Show simple item record

Effective Evolution Equations from Many-Body Quantum Mechanics

dc.contributor.advisorSchlein, Benjamin
dc.contributor.authorBenedikter, Niels Patriz
dc.date.accessioned2020-04-19T22:10:03Z
dc.date.available2020-04-19T22:10:03Z
dc.date.issued23.05.2014
dc.identifier.urihttps://hdl.handle.net/20.500.11811/6091
dc.description.abstractSystems of interest in physics often consist of a very large number of interacting particles. In certain physical regimes, effective non-linear evolution equations are commonly used as an approximation for making predictions about the time-evolution of such systems. Important examples are Bose-Einstein condensates of dilute Bose gases and degenerate Fermi gases. While the effective equations are well-known in physics, a rigorous justification is very difficult. However, a rigorous derivation is essential to precisely understand the range and the limits of validity and the quality of the approximation.
In this thesis, we prove that the time evolution of Bose-Einstein condensates in the Gross-Pitaevskii regime can be approximated by the time-dependent Gross-Pitaevskii equation, a cubic non-linear Schrödinger equation. We then turn to fermionic systems and prove that the evolution of a degenerate Fermi gas can be approximated by the time-dependent Hartree-Fock equation (TDHF) under certain assumptions on the semiclassical structure of the initial data. Finally, we extend the latter result to fermions with relativistic kinetic energy. All our results provide explicit bounds on the error as the number of particles becomes large.
A crucial methodical insight on bosonic systems is that correlations can be modeled by Bogoliubov transformations. We construct initial data appropriate for the Gross-Pitaevskii regime using a Bogoliubov transformation acting on a coherent state, which amounts to studying squeezed coherent states.
As a crucial insight for fermionic systems, we point out a semiclassical structure in states close to the ground state of fermions in a trap. As a convenient language for studying the dynamics of fermionic systems, we use particle-hole transformations.
dc.language.isoeng
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectVielteilchentheorie
dc.subjectQuantendynamik
dc.subjectQuantentheorie
dc.subjectQuantenmechanik
dc.subjectBose-Einstein-Kondensat
dc.subjectnichtlineare Schrödinger-Gleichung
dc.subjectGross-Pitaevskii-Gleichung
dc.subjectHartree-Fock-Gleichung
dc.subjectkohärente Zustände
dc.subjectmathematische Physik
dc.subjectMany-body theory
dc.subjectQuantum dynamics
dc.subjectQuantum theory
dc.subjectBose-Einstein condensation
dc.subjectdilute Bose gas
dc.subjectdegenerate Fermi gas
dc.subjectnonlinear Schrödinger equation
dc.subjectGross-Pitaevskii equation
dc.subjectHartree-Fock equation
dc.subjectTDHF
dc.subjectBogoliubov transformation
dc.subjectsqueezed coherent state
dc.subjectparticle-hole transformation
dc.subjectsemiclassical techniques
dc.subjectsemiclassical analysis
dc.subjectmathematical physics
dc.subjecttime-depedent Hartree-Fock equation
dc.subject.ddc510 Mathematik
dc.titleEffective Evolution Equations from Many-Body Quantum Mechanics
dc.typeDissertation oder Habilitation
dc.publisher.nameUniversitäts- und Landesbibliothek Bonn
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.identifier.urnhttps://nbn-resolving.org/urn:nbn:de:hbz:5n-36006
ulbbn.pubtypeErstveröffentlichung
ulbbnediss.affiliation.nameRheinische Friedrich-Wilhelms-Universität Bonn
ulbbnediss.affiliation.locationBonn
ulbbnediss.thesis.levelDissertation
ulbbnediss.dissID3600
ulbbnediss.date.accepted30.04.2014
ulbbnediss.instituteMathematisch-Naturwissenschaftliche Fakultät : Fachgruppe Mathematik / Institut für angewandte Mathematik
ulbbnediss.fakultaetMathematisch-Naturwissenschaftliche Fakultät
dc.contributor.coRefereeConti, Sergio


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

The following license files are associated with this item:

InCopyright