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Abstract

Virtual experiences are becoming increasingly popular, primarily due to tremendous progress
in Virtual Reality (VR) and Augmented Reality (AR) technologies improving immersion and
making related devices more affordable. These immersive experiences frequently rely
on the detailed and accurate reconstruction of real-world objects or people. While some
applications can utilize assets captured offline in highly calibrated environments, others
depend on real-time online scene reconstruction.

A complete reconstruction consists of information regarding geometry, illumination, and
reflectance properties. Especially capturing the reflectance characteristics of real-world
scenes is very challenging as it relies on the disentangling of intrinsic scene properties
based on appearance samples. While a dense sampling and consecutive fitting of reflectance
models may be feasible in an offline setting, this is not the case for applications depending
on real-time reflectance estimation, as they usually impose additional constraints preventing
a structured and controlled capturing process.

To this end, we identify two main challenges for the field of reflectance estimation in this
thesis, which must be overcome to build practical real-time reflectance estimation pipelines:
strong time constraints and sparsity of appearance samples. As part of the thesis, we
present three previously published projects to address these: First, we propose a complete
real-time reflectance estimation pipeline efficiently implemented on the GPU and leveraging
deep learning techniques. Afterward, we explore denoising to restore reflectance estimates
corrupted by noise-like artifacts due to the mentioned challenges. Finally, a novel lightweight
edge and boundary detection approach is proposed to improve scene understanding and
provide additional helpful information to reflectance estimation pipelines.
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Chapter 1

Introduction

With the recent popularity ofMetaverse [Lee et al., 2021] as well as Augmented Reality (AR)
and Virtual Reality (VR) related technology, the capturing of real-world scenes and creation of
virtual duplicates is more important than ever. Being able to create truly immersive virtual
experiences would have many benefits for our everyday life. The ecological footprint could
be reduced due to less required traveling as many activities could be done using telepresence
systems. People could interact socially over long distances without missing out on aspects
of typical in-person social interaction, which would improve general mental well-being.
Life would be more inclusive by allowing everyone to participate in society regardless of
personal handicaps. Besides telepresence, there are numerous applications for immersive
reconstructions in various fields, including entertainment, cultural heritage, and remote
exploration of dynamic and dangerous environments.

While for many VR applications, it might be sufficient to bake the scene illumination into the
appearance representation and only reproduce the captured scene in its entirety, for most
AR applications, this is not enough. Many immersive AR applications require seamlessly
integrating photorealistic virtual objects into the users’ uncontrolled surroundings, which is
generally only possible through the simulation of light transport in the scene.

A critical milestone towards scene reconstruction suitable for physically plausible light
transport simulation is being able to truthfully reconstruct the appearance of a large variety
of different scenes. What we perceive as appearance is a complex interplay of geometry,
illumination, and the reflectance characteristics of materials. As most sensors capture only
one or two of these components but rarely all three, we need algorithms to accurately
reconstruct the unknown scene intrinsics based on incomplete data as well as possible.

Typically, priors are used to account for sparsely captured appearance data, which rely on
strong assumptions on the captured scenes not universally holding for real-world data. Thus,
these reconstruction algorithms often introduce artifacts to the scene, resulting in a loss of
immersion and potentially virtual reality sickness. Moreover, due to the complexity of the
problem and the large amount of data that must be processed to reconstruct a single scene,
most appearance reconstruction algorithms are costly in terms of computational resources.
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Chapter 1 Introduction

This thesis presents methods that tackle these open problems and, thereby, contribute
towards the goal of practical real-time reflectance estimation from sparse data.

1.1 Challenges

The main challenges this thesis is concerned with can be summarized as follows:

Time Constraints Many applications, like the previously mentioned telepresence settings,
require the latency of the capturing and reconstruction system to be in the order of seconds or
even less. Higher latencies could, e.g., prevent suitable reactions to events in highly dynamic
scenes or make social interaction challenging because of delayed feedback. Due to the sheer
amount of data that has to be processed as part of these reconstruction systems, this problem
is not trivial to solve if high-quality reconstructions are required. Especially the fitting of
parameters for reflectance models often comes with an enormous computational burden
depending on the underlying algorithm.

Sparse Data In most practical settings, dense sampling of the scene’s appearance is not
feasible due to constraints imposed by the targeted application. An exemplary setting is the
exploration of hazardous environments with a remotely controlled robot as the appearance of
the scene changes according to the view point, and the robot might not be able to maneuver
the environment freely. Moreover, smooth surfaces can exhibit very sharp highlights.
Capturing these highlights is crucial for successfully estimating high-quality reflectance
properties so as to not estimate the respective surface to be overly rough due to the absence
of sharp reflections. However, they are also easily missed as they might only be visible
under particular view and illumination configurations. This problem is even more severe in
dynamic scenes in which one of the inherent scene properties responsible for the scene’s
appearance, i.e., geometry, illumination, or reflectance characteristics, changes over time,
requiring one to sample the temporal domain as well. In conjunction with time constraints
that make processing large amounts of data challenging, the aspects mentioned earlier
require specifically designing algorithms to estimate the scene’s reflectance characteristics
based on sparse data.

1.2 List of Publications and Contributions

I have contributed towards the goal of practical real-time reflectance estimation throughout
multiple research projects. These projects are integral parts of this thesis. The publications,
as well as short descriptions, are listed in the following:
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1.2 List of Publications and Contributions

• Lukas Bode, Sebastian Merzbach, Patrick Stotko, Michael Weinmann, and Reinhard
Klein.
“Real-time Multi-material Reflectance Reconstruction for Large-scale Scenes under
Uncontrolled Illumination from RGB-D Image Sequences.”
International Conference on 3D Vision (3DV), 2019.
doi: 10.1109/3DV.2019.00083
Contribution: In this work, we propose a complete reflectance estimation pipeline for
large-scale scenes. An efficient GPU implementation makes the algorithm capable of
online estimation of reflectance parameters and real-time rerendering of the resulting
virtual scene. The reflectance parameters are estimated from sparse data in a per-object
manner by utilizing a deep neural network in conjunction with a geometry-based
scene segmentation. Furthermore, a novel albedo refinement technique enables the
reconstruction of objects with spatially varying reflectance properties.

• Lukas Bode, SebastianMerzbach, Julian Kaltheuner, MichaelWeinmann, and Reinhard
Klein.
“Locally-guided Neural Denoising.”
Graphics and Visual Computing (GVC), 2022.
doi: 10.1016/j.gvc.2022.200058
Contribution: Usually, time constraints can be satisfied by accepting lower-quality
reconstructions, e.g., by using less data for the fitting of reflectance model parameters.
While a low number of appearance samples may be sufficient to reconstruct rough
materials accurately, the same number of samples may yield corrupted results for
smooth materials due to a higher chance of sharp highlights not being represented.
In this work, we propose restoring this partially corrupted reflectance data instead
of modifying the capturing and fitting process. We adapt state-of-the-art denoising
algorithms to utilize additional guidance information based on local noise-level
estimates to remove artifacts but preserve fine details in initially clean regions.

• Lukas Bode, Michael Weinmann, and Reinhard Klein.
“BoundED: Neural Boundary and Edge Detection in 3D Point Clouds via Local
Neighborhood Statistics.”
arXiv preprint arXiv:2210.13305, submitted to ISPRS Journal of Photogrammetry and Remote
Sensing (P&RS) (under review), 2022.
doi: 10.48550/arXiv.2210.13305
Contribution: The problem of sparse appearance samples for reflectance estimation
can be tackled by assuming that multiple points of the scene exhibit similar reflectance
behavior and, therefore, pooling the respective appearance samples to estimate a
single set of reflectance model parameters. A common choice is to assume objects to
consist of a homogeneous material. However, this assumption is quite limiting as many
real-world objects are assembled from multiple materials. To alleviate the requirement
of only capturing homogeneous objects, we can instead assume individual smooth
surfaces of objects to consist of independent homogeneous materials. In this work, we
propose a novel state-of-the-art algorithm for edge and boundary detection in point
clouds, which could be used to find such a segmentation of the scene into individual
smooth surfaces.
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Chapter 1 Introduction

Besides the previously listed works, I also contributed to the following publication, which,
however, is not part of this thesis:

• Julian Kaltheuner, Lukas Bode, and Reinhard Klein.
“Capturing Anisotropic SVBRDFs.”
International Symposium on Vision, Modeling, and Visualization (VMV), 2021.
doi: 10.2312/vmv.20211372

1.3 Thesis Outline

In the following, we provide an outline for the thesis:

First, important preliminary knowledge is summarized, and previous research related to
practical real-time reflectance estimation is discussed in Chapter 2. Afterwards, a complete
reflectance estimation pipeline [Bode et al., 2019] is described in Chapter 3. Next, the
denoising of images partially corrupted with noise-like artifacts [Bode et al., 2022a] is
explored in Chapter 4. Furthermore, a novel approach for lightweight boundary and edge
detection in point cloud data [Bode et al., 2022b] is presented in Chapter 5. Finally, we
conclude this thesis by summarizing our contributions, discussing limitations, and giving an
outlook for the future of reflectance estimation pipelines in Chapter 6.
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Chapter 2

Background and Related Work

This chapter aims to provide background information and list recent work in the research
fields relevant to this thesis. First, the recent progress in general reflectance estimation
solutions is discussed. We will cover approaches working on only a single or few images
and ones working on whole image sequences. Then, the research background of algorithms
for denoising and edge detection is given, as these are particularly important in the context
of this thesis.

2.1 Reflectance Estimation

Appearance reconstruction is a versatile tool useful for a large variety of different applications.
The general idea is to disentangle various appearance-related properties, i.e., geometry,
illumination, and reflectance characteristics, of a scene based on suitable sensor data. While
we can easily capture scene geometry using, e.g., Time-of-Flight (ToF) depth sensors and
illumination can be captured using photo or video cameras, no such simple solution exists
for capturing the reflectance of surfaces in the wild. Thus, the most common approach
is to sample the appearance of surfaces using photo or video cameras and consecutively
approximately invert the light transport in the scene.

Kajiya [1986] describes the light transport via the rendering equation

!>(G, $>) = !4(G, $>) +
∫
Ω

5 ($8 , G, $>)!8(G, $8) cos�8 3$8 , (2.1)

where !>(G, $) and !8(G, $) are outgoing and incoming radiance in direction $ from and to
surface point G respectively, !4(G, $) is the radiance emitted by the surface from surface point
G in direction $, 5 ($8 , G, $>) is the bidirectional reflectance distribution function (BRDF)
describing the ratio of the radiance being reflected into direction $> to the irradiance from
direction $8 , �8 is the angle between incoming light direction $8 and the surface normal, and
the integration domain Ω consists of all directions over a unit hemisphere in the direction of
the surface normal. Intuitively, this equation describes the appearance of a surface point
G from a given viewing direction $> , which depends on the surface normal, the incoming
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Chapter 2 Background and Related Work

light from all possible directions, and the surface’s reflectance characteristics described by
the BRDF. Note that this formulation already contains several simplifications, including no
transparent surfaces in the scene, no change of wavelength in the light due to fluorescence
or phosphorescence, and no visible subsurface scattering effects. These assumptions are
commonly employed to increase the feasibility of the inverse rendering problem.

Reflectance estimation pipelines try to recover the BRDF 5 for a captured scene. For this,
early works often used multiple photographs captured under controlled environments.
Goldman et al. [2009] propose a photometric stereo technique that reconstructs surface
reflectance as a weighted sum of basis materials based on multiple photographs taken under
various illumination configurations. Combining this with multi-view stereo techniques
and an alternating geometry and spatially-varying bidirectional reflectance distribution
function (SVBRDF) reconstruction, Ruiters and Klein [2009] developed a reconstruction
method for near-planar material samples. Using this method, even global illumination
effects like interreflections can be considered during reconstruction. Furthermore, materials
exhibitingmore complex reflectance characteristics can be captured by leveraging data-driven
reflectance models [Ruiters et al., 2012].

However, despite simplifying the light transport simulation, the problem is still heavily
underconstrained in more practical, less controlled settings as usually only a limited
number of observations from very few directions under very few or even only a single
light configuration are available to reconstruct all intrinsic scene properties. Capturing
the illumination or geometry using additional hardware can reduce the ambiguity of the
inverse rendering problem, but even in this case, the problem remains challenging due to
global illumination effects like shadows and interreflections, as well as complex reflectance
characteristics exhibited by some real-world materials.

Many applications impose additional requirements on the capturing process. Image editing,
e.g., requires the algorithm to work on a single input image. In contrast, in telepresence
applications, image sequences are usually available, allowing for the temporal fusion of
the individual estimates. Hence, this section will touch on different research branches of
appearance reconstruction.

Single- and Few-shot Decomposition Decomposing a given photo or rendering into its
intrinsic components, i.e., geometry, illumination, and reflectance, has been an important
research topic in computer vision for many decades. Already in the 1970s Barrow and
Tenenbaum [1978] published fundamental work decomposing a given image into a product
of a shading and a reflectance layer. Since then, it has been an active research area, and
numerous improvements have been developed.

Based on an HDR image of a single object of known geometry consisting of a homogeneous
material, Romeiro and Zickler [2010] can estimate the object’s reflectance and illumination.
For this, the reflectance is represented as a linear combination of materials from a database.
A wavelet basis is used for illumination. In order to solve the inherent ambiguity of the
problem, very strong statistical priors are employed by Barron and Malik [2014] to find the
most probable decomposition of an image into shape, reflectance, and illumination.

8



2.1 Reflectance Estimation

For some applications, the decomposition into geometry and so-called reflectance maps,
which combine the scene’s illumination and reflectance characteristics, is already sufficient.
An example can be transferring material properties between objects in an augmented reality
context. Deep Reflectance Maps [Rematas et al., 2016] represent classical reflectance maps
as a neural network. The inherent data interpolation capabilities of neural networks are
leveraged to handle the sparse appearance data available in the single input image. Similarly,
Deep Appearance Maps [Maximov et al., 2019] can be used instead if a more expressive
representation is required for the desired application. Fitting such a neural appearance
representation is computationally expensive. Good results have been achieved by training
a separate neural network to predict Deep Appearance Map parameters from a given input
image, also drastically reducing the time required to perform the image decomposition.
This approach, however, introduces a strong dependence on the used dataset for training
this learning-to-learn network, i.e., the network cannot predict Deep Appearance Maps for
images showing objects which are not part of the training data. Assuming a homogeneous
Phong BRDF [Phong, 1975], reflectance maps can also be decomposed into reflectance and
illumination components consecutively [Georgoulis et al., 2016].

High-quality SVBRDFs can be captured by leveraging flash/no-flash image pairs [Aittala et al.,
2015] by exploiting self-similarities. Despite yielding great results, this algorithm is restricted
to flat material samples limiting its applicability for many use cases. The requirement
of using flash/no-flash image pairs can be lifted in this setting by using self-augmented
convolutional neural networks [Li et al., 2017].

Homogeneous BRDFs can also be estimated from more complex objects using a joint
optimization for reflectance and illumination characteristics [Lombardi and Nishino, 2012a;
Lombardi and Nishino, 2015]. Combining the color images with depth images [Lombardi
and Nishino, 2016], these approaches can also be extended to a scene consisting of multiple
objects. Furthermore, Meka et al. [2018] increased the performance and replaced used priors
by utilizing carefully designed encoder-decoder neural networks trained on a large synthetic
dataset in an end-to-end fashion.

The problem of only sparse appearance data being available in a single image can also
be tackled by regularizing the reflectance estimation based on additional sensor data. To
this end, noisy depth data from an RGB-D sensor has been used [Barron and Malik, 2013;
Chen and Koltun, 2013; Hachama et al., 2015; Shi et al., 2015] as well as near-infrared
images captured using respective filters [Cheng et al., 2019b] or hyperspectral images using
a specialized camera [Zhang et al., 2022].

Finally, based on a single image and known geometry, Oechsle et al. [2019] have fomulated
texture optimization as an adversarial problem yielding impressive results.

Additional related work can be found in recent state-of-the-art reports [Bonneel et al., 2017;
Garces et al., 2022].

Offline Estimation from an Image Sequence In many cases, it is feasible to use an entire
image sequence for appearance reconstruction instead of just a single or very few images.

9



Chapter 2 Background and Related Work

While the resulting problem is still underconstrained, the additional data usually enables
much more accurate results.

Early work in this research area relies on collections of images taken from the internet,
with all images showing the same scene under possibly varying illumination. Haber et al.
[2009] can estimate reflectance characteristics in this setting using a wavelet framework. The
algorithm, however, requires accurate geometry of the scene as input. Similar work [Diaz
and Sturm, 2013] is capable of simultaneously estimating the radiometric camera response
curve.

In the particular case of reconstructing the appearance of a flat surface, Albert et al. [2018]
propose to use a mobile phone video as input. By placing additional auxiliary markers in
the scene, high-quality SVBRDF estimates can be achieved.

Several works have been published to recover the reflectance characteristics of a single
object from video input. Utilizing given accurate geometry of the object as additional input,
spatially varying diffuse albedo as well as per-cluster homogeneous Phong BRDF [Phong,
1975] parameters can be reconstructed based on statistical priors [Palma et al., 2012]. Under
the additional requirement of the video showing a rotating object from a fixed view point,
even more expressive spatially-varying microfacet BRDF parameters can be estimated [Dong
et al., 2014].

Based on RGB-D data captured with commodity sensors, a joint estimation of geometry
and reflectance [Wu et al., 2015] can be performed to alliviate the need for a given accurate
geometry while at the same time leveraging the low noise-level in RGB images to improve the
reconstructed geometry. Learning-based techniques are also used to estimate homogeneous
Ward BRDF [Ward, 1992] parameters based on RGB-D data unter uncontrolled but static
illumination [Kim et al., 2017]. The network for this algorithm is trained on synthetic
data only and therefore avoids the need for an expensive collection of real-world training
data. More complex scenes consisting of multiple objects can be reconstructed based on
a segmentation of the scene [Richter-Trummer et al., 2016] or based on an initial signed
distance field (SDF) geometry reconstruction with a subsequent coarse-to-fine refinement of
estimated geometry and albedo estimates [Maier et al., 2017].

Another branch of research focuses on capturing color textures from RGB-D data. Applying
a global optimization scheme to align the observations from various view points yields
high-quality textures capturing even fine details [Zhou and Koltun, 2014; Bi et al., 2017;
Fu et al., 2021]. Furthermore, color textures can also be obtained through adversarial
machine-learning techniques [Huang et al., 2020]. While such a texture captures fine details
of the scene very well, these approaches are not applicable to tasks requiring relighting as no
physically-based reflectance is captured.

Differentiable Rendering Recently, differentiable rendering became a prevalent tool for
appearance reconstruction tasks. More and more differentiable rendering frameworks
are published, ranging from general purpose differentiable path-tracers [Li et al., 2018;
Nimier-David et al., 2019] over more light-weight solutions [Zhang et al., 2020; Lassner and

10



2.1 Reflectance Estimation

Zollhofer, 2021] to differentiable rasterization-based renderers [Laine et al., 2020]. With the
help of these frameworks, a gradient with respect to scene parameters like illumination,
geometry, or reflectance can be calculated for a rendered image, which allows for stochastic
gradient descent-based optimization to find parameters matching one or more given input
images.

A rendering-aware network layer is used by Liu et al. [2017] to allow for optimization-based
material editing of an object in a given image. Azinovic et al. [2019] use a differentiable
rendering formulation to estimate a scene’s material properties and illumination based on
given RGB images and the scene’s geometry. To make this optimization problem practical,
they fit one set of reflectance parameters per object based on a scene segmentation. Moreover,
by leveraging a cascaded networkwith a differentiable rendering layer, reflectance parameters
for indoor scenes can be estimated with high quality from a single image [Li et al., 2020],
allowing for realistic insertion of virtual objects into the scene, including global illumination
effects like shadows or interreflections. Similarly, Dai et al. [2021] utilize differentiable
rendering to improve the alignment of textures in an RGB-D data-based reconstruction.
Besides mesh and SDF-based scene representation, differentiable rendering is also used in
conjunction with surface splatting [Müller et al., 2022a].

Another way to approach the problem is by training a neural network to perform the image
formation process, as neural networks are inherently differentiable. Nguyen-Phuoc et al.
[2018] demonstrate the success of this technique for rendering and inverse-rendering tasks.
While this uses a classical scene representation, Thies et al. [2019] use a proxy geometry and
a neural texture to reconstruct scenes with complex appearance. This is possible by training
both neural texture and rendering network in an end-to-end fashion.

For novel view synthesis tasks, Neural Radiance Fields (NeRFs) [Mildenhall et al., 2021]
have tremendously improved the state of the art using an MLP to represent the scene
as a combination of opacity and color values trained using a differentiable volumetric
rendering loss function. Building on the initial work, many improvements have been
proposed, including the usage of a spatial hashing scheme to accelerate training and
inference performance [Müller et al., 2022b], tiling of individual NeRFs to enable city-
scale reconstruction [Tancik et al., 2022], handling of dynamic scenes through learning an
additional mapping of spatial positions to a canonical NeRF for each timestep [Pumarola
et al., 2021], leveraging multi-scale representations to reduce aliasing artifacts [Barron et al.,
2021], utilizing a distortion-based regularizer to handle unbounded scenes [Barron et al.,
2022] and many more.

Recently, a newdifferentiable rendering technique [Vicini et al., 2021]was published, reducing
the memory footprint and improving performance. Despite these recent improvements
and results of impressive quality, differentiable rendering approaches are too slow for most
time-critical applications.

A complete overview of recent publications in the field of differentiable and neural rendering
is given in the recent survey by Tewari et al. [2022].
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Chapter 2 Background and Related Work

Online Estimation from an Image Sequence The KinectFusion [Izadi et al., 2011; New-
combe et al., 2011] algorithm was the first to enable online 3D scene reconstruction from
RGB-D data obtained with consumer-grade depth sensors. Through an efficient registration
and consecutive integration of new depth images on the GPU, room-scale scenes can be
scanned with real-time visual feedback. In the following years, many reflectance estimation
algorithms included a geometry reconstruction relying on this algorithm or one of its many
successors improved, e.g., regarding the maximum size of the scene or globally consistent
camera pose estimation [Nießner et al., 2013; Kähler et al., 2015a; Kähler et al., 2016; Dai
et al., 2017].

Modern voxel-based online geometry reconstruction pipelines working on RGB-D data
consist of the following basic steps:

1. Camera Pose Estimation and Reprojection: First, the camera pose of the new frame
is estimated to reproject the depth images into the global 3D coordinate system. The
pose estimation is usually conducted by finding a transformation between the depth
data of the current frame and the reconstructed scene model up to the last frame.

2. SDF Update: The scene geometry is internally represented as a signed distance field
(SDF) stored in a voxel grid, i.e., each voxel holds the distance to the nearest surface.
This representation allows for an efficient update according to the data of the new
frame by using a weighted averaging scheme.

3. Surface Extraction: After the new depth data has been integrated into the global scene
geometry representation, an explicit surface can be generated from the SDF using,
e.g., the ray marching [Hart et al., 1989] or marching cubes [Lorensen and Cline, 1987]
algorithms.

Commodity RGB-D sensors often use automatic exposure adjustment to yield reasonable
images in various illumination settings. This can be problematic for interpreting measured
color values over multiple frames and the respective data fusion throughout the image se-
quence. TheHDRFusion [Li et al., 2016] algorithm tackles this problem using an intermediate
exposure estimation step in the reconstruction pipeline, which allows them to reconstruct
HDR color maps for the scene.

By using an additional camera with a fish-eye lens to capture the environment, Knecht et al.
[2012] can estimate Phong BRDF [Phong, 1975] parameters for the scene. While building on
a geometry reconstruction framework with real-time capabilities, they do not reach real-time
framerates for the reflectance estimation.

Kerl et al. [2014] were the first to utilize the infrared (IR) light emitted by ToF sensors like
the Microsoft Kinect. Since this IR light has a much higher intensity than natural IR light
in typical scenes, the captured IR images can be interpreted as illuminated by a single
colocated point light source. This insight can be used to employ additional regularization
to the estimation of reflectance in the spectrum of visible light. The AppFusion [Wu and
Zhou, 2015] algorithm combined an IR-based clustering with capturing the environment by
means of a mirror sphere in the scene in a multi-stage approach. Hereby, it can estimate
high-quality Ward BRDF [Ward, 1992] parameters for a scanned object. Moreover, Stotko
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et al. [2019] utilize an additional object-based scene segmentation to further improve the
coupling between RGB and IR images to estimate reflectance parameters for the scene.

With a focus on the application of live video editing, Meka et al. [2016] can decompose
a scene into reflectance and shading layers in real time based on RGB video input. This
approach yields impressive results for scenes in which the underlying assumption of purely
lambertian reflections holds. These real-time video editing capabilities can be extended
further to enable live user-guided editing [Meka et al., 2017] by utilizing RGB-D input data
and storing user-specified constraints on a proxy geometry.

Increasingly more accurate geometry reconstructions enabled Whelan et al. [2016] to ap-
proximate the scene’s illumination through a set of point light sources distributed over the
scene through a voting-based approach. For this, specular highlights in the color images are
detected, and corresponding rays are traced through the scene based on the reconstructed
geometry. Consecutively, point light sources are placed in voxels that were hit by the highest
number of rays. Omitting the need for depth input, Meka et al. [2021] employ clustering and
an alternating optimization scheme of illumination and per-cluster base colors to decompose
the video frames into a single direct and multiple indirect illumination layers.

Similar to the offline reconstruction setting, the highest amount of detail can be captured
by means of fusing RGB images into textures for the geometry reconstruction. Lee et al.
[2020] propose to store texture tiles in a voxel representation of the scene together with a
spatially-varying perspective mapping. In contrast, the TextureMe [Kim et al., 2022] algorithm
fuses color images into a global texture atlas.

As part of this thesis, we present a pipeline for voxel-based real-time reflectance estima-
tion [Bode et al., 2019]. Through an efficient GPU implementation, spatially-varying diffuse
albedo and per-object specular Ward BRDF [Ward, 1992] parameters can be reconstructed
online.

2.2 Denoising

One of the main challenges in real-time reflectance estimation is the sparsity of available
appearance samples, frequently leading to reconstructions being corrupted with noise-like
artifacts. A similar challenge exists in the field of real-time path tracing, where integrals
in the image formation process are approximately solved using Monte Carlo methods.
Due to limited computational budgets, this approximation is usually made based on only
very few random samples, leading to high variance in the solutions and, hence, noisy
renderings. Very impressive results have recently been achieved by applying learning-based
denoising algorithms to the resulting noisy renderings. The frequently used OptiX ray
tracing engine [Parker et al., 2010] utilizes a recurrent autoencoder network [Chaitanya et al.,
2017] for this purpose. In addition to the noisy color image, the authors use the albedo,
normal, and surface roughness information to generate the denoised output image. Another
example uses a so-called ImportanceNet to generate filtering kernels from similar input and
recombines the filtered noisy irradiance images to generate a clean image [Fan et al., 2021].
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Inspired by the success of such techniques, we explored denoising for artifact removal
in reflectance estimation pipelines. Opposed to the path tracing setting, we do not have
highly-accurate intrinsic information about the scene available in our case. Thus, we focus
the discussion on previous works regarding general image denoising.

Still popular for denoising tasks is the application of total variation-based methods [Cham-
bolle, 2004; Osher et al., 2005]. While computationally cheap, these algorithms tend to
introduce blurring artifacts and lose fine image details. Similar artifacts can be observed using
the non-local means approach by Buades et al. [2005] for images without self-similarities. A
dictionary of image patches learned from either a separate dataset or the noisy input image
itself can also be used as prior for denoising [Elad and Aharon, 2006]. Depending on the
dictionary’s contents, this algorithm can yield excellent results. However, the processing time
is significantly higher than for the previously mentioned total variation-based algorithms.
As an alternative to the learned dictionary, a learned gaussian mixture model prior is used
by Zoran and Weiss [2011]. Finally, a gathering of similar image regions and consecutive
filtering was proposed by Dabov et al. [2007] and demonstrated to work well on natural
images.

Consecutive research [Foi et al., 2006; Dabov et al., 2007a; Miyata, 2015] assessed the
importance of the color space to conduct the denoising in. Results suggest that jointly
handling RGB color channels is beneficial over separately handling them or transforming the
input data to a luminance-chrominance space.

In recent years, impressive results have been achieved by utilizing neural networks for
denoising. Zhang et al. [2017] propose a novel convolutional neural network leveraging
dilated convolution layers to enlarge the receptive field compared to ordinary convolution
layers. The network is trained in a supervised manner on a large dataset. The denoising
performance depends, therefore, on how well the training data matches the input data in
terms of noise characteristics and content. Other supervised methods use, e.g., network
ensambles [Yang et al., 2020] or a complex-valued convolutional neural network [Quan et al.,
2021].

To lift the requirement of large datasets containing clean/noisy-image pairs exhibiting the
targeted noise and content characteristics being available, which can be quite limiting in
practice, Pang et al. [2021] developed a novel mathematical framework to train their network
on noisy images only by corrupting them with additional additive noise. Thus, no clean
images corresponding to the noisy training images are needed for their algorithm.

Going one step further, the Deep Image Prior (DIP) algorithm [Ulyanov et al., 2018] is a neural
network-based method needing no training data at all as it is self-supervised. The authors
found that convolutional neural networks have inherent regularization capabilities. Thus,
by overfitting a network to map random noise to a single noisy input image, natural image
content is learned before the network learns to represent the noise. A clean image can be
extracted by interrupting the overfitting process before noise can be learned. As determining
the correct number of training iterations after which to abort the training process can be
difficult in practice, several improvements [Cheng et al., 2019a; Heckel and Hand, 2019;
Kattamis et al., 2019] were proposed to stabilize the convergence behavior of the algorithm.
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Furthermore, neural architecture search techniques [Chen et al., 2020; Ho et al., 2021] were
combined with the DIP method to finetune the underlying architecture automatically to the
specific denoising problem at hand. Other self-supervised denoising methods applicable in
this setting include Self2Self [Quan et al., 2020] and CVF-SID [Neshatavar et al., 2022].

Most state-of-the-art denoising algorithms assume noise to have the same characteristics
over the whole input image. In the context of reflectance estimation, however, noise-like
artifacts can occur spatially concentrated, as, e.g., sharp highlights on smooth surfaces can
easily be missed, while reconstructing the reflectance of perfectly diffuse surfaces is less
prone to such errors. Applying off-the-shelf denoising solutions in this context usually leads
to losing fine details in initially clean regions. At the same time, strong noise-like artifacts
may not even be eradicated, depending on the algorithm. As part of this thesis, we present
our novel solution for denoising of partially noisy images [Bode et al., 2022a].

2.3 Edge and Boundary Detection

A more direct option to handle the sparsity of appearance samples in reflectance estimation
pipelines is the utilization of high-level scene understanding, e.g., in the form of a scene
segmentation concerning objects or materials. The effectiveness of this technique has been
demonstrated numerous times [Richter-Trummer et al., 2016; Azinovic et al., 2019; Bode et al.,
2019; Stotko et al., 2019b] in recent years. While such a per-object segmentation is simple if
the scene geometry is given as a mesh since topological information can be used to identify
connected components, it is much more challenging in the case of popular point-based
geometry representations using, e.g., disks [Whelan et al., 2016] or spheres [Lassner and
Zollhofer, 2021] as underlying primitives. Besides reconstruction techniques using color and
ToF sensors, point clouds are frequently used to represent laser-scanned geometry and gain
increasing support in commercially used real-time rendering engines likeUnreal Engine [Epic
Games, 2022]. To foster the use of segmentation in point-based reflectance reconstruction
methods and since it is crucial for high-level scene understanding, we explore methods for
accurately identifying edges and boundaries in point clouds in the scope of this thesis.

Many algorithms for edge detection in point clouds rely on defining a continuous surface
based on the points. The point set surfaces (PSS) algorithm [Alexa et al., 2001] does this
based on the moving least squares (MLS) technique. Given a set of points P = {?8} for
8 = 1, . . . , =, the surface is locally regressed for each point A ∈ P. First, a local reference
coordinate system for A is defined based on a least-squares fitted tangent plane. Afterward,
a polynomial approximation ?(G, H) of the surface parameterized over the tangent plane
domain is calculated by minimizing

=∑
8=1
(?(G8 , H8) − 58)2 �(| |@ − ?8 | |), (2.2)

where G8 and H8 are the coordinates of the projection of ?8 parameterized over the tangent
plane, 58 is the distance of point ?8 to the local tangent plane, @ is the projection of A onto the
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tangent plane, and � is a smooth weighting function, which reduces the influence of samples
further away from @. This approximation has shown to be continuously differentiable if a
suitable weighting function � is chosen. Fleishman et al. [2005] propose to extract edges from
point cloud data by intersectingmultipleMLS-based smooth surfaces per local neighborhood.
The PSS techniquewas extended byGuennebaud andGross [2007] by projecting the points on
fitted algebraic spheres instead of tangent planes improving the capabilities of the algorithm
to capture sharp geometric features while still being able to naturally represent planar
geometry.

Otherworks have addressed the problemof identifying sharp geometric features by analyzing
the covariance matrices of local point neighborhoods. While Gumhold et al. [2001] initially
proposed to conduct this analysis on a single scale, better results were achieved by conducting
this analysis on multiple scales in parallel [Pauly et al., 2003]. This multi-scale technique
was extended even further by Mellado et al. [2012] to an MLS-based surface representation
continuously differentiablewith respect to spatial position aswell as the scale of theweighting
function �.

Weber et al. [2010] propose to analyze local neighborhoods concerning the normal distribution
of all possible triangulations. Most normals point in a single direction for planar surfaces,
while two ormore distinct clusters exist for neighborhoods of points on sharp edges or corners.
If the point cloud is not equipped with normals already, they can be estimated robustly
concerning noise and outliers using e.g. a kernel density estimation-based technique [Li et al.,
2010]. In the case of laser scans captured from a single position, Che and Olsen [2018] suggest
that it is sufficient to consider only a single triangulation connecting the currently analyzed
points with its direct neighbors in the scanning grid. Furthermore, the triangulation can
be omitted entirely if a plane is obtained from the local neighborhood via RANSAC with
a consecutive analysis of the neighborhood’s points with respect to this plane [Lin et al.,
2015].

Other methods for edge detection include utilization of alpha-shapes [Edelsbrunner and
Mücke, 1994], covariance analysis of the point cloud’s voronoi cells [Mérigot et al., 2011],
spline fitting [Daniels Ii et al., 2008], mean-shift clustering [Ahmed et al., 2018], and automatic
detection of planes [Mitropoulou and Georgopoulos, 2019].

Besides edge detection, boundary detection was addressed by Bendels et al. [2006]. The
authors calculate the probability of a point being part of a boundary by evaluating several
boundary criteria in local neighborhoods and combining the individual boundary probabili-
ties using a weighted sum. Furthermore, Nguyen et al. [2015] suggest extracting an exterior
boundary of the point cloud by analyzing neighborhood characteristics and afterward using
a growth function to identify interior boundaries in the data. In contrast, Mineo et al. [2019]
propose to estimate the point resolution in local neighborhoods of the point cloud and
additionally calculate the mean radius of circles defined by the currently considered point
and any two points for its neighborhood. Comparing these two quantities allows them to
classify points as being part of a boundary or not.

Inspired by the success of neural network-based methods in many research fields, similar
techniques were also applied to the edge and boundary detection problem. Sharpness fields
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can be extracted leveraging a local radial grid parameterization and a convolutional neural
network (CNN) trained in a supervised manner [Raina et al., 2018; Raina et al., 2019]. High
values in these sharpness fields correspond to sharp geometric features in the point cloud.
EC-Net [Yu et al., 2018] identifies edges by encoding local neighborhoods with an underlying
PointNet++ [Qi et al., 2017b] and utilizing an edge-aware loss. Similarly, PIE-NET [Wang
et al., 2020] uses two PointNet++-like networks and a consecutive non-maximal suppression
technique to find the edge and corner points in point clouds. PCPNet [Guerrero et al., 2018]
even uses a network inspired by PointNet [Qi et al., 2017a] in conjunction with multi-scale
patches as input for estimating normals or curvatures as well as for point classification
tasks. Furthermore, learning-based boundary detection was conducted, e.g., using graph
convolutional networks [Loizou et al., 2020] or by feeding the whole point cloud into a deep
neural network invariant to permutations of input points, that outputs a classification label
per point.

While yielding impressive results, the computational burden of these approaches is immense.
As these are, therefore, not feasible for usage in time-critical applications, PCEDNet [Himeur
et al., 2021] addresses this problem by being designed to be lightweight and very fast. The
authors achieve this by first computing growing least squares (GLS) [Mellado et al., 2012]
features for all points on multiple scales, as these describe the point’s local neighborhood
very efficiently. Due to this efficient encoding of neighborhood information, a very small
MLP is already sufficient to classify points as edge or non-edge based on these features.

As part of this thesis, we present a novel set of features [Bode et al., 2022b], which can be
used similarly to the GLS features used by PCEDNet as input for a compact MLP for point
cloud edge and boundary detection. We are able to outperform the state of the art in terms
of processing time as well as classification performance.
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Chapter 3

Real-time Multi-material Reflectance
Reconstruction for Large-scale Scenes
under Uncontrolled Illumination from

RGB-D Image Sequences

In this chapter, we discuss the contributions and results developed in the following peer-
reviewed publication:

Lukas Bode, Sebastian Merzbach, Patrick Stotko, Michael Weinmann, and Reinhard
Klein.
“Real-time Multi-material Reflectance Reconstruction for Large-scale Scenes under
Uncontrolled Illumination from RGB-D Image Sequences.”
International Conference on 3D Vision (3DV), 2019.
doi: 10.1109/3DV.2019.00083

3.1 Summary of the Publication

Capturing real-world scenes and creating realistic virtual duplicates has many applications
in fields like telepresence, cultural heritage, and entertainment. Reconstructing a scene’s
appearance accurately is essential for many kinds of immersive virtual experiences. While
geometry can be measured directly via depth sensors, reflectance can only be measured
indirectly as appearance, which is the complex interplay between geometry, illumination,
and material-specific reflectance characteristics. Due to the usually sparse nature of available
appearance samples, this disentangling is an underconstrained problem that most classical
fitting algorithms fail to solve well. In this work, we apply ideas from deep learning
research to the problem of reflectance estimation in a real-time voxel-based 3D reconstruction
pipeline.
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Uncontrolled Illumination from RGB-D Image Sequences

In our pipeline, RGB-D frames are directly processed online when made available by a
commodity RGB-D sensor like the Microsoft Kinect or modern smartphones equipped with a
depth sensor. The goal is to produce a flexible representation of the scene, enabling efficient,
high-quality rendering of the virtual scene from arbitrary views while continuously being
updated as new sensor data becomes available.

To achieve this, the first step of our approach is to capture the scene’s illumination via a
separate image sequence in which the sensor is directly pointed toward the dominant light
sources. Overexposed pixels in the RGB images are identified and back-projected into 3D
space based on the captured depth values and estimated camera poses. In these bright
areas, point light sources are distributed to approximate the scene’s overall illumination.
After this preliminary lighting estimation, a second image sequence can be recorded and
processed online. The processing of the respective RGB-D frames consists of multiple steps:
A voxel-based geometry reconstruction using the implementation of Stotko et al. [2019] is
performed first. During this geometry reconstruction, we also store so-called observations per
voxel, i.e., a pair of color and direction from which the color was observed for each frame. As
it is not feasible to store every single observation of the whole image sequence due to memory
limitations, we store only 30 observations per voxel on a separate voxel grid with lower
resolution compared to the voxel grid used for the geometry reconstruction. Based on the
reconstructedgeometry, the scene is segmented into individual objects using the segmentation
algorithm by Tateno et al. [2016]. Those objects are assumed to have a homogeneous specular
reflectance behavior, that is estimated based on the aggregated observations by utilizing a
siamese convolutional neural network (CNN). Based on the gathered observations as well
as the estimated illumination, geometry, and specular reflectance parameters, a spatially-
varying diffuse albedo is calculated to enable the reconstruction of fine details. To ensure
temporal consistency and utilize all available information to the fullest extent, the parameters
estimated per frame are fused over the whole image sequence up to the currently processed
frame. All of these steps are implemented efficiently on the GPU. Due to the inherently
parallel nature of most steps, framerates of around 30 Hz were achieved in real-world
experiments on consumer-grade GPUs.

We evaluated this novel material estimation pipeline using synthetic and real-world data
captured using a Microsoft Kinect v2 sensor. The evaluation shows that our pipeline
can separate diffuse and specular appearance components well in most cases. Despite
some instability in the estimates during the first few frames, the results stabilize quickly
once enough appearance samples are gathered for the reflectance estimation CNN to
yield meaningful results. Furthermore, our experiments show that the spatially-varying
diffuse albedo refinement step is crucial for high-quality rerenderings of the scene, as many
real-world objects are textured to varying degrees.

3.2 Author Contributions to the Publication

This work is building on my master’s thesis [Bode, 2018], which implements a pipeline for
the estimation of homogeneous per-object materials partially running on the GPU. For this

22
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publication, I introduced an additional illumination estimation step to the pipeline. Utilizing
this information, I also developed the spatially varying albedo refinement. Additionally,
I ported parts of the pipeline previously executed on the CPU to the GPU to increase the
run-time performance and free up CPU resources simultaneously. Finally, I also captured
further image sequences and conducted respective evaluation experiments to ensure a
meaningful assessment of the algorithm.
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Chapter 4

Locally-guided Neural Denoising

In this chapter, we discuss the contributions and results developed in the following peer-
reviewed publication:

Lukas Bode, SebastianMerzbach, Julian Kaltheuner, MichaelWeinmann, and Reinhard
Klein.
“Locally-guided Neural Denoising.”
Graphics and Visual Computing (GVC), 2022.
doi: 10.1016/j.gvc.2022.200058

4.1 Summary of the Publication

Measured data is often corrupted with noise-like artifacts. These artifacts can be introduced
by the sensor itself due to physical or economic constraints or during the processing of
the sensor data due to, e.g., a limited computing budget. While measures can be taken to
reduce the amount of noise introduced during the capturing or processing of data, usually, it
cannot be avoided altogether. Depending on the application of the captured data, this can
be a problem, as, e.g., noise-like artifacts can break immersion in AR or VR settings. The
corrupted data might also pose a challenge to further processing as many algorithms are
designed for and tested on clean data only. Without directly interfering with the capturing
process, image restoration algorithms can be used to mitigate this problem by enforcing
additional priors in the data.

In the context of practical reflectance estimation, fitting reflectance model parameters to
measured appearance samples may result in noise-like artifacts concentrated on very smooth
surfaces due to an insufficient number of samples being available. Off-the-shelf denoising
algorithms, however, either fail to remove the artifacts or blur data not exhibiting any noise
resulting in a loss of fine details in those parts.

In this work, we propose extracting noise-level estimates from the input data and using them
to guide state-of-the-art neural denoising algorithms. This additional information allows the
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denoising algorithm to restore corrupted data areas while ensuring that initially clean data
is preserved.

The first step of our method is to estimate the spatially-varying noise level for the input
data. Although we assume the corrupted data to be given as a 2D image, the general ideas
can easily be translated to 3D data. To estimate the noise level, we propose two different
solutions: The first option is to use a per-pixel variance calculated on a small neighborhood
of pixels. While yielding good results in most cases, this method fails, e.g., for smooth color
gradients or discontinuities in the image, which would erroneously yield high noise-level
estimates. These problems are resolved in the second noise-level estimation method: First,
the image data is lifted into a 3D space based on the pixel values and coordinates. Afterward,
for each point, a plane is fitted to its local neighborhood in a least-squares manner, followed
by partitioning the data points of the neighborhood into points on one side of the fitted
plane and points on the other, respectively. Conducting a covariance analysis of the disjoint
subsets of points of this local neighborhood finally enables us to calculate a per-point noise
level that is robust against the smooth gradients and discontinuities mentioned above.

The noise level estimate calculated using either of these methods is subsequently used to
inject guidance information into state-of-the-art neural denoising algorithms with only minor
modifications. Exemplary, we demonstrate this on two different approaches: Deep Image Prior
(DIP) [Ulyanov et al., 2018] and Self2Self (S2S) [Quan et al., 2020]. In DIP, which denoises
data using the inherent regularization capabilities of convolutional neural networks, the
guidance information is injected via a modified loss function. In case of S2S, which uses
probabilistic input masking and dropout to denoise images, we instead apply the guidance
map guidance map to modify the probabilities of the input masking and the dropout layers
on a per-pixel basis. Since the guidance information can effectively be utilized in these two
popular state of the art denoising algorithms, we expect it can also be integrated easily into
future denoising approaches.

The noise-level estimates are assessed qualitatively on fitted SVBRDF textures which exhibit
strong spatially concentrated noise-like artifacts. We show that in most cases, corrupted
regions yield high noise-level values, while they are usually low for clean regions. Conse-
quently, when using these noise levels as guidance for denoising, the artifacts are significantly
reduced. A quantitative comparison to other denoising algorithms shows improvements
over the current state-of-the-art. Similar results are also achieved on real-world photos
corrupted with additive gaussian white noise.

4.2 Author Contributions to the Publication

In the scope of this work, I implemented both noise-level estimation methods efficiently on
the GPU. Furthermore, I implemented themodifiedDIP algorithm from scratch andmodified
an open-source S2S implementation to leverage the additional guidance information as
described above. I conducted all experiments used to evaluate the proposed methods against
the state of the art. The code to read and render the SVBRDF texture data was supplied by
Julian Kaltheuner and Sebastian Merzbach.
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Chapter 5

BoundED: Neural Boundary and Edge
Detection in 3D Point Clouds via

Local Neighborhood Statistics

In this chapter,wediscuss the contributions and results developed in the followingpublication,
which already appeared as a preprint and is currently under review:

Lukas Bode, Michael Weinmann, and Reinhard Klein.
“BoundED: Neural Boundary and Edge Detection in 3D Point Clouds via Local
Neighborhood Statistics.”
arXiv preprint arXiv:2210.13305, submitted to ISPRS Journal of Photogrammetry and Remote
Sensing (P&RS) (under review), 2022.
doi: 10.48550/arXiv.2210.13305

In the following, we include a verbatim copy of the content of this work subject to some
minor editorial changes.

Author Contributions to the Publication In this work, together with my co-authors, I
developed the idea of using various statistical features as input for the classification network.
I implemented the whole pipeline consisting of feature extraction and training as well as
inference of the classification network on various datasets. I conducted all experiments using
the previously mentioned implementation of our novel algorithm and partially adapted
publicly available implementations of related work.

5.1 Abstract

Extracting high-level structural information from 3D point clouds is challenging but essential
for tasks like urban planning or autonomous driving requiring an advanced understanding
of the scene at hand. Existing approaches are still not able to produce high-quality results
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consistently while being fast enough to be deployed in scenarios requiring interactivity. We
propose to utilize a novel set of features describing the local neighborhood on a per-point
basis via first and second order statistics as input for a simple and compact classification
network to distinguish between non-edge, sharp-edge, and boundary points in the given data.
Leveraging this feature embedding enables our algorithm to outperform the state-of-the-art
techniques in terms of quality and processing time.

5.2 Introduction

3D point cloud data obtained from terrestrial or airborne laser scanning as well as depth
sensors and image-based structure-from-motion have become the prerequisite for numerous
applications including geographic information systems, urban planning, indoor modeling
for the built environment, autonomous driving, and navigation systems. However, the
sampling of scenes with arbitrary complexity in terms of unstructured data complicates
the further processing of the data as e.g. required when extracting characteristic features
for navigation or scene interpretation according to object instances and materials. Edges
represent characteristic features that often occur at object borders as well as on surfaces
(in the form of ridges or engravings) and linear scene structures like scaffolds and, hence,
provide essential information regarding the underlying geometric structures. However,
automatic edge detection in 3D point cloud data remains a challenging task. Whereas
physical edges may not appear as sharp due to damage or cleaning (e.g. stone or plastered
buildings, progressively smoothed edges, polished mechanical parts, etc.), there are also
limitations inherent to the scanning approaches, especially due to the typically uneven,
noisy sampling of the scene, that may result in a slight rounding effect of edges in the
reconstruction. Furthermore, the sharpness, smoothness or roundness of edges also depends
on the observation scale. Therefore, there might be some ambiguity in defining edges, that
may require involving further context information. In addition, with point clouds typically
consisting of tens or hundreds of millions of points, efficient operators are required.

Advances in machine learning and the rapidly growing availability of 3D data have led to
several supervised learning approaches for concept classification. Respective approaches
include the classification of structures according to semantic categories such as facades,
roofs, different forms of vegetation or pole/trunk structures using pointwise hand-crafted
geometric descriptors on a single optimal scale [Demantké et al., 2011; Weinmann et al., 2015a;
Weinmann et al., 2015c; Hackel et al., 2016b] or multiple scales [Brodu and Lague, 2012;
Blomley and Weinmann, 2017], additionally leveraging contextual information [Niemeyer
et al., 2014; Weinmann et al., 2015b; Landrieu et al., 2017; Steinsiek et al., 2017], as well
as deep-learning strategies [Huang and You, 2016; Boulch et al., 2017; Hackel et al., 2017;
Lawin et al., 2017; Qi et al., 2017b; Tchapmi et al., 2017; Landrieu and Simonovsky, 2018;
Thomas et al., 2019; Guo et al., 2020; Xie et al., 2020; Li et al., 2022; Mao et al., 2022].
Furthermore, a few works also focused on the individual classification of points according
to being or not being on edges based on multi-scale features and a random-forest-based
classification [Hackel et al., 2016a], multi-scale features and a dedicated neural network based
edge detection classifier [Himeur et al., 2021], neural-network-based pointwise distance
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Figure 5.1: Our BoundED approach extracts sharp edges and boundaries from 3D point cloud data
purely based on positional data. Points classified as sharp-edge are highlighted in red while boundary
points are highlighted in green.

estimation to the next sharp geometric feature [Matveev et al., 2022], binary-pattern-based
filtering on local topology graphs [Guo et al., 2022], neural-network-based edge-aware point
set consolidation leveraging an edge-aware loss [Yu et al., 2018], training two networks based
on PointNet++ [Qi et al., 2017b] to classify points into corners and edges and subsequently
applying non-maximal suppression and inferring feature curves [Wang et al., 2020], the
learning of multi-scale local shape properties (e.g., normal and curvature) [Guerrero et al.,
2018], and the computation of a scalar sharpness field defined on the underlyingMoving Least-
Squares surface of the point cloud whose local maxima correspond to sharp edges [Raina
et al., 2018; Raina et al., 2019]. However, extracting high-quality edge and boundary data
from a large variety of different 3D point clouds fast enough to eventually be suitable for
usage in embedded systems or real-time settings remains an open problem.

In this paper, inspired by themaximummean discrepancy (MMD) operator [Gretton et al., 2012]
which allows to compare distributions by embedding them in a feature space and comparing
the mean of the respective embeddings, we propose to tackle the point classification task by
training a network to distinguish between classes based on a feature embedding related to
the first and second order statistics of the respective point’s neighborhood. This embedding
contains enough information for the classification network to learn the difference between
non-edge, sharp-edge, and boundary points while at the same time being well structured
and compact, making our solution very fast in terms of processing time. Various results of
our Boundary and Edge Detection (BoundED) approach are depicted in Figure 5.1.

Our main contributions can be summarized as follows:

• We present a novel set of features for edge and boundary characterization and detection
capturing local neighborhood information of point clouds better and being cheaper to
compute than state-of-the-art approaches [Himeur et al., 2021].

• We demonstrate the benefits of this novel feature embedding at the example of a
modified state-of-the-art neural edge detection network architecture giving better
results with an even smaller network.
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• Our evaluation demonstrates the ability of the proposed features to capture information
regarding boundary classification of points in addition to edge classification.

5.3 Related Work

The detection of 3D edges in terms of sharp features, feature contours, or curves within
unstructured point cloud data is a challenging task. Conventional methods include surface
mesh reconstruction or graph-based approaches and analyzing local neighborhoods of
each individual point based on principal component analysis (PCA). Thereby, the given
connectivity information of a point with respect to its neighbors allows for a faster nearest
neighbor search in comparison to unstructured point sets. However, preserving sharp edges
and complex features in a reconstructed model is challenging due to smoothing effects
induced by several reconstruction techniques. Directly extracting edges from unstructured
point clouds has been addressed based on computing geometric descriptors per point
based on the local covariance characteristics [Gumhold et al., 2001; Gelfand and Guibas,
2004]. Respective variants include taking the ratio between the Eigenvalues of the local
covariance matrices on a single scale [Mérigot et al., 2011; Xia and Wang, 2017] or different
scales [Pauly et al., 2003; Bazazian et al., 2015], local slippage analysis to define edges between
segments of rotationally and translationally symmetrical shapes such as planes, spheres,
and cylinders [Gelfand and Guibas, 2004], or directly estimating curvature [Lin et al., 2015;
Nguyen et al., 2018]. Considering multiple scales reduces the susceptibility to noise, but
such methods still rely on the suitable specification of a decision threshold. Non-parametric
edge extraction has been achieved via kernel regression [Öztireli et al., 2009] or Eigenvalue
analysis [Bazazian et al., 2015]. Others focused on detecting depth-discontinuities based
on finding triangles with oblique orientations or finding triangles with long edges [Tang
et al., 2007] or focusing on high-curvature points given as the extremum of curvatures [Fan
et al., 1987] or curvature-guided region growing [Rusu et al., 2008]. In addition, edge
detection has been approached based on normal variation analysis [Che and Olsen, 2018],
3D Canny edge detection [Monga et al., 1991], the combination of normal estimation and
graph theory [Yagüe-Fabra et al., 2013], alpha-shapes [Edelsbrunner and Mücke, 1994], or
boundary detection via DBSCAN-based detection and segmentation of 3D planes [Chen
et al., 2022a].

Further approaches followed a moving least-squares (MLS) surface reconstruction with the
subsequent detection of 3D edges based on a Gaussian map clustering computed within a
local neighborhood [Demarsin et al., 2007; Weber et al., 2010; Weber et al., 2012; Ni et al., 2016].
The consideration of higher-order local approximations of non-oriented input gradients in
MLS-based reconstruction has been used for the computation of continuous non-oriented
gradient fields [Chen et al., 2013b], which allows a better preservation of surface or image
structures. Another possibility to achieve continuously differentiable surfaces consists in
exploring the scale-space for MLS [Mellado et al., 2012]. Furthermore, a scalar sharpness
field defined on the underlying Moving Least-Squares surface of the point cloud has been
proposed, where localmaxima correspond to sharp edges [Raina et al., 2018; Raina et al., 2019].
Other approaches include the combination of adaptive reconstruction kernels [Fleishman
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et al., 2005] and spline fitting [Daniels Ii et al., 2008], the detection of boundary points and
internal points as well as the subsequent application of a Fast-Fourier-Transform-based edge
reconstruction to avoid the need to define a specific order for polynomial curve fitting [Mineo
et al., 2019], the use of subspace detection and feature intersection [Fernandes and Oliveira,
2012], mean-shift-based selection of the most distant points with respect to the centroid of
their neighborhood [Ahmed et al., 2018], the use of locally defined curve set features [Li
and Hashimoto, 2017], the intersection of automatically detected planes [Mitropoulou and
Georgopoulos, 2019], the filtering of potential feature points according to their local topology
graph based on binary patterns [Guo et al., 2022], or RANSAC-based spatial regularization
of sharp feature detector responses [Lin et al., 2015]. In addition, gradient-based edge
detection with a subsequent non-maxima suppression and edge linking into linear and
smooth structures [Xia and Wang, 2017] has been investigated.

Along the rapidprogress inmachine learning, learning-based approaches have beenproposed
for classifying individual points as edge or non-edge. Besides approaches based on least
square regression or support vector machines [Wang et al., 2019b] that, however, had not
been investigated in a general scenario, this can be achieved by the use of multi-scale features
with a random forest based edge classification [Hackel et al., 2016a] or neural network based
edge classifier [Himeur et al., 2021]. Other approaches include the neural network based
pointwise distance estimation to the next sharp geometric feature [Matveev et al., 2022], or
neural network based edge-aware point set consolidation [Yu et al., 2018] and 3D semantic
edge detection based on a two-stream fully-convolutional network to jointly perform edge
detection and semantic segmentation [Hu et al., 2020]. A further method [Wang et al., 2020]
trains two neural networks to classify points into corners and edges based on a PointNet++
like architecture [Qi et al., 2017b]. After a subsequent non-maxima suppression of the
classified points and their PointNet++ based clustering, a two-headed PointNet [Qi et al.,
2017a] generates the final set of curves. This concatenation of deep networks induces a high
computational burden and relies on high resource requirements. In addition, the learning
of multi-scale local shape properties (e.g., normal and curvature) [Guerrero et al., 2018]
and the use of CNNs for adaptive feature extraction from observations in a camera and
laser-scanner setup [Xiao et al., 2019] have been investigated. Furthermore, the prediction
of part boundaries within a 3D point cloud based on a graph convolutional network has
been proposed [Loizou et al., 2020]. Further purely on boundary detection focused methods
include the initial extraction of the exterior boundary based on neighborhood characteristics
and the subsequent analysis regarding whether a point belongs to a hole boundary [Nguyen
et al., 2015], and approaches based on a deep neural network [Tabib et al., 2020].

There are also a few image-based approaches that initially convert the 3D point cloud data
into images [Lin et al., 2015]. Subsequently, a line segment detector [Von Gioi et al., 2008] is
used to extract lines in 2D, which are backprojected to the point cloud. Another approach [Lu
et al., 2019] relies on an initial segmentation of the point cloud into planar regions based
on region growing and merging, which is followed by a plane-wise point projection into
a 2D image and a final 2D contour extraction and backprojection to get the respective line
segment in 3D space.

With our approach we follow the avenue of neural network based edge and boundary
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Figure 5.2: Overview of our BoundED approach: Based on an input point cloud, several features
describing the local geometry are extracted on multiple scales. After pairwise fusion of the features
for different scales, we classify the input points by an MLP leveraging the fused features as either
non-edge, sharp-edge, or boundary points.

detection within 3D point clouds. We take inspiration from the maximum mean discrepancy
(MMD) operator [Gretton et al., 2012] for the definition of a local feature embedding with
respect to first- and second-order statistics of a local point’s neighborhood, and we show
that this embedding allows robust detection of non-edge, sharp-edge, and boundary points
already with a compact network, thereby enabling fast inference times.

5.4 Methodology

With our approach, that we denote as BoundED, we aim at the robust and fast detection of
non-edge, sharp-edge, or boundary points within given point clouds. For this purpose, we
leverage the combination of a local encoding of feature characteristics based on the maximum
mean discrepancy operator with respect to the local first- and second-order statistics and
their efficient classification based on a compact multi-layer perceptron (MLP) (see Figure 5.2).
In the following sections, we provide detailed descriptions regarding these aspects as well as
respective implementation details.

5.4.1 Feature Computation

To compute meaningful features as input for the consecutive neural classification step, we
generalize the idea of dividing a set of 3D points into two disjoint subsets and analyzing their
respective covariances introduced by Bode et al. [2022] in the context of image denoising.

Let P = {p8} for 8 = 1, . . . , = be the given 3D point cloud consisting of = points. Using the
:-nearest neighbors (:-NN) operator NN:(p,P), we extract local neighborhoods

N8 ,: = NN:(p8 ,P) (5.1)

with : points each. Throughout the remainder of this section, the neighborhood size : is
omitted for notational simplicity.
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For sufficiently dense point clouds in the absence of noise, this neighborhood represents a
roughly disc-shaped set of points. In order to be invariant to the scale and sampling of the
given point cloud, the point sets are normalized individually before features can be extracted.
We propose to utilize the covariance matrix Q8 = cov(N8) for this purpose. By conducting an
SVD of the covariance matrix

Q8 = [8�8\)
8 (5.2)

singular values �8 , 9 = �8 , 9 9 can be read from the diagonal entries of the matrix �8 . Without
loss of generality, these sigular values are assumed to be sorted in descending order, i.e.
�8 ,1 ≥ �8 ,2 ≥ �8 ,3. Intuitively, these singular values are directional variances with directions
being given by the corresponding Eigenvectors. SinceN8 is roughly disk shaped, �8 ,1 and
�8 ,2 can be seen as variance in direction of the disk’s perpendicular semiaxes. Note, that in
general �8 ,1 and �8 ,2 are similar but not equal as the pointsN8 will never represent a perfect
uniformly sampled disk in practice. For the purpose of normalization, the neighborhood is
centered around the origin according to the neighborhood’s center of mass

N̄8 =
1
|N8 |

∑
p∈N8

p (5.3)

and scaled by the average standard deviation along the semiaxes:

N̂8 =

{
2√

�8 ,1 +
√
�8 ,2
(p − N̄8) | p ∈ N8

}
. (5.4)

Besides normalization of the neighborhood, this SVD and in particular the Eigenvector
n8 corresponding to �8 ,3 is utilized for further processing as this vector together with the
neighborhood’s center of mass N̄8 defines a least-squares fitted plane to N8 . Note that,
in contrast to other approaches like e.g. PCEDNet [Himeur et al., 2021], by using this
Eigenvector n8 as normal, our BoundED does not rely on any precomputed normals but
only on the 3D positions of the points. We have observed, that the orientation of n8 can be
unstable near outliers. Thus, we only consider the b:/2c points closest to N̄8 for this step.
According to this plane, the neighborhood is partitioned into two disjoint subsets

N8 ,upper =
{
p ∈ N̂8 | 〈p, n8〉 ≥ 0

}
(5.5)

N8 ,lower =
{
p ∈ N̂8 | 〈p, n8〉 < 0

}
. (5.6)

As depicted in Figure 5.3, an analysis of these provides valuable information regarding
local geometry. We propose to analyze the subset’s statistics to capture this information. In
particular, singular values �8 ,upper, 9 and �8 ,lower, 9 for 9 ∈ {1, 2, 3} are computed by means of
individual SVDs of the covariance matrices ofN8 ,upper andN8 ,lower respectively. Additionally,
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sigular value of covariance matrix σi,upper, σi,lower

distance projected to normal direction di,⊥
distance projected to tangent plane di,‖

top center of mass N̄i,upper

bottom center of mass N̄i,lower

1Figure 5.3: Features extracted from the local neighborhood of a point. Points can be classified
as non-edge or sharp-edge by analyzing their neighborhood with respect to singular values and
means of points above and below a least-squares fitted tangent plane. Planar neighborhoods (left)
tend to have similar values for �8 ,upper and �8 ,lower while having low values for 38 ,⊥. Sharp-edge
neighborhoods (middle) exhibit a larger difference in �8 ,upper and �8 ,lower as well as large 38 ,⊥. In
contrast, neighborhoods of points close to sharp-edges (right) have higher 38 ,‖ than neighborhoods of
points directly on the edge.

the distance between the centers of mass of both subsets

N̄8 ,upper =
1

|N8 ,upper |
∑

p∈N8 ,upper

p (5.7)

N̄8 ,lower =
1

|N8 ,lower |
∑

p∈N8 ,lower

p (5.8)

decomposed into perpendicular and tangential components is calculated as

38 ,⊥ = 〈N̄8 ,upper − N̄8 ,lower , n8〉 (5.9)
38 ,‖ = ‖(N̄8 ,upper − N̄8 ,lower) − 3⊥n8 ‖2. (5.10)

Intuitively, low values for 38 ,⊥ indicate that the local neighborhoodN8 is near planar and thus
the probability for p8 being part of a sharp edge is small. In contrast, high values are found
in areas with a high amount of geometric detail or noise. A large tangential distance 38 ,‖ can
indicate, that an edge is close-by, but p8 may not necessarily be coincident (see Figure 5.3).

Furthermore, inspired byBendels et al. [2006], to improve detection of outliers and boundaries,
the perpendicular and tangential components of the distance between p8 and the center of
mass of its : nearest neighbors are computed as:

B8 ,⊥ = 〈p8 − N̄8 , n8〉 (5.11)
B8 ,‖ = ‖(p8 − N̄8) − B⊥n8 ‖2. (5.12)
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While not necessarily always following this observation, points at boundaries tend to have
large B8 ,‖ and at the same time small B8 ,⊥. Intuitively, the neighbors of points at boundaries
are all on one side which indicates that they are far away from the center of mass of their
neighborhood. If p8 is an outlier near a well-defined surface, the corresponding B8 ,⊥ tends to
be large.

In summary, the analysis yields the following features: the singular values

28 ,· = (�8 ,·,1 , �8 ,·,2 , �8 ,·,3)) (5.13)

of the upper and lower subsets respectively, the perpendicular and tangential distances
between the centers of mass of both subsets

d8 = (38 ,⊥ , 38 ,‖)) , (5.14)

and the perpendicular and tangential distances between the point p8 and the center of mass
of its neighborhood

s8 = (B8 ,⊥ , B8 ,‖)) . (5.15)

Thus, we assemble a per-point 10D feature vector according to

x̂8 = (28 ,upper , 28 ,lower , d8 , s8)) . (5.16)

5.4.2 Multi-Scale Feature Embedding

In order to classify points p8 of a point cloud P as non-edge, sharp-edge, or boundary, the
per-point data ^8 is individually processed by a small MLP. ^8 relies on computing x̂8 ,: on <

different scales :0, . . . , :(<−1), i.e. choosing neighborhoods containing varying numbers of
points :, for each point p8 . Inspired by the GLS [Mellado et al., 2012] features utilized by
PCEDNet [Himeur et al., 2021], we add the tangential and perpendicular distances

28 ,:,⊥ = 〈N̄8 ,: − (N8 ,:0 −N8 ,:), n8 ,:0〉 (5.17)

28 ,:,‖ = ‖(N̄8 ,: − (N8 ,:0 −N8 ,:)) − 28 ,:,⊥n8 ,:0 ‖2. (5.18)

between the center of mass N̄8 ,: of each scale : and the center of mass of points of the largest
scale’s neighborhoodN8 ,:0 which are not part ofN8 ,: as well to each x̂8 ,: :

x8 ,: = (x̂8 ,: , c8 ,:)) , (5.19)

where
c8 ,: = (28 ,:,⊥ , 28 ,:,‖)) . (5.20)
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Figure 5.4: Architecture of the multi-scale fusion and classification network consisting of fully
connected (FC) layers, leaky rectified linear unit (leaky ReLU) activations, dropout, and softmax
function. Features computed on multiple scales are combined in a pairwise manner and afterwards
processed by an MLP to classify a point as non-edge, sharp-edge, or boundary.

The complete multi-scale per-point features can be written in matrix form as

^8 =


x8 ,:0 ,1 . . . x8 ,:0 ,12

...
. . .

...

x8 ,:(<−1) ,1 . . . x8 ,:(<−1) ,12

 . (5.21)

These multi-scale features are fused in a pair-wise manner similarly to PCEDNet [Himeur
et al., 2021] as depicted in Figure 5.4, before being processed by the classification MLP
itself.

5.4.3 Network Architecture

For our experiments, we use features computed on four different scales using 128, 64, 32,
and 16 neighboring points respectively. In contrast to PCEDNet, BoundED uses less scales,
i.e. 4 instead of 16. However, to accomodate for the lost network depth due to using less
scales, an additional hidden layer is added to the classification MLP, giving the network a
total of 1.6k learnable parameters. For training the network, a focal loss [Lin et al., 2017] with
� = 2 is used as training batches are usually very unbalanced due to the small number of
edge points compared to non-edge points in most point clouds. Furthermore, we propose

36



5.5 Results and Discussion

to add dropout [Srivastava et al., 2014] with ? = 0.5 to the classification layers to prevent
overfitting and facilitate a more stable training process.

5.4.4 Implementation Details

Our algorithm is implemented using PyTorch [Paszke et al., 2019] for feature extraction as
well as the neural network and its training. For finding the local neighborhood of points, the
k-NN implementation of PyTorch3D [Ravi et al., 2020] is used. Due to the point setsN8 ,:,upper,
N8 ,:,lower containing different numbers of points for different p8 , we employ masking to
efficiently vectorize the task and fully utilize the tremendous computation capabilities of
modern GPUs during the feature extraction phase. The network is trained using the Adam
optimizer [Kingma and Ba, 2014] with �1 = 0.9, �2 = 0.999, and learning rate 0.001. Batch
size is set to 16384. The number of training iterations varies between used datasets and is
described in detail in Section 5.5.1.

5.5 Results and Discussion

In the following, the effectiveness of the proposed combination of our novel multi-scale
features and our compact classification network is evaluated quantitatively as well as
qualitatively on several different datasets. We focus mostly on the comparison with the
state-of-the-art point cloud edge detection network PCEDNet by Himeur et al. [2021] as it is
the most relevant previous work due to also being designed to be fast and compact. Similar
to our BoundED approach, they rely on feeding their classification network with multi-scale
per-point features allowing for a direct comparison of the used embeddings. Furthermore,
boundary detection capabilities of our network are assessed. Finally, an experiment on noisy
data as well as an ablation study regarding the chosen features and the employed number of
scales further validate our results.

5.5.1 Datasets

We train and evaluate our approach on several different datasets and provide comparisons
to other point cloud edge detection algorithms. To allow for a direct comparison with
PCEDNet [Himeur et al., 2021], their Default dataset as well as the publicly available
ABC [Koch et al., 2019] dataset are used.

Default Introduced by Himeur et al. [2021], this dataset is designed to be as small as
possible in order to facilitate very short training times with only a few simple hand-labeled
point clouds to train on but still generalize well to arbitrary other point clouds. It contains
9 point clouds for training as well as 7 different point clouds for evaluation. To form the
validation set, 1000 points are randomly sampled from each class. Despite containing three
different classes of points, i.e. non-edge, sharp-edge, and smooth-edge, originally, this work
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Additional Training ModelsModified Labels Additional Evaluation Model

Figure 5.5: Adjustments made to the Default dataset to facilitate boundary detection. The labels of
two point clouds (left) are modified to identify already included boundary points correctly. Three
simple point clouds (middle) are added to the training and validation set to improve the coverage of
potential boundary point cases. For an additional evaluation we add a further point cloud (right) to
ensure a sufficient representation of boundary points in the evaluation data.

focuses on non-edge and sharp-edge classification only and therefore treats smooth-edge
points as non-edge points in all results. We train BoundED for 3000 iterations on this
dataset.

ABC The ABC dataset published by Koch et al. [2019] is a very large collection of CAD
models accompanied with triangle meshes and feature annotations among other data. Point
clouds are generated from triangle meshes by simply removing all edges and faces. A ground
truth classification label for each point is extracted by checking whether it is part of any CAD
curve flagged as sharp. To ensure a meaningful comparison with the work by Himeur et al.
[2021], we also only use chunk 0000 and exactly the same 200 models for training and 50
models for validation while also using all 7168 point clouds for evaluation. As ABC contains
many more points than Default, we train our network for 8000 iterations on its training
data.

Default++ As the originalDefaultdataset published byHimeur et al. [2021] does not include
annotated boundary vertices, which prevents its use for training models for boundary
detection tasks, we propose to extend it as shown in Figure 5.5 to create the Default++
dataset. The original Default dataset contains two models containing boundary points
not annotated as such. Thus, the first modification is to add these boundary annotations
accordingly. Furthermore, it is extended by two additional point clouds for training, which
were specifically designed to contain clean and noisy curved boundaries of varying radii
as these cases are not included in the original Default dataset. Finally, to prevent boundary
points from being heavily underrepresented in the evaluation set, we additionally add an
evaluation model containing a multitude of boundary situations with varying levels of noise.
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Since the class of boundary points in the training set is still much smaller than the classes of
non-edge or sharp-edge points, we only add 100 randomly sampled boundary points to the
validation set. The resulting training set contains 279.5k non-edge, 15.7k sharp-edge, and
only 0.9k boundary points. As it is similar in size to the Default dataset, we use the same
3000 iterations to train on Default++.

Additional Evaluation Data To assess the capabilities of the proposed algorithm more
thoroughly, we also use publicly available point clouds of 3D scanned buildings and plants.
The christ_church1 point cloud contains 1.9 million points of the Christ Church Cathedral
and its surrounding in Dublin. Furthermore, the pisa_cathedral2 point cloud with 2.5 million
points scanned by Mellado et al. [2015] is used as well. The station3 point cloud is an even
larger point cloud representing a train station as 12.5 million points which we also use for
evaluation. Finally, we are using point clouds of three different plants scanned by Conn et al.
[2017]: An Arabidopsis4, a Tobacco5, and a Tomato6 plant with 172k, 1474k, and 226k points
respectively.

5.5.2 Metrics

Similarly to thework byHimeur et al. [2021], we use severalmetrics for comparison: Precision,
Recall, Matthews Correlation Coefficient (MCC), F1 score, Accuracy, and Intersection over
Union (IoU, also known as Jaccard index). Precision evaluates the ratio of true classifications
as sharp-edge or boundary to the total number of classified points. In contrast, Recall
measures the ratio of correctly classified sharp-edge or boundary points compared to the true
number of such points existing in the processed model. Precision and Recall are coupled,
i.e. Precision increases and Recall decreases if only points exhiting very high confidence
are classified and vice versa. Thus, mainly the other mentioned metrics, which combine
Precision and Recall scores in different ways, are used for directly comparing our BoundED
technique to related works.

1 Available at: https://sketchfab.com/3d-models/christ-church-and-dublin-city-councilb5f6bcce8e
bc44a3b4bbb6b0fef067b3, accessed on 10/14/2022.

2 Available at: https://www.irit.fr/recherches/STORM/MelladoNicolas/category/datasets/, accessed
on 10/22/2022.

3 Available at: https://sketchfab.com/3d-models/station-rer-6c636ca4793345e8ae12beb97b7d6359, ac-
cessed on 10/14/2022.

4 Available at: http://plant3d.navlakhalab.net/shoots/public/view/plant/40, time point 33, accessed
on 10/14/2022.

5 Available at: http://plant3d.navlakhalab.net/shoots/public/view/plant/20, time point 30, accessed
on 10/14/2022.

6 Available at: http://plant3d.navlakhalab.net/shoots/public/view/plant/15, time point 30, accessed
on 10/14/2022.
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5.5.3 Comparison to Related Work

Throughout this section, we compare the performance of our work with the performance
of several other recent related works for point cloud edge detection: Covariance Analysis
(CA) [Bazazian et al., 2015], Feature Edges Estimation (FEE) [Mérigot et al., 2011; Alliez et al.,
2022], ECNet [Yu et al., 2018], PIE-NET [Wang et al., 2020], PCPNet [Guerrero et al., 2018],
and PCEDNet [Himeur et al., 2021]. The postfix -2c denotes that the respective algorithm
has been trained for classification of two classes only, i.e. non-edge and sharp-edge, despite
being originally designed to potentially handle more than two classes. For the quantitative
evaluation (see Section 5.5.4), data reported by Himeur et al. [2021] is used for PCEDNet
and PCPNet, while we use the numbers published by Wang et al. [2020] for ECNet and
PIE-Net. For the two non-learning methods CA and FEE, we use one set of parameters each
per dataset finetuned on the dataset’s characteristics, i.e. more aggressive thresholding on
clean data compared to noisy data: CA finetuned on Default uses 0.025 as threshold, while
using 0.08 on ABC. The parameters for FEE are set to ' = 0.1, A = 0.03 to work well with the
Default dataset and to ' = 0.02 and A = 0.002 to yield good results on the ABC dataset. In
both cases, we use 0.16 as threshold. For FEE, we additionally normalize all point clouds
to fit inside an axis-aligned unit box as ' and A are related to the expected feature size,
which varies heavily for the models in the ABC dataset. The PCEDNet results shown for the
purpose of qualitative evaluation in Section 5.5.5 are generated using the publicly available
precompiled demo application7. We assume only the point positions to be given as input for
the algorithm. Since PCEDNet relies on point normals, these are generated according to the
authors’ specification using Meshlab [Cignoni et al., 2008]. To be able to report meaningful
numbers for the quantitative evaluation in Section 5.5.4, we have done every experiment five
times, evaluated the loss function over the validation set, and chose the best result according
to this metric.

To ensure practicality of our algorithm, timings are reported for two different hardware
configurations: On the one hand, we use an old consumer-grade Nvidia RTX 2080 Ti GPU
with 11GB memory and an AMD Ryzen 3600X CPU with 32GB memory. On the other hand,
we also used the recent enterprise Nvidia A40 GPU with 48GB memory and two AMD EPYC
7313 CPUs with 32 threads each and 512GB memory. Note, however, that we only used 12
worker threads in the data loader during training for both hardware configurations. We
exclude the IO and network initialization time from the timings listed in this section and
focus on reporting the time required by the actual feature extraction as well as network
inference instead.

5.5.4 Quantitative Comparison

Tables 5.1 and 5.2 show median scores of various commonly used metrics to allow a
quantitative comparison of our approach with others. For all experiments in this section, we
are working on the Default and ABC datasets and aim at distinguishing sharp-edge points
from non-edge points.
7 Available at: https://storm-irit.github.io/pcednet-supp/software.html, accessed on 10/14/2022.
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Precision(↑) Recall(↑) MCC(↑) F1(↑) Accuracy(↑) IoU(↑)

CA (Default) [Bazazian et al., 2015] 0.184 0.891 0.332 0.305 0.753 0.178
CA (ABC) [Bazazian et al., 2015] 0.183 0.357 0.188 0.242 0.863 0.138
FEE (Default) [Mérigot et al., 2011; Alliez et al., 2022] 0.241 0.866 0.400 0.376 0.828 0.232
FEE (ABC) [Mérigot et al., 2011; Alliez et al., 2022] 0.060 0.961 -0.021 0.113 0.082 0.060
PCEDNet-2c (Default) [Himeur et al., 2021] 0.364 0.611 0.402 0.430 0.908 0.274
BoundED (Ours) (Default) 0.365 0.595 0.423 0.453 0.912 0.293
BoundED (Ours) (ABC) 0.248 0.589 0.328 0.348 0.869 0.210

Table 5.1: Median scores of edge detection approaches evaluated on the Default dataset. The dataset
used for parameter tuning or training is mentioned in parentheses. Data regarding PCEDNet-2c is
taken from Himeur et al. [2021].

Precision(↑) Recall(↑) MCC(↑) F1(↑) Accuracy(↑) IoU(↑)

CA (Default) [Bazazian et al., 2015] 0.312 0.991 0.482 0.471 0.845 0.308
CA (ABC) [Bazazian et al., 2015] 0.498 0.820 0.541 0.574 0.929 0.403
FEE (Default) [Mérigot et al., 2011; Alliez et al., 2022] 0.178 0.621 0.213 0.270 0.775 0.156
FEE (ABC) [Mérigot et al., 2011; Alliez et al., 2022] 0.857 0.898 0.821 0.832 0.980 0.712
PCEDNet-2c (Default) [Himeur et al., 2021] 0.662 0.936 0.708 0.730 0.958 0.574
PCEDNet-2c (ABC) [Himeur et al., 2021] 0.735 0.984 0.808 0.822 0.970 0.597
ECNet (ABC) [Yu et al., 2018] 0.487 0.573 - 0.526 - 0.356
PIE-NET (ABC) [Wang et al., 2020] 0.692 0.858 - 0.766 - 0.622
PCPNet-2c (ABC) [Guerrero et al., 2018] 0.954 0.756 0.797 0.807 0.979 0.668
BoundED-2c (Ours) (Default) 0.420 0.594 0.381 0.420 0.909 0.266
BoundED-2c (Ours) (ABC) 0.932 0.833 0.842 0.850 0.983 0.739

Table 5.2: Median scores of edge detection approaches evaluated on the ABC dataset. The dataset
used for training is mentioned in parentheses. Data regarding PCEDNet-2c, PCPNET-2c is taken
from Himeur et al. [2021]. Data regarding ECNet, and PIE-NET is taken fromWang et al. [2020].

When training and evaluation are done on the Default dataset, our algorithm performs better
than all related works in all metrics except for Recall, i.e. BoundED is not able to identify
quite as many sharp-edge points as others, but more of those points classified as being a
sharp-edge point are actually correctly identified as such. As we are also using a smaller
network in comparison to PCEDNet, this suggests, that our multi-scale features are better at
describing the geometry of the local neighborhood in terms of sharp edges than their GLS
based features.

Also observe, that BoundED trained on ABC performs better than CA and FEE finetuned on
ABC when evaluating on the Default dataset. Both non-learning approaches, i.e. CA and
FFE, rely on setting a threshold to distinguish between sharp-edge and non-edge points.
On clean data like the models from the ABC dataset, this threshold can be set much more
aggressively. In the presence of noise, this, however, leads to the algorithms not detecting all
edges in the case of CA and tremendous overclassification of points as sharp-edge points in
the case of FEE.

When being evaluated on ABC, BoundED trained on ABC once again outperforms all
other approaches in terms of MCC, F1, Accuracy, and IoU scores, but PCEDNet loses less
effectiveness if being trained on Default in comparison to BoundED. While PCPNet has the
highest Precision and CA trained on Default exhibits the highest Recall, they are worse in
terms of overall classification performance due to having much worse scores in Recall and
Precision respectively.
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Figure 5.6: Precision-Recall-plots of most approaches listed in Table 5.2. Every small semi-transparent
black dot corresponds to a single point cloud from the ABC dataset and its Precision and Recall scores
when being processed by the respective approach. The background depicts the color-coded local
density of points.

Training Evaluation

Preprocessing Training Preprocessing Classification

PCEDNet (Default) [Himeur et al., 2021] 0:19 m 2:52 m - -
BoundED-2c (Ours) (Default, RTX 2080 Ti) 0:04 m 1:24 m 1.0 s 0.002 s
BoundED-2c (Ours) (Default, A40) 0:04 m 1:13 m 1.0 s 0.004 s

PCEDNet-2c (ABC) [Himeur et al., 2021] 2:11 m 20:00 m 2:35:00 h 0:25:30 h
BoundED-2c (Ours) (ABC, RTX 2080 Ti) 1:07 m 2:24 m 1:39:06 h 0:00:03 h
BoundED-2c (Ours) (ABC, A40) 0:59 m 3:00 m 1:20:17 h 0:00:04 h

BoundED (Ours) (Default++, RTX 2080 Ti) 0:05 m 1:22 m 1.4 s 0.002 s
BoundED (Ours) (Default++, A40) 0:04 m 1:13 m 1.4 s 0.008 s

Table 5.3: Comparison of time required to calculate the multi-scale features used as network input
and training or evaluation time on the training or evaluation data respectively of the dataset in
parentheses. Timings of our approach are determined on two different hardware configurations: An
older consumer grade Nvidia RTX 2080 Ti GPU with 11GB memory and a recent enterprise grade
Nvidia A40 GPU with 48GB memory. Data regarding PCEDNet and PCEDNet-2c is taken from
Himeur et al. [2021].

The Precision-Recall-plots shown in Figure 5.6 confirm these observations. In these diagrams,
every point cloud of the ABC dataset is depicted as one small semi-transparent black point
according to it Precision and Recall scores. The background color depicts the color-coded
local density of points. The plot for BoundED trained on the ABC dataset exhibits the highest
density in the top right corner suggesting that the classification results on most models are of
high quality, while the peak density for approaches trained or finetuned on Default is much
lower and the individual points are more evenly distributed over a larger area.

Besides yielding better classification scores across the board, the computation of our features
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is also cheaper compared to PCEDNet and our multi-scale fusion and classification network
has roughly 25% less parameters. Table 5.3 lists training and evaluation timings for PCEDNet
and our approach. Training in this context consists of the multi-scale feature extraction for
the training and validation data of the dataset given in parentheses as well as using this
data to train the network. Similarly, evaluation consists of extracting the features on the
evaluation set given in parentheses and classifying all points using the trained network.

While using a powerful GPU accelerates the feature extraction step, the difference for
the network training and inference is negligible due to the networks compactness and
simplicity.

5.5.5 Qualitative Comparison

If trained on Default++, our algorithm learns to identify the sharp edges in the evaluation
models well as can be seen in Figure 5.7. The edge detection results seem to be even a bit
more consistent than the ones of PCEDNet trained on Default. However, PCEDNet does a
better job at classifying outliers as non-edge. We suspect, that the GLS features are more
robust regarding outliers and our network was not able to compensate for this as outliers are
strongly underrepresented in the training data.

Results on some evaluation models of the ABC dataset are depicted in Figure 5.8. PCEDNet
exhibits mixed performance on the models 0027 and 0059. Depending on the dataset used
for training, the algorithm either tends to have problems with the thin wall of model 0059 or
produces less consistent results on some parts of model 0027. The most consistent results,
however, are produced by our approach trained on the Default++ dataset. It is the only
configuration that produces an inner circular edge on model 0027 without holes while not
massively overclassifying the cylindrical wall at the top of the model as sharp edge. The
classification results of points which are part of the screw thread in model 0117 are not as
consistent as the detected sharp edges contain many holes. The screw is classified best by
our algorithm trained on ABC, but this combination erroneously classifies the boundary of
model 1222 as sharp edges.

BoundED also works well on actual 3D scanned real-world data as shown in Figures 5.9
and 5.10. On the christ_church point cloud, it outperforms PCEDNet in classifying the
sharp-edges of roofs (see green zoom-in) and also gives good results for the fine stone
structures of the church (see blue zoom-in). The results on the station point cloud are similar.
Especially for the third row, our algorithm gives much more consistent results in the area of
the escalator.

5.5.6 Boundary Detection

As already mentioned in Section 5.2, the processing of point clouds often requires the
detection of boundaries in addition to sharp edges due to potentially very fine structures
as well as finite resolution. This is especially important if the scanned object has many fine
structures like leafs on plants or fine fins on buildings. Due to the GLS [Mellado et al., 2012]
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Figure 5.7: Comparison of the results on the Default++ evaluation set. The dataset used for training is
reported in parentheses. As first and second row were trained on the Default dataset, the respective
approches are by design not able to detect boundaries.
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Figure 5.8: Comparison of PCEDNet and BoundED trained on three different datasets and evaluated
on four different models from the ABC evaluation dataset. The dataset used for training the respective
approach is given in parentheses. Algorithms trained on Default or ABC are not able to detect
boundaries by design.
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Figure 5.9: Classification result of PCEDNet trained on Default (top) and BoundED trained on
Default++ (bottom) for the mid-sized (1.9 million points) scanned christ_church point cloud. Three
different zoomed parts are depicted for direct comparison (middle).
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PCEDNet (Default) BoundED (Ours) (Default++)

Figure 5.10: Classification result of PCEDNet trained on Default (left) and BoundED trained on
Default++ (right) for the large (12.5 million points) scanned train_station point cloud.

Figure 5.11: 3D scanned plant point clouds classified using our approach BoundED trained on
Default++.
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Figure 5.12: Comparison of PCEDNet and BoundED regarding bahavior on noisy data. The dataset
used for training the respective approach is given in parentheses.
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features used in PCEDNet [Himeur et al., 2021], which rely on point normals estimated using
a small neighborhood of points, PCEDNet is by design not able to detect boundaries in point
clouds. In contrast, using our proposed set of features and the extended Default++ dataset
makes our approach capable of detecting boundaries in addition to sharp edges.

Figure 5.7 shows successfully detected boundaries for the two rightmost models, i.e. the only
ones containing actual boundary points. For model 1222 of the ABC datasets evaluation data
(see Figure 5.8), the boundary is found almost perfectly as well. Despite being actually 3D
structures and therefore not boundaries in the strict sense, the top of the walls of model 0059
are detected as a boundary as well. Due to the low thickness of the walls, this is a reasonable
behavior depending on the exact use-case for the extracted boundary data.

Very thin structures being identified correctly as boundary can also be seen in the red
zoom-in of Figure 5.9. In the station point cloud (see Figure 5.10), mostly points of thin signs
and humans are identified as boundary points. Note, that humans in this point cloud are
mostly two-dimensional due to the scanning procedure and rather low resolution.

Finally, results on plants are depicted in Figure 5.11. All leaves are nicely separated by
boundaries. Some stems contain sharp-edge points due to scanning artifacts.

5.5.7 Behavior on Noisy Data

In addition to the results on clean point clouds in Figure 5.8, Figure 5.12 shows a direct
comparison on clean as well as noisy data taken from the ABC dataset of our algorithm
BoundED and PCEDNet [Himeur et al., 2021]. The respective noisy models are taken
from Himeur et al. [2021]8. Note, that we assume only the point positions to be given. Thus,
the normals needed by PCEDNet were calculated according to the authors instructions
via meshlab [Cignoni et al., 2008]. BoundED outperforms PCEDNet on noisy data if both
are trained on Default as it is significantly less prone to predict false positives in originally
flat regions. The difference is particularly noticeable in the eighth row on model 7487.
Furthermore, in the sixth row on model 4986, PCEDNet has difficulties in detecting the
prominent sharp edges at the top and botom of the object. As the network architectures
of both approaches are very similar, we expect that the main reason for our approach to
perform better in the presence of noise is the additional robustness of our features due to the
underlying statistics.

5.5.8 Ablation Study

In the scope of an additional ablation study, we validate the chosen features as well as the
selected number of scales.

Table 5.4 shows median scores of various classification metrics for results of our approach
trained and evaluated on the Default++ dataset. While all chosen features seem to contribute
8 Available at: https://storm-irit.github.io/pcednet-supp/abc_noise_0.04.html, accessed on
10/19/2022.
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Precision(↑) Recall(↑) MCC(↑) F1(↑) Accuracy(↑) IoU(↑)

x8 ,: = (d8 ,: , s8 ,: , c8 ,: )) 0.308 0.680 0.413 0.427 0.888 0.272
x8 ,: = (28 ,: )) 0.331 0.379 0.310 0.354 0.915 0.215
x8 ,: = (28 ,:,upper , 28 ,:,lower)) 0.380 0.113 0.172 0.172 0.934 0.094
x8 ,: = (28 ,:,upper , 28 ,:,lower , s8 ,: )) 0.361 0.743 0.464 0.474 0.903 0.311
x8 ,: = (28 ,:,upper , 28 ,:,lower , d8 ,: , s8 ,: )) 0.423 0.711 0.499 0.518 0.923 0.349
x8 ,: = (28 ,:,upper , 28 ,:,lower , d8 ,: , c8 ,: )) 0.416 0.248 0.296 0.326 0.933 0.195
x8 ,: = (28 ,:,upper , 28 ,:,lower , s8 ,: , c8 ,: )) 0.327 0.760 0.449 0.454 0.889 0.293
x8 ,: = (28 ,: , d8 ,: , s8 ,: , c8 ,: )) 0.359 0.723 0.472 0.482 0.903 0.318
x8 ,: = (28 ,:,upper , 28 ,:,lower , d8 ,: , s8 ,: , c8 ,: )) 0.436 0.709 0.522 0.542 0.927 0.371
x8 ,: = (28 ,: , 28 ,:,upper , 28 ,:,lower , d8 ,: , s8 ,: , c8 ,: )) 0.373 0.866 0.529 0.521 0.903 0.352

Table 5.4: Ablation study regarding the choice of features used as input for the network. The table
lists median scores for various classification metrics. Default++ dataset is used for training as well as
evaluation. The individual features are defined in Sections 5.4.1 and 5.4.2.

Precision(↑) Recall(↑) MCC(↑) F1(↑) Accuracy(↑) IoU(↑)

2 scales (128, 32) 0.313 0.857 0.470 0.456 0.876 0.295
4 scales (128, 64, 32, 16) 0.436 0.709 0.522 0.542 0.927 0.371
8 scales (128, 91, 64, 45, 32, 23, 16, 11) 0.477 0.639 0.515 0.542 0.935 0.372
16 scales (128, 108, 91, 76, 64, 54, 45, 38, 32, 27, 23, 19, 16, 13, 11, 10) 0.463 0.662 0.520 0.545 0.932 0.375

Table 5.5: Ablation study regarding the number of scales used by our network. The table lists
median scores for various classification metrics. The Default++ dataset is used for training as well as
evaluation.

positively to the classification result, experiments suggest, that s8 ,: is the most important
feature. We suspect the reason for this to be the high importance of its tangential component
for the detection of boundaries while additionally the normal component can be utilized by
the network to classify sharp-edge points. Also note, that the partitioning of the neighborhood
according to the estimated normal degrades classification quality if the singular values of
the respective covariance matrices are given to the network in isolation. However, if being
combined with the other proposed features, the partioning improves the results. We reason,
that the partitioning provides the network with additional cues for finetuning the results,
but is too dependent on correct normal estimation to be suited for robust sharp-edge and
boundary point detection without further information. Passing the singular values 28 ,: of
the unpartitioned neighborhood’s covariance matrix to the network in addition to 28 ,:,upper
and 28 ,:,lower does not seem to improve the results significantly.

The impact of the number of scales is shown in Table 5.5. For the experiments, we chose
to use 28 neighbors per scale where 8 is distributed evenly-spaced over the interval (3, 7].
While the performance of our algorithm using 4, 8, or 16 scales is very similar, using 2 scales
performs much worse. As a trade-off between performance and computational burden, we
use four scales.
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5.5.9 Limitations

Despite yielding great results in most cases, the feature extraction step can fail in various
scenarios. If e.g. the smallest singular value of a neighborhood’s covariance matrix does
not correspond to the true surface normal, the points are partitioned in an unexpected
way leading to very unpredictable results. Note, that, by estimating the normal per-scale
and passing all respective singular values to the network, it is able to extract additional
information about the neighborhood. Using only a single-scale normal e.g. estimated during
the scanning process might therefore lead to less accurate classifications. To some degree, this
can be compensated by the classification network given enough training data. Nonetheless,
the results would surely improve if the feature extraction step can already tackle such edge
cases on its own by e.g. using a per-scale global normal smoothing step.

Furthermore, the Default dataset was designed to yield good results if GLS features are used
for classification, but it does not cover all relevant edge cases for our features. Outliers seem
to be one such example. As they are heavily underrepresented in the training data, the
classification network fails to distinguish those properly from points on the actual surface.
Designing a new point cloud dataset with our features in mind or even generating a dataset
based on the feature values directly instead of going the detour over generating point clouds
could solve this problem.

Finally, depending on the point cloud size, a large part of the time needed for the feature
extraction step is spent on finding the : neighbors of each point. A custom tailored solution for
this neighborhood search could probably improve the performance of the feature extraction
significantly. Due to the simplicity and compactness of the network, the same holds for the
implementation of the classification network as general frameworks like PyTorch introduce a
significant overhead in this situation.

5.6 Conclusion and Future Work

In this work we introduced a novel set of per-point features to facilitate the detection of
sharp edges and boundaries via a simple and compact neural classification network. Due
to the small network and an efficient GPU implementation for the feature extraction, the
algorithm is faster than previous state-of-the-art methods while at the same time achieving
more consistent classification results. This could make the proposed BoundED algorithm a
good choice for situations in which interactive classification is required.

The two-level covariance analysis conducted on the neighborhood of a point has, even in
the simple form deployed in this work, proven to be a valuable tool to describe the local
geometry. In the future, our novel features could be utilized to estimate the curvature of
curved surfaces as well. We expect the inclusion of higher order moments to further improve
the results and enable us to also learn the estimation of distances to edges and boundaries.
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Chapter 6

Conclusion

In the following, the contributions of the publications included in this thesis are summarized.
Furthermore, limitations and opportunities for future work are discussed.

6.1 Contributions

As part of this thesis, we presented three different research projects in Chapters 3, 4, and 5
respectively. The goal of these projects was to develop techniques for improving the feasibility
of state-of-the-art scene reconstruction solutions for applications relying on practical real-
time reflectance estimation. In Chapter 1.1, we identified two main challenges that need
to be addressed to achieve this goal: sparsity of available appearance samples and strong
constraints regarding the processing time.

As appearance is the result of the complex interplay of illumination, geometry, as well as
reflectance characteristics of the surface and additionally depends on the viewing direction,
it can only be reconstructed accurately based on a dense sampling. For very smooth surfaces,
the sampling has to be extremely dense, as some reflectance characteristics may only be
observed from particular viewing directions. Unfortunately, sampling the appearance with
this density is not feasible in many applications as it would negatively impact the user
experience and increase hardware cost. It can even be entirely impossible due to physical
constraints. Therefore, reflectance estimation algorithms have to be able to operate on sparse
appearance samples, e.g., captured by a single webcam in a telepresence application or by a
small number of sensors integrated into a head-mounted VR device.

Similarly, meeting certain time constraints is crucial for many applications as long processing
times and high latency might hurt, e.g., social interaction in a telepresence setting or prevent
an operator of a remotely controlled robot from reacting properly to a dynamic environment.
Real-time online scene reconstruction, however, is challenging as vast amounts of data have
to be processed, and resulting reconstructions have to be highly accurate as well as temporally
stable. If this reconstruction is required to happen on a mobile device like a mobile phone or
AR glasses with very limited computing power, it is even more critical to develop fast and
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efficient algorithms while maintaining the high visual quality already achieved by offline
methods.

Real-time Reflectance Estimation from RGB-D In this project [Bode et al., 2019], we
proposed a complete reflectance estimation solution focusing on meeting the time constraints
by sacrificing some quality compared to offline approaches. Ourmethod builds on a real-time
geometry estimation pipeline and extends it with a reflectance estimation component. The
main parts of this extension are an efficient GPU implementation for gathering andmanaging
appearance samples over a given image sequence in real time, as well as the learning-based
estimation of per-object Ward BRDF parameters for each frame and consecutive fusion over
the sequence. Additionally, we proposed to perform a preliminary illumination estimation to
enable our algorithm to reconstruct spatially-varying diffuse albedo, which captures further
details. Utilizing a segmentation and the trained CNN prior allows the algorithm to yield
reasonable reflectance estimates for the scene despite the sparsity of available appearance
samples.

Locally-guided Neural Denoising In reflectance estimation pipelines, noise-like artifacts
frequently cannot be avoided. Typically, the artifacts in the reconstructed data increase
if the computational budget is very small or the appearance samples available are highly
sparse, which is the case for many of the targeted applications. Instead of improving the
reflectance estimation process, these artifacts can also be addressed in a post-processing
step using image restoration algorithms like denoising methods. Most existing methods,
however, are not suitable for the application to our typical estimated reflectance data as they
assume homogeneous noise characteristics over the data. This assumption does not hold in
our case, as the appearance sample sparsity problem is much more severe for very smooth
surfaces than for rough, diffusely reflecting ones. In the second project presented as part
of this thesis [Bode et al., 2022a], we proposed a novel technique for noise-level estimation
and a scheme for using such information to guide state of the art learning-based image
denoising methods with only minor modifications. We demonstrate that this approach is
able to remove disturbing artifacts from natural images as well as reconstructed reflectance
data while preserving fine details in initially clean parts.

Neural Boundary and Edge Detection Most existing pipelines for reflectance estimation
leverage some kind of clustering or segmentation to overcome the sparsity of available
appearance samples. While we used a geometry-based scene segmentation in our real-
time reflectance estimation pipeline [Bode et al., 2019] resulting in a set of specular BRDF
parameters per object, other options include clustering surface points according to their
material or segmenting the scene into multiple segments per object according to, e.g., the
individual parts it is assembled from. Crucial for calculating a meaningful segmentation is a
good understanding of the scene, such as, e.g., information about the types of objects in the
scene, the materials they consist of, their positions, or their extent. To this end, detecting
edges and boundaries in the scene can benefit reflectance estimation pipelines. In the third
project of this thesis [Bode et al., 2022b], we improved on the state-of-the-art in the field of
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edge and boundary detection in scenes represented as a point cloud, i.e., we assume only a
position to be given for each surface point. We developed a small set of features that can
describe local point neighborhoods well, such that a very compact MLP can classify points
in non-edge, sharp-edge, or boundary. Due to the simplicity and compactness of the MLP,
we expect our approach to be a good fit for real-time reflectance estimation pipelines.

6.2 Limitations and Outlook

Despite the tremendous progress in the field of real-time reflectance estimation over recent
years, there is still a significant gap in the quality of the reconstructions between offline and
online approaches. The reasons for this gap are manifold:

First, the reflectance models and light transport formulations commonly used in online
pipelines are not expressive enough to adequately capture the variety of different appearance
characteristics real-world scenes exhibit. Most existing approaches, e.g., do not handle
complex materials involving transparency or subsurface scattering. Part of the problem is
that the current generation of commodity depth sensors cannot handle transparent surfaces.
Nonetheless, simpler models like the Phong BRDF [Phong, 1975] or Ward BRDF [Ward,
1992] are still popular as they are easier to be fitted to the sparse appearance data. More
complex models like microfacet BRDFs are already quite common in offline reflectance
estimation approaches, increasing the realism in reconstructed scenes. Even more expressive
are neural reflectance models parameterized over neural features that are interpreted by a
trained rendering network. It has been demonstrated that this neural shading technique
can even correct for inaccuracies in the underlying geometry. Furthermore, neural radiance
fields [Mildenhall et al., 2021] could be considered to represent the appearance in the
reconstructed scene as they have been shown to excel at synthesizing photorealistic images
from novel viewpoints. Currently, these techniques are too slow to be feasible for real-time
online reflectance estimation pipelines, but the rapid progress in these research fields suggests
that this might change in the near future.

Second, due to the strong time constraints coupled with the sparsity of the appearance data,
the reflectance model fitting is not accurate enough to yield realistic reconstructions. For
the offline reflectance estimation setting, this has been improved recently by leveraging
differentiable rendering techniques, which are, however, not yet fast enough for integration
into real-time pipelines at the moment. Outstanding results have been achieved, especially
in cases where a good initialization is given. In the future, this property could be utilized
to refine a reconstructed scene, with an initial reconstruction being obtained via classical
online reflectance estimation pipelines. This way, the initial reconstruction is still available to
the user with low latency, while the refined reconstruction can gradually replace it as the
refined version becomes available. Additionally, some differentiable rendering techniques
are able to handle global illumination effects like shadows or interreflections in the input data.
Thus, additional information can be utilized to achieve more accurate estimates compared
to most existing pipelines, which ignore these effects. Finally, differentiable rendering
could also be used to refine the camera poses for the input images, as demonstrated in
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the offline setting already. Since online reconstruction pipelines are typically susceptible
to camera tracking errors, this camera pose refinement could positively impact the overall
reconstruction quality.

Third, many post-processingmethods, like denoising the resulting estimates or the previously
mentioned differentiable rendering-based refinement, are not yet fast enough for usage in
an online reflectance estimation pipeline. Regarding denoising, this could potentially be
solved by using (weakly-)supervised methods. While depending on a set of training data
that has to fit the actual application, the denoising process tends to be faster than similar
self-supervised methods.

For the future, we suggest coupling real-time reflectance estimation pipelines to scene
understanding more tightly. This would allow the pipeline to adjust automatically to the
degree of realism needed for a specific application. For a typical video conferencing setup,
the face of a person is usually the most relevant part of the scene und should be reconstructed
as accurately as possible. However, it would suffice only to match the appearance of the
cloth the person is wearing on a macroscopic level instead of matching the exact underlying
knitting or weaving pattern. A similar idea can often be applied to furniture in indoor
settings: Instead of matching the exact texture of, e.g., a wooden chair, it might suffice just to
apply a generic wood texture matching the type of wood that is used for the chair. Besides
pooling of appearance samples, scene understanding could, hence, also be used to, e.g.,
query materials from a database for parts of the scene, which would allow the reconstruction
pipeline to focus the limited computational resources on the essential parts of the scene
according to the targeted application. Applying strong material-specific priors during the
reflectance parameter fitting could also improve the robustness of the reconstruction pipeline
and resulting realism.

Mostly orthogonal to improvements in the reconstruction algorithms,we also still see progress
concerning the hardware. While consumer-grade photo and video cameras already yield
almost noise-free images in typical settings, depth data typically exhibit much more noise.
However, sophisticated sensors producing high-quality depth images are becoming more
and more affordable, which is obviously beneficial for reconstruction pipelines. Furthermore,
the computation hardware is becoming more powerful with each generation, and special-
purpose hardware for efficient ray tracing and evaluation of neural networks is available in
many modern GPUs. Finally, shifting computationally expensive parts of the reconstruction
pipeline to the cloud could also improve results, especially on mobile or low-end devices.

While not achieving practical, high-quality real-time reflectance estimation just yet, we
believe our contributions will positively impact the field and help to achieve the described
goal in the near future.
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Abstract

Real-time reflectance reconstruction under uncontrolled
illumination conditions is well-known to be a challenging
task due to the complex interplay of scene geometry, surface
reflectance and illumination. Nonetheless, recent works
succeed in recovering both unknown reflectance and illu-
mination in an uncontrolled setting. However, they are ei-
ther limited regarding the scene complexity (single objects
/ homogeneous materials) or are not suitable for real-time
applications. Our proposed method enables the recovery
of heterogeneous surface reflectance (multiple objects and
spatially varying materials) in complex scenes at real-time
frame rates. We achieve this goal in the following way:
First, we perform a 3D scene reconstruction from an in-
put RGB-D stream in real-time. We then use a deep learn-
ing based method to estimate Ward BRDF parameters from
observations gathered from individual segmented scene ob-
jects. Subsequently we refine these reflectance parameters
to allow for spatial variations across the object surfaces.
We evaluate our method on synthetic scenes and success-
fully apply it to real-world data.

1. Introduction

The digitization of scenes belongs to the classical com-
puter vision tasks with numerous applications in entertain-
ment, advertisement, cultural heritage as well as virtual and
augmented reality. However, achieving realistic models re-
lies on the accurate capture of the underlying properties
such as geometry and reflectance characteristics which is
complicated by the fact that only the interplay between sur-
face geometry, material-specific reflectance characteristics
and illumination conditions can be directly measured. Ad-
ditional real-time constraints further complicate this task.

Regarding the separate real-time reconstruction of 3D
scene geometry, impressive results have been reported with
the aid of consumer RGB-D sensors such as the Kinect [31,

5, 43, 44, 12, 13, 6]. The decoupling of reflectance and
illumination characteristics, however, remains a highly ill-
posed challenge due to its severely under-constrained na-
ture. As a result, many real-time reconstruction approaches
rely on strong simplifications, such as using simple color
textures to represent surface appearance. However, repre-
senting a surface point using a single color value is not
sufficient. One needs to take into account that color ob-
servations incrementally captured for it may strongly vary
due to view- and illumination dependent shadows or high-
frequency illumination characteristics. Otherwise, such ef-
fects would be stored in the surface texture, which would
lead to inconsistencies for scene relighting. To improve the
quality of the reflectance reconstruction by separating the
aforementioned effects in real-time, existing works exploit
intrinsic image decomposition for (diffuse) albedo estima-
tion [16, 11, 29, 26, 40]. These techniques achieve real-time
capabilities at a reduced reconstruction accuracy. In con-
trast, estimating BRDF models together with the surround-
ing illumination with inverse rendering frameworks yields
more accurate reconstructions that also take specular re-
flectance into account. Inverse rendering approaches utilize
alternating optimizations of reflectance and illumination
based on statistical priors [39, 22, 21, 3, 47, 23, 24, 37, 2].
However, the computational burden of these approaches
prevents real-time performance. Other approaches have
recently demonstrated impressive real-time reconstructions
by leveraging markers and mirror spheres [48] or by using
the potential of deep learning, even in the absence of HDR
inputs [17, 28]. However, remaining limitations include the
restriction of these BRDF estimation frameworks to single
objects with homogeneous reflectance characteristics.

In this paper, we address these limitations by propos-
ing a novel multi-material reflectance reconstruction frame-
work for large-scale scenes with spatially varying surface
characteristics under uncontrolled indoor illumination. This
implies taking into account near-field illumination charac-
teristics and extending previous frameworks [17, 28] to
handle inhomogeneous reflectance characteristics as well

c© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works. The final version of record is available at http://dx.doi.org/10.1109/3DV.2019.00083.
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Figure 1. Overview of the proposed real-time multi-material acquisition approach.

as multiple materials in large scenarios in real-time. For
this purpose, we capture near-field illumination character-
istics, initially assuming that the illumination conditions in
indoor scenarios remain constant during capture. In addi-
tion, the use of scene segmentation allows to associate the
individual reflectance measurements to segments of homo-
geneous reflectance characteristics, so that within-segment
observations can be exploited for the estimation of local
surface reflectance behavior. In a final step, we estimate
multi-material reflectance characteristics in terms of spa-
tially varying parameters of the Ward BRDF based on the
collected measurements utilizing the HemiCNN [17] with
a subsequent refinement of diffuse albedo characteristics to
allow handling spatially varying characteristics. Our eval-
uation demonstrates the potential of our approach in the
scope of synthetic and real-world examples.

2. Related Work
Early work on separating reflectance and illumination in-

cludes in particular the intrinsic image decomposition [4],
where an input image is decomposed into the product of a
shading layer and a reflectance layer, and its numerous im-
provements since that time. However, the underlying repre-
sentation based on two images is disadvantageous as the re-
flectance layer only represents the diffuse component while
the specular component is stored together with the lighting
in the shading layer.

Assuming known geometry, Haber et al. [10] and Diaz
and Sturm [7] estimate Lambertian reflectance and illu-
mination characteristics from images taken under uncon-
trolled conditions. Barron and Malik [3] estimate shape,
reflectance, and illumination from a single image. Further-
more, using video frames as input, Dong et al. [8] exploit
the knowledge regarding surface geometry of a rotating ob-

ject to estimate spatially varying reflectance behavior and
Palma et al. [33] captured SVBRFs while surrounding the
object and approximating the environment with a few dom-
ination point light sources. In contrast, Wu and Zhou [48]
applied the Kinect sensor as an active reflectometer in the
IR spectrum and separately captured the illumination in the
scene, which allows scanning the object geometry and ap-
pearance within several minutes while providing interac-
tive visual feedback. Similarly, Knecht et al. [18] also ex-
plored the Kinect to estimate reflectance characteristics at
interactive rates. In further work [47], color and depth im-
ages captured under unknown illumination serve as input
to an offline joint optimization of camera poses, materials,
illumination, and surface normals. On-the-fly reflectance
estimation at interactive rates for objects exhibiting a ho-
mogeneous smooth surface reflectance behavior has been
achieved by Kim et al. [17] based on a learned model trained
on synthetic data. Solely considering flat material samples,
Aittala et al. [1] exploit self-similarities in the surface re-
flectance behavior to fit spatially-varying BRDFs over a de-
tailed normal map based on a flash/no-flash image pair de-
picting a flat material sample. Furthermore, Li et al. [19]
infer BRDF characteristics for single images based on self-
augmented convolutional neural networks.

Instead of assuming known surface geometry, several
techniques [36, 9, 20, 25] use implicit shape priors and,
hence, are tailored to objects used during the training.

Lombardi and Nishino [21, 24] employ priors for the re-
flectance model to extrapolate non-observed measurements
in combination with illumination priors to jointly optimize
for the reflectance and illumination characteristics. In sub-
sequent work [23], this has been further improved to also
handle complex scene appearance beyond single isolated
objects. In all these approaches the considered objects are



assumed to exhibit a smooth, homogeneous reflectance be-
havior and real-time performance has not been reached. An-
other offline estimation approach for illumination and ma-
terial properties tailored to in the wild conditions has been
proposed by Richter-Trummer et al. [38].

The recent work of Meka et al. [27] has been demon-
strated to allow for live reflectance estimation from single
images without assuming the aforementioned priors. This
has been achieved based on the coupling of various encoder-
decoder architectures to derive object segmentation, as well
as more detailed reflectance information. However, the ap-
proach is tailored to the capture of single objects with ho-
mogeneous reflectance characteristics.

3. Multi-material Reflectance Estimation in
Large Scenes from RGB-D Sequences

As illustrated in Figure 1, our framework for real-time
multi-material reflectance reconstruction takes inputs in
terms of RGB-D streams from commodity depth sensors
such as the Microsoft Kinect or respective RGB-D sensors
in smartphones. In an initial step, we recover the illumina-
tion characteristics in the scene (see Section 3.2). Thereby,
we avoid the need for special calibration targets such as
chrome spheres as used by Wu and Zhou [48]. Based on
the initial illumination reconstruction, we then perform a
real-time reflectance reconstruction by gathering view- and
illumination-dependent observations for each surface point
(Section 3.4), segmenting the scene into different objects
(Section 3.5), and estimating material reflectance character-
istics in terms of specular (Section 3.6) and diffuse albedo
(Section 3.7). In Section 3.1, we first review the underlying
reflectance representation and subsequently provide more
details regarding the major components of our framework.

3.1. Image Formation and Reflectance Models

Before addressing the inverse rendering problem in
terms of inferring surface reflectance characteristics, we
briefly focus on the underlying image formation process
that describes the light exchange at surfaces as described
by the rendering equation [15]:

Lo(x, ωo) = Le(x, ωo)

+

∫

Hi

f∗(ωi, x, ωo)Li(x, ωi) cos θi dωi. (1)

The radiance Lo leaving some point x into direction ωo is
composed of the radiance Le emitted from that point into
direction ωo, and the integral over the radiance Li, incident
at x from directions ωi in the domain Hi, that gets reflected
into direction ωo according to a material-specific reflectance
model f∗, weighted by the cosine of the angle between ωi
and the surface normal. Assuming that an object does not
emit light on its own, we can ignore Le.

In order to capture surface appearance, we have to re-
cover the underlying reflectance, which is a severely ill-
posed task difficult to solve in real-time. Therefore, fol-
lowing previous work, we assume that reflectance can
be sufficiently described with parametric BRDF models
[23, 47, 17]. Similar to Kim et al. [17], we use the Ward
BRDF model [42]

fBRDF (ωi, x, ωo) =
κd(x)

π
+
κs(x)

N
· eγ , (2)

N = 4πα2
√
cos θi · cos θo, (3)

γ = − tan θh
2

α2
, (4)

as it can be seen as a trade-off between simplicity and the
capability to represent a wide range of materials, and has
been used in the domain of material perception [34, 46].
Here, κd denotes the diffuse and κs the specular albedo.
The parameter α describes the surface roughness. Another
common assumption is that each scene object consists of a
single homogeneous material, such that it can be sufficiently
described by the 7-dimensional Ward parameters. However,
since very few real-world objects follow this assumption,
we relax this assumption by performing a spatially varying
albedo refinement. Finally, we ignore all indirect illumina-
tion effects like self-shadowing or interreflections.

3.2. Lighting Estimation

Knowledge of the illumination conditions in the scene
facilitates the estimation of surface reflectance behavior and
has been addressed e.g. by using special calibration tar-
gets, such as mirroring spheres, in front of the moving cam-
era [48]. As we focus on indoor scenarios, we have to
capture near-field illumination. Since time-of-flight sen-
sors (e.g. the Microsoft Kinect v2) are not able to measure
depth for mirror-like surfaces, we instead record illumina-
tion characteristics using a separate RGB-D image sequence
capturing the light sources by direct observation. During
this first recording, the sensor is configured to use a low ex-
posure in order to achieve a clear separation of light sources
from the remaining scene contents in the RGB images. Note
that we do not need an additional RGB-D sensor as both
image sequences can be recorded sequentially. We back
project pixels of the RGB images with a luminance above a
given threshold according to the corresponding depth data
and apply a simple spatial mean-shift clustering for each
frame individually. Fusing the resulting per image point
light candidates over the whole sequence yields the final
illumination configuration. Alternatively, voting-based ap-
proaches could be used [45, 33].

3.3. Geometry Reconstruction

Both the estimation of near-field illumination and re-
flectance rely on knowledge of the surrounding scene ge-



ometry. We use the VoxelHashing 3D reconstruction frame-
work [32, 14] that allows real-time reconstruction of large
scenes. It relies on an implicit voxel-based surface represen-
tation adapted to the underlying scene geometry. Instead of
allocating voxels for the entire scene volume, a sparse set of
voxel blocks managed by spatial hashing is used.

3.4. Local Collection of Reflectance Observations

The inference of surface reflectance characteristics re-
lies on collecting local observations of surface appearance
at each surface point under various viewing configurations
per voxel and constant illumination conditions. Therefore,
an observation is given as a pair of an RGB color value and a
direction from which it has been observed. For every voxel
in the hash table we determine the corresponding pixel in
the depth image. By comparing the depth value with the
distance between voxel and camera, we check whether the
voxel is corresponding to some pixel in the RGB image or
not. If the two values are sufficiently close, we sample the
color from the RGB image and store it together with the
voxel-to-camera direction as one observation. Observations
that are too far from the surface or occluded are discarded.

Similar to the VoxelHashing framework, we store all
those observations in a separate large observations pool in
GPU memory and access them through a hash table which
maps voxel coordinates to a list of observations. Hold-
ing the observations in GPU memory allows for efficient
highly parallel acquisition and processing. The GPU mem-
ory, however, is already in high demand for the geometry
reconstruction itself and the machine learning framework
running the CNN (Section 3.6). Due to the large number of
voxels in the scene and input image sequences that usually
contain hundreds of frames, the memory consumption is a
very limiting factor for this step. In order to keep the mem-
ory, as well as the computational requirements tractable, we
introduce some optimizations:

First, we limit the number of stored observations for a
single voxel to m, while ensuring that the most important
reflectance characteristic are still captured. Therefore, we
approximate a uniform sampling over the hemisphere in
normal direction by discarding one of the two most sim-
ilar observations when exceeding the limit after storing a
new one. Experimentally we determine m = 30 to be a rea-
sonable number of stored observations. This solution rep-
resents a trade-off between a low chance of missing valu-
able specularity information and computational complexity.
Since this is a real-time pipeline, we set the focus on perfor-
mance.

As a second optimization, we work on a coarser voxel
grid for anything regarding the reflectance observations. In-
stead of the usual 83 voxels per voxel block used for the
geometry reconstruction, we only use 23 or 43 voxels for a
voxel block of the same spatial dimensions in this step. This

downsampling is also the reason for using a separate voxel
pool and hash table instead of directly integrating the obser-
vations in the geometry reconstruction voxel data structure.
Separating the reflectance from the geometric observations
additionally allows decoupling the geometry reconstruction
from the material estimation framework.

3.5. Segmentation

Estimating multi-material reflectance is complicated by
the fact that different materials may seem similar under cer-
tain viewing and illumination configurations. Instead of
performing a color-based segmentation that may not dis-
tinguish material clusters correctly and connect distant dis-
similar regions, we assume that the scene contains multiple
objects with locally homogeneous materials. We therefore
apply the depth-based segmentation by Tateno et al. [41]. It
is based on the assumption that most objects have convex
shapes, and thus tend to be separated by concave bound-
ary regions in the depth maps. The concave regions are
computed using the relative normal orientations from the
depth maps and are segmented using connected component
analysis. In addition, we exploit the temporal coherence of
such regions over image sequences to make the segmenta-
tion consistent over time.

For further processing we need to be able to randomly
sample voxels of a specific segment. In order to do this, we
allocate a ring buffer of fixed size per material class, which
is filled with voxel references utilizing the GPU.

3.6. Specular Material Parameter Estimation

For the material estimation, we assume every extracted
segment to correspond to a region with homogeneous mate-
rial characteristics. We thus have to predict one set of ma-
terial parameters for the voxels assigned to a specific seg-
ment. For this purpose, we use the HemiCNN [17] to esti-
mate specular albedo κs and the Ward roughness parameter
α. While we use κs and α as provided by the HemiCNN,
we use a novel albedo refinement technique to compute the
diffuse albedo κd to increase robustness against violations
of our homogeneity assumption, see Section 3.7.

In a first step of the estimation process, for every seg-
ment, we loop over its ring buffer containing the segment’s
voxels and randomly sample 25 of them. Per segment, we
use those sampled voxels to create so called HemiImages
from their reflectance observations. The observations’ di-
rections are rotated such that the z-axis is aligned with the
surface normal, which is stored together with the reflectance
observations. This results in the observations all being con-
tained by the hemisphere in positive z direction. All direc-
tions are now projected onto the x-y-plane such that they
are contained in the unit disk around the origin. To better
preserve information under flat angles, we use a parabolic
mapping instead of the orthogonal projection suggested by



Kim et al. [17]. The disk containing the projected obser-
vation directions is transformed to the range [0; 14]2. We
subsequently use nearest neighbor interpolation on the ob-
served colors to fill the pixel grid of 15 × 15 images. The
created HemiImages are used as the input for HemiCNN.

We use a variation of the RMSE2 [17] as loss, i.e.

E(w, ŵ) = λd

∥∥∥∥∥∥
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with w = (L, a, b, cr, cg, cb, d) being the ground truth Ward
parameters in a perceptually linear representation [35] and
ŵ analogously being the estimated parameters. For lower
values for λd and λl the network focuses more on the
specular estimation. Therefore, different than Kim et al.
(λd = λl = 1), we use λd = 0.1 and λl = 0.3.

Since we estimate the scene’s materials in real time, we
have to run the material estimation step each frame. In order
to reduce the susceptibility to noise in the individual mate-
rial estimates, we fuse the material parameters over time.

Inspired by the truncated signed distance function
(TSDF) update formula used in KinectFusion [30], we use
an average over the materials for the single frames to tempo-
rally fuse local material parameter estimates, with a higher
weight for current observations. However, instead of divid-
ing by the number of material predictions after summing
them up, we clamp the divisor (in our pipeline to 60).

3.7. Albedo Refinement

Applying the HemiCNN in a per-segment manner yields
homogeneous diffuse and specular characteristics per seg-
ment. In order to relax this and address inhomogeneous re-
flectance characteristics, we refine the diffuse albedo while
keeping the other modalities fixed, thereby allowing spa-
tially varying surface appearance according to the observa-
tions in the voxel grid resolution.

Based on Equations 1 and 2, the k-th reflectance obser-
vation for one voxel can be expressed as

Bk =
∑

l

(
κd
π

+
κs
Nl

· eγl
)
· Ll · cos θi,l, (6)

whereNl, γl and θi,l are respectively the variablesN , γ and
θi for light source l. Solving for κd yields

κd = π ·
Bk − κs ·

∑
l

1
Nl

· eγl · Ll · cos θi,l∑
l Ll · cos θi,l

. (7)

For every frame we use the observations per voxel to re-
calculate the respective per-voxel diffuse albedo κd. Due
to the approximately uniform sampling of the observations’
directions, we achieve a high degree of temporal coherence

by simply averaging the single estimates. The artifacts in-
troduced by the rather low resolution of the observation
voxel grid are reduced by applying trilinear interpolation.

4. Evaluation

After providing implementation details, we evaluate our
technique for both synthetic and real-world scenarios.

4.1. Implementation Details

We performed all experiments using an Intel Core i7-
4930K with 32 GB RAM and an Nvidia GeForce GTX 1080
with 8 GB VRAM. Following standard indoor 3D recon-
struction approaches, we use a 3D space discretization with
a resolution of 5 mm for the reconstructed model. Further-
more, we use grid resolutions of 2 cm, and 1 cm for the
reflectance observations.

The data we use for training the HemiCNN is based on
the SynBRDF [17] dataset. It contains 4432 RGB-D image
sequences with 100 synthetic images per sequence, which
show a single Ward-shaded object from different perspec-
tives, illuminated using various environment maps. Due to
its synthetic character, we know the ground truth Ward ma-
terial parameters. The scenes are divided into 3574 training,
424 validation, and 434 test scenes. We use those images to-
gether with our previously described pipeline to create 500
HemiImages per sequence. Afterwards we sample 200 dif-
ferent random sets of 25 HemiImages to create 886400 la-
beled examples, on which we train our network. We train
the HemiCNN in TensorFlow with the Adam optimizer, us-
ing a learning rate of 0.0001 and 150k batches, containing
32 examples each.

4.2. Synthetic Data

For synthetic data, we have direct access to the ground
truth camera trajectory, segmentation, and material param-
eters. Our test scenarios consist of objects in a virtual scene
and a camera moving around them in an oscillating manner.
To generate such scenes, we utilize an OpenGL rasteriza-
tion engine.

The benefits of our improved HemiCNN are shown in
Figure 2. Using our modified HemiCNN allows to recon-
struct the specular material characteristics more precisely
(e.g. on the yellow bunny). Furthermore, our albedo re-
finement integrated into the material reconstruction pipeline
also allows to reconstruct spatially varying diffuse albe-
dos. A qualitative evaluation in Figure 3 shows that shad-
ing effects are mostly avoided in the refined diffuse albedo
maps. Furthermore, the re-renderings with and without
albedo refinement match the input RGB images closely for
the cube sequence, where the individual objects are homo-
geneous. Figure 4 compares our reconstructed parameters
to the ground truth on a synthetic scene.
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Figure 2. Comparison of our approach with the unmodified HemiCNN [17] on the cubes, bunnies, and office scenes. The first column shows
the input RGB images, while the other columns show re-rendered RGB images reconstructed by the unmodified HemiCNN, HemiCNN
with our proposed modifications, and our complete pipeline respectively. The reconstructions on the synthetic scenes use ground truth
segmentation in order to focus the comparison on the material estimation aspect.

Input RGB Ground Truth κd Refined κd Refined Re-rendering HemiCNN Re-rendering
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Figure 3. Results for two synthetic datasets: Image of the input sequence, ground truth diffuse albedo, refined diffuse albedo, scene re-
rendering using all of the estimated Ward parameters and scene re-rendering using the diffuse albedo output of the HemiCNN directly
(from left to right). In both cases, the distance between the scene’s center and the camera is 4 m. The cubes have an edge length of 0.4 m
and the bunnies have a height of 1.5 m.

The albedo refinement is particularly favorable for sce-
narios where the assumption of homogeneous materials is
violated. Oscillations are induced by different viewpoints
in the images. Additionally, the results in Figure 5 illustrate
the influence of the albedo refinement for objects with spa-
tially varying reflectance behavior. Further results regarding
various error metrics are shown in Table 1.

4.3. Real-world Data

To demonstrate the performance of our technique on
real-world data, we captured an indoor scene that contains
a multitude of objects with different reflectance characteris-
tics. For the RGB-D capturing of real-world scenes, we use
the Microsoft Kinect v2 that delivers images with a resolu-
tion of 512× 424 pixels at 30Hz.
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Figure 5. Quantitative evaluation over time (1000 frames) for the bunny dataset: L1 errors (normalized over object region) of diffuse albedo
(first row), specular albedo (second row), Ward roughness α, and final reconstruction error ∆RGB for the individual objects. The gray
plots show the errors resulting from the refined model. Gaps in the plots are caused by occlusions.

∆L1
∆L2

PSNR SSIM
S1 S2 S3 S4 avg S1 S2 S3 S4 avg S1 S2 S3 S4 avg S1 S2 S3 S4 avg

κd 0.17 0.09 0.09 0.09 0.11 0.18 0.13 0.12 0.11 0.13 13.36 19.23 20.80 19.94 18.33 0.89 0.95 0.96 0.93 0.93
κd,ref 0.03 0.05 0.05 0.07 0.05 0.06 0.10 0.09 0.10 0.09 23.57 21.65 22.82 20.75 22.20 0.94 0.97 0.96 0.93 0.95
κs 0.02 0.00 0.04 0.09 0.04 0.04 0.01 0.06 0.11 0.05 26.02 45.31 25.41 18.55 28.82 0.97 1.00 0.98 0.97 0.98
α 0.06 0.03 0.05 0.02 0.04 0.07 0.06 0.06 0.04 0.06 17.91 22.45 22.84 25.81 22.25 0.96 0.98 0.98 0.98 0.98
RGB 0.20 0.13 0.10 0.10 0.13 0.21 0.19 0.16 0.16 0.18 21.68 26.15 28.63 27.32 25.95 0.90 0.94 0.96 0.94 0.94
RGBref 0.08 0.07 0.08 0.09 0.08 0.15 0.14 0.15 0.15 0.15 25.16 28.83 28.96 27.48 27.61 0.92 0.94 0.97 0.95 0.95

Table 1. Different metric results averaged over the 1000 frames of the bunny dataset: mean absolute deviation (MAD, ∆L1 ), root mean
square error (RMSE, ∆L2 ), peak signal to noise ratio (PSNR), structural similarity index (SSIM). The individual metrics are shown
separately for the different scene objects (S1: floor, S2: yellow bunny, S3: teal bunny, S4: orange bunny), as well as averaged over the
entire scene. The errors are computed on the individual model parameters (κd, κs and α), as well as the re-renderings (RGB). The second
and the last row show the metrics based on the refined diffuse albedo (κd,ref) and corresponding re-renderings (RGBref). Highlighted in
bold are the respective better results under each metric, showing that our refinements produce consistent improvements.
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Figure 6. Results for a real-world office scene captured with the
Microsoft Kinect v2 sensor: RGB input, estimated diffuse albedo,
and Ward shaded re-rendering on three different frames.

Low Resolution High Resolution

κd
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Figure 7. Comparison of results using different resolutions for the
reflectance observations’ voxel grid: 2 cm (left) and 1 cm (right).

As demonstrated in Figure 6, highlights are separated
from the diffuse albedo, and the specular component is pre-
served in the reconstructed Ward parameters as illustrated
by the re-rendering. Furthermore, Figure 7 shows that the
reflectance observations’ voxel grid resolution has only a
minor effect on the re-renderings, albeit the difference be-
ing visible in the diffuse albedo maps.

4.4. Performance Evaluation

The timings needed by the individual components of our
framework are shown in Table 2 and Table 3. As can be
seen, our approach allows real-time material recovery on
all low resolution test scenarios, as well as on the simple
high resolution ones. Investigations about the α distribution
in the data, as well as additional results on synthetic and
real-world scenes are shown in the supplementary material.

Scene cubes bunnies office
Geometry Rec. 3.480 ms 5.865 ms 8.906 ms

Refl. Obs. Collection 0.701 ms 1.474 ms 1.624 ms
Segmentation 1.154 ms 1.944 ms 1.755 ms

Specular Mat. Est. 5.997 ms 6.582 ms 6.039 ms
Albedo Refinement 5.962 ms 9.158 ms 11.438 ms

Total 17.294 ms 25.023 ms 29.763 ms

Table 2. Performance of the whole pipeline on various scenes with
low (2 cm) voxel grid resolution for reflectance observations.

Scene cubes bunnies office
Geometry Rec. 3.397 ms 5.867 ms 8.997 ms

Refl. Obs. Collection 2.965 ms 8.535 ms 9.967 ms
Segmentation 1.136 ms 1.980 ms 1.756 ms

Specular Mat. Est. 5.978 ms 6.507 ms 5.820 ms
Albedo Refinement 10.442 ms 21.579 ms 28.254 ms

Total 23.919 ms 44.467 ms 54.794 ms

Table 3. Performance of the whole pipeline on various scenes with
high (1 cm) voxel grid resolution for reflectance observations.

4.5. Limitations and Future Work

Reconstructing scenes with high dynamic range (HDR)
leads to problems with overexposure since consumer-grade
RGB-D sensors like the Kinect typically only capture low
dynamic range (LDR) images. This limitation could be
tackled by augmenting the LDR inputs or reconstructing
HDR from LDR images captured under varying exposures.

The sampling of the stored observations could be
adapted to better match the object’s specularity for sparsly
observerd objects such as the chair and the wall in Figure 6.
Further improvements include the optimization of our cur-
rent implementation to allow refining the resolution of the
reflectance observations and improving the segmentation by
additionally considering albedo information.

5. Conclusion

In this paper, we presented a novel real-time multi-
material reflectance reconstruction framework for large-
scale scenes with spatially varying surface characteristics
under uncontrolled static near-field indoor illumination. Af-
ter an initial reconstruction of the near-field scene lighting,
the framework uses the combination of real-time 3D recon-
struction, scene segmentation and per-segment reflectance
estimation. As demonstrated, our technique preserves spec-
ular characteristics in the estimated material parameters and
additionally is capable of handling also spatially varying re-
flectance characteristics.

Acknowledgements

This work was supported by the DFG projects KL
1142/11-1 (DFG Research Unit FOR 2535 Anticipating
Human Behavior) and KL 1142/9-2 (DFG Research Unit
FOR 1505 Mapping on Demand).



References
[1] M. Aittala, T. Weyrich, and J. Lehtinen. Two-shot svbrdf

capture for stationary materials. ACM Trans. Graph.,
34(4):110:1–110:13, July 2015.

[2] R. A. Albert, D. Y. Chan, D. B. Goldman, and J. F. O’Brien.
Approximate svbrdf estimation from mobile phone video. In
Proceedings of the Eurographics Symposium on Rendering:
Experimental Ideas & Implementations, SR ’18, pages 11–
22, Goslar Germany, Germany, 2018. Eurographics Associ-
ation.

[3] J. T. Barron and J. Malik. Shape, illumination, and re-
flectance from shading. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 37(8):1670–1687, Aug 2015.

[4] H. G. Barrow and J. M. Tenenbaum. Recovering Intrinsic
Scene Characteristics from Images. Academic Press, 1978.

[5] J. Chen, D. Bautembach, and S. Izadi. Scalable Real-time
Volumetric Surface Reconstruction. ACM Trans. Graph.,
32:113:1–113:16, 2013.

[6] A. Dai, M. Nießner, M. Zollhöfer, S. Izadi, and C. Theobalt.
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A B S T R A C T

Noise-like artifacts are common in measured or fitted data across various domains, e.g.
photography, geometric reconstructions in terms of point clouds or meshes, as well
as reflectance measurements and the respective fitting of commonly used reflectance
models to them. State-of-the-art denoising approaches focus on specific noise charac-
teristics usually observed in photography. However, these approaches do not perform
well if data is corrupted with location-dependent noise. A typical example is the acqui-
sition of heterogeneous materials, which leads to different noise levels due to different
behavior of the components either during acquisition or during reconstruction. We ad-
dress this problem by first automatically determining location-dependent noise levels
in the input data and demonstrate that state-of-the-art denoising algorithms can usu-
ally benefit from this guidance with only minor modifications to their loss function or
employed regularization mechanisms. To generate this information for guidance, we
analyze patchwise variances and subsequently derive per-pixel importance values. We
demonstrate the benefits of such locally-guided denoising at the examples of the Deep
Image Prior method and the Self2Self method.
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1. Introduction

Data containing high levels of noise poses a huge problem for
many applications in entertainment, advertisement, and design.
Immersive experiences of scenes and objects rely on respec-
tive high-fidelity depictions and are significantly impacted by
noisy data resulting from the capture or modeling process. Un-
fortunately, certain types and levels of noise cannot be avoided
during data capture. Physical or economic constraints might af-
fect the choice of the sensor or the amount and quality of the
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Fig. 1. We present a novel approach to remove spatially concentrated
noise from images. Given a noisy input image (top row), a guidance map
(middle row) can be used to control the denoising intensity of state-of-the-
art denoising algorithms in a spatially-varying manner. We propose a fully
automatic way to generate such guidance information by detecting noisy
pixels in the input (middle row, bottom half). Hereby, corrupted pixels of
the input can be denoised while preserving fine details in others (bottom).
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data that can be handled while meeting requirements regarding
the computational burden for a task. Therefore, methods are
typically designed to be robust to noisy data. Whereas certain
types of noise including sensor noise can typically be handled
robustly, the robustness to other noise types including compres-
sion artifacts or missing data is often still lacking and relies on
sophisticated denoising methods.

In the field of appearance capture and modeling – which
is concerned with creating photo-realistic virtual models that
capture details regarding surface geometry and reflectance be-
havior of their real-world counterparts – noisy 3D measure-
ments, inaccurate calibration and image noise have to be dealt
with. Oftentimes, these are corrupted by non-uniform location-
dependent noise as depicted in Figure 1. The typical way to
handle such data is to apply image restoration algorithms like
super-resolution, denoising and inpainting, which aim at recov-
ering an original image x from its corrupted version x̃. This can
be stated in terms of the optimization problem

arg min
x

E(x; x̃) + R(x) (1)

with the data term E(x; x̃) and a regularization term R(x). In
contrast to the task-specific data term, finding a good prior R(x)
is challenging. For a surjective mapping g : θ 7→ x, Func-
tional (1) corresponds to

arg min
θ

E(g(θ); x̃) + R(g(θ)). (2)

As shown by Ulyanov et al. [1], the choice of a good (possibly
injective) mapping g allows getting rid of the prior term. By
defining g(θ) as fθ(z), where f is given by a deep neural network
with parameters θ and using a fixed input z, we obtain

arg min
θ

E( fθ(z); x̃), (3)

which can be solved based on gradient descent, i.e. we opti-
mize the neural network’s parameters to finally represent the
searched restored version of the image x∗ = fθ∗ (z) based on the
optimal network weights θ∗. In other words, the underlying in-
verse problem is regularized by the deep network itself. Other
approaches [2, 3] combined this approach with additional pri-
ors.

These restoration methods like the Deep Image Prior are hard
to control, which poses a problem in the above example of data
corruped with location-dependent noise. Applying the Deep
Image Prior approach without modification results in either loss
of fine details or carrying over large amounts of artifacts.

In this paper, we propose a method to control the train-
ing of state-of-the-art learning-based denoising algorithms to
enable successful restoration of such data. At the example
of the restoration of fitted spatially-varying bidirectional re-
flectance distribution function (SVBRDF) textures that describe
the reflectance behavior of surfaces, we show how characteris-
tic properties of occuring artifacts can be leveraged to guide
the optimization. In particular, we introduce spatially varying
guidance by means of a per-pixel importance value, which can
be calculated in a fully automatic manner by analyzing patch-
wise variances in the image. Based on two exemplary denoising

approaches [1, 4], we show how to utilize the per-pixel impor-
tance values during the denoising process with only minor mod-
ifications to the original algorithms (see Figure 1). We validate
the potential of our approaches in comparison to the respective
original algorithms without modifications as well as another
learning-based state-of-the-art denoising method [5], where our
approaches outperform the baselines in terms of image quality
of the restored images.

2. Related Work

In the context of model-based optimization for inverse prob-
lems such as restoration, denoising, superresolution and deblur-
ring, it is well-known that the typically involved regularization
term has a significant influence on the resulting performance.
Therefore, lots of effort has been spent on finding good denoiser
priors. Total variation [6, 7] has been widely applied, but the re-
sults may exhibit watercolor-like artifacts. Further approaches
include Gaussian mixture models (GMM) [8] and the compu-
tationally expensive K-SVD denoiser prior [9]. Furthermore,
non-local means [10] as well as block-matching and 3D filtering
(BM3D) [11] tend to oversmooth irregular structures for images
that do not exhibit self-similarities. As leveraging the correla-
tion between different color channels by jointly handling them
has been shown to lead to better performance in comparison to
the independent handling of color channels [12], several works
focused on color priors (e.g. [13, 14, 15]). Popular techniques
such as CBM3D [13] rely on first decorrelating the image into
a luminance-chrominance color space and subsequently apply-
ing the gray BM3D method for each transformed color chan-
nel separately. However, the resulting luminance-chrominance
color channels still remain correlated [16], which indicates that
it might be beneficial to jointly handle RGB channels.

Instead of the aforementioned hand-designed approaches, re-
cent work particularly focused on learning-based methods to
find the respective color image priors capturing characteristics
of the given data. The learned deep CNN denoiser prior by
Zhang et al. [17] benefits from the parallelization of the in-
ference on the GPU and exploits the prior modeling capacity
offered by deep architectures. Building on this work, the de-
noising algorithm by Yang et al. [18] utilizes ensemble learning
to improve on the results, while Quan et al. [19] designed a
complex-valued CNN to leverage insights from classical im-
age recovery algorithms. However, the approach involves a
training on a large dataset of thousands of clean/noisy im-
age pairs. Despite relying on an image dataset for training as
well, Recorrupted-to-Recorrupted [20] lifted the requirement
for clean images in the dataset by proposing to learn a map-
ping of corrupted images to other corrupted images following
the same noise distribution but with the noise being indepen-
dent of the noise in the input image. Consequently, the clean
image can be found by the averaging of multiple corrupted im-
ages. In contrast, the untrained approach by Ulyanov et al. [1]
on Deep Image Priors (DIPs) shows that low-level statistics of
a single input image can be sufficiently captured by the struc-
ture of a single DIP generator network. Invariance to adversar-
ial perturbations and the suppression of non-robust image fea-
tures are particularly achieved in the early iterations [21] after
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which overfitting starts to occur. To avoid the need for early
stopping, i.e. finding a suitable number of iterations where
the image prior does not overfit to noise characteristics or ar-
tifacts, other works rely on Bayesian approaches [22, 23] or
under-parametrization based on deep decoder approaches [24]
to prevent the overfitting and reach a stable convergence behav-
ior. Further work on DIPs focused on optimizing the underlying
network architecture as part of the denoising process [25, 26].
The potential of such deep priors have also been demonstrated
for hyperspectral image denoising [27, 28] and even for surface
reconstruction [29, 30, 31].

A similar approach, which in contrast to DIP is not relying
on early stopping, has been introduced with Self2Self by Quan
et al. [4]. Instead of finding a mapping from fixed noise to the
input image, they use a similar U-Net architecture to find a map-
ping from a noisy input image to a clean image directly. Reg-
ularization is handled by employing a Bernoulli input masking
scheme as well as dropout in the decoder layers.

More recently, CVF-SID [5] has been proposed as an ap-
proach for self-supervised single image denoising by dis-
entangling clean image, signal-dependent noise and signal-
independent noise in an end-to-end fashion. In the field of
nonblind image deconvolution, Chen et al. [32] introduced a
spatially-adaptive dropout scheme to handle the solution ambi-
guity introduced by the deblurring problem. While also assum-
ing the input image to be corrupted by Gaussian white noise,
they rely on the assumption of the noise being uniformly dis-
tributed over the image and independent of the image signal in
order to denoise the image during the deblurring process.

3. Methodology

The goal of our work is to widen the range of problems, com-
monly used learning-based self-supervised single image de-
noising algorithms can be successfully applied to. While not
being the only use-case for our work, we are specifically target-
ing the problem of denoising images with an arbitrary number
of channels corrupted with location-dependent noise instead of
noise being uniformly distributed over the whole image. Cur-
rent state-of-the-art algorithms tend to either introduce addi-
tional blurriness in originally clean pixels or are not capable
of sufficiently removing the noise from the image.

We first propose the calculation of importance images based
on an estimated per-pixel noise level. Subsequently, we present
exemplary minor adjustments to the Deep Image Prior (DIP)
as well as the Self2Self (S2S) method in order to guide their
denoising process according to the importance values.

3.1. Inference of a Guidance Map

We propose the guidance of image processing operations like
denoising based on a guidance map in terms of a per-pixel im-
portance value m(x, y) for pixel (x, y), where values close to 1
indicate that the pixel of the input image should be preserved
in the denoised image while pixels with importance close to 0
should be denoised as much as possible as they are assumed to
have a low signal-to-noise ratio. Note, that this importance is

directly related to the noise level of a pixel via

m(x, y) = 1 − n(x, y), (4)

where n(x, y) is the noise level for pixel (x, y). While calculating
the true noise level from the image signal is an underconstrained
problem, for the purpose of the guidance map it suffices to find a
rough estimate of it as we can rely on the natural regularization
capabilities of the underlying denoising algorithms. If working
with RGB images, noise level estimates are calculated indepen-
dently for all channels. The maximum over the noise levels of
all channels is calculated before the remapping step described
in Section 3.1.3. For the remainder of this section, we assume
to be working with greyscale images for notational simplicity.

3.1.1. Variance-based Noise Level Estimation
Building on the assumption that noisy regions usually have

a high variance, the naive way would be to estimate the per-
pixel noise level as patchwise variance of the respective pixel
neighborhood. The variance for such a neighborhoodN(x, y) ⊆
I is defined as

nvar(x, y) =
1

|N(x, y)|
∑

(x′,y′)∈N(x,y)

(I(x′, y′) − µ(N(x, y)))2 (5)

and the mean over an arbitrary set of pixels P is defined as

µ(P) =
1
|P|

∑

(x′,y′)∈P
I(x′, y′). (6)

However, this noise level estimate is prone to erroneously high
values at discontinuities in the input image which we typically
want to preserve in the denoised image making this method ap-
plicable only for very smooth images.

3.1.2. SVD-based Noise Level Estimation
To alleviate the aforementioned problem and allow for better

adaptation to local noise characteristics, we apply a local noise
level estimation. For this purpose, we propose to split the pixel
neighborhood N(x, y) into two disjoint subsets Nlower(x, y) and
Nupper(x, y) depending on whether the respective pixel is below
or above the patch mean µ(N(x, y)), such that

N(x, y) = Nlower(x, y) ∪ Nupper(x, y) (7)

and
Nlower(x, y) ∩ Nupper(x, y) = ∅. (8)

Subsequently, pixels of both subsets are lifted intoR3

N3
{lower,upper}(x, y) =




x′

y′

I(x′, y′)



∣∣∣∣∣∣∣∣
(x′, y′) ∈ N{lower,upper}(x, y)


,

(9)
where ·{a,b} combines equations for ·a and ·b for notational sim-
plicity. Afterwards, matrices MN3

{lower,upper}
can be constructed to

perform an singular value decomposition (SVD) (dependence
on the pixel (x, y) omitted for notational simplicity)

MN3
{lower,upper}

= U{lower,upper}Σ{lower,upper}VT
{lower,upper}, (10)



4 Accepted Manuscript / Graphics & Visual Computing (2022)
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Fig. 2. Remapping procedure: Square root of estimated noise levels, i.e. the standard deviation of pixel values, roughly follows a Gaussian distribution
for noise-free pixels. By finding the peak of the distribution, the respective pixels can be discarded (left) and the remaining part up to the 95th percentile
is remapped to [0, 1], resulting in a robust guidance map (middle). This holds for other examples as well (right).

where σ{lower,upper},i = Σ{lower,upper},ii, i.e. the diagnoal entries of
matrices Σ{lower,upper}, are the singular values. We are looking
for the smallest singular value

σ{lower,upper},min = min
i∈{1,2,3}

σ{lower,upper},i (11)

of each subset as this value can be interpreted as the variance,
and therefore the amount of noise, of the subset in normal direc-
tion of a plane fitted to the respective pixels. As this analysis is
conducted for both subsets of pixels individually, the approach
is robust against image discontinuities in constrast to relying on
the patchwise variance directly. Additionally, due to the SVD,
smooth color gradients are not detected as noise either. These
two partial noise level estimates can be reduced to an estimate
for the whole patch by choosing an appropriate reduction oper-
ator. Experiments have shown that the results are best using the
minimum of σlower and σupper. We argue, that an additional ro-
bustness against detecting high-frequency details in the image
as noise is more important than additional accuracy in estimat-
ing the noise level. The noise level can therefore be estimated
as

nsvd(x, y) = min
s∈{lower,upper}

σs,min(x, y). (12)

3.1.3. Remapping
Despite noisy pixels having usually higher estimated noise

level values n{var,svd}(x, y), we can still observe significant values
for clean image pixels as well. Non-zero noise level estimates
might prevent the full overfitting of the denoising network to
clean pixels and thus can introduce unwanted blurriness for re-
spective pixels. To avoid this, we apply a remapping technique
to generate the final guidance images.

We observed that the square root of the estimated noise lev-
els, i.e. the standard deviation of pixel values, for clean pixels
roughly follows a Gaussian distribution as depicted in Figure 2.
By calculating a histogram over the noise levels of all pixels, we
find the bin with the highest pixel count as this is assumed to be
the peak of the distribution with mean value √npeak. Remap-
ping our estimated noise level values using (2√npeak)2 = 4npeak
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Fig. 3. Original DIP: Based on a noisy input image, a modified U-Net [33]
is trained to map a fixed noise image to the noisy input image itself. Over
the course of the training, natural image content is learned first due to
the inherent regularization capabilities of the network. Early stopping is
applied to stop the training process as soon as maximum quality is reached.
If the network is trained further, the network output will finally converge
to the actual noisy input image.

as lower bound and the 95th percentile n0.95 as upper bound and
clamping to [0, 1] finally yields robust guidance images

m{var,svd}(x, y) = 1 − n{var,svd} − 4npeak

n0.95 − 4npeak
. (13)
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Fig. 4. Decaying per-pixel weight for DIP enables to locally control the
denoising effect. After an initial warm-up phase (here κw = 225) with full
denoising intensity, the weight decays exponentially (here κr = 0.15) and
converges against a fixed lower bound (here κc = 0.2 for visualization pur-
poses but set to κc = 0.02 during all experiments).

3.2. Guided Deep Image Prior

The generated guidance images can easily be used in state-
of-the-art denoising algorithms, such as DIP [1]. This approach
uses a neural network as natural prior for image restoration
tasks including denoising. As depicted in Figure 3, the input for
the network is a fixed noise image with 32 channels consisting
of uniformly distributed random numbers in the range [0, 0.1].
Iteratively, the network learns a mapping from the noise im-
age to the noisy input image by minimizing an L2-loss. Dur-
ing this training process, the network learns the more natural
low-frequency components of the noisy input image first, while
the high-frequency components are only learned in later stages.
Hence, by interrupting the training process before the network
learns to reconstruct the unwanted noise, we can consider the
network output as denoised image. For further regularization,
random noise drawn from the normal distribution N(0, 1/30) is
added to the network input in each step to further regularize the
training process.

As in the original approach, the output of the network is
smoothed over multiple iterations with an exponential weight
according to

Ii = 0.01Îi + 0.99Ii−1, (14)

where Ii is the output image in iteration i and Îi is the actual
network prediction. This way, artifacts accidentally produced
by the trained network are mostly smoothed out resulting in
more accurate restorations.

Where not stated differently, we are using the same hyperpa-
rameters as the original approach in the denoising setting. In
particular, we thus configure the network to have an encoder
and a decoder each consisting of five double convolution layers
with 128 filters. Each double convolution also contains batch
normalizations and LeakyReLU activation functions. Reflec-
tion padding is used as it is described to work best by the au-
thors [1].

Using the standard L2-loss as proposed by Ulyanov et al. [1]
results in missing fine details in clean parts while the artifacts
are already being learned by the network in corrupted ones and
therefore being carried over to the output image. Since the ar-
tifacts are potentially restricted to some parts of the noisy in-
put image due to systematic reasons, we propose a guided loss
function to have further control over the restoration process.

𝑓𝜃𝑖

Bernoulli
Masking

Optimize

Noisy Input Clean Output

Fig. 5. Original S2S: A modified U-Net [33] is trained as an autoencoder to
map a noisy input image to itself. During the training, two different regu-
larization mechanisms are applied: First, bernoulli masking is performed
to split the noisy image into a subset of pixels used as network input and
the other pixels being used as target image in the loss function. This way,
the loss is calculated only on pixels unseen by the network in the respective
iteration. Second, dropout in the decoder layers of the network further
help to prevent the autoencoder to learn the noise.

We use guidance image described in Section 3.1 for this pur-
pose. Depending on a pixel’s importance we stop the training
process early by weighting down the loss induced by the respec-
tive pixel according to a weight wi

dec(x, y). This weight depends
on the current iteration number i reducing the respective pixels
contribution to the loss over time. The resulting loss term is

Li
dec =

1
|I|

∑

(x,y)∈I
((Îi(x, y) − I(x, y)) · wi

dec(x, y))2. (15)

The decay weight wi
dec(x, y) is chosen to have an exponential

fall-off after an initial warm-up phase with full contribution to
the loss (dependence on the pixel (x, y) omitted for notational
simplicity):

wi
dec =


1 i < κw

(0.9 + 0.1m)(i−κw)·κr · (1 − κc) + κc else
, (16)

where κw specifies the number of initial warm-up iterations
without any decay of the weight, while κr controls the decay
rate and κc specifies a lower bound for the contribution of a sin-
gle pixel. Note that we designed wi

dec to converge to κc instead
of 0 in order to avoid artifacts where the guidance image does
not fit the degenerate areas perfectly. We rely on the natural
image prior property of the network itself to prevent overfitting
to noise for these pixels. We are using κw = 225, κr = 0.15
and κc = 0.02 for all our experiments. Corresponding plots are
depicted in Figure 4.

3.3. Guided Self2Self
The second exemplary algorithm we are taking a closer look

at here is S2S [4]. Similarly to DIP, this algorithm relies on the
inherent regularization capabilities offered by neural networks.
In contrast to DIP though, as depicted in Figure 5, S2S uses
an U-Net like network to map the noisy image to the restored
image. To prevent overfitting, the authors add two additional
regularization mechanisms: masking of the network input im-
age and loss as well as dropout in the decoder layers.

The masking is performed by applying Bernoulli sampling
to the input image such that we get a mask containing a 1 with
probability pm and a 0 otherwise. Thus, this mask can be used
to divide the pixels of the input image in two subsets. Before
the image is given to the network, it is multiplied by the mask.
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Therefore, only the first subset of pixels is contributing to the
network output. Additionally, the L2 loss is modified to only
use pixels which were not visible to the network in the respec-
tive iteration. Intuitively, the network is optimized to predict
unseen pixels as close to the noisy input image as possible.

The dropout in decoder layers is another means of regular-
ization. In contrast to most approaches relying on dropout, it is
not deactivated in test mode. Instead, the network is evaluated
multiple times with random dropout to simulate the training of
multiple separate networks and averaging of the respective re-
sults. The authors have shown that this improves the quality of
the resulting images.

Similarly to our modified DIP approach we are using the
original authors’ architecture and hyperparameters where not
explicitly stated otherwise.

Analogously to DIP, S2S results in unwanted bluriness in
clean regions which is a problem for our setting of spatially
concentrated noise. Additionally, we have no control over the
denoising intensity, which can be problematic if the signal-to-
noise ratio is low in the input image. To alleviate these issues,
we propose a generalization of S2S to allow the utilization of
our guidance information as well as an additional denoising in-
tensity parameter.

As in the original algorithm, the goal is to generate two bi-
nary image masks - Mi for masking the network input image
and Mt for masking the difference image in the loss function.
The underlying key idea here is to make the network overfit
pixels with high-importance but denoise the image where im-
portance is low. We achieve this by sampling the binary masks
based on per-pixel probabilities p{i,t} defined as

pi = pimp · 1 + (1 − pimp) · pm · pd (17)
pt = pimp · 1 + (1 − pimp) · (1 − pm) · pd. (18)

with
pimp(x, y) = m(x, y)κm , (19)

controlling the overfitting to high-importance image parts based
on the guidance image m. Furthermore, κm controls the denois-
ing strength for pixels with medium importance values (we set
κm = 2 in all experiments) and pd is a probability to discard
a pixel completely from both masks to further increase the de-
noising effect. Where not stated explicitly, we use pd = 0.01
for our experiments.

Intuitively, resulting masks can be thought of as linear inter-
polation between no masking happening at all, i.e. M{i,t} = I,
and standard S2S input masking according to pimp with an ad-
ditional probability pd of pixels being considered neither in net-
work input nor in the loss calculation.

The original S2S approach samples disjoint input and target
masks. To replicate this behavior in our generalization, for each
pixel j we have to handle four separate cases during sampling
with their respective probabilities:

Pr( j ∈ Mi ∧ j ∈ Mt) = pb = pimp (20)
Pr( j ∈ Mi ∧ j <Mt) = pi = pm · pd · (1 − pimp) (21)
Pr( j <Mi ∧ j ∈ Mt) = pt = (1 − pm) · pd · (1 − pimp) (22)
Pr( j <Mi ∧ j <Mt) = pn = 1 − (pb + pi + pt). (23)

Note that setting pimp = 0 and pd = 1 yields the original S2S
algorithm.

To ensure that the network is able to overfit high importance
pixels, we also modify the dropout used in the decoder layers
to use a modified dropout weight

p̂dropout = pimp · 0 + (1 − pimp) · pdropout (24)

per neuron. For inner decoder layers with lower resolution,
downsampled importance images are used accordingly.

4. Results

4.1. Test Data

We evaluate the potential of our guided denoising approach
using the diffuse textures of 14 different SVBRDFs produced
by the fitting network of Merzbach et al. [34]. The measure-
ments for all of these materials are publically available in the
UBOFAB19 database [34].

The UBOFAB19 database uses the Geisler-Moroder vari-
ant [35] of the Ward BRDF [36] with Schlick’s Fresnel approx-
imation term as this model is expressive enough for a large va-
riety of real-world materials. The model is parameterized based
on the shading normal ns ∈ R3, the diffuse albedo ad ∈ R3, the
specular albedo as ∈ R3, the lobe roughness parametersσx ∈ R
and σy ∈ R, the anisotropy angle α ∈ R and the 0-inclination
reflection coefficient F0 ∈ R. We only apply our restoration
process to the diffuse textures, since these are responsible for
most of the artifacts in the final renderings. The diffuse tex-
tures of Pantora [37] SVBRDF fits as depicted in the first row
of Figure 7 are considered to be the ground truth as they are
also used as labels for training the fitting network of Merzbach
et al. Note, however, that the SVBRDFs fitted by the network
do not only contain a high amount of noise but are also very
likely to be biased. Therefore, we cannot expect to achieve
perfect results indistinguishable from ground truth using only
image restoration methods.

4.2. Noise Level Estimation

Resulting estimated noise levels of two different textures us-
ing the naive patchwise variance and the more sophisticated
SVD-based approach are shown in Figure 6. Both methods
successfully assign high noise levels to actually noisy regions
in the image. While the naive approach already performs well,
the SVD-based algorithm reduces unwanted high values at dis-
continuities significantly. This is clearly visible in the upper
regions of the yellow image, where the abrupt transition of yel-
low to grey pixels yields high patchwise variance values but
low SVD-based noise levels as the individual subsetsNupper and
Nlower can be approximated well by a plane. As the SVD-based
noise level estimation performs better than the naive method
without meaningful disadvantages, we are using the former for
all denoising experiments.
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Fig. 6. Estimated noise level for two different images (top row) containing spatially concentrated noise. Using only the patchwise variance (middle row)
erroneously yields high values for discontinuities in the image. Conducting the SVD-based analysis of the patches (bottom row) helps to filter out these
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Fig. 7. Comparison of the results of the original DIP and S2S approaches with our modified variants. First row: Diffuse texture of the Pantora SVBRDF
fit. Second row: Network-fitted textures used as input for all tested algorithms. Third and fifth row: Original denoising algorithms DIP and S2S. Fourth
and sixth row: Out modified versions of the DIP and S2S algorithms using SVD-based guidance images.
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Fig. 8. Renderings of two different SVBRDFs fitted by the fitting network of Merzbach et al. [34] without denoising (left), denoised diffuse texture using
our guided DIP variant (middle) and denoised diffuse texture using our guided S2S variant (right).

Algorithm PSNR(↑) SSIM(↑)
Input 25.9294 0.5437
CVF-SID [5] 27.8025 0.6085
DIP-Base [1] 26.8042 0.5846
DIP-Ours 27.5713 0.6265
S2S-Base [4] 27.4815 0.6149
S2S-Ours 27.8747 0.6197

Table 1. Quantitative comparison of several denoising approaches on a set
of 14 diffuse textures of network fitted SVBRDFs using the diffuse textures
of the respective Pantora fits as ground truth.

4.3. Denoising
Figure 7 depicts denoising results on two different textures.

The network fitted textures contain strong noise artifacts espe-
cially in shiny areas of the captured fabric. Both, DIP and S2S,
fail to remove these artifacts in a satisfactory manner, while
at the same time blurring out the clean structure of the fab-
ric. The modified algorithms are able to produce images which
are mostly clean of colorful artifacts, but for the red fabric,
our DIP variant seems to remove more details than necessary.
More fine details are preserved using the guided S2S approach.
On the yellow fabric, both of our algorithms produce similar
results clearly outperforming their original counterpart respec-
tively. The strong denoising effect of our guided approaches can
also be seen in the rendered SVBRDFs in Figure 8. The results
rendered with denoised diffuse albedo textures are containing
much less disturbing colorful artifacts.

A quantitative comparison can be found in Table 1 compar-
ing our guided denoising methods with CVF-SID [5], DIP [1]
and S2S [4] on a dataset of 14 different images. We are calcu-
lating PSNR and mean SSIM for all images and average the re-

spective values. For both images, higher values are better. Our
guided denoising algorithms not only outperform their original
complement, but also perform slightly better than another state-
of-the-art learning-based denoising algorithm.

Additional results on natural images and a completely differ-
ent texture are depicted in Figure 9. We used pd = 1 for these
experiments. In contrast to the original S2S method, our guided
approach is able to preserve fine details in clean pixels.

4.4. Limitations

While being able to distinguish between clean and noisy im-
age parts well in our examples, it is easy to construct artificial
scenarios in which our SVD-based noise level estimation fails.
However, our results suggest, that it should work well in prac-
tice as we can fallback to the natural regularization capabilities
of the denoising methods.

We are able to adaptively denoise a partially noisy image us-
ing our guided denoising algorithms and therefore are able to
overcome some of the original approach’s limitations, but other
problems with the respective approaches remain untouched. As
the original DIP, our guided version is still relying on hyperpa-
rameter tuning. Despite working out for our examples, the opti-
mal number of training iterations and the choice of wi

dec control
parameters might not be the same for every noisy input image,
which might also be the reason for oversmoothing of noisy re-
gions for the red fabric in Figure 7. Similarly, independent of
being guided or not, S2S has to be tuned to the variance of the
expected noise since it was not able to remove strong noise out
of the box.

Finally, Figure 9 suggests, that the guided algorithms might
produce slightly stronger artifacts in noisy pixels in comparison
to the original approaches for some images. However, depend-
ing on the use-case, this is preferable over loss of details in
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clean pixels.

5. Conclusion and Future Work

In this work, we have shown the limitations of off-the-shelf
denoising algorithms regarding their capability of handling im-
ages which contain location-dependent noise-like artifacts. We
proposed a novel method for detecting such noisy pixels and
utilizing this additional information to guide state-of-the-art
learning-based denoising approaches with only minor modifi-
cations. Depending on the nature of the underlying denoising
approach, the generated guidance images can be used to ei-
ther stop the training process early for parts of the image while
continuing the training process in others, or it can be used to
guide stochastic regularization approaches. By incorporating
this additional guidance information, the resulting denoising al-
gorithms were able to beat their original counterparts as well as
outperform another state-of-the-art denoising algorithm.

Since our results suggest that other denoising algorithms
could benefit from our guidance information in a similar man-
ner, this should be tested as part of future research.
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