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ABSTRACT

Community-created geographic data sources, such as OpenStreetMap, are semi-
structured sources of geographic information. These sources rely on voluntary con-
tributions from individuals worldwide, resulting in huge amounts of geographic
data. However, this volunteer nature poses challenges due to the varying inter-
ests and expertise of the volunteers. The entity and schema representations within
OpenStreetMap are sparse and heterogeneous, making it challenging to manage and
access the data for downstream applications. Meanwhile, semantic data sources
such as knowledge graphs offer more structured data, following ontologies that
provide uniform representations and semantic relationships. Aligning community-
generated geographical resources with knowledge graphs allows us to enrich the
former with semantic data and provide the knowledge graphs with precise geo-
graphical information.

However, integrating volunteered geographic information sources and knowl-
edge graphs is difficult due to challenges such as less annotated data, poor data
quality, and representational differences between entities and schema. To alleviate
these obstacles, in this thesis, we propose solutions for the alignment of entities and
schemas and creating a comprehensive geographic knowledge graph. Initially, we
present NCA, a neural model to align OpenStreetMap schema elements, commonly
referred to as tags, with knowledge graph classes by utilizing a novel shared la-
tent space and contrastive learning. Then, by utilizing the knowledge gained from
NCA, we present IGEA, an iterative approach to align schema elements and entities
between OSM and knowledge graphs. IGEA leverages a cross-attention mechanism
for the alignment. By utilizing entity descriptions from multiple sources, IGEA finds
better alignments than the state-of-the-art approaches. Finally, we present WorldKG,
a novel geographic knowledge graph containing OpenStreetMap data in semantic
format. WorldKG knowledge graph adheres to the novel WorldKG ontology cre-
ated by representing the tags of OSM in superclass subclass relations.

By addressing the challenges of data integration and implementing a structured
ontology, WorldKG serves as a valuable resource for downstream applications, pro-
viding a platform for accessing and leveraging geographic data in a structured and
comprehensive manner. In addition to the immediate benefits for downstream ap-
plications, the methods and knowledge graph developed in this thesis will benefit
further developments in the domain of geographic information on the web.

Keywords: Volunteered Geographic Information, Geographic Schema Alignment, Ge-
ographic Entity Alignment, Geographic Knowledge Graphs
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Chapter 1

Introduction

Geographic information has gained a lot of attention in recent years due to applica-
tions such as POI recommendation, navigation, and routing applications. The use
of geographic information in the form of maps dates back centuries, but with the
rise in internet usage, the number of applications requiring geographic information
has also grown. Over the last few decades, many sources of geographic data have
emerged. In 2007, Goodchild [Goo07] introduced the term volunteered geographic
information (VGI). In VGI, the data is collected and maintained by volunteers. In
2006, OpenStreetMap (OSM) emerged as the source of free geographic data and is
currently one of the biggest sources of volunteered geographic information, with
over 11 million registered users and over 1.4 million editors1. OSM has vast geo-
graphic objects in various forms such as points, lines, and polygons, and the objects
are described using key=value pairs called ´tags’.

Although the OSM data is exceedingly large, data is sparse and heterogeneous
due to the voluntary nature of the data collection. For example, in March 2024,
in the country of Germany, there were over 400 million nodes (points) created out
of which only about 4.5% of nodes had at least one tag with an average of 4 tags
per node2. Objects of certain types, such as cities, and famous railway stations, are
described in more detail, whereas lesser utilized types such as small villages are
rarely described. Furthermore, the data statistics vary depending on the regions
and countries. For example, contrary to Germany, in the country of India, there
were over 200 million nodes (points) created, out of which only about 1.3% of nodes
had at least one tag with an average of 2 tags per node3. To create OSM objects,
volunteers are provided with a set of guidelines. These guidelines, however, do
not conform to a fixed ontology, making the OSM schema ever-growing and highly
heterogeneous. OSM data in its original form cannot be made directly available
for semantic applications such as geographic question answering and information
retrieval.

Knowledge graphs, since their inception in 2012, have been popular as a source
of semantic information. Unlike OSM, knowledge graphs follow a strict ontology
and can be made directly accessible to semantic applications. Although general-
purpose knowledge graphs such as Wikidata, and DBpedia contain structured
information about geographic data, their coverage is not extensive. Figure 1.1
shows the current geographic entities present in OSM (over 400 million4) and the
Wikidata knowledge graph (over 0.8 million5) for the country of Germany. As

1https://osmstats.neis-one.org/
2https://taginfo.geofabrik.de/germany/reports/database_statistics
3https://taginfo.geofabrik.de/india/reports/database_statistics
4https://download.geofabrik.de/europe/germany.html
5https://query.wikidata.org/

https://osmstats.neis-one.org/
https://taginfo.geofabrik.de/germany/reports/database_statistics
https://taginfo.geofabrik.de/india/reports/database_statistics
https://download.geofabrik.de/europe/germany.html
https://query.wikidata.org/
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seen in the figure, the geographic entities in Wikidata are fewer than in OSM.
Even domain-specific knowledge graphs such as LinkedGeoData [ALH09] and
Yago2Geo [KMK19] lack in terms of size and types. Integrating OpenStreetMap
and knowledge graphs can benefit geographic data users with precise geographic
information from OSM and structured and semantic geographic information from
knowledge graphs.

The integration of OSM and knowledge graphs is a very challenging task. Fol-
lowing, in Table 1.1 we show an example of the entity Mount Everest in Wikidata
knowledge graph and OSM to understand the differences between these sources.

TABLE 1.1: Representation of Mount Everest in OpenStreetMap and
Wikidata

Key Value

id 164979149
name Mount Everest
natural peak
way POINT (27.988

08 86.92514)
ele 8848.86

A) OpenStreetMap tags

Subject Predicate Object

Q513 label Mount Everest
Q513 instance of Q8502 (mountain)
Q513 location Q5451 (Himalayas)
Q513 coordinate location 27°59’17.6500"N,

86°55’30.0652"E
Q513 elevation above sea level 8,844.43 metre

B) Wikidata triples. Q513 represents Mount Everest

As seen in Table 1.1, the Wikidata knowledge graph has an instance of property
that describes the type of entity. In OSM, unless we have knowledge of the schema,
it is difficult to know what is the type of given entity. Moreover, there exists a many-
to-many relation between OSM and KG classes. For example, OSM tags place=city
can be mapped to Wikidata classes such as City, Big City, and Capital City. Further-
more, there exists only a fraction of already linked schema elements between OSM
and knowledge graphs which is not sufficient to train supervised models. The OSM
schema is flat and does not have any hierarchical relations between its schema ele-
ments. Such challenges including representational differences, ambiguities, and lack
of data hinder the seamless schema alignment. The alignment at the entity level is
challenging, since the values of entities are not similar. In the given example, the
values of elevation and geographic coordinates vary between the two sources, hin-
dering the application of similarity-based approaches for alignment.

This thesis proposes ways to integrate OSM and knowledge graphs at schema
and entity levels and to lift OSM into a semantic representation. We first tackle
the problem of schema alignment by aligning tags of OSM to classes of knowledge
graphs. Then, we align the entities of these two sources and finally, we convert the
OSM data into a semantically structured data source.

1.1 Research Questions

As explained earlier, the OSM schema is heterogeneous. Moreover, the semantics of
the tags are unclear. There is no clear distinction between tags describing the type
of the object and tags describing other properties. Aligning the schema elements
becomes inherently difficult due to the unclear semantics and flatness of the OSM
schema, which brings us to our first research question.
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A) OSM B) Wikidata C) OSM-Wikidata

FIGURE 1.1: Geographic entities in OSM, Wikidata, and linked enti-
ties between Wikidata and OSM for the country of Germany

RQ1. How to create a neural model to link OpenStreetMap and Knowledge
graphs at the schema level?

Linking OSM and knowledge graphs is a challenging task. Currently, there are
very few linked schema elements between OSM and knowledge graphs, which lim-
its the use of machine learning models relying on massive data for training. Further-
more, the linked entities between these sources are very sparse, as seen in Figure
1.1. Using simple string similarity measures to link schema elements is not enough,
as OSM and knowledge graphs follow different naming schemes. For example, the
OSM tag natural=peak describes an object of type mountain. In Wikidata knowl-
edge graph, entities of type mountain are described with the type Q8502 (Mountain).
Using string similarity measures, natural=peak and Mountain, do not yield accurate
results. There exists a need to create a model that incorporates the semantics of the
tags along with the rich information provided by OSM and knowledge graphs to get
the alignments between OSM tags and KG classes.

The tasks of schema and entity alignment are interlinked. Having more linked
entities can enhance the task of schema alignment, and having more schema ele-
ments linked can help in better entity alignment. This trade-off brings us to our
second research question.

2. How to identify identity links between OSM and knowledge graphs using
an iterative neural model?

As seen in Figure 1.1, there is a huge linking potential between OSM and general-
purpose knowledge graphs. Due to the schema mismatch between OSM and knowl-
edge graphs, it is difficult to apply existing entity alignment approaches that rely on
the structural similarity. Considering certain properties such as name, address, and
geographic coordinates is challenging due to the incomplete properties and impre-
cise geolocations. Using the whole data present in the OSM objects and KG entities
can enhance the linking performance and create accurate links. Iteratively linking
schema elements and entities can further improve the linking performance.

Although linked entities and schema elements help make the geographic data
easily accessible to semantic applications, the unlinked data remains inaccessible.
Our third research question deals with converting OSM data into a structured se-
mantic knowledge source.

3. How to create a geographic knowledge graph from OpenStreetMap?
OSM’s flat and heterogeneous schema can hinder the usage of OSM in seman-

tic applications. Lifting the OSM schema into a hierarchical ontology can help to
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FIGURE 1.2: Overview of the thesis contributions

overcome the challenges of the flatness of the schema. We need to develop a novel
ontology that conforms to semantic structure and makes OSM data easily accessible
for downstream applications.

1.2 Contributions

To address the research questions designed in Section 1.1, we have proposed several
solutions as contributions to this thesis. We contribute to schema alignment, entity
alignment, and knowledge graph creation. We make use of various sources of geo-
graphic information to design these solutions. Figure 1.2 depicts the overview of the
contributions along with their interconnections.

Geographic Schema Alignment: As shown in the upper left part of Figure 1.2,
we utilize linked entities from OSM and knowledge graphs to align OSM tags to
knowledge graph classes by creating a shared latent space. In the shared latent
space, the entities that belong to the same classes are kept in closer proximity. We
then probe the model to get the final tag-to-class alignment.

In particular, our contributions include NCA — a novel approach to link class
elements between OSM and knowledge graphs. We also propose a shared latent
space that combines feature spaces of OSM and knowledge graphs. We propose a
novel and effective algorithm to obtain tag-to-class matches from the trained model.

Geographic Entity Alignment: As explained earlier, schema alignment and en-
tity alignment can enhance the performance of each other. Considering this princi-
ple, we utilize an iterative approach to align schema and entities. As shown in the
lower left part of Figure 1.2, we initially start with the already linked entities from
OSM and KG, then apply tag-to-class alignment. We then use tag-to-class align-
ment along with the geographic distance for candidate generation. Next, we train
an attention-based classification model, which classifies pairs of entities into a match
or no match. Instead of relying on only certain tags and properties, we consider all
properties and tags of entities to fully utilize the rich semantics present in the data.
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Overall, our contributions are as follows: Firstly, we propose IGEA, a novel itera-
tive cross-attention-based approach that links the geographic entities between OSM
and knowledge graphs. The iterative approach enables the use of tag-to-class align-
ment and entity alignment simultaneously to improve the candidate blocking and
to overcome the annotations and linking sparsity.

Geographic Knowledge Graph Creation: Considering the limitations inherent
in OSM’s flat and heterogeneous schema, direct access to geographic information
within OSM by semantic applications is hindered. To address this issue, we intro-
duce a novel WorldKG ontology designed to transform the flat OSM schema into
a hierarchical structure of classes. Additionally, we leverage tag-to-class alignment
techniques to establish connections between OSM tags and KG classes, as shown in
the right part of Figure 1.2. Subsequently, we construct the WorldKG knowledge
graph that conforms to WorldKG ontology.

To summarize, our contributions are as follows: We create the WorldKG knowl-
edge graph that semantically represents data extracted from OSM. Along with the
knowledge graph, we present WorldKG ontology that describes the superclass-
subclass relations between the class elements from OSM and also provides links to
the Wikidata and DBpedia ontology elements.

1.3 Thesis Structure

This thesis is organized into the following sections.

• In Chapter 2, foundational concepts and relevant background for this thesis
are described.

• Chapter 3 presents an overview of recent advances in the fields of entity and
schema alignments and geographic knowledge graphs.

The subsequent three chapters (4, 5, and 6) provide concise summaries of the
published papers, along with my contributions to them, which are attached in the
appendix.

• Chapter 4 offers a summary of the paper “Towards Neural Schema Align-
ment for OpenStreetMap and Knowledge Graphs”, addressing the first re-
search question.

• Chapter 5 presents a summary of the paper “Iterative Geographic Entity Align-
ment with Cross-Attention”, addressing the second research question.

• In Chapter 6, a summary is provided for the paper “WorldKG: A World-Scale
Geographic Knowledge Graph”, addressing the third research question.

• Finally, the thesis is concluded in Chapter 7, outlining the overall results ob-
tained and providing an outlook for future research.
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Chapter 2

Background

In this chapter, we present the background necessary to understand further chapters.
First, we describe the concept of geographic data along with descriptions of volun-
teered geographic information datasets. Then, we describe knowledge graphs, their
storage, and their querying. Lastly, we present prominent algorithms pertinent to
train the volunteered geographic information.

2.1 Volunteered Geographic Information

Geographic data consists of objects/entities that can be located on the earth’s sur-
face, ideally with latitude and longitude. In the past years, many smart city applica-
tions have emerged which rely on geographic data. The collection and maintenance
of such data can be expensive. In 2007, Goodchild [Goo07] invented the term volun-
teered geographic information (VGI) which includes tools to collect geographic data
on the web using volunteered efforts from contributors. The collected data is then
stored in a database or file system and can be openly accessed by individuals on the
internet. The popularity of VGI is attributed to its open and free nature, since often
in many regions, VGI is the only source of geo-information [NZ14]. Currently, there
exist many VGI platforms in various data formats that cater to a vast user base. One
such data source is OpenStreetMap. Next, we will take a look at OSM in detail.

2.1.1 OpenStreetMap

The OpenStreetMap (OSM) project was initiated in 2004 by Steve Coast at the Uni-
versity of London, which still hosts many OSM data services. Though the project
started with the goal of building a global map, the current motivation of the OSM is
to provide an openly available geographic resource that can be further explored by
routing or navigational applications. Currently, OSM is considered one of the largest
openly available sources of volunteered geographic information [NZ12]. The data
is made available under the Open Database License (ODbL) 1. The users can access
the OSM data in multiple ways, including a web interface2 as shown in the Figure
2.1 and an API3 4.

Over the past decade, OSM has grown in terms of contributors as well as contri-
butions. It started with 1000 users in 2006 and as of 2024, has over 11 million users.
Similarly, in terms of the GPS points recorded, the number increased from 1 million
to over 28 billion in past years. Figure 2.2 gives an overview of the growth of OSM

1https://opendatacommons.org/licenses/odbl/
2https://www.openstreetmap.org/
3https://api.openstreetmap.org/
4https://www.openstreetmap.org/copyright

https://opendatacommons.org/licenses/odbl/
https://www.openstreetmap.org/
https://api.openstreetmap.org/
https://www.openstreetmap.org/copyright
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FIGURE 2.1: OpenStreetMap web interface view for the city of Berlin,
Germany, ©OpenStreetMap contributors, ODbL

A) Increment in OSM users B) Increment in OSM GPS points

FIGURE 2.2: An incremental growth of registered OSM users and the
number of GPS points collected by contributors

from its inception in 2006 until October 2023 in terms of the users (2.2a) and GPS
points tracked (2.2b)5. Note that the users reported in the figure are all registered
users and not active contributors. The number of active contributors can be less
than the number of registered users. The pace of information updates is also high.
On 19th February 2024, between 12:00 to 13:00 CST, overall 730 contributors made
288,759 map edits in 117 countries6. OSM follows its own schema and data model,
consisting of various components.

2.1.2 OSM Data Model

The OSM data model contains various components.

• Each entity in OSM is assigned a unique identifier.

• There are three types of entities described in OSM, namely, nodes, ways, and
relations.

5https://osmstats.neis-one.org/
6https://osmstats.neis-one.org/?item=trending

https://osmstats.neis-one.org/
https://osmstats.neis-one.org/?item=trending
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– Nodes denote the points containing one pair of latitude and longitude.
Examples of node data types are trees, mountain peaks, etc.

– Ways represent line strings containing an array of latitude and longitude
pairs. This data type is used to represent objects such as roads, and rivers.
If the way’s first node and the last node are the same, then it is called a
closed way and is used to describe areas such as buildings or forests.

– Relations are used to describe complex objects that are created using mul-
tiple other data types such as nodes, ways, or relations themselves as sub-
relations.

• Each OSM object consists of a set of key=value pairs called tags. These tags de-
scribe the features of the OSM object. Some key=value pairs describe the type
of the given object. For example, in Listing 2.1, place=city and admin_level=4
define the type of the object Berlin.

• Each object also contains a set of metadata that defines the version number,
changeset, comments about the current change along with a timestamp.

Formally, we define the OSM object as follows,

Definition 1 (OSM Object) An OSM object O = (i, nwr, lvec, tags, meta) consists of an
id i, a type of the object describing if it is a node, way or a relation nwr, a point location or an
array of members depending on the type of the object lvec, an array of key=value pairs tags
and a list of the metadata information meta.

In the Listing 2.1, we show the OSM data for object Berlin in relation form.
OpenStreetMap, although huge, does not provide geographic data in a contex-

tual form that can be utilized for downstream applications. Having OSM data in a
structured and contextual format can benefit downstream tasks. In the following,
we take a look at the semantic web and its various components and technologies
that can be beneficial for the semantic representation of OSM.

2.2 Semantic Web

The semantic web extends the World Wide Web to incorporate a web of data where
information is structured and linked in a way that enables machines to understand
and interpret its meaning. The semantic web follows the principles of linked data
and semantic technologies. Linked data refers to ways of publishing data on the web
and linking data within sources for the creation of a vast network of interlinked data
from disparate sources [HB11].

The semantic web utilizes standardized protocols such as RDF (Resource de-
scription framework) and SPARQL (SPARQL Protocol and RDF Query Language)
to create a global web of data. The semantic web addresses the limitations of the
traditional web by enriching web contents with machine-readable metadata. As a
result, it streamlines processes such as search, discovery, integration, and utilization
of data across diverse domains and applications.

2.2.1 Resource Description Framework

Resource description framework (RDF) [Sch+] includes the concepts and notions
to describe and represent data on the web. The RDF data model consists of an RDF
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id 62422
nwr relation

lvec
172 members
member id
-- ---------------------------------------------
Node 240109189
Way 50291800
Way 77913336
Way 29413660
.
.
.
Way 506304229

tags
key value
-- --------------------------------------------------
ISO3166-2 DE-BE
TMC:cid_58:tabcd_1:Class Area
boundary administrative
admin_level 4
name Berlin
place city
.
.
.
website http ://www.berlin.de
wikidata Q64
wikipedia de:Berlin

Part of
2 relations
type id
-- -------------------------------------------------
Relation 8365411
Relation 8365511

meta
Version 303
comment Add Japanese Name tag
Changeset 147524359
timestamp 2024 -16-02T11 :32:08Z

LISTING 2.1: Example of an OSM relation object for the city of Berlin

graph, which is curated using a so-called triple of the form Subject - Predicate - Object.
In the triple form, the subject and the object are considered nodes and the predicate is
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a relation joining the two nodes. The triples are generated by utilizing fundamental
components of the RDF model, namely IRIs (Internationalized Resource Identifier),
and literals [Sch+].

• IRIs: An IRI (International Resource Identifier) is a Unicode string that follows
a set of rules and syntax7.

• Literals: A literal is used to describe strings, numbers, or dates and can only
be placed in the object place.

Another important concept when working with RDF datasets is RDF vocabulary,
which consists of a list of IRIs used in the RDF graph. The namespace IRI denotes a
common substring with which an IRI begins. Namespaces that are commonly used
are stored as namespace prefixes. Table 2.1 shows some common namespace prefixes
and their IRIs.

TABLE 2.1: Common namespace prefixes and their corresponding
IRIs

Namespace Prefix Namespace IRI
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.org/2000/01/rdf-schema#
xsd http://www.w3.org/2001/XMLSchema#
owl http://www.w3.org/2002/07/owl#

The RDF dataset (collection of multiple graphs) or a graph that follows the strict
RDF syntax is called an RDF document. They can have various formats to make it
easier to exchange them over the web. Some common formats include Turtle (.ttl),
JSON-LD (.jsonld), Notation3 (.n3), and N-Triples (.nt). The listing 2.2 shows an
example of entity Berlin from the DBpedia database in Turtle format. Here, vari-
ous ontologies are used, such as DBpedia ontology, GeoSPARQL ontology, and owl
ontology. The example of interlinking of identical elements that refer to the same
real-world entity between sources is given by owl:sameAs predicate. These links are
also called identity links.

2.2.2 Knowledge Graphs

Recently, knowledge graphs have emerged as a source for organizing information in
structured formats. Although the concept of using nodes (concepts) and edges (rela-
tions) has been in practice since the beginning of the semantic web in the 1990s, the
actual term ’knowledge graph’ was introduced by Google in 2012 with the creation
of Google knowledge graph [Ste+12]. In recent years, due to the advancements in
artificial intelligence, natural language processing, and graph database technologies,
knowledge graphs have been widely used and adopted by major companies for var-
ious application scenarios [Noy+19]. Knowledge graphs follow the RDF data model
to structure the data. Each entity is created as a node and its relations are depicted
as edges.

Definition 2 [Dso+21] formally defines a knowledge graph.

Definition 2 (Knowledge Graph) A knowledge graph KG = (E, C, P, L, T) consists
of a set of entities E, a set of classes C ⊂ E, a set of properties P, a set of literals L and a set
of relations T ⊆ E × P × (E ∪ L).

7https://www.ietf.org/rfc/rfc3987.txt

https://www.ietf.org/rfc/rfc3987.txt
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@prefix dbo: <http :// dbpedia.org/ontology/> .
@prefix dbr: <http :// dbpedia.org/resource/> .
@prefix geo: <http ://www.opengis.net/ont/geosparql#> .

dbr:Berlin a dbo:City;
rdfs:Berlin "Berlin" ;
dbo:areaCode 030 ;
dbo:country dbr:Germany ;
dbo:isoCodeRegion "DE-BE" ;
dbo:populationDensity 4126.00^^ xsd:double;
dbo:populationTotal 3677472^^ xsd:nonNegativeInteger ;
owl:sameAs https ://www.wikidata.org/wiki/Q64 ;
geo:geometry POINT (13.404999732971 52.520000457764) ;
geo:lat 52.520000^^ xsd:float ;
geo:long 13.405000^^ xsd:float .

LISTING 2.2: RDF Triples in the Turtle format for an example entity
Berlin in DBpedia dataset.

The entities in set E are the real-world entities and classes. P represents the set of
properties that connect two entities or an entity to the literal value. Each entity in E
belongs to a class C. One entity can belong to one or multiple classes. L is the set
of literals that can be used to describe string values, dates, or numerical values. T is
the collection of triples of either <entity - relation - entity > or <entity - relation - literal>
form.

Figure 2.3 shows a simple knowledge graph for the city of Berlin. The rounded
rectangles show entities, the arrows are relations and the rectangles depict the liter-
als.

capitalOf

label

type

Berlin

continent

Germany

"Berlin"@en

City Europe

continent

capitalCity

FIGURE 2.3: Example of a simple knowledge graph for the city of
Berlin

Currently, many knowledge graphs capture general knowledge and also
domain-specific knowledge. These knowledge graphs can be created automat-
ically, semi-automatically, or manually by experts. The most commonly used
general-purpose knowledge graphs are Wikidata, DBpedia, and Google knowledge



2.2. Semantic Web 13

graph. Figure 2.4 shows the excerpt of Berlin’s knowledge representation in the
Wikidata knowledge graph. Here, the ids such as Q64, Q183 are used as entity
IRIs (https://www.wikidata.org/wiki/Q64). The instance of property is used to
describe the type of entity, for example, Berlin is of type big city and federated state of
Germany.

label

population

instance of

country
Q64

Berlin

3,755,251

official name

Berlin

1244

inception

label

Q1549591

label

Q1221156

instance of

big city federated state of
Germany

instance of

official
language

Q183capital of

Germany

label

Q6256

country

label

Q188

German

51°N, 10°E

coordinate 
location

official language

label

FIGURE 2.4: Wikidata knowledge graph excerpt for the city of Berlin

2.2.3 Geographic Knowledge Graph

In this thesis, we refer to entities of knowledge graph KG with geo-coordinates
Lgeo are referred to as geographic entities Egeo. The knowledge graph created
using such entities is called a geographic knowledge graph. Lately, geographic
knowledge graphs have been utilized for domain-specific tasks such as geographic
question answering [Pun+18; YJY24], Next location recommendation systems
[Che+22; Oun+21; PT21; LLS16]. Many of the current knowledge graphs [KMK19;
Dso+21] conform to the Open Geospatial Consortium’s GeoSPARQL ontology8.
The geographic objects inside knowledge graphs are defined as geo:spatilaObject
and have properties such as geo:hasLength, geo:hasSize. The geo:Feature class has a
property named geo:hasGeometry which defines the geometry of the spatial object.
GeoSPARQL ontology supports point, line, polygon, and multi-polygon representa-
tions. Listing 2.3 shows the creation of a geographic Point object using GeoSPARQL
ontology along with geographic properties.

2.2.4 SPARQL and GeoSPARQL

SPARQL is a query language designed for RDF data models. SPARQL provides
specifications and protocols to query and edit RDF graph content on the Web or in
an RDF store. SPARQL provides an extensive syntax for querying RDF data that
enables users to retrieve specific information, perform pattern matching, and exe-
cute aggregate functions over RDF datasets. It follows a similar syntax to that of an
SQL query language. Listing 2.4 queries the graph given in Listing 2.2 to retrieve the
country and the population of the city of Berlin.

8https://opengeospatial.github.io/ogc-geosparql/geosparql11/geo.ttl

https://www.wikidata.org/wiki/Q64
https://opengeospatial.github.io/ogc-geosparql/geosparql11/geo.ttl
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@prefix geo: <http ://www.opengis.net/ont/geosparql#> .
@prefix qudt: <http :// qudt.org/schema/qudt/> .
@prefix rdfs: http ://www.w3.org /2000/01/ rdf-schema \#
@prefix unit: <http :// qudt.org/vocab/unit/> .

eg:berlin
rdfs:label "Berlin" ;
rdfs:seeAlso "https ://www.wikidata.org/wiki/Q64"

^^xsd:anyURI ;
geo:hasArea [
qudt:numericValue "891.12"^^xsd:float ;
qudt:unit unit:KiloM2 ;
];
geo:hasGeometry eg:berlin-geo ;

.

eg:berlin-geo
a geo:Geometry ;
geo:asWKT "Point (52.516667 ,13.383333)"^^geo:wktLiteral ;

.

LISTING 2.3: Example of a geographic entity using geoSPARQL on-
tology

SELECT ?city ?country ?population
WHERE {

?city rdfs:label "Berlin".
?city dbo:country ?country.
?city dbo:populationTotal ?population

}

Result:
?city ?country ?population
dbr:Berlin dbr:Germany 3677472

LISTING 2.4: SPARQL query to get the country and population for
the city of Berlin

SPARQL comprises various functionalities that make it easier to extract the data
from an RDF graph. The Filter keyword ensures that only patterns for which the
filter expression is TRUE are returned. Similarly, the keyword Optional is used when
the query data may or may not be present in the result set. Distinct keyword only
displays unique results. The Order by keyword is used to order the result set in
ascending or descending order.

GeoSPARQL extends SPARQL to add support for geospatial data. As explained
in Section 2.2.3, the geographic objects can be represented using multiple geome-
tries and geometric features. GeoSPARQL introduced functions such as sfContains,
sfWithin, sfTouches to retrieve and manipulate geographic data.
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2.3 Machine Learning Algorithms for Alignment of Geo-
graphic Sources

The sources of volunteered geographic information are sparse, heterogeneous, and
incomplete. As explained earlier, aligning these sources at the schema and entity
level can benefit the downstream applications. Since it is a challenging task, we rely
on recent developments in the field of machine and deep learning for the alignment.
In this section, we describe the machine and deep learning methods that we have
utilized to train the models.

2.3.1 Problem Definition

In this thesis, we work on two alignment tasks: geographic entity and schema align-
ment, especially, tag-to-class alignment. Definitions 3 and 4 [Dso+23]define the tasks
of the geographic entity and schema alignment.

In geographic entity alignment, we aim to align entities that represent the same
real-world entity. From the example shown in Table 1.1, Mount Everest from OSM
will be linked to Mount Everest (Q513) from Wikidata.

Definition 3 (Geographic Entity Alignment) Given an entity n from a geographic data
source C (n ∈ C), and a set of geographic entities Egeo from a knowledge graph KG, Egeo ⊆
KG, determine the entity e ∈ Egeo such that sameAs(n, e) holds.

Here, the sameAs function refers to the predicate of owl ontology9 which maps
two same real-world entities.

In geographic class alignment, we align the schema elements that represent the
same real-world concept. In the example in Table 1.1, the OSM tag natural=peak will
be aligned to the class mountain from Wikidata.

Definition 4 (Geographic Class Alignment) Given a geographic data source C and a
knowledge graph KG, find a set of pairs of class elements of both sources, such that elements
in each pair (si, sj), si ∈ C and sj ∈ KG, describe the same real-world concept.

2.3.2 Alignment Methods and Models

Alignment methods mainly rely on structural or textual features. Since OSM does
not have a fixed ontology, in this thesis we mainly rely on textual features to align
elements. In this section, we describe the fundamentals of the training of a model
with textual features.

Feature Representation

In our approaches, we utilize OSM tags (key=values) and knowledge graph prop-
erties as our features. We form a corpus using the features and treat them as tex-
tual inputs. Using the whole set of tags and properties from OSM and knowledge
graphs as features can create an extremely sparse feature set. There exist feature
representation methods [MRS08] such as bag-of-words, and TF-IDF where the texts
are represented either in a boolean way or with simple computations depending on
the frequency of occurrence. In the past decade, word embedding methods such

9https://www.w3.org/TR/owl-ref/#sameAs-def

https://www.w3.org/TR/owl-ref/#sameAs-def
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as word2vec [Mik+13], glove [PSM14], fastText [Boj+17] have been extensively used
for textual feature representation. In 2018, language models such as BERT [Dev+19]
became popular for text encoding and representation. BERT is a transformer model.
It is trained on a deep bidirectional representation of text and helps in conditioning
left and right context, where the context of a word is maintained in overall input.
In the above models, the embeddings of a single word are given. In 2019, Reimers
et al. [RG19], presented a modification to BERT called sentence-Bert using Siamese
and triplet models to get the contextual sentence embeddings. In our approaches,
we have utilized, TF-IDF, fastText, and sentence-Bert for feature representation.

Traditional Machine Learning Models

Traditional machine learning models for classification have been utilized for align-
ment tasks in the past [MBR01; NA11]. These algorithms include decision trees and
random forest trees. These models rely on precalculated features such as string sim-
ilarity and other lexical features of the entity pair. In the case of the alignment tasks
where both sources follow different schema and structure, applying simple machine
learning algorithms do not yield good results as they only utilize certain features
such as names and do not consider the structural and schematic differences.

Neural Networks

Neural networks [Gur97] are computational models inspired by the human brain
that are composed of interconnected nodes. They use weighted connections and
activation functions to learn complex patterns in the data. The selection of hyper-
parameters, such as learning rate, number of layers, and activation functions, plays
a crucial role in determining the network’s performance and generalization abil-
ity across various tasks. In the context of textual data, word embeddings are often
used as input features and are passed through multiple hidden layers of the neural
network. There exist various networks such as simple feedforward, convolutional,
recurrent, and long short-term memory models.

In the feedforward network [BG94], the information flows in one direction from
the input nodes to the output nodes through hidden layers. The output of the neuron
is the weighted sum of its inputs plus the bias. We then apply an activation func-
tion to get the final output. Convolutional networks [Gu+18] are widely utilized in
the image domain as they can recognize the visual patterns from the images. Each
neuron in the convolutional layer is connected to a small subset of input neurons. A
filter known as kernel is applied to the input feature to generate an output feature
map, on which a non-linear activation function is applied.

When working with sequential data, simple feedforward networks cannot cap-
ture the long-term dependencies, as they do not have memory units. Recurrent net-
works [PMB13] have connections within the layers that allow information to persist
over time. Each neuron has input from the current state as well as output from the
past state to maintain the sequence. Although recurrent networks are powerful for
sequential data, they suffer from the problem of vanishing gradient where, as the
network progresses, the gradient gets negligible, making it difficult to learn the long
dependencies. Long short-term memory networks [Sai+15] overcome the vanishing
gradient problem by utilizing various gated units such as input gate, forget gate, and
output gate. The input gate decides how much new information should be stored in
a cell state. The forget gate determines how much information from the previous cell
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is to be retained in the current cell state. The output gate controls how much of the
cell state to be exposed to the next hidden state. These gates work together to regu-
late the flow of information through the LSTM cell, enabling it to capture long-term
dependencies in sequential data.

In neural networks, the intermediate layers form latent spaces that can be utilized
for better model understanding and intermediate results generation.

Feature Space Alignment

When working with multiple data sources, neural networks with different settings
can be jointly learned to extract shared features and create shared latent spaces. De-
velopment of such models is dominant in the fields of computer vision [Fer+13]
and machine translation [Lam+18]. One of the approaches proposed by Ganin et al.
[Gan+16] aligns the source and target domain by using a neural domain adaptation
algorithm that trains a model by taking labeled data from a source domain and un-
labeled data from a target domain. While this approach aligns similar distributions
of feature spaces, the gradient reversal layer proposed in [Gan+16] can be utilized
to form joint spaces based on similarities or differences. In our work, we utilize the
gradient reversal layer to form the shared latent space between OSM and knowl-
edge graphs. Another network that utilizes joint learning is a recently published
transformer network based on attention mechanisms.

Attention Mechanism

The attention mechanism [Vas+17] trains the deep learning model by selecting im-
portant features that help improve the efficiency and accuracy of the model. The
attention function consists of key K, value V, and query Q and then mapped to the
output.

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V, (2.1)

where dk is the dimension of the key vector [Vas+17].
Attentions are of two types, additive and multiplicative. When attention is ap-

plied to the same input sequence, it is known as self-attention. Attention applied to
two different inputs is known as cross-attention. Cross-attention has been proven
effective when working with multi-modal inputs [Wei+20]. It is modeled similar to
self-attention but instead of using only one input as K, Q, and V, it uses a combi-
nation of inputs from two different sources as K, Q, and V, the selection of which
varies according to the application scenario. In our work, we consider OSM and
knowledge graphs as two different modes of data and apply cross-attention to the
OSM and KG features.

2.3.3 Evaluation Metrics for Alignment

Alignment problems can be evaluated in multiple ways. One of the ways is for
each entity, the output is a list of ranked probable matches, and they are evaluated
based on which position the correct match is. In this work, we consider the align-
ment problem as a classification problem, wherein we classify a pair of entities into
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a match or no-match class. We evaluate the alignment problem using classical clas-
sification evaluation measures such as precision, recall, and f1-measure. Following,
we describe these metrics.

Let us assume that, T is the total number of true pairs present in the ground
truth, tr is the total number of pairs identified by the model and tp is the number of
true pairs identified by the model.

Precision: It is defined as the ratio of all pairs that are correctly identified by the
model to all the pairs in the result set.

Precision =
tp

tr
(2.2)

Recall: It is defined as the ratio of all pairs that are correctly identified by the
model to all the pairs in the ground truth.

Recall =
tp

T
(2.3)

F1-Score: It is calculated as a harmonic mean between precision and recall.

F1 − Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(2.4)

Having lower values of precision or recall can give an overall lower score to the
model. F1-Score balances the precision and recall and has proven to be beneficial in
the case of class imbalance [Der16]. In terms of alignment tasks, the data is generally
imbalanced as we have many candidate pairs out of which only one pair is the true
pair. Using only precision or recall may not reflect the model’s capabilities to the full
extent. We use F1-Score as the measure to evaluate the performance of our models.
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Chapter 3

Literature Review

In this chapter, we offer a comprehensive review of advancements in both schema
and entity alignment. Furthermore, we delve into recent developments specifically
focusing on geographic entity and schema alignment, highlighting notable contri-
butions. Lastly, we provide an overview of the current advances in terms of the
geographic knowledge graphs.

3.1 Schema Alignment

Schema alignment refers to the task of aligning schema elements such as classes and
properties. In this section, we discuss the state-of-the-art approaches for schema
alignment, ontology alignment, and tabular data alignment. We stick to general-
purpose schema alignment approaches, as there is not a research branch dedicated
to schema alignment approaches for geographic data sources.

3.1.1 Ontology Alignment

Ontology alignment, sometimes referred to as ontology matching, links the same
real-world concepts from various ontologies. There exist several benchmark ontol-
ogy alignment approaches due to the W3C SWEO Linking Open Data community
project1 and the Ontology Alignment Evaluation Initiative (OAEI)2 [Alg+19]. The
alignment can be carried out at the structure or element level. The element-level
ontology alignment approaches use intrinsic features such as names or other de-
scriptive properties and apply string similarity measures on the pairs of elements.
Generally, fussy string matching approaches such as Jaro-Winkler, and Levenshtein
distances are used to account for the spelling variations or mistakes [Li+09]. On
the other hand, the structural level approaches rely on the structural similarities be-
tween elements. This includes using the ancestors and descendants along with the
neighbors to calculate the similarity [NBT13]. Relying on string similarity or struc-
tural similarity has proven less effective and newer approaches have tried to incor-
porate semantic information from various sources such as WordNet, and Wikipedia
to align ontologies [Jai+10]. Although, effective use of both string and semantic sim-
ilarity is still a challenge [ORG15].

To overcome the challenges of similarity-based approaches, many approaches
have adopted machine learning techniques for ontology alignment. The GLUE ar-
chitecture [Doa+04] presented multiple techniques to learn the semantic mappings

1https://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
2OAEI evaluation campaigns: http://oaei.ontologymatching.org

https://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://oaei.ontologymatching.org


20 Chapter 3. Literature Review

in a semi-automatic way. Nkisi-Orji et al. [Nki+18] proposed an approach that in-
corporated semantic similarity using word embeddings and string similarity. The
model was then trained using a random forest algorithm to get the final matches.
More recently, deep learning-based approaches have gained popularity for ontol-
ogy matching. Bento et al. [BZG20] proposed an architecture with convolutional
neural networks where string matching is performed using character embeddings.
They also included class hierarchy for optimal results. An unsupervised represen-
tation learning-based approach [Qiu+17] used correlations between different entity
descriptions to learn representations of entities, which were used to get matching
ontology elements using supervision. In ERSOM [Xia+15], stacked auto-encoders
were used for higher-level description learning. Later, the iterative similarity prop-
agation method was used to get the alignment.

3.1.2 Tabular Data Schema Alignment

Tabular data schema alignment refers to aligning schema elements of data, such as
relational databases [RB01]. The EmbDi [CPT20] approach created graphs based
on tabular data. This graph structure consisted of schema elements and entities.
EmbDi generated sentences from the graph to get the embeddings that are used to
find similarities between the schema elements. Rema [Kou+20] trained embeddings
using random walks generated from graph relations to get the column mappings.
Madhavan et al. presented the Cupid [MBR01] approach that matches schema ele-
ments based on element names, structure, constraints, and data types. Cupid uses
linguistic, structural, and contextual matching to find the mapping between schema
elements. Similarity Flooding [MGR02] transformed a table into a directed labeled
graph in which nodes represent columns to compute similarity values iteratively.

OSM and knowledge graphs present structural and schematic differences, hence
direct application of aforementioned ontology alignment and tabular data schema
alignment methods is not feasible on the task of OSM to KG schema alignment. In
our approach, we utilize entity descriptions along with state-of-the-art neural meth-
ods to align schema elements

3.2 Entity Alignment

Entity alignment aims to align entities across different sources that refer to the same
real-world object. In linked data, aligned entities are represented using owl:sameAs
link. In this section, we focus on the related work in the field of entity alignment and
geographic entity alignment.

3.2.1 Generic Entity Alignment

There has been advancement in the field of entity alignment for knowledge bases
and graphs. Similar to schema matching, these methods include string and struc-
tural similarity-based approaches as well as machine learning and deep learning-
based approaches. LIMES framework [SNL17] utilized several rules to get the can-
didate pairs and then used these rules to train the classifier which predicts the links.
LIMES contains multiple algorithms such as Eagle [NL12], Coala [NLC13], Euclid
[NL13], and Wombat [SNL17] based on unsupervised and active learning. Silk
[Vol+09] framework introduced a link specification language that specifies heuristics
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to test whether a sameAs link exists between entities. Hao et al. [Hao+16] proposed
a joint learning model by only using the structural information to align multilingual
knowledge bases. Recently, deep learning-based models have gained popularity
for the task of entity alignment on tabular data. DeepMatcher [Fu+20] and Hier-
Matcher [Mud+18] used an embedding-based deep learning approach for predict-
ing the matches for tabular datasets. Peeters et al. [PB22] used contrastive learning
with supervision to match entities in small tabular product datasets.

3.2.2 Geographic Entity Alignment

Geographic entity alignment aims to align geographic entities across different geo-
graphic sources that refer to the same real-world object. In the past, approaches often
relied on geographic distance and linguistic similarity between the labels of the en-
tities. LGD approach [ALH09] used a quadratic function for spatial distance along
with the string similarity to obtain links between entities. Karalis et al. [KMK19]
utilized Jaro–Winkler string similarity and geographic distance between entities to
get entity alignments. Tempelmeier et al. [TD21] proposed the OSM2KG algorithm
– a machine-learning model to learn a latent representation of OSM nodes and align
them with knowledge graphs. OSM2KG also used KG features such as name, popu-
larity, and entity type to produce more precise links. LIMES framework introduced
ORCHID [Ngo13] and Radon [She+17] as link discovery algorithms for geospatial
data. These algorithms work with the polygons and DE-9IM relations to align enti-
ties.

In this thesis, we build on top of existing methods and use state-of-the-art deep
learning algorithms to get accurate schema and entity matches.

3.3 Geographic Knowledge Graphs

Knowledge graphs have gained popularity over the past decade and have been used
in many semantic applications. In this section, we reflect on the current advances
in the field of geographic knowledge graphs. As mentioned in Section 2.2.3, we
consider knowledge graphs or subset of knowledge graphs where for an entity a
geographic location is present as geographic knowledge graphs. Table 3.1, provides
an overview of the knowledge graphs with geographic data.

TABLE 3.1: Overview of the current geographic knowledge graphs

Name Ontology Sources Scope
Wikidata [VK14] Wikidata Multiple World

DBpedia [Leh+15] geoSPARQL Multiple World
LinkedGeoData [ALH09] LGD OSM World

Yago2Geo [KMK19] YAGO2 Multiple GR, UK, IR, US
KnowWhereGraph [Jan+22] SOSA3, QUDT4 Multiple US

WorldKG [Dso+21] WorldKG OSM World

Wikidata [VK14], one of the biggest knowledge graphs, contains many entities
with geographic locations from all over the world. As of February 2024, there were

3https://www.w3.org/TR/vocab-ssn/
4http://www.qudt.org/

https://www.w3.org/TR/vocab-ssn/
http://www.qudt.org/
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10,805,736 entities with geographic location property (P625). These locations often-
times are imported from other sources, which can lead to imprecise coordinates.
Wikidata follows its own ontology and has coordinates in radians format as well
as with WKT5 format. The representation is uneven, with some classes such as
railway stations being represented more than other classes such as bike charging
stations. DBpedia [Leh+15], a knowledge graph curated from Wikipedia, is also
a general-purpose knowledge graph that has over 1.2 million geographic entities.
DBpedia follows OGCs geoSPARQL6 ontology to represent geographic entities with
geo:geometry, geo:lat and geo:long predicates.

LinkedGeoData [ALH09] was one of the first attempts at bringing the OSM data
into RDF formats. The ontology is created manually and contains classes such as
cities, amenities, and public transport (500 classes). Moreover, the knowledge graph
does not ensure that only quality nodes (nodes with at least one tag) from OSM
will be lifted into the knowledge graph. On similar lines, Yago2Geo [KMK19] ex-
tended YAGO2 [Hof+13] knowledge graph with geographic knowledge. It con-
tains the geographic data that is collected from the Greek Administrative Geography
dataset, Ordnance Survey data from Ireland and Northern Ireland, the Global Ad-
ministrative Areas dataset [GDA12], and OSM. The geometries are introduced using
OGC vocabulary. Yago2Geo also contains temporal information. The Yago2 ontol-
ogy is extended manually to include the geographic data from the aforementioned
datasets.

Recently, Janowicz et al. [Jan+22] published an event-centric geographic knowl-
edge graph that accumulates data from various sources and can answer questions
such as what happened in this place in the past. Instead of using points or polygons
for regions, KnowWhereGraph uses the S2 grid system [BRR20], which covers the
earth’s surface with hierarchical grids. The graph contains data from over 16 data
sources and has 27 different data layers. The graph focuses on domain application
scenarios such as climate hazards, wildfires, and air quality.

To overcome the shortcomings of the previously built geographic knowledge
graphs, in this thesis, we present WorldKG, a knowledge graph based on OSM data
built using a novel WorldKG ontology.

5https://docs.ogc.org/is/18-010r7/18-010r7.html
6https://www.ogc.org/standards/geosparql

https://docs.ogc.org/is/18-010r7/18-010r7.html
https://www.ogc.org/standards/geosparql
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4.1 Summary

Geographic data sources such as OpenStreetMap (OSM) rely on semi-structured
key=value pairs to describe objects. However, these pairs, also known as tags,
lack the semantic richness required for direct accessibility by semantic applications.
Knowledge graphs (KG), on the other hand, provide precise semantics for their en-
tities but do not have large coverage of geographic information. Integrating OSM
and knowledge graphs at the schema level can help in making a wide range of ge-
ographic entities from OSM available for semantic applications. Such an alignment
can also help OSM volunteers to correctly map an entity, as OSM tags are not al-
ways intuitive. For example, an OSM tag natural=peak describes a real-world concept
called mountain. Aligning natural=peak tag to Wikidata class Mountain (Q8502) can
help the OSM volunteers better understand the tags, in turn creating quality entities
in OSM. However, achieving such alignment poses challenges due to the schema
differences between OSM and knowledge graphs, the flat and sparse nature of the
OSM schema, and the absence of pre-existing links between OSM and knowledge
graphs.

Past schema alignment approaches that rely on string similarity do not yield
good results due to representational differences between entities (e.g., natural=peak
and mountain). Approaches that consider structural similarity cannot be applied
due to the flat OSM schema. Tabular data alignment approaches do not produce
results, since the conversion of OSM data into tabular form leads to spare data. In
this thesis, we present NCA approach that aligns OSM schema elements called tags
to knowledge graph classes. To align schema elements, one can utilize various tasks
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such as entity alignment, and node classification. In this work, we utilize the al-
ready linked OSM and KG entities, simultaneously classifying these entities into KG
classes.

The contributions of this work are as follows:

• We present a novel approach to class alignment for OSM and knowledge
graphs.

• We propose a novel shared latent space that fuses feature spaces from knowl-
edge graphs and OSM in a joint model, enabling simultaneous training of the
schema alignment model on heterogeneous semantic and geographic sources.

• We develop a novel, effective algorithm to extract tag-to-class alignments from
the resulting model.

• The results of our evaluation demonstrate that the NCA approach is highly
effective and outperforms the baselines by up to 37 percentage points in terms
of F1-Score.

Our NCA approach consists of two steps. In the first step, we use linked OSM
and KG entities to build an auxiliary classification model. This model takes as an in-
put the OSM and KG entities along with their features. These entities are then classi-
fied into KG classes. To jointly represent OSM and KG entities in a shared space, we
use an adversarial classifier. The main goal of using an adversarial classifier is that
the model should not be able to distinguish between OSM and KG samples, in turn
making a shared latent space that similarly represents both OSM and KG entities.
By classifying OSM entities into KG classes, we align the shared latent space in such
a way that we have OSM and KG entities that belong to the same classes in closer
proximity to each other. Once we have the classification model, we then probe this
model with a tag to get the KG class. For each given tag, we carry out a full forward
propagation and the class is determined using the activation values of the last layers.
We only select the pairs of tag and class if they are above a certain threshold, which
is determined experimentally.

We evaluate our model on the various country datasets of OSM, Wikidata, and
DBpedia and compare it against state-of-the-art baselines for schema alignment for
tabular data and string similarity-based baselines. We evaluate the tag-to-class align-
ment in terms of precision, recall, and f1-measure. Our experiments indicate that the
NCA approach outperforms all baselines on all datasets in terms of the f1-measure.
Specifically, we obtain 13% points and 37% points improvement on Wikidata and
DBpedia datasets, respectively. Table 4.1 shows some example tag-to-class align-
ments that are generated using the NCA approach. Our NCA approach can find
matches that are not lexically similar, such as amenity=cinema and movie theater.

TABLE 4.1: Tag-to-class alignments obtained using NCA approach

Wikidata
France Germany Great Britain USA

amenity=bicycle_rental:
bicycle-sharing station

amenity=cinema:
movie theater

railway=station:
railway station

landuse=reservoir:
reservoir

DBpedia
France Germany Great Britain USA

railway=station:
Place

place=municipality:
Place

place=hamlet:
Place

man_made=lighthouse:
Location
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We notice that the performance is dependent on the data quality of the number
of identity links, class, number of entities per class, and distinct tags and classes. To
prove the importance of the shared latent space, we conducted an ablation study
wherein we removed the shared-latent space and compared the performance to the
NCA model with the shared space, we observed that the performance increased by
34 and 11% points on Wikidata and DBpedia in the F1-Score due to the latent space.

4.2 Contributions

I contributed to conceptualizing and developing the methodology. I primarily han-
dled the major implementations and conducted experiments and evaluations on the
approach. Finally, I contributed to the writing and reviewing of the manuscript.
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5.1 Summary

As discussed in Chapters 1 and 4, current general-purpose knowledge graphs do
not have wide coverage of geographic entities. Volunteered geographic informa-
tion sources such as OSM do contain a huge amount of geographic data, but the
heterogeneous and flat schema makes it difficult to utilize the data to its full poten-
tial. Although knowledge graphs inherited from OpenStreetMap such as Linked-
Geodata [ALH09], Yago2Geo [KMK19] provide machine-readable semantics, they
cover a fraction of the classes and entities. These sources do not contain entity-to-
entity links that can provide better contextual information. Aligning knowledge
graphs and OSM at the entity and schema level can profit both sources and make
them more beneficial for downstream applications such as geographic question an-
swering and information retrieval. The interlinking becomes challenging due to nu-
merous reasons. One of the biggest challenges is the sparsity of entity annotations
and links between sources. Currently, only about 0.53% of OSM nodes are linked to
the Wikidata knowledge graph. Another challenge is the heterogeneity in the entity
representations in terms of the schema as well as the actual values of the properties
of entities. For example, as shown in Table 1.1, the values of elevations and geo-
coordinates differ. In OSM, it is also not straightforward which tag represents the
class of an entity.

Over the past years, several approaches such as LinkedGeoData [ALH09],
yago2geo [KMK19] have tried aligning these sources at entity and schema level.
Many of these approaches have focused on specific administrative regions using
well-annotated entities and classes. Some of these approaches rely on a few
properties such as the name of the place or the distance and do not consider the rich
heterogeneous information present in the entities. They also do not consider the
representation heterogeneity and annotation sparsity, which makes the alignment
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FIGURE 5.1: Overall process for IGEA approach [Dso+23], Copyright
©2023 Dsouza et al.

difficult. Overall, approaches that rely on string similarity or geographic distance
while only using certain properties such as names are not sufficient for such
alignment.

To overcome the challenges and shortcomings of the current state-of-the-art
methods, we propose IGEA – a new iterative approach based on cross-attention to
align entities with the heterogeneous contextual representation. The IGEA approach
first relies on linked entities and applies class alignment using the NCA [DTD21]
approach. The aligned classes along with the geographic distance between entities
are then used for candidate blocking. Further, a cross-attention-based module is
used to classify a pair of entities into a match or no match. This process is done
iteratively. Figure 5.1 shows the overall process for the IGEA approach. Our
contributions are as follows:

• We propose IGEA – a novel iterative cross-attention-based approach to inter-
link geographic entities, bridging the representation differences in community-
created geographic data and knowledge graphs.

• To overcome the sparsity of annotations and links, IGEA employs an iterative
method for tag-to-class and entity alignment, with integrated candidate block-
ing mechanisms for efficiency and noise reduction.

• We demonstrate that IGEA substantially outperforms the baselines in F1-Score
through experiments on several real-world datasets.

The approach first takes the already linked entities from OSM and knowledge
graphs and applies the NCA approach to get the tag-to-class alignment. Once we
have the tag-to-class alignments, we then apply candidate generation. Creating a
candidate set allows us to reduce the search space and compare entity pairs that
are a probable match, as not all OSM entities will have a corresponding KG en-
tity. We employ a two-way candidate blocking. First blocking is entity type-based,
wherein we use the tag-to-class matches obtained in the previous step for the class
matching since the same real-world entities should belong to the same class. The
second filtering is done based on geographic distance. Therefore, if the geographic
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distance between two entities is less than 2500 meters [TD21], and they belong to
the same class, then they are considered as a candidate pair. Once we have these
pairs, we then apply the cross-attention-based entity alignment classification. The
introduced cross-attention module helps in understanding the important keys or
properties across sources as well as within a given source. We utilize the linked
entities as the supervision for the classification, along with the geographic distance
between the entities. The classification layer predicts whether the given pair is a
match or not. Finally, we create an end-to-end iterative pipeline to align OSM and
KG entities, which only selects high-quality pairs using a confidence threshold.

To evaluate the effectiveness of the IGEA approach, we use various datasets cu-
rated from various countries from OSM, Wikidata, and DBpedia. We compare the
obtained results with state-of-the-art baselines for entity alignment, such as Linked-
Geodata [ALH09], Yago2Geo [KMK19], DeepMatcher [Mud+18], OSM2KG [TD21].
IGEA approach outperformed baselines in terms of F1-Score and archives, up to
18% and 14% points improvement over Wikidata and DBpedia datasets. Our exper-
iments regarding the number of iterations showed that, for many datasets, up to the
3rd iteration the performance gradually increases and then stays stagnant after the
4th iteration. This trend was followed for entity alignment as well as tag-to-class
alignment. We also conducted an ablation study, which proved the effectiveness of
the individual components that were introduced as part of the approach.

5.2 Contributions

I devised the current approach and methodology, incorporating an attention mech-
anism and additional features. Moritz Windoffer and I implemented the approach,
while I conducted experiments and evaluations. I also contributed to the writing
and reviewing of the manuscript.
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6.1 Summary

As mentioned in Section 1, OSM is semi-structured. Due to its volunteered nature,
the created entities do not follow a fixed schema, as volunteers are provided only
with a set of guidelines to create the entities. This, along with the heterogeneous
and incomplete entity descriptions, creates a bottleneck for downstream machine-
learning applications that rely on structured data. Having OSM data in knowl-
edge graph form can overcome the challenges pertaining to structured data and
heterogeneity. In the past, approaches such as LinkedGeoData [ALH09], Yago2Geo
[KMK19] have attempted to adopt the OSM data into a structured KG ontology.
These approaches, however, lack in terms of geographic coverage and represent en-
tities belonging to a few classes. Hence, we need a source of geographical semantic
information that overcomes the shortcomings of previously mentioned approaches
along with the challenges occurring due to the OSM schema. To this end, we propose
WorldKG knowledge graph that provides comprehensive semantic information of
geographic entities and is based on OSM nodes. It has over 100 million geographic
entities from 188 countries.

Our contributions are as follows:

• We present WorldKG – a new knowledge graph containing large-scale seman-
tic geographic data extracted from OSM.

• We present the WorldKG ontology, which semantically describes geographic
entities and links them to the specific classes in the Wikidata and DBpedia
ontologies.
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FIGURE 6.1: WorldKG ontology [Dso+21], Copyright ©2021 ACM.

• We provide access to WorldKG through a SPARQL endpoint and provide
downloadable data files in the standard RDF turtle format1.

We create a novel WorldKG ontology by exploiting the keys and values from
OSM to build a hierarchical schema. Figure 6.1 shows the snippet of the WorldKG
ontology. Each WorldKG entity here named as WKGObject has a property of a type
spatialObject that can either be a point, line-string, or polygon and represents the ge-
ometry of the given entity. The rdfs:Class defines the type of the WKGObject. The
WKGObject can have multiple properties such as name, adressCountry. The prove-
nance of each object is ensured through the OSM:Wiki property. We build the class
hierarchy using the tags of OSM. For example, in tag amenity=restaurant, amenity
becomes the superclass and restaurant becomes the subclass. The tag-to-class pairs
inferred by our NCA [DTD21] approach are incorporated into the ontology using
Owl:equivalentClass property.

The creation process is divided into 2 steps. The first step creates the ontology
and then in the second step, based on the ontology, we create the triples that form
the knowledge graph. As mentioned earlier, OSM does not have a fixed schema,
hence, including all the tags and keys from OSM is not feasible. OSM map fea-
tures2 provide information regarding tags that possess class information and their
attributes. We use these tags as classes in WorldKG ontology. We then produce the
hierarchical schema from OSM tags, the keys are considered super-class, and values
are considered subclasses.

We convert the names of classes and properties to fit to the OWL naming con-
ventions3. Later, we align the WorldKG classes to Wikidata and DBpedia classes
that were inferred using the NCA approach. Once we build the ontology, we create
triples for any of the OSM snapshots. We only consider OSM nodes that have at
least one tag. To ensure quality, we filter out tags and keys based on the WorldKG
ontology. The final step is to create the triples and validate them to get the whole
WorldKG knowledge graph.

The current version of WorldKG has around 800 million triples of over 113 mil-
lion entities. 33 superclasses such as place, and amenity are essentially the keys of

1https://www.w3.org/TR/turtle/
2https://wiki.openstreetmap.org/wiki/Map_features
3https://www.w3.org/TR/owl-ref/

https://www.w3.org/TR/turtle/
https://wiki.openstreetmap.org/wiki/Map_features
https://www.w3.org/TR/owl-ref/
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OSM, which are then divided into around 1100 subclasses. We have over 1800
unique properties present in WorldKG. 40 Wikidata and 21 DBpedia classes are
linked to WorldKG classes using the NCA approach. Table 6.1 provides an overview
of the knowledge graph statistics.

TABLE 6.1: WorldKG knowledge graph statistics [Dso+21], Copy-
right ©2021 ACM.

Quantity Count

Total triples 828,550,751
Total entities 113,444,975
Top-level classes 33
Subclasses 1,143
Unique properties 1,820
Links to Wikidata classes 40
Links to DBpedia classes 21

WorldKG has over two orders of magnitude higher geographical entities than
Wikidata and DBpedia. To assess the quality of the tag-to-class alignment, we man-
ually investigate a random sample of entities for 10 classes. We observe over 99%
accuracy for the tag-to-class alignment. Along with the triples of the knowledge
graph, we also provide a SPARQL endpoint based on Virtuoso4 that enables us to
efficiently query the knowledge graph. By making use of the GeoSPARQL [BK11],
the SPARQL endpoint can answer geographic queries.

6.2 Contributions

I contributed to the ontology creation and worked on the methodology. Implemen-
tations were done by me. I contributed to the quality assurance of the WorldKG. All
the authors helped in writing and reviewing the paper.

4https://vos.openlinksw.com/owiki/wiki/VOS

https://vos.openlinksw.com/owiki/wiki/VOS
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Conclusion

Volunteered geographic information (VGI) sources like OpenStreetMap offer signif-
icant potential for leveraging these datasets in downstream machine-learning ap-
plications. In its original state, the OSM data is not directly accessible by seman-
tic applications and does not provide needed contextual information. On the other
hand, knowledge graphs are the sources of rich contextual information but lack the
coverage of geographic information. Integrating VGI sources with sources of seman-
tic information can benefit both sources with rich semantic geographic information.
Certain challenges of the OSM’s flat and heterogeneous schema and lack of identity
links hinder the integration process at the schema and entity levels. We tackle these
challenges by developing machine learning algorithms to integrate the OSM data
with the knowledge graph and finally present a geographic knowledge graph that
adopts OSM data into a semantic source.

7.1 Summary of Contributions

In this section, we summarize our contributions as answers to the research questions
presented in Chapter 1. In particular, we contributed to the tasks of geographic
schema alignment, geographic entity alignment, and geographic knowledge graph
creation.

7.1.1 Geographic Schema Alignment

In Chapter 4, we proposed an approach to solve the problem of geographic schema
alignment by aligning tags of OSM with classes of knowledge graphs. Due to the
volunteered nature of OSM, the generated schema is ever-growing, flat, and hetero-
geneous. The tags do not convey semantics necessary for downstream applications.
Aligning the tags to KG classes can help in incorporating rich semantics from knowl-
edge graphs into OSM. We developed the NCA approach to align tags and classes by
fusing the feature spaces of OSM and knowledge graphs. We utilized already linked
entities to create a shared latent space that inherently captured the semantics of the
tags. Furthermore, we probed the model to get the final tag-to-class alignment. We
evaluated our approach for various country datasets of OSM, Wikidata, and DB-
pedia. Our experiments demonstrated that the NCA approach outperformed the
state-of-the-art baselines by up to 13 and 37 percentage points on OSM-to-Wikidata
and OSM-to-DBpedia tag-to-class alignment, respectively.

To summarize, our contributions are a novel approach to link class elements be-
tween OSM and knowledge graphs that utilizes a novel shared latent space that
combines feature spaces of OSM and knowledge graphs. We also proposed a novel
and effective algorithm to extract tag-to-class matches from the trained model.
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7.1.2 Geographic Entity Alignment

In Chapter 5, we presented our approach for geographic entity alignment, where
we aimed to align OSM objects to knowledge graph entities. Although OSM con-
tains a huge amount of geographic entities, their representations are heterogeneous.
The flat and sparse schema also hinders the applicability of OSM data in semantic
applications. Knowledge graphs contain semantic information about geographic en-
tities that can complement the OSM objects. Aligning OSM and knowledge graphs
at the entity level provides knowledge graphs with precise geographic information
and enables OSM objects with semantic information. However, schema and entity
alignment are interrelated, wherein both enhance the performance of each other. In
our IGEA approach, we build on the aforementioned principle of interrelation be-
tween schema and entity alignment. We developed a method to align schema and
entity elements from OSM and knowledge graphs in an iterative manner. For the
alignment, we utilized full entity descriptions as opposed to specific properties, that
the state-of-the-art methods rely on. IGEA first applies the NCA approach to linked
entities. The obtained tag-to-class alignments along with geographic distance are
used to generate candidates for alignment pairs. A cross-attention-based classifier
is applied to get the final matches. We then use the additional matches iteratively
to improve on schema and entity alignment. We conducted our experiments on the
OSM, Wikidata, and DBpedia knowledge graphs. The results of our experiments
show that IGEA outperformed the baselines by up to 18 and 14 percentage points on
Wikidata and DBpedia datasets in terms of F1-Score, respectively. We furthermore
show an improvement of seven and eight percentage points in the results of tag-to-
class alignment on Wikidata and DBpedia datasets as a result of using iterations.

In particular, our contributions are, a novel iterative cross-attention-based model
to link the geographic entities between OSM and knowledge graphs. We also pro-
posed a novel candidate blocking method that combines class-based and distance-
based blocking.

7.1.3 Geographic Knowledge Graph Creation

In Chapter 6, we present a comprehensive knowledge graph created from OSM data.
As mentioned earlier, in its original format, OSM data is not directly accessible to
semantic applications. Furthermore, the flat OSM schema restricts the use of OSM in
downstream applications. Having OSM data in the knowledge graph can mitigate
the challenges that arise due to the flat OSM schema and the lack of semantics in
the OMS tags. We convert the flat OSM schema into a novel hierarchical WorldKG
ontology with superclass-subclass relationships. We then convert the OSM snapshot
into a knowledge graph that conforms to the WorldKG ontology. The current version
of WorldKG contains over 100 million entities belonging to over 33 super-classes
and 1100 subclasses. WorldKG has over two magnitudes higher geographic entities
when compared to the Wikidata and DBpedia knowledge graphs.

Our contributions are the WorldKG knowledge graph that lifts OSM data into
semantic form which adheres to the WorldKG ontology. The novel WorldKG ontol-
ogy represents OSM tags hierarchically and also presents links to the Wikidata and
DBpedia class elements.
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7.2 Future Outlook

In this thesis, we have developed novel approaches to make volunteered geographic
data more accessible to downstream applications. Our research in geographic align-
ment and knowledge graph creation has led to following open research directions
that can be further explored.

7.2.1 Enhancements to WorldKG

The current version of WorldKG contains mainly datatype properties, wherein the
values at the object place are literals. As a result, the object-to-object links within the
WorldKG knowledge graphs are not captured. For instance, for a triple <wkg:Bonn
wkgs:isin ’Germany’>, Germany is represented as a literal value whereas it can be
linked to the wkg:Germany entity. In the future, we would like to improve the con-
nectivity within the WorldKG knowledge graph.

Another aspect that can improve the usability of WorldKG is to add more com-
plex geometries, such as ways and relations from OSM to WorldKG. The current
version of WorldKG only includes nodes of OSM, which are represented as point
geometries. Complex geometries are represented using lines and polygons or multi-
polygons and can increase the complexity of the knowledge graph as well as the
computation times of the services based on the knowledge graph, such as SPARQL
endpoints. Including complex geographical objects such as relations and ways can
enhance the expressiveness of WorldKG and can be further explored.

7.2.2 Development of Embedding Methods for Object Representation

Real-world applications such as accident prediction, and crime-rate prediction rely
on region embeddings to get accurate results. These region embeddings are cre-
ated using multiple data sources such as mobility data, land-usage data, and raster
data. Using WorldKG data to build such region embeddings can be beneficial since
WorldKG can provide interlinking with multiple sources such as Wikidata, and DB-
pedia. Using the spatial connections of WorldKG, these region embeddings can un-
derstand the important aspects of the place along with their descriptions.

7.2.3 Application to Geographic Question Answering

Geographic information retrieval applications such as location-based web search
[AB07] or geographic question answering [Mai+20] have become popular recently.
In the future, we can explore the integrated sources to enhance the answers given by
geographic question answering systems.
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Abstract. OpenStreetMap (OSM) is one of the richest, openly available
sources of volunteered geographic information. Although OSM includes
various geographical entities, their descriptions are highly heterogeneous,
incomplete, and do not follow any well-defined ontology. Knowledge
graphs can potentially provide valuable semantic information to enrich
OSM entities. However, interlinking OSM entities with knowledge graphs
is inherently difficult due to the large, heterogeneous, ambiguous, and
flat OSM schema and the annotation sparsity. This paper tackles the
alignment of OSM tags with the corresponding knowledge graph classes
holistically by jointly considering the schema and instance layers. We
propose a novel neural architecture that capitalizes upon a shared latent
space for tag-to-class alignment created using linked entities in OSM and
knowledge graphs. Our experiments aligning OSM datasets for several
countries with two of the most prominent openly available knowledge
graphs, namely, Wikidata and DBpedia, demonstrate that the proposed
approach outperforms the state-of-the-art schema alignment baselines
by up to 37% points F1-score. The resulting alignment facilitates new
semantic annotations for over 10 million OSM entities worldwide, which
is over a 400% increase compared to the existing annotations.

Keywords: OpenStreetMap · Knowledge graph · Neural schema
alignment

1 Introduction

OpenStreetMap (OSM) has evolved as a critical source of openly available geo-
graphic information globally, including rich data from 188 countries. This infor-
mation is contributed by a large community, currently counting over 1.5 million
volunteers. OSM captures a vast and continuously growing number of geographic
entities, currently counting more than 6.8 billion [15]. The descriptions of OSM
entities consist of heterogeneous key-value pairs, so-called tags, and include over
80 thousand distinct keys. OSM keys and tags do not possess machine-readable
semantics, such that OSM data is not directly accessible for semantic applica-
tions. Whereas knowledge graphs (KGs) can provide precise semantics for geo-
graphic entities, large publicly available general-purpose KGs like Wikidata [30],

c© Springer Nature Switzerland AG 2021
A. Hotho et al. (Eds.): ISWC 2021, LNCS 12922, pp. 56–73, 2021.
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DBpedia [2], YAGO [26], and specialized KGs like EventKG [10], and Linked-
GeoData [25] lack coverage of geographic entities. For instance, in June 2021,
931,574 entities with tag amenity=restaurant were present in OSM, whereas
Wikidata included only 4,391 entities for the equivalent class “restaurant”.

An alignment of OSM and knowledge graphs at the schema level can make a
wide variety of geographic entities in OSM accessible through semantic technolo-
gies and applications. The automatic suggestions of alignment candidates can
help to create accurate schema mappings in human-in-the-loop applications. Fur-
thermore, alignment models can help OSM volunteers to map geographic entities
in OSM and annotate these entities with KG classes.

The problem of schema alignment between OSM and KGs is particularly
challenging due to several factors, most prominently including the heterogeneous
representations of types and properties of geographic entities via OSM tags,
unclear tag semantics, the large scale and flatness of the OSM schema, and the
sparseness of the existing links. OSM does not limit the usage of keys and tags
by any strict schema and provides only a set of guidelines1. As a result, the types
and properties of OSM entities are represented via a variety of tags that do not
possess precise semantics. Consider an excerpt from the representations of the
entity “Zugspitze” (mountain in Germany) in Wikidata and OSM:

Wikidata

Subject Predicate Object

Q3375 label Zugspitze
Q3375 coordinate 47◦25′N, 10◦59′E
Q3375 parentpeak Q15127
Q3375 instance of mountain

OpenStreetMap

Key Value

id 27384190
name Zugspitze
natural peak
summit:cross yes

In Wikidata, an entity type is typically represented using the instance of pro-
perty. In this example, the statement “Q3375 instance of mountain” indicates
the type “mountain” of the entity “Q3375”. In OpenStreetMap, the type “moun-
tain” of the same entity is indicated by the tag natural=peak. As OSM lacks
a counterpart of the instance of property, it is unclear which particular tag
represents an entity type and which tags refer to other properties. Furthermore,
multiple OSM tags can refer to the same semantic concept. Finally, whereas the
OSM schema with over 80 thousand distinct keys is extensive, the alignment
between OSM and knowledge graphs at the schema level is almost nonexis-
tent. For instance, as of April 2021, Wikidata contained 585 alignments between
its properties and OSM keys, corresponding to only 0.7% of the distinct OSM
keys. Overall, the flatness, heterogeneity, ambiguity, and the large scale of OSM
schema, along with a lack of links, make the alignment particularly challenging.

Existing approaches for schema alignment operate at the schema and instance
level and consider the similarity of schema elements, structural similarity, and
instance similarity. As OSM schema is flat, ontology alignment methods that uti-
lize hierarchical structures, such as [13,17], are not applicable. A transformation
of OSM data into a tabular or relational format leads to highly sparse tables with

1 OSM “How to map a”: https://wiki.openstreetmap.org/wiki/How to map a.
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numerous columns. Therefore, approaches to syntactic or instance-based align-
ment for relational or tabular data, such as e.g., [6,32], or syntactic matching of
schema element names [28] cannot yield good results for matching OSM tags with
KG classes.

This paper takes the first important step to align OSM and knowledge graphs
at the schema level using a novel neural method. In particular, we tackle tag-to-
class alignment, i.e., we aim to identify OSM tags that convey class information
and map them to the corresponding classes in the Wikidata knowledge graph and
the DBpedia ontology. We present the Neural Class Alignment (NCA) model
- a novel instance-based neural approach that aligns OSM tags with the cor-
responding semantic classes in a knowledge graph. NCA builds upon a novel
shared latent space that aligns OSM tags and KG concepts and facilitates a
seamless translation between them. To the best of our knowledge, NCA is the
first approach to align OSM and KGs at the schema level with a neural method.

Our contributions are as follows:

– We present NCA – a novel approach for class alignment for OSM and KGs.
– We propose a novel shared latent space that fuses feature spaces from know-

ledge graphs and OSM in a joint model, enabling simultaneous training of the
schema alignment model on heterogeneous semantic and geographic sources.

– We develop a novel, effective algorithm to extract tag-to-class alignments
from the resulting model.

– The results of our evaluation demonstrate that the proposed NCA approach
is highly effective and outperforms the baselines by up to 37% points F1-score.

– As a result of the proposed NCA alignment method, we provide semantic
annotations with Wikidata and DBpedia classes for over 10 million OSM
entities. This result corresponds to an over 400% increase compared to cur-
rently existing annotations.

– We make our code and datasets publicly available and provide a manually
annotated ground truth for the tag-to-class alignment of OSM tags with Wiki-
data and DBpedia classes2.

2 Problem Statement

In this section, we formalize the problem definition. First, we formally define the
concepts of an OSM corpus and a knowledge graph. An OSM corpus contains
nodes representing geographic entities. Each node is annotated with an identifier,
a location, and a set of key-value pairs known as tags.

Definition 1. An OSM corpus C = (N,T ) consists of a set of nodes N repre-
senting geographic entities, and a set of tags T . Each tag t ∈ T is represented as a
key-value pair, with the key k ∈ K and a value v ∈ V : t = 〈k, v〉. A node n ∈ N ,
n = 〈i, l, Tn〉 is represented as a tuple containing an identifier i, a geographic
location l, and a set of tags Tn ⊂ T .

2 GitHub repository: https://github.com/alishiba14/NCA-OSM-to-KGs.
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A knowledge graph contains real-world entities, classes, properties, and
relations.

Definition 2. A knowledge graph KG = (E,C, P, L, F ) consists of a set of
entities E, a set of classes C ⊂ E, a set of properties P , a set of literals L, and
a set of triples F ⊆ E × P × (E ∪ L).

The entities in E represent real-world entities and semantic classes. The proper-
ties in P represent relations connecting two entities, or an entity and a literal
value. An entity in a KG can belong to one or multiple classes. An entity is
typically linked to its class using the rdf:type, or an equivalent property.

Definition 3. A class of the entity e ∈ E in the knowledge graph KG =
(E,C, P, L, F ) is denoted as: class(e) = {c ∈ C | (e, rdf:type, c) ∈ F}.

An OSM node and a KG entity referring to the same real-world geographic
entity and connected via an identity link are denoted linked entities.

Definition 4. A linked entity (n, e) ∈ EL is a pair of an OSM node n =
〈i, l, Tn〉, n ∈ N , and a knowledge graph entity e ∈ E that corresponds to the
same real-world entity. In a knowledge graph, a linked entity is typically repre-
sented using a (e, owl:sameAs, i) triple, where i is the node identifier. EL denotes
the set of all linked entities in a knowledge graph.

This paper tackles the alignment of tags that describe node types in an OSM
corpus to equivalent classes in a knowledge graph.

Definition 5. Tag-to-class alignment: Given a knowledge graph KG and an
OSM corpus C, find a set of pairs tag class ⊆ (T × C) of OSM tags T and the
corresponding KG classes, such that for each pair (t, c) ∈ tag class OSM nodes
with the tag t belong to the class c.

3 Neural Class Alignment Approach

An alignment of an OSM corpus with a knowledge graph can include several
dimensions, such as entity linking, node classification (i.e., aligning OSM nodes
with the corresponding semantic classes in a knowledge graph), as well as align-
ment of schema elements such as keys/tags and the corresponding semantic
classes. The alignments in these dimensions can reinforce each other. For exam-
ple, linking OSM nodes with knowledge graph entities and classifying OSM nodes
into knowledge graph classes can lead to new schema-level alignments and vice
versa. Our proposed NCA approach systematically exploits the existing identity
links between OSM nodes and knowledge graph entities based on this intuition.
NCA builds an auxiliary classification model and utilizes this model to align
OSM tags with the corresponding classes in a knowledge graph ontology.

NCA is an unsupervised two-step approach for tag-to-class alignment.
Figure 1 presents an overview of the proposed NCA architecture. First, we build
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Fig. 1. Overview of the NCA architecture. The gray color indicates the first step
(training of the auxiliary classification model). The orange color indicates the second
step, i.e., the extraction of tag-to-class alignments. (Color figure online)

Fig. 2. The auxiliary classification model architecture. The blue color indicates the
KG classification component, yellow marks the adversarial entity discrimination com-
ponent. Parameters inside angular brackets denote the number of neurons in each layer,
and lines denote the fully connected layers. (Color figure online)

an auxiliary neural classification model and train this model using linked entities
in OSM and a KG. As a result, the model learns a novel shared latent space that
aligns the feature spaces of OSM and a knowledge graph and implicitly captures
tag-to-class alignments. Second, we systematically probe the resulting model to
identify the captured alignments.
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3.1 Auxiliary Neural Classification Model

In this step, we build a supervised auxiliary neural classification model for a
dummy task of OSM node and KG entity classification. The model resulting from
this step is later used for the tag-to-class alignment. Figure 2 presents the model
architecture. The parameters nt, nk, np, nc denote the number of OSM tags, num-
ber of OSM keys, number of KG properties, and number of KG classes, respec-
tively. We experimentally select the number of neurons in the feature extraction
layer (nf ) and the shared latent space layer (ns). The auxiliary classification
model architecture consists of several components described below.

OSM Node Representation. We represent an OSM node as a binary vector in
an O-dimensional vector space. The space dimensions correspond to OSM tags
or keys, and binary values represent whether the node includes the corresponding
tag or key. The vector space dimensions serve as features for the classification
model, such that we also refer to this space as the OSM feature space. To select
the most descriptive tags to be included as dimensions in the OSM feature space,
we filter out low-quality tags using OSM taginfo3. We include only the tags
with an available description in the OSM wiki4 having at least 50 occurrences
within OSM. For tags with infrequent values (e.g., literals), we include only
the keys as dimensions. We aim to align geographic concepts and not specific
entities; thus, we do not include infrequent and node-specific values such as
entity names or geographic coordinates in the representation. For instance, the
concept of “mountain” is the same across different geographic regions, such that
the geographic location of entities is not informative for the schema alignment.

KG Entity Representation. We represent a KG entity as a binary vector
in a V-dimensional vector space. The space dimensions correspond to the KG
properties. Binary values represent whether the entity includes the correspond-
ing property. The vector space dimensions serve as features for the classifica-
tion model, such that we also refer to this space as the KG feature space. To
select the most descriptive properties to be included in the KG feature space,
we rank the properties based on their selectivity concerning the class and the
frequency of property usage (i.e., the number of statements in the KG that
assign this property to an entity). Given a property p, we calculate its weight as:
weight(p, c) = np,c ∗ log N

cp
. Here, np,c denotes the number of statements in which

the property p is assigned to an entity of class c, N denotes the total number
of classes in a knowledge graph, and cp is the number of distinct classes that
include the property p. For each class c, we select top-25 properties as features.
These properties are included as dimensions in the KG feature space.

OSM & KG Feature Extraction. The KG and OSM feature representations
serve as input to the specific fully connected feature extraction layers: OSM
feature extraction and KG feature extraction. The purpose of these layers is to
refine the vector representations obtained in the previous step.

3 OSM taginfo: https://taginfo.openstreetmap.org/tags.
4 OSM wiki: https://wiki.openstreetmap.org/wiki/.
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Shared Latent Space & Adversarial Classifier. We introduce a novel shared
latent space that fuses the initially disjoint feature spaces of OSM and KG such
that entities from both data sources are represented in a joint space similarly.
In addition to the training on OSM examples, shared latent space enables us
to train our model on the KG examples. These examples provide the properties
known to indicate class information [21]. The shared latent space component
consists of a fully connected layer that receives the input from the OSM and
KG feature extraction layers. Following recent domain adaption techniques [9],
we use an adversarial classification layer to align latent representations of KG
and OSM entities. The objective of the adversarial classifier is to discriminate
whether the current training example is an OSM node or a KG entity, where the
classification loss is measured as binary cross-entropy.

BinaryCrossEntropy = − 1

n

n∑

i=1

[yi × log (ŷi) + (1 − yi) × log (1 − ŷi)],

where n is the total number of examples, yi is the true class label, and ŷi is the
predicted class label. Intuitively, in a shared latent space, the classifier should
not be able to distinguish whether a training example originates from OSM or
a KG. To fuse the initially disjoint feature spaces, we reverse the gradients from
the adversarial classification loss: Ladverse = −BinaryCrossEntropyadverse.

Classification Unit. To train the auxiliary classification model for the OSM
nodes, we exploit linked entities. We label OSM nodes with semantic classes of
equivalent KG entities. We use these class labels as supervision in the OSM node
classification task. More formally, given a linked entity, (n, e) ∈ EL, the training
objective of the model is to predict class(e) from n. Analogously, the training
objective for a KG entity e is to predict the class label class(e) of this entity.

We utilize a 2-layer feed-forward network as a classification model. In the
last prediction layer of this network, each neuron corresponds to a class. As
an entity can be assigned to multiple classes, we use a sigmoid activation
function and a binary cross-entropy loss to achieve multi-label classification:
Lclassifcation = BinaryCrossEntropyclassification. Finally, the joint loss func-
tion L of the network is given by L = Lclassifcation + Ladverse. In the training
process, we alternate OSM and KG instances to avoid bias towards one data
source.

3.2 Tag-to-Class Alignment

In this step, we systematically probe the trained auxiliary classification model
to extract the tag-to-class alignment. The goal of this step is to obtain the
corresponding KG class for a given OSM tag. Algorithm 1 details the extraction
process. First, we load the pre-trained auxiliary model m (line 1) and initialize
the result set (line 2). We then probe the model with a given list of OSM tags T
(line 3). For a single tag t ∈ T , we feed t to the OSM input layer of the auxiliary
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Algorithm 1. Extract Tag-to-Class Alignment

Input: m Trained auxiliary model
T List of OSM tags
tha Alignment threshold

Output: align ⊆ (T × C) Extracted alignment of tags and classes

1: load(m)
2: align ⇐ ∅
3: for all t ∈ T do
4: forward propagation(t, m)

5: activations ⇐ extract activations(m)
6: for all a ∈ activations do
7: if a > tha then
8: align ⇐ align ∪ {(t, class(a))}
9: end if

10: end for
11: end for
12: return align

model and compute the complete forward propagation of t within m (line 4). We
then extract the activation of the neurons of the last layer of the classification
model before the sigmoid nonlinearity (line 5). As the individual neurons in
this layer directly correspond to KG classes, we expect that the activation of
the specific neurons quantifies the likeliness that the tag t corresponds to the
respective class. For each activation of a specific neuron a that is above the
alignment threshold tha (line 6–7), we extract the corresponding class c and add
this class to the set of alignments (line 8). We determine the threshold value
experimentally, as described later in Sect. 5.3. As an OSM tag can have multiple
corresponding classes, we opt for all matches above the threshold value. Finally,
the resulting set align constitutes the inferred tag-to-class alignments.

3.3 Illustrative Example

We illustrate the proposed NCA approach at the example of the “Zugspitze”
mountain introduced in Sect. 1. We create the representation of the Wikidata
object “Q3375” in the KG feature space by creating a binary vector that has
ones in the dimensions that correspond to the properties that this entity con-
tains, such as, label, coordinate, parentpeak, and zeros otherwise. Note
that the instance of predicate is not included in the feature space, as this
predicate represents the class label. Similarly, we encode the OSM node with
the id “27384190” in the OSM feature space by creating a vector that includes
name, natural=peak, summit:cross as ones, and zeros in all other dimensions.
As described above, we use frequent key-value pairs such as natural=peak as
features, whereas for the infrequent key-value pairs, such as name=Zugspitze,
we use only the key (i.e., name) as a feature. The KG and OSM features spaces
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are then aligned in the shared latent space. To form this space, we train the aux-
iliary classification model that learns to output the correct class labels, such as
“mountain”. In the last prediction layer of this model, each neuron corresponds
to a class. After the training is completed, we probe the classification model
with a single tag, such as natural=peak. The activation of the neurons in the
prediction layer corresponds to the predicted tag-to-class mapping. We output
all classes with the activation values above the threshold tha (here: “mountain”).

4 Evaluation Setup

This section introduces the evaluation setup regarding datasets, ground truth
generation, baselines, and evaluation metrics. All experiments were conducted
on an AMD Opteron 8439 SE processor @ 2.7 GHz and 252 GB of memory,
whereas the execution of NCA required up to 16 GB of memory only.

Fig. 3. OSM and Wikidata linked entities located on a world map.

4.1 Datasets

We carry out our experiments on OSM, Wikidata [30], and DBpedia [2] datasets.

Knowledge Graphs: A sufficient number of linked entities and distinct classes
is essential to train the proposed neural model and achieve a meaningful schema
alignment. As illustrated in Fig. 3, OSM to Wikidata links are highly frequent in
the European region. We systematically rank European countries according to
the number of linked entities between OSM and knowledge graphs. We choose
the top-4 countries having at least ten distinct classes in the linked entity set.
Based on these criteria, we select the Wikidata datasets for France, Germany,
Great Britain, and Russia as well as the DBpedia datasets for France, Germany,
Great Britain, and Spain. Although over 100,000 entity links between Russian
DBpedia and OSM exist, most entities belong to only two classes. Hence, we
omit Russian DBpedia from our analysis. Additionally, to understand the effect
of NCA in other parts of the world, we select the USA and Australia with a
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moderate amount of KG links. In our experiments, we consider Wikidata and
DBpedia snapshots from March 2021. We collect the data from knowledge graphs
by querying their SPARQL endpoints. We only consider geographic entities, i.e.,
the entities with valid geographic coordinates.

OpenStreetMap: We extract OSM data for France, Germany, Great Britain,
Spain, Russia, the USA, and Australia. To facilitate evaluation, we only consider
OSM nodes which include links to knowledge graphs. The number of entities
assigned to specific knowledge graph classes follows a power-law distribution. We
select the classes with more than 100 entities (i.e., 3% of classes in Wikidata)
to facilitate model training. Note that some KG entities are linked to more than
one OSM node, such that the number of nodes and entities in the dataset differ.

4.2 Ground Truth Creation

For Wikidata, we start the creation of our ground truth based on the “Open-
StreetMap tag or key” Wikidata property5. This property provides a link
between a Wikidata class and the corresponding OSM tag. However, this dataset
is incomplete and lacks some language-specific classes as well as superclass and
subclass relationships based on our manual analysis. We manually extended the
ground truth by checking all possible matches obtained by the proposed NCA
approach and all baseline models used in the evaluation. We added all correct
matches to our ground truth. For DBpedia, we constructed the ground truth
manually by labeling all combinations (T × C) of OSM tags t and KG classes C
in our dataset. For both KGs, we consider region-specific matches (“Ortsteil” vs.
“District”) and subclass/superclass relations (e.g., “locality” vs. “city/village”).

4.3 Baselines

The schema alignment task of OSM and KG has not been addressed before, such
that no task-specific baseline exists. For evaluation, we choose the state-of-the-
art baselines from schema alignment for tabular data (Cupid [13], EmbDI [5],
Similarity Flooding [14]), which is the closest representation to the OSM flat
schema structure. Furthermore, we evaluate string similarity using Levenshtein
distance, word embeddings-based cosine similarity, and SD-Type [21] - an estab-
lished approach for type inference. To fit our data to the baselines, we convert
our OSM (source) data and KG (target) data into a tabular format. For OSM,
we use the tags and keys as columns and convert each node into a row. Similarly,
for KGs, the properties and classes are converted into columns, and the entities
form the rows. We evaluate our proposed method against the following baselines:

Cupid: Cupid [13] matches schema elements based on element names, structure,
and data types. Cupid is a 2-phase approach. The first phase calculates the
lexicographic similarity of names and data types. The second phase matches

5 Wikidata “OpenStreetMap tag or key” property: https://www.wikidata.org/wiki/
Property:P1282.
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elements using the structural similarity based on the element proximity in the
ontology hierarchy. As the OSM schema is flat, we consider a flat hierarchy,
where the OSM table is the root and all columns are child nodes. The final
Cupid score is the average similarity between the two phases.

Levenshtein Distance (LD): The Levenshtein distance (edit distance) is a
string-based similarity measure used to match ontology elements lexicographi-
cally. The Levenshtein distance between two element names is calculated as the
minimal number of edits needed to transform one element name to obtain the
other. The modifications include addition, deletion, or replacement of characters
[28]. We calculate the Levenshtein distance between all pairs of class names and
tags and accept pairs with a distance lower than the threshold thl ∈ [0, 1].

EmbDi: EmbDi [5] is an algorithm for schema alignment and entity resolution.
The algorithm maps table rows to a directed graph based on rows, columns,
and cell values. EmbDi infers column embeddings by performing random walks
on the graph. The random walks form sentences that constitute an input to a
Word2Vec model. Finally, the similarity of the two columns is measured as the
cosine similarity of the respective embeddings.

Similarity Flooding (SF): Similarity Flooding [14] transforms a data table
into a directed labeled graph in which the nodes represent table columns. The
weights of graph edges represent the node similarity, initialized using string
similarity of the column names. The algorithm refines the weights by iteratively
propagating similarity values along the edges. Each pair of nodes connected with
a similarity value above the matching threshold forms an alignment.

SD-Type (SD): SD-Type [21] is an established approach for type inference.
While SD-type was originally proposed to infer instance types based on condi-
tional probabilities, we transfer the idea to infer class types. We calculate the

conditional probability of a tag t given a class c as follows: p(c|t) =
∑

(t
⋂

c)∑
t . We

accept all the matches with the probability values above threshold thl ∈ [0, 1].

Word Embedding Based Cosine Similarity (WECS): We use pre-trained
word embeddings6 trained using fastText [4] with 300 dimensions to obtain the
word vectors of tag and class names. We calculate the cosine similarity between
the word vectors of each tag-class pair. We accept all pairs with cosine similarity
above the threshold thl ∈ [0, 1] as a match.

For LD, SD and WECS, we apply an exhaustive grid search to optimize the
value of thl for each dataset and report the highest resulting F1-scores. For the
Cupid, EmbDi, and SF baseline implementation, we use the source code from
the delftdata GitHub repository7.

4.4 Metrics

The standard evaluation metrics for schema alignment are precision, recall, and
F1-score computed against a reference alignment (i.e., ground truth). We eval-

6 https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.en.300.bin.gz.
7 Delftdata GitHub repository: https://github.com/delftdata/valentine.
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uate the mappings as pairs, where each pair consists of one tag and one class
(tag-to-class alignment). Precision is the fraction of correctly identified pairs
among all identified pairs. Recall is the fraction of correctly identified pairs
among all pairs in the reference alignment. F1-score is the harmonic mean of
recall and precision. We consider the F1-score to be the most relevant metric
since it reflects both precision and recall.

5 Evaluation

The evaluation aims to assess the performance of the proposed NCA approach
for tag-to-class alignment in terms of precision, recall, and F1-score. Further-
more, we aim to analyze the influence of the confidence threshold and the impact
of the shared latent space on the alignment performance. Note that we do not
evaluate the artificial auxiliary classification task. Instead, we evaluate the util-
ity of the auxiliary model in the overall schema alignment task. We train and
evaluate the models for each country and knowledge graph separately.

5.1 Tag-to-Class Alignment Performance

Table 1 and 2 summarize the performance results of the baselines and our pro-
posed NCA approach with respect to precision, recall and F1-score for tag-to-
class alignment of OSM tags to Wikidata and DBpedia classes, respectively.
As we can observe, the proposed NCA approach outperforms the baselines in
terms of F1-score on all datasets. On Wikidata, we achieve up to 13% points F1-
score improvement and ten percentage points on average compared to the best
baseline. On DBpedia, we achieve up to 37% points F1-score improvement and
21% points on average. As OSM lacks a hierarchical structure, limiting struc-
tural comparison, most of the applicable baselines build on the name compar-
ison. Here, the heterogeneity of OSM tags limits the precision of the baselines
substantially. SD-Type obtains the highest F1-score amongst baselines. NCA
uses the property, tags, and keys information from the shared latent space and
achieves higher performance than the best performing SD-Type baseline. For
other baselines, the absolute values achieved are relatively low. SF, WECS, and
EmbDI obtain only low similarity values, resulting in low precision. An increase
of the confidence threshold for these baselines leads to zero matches. The tag-
class pairs vary significantly in terms of linguistic and semantic similarities. The
correct pairs obtained using WECS do not obtain sufficiently high scores to dis-
criminate from the wrong matches, making WECS one of the weakest baselines.

We observe performance variations across countries and knowledge graphs,
with Australian Wikidata and French DBpedia achieving the highest F1-scores
compared to other countries. These variations can be explained by the differences
in the dataset characteristics, including the number of links, entities per class,
and unique tags and classes per country. These characteristics vary significantly
across the datasets. Furthermore, the number of classes per entity varies. On
average, Wikidata indicates one class per entity (i.e., the most specific class).
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Table 1. Tag-to-class alignment performance for OSM tags to Wikidata classes.

Name France Germany Great Britain Russia USA Australia Average

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Cupid 0.06 1.00 0.12 0.03 0.70 0.06 0.07 1.00 0.14 0.08 0.80 0.15 0.06 1.00 0.11 0.25 1.00 0.38 0.09 0.91 0.16

LD 0.45 0.28 0.35 0.65 0.34 0.44 0.54 0.37 0.44 0.64 0.34 0.45 0.39 0.37 0.38 0.31 0.41 0.36 0.49 0.35 0.40

EmbDi 0.03 1.00 0.06 0.02 1.00 0.03 0.04 1.00 0.06 0.02 1.00 0.03 0.01 1.00 0.03 0.08 0.91 0.15 0.05 0.98 0.06

SF 0.03 1.00 0.06 0.02 1.00 0.03 0.01 1.00 0.03 0.02 1.00 0.03 0.01 1.00 0.03 0.08 1.00 0.16 0.04 1.00 0.06

WECS 0.35 0.09 0.14 0.23 0.16 0.19 0.10 0.28 0.14 0.25 0.29 0.26 0.23 0.06 0.09 0.13 0.53 0.21 0.22 0.23 0.16

SD 0.73 0.55 0.63 0.72 0.36 0.48 0.88 0.33 0.49 0.45 0.45 0.48 0.84 0.40 0.54 0.95 0.55 0.70 0.76 0.44 0.55

NCA 0.63 0.66 0.65 0.59 0.65 0.61 0.71 0.56 0.63 0.64 0.51 0.58 0.79 0.61 0.69 0.85 0.78 0.82 0.70 0.63 0.66

Table 2. Tag-to-class alignment performance for OSM tags to DBpedia classes.

Name France Germany Great Britain Spain USA Australia Average

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Cupid 0.32 1.00 0.48 0.18 1.00 0.31 0.41 1.00 0.58 0.44 1.00 0.63 0.10 1.00 0.17 0.48 1.00 0.65 0.32 1.00 0.47

LD 0.31 0.57 0.41 0.32 0.37 0.34 0.73 0.46 0.57 0.34 0.94 0.50 0.42 0.97 0.59 0.58 0.62 0.60 0.45 0.65 0.50

EmbDi 0.16 1.00 0.28 0.09 1.00 0.17 0.29 1.00 0.45 0.24 1.00 0.38 0.33 1.00 0.51 0.32 1.00 0.50 0.24 1.00 0.38

SF 0.14 1.00 0.27 0.10 1.00 0.18 0.27 1.00 0.42 0.24 1.00 0.39 0.33 1.00 0.50 0.30 1.00 0.46 0.23 1.00 0.37

WECS 0.30 65 0.41 0.16 0.97 0.28 0.22 0.96 0.36 0.38 0.67 0.49 0.41 0.95 0.57 0.45 0.66 0.53 0.32 0.81 0.44

SD 0.92 0.57 0.70 0.34 0.98 0.50 0.57 0.88 0.69 0.83 0.58 0.69 0.70 0.47 0.58 0.95 0.55 0.70 0.71 0.67 0.64

NCA 0.95 0.90 0.92 0.96 0.79 0.87 0.81 0.84 0.83 1.00 0.84 0.91 0.70 0.70 0.70 0.95 0.76 0.85 0.90 0.81 0.85

Table 3. Example tag-to-class alignments obtained using the NCA approach.

Wikidata: France Germany Great Britain Russia USA Australia

amenity=bicycle rental:
bicycle-sharing station

amenity=cinema:
movie theater

railway=station:
railway station

station=subway:
metro station

landuse=reservoir:
reservoir

amenity=library:
public library

DBpedia: France Germany Great Britain Spain USA Australia

railway=station:
Place

place=municipality:
Place

place=hamlet:
Place

railway=station:
ArchitecturalStructure

man made=lighthouse:
Location

public transport=station:
Infrastructure

In contrast, DBpedia indicates three classes per entity (i.e., the specialized and
more generic classes at the higher levels of the DBpedia ontology). This pro-
perty makes the model trained on the DBpedia knowledge graph more confident
regarding the generic classes, such that generic classes obtain higher F1-scores
than the specialized classes. Our observations indicate that it is desirable to
obtain more training examples that align entities with more specific classes,
such as in the Wikidata dataset. Table 3 illustrates the most confident tag-to-
class alignments in terms of the obtained model activations using the NCA
approach. As discussed above, Wikidata alignments with high confidence scores
are more specific than those obtained on DBpedia.

5.2 Influence of the Shared Latent Space

Table 4 summarizes the performance of the proposed NCA approach and NCA
without the shared latent space for tag-to-class alignment of OSM with Wikidata
and DBpedia, respectively. We observe that the shared latent space helps to
achieve an increase in F1-score of 34% points and 11% points for Wikidata and
DBpedia, respectively. Compared to the Wikidata datasets, we observe smaller
improvements on DBpedia datasets. DBpedia has an imbalance between the tags



Towards Neural Schema Alignment for OpenStreetMap and KGs 69

Table 4. Tag-to-class alignment performance for Wikidata and DBpedia.

Approach Avg. Wikidata Avg. DBpedia

Precision Recall F1 Precision Recall F1

NCA w/o shared latent space 0.48 0.25 0.32 0.65 0.88 0.74

NCA 0.70 0.63 0.66 0.90 0.81 0.85

and classes, resulting in many-to-one alignments between tags and classes, where
one class corresponds to several tags. For example, in all DBpedia datasets, the
place and populatedPlace are frequently occurring classes for various tags such
as tourism=museum, place=village, place=town. In such a case, DBpedia
properties add less specific information to the matching process. Furthermore,
we observe a high F1-score of the proposed NCA approach without the shared
latent space on the DBpedia dataset. Intuitively, further improving these high
scores is more difficult than improving the comparably low scores on Wikidata
(e.g., 0.32 F1-score on Wikidata). In summary, the shared latent space improves
the performance, with the highest improvements on Wikidata.

5.3 Confidence Threshold Tuning

We evaluate the influence of the confidence threshold value tha on the precision,
recall, and F1-score. The threshold tha indicates the minimum similarity at
which we align a tag to a class. Figure 4 and 5 present the alignment performance
with respect to tha for Wikidata and DBpedia. As expected, we observe a general
trade-off between precision and recall, whereas higher values of tha result in
higher precision and lower recall. We select the confidence threshold of tha = 0.25
and tha = 0.4 for Wikidata and DBpedia, respectively, as these values allow
balancing precision and recall. The threshold can be tuned for specific regions.

5.4 Alignment Impact

To assess the impact of NCA, we compare the number of OSM entities that
can be annotated with semantic classes using the alignment discovery by NCA

(a) France (b) Germany (c) GB (d) Russia (e) USA (f) Australia

Fig. 4. Precision, recall, and F1-score vs. the confidence threshold for Wikidata. (Color
figure online)
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(a) France (b) Germany (c) GB (d) Spain (e) USA (f) Australia

Fig. 5. Precision, recall, and F1-score vs. the confidence threshold for DBpedia. (Color
figure online)

with the number of entities that are linked to a KG in the currently existing
datasets. For Wikidata, we observe 2,004,510 linked OSM entities and 10,163,762
entities annotated with semantic classes using NCA. This result corresponds to
an increase of 407.04% of entities with semantic class annotations. For DBpedia,
we observe 1,396,378 linked OSM entities and 8,301,450 entities annotated with
semantic classes using NCA. This result corresponds to an increase of 494.5% of
entities with semantic class annotations. We provide the resulting annotations
as a part of the WorldKG knowledge graph8.

6 Related Work

This work is related to ontology alignment, alignment of tabular data, feature
space alignment, and link discovery.

Ontology Alignment. Ontology alignment (also ontology matching) aims to
establish correspondences between the elements of different ontologies. The
efforts to interlink open semantic datasets and benchmark ontology alignment
approaches have been driven by the W3C SWEO Linking Open Data commu-
nity project9 and the Ontology Alignment Evaluation Initiative (OAEI)10 [1].
Ontology alignment is conducted at the element-level and structure-level [20].
The element-level alignment typically uses natural language descriptions of the
ontology elements, such as labels and definitions. Element-level alignment adopts
string similarity metrics such as, e.g., edit distance. Structure-level alignment
exploits the similarity of the neighboring ontology elements, including the taxo-
nomy structure, as well as shared instances [17]. Element-level and structure-
level alignment have also been adopted to align ontologies with relational data
[6] and tabular data [32]. Jiménez-Ruiz et al. [11] divided the alignment task
into independent, smaller sub-tasks, aiming to scale up to very large ontologies.
In machine learning approaches, such as the GLUE architecture [7], semantic
mappings are learned in a semi-automatic way. In [19], a matching system inte-
grates string-based and semantic similarity features. Recently, more complex

8 WorldKG knowledge graph: http://www.worldkg.org.
9 https://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/

LinkingOpenData.
10 OAEI evaluation campaigns: http://oaei.ontologymatching.org.
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approaches using deep neural networks have been proposed for ontology align-
ment and schema matching [3,22,31]. The lack of a well-defined ontology in
OSM hinders the application of ontology alignment approaches. In contrast, the
instance-based NCA approach enables an effective alignment of tags to classes.

Tabular Data Alignment. Another branch of research investigated the schema
alignment of tabular data [23]. EmbDi [5] approach uses random walks and
embeddings to find similarities between schema elements. Cupid [13] matches
schema elements based on element names, structure, and data types. Similar-
ity Flooding [14] transforms a table into a directed labeled graph in which
nodes represent columns to compute similarity values iteratively. We employ
the EmbDi, Cupid, and Similarity Flooding algorithms as baselines for our eval-
uation. Although the conversion of OSM key-value-based data into a tabular
form is possible in principle, the resulting tables are highly sparse. Therefore, as
seen in Sect. 4.3, tabular data alignment approaches do not perform well on the
alignment task addressed in this work.

Feature Space Alignment. Recently, various studies investigated the align-
ment of feature spaces extracted from different data sources. Application
domains include computer vision [8] and machine translation [12]. Ganin et al.
[9] proposed a neural domain adaptation algorithm that considers labeled data
from a source domain and unlabeled data from a target domain. While this app-
roach was originally used to align similar but different distributions of feature
spaces, we adopt the gradient reversal layer proposed in [9] to fuse information
from the disjoint features spaces of OSM and KGs, not attempted previously.

Link Discovery. Link Discovery is the task of identifying semantically equiva-
lent resources in different data sources [16]. Nentwig et al. [16] provide a recent
survey of link discovery frameworks with prominent examples, including Silk
[29] and LIMES [18]. In particular, the Wombat algorithm, integrated within
the LIMES framework [24], is a state-of-the-art approach for link discovery in
knowledge graphs. Specialized approaches [27] focus on link discovery between
OSM and knowledge graphs. We build on existing links between OSM and know-
ledge graphs to align knowledge graph classes to OSM tags in this work.

7 Conclusion

In this paper, we presented NCA – the first neural approach for tag-to-class
alignment between OpenStreetMap and knowledge graphs. We proposed a novel
shared latent space that seamlessly fuses features from knowledge graphs and
OSM in a joint model and makes them simultaneously accessible for the schema
alignment. Our model builds this space as the core part of neural architecture,
incorporating an auxiliary classification model and an adversarial component.
Furthermore, we proposed an effective algorithm that extracts tag-to-class align-
ments from the resulting shared latent space with high precision. Our evaluation
results demonstrate that NCA is highly effective and outperforms the baselines
by up to 37% points F1-score. We make our code and manually annotated ground
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truth data publicly available to facilitate further research. We believe that NCA
is applicable to other geographic datasets having similar data structure as OSM;
we leave such applications to future work.
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Abstract. Aligning schemas and entities of community-created geogra-
phic data sources with ontologies and knowledge graphs is a promising
research direction for making this data widely accessible and reusable
for semantic applications. However, such alignment is challenging due
to the substantial differences in entity representations and sparse inter-
linking across sources, as well as high heterogeneity of schema elements
and sparse entity annotations in community-created geographic data.
To address these challenges, we propose a novel cross-attention-based
iterative alignment approach called IGEA in this paper. IGEA adopts
cross-attention to align heterogeneous context representations across geo-
graphic data sources and knowledge graphs. Moreover, IGEA employs
an iterative approach for schema and entity alignment to overcome
annotation and interlinking sparsity. Experiments on real-world datasets
from several countries demonstrate that our proposed approach increases
entity alignment performance compared to baseline methods by up to
18% points in F1-score. IGEA increases the performance of the entity
and tag-to-class alignment by 7 and 8% points in terms of F1-score,
respectively, by employing the iterative method.

Keywords: Geographic Knowledge Graph · Iterative Neural Entity
Alignment

1 Introduction

Knowledge graphs provide a backbone for emerging semantic applications in
the geographic domain, including geographic question answering and point of
interest recommendations. However, general-purpose knowledge graphs such as
Wikidata [23], DBpedia [14], and YAGO [19] contain only a limited number of
popular geographic entities, restricting their usefulness in this context. In con-
trast, OpenStreetMap (OSM)12 is a community-created world-scale geographic

1 https://www.openstreetmap.org/.
2 OpenStreetMap, OSM and the OpenStreetMap magnifying glass logo are trademarks

of the OpenStreetMap Foundation, and are used with their permission. We are not
endorsed by or affiliated with the OpenStreetMap Foundation.

c© The Author(s) 2023
T. R. Payne et al. (Eds.): ISWC 2023, LNCS 14265, pp. 216–233, 2023.
https://doi.org/10.1007/978-3-031-47240-4 12
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data source containing millions of geographic entities. However, the community-
driven nature of OSM leads to highly heterogeneous and sparse annotations at
both the schema and instance levels, which lack machine-interpretable seman-
tics and limit the accessibility and reusability of OSM data. Knowledge graphs
extracted from OSM and dedicated to geographic entities such as LinkedGeo-
Data [1] and WorldKG [7] focus on a selection of well-annotated geographic
classes and entities and do not take full advantage of OSM data. Tighter inter-
linking of geographic data sources with knowledge graphs can open up the rich
community-created geographic data sources to various semantic applications.

Interlinking geographic data sources with knowledge graphs is challenging
due to the heterogeneity of their schema and entity representations, along with
the sparsity of entity annotations and links between sources. Knowledge graphs
such as Wikidata adopt ontologies to specify the semantics of entities through
classes and properties. Taking the entity Berlin as an example, Table 1a and
1b illustrate its representation in OSM and Wikidata. The property wdt:P31
(instance of) in Wikidata specifies the entity type. In contrast, OSM annotates
geographic entities using key-value pairs called tags, often without clear seman-
tics. The distinction of whether a key-value pair represents an entity type or
an attribute is not provided. For instance, in Table 1, the key capital in OSM
corresponds to a binary value specifying whether the location is the capital
of a country. In contrast, the Wikidata property wdt:P1376 (capital of ) is an
object property linked to an entity of type country. Moreover, user-defined key-
value pairs in OSM lead to highly heterogeneous and sparse annotations, where
many entities do not have comprehensive annotations and many key-value pairs
are rarely reused. Finally, sparse and often inaccurate interlinking makes train-
ing supervised alignment algorithms difficult. As illustrated in the example, the
values, such as the geo-coordinates of the same real-world entity Berlin, differ
between sources. Such differences in representation, coupled with the hetero-
geneity and sparsity of OSM annotations and the lack of links, make schema
and entity alignment across sources extremely challenging.

Recently, several approaches have been proposed to interlink knowledge
graphs to OSM at the entity and schema level, to lift the OSM data into a
semantic representation, and to create geographic knowledge graphs [1,6,13,21].
For example, LinkedGeoData [1] relies on manual schema mappings and provides
high-precision entity alignment using labels and geographic distance for a limited
number of well-annotated classes. OSM2KG [21] – a linking method for geogra-
phic entities, embeds the tags of geographic entities for entity representation and
interlinking. The NCA tag-to-class alignment [6] enables accurate matching of
frequent tags to classes, but does not support the alignment of rare tags. The
recently proposed WorldKG knowledge graph [7] incorporates the information
extracted by NCA and OSM2KG, but is currently limited to the well-annotated
geographic classes and entities. Overall, whereas several approaches for linking
geographic entities and schema elements exist, they are limited to well-annotated
classes and entities, they rely on a few properties and do not sufficiently address
the representation heterogeneity and annotation sparsity.
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Table 1. An excerpt of the Berlin representation in OSM and Wikidata.

(a) OSM tags.

Key Value

name Berlin

place city

population 3769962

way POINT(52.5183

13.4179)

capital yes

(b) Wikidata triples. wd:Q64 identifies Berlin.

Subject Predicate Object

wd:Q64 rdfs:label (label) Berlin

wd:Q64 wdt:P31 (instance of ) wd:Q515 (city)

wd:Q64 wdt:P1082 (population) 3677472

wd:Q64 wdt:P625 52◦31’N, 13◦23’E

(coordinate location)

wd:Q64 wdt:P1376 (capital of ) wd:Q183 (Germany)

In this paper, we propose IGEA – a novel iterative geographic entity align-
ment approach. IGEA relies on a cross-attention mechanism to align hetero-
geneous context representations across community-created geographic data and
knowledge graphs. This model learns the representations of the entities through
the tags and properties and reduces the dependency on specific tags and labels.
Furthermore, to overcome the annotation and interlinking sparsity problem,
IGEA employs an iterative approach for tag-to-class and entity alignment that
starts from existing links and enriches the links with alignment results from pre-
vious iterations. We evaluate our approach on real-world OSM, Wikidata, and
DBpedia datasets. The results demonstrate that, compared to state-of-the-art
baselines, the proposed approach can improve the performance of entity align-
ment by up to 18% points, in terms of F1-score. By employing the iterative
method, IGEA increases the performance of the entity and tag-to-class align-
ment by 7 and 8% points in terms of F1-score, respectively.

In summary, our contributions are as follows:

– We propose IGEA – a novel iterative cross-attention-based approach to inter-
link geographic entities, bridging the representation differences in community-
created geographic data and knowledge graphs.

– To overcome the sparsity of annotations and links, IGEA employs an itera-
tive method for tag-to-class and entity alignment, with integrated candidate
blocking mechanisms for efficiency and noise reduction.

– We demonstrate that IGEA substantially outperforms the baselines in F1-
score through experiments on several real-world datasets.

2 Problem Statement

In this section, we introduce the relevant concepts and formalize the problem
addressed in this paper.

Definition 1 (Knowledge Graph). A knowledge graph KG = (E,C, P, L, F )
consists of a set of entities E, a set of classes C ⊂ E, a set of properties P , a set
of literals L and a set of relations F ⊆ E × P × (E ∪ L).
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Entities of knowledge graph KG with geo-coordinates Lgeo are referred to as
geographic entities Egeo.

Definition 2 (Geographic Entity Alignment). Given an entity n from a
geographic data source G (n ∈ G), and a set of geographic entities Egeo from
a knowledge graph KG, Egeo ⊆ KG, determine the entity e ∈ Egeo such that
sameAs(n, e) holds.

In the example in Table 1, as a result of the geographic entity alignment,
Berlin from OSM will be linked to Berlin from Wikidata with a sameAs link.

Definition 3 (Geographic Class Alignment). Given a geographic data
source G and a knowledge graph KG, find a set of pairs of class elements of
both sources, such that elements in each pair (si, sj), si ∈ G and sj ∈ KG,
describe the same real-world concept.

In the example illustrated in Table 1, the tag place=city from OSM will be
linked to the city (wd:Q515) class of Wikidata.

In this paper, we address the task of geographic entity alignment through
iterative learning of class and entity alignment.

3 The IGEA Approach

In this section, we introduce the proposed IGEA approach. Figure 1 provides an
approach overview. In the first step, IGEA conducts geographic class alignment
based on known linked entities between OSM and KG with the NCA approach
[6]. The resulting tag-to-class alignment is further adopted for blocking in the
candidate generation step. Then IGEA applies the cross-attention-based entity
alignment module to the candidate set to obtain new links. IGEA repeats this
process iteratively with the resulting high-confidence links for several iterations.
In the following, we present the proposed IGEA approach in more detail.

3.1 Geographic Class Alignment

We adopt the NCA alignment approach introduced in [6] to conduct tag-to-
class alignment. The NCA approach aligns OSM tags with the KG classes. NCA
relies on the linked entities from both sources, OSM and a KG, and trains a
neural model to learn the representations of the tags and classes. The NCA
model creates the shared latent space while classifying the OSM entities into
the knowledge graph classes. NCA then probes the resulting classification model
to obtain the tag-to-class alignments. NCA selects all matches above a certain
threshold value. After applying NCA, we obtain a set of tag-to-class alignments,
i.e., (si, sj), si ∈ G, and sj ∈ KG.
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Fig. 1. Overview of the proposed IGEA approach.

3.2 Candidate Generation

OSM contains numerous geographic entities for which we often do not have
a match in the KGs. IGEA applies candidate blocking to reduce the search
space to make the algorithm more time and complexity efficient. In our task,
the objective of the blocking module is to generate a set of candidate entity
pairs that potentially match. We built the candidate blocking module based on
two strategies, namely entity-type-based and distance-based candidate selection.
Entities with a sameAs link should belong to the same class. Therefore, we use
the tag-to-class alignments produced by the NCA module to select the entities
of the same class from both sources to form candidate pairs. Secondly, since we
consider only geographic entities, we use spatial distance to reduce the candidate
set further and only consider the entities within a threshold distance. Past works
observed that a threshold value of around 2000 to 2500 m can work well for most
classes [1,13,21]. We choose the threshold of 2500 m as mentioned in [21]. The
candidate pairs generated after the candidate blocking step are passed to the
cross-attention-based entity alignment module.

3.3 Cross-Attention-Based Entity Alignment

We build a cross-attention-based classification model for entity alignment by
classifying a pair of entities into a match or a non-match. Figure 2 illustrates
the overall architecture of the entity alignment model. The components of the
model are described in detail below.
Entity Representation Module: In this module, we prepare entity represen-
tations to serve as the model input. For a given OSM node, we select all tags
and create a sentence by concatenating the tags. For a given KG entity, we select
all predicates and objects of the entity and concatenate all pairs of predicates
and objects to form a sentence. We set the maximum length of a sentence to
be input to the model to Nw, where Nw is calculated as the average number of
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Fig. 2. Cross-attention-based entity alignment model.

words of all entities in the current candidate set. We pass these sentences to the
representation layer for each pair of OSM node n and KG entity e.

In the representation layer, the model creates embeddings for the given sen-
tence. We adopt pre-trained fastText word embeddings [3] for the embedding
layer. For any word not present in the pre-trained embeddings, we assign a zero
vector of size d, where d is the embeddings dimension. In this step, we obtain
an array of size Nw ∗ d for each entity.
Cross-Attention Module: We initiate our cross-attention module with a Bi-
directional LSTM (BI-LSTM) layer. BI-LSTM models have been demonstrated
to perform well on sequential data tasks such as named entity recognition and
speech recognition [4,10]. We adopt BI-LSTM since we want the model to learn
to answer what comes after a particular key or a property to help the cross-
attention layer. We incorporate BI-LSTM layers after the embedding layers for
each of the inputs. As an output, the BI-LSTM layer can return the final hidden
state or the full sequence of hidden states for all input words. We select the full
sequence of hidden states hln, hle since we are interested in the sequence and
not a single output. These sequences of hidden states hln, hle are then passed to
the cross-attention layer.
Cross-Attention Layer: This layer implements the cross-attention mechanism
[22] that helps understand the important properties and tags for aligning the
entities. As explained in [22], attention scores are built using keys, values, and
queries along with their dimensions. For OSM, we adopt the output of the BI-
LSTM layer hle as key k and query q and hln becomes the value v. For KGs,
we adopt the output of the BI-LSTM layer hln as key k and query q and hle
becomes the value v. We initialize the weight vectors wq, wk, wv using the Xavier
uniform initializer [9]. We then compute the cross-attention weights for OSM as:

Q = hle ∗ wq,K = hle ∗ wk, V = hln ∗ wv,

att = Q · K, attw = softmax(att), attc = attw · V,

where attw is the attention weights and attc is the context.
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Similarly, we compute the attention weights for KGs by interchanging the
values of hln and hle. We then pass the concatenated attw and attc as can and
cae to the self-attention model.
Self-Attention Layer: Adopting both cross-attention and self-attention layers can
improve the performance of the models in multi-modal learning [15]. In our case,
the intuition behind adopting the self-attention layer is that the model can learn
the important tags and properties of a given entity. The formulation of self-
attention is similar to that of cross-attention. Instead of using a combination
of outputs from the OSM and KG cross-attention layers can and cae, we use
only one input, either can and cae that is the same across k, q, v. We then pass
the self-attention output, i.e., concatenated attw, attc, through the final layer of
Bi-directional LSTM.

Once we have both inputs parsed through all layers, we concatenate the
outputs of the Bi-directional LSTM layers along with the distance input that
defines the haversine distance between the input entities.
Classification Module: We utilize the linked entities as the supervision for the
classification. Each true pair is labeled one, and the remaining pairs generated
by the candidate blocking step are labeled zero. The classification layer predicts
whether the given pair is a match or not. We pass the concatenated output
through a fully connected layer, which is then passed through another fully
connected layer with one neuron to predict the final score. We use a sigmoid
activation function with binary cross-entropy loss to generate the score for the
final match.

3.4 Iterative Geographic Entity Alignment Approach

We create an end-to-end iterative pipeline for aligning KG and OSM entities and
schema elements to alleviate the annotation and interlinking sparsity. We apply
the IGEA approach at the country level. For a selected country, we collect all
entities having geo-coordinates from the KG. In the first iteration, the already
linked entities are used as supervision to link unseen entities that are not yet
linked. After selecting candidate pairs and classifying them into match and non-
match classes, we use a threshold tha to only select high confidence pairs from
the matched class. In the subsequent iterations, we add these high-confidence
matched pairs to the linked entities and then run the pipeline starting from NCA-
based class alignment again. By doing so, we aim to enhance the performance of
entity alignment with tag-to-class alignment-based candidate blocking and tag-
to-class alignment with additional newly linked entities. Algorithm 1 provides
details of the IGEA approach.
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Algorithm 1 The IGEA Algorithm

Input: n, e OSM and KG linked Entities
tha Alignment threshold
itr number of iterations
con Country
kg KG

Output: align Final entity alignment

1: align ⇐ ∅
2: load(n, e, con)
3: KGe ⇐ getCountryEntities(con, kg)
4: GT ⇐getSeedAlignment(con,kg)
5: while i < itr do
6: tag-to-class ⇐ NCA(con,kg,GT )
7: view ⇐ createView(tag-to-class)
8: for all ent ∈ KGe do
9: candidates ⇐ generateCandidates(ent, view, 2500)

10: if candidates ∩ GT �= ∅ then
11: SeenEnt ⇐ candidates
12: else
13: UnseenEnt ⇐ candidates
14: end if
15: end for
16: model ⇐ classificationModel(seenEnt)
17: prediction ⇐ model(UnseenEnt)
18: for all pair ∈ prediction do
19: if pairconfidence > tha then
20: align ⇐ align ∪ {pair}
21: GT ⇐ GT ∪ {pair}
22: end if
23: end for
24: i = i + 1
25: end while
26: return align

4 Evaluation Setup

This section describes the experimental setup, including datasets, ground truth
generation, baselines, and evaluation metrics. All experiments were conducted
on an AMD EPYC 7402 24-Core Processor with 1 TB of memory. We implement
the framework in Python 3.8. For data storage, we use the PostgreSQL database
(version 15.2). We use TensorFlow 2.12.0 and Keras 2.12.0 for neural model
building.

4.1 Datasets

For our experiments, we consider OSM, Wikidata, and DBpedia datasets across
various countries, including Germany, France, Italy, USA, India, Netherlands,
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Table 2. Ground truth size for Wikidata and DBpedia.

France Germany India Italy Netherlands Spain USA

Wikidata 19082 21165 7001 16584 4427 14145 73115

DBpedia 10921 165 1870 2621 110 4319 14017

and Spain. All datasets were collected in April 2023. For OSM data, we use
OSM2pgsql3 to load the nodes of OSM into the PostgreSQL database. The
OSM datasets are collected from GeoFabrik download server4. For Wikidata5

and DBpedia6, we rely on the SPARQL endpoints. Given a country, we select
all entities that are part of the country with property P17 for Wikidata and
dbo:country for DBpedia along with geo-coordinates (P625 for Wikidata and
geo:geometry for DBpedia).

4.2 Ground Truth

We select the existing links between geographic entities in OSM and KGs as
ground truth. Since we consider geographic entities from the already linked enti-
ties identified through “wikidata” and “wikipedia” tags, we select entities with
geo-coordinates. Table 2 displays the number of ground truth entities for Wiki-
data and DBpedia knowledge graphs. We consider only those datasets where the
number of links in the ground truth data exceeds 1500 to have sufficient data to
train the model. For tag-to-class alignment, we use the same ground truth as in
the NCA [6] approach.

4.3 Baselines

This section introduces the baselines to which we compare our work, including
similarity-based and deep learning-based approaches.

GeoDistance: In this baseline, we select the OSM node for each KG geographic
entity so that the distance between the KG entity and the OSM node is the least
compared to all other OSM nodes. We consider the distance calculated using the
st distance function of PostgreSQL that calculates the minimum geodesic dis-
tance as the distance metric.
LGD [1]: LinkedGeoData approach utilizes geographic and linguistic distance
to match the entities in OSM and KG. Given a pair of geographic entities e1 and
e2, LinkedGeoData considers 2

3ss(e1, e2)+ 1
3gd(e1, e2) > 0.95 as a match, where

ss is the Jaro-Winkler distance and gd is the logistic geographical distance.

3 https://osm2pgsql.org/.
4 https://download.geofabrik.de/.
5 https://query.wikidata.org/.
6 https://dbpedia.org/sparql.
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Yago2Geo: Yago2Geo [13] considers both string and geographic distance while
matching entities by having two filters, one based on Jaro-Winkler similarity
(s) between the labels and the second filter based on the Euclidean distance
(ed) between the geo-coordinates of the two entities. Given entities e1 and e2, if
s(e1, e2) > 0.82 and ed(e1, e2) < 2000 meters, the two entities are matched.

DeepMatcher: DeepMatcher [17] links two entities from different data sources
having similar schema. The model learns the similarity between two entities by
summarizing and comparing their attribute embeddings. Since our data sources
do not follow the same schema, we select the values of keys name, addressCoun-
try, address, and population for OSM. For KGs, we select the values of the
equivalent properties label, country, location, and population.

HierMatcher: This baseline [8] aligns entities by jointly matching at token,
attribute, and entity levels. At the token level, the model performs the cross-
attribute token alignment. At the attribute level, the attention mechanism is
applied to select contextually important information for each attribute. Finally,
the results from the attribute level are aggregated and passed through fully con-
nected layers that predict the probability of two entities being a match.

OSM2KG: OSM2KG [21] implements a machine learning-based model for the
entity alignment between OSM and KGs. The model generated key-value embed-
dings using the occurrences of the tags and created a feature vector including
entity type and popularity of KG entities. We use the default thdist 2500 m and
the random forest classification model adopted in the original paper.

OSM2KG-FT: This baseline is a variation of the OSM2KG model where we
replace the key-value embeddings of OSM entities with fastText embeddings.

4.4 Evaluation Metrics

The standard evaluation metrics for entity and tag-to-class alignment are preci-
sion, recall, and F1-score computed against a reference alignment (i.e., ground
truth). We calculate precision as the ratio of all correctly identified pairs to
all identified pairs. We calculate recall as the fraction of all correctly identi-
fied pairs to all pairs in the ground truth alignment. F1-score is the harmonic
mean of recall and precision. The F1-score is most relevant for our analysis since
it considers both precision and recall. We use macro averages for the metrics
because we have imbalanced datasets in terms of classes.

5 Evaluation

In this section, we discuss the performance of the IGEA model. First, we eval-
uate the performance of the approach for entity alignment against baselines.
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Furthermore, we assess the impact of the number of iterations and thresholds.
Finally, we demonstrate the approach effectiveness on unseen entities through a
manual assessment. To facilitate the evaluation, we split our data into 70:10:20
for training, validation, and test data with a random seed of 42.

Table 3. Entity alignment performance on the OSM to Wikidata linking.

Name France Germany India Italy Netherlands Spain USA

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

GeoDist 0.65 0.65 0.65 0.56 0.56 0.56 0.75 0.75 0.75 0.68 0.68 0.68 0.67 0.67 0.67 0.71 0.71 0.71 0.88 0.88 0.88

LGD 0.63 0.61 0.62 0.83 0.81 0.82 0.87 0.68 0.72 0.90 0.68 0.77 0.81 0.79 0.80 0.82 0.40 0.82 0.87 0.84 0.85

Yago2Geo 0.5 0.51 0.50 0.53 0.51 0.50 0.61 0.60 0.60 0.52 0.51 0.50 0.50 0.88 0.64 0.63 0.70 0.65 0.88 0.69 0.73

DeepMatcher 0.62 0.58 0.60 0.74 0.67 0.71 0.77 0.79 0.78 0.89 0.55 0.68 0.83 0.78 0.80 0.87 0.75 0.80 0.93 0.91 0.91

HierarMatch 0.51 0.71 0.59 0.64 0.79 0.70 0.71 0.88 0.79 0.62 0.83 0.71 0.8 0.83 0.81 0.80 0.77 0.78 0.92 0.93 0.92

OSM2KG 0.81 0.79 0.80 0.83 0.82 0.82 0.87 0.81 0.84 0.87 0.79 0.83 0.82 0.69 0.75 0.83 0.82 0.82 0.92 0.81 0.86

OSM2KG-FT 0.83 0.81 0.81 0.89 0.82 0.85 0.91 0.75 0.82 0.89 0.85 0.87 0.89 0.71 0.77 0.88 0.82 0.85 0.95 0.87 0.91

IGEA-1 0.95 0.91 0.94 0.93 0.95 0.94 0.88 0.87 0.87 0.93 0.97 0.94 0.94 0.86 0.90 0.89 0.91 0.90 0.93 0.95 0.94

IGEA-3 0.98 0.99 0.99 0.93 0.96 0.95 0.96 0.90 0.93 0.99 0.97 0.98 0.94 0.94 0.94 0.98 0.93 0.95 0.97 0.97 0.97

5.1 Entity Alignment Performance

Tables 3 and 4 present the performance of the IGEA approach and the baselines
in terms of precision, recall, and F1-score on the various country datasets for
Wikidata and DBpedia knowledge graphs, respectively. IGEA-1 and IGEA-3
indicate the results obtained with the 1st and 3rd iterations of the IGEA app-
roach, respectively. The results demonstrate that the proposed IGEA approach
outperforms all the baselines in terms of the F1-score. We achieve up to 18%
points F1-score improvement on Wikidata and up to 14% points improvement
over DBpedia KGs. IGEA also achieves the best recall and precision on several
datasets. Regarding the baselines, as expected, GeoDist performs poorly since
the geo-coordinates of the same entity are presented with different precision in
OSM and in KGs and are not always in closer proximity to each other. OSM2KG-
FT performs the best among the baselines for both KGs. We notice that using
the tags with fastText embeddings slightly improves the performance of the
OSM2KG over using the occurrence-based key-value embeddings. The deep-
learning-based baselines perform on par with the other baselines. The absence
of the features such as name and country limits the performance of these deep-
learning-based baselines that rely on specific properties. The performance of the
name-based baselines such as Yago2Geo and LGD is inconsistent across datasets;
a potential reason is the absence of labels in the same language.

Regarding the datasets, the IGEA approach achieved the highest perfor-
mance improvement on the France and Spain datasets for Wikidata and DBpe-
dia KGs, respectively. The smallest performance improvement over the best-
performing baselines is produced on the USA dataset. Data in the USA dataset
is mostly in English; furthermore, the USA dataset has the highest percentage of
name tags among given countries, which makes string similarity-based baseline
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approaches more effective. We notice that India achieves the lowest performance
across datasets and KGs. The number of overall properties and tags for entities
in India are lower than in other datasets, making IGEA less beneficial. DBpe-
dia results demonstrate better model performance compared to Wikidata. Since
DBpedia contains more descriptive properties, it benefits more from employing
the cross-attention-based mechanism.

Table 4. Entity alignment performance on the OSM to DBpedia linking.

Name France India Italy Spain USA

P R F1 P R F1 P R F1 P R F1 P R F1

GeoDist 0.39 0.39 0.39 0.35 0.35 0.35 0.58 0.58 0.58 0.40 0.40 0.40 0.64 0.64 0.64

LGD 0.84 0.76 0.79 0.83 0.63 0.72 0.87 0.69 0.76 0.91 0.72 0.78 0.70 0.61 0.64

Yago2Geo 0.70 0.63 0.66 0.67 0.65 0.65 0.73 0.69 0.71 0.73 0.76 0.74 0.54 0.54 0.54

DeepMatcher 0.79 0.85 0.82 0.78 0.85 0.81 0.83 0.73 0.77 0.81 0.73 0.77 0.85 0.86 0.85

HierarMatch 0.69 0.84 0.76 0.73 0.85 0.79 0.66 0.90 0.76 0.55 0.87 0.67 0.81 0.90 0.85

OSM2KG 0.80 0.82 0.80 0.84 0.79 0.81 0.80 0.84 0.81 0.82 0.77 0.79 0.87 0.82 0.84

OSM2KG-FT 0.82 0.87 0.84 0.84 0.82 0.83 0.81 0.89 0.85 0.82 0.82 0.82 0.90 0.91 0.90

IGEA-1 0.92 0.91 0.91 0.89 0.91 0.90 0.95 0.89 0.92 0.96 0.97 0.96 0.97 0.95 0.96

IGEA-3 0.95 0.99 0.97 0.96 0.97 0.97 0.95 0.98 0.96 0.96 0.95 0.95 0.99 0.97 0.98

Table 5. Ablation study results for the DBpedia datasets.

Name France India Italy Spain USA

P R F1 P R F1 P R F1 P R F1 P R F1

w/o Cross-Attention 0.86 0.81 0.83 0.83 0.82 0.82 0.86 0.77 0.81 0.82 0.81 0.81 0.83 0.84 0.83

w/o Distance 0.85 0.89 0.86 0.81 0.87 0.82 0.81 0.83 0.82 0.79 0.86 0.82 0.82 0.87 0.84

w/o Class-Blocking 0.81 0.93 0.87 0.73 0.94 0.82 0.78 0.93 0.85 0.75 0.92 0.83 0.79 0.96 0.86

IGEA-3 0.95 0.99 0.97 0.96 0.97 0.97 0.95 0.98 0.96 0.96 0.95 0.95 0.99 0.97 0.98

5.2 Ablation Study

Table 5 displays the results of an ablation study to better understand the impact
of individual components. We observe that removing the cross-attention layer
significantly reduces the performance of the model. The class-based blocking
improves the recall but has a sharp decrease in precision, as it creates many
noisy matches. Removing geographic distance also results in worse performance
compared to the IGEA. The results of the ablation study confirm that the com-
ponents introduced in the IGEA approach help to achieve the best performance.

5.3 Impact of the Number of Iterations

In this section, we evaluate the impact of the number of iterations on the IGEA
performance. Figure 3 displays the F1-scores for the entity alignment after each
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iteration. We observe that the scores increase in all configurations with the
increased number of iterations; after the 3rd iteration, the trend is not con-
tinuing. We notice the performance drops for a few countries. After manually
checking such drops, we found that the model removes the wrong matches that
are part of the ground truth data, which leads to a drop in the evaluation met-
rics. By adopting an iterative approach, we obtain a maximum improvement of
6 and 7% points in F1-score over Wikidata and DBpedia, respectively. Figure 4
displays the F1-scores for tag-to-class alignment after each iteration. We obtain a
maximum increase of 4 and 8% points in the F1-score over Wikidata and DBpe-
dia, respectively. We observe a similar trend as the entity alignment, such that
the model performance increases up to the 3rd or 4th iteration. The increased
number of aligned tag-class pairs provides more evidence for entity alignment.

(a) Wikidata (b) DBpedia

Fig. 3. Entity alignment performance: F1-scores for 1–5 iterations.

(a) Wikidata (b) DBpedia

Fig. 4. Tag-to-class alignment performance: F1-scores for 1–5 iterations.
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5.4 Alignment Threshold Tuning

We assess the importance of the alignment threshold tha regarding the F1-score
to select the appropriate value of tha. Figure 5 depicts the F1-scores obtained
after the third iteration for threshold values ranging between 0.50 and 0.90 with
a gap of 0.1. Overall, the model performs well for all threshold values. Comparing
the performance of different tha values, the highest F1-score is achieved with a
tha = 0.60 for both KGs across all datasets. Therefore, in the experiments in
other parts of this paper, we set tha to 0.6.

5.5 Manual Assessment of New Links

We manually assess the quality of the links obtained on unseen data. We cre-
ate the unseen dataset by considering the entities of Wikidata that are tagged
with the country Germany and have a geo-coordinate, but are not present in
the ground truth links. We randomly select 100 entities from all iterations and
manually verify the correctness of the links. Out of 100 matches, we obtained
89 correct matches. We observe that 6 of the wrong matches are mostly located
closer to each other or contained in one another. These entities contain similar
property and tag values, making it difficult for the model to understand the dif-
ference. For example, Wikidata entity Q1774543 (Klingermühle) is contained in
OSM node 114219911 (Bessenbach). The lack of an English label also hinders the
performance. Meanwhile, we observed that IGEA discovers new links between
entities and corrects the previously wrong-linked entities. OSM node 1579461216
(Beuel-Ost) has a Wikidata tag as Q850834 (Beuel-Mitte) but using IGEA, the
correct Wikidata entity Q850829 (Beuel-Ost) has been linked to the OSM node.
The performance of the unseen entities demonstrates the effectiveness of the
proposed IGEA approach.

(a) Wikidata (b) DBpedia

Fig. 5. Entity alignment performance in terms of F1-Score with different threshold
values.
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6 Related Work

This section discusses related work in geographic entity alignment, ontology
alignment, and iterative learning.

Geographic entity alignment aims to align geographic entities across dif-
ferent geographic sources that refer to the same real-world object. In the past,
approaches often relied on geographic distance and linguistic similarity between
the labels of the entities [1,13]. LIMES [20] relies on rules to rate the simila-
rity between entities and uses these rules in a supervised model to predict the
links. Tempelmeier et al. [21] proposed the OSM2KG algorithm – a machine-
learning model to learn a latent representation of OSM nodes and align them
with knowledge graphs. OSM2KG also uses KG features such as name, popula-
rity, and entity type to produce more precise links. Recently, deep learning-based
models have gained popularity for the task of entity alignment on tabular data.
DeepMatcher [8] and HierMatcher [17] use an embedding-based deep learning
approach for predicting the matches for tabular datasets. Peeters et al. [18] use
contrastive learning with supervision to match entities in small tabular product
datasets. In contrast, IGEA adopts the entire entity description, including KG
properties and OSM tags, to enhance the linking performance.

Ontology and schema alignment refer to aligning elements such as
classes, properties, and relations between ontologies and schemas. Such align-
ment can be performed at the element and structural levels. Many approaches
have been proposed for tabular and relational data schema alignment and rely
on the structural and linguistic similarity between elements [5,12,16,26]. Lately,
deep learning methods have also gained popularity for the task of schema align-
ment [2]. Due to the OSM schema heterogeneity and flatness, applying these
methods to OSM data is difficult. Recently, Dsouza et al. [6] proposed the NCA
model for OSM schema alignment with knowledge graphs using adversarial learn-
ing. We adopt NCA as part of the proposed IGEA approach.

Iterative learning utilizes the results of previous iterations in the following
iterations to improve the performance of the overall task. In knowledge graphs,
iterative learning is mainly adopted in reasoning and completion tasks. Many
approaches exploit rule-based knowledge to generate knowledge graph embed-
dings iteratively. These embeddings are then used for tasks such as link predic-
tion [11,27]. Zhu et al. [28] developed a method for entity alignment across know-
ledge graphs by iteratively learning the joint low-dimensional semantic space to
encode entities and relations. Wang et al. [24] proposed an embedding model for
continual entity alignment in knowledge graphs based on latent entity represen-
tations and neighbors. In cross-lingual entity alignment, Xie et al. [25] created
a graph attention-based model. The model iteratively and dynamically updates
the attention score to obtain cross-KG knowledge. Unlike knowledge graphs,
OSM does not have connectivity between entities. Therefore, the aforementioned
methods are not applicable to OSM. In IGEA, we employ class and entity align-
ment iteratively to alleviate the data heterogeneity as well as annotation and
interlinking sparsity to improve the results of the geographic entity and schema
alignment.
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7 Conclusion

In this paper, we presented IGEA – a novel iterative approach for geographic
entity alignment based on cross-attention. IGEA overcomes the differences in
entity representations between community-created geographic data sources and
knowledge graphs by using a cross-attention-based model to align heterogeneous
context information and predict identity links between geographic entities. By
iterating schema and entity alignment, the IGEA approach alleviates the anno-
tation and interlinking sparsity of geographic entities. Our evaluation results on
real-world datasets demonstrate that IGEA is highly effective and outperforms
the baselines by up to 18% points F1-score in terms of entity alignment. More-
over, we observe improvement in the results of tag-to-class alignment. We make
our code publicly available to facilitate further research7.

Supplemental Material Statement: Sect. 4 provides details for baselines and
datasets. Source code, instructions on data collection, and for repeating all exper-
iments are available from GitHub (see footnote 7).
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ABSTRACT
OpenStreetMap is a rich source of openly available geographic
information. However, the representation of geographic entities,
e.g., buildings, mountains, and cities, within OpenStreetMap is
highly heterogeneous, diverse, and incomplete. As a result, this
rich data source is hardly usable for real-world applications. This
paper presents WorldKG - a new geographic knowledge graph
aiming to provide a comprehensive semantic representation of
geographic entities in OpenStreetMap. We describe the WorldKG
knowledge graph, including its ontology that builds the semantic
dataset backbone, the extraction procedure of the ontology and geo-
graphic entities from OpenStreetMap, and the methods to enhance
entity annotation. We perform statistical and qualitative dataset
assessment, demonstrating the large scale and high precision of the
semantic geographic information in WorldKG.

CCS CONCEPTS
• Information systems → Information integration.

KEYWORDS
Knowledge Graph; OpenStreetMap; Semantic Geospatial Data

Resource type: Dataset
Website and documentation: http://www.worldkg.org
Dataset DOI: https://zenodo.org/record/4953986

1 INTRODUCTION
OpenStreetMap (OSM) is a rich source of openly available volun-
teered geographic information, including over 6.8 billion geographic
entities in 188 countries contributed by over 7.6 million volunteers
[23]. OSM is adopted in a variety of real-world applications on the
Web and beyond, including map tile generation [15] and routing
[17]. However, representations of geographic entities in OSM are
highly diverse, including few mandatory properties and numerous
heterogeneous tags, i.e., user-defined key-value pairs. The tag-based

© 2021 Association for Computing Machinery.
This is the author’s version of the work. It is included into the thesis with the ACM
permission. Not for redistribution. The definitive Version of Record was published in
Proceedings of the 30th ACM International Conference on Information and Knowledge
Management (CIKM ’21), November 1–5, 2021, Virtual Event, QLD, Australia, https:
//doi.org/10.1145/3459637.3482023.

structure of OSM data does not follow a well-defined ontology, sig-
nificantly limiting automatic interpretation and use of OSM data in
real-world applications.

Knowledge graphs (KGs) have recently emerged as a key techno-
logy to provide semantic machine-interpretable information on real-
world entities at scale. However, popular general-purpose know-
ledge graphs such as DBpedia and Wikidata lack coverage of geo-
graphic entities [32]. In contrast, specialized geographic knowledge
graphs such as LinkedGeoData [3] and YAGO2geo [19] lack cove-
rage of geographic classes. To provide a comprehensive source of
semantic geographic information at scale, semantic information
in knowledge graphs and community-created geographic sources
such as OSM should be tightly integrated and fused.

Integration of OSM and knowledge graphs is inherently difficult.
Although some community-defined links between OSM entities and
knowledge graphs like Wikidata exist at the instance level, these
links are still sparse and cover only certain entity types. As of April
2021, only 0.52% of OSM entities provided links to Wikidata. In our
previous work, we proposed initial approaches for the integration of
OSM and knowledge graphs at the schema [12], and instance levels
[32]. In this work, we build upon the Neural Class Alignment (NCA)
approach [12] to provide semantic annotations to OSM entities.
Overall, further research efforts are required to facilitate tighter
integration and fusion of OSM and knowledge graphs.

This paper presents WorldKG – a novel comprehensive geogra-
phic knowledge graph built from the OSM dataset. We create a
novel WorldKG ontology by converting the flat OSM schema into a
hierarchical ontology structure. The current release of WorldKG
V1.0 in June 2021 contains over 100 million geographic entities
from 188 countries and over 800 million triples. Overall, the num-
ber of geographic entities in WorldKG is two orders of magnitude
higher than in Wikidata and DBpedia knowledge graphs. To facili-
tate the adoption of WorldKG in semantic applications, we align
the WorldKG ontology with the Wikidata and DBpedia ontologies
using the NCA approach proposed in our previous work [12]. Our
evaluation results demonstrate that the alignment enables us to de-
termine correctWikidata and DBpedia ontology classes ofWorldKG
entities with over 99% accuracy, on average.

The scale and accuracy of WorldKG can facilitate the broader
adoption of semantic geographic knowledge in a variety of real-
world applications. Examples include event-centric [9] and geospa-
tial [28] question answering, geographic information retrieval [29],
and other cross-domain semantic data-driven applications.

1
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Overall, our main contributions in this paper are as follows:
• We present WorldKG – a new knowledge graph containing
large-scale semantic geographic data extracted from OSM.

• We present the WorldKG ontology, which semantically de-
scribes geographic entities and links them to the specific
classes in the Wikidata and DBpedia ontologies.

• We provide access to WorldKG through a SPARQL endpoint
and provide downloadable data files in the standard RDF
turtle format [6].

• To ensure reproducibility, we make the source code of the
whole pipeline for WorldKG creation publicly available on
GitHub under an open MIT license.

The rest of the paper is organized as follows: In Section 2, we
discuss the relevance and the expected impact of the proposed
WorldKG knowledge graph. Then, we provide formal definitions
of an OSM corpus and a knowledge graph in Section 3. We intro-
duce the proposed WorldKG ontology in Section 4 and explain the
WorldKG creation process in Section 5. We present the statistics
and evaluation results of WorldKG in Section 6. In Section 7, we
describe the availability, utility, and sustainability aspects of our
dataset. Section 8 provides a real-world application example using
WorldKG. We discuss related work in Section 9. Finally, in Section
10, we provide concluding remarks.

2 RELEVANCE AND EXPECTED IMPACT
This section discusses the expected impact of the proposedWorldKG
knowledge graph and its significance to the community, applica-
tions, and technology adoption.

Relevance to the information and knowledge management commu-
nity. Large-scale volunteered geographic information has facilitated
many widely used applications such as routing services and data
visualizations1. Nevertheless, due to the data heterogeneity, the
potential of such collectively created knowledge is not yet fully
exploited. By integrating heterogeneous OSM data using semantic
technologies, we construct and maintain a large-scale knowledge
graph that consistently represents geographic data originating from
different sources and links this data to the relevant entity types in
cross-domain knowledge graphs. WorldKG constitutes a geogra-
phic data source of semantic representations with high connectivity,
interoperability, and accessibility. In the Semantic Web commu-
nity context, WorldKG provides richer information of geographic
entities than the existing cross-domain knowledge graphs. Thus,
WorldKG can support the development of various applications, in-
cluding geographic question answering and information retrieval,
point of interest recommendation, and other cross-domain semantic
data-driven applications.

Relevance for OpenStreetMap applications. Currently, routing and
navigation services such as Useful Maps 22 and Baidu Maps3, and
visualization tools based on geographic information (e.g., weather
map4) are utilizing OSM. Meanwhile, geographic entities in cross-
domain knowledge graphs have been used for entity relation ref-
erencing, question answering, and other tasks. However, on the
1OSM-based services: https://wiki.openstreetmap.org/wiki/List_of_OSM-
based_services
2Useful Maps 2: https://map.atownsend.org.uk/maps/map/map.html
3Baidu Maps: http://j.map.baidu.com/1CWxF
4Weather map: https://maps.darksky.net/

one hand, OSM lacks contextual information on its nodes; on the
other hand, cross-domain knowledge graphs are not well-populated
with up-to-date geographic information. For these reasons, the gaps
between OSM and knowledge graphs persist, and the potential of
applications utilizing either type of information is substantially
limited. By linking OSM nodes to the classes and entities in cross-
domain knowledge graphs, WorldKG provides rich contextual infor-
mation of the geographic entities, which can be used to enhance the
existing services. For instance, enriching maps can provide more de-
tailed location information and interconnect different information
types (e.g., locations, weather, and events).

Impact on the adoption of SemanticWeb technologies. By following
best practices in data publishing and maintenance, we ensure the
availability and the extensibility of WorldKG. By adopting Semantic
Web technologies and standards, the accessibility and reusability of
OpenStreetMap data are largely improved, and the effort associated
with reusing this data is reduced significantly. With a commitment
to maintaining regular updates, we ensure the sustainability of
WorldKG. We believe that WorldKG can benefit researchers in va-
rious research fields. Examples include geographic and semantic
data management, geographic information retrieval, and recom-
mendation. Furthermore, WorldKG can accelerate the development
and enhancement of various services, including interactive maps,
smart assistants, and geographic recommender systems.

3 OSM AND KNOWLEDGE GRAPHS
WorldKG targets the integration of OpenStreetMap and knowledge
graphs. In this section, we briefly describe both data structures and
their interlinking. In the context of this work, we refer to the entities
with geographic extent, i.e., the entities located on the globe, as
geographic entities.

3.1 OpenStreetMap
OpenStreetMap is one of the essential sources of openly available
volunteered geographic information globally, including contribu-
tions from over 7.6 million volunteers (as of June 2021). OSM cap-
tures a vast and continuously growing number of geographic enti-
ties, currently counting more than 6.8 billion in 188 countries [23].
The essential components of the OSM data model are nodes, ways,
and relations. Nodes represent entities with a geographic point lo-
cation (e.g., mountain peaks and trees). Ways represent geographic
entities of a linear form (e.g., rivers and roads). Relations are groups
of elements consisting of nodes, ways, and other relations (e.g.,
boundaries and bus routes). For the current scope of the WorldKG
knowledge graph (WorldKG V1.0), we only consider OSM nodes.

OSM does not follow a strict schema but provides a set of guide-
lines5 for volunteers to create and annotate geographic entities. As
a result, OSM has a rich and diverse schema with over 80 thousand
distinct keys and numerous values.

We formally define the concept of an OSM corpus as follows:

Definition 3.1. An OSM corpus C = (𝑁,𝑇 ) consists of a set of
nodes 𝑁 representing geographic entities, and a set of tags 𝑇 . Each
tag 𝑡 ∈ 𝑇 is represented as a key-value pair, with the key 𝑘 ∈ 𝐾 and
a value 𝑣 ∈ 𝑉 : 𝑡 = ⟨𝑘, 𝑣⟩. A node 𝑛 ∈ 𝑁 , 𝑛 = ⟨𝑖, 𝑙,𝑇𝑛⟩ is represented
5OSM “How to map a”: https://wiki.openstreetmap.org/wiki/How_to_map_a
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as a tuple containing an identifier 𝑖 , a geographic location 𝑙 , and a
set of tags 𝑇𝑛 ⊂ 𝑇 .

OSM nodes have a unique identifier and contain various key-
value pairs called tags. The following example of the “Zugspitze”,
the highest mountain of Germany, illustrates the tag structure.

Key Value
𝑖𝑑 27384190
name 𝑍𝑢𝑔𝑠𝑝𝑖𝑡𝑧𝑒
natural 𝑝𝑒𝑎𝑘
summit:cross 𝑦𝑒𝑠
ele 2962

Here, the tags with keys such as summit:cross, name and ele (ele-
vation above sea level) serve as properties of the entity, whereas the
tag natural=peak represent the entity type (in this case equivalent
to the DBpedia class dbo:Mountain).

3.2 Knowledge Graphs
Knowledge graphs are a rich source of semantic information, con-
taining entities, classes, properties, literals, and relations.

Definition 3.2. A knowledge graph KG = (𝐸,𝐶, 𝑃, 𝐿, 𝐹 ) consists
of a set of entities 𝐸, a set of classes 𝐶 ⊂ 𝐸, a set of properties 𝑃 , a
set of literals 𝐿, and a set of relations 𝐹 ⊆ 𝐸 × 𝑃 × (𝐸 ∪ 𝐿).

Entities in 𝐸 represent real-world entities and semantic classes.
In the context of this work, we are particularly interested in geo-
graphic entities in a knowledge graph. Properties in 𝑃 represent
relations connecting two entities, or an entity and a literal value.
An entity in a KG can belong to one or more classes, and is typically
linked to a class using rdf:type or an equivalent property.

Definition 3.3. The class of the entity 𝑒 ∈ 𝐸 in the knowledge
graph KG = (𝐸,𝐶, 𝑃, 𝐿, 𝐹 ) is denoted as: class(e) = {𝑐 ∈ 𝐶 |
(𝑒, rdf:type, 𝑐) ∈ 𝐹 }.

The data in a knowledge graph is typically represented in the
RDF6 format having a subject - predicate - object structure. Consider
the corresponding excerpt from the representation of the entity
“Zugspitze” in Wikidata:

Subject Predicate Object
𝑄3375 𝑙𝑎𝑏𝑒𝑙 𝑍𝑢𝑔𝑠𝑝𝑖𝑡𝑧𝑒
𝑄3375 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑜 𝑓 𝑚𝑜𝑢𝑛𝑡𝑎𝑖𝑛
𝑄3375 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 47°25′𝑁, 10°59′𝐸
𝑄3375 𝑝𝑎𝑟𝑒𝑛𝑡𝑝𝑒𝑎𝑘 𝑄15127

In this example, the statement “Q3375 instance of mountain”
indicates that the entity belongs to the Wikidata class “mountain”.

3.3 Linking OpenStreetMap and KGs
Although OSM contains a vast amount of geospatial data, OSM keys
and tags are heterogeneous, do not possess any machine-readable
semantics, and are not directly accessible for semantic applications.
Knowledge graphs such as Wikidata, DBpedia, and YAGO pro-
vide rich ontologies but lack geographic coverage. For instance, in
6RDF: https://www.w3.org/RDF/

Table 1: List of prefixes and namespaces used by WorldKG.

Prefix Namespace

dcterms http://purl.org/dc/terms/
geo http://www.opengis.net/ont/geosparql#
osmn https://www.openstreetmap.org/node/
owl http://www.w3.org/2002/07/owl#
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.org/2000/01/rdf-schema#
sf http://www.opengis.net/ont/sf#
uom http://www.opengis.net/def/uom/OGC/1.0/
wd http://www.wikidata.org/wiki/
wkg http://www.worldkg.org/resource/
wkgs http://www.worldkg.org/schema/

June 2021, 931,574 nodes with the tag amenity=restaurant were
present in OSM, whereas Wikidata included only 4,391 entities for
the equivalent class “restaurant”.

Equivalence links between OSM tags and knowledge graph
classes are rarely present. Out of around 80,000 OSM keys, only
0.7% are mapped to Wikidata classes. At the ontology level, the
alignment is limited by the structural mismatch between the flat
OSM schema and hierarchical KG ontologies. Due to the reasons
above, the fusion of OSM and KG entities to create a comprehensive
semantic geospatial resource is a challenging task.

4 WORLDKG ONTOLOGY
The purpose of WorldKG is to provide a comprehensive geospatial
knowledge graph by integrating various data sources. We consider
the following goals while building the WorldKG ontology:

• To capture geospatial entities in WorldKG.
• To include relations between classes of existing knowledge
graphs and WorldKG classes.

• To lift the OSM schema into a hierarchical ontology.
• To provide provenance information for all WorldKG entities.
• To allow for easy extensions of the WorldKG ontology.

We define the WorldKG ontology based on key-value pairs of the
OSM schema. Figure 1 presents the WorldKG ontology. Each class
in the WorldKG ontology is a subclass of wkgs:WKGObject, where
the namespace wkgs represents WorldKG schema elements (for a
list of prefixes and namespaces in WorldKG, see Table 1). WorldKG
properties are modeled as wkgs:WKGProperty and provide infor-
mation on OSM tags that do not indicate a type assignment.

Geospatial support. To enable geographic queries on the data-
set, we utilize the GeoSPARQL framework proposed by the Open
Geospatial Consortium7. To provide information about its geogra-
phic extent, each wkgs:WKGObject entity can be related to a geo:
SpatialObject via the property wkgs:spatialObject, where a
geo:SpatialObject can be a point, line string or polygon. geo:
SpatialObject enables the computation of geospatial functions in
SPARQL queries (e.g., distance, nearest neighbors). For an example
of a query using these functions, see Section 8.

7GeoSPARQL: https://www.ogc.org/standards/geosparql
3
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geo:SpatialObject

sf:Point sf:Polygonsf:LineString

wkgs:WKGObject

wkgs:WKGProperty rdf:Propertyrdf:
type

rdfs:domain

rdfs:subClassOf rdfs:subClassOf rdfs:subClassOf

rdf:type

rdfs:Class

OSM:Wikidcterms:
source

wkgs:spatialObject

Figure 1: The WorldKG Ontology.

Table 2: Examplemappings betweenOSM tags andWikidata
classes.

OSM tag Wikidata class (English label)

natural=peak Q8502 (mountain)
natural=saddle Q133056 (mountain pass)
railway=halt Q55678 (railway stop)
railway=station Q55488 (railway station)
railway=tram_stop Q22808404 (station located on surface)
building=church Q16970 (church building)

4.1 WorldKG Classes and Properties
The OSM community provides a list of established key-value pairs
as the so-called map feature list8. An example of a map feature is
the key-value pair natural=cave_entrance used to annotate cave
entrances in OSM. We use the map feature list to construct a class
hierarchy. In particular, we consider all keys in the feature map list
as top-level classes (e.g., natural). Values assigned to the keys are
represented as their subclasses. For example, cave_entrance is a
subclass of natural.

Figure 2 illustrates how the key-value pair natural=cave_entrance
is represented in the WorldKG ontology.

• The OSM key natural is converted into the top-level class
wkgs:Natural, which summarizes nature entities.

• The OSM value cave_entrance is a subclass of wkgs:Natu-
ral, namely wkgs:CaveEntrance representing cave entrances.

We only consider categorical values as subclasses in WorldKG.
Other value types, e.g., boolean or numerical values, are not conside-
red as a subclass. Instead, we use the top-level class provided by the
corresponding key. For example, an entity with a tag building=yes
is typed as wkgs:Building.

We create the properties fromOSM keys that have a valid English
OSMWiki page9 and are not mapped to own classes. In the example
given in Figure 2, wkgs:addrCountry is inferred from a key that

8OSM map feature list: https://wiki.openstreetmap.org/wiki/Map_features
9OSMWiki: https://wiki.openstreetmap.org/wiki/Main_Page

provides the country in which an entity is located. Each class and
property is linked to an OSM Wiki page via dcterms:source.

4.2 Schema Alignment with Existing KGs
To link theWorldKG ontology to other existing ontologies, we deter-
mine equivalent OSM tags and classes of the Wikidata and DBpedia
knowledge graphs. We utilize the Neural Class Alignment (NCA)
approach proposed in our previous work [12] to obtain the align-
ments between OSM tags and the classes of established knowledge
graphs. NCA is a 2-step unsupervised machine learning approach.
In the first step, we train a supervised neural classification model
that learns to classify OSM entities into the respective knowledge
graph classes based on their tags (i.e., keys and values). After the
training process is completed, we probe the resulting classification
model with one tag at a time and get the class activation from the
model output layer. Finally, we link the class and tag combinations
for which the class activation exceeds an acceptance threshold 𝑡ℎ𝑎 .
The detailed description of the NCA approach is provided in [12].

We train individual models forWikidata and DBpedia knowledge
graphs. We set the acceptance threshold of NCA at 𝑡ℎ𝑎 = 0.25 and
𝑡ℎ𝑎 = 0.4 for Wikidata and DBpedia, respectively. To ensure the
quality of tag-to-class matches in WorldKG, we manually verify the
resulting matches and discard any wrongly mapped pairs. Table 2
shows example mappings between OSM tags and Wikidata classes
obtained using this approach. The alignments between theWorldKG
classes and the Wikidata and DBpedia classes are represented using
the owl:equivalentClass property as shown in the Figure 2.

4.3 Geographic Entity Example
Listing 1 illustrates an example entity description file in .ttl for-
mat. It contains type information (wkgs:Restaurant) and various
properties, including its label and opening hours. Via the property
wkgs:spatialObject, the entity is linked to its respective geo:
SpatialObject. The geo:SpatialObject represents the type of
geometry of the entity (sf:Point) and the coordinates of the geom-
etry. For each entity, we also provide the property wkgs:osmLink
that links the entity to the original OSM node.
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wkgs:Natural

wkgs:CaveEntrance

dbo:NaturalPlaceowl:equivalent
Class

dbo:Cave

 wd:Q35509
owl:

equivalentClass

rdfs:subClassOf

owl:equivalentClass

wkgs:WKGObject

"Cave Entrance"rdfs:label

wkgs:
addrCountrywkg:301722695

rdf:type

"Germany"wkg:geo301722695

POINT(11.1079839 51.7190868)

geo:asWKT

wkgs:
spatialObject

sf:Point

rdf:type

rdfs:subClassOf

wkgs:
osmLink

osmn:301722695

https://wiki.openstreetmap.org/
wiki/Tag:natural=cave_entrancedcterm:source

Figure 2: Example instantiation of the WorldKG ontology for a specific instance of wkgs:CaveEntrance.

wkg :1014675277 a wkgs:Restaurant;
rdfs:label "Krishna" ;
wkgs:addrCountry "DE" ;
wkgs:addrHousenumber "53;54" ;
wkgs:cuisine "indian" ;
wkgs:dietVegetarian "yes";
wkgs:openingHours "Mo-Su 17:00 -23:00" ;
wkgs:organic "only" ;
wkgs:phone "+49 421 52279939" ;
wkgs:spatialObject wkg:geo1014675227 ;
wkgs:website "http ://www.indisches-

bio-restaurant.de/" ;
wkgs:wheelchair "no" ;
wkgs:osmLink osmn :1014675277.

wkg:geo1014675227 a sf:Point;
geo:asWKT "Point (8.7938916 53.073794)"

^^geo:wktLiteral .

Listing 1: RDF Triples in the Turtle format for an example
geographic entity of type wkgs:Restaurant in WorldKG.

5 WORLDKG CREATION PROCESS
In this section, we present our approach for creating WorldKG,
consisting of the WorldKG ontology and geographic entities. First,
we create the WorldKG ontology, which is then used to describe the
geographic entities inWorldKG. The steps involved in theWorldKG
creation process are depicted in Figure 3.

5.1 WorldKG Ontology Creation
The first part of the WorldKG creation process aims at creating the
WorldKG ontology consisting of classes, properties, their relations,
and links to the equivalent classes in Wikidata and DBpedia. This
process consists of the following steps:

• Scrape and filter key-value pairs: First, we scrape the key-
value pairs from the OSM map features which were intro-
duced in Section 4. From these key-value pairs, we discard

those that do not possess any class information. This con-
cerns the key-value pairs categorized as additional attributes,
attributes and additional properties in OSM map features.

• Infer class hierarchy: We use the keys to identify classes
and key-value pairs to infer subclasses. If an individual
value occurs with multiple keys, we manually specify a suit-
able subclass (e.g., for the key-value pairs building=school
and amenity=school, we create classes BuildingSchool and
AmenitySchool).

• Convert property and class names: To adhere to established
OWL naming conventions [5], we representWorldKG classes
in upper camel-case format and properties in lower camel-
case format.

• Schema alignment with Wikidata and DBpedia. We estab-
lish owl:equivalentClass relationships to Wikidata and
DBpedia ontologies through the schema alignment process
described in Section 4.

5.2 Knowledge Graph Creation
After the creation of the WorldKG ontology, we now utilize this
ontology to represent OSMnodes as geographic entities inWorldKG.
This process includes the following steps:

• Filter nodes with at least one tag: As input, we retrieve all
OSM nodes from the most recent OSM dumps10 using the
Osmium Python library11. We filter out the nodes that do
not contain any tags such as node:3051901012. These nodes
are placeholders for ways and relations and are unlikely to
be relevant for applications requiring node data.

• Filter keys and values based on the WorldKG ontology: Once
we have collected the OSM nodes, we identify their classes
and properties based on the WorldKG ontology and discard
non-relevant tags and keys. From the OSM keys lat and long,
we enrich the nodes with their geographic coordinates.

• Create and validate triples: Finally, we create RDF triples
using the Python library RDFLib and provide links to the

10OSM dumps: https://download.geofabrik.de/
11Osmium python library: https://pypi.org/project/osmium/
12Filtered node: https://www.openstreetmap.org/node/30519010
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Figure 3: WorldKG ontology and knowledge graph creation process.

corresponding resources in Wikidata and DBpedia. Geogra-
phic objects are represented as sf:Point objects pointing
to the coordinates as geo:WKTLiteral literals.

We provide an RDF dump of the geographic entities in WorldKG
and its ontology. A SPARQL endpoint13 using a Virtuoso triple
store [13] is set up to query WorldKG.

6 WORLDKG CHARACTERISTICS &
EVALUATION RESULTS

To illustrate the potential and quality of WorldKG, in this section,
we present the statistics of the WorldKG and the evaluation results
regarding the quality of the class alignment and type assertion.

6.1 WorldKG Statistics
As shown in Table 3, WorldKG contains more than 820 million
triples associated with geographic data for 188 countries and seven
continents. 33 top-level classes were inferred from OSM keys, whe-
reas the subclasses refer to the specific classes extracted from key-
value pairs, as discussed in Section 4.

Table 3: WorldKG knowledge graph statistics.

Quantity Count

Total triples 828,550,751
Total entities 113,444,975
Top-level classes 33
Subclasses 1,143
Unique properties 1,820
Links to Wikidata classes 40
Links to DBpedia classes 21

6.2 Quality of the Class Alignment
As reported in [12], the NCA class alignment approach obtains
matches with an average precision of 70% and 90% on the Wikidata

13WorldKG SPARQL endpoint: http://www.worldkg.org/sparql

and DBpedia knowledge graphs, respectively. As described in Sec-
tion 4.2, we manually access the class alignments resulting from
NCA and discard any wrong mappings to prevent the propagation
of errors in WorldKG. By doing so, we obtain a class alignment pre-
cision of 100%. This manual verification procedure does not affect
the recall values. This way, the recall corresponds to the original
NCA recall of 63% and 81% on Wikidata and DBpedia knowledge
graphs, respectively, reported in [12].

6.3 Quality of the Type Assertion
In this section, we assess the quality of type assertion in WorldKG
regarding the Wikidata and DBpedia classes. To this extent, we
randomly select five classes from the DBpedia and the Wikidata
ontologies mapped toWorldKG classes, respectively. For each of the
resulting ten classes, we randomly select a sample of 100 WorldKG
entities that are assigned to the respective class via rdf:type and
owl:equivalentClass. Listing 2 shows the SPARQL query used for
the generation of a sample dataset for the Wikidata class Q556186
labeled “mine”. For each of the resulting 1000 entity-class pairs, we
manually judge the correctness of the type assertion. That way, we
can estimate the accuracy of the type assertion in WorldKG. The
results are presented in Table 4.

SELECT ?id ?type ?osmid ?name
WHERE {

?id rdf:type ?type .
?id rdfs:label ?name.
?id wkgs:osmLink ?osmid.
?type owl:equivalentClass wd:Q556186.

}
ORDER BY RAND() LIMIT 100

Listing 2: Query used to generate the sample set of 100 enti-
ties assigned to the Wikidata class Q556186 (“mine”).

Tables 4a and 4b present the evaluation results of the type as-
sertion of WorldKG entities to the Wikidata and DBpedia ontology
classes, respectively. The correct and wrong columns indicate the
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Table 4: Evaluation results of the WorldKG type assertion regarding Wikidata and DBpedia classes.

(a) Wikidata

WorldKG class WorldKG entities Wikidata class Wikidata entities Correct Wrong Non-verifiable Accuracy
Tomb 12849 Q381885 3076 97 1 2 98.98%
Monument 44503 Q4989906 23320 91 0 9 100.00%
Mineshaft 8453 Q556186 677 95 2 3 97.94%
BicycleRental 40914 Q61663696 1757 96 0 4 100.00%
TourismHotel 204291 Q27686 11152 97 0 3 100.00%

(b) DBpedia

WorldKG class WorldKG entities DBpedia class DBpedia entities Correct Wrong Non-verifiable Accuracy
ManMadeTower/
PowerTower 2769981 Tower 2533 97 0 3 100.00%

City 10465 City 22600 100 0 0 100.00%
Museum 46955 Museum 7422 94 2 4 97.92%
AmenitySchool 424236 School 31867 100 0 0 100.00%
CaveEntrance 39525 Cave 615 91 0 9 100.00%

number of correct or wrong KG classes assigned to individual enti-
ties, respectively. The non-verifiable column presents the number
of cases in which we could not identify the correct class due to the
lack of information about the entity on the web. For instance, an
OSM node tagged with historic=monument, with no further infor-
mation available, can not be verified to actually be a monument14.
We exclude non-verifiable instances from our accuracy calculation.
As we can observe, the precise tag-to-class mappings in WorldKG
facilitate a very high accuracy (between 97.9% and 100%) of type
assertion regarding both Wikidata and DBpedia classes. The few
cases of incorrectly assigned classes result from wrongly annotated
instances in OSM.

For all classes illustrated in Table 4a and Table 4b except of
wkgs:City, the number of geographic entities inWorldKG is higher
compared to Wikidata and DBpedia. Overall, as shown in Table 5,
the number of geographic entities in WorldKG is two orders of
magnitude higher than in Wikidata and DBpedia.

Overall, the high accuracy class alignment of theWorldKG pipeline
builds the foundation for the integration of OSM information into
the linked open data cloud. While OSM relies on the voluntarily
contributed information, with no strict guarantees of correctness,
WorldKG addresses this issue by only considering established tags
defined in the OSM map feature list and therefore provides trust-
worthy high-quality information at scale.

Table 5: Number of geographic entities in WorldKG, Wiki-
data and DBpedia

Knowledge graph Geographic entities

WorldKG 113,444,975
Wikidata 8,621,058
DBpedia 1,224,403

14An example non-verfiable node: https://www.openstreetmap.org/node/8752666922

7 AVAILABILITY, UTILITY &
SUSTAINABILITY

In this section, we describe how the WorldKG website and the data
and code repositories ensure the availability, utility, and sustain-
ability of WorldKG.

7.1 Availability
The WorldKG website15 is publicly available. This website provides
a description of WorldKG and a SPARQL endpoint for querying
the WorldKG knowledge graph. In addition, the WorldKG website
provides pointers to code and data:

• Code: The code realizing the WorldKG creation process de-
picted in Figure 3 is available on GitHub16 under the MIT
License17.

• Data: The WorldKG triples can be downloaded from a per-
sistent URL18 under the Open Data Commons Open Data-
base License (ODbL)19. On the WorldKG website, we also
made the manually created evaluation dataset of owl:equi-
valentClassmappings between the WorldKG ontology and
the DBpedia/Wikidata ontologies available.

7.2 Utility
By following best practices in data publishing and open RDF W3C
standard for modeling and interlinking the data, we envisionWorld-
KG’s establishment as part of the Linked Open Data Cloud. In detail,
we ensure the utility of WorldKG via the following aspects:

15WorldKG Website: http://www.worldkg.org/
16GitHub Link: https://github.com/alishiba14/WorldKG-Knowledge-Graph
17License for code: https://opensource.org/licenses/MIT
18DOI for WorldKG data: https://doi.org/10.5281/zenodo.4953986
19License for dataset: https://opendatacommons.org/licenses/odbl/
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PREFIX uom:
<http ://www.opengis.net/def/uom/OGC/1.0/>

SELECT ?closeObject ?restaurant
(bif:st_distance (?cWKT , ?fWKT , uom:metre)
AS ?distance)

WHERE {
?poi rdfs:label "Brandenburger Tor".
?poi wkgs:spatialObject [

geo:asWKT ?cWKT
] .
?closeObject rdf:type wkgs:Restaurant.
?closeObject rdfs:label ?restaurant.
?closeObject wkgs:spatialObject ?fGeom.
?fGeom geo:asWKT ?fWKT .

}
ORDER BY ASC(

bif:st_distance (?cWKT , ?fWKT , uom:metre))
LIMIT 3

Listing 3: Example SPARQL query to retrieve the three clos-
est restaurants to the Brandenburger Tor.

• Documentation: TheWorldKG website provides a description
of the data and the ontology. In addition, a selection of ex-
ample SPARQL queries is given as an overview of potential
usage scenarios and as a basis for creating new queries.

• Data access: WorldKG can be queried through its publicly
available SPARQL endpoint that facilitates geographic queries
with the option to download query results. Classes and re-
sources of WorldKG can be looked up on the website, which
also provides map visualizations pointing to the location of
wkgs:WKGObject entities.

• Provenance: Version 1.0 of WorldKG was extracted using
OSM dumps from June 6, 202120. Among other metadata,
this provenance information is provided as part of WorldKG
using the VoID vocabulary [1]. Classes and instances in
WorldKG are linked to Wikidata, DBpedia and OSM, where
possible.

7.3 Sustainability
To keep WorldKG up-to-date with future releases of OSM that may
further extend the coverage of real-world locations and account
for potential transformations, we plan to publish new versions
of WorldKG regularly. We further plan to add additional features
in the upcoming versions of WorldKG, including enriched entity
descriptions and extended coverage of real-world entities through
data fusion with other sources.

8 EXAMPLE SCENARIO
This section demonstrates the usage of WorldKG for Point-of-
Interest (POI) recommendation through an example scenario.

20The OSM dumps were downloaded from http://download.geofabrik.de/.

Table 6: Result of the example SPARQL query in Listing 3.

Restaurant Distance
"Hopfingerbräu im Palais" 0.128322
"Restaurant Quarré" 0.243953
"Lorenz Adlon Esszimer" 0.247478

With the increased use of recreational and touristic applica-
tions, POI recommendation systems have gained increased atten-
tion [20, 22, 36]. Typically, the goal of a POI recommendation is
to recommend a list of places to a user based on user-specific cri-
teria, e.g., the user location and preferences. Knowledge graph, a
machine-readable knowledge source supporting relational reason-
ing, can serve as a rich information source for POI recommendation
[16]. However, cross-domain knowledge graphs often lack suffi-
cient coverage of touristic POIs, such as restaurants. WorldKG fills
this gap by providing means to retrieve POIs originated from OSM
based on entity class labels.

Listing 3 exemplifies a SPARQL query that returns the three
closest restaurants (wkgs:Restaurant) for a given location (the
Brandenburger Tor in Berlin, Germany). This query makes use
of GeoSPARQL functions (i.e., bif:st_distance) which are sup-
ported by the WorldKG SPARQL endpoint.

Table 6 shows the result of the example mentioned above after
queryingWorldKG, including the names of the restaurants and their
distance to the Brandenburger Tor. Figure 4 shows a screenshot
taken from the result page of theWorldKG SPARQL endpoint, which
is the visualization of returned restaurants on a map. This example
demonstrates how POI applications can immediately benefit from
the provision of geographic information in WorldKG.

Figure 4: Visualization of the three restaurants closest to the
Brandenburger Tor returned by the query in Listing 3.

9 RELATEDWORK
In the following, we discuss existing KGs that include geographic
entities, ontologies for geographic data and ontology alignment
methods relevant for creating geographic KGs.

9.1 KGs containing Geographic Entities
There exist several dedicated geographic knowledge graphs as well
as general-purpose knowledge graphs with geographic entities.
Wang et al. [34] introduced GeoKG, a formalized geographic know-
ledge representation that complements the Attributive Language
with Complements (ALC) description logic. Through case stud-
ies, the authors demonstrate that the GeoKG model can achieve
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more accurate and complete geographic knowledge representations
compared to YAGO.

DBpedia [2] was one of the first well-established, cross-domain
knowledge graphs. To represent geospatial data, DBpedia provides
latitude and longitude values for various geographic entities. Sim-
ilarly, Wikidata [33] represents coordinates of geospatial entities.
However, both DBpedia and Wikidata only cover a small fraction
of OSM locations [32]. YAGO2geo [19] is an extension of the YAGO
knowledge graph that includes geospatial and temporal relations.
YAGO2geo is created using OSM and reference geospatial datasets
such as Greek Administrative Geography (GAG) and Global Ad-
ministrative Areas dataset (GADM). YAGO2geo mainly focuses on
administrative regions and reuses an existing ontology from the
GAG dataset. EventKG [14] is a knowledge graph that focuses on
event-centric information and includes geographic entities relevant
to historical events and their participants.

In general, the knowledge graphs mentioned above lack coverage
of geospatial entities and focus on certain entity types. LinkedGeo-
Data [3], on the other hand, converts OpenStreetMap data into an
RDF knowledge graph. LinkedGeoData is based on a formal onto-
logy created using tags and keys of OSM. it provides a simplified
mapping between OSM data and classes and properties of other
data sources. In contrast to WorldKG, LinkedGeoData uses a set of
manually selected class mappings. Moreover, the latest available
dumps of LinkedGeoData were released in 2015, and no links to
Wikidata were provided.

9.2 Ontologies for Geographic data
There have been various approaches to build ontologies that cater
to geographical data due to its unique structure. Sun et al. [31] have
built a manual three-level ontology for geospatial data. Although
the ontology they built can be reused, it is still incomplete and
not assessed for quality. With OSM being one of the most promi-
nent sources of open geographic information, there have been
approaches to build ontologies catering to the OSM data structure:
OSMOnto [8] describes OSM tags in an ontology that provides few
links to existing ontologies such as schema.org. Similar toWorldKG,
OSMOnto is represented as a class hierarchy extracted from OSM
keys and values. Ballatore et al. [4] developed the OSM semantic
network by crawling OSMWiki pages. The network can be used to
compute the similarity between the concepts and also for geospa-
tial retrieval of entities, among others. In contrast to these works,
WorldKG ontology is created in an automated way and covers a va-
riety of geographic classes. Thus, it is flexible towards OSM updates
and not limited in its coverage of geographic entities.

9.3 Ontology Alignment
Ontology alignment (also known as ontology matching) aims to
establish correspondences between the elements of different on-
tologies. The efforts to interlink open semantic datasets and to
benchmark ontology alignment approaches have been driven by
the W3C Semantic Web Education and Outreach (SWEO) Linking
Open Data community project [21] and the Ontology Alignment
Evaluation Initiative (OAEI) [26] Ontology alignment is conducted
at both the element-level and the structure-level [27]. The element-
level alignment typically uses natural language descriptions of the

ontology elements, such as labels and definitions. Element-level
alignment adopts string similarity metrics such as edit distance.
Structure-level alignment exploits the similarity of the neighbor-
ing ontology elements, including the taxonomy structure, as well
as shared instances [24]. Element-level and structure-level align-
ments have also been adopted to align ontologies with relational
data [10] and tabular data [37]. Jiménez-Ruiz et al. [18] divided
the alignment task into independent, smaller sub-tasks, aiming
to scale up to very large ontologies. Machine learning has been
widely adopted for ontology alignment. In the GLUE architecture
[11], semantic mappings are learned semi-automatically, while [25]
proposed a matching system that integrates string-based and se-
mantic similarity features. Recently, deep neural networks-based
approaches have been used for ontology alignment and schema
matching. Proposed architectures include convolutional neural net-
works [7], representation learning [30], and stacked autoencoders
[35]. Until now, the lack of a well-defined ontology of OSM hin-
dered the application of ontology alignment approaches to OSM
data. WorldKG addresses this problem by providing alignments
between OSM tags and knowledge graph classes. WorldKG builds
upon the recently proposed Neural Class Alignment approach [12]
that facilitates alignments between OSM tags and KG classes using
a novel neural architecture.

10 CONCLUSION
In this paper, we presentedWorldKG – a new geographic knowledge
graph that provides semantic representations of geographic entities
in the OpenStreetMap dataset. The released WorldKG knowledge
graph contains over 828 million triples of over 100 million entities
spread across 1176 classes. Through manual quality assessment
performed on randomly selected sample data, we observe that
WorldKG contains high accuracy data. We make the data dump
available and provide a SPARQL endpoint for accessing WorldKG.
By following best practices for semantic data publishing, we ensure
the availability and usability of the data and are committed to
maintaining regular updates for sustainability. We believe that
WorldKG has the potential to aid many applications and future
research that consume geographic data.
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