Zur Kurzanzeige

Upscaling from Atomistic Models to Higher Order Gradient Continuum Models for Crystalline Solids

dc.contributor.advisorGriebel, Michael
dc.contributor.authorArndt, Marcel
dc.date.accessioned2020-04-06T23:00:15Z
dc.date.available2020-04-06T23:00:15Z
dc.date.issued2004
dc.identifier.urihttps://hdl.handle.net/20.500.11811/2122
dc.description.abstractIn this work a new upscaling scheme for the derivation of a continuum mechanical model from an atomistic model for crystalline solids is developed. The scheme, called the inner expansion technique, is based on a Taylor series expansion of the deformation function and leads to a continuum mechanical model which involves higher order derivatives. It provides an approximation of the atomistic model within the quasi-continuum regime and allows to capture the microscopic material properties and the discreteness effects of the underlying atomistic system up to an arbitrary order.
The quality of approximation is investigated for the model problem of an atomic chain with different types of potentials, including many-body potentials. The outcome of the inner expansion technique is numerically compared to other upscaling techniques, namely the classical thermodynamic limit and the direct expansion technique. It is shown that our technique carries over certain properties such as convexity from the atomistic to the continuum mechanical level, which results in well-posed problems on the continuum mechanical level. Furthermore, macroscopic approximation techniques are discussed to reduce the complexity of the continuum model.
The upscaling technique is applied to the Stillinger-Weber potential for crystalline silicon and to the potential given by the Embedded-Atom Method (EAM) for shape memory alloys (SMA). Numerical simulations of the dynamic response of a silicon crystal and of one-way and two-way SMA micro-actuators are performed.
dc.language.isoeng
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectInnere Expansionstechnik
dc.subjectAbleitung höherer Ordnung
dc.subjectQuasi-Kontinuums-Regime
dc.subjectHochskalierung
dc.subjectKontinuums-Limes
dc.subjectMehrskalensimulation
dc.subjectMolekulardynamik
dc.subjectKontinuumsmechanik
dc.subjectinner expansion technique
dc.subjecthigher order derivative
dc.subjectquasi-continuum regime
dc.subjectupscaling
dc.subjectcontinuum limit
dc.subjectmultiscale simulation
dc.subjectmolecular dynamics
dc.subjectcontinuum mechanics
dc.subject.ddc510 Mathematik
dc.titleUpscaling from Atomistic Models to Higher Order Gradient Continuum Models for Crystalline Solids
dc.typeDissertation oder Habilitation
dc.publisher.nameUniversitäts- und Landesbibliothek Bonn
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.identifier.urnhttps://nbn-resolving.org/urn:nbn:de:hbz:5N-04785
ulbbn.pubtypeErstveröffentlichung
ulbbnediss.affiliation.nameRheinische Friedrich-Wilhelms-Universität Bonn
ulbbnediss.affiliation.locationBonn
ulbbnediss.thesis.levelDissertation
ulbbnediss.dissID478
ulbbnediss.date.accepted11.11.2004
ulbbnediss.fakultaetMathematisch-Naturwissenschaftliche Fakultät
dc.contributor.coRefereeKrause, Rolf


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Die folgenden Nutzungsbestimmungen sind mit dieser Ressource verbunden:

InCopyright