed for a 2× 2 density matrix to our
4× 4 density matrix.
The contribution of experimental noise to the state fidelity can be calculated using the

state purity P , which is expressed through the length of the Bloch vector ~r as

P = 1
2
(
1 + |~r|2

)
. (7.65)

The purity becomes 1 for a noise free pure entangled state, whereas for increasing noise
it approaches 1/2. A pure state |ψ〉 mixed to a probability V with white noise can be
written as

ρ̂n = V |ψ〉 〈ψ|+ (1− V ) I4 , (7.66)

92 The Findminimum function in Mathematica 11.3 was used to minimize the difference between the
matrices.

93 In other words: we search for the most likely physical state described by the measured matrix
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where I is the 4× 4 identity matrix. With F = (1 + V )/2, we obtain for the purity

P (F ) = Tr
(
ρ̂2
n

)
= 1− 3F + 3F 2 (7.67)

and subsequently for the fidelity Fmax limited solely by white noise

Fmax = 1
2

1 +

√
4P − 1

3

 = (94.0± 1.0) %. (7.68)

If the measured value of the state fidelity F is close to this upper bound, it is mostly white
noise-limited [31, 24]. We compute the fidelity as

F = 〈Ψatom-photon| ρ̂′ |Ψatom-photon〉 = (90.1± 1.7) %, (7.69)

using the the target state of equation (7.59). This result shows that apart from a con-
tribution of (6 ± 1) % that can be interpreted as white noise (e.g. state preparation),
there is also (4 ± 2) % reduction in the detection fidelity that comes from other sources.
The fidelity of the detected state is a measure for the quality of the whole setup, as it
includes nearly all experimental noise and errors like polarisation mixing effects, qubit
manipulations, the atomic readout and the dephasing of the atomic qubit due to magnetic
field noise. Summing the contributions of the individual error sources to the measurable
correlation contrast gives a consistent result with the measured correlation contrast for
each measurement basis. For a complete summary of the experimental imperfections and
their influences on the measurable correlation contrast obtained in subsections 7.3.2 and
7.4.2, see Table 12.

Source ¯̂σy ⊗ ¯̂σy ¯̂σx ⊗ ¯̂σx σ̂z ⊗ σ̂z (sub)section
Atomic qubit manipulation ≤ 1.9 ≤ 0.6 4.3± 0.7 7.4.2 & 7.3.2
Atomic state discrimination 10.5± 1.2 10.5± 1.2 3.5± 1.2 6.2.2
Timing of atomic readout ≤ 0.7± 0.1 ≤ 0.7± 0.1 - 7.4.2
Magnetic field noise 0.7± 0.1 0.7± 0.1 - 7.4.2
Atomic excitation 4.2± 2.8 4.2± 2.8 4.2± 2.8 7.3.2
Photonic basis selection � 1.0 � 1.0 � 1.0 7.5.3
False detection events 4.7± 0.5 1.1± 0.2 2.0± 0.3 5.5.2
(dark counts)
Summed contrast reduction ≤ 18.0± 3.0 ≤ 16.7± 3.0 12.0± 3.1
(excluding dark counts)
Achieved contrast 81.3± 15.8 87.0± 2.6 90.7± 3.9 7.3 & 7.4
(corrected by dark counts)

Table 12: Sources of error of the entangled state measurements with associated values of the
correlation contrast reduction in % broken down by the measurement bases.
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7.6 Summary

We presented the deterministic generation of entanglement between the internal spin state
of the trapped Yb ion and the polarisation degree of freedom of a photon emitted into
the mode of the fibre resonator. By performing a full quantum state tomography, we were
able to identify the detected two-qubit state as the maximally entangled state according to
our theoretical considerations with a fidelity of F = (90.1± 1.7) %. We obtained the full
density matrix of the state from correlation analysis between the photonic polarisation
state and the atomic spin state in different combinations of readout bases, where we
also observed parity oscillations. We achieved an effective entanglement detection rate
of 58Hz by performing real-time sequence branching to realise a conditional readout of
the ion. With the presented network node, we can currently achieve a maximum ratio of
entanglement generation rate to decoherence rate of

Rentanglement,gen
Rdecoherence

= 76± 29, (7.70)

which states that we can use the system as an efficient quantum communication node where
the distribution of phase coherence dominates its losses. This is particularly interesting
for scaling a quantum network in terms of distance [172], but also in terms of nodes, e.g.
for distributed quantum computing [68].
As the state detection fidelity is a measure for the quality of the whole setup, we inves-

tigated the contribution of each error source to the measured state fidelity and are able
to describe the observed correlation contrast consistently with the sum of the errors for
the studied bases. This shows that we have gained full insight into the relevant parts
of the experimental system, which is particularly beneficial to make practical use of the
presented two-qubit state in quantum communication. In chapter 8 we demonstrate that
the advanced properties of the system enables the secure distribution of a certified ran-
dom quantum key between two remote parties. This is made possible because we have
achieved the required properties for quantum communication in a single experiment for
the presented atom-photon entanglement: i) a high generation and distribution rate of
entanglement, ii) the possibility to read out the two-qubit state on both sides in a con-
trolled basis, especially without further communication between the participants and iii)
to do this with a high detection fidelity of the state also without further communication
and without the possibility of post-processing the results.
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Securing communication is becoming an increasingly important task for all aspects of
today’s information technology. The need for data security is ranging from smart and
mobile devices to global companies keeping their business secrets safe. In particular, the
distribution of a secret key between two communication participants via a public channel,
which they can subsequently use to encrypt and decrypt information, is essential for re-
mote communication. This so-called key distribution problem is usually solved in classical
information theory with methods of asymmetric cryptography, where security is based
on computationally hard problems. With the rise of quantum computers, at least some
assumptions about computational hardness need to be reconsidered. As an example, the
implementation of Shor’s factorisation algorithm on a sufficiently large quantum computer
could reduce the computational effort of the RSA problem to a polynomial time [154, 144],
which would have large impact on the current established cryptographic infrastructure.
At the same time, quantum key distribution (QKD) offers a paradigm-changing solution

to the key distribution problem [110], enabling a new way of provably secure communi-
cation [155, 89]. Due to its simple prepare-and-measure architecture, the one-qubit BB84
protocol [14] was the first QKD protocol realised in an experimental setup. Here, the
transmitted quantum bit is prepared in a certain state and basis by the sender and since
the protocol does not require entangled quantum states, it was first used with weak coher-
ent light pulses [108, 62]. However, the presence of pulses containing two or more photons
potentially leakages information towards an eavesdropper [105]. This can be avoided by
using true single-photon sources allowing for secure implementations of QKD [176, 89].
Without a trusted node in between, optical communication via a direct link encounters a

fundamental limit when the loss of the communication channel over distance is considered
[166, 137]. Entanglement-based QKD, as first proposed by A. K. Ekert in [47], offers a
solution to this problem. It utilises an entangled two-qubit state distributed between the
communication parties to derive a quantum key, rather than preparing a particular state
in a particular basis and sending it over the wire. Especially by using stationary mem-
ory qubits entangled with communication qubits, the fundamental point-to-point limit of
optical quantum communication can be surpassed [21]. This enables the realisation of so-
called quantum repeaters, in which the quantum information is temporarily stored before
further distribution [172]. The concept of using memory-based quantum repeaters for the
derivation of keys requires the setup of memory-based key distribution frameworks. How-
ever, the implementation of QKD between two remote parties that includes an entangled
memory qubit has not yet been reported.
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In this chapter, we demonstrate the memory-based distribution of a quantum key be-
tween two distant communication parties using the entangled ion-photon state presented
in chapter 7. We show that the setup presented in this thesis offers a number of ad-
vanced properties in the context of QKD. The trapped ion as a memory qubit serves two
purposes: i) It is a true single-photon source as the backbone for secure QKD with a
second-order correlation function of g2(0) = 0.00(5) (see subsection 6.3.6). ii) It generates
and stores entanglement between the spin state of the ion and the polarisation state of a
single emitted photon, which in principle allows key distribution over long distances.
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Figure 8.1: Sketch of the setup used for a quantum key distribution between two remote parties,
Alice and Bob. The sender side (Alice) comprises of the single trapped ion inside the fibre cavity.
The ion emits a photon whose polarisation state is entangled with the spin state of the ion. The
receiver side (Bob) comprises of photon detectors and adjustable polarisation optics to detect the
photon polarisation state in different bases.

When it comes to the generation of keys, cryptographically secure random number
generators are an essential building block of secure systems. The use of pseudo-random
processes to generate secret quantities can result in pseudo-security [44]. However, true
random numbers are hard to generate and even harder to verify. This even applies to
prepare-and-measure architectures of QKD, where the bit information of the key is pre-
pared on the sender side and transmitted to the receiver side.
The presented entanglement-based measurement protocol, however, allows the commu-

nication partners to exploit fundamental quantum mechanical properties of the distributed
two-qubit state to derive a secret key with excellent cryptographic properties. We demon-
strate that we can certify the randomness of the distributed key using the non-locality of
our entangled state, which in this strong form is not possible classically. In Figure 8.2,
we show how the building blocks of our protocol work as a whole to ensure the crucial
properties of a secret key, namely randomness, confidentiality and integrity.
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Figure 8.2: We base the security of our key derivation on various components. Measurement
blocks exhibit a blue border whereas blocks of classical data processing are sketched with black
borders. The certification of the ion as a single photon source using a Hanbury Brown and Twiss
(HBT) setup is presented in subsection 6.3.6.

8.1 Working principle of QKD

Quantum key distribution takes advantage of the basic properties of a quantum commu-
nication channel, which can be used in various ways to achieve the security of a particular
protocol. Consequently, several protocols and architectures have been proposed for QKD.
A basic assumption is that one cannot duplicate an unknown quantum state [182]. This
is used in various protocols to detect whether an eavesdropper has made a measurement
on the quantum channel (and consequently disturbed the transmitted state) or not. This
detection can only take place after the information has been transmitted, so a distributed
key is declared secure or not secure in post-processing.
Within QKD, one can distinguish between prepare-and-measure schemes such as BB84

[14] and Bennett-1992 [12] and entanglement-based protocols such as the Ekert protocol
[47] and the BBM92 protocol [15]. In entanglement-based protocols, the ’prepare’ part
as such is no longer necessary in the sense of encoding key information into the state.
Instead, an entangled two-qubit state is distributed between the communication partners,
where the result of a projective measurement on the entangled state is not predetermined
in the ideal case and can be in fact inherently random (see section 8.4). Nevertheless,
if the two-qubit state on both sides gets projected to the same basis, the measurement
results on both sides are strongly correlated (see chapter 7), which can be used for key
derivation. However, performing measurements always in the same basis does not exploit
the possibilities of quantum communication and does not produce any security. In contrast,
the random switching of measurement bases can be used to expose an eavesdropper making
measurements on the quantum state.
For the presented protocol, security is achieved by performing the measurements on

both sides of the distributed two-qubit state in a basis randomly chosen from two pre-
selected bases such that any pair of eigenstates, one from each basis, has overlap 1/2, for
example σ̂y and σ̂z (see section 8.2). When using different bases for state projection on
both sides, the measurement results are completely uncorrelated. In particular, without
further communication between the sides, it is not possible to distinguish whether a re-
spective measurement has now delivered correlated results (same bases) or uncorrelated
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results (different bases).
The same applies to a potential eavesdropper. Without any a priori knowledge of the

choice of bases, the interception and re-transmission of the quantum states is only suc-
cessful in a subset of all cases. The remaining fraction leads to uncorrelated measurement
results and can be detected by the communication partners in post-processing by compar-
ing a subset of the transmitted bits, where they would expect correlations. If this quantum
bit error rate (QBER) is below an acceptance threshold, the transmission is considered to
be secure, as it is assumed that no measurement of the state has taken place between the
communication parties.
This is, of course, a simplified explanation intended to introduce the concept of QKD.

The security proof of a protocol is more elaborate. In particular, it is possible to infer from
the error rate a quantitative expression of the maximum knowledge of a potential eaves-
dropper by attributing all errors to potential measurements and thus to an increase in the
eavesdropper’s knowledge of the key (see section 8.3). By shortening the key accordingly,
this knowledge can be taken into account and minimised to almost zero. In this context,
quantum key distribution in its ideal implementation offers unconditional security, which
means that even an attacker with unlimited time and computational resources is unable
to break the system. Unconditional security of the key distribution was also theoretically
proven for the protocol used in this chapter (BBM92) under the prerequisite of single
photon transmission and no a priori knowledge about the choice of measurement bases
[89, 184]. However, one must be aware that, for example, side-channel attacks, imperfect
devices and imperfect implementation can undermine security in practice (see section 8.5).

8.2 Technical implementation and key distribution protocol

We utilise the entangled two-qubit state between the single trapped ion and a single pho-
ton, as presented in chapter 7, for the distribution of a quantum key between two remote
parties A and B. The entangled atom-photon state is generated from deterministic excita-
tion and subsequent decay of the ion under emission of the photon according to section 7.1.
Before executing the key distribution protocol, Alice has to verify the generation of single
photons from the source, for example by using a Hanbury Brown and Twiss (HBT) setup
as presented in subsection 6.3.6. After that, the source remains under her control. The
transmission of single photons is crucial for the security of the applied protocol and an
advanced attacker (Eve) could imitate a single photon source. Therefore, a similar mea-
surement on Bob’s side during the key distribution does not provide relevant information
for the security of the key.
For the distribution of entanglement between the two communication parties, the ion

remains at side A (Alice) and the photon is transmitted to side B (Bob) (see Figure 8.1).
The maximally entangled ion-photon state shared between both sides is given according
to equation (7.19) as

|Ψ〉 = 1√
2

(∣∣∣σ+
〉 ∣∣∣g+

〉
−
∣∣σ−〉 ∣∣g−〉) ≡ 1√

2

(
|0〉photon |0〉atom − |1〉photon |1〉atom

)
. (8.1)

However, knowledge of the entangled two-qubit state is not required for the communication
partners within the presented protocol and the state is given here for the sake of clarity.
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8.2 Technical implementation and key distribution protocol

If Bob receives the photon, Alice performs a projective measurement of the atomic spin
state to a basis σ̂i, while Bob has detected the polarisation state of the photon in a basis
σ̂j (i.e., a total atom-photon state detection in σ̂i⊗ σ̂j basis). In principle this conditional
readout on Alice’s side is not necessary for the protocol but greatly increases the repetition
rate of the sequence since a readout on Alice’s side lasts at least 400µs. Of course, Bob
has to ensure that the signal indicating a successful photon detection does not contain any
information about the basis used and the measurement outcome.
For the practical key distribution, we adapt the entanglement-based BBM92 protocol

[15] to the two-qubit quantum state of equation (8.1). Alice and Bob are using random
inputs a, b ∈ {0, 1} to set the basis of the projective state measurement on their respective
side of the two-qubit system. Alice obtains a value v ∈ {0, 1} from the measurement while
Bob obtains w ∈ {0, 1}. We choose the σ̂z basis for projective state measurement when
a, b = 0 and the orthogonal σ̂y basis94 when a, b = 1. If Alice and Bob happen to measure
in the same bases a = b, the measurement results v and w each contribute as one bit
to the so-called sifted key on both sides. Since this corresponds to a measurement of the
entangled state in a basis σ̂i⊗σ̂i, a maximum correlation between the measurement results
is expected (see sections 7.3 and 7.4).
For the detection of the photonic qubit on Bob’s side, we extend the setup presented in

subsection 5.5.1 by a wave plate with variable retardation95, which is able to rotate the
measurement basis of the polarisation qubit between the measurements. We adjust the
fast axis of the variable retarder to be rotated by 22.5◦ with respect to the H/V -coordinate
system. We set the detection path of the photon to project to the σ̂z-basis while setting
the variable retardation to 0 · λ retardation (see subsection 5.5.4). From this setting an
orthogonal basis to σ̂z can be selected by adjusting the variable retarder to 1/2 · λ (see
Figure 5.20 b)). To switch the properties of the wave plate accordingly takes 40ms. The
measurement bases on Bob’s side are randomly selected by an external microcontroller in
response to a control signal.
For the atomic side, we set the bases according to subsection 6.4.2 using microwave

pulses. We create a separate experimental sequence branch for each measurement basis,
which we execute in response to an external, randomly generated signal, similar to the
conditional readout presented in section 7.2 (see Figure 8.3). This setup allows us to
switch the bases of the photonic and atomic state detection independently and randomly.

Photon detected

Cooling
90 µs

Initialisation
10 µs

Pulsed excitation

1 µs

Fixed

π-Pulse, φ1

24.5 µs
π/2-Pulse, φ2

33 µs 

π-Pulse, φ1
24.5 µs

Readout 
min. 400 µs

Decision branching

Random number in
a=0/1

Wait for 
photon basis switch

~40 ms
Basis1

Basis2 Readout 
min. 400 µs

Wait for 
photon basis switch

~40 ms

No Photon 

Figure 8.3: Experimental sequence on Alice’s side for the measurement of one sifted key bit in-
cluding the random switching of bases and photon generation. Bob generates the photon detection
trigger and subsequently randomly changes his detection basis.

94 In equation (5.87), we introduced the notation ¯̂σx/y to clarify the use of a different bases definition
for the rotated bases. In this chapter, we drop this notation for the sake of simplicity and write σ̂x/y.
However, we still refer to this definition of the bases.

95 Liquid crystal wave plate (LCWP) LCC1411-A from Thorlabs
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8 Quantum key distribution using an entangled memory qubit

When Alice and Bob happen to measure in the same basis a = b, their outputs are ideally
equal (v = w) as a consequence of the two qubits sharing the entangled state |Ψ〉 (see
Figure 8.4). However, imperfections of the setup and Eve performing measurements on |Ψ〉
can also result in different outputs on both sides for a = b. After a measure-and-estimate
phase of this quantum bit error rate (QBER) both parties agree on continuing with key
distribution in case of an acceptable QBER ( usually . 15 % [59, 21]). For this purpose,
we presuppose the existence of a public but authenticated classical communication channel
between Alice and Bob. Up to now, the sequence is quite similar to an implementation
of the BB84 protocol with the exception of not preparing a certain quantum state with
value v in basis a at the senders side and sending it to the receiver measuring w. Instead,
entanglement is distributed between the parties to make the qubits on sender and receiver
side sharing a common wavefunction, which upon a state measurement gets projected to a
certain basis. In this context, we show in section 8.4 that, in contrast to implementations
of the BB84 protocol, the values of the outputs v, w are certifiable random.

v,w=0

| +z

v,w=1

v,w=0

| +y

v,w=1

| -z

| -y

Figure 8.4: Eigenstate representation of σ̂y/z on the Bloch sphere showing the assignment of a
binary value v/w to the outcome of the projective state measurement on side A/B. Definition of∣∣Ψ±y/±z〉 according to equation (2.3).

8.3 Key rates, key reconciliation and privacy amplification

Alice and Bob compare their lists of measurement bases over an authenticated channel.
From each projective state measurement for which they used the same basis (σ̂i ⊗ σ̂i),
they obtain one bit of their sifted keys V = {v1, .., vn} and W = {w1, .., wn}, each with
a total length n. At the beginning of this section we discuss the properties of sifted key
generation and towards the end of the section we present the derivation of a secret key
from the sifted key.

8.3.1 Key rates

In the experiment, the rate at which Alice and Bob obtain the bits of their sifted keys
(sifted key rate) is limited by the switching time of the photon readout basis (40ms),
stationary qubit initialisation (∼ 100µs) and the channel loss (see Figure 8.3). For the
presented experimental realisation, we achieved a maximum sifted key rate of 6Hz.
Figure 8.5 shows the estimated sifted key rates as a function of the transmission channel

loss for the current setup and two proposed improvements. We calculate the rates accord-
ing to subsection 7.2.1 where the channel loss is given by the detection efficiency Pd of a
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8.3 Key rates, key reconciliation and privacy amplification

photon on Bob’s side. Using a setup with passive basis switching could improve the sifted
key rate by one order of magnitude by eliminating the active 40ms switching of the vari-
able wave plate. We achieved this rate in the context of the entanglement characterisation
in chapter 7, where we also performed the measurements without an active switching of
bases. A well known passive scheme can be realised with 4 single-photon counters for state
detection, with each pair of detectors separated by a 50/50 beam splitter. Furthermore,
another order of magnitude in the sifted key rate can be gained by exploiting the mini-
mum state initialisation time of ∼ 4µs of the memory qubit in advance to the deterministic
photon generation (see subsection 7.2.1). However, each of the presented alternatives is
limited at least by the state detection of the ion which lasts at least ∼ 400µs.
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Current sequence

Expected best sequence

Experimental
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Figure 8.5: The performance of the current experimental sequence including the active switching
of the photon basis is shown as solid black line. The channel loss of the setup (26 dB) is shown
as vertical dashed line. The performance of an alternative setup in which active switching of
the photon basis is avoided is shown as a blue dotted line. We reached this efficiency in chap-
ter 7. An estimate of a sequence where also the generation rate of entangled photons is optimised
by minimising the stationary qubit initialisation time to 4µs is shown as blue dash-dotted line.
The theoretical reachable minimal loss of the setup of 16.7(10)dB is shown as grey shaded area
(assuming the same detection setup).

We currently perform our experiment at a channel loss of ∼ 26 dB including path loss
(ηpath: 2.3(8) dB) and detector efficiencies (ηDetector: 6.7 dB loss). The channel loss is
mainly limited by the photon extraction probability from the fibre-cavity ( ∼ 7.8 dB loss),
the mechanical stability of the fibre cavity and the localisation of the ion in the cavity
(together ∼ 17 dB loss), see subsections 5.5.3 and 5.5.3.

8.3.2 Quantum bit error rate (QBER)

In general, the sifted keys of Alice and Bob differ in m bits due to measurement or state
preparation imperfections, or due to an attacker Eve performing measurements on the
quantum state. In this subsection, we focus on the experimental imperfections contribut-
ing to the error rate of the measured sifted key bits. A detailed overview of the correlations
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8 Quantum key distribution using an entangled memory qubit

obtained between the atomic state and the photonic state, both measured in the same ba-
sis, is given in Table 12. However, for the measurements presented in this chapter, we have
made some changes to the setup considered in Table 12 that are required by the QKD pro-
tocol: first, we keep the magnetic field constant at about 2G (∼ 5.5MHz splitting of |g±〉),
which is important to consider for fluorescence state detection of the ion (subsection 6.2.2)
and timing-precision of the atomic qubit manipulation (subsection 7.4.2). Second, the cor-
rection of false-positive readout events triggered by dark counts of the SPCs on Bob’s side
is not possible without further communication between Alice and Bob. However, on Bob’s
side, we can suppress dark counts on the detectors by applying a temporal gating on the
arrival time of the photons at the cost of some detection efficiency, which we show in Fig-
ure 8.6 a) and b). By gating the photon arrival times with a ∆tgate = 15ns time window,
we can reduce the quantum bit error rate (QBER) to e = m/n = 8.3 % (Figure 8.6 c))
while keeping a sufficient detection fraction of ∼ 0.9.
Due to a beam splitter inserted on Bob’s side into the detection arm of horizontally

polarised photons (H-arm) for the purpose of fibre cavity locking (section 5.3), the V -arm
detecting vertically polarised photons has a slightly higher detection efficiency compared
to the H-arm. We have to account for the different efficiencies by randomly discarding a
fraction of events on the V -detector in order to reach equal balanced detection efficiencies,
which we achieved with a relative accuracy of ≥ 98 %. Equal balanced detection efficiencies
are crucial for the security of the key, as they directly influence the key statistics. We have
also taken further security measures against side channel attacks, which we present in
section 8.5.
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Figure 8.6: a) Binned single photon arrival times on Bob’s side (bin width ≈ 1ns). In order
to suppress dark counts, a measured bit only contributes to the sifted key for the detection to
happen in the time window ∆tgate = 15 ns which is shown as coloured areas for H/V respectively.
We randomly discard fractions of V events to ensure the same detection efficiencies for H and V
photons and thus obtain an unbiased key. b) The relative fraction of travelling qubits contributing
to the sifted key is shown for different acceptance windows (blue points). The solid line constitutes
an exponential saturation fit. c) Quantum bit error rate on the whole sifted key for different
acceptance windows.
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8.3 Key rates, key reconciliation and privacy amplification

8.3.3 Key reconciliation and privacy amplification

In order to correct for them errors in the sifted keys and to end up with the same key string
on both sides, Alice and Bob perform a key reconciliation via an authenticated classical
channel, where they may leak information about the reconciled key to the public. Using
privacy amplification [16], the reconciled key with length nr is shortened by a universal
hash function to a final secret key length of nsec = nr − d by each communication party,
which reduces the information available to Eve. An adequate hash function for this purpose
can be obtained by computing nsec publicly chosen independent random subset parities of
the reconciled key and keeping their values secret [13].
The number of bits d by which the key has to be shortened has to be determined

concerning the knowledge Eve may have about the reconciled key. For this purpose, we
have to consider that the presented QKD involves an entangled source on Alice’s side. We
follow the security proof of an arbitrary uncharacterised source by Koashi and Preskill [89]
to determine the maximal knowledge Eve may have about the reconciled key. The proof is
originally based on the BB84 protocol, but due to a similar measure-and-estimate scheme
of BB84 and BBM92, the security proof is valid for the presented system as well [15, 184].
We are able to give an upper bound on Eve’s knowledge without applying any restriction
on the attack itself, however, requiring the transmission of true single photons, no a-priori
information about the measurement bases, and fully characterised detectors on Bob’s
side [89] (for related side channel attacks, see section 8.5).

Assuming all errors of the sifted key to be caused by Eve, the length nsec to which
the secret key has to be shortened in order to account for the potential knowledge of the
eavesdropper is given by [184]

nsec =
∑

i∈{z,y}
nsec,i (8.2)

where
nsec,z/y = nz/y ·

[
1− fr ·H(ez/y)−H(ey/z)

]
(8.3)

is the analytic lower bound on the secret key length for the number of sifted key bits nz/y
measured in the σ̂z⊗σ̂z/σ̂y⊗σ̂y basis respectively withH(q) = −q log2(q)−(1−q) log2(1−q)
being the binary entropy function. The QBER we obtain for the sifted key bits in the
σ̂z/y ⊗ σ̂z/y basis is ez = 7.86 % and ey = 9.12 %. Due to timing issues in the rotated
basis originating from the Larmor precession of the atomic state, ey is larger than ez
(see subsection 7.4.2). The quantity fr ≥ 1 states the inefficiency of the information
reconciliation protocol that Alice and Bob apply to correct for the m errors in the sifted
key [48]. An ideal reconciliation protocol would reveal a fraction H(e) of the sifted key,
while real protocols reveal a fraction fr·H(e). Accounting for the inefficiency of information
reconciliation allows to form a secure key in practice. It is convenient to introduce here
the secret key rate

rsec = nsec
n
, (8.4)

which is normalised to the number of transmitted sifted key bits n.
For error correction, we apply the symmetric blind information reconciliation protocol

[83]96, which is based on low density parity checks (LDPC), on the sifted key obtained on
96 The authors have provided us with the source code and LDPC codes. I would like to thank E. Kiktenko

in this context.
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8 Quantum key distribution using an entangled memory qubit

the sides A and B. We reach a reconciliation inefficiency of fr = 1.16 and subsequently
rsec = 0.096 bits according to equation (8.4) 97. However, rsec states the asymptotic secret
key rate for large n. For a finite key length, we obtain a non-vanishing finite secret key
rate for a failure probability of ε ≈ 2 % (see next paragraph).

Finally, privacy amplification has to take all information leakage into account by
reducing the reconciled key to a length of nkey with nkey ≤ nsec. In total, we achieved for
nsec a bit rate of 0.6Hz.

Finite key length
Due to statistical fluctuations, the measured error rate ez/y may differ from the underlying
error rate e′z/y obtained in the asymptotic case of large n. An upper bound emax

z/y of the
underlying error rate e′z/y can be given using the Serfling inequality [153] according to
[184, 38] as

e′z/y ≤ e
max
z/y = ez/y +

√√√√√
(
nz/y + 1

)
log (1/εsec)

2nz/y
(
nz/y + ny/z

) , (8.5)

where again nz/y is the number of measured sifted key bits in σ̂z/y ⊗ σ̂z/y basis. The total
failure probability ε = εsec + εec with the probabilities εsec of failure of secure transmission
of the key and εec of failure of error correction can be used according to [184] to derive a
finite secret key length for which the security proof still applies. Using the upper bound
emax of the bit error rate e from equation (8.5), we can compute the finite secret key size
according to [168, 184] as

nfinitesec =
∑

i∈{z,y}
nfinitesec,i (8.6)

with
nfinitesec,z/y = nz/y ·

[
1− fr ·H(ez/y)−H(emax

y/z )
]
− log

( 2
εecε2sec

)
(8.7)

assuming balanced detection paths. We define rfinitesec = nfinitesec /n as the finite secret key
rate. If we assume the error correction to fail in a very few cases, e.g. εec = 0.1 %, we obtain
a non-vanishing finite secret key rate for a failure probability of the secure transmission
of εsec ≈ 2 %.

8.4 Randomness certification using the violation of Bell’s inequalities

The inability to describe the properties of a remote distributed entangled two-qubit state
with the methods of local realism led to the terminology of non-locality to reflect this
conflict (see section 2.3). The Bell inequalities are fulfilled by any system exhibiting local
causality and hence, can be described deterministically [51] (see section 2.4). In contrast,
systems violating the Bell inequalities exhibit a non-local, non-deterministic description
and it has been proposed in [35] that the non-local correlations of quantum states can be
used to exclude any deterministic (causal) connections.
In this section, we introduce how the exclusion of deterministic connections can be used

to generate certified private randomness of the distributed secret key using the fundamental

97 For comparison, we have also adopted the CASCADE error correction algorithm from [5], where we
have achieved an inefficiency of f = 1.21
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8.4 Randomness certification using the violation of Bell’s inequalities

non-local properties of our entangled state, which in this strong form is not possible in
classical information theory. Even when using quantum systems for the distribution of
keys, certifiable randomness of those quantum keys is only achieved for systems that
exhibit a violation of the Bell inequalities [11, 138].
To quantify the concept of randomness, we consider the uncertainty of an attacker with

side information E about the system S, which can be expressed through the probability
of guessing a measurement outcome x of measurement s on S [95]. In the extreme case of
S being fully correlated to parts of E, the guessing probability becomes Pguess(x) = 1. In
other cases, the state of S is (partly) independent of the attackers information E and the
guessing probability can be described as [110]

Pguess(x) = max
x

P (x|s) (8.8)

where P (x|s) is the probability of measuring output value x for a measurement s and the
maximum is taken over all possible output values x. True randomness is achieved, for
example, for a sifted key string V = v1, ..., vn when P (vi|s) = const ∀vi ∈ {0, 1} and for
all measurements s. In this case, all possible combinations of V are equal probable as an
outcome.
In classical information theory, the generation and even more the verification of random

numbers (random bits) is hard to realise because one has to exclude any causal connec-
tions between the numbers, in particular the specification of an upper bound for Pguess(x)
is a problem. In contrast, in quantum theory the unpredictability of a measurement
outcome is closely linked to the violation of the Bell inequalities. Using violation of the
Bell inequalities one can quantify the closeness to a situation where a quantum system S
is fully determined by the side information E [95] and when it is perfectly non-local and
non-deterministic on the opposite without knowing the system’s internal behaviour. Any
system maximally violating the Bell inequalities exhibits a non-local, non-deterministic
description, which excludes any deterministic (causal) connections and generates certified
private randomness [35, 138].

Testing Bell’s inequalities
We consider to test the violation of Bell’s inequalities in the experiment in the form
proposed by Clauser, Horne, Shimony and Holt (CHSH) [33] (see equation (2.14)), where
a system that can be described local and deterministic satisfy

gCHSH =
∑
a,b

(−1)ab [Pv=w(a, b)− Pv 6=w(a, b)] ≤ 2, (8.9)

where Pv=w(a, b) is the probability of measuring the same output on both sides when using
the measurement bases a and b. The quantum theory predicts a maximal violation of 2

√
2

(see section 2.4).
We measure a violation of the CHSH inequality of

gmeas = 2.33(6) (8.10)

by using the measurement basis σ̂y for b = 0 and σ̂x for b = 1 on Bobs side. On Alice’s
side we measure at (σ̂y − σ̂x)/

√
2 for a = 0 and at (σ̂y + σ̂x)/

√
2 for a = 1. The observed
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8 Quantum key distribution using an entangled memory qubit

outcomes of the measurements are shown in Table 13. The bases used for the Bell test are
shown Figure 2.3 with a consistent nomenclature, i.e. the set (~a,~a′) corresponds to the
atomic bases and (~b,~b′) to the photonic bases.

(a, b) (1, 0) (0, 0) (1, 1) (0, 1)
Basis σ̂atom ⊗ σ̂photon σ̂y+σ̂x√

2 ⊗ σ̂y σ̂y−σ̂x√
2 ⊗ σ̂y σ̂y+σ̂x√

2 ⊗ σ̂x σ̂y−σ̂x√
2 ⊗ σ̂x

Pv=w 0.835± 0.020 0.791± 0.027 0.229± 0.013 0.770± 0.027

Table 13: Measurement of the Bell-violation. Observed outcome of the measurement outputs
(v, w) for the binary choices of measurement bases (a, b).

Consistency of the measured Bell-violation with the state fidelity
We cross check the measured violation of the CHSH inequality gmeas with the Bell-
violation gexp we would expect from the measured state fidelity F = (90.1 ± 1.7) %.
For this purpose, we assume the two-qubit state to be a pure state |ψ〉 mixed to a
probability (1− V ) with white noise as described in subsection 7.5.5. With the visibility
V = 2F − 1 = 0.80(3) of the state, we obtain gexp = 2

√
2 · V = 2.27± 0.10 according to

[110], which is consistent with the measured Bell-violation gmeas = 2.33(6).

Fair sampling
It is important to note that due to the entanglement generation and detection scheme of
the presented setup, we measure a random subset of all generated two-qubit states, which
opens a detection loophole for the measured violation of equation (8.9) as explained in
subsection 2.4.1. However, we have no reason to doubt the assumption of fair sampling
of the measured subset from the total set of generated entangled states. Furthermore,
we implemented spatial, temporal and spectral filtering of photons on the detection side
as a security measure against side channel attacks that could potentially violate the fair
sampling assumption (see section 8.5).

Generation of random key bits
From the violation of the CHSH inequality g from equation (8.9), the upper bound on the
guessing probability of each measurement outcome x by an attacker in the asymptotic
limit (equation (8.8)) can be derived as [138]

Pguess(x) ≤ 0.5 + 0.5

√
2− g2

4 . (8.11)

We assume that any reduction in non-locality of the state results in an increasing causality
which may be fully accessible to an attacker. This is an important result because it
allows us to put a number on ’how random’ an outcome of a measurement is. For finite
measurement rounds, the measured violation gmeas is an estimator of the CHSH inequality
violation g and the guessing probability may be higher. It was shown in [138, 139] that a
lower bound on g can computed from the estimator gmeas as

g ≥ gmeas − ε(k, δ) (8.12)

when the device was used k-times in succession. Here ε(k, δ) =
√
− ln(δ)·2(1/q+gmeas)2

k with
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8.4 Randomness certification using the violation of Bell’s inequalities

an uncertainty parameter δ and q = 0.25 = mina,b [P (a, b)] being the minimum of the
probability distribution over the input states a and b.

For a single measurement s on the system S, the min-entropyHmin quantifies the amount
of randomness generated in this measurement. It was shown, that the min-entropy per
transmitted bit can be computed as [95]

Hmin(s|E) = − log2 [Pguess(x)] (8.13)

where Pguess(x) is the probability of guessing the correct output x of measurement s by
the attacker measuring the side information E [110].
Using equation (8.11) in combination with equation (8.13), we compute a lower bound

on the min-entropy generated per measurement on the quantum system state |Ψ〉 as

Hmin(g) ≥ − log2

0.5 + 0.5

√
2− g2

4

 ≡ H≥min (8.14)

in the asymptotic limit. Finite measurement rounds for the determination of gmeas can be
considered using [138]

Hmin (gmeas − ε(k, δ)) ≡ H≥min,δ,k (8.15)

with δ being the confidence level of randomness generation. Equation (8.14) quantifies
the asymptotic lower bound on the generated randomness per measurement, which is
in our case H≥min = 0.15(4) bits. In Figure 8.7 a) the lower bound on the min-entropy
H≥min is shown as a function of the Bell violation g. Figure 8.7 b) shows the subsequent
lower bound on the min-entropy H≥min,δ,k as a function of the number k of measurements
made for the estimation gmeas of the Bell violation and the confidence level δ according to
equation (8.15). Further, we can calculate the minimum block size lB = ceil(1/H≥min) =
(7± 2) bits of the sifted key for which Alice and Bob have generated at least one random
bit in the asymptotic limit. The key length nrand for a final key to be entire random is
bounded by nrand ≤ floor(nr/lB) with nr ≤ n.
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Figure 8.7: a) The lower bound on the min-entropy H≥min generated per measurement on the two-
qubit state |Ψ〉 is shown versus violation of the CHSH version of the Bell inequality g (see equation
(8.14)). The error on the measured estimator gmeas is the standard error. b) Lower bound on
the min-entropy H≥min,δ,k as a function of the number k of measurements made for the estimation
of the Bell violation gmeas with the confidence level δ according to equation (8.15) (solid lines).
The grey dashed line depicts the asymptotic limit of the min-entropy bound as shown in a). The
coloured area depicts the region where the communication parties can be sure with a confidence
level δ that the generated randomness per sifted key bit is larger than the secret key derived from
the sifted key even in the asymptotic limit of a large sifted key length n (for the definition of rsec,
see equation (8.4)).

In total, we have to shorten the secret key to the length

nkey ≤ min{n(finite)
sec , nrand}, (8.16)

which is the smaller of the two maximal allowed key lengths to obtain: i) a certified random
generated key with length nrand = n · H≥min,δ,k and ii) a provably secure transmitted key
with length n(finite)

sec = n · r(finite)
sec (see section 8.3).

8.5 Security measures against side channel attacks

For the presented entanglement-based QKD, we use the security proof given in [89] for
an uncharacterised source, which requires characterised detection setups. Therefore,
the presented protocol is device-dependent, i.e., we prove security for this specific setup
under ideal detection conditions. However, a real setup is vulnerable to attacks via side
channels as well. We mitigate the known detection side-channel attacks according to [184]
by taking into account the measurement methods.

Beam-splitting [103]
The attack describes gaining control over the measurement basis on Bob’s side by forcing
a click on a specific detector (pair). This can be achieved by sending photons of different
wavelength exploiting the spectral response of the setup. This attack can be mitigated by
spectral filtering of the incoming photons, which we do with a 10nm spectral bandpass
filter (see subsection 5.5.1).
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Efficiency-mismatch [107]
Due to differing detection or path efficiencies of the photon detection setup on Bob’s
side, Eve can gain partial control over which detector clicks and bias the outcome of
the measurement. As a countermeasure, we implemented a series of filters on Bob’s
side: i) Due to the photon guiding fibre being single mode, we restrict the spatial mode
degree of freedom. ii) Using 10 nm spectral filters in front of each detector narrows the
frequency degree of freedom. iii) We restrict the time degree of freedom by applying a
15 ns wide filter to the photon arrival time on Bob’s side where we monitor the detection
efficiencies and correct for a slightly higher efficiency of the V -arm by randomly discarding
a fraction of detected events on this arm (see section 8.3). In total, we achieve equal
detection efficiencies with an accuracy of more than 98%.

Detector dead-time [106]
Subsequent to the detection of a photon, detectors usually exhibit a dead time in which
they are blind for further photons. If there is a click followed by another click within
the dead time of the detectors, it is clear to an attacker that two different detectors
were involved which may reveals additional information. For example an attacker could
force a detector to click in advance to a real photon detection event. We can counteract
this attack by discarding runs where we noticed two clicks on Bob’s side. We do this
without loosing QKD rate, since the probability of detecting the single photon coming
from Alice in normal operation of the experiment is Pdet ≈ 2.6× 10−3 per shot while the
probability of a noise count is smaller than 10−5 within the dead time of the detectors
which is < 20ns. Assuming the transmission of true single photons, the probability of a
noise click alongside with a photon detection is in the order of magnitude of ∼ 10−8. In
the presence of an attacker attempting to blind the detectors, the fraction of discarded
runs would naturally be higher and the protocol would decrease in rate.

Availability
Quantum key distribution is generally vulnerable to denial-of-service attacks and also for
the presented system there is no countermeasure for e.g. simply blocking the transmitted
photons. This type of attack is mentioned here for the sake of completeness and it does
not affect the security or randomness of the derived key (if it was transferred in the end).

8.6 Summary

We have demonstrated the realisation of QKD between two remote parties including an
entangled memory qubit on one side, which favours key exchange over large distances
within the scope of memory-enhanced quantum communication, especially with respect
to quantum repeaters. The trapped ion enables a secure distribution of the quantum
key according to the laws of quantum mechanics by generating true single photons with
g2(0) = 0.00(5). Considering the fundamental non-locality of the distributed two-qubit
state for the generation of the final secret key, we have shown that certifiable randomness
of the derived key can be ensured with a high confidence level δ < 0.01 by performing a
finite set of Bell test measurements O(104). As a lower bound on the generated randomness
we calculated H≥min = 0.15(4) bits per sifted key bit in the asymptotic limit. This kind of
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provable randomness is an outstanding property of entangled quantum systems violating
the Bell inequalities and is impossible to obtain in classical information theory. We measure
a Bell-violation of gmeas = 2.33(6), which is consistent with the measured entangled state
fidelity of 90.1(17) %.
For a sifted key with a length of n = 3080, we have achieved a quantum bit error rate

(QBER) of 8.3 %, which is expectable from the experimental imperfections and mainly
limited by the state detection of the atomic qubit. The experimental repetition rate
of ∼ 20 kHz and the channel loss determine the achieved sifted key rate of 6Hz, which
is more than three orders of magnitude higher than the sifted key rate reported for a
non-distant quantum communication including an entangled memory qubit with a QBER
of ∼ 11 % [21]. On the one hand, the use of memory qubits allows arbitrarily long com-
munication distances within the framework of an ideal quantum repeater [172], but on
the other hand requires comparatively long readout and preparation times, which in our
case lead to a sifted key rate about two orders of magnitude lower compared to QKD im-
plementations with entangled photon pairs [49, 109, 187]. There, the best achieved error
rates are about a factor of 2 lower (& 4.5 %) [184, 171, 134, 49] than the QBER presented
here.
The security of the presented system in terms of key randomness, confidentiality and

integrity is based on the violation of Bell’s inequalities, photon correlation measurement
and error rate estimation (see Figure 8.1). It is also possible to combine Bell inequality
test and key distribution into a single sequence, which requires a small modification to the
measurement bases of the presented distribution protocol so that they maximally violate
the CHSH version of the Bell inequalities. Alice and Bob can then perform permanent
Bell tests on the quantum system to ensure random generation and secure distribution of
the key based on the violation of Bell’s inequalities, as proposed in [173, 110].
In principle, the presented methods can be extended to any entangled two-qubit state

and are especially applicable within the framework of entanglement-based quantum re-
peaters, which in particular enables the realisation of key distribution beyond the point-
to-point limit of quantum communication (see Outlook).
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The summary provides an overview of the results of the thesis. The discussion of the
achievements in the context of current research can be found in the respective chapters
and the corresponding summaries. We conclude the thesis with an outlook to possible
improvements and put the presented setup in the context of a long-term perspective in
quantum communication. We point out the role of memory-based network nodes for long-
distant communication, especially with regard to the realisation of a quantum repeater.

9.1 Summary

In this thesis, we have laid the groundwork for entanglement-based quantum communica-
tion with fibre Fabry-Pérot cavities as efficient light-matter interfaces in combination with
trapped ions as long-lived memory qubits.
We built an advanced fibre cavity setup resonant to the principal UV transition of Yb+

at 370 nm and combined it with a miniature Paul trap. With this setup, we were able
to overcome some of the limiting shortcomings of previous fibre cavity setups, such as
degradation of the mirrors, incompatibility with microwave pulses and destabilisation of
the ion trap. Using the fibre cavity as light-matter interface, we realised an efficient collec-
tion of photons emitted from the single trapped ion, where the photons have a controlled
temporal profile, polarisation state and spatial mode, which are important properties
for quantum information processing and quantum communication. We measured an ef-
fective light-matter coupling of geff = (7.2± 1.2)MHz and a photon collection efficiency
of Pc,eff = (8.4± 2.2) %. At the same time, the cavity provides a fast extraction of col-
lected photons of 1.4(1) ns with intrinsic fibre coupling, allowing for an easy distribution
of quantum information to other elements of a network at a high rate.
The small size of the fibre cavity enables excellent optical access to the trapped ion

allowing for precise control and manipulation of this long-lived stationary qubit. We
demonstrated high-fidelity initialisation (> 99 %) and readout (98.2(6) %) of the atomic
qubit state and coherent storage of quantum information for up to 12ms. Employing
phase-coherent microwave pulses, we demonstrated the ability to perform arbitrary ro-
tation operations on the qubit state with high fidelity and even complex state mappings
between different qubit transitions.
In the context of setup optimisation, we presented a novel approach to create an em-

pirical model of an experimental apparatus employing machine learning in the form of
supervised or unsupervised learning. We applied this methodology to optimise the po-
sition of the ion in the Paul trap with a greatly reduced amount of required data. The
resulting improvement in trapping stability supports general data acquisition on the setup
and the availability of the ion as a communication node. Since the presented methods are
based on general assumptions and are flexible in terms of implementation and deployment,
they are applicable to a wide range of different optimisation tasks covering several fields
of experimental physics.
Combining all these achievements, we demonstrated the deterministic generation of

entanglement between the spin state of the ion and the polarisation degree of freedom of
an emitted photon by utilising the spontaneous decay of the ion. To this end, we excited
the ion with a probability of (99± 1) % using picosecond long laser pulses and achieved a
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success rate of detecting atom-photon entanglement per trial of 2.58(6)×10−3. At the same
time, to the best of our knowledge, we achieved the yet shortest temporal profile of photons
extracted through the cavity of 9.3(9)ns by more than an order of magnitude compared
to previous cavity-based realisations of entangled atom-photon states [143, 99, 164]. This
is advantageous for impedance matching to further elements of a network [117] and high-
fidelity state detection. By implementing real-time branching of experimental sequences,
we achieved an entanglement detection rate of 58Hz by performing a conditional readout
of the atomic state only upon detection of the photonic qubit.
We performed a full tomography of the atom-photon state followed by a maximum

likelihood estimation to ensure the obtained density matrix of the state to be physical.
From the tomography, we obtained a state detection fidelity of F = (90.1 ± 1.7) %. We
demonstrated full control over the state mapping of each qubit and performed a detailed
investigation of the errors that contributed to the measured state fidelity.
Since we achieved in this thesis all requirements for memory-based quantum commu-

nication in a single experiment, we were able to demonstrate the first quantum key dis-
tribution between two remote parties involving an entangled memory qubit on one side.
This achievement favours long-distance key exchange especially with respect to quantum
repeaters. For the key distribution we achieved a quantum bit error rate of 8.3 % and
a sifted key rate of 6Hz. The trapped ion enables a secure distribution of the quantum
key according to the laws of quantum mechanics by generating true single photons with a
temporal second-order correlation of g2(0) = 0.00(5).
Considering the fundamental non-locality of our entangled two-qubit state for the gen-

eration of the final secret key, we have shown that certifiable randomness of the derived
key can be ensured with a high confidence level δ < 0.01 by performing a finite set of
Bell test measurements. This kind of provable randomness is an outstanding property
of entangled quantum systems violating the Bell inequalities and is impossible to obtain
in classical information theory. We measured a Bell-violation of gmeas = 2.33(6) for the
atom-photon state, which is consistent with the measured entangled state fidelity.
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9.2 Outlook

As a short-term improvement to the experimental setup, optimising the experimental
sequence used for generation and detection of the entangled atom-photon state could
increase the rates of both by up to an order of magnitude (∼ 600Hz detection rate).
However, this should be done while ensuring sufficient cooling of the ion, e.g. by separating
entanglement generation sequences and cooling cycles. About the same gain over the
current rate can be expected by exploiting the full potential of the fibre cavity. This
requires improved mechanical stabilisation of the cavity structure for optimised coupling
of the resonator mode to the atomic transition as well as precise longitudinal positioning
of the ion in the resonator.
Although we achieved a remarkable improvement in trapping stability compared to

previous experiments with UV fibre cavities, recent progress in printing metal layers on
dielectric surfaces are promising for electrically shielding the unused areas of the fibre
mirrors. Since the mode of the resonator on the mirrors is typically smaller than the
diameter of the fibres, this stray electric field shielding could be realised without clipping
the mode of the resonator (see Figure 9.1). This could support trapping stability and
optimal localisation of the ion within the cavity mode due to a reduced exposure of the
ion to stray electric fields originating from the charged dielectric mirror surfaces. Taking
this further, one can even think about integrated ion traps at the tip of optical fibres.

Fibre GND

Gold electrode

Fibre core

Figure 9.1: Two mirrors, each on a fibre tip, form an optical resonator. The area of each mirror
is reduced by a ring-shaped gold electrode without clipping the resonator mode. GND: electrically
grounded.

Where possible, applying these methods to the current or a future fibre resonator
assembly could help to achieve a stable nominal light-matter coupling of g ≈ 2π · 40MHz
for the existing design parameters of the resonator. In this case, the nominal collection
efficiency would be about Pc ∼ 70 %, while the cavity maintains a fast extraction of
photons (κ ≈ 2π · 60MHz).

Long distant quantum networks
Due to the high absorption of ultraviolet light in optical fibres, the presented applications
of quantum communication are limited in their range in practice. A logical next step
in the realisation of a quantum network node would be the inclusion of a frequency
conversion to telecom wavelength, which has been demonstrated recently for Ca+ ions
[24, 99] and single Rubidium atoms [72]. The principle of a conversion between 370 nm
and 1314 nm with 10.5% efficiency [148] or 1580.3 nm with 9 % efficiency [79] has been
demonstrated already for weak laser fields. Conversion pathways for matching the
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trapped ion qubit to semiconductor quantum dots [117] or other emitters can also be
explored, where the short temporal profile of the collected photons could be advantageous.

The ion-cavity system as a module for a quantum repeater
To exploit the capabilities of the trapped ion as a long-lived memory qubit, memory-
enhanced quantum communication offers the ability to surpass the fundamental limit of
quantum communication via point-to-point links (PLLs). These kind of links naturally
encounter a physical limit when the loss of the communication channel over distance is
considered [166, 137]. Due to the absorption of photons in optical fibres or in another
medium, the path efficiency

ηpath(d) = exp [d · ln (ρ)] (9.1)

scales exponentially with the distance of the path d, where ρ is the transmittance of the
medium in units of d. However, with memory-based quantum repeaters, it is possible to
overcome the point-to-point limit for quantum communication [172, 21] while maintaining
the advantageous properties of quantum communication.

To understand the advantage of memory-based quantum communication, we investigate
two different kinds of application schemes for the building block of atom-photon entan-
glement presented in this thesis. As mentioned before, the point-to-point link efficiency
Rppl(d) ∝ ηpath(d) drops exponentially with the link distance d (equation (9.1)). A partial
projective Bell-state measurement (BM) positioned centrally between the two communi-
cation participants allows to entangle both endpoints, with each photon travelling half the
distance d/2 through the medium, as shown in Figure 9.2 a). However, this scheme is not
able to increase the efficiency of the link. Here, the probability for a photon to be detected
on a single photon detectors (SPC) is

Pd,eff = Psource · ηdetector+optics︸ ︷︷ ︸
≡ηdetection

· ηpath(d/2)︸ ︷︷ ︸
=exp[d/2·ln(ρ)]

,
(9.2)

where we summarised in Psource the efficiency of generating an entangled atom-photon
state and coupling the photon into the optical fibre.
Using this efficiency, we can compute the expected link efficiency Rbm for the BM

scheme. For a successful entanglement of both endpoint nodes, the photons emitted by
the two nodes must both be detected at the SPCs in a single attempt, for which the
probability is

Rbm = 0.5 · P 2
source · η2

detection · η2
path(d/2) ∝ exp [2 · d/2 · ln (ρ)] , (9.3)

where the factor of 0.5 considers the detection of 2 out of 4 Bell states according to [161].
We find that Rbm scales in the distance of the quantum link d equivalent to a PPL with
Rppl(d) ∝ ηpath(d).
The requirement for simultaneous detection of both photons for the central Bell state

measurement eliminates the gain from halving the travel distance of each photon. However,
if we could entangle each half of the link by itself and then, after success on both halves,
project the entanglement onto the two endpoint nodes, the scaling of the path efficiencies
would be ηpath(d/2). This is exactly how the single node quantum repeater works. This
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requires the caching of entanglement for which memory qubits are excellent candidates.
Therefore, the usage of two ions to form repeater node as shown in Figure 9.2 b) could
be explored using the network node presented in this thesis as a building block. The link
efficiency for a single node quantum repeater (QR) in the so-called node-sends-photon
configuration (NSP) scales as

Rqr,nsp = 0.5 · ηnode · P 2
source · η2

detection · η2
path(d/4) ∝ exp [d/2 · ln (ρ)] , (9.4)

where ηnode takes into account the efficiency of the entanglement mapping at the repeater
node, but is assumed to be ηnode ≈ 1 for the following estimations. In this scheme of a
memory-based quantum repeater, a distance d can be bridged, with each photon travelling
the PPL-equivalent distance d/2 in an optical fibre.

Bell state 
measurement

Repeater node

Repeater segment

Repeater cell

Bell state 
measurement

Transmission distance: d/4Transmission distance: d/4

SPCs

BS

Fibre
Travelling qubit

Bell state 
measurement

Psource

Transmission distance: d/2 with ηPath=ρ d/2

Memory qubit
ηdetection

ηdetection

a)

b)

Figure 9.2: Quantum communication over distance d. Matter qubits acting as quantum memory
are shown in yellow. Photons as travelling qubits are shown in blue. The building block of atom-
photon entanglement was realised within this thesis (dashed circle). The inset at the Bell state
measurement element shows the simplest implementation of a bell state measurement using a 50:50
beam splitter (BS) and two single photon counters (SPC). For calculations, a setup comprising
of one BS, two polarising BSs and four SPCs is considered [161] a) Spin-spin entanglement using
a Bell state measurement (BM) centrally between the communication endpoints. b) Quantum
repeater in node-sends-photon (NSP) configuration. Nomenclature taken from [172].

For the communication schemes presented in Figure 9.2 a)+b), the expected link efficien-
cies according to equations (9.3) and (9.4) are shown in Figure 9.3 a) for the parameters
currently achieved in the experiment98: ρ = 0.83(10)m−1, Psource = (1.9± 0.6) % and
ηdetection = (16.9 ± 1.0) %. In Figure 9.3 b) the calculations are shown for the achievable
parameters resulting in Psource = (16.4± 2.4) %, which we inferred from the design of the
system according to subsection 5.5.3. In both cases the repeater scheme is superior to the
centrally Bell state measurement scheme. Using the repeater, it could be even possible to
98 We take the numbers from equation (5.67) with Pd,eff = ηexc · Pc,eff · ηext · εm︸ ︷︷ ︸

Psource

·ηdetector · ηpath+optics. We

defined ηdetection to contain the detector quantum efficiency ηdetector and the optics in front, such that
we have the net effect of the photon path encoded in the quantity ηpath.
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beat the absolute theoretical upper limit of any equivalent point-to-point communication
in a high channel loss approximation of ∼ 1.44 · ηpath(d) [137]. For this purpose, a PPL
equivalent channel loss of ∼ 110dB would be required with the current parameters and a
channel loss of ∼ 75dB at minimum. For the latter, we expect Rqr,nsp ≈ 10−7, which at
a repetition rate of 1/(3.1µs) would correspond to about 2 entanglement events between
the endpoint nodes per minute, which is definitely a detectable rate.
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Figure 9.3: Link efficiency vs. PPL-equivalent channel loss ηpath,ppl and the corresponding
link distance d with ηpath,ppl ≡ ηpath(d) according to equations (9.1), (9.3) and (9.4) with
ρ = 0.83(10)m−1 (UV-fibre). a) Parameters currently achieved in the experiment. b) Achievable
parameters inferred from the design of the system according to subsection 5.5.3. The shaded areas
depicts the uncertainty of the calculations based on the errors of the included parameters. The
dashed black line depicts the upper bound of − log2(1− ηpath,ppl) ≈ 1.44 · ηpath,ppl of ’repeaterless’
communication for high losses ηpath,ppl [137].
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A Standard error on binned photon statistic

The standard error ∆p on the relative occurrence p = k/n of a bin containing k out of n
events is calculated as ∆p =

√
p · (1.0− p)/n according to the binomial distribution.

B Clebsch-Gordan coefficients of 171Yb+

As derived in subsection 5.4.1, the coupling strength between to states |e〉 and |g〉 is
determined by the dipole matrix element 〈g| d̂ |e〉. We omitted the explicit calculation of
these matrix elements so far, but their relative strengths becomes particular interesting
when dealing with a multi level system where the transitions in general differ in coupling
strengths. Using the Wigner-Eckart theorem, it is possible to separate the calculation of
the dipole matrix element into an angular dependent part and a pure radial term called
’reduced matrix element’99. The latter can be measured experimentally from the excited
state lifetime, whereas the angular parts gives the relative coupling strength.
We are particularly interested in the 2S1/2 ↔ 2P1/2 hyperfine transitions of 171Yb+

since we use this transitions for cooling, atomic state detection and entanglement gen-
eration in the experiment (see subsection 6.2.2 and section 7.2). Therefore, we define:
|e〉 = |F ′, J ′,m′F 〉 and |g〉 = |F, J,mF 〉.

For calculation of the dipole matrix element, it is useful to write the dipole operator in
the spherical basis as [85]

d̂ = er̂ = er̂
∑
q

√
4π

2l + 1Y
1
q · êq, (10.1)

where q labels the component of the spherical basis and Y l
m are the spherical harmonics.

Using the Wigner-Eckart theorem, we derive for a specific component q of the dipole
matrix element 〈g| d̂ |e〉q the expression

〈F, J,mF | erq
∣∣F ′, J ′,m′F 〉 = 〈J | |er̂|

∣∣J ′〉 (−1)F
′+J+1+I

√
(2F ′ + 1) (2J + 1)

· (−1)F
′−1+mF

√
2F + 1

{
J J ′ 1
F ′ F I

}(
F ′ 1 F

m′F q −mF

)
≡〈J | |er̂|

∣∣J ′〉 · cg(F, J,mF , F
′J ′,m′F , I, q)

(10.2)
according to [156], where the reduced matrix element is denoted with double bars. The
Wigner 3-j symbol (round brackets) ensures that mF = m′F + q holds. The curly brackets
denotes the Wigner- 6-j symbol. The expression cg represents the so-called Clebsch-
Gordan coefficient of the transition. Considering the coupling of a dipole moment to a
radiation field with polarisation components σ± and π, we fully couple to the σ+ polar-
isation component in the case of m′F = mF + 1, for m′F = mF we couple to π and for
m′F = mF − 1 we couple to σ−.

Using equation (10.2), the relative transition strength and phase of |g〉 ↔ |e〉 can be
computed for a certain polarisation component of the field. If we consider the coupling of
99 There exists another convention including a factor of

√
2J + 1 into the reduced matrix element. Here,

we follow the convention of [156]
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an excited state to several decay channels, the phase of the respective channel becomes par-
ticularly interesting for the generation of an entangled atom-photon state by spontaneous
emission into a superposition of ground states.
The Clebsch-Gordan coefficients cg of the allowed 2S1/2 ↔ 2P1/2 hyperfine transitions

are shown in Figure 10.1.
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Figure 10.1: Clebsch-Gordan coefficients of the allowed 2S1/2 ↔ 2P1/2 hyperfine transitions of
171Yb+. The coefficients were calculated using equation (10.2) and a nuclear spin of I = 1/2.

As an example, the decay of the |e〉 = |F ′ = 1, J ′ = 1/2,m′F = 0〉 state into a superposition
|F = 1, J = 1/2,mF = −1〉 and |F = 1, J = 1/2,mF = +1〉 is used for the generation of
spin-photon entanglement in this thesis. The decay channels exhibit equal Clebsch-Gordan
coefficients but with opposite sign.
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C Spatial emission characteristics of a classical dipole

The ability of an atom to emit photons into different polarisation modes is a key element
of information encoding in these travelling qubits. We can tailor the resulting entangled
state between atom and photon by collecting emitted photons only along a certain axis in
space. This is the case, due to the atom exhibiting an angular dependence on its photon
emission properties. In the following, we derive the angular dependence of the polarisation
modes by describing the atom as a classical electric dipole antenna with dipole moment d.
The time-averaged power radiated per unit solid angle can be computed as [74]100

dPπ
dΩ = c

8πk
4 · |n× (n× d)|2. (10.3)

For a localised charge oscillating along the z-axis, the dipole moment becomes
d = d0 cos(ωt)êz. If we assume the electric field of the radiation to be linearly polarised
along the oscillation axis, which is also known as π-polarisation, we obtain

dPπ
dΩ = c

8πk
4d2

0 · sin2 (θ) , (10.4)

where k = ω/c is the wave number of the electromagnetic radiation and θ the angle be-
tween the z-axis and the unit vector n pointing along the observation direction. This result
is consistent with the result obtained from a quantum mechanical consideration of spon-
taneous photon emission in a linear polarisation basis and its detection in equation (7.9).
The total average radiated power can be computed as

Pπ =
∫
dPπ
dΩ dΩ = ck4

3 · d
2
0. (10.5)

We can describe circularly polarised radiation (σ±) by assuming an electrical dipole
moment rotating in the x, y-plane with d = d0 (cos(ωt)êx + sin(ωt)êy). The angular dis-
tribution of the time-averaged radiated power with a circularly polarised electric field can
be computed analogously using equation (10.3) as

dPσ
dΩ = c

8πk
4d2

0 ·
(
1 + cos2 (θ)

)
. (10.6)

The total average power radiation for circular polarisation is

Pσ =
∫
dPσ
dΩ dΩ = 2 · ck

4

3 · d
2
0. (10.7)

The factor of 2 in the total radiated power with respect to a linear oscillating dipole results
from the phase of π/2 between the oscillations which makes it equivalent to a description
using a superposition of two oscillating dipoles [63].

For further calculations we normalise the average power radiation per unit solid angle
to the total average radiated power and transfer the findings to the emission of photons
from an atomic decay. Two special cases are particular interesting:

• Perpendicular to the quantization axis (θ = 90◦) the emitted field from a π-decay
has twice the intensity as for a σ+ or σ− decay [161].

• Along the quantisation axis (θ = 0◦) the emission of π-polarised light is fully sup-
pressed.

100 Note that in reference [74] the author makes use of electro statical units. For SI units a factor 1/(4πε0)
is missing

191



10 Appendix

D Magnetic field generation

Here, we introduce the generation of a custom magnetic field at the ion’s position on a
technical level. We present a detailed calibration of the magnetic field in subsection 6.6.1
employing the ion as a sensor. With three pairs of coils we are able to generate a magnetic
field at the position of the trapped ion that can point in any spatial direction. The coils
have a diameter of about 17 cm and are arranged in pairs with about the same distance
of 17 cm. Each pair of coils generates a magnetic field vector at its centre position, which
points along the x-, y- or z- direction of the spatial coordinate system. Figure 10.2 shows a
3D CADmodel101 of the setup including the magnetic field generating coils and a definition
of the spatial axes.

Helical resonator for trap RF

Coils for magnetic field generation

Fibre feedthrough

Mount for in-vacuum adjustment 
of the imaging objective

Vacuum chamber

Ion pump

30 V

Coil 
R=111 Ω
L=29 mH

+

Ctrl

100 kΩ

3 kΩ 1 µF

GND

2N2222

OP07CN

Diodes

100 Ω

1 Ω

 

y
z

x

10 cm

Figure 10.2: 3D CAD model of the vacuum chamber setup showing the magnetic field generation.
Not shown are optics, shielding and electronics. Where available, 3D models of the manufacturers
were used. The remaining parts were modelled in [115, 157]. Inset: Electric circuit diagram of the
current regulator of the z-axis (cavity axis), which is insensitive to load resistance fluctuations and
therefore allows to vary the absolute B-field within the experiment. The output current (. 250mA)
is set via a control voltage (Ctrl, 0-10V).

Since we want to be able to change the magnetic field along the z-axis (cavity and
quantisation axis) in the experiment, we have to control the current flow through this
pair of coils. This allows to compensate for possible impedance fluctuations when the
temperature of the coils changes as the electrical power supply changes. Figure 10.2
shows the control circuit taking a reference voltage as an input, which sets the current
flowing through a nominal 1 Ω reference resistance. Instead of the resistance of the coils,
this 1 Ω resistor sets the current flowing through the coils. The noise of the current flow
is mainly given by the ripple of the applied control voltage. We measure the ripple to be
smaller than 0.1mA in total, which results in < 10−3 relative B-field stability.

101 Generated in Inventor from Autodesk
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E Experimental setup

For the magnetic field generation along the two remaining spatial axes (x, y), we use
commercial power supplies102 with a nominal peak-to-peak ripple of 10mV in a constant
voltage (CV) regulation mode. This transforms to a 0.1mA current ripple on the magnetic
field coils as well (R ∼ 111 Ω). Since the performance of the power supplies in constant
current mode is at least by a factor of 5 worse, we use CV mode on this coils. In this mode,
the commercial supplies do not react on impedance changes of the coils and a steady state
of the coil temperature and consequently the current flow is reached after a few hours,
which is fine for a static application of a magnetic field.
Furthermore, we observed a weak magnetisation of the setup on the order of ∼ 100mG

for changing magnetic fields. Reliable and repeatable magnetic field values for a given
value of coil current can be achieved by slowly ramping the magnetic field to zero before
applying the desired current value.

E Experimental setup

Vacuum chamber

Magnetic field coil

Cobalt shielding

Horn antenna

Figure 10.3: Picture of the vacuum chamber setup including optics and parts of the microwave
setup.

102 ES 030-5 and ES 075-2 from Delta Elektronika
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