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1. Abstract 

 

Quantitative Image Analysis (QIA), that is, software-based extraction and analysis 

of numerically quantifiable features from medical imaging, has great potential to 

contribute to the progression of precision and personalized medicine. By utilizing 

objective, quantifiable features, biomarkers can be defined or predictive models 

can be developed that allow, e.g., the automatic detection of pathological 

alterations or the monitoring of disease progression or therapeutic success. To be 

practical in routine clinical care, QIA of tissues and organs should be automated 

and require minimal intervention by the radiologist. Artificial Intelligence (AI) 

methods and Deep Learning (DL) in particular have emerged as state-of-the-art 

image processing techniques in recent years, also for medical imaging.  

This work features three AI-based pipelines for automated QIA. First, an end-to-

end automated pipeline for quantification of muscle and adipose tissue (termed 

body composition analysis) is presented that includes automatic 2D slice extraction 

from 3D Computed Tomography (CT) scans, automatic tissue segmentation and 

quality control mechanisms to warn of potential invalid analysis. Then, a DL 

pipeline for automatic detection of liver cirrhosis in Magnetic Resonance Imaging 

(MRI) is demonstrated that features a method of explainable AI proposed to 

highlight image regions of importance. Finally, a pipeline for quantitative tissue 

assessment in MRI allowing also for monitoring of therapeutic success in patients 

with lip- and lymphedema is developed. This work includes a two-step anatomical 

landmark detection in combination with quality-assured tissue segmentation to 

create visualizations of tissue distribution in a standardized leg model.  

The results of this work provide insights into the development of automated AI-

based pipelines for use in clinical routine. Besides investigating methods for tissue 

segmentation, anatomical landmark and disease detection, it was also explored 

how combinations of those methods can be used in pipelines that overcome 

challenges of routine clinical data and thus minimize required effort of the 

radiologist as a prerequisite for potential use in clinical practice. 
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2. Introduction and aims with references 

 

Conventionally, radiologists evaluate tissues within medical images primarily 

visually (Hosny et al., 2018). Precise numerical quantifications of tissue properties 

by the attending physician beyond simple diameter or region of interest 

measurements are typically labour intensive and thus not feasible in clinical 

practice. QIA aims to extract quantifiable information from radiological images 

through automated software-based analysis. The utilization of otherwise unused 

quantifiable features has the potential to contribute to a more objective evaluation 

of pathologic alterations. Moreover, by retrospective investigation of the correlation 

of disease progression with quantitative features, image-based biomarkers can be 

identified, which may then be assessed as useful indicators for diagnostic or 

treatment decisions of future patients. Thus, QIA methods represent important 

tools in the field of precision and personalized medicine (Hagiwara et al., 2020).  

A prominent example is the body composition analysis, in which connective tissue 

compartments are quantitatively assessed in abdominal cross-sectional imaging. 

The amount and quality of adipose and muscle tissue has shown to have 

prognostic implications with regard to various oncologic and cardiovascular 

diseases (Faron et al., 2021; Luetkens et al., 2020; Prado et al., 2008). 

Furthermore, in combination with AI tools, quantifiable features can be used to 

develop automated decision systems that can detect a disease in imaging, 

characterize the disease, such as staging or etiology identification, or monitor 

disease progression or therapy success (Hosny et al., 2018). 

The first step of a QIA pipeline is often the identification of the tissue, organ or 

lesion of interest by segmentation. The clinical usability of quantitative methods is 

drastically limited if time intensive manual segmentations are required. Thus, 

automatic segmentation is an essential pre-requisite for assessment of quantitative 

biomarkers in clinical routine. In the past, automatic medical image analyses were 

realized with sequential application of simple image processing algorithms, such as 

edge and line detector filters and mathematical modelling (Litjens et al., 2017). 

During the rise of AI applications in recent years, DL methods and especially 

Convolutional Neural Networks (CNN) have emerged as state-of-the-art image 
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segmentation and general image processing techniques. However, to train a CNN 

for image segmentation by supervised learning, a large number of already 

segmented images are required. For annotation of non-medical images, e.g. traffic 

scenes, extensive expert knowledge is usually not necessary, allowing large data 

sets to be compiled, e.g. in crowdsourcing approaches. However, the assessment 

of medical images usually requires significant domain knowledge (Hosny et al., 

2018). Moreover, medical images are usually subject to strict privacy policies 

making the compilation of large datasets from different international centers 

difficult. As a result, AI methods developed on and for images of clinical routine 

often have to be trained on-site in clinics and with costly annotation by physicians. 

Efficient use of annotation time is therefore of particular importance (see Figure 

2.1).  

Based on the segmentation of the tissue of interest, methods of QIA can be 

applied to investigate the diagnostic or prognostic value of user-defined 

'constructed' image features, such as tissue volumes, densities or intensity 

histogram analyses. For example, the prognostic value of individual constructed 

quantitative features can be analysed using conventional statistical methods such 

as Kaplan-Meier analyses in outcome studies (Luetkens et al., 2020). A technique 

termed Radiomics represents a more comprehensive approach to examine user-

defined constructed features for the development of predictive models. Here, a 

vast variety of standardized quantitative features such as intensity histograms, 

textures, and shapes are collectively analysed using Machine Learning. Radiomics 

is premised on the hypothesis that medical images are multidimensional data that 

may contain features with correlations to pathophysiologies, and aims to uncover 

these correlations through data-mining of the digital image values (Gillies et al., 

2015).  

Another way to utilize relevant features from multidimensional data is the use of 

DL. The application of DL and especially CNNs fundamentally differs from the 

previous mentioned analysis of user-defined constructed features. Here, the 

method itself learns to identify and recognize relevant features within the image by 

optimizing its trainable parameters. This approach is capable of analysing highly 

abstract feature representations by combining self-learned features in deep layers. 
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DL is considered to have greater potential to create decision systems with clinical 

utility compared to traditional analysis of constructed human-defined features 

(Hosny et al., 2018). However, the processing of self-learned abstract feature 

representations result in the interpretation of the rationale behind the decision not 

being straightforward for humans, which is why DL methods are often referred to 

as "black box" (Petch et al., 2022). Improving the explainability of the models 

prediction, by methods which, for example, highlight areas of the image that 

seemed relevant, are therefore important aspects for DL-based QIA.  

There are other challenges that emerge when using routine clinical data. One is 

that imaging is not standardized, but that e.g. the resolution and scan lengths can 

be variable, resulting in variable image sizes. Another challenge is that they may 

feature artefacts that make analysis of a tissue difficult or even impossible. 

Systems that operate with minimal interaction of the radiologist should provide 

solutions to these challenges. Thus, quality control mechanisms that detect and 

warn of potentially invalid analyses are an important part of QIA pipelines with 

utility for clinical routine. 

Therefore, the aim of this thesis was to develop concepts and provide insights into 

the development of AI-based methods for the analysis and processing of routine 

clinical radiological images. Besides investigating methods for tissue 

segmentation, anatomical landmark and disease detection, this work also explores 

how analysis pipelines can be created in combination with other methods that 

overcome the challenges of clinical data and thus potentially be beneficial for 

clinical practice. The following systems are presented in this thesis:  

i. An end-to-end automated pipeline for body composition analysis featuring 

automated 2D slice extraction from a 3D CT scan, adipose and muscle 

tissue segmentation and quality control mechanisms. 

ii. A pipeline for the detection of liver cirrhosis in MRI including transfer 

learning and a method of explainable AI. 

iii. A pipeline for standardized assessment and visualization of leg tissue 

distribution in patients with lip- and lymphedema in MRI featuring a two-step 

anatomical landmark detection and tissue segmentation with quality control 

that can be used to monitor disease progression and therapy success. 
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Figure 2.1: Schematic illustration of Quantitative Image Analysis pipeline 
development. Often, the development of automated segmentation of the tissues of 
interest is needed, which requires tedious manual annotations. Here, concepts 
such as AI-assisted segmentation can be beneficial, where an early and imperfect 
Convolutional Neural Network (CNN) that was trained with a small number of 
manually segmented images is applied to segment further images in advance, 
requiring less time-consuming optimization. Subsequently, user-defined 
'constructed' features can be analysed for their diagnostic or prognostic value 
using a) conventional statistical analyses such as Kaplan-Meier analyses or b) in 
Machine Learning based Radiomics analyses. c) When employing Deep Learning 
methods and especially CNNs, the image features are usually not user-defined, 
but learned and recognized by the method itself. 
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Abstract
Objectives To develop a pipeline for automated body composition analysis and skeletal muscle assessment with integrated 
quality control for large-scale application in opportunistic imaging.
Methods First, a convolutional neural network for extraction of a single slice at the L3/L4 lumbar level was developed on 
CT scans of 240 patients applying the nnU-Net framework. Second, a 2D competitive dense fully convolutional U-Net for 
segmentation of visceral and subcutaneous adipose tissue (VAT, SAT), skeletal muscle (SM), and subsequent determination 
of fatty muscle fraction (FMF) was developed on single CT slices of 1143 patients. For both steps, automated quality control 
was integrated by a logistic regression model classifying the presence of L3/L4 and a linear regression model predicting the 
segmentation quality in terms of Dice score. To evaluate the performance of the entire pipeline end-to-end, body composi-
tion metrics, and FMF were compared to manual analyses including 364 patients from two centers.
Results Excellent results were observed for slice extraction (z-deviation = 2.46 ± 6.20 mm) and segmentation (Dice score 
for SM = 0.95 ± 0.04, VAT = 0.98 ± 0.02, SAT = 0.97 ± 0.04) on the dual-center test set excluding cases with artifacts due to 
metallic implants. No data were excluded for end-to-end performance analyses. With a restrictive setting of the integrated 
segmentation quality control, 39 of 364 patients were excluded containing 8 cases with metallic implants. This setting ensured 
a high agreement between manual and fully automated analyses with mean relative area deviations of ΔSM = 3.3 ± 4.1%, 
ΔVAT = 3.0 ± 4.7%, ΔSAT = 2.7 ± 4.3%, and ΔFMF = 4.3 ± 4.4%.
Conclusions This study presents an end-to-end automated deep learning pipeline for large-scale opportunistic assessment 
of body composition metrics and sarcopenia biomarkers in clinical routine.
Key Points 
• Body composition metrics and skeletal muscle quality can be opportunistically determined from routine abdominal CT  
   scans.
• A pipeline consisting of two convolutional neural networks allows an end-to-end automated analysis.
• Machine-learning-based quality control ensures high agreement between manual and automatic analysis.

Keywords Body composition · Tomography, X-ray computed · Deep learning · Quality control · Sarcopenia

Abbreviations
CDFNet  Competitive dense fully connected network
CNN  Convolutional neural network
FMF  Fatty muscle fraction
SAT  Subcutaneous adipose tissue

SM  Skeletal muscle
VAT  Visceral adipose tissue

Introduction

Body composition analyses aim to determine the quantity of con-
nective tissue compartments. In addition to quantifying the amount 
of adipose and muscle tissue, recent work proposed methods to 
obtain additional information about a patient’s general condition 
by also determining the quality of skeletal muscle tissue in terms of 
fatty degeneration. Several studies demonstrated that these metrics 
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determined from abdominal imaging provide prognostic implica-
tions in oncologic or cardiovascular diseases [1–8].

The amount of visceral and subcutaneous adipose tissue, as 
well as the amount and quality of muscle tissue, can be reliably 
determined from abdominal CT imaging. An opportunistic 
large-scale assessment in clinical routine has the potential to 
further enhance the understanding of the clinical value of body 
composition analyses in various diseases, e.g., for therapy 
decision and/or outcome prediction. Also, the establishment 
of gender-, age-, and ethnicity-specific norm values is only 
feasible through the widespread application of these analyses.

However, the determination of fat and muscle volume by 
manually annotating the region of interest by a radiologist is 
rather time-consuming, which currently prevents clinical rou-
tine application. Several studies have shown that area measure-
ments of connective tissue compartments on a single slice at 
a certain lumbar level are highly correlated with total volume 
in the abdomen [9–11]. This led to greatly reduced annota-
tion times for manual body composition analysis when apply-
ing a 2D— instead of a 3D approach. In recent years, several 
methods have been proposed for automating the required tissue 
segmentation step. It was a logical consequence that with the 
dominant rise of deep learning for image segmentation the 
previously manually segmented images were used to develop 
methods for automated segmentation by supervised learning 
[12–14]. However, manual interaction was still required for 
extraction of the single slice on which the automatic segmenta-
tion is performed. Only very recent work also includes deep-
learning-based automated slice extraction as the next step for 
truly automated body composition analyses [15–17].

Moreover, to the best of our knowledge, there is currently no 
work that presents integrated quality control for both slice extrac-
tion and tissue segmentation. This still leaves one factor that repre-
sents an additional human effort in opportunistic analysis, namely 
identifying cases where the algorithm fails. Automatic determina-
tion of the predictive uncertainties can help identify cases with 
low-quality analyses and can additionally be used to monitor the 
performance of an autonomous system during deployment, as 
suggested for machine learning operations to manage deep learn-
ing life cycles. This can also help to detect changes in the data and 
to raise a warning in case of domain shifts.

Hence, the aim of this study was to develop an automated 
body composition analysis for abdominal CT with integrated 
quality checks and to evaluate the end-to-end performance of 
the proposed pipeline on dual-center test data.

Material and methods

Overview

Figure 1 shows an overview of the developed pipeline. In the 
first part, a single slice at the L3/L4 lumbar level is extracted 

from a 3D CT scan. In the second part, the extracted 2D 
image is segmented into three compartment classes: visceral 
and subcutaneous adipose tissue (VAT, SAT) and skeletal 
muscle (SM). The fatty muscle fraction (FMF), a quanti-
tative marker for fatty muscle degeneration, is determined 
in a subsequent post-processing step [1, 6]. For both deep-
learning-based slice extraction and segmentation, classical 
machine learning methods were employed for integration of 
quality control steps that capture the predictive uncertainty 
during deployment.

Slice extraction and tissue segmentation were developed 
independently. To evaluate the end-to-end performance of 
the entire pipeline, automatically extracted body composi-
tion metrics and FMF were compared with manual analyses 
on an unselected dual-center test set. Figure 2 provides an 
overview of the data sets used for method development and 
evaluation.

Method development for slice extraction

Dataset

With institutional review board approval, written informed 
patient consent was waived because of the retrospective 
nature of all parts of the study. Retrospectively derived 3D 
CT scans of 240 patients (94 female, mean age 65 ± 14 years) 
referred for diagnostic CT including imaging of the upper 
abdomen acquired at eight different CT scanners were used 
for development of the slice extraction method. Of these 
patients, 43 received CT before undergoing transcatheter 
aortic valve implantation, 91 before transjugular intrahe-
patic portosystemic shunt intervention, and 106 patients 
received CT in the setting of immunotherapy for malignant 
melanoma.

The ground truth was generated by a board-certified radi-
ologist (A.F.) by manually defining the center of the L3/L4 
vertebral disk with an in-house tool (Matlab, Mathworks). 
Data were randomly split into a training set (n = 192, 80%) 
and a hold-out test (n = 48, 20%) set. The method was addi-
tionally tested on dual-center test data (described below).

Model

The extraction of a single slice at L3/L4 lumbar level was 
formulated as a segmentation task. A 3D U-Net architec-
ture was trained using the nnU-Net framework, which has 
achieved high-performance values for various medical 
segmentation tasks and has the advantage of automatically 
adapting to different input sizes [18]. This is a relevant 
feature for the slice extraction task since the input are CT 
scans with a wide variety of scan lengths. The label map for 

3143European Radiology  (2022) 32:3142–3151

1 3



training of the network was generated by applying a Gauss-
ian distribution to the coordinates of the L3/L4 vertebral disk 
and binarizing the resulting probability map by a threshold 
[19]. Further details on image pre-processing, augmentation, 
and experimental design can be found in Supplement S1. For 
training, fivefold cross-validation was used and testing was 
performed with an ensemble of the cross-validated models.

Quality control

After training of the slice extraction method, a logistic 
regression model was built to automatically identify 3D CT 
scans that do not include the L3/L4 lumbar level. To obtain a 
balanced distribution of images with and without the L3/L4 
lumbar level, for each 3D CT scan of the training, hold-out 
and dual-center test set, a cropped version was created. The 
logistic regression model was trained based on the predicted 
volume of all validation cases of the cross-validated slice 
extraction nnU-Net and applied to all test sets. Additional 
information about cropping and feature selection can be 
found in Supplement S2.

Method development for tissue segmentation

Dataset

For the development of the tissue segmentation method 
(VAT, SAT, SM), retrospectively derived single slice images 
at the L3/L4 lumbar level from 1143 patients (559 female, 
mean age 77 ± 11 years) were used. 937 patients underwent 
pre-interventional CT for transcatheter aortic valve implan-
tation and 206 patients underwent diagnostic CT for liver 
cirrhosis with portosystemic shunting. The dataset inten-
tionally included a high number of patients with anasarca 
(19.2%), ascites (9.4%), or both anasarca and ascites (6.5%). 
The ground truth of the segmentation was defined by manual 
drawing and was also used to train a different CNN in a 
previous work, where additional details on the dataset are 
reported [13].

The data for method development were randomly split 
into a training set (n = 972, 85%) and hold-out test (n = 171, 
15%) set. The method was additionally tested on dual-center 
test data (described below).

Fig. 1  Schematic representation of the presented pipeline for auton-
omous body composition analysis. Input of the pipeline is a 3D CT 
scan. In the first part, a 3D convolutional neural network (CNN) was 
employed for slice extraction using nnU-Net. In the second part, a 
competitive dense fully connected CNN (CDFNet) is applied for 
segmentation of the body compartments. Classical machine learning 

methods were employed for integration of quality control steps. For 
the slice extraction part, a logistic regression model was developed 
that classifies the presence of L3/L4 lumbar level in the 3D CT scan. 
For segmentation of the different tissues, a linear regression model 
was established that predicts segmentation quality in terms of the 
Dice score
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Model

A 2D competitive dense fully convolutional network 
(CDFNet), which has shown promising results for body 
composition analysis in magnetic resonance imaging, 
was used for tissue segmentation [20]. This architecture 
is proposed as an extension of the Dense-UNet architec-
ture by max-out activation units. In a CDFNet, feature 
maps are generated by element-wise selection of the 
maximum values of previous feature maps, which has 
been shown to have a positive effect on performance 
and generalizability compared to unselective concatena-
tion [20–22]. Further details on image pre-processing, 
augmentation, experimental design and computation of 
the fatty muscle fraction are provided in Supplement 
S3.

For training, fivefold cross-validation was used and test-
ing was performed with an ensemble of the cross-validated 
models.

Quality control

To assess the predictive uncertainty of the segmentation dur-
ing employment, a linear regression model was developed 
that predicts the segmentation Dice score for the muscle 

class based on the average entropies of the probability 
maps. This metric is proposed by a recent work as a feature 
to estimate quality of medical image segmentation and to 
detect out-of-distribution samples and ambiguous cases [23]. 
Although this method could be applied to all tissue classes, 
we focused on the muscle class because we consider it the 
most important class for the assessment of sarcopenia.

The linear regression model was trained with the pre-
dictions of all validation cases of the cross-validated tissue 
segmentation CDFNet and tested on all test sets.

Dual‑center test data and end‑to‑end evaluation

The entire pipeline was finally evaluated end-to-end, i.e., from 
3D CT scan to extracted body composition metrics. The auto-
matically determined tissue areas and the fatty muscle frac-
tion were compared with the manually determined values. For 
this purpose, 3D CT scans of consecutive patients referred for 
diagnostic CT including imaging of the upper abdomen were 
retrospectively retrieved from two centers.

• Center A: 83 (41 females, mean age 60 ± 15  years) 
patients were used as internal test data from the Depart-
ment of Diagnostic and Interventional Radiology, Uni-

Fig. 2  Overview of the data sets used for method development and 
evaluation. The nnU-Net employed for extraction of a single slice at 
L3/L4 level from a 3D CT scan and the CDFNet for tissue segmen-
tation of the 2D CT slices were developed on two different datasets. 
Both methods were fivefold cross-validated and an ensemble of the 
cross-validated models was tested on the hold-out data. The regres-

sion models for integrated quality control (QC) were developed on 
the validation data of the cross-validated models and were also tested 
on the hold-out data. Finally, the entire pipeline of slice extraction, 
tissue segmentation, and quality control was evaluated end-to-end on 
the dual-center test data and compared against manual analyses
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versity Hospital Bonn. Data were acquired at four differ-
ent CT scanners.

• Center B: 281 (111 females, mean age 63 ± 16 years) 
patients were used as external test data from the Depart-
ment of Radiology and Nuclear Medicine, University 
Medical Centre Mannheim. Data were acquired at three 
different CT scanners.

In this data set, 10 patients had metallic implants. How-
ever, in the end-to-end evaluation, these cases were inten-
tionally not excluded. For demonstration of the tissue seg-
mentation quality control, a restrictive setting was applied 
excluding 10% of the cases with lowest predicted Dice score 
of the muscle class. End-to-end performance is reported for 
both included and excluded cases.

The ground truth for slice extraction and tissue segmenta-
tion was labeled by a radiology resident (B.W.) and a board-
certified radiologist (A.F.). All labels of the radiology resi-
dent were validated by the board-certified radiologist.

Additional information on dual-center test data can be 
found in Supplement S5.

Results

A summary of the results can be found in Fig. 3.

Slice extraction

The mean deviations between the predictions of the ensem-
ble of cross-validated slice extraction models and the manu-
ally defined ground truth were Δz = 2.27 ± 7.08 mm for the 
hold-out test data and Δz = 2.46 ± 6.20 mm for the dual-
center test data. Considering an acceptable deviation of up 
to 10 mm, 96% of the extracted slices of the hold-out test 
set and 96% of the dual-center test data were extracted at the 
correct level. The mean deviations are listed separately for 
all test sets in Table 1.

Tissue segmentation

The ensemble of fivefold cross-validated CDFNet models 
achieved excellent Dice scores, both on the hold-out test 
data (SM: 0.96 ± 0.02, VAT: 0.98 ± 0.02, SAT: 0.98 ± 0.01) 
and on the dual-center test data (SM: 0.95 ± 0.04, VAT: 
0.98 ± 0.02, SAT: 0.97 ± 0.04). Table 2 lists the Dice scores 
separately for each test set.

Quality control

Figure 4a shows the logistic regression model developed for 
identifying 3D CT scans that do not contain the L3/L4 level. 
High accuracy was observed for predicting the presence of 

Fig. 3  Summary of results: separate analyses of slice extraction, tis-
sue segmentation, and respective quality control (QC), as well as 
agreement between end-to-end automated and manual area measure-

ments of skeletal muscle (SM), visceral adipose tissue (VAT), sub-
cutaneous adipose tissue (SAT), and the fatty muscle fraction (FMF)
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the L3/L4 level in the original and cropped versions of the 
hold-out test data (100%) and also on the dual-center test 
data (center A: 99%, center B: 98%). Sensitivity and speci-
ficity were 97% and 99% for the dual-center test data.

The linear regression model developed for integrated 
quality control of the tissue segmentation is shown in Fig. 4b. 
Mean differences between the observed and the predicted 
Dice score for the hold-out test data were 0.016 ± 0.016 
(SM), 0.005 ± 0.005 (VAT), and 0.008 ± 0.010 (SAT) and for 
the dual-center 0.016 ± 0.016 (SM), 0.007 ± 0.012 (VAT), 
and 0.010 ± 0.015 (SAT).

End‑to‑end evaluation

Figure 5 shows examples of the end-to-end analyses. Appli-
cation of the logistic regression model to the dual-center test 
data, all of which contained the L3/L4 lumbar level, resulted 
in 14 of 364 3D CT scans with a warning that the scan may 
not contain the L3/L4 level. In three of these cases, the 
patients had implants at the L3/L4 level. For the remaining 
11 cases, the difference between predicted L3/L4 level and 
ground truth was Δz = 6.38 ± 10.77 mm. Except for the three 
patients with implants, none of the patients were excluded 
from further analyses. Subsequently, the linear regression 
model for integrated quality control of the tissue segmenta-
tion was applied. With a restrictive setting, 36 of 361 cases 
were flagged as possibly having limited segmentation qual-
ity with predicted Dice scores of the muscle class ranging 
from 0.861 to 0.924. In 5 of these 36 cases, the patients had 
implants at the L3/L4 level, and 4 patients had a pronounced 
hernia. In the remaining cases, there were various reasons 
for limited segmentation quality, such as parts of the arms 
included in the tissue segmentation or parts of the kidney 
classified as muscle. In total, 8 of 10 cases with metallic 
implants on the L3/L4 level were excluded by the two qual-
ity control steps. For the two cases not excluded by quality 

Table 1  Mean z-deviation (Δz) and slice extraction accuracy for different tolerance margins obtained with the cross-validated nnU-Net ensemble 
for the hold-out test set and for the additional test data from center A and center B

Slice extraction Mean, Δz [mm] Accuracy, Δz = 0 mm Accuracy, Δz <  = 5 mm Accuracy, 
Δz <  = 10 mm

Hold-out 2.27 ± 7.08 0.79 0.96 0.96
Center A 3.35 ± 4.10 0.51 0.88 0.99
Center B 2.19 ± 6.70 0.85 0.96 0.96

Table 2  Dice scores for segmentation of skeletal muscle (SM), vis-
ceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT) 
obtained with the cross-validated CDFNet ensemble for the hold-out 
test set and for the additional test data from center A and center B

Tissue segmen-
tation

Dice score, SM Dice score, 
VAT

Dice score, SAT

Hold-out 0.958 ± 0.023 0.981 ± 0.015 0.982 ± 0.012
Center A 0.959 ± 0.021 0.981 ± 0.012 0.979 ± 0.038
Center B 0.944 ± 0.039 0.974 ± 0.027 0.969 ± 0.037

Fig. 4  Models trained for quality control: a Based on the predicted 
volume of the nnU-Net employed for slice extraction, a logistic 
regression model was trained to predict the presence of the slice at 
L3/L4 lumbar level in the 3D CT scan. b For prediction of the tissue 
segmentation quality in terms of the Dice score, a linear regression 

model was trained based on the entropy of the probability map of the 
CDFNet for the muscle class. Both regression models were built on 
features derived from cross-validation data of slice extraction and tis-
sue segmentation, respectively. Gray areas represent the 95% confi-
dence intervals
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control, only minor hardening artifacts were observed, as 
shown in Supplement 4S.

Results of the entire end-to-end evaluation are sum-
marized in Table  3. A high agreement was observed 
for the 325 cases of the dual-center data that passed the 
quality control. Body composition metrics and FMF 
derived from automated and manual analysis showed 

absolute differences in area of ΔSM = 5.0 ± 6.0  cm2, 
ΔVAT = 3.7 ± 5.8  cm2, and ΔSAT = 5.7 ± 10.4  cm2, corre-
sponding to low relative differences of ΔSM = 3.3 ± 4.1%, 
ΔVAT = 3.0 ± 4.7%, and ΔSAT = 2.7 ± 4.3%. Also for 
FMF, low absolute deviations of ΔFMF = 0.014 ± 0.012 
and relative deviations of ΔFMF = 4.3 ± 4.4% were 
observed.

Fig. 5  Compartmental areas of visceral adipose tissue, subcutaneous 
adipose tissue (VAT, SAT), skeletal muscle (SM), and fatty muscle 
fraction (FMF) derived for patients from center A (a) and center B 

(b). Manual analysis is marked in green, while results from the pro-
posed pipeline are marked with a red line
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Discussion

This paper presents a method that allows the application of 
body composition analysis without human interaction, thus 
permitting opportunistic determination of body compart-
ment areas and FMF as a marker for sarcopenia in routine 
clinical practice. For both CNNs applied in the pipeline, the 
trained networks are available on reasonable request (https:// 
qilab. de).

In recent years, a variety of deep learning methods have 
been presented that address the topic of automated body 
composition analysis. Most of these studies focus on the 
segmentation of the tissue compartments in a single slice at 
a certain lumbar level, as it has been demonstrated that 2D 
and 3D measurements for quantification of VAT, SAT, and 
SM show a high correlation [9–14]. Although very recent 
works have also addressed automation of slice extraction, 
routine clinical application additionally requires the integra-
tion of quality control methods for both slice extraction and 
tissue segmentation [15, 16]. For this purpose, two classic 
machine learning models have been developed in this study. 
The developed pipeline therefore provides full automation 
of body composition analysis in abdominal CT, including 
deep-learning-based slice extraction and tissue segmentation 
and integrated application of quality control models.

Compared to previous research in the field of automated 
body composition analyses, we observed similar or supe-
rior performance values for slice extraction task and tissue 
segmentation in our study [12–17]. In previous work, the 
slice extraction task was formulated either as a regression 
problem, a classification task, or, similar to our approach, a 
segmentation problem [15–17]. While the methods proposed 
so far for slice extraction are based on 2D images or require 
the generation of a maximum intensity projection in a pre-
processing step, the use of the nnU-Net framework allows 
the direct input of 3D CT datasets of different sizes. For 
tissue segmentation, different variants of a 2D U-Net archi-
tecture have been used [12, 15–17]. The CDFNet architec-
ture applied in the current study is an extension of a Dense-
UNet architecture with max-out activation units, which has 
recently also been successfully used for body composition 

analyses in magnetic resonance imaging [20]. A detailed 
comparison to previous work can be found in Supplement 
S6.

For the development of the tissue segmentation CNN, 
patient collectives were included that also represent tissue 
alterations, as ascites and anasarca, which are challenging 
for body composition analysis [14]. In addition, segmenta-
tion results from other studies show the disadvantages of 
using only threshold-based pre-processing steps to define 
segmentation ground truth, resulting in misclassification 
of intermuscular fat to one of the abdominal adipose tis-
sue classes (VAT, SAT) [15]. To overcome this limitation, 
intermuscular fat was manually assigned to the muscle class 
in this study, allowing additional analyses of muscle [13].

Several aspects of body composition, such as skeletal 
muscle fat infiltration as an indicator of skeletal muscle 
quality were shown to provide prognostic information in 
patients with cardiovascular and oncologic diseases [1–3]. 
Thereby, FMF was recently proposed as an easy-accessible 
body composition metric which may be considered particu-
larly promising as it additionally integrates information on 
skeletal muscle quality [1, 5]. Previous studies have demon-
strated its prognostic value both as an indicator of frailty in 
patients with planned endovascular aortic valve replacement 
as well as an powerful predictor of outcome in critically ill 
patients receiving extracorporeal membrane oxygenation 
therapy [1, 6].

A recent work on 3D tissue segmentation points out that 
for a truly automated application of body compartment 
analysis, the development of quality assurance procedures 
is warranted to identify patients with metal artifacts [24]. 
The dual-center end-to-end analysis presented in the current 
work demonstrates that the proposed quality control ensures 
a high agreement between manual and automated analyses 
by identifying cases that are unsuitable for body composi-
tion analyses not only due to hardening artifacts but also due 
to other reasons limiting the segmentation quality. Interest-
ingly, end-to-end performance analysis of cases flagged by 
quality control as having limited segmentation quality shows 
that FMF is quite robust to segmentation errors.

Table 3  Evaluation of the end-to-end performance of the body composition analyses

Absolute and relative differences (in parentheses) between the values obtained with the proposed pipeline and the manually determined values 
are listed separately for center A and center B and for all 3D CT scans that were included and excluded by restrictive setting of the tissue seg-
mentation quality control. The excluded cases show markedly lower agreement of muscle area, while FMF agreement is still reasonably good 
(marked in bold)

Center Quality control Fatty muscle fraction Muscle area  (cm2) Visceral fat area  (cm2) Subcutaneous fat area  (cm2)

A Passed, n = 82 0.009 ± 0.008 (3.1% ± 3.5%) 3.7 ± 4.1 (2.7% ± 4.4%) 3.6 ± 4.3 (2.7% ± 3.6%) 5.4 ± 5.3 (2.7% ± 3.0%)
B Passed, n = 243 0.016 ± 0.013 (4.8% ± 4.6%) 5.4 ± 6.4 (3.5% ± 4.0%) 3.8 ± 6.2 (3.1% ± 5.0%) 5.8 ± 11.7 (2.8% ± 4.6%)
A Excluded, n = 1 0.046 (9.3%) 16.0 (16.6%) 2.0 (2.3%) 14.9 (10.8%)
B Excluded, n = 35 0.033 ± 0.036 (6.1% ± 6.6%) 18.6 ± 21.6 (14.1% ± 15.6%) 7.2 ± 10.4 (7.0% ± 8.6%) 18.4 ± 29.5 (7.8% ± 9.5%)
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As a limitation of this study, only the areas of VAT, SAT, 
and SM are determined in a single slice instead of deter-
mining the respective tissue volumes in the entire abdomen. 
However, we are not aware of studies demonstrating that a 
3D approach has significant advantages over the established 
2D measurement for assessment of sarcopenia. Also, refer-
ence values for body compartments have so far only been 
determined in large studies for 2D measurements [15].

Conclusion

This study presents an end-to-end automated deep-learning 
pipeline for large-scale opportunistic assessment of body 
composition metrics and sarcopenia biomarker in clinical 
routine.
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Abstract
Objectives To investigate the diagnostic performance of deep transfer learning (DTL) to detect liver cirrhosis from clinical MRI.
Methods The dataset for this retrospective analysis consisted of 713 (343 female) patients who underwent liver MRI between
2017 and 2019. In total, 553 of these subjects had a confirmed diagnosis of liver cirrhosis, while the remainder had no history of
liver disease. T2-weighted MRI slices at the level of the caudate lobe were manually exported for DTL analysis. Data were
randomly split into training, validation, and test sets (70%/15%/15%). A ResNet50 convolutional neural network (CNN) pre-
trained on the ImageNet archive was used for cirrhosis detection with and without upstream liver segmentation. Classification
performance for detection of liver cirrhosis was compared to two radiologists with different levels of experience (4th-year
resident, board-certified radiologist). Segmentation was performed using a U-Net architecture built on a pre-trained ResNet34
encoder. Differences in classification accuracy were assessed by the χ2-test.
Results Dice coefficients for automatic segmentation were above 0.98 for both validation and test data. The classification
accuracy of liver cirrhosis on validation (vACC) and test (tACC) data for the DTL pipeline with upstream liver segmentation
(vACC = 0.99, tACC = 0.96) was significantly higher compared to the resident (vACC = 0.88, p < 0.01; tACC = 0.91, p = 0.01)
and to the board-certified radiologist (vACC = 0.96, p < 0.01; tACC = 0.90, p < 0.01).
Conclusion This proof-of-principle study demonstrates the potential of DTL for detecting cirrhosis based on standard T2-weighted
MRI. The presented method for image-based diagnosis of liver cirrhosis demonstrated expert-level classification accuracy.
Key Points
• A pipeline consisting of two convolutional neural networks (CNNs) pre-trained on an extensive natural image database
(ImageNet archive) enables detection of liver cirrhosis on standard T2-weighted MRI.

• High classification accuracy can be achieved even without altering the pre-trained parameters of the convolutional neural
networks.

• Other abdominal structures apart from the liver were relevant for detection when the network was trained on unsegmented
images.

Keywords Deep learning . Neural networks, computer .

Magnetic resonance imaging . Liver cirrhosis

Abbreviations
ACC Accuracy
AP Average precision
AUC Area under the curve
CNN Convolutional neural network
DTL Deep transfer learning
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Introduction

Liver cirrhosis is the end stage of chronic liver disease and a
major global health condition, especially due to its variety of
severe complications caused by portal hypertension such as
variceal bleeding, ascites, and hepatic encephalopathy [1].
Although liver biopsy is the gold standard for the detection
of cirrhosis, imaging has a particularly important role in the
evaluation of the disease [2]. Imaging is primarily used to
characterize the morphologic manifestations of cirrhosis,
evaluate the presence and the effects of portal hypertension,
and screen for hepatocellular carcinoma. However, morpho-
logic characteristics of cirrhosis are often detected inciden-
tally in patients with unsuspected cirrhosis. It is therefore
not unusual that radiologists presume an initial diagnosis
of cirrhosis [3].

To assume a diagnosis of liver cirrhosis, different morpho-
logical criteria have been described for standard imaging mo-
dalities [2]. However, most of these findings are subjective,
susceptible to inter-observer variability, and often lack high
overall accuracy for the detection of cirrhosis [4]. Therefore,
quantitative analyses, which could improve the objectivity
and reading performance in the identification of liver cirrho-
sis, are of great interest [5].

A method that could objectively assess relevant features
automatically within radiological images could support the
radiologist in diagnosing liver cirrhosis, leading to greater
accuracy and less variation in reading performance. Since
2012, when a deep learning technique has shown superior
performance in the prominent ImageNet challenge for the first
time, especially CNNs have become the gold standard for
image classification and segmentation [6]. Deep learning
methods have been continuously improved and successfully
applied in various disciplines, including medical imaging
[7–12].

However, a disadvantage of CNNs is the requirement of
a large number of pre-classified images, which serve as
training data. Instead of training a neural network from
scratch with a small data set, it has proven advantageous
to use a technique called transfer learning [13]. The basic
idea is to use a CNN pre-trained e.g. on a large natural
image dataset, which has already been trained to recognize
complex patterns and then adapt it to a different task. This
technique has recently been successfully applied to a vari-
ety of segmentations and classification problems of medical
image data [14–16].

The aim of this study was to investigate the capabilities
of deep transfer learning (DTL) to identify liver cirrhosis
in standard T2-weighted MRI and to evaluate the diagnos-
tic performance against radiologists with different levels of
experience.

Materials and methods

This retrospective study was approved by the institutional
review board with a waiver of written informed consent.
Patients who underwent liver MRI at our institution for stan-
dard diagnostic purposes between 2017 and 2019were includ-
ed. Two groups of patients were identified and included in the
final study cohort:

i. Patients with known liver cirrhosis of any stage: Inclusion
criterion was the presence of histologically or clinically
defined liver cirrhosis of any clinical disease severity.
Exclusion criteria were the presence of focal liver lesions
at the level of portal vein bifurcation or a past medical
history of hepatic surgery (Fig. 1).

ii. Patients without known liver disease: From the same pe-
riod, a randomly selected control group was recruited,
which consisted of patients without known liver disease.
Exclusion criteria for the control group were the same as
those applied for the cirrhosis group.

Patient characteristics were retrieved from the clinical infor-
mation management system of the referring institution. An
overview of theMRI indications for the two groups is provided
in Supplement S1.

As this study aimed to determine the diagnostic utility of
DTL to detect liver cirrhosis based on morphological hall-
marks of liver cirrhosis, T2-weighted imaging was used for
analysis. In detail, images of a standard T2-weighted respi-
ratory triggered multi-slice turbo spin echo sequence with
non-Cartesian k-space filling with radial rectangular blades
(Multi Vane XD) were used. For each patient, a single-slice
image at the level of the caudate lobe was exported for DTL
analysis (N.M. with 1 year of experience in the field of
clinical abdominal imaging). All examinations were per-
formed on clinical whole-body MRI systems (Philips,
Ingenia 1.5 T and 3 T). Detailed imaging parameters are
listed in Supplement S2.

Image data were randomly divided into training data (70%),
validation data (15%), and test data (15%) using a custom
Matlab script (MathWorks). Details of the preprocessing prior
to training are listed in Supplement S3.

Images were analyzed using two different processing pipe-
lines. In the first pipeline, an image segmentation network was
applied prior to the classification task. In the second pipeline,
the classification was performed directly on the unsegmented
images.

For segmentation, a CNN following the principle architec-
ture of a U-net model was implemented [17]. Its descending
encoder part is identical to a CNN with residual connections
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known as ResNet34 that was pre-trained on the ImageNet
database [18]. The ground truth for the training of the segmen-
tation CNN was generated by a radiology resident (N.M.) by
manually delineating the liver using in-house tools developed

in Matlab and verified by a board-certified radiologist
(J.A.L.).

ResNet50 as a well-established CNN with 50 trainable
layers and residual connections was used for the classification

Fig. 1 Flowchart illustrating the inclusion and exclusion criteria for the group of patients with liver cirrhosis for this study

Fig. 2 Details of the presented deep transfer learning (DTL) pipeline for
detection of liver cirrhosis. The segmentation network (left) is based on a
U-net architecture, with a ResNet34 convolutional neural network (CNN)
as encoder, pre-trained on the ImageNet archive. For the classification

task (right), a pre-trained ResNet50 CNN was employed. The
classification performance of the DTL pipeline including liver
segmentation (A) was compared to a classification based on the
original, unsegmented images (B)
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task in both pipelines. The model was pre-trained on the
ImageNet archive and implemented in pytorch’s torchvision
package [19]. Detailed descriptions of the segmentation and
classification CNN architectures can be found in Fig. 2 and
Supplement S4.

The DTL methods developed in this work were trained in
two phases. First, only non-pretrained layers were trained and
all pre-trained parameters of the convolutional layers were
kept constant. To further investigate whether varying the
pre-trained parameters may improve the reading performance
of the CNN, the parameters of the pre-trained convolutional
layers were made variable in a second phase. The one cycle
learning rate policy was applied for fine-tuning of the pre-
trained models for liver segmentation and classification of
liver cirrhosis [20]. All experiments and evaluations were per-
formed with python and fastai, a deep learning application
programming interface for pytorch [21]. Further details of
the experimental design and the hyper-parameters used for
training are given in Supplement S5.

To compare the performance of the DTL analyses to the
performance of healthcare professionals at different experience
levels, validation and test data were also classified independent-
ly by a radiology resident (A.F.) with 4 years of experience in
abdominal imaging and a board-certified radiologist (J.A.L.)
with 8 years of experience in abdominal imaging.

The 95% confidence interval of the DTL-based classifica-
tion accuracy was determined by the Clopper-Pearson method
and a χ2-test was performed to test for significant differences
in accuracy between the DTL-based classification and the
readers in SPSS Statistics 24 (IBM). For the test set, calcula-
tions of balanced accuracy, receiver operating characteristic,
and precision-recall analyses were performed with scikit-learn
0.23.2 [22–24].

In order to assess the classification performance of the en-
tire first pipeline (including prior segmentation), the segmen-
tations of the CNN (instead of manual segmentations) were
used for the validation and test set of the classification net-
work. In addition to evaluating the method by its performance
on the validation and test data set, gradient-weighted class
activation maps (Grad-CAMs) were generated [25]. This tech-
nique is proposed to add visual information to radiological
images, describing areas of the image that affect the prediction
of the CNN [26]. These colored prediction maps were visually
inspected and the image areas contributing to the CNN’s pre-
diction of cirrhosis were quantified separately for both patient
groups.

Results

A total of 713 patients (342 female, mean age: 58 ± 14 years)
were included. Of those, examinations of 572 patients were
acquired at a field strength of 1.5 T. The remainder were

examined on 3.0 T. A total of 553 patients (248 female, mean
age: 60 ± 12 years) with a confirmed diagnosis of liver cirrho-
sis based on clinical or histopathological criteria were includ-
ed (Fig. 1). The control group consisted of 160 subjects (94
female, mean age: 49 ± 18 years) without history of liver
disease. A training set with 505 subjects (244 female, mean
age: 58 ± 14 years), a validation set with 104 subjects (49
female, mean age: 57 ± 14 years), and a test set with 104
subjects (49 female, mean age: 58 ± 15 years) were compiled
by random selection, while maintaining the proportion of con-
trol patients to patients with cirrhosis. The DTL method for
segmentation of the liver in the transverse T2-weighted MRI
images developed on the training set showed Dice values of
0.984 for the validation set and 0.983 for the test set.

In the subsequent training of the classification network
ResNet50 for the identification of cirrhosis based on segmented
images, an accuracy (ACC) of 0.99 (95% confidence interval:
0.95–1.00) for validation data (vACC) and 0.96 (0.90–0.99) for
test data (tACC) was achieved. For the classification on unseg-
mented images, vACC was 0.97 (0.92–0.99) and tACC was
0.95 (0.89–0.98). The accuracy of the DTL pipeline for classi-
fication of cirrhosis with prior segmentation of the organ was
significantly higher compared to the resident (vACC = 0.88,
p < 0.01; tACC = 0.91, p = 0.01) as well as the board-certified
radiologist (vACC = 0.96, p < 0.01; tACC = 0.90, p < 0.01)
(Table 1). Modifications of pre-trained parameters did not im-
prove segmentation and classification accuracy significantly
(Table 2). On the test set, a balanced accuracy value of 0.90
was observed for the DTL method based on unsegmented im-
ages. Balanced accuracy values of 0.92 were observed for the
DTL method based on segmented images, as well as for the
radiology resident and board-certified radiologist. For the DTL
method, the balanced accuracy of 0.92 is derived from a sensi-
tivity of 1, which was higher than that of the radiology resident
and board-certified radiologist (0.91, 0.89) and a specificity of
0.83, which was lower than that of the radiology resident and
board-certified radiologist (0.92, 0.96).

Receiver operating characteristic and precision-recall
curves for the test data set are shown in Fig. 3. For the DTL
method trained on segmented images, an area under the curve
(AUC) of 0.99 and an average precision (AP) of 0.97 and for
the DTL method trained on the unsegmented images, an AUC
of 0.95, and an AP of 0.93 were determined.

Figure 4 shows exemplary images from the test set with
colored maps indicating areas which were particularly rele-
vant for the decision of the classifier. The results of the visual
inspection are presented in Table 3. In the first pipeline with
upstream segmentation, the caudate lobe was highlighted in
47.5% of the images classified as cirrhosis and in 25% of the
images classified as no cirrhosis. In every fifth (20.8%) of the
segmented images classified as no cirrhosis, the transition
zone of the caudate lobe to the image background was
highlighted.
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In the second pipeline, based on unsegmented images, addi-
tional highlighted areas outside of the liver were identified. In
images classified as cirrhosis, the spleen area was highlighted in
6%, the stomach area in 22.5%, and the gastroesophageal junc-
tion in 12.5%. In 29.2% of the CNN’s negative predictions,
spinal musculature was highlighted.

Discussion

This proof-of-principle study demonstrates the feasibility of
automatic detection of liver cirrhosis by DTL based on a stan-
dard T2-weighted MRI. The deep learning approach with

prior segmentation of the liver provides classification accura-
cy at expert level.

To date, no other work has investigated the use of a
DTL approach for the detection of liver cirrhosis in
standard T2-weighted MRI sequences. There are recent
studies based on gadoxetic acid–enhanced MRI imaging
that classifies fibrotic pathologies of the liver by
methods of deep learning and radiomics [27, 28].
However, these methods are trained from scratch and
they require a manual definition of region of interests.
In contrast to that, the method proposed in the current
study does not require manual segmentation since the
liver is segmented automatically with high precision.

Table 1 Accuracy (ACC), balanced accuracy (BACC), sensitivity
(Sens), and specificity (Spec) for identification of liver cirrhosis for
validation (vACC, vBACC, vSens, vSpec) and test (tACC, tBACC,
tSens, tSpec) of the deep transfer learning (DTL) method based on

unsegmented images and based on images with prior segmentation of
the liver. The accuracy of the DTL approaches was also compared to a
radiological resident and a board-certified radiologist. Statistical
difference was assessed by χ2-test

Reader/method vACC p value (vAcc) tACC p value (tAcc) vBACC tBACC vSens tSens vSpec tSpec

ResNet50 (segmented liver) 0.99 - 0.96 - 0.99 0.92 0.99 1 1 0.83

ResNet50 (full image) 0.97 p = 0.04 0.95 p = 0.61 0.97 0.90 0.98 1 0.96 0.79

Board-certified radiologist 0.96 p < 0.01 0.90 p < 0.01 0.98 0.92 0.95 0.89 1 0.96

Radiology resident (4th year) 0.88 p < 0.01 0.91 p = 0.01 0.93 0.92 0.85 0.91 1 0.92

Table 2 Dice values of the segmentation convolutional neural network
(CNN) and classification accuracy of liver cirrhosis of the classification
CNN at different stages of the training experiments. In the first stage of
training the segmentation CNN, a Dice score of 0.9828 was achieved by
optimizing the convolutional layers of the random-initialized decoder and
remaining the parameters of the pre-trained ResNet34 encoder
unchanged. In the following three stages that started from the model
state of the previous stage, only minor improvements of 0.001 of the
Dice score were achieved. In these stages, the convolutional layers of
the pre-trained ResNet34 encoder were made variable, whereby the
learning rate (LR) increased linearly from the first to the last layer of

the CNN. In the first stage of training the classification CNN, an
accuracy of 0.99 for the segmented images and 0.97 for the
unsegmented images were achieved by optimizing the output layer of
the ResNet50 CNN only. The following stages that started from the
best previous model state did not lead to an improvement in accuracy
and showed only minor improvements of the cross-entropy loss. Also in
the last three stages, where the convolutional layers of the pre-trained
ResNet50 were made variable with learning rates increased linearly
from the first to the last layer of the CNN, no improvement in accuracy
could be observed. Detailed descriptions of the training experiments can
be found in Supplement S5

Training
stage

Epochs Max LR last layer
decoder

Max LR first layer
encoder

Dice on validation set

Segmentation network
(U-net like
with ResNet34 encoder)

1 80 0.001 Frozen 0.9828

2 40 0.0005 0.000005 No improvement

3 40 0.0005 0.00005 0.9837

4 40 0.0005 0.0005 0.9838

Training
stage

Epochs Max LR output
layer

Max LR first
layer

Accuracy and
cross-entropy
loss (segmented
image)

Accuracy and
cross-entropy
loss (full image)

Classification network
(ResNet50)

1 80 0.1 Frozen 0.99, 0.1452 0.97, 0.325

2 40 0.01 Frozen No improvement 0.97, 0.2151

3 40 0.001 Frozen No improvement No improvement

4 40 0.0001 0.000001 No improvement 0.97, 0.2025

5 40 0.0001 0.00001 0.99, 0.1450 No improvement

6 40 0.0001 0.0001 0.99, 0.1339 No improvement
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Recent studies based on ultrasound imaging also used DTL
methods pre-trained on the ImageNet archive [29, 30]. Of
note, in both mentioned studies, the pre-trained parameters
were not kept constant during training. Particularly the first
few layers of the pre-trained CNNs have learned to recognize
very general image features such as edges and shapes during
the training with the ImageNet data set [31]. The ability to
extract these features is a benefit of transfer learning, and
therefore, other groups proposed to first optimize only the
output layer of the network prior to changing the pre-trained
parameters of the CNN [15, 32].

In order to examine whether altering the pre-trained param-
eters of the DTL methods is beneficial for the identification of
cirrhosis, the CNNs were trained in two phases in this work,
with frozen and unfrozen pre-trained parameters.
Interestingly, the accuracy on the validation data set of both
methods did not further increase by unfreezing the pre-trained
parameters. Hence, the learned feature extraction capability
from the training on the natural image data set of e.g. cars,

animals, and buildings was generalized to identify liver cir-
rhosis on an expert level in standard T2-weighted MRI.

A further aim of our study was to investigate, whether prior
segmentation of the liver is beneficial for this classification
task. Interestingly, both variants (with and without prior
segmentation) achieved high accuracy. However, the accura-
cy for the detection of liver cirrhosis was slightly higher
for the DTL pipeline with prior segmentation. This result
may be attributed to the following advantages of upstream
segmentation:

i. The network is forced to focus on the area, where patho-
logical alterations are primarily expected.

ii. Image areas that are not in focus of the analysis are
prevented to have an impact on the normalization step [33].

iii. Using only the image areas of the organ allows to train
the classification model with smaller image matrices and
thus larger batch size, which is considered beneficial for
the applied learning rate policy [20].

Fig. 3 Liver cirrhosis classification performance of the deep transfer
learning (DTL) methods trained on the segmented images (DTL A) or
unsegmented images (DTL B) and of the radiology resident (rater A) and

the board-certified radiologist (rater B) on the test set, illustrated by
receiver operating characteristic and precision-recall curves and area
under the curve (AUC) and average precision (AP) values

Table 3 Evaluation of the gradient-weighted class activation maps of
the test set. The maps of the predictions of the deep transfer learning
method, trained on segmented images and images without liver
segmentation, were visually inspected and it was recorded which image
areas were highlighted, separately for both patient groups. Note that
several areas of the image were highlighted, so the percentages of the

different image areas do not add up to 100% within a patient group. The
liver areas were divided into left, right hepatic, and caudate lobe. For the
segmented images, it was also noted whether image areas at the transition
zone of the caudate lobe to the image background were highlighted. For
the full images, highlighted areas near the stomach, spleen,
gastroesophageal junction, and spinal muscles were observed

Unsegmented images Patient group Right hepatic Left hepatic Caudate lobe Spleen Stomach Gastroesophageal junction Spinal musculature

Cirrhosis 53.8% 35% 22.5% 6.3% 22.5% 12.5% 2.5%

No cirrhosis 83.3% 16.7% 0 0 8.3% 0 29.2%

Segmented images Patient group Right hepatic Left hepatic Caudate lobe Border caudate
lobe/-
background

- -

Cirrhosis 53.8% 28.8% 47.5% 2.5% - -

No cirrhosis 58.3% 20.8% 25% 20.8% - -
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For both methods, image areas relevant for the CNN’s
decision were investigated applying the Grad-CAM method
[25]. The results indicate that the caudate lobe area is impor-
tant for the DTL methods for the detection of liver cirrhosis
trained on either segmented or unsegmented images.
Interestingly, the Grad-CAM evaluations of the DTL method
based on the unsegmented images showed that in some cases,
image areas outside of the liver were relevant. This indicates
that the CNN might also base the prediction of cirrhosis on
accompanying signs of cirrhosis, such as spleen hypertrophy,
venous alterations like fundus varices, or the general vital
status of the patient according to muscle structure. This

observation motivates further studies to investigate if deep
learning methods may also reliably detect accompanying ef-
fects of cirrhosis.

Future work should also address whether a multi-task-
learning architecture, which would simultaneously optimize
segmentation and classification performance, has advantages
over the presented pipeline. In addition, the method could be
extended by an automated selection of the 2D slice at the level
of the caudate lobe to allow fully automated prediction of
cirrhosis based on T2-weighted imaging.

Our study has several limitations. First, the DTLmodel has
been trained for the identification of liver cirrhosis only and

Fig. 4 Gradient-weighted class
activation maps for unsegmented
and segmented images from the
test set. The overlays highlight
regions that had high impact on
classification in patients without
cirrhosis (a) and patients with
cirrhosis (b). Patients with and
without cirrhosis that were
correctly classified by the DTL
methods but incorrectly classified
by the certified radiologist are
shown in c. Examples of images
with a disagreeing classification
of the two DTL methods, where
the image was only correctly
classified with prior liver
segmentation are shown in d.
Images that were misclassified by
both DTL methods, but correctly
classified by the certified
radiologist are shown in e
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does not support the detection of very early signs of tissue
fibrosis, which might be present in early hepatopathy.
However, this was not the aim of this proof-of-principle study,
but to investigate the hypothesis that ImageNet pre-trained
models are generalizable to T2-weighted MRI imaging and
allow the assessment of imaging features of liver cirrhosis.
The investigation of an automated classification of early signs
of tissue fibrosis and different stages of fibrosis will be the
next step in the evaluation of deep transfer learning–based
approaches based on standard T2-weighted MRI imaging.

Our study collective included a broad range of cirrhosis
severities (according to the Child-Pugh score) and different
etiologies of cirrhosis. To account for the difference in the
number of patients with liver cirrhosis and patients without
liver disease, additional performance measures were assessed.
According to the balanced accuracy, the method trained on
segmented images performs at expert level. However, the
DTLmethod shows a higher sensitivity and a lower specificity
compared to the board-certified radiologist, which may be a
result of the class imbalance of the dataset. An expert level
classification performance of the DTL method trained on seg-
mented images is furthermore underlined by the precision-
recall analysis.

Another limitation is that the classification was based
solely on T2-weighted images. In contrast to that, addition-
al pieces of information such as different MRI sequences as
well as clinical and laboratory parameters are typically
available for diagnosis in clinical routine. However, in our
study, high diagnostic accuracy was shown for both the
classifier and clinical experts, even if the diagnosis was
based on only one anatomical sequence. Future studies
may evaluate whether a multi-parametric approach or the
inclusion of clinical parameters can further improve diag-
nostic performance.

Conclusion

This proof-of-principle study demonstrates the potential of
DTL for the detection of cirrhosis based on standard T2-
weighted MRI. The DTL pipeline for the image-based diag-
nosis of liver cirrhosis demonstrated classification accuracy at
expert level. An application of the pipeline could support ra-
diologists in the diagnosis of liver cirrhosis and has the poten-
tial to improve consistency of reading performance.
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Deep learning for standardized, MRI-based quantification
of subcutaneous and subfascial tissue volume for patients
with lipedema and lymphedema
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Abstract
Objectives To contribute to a more in-depth assessment of shape, volume, and asymmetry of the lower extremities in patients
with lipedema or lymphedema utilizing volume information from MR imaging.
Methods A deep learning (DL) pipeline was developed including (i) localization of anatomical landmarks (femoral heads,
symphysis, knees, ankles) and (ii) quality-assured tissue segmentation to enable standardized quantification of subcutaneous
(SCT) and subfascial tissue (SFT) volumes. The retrospectively derived dataset for method development consisted of 45 patients
(42 female, 44.2 ± 14.8 years) who underwent clinical 3D DIXON MR-lymphangiography examinations of the lower extrem-
ities. Five-fold cross-validated training was performed on 16,573 axial slices from 40 patients and testing on 2187 axial slices
from 5 patients. For landmark detection, two EfficientNet-B1 convolutional neural networks (CNNs) were applied in an ensem-
ble. One determines the relative foot-head position of each axial slice with respect to the landmarks by regression, the other
identifies all landmarks in coronal reconstructed slices using keypoint detection. After landmark detection, segmentation of SCT
and SFT was performed on axial slices employing a U-Net architecture with EfficientNet-B1 as encoder. Finally, the determined
landmarks were used for standardized analysis and visualization of tissue volume, distribution, and symmetry, independent of leg
length, slice thickness, and patient position.
Results Excellent test results were observed for landmark detection (z-deviation = 4.5 ± 3.1 mm) and segmentation (Dice score:
SCT = 0.989 ± 0.004, SFT = 0.994 ± 0.002).
Conclusions The proposed DL pipeline allows for standardized analysis of tissue volume and distribution and may assist in
diagnosis of lipedema and lymphedema or monitoring of conservative and surgical treatments.
Key Points
• Efficient use of volume information that MRI inherently provides can be extracted automatically by deep learning and enables
in-depth assessment of tissue volumes in lipedema and lymphedema.

• The deep learning pipeline consisting of body part regression, keypoint detection, and quality-assured tissue segmentation
provides detailed information about the volume, distribution, and asymmetry of lower extremity tissues, independent of leg
length, slice thickness, and patient position.

Keywords Deep learning .Magnetic resonance imaging . Lymphography . Leg . Subcutaneous tissue

Abbreviations
CNN Convolutional neural network
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Introduction

A chronic increase in leg circumference—either uni- or
bilateral—can be caused by a range of pathological condi-
tions: apart from venous disease and obesity, lymphedema
and lipedema are recognized as major causes of increased
extremity circumference [1, 2]. Lymphedema is characterized
by soft tissue swelling caused by impaired lymphatic drainage
leading to an accumulation of interstitial fluid. Through in-
flammatory reactions, a progressing deposition of subcutane-
ous fat, tissue fibrosis, and ultimately skin changes can be
observed [2]. Lipedema is a disorder characterized by adipose
tissue accumulation in the extremities and predominantly af-
fects females. Patients typically present with a disproportion-
ate distribution of body fat on the extremities despite a slender
upper body and further symptoms such as fatigue and hyper-
algesia. Additionally, lymphedema may develop in the affect-
ed patients [3, 4]. The pathophysiology of lipedema is so far
poorly understood [1, 4, 5]. In patients suffering from either
lipedema or lymphedema, both mechanic impairments—that
can cause secondary arthritis or interfere with normal
walking—and emotional disorders—resulting from an ap-
pearance that does not conform to today’s ideal of beauty—
can result in impaired quality of life [1].

Traditionally, the diagnosis of lipedema and lymphedema
is made by clinical examination with evaluation of leg circum-
ference, pitting edema, pain, typical clinical signs (e.g.,
Stemmer’s sign), standardized anthropometric measurements
(e.g., body weight, body mass index, waist-to-hip ratio, waist-
to-height ratio), and patient history [1, 2, 4]. Especially since
the introduction of microsurgical treatment options for lymph-
edema, a more in-depth evaluation of the affected legs by
clinical MRI—e.g., as MR-lymphangiography (MRL)—has
been introduced at specialized centers for treatment planning
and therapy monitoring [6, 7]. In this respect, MRI is increas-
ingly employed in the diagnosis, staging assessment, and
follow-up of both lipedema and lymphedema and especially
multi-echo T1-weighted images (e.g., using the DIXON tech-
nique) have been demonstrated to be useful for anatomical
evaluation [8–11]. As simple anthropometric measures do
not allow for separate assessment of subfascial and subcuta-
neous tissue and do not provide information on the volume
distribution of these tissues along the entire extremities, it is
therefore a logical step to leverage available imaging for pre-
cise volume assessment of these different compartments.

In recent years, DL methods have shown their potential to
automate the quantification of tissue volumes in medical im-
age analysis [12–15]. Therefore, DL could also provide a use-
ful tool for automated imaging-based assessment of tissue
volume in patients with suspected lipedema or lymphedema.

For a clinical application of artificial intelligence–based
systems, it is important that the autonomous procedure has
quality control mechanisms that are able to warn the treating

physician in case of potentially limited validity of the mea-
surement [14]. Quality control is not only important for eval-
uating individual examinations, but it can also be used to
monitor the performance of the system over the time of de-
ployment. The hardware requirements and the time required
for inference are other aspects that affect the economics and
accessibility of the automated systems, making a comparison
of performance and efficiency of different DL models of
interest.

Therefore, it was the aim of this study to develop a DL
pipeline that allows to automatically extract precise normal-
ized information of tissue volume, distribution, and symmetry
from available MRI of the legs of patients with lipedema or
lymphedema for standardized quantification of subcutaneous
tissue (SCT) and subfascial tissue (SFT), while investigating
the performance and efficiency of different architectures.

Material and methods

Dataset

This retrospective study was approved by the institutional
review board with a waiver for written informed consent for
data analysis. Consecutive patients who underwent clinical
MRL examinations of the lower extremities between April
2016 and May 2017 were included into the study when they
had either clinically diagnosed lymphedema (primary or sec-
ondary) or lipedema of the lower extremities. The indication
for imaging was treatment planning (e.g., of lympho-venous
anastomoses) in all patients. 3DDIXONMRL (slice thickness
5 mm, spacing between overlapping reconstructed slices 2.5
mm, in-plane resolution 1 mm) was performed as part of the
pre-therapeutic diagnostic work-up on a 1.5-T MR system
(Ingenia; Philips Healthcare) to assess gross and lymphatic
anatomy as well as presence and extent of lymphatic run-off
impairment. Clinical diagnosis was made by the referring ex-
perienced lymphologists based on the national guidelines for
lymphedema and lipedema [4, 17].

Overall, 45 patients (42 female, mean age 44.2 ± 14.8
years) were examined during the selected time period and
were included into the study. Of 45 patients, 36 (80%) suf-
fered from lymphedema (13 primary, 23 secondary) and 9/45
(20%) from lipedema, with all men having secondary lymph-
edema and receiving MRL for treatment planning of lympho-
venous anastomoses. Exclusively, DIXONwater images were
used for method development. In total, the dataset consisted of
18,760 slices in axial orientation. Data were randomly split
into a training set for five-fold cross-validation of 40 (38 fe-
male, mean age 45.0 ± 15.5 years) cases and a hold-out test of
5 cases (4 female, mean age 37.4 ± 4.5 years) set. Detailed
information on imaging parameters and image pre-processing
prior to training can be found in Supplement S1.
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The ground truth generation for the landmark detection was
performed manually using Slicer 3D [18]. For the tissue seg-
mentation, semi-manual tools and AI-assisted annotation were
applied by a research assistant (S.N. with 3 years of experi-
ence in medical image segmentation). All annotations were
finally approved by a board-certified radiologist (C.C.P. with
10 years of experience in lymphatic imaging). Further infor-
mation on annotation can be found in Supplement S2.

The DL pipeline was finally also applied to four different
use cases of routine clinical practice to demonstrate the clini-
cal utility of the presented method for assessing tissue volume,
distribution, and symmetry of the lower extremities and for
monitoring of conservative or surgical treatment.

Method development for leg normalization

Figure 1 shows an overview of the developed pipeline
consisting of two landmark detection methods and a quality-
controlled tissue segmentation method.

(i) Leg model regression

In the first landmark detection method, a 2.5D CNN encoder
determines the relative foot-head position of each axial slice
within a standardized leg model by regression. To create the
standardized leg model, the mean distances between the

manually defined landmarks were determined for the entire
dataset (ankle-knee: 95.0 ± 6.7 cm, knee-symphysis: 99.1 ±
6.1 cm, symphysis-femoral head: 16.7 ± 1.8 cm). The dis-
tances between the landmarks were normalized to the mean
distance between ankles and knees, resulting in the relative
positions −1, 0, 1.045, and 1.220 for ankles, knees, symphy-
sis, and femoral heads within the leg model. The position
values of the slices between the landmarks were linearly in-
terpolated. Two numbers were then assigned to each axial
slice, which corresponded to the relative position of that slice
in the leg model for the left and for the right leg. Subsequently,
image areas superior to the femoral heads were excluded from
further analyses.

(ii) Keypoint detection

In the second landmark detection method, an additional 2.5D
CNN encoder detects the image coordinates of the landmarks
in coronal reconstructed slices using keypoint detection. To
create the coronal reconstructed slices, the cropped images are
down-sampled to an isotropic resolution of 2.5 mm. Then,
slice by slice, the center of mass of the body mask was shifted
in the anterior-posterior direction to the center of the image.
Subsequently, the image matrix was cropped at a distance of
25 mm anterior and 25 mm posterior from the center of the
image. This area contained all landmarks.

Fig. 1 Overview of the DL pipeline. (a) First, the 3D MRI scan is
analyzed in axial slices by a 2.5D EfficientNet-B1 to identify the relative
foot-head position of each slice with respect to a leg model consisting of
ankles, knees, symphysis, and femoral heads. Afterwards, the image
dataset is automatically cropped to the legs. (b) To increase the accuracy
of the leg normalization, all landmarks are predicted by another 2.5D
EfficientNet-B1 in coronal slices of a down-sampled cropped image

using keypoint detection, where the lower limbs were centered slice-by-
slice in anterior-posterior direction to the image center. (c) Then, a 2.5D
U-Net with EfficientNet-B1 as backbone is used for segmentation of
subcutaneous adipose tissue and subfascial tissue volume in axial slices.
Finally, the identified landmarks and tissue volumes are combined to
allow standardized quantification of the tissues (see Figs. 3 and 4)
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For processing 3D information, 2.5D CNN encoders with
three axial slices spaced 5 mm apart between each slice were
used as input channels for all CNNs used in the current study.
Also, different versions of a modern implementation of the
established ResNet (ResNet18, ResNet34, ResNet50), as well
as different versions of the recently introduced EfficientNets
(B0, B1, B2, B3, B4), were implemented for both landmark
detection methods [19, 20]. The most appropriate model was
selected based on validation performance and model efficien-
cy in terms of the number of trainable parameters and floating
point operations required. For training the landmark detection
methods, five-fold cross-validation was used and testing was
performed with an ensemble of the cross-validated models.

Method development for tissue segmentation

Model

2.5D models with a U-Net-like architecture were investigated
to segment the subcutaneous adipose tissue in the 3D MRI
scans. Again, different versions of ResNet (ResNet18,
ResNet34) and EfficientNet (B0, B1, B2, B3, B4) encoders
were implemented for the U-Net model [19, 20]. The applica-
tion of ResNet as an encoder of a U-Net has already been
demonstrated to be able to segment the liver with high preci-
sion in MRI [21]. In addition, a CDFNet was trained, which
was recently presented for abdominal adipose tissue segmen-
tation in DIXONMRI images and computed tomography [13,
14]. Again, the most appropriate model was selected based on
validation performance and model efficiency in terms of the
number of trainable parameters and floating point operations
required. Subsequently, the chosen 2.5D network architecture
was also trained to perform segmentation on sagittal and cor-
onal slices to investigate if a multi-view approach is beneficial
for the current segmentation task [13].

As with the landmark detection methods, five-fold cross-
validation was used for training. Testing was performed with
an ensemble of the cross-validated models. Detailed informa-
tion on the network architectures used as well as the
hyperparameters used for training the tissue segmentation
and landmark detection methods can be found in Appendix
S3 and S4.

Quality control

For automatic assessment of segmentation quality, the entropy
of the probability map of the segmentationmodels was used as
a metric to predict the prediction uncertainty as in terms of the
Dice score as proposed in previous studies [14, 16].

In the current study, two linear regression models were
trained. One based on the entropy of the entire probability
map of the 3D segmentation, as proposed in the original work,
and another which considers the entropy slice by slice [16].

By this, it should be investigated whether this allows a local
evaluation of the quality and thus represents a beneficial ex-
tension of the 3D approach. Only slices between the ankles
and femoral heads with segmentations larger than 10% (12.7
cm2) of the image section were considered. The linear regres-
sion models were trained with the predicted segmentations of
all validation cases of the cross-validated tissue segmentation
method and tested on the hold-out test set. Pearson correlation
(r) coefficients were calculated with SciPy 1.6.3 [22].

Results

Leg normalization

EfficientNet-B1 was chosen as the most suitable model
for both landmark detection methods used for leg normal-
ization as it showed excellent performance in the five-fold
cross-validation while having the least number of train-
able parameters and floating point operations, resulting
in a prediction time per patient of 2.7 s for the first meth-
od and 0.1 s for the second method on an NVIDIA Titan
RTX graphics processing unit (GPU). Low mean devia-
tions (Δz) between the predictions of the validation cases
of the cross-validated landmark detection models and the
manually defined ground truth were observed for the leg
model regression (Δz = 6.6 ± 2.7 mm) and for the
keypoint detection (Δz = 6.6 ± 3.2 mm). The mean sex-
specific deviations were Δz-female = 6.4 ± 2.6 mm, Δz-
male = 10.0 ± 4.4 mm for the leg model regression and
Δz-female = 6.6 ± 3.2 mm, Δz-male = 7.9 ± 4.0 mm for
the keypoint detection.

The ensemble of all cross-validated models showed also
low mean deviations on the hold-out test set (leg model re-
gression: Δz = 5.6 ± 5.6 mm; keypoint detection:Δz = 6.9 ±
4.4 mm). Considering an acceptable deviation of up to 10 mm
in the test set, 85.7% of the landmarks detected by leg model
regression and 74.3% of the landmarks detected by keypoint
detection were correct. Using the predictions in an ensemble,
the performance increased toΔz = 4.5 ± 3.1 (100% < 10mm).

Tissue segmentation

EfficientNet-B1 was also chosen as the most suitable
model for tissue segmentation as it showed again excel-
lent segmentation performance on axial slices in the five-
fold cross-validation with mean Dice scores of 0.982 ±
0.007 for segmenting SCT and of 0.989 ± 0.003 for
segmenting SFT. The mean prediction time per patient
was 8 s on an NVIDIA RTX 3090 GPU. Dice scores were
consistently above 0.95 for both genders (Dice score fe-
male: SCT = 0.983 ± 0.007, SFT = 0.989 ± 0.003; Dice
score male: SCT = 0.967 ± 0.005, SFT = 0.984 ± 0.003).
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Combining the predictions of three multi-view models,
each segmenting on either axial, coronal, and sagittal
slices, did not improve the already very high segmenta-
tion performance (Dice SCT: 0.980 ± 0.008; Dice SFT:
0.987 ± 0.004).

An ensemble of the five-fold cross-validated EfficientNet-
B1 models applied to axial slices achieved also excellent Dice
scores on the test set (Dice SCT: 0.989 ± 0.004; Dice SFT:
0.994 ± 0.002).

Detailed information and illustrations on the model selec-
tion for tissue segmentation and landmark detection can be
found in Supplement S5.

Quality control

Both linear regression models (based on 3D volumes and 2D
slices) demonstrated a high correlation between the entropy of
the subcutaneous tissue segmentation probability map and the
segmentation quality represented by the Dice score (3D vol-
umes: SCT r = −0.76 p < 0.001, SFT r = −0.75 p < 0.001; 2D
slices: SCT r = −0.78 p < 0.001, SFT r = −0.76 p < 0.001).
Low mean deviation between predicted and actual Dice score
were observed when applying the models to the hold-out test
set (3D volumes: ΔDice SCT: 0.003 ± 0.002; ΔDice SFT:
0.001 ± 0.001; 2D slices: ΔDice SCT: 0.003 ± 0.002;ΔDice
SFT: 0.002 ± 0.003). Figure 2 shows the two regression
models and also illustrates the application of the models
for automatic identification of cases with lower segmen-
tation quality.

Use cases

The trained DL pipeline was applied to different use cases of
routine clinical practice to create leg normalized visualiza-
tions, which are shown in Figs. 3 and 4.

Discussion

This work presents a DL method for standardized quantifica-
tion of subcutaneous and subfascial tissue of the lower ex-
tremities in patients with lipedema and lymphedema, which
has the potential to provide an in-depth description of shape,
volume, and asymmetry.

Modern imaging techniques have become increasingly im-
portant in the work-up of patients with suspected lipedema
and lymphedema or lymphatic leakages [6, 7, 11, 23, 24].
Especially high-resolution 3D MRL has shown to be useful
for planning of new surgical therapeutic options of lymphatic
diseases [25] and may also be helpful in treatment follow-up.
Usually morphological sequences are part of a MRL protocol
and allow for structural assessment of the affected legs.
Therefore, it is a logical consequence to apply the capabilities

of DL to available morphological 3D imaging to automatical-
ly extract information about the exact tissue volumes that
might be otherwise unused, which could lead to a more ob-
jective assessment of edematous diseases compared to con-
ventional measurements.

Spatial standardization of identified tissues allows compar-
ison between examinations independent of leg length, slice
thickness, and position, ultimately allowing comparison of
tissue volume distributions between initial and follow-up
scans of a patient. To achieve automated standardized ana-
lysis, two tasks were solved by utilizing DL, namely tissue
segmentation and landmark detection. As a further step to-
wards clinical application, the proposed pipeline in the current
study includes a segmentation quality control approach as
proposed in a previous work [16]. As an extension to this
method that based on the entire 3D volume, we additionally
developed a linear regression model trained on each slice of
the 3D scan. This allows to assess local quality of the segmen-
tation process and is therefore more sensitive to local effects,
e.g., caused by imaging artifacts.

For both the landmark detection and tissue segmentation
methods, a 2.5D approach incorporating three slices was cho-
sen. This approach has significantly lower computational
costs compared to 3D CNNs, allowing analysis of the high-
resolution MRI scans without prior down-sampling, while re-
ducing hardware requirements and time needed for inference.
Since excellent results were already observed for the 2.5D
approach, the inclusion of more 3D related information
through a multi-view approach was not found to be beneficial
for the given tasks. Furthermore, the performance and effi-
ciency of different CNN models for landmark detection and
tissue segmentation were investigated in this work. The re-
cently released EfficientNet, which showed state-of-the-art
performance on the ImageNet dataset at the time of its release
while maintaining very efficient computational requirements,
was observed also to be high performant and efficient for
medical landmark detection and tissue segmentation.
Employing efficient models is also of interest for the use of
DL in routine clinical practice, as they can reduce costs by
further lowering hardware requirements and inference time.

A detailed comparison with previous work on the quantifi-
cation of tissue volumes for lymphedema assessment in pa-
tients with breast cancer using manual landmark definition
and non-DL algorithms, as well as previous work on body
part detection in medical imaging, can be found in
Supplement S6 [8, 26–28].

Our study has several limitations. First, MRI images from
routine clinical practice of patients with lipedema and lymph-
edema, but no patients who are solely obese and have no
edematous alterations, were used for the development of the
method. However, we assume, although it was not explicitly
tested in this study, that the deep learning pipeline also works
in purely obese patients without edema, as the high Dice
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values show that the tissue regions of the patients used for
method development, where edema is not present, were also
segmented with high precision. Also, data for method devel-
opment were mainly from female patients. This is due to the
fact that lymphedema as well as lipedema occurs predomi-
nantly in the female population and data from routine clinical
practice was used for this study. However, excellent perfor-
mance values for landmark detection and tissue segmentation
were also observed in male patients of the validation sets.
Furthermore, the deep learning method was developed using
DIXON water images from a single MRI scanner only. Multi-
center trials are warranted to proof the general applicability.
The use of the algorithm will be enabled for collaborative

multi-center studies on reasonable request (https://qilab.de).
Also, at the current stage, there was no further investigation
of the segmented tissues with respect to fluid infiltrations,
which have implications for treatment strategy of lipedema
and lymphedema. In this respect, the presented approach
may be used as a basis for further quantitative analyses of
tissue properties in future studies, e.g., by multi-parametric
imaging. Lastly, the proposed method has not been evaluated
for e.g. treatment response assessment in a clinical trial so far.
However, we demonstrate potential use cases of the method
showing examples for tissue volume assessment, evaluation
of asymmetrical tissue proportions, and the evaluation of vol-
ume changes after surgical treatment. Future studies should

Fig. 2 The two linear regression models developed for quality control of
the tissue segmentation convolutional neural network (CNN) are shown
in the upper section of the figure. These are used for predicting the seg-
mentation quality of the subcutaneous tissue class in terms of the Dice
score. The first regression model was based on the entropy of the entire
probability map of the 3D segmentation (top left). A second regression
model was developed to predict segmentation quality slice by slice (top
right). Gray areas represent 95% confidence intervals. Pearson correlation
coefficient (r) along with the two-tailed p-value is given in the boxes. The
lower section of the figure shows the 3 channel inputs of the 2.5D

segmentation CNN for three patients (a, b, c), respectively, whose entropy
of probability map and Dice scores are highlighted in the plot above. The
digits represent the slice numbers. Excellent overall segmentation quality
with high Dice scores and low entropy was observed for the majority of
the entire 3D volumes and 2D slices (c.f. patient a). The slice-wise pre-
diction of the Dice score allows to additionally capture local effects on
segmentation quality caused, e.g., by water-fat swap (as seen in patient b)
or partial volume artefacts (as seen in patient c). For patients b and c,
adjacent artifact-affected slices, which also had low predicted Dice
scores, are also highlighted in the plot above
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Fig. 3 Use cases for assessment of volume, distribution, and symmetry
utilizing volume information from MRI. On the left (a) is a patient
(female, 45 years old) without swelling of the lower extremities, in the
middle (b) is a patient with lipedema (female, 46 years old), and on the
right (c) is a patient with asymmetric left secondary lymphedema (female,
66 years old). Cumulative axial tissue areas are displayed per slice for
each patient, with the distribution of the subfascial tissue (SFT) shown in
blue and of the subcutaneous tissue (SCT) in yellow separated for the left

and right leg between the femoral heads and the ankles. The detected
landmarks are indicated by dotted lines. In order to highlight the differ-
ences in tissue volume between the two legs, asymmetric tissue portions
are shown in darker blue for SFT and darker yellow for SCT. This is
particularly apparent in the illustration of the patient with asymmetrical
lymphedema (c). Next to the right and left leg, the tissue volumes are
indicated in liters with corresponding colored font, and the total volume
of SFT and SCT is indicated with white font

Fig. 4 Use case for evaluating success of surgical treatment. The figure
illustrates normalized visualizations of a pre-therapeutic and 1-year fol-
low-up scan of a lymphedema patient (female, 55 years old) who received
surgical treatment (lympho-venous anastomoses). Cumulative axial tissue
areas for the follow-up examination are illustrated, with the distribution of
the subfascial tissue (SFT) shown in blue and of the subcutaneous tissue
(SCT) in yellow separated for the left and the right leg between the
femoral heads and the ankles. The differences in tissue volumes between
the initial and the follow-up scan, i.e., tissue portions that have decreased

in the course of the treatment, are indicated in red color. Next to the right
and left leg, the total volume of SFT and SCT measured at the initial
examination is indicated with white font, the total volume of SFT and
SCT measured at the follow-up examination is indicated with blue and
yellow font, and the decrease in volume is indicated with red font. On the
right side of the figure, the alterations in SCT volume between initial and
follow-up scan is presented in yellow and in a different scale to highlight
where predominantly decrease of tissue volume has occurred during the
course of treatment

890 European Radiology  (2023) 33:884–892

1 3



evaluate the clinical value of the method for diagnosis, treat-
ment planning, and treatment monitoring of lipedema and
lymphedema against or in compliment of conventional an-
thropometric measurements.

Conclusion

This study presents a DL system for standardized and objec-
tive analysis of tissue volume, distribution, and symmetry
based on MRI in patients with suspected lipedema or
lymphedema.
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4. Discussion with references  

 

The publications in this work demonstrate the potential of AI-based pipelines for 

extracting and analysing quantifiable features from routine clinical radiological 

images. In addition to DL-based automated tissue segmentation, anatomical 

landmark identification, or disease detection, the works highlight techniques that 

can be used to design pipelines that offer potential utility in clinical practice. 

In the first publication, an automated end-to-end pipeline for body composition 

analysis in CT is presented, which includes automatic anatomical landmark 

detection, tissue segmentation and quality control. For autonomous systems 

operating on routine clinical data, mechanisms that warn of potentially invalid 

analyses, e.g., due to artefacts, are of great importance. For body composition 

analysis, beam hardening artefacts caused by metal implants in the spine can 

make the assessment of the surrounding muscle infeasible. Here, it was shown 

that Machine Learning and conventional image processing methods can be used 

to overcome this problem by assessing segmentation quality or detecting artefacts. 

A second challenge for autonomous systems is the handling of variable scan 

lengths, resolutions and the resulting variable image sizes. The connections of a 

CNN are defined according to a given input size, so that in principle a CNN can 

only analyse image matrices of this fixed size. In this work, a patch-wise CNN, 

where the image is split into parts of predefined size prior to analysis, is proposed 

as the first instance of the pipeline offering a possible solution to this challenge. 

The results of this work can be considered as further advancement of an earlier 

study on tissue segmentation for body composition analysis, which was also 

published during the period of this thesis (Nowak et al., 2020). 

In the second paper, a DL pipeline is proposed for the detection of liver cirrhosis in 

clinical MRI. In this work, the utility of transfer learning was demonstrated by 

showing that the image features extracted from a frozen CNN previously trained 

with over a million natural images of, e.g., cars, animals, and buildings, could be 

used for expert-level disease detection. This result is of particular interest for the 

development of DL algorithms based on routine clinical data, where for a cohort of 

patients the number of images can be limited, especially when addressing rarer 
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diseases. Furthermore, it has been shown that a limitation of the DL analysis to the 

segmented organs is beneficial compared to analysis of the entire image. Finally, 

gradient-weighted class activation, a method aiming for explainable AI, were also 

used to generate saliency maps that provided insights on relevant liver regions. 

However, conclusions about individual decisions are difficult to draw from the 

coarse highlighted areas, which is a criticized limitation of these methods 

(Ghassemi et al., 2021). This questions the utility of these methods for detecting 

invalid analyses and thus their use as potential quality control instances of a DL 

pipeline in routine clinical practice. The findings of this work formed the basis of 

another work on characterization of an alcohol-related etiology of liver cirrhosis, 

which was also published during the period of this thesis (Luetkens et al., 2022). 

The third paper presents a pipeline for standardized assessment and visualization 

of leg tissue distribution in patients with lip- and lymphedema in MRI. This work 

demonstrated how DL can extract otherwise unused precise tissue volume 

information of the entire leg from imaging in a standardized way, allowing 

comparisons between examinations for monitoring disease progression or 

treatment success. Conventionally, tissue volume alterations in these patients are 

assessed at the body surface using anthropometric measurements, such as leg 

circumferences, and not by determining exact volumes from imaging. Therefore, 

this study is an example of how DL has the potential not only to automate tedious 

analyses, but also to improve diagnostic and monitoring procedures. However, this 

remains to be proven in future clinical studies of this pipeline. Also, the novel 

regression of the relative position of each axial slice within a standardized leg 

model not only improves the accuracy of landmark detection in the two-stage 

approach, but also serves as input to the DL pipeline that can handle variable scan 

lengths. Furthermore, it was shown that a slice-by-slice application of a previously 

presented method for quality control has advantages and allows for identification of 

local artefacts that influence segmentation quality. 

The AI-pipelines developed in this thesis have following limitations. One limitation 

is that the training with supervised learning required time-consuming manual or 

semi-manual annotation of data. This included the annotation of tissues of interest, 

landmark identification, or especially the retrospective compilation of patient 
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cohorts from the radiological and clinical data systems. Since radiological reports 

or letters of the referring clinicians are commonly in free-text format, the 

retrospective identification of a patient cohort with a disease of interest requires 

opening and reading these texts. Using all available data from a very large clinical 

data system for supervised learning is often hindered by the need for time-

consuming manual curation. Therefore, there is a great need for unlocking 

radiological and clinical databases for the development of AI methods. To achieve 

this, unsupervised learning methods that do not require manually annotated data 

are in demand. In recent years, text-based transformer models, which can be pre-

trained by unsupervised learning techniques, have emerged as a state-of-the-art 

language processing architectures (Brown et al., 2020). An ongoing study of our 

institute is investigating how text-based transformer models can be efficiently 

developed on-site by also employing unsupervised learning techniques to 

retrospectively categorize and thereby unlock radiological report databases for 

data-driven medicine. In addition, recent developments in multimodal analysis of 

image-text pairs are of great interest for radiological application. These techniques 

are currently used to create AI-generated synthetic images based on text inputs 

and are trained in two phases. In the first phase, an image encoder and a text 

encoder are jointly trained to both generate similar feature representations for 

similar or corresponding image-text pairs. In the second phase, the abstract 

feature representations of the text encoder are used as a seed for an image 

generating model (Ramesh et al., 2022). Although the generation of synthetic 

medical images is not expected to be of great clinical utility, leveraging the abstract 

feature representation of a medical image for AI-based generation of radiology 

reports is of great interest (Hosny et al., 2018). The potential of these modern 

techniques for use in radiology will be investigated in future studies. 

Another limitation is that the AI methods of this work, which were trained by 

supervised learning on annotated data, are exclusively task-specific and can only 

be applied to the one specific operation for which they were developed. The 

inability to perform more than one task is a typical limitation of current AI-tools and 

described as Artificial Narrow Intelligence (ANI) (Hosny et al., 2018; Shevlin et al., 

2019). AI systems that, like humans, have the ability to apply their cognitive 
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resources to a variety of different tasks are referred to as Artificial General 

Intelligence (AGI) and to date have not been accomplished (Shevlin et al., 2019). 

The recent and promising developments of text-based transformer architectures 

and the results achieved by massive scaling of data, hardware resources and 

trainable parameters of these models indicate that the path to AGI may be feasible 

in the future (Brown et al., 2020). This progress towards AGI by scaling 

transformers is also reflected in a recent work that developed a transformer that 

could be trained to handle over 600 different tasks from various domains, such as 

conducting dialogues, outperforming humans playing Atari games, operating a 

robot arm, and many more (Reed et al., 2022). Among other benefits, the authors 

suggest that generic models have advantages over domain-specific solutions due 

to more efficient use of computation and the increase in variety and amount of 

training data by incorporating numerous tasks. Future work could explore the 

potential of these concepts to overcome ANI of current radiological AI-tools. 

In conclusion, DL-based QIA pipelines for three different scenarios of clinical 

routine were presented that enable disease detection, extraction of standardized 

and objectively quantifiable image features, or monitoring of disease progression 

or therapy success. These systems demonstrate how challenges of routine clinical 

data can be overcome and thus analysis pipelines can be designed that have the 

potential to provide true benefits for routine clinical practice. 
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