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1 Einleitung 

1.1 Homocystein  

Homocystein (s. Abb. 1-1) ist eine schwefelhaltige, nicht-proteinogene Aminosäure, 

die als Zwischenprodukt im Rahmen des Methioninabbaus anfällt. Sie besitzt für den 

menschlichen Organismus keine essentiell wichtige Funktion. Großes Interesse an 

Homocystein wurde geweckt, als McCully 1969 zeigte, dass ein Zusammenhang 

zwischen erhöhten Homocysteinkonzentrationen und arteriosklerotischen 

Gefäßerkrankungen besteht1. Nachfolgende Forschungen konnten herausstellen, 

dass Homocystein einen unabhängigen Risikofaktor für arteriosklerotische 

Gefäßerkrankungen2,3, Herzinfarkt4 und Schlaganfälle5,6 darstellt. Darüber hinaus 

verdichten sich mittlerweile auch Hinweise, dass dementive Erkrankungen mit 

Homocystein assoziiert sind7,8.  

 

Abb. 1-1: Strukturformel von Homocystein. 

Homocystein liegt im Plasma hauptsächlich gebunden an Serumalbumin (bis zu 

80 %) oder in Form von Disulfiden vor. Neben Homocystin, dem reinen Disulfid, 

existieren auch gemischte Disulfide, insbesondere solche mit Cystein und 

Cysteinylglycin. Nur ein geringer Anteil des Homocysteins kommt in der freien, 

reduzierten Form vor. Homocystein und Disulfide werden renal eliminiert. Im Falle 

deutlich erhöhter Homocystein-Plasmakonzentrationen werden größere Mengen an 

Homocystin im Urin gefunden (Homocystinurie). 

Normale Homocystein-Plasmakonzentrationen Erwachsener liegen zwischen 5 und 

15 µM, Männer zeigen tendenziell höhere Konzentrationen als Frauen. Kang nahm 

1992 basierend auf diesen Werten eine Einteilung in die moderate (16-30 µM), 

intermediäre (31-100 µM) und schwere Hyperhomocysteinämie (> 100 µM) vor9. 
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Jüngere Studien deuten darauf hin, dass das Risiko für vaskuläre Krankheiten schon 

unterhalb einer Homocysteinkonzentration von 16 µM signifikant erhöht ist. So kam 

z.B. eine 1995 veröffentlichte Metaanalyse zu dem Ergebnis, dass jede Erhöhung 

der Nüchtern-Homocysteinkonzentration um 5 µM (oberhalb eines Ausgangswerts 

von 10 µM) mit einem Anstieg des Risikos für koronare Herzerkrankungen um 60 % 

bei Männern und 80 % bei Frauen verbunden ist3. Die „D.A.CH-Liga Homocystein“ 

empfiehlt daher eine Homocysteinkonzentration < 10 µM anzustreben. Nach Ansicht 

der Liga liegt eine moderate Hyperhomocysteinämie bereits bei 12 µM vor10. Dieser 

Grenzwert ist heute international anerkannt. Bei Kindern (< 15 Jahre) betragen die 

Homocysteinkonzentrationen im Plasma zwischen 4 und 8 µM11,12, Normwerte sind 

bislang nicht definiert. 

1.1.1 Homocysteinstoffwechsel 

Die rasche Entfernung des intermediär gebildeten Homocysteins ist aus 

toxikologischer Sicht außerordentlich wichtig. Neben einer direkten Ausscheidung 

über die Nieren, kann die Homocysteinkonzentration über zwei Stoffwechselwege 

reguliert werden, die Remethylierung zu Methionin und die Transsulfurierung zu 

Cystein (s. hierzu auch Abb. 1-2).  

Die Remethylierung erfolgt über die Methioninsynthase (MS) und erfordert die 

Cofaktoren Vitamin B12 und N5-Methyltetrahydrofolat (N5-Methyl-THF). N5-Methyl-

THF wird durch die N5,N10-Methylentetrahydrofolat-Reduktase (MTHFR) aus N5,N10-

Methylentetrahydrofolat (N5,N10-Methylen-THF) synthetisiert. Die Verfügbarkeit von 

N5,N10-Methylen-THF ist von der Folsäure-Aufnahme mit der Nahrung abhängig. 

Neben der Methioninsynthase-Reaktion ist eine Methioninbildung auch durch die 

Betain-Homocystein-Methyltransferase (BHMT) möglich. Bei dieser Variante 

überträgt nicht N5-Methyl-THF, sondern Betain die Methylgruppe auf Homocystein. 

Die quantitative Gewichtung dieser beiden Remethylierungswege, die insbesondere 

in der Leber stattfinden, ist wenig erforscht. Zudem ist kaum etwas über die 

gewebeabhängige Expression der MS und der BHMT bekannt. Neueren Befunden 

zufolge scheint beim Menschen das Vorkommen der BHMT auf die Leber und die 

Niere beschränkt zu sein13.  
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Abb. 1-2: Der humane (Methionin-)Homocystein-Stoffwechsel. Abkürzungen: ATP: 

Adenosintriphosphat, N5-Methyl-THF: N5-Methyltetrahydrofolat, N5,N10-Methylen-

THF: N5,N10-Methylentetrahydrofolat, SAH: S-Adenosylhomocystein; SAM: S-

Adenosylmethionin, THF: Tetrahydrofolat. Enzyme: (1): N5,N10-Methylen-

tetrahydrofolat-Reduktase (MTHFR), (2): Methioninsynthase (MS), (3): Betain-

Homocystein-Methyltransferase (BHMT), (4): Methionin-Adenosyltransferase (MAT), 

(5): R-Methyltransferase (6): S-Adenosylhomocystein-Hydrolase (SAHH), (7): 

Cystathionin-ß-Synthase (CBS), (8): Cystathionin-γ-Lyase (CGL), (9): Cystein-

Dioxygenase, (10): Cysteinsulfinsäure-Dehydrogenase, (11): γ-Glutamyl-Cystein-

Synthetase, (12): Glutathion-Synthetase. 

Die irreversible Umwandlung zu Cystein (Transsulfurierung) erfolgt in zwei Schritten. 

Zuerst wird Homocystein mit Serin zu Cystathionin kondensiert. Diese 

Pyridoxalphosphat (Vitamin B6)-abhängige Reaktion wird durch die Cystathionin-ß-

Synthase (CBS) katalysiert, welche beim Menschen insbesondere in Leber, Niere, 

SAM
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Dünndarm und Pankreas exprimiert wird14. Im zweiten Schritt wird Cystathionin durch 

die Cystathionin-γ-Lyase (CGL) zu Cystein und α-Ketobutyrat gespalten. Als Cofaktor 

dient wiederum Vitamin B6.  

Remethylierung und Transsulfurierung stehen ungefähr im gleichen Verhältnis. Dies 

hängt damit zusammen, dass zum einen CBS und Methyltransferasen (MS und 

BHMT) vergleichbare Enzymaktivitäten aufweisen15, zum anderen das Ausmaß der 

Remethylierung bzw. Transsulfurierung durch S-Adenosylmethionin (SAM), welches 

beim Abbau von Methionin zu Homocystein entsteht, gesteuert wird. SAM vermag 

die MS und BHMT zu inhibieren, die CBS hingegen zu aktivieren. Somit wird bei 

hohen SAM-Konzentrationen Homocystein vermehrt transsulfuriert, während niedrige 

Konzentrationen an SAM eher die Remethylierung begünstigen15.  

Cystein kann für die Synthese des Radikalfängers Glutathion (γ-Glutamyl- 

Cysteinylglycin) verwendet oder durch die Cystein-Dioxygenase zu 

Cysteinsulfinsäure (cysteine sulphinic acid, CSA) und nachfolgend durch die 

Cysteinsulfinsäure-Dehydrogenase zu Cysteinsulfonsäure (cysteic acid, CA) 

aufoxidiert werden16. Vergleichbare Enzymsysteme, die Homocystein zur 

Homocysteinsulfinsäure (homocysteine sulphinic acid, HCSA) bzw. Homo-

cysteinsulfonsäure (homocysteic acid, HCA) oxidieren, sind bislang nicht identifiziert 

worden. Es wurde daher angenommen, dass HCSA und HCA in Abhängigkeit vom 

Oxidationspotential des Körpers spontan entstehen können17,18. Alle vier 

Metaboliten – CSA, CA, HCSA und HCA – sind in der Lage, über ionotrope 

Glutamat-Rezeptoren Neuronen zu erregen19-22 und werden daher zusammen als 

schwefelhaltige, exzitatorische Aminosäuren („sulphur-containing excitatory amino 

acids“, SEAA) bezeichnet. Von diesen SEAA wird insbesondere Cysteinsulfinsäure 

als Neurotransmitter-Kandidat diskutiert16,17. 

1.1.2 Ursachen einer Hyperhomocysteinämie 

Durch die Vielfalt der am Homocysteinstoffwechsel beteiligten Enzyme und 

Cofaktoren sind viele genetische und alimentäre Störungen dieses Stoffwechsels 

möglich (s. Tab. 1-1). Im Folgenden soll auf die häufigsten Ursachen, die zu einer 

Hyperhomocysteinämie führen, näher eingegangen werden.  
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1.1.2.1 Genetische Störungen 

Recht häufig kommen Punktmutationen der N5,N10-Methylentetrahydrofolat-

Reduktase (MTHFR) vor. Besonders oft wird eine thermolabile Variante der MTHFR 

mit einer Mutation im Nukleotid 677 (MTHFR 677C T) identifiziert23. Man schätzt, 

dass dieser genetische Defekt in Deutschland bei ca. 5-15 % der Bevölkerung in 

homozygoter und bei ca. 35 % in heterozygoter Form vorliegt10. Während 

heterozygot Betroffene nur geringfügig erhöhte Homocysteinkonzentrationen im 

Plasma aufweisen, treten bei homozygot Betroffenen Homocysteinkonzentrationen 

auf, die bis zu 10 µM höher liegen als bei Gesunden23. Der Mangel der MTHFR 

induziert eine schwere Hyperhomocysteinämie mit Homocystinurie und verläuft 

unbehandelt, bedingt durch eine ausgeprägte Demyelinisierung des 

Zentralnervensystems, häufig letal24. 

Ein ähnliches klinisches Bild und vergleichbar ungünstige Prognosen weisen 

Patienten mit defekter Methioninsynthase auf25. Von differentialdiagnostischem 

Interesse ist, dass sowohl der MTHFR- als auch der MS-Mangel von signifikant 

niedrigeren Methionin-Plasmakonzentrationen begleitet sind. Auch ein Mangel der 

Cystathionin-ß-synthase (CBS), der in Deutschland mit einer Häufigkeit von ca. 

1:130.000 vorkommt14, führt zu einer schweren Hyperhomocysteinämie; 

Homocystein-Plasmakonzentrationen bis zu 400 µM werden beobachtet und 

Homocystin wird mit dem Urin ausgeschieden (klassische Homocystinurie). Aufgrund 

der gestörten Transsulfurierung finden sich im Plasma niedrige Cystein- aber hohe 

Methioninkonzentrationen.  

1.1.2.2 Vitaminmangel 

Häufig werden Hyperhomocysteinämien aufgrund alimentärer Mängel (Fehl- oder 

Mangelernährung) sowie einer Malabsorption oder Maldigestion, die einen Mangel 

an Vitamin B6-, Vitamin B12- oder Folsäure nach sich ziehen, beobachtet26-28.  

In einer Studie von Stabler et al. wiesen sowohl Patienten mit Folsäuremangel als 

auch solche mit Vitamin B12-Defiziten stark erhöhte Homocysteinkonzentrationen im 

Plasma auf, teilweise lagen die Konzentrationen über 100 µM29. Bedingt durch einen 
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Mangel an frischem Obst und Gemüse ist der Folatmangel das häufigste 

Vitamindefizit in Europa. Die durchschnittliche tägliche Folataufnahme mit der 

Nahrung (~300 µg)30 liegt deutlich unter den empfohlenen Richtwerten (400 µg)10. 

Erhebungen in Deutschland offenbarten, dass 50 % der Bevölkerung weniger als 

200 µg Folsäure täglich zu sich nehmen. In Kanada, Chile, Ungarn und den USA 

werden Mehlprodukte bereits seit einigen Jahren mit Folsäure versetzt. In den USA 

z.B. muss Weizenmehl seit Januar 1998 mit 140 µg Folsäure je 100 g Mehl 

angereichert sein. Diese Maßnahme erfolgte unter anderem auch deswegen, weil ein 

Folatmangel zu Neuralrohrdefekten bei Neugeborenen führen kann. Ein Vitamin B12-

Mangel kommt seltener vor. Er betrifft insbesondere ältere Menschen (bis zu 40 %), 

die Vitamin B12 wegen altersbedingter verminderter Magensäuresekretion oder eines 

Mangels an intrinsischem Faktor nur unzureichend resorbieren10. Die „Framingham 

Heart Study“ konnte zeigen, dass Vitamin B6-Aufnahmen von weniger als 1,4 mg/Tag 

leicht erhöhte Homocysteinkonzentrationen nach sich ziehen31. Im Vergleich zu 

Vitamin B12 und Folsäure beeinflusst jedoch ein Mangel an Vitamin B6 die 

Homocysteinkonzentration weniger stark. Vitamin B6-Defizite sind vergleichsweise 

selten, sie können aber durch Arzneistoffe, die Vitamin B6 komplexieren (Isoniazid) 

oder dessen Funktionsweise hemmen (Theophyllin, Niacin) hervorgerufen werden. 

 

Tab. 1-1: Häufige Ursachen der Hyperhomocysteinämie/Homocystinurie und deren 

Auswirkung auf die Plasmakonzentrationen von Methionin und Cystein. Nähere 

Erläuterungen im Text. 

Entität Hyperhomo-
cysteinämie 

Homo-
cystinurie Methionin Cystein 

MTHFR-Variante* + --- --- --- 

MTHFR-Mangel + + ↓ --- 
MS-Mangel + + ↓ --- 
CBS-Mangel + + ↑ ↓ 

Folsäure-Mangel + ---/+ --- --- 
Vitamin B12-Mangel + ---/+ --- --- 
Vitamin B6-Mangel + ---/--- --- --- 

 

* MTHFR 677C T (thermolabile MTHFR)  
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1.1.2.3 Sonstige Ursachen 

Häufig führen Einschränkungen der Nierenfunktion zu erhöhten Homocystein-

konzentrationen. Dies ist unter anderem auch der Grund dafür, dass mit steigendem 

Alter zunehmend höhere Homocysteinkonzentrationen beobachtet werden10.  

Zahlreiche Arzneistoffe können ebenfalls eine Erhöhung der Homocystein-

Plasmakonzentration induzieren. Sie wirken auf direktem oder indirektem Weg 

antagonistisch zu den Cofaktoren bzw. Enzymen des Homocysteinstoffwechsels 

oder interferieren mit der renalen Elimination von Homocystein. Eine Auswahl häufig 

eingesetzter Arzneistoffe, die eine Hyperhomocysteinämie hervorrufen können, 

beinhaltet Tab. 1-2.  

Tab. 1-2: Arzneistoffe, die zu einer Hyperhomocysteinämie führen können10. 

Arzneistoff(gruppe) Mechanismus 

Metformin, Protonenpumpenblocker 
(z.B. Omeprazol), Colestyramin, 

Diuretika (z.B. Furosemid, Triamteren, 
Thiazide) 

Verminderte Resorption von Vitamin B12 

Antifolate (z.B. Trimethoprim, 
Methotrexat) 

Hemmung der Dihydrofolatreduktase 

Antiepileptika (z.B. Carbamazepin, 
Phenytoin) 

Interaktion mit dem Folatstoffwechsel 

Isoniazid 
Vitamin B6-Antagonismus 

(Hydrazonbildung) 

Methylxanthine (z.B. Theophyllin, 
Coffein) 

Hemmung der Pyridoxal-Kinase 

Lachgas (N2O) Inaktivierung der Methioninsynthase 

Cyclosporin, Fibrate (z.B. Clofibrat) Verminderte Nierenfunktion 

 

Ferner konnte gezeigt werden, dass Rauchen32, Kaffee33 und übermäßiger 

Alkoholgenuss34 zu einer Erhöhung der Homocysteinkonzentration führen kann. 
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1.1.3 Klinische Symptomatik einer Hyperhomocysteinämie und 
therapeutische Empfehlungen 

Das klinische Bild von Patienten mit Hyperhomocyst(e)inämie/Homocystinurie ist von 

der Art und dem Ausmaß der Störung abhängig, die der Erkrankung zugrunde liegt. 

Bereits moderat erhöhte Homocystein-Plasmakonzentrationen (D.A.CH-Liga: 

>12-30 µM) können kardiovaskuläre Erkrankungen3,4,35, osteoporotische Knochen-

veränderungen mit erhöhter Frakturrate36 und kognitive Störungen7,8,37 hervorrufen. 

Nach metaanalytischen Berechnungen würde eine Homocysteinsenkung um 3-5 µM 

die Inzidenz von venösen Thrombosen, zerebralen Insulten und Herzinfarkten um bis 

zu 25 %(!) reduzieren38,39. Die D.A.CH-Liga Homocystein empfiehlt zur Senkung 

moderat erhöhter Homocysteinkonzentrationen eine Kombinationstherapie 

bestehend aus Folsäure (0,2-0,8 mg), Vitamin B12 (3-30 µg, > 60 Jahre: 100 µg) und 

Vitamin B6 (2-6 mg)10.  

Patienten, die unter einer massiven Störung der Remethylierung von Homocystein 

leiden (z.B. infolge eines ausgeprägten Mangels an Vitamin B12 oder reduzierten 

Folaten oder infolge eines Defektes der MS oder MTHFR), weisen im Gegensatz zu  

Tab. 1-3: Klinische Symptomatik und Therapie von Störungen im Homocystein-

stoffwechsel.  

Störung Klinische Symptome (Auswahl)  Therapie 

Remethylierungs-
störung  

(ausgeprägter Folat- 
und/oder Vitamin B12-

Mangel,  
MTHFR-Mangel, 

MS-Mangel) 

Megaloblastäre Anämie, 
Myelopathien, Neuropathien, 

Atherosklerose, Thromboembolien, 
Osteoporose, Ataxie, 

psychomotorische Retardierung, 
Demenz, zerebrale Anfallsleiden, 

Demyelinisierung, zerebrale 
Atrophie24,40-43 

Gabe von 
Vitamin B6/B12, 

Folsäure, 
Methionin, Betain, 
sowie N5-Methyl-
THF bei MTHFR-

Mangel44,45 

Transsulfurierungs-
störung 

(CBS-Mangel) 

Atherosklerose, Thromboembolien, 
Luxation der Augenlinsen, 

Osteoporose, helle Haare, mentale 
Retardierung, psychiatrische 

Störungen42 

Gabe von 
Vitamin B6 und 

Betain, Methionin-
Diät45-47 
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Patienten mit Transsulfurierungsdefekt (z.B. bei homozygoten CBS-Mangel) eine 

schwerwiegende neurologische Symptomatik auf (s. Tab. 1-3). Neben 

Krampfanfällen steht ein rapider mentaler Abbau im Vordergrund, der unter anderem 

Folge einer zerebralen, kernspintomographisch gut nachweisbaren Demyelinisierung 

ist40,43. 

1.1.4 Pathomechanismen 

Nachfolgend werden die wichtigsten pathologischen Mechanismen diskutiert, die für 

die Schädigung von Gefäßen, Knochen und Nerven verantwortlich gemacht werden.  

 

Atherogene Mechanismen  
Eine vaskuläre Dysfunktion soll insbesondere durch reaktive Sauerstoffspezies 

(ROS) ausgelöst werden, die bei der Oxidation des Homocysteins freigesetzt werden 

(Wasserstoffperoxid, Superoxidanionen, Hydroxylradikale)1,48. Sie wirken direkt 

toxisch auf das Endothel, inaktivieren vasoprotektives NO („endothelium derived 

relaxing factor“, EDRF)49 und oxidieren Lipide, die reich an ungesättigten Fettsäuren 

sind. Es konnte In-vitro gezeigt werden, dass auch LDL-Partikel (Low density 

lipoproteins) durch ROS oxidiert werden50. Die LDL-Oxidation wird als 

Schlüsselschritt der Atherosklerose angesehen.  

Neben oxidativen Mechanismen wird ein Methylierungsdefizit für Gefäßschäden 

verantwortlich gemacht51. Es tritt insbesondere dann auf, wenn SAM, der wichtigste 

Überträger von Methylgruppen im Organismus, nicht in ausreichender Menge zur 

Verfügung steht (z.B. aufgrund einer gestörten Remethylierung). Allerdings können 

Methylierungsreaktionen trotz suffizienter Mengen an SAM auch dann gestört sein, 

wenn infolge erhöhter Homocysteinkonzentrationen (z.B. bei CBS-Mangel) die 

Konzentration des SAH ansteigt52,52 (die SAH-Hydrolase begünstigt die Bildung, nicht 

den Abbau von SAH53). Da SAH von SAM-nutzenden Methyltransferasen mit höherer 

Affinität gebunden wird als SAM, stellt es einen starken Inhibitor für 

Methylierungsreaktionen dar54. Es wurde die Hypothese aufgestellt, dass der 

Zustand der Hypomethylierung auch eine verminderte Methylierung der DNA von 

Muskelzellen der Intima nach sich zieht und dadurch bedingt Mutationen auftreten, 
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die zur Proliferation glatter Muskelzellen und nachfolgender Verengung des 

Gefäßlumens führen55. 

Aus In-vitro-Studien ist bekannt, dass Homocystein über verschiedene Mechanismen 

mit dem Gerinnungssystem interferieren kann. Es steigert die Aktivierung des 

Gerinnungsfaktors V56 und fördert die Umwandlung von Prothrombin zu Thrombin56, 

sowie die Bildung der Gewebsthrombokinase („tissue factor“)57. Wichtige 

Hemmstoffe des Gerinnungssystems werden in geringerem Ausmaß gebildet 

(Heparansulfat58) bzw. aktiviert (Thrombomodulin, Antithrombin III, Protein C59-62). 

Darüber hinaus beeinträchtigt Homocystein die Bindung des Gewebe-Plasminogen-

Aktivators an Endothelzellen und verringert somit die Fibrinolyse63. Alle diese 

Mechanismen führen zur vermehrten Bildung von Thrombin und schaffen so eine 

prothrombotische Situation. Es muss einschränkend erwähnt werden, dass in den 

oben angeführten In-vitro-Studien in der Regel Homocysteinkonzentrationen 

eingesetzt wurden, die weit über der Plasmakonzentration von Patienten mit 

moderater Hyperhomocysteinämie lagen und in-vivo oftmals nicht bestätigt werden 

konnten. 

 
Mechanismen der Knochenschädigung 
McKusick konnte bereits 1966 zeigen, dass Homocystein mit der Kollagen-

Quervernetzung interferiert und diese Interaktion in einer verminderten 

Knochenstabilität resultiert64. Dieser Mechanismus der Knochenschädigung wurde 

später durch Kang et al. bestätigt65. 

 

Mechanismen der neurotoxischen Wirkung 
Auch die neurotoxische Wirkung des Homocysteins wird auf einen erhöhten 

oxidativen Stress und Methylierungsstörungen zurückgeführt. Ferner sollen NMDA-

Rezeptor-vermittelte toxische Reaktionen eine größere Rolle spielen.  

ROS stellen für das Gehirn eine besondere Gefahr dar, da es einen hohen Anteil 

mehrfach ungesättigter Fettsäuren besitzt, die Aktivität ROS-detoxifizierender 

Enzyme (Katalase, Superoxid-Dismutase, Glutathion-Peroxidase) im Gehirn 

vergleichsweise niedrig ist und abgestorbene Neuronen nicht ersetzt werden 

können66. ROS, die im Rahmen der Oxidation von Homocystein anfallen, könnten 

daher die Entgiftungskapazitäten des Gehirns übersteigen und zu neuronalen 
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Schäden führen. Von besonderem Interesse ist, dass ROS-induzierte DNA-

Strangbrüche und nachfolgende Apoptose bereits bei Homocysteinkonzentrationen 

von 0,5 µM beobachtet wurden67. White et al. konnten zeigen, dass die Oxidation von 

Homocystein insbesondere durch zweiwertige Kupferionen katalysiert wird und dass 

Kupfer komplexierende Substanzen (Chelat-Bildner) die neurotoxische Wirkung von 

Homocystein weitgehend aufheben. Sie zeigten weiterhin, dass auch Katalase, ein 

Enzym, welches Wasserstoffperoxid entgiftet, in der Lage ist, Homocystein induzierte 

neurotoxische Effekte zu verhindern und schlossen daraus, dass bei der Oxidation 

des Homocysteins insbesondere Wasserstoffperoxid freigesetzt wird68. Verschiedene 

Arbeitsgruppen konnten belegen, dass auch Glutathion aufgrund seiner 

antioxidativen Wirkung neurotoxische Effekte des Homocysteins deutlich verringern 

kann69,70.  

Methylierungsdefizite können sich auf zerebraler Ebene besonders fatal auswirken, 

da sie zu einem Mangel an Cholin, einem essentiellen Bestandteil der Myelinscheide 

von Neuronen, führen. Ein langfristig ausgeprägter Mangel an Cholin wurde für 

Demyelinisierungen verantwortlich gemacht, welche man bei Patienten mit massiv 

gestörter Remethylierung beobachtet24,40-43. Ho et al. konnten zeigen, dass SAM die 

Homocystein induzierte Apoptoserate bei Neuronen signifikant reduzieren kann – ein 

Indiz dafür, dass Methylierungsdefizite auch zur Einleitung apoptotischer Prozesse 

führen können71. 

Homocystein, insbesondere aber seine Metaboliten HCSA und HCA und in weiterem 

Sinn auch CSA, CA, haben eine hohe Affinität zu ionotropen Glutamat-Rezeptoren, 

vor allem dem NMDA-Rezeptor18,19,21,22,72. Eine intensive Stimulation des Rezeptors 

mit exzitatorischen Substanzen führt zu einem Anstieg der intrazellulären 

Calciumkonzentration und nachfolgend zur Aktivierung zahlreicher zytotoxischer 

Enzyme73-75. Bei massiver Überladung mit Calciumionen geht die Nervenzelle 

aufgrund osmotischer Lyse oder durch das Einleiten der Apoptose zugrunde (s. Abb. 

1-3). Das Konzept der Exzitotoxizität (Kunstwort aus Exzitation und Toxizität) ist für 

das Entstehen zahlreicher neurodegenerativer Erkrankungen verantwortlich gemacht 

worden74,75. Homocystein und dessen oxidative Metaboliten wurden in den Liquores 

von Patienten mit gestörter Homocysteinverstoffwechslung und ausgeprägter 

Neurotoxizität in zum Teil deutlich erhöhten Konzentrationen nachgewiesen52,76. 

Anhand von Versuchen mit neuronalen Zellkulturen wurde demonstriert, dass 
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Cl--Kanal 
Ca2+-Kanal 

Kainat NMDA AMPA 
mGlu 

IP3/DAG 

PLC Na+ 

Ca2+ ↑↑

Na+ Na+ 

Cl- 

Proteasen (Kalpaine I/II), Phospholipasen (PLA2, PLC), 

Endonukleasen, Proteinkinasen (CaMPK II, PKC), NO-Synthase 

Lipidperoxidation, Schäden an Zytoskelett, DNA und Mitochondrien 

Osmotische Lyse, Apoptose 

Homocystein vermittelte neurotoxische Reaktionen durch die Gabe von NMDA-

Rezeptorantagonisten signifikant reduziert werden können67,71,72. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 1-3: Mechanismus der Exzitotoxizität.  

Abkürzungen: Kainat: Kainat-Rezeptor; NMDA: N-Methyl-D-Aspartat(-Rezeptor); AMPA: L-α-

Amino-3-hydroxy-5-methylisoxazol-4-propionsäure(-Rezeptor); mGLU: metabotroper Gluta-

matrezeptor; PLC: Phospholipase C; IP3: Inositoltriphosphat; DAG: Diacylglycerol 
 

Ferner wird diskutiert, dass Homocystein induzierte atherosklerotische 

Veränderungen zerebraler Gefäße zu Ischämie und Hypoxie führen könnten, und 

dadurch bedingt Neuronen zu Schaden kommen77. 

Auch Cystein steht im Verdacht, in höheren Konzentrationen neurotoxische 

Wirkungen hervorzurufen78-80. Diese additive Toxizität könnte insbesondere dann 

zum Tragen kommen, wenn die Blut-Hirn- bzw. Blut-Liquor-Schranke durch eine 

Infiltration mit Tumoren oder durch Bestrahlungen geschädigt wird und größere 

Mengen Cystein aus dem Blut ins ZNS gelangen können.  
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1.2 Methotrexat 

Im Jahre 1948 berichtete Farber über den ersten erfolgreichen Einsatz des 

Folsäureantagonisten Aminopterin in der Behandlung der akuten lymphatischen 

Leukämie bei Kindern81. Kurze Zeit später wurde mit Methotrexat (Amethopterin, 

MTX) ein weiterer Folsäureantagonist eingeführt. Es verdrängte Aminopterin in der 

Therapie, da es sich als weniger toxisch erwies. Seitdem wird MTX zur Behandlung 

verschiedener maligner Erkrankungen, in der Rheumatologie und der Immunologie 

eingesetzt. Einen bedeutenden Wandel erlebte die MTX-Therapie, als Djerassi 1967 

zeigen konnte, dass MTX in potentiell letalen Dosen appliziert werden kann, wenn 

nach einer MTX-Infusion Calciumfolinat (Leucovorin®) zum Schutz normaler Zellen 

verabreicht wird („Rescue“)82. Durch dieses Konzept konnte insbesondere die 

Behandlung der akuten lymphatischen Leukämie, der Lymphome und der 

Osteosarkome entscheidend verbessert werden. 

1.2.1 Chemische Struktur  

MTX besteht aus einem Pteridinring, p-Aminobenzoesäure und Glutaminsäure (s. 

Abb. 1-4). Es unterscheidet sich von der natürlich vorkommenden Folsäure durch 

den Austausch der Hydroxy- gegen die Aminogruppe in Position 4 des Pteridinrings 

sowie eine N-Methylierung am p-Aminobenzoesäurerest.  

 

 

 

 

 

 

Abb. 1-4: Chemische Struktur von MTX (4-Amino-4-desoxy-N10-methyl-folsäure). 
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1.2.2 Pharmakokinetik 

Resorption und Verteilung 

Methotrexat wird in einer Dosierung bis zu 25 mg/m2 gut aus dem Gastro-

intestinaltrakt resorbiert83, höhere Dosen werden unvollständig resorbiert. Nach 

subkutaner Applikation werden bis zu 40 mg/m2 84, nach intramuskulärer bis zu 

100 mg85 resorbiert. Ungefähr 50 % des MTX sind an Plasmaproteine gebunden83.  

Nach erfolgter Resorption verteilt sich MTX rasch im gesamten Körperwasserraum. 

Aus pathologisch vergrößerten, extravaskulären Räumen (Pleuraerguss, Aszites, 

Ödeme) wird MTX nur verzögert wieder freigesetzt. Die Folge sind protahiert erhöhte 

Plasmakonzentrationen und eine deutliche Verlängerung der terminalen 

Halbwertszeit. Zytotoxische Konzentrationen können unter Umständen noch nach 

erfolgter Rescue-Therapie vorliegen. Aus diesem Grund müssen vor einer 

hochdosierten MTX-Gabe (HDMTX) Ergüsse entfernt und Ödeme ausgeschwemmt 

werden85.  

MTX gelangt durch passive Diffusion oder Carrier-vermittelte Transportsysteme in 

den Intrazellularraum. Die zwei wichtigsten Transportsysteme sind der „Reduced 

Folate Carrier“ (RFC) und ein membranständiger Folatrezeptor (FR), auch 

„Membrane-Associated Folate Binding Protein“ (mFBP) genannt. Natürliche 

Substrate für den RFC sind reduzierte Folate, insbesondere N5-Methyltetrahydrofolat 

(N5-Methyl-THF). Der bidirektionale RFC-Transport ist pH-abhängig und stellt ein 

sättigbares System für reduzierte Folate (KM = 1-10 µM)86,87 und MTX 

(KM = 0,8-26 µM)87 dar. Eine verminderte oder fehlerhafte Expression des RFC-

Transporters kann die Zytotoxizität mindern und somit zur Resistenzentwicklung 

gegen Antifolate führen88,89. Der Folatrezeptor (FR) besitzt eine etwas höhere 

Affinität zu Folsäure (KM = 1-5 nM) als zu reduzierten Folaten und MTX. Er spielt 

wegen seiner geringen Kapazität für den MTX-Transport in die Zelle nur eine 

untergeordnete Rolle85. 

MTX passiert aufgrund seiner hohen Polarität nur sehr schlecht die Blut-Hirn-

Schranke. Unter einer Dauerinfusion erreichen die MTX-Konzentrationen im Liquor 

nur 1-5 % der Steady-State-Konzentrationen im Serum90-92. Zytotoxische 

Konzentrationen (> 1,0 µM93) im Liquor werden daher nur erzielt, wenn MTX in 
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hohen Dosen infundiert oder intrathekal (intralumbal oder intraventrikulär) verabreicht 

wird. Da sich MTX nach intralumbaler Applikation schlecht im Ventrikelsystem verteilt 

und zudem die Konzentration im ventrikulären Liquor nur ca. 10 % der Konzentration 

im Lumbalsack beträgt94, wird MTX alternativ auch direkt in die Seitenventrikel 

appliziert.  

 

Metabolisierung 
Bislang sind drei verschiedene Metaboliten von MTX identifiziert worden (s. Abb. 

1-5). Der Hauptmetabolit, 7-OH-Methotrexat (7-OH-MTX), wird durch unspezifische 

Aldehydoxidasen der Leber gebildet. 7-OH-MTX ist 40-200fach schwächer wirksam 

als MTX und gilt daher als inaktiver Metabolit85. Wegen der geringen 

Wasserlöslichkeit trägt 7-OH-MTX entscheidend zur Nephrotoxizität von MTX bei. Es 

wurde gezeigt, dass ein akutes Nierenversagen nach HDMTX unter anderem durch 

ausgefallenes 7-OH-MTX in den Nierentubuli zurückzuführen ist95. Die renale 

Toxizität kann weitgehend vermieden werden, wenn man vor Anlegen der MTX-

Infusion für eine ausreichende Hydrierung sorgt (Infusion von 0,9 % NaCl-Lösung 

und 5 % Glucose-Lösung im Wechsel, mindestens 3 L/m2/Tag) und den Urin durch 

Gabe von Natriumbicarbonat alkalisiert. 

Ein weiterer Metabolit, die 2,4-Diamino-N10-methylpteroinsäure (DAMPA), wird 

hauptsächlich von intestinalen Darmbakterien gebildet96. Klinisch wird DAMPA keine 

Bedeutung beigemessen, da sie nur zu einem geringen Prozentsatz entsteht (3-5 %) 

und eine wesentlich niedrigere Affinität zum Zielenzym, der Dihydrofolatreduktase, 

besitzt als MTX (ca. 1/200 der MTX-Affinität)96. 

Intrazellulär werden an MTX, wie auch an die natürlich vorkommenden Folate, durch 

die Folsäure-Polyglutamatsynthetase (FPGS) bis zu sechs Glutaminsäurereste 

angehängt97,98. Die gebildeten mehrfach negativ geladenen MTX-Polyglutamate 

(MTX-PG) können weder über den RFC und den FR noch durch passive Diffusion 

die Zelle verlassen und verbleiben somit länger als MTX in der Zelle. Sie werden, wie 

die natürlich vorkommenden Folsäurepolyglutamate, aktiv in die Lysosomen der 

Zelle transportiert und dort gespeichert. Erst nach Abspaltung des 

Polyglutamatrestes durch die Folsäure-Polyglutamathydrolase (FPGH) kann MTX 

wieder die Zelle verlassen. Da die MTX-PG eine ähnlich hohe Affinität zur DHFR 
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haben wie MTX und zudem in der Lage sind, Enzyme der Purinbiosynthese direkt zu 

hemmen, kommt ihnen eine große Bedeutung für die Zytotoxizität zu (s. 1.2.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 1-5: Metabolisierung von MTX.  
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Elimination 

MTX wird hauptsächlich über die Nieren in unveränderter Form ausgeschieden. Die 

renale Elimination erfolgt zum Teil durch glomeruläre Filtration, zum Teil durch 

tubuläre Sekretion. Ein gewisser Teil wird auch tubulär rückresorbiert. Insgesamt ist 

die renale Clearance sehr variabel. Sie ist im Besonderen abhängig von der 

Hydrierung, dem Urin-Fluss und -pH-Wert, sowie einer eventuell gegebenen 

Komedikation. Darüber hinaus ist sie aufgrund der sättigbaren tubulären Sekretion 

abhängig von der verabreichten MTX-Dosis85. Kinder (ca. 80 mL/min/m2) zeigen 

nach einer HDMTX-Infusion allgemein eine höhere Clearance als Erwachsene (ca. 

57 mL/min/m2)99. 

Weniger als 10 % werden über die Galle ausgeschieden. Biliär eliminiertes MTX 

unterliegt dem enterohepatischen Kreislauf, so dass nach einer Infusion nur geringe 

Mengen an MTX (< 2 %) im Stuhl gefunden werden100.  

Nach intravenöser Gabe wird MTX aus dem Plasma biphasisch eliminiert. Auf eine 

Phase schneller Verteilung (t½ = 1,5-3,5 h) folgt eine Phase, die durch die renale 

Elimination geprägt ist (t½ = 8,0-15,8 h)101,102. Bei Vorliegen dritter Verteilungsräume 

(Ödeme, Aszites, Pleuraerguss) kann sich die terminale Halbwertszeit 

vervierfachen85.  

Nach intrathekaler Applikation erfolgt die Elimination aus dem zentralen 

Nervensystem durch Resorption von Liquor und ein unspezifisches aktives 

Transportsystem, welches im Choroid-Plexus liegt103. Die Ausscheidung aus dem 

lumbalen bzw. ventrikulären Liquor verläuft ebenfalls biphasisch, die Halbwertszeiten 

betragen 4,5 und 14,094 bzw. 1,7 und 6,6 Stunden103. Die Clearance aus dem ZNS-

Kompartiment kann bei meningealer Leukämie, Hydrocephalus und dem 

postpunktionellen Syndrom nach Lumbalpunktion vermindert sein94.  

1.2.3 Wirkungsmechanismus 

MTX ist ein Antimetabolit. Es imitiert das natürliche Substrat der Dihydrofolat-

reduktase, die Dihydrofolsäure (DHF), ohne deren Funktion zu übernehmen. Die 

kompetitive Hemmung der DHFR (Ki ~0,01-0,2 nM)83 bewirkt einen Mangel an 

reduzierten Folaten, die der Organismus zur Synthese von Purin- und 

Pyrimidinbasen benötigt (s. Abb. 1-6). Intrazellulär gebildete MTX-PG hemmen trotz 
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vergleichbarer Affinität die DHFR stärker als MTX, da sie wesentlich langsamer von 

der DHFR abdissoziieren98.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 1-6: Intrazelluläre Wirkungsmechanismen von MTX und Rescue mit 

Calciumfolinat (N5-Formyltetrahydrofolat, N5-FTHF). Abkürzungen: RFC: Reduced 

Folate Carrier, FR: Folate Receptor, MTX-PG: Methotrexat-Polyglutamate, FPGS: 

Foly-Polyglutamatsynthetase, FPGH: Foly-Polyglutamathydrolase, DHFR: 

Dihydrofolatreduktase, N5-FTHF: N5-Formyltetrahydrofolat, N10-FTHF: N10-Formyl-

tetrahydrofolat, N5,N10-MTHF: N5,N10-Methylentetrahydrofolat, N5-MTHF: 

N5-Methyltetrahydrofolat. 

Darüber hinaus sind sie in der Lage, die Thymidilatsynthase104 und Enzyme der 

Purinbiosynthese, die Glycinamidribonukleotid-Transformylase (GAR-TF) und die 

5-Aminoimidazol-4-carboxamidribonukleotid-Transformylase (AICAR-TF)105,106 direkt 

zu hemmen (s. Abb. 1-7). Die Biosynthese kommt auf der Stufe des 
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Abb. 1-7: Interaktion von MTX-PG mit der De-Novo-Synthese von Purinbasen 

(ausgewählte Schritte). Abkürzungen: PRPP: α-5-Phosphoribosyl-1-pyrophosphat, 

GAR: Glycinamidribonukleotid, GAR-TF: GAR-Transformylase, FGAR: 

Formylglycinamidribonukleotid, N10-FTHF: N10-Formyltetrahydrofolat, THF: 

Tetrahydrofolat, AICAR: 5-Aminoimidazol-4-carboxamid-ribonukleotid, AICAR-TF: 

AICAR-Transformylase, FICAR: 5-Formamido-imidazol-4-carboxamidribonukleotid, 

IMP: Inosinmonophosphat. 
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Da AICAR ein Hemmstoff der AMP- und Adenosin-Desaminase ist107, kann nach 

einer HDMTX-Therapie die Konzentration an Adenosin im Plasma bzw. Liquor erhöht 

sein108,109. Insgesamt wird den MTX-PG ein großer Stellenwert für die Wirksamkeit 

von MTX zugeschrieben. Whitehead konnte z.B. zeigen, dass die Überlebensrate 

nach fünf Jahren bei Kindern, deren Lymphoblasten große Mengen an MTX-PG 

akkumulierten, deutlich größer war als bei Kindern, deren Lymphoblasten nur in 

begrenztem Umfang MTX-PG aufnahmen89.  

1.2.4 Klinische Anwendungen 

Zur Therapie maligner Erkrankungen wird MTX in niedriger Dosierung (< 100 mg/m2) 

bei der akuten lymphatischen Leukämie (ALL), Non-Hodgkin-Lymphomen (NHL), 

Meningiosis leucaemica, Chorionepitheliom, Mamma-Karzinom, Cervix-Karzinom, 

Ovarial-Karzinom, kleinzelligem Bronchial-Karzinom, Malignomen im Hals und 

Kopfbereich und bei ZNS-Tumoren verwendet.  

Mittelhohe (MDMTX, 100-1000 mg/m2) und hohe Dosierungen (HDMTX, 

> 1000 mg/m2) werden immer dann eingesetzt, wenn schlecht perfundierte Tumore 

(z.B. Osteosarkome) erreicht werden sollen oder zytotoxische Konzentrationen im 

ZNS erforderlich sind (Malignome im Kopf-Hals-Bereich, ZNS-Tumore, ZNS-

Prophylaxe bei der ALL und NHL). Darüber hinaus werden hohe Dosen an MTX 

eingesetzt, um Resistenzen zu überwinden, die sich durch einen reduzierten MTX-

Membrantransport auszeichnen. In solchen Fällen werden rein durch passive 

Diffusion zytotoxische Konzentrationen in den Zellen aufgebaut. Die Verabreichung 

mittelhoher und hoher MTX-Dosen erfordert, neben einer ausreichenden Hydrierung 

und Urin-Alkalisierung, zum Schutz gesunder Wechselgewebe (insbesondere 

Schleimhäute, gastrointestinale Epithelien, Knochenmark) eine Rescue-Therapie mit 

Calciumfolinat (N5-Formyltetrahydrofolat). Calciumfolinat wird rasch in N10-FTHF, und 

N5,N10-MTHF umgewandelt, so dass eine ausreichende Bereitstellung aktivierter C1-

Einheiten für die Purin- und Pyrimidinsynthese gewährleistet ist (s. Abb. 1-6). Die 

Rescue-Therapie muss spätestens 42-48 h nach Beginn der MTX-Infusion eingeleitet 

werden. Die zu verabreichende Dosis an Calciumfolinat richtet sich nach den 

individuell bestimmten MTX-Serumkonzentrationen.  
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Aufgrund der lymphostatischen Wirkung wird MTX auch zur Therapie der 

generalisierten Psoriasis vulgaris und der rheumatoiden Arthritis eingesetzt. Bei 

diesen Krankheitsbildern wird MTX in einer Dosierung von 5-25 mg/Woche gegeben. 

1.2.5 Neurotoxizität von MTX 

MTX wird bei ordnungsgemäßer Anwendung durch einen erfahrenen Onkologen 

auch in hohen Dosen relativ gut vertragen. Zwischenzeitlich auftretende 

Nebenwirkungen betreffen insbesondere schnell proliferierende Gewebe, wie 

Schleimhäute (Mucositis) und das Knochenmark (Myelosuppression). Gelegentlich 

kommt es zu Nieren-, Leber- und Hautschädigungen (Erytheme, exfoliative 

Dermatitis). All diese unerwünschten Wirkungen sind in der Regel reversibel und 

führen selten zum Abbruch der Therapie.  

Die MTX-induzierte Neurotoxizität hingegen stellt, insbesondere dann, wenn sie 

einen chronischen Verlauf annimmt, eine äußerst ernsthafte Komplikation dar, 

therapeutische Optionen fehlen bislang. Sie tritt insbesondere nach HDMTX auf, eine 

gleichzeitige Bestrahlung oder die intrathekale Gabe von MTX (ITMTX) erhöhen das 

Risiko110. Ferner ist gezeigt worden, dass auch kumulativ hohe Dosen das Entstehen 

der Neurotoxizität begünstigen111-113.  

1.2.5.1 Klinische Symptomatik 

Die MTX-induzierte Neurotoxizität wird nach ihrem zeitlichen Verlauf in die akute, 

subakute und chronische Form eingeteilt (s. Tab. 1-4).  

Die akute Form tritt ein bis zwei Tage nach HDMTX auf. Die Patienten leiden unter 

Schläfrigkeit, Verwirrung, Desorientiertheit und Krampfanfällen110,114,115. 

Insbesondere nach ITMTX findet man eine akute Arachnoiditis, eine Entzündung der 

Hirn- und Rückenmarkshaut, die mit einer Pleocytose (Erhöhung der Zellzahl im 

Liquor) verbunden ist110,116,117. Sie ist in aller Regel von Kopfschmerzen, Übelkeit, 

Erbrechen und Fieber begleitet und klingt nach ca. 3 Tagen ab110,118. 

Symptome der subakuten Neurotoxizität zeigen sich mehrere Tage nach der MTX-

Initialtherapie. Teilweise können aber auch Wochen verstreichen, bis das Bild der 

subakuten Form manifest wird119. Im Vordergrund steht eine Enzephalopathie, die 
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sich klinisch mit affektiven Störungen, Verwirrung, Krämpfen, Lähmungs-

erscheinungen (insbesondere Hemiparesen) und Sprachstörungen (Dysphasie, 

Dysarthrie) zeigt110,115,120-123. Diese Enzephalopathie ist in aller Regel voll 

reversibel115,119,124. Sie wird aufgrund des klinischen Bildes auch als „stroke-like-

syndrom“ bezeichnet. ITMTX erhöht das Risiko, eine schmerzhafte Myelopathie mit 

Paraparesen bzw. Paraplegien zu entwickeln113,125,126. Seltener sind sowohl das 

Gehirn als auch das Rückenmark betroffen (Myeloenzephalopathie). Diese Variante 

ist mit schwerwiegenden neurologischen Ausfällen verbunden und besitzt in 

ausgeprägten Fällen eine infauste Prognose127.  

 

Tab. 1-4: Formen der MTX-induzierten Neurotoxizität. 

Form Eintritt nach MTX-Gabe Klinische Symptome 

Akut Nach 1-2 Tagen Schläfrigkeit, Verwirrung, Krämpfe, 
chemische Arachnoiditis mit Kopf-
schmerzen, Übelkeit, Erbrechen und 
Fieber 

Subakut Nach Tagen bis Wochen Enzephalopathie mit Hemiparese, Ataxie, 
Sprachstörungen, Krämpfen, Verwirrung 
und affektiven Störungen; Myelopathie 
mit schmerzhaften Empfindlichkeits-
störungen in den Beinen, Paraplegie und 
Blasenfunktionsstörungen 

Chronisch  Nach Monaten, teilweise 
erst Jahre später  

Lern- und Gedächtnisstörungen, Ver-
minderung des Intelligenzquotienten, 
Leukenzephalopathie mit Verwirrung, 
Krämpfen, Ataxie, Quadriparese, Dys-
phasie, Demenz, Koma, Tod 

 

Monate bis Jahre nach einer Behandlung mit MTX kann sich eine chronisch progre-

diente Form entwickeln, die durch eine Leukenzephalopathie, eine demyelinisierende 

Enzephalomyelitis, geprägt ist. Diese Form tritt insbesondere dann auf, wenn 

Patienten MTX sowohl intravenös als auch intrathekal verabreicht bekamen und 

zusätzlich eine Bestrahlung erhielten110. Charakteristische Symptome einer 
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Leukenzephalopathie sind Desorientierung, Lähmungserscheinungen, Ataxie, 

Sprach- und Sehstörungen, Krämpfe sowie dementive Erscheinungen124,128-131. 

Leichte Formen der Leukenzephalopathie können sich teilweise 

zurückbilden119,128,132-134, ausgeprägte hingegen verlaufen letal128,135. Patienten, die 

klinisch asymptomatisch sind, können im Alltag durch Lern- und 

Gedächtnisstörungen sowie einem verminderten Intelligenzquotienten auffallen. 

Diese Defizite sind besonders stark ausgeprägt, wenn im Rahmen der Therapie eine 

Schädelbestrahlung stattgefunden hat136-141. 

1.2.5.2 Genese der Neurotoxizität  

Die Genese der Neurotoxizität bleibt, obwohl seit Jahren intensiv beforscht, im 

Wesentlichen unklar. Neben einer direkt toxischen Wirkung auf das 

Nervengewebe142, wird vor allem MTX-induzierten Veränderungen im Adenosin-, 

Biopterin- und Homocystein-Stoffwechsel ein hoher Stellenwert beigemessen142,143. 

Die Interaktion des MTX mit diesen Stoffwechselwegen und mögliche Konsequenzen 

werden nachfolgend erläutert.  

 

Interaktion mit dem Adenosinstoffwechsel 
MTX interagiert mit dem Adenosinstoffwechsel über die intermediär gebildeten MTX-

PG. Sie bedingen durch Hemmung der AICAR-Transformylase die Anhäufung von 

AICAR, einem starken Inhibitor der AMP- und Adenosin-Desaminase, und 

nachfolgend auch von Adenosin (s. Kap. 1.2.3).  

Bernini et al. zeigten, dass Patienten, die mit HDMTX therapiert wurden, erhöhte 

Adenosinkonzentrationen im Liquor aufwiesen und dass Symptome einer akuten 

Neurotoxizität durch die Gabe von Aminophyllin, einem Adenosin-

Rezeptorantagonisten, abgeschwächt werden konnten144. Auch Peyriere et al. 

konnten eine ausgeprägte akute Neurotoxizität mit Aminophyllin erfolgreich 

behandeln145. Prospektiv angelegte Studien mit einer größeren Fallzahl fehlen 

bislang, so dass bis dato nicht geklärt ist, welchen Stellenwert die Interaktion mit dem 

Adenosinstoffwechsel für die Genese früher neurotoxischer Symptome besitzt.  
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Interaktion mit dem Biopterinstoffwechsel 
Tetrahydrobiopterin (THB) ist Cofaktor der Hydroxylierung von Phenylalanin, Tyrosin 

und Tryptophan und somit essentiell für die Biosynthese der Neurotransmitter 

Dopamin und Serotonin. Die enzymatisch katalysierte Wiedergewinnung von THB 

(aus Dihydrobiopterin) erfolgt über die Dihydrofolatreduktase, die 

N5,N10-Methylentetrahydrofolatreduktase oder die Dihydropteridinreduktase (DHPR) 

(s. Abb. 1-8). Methotrexat beeinflusst alle drei Wege der Rückgewinnung von THB: 

die Enzyme DHFR und DHPR146 werden direkt, die N5,N10-Methylen-THFR indirekt, 

bedingt durch einen Mangel an reduzierten Folaten, gehemmt. THB kann bei 

vollständiger Blockade dieser drei Enzymsysteme nur über die Neusynthese aus 

Guanosintriphosphat (GTP) geliefert werden.  

Abelson et al. stellten bereits 1978 die Hypothese auf, dass ein MTX-induzierter 

Mangel an THB zur verminderten Synthese von Dopamin und Serotonin führt und die 

unzureichende Verfügbarkeit dieser Neurotransmitter für das klinische Bild der 

akuten bzw. subakuten Neurotoxizität verantwortlich ist147. Diese Theorie konnte bis 

heute nicht bewiesen werden. Es existieren lediglich zwei Einzelfallberichte, die die 

Hypothese von Abelson et al. stützen. Aus dem einen geht hervor, dass ein Patient 

mit subakuter Neurotoxizität eine erniedrigte THB-Konzentration im Liquor besaß und 

dass die Gabe von DOPA, Carbidopa und 5-Hydroxytryptophan (so genannte 

Substitutivtherapie bei Patienten mit Biopterinmangel) die Symptomatik des 

Patienten verbesserte148. Der andere Fallbericht kam zu dem Ergebnis, dass nach 

Verabreichung von HDMTX im Liquor eines Patienten weniger Abbauprodukte von 

Dopamin (Homovanillinsäure) und Serotonin (Hydroxyindolessigsäure) gefunden 

wurden149. Zwei größere klinische Studien, durchgeführt jeweils an Kindern mit ALL, 

offenbarten, dass HDMTX keine signifikante Veränderungen im Stoffwechsel des 

Dopamins bzw. Serotonins bewirkt148,150. In-vitro-Versuche, einen Mangel an THB 

durch MTX zu induzieren, scheiterten151-153; wahrscheinlich liefert die Neusynthese 

aus GTP ausreichend große Mengen an THB, sodass MTX, in therapeutischen 

Dosen verabreicht, keine Verarmung des THB-Pools bewirkt153.  
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Abb. 1-8: Interaktion von MTX mit dem Biopterinstoffwechsel. Abkürzungen: 

7,8-DHB: Dihydrobiopterin, GTP: Guanosintriphosphat, 5-HT3: Serotonin, Phe: 

Phenylalanin, Trp: Tryptophan, Tyr: Tyrosin; Enzyme: (1): Dihydrofolatreduktase 

(DHFR), (2): N5,N10-Methylentetrahydrofolatreduktase (N5,N10-Methylen-THFR) (3): 

Dihydropteridinreduktase (DHPR). 

 

Interaktion mit dem Homocysteinstoffwechsel 
MTX beeinflusst den Stoffwechsel des Homocysteins, indem es einen Mangel an N5-

Methyl-THF, dem Cofaktor der Methioninsynthase, induziert76,154. Somit unterdrückt 

MTX die Remethylierung zu Methionin, welche im Gehirn die wichtigste 

Abbaureaktion von Homocystein darstellt (s. Kap. 1.1.1). 

Erhöhte Homocysteinkonzentrationen wurden sowohl im Plasma155-159 als auch im 

Liquor76,160,161 von Patienten, die wegen einer onkologischen Erkrankung HDMTX 

verabreicht bekamen, gefunden. Quinn et al. stellten die Hypothese auf, dass 

insbesondere Mikroangiopathien und fokale neurologische Ausfälle, welche man bei 
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Patienten mit MTX-induzierter Neurotoxizität beobachtet, durch die 

gefäßschädigende Wirkung des Homocysteins verursacht werden76. Kishi et al. 

zeigten, dass Kinder, die im Rahmen einer Hochdosis-Chemotherapie mit MTX unter 

Krampfanfällen litten, tendentiell höhere Homocysteinkonzentrationen im Plasma 

besaßen als solche, die keine neurologischen Symptome aufwiesen156.  

Die Arbeitsgruppe um Quinn konnte in retrospektiv untersuchten Liquores von MTX-

behandelten Patienten auch die oxidativen Metaboliten des Homocysteins (CSA, CA, 

HCSA, HCA), zum Teil (insbesondere CSA und HCA) in extrem hohen 

Konzentrationen76,161 nachweisen. In den Liquores einer gleichzeitig untersuchten 

Kontrollgruppe (gesunde Erwachsene) konnten die exzitatorischen Metaboliten des 

Homocysteins (SEAA) hingegen nicht detektiert werden76. Interessanterweise 

besaßen diejenigen Patienten, die neurotoxische Symptome aufwiesen, die höchsten 

SEAA-Konzentrationen.  

Surtees et al. zeigten, dass unter einer HDMTX-Therapie die Konzentrationen an 

SAM und Methionin im Liquor abfallen und dass die gemessenen SAM-

Konzentrationen invers mit den Konzentrationen an MBP (Myelin basisches Protein), 

einem Marker für die Demyelinisierung, korrelierten154. Kishi et al. zeigten, dass zwei 

ALL-Patienten mit ausgeprägter Leukenzephalopathie einen deutlich niedrigeren 

SAM/SAH-Quotienten besaßen, als sieben ALL-Patienten, die klinisch unauffällig 

waren162. Beide Studien geben starke Hinweise dafür, dass ein MTX-induziertes 

Methylierungsdefizit dazu beiträgt, dass sich eine chronische Form der MTX-

Neurotoxizität entwickelt.  

Zusammenfassend kann festgehalten werden, dass aufgrund der bisher 

durchgeführten Studien, nicht zuletzt aber auch wegen der sehr vergleichbaren 

klinischen Symptomatik von MTX-Neurotoxizität und (ausgeprägtem) 

Methylierungsdefizit (s. Kap. 1.1.3), vieles dafür spricht, dass als Hauptauslöser der 

MTX-Neurotoxizität die gestörte Remethylierung des Homocysteins in Frage kommt. 

Homocystein und seine exzitatorischen Metaboliten sowie eine verringerte 

Methylierungskapazität sind Mediatoren dieser Toxizität. Ein eindeutiger Beweis 

dieser These ist allerdings bis heute, nicht zuletzt aufgrund mangelhaften 

Studiendesigns und zu geringer Fallzahlen, nicht erbracht worden.  
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1.3 Problemstellung und Zielsetzung 

Die neurotoxische Wirkung von Methotrexat wird unter anderem auf Methotrexat-

induzierte metabolische Veränderungen zurückgeführt. Es scheint sich 

herauszukristallisieren, dass insbesondere Veränderungen im Homocystein-

stoffwechsel eine Bedeutung für die Genese neurotoxischer Symptome zu haben 

scheinen.  

Verschiedene Arbeitsgruppen konnten zeigen, dass unter einer Chemotherapie mit 

hochdosiertem Methotrexat einerseits Homocystein und dessen oxidative 

Metaboliten im Plasma bzw. Liquor akkumulieren, andererseits Methionin und SAM 

depletieren.  

In der Regel wurden diese Daten punktuell, d.h. oft nur zu einem bestimmten 

Zeitpunkt der Chemotherapie, erhoben. Die quantitative Beschreibung einer 

veränderten Verstoffwechslung von Homocystein im Verlauf einer Chemotherapie mit 

HDMTX fehlt bislang oder ist nur ansatzweise vorhanden.  

Besonders spärlich sind die Informationen darüber, wie sich die gestörte 

Metabolisierung von Homocystein, bedingt durch eine intravenöse oder intrathekale 

Verabreichung von MTX, auf das zentrale Nervensystem (ZNS) auswirkt. Dies ist von 

besonderem Interesse, wenn man berücksichtigt, dass im ZNS weder die Betain-

Homocystein-Methyltransferase13,163 noch die Cystathionin-ß-Synthase14,164 zur 

Verstoffwechslung von Homocystein zur Verfügung steht. Aufgrund dieser Tatsache 

sollte eine Methotrexat-induzierte gestörte Remethylierung zu Methionin, bedingt 

durch einen Mangel an N5-Methyltetrahydrofolat, einen besonders deutlichen Anstieg 

der Homocysteinkonzentration im ZNS nach sich ziehen. Darüber hinaus sollten –

 bedingt durch die Akkumulation des Homocysteins – auch die Konzentrationen an 

SAH und den oxidativen Metaboliten des Homocysteins im Verlauf der 

Chemotherapie ansteigen.  

 

Um ein besseres Bild bezüglich MTX-induzierter Veränderungen des Homocystein-

stoffwechsels zu gewinnen und um die Bedeutung dieser Veränderungen auf die 

Genese der Neurotoxizität zu evaluieren, wurde zum Ziel gesetzt, neben Methotrexat 

gleichzeitig alle Substanzen, die in den Stoffwechsel des Homocysteins involviert 

sind und denen eine pathophysiologische Rolle bei der Genese der Neurotoxizität 
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zukommen könnte, in Proben von Tumorpatienten, die eine Hochdosis-

Chemotherapie mit Methotrexat erhalten, zu bestimmen. Ausgewählt wurden:  

• N5-Methyltetrahydrofolat 

• Homocystein 

• Metaboliten des Homocysteins: HCSA, HCA  

• S-Adenosylmethionin/S-Adenosylhomocystein 

• Cystein 

• Metaboliten des Cysteins: CSA, CA 

• Glutathion 

 

Zusätzlich wurde festgelegt, die Konzentrationen von MTX im Liquor zu bestimmen. 

Die Bestimmung von MTX, N5-Methyltetrahydrofolat und SAM/SAH im Liquor wurde 

von der Projektpartnerin Frau Sandra Vezmar (Dissertation in Vorbereitung) 

übernommen.  

Als Patientenkollektive wurden ALL-Patienten und Patienten mit primären 

Lymphomen des ZNS ausgewählt, die im Rahmen ihrer Behandlung keine 

Bestrahlung erhielten. Diese Kollektive stellen ein höchst interessantes Patientengut 

dar, da sie im Rahmen der Chemotherapie mit HDMTX behandelt werden und daher 

MTX-induzierte Veränderungen des Homocysteinstoffwechsels besonders stark 

ausgeprägt sein sollten. Ferner ist die Inzidenz der Neurotoxiziät bei diesen 

Patienten recht hoch, was nicht zuletzt mit den relativ aggressiven 

Therapieprotokollen zusammen hängt. Bei ALL-Patienten treten beispielsweise 

Symptome der akuten bzw. subakuten Neurotoxizität in 1-20 %112,165 und Symptome 

der chronischen Neurotoxizität in 5-40 % aller Fälle112,132 auf.  

Von Vorteil ist des Weiteren, dass Liquorproben bei diesen Patienten leicht erhältlich 

sind, da die Patienten zur Verabreichung der Zytostatika vergleichsweise häufig 

lumbal oder intraventrikulär punktiert werden. Da neurotoxische Wirkungen das 

zentralnervöse Kompartiment betreffen, sollte der Analyse von Liquorproben ein 

höherer prognostischer Stellenwert zukommen als der Analyse von Plasmaproben. 

Um die obigen Ziele zu erreichen, wurden im Rahmen dieser Arbeit folgende 

Schwerpunkte gesetzt:  



Einleitung  Seite 29 

• Entwicklung und Validierung einer CE-Trennmethode zur simultanen 

Bestimmung schwefelhaltiger, exzitatorischer Aminosäuren (HCSA, HCA, 

CSA, und CA) im Liquor 

• Entwicklung und Validierung einer HPLC-Methode zur Bestimmung von 

Homocystein, Cystein und Glutathion im Liquor 

• Entwicklung und Validierung einer HPLC-Methode zur Bestimmung von 

Methotrexat und 5-Methyltetrahydrofolat (diese Aufgabe wurde von der 

Projektpartnerin Frau Sandra Vezmar übernommen) 

• Untersuchung von Liquores und Plasmaproben von ALL- bzw. 

Lymphompatienten mittels dieser Methoden 

• Beschreibung bzw. Quantifizierung des Einflusses von MTX auf den 

Stoffwechsel des Homocysteins  

• Evaluierung eventuell auftretender neurotoxischer Symptome nach dem 

Common Toxicity Criteria Katalog (in Kooperation mit den jeweils 

verantwortlichen Ärzteteam) 

• Identifizierung von Risikofaktoren (Biomarkern) für die Neurotoxizität von 

Methotrexat 
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2 Material und Methoden 

2.1 Materialien  

Ein Markenname kann warenrechtlich geschützt sein, auch wenn ein Hinweis darauf 

fehlt.  

2.1.1 Chemikalien und Reagenzien 

Acetonitril Promochem GmbH, Wesel 

N-Acetylcystein (NAC)  Sigma-Aldrich GmbH, Steinheim 

4-(Aminosulfonyl)-7-Fluor-Benzofurazan Sigma-Aldrich GmbH, Steinheim 

(ABDF) 

L-Asparaginsäure (ASP) Fluka Chemie AG, Neu-Ulm 

Borsäure  Fluka Chemie AG, Neu-Ulm 

5-Carboxyfluorescein-  Molecular Probes, Eugene, USA 

succinimidylester (CFSE)    

L-Cystein (CYS) Sigma-Aldrich GmbH, Steinheim 

L-Cysteinsulfinsäure (CSA)  Sigma-Aldrich GmbH, Steinheim 

L-Cysteinsulfonsäure, Monohydrat (CA) Sigma-Aldrich GmbH, Steinheim 

N,N-Dimethylformamid (DMF)  Sigma-Aldrich GmbH, Steinheim 

Ethylendiamintetraessigsäure (EDTA, Sigma-Aldrich GmbH, Steinheim 

Dinatriumsalz) 

FPIA-Puffer   ABBOTT GmbH & Co. KG, Wiesbaden 

L-Glutaminsäure (GLU)  Sigma-Aldrich GmbH, Steinheim 

Glutathion (GSH)  Sigma-Aldrich GmbH, Steinheim 

HCl-Lösung (1 M)  Grüssing, Filsum 

L-Homocystein (HCY)  Sigma-Aldrich GmbH, Steinheim 

L-Homocysteinsulfinsäure (HCSA)  Sigma-Aldrich GmbH, Steinheim 

L-Homocysteinsulfonsäure (HCA) Sigma-Aldrich GmbH, Steinheim 

IMx® Homocystein-Kalibratoren ABBOTT GmbH & Co. KG, Wiesbaden 

IMx® Homocystein-Kontrollen ABBOTT GmbH & Co. KG, Wiesbaden 

IMx® Probenspüllösung ABBOTT GmbH & Co. KG, Wiesbaden 
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IMx® Reagenzienpackung  ABBOTT GmbH & Co. KG, Wiesbaden 

Kaliumdihydrogenphosphat  Fluka Chemie GmbH, Neu-Ulm 

Methanol (MeOH) Merck, Darmstadt 

NaOH-Lösung (0,1 M und 1 M)  Riedel de Haën AG, Seelze 

Natriumdodecylsulfat (SDS)  Sigma-Aldrich GmbH, Steinheim 

Phosphorsäure, 85% (V/V)  Fluka Chemie GmbH, Neu-Ulm 

PurelabTM Plus-Wasser USF, Ransbach-Baumbach 

Tributylphosphin (TBP) Fluka Chemie GmbH, Neu-Ulm 

 

Zusammensetzung der verwendeten Reagenzien: 
 
IMx® Homocystein Reagenzienpackung 
Die Homocystein-Reagenzienpackung besteht aus insgesamt vier Lösungen 

folgender Zusammensetzung: 

• Lösung A (Vorbehandlungslösung): enthält Dithiothreitol (DTT) und Adenosin; 

Stabilisator: Zitronensäure  

• Lösung B: enthält S-Adenosyl-L-Homocystein-Hydrolase (Rind) in Phosphat-

Puffer; Konservierungsmittel: Natriumcitrat  

• Lösung C: enthält Anti-S-Adenosyl-L-Homocystein-Antikörper (Maus, mono-

klonal) in Phosphat-Puffer; Konservierungsmittel: Natriumcitrat  

• Lösung D: enthält S-Adenosyl-L-Cystein-Fluorescein-Tracer in Phosphat-

Puffer; Konservierungsmittel: Natriumcitrat  

IMx® Homocystein-Kalibratoren 
S-Adenosyl-L-Homocystein in Phosphat-Puffer in den folgenden Konzentrationen:  

0,0; 2,5; 5,0; 10,0; 25,0; 50,0 µM. 

IMx® Homocystein-Kontrollen 
L-Homocystein in behandeltem Humanserum in den folgenden Konzentrationen: 7,0; 

12,5; 25,0 µM.  

IMx® Probennadel-Spüllösung 
2 % (V/V) Tetraethylammoniumhydroxid-Lösung (TEAH) 

FPIA-Puffer  
0,1 M Phosphatpuffer (pH 7,4), 0,1 g/L Rindergammaglobulin und 0,5 g/L 

Natriumcitrat 
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2.1.2 Verwendete Lösungen und Puffer  

ABDF-Stammlösung 
 ABDF   4,3 mg 

 0,1 M Boratpuffer, pH 8,0   ad 2,0 mL  
NAC-Stammlösung 
 NAC   8,2 mg 

 0,1 M Boratpuffer, pH 8,0 (+ 2 mM Na2EDTA)  ad 5,0 mL  
ASP-Stammlösung (0,01 M) 
 ASP   6,7 mg 

 0,1 M Boratpuffer, pH 8,9   ad 5,0 mL  
Boratpuffer (0,1 M, pH 8,0-9,5) 
 Borsäure   618,3 mg 

 PurelabTM Plus–Wasser    ad 100,0 mL 

 (mit 1 M NaOH auf den jeweiligen pH-Wert eingestellt)    

Boratpuffer (0,1 M, pH 8,0), Na2EDTA-haltig  
 EDTA-Stammlösung    1,0 mL 

 0,1 M Boratpuffer, pH 8,0   ad 100,0 mL 

CA-Stammlösung  
 CA   9,4 mg 

 0,1 M Boratpuffer, pH 8,9   ad 5,0 mL  

CFSE-Stammlösung (0,01 M) 
 CFSE   4,7 mg 

 DMF   ad 1,0 mL 

CSA-Stammlösung (0,01 M) 
 CSA   7,7 mg 

 0,1 M Boratpuffer, pH 8,9   ad 5,0 mL  

EDTA-Stammlösung (0,2 M) 
 Na2EDTA    8240 mg 

 0,1 M Boratpuffer, pH 8,0   ad 100,0 mL 

HCY-Stammlösung (0,01 M) 
 HCY   6,8 mg 

 0,1 M Boratpuffer, pH 8,9 (+ 2 mM Na2EDTA)  ad 5,0 mL  

HCSA-Stammlösung (0,01 M) 
 HCSA   8,4 mg 

 0,1 M Boratpuffer, pH 8,9   ad 5,0 mL  
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HCA-Stammlösung (0,01 M) 
 HCA   9,2 mg 

 0,1 M Boratpuffer, pH 8,9   ad 5,0 mL 

GLU-Stammlösung (0,01 M)    

 GLU   7,4 mg 

 0,1 M Boratpuffer, pH 8,9   ad 5,0 mL  
Phosphatpuffer (pH 2,0) 
 Kaliumdihydrogenphosphat   13,6 g 

 PurelabTM Plus–Wasser   ad 1000,0 mL 

 (mit 85%iger Phosphorsäure auf pH-Wert 2,0 eingestellt) 

SDS-Stammlösung (0,1 M) 
 SDS   2884 mg 

 0,1 M Boratpuffer, pH 9,0   ad 100,0 mL 

Tributylphosphin-Lösung, 20 % (V/V) 
 TBP    0,2 mL 

 N,N-Dimethylformamid    ad 1,0 mL 

2.1.3 Verbrauchsmaterialien 

Einmalspritzen (10 mL) B. Braun Melsungen AG, Melsungen 

IMx®-Glasküvetten (10 mL)  ABBOTT GmbH & Co. KG, Wiesbaden 

IMx®-Probengefäße  ABBOTT GmbH & Co. KG, Wiesbaden 

Kapillaren  Beckman-Coulter, Fullerton, USA 

(fused silica, 75 µm ID, 365 µm OD)  

Membran-Filter (0,22 µm, Celluloseacetat) Macherey-Nagel, Düren 

Pipettenspitzen Brand GmbH & Co., Wertheim 

Probengefäße (2,0 mL) Sarstedt, Nümbrecht 

Probengefäßdeckel Sarstedt, Nümbrecht 

Reaktiongefäße (0,5 mL) Eppendorf AG, Hamburg 

2.1.4 Geräte 

Analysenwaage Kern 770 Gottlieb Kern & Sohn, Albstadt 

Einkanal-Pipetten (10-1000 µL) Fisher Scientific, Schwerte 

Magnetrührer RMH71 Gerhardt GmbH & Co. KG, Königswinter 
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pH-Meter inoLab pH level 2 WTW, Weilheim 

Probenmixer Gesellschaft für Laborbedarf, Würzburg 

Reinstwasseranlage PurelabTM Plus USF, Ransbach–Baumbach 

Savant Speed-Vac® (SC 110) ThermoQuestTM Analytische Systeme 

GmbH, Egelsbach 

Ultraschallbad Sonorex Super RK 103 H Bandelin, Berlin 

Wasserbad MGW Lauda RM 6 Werk Lauda, Lauda-Königshofen 

Zentrifuge (Microfuge® Lite)  Beckman-Coulter, Fullerton, USA 

 

Kapillarelektrophorese  
 P/ACE® 5510 Beckman-Coulter, Fullerton, USA 

 Dioden-Array-Detektor, Beckman-Coulter, Fullerton, USA 

 UV-Absorptionsdetektor,  

 LIF-Detektor, Argon Ion Laser  

 Kapillaren  Beckman-Coulter, Fullerton, USA 

 (fused silica, 75 µm ID, 365 µm OD)   

 P/ACE Station software (Version 1.21) Beckman-Coulter, Fullerton, USA 

 

HPLC-System 
 L-6200 Intelligent Pump Merck-Hitachi, Darmstadt 

 L-6000 Pump Merck-Hitachi, Darmstadt  

 Interface D-6000 Merck-Hitachi, Darmstadt  

 Autosampler AS-2000A  Merck-Hitachi, Darmstadt  

 Fluoreszenzdetektor L-7480 Merck-Hitachi, Darmstadt  

 Kromasil® 100-5 C 18-Säule  Macherey-Nagel, Düren 

 (150 x 4,6 mm) 

 Nucleodur® 100-3 C 18-Vorsäule Macherey-Nagel, Düren 

 (8 x 3 mm) 

Model D-7000 Chromatography  Merck-Hitachi, Darmstadt 

Station software  

 

Fluoreszenzpolarisationsimmunoassay (FPIA) 
IMx®-System ABBOTT GmbH & Co. KG, Wiesbaden  
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TDx®-Probenkarussel ABBOTT GmbH & Co. KG, Wiesbaden 

Kartusche „Metabolic” ABBOTT GmbH & Co. KG, Wiesbaden 

 

2.2 CE-Analytik  

2.2.1 Grundlagen der Kapillarelektrophorese 

Der prinzipielle Aufbau eines CE-Systems ist in Abb. 2-1 schematisch gezeigt. Die 

Hauptelemente der Kapillarelektrophorese sind demnach die Kapillare selbst, zwei 

Puffergefäße, die den so genannten Lauf- oder Trennpuffer beherbergen, eine 

Hochspannungsquelle, die über zwei Platin-Elektroden mit den beiden Puffergefäßen 

verbunden ist, ein Detektor und ein System zur Datenerfassung.  

Das bei weitem am häufigsten eingesetzte Kapillarmaterial ist fused-silica (amorphes 

Glas), welches sich durch UV-Transparenz auszeichnet. Um die mechanische 

Stabilität zu erhöhen, ist die fused-silica Kapillare mit einer dünnen Polyimidschicht 

überzogen. In einem bestimmten Abstand zum Ein- bzw. Auslassende der Kapillare 

(engl. capillary inlet und outlet) wird diese Polyimidschicht mechanisch oder durch 

Abbrennen entfernt, um ein Detektionsfenster zu schaffen. Üblicherweise ist die 

Elektrode am Kapillareinlass als Anode, die am Kapillarauslass als Kathode 

geschaltet. Die Injektion der Probe kann entweder elektrokinetisch, wobei die Probe 

durch Anlegen einer Hochspannung elektrophoretisch in die Kapillare transportiert 

wird, oder hydrodynamisch erfolgen. 

Die am häufigsten eingesetzte Detektionsmethode ist die Messung der UV-

Absorption. Prinzipiell ist dies bei einer fest eingestellten Wellenlänge oder über 

einen größeren Wellenlängenbereich (Diodenarray-Detektion) möglich. Bedingt 

durch die kurze optische Weglänge, die durch den Innendurchmesser der Kapillare 

festgelegt ist, ist die Konzentrationsempfindlichkeit relativ gering; die 

Detektionsgrenze liegt bei ungefähr 1 µM. Weitere gebräuchliche Detektoren sind der 

elektrochemische Detektor, der Brechungsindexdetektor, das Massenspektrometer 

und der Laser-induzierte Fluoreszenz-Detektor (LIF-Detektor). Die LIF-Detektion 

stellt die zur Zeit empfindlichste Detektionsmethode dar. Nicht selten kann die 

Empfindlichkeit im Vergleich zur UV-Detektion um den Faktor 1000 erhöht werden.  
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Kommerziell erhältliche CE-Systeme arbeiten vollautomatisch; Steuerung und 

Datengewinnung erfolgen EDV gestützt.  

 

Abb. 2-1: Schematischer Aufbau eines CE-Systems. 

 

Trennprinzip 
Kapillarelektrophoretische Trennungen beruhen auf unterschiedlichen Wanderungs-

geschwindigkeiten (v) geladener Teilchen im elektrischen Feld. Die Geschwindigkeit 

der Ionen ist gemäß nachstehender Formel von der elektrophoretischen Mobilität (µe) 

und der elektrischen Feldstärke (E) abhängig: 

 Ev e ⋅= µ       Gl. 2-1 

Die elektrophoretische Mobilität eines Teilchens wird nach dem Stokes’schen Gesetz 

durch den Ladungs-Masse-Quotienten bestimmt: 

 
ηπ

µ
⋅⋅⋅

=
r

q
e 6

      Gl. 2-2 

 eµ  = elektrophoretische Mobilität  

 q  = Ladung 

 r  = Radius  

 η  = Viskosität 
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Anode 

Kapillare 

Hochspannungsquelle 
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Gl. 2-2 ist zu entnehmen, dass insbesondere kleine, hochgeladene Teilchen eine 

hohe Mobilität haben. Die Wanderungsrichtung hängt von der Ladung ab; Kationen 

wandern zur Kathode, Anionen zur Anode. 

Die effektive Mobilität lässt sich anhand experimenteller Daten gemäß Gl. 2-3 

ermitteln:  

 

 
m

eff
eff tU

LL
⋅

⋅
=µ       Gl. 2-3 

 effµ = effektive elektrophoretische Mobilität 

 L   = Gesamtlänge der Kapillare 

 effL = effektive Kapillarlänge (Länge bis zum Detektionsfenster) 

 U   = angelegte Spannung 

 mt   = Migrationszeit 

 
Elektroendosmotischer Fluss 
Die Tatsache, dass bei normaler Polung (Anode am Kapillareinlass, Kathode am 

Kapillarauslass) auch Neutralteilchen und sogar Anionen detektiert werden können, 

ist durch den elektroendosmotischen Fluss (EOF) begründet. Voraussetzung für den 

EOF ist, dass Silanolgruppen der fused-silica Kapillare im deprotonierten Zustand 

vorliegen. Die Deprotonierung der Silanolgruppen (sie setzt bei pH-Werten > 2 ein) 

führt zu einer negativen Aufladung der Kapillarinnenwand (s. Abb. 2-2). Die Folge ist 

eine Anlagerung von Kationen und die Bildung einer Ladungsdoppelschicht. Da die 

negativen Ladungen durch diese fest fixierten Kationen nicht kompensiert werden, 

lagern sich weitere Kationen an. Es bildet sich eine diffuse Grenzschicht 

(Sternschicht).  

Beim Anlegen einer Spannung wandern die solvatierten Kationen der Sternschicht 

Richtung Kathode. Aufgrund des geringen Kapillarinnendurchmessers bewegt sich 

im Prinzip die gesamte Pufferlösung zur Kathode (EOF). Da die treibende Kraft des 

EOF über die gesamte Kapillare wirkt und Flüssigkeitsschichten mit einem Abstand 

von 10 nm zur Kapillarwand bereits gleichförmig bewegt werden, entsteht ein 

flaches, stempelförmiges Strömungsprofil (s. Abb. 2-2). 
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Abb. 2-2: Entstehung des elektroendosmotischen Flusses einer Fused-Silica-

Kapillare. 

Die Mobilität des EOF ( EOFµ ) ist abhängig vom Zetapotential (ζ ), dem Potential in 

der Scherebene zwischen der fest fixierten Doppelschicht und der Sternschicht, 

sowie der Dielektrizitätskonstante und Viskosität des Puffers:  

 

 
ηπ

εζµ
⋅⋅

⋅=
4EOF      Gl. 2-4 

 EOFµ  = elektrophoretische Mobilität des EOF 

 ζ  = Zetapotential 

 ε  = Dielektrizitätskonstante 

 η  = Viskosität 

 

Bei normaler Polung trägt der EOF dazu bei, dass die Analyten schneller detektiert 

werden; er überlagert die elektrophoretische Wanderung der Analyten. Die effektive 

Mobilität eines Analyten ( effµ ) ergibt sich aus der vektoriellen Summe der EOFµ  und 

der eµ : 

 

 effµ = eEOF µµ +      Gl. 2-5 
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Der Gleichung ist zu entnehmen, dass Anionen, die gegen den EOF wandern 

(Kontramigration) nur detektiert werden können, falls die Mobilität des EOF die 

Mobilität des Anions übersteigt.  

Der EOF spielt bei kapillarelektrophoretischen Untersuchungen zur Detektion und 

Trennung von Substanzen eine entscheidende Rolle. Bei normaler Polung wird die 

Auflösung durch Erniedrigung des EOFµ  verbessert. Prinzipiell kann dies durch eine 

Änderung der Ladungsverhältnisse an der Kapillaroberfläche oder durch eine 

Veränderung der Pufferviskosität erzielt werden. Eine Übersicht über 

Beeinflussungsmöglichkeiten des EOF liefert Tab. 2-1. 

Tab. 2-1: Möglichkeiten zur Beeinflussung des EOF. 

Parameter Auswirkung auf 
den EOF 

Bemerkungen 

Elektrische 
Feldstärke (E) 

EOF ↑ , falls E ↑ Bei höheren E: kürzere Analysenzeiten, 
gleichzeitig aber auch geringere Auflö-
sung und stärkere Joule’sche Erwärmung  

pH-Wert des 
Laufpuffers 

EOF ↑, falls pH ↑ Beeinflusst auch die Ladung der Analyten 
und somit deren elektrophoret. Mobilität  

Pufferkonzentration 
(Ionenstärke) 

EOF ↑, falls 
Konzentration ↓ 

Hohe Konzentrationen führen zu hohen 
Strömen und starker Joule’scher Erwär-
mung 
Beeinflusst stark die Peakform 

Temperatur EOF ↑, falls 
Temperatur ↑ 

Verändert die Viskosität des Puffers (wie 
die Feldstärke leicht instrumentell steuer-
bar) 

Organische 
Lösungsmittel 

EOF ↓ Verändern Viskosität, 
Dielektrizitätskonstante etc. 

Tenside EOF ↑ oder ↓ 
oder Umkehr 

(je nach Tensid) 

Anionische und neutrale Tenside: zur 
Erhöhung der Auflösung, kationische 
Tenside: zur EOF-Umkehr 

Kapillarbelegungen
(Coatings) 

EOF ↓ bzw. 
völlige 

Ausschaltung 
des EOF 

Belegte Kapillaren werden insbesondere 
im Rahmen der Kapillargelelektrophorese 
(CGE) eingesetzt, reduzieren die 
Adsorption von Proteinen  
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Probenzone Puffer Puffer 

Sehr einfach und effektiv kann der EOF durch Veränderung der Ionenstärke oder des 

pH-Wertes des Trennpuffers modifiziert werden.  

 

Anreicherung bei der Probenaufgabe (sample stacking) 
Eine Aufkonzentrierung der Probe in der Kapillare lässt sich erreichen, indem man 

die Probe in einem Puffer löst, der eine geringere Leitfähigkeit als der Laufpuffer 

besitzt. Aufgrund der höheren Feldstärke in der Probenlösung – die Feldstärke ist der 

Leitfähigkeit invers proportional – werden die Analyten der Probe bis zur Grenzfläche 

zwischen Laufpuffer und Probenlösung beschleunigt. Bei Eintritt in den Laufpuffer 

werden die Teilchen der Probe abgebremst, so dass die Probe an der Grenze zum 

Laufpuffer aufkonzentriert vorliegt. Da unterschiedliche elektrische Feldstärken für 

die Probenanreicherung verantwortlich sind, spricht man auch von „Electro-

Stacking“. Das Prinzip des Electro-Stacking ist in Abb. 2-3 dargestellt.  

 

 

Abb. 2-3: Electro-Stacking bei normaler Polung (Kathode detektorseitig). Linke 

Abbildung: kurz nach der Injektion der Probe werden die Teilchen der Probe durch 

die hohe elektrische Feldstärke der Probenzone beschleunigt. Rechte Abbildung: 

Aufkonzentrierte Banden gegen Ende des Stacking; Kationen konzentrieren sich am 

vorderen Ende der Probenzone auf, Anionen am hinteren Ende. Neutrale Teilchen 

reichern sich in der Mitte der Probenzone an. 

Rein theoretisch sollte das Stacking umso ausgeprägter sein, je höher der 

Unterschied der elektrischen Feldstärke ist. In der Praxis wird die Aufkonzentrierung 

durch laminare Flüsse, die aus lokal unterschiedlichen elektroosmotischen 

Geschwindigkeiten resultieren, sowie durch eine Temperaturerhöhung in der 

Probenzone, induziert durch die hohe Feldstärke, begrenzt. Beide Effekte führen zur 

 + + + + + + + + + + + + + + + + + + + + +   

 + + + + + + + + + + + + + + + + + + + + + +   

 - - - - - - - - - - - - - - - - - - - - - - -   

 - - - - - - - - - - - - - - - - - - - - - - -  

 

 

 

 

Probenzone Puffer Puffer  

- 

+ 
+

+ 

+ 

- 

- 



Material und Methoden  Seite 41 

Bandenverbreiterung und wirken daher dem Stacking entgegen. In der Regel werden 

gute Aufkonzentrierungseffekte erzielt, wenn die Probe in einem Puffer gelöst wird, 

dessen Konzentration zehnfach geringer ist als die des Laufpuffers166. 

 

Micellare elektrokinetische Chromatographie 
Die micellare elektrokinetische Chromatographie (MEKC) stellt eine Hybridtechnik 

aus Elektrophorese und Chromatographie dar, die Anfang der 80er Jahre durch 

Terabe et al.167 entwickelt wurde. Sie erlaubt die Auftrennung von Neutralmolekülen 

durch unterschiedliche Verteilung zwischen einer wässrigen, mobilen Phase und 

einer lipophilen, pseudostationären Phase. Die lipophile Phase wird hierbei von 

Micellen gebildet. Als Micellbildner werden Detergenzien benutzt, die eine hohe UV-

Durchlässigkeit besitzen. Sie werden dem Laufpuffer hinzugesetzt und müssen 

daher eine hinreichende Löslichkeit in diesem besitzen. Weit verbreitet ist der 

Einsatz anionischer Detergenzien. Am häufigsten wird Natriumdodecylsulfat (sodium 

dodecylsulfate, SDS) eingesetzt. Die Micellen besitzen im Innern einen hydrophoben 

Kern und sind nach außen geladen, wodurch eine elektrophoretische Mobilität erzielt 

wird. Da anionische Micellen eine elektrophoretische Mobilität zur Anode aufweisen, 

können sie nur bei hinreichend starkem EOF detektiert werden. Die Analyten 

verteilen sich in Abhängigkeit ihrer Lipophilie zwischen dem Puffer und dem 

hydrophoben Innern der Micellen, die aufgrund der Eigenmobilität pseudostationäre 

Phasen darstellen. Das Prinzip der MEKC ist in Abb. 2-4 dargestellt. Polare Analyten 

(in der Abb. 2-4 AP genannt) zeigen keine Wechselwirkung mit der Micelle und 

wandern daher mit der Geschwindigkeit des EOF (t0). Lipohile Analyten (in der Abb. 

2-4 AL genannt) hingegen werden von den Micellen eingeschlossen und wandern mit 

deren Geschwindigkeit zum Detektor (tmc). Substanzen, die bezüglich ihrer Lipophilie 

zwischen AP und AL liegen, werden demzufolge im Zeitfenster tmc–t0 detektiert.  

Heutzutage beschränkt sich der Einsatzbereich der MEKC nicht nur auf die Trennung 

neutraler Verbindungen. Sie wird im steigenden Maße auch zur Verbesserung der 

Auflösung geladener Teilchen mit ähnlichen elektrophoretischen Mobilitäten 

eingesetzt. Durch den zusätzlichen Trennmechanismus der Verteilung können 

extrem hohe Trennschärfen erreicht werden. 
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Abb. 2-4: Schematische Darstellung des Trennprinzips der MEKC. Ap: polarer Analyt, 

Al: lipophiler Analyt; anionische Micelle (z.B. aus SDS) als pseudostationäre Phase. 

 

2.2.2 Entwicklung eines Trennsystems zur Bestimmung von schwefel-
haltigen exzitatorischen Aminosäuren (SEAA) 

Zur Klärung der Frage, ob untypische Metaboliten des Homocysteins (bzw. Cysteins) 

im Liquor von Tumorpatienten, die unter einer hochdosierten Therapie mit MTX 

stehen, akkumulieren, wurde eine kapillarelektrophoretische Trennmethode 

entwickelt, die die sensitive Bestimmung der Metaboliten HCSA, HCA, CSA und CA 

im Liquor erlaubt.  

 

Trennsystem und Detektion  
Alle Messungen wurden mit einer 57 cm langen Kapillare (Fused-Silica) 

durchgeführt. Der Innendurchmesser betrug 75 µm. Die Analysenlösungen wurden 

am anodischen Ende hydrodynamisch in die Kapillare eingebracht. Hierzu wurde ein 

Druck von 0,5 psi (= 34,5 mbar) für 5 s angelegt. Das injizierte Volumen ist abhängig 

von der Temperatur und dem Kapillarinnendurchmesser. Bei einer Temperatur von 

19 °C und einem Innendurchmesser von 75 µm werden ca. 23 nL injiziert. Das 

Probevolumen betrug somit ca. 1 % des Kapillarvolumens bis zum Detektionsfenster 

(2209 nL).  

µ EOF 

+  _ 
µ Mic 

µ eff Mic 

µ eff AL

µ eff AP

-

- -

-

-

- 
- 

- 

AP

AL 



Material und Methoden  Seite 43 

Zur Trennung der mehrfach negativ geladenen, derivatisierten Aminosäuren wurden 

nur solche Laufpuffer verwendet, die zu einem starken EOF führen. Die angelegte 

Trennspannung betrug 25 kV.  

Die Detektion erfolgte durch Messung der UV-Absorption bei 490 nm (Diodenarray-

Detektor) oder der Laser-induzierten Fluoreszenz bei 520 nm. Das Prinzip der LIF-

Detektion ist Abb. 2-5 zu entnehmen. 

 

 

 

Abb. 2-5: Prinzip der LIF-Detektion.  

 

Derivatisierung 
Als Fluoreszenzmarker zur Derivatisierung der SEAA wurde 5-Carboxy-

fluoresceinsuccinimidylester (CFSE) ausgewählt. CFSE zeigt ein 

Absorptionsmaximum bei 494 nm und kann daher effektiv durch die 

Hauptspektrallinie eines Argon-Lasers (488 nm) angeregt werden. Darüber hinaus 

zeichnet sich CFSE durch einen hohen molaren, dekadischen Extinktions-

koeffizienten (ε  = 90.000 L.mol-1.cm-1 bei pH 9,0168) aus, was eine hohe Intensität 

des emittierten Fluoreszenzlichtes gewährleistet.  
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Da CFSE im gelösten Zustand selbst bei -20 °C instabil ist169, wurden die CFSE-

Stammlösungen (0,01 M in DMF) nach der Herstellung aliquotiert und das 

Lösungsmittel DMF durch Anlegen von Vakuum entfernt (Speed-Vac®-System). Die 

verbliebenen Rückstände wurden bei -20 °C eingefroren.  

In allen Derivatisierungsreaktionen betrug die Konzentration an CFSE 1 mM. 

Niedrigere Konzentrationen wurden ebenfalls eingesetzt, um Peaks von 

Verunreinigungen bzw. Abbauprodukten in den Elektropherogrammen zu 

minimieren, allerdings wurden die höchsten Ausbeuten mit der hoch konzentrierten 

Lösung erzielt. Als Derivatisierungspuffer wurden 0,1 M Boratpuffer (pH 8,5-9,4) 

verwendet. Die Stammlösungen der Aminosäuren wurden ebenfalls in 0,1 M 

Boratpuffer hergestellt und bei -20 °C bzw. 2-8 °C gelagert. Die Derivatisierung 

wurde, soweit nicht anders erwähnt, 30 min lang bei Raumtemperatur durchgeführt. 

Im Falle der sensitiven LIF-Detektion wurde die Reaktionsmischung vor der Injektion 

1:100 mit 0,01 M Boratpuffer (pH 8,9) verdünnt. Die Derivatisierung der SEAA mit 

CFSE ist in Abb. 2-6 dargestellt.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 2-6: Derivatisierungsreaktion schwefelhaltiger exzitatorischer Aminosäuren mit 

CFSE. CSA: Cysteinsulfinsäure, CA: Cysteinsulfonsäure, HCSA: Homo-

cysteinsulfinsäure, HCA: Homocysteinsulfonsäure.  
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2.2.3 Methodenentwicklung 

2.2.3.1 Trennung der derivatisierten SEAA 

Im Rahmen der Methodenentwicklung wurde zuerst versucht, die markierten SEAA 

innerhalb möglichst kurzer Zeit in einem Lauf zu trennen. Da die Intensität des 

emittierten Fluoreszenzlichtes bei Fluoresceinverbindungen stark pH-abhängig ist 

– bei Carboxyfluoresceinderivaten wird ein Maximum ab pH 9 erreicht – wurden nur 

basische Trennpuffer (pH 9,0) verwendet. Die derivatisierten SEAA lagen bei diesem 

pH-Wert mehrfach negativ geladen vor, die kathodenseitige Detektion erforderte 

daher einen relativ starken EOF.  

Ausgehend von einem Laufpuffer bestehend aus 0,1 M Borat, pH 9,0 (Puffer A der 

Tab. 2-2) wurden zur Optimierung der Trennung insbesondere der Effekt des 

Micellbildners SDS und des organischen Lösungsmittels Methanol (MeOH) 

untersucht. Die Tab. 2-2 zeigt die im Rahmen der Trennungsoptimierung 

verwendeten Laufpuffer. 

Tab. 2-2: Laufpuffer, die im Rahmen der Trennungsoptimierung verwendet wurden. 

Puffer Puffersystem Additive Strom [µA] 

A 0,1 M Borat, pH 9,0 --- 66,8 
B 0,1 M Borat, pH 9,0 SDS (20 mM) 81,0 
C 0,1 M Borat, pH 9,0 SDS (50 mM) 102,0 
D 0,1 M Borat, pH 9,0 SDS (50 mM), MeOH (5% V/V) 92,5 

 

2.2.3.2 Optimierung der Derivatisierungsbedingungen 

Im zweiten Schritt der Methodenentwicklung wurden die optimalen 

Reaktionsbedingungen für die Umsetzung der SEAA mit CFSE ermittelt. Hierbei 

wurden insbesondere der Einfluss des pH-Wertes und der Inkubationsdauer 

untersucht.  
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Einfluss des pH-Wertes 
Die Reaktivität primärer Amine wird entscheidend von der Basizität der Aminogruppe 

geprägt. Die Basizität ist abhängig von der Struktur des gesamten Moleküls und des 

Ionisierungsgrades der Aminogruppe, der wiederum vom pH-Wert der Lösung 

abhängt. Um aliphatische Amine mit acylierenden Reagenzien (wie z.B. CFSE) 

umzusetzen, wird ein pH-Wert > 8,5 empfohlen169. Problematisch ist, dass Succin-

imidylester im Alkalischen hydrolysieren, wobei die Hydrolysegeschwindigkeit umso 

größer ist, je alkalischer das Reaktionsmilieu ist170. Der optimale pH-Wert, der eine 

maximale Reaktionsausbeute garantiert, ist daher für den zu bestimmenden Analyten 

individuell zu ermitteln. 

Die Reaktionsausbeute der Derivatisierung wurde über einen Bereich von pH 8,5 bis 

9,3 untersucht. Die Konzentrationen der SEAA betrugen jeweils 0,1 mM. Alle 

Messungen wurden zweifach nach einer 30-minütigen Derivatisierungszeit 

durchgeführt, da vorläufige Ergebnisse bei einem pH-Wert von 9,3 zeigten, dass die 

Reaktion nach ca. 30 min abgeschlossen ist.  

 

Einfluss der Inkubationsdauer  
Zur Ermittlung der Inkubationsdauer, die mit der maximalen Reaktionsausbeute 

einhergeht, wurden die korrigierten Peakflächen der Produkte in Abhängigkeit von 

der Derivatisierungszeit registriert.  

Der Derivatisierungspuffer bestand aus 0,1 M Boratpuffer (pH 8,9), die Konzentration 

der SEAA in der Reaktionsmischung betrug jeweils 1 mM. Der Versuch wurde 

zusätzlich unter Verwendung der LIF-Detektion wiederholt. In diesem Fall betrug die 

Konzentration der Aminosäuren jeweils 0,01 M.  

2.2.3.3 Vergleich UV- und LIF-Detektion 

Die Nachweisgrenze (Limit of Detection, LOD) der Methode wurde unter den 

optimierten Trennungs- (24 kV, 25 °C, Laufpuffer: 0,1 M Borat, pH 9,0, 50 mM SDS, 

5 % (V/V) MeOH) und Derivatisierungsbedingungen (Puffer: 0,1 M Borat, pH 8,9, 

Konzentration CFSE: 1 mM, Inkubationszeit: 30 min) unter Verwendung der UV- und 

LIF-Detektion bestimmt.  
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Die Konzentration der SEAA in der Probe zur Bestimmung des LOD für die UV-

Detektion betrug jeweils 50 µM, für die LIF-Detektion jeweils 1 µM (vor Verdünnung).  

2.2.4 Methodenoptimierung für die Bestimmung der SEAA im Liquor 

Im Anschluss an die Methodenentwicklung wurde überprüft, ob sich die Methode 

auch zur Bestimmung der SEAA im Liquor eignete. Da Elektropherogramme von 

Liquorproben, die mit den SEAA versetzt worden waren, zeigten, dass insbesondere 

der Peak der exzitatorischen Aminosäure Aspartat (ASP) mit den Peaks von CSA 

und HCA interferierte, mussten die Trennungsbedingungen verändert werden, um 

eine selektive Bestimmung aller interessierenden Analyten zu gewährleisten.  

Ausgehend vom optimierten Laufpuffer der Methodenentwicklung (Puffer A, der Tab. 

2-3) wurden die Konzentrationen der Pufferadditiva Methanol und SDS systematisch 

variiert und der Effekt auf die Trennung der interessierenden Aminosäurederivate 

verfolgt. Eine Übersicht über die hierbei verwendeten Puffer zeigt Tab. 2-3. 

Tab. 2-3: Verwendete Puffersysteme im Rahmen der Methodenoptimierung. 

Puffer Puffersystem Additive (Konzentration) Strom [µA] 

A 0,1 M Borat, pH 9,0 SDS (50 mM), MeOH (5 % V/V) 92,5 
B 0,1 M Borat, pH 9,0 SDS (50 mM), MeOH (6 % V/V) 90,0 
C 0,1 M Borat, pH 9,0 SDS (50 mM), MeOH (7 % V/V) 88,0 
D 0,1 M Borat, pH 9,0 SDS (50 mM), MeOH (8 % V/V) 86,3 
E 0,1 M Borat, pH 9,0 SDS (50 mM), MeOH (9 % V/V) 84,8 
F 0,1 M Borat, pH 9,0 SDS (50 mM), MeOH (10 % V/V) 84,2 
G 0,1 M Borat, pH 9,0 SDS (40 mM), MeOH (10 % V/V)  70,1 

H 0,1 M Borat, pH 9,0 SDS (30 mM), MeOH (10 % V/V) 64,0 

I 0,1 M Borat, pH 9,0 SDS (20 mM), MeOH (10 % V/V) 57,5 

J 0,1 M Borat, pH 9,0 SDS (10 mM), MeOH (10 % V/V) 51,5 
K 0,1 M Borat, pH 9,0 SDS (5 mM), MeOH (10 % V/V) 48,4 
L 0,1 M Borat, pH 9,0 MeOH (10 % V/V) 43,3 
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Zusätzlich wurde zur Verbesserung der Auflösung die Kapillartemperatur von 25 °C 

schrittweise reduziert und ebenfalls der Effekt auf die Trennung verfolgt. Für diese 

Versuche wurde der Puffer verwendet, der die beste Auflösung gewährleistete 

(Puffer J). Sämtliche Messungen im Rahmen dieser Trennungsoptimierung wurden 

unter Verwendung der sensitiven LIF-Detektion durchgeführt. 

2.2.5 Validierung der CE-Methode 

Die Validierung der entwickelten Methode wurde nach den Richtlinien der Food and 

Drug Administration (Guidance for Industry, Bioanalytical Method Validation) 

durchgeführt171. Zur Auswertung der Validierungsdaten wurde die Software „Method 

Validation in Analytics“ (MVA®), Version 2.0 (Novia GmbH Saarbrücken) benutzt. 

2.2.5.1 Selektivität  

Die Selektivität ist die Fähigkeit einer analytischen Methode, alle interessierenden 

Analyten ohne Verfälschung durch andere in der Probe vorhandene Komponenten 

(z.B. Verunreinigungen, Nebenprodukte, Degradationsprodukte, Matrix usw.) zu 

erfassen und sie somit eindeutig zu identifizieren. 

Bestimmt wurde die Selektivität durch Vergleich der Elektropherogramme einer 

Leerprobe (Puffer bzw. Liquor ohne Analyt) und einer Probe, der die vier SEAA 

zugesetzt wurden.  

2.2.5.2 Präzision und Richtigkeit  

Präzision und Richtigkeit bestimmen die Genauigkeit einer analytischen Methode. 

Die Präzision ist ein Maß für die Übereinstimmung (Streuung) der Messergebnisse 

bei wiederholter Durchführung des Analysenverfahrens mit einer homogenen Probe 

und gibt somit Hinweise auf zufällige Fehler. Die statistische Größe der Präzision ist 

die relative Standardabweichung (RSD), oder synonym der Variationskoeffizient 

(VK), der wie folgt berechnet wird: 
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 VK  = Variationskoeffizient 

 x  = Mittelwert aus n Einzelmessungen 

 ix  = Einzelmesswert  

 n = Anzahl der Messungen 

 

Prinzipiell unterscheidet man zwischen der Wiederholpräzision oder Wiederholbarkeit 

(repeatability) und der Vergleichspräzision (reproducibility), bei der bestimmte 

Parameter verändert werden (z.B. Gerät, Probe, Zeit etc.). 

Zur Bestimmung der Wiederholpräzision wird eine stabile Probe mindestens fünfmal 

unter denselben Operationsbedingungen innerhalb eines kurzen Zeitraums 

vermessen. Da diese Präzision zur Beurteilung der Genauigkeit des analytischen 

Gerätes dient, nennt man sie auch System- oder Gerätepräzision. Zur Ermittlung der 

Präzision der gesamten analytischen Methode (Methodenpräzision) wurden drei 

Messproben mit unterschiedlicher Konzentration fünfmal jeweils unabhängig 

voneinander hergestellt und vermessen. Hierzu wurden so genannte 

Qualitätskontrollproben (QC-Proben, s. Kap. 2.2.5.3) verwendet. Die Methodenpräzi-

sion ist ein Maß für die Schwankungen, die durch alle Schritte der Methode 

verursacht werden. Sie ist innerhalb eines Tages zu bestimmen (Within-day-

Präzision).  

Die Vergleichspräzision umfasst verschiedene Messserien bei Variation bestimmter 

Parameter wie Zeit, Bearbeiter, Gerät, Reagenzien etc. Zur Bestimmung der 

Präzision über einen längeren Zeitraum (Between-day-Präzision) wurden drei QC-

Proben unterschiedlicher Konzentration an fünf aufeinander folgenden Tagen 

vermessen.  
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Die Richtigkeit drückt die Übereinstimmung zwischen dem gefundenen Wert und 

einem als richtig akzeptierten Wert oder einem akzeptierten Referenzwert aus. Sie ist 

ein Lageparameter und gibt einen Hinweis auf systematische Fehler.  

Sie kann durch Vergleich der über die Kalibrierfunktion errechneten Konzentration 

und der nominalen Konzentration beschrieben werden. Als Maß für die Abweichung 

dient der prozentuale relative Fehler (Relative Error, RE), der wie folgt berechnet 

wird:  

 
nom

nom

c
ccRE 100)( ⋅−=   [%]    Gl. 2-7 

 RE  = Relative Error 

 c  = Errechnete Konzentration  

 nomc  = Nominalkonzentration 

 

Die Richtigkeit lässt sich folglich nach folgender Gleichung bestimmen: 

 

 Richtigkeit 100+= RE  [%]    Gl. 2-8 

 

Die experimentelle Bestimmung der Richtigkeit erfolgte über die Quantifizierung der 

drei unterschiedlich konzentrierten QC-Proben an fünf verschiedenen Tagen.  

2.2.5.3 QC-Proben  

Zur Ermittlung der Präzision und Richtigkeit wurden Lösungen mit drei 

unterschiedlichen Konzentrationen der SEAA hergestellt, die den gesamten 

Arbeitsbereich abdeckten: 

Niedrige QC-Probe:  Konzentration ≤ dreimal so hoch wie die Konzentration des 

niedrigsten Standards (3 µM jeweils) 

Mittlere QC-Probe: Konzentration im mittleren Konzentrationsbereich der Kalibrier-

gerade (50 µM jeweils) 

Hohe QC-Probe:   Konzentration, die 75-90 % der Konzentration des höchsten 

Standards beträgt (90 µM jeweils) 
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Die QC-Proben wurden ausgehend von der Stammlösung der Analyten durch 

entsprechende Verdünnung mit 0,1 M Boratpuffer (pH 8,9) hergestellt und nach 

Aliquotierung bei -20 °C gelagert.  

2.2.5.4 Wiederfindung 

Da Liquor als Matrix für eine Validierung bzw. für die Kalibrationsreihen nicht in 

ausreichender Menge zur Verfügung stand, wurde überprüft, ob Puffer als Matrix für 

die Kalibratoren geeignet ist. Die Ermittlung der Wiederfindungsrate unter 

Verwendung von Liquor als Probenmatrix erfolgte durch Aufstockungsexperimente 

(sog. „spiken“). Im Rahmen dieser Versuche wurde sowohl Liquor (Mischung 

verschiedener Liquores, in der keine der vier SEAA nachzuweisen war) als auch 

Puffer mit jeweils gleichen Mengen der Analyten versetzt und analysiert. Die absolute 

Größe der Abweichung wurde nach folgender Gleichung berechnet: 

 W = 100·
Puffer

Liquor

x
x

 [%]     Gl. 2-9 

 W  = prozentuale Wiederfindungsrate 

 x Liquor = Mittelwert aus n Einzelmessungen (Matrix Liquor) 

 x Puffer = Mittelwert aus n Einzelmessungen (Matrix Puffer)  

2.2.5.5 Linearität, Arbeitsbereich 

Die Linearität ist die Fähigkeit einer Methode, innerhalb eines gewissen Bereichs 

Testergebnisse zu erzielen, die der Konzentration des Analyten direkt proportional 

sind.  

Die Beziehung zwischen Konzentration und Messsignal wurde mittels 

Kalibrierfunktion bestimmt. Der Arbeitsbereich, dessen Spanne vom LLOQ (lowest 

limit of quantification) bis zum ULOQ (upper limit of quantification) reicht, orientierte 

sich an den zu erwartenden Konzentrationen des Analyten im Liquor76. Für jede 

Kalibrierfunktion wurden jeweils sechs Standards (S) vermessen, die aus drei 

verschiedenen SEAA-Arbeitslösungen (AL) hergestellt wurden (s. Tab. 2-4).  
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Tab. 2-4: Pipettierschema zur Herstellung der SEAA-Standards der Kalibriergeraden. 

Lösung 
S1 

(1 µM) 
S2 

(3 µM) 
S3 

(10 µM) 
S4 

(20 µM) 
S5 

(50 µM) 
S6 

(100 µM) 

AL 1 (10 µM) 10 30     

AL 2 (100 µM)   10 20   

AL 3 (1000 µM)     5 10 
0,1 M Borat  

(pH 8,9) 190 µL   170 µL   190 µL   180 µL   195 µL   190 µL 

CFSE 20 µL 20 µL 20 µL 20 µL 20 µL 20 µL 
 

Anmerkung: Die Konzentrationen der Standards beziehen sich auf 100 µL (Volumen der Messprobe). 

 

Nach abgeschlossener Derivatisierung (30 min lang bei Raumtemperatur, vor Licht 

geschützt) wurde die Reaktionsmischung 1:100 mit 0,01 M Boratpuffer (pH 8,9) 

verdünnt. Hierzu wurden 5 µL des jeweiligen Ansatzes entnommen, in ein Safe-Lock 

Tube (0,5 mL) überführt und mit 495 µL 0,01 M Boratpuffer (pH 8,9) versetzt.  

 

Zur Beurteilung der Regression wurden der Korrelationskoeffizient r (s. auch Kapitel 

2.7.4) und die Residuen, die prozentuale Abweichung der experimentellen von den 

mittels Regressionsgerade berechneten Werten, herangezogen. Ferner wurde 

getestet, ob eine gewichtete lineare Regression (1/x und 1/x2) zu einer besseren 

Anpassung führt.  

Eine Wichtung empfiehlt sich immer dann, falls der Arbeitsbereich relativ groß ist 

(> Faktor 10). In diesem Fall ist in aller Regel Homoskedastizität (d.h. 

Varianzenhomogenität der Messwerte) nicht gegeben. Durch die Wichtung wird eine 

zu starke Beeinflussung der Regression, bedingt durch die relativ größeren 

Abweichungen der hohen Messwerte, vermieden172. 

2.2.5.6 Bestimmungs- und Nachweisgrenze 

Nach den Richtlinien der FDA ist die Bestimmungsgrenze (LLOQ) eines 

Analysenverfahrens die geringste Analytmenge in einer Messprobe, die mit 

hinreichender Präzision und Richtigkeit quantifiziert werden kann. Für die LLOQ wird 



Material und Methoden  Seite 53 

hinsichtlich der Präzision ein Variationskoeffizient ≤ 20 %, hinsichtlich der Richtigkeit 

ein relativer Fehler bis 20 % gefordert171.  

Die Nachweisgrenze (Limit of Detection, LOD) ist die geringste Analytmenge, die 

detektiert, aber nicht exakt quantitativ bestimmt werden kann. Sie wurde basierend 

auf einem Signal-Rausch-Verhältnis (Signal-to-noise ratio) von 3:1 ermittelt.  

2.2.5.7 Stabilitätsuntersuchungen 

Im Rahmen der Stabilitätsuntersuchungen wurden folgende Aspekte untersucht: 

• Der Einfluss mehrerer Einfrier-Auftau-Vorgänge auf die Stabilität der SEAA  

in der Stammlösung („Einfrier-Auftau-Stabilität“) 

• Die Stabilität der SEAA in der Arbeitslösung (gelagert bei Raumtemperatur) 

• Die Stabilität der SEAA in Liquor (gelagert bei Raumtemperatur) 

• Die Stabilität der gebildeten SEAA-Derivate in der Messprobe (gelagert  

bei Raumtemperatur im Autosampler des CE-Systems)  

 

Zur Berechnung der Stabilität wurden jeweils die korrigierten Peakflächen (KPF) der 

derivatisierten Aminosäuren zugrunde gelegt: 

 

 Stabilität = 100·
REF

X

KPF
KPF [%]    Gl. 2-10 

 XKPF  = korrigierte Peakfläche der Probe zur Zeit x. 

 REFKPF  = korrigierte Peakfläche der Referenz  

Die Referenz stellte eine frisch hergestellte Probe, die die SEAA in der jeweils 

gleichen Konzentration enthielt, dar. 

2.2.6 Vermessung der Liquorproben  

Vor dem Vermessen der Patientenproben wurde zuerst ein Systemeignungstest 

durchgeführt, der insbesondere zur Beurteilung der Trennleistung des Systems 

diente. Hierzu wurde eine Mischung CFSE-derivatisierter Aminosäuren (HCSA, CSA, 
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HCA, CA, ASP und GLU, Konzentration jeweils 10 µM) vermessen. Nur bei 

Basislinientrennung aller Peaks wurde mit der Kalibrierung begonnen.  

 

Kalibrierung 
Vor jeder Messserie wurde eine Kalibrierung analog zur Kalibrierung in Kapitel 

2.2.5.5 durchgeführt. Die Kalibrierung wurde akzeptiert, wenn folgende Kriterien 

erfüllt waren: 

• Abweichung der Residuen ≤ 15 %, LLOQ: ≤ 20 % 

• Mindestens vier von sechs Standards, inklusive des LLOQ- und des ULOQ-

Standards mussten vorangehende Kriterien erfüllen 

• Korrelationskoeffizient r ≥ 0,99 (lineare Regression, gewichtet 1/x2) 

 

Herstellung der Messprobe 
100 µL Liquor wurden mit 80 µL 0,1 M Boratpuffer (pH 8,9) und 20 µL CFSE (0,01 M) 

versetzt. Nach 30-minütiger Derivatisierung wurde die Reaktionsmischung 1:100 mit 

0,01 M Boratpuffer (pH 8,9) verdünnt. 

 

Konzentrationsberechnung 
Die Konzentrationsberechnung erfolgte über die Geradengleichung der jeweiligen 

Kalibriergeraden (gewichtet 1/x2).  

 

Qualitätssicherung während der Messung 
Zur Qualitätssicherung der Probenmessung dienten die Qualitätskontrollproben (QC-

Proben), die auch im Rahmen der Validierung verwendet wurden (s. Kap. 2.2.5.3). 

Es wurde gefordert, dass mindestens 67 % der berechneten Konzentrationen 

innerhalb von ±15 % des nominalen Wertes liegen und dass mindestens 5 % der 

Proben einer Messreihe aus QC-Proben bestehen.  
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2.3 HPLC-Analytik 

Zur Quantifizierung der Aminothiole Cystein, Homocystein und Glutathion im Liquor 

von Tumorpatienten wurde eine HPLC-Methode mit Fluoreszenzdetektion entwickelt 

und validiert. Die Entwicklung erfolgte basierend auf einer von Toyo’oka und Imai 

publizierten HPLC-Methode173, bei der Thiole mit dem fluorogenen Reagenz 

4-(Aminosulfonyl)-7-Fluor-Benzofurazan (ABDF) umgesetzt und anschließend auf 

einer Umkehrphase (Reversed phase, RP) getrennt wurden.  

2.3.1 HPLC-System und chromatographische Bedingungen 

Die einzelnen Komponenten des HPLC-Systems sind in Kapitel 2.1.4 aufgeführt.  

Die Trennung der derivatisierten Aminothiole erfolgte mittels eines binären 

Gradientensystems, bestehend aus einem 0,1 M Phosphatpuffer, pH 2,0 (Eluent A) 

und Acetonitril (Eluent B). Die Flussrate betrug jeweils 0,9 mL/min.  

2.3.2 Reduktion und Vorsäulenderivatisierung der Aminothiole 

Soweit nicht anders spezifiziert, wurde zur Reduktion von Disulfiden und zur 

Freisetzung der proteingebundenen Aminothiole (Liquorproben) die Methode von 

Araki und Sako verwendet174. Zu 100 µL der Messprobe, die mit 100 µL 0,1 M 

Boratpuffer (pH 8,0, 2 mM Na2EDTA) versetzt wurde, wurden 10 µL einer 20%igen 

(V/V) Tri-N-butylphosphin-Lösung (TBP) hinzu gegeben und die Mischung bei 4 °C 

für 30 min gelagert. Na2EDTA wurde dem Derivatisierungspuffer hinzugefügt, um 

zweiwertige Kupferionen zu komplexieren; sie katalysieren die Oxidation von Thiolen 

zu den entsprechenden Disulfiden. Das Reaktionsschema ist nachfolgend 

dargestellt: 

 

RS-SR (Disulfid)   

RS-SR’ (gemischtes Disulfid)    RSH (frei) 

Protein-SR 

TBP 
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Die Derivatisierung erfolgte nach der Methode von Toyo’ oka und Imai173. Um ein 

Verdünnen der Messprobe weitestgehend zu vermeiden, wurden möglichst 

konzentrierte Lösungen an ABDF und HCl eingesetzt.  

Nach abgeschlossener Reduktion wurden zur Reaktionsmischung 20 µL einer 

0,01 M ABDF-Lösung gegeben und 10 min bei 50 °C inkubiert. Zur Beendigung der 

Derivatisierung und zur Stabilisierung der gebildeten Produkte wurde der Ansatz 

anschließend mit 10 µL einer 1 M HCl-Lösung versehen. Von dieser Mischung 

wurden mittels Autosampler 150 µL in das HPLC-System injiziert.  

Die Anregung der derivatisierten Aminothiole erfolgte mit Licht der Wellenlänge 

380 nm, das emittierte Fluoreszenzlicht wurde bei einer Wellenlänge von 510 nm 

aufgenommen.  

Die Derivatisierungsreaktion von ABDF mit Cystein, Homocystein und Glutathion 

zeigt Abb. 2-7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 2-7: Derivatisierung der Aminothiole Cystein (CYS), Homocystein (HCY) und 

Glutathion (GSH) mit ABDF.  
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2.3.3 Methodenentwicklung und -optimierung  

Das Ziel der Methodenentwicklung bestand darin, ein chromatographisches 

Trennsystem aufzubauen, welches die selektive Bestimmung von Cystein, 

Homocystein und Glutathion im Liquor ermöglichte. Da die Konzentration an 

Homocystein im Liquor normalerweise im unteren nanomolaren Bereich liegt, wurde 

angestrebt, für Homocystein eine untere Bestimmungsgrenze (LLOQ) von 

mindestens 50 nM zu erreichen.  

 

Trennung der derivatisierten Aminiothiole  
Die Trennung der derivatisierten Aminothiole, unter Verwendung von Liquor als 

Probenmatrix, wurde durch schrittweises Verändern der mobilen Phase, die sich aus 

0,1 M Phosphatpuffer (pH 2,0) und Acetonitril zusammensetzte, optimiert. Basierend 

auf dem Trennergebnis einer einfachen isokratischen Elution (10 % Acetonitril, 90 % 

Phosphatpuffer) wurden drei verschiedene Gradienten (A, B und C) getestet, bei 

denen die Erhöhung des Acetonitrilanteils von der 5. bis zur 13. Minute variierte 

(siehe Tab. 2-5).  

Tab. 2-5: Gradientenprogramme, die zur Trennung ABDF-derivatisierter Thiole 

verwendet wurden. 

Zeit [min] Gradient A Gradient B Gradient C 
 Eluent A Eluent B Eluent A Eluent B Eluent A Eluent B 

0 90 10 90 10 90 10 

5 90 10 90 10 90 10 

13 75 25 70  30 65  35 

15 75 25 70  30 65  35 

18 90 10 90 10 90 10 

20 90 10 90 10 90 10 
 

Eluent A: 0,1 M Phosphatpuffer (pH 2,0); Eluent B: Acetonitril 

 

Von einer Abänderung des pH-Wertes zur Optimierung der Trennung wurde 

abgesehen, da die maximale Fluoreszenzintensität der Benzofurazanderivate bei 

pH 2,0 erreicht wird173. 
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Optimierung der Derivatisierungsbedingungen für die Matrix Liquor 
Im Rahmen dieser Untersuchung wurde geprüft, wieviel Derivatisierungspuffer (0,1 M 

Borat, pH 8,0, 2 mM Na2EDTA) der Messprobe (Liquor) zuzusetzen ist, um eine 

maximale Ausbeute an derivatisiertem Homocystein zu erhalten. Diese 

Untersuchung wurde auf Homocystein beschränkt, da Cystein und Glutathion im 

Liquor in deutlich höheren Konzentrationen vorliegen.  

Ausgehend von 200 µL reinem Liquor wurde das Volumen des Liquors schrittweise 

reduziert, gleichzeitig das Volumen des Derivatisierungspuffers so erhöht, dass das 

Gesamtvolumen der Probe jeweils 200 µL betrug (s. Tab. 2-6). Die zugesetzte 

Menge an TBP, ABDF und HCl wurde bei jedem Ansatz konstant gehalten und 

entsprach den Derivatisierungsbedingungen unter 2.3.2. Der verwendete Liquor 

wurde jeweils einer Liquormischung entnommen, die Homocystein in einer 

Konzentration von ungefähr 1 µM enthielt. 

Tab. 2-6: Liquor-Puffer-Mischungen zur Optimierung der Derivatisierung im Liquor. 

V (Liquor) [µL] V (Derivatisierungs- 
puffer) [µL] 

Gesamtvolumen der 
Probe [µL] 

200 0 200 

180 20 200 

160 40 200 
140 60 200 
120 80 200 

110 90 200 

100 100 200 

90 110 200 

80 120 200 

60 140 200 
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2.3.4 Methodenvalidierung 

Die Validierung der HPLC-Methode wurde, wie die kapillarelektrophoretische 

Methode zur Bestimmung der SEAA, nach der FDA-Richtlinie „Bioanalytical Method 

Validation“ durchgeführt. Ausführliche Anmerkungen sowie Berechnungsformeln zu 

den einzelnen Validierungskriterien finden sich unter Kapitel 2.2.5.  

2.3.4.1 Spezifität  

Die Spezifität der HPLC-Methode wurde durch den Vergleich der Chromatogramme 

einer Liquorprobe und einer Liquorprobe, die zusätzlich mit den interessierenden 

Analyten (Cystein, Homocystein und Glutathion) sowie dem internen Standard 

N-Acetylcystein versetzt wurde, demonstriert. 

2.3.4.2 Präzision und Richtigkeit  

Die Bestimmung der Within-day- bzw. Between-day-Präzision sowie der Richtigkeit 

erfolgte wie in Kapitel 2.2.5.2 beschrieben. Zur Erhöhung der Präzision wurde der 

interne Standard NAC der Messprobe zugesetzt (Endkonzentration 4 µM). Die 

Auswertung erfolgte jeweils über das Peakflächenverhältnis von Analyt zu internem 

Standard. Zur experimentellen Ermittlung von Präzision und Richtigkeit dienten 

folgende QC-Proben: 

 

Niedrige QC-Probe:  c (CYS, HCY und GSH) jeweils   130 nM  

Mittlere QC-Probe:  c (CYS, HCY und GSH) jeweils 1000 nM  

Hohe QC-Probe:  c (CYS, HCY und GSH) jeweils 1800 nM  

 

Die QC-Proben wurden durch Verdünnen einer Stammlösung, die CYS, HCY und 

GSH in einer Konzentration von jeweils 10 mM enthielt, hergestellt und bei -20 °C 

eingelagert. Als Lösungsmittel diente 0,1 M Boratpuffer, pH 8,0 (2 mM Na2EDTA).  
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2.3.4.3 Wiederfindung 

Die Ermittlung der Wiederfindungsrate unter Verwendung von Liquor als 

Probenmatrix erfolgte auch bei der Validierung der HPLC-Methode durch 

Aufstockungsexperimente (vgl. Kapitel 2.2.5.4). Da Cystein, Homocystein und 

Glutathion normalerweise im Liquor präsent sind, wurden die Peakflächen dieser 

Liquor-assoziierten Aminothiole vor der Aufstockung durch eine Dreifachbestimmung 

ermittelt.  

2.3.4.4 Linearität, Arbeitsbereich 

Für jede Kalibrierfunktion wurden jeweils sechs Standards (S) vermessen, die wie 

folgt hergestellt wurden:  

Tab. 2-7: Pipettierschema zur Herstellung der Thiol-Standards für die Kalibrierung. 

Lösung 
S1 

(50 nM) 
S2 

(150 nM) 
S3 

(400 nM) 
S4 

(800 nM) 
S5 

(1500 nM) 
S6 

(2000 nM)

AL2 (1 µM)   5 µL 15 µL     

AL1 (10 µM)     4 µL   8 µL 15 µL    20 µL 

NAC (100 µM)   4 µL   4 µL   4 µL   4 µL   4 µL  4 µL 
Borat 191 µL   181 µL   192 µL   188 µL   181 µL   176 µL 

TBP (20 %) 10 µL 10 µL 10 µL 10 µL 10 µL 10 µL 
ABDF (10 mM) 20 µL 20 µL 20 µL 20 µL 20 µL 20 µL 

HCl (1 M) 10 µL 10 µL 10 µL 10 µL 10 µL 10 µL 
 

Anmerkung: Die Konzentrationen der Standards beziehen sich auf 100 µL (Volumen der Messprobe). 
 

Die Arbeitslösung 1 (AL1) enthielt Cystein, Homocystein und Glutathion in einer 

Konzentration von jeweils 10 µM, die Arbeitslösung 2 (AL2) in einer Konzentration 

von jeweils 1 µM.  

Die Berechnung der Kalibrierfunktion erfolgte wiederum über das 

Peakflächenverhältnis von Analyt zu internem Standard (NAC).  

Zur Beurteilung der Regression dienten die in Kapitel 2.2.5.5 beschriebenen 

Kriterien. 
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Verdünnung hochkonzentrierter Liquorproben 
Liquores von Patienten, die Cystein und Glutathion in einer Konzentration jenseits 

der oberen Bestimmungsgrenze (ULOQ) enthielten, wurden mit 0,1 M Boratpuffer, 

pH 8,0 (2 mM Na2EDTA) 1:10 verdünnt und erneut vermessen.  

Zur Validierung dieses Verfahrens wurde eine Liquormischung, deren Cystein- und 

Glutathionkonzentration durch eine Dreifachbestimmung ermittelt wurde, mit Cystein 

bzw. Glutathion so aufgestockt, dass die Endkonzentrationen jeweils 10 µM 

betrugen. Anschließend wurden die so vorbereiteten Proben verdünnt und der Gehalt 

an Cystein bzw. Glutathion mittels der „Standard-Kalibriergeraden“ (Arbeitsbereich: 

50-2000 nM) bestimmt. 

Es wurde festgelegt, dass der relative Fehler, berechnet durch den Vergleich von 

Nominal- und berechneter Konzentration, maximal 10 % betragen durfte. 

2.3.4.5 Bestimmungs- und Nachweisgrenze 

Die Bestimmungs- und Nachweisgrenze wurde wie in 2.2.5.6 beschrieben ermittelt. 

2.3.4.6 Stabilitätsuntersuchungen 

Im Rahmen der Stabilitätsuntersuchungen wurden die Stabilität der Aminothiole im 

Liquor und die Stabilität der derivatisierten Aminothiole in der Messprobe untersucht.  

Die Stabilität von Cystein, Homocystein und Glutathion in EDTA-haltigem Boratpuffer 

(pH 8,0) wurde durch Araki und Sako gezeigt174. 

Die Stabilitätsberechnungen wurden gemäß GL. 2-10 durchgeführt, eine Korrektur 

der Peakflächen wurde nicht vorgenommen, da diese nur bei kapillarelektro-

phoretischen Prozessen erforderlich ist.  

2.3.5 Vermessung der Liquorproben  
 

Herstellung der Messprobe 
100 µL Liquor wurden mit 4 µL des Internen Standards (0,1 mM) und 96 µL 0,1 M 

Boratpuffer, pH 8,0 (2 mM Na2EDTA) versetzt und anschließend wie in Kapitel 2.3.2 

beschrieben reduziert und derivatisiert.  
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Konzentrationsberechnung und Qualitätssicherung  
Die Quantifizierung von Cystein, Homocystein und Glutathion erfolgte mittels einer 

1/x-gewichteten Kalibriergeraden (vgl. Kapitel 2.3.4.4), die jeweils vor dem 

Vermessen der Proben erstellt wurde. Bezüglich der Kalibriergeraden und der 

Qualitätskontrolle bei der Vermessung von Patientenproben wurden die in Kapitel 

2.2.6 angeführten Anforderungen gestellt.  

 

 

2.4 Fluoreszenzpolarisations-Immunoassay  

Die Bestimmung von Homocystein (HCY) im Plasma erfolgte anhand eines 

Fluoreszenzpolarisations-Immunoassays (FPIA) der Firma Abbott (IMx®-System). 

Diese voll automatisierte Methode erlaubte eine schnelle und präzise Quantifizierung 

von freiem und gebundenem Homocystein im Plasma. 

2.4.1 Messprinzip des Fluoreszenzpolarisations-Immunoassays  

Die Bestimmung von Homocystein mittels FPIA besteht im Wesentlichen aus den 

folgenden drei Schritten:  

 

1. Reduktion 
Im Rahmen dieser initial stattfindenden Reaktion werden Homocystin, gemischte 

Disulfide und proteingebundenes Homocystein durch das Reduktionsmittel 

Dithiothreitol (DTT) zu freiem Homocystein reduziert (vergl. hierzu auch 2.3.2). 

 

2. Enzymatische Umwandlung 
Im zweiten Schritt wird das gesamte Homocystein durch SAH-Hydrolase und 

Adenosin, welches im Überschuss zugesetzt wird, zu S-Adenosyl-L-Homocystein 

(SAH) umgewandelt (s. Abb. 2-8).  
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HCY Adenosin SAH 
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Abb. 2-8: Enzymatisch katalysierte Bildung von SAH aus HCY und Adenosin. 

 

3. Immunoassay 
Im letzten Schritt werden zu der Lösung Anti-SAH-Antikörper (AK) und Fluorescein 

markiertes S-Adenosyl-Cystein (Analyt-Tracer) hinzugefügt. Der Immunoassay 

basiert auf folgendem Prinzip: 

Der zu quantifizierende Analyt (SAH) und der Analyt-Tracer konkurrieren kompetitiv 

um die Bindungsstellen am Antikörper (siehe Abb. 2-9).  

 
 

Abb. 2-9: Bindung freier Antigene (Analyt) und Fluorescein-markierter Antigene 

(Analyt-Tracer) an AK. 

 

Enthält die Patientenprobe eine hohe Konzentration des zu bestimmenden Analyten, 

wird weniger Analyt-Tracer an den Antikörper gebunden. Wird in diesem Fall die 

Messlösung mit polarisiertem Licht (Licht einer Schwingungsebene) durchstrahlt, ist 

der Polarisationsgrad der emittierten Strahlung gering, da sich die relativ kleinen, 

ungebundenen Fluoreszenzmoleküle schnell drehen und Licht in verschiedenen 

+
Analyt 

Analyt-Tracer Antikörper  
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Ebenen emittieren. Enthält die Probe hingegen eine geringe Konzentration des 

Analyten, wird mehr Analyt-Tracer an den Antikörper gebunden. Dieser AG-AK-

Komplex bewegt sich aufgrund seiner Größe sehr langsam. Bei Anregung durch 

polarisiertes Licht wird das Licht in derselben Ebene emittiert – die 

Fluoreszenzpolarisation (im Vergleich zu einer Blindprobe) bleibt im Wesentlichen 

erhalten. Die Abhängigkeit des Fluoreszenzpolarisationsgrades des emittierten Lichts 

von der Molekülgröße ist schematisch in Abb. 2-10 dargestellt.  

 

 

Abb. 2-10: Abhängigkeit des Fluoreszenzpolarisationsgrades von der Molekülgröße 

des Fluorophors. 

Die Quantifizierung des Analyten erfolgt letztendlich anhand der Intensität des 

emittierten Fluoreszenzlichtes. 

2.4.2 Durchführung der Messung 

Alle Verdünnungen und Pipettiervorgänge wurden vom IMx®-System durchgeführt. 

Die vollautomatisierte Messung begann mit der Mischung von 50 µL Kalibrator (bzw. 

Probe), 25 µL 200 µM Adenosinlösung (inklusive 10 mM DTT), 60 µL SAH-

Hydrolaselösung und 70 µL FPIA-Puffer. Nach einer 30-minütigen Inkubation bei 

AK + Analyt-Tracer 

Rotierender 

Analyt-Tracer 

Emittiertes Licht  

(λ = 525-550 nm)

Polarisiertes Licht  

(λ = 485 nm) 
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34 °C wurden 23 µL dieser Reaktionsmischung und 65 µL von der Anti-SAH-

Antikörper-Lösung in Glasküvetten transferiert und zu 1 mL mit FPIA-Puffer verdünnt. 

Nach einer weiteren Inkubationszeit von 10 Minuten wurde die Hinter-

grundfluoreszenz gemessen. Der S-Adenosyl-L-Cystein-Fluorescein-Tracer (85 µL) 
und ein zweites Aliquot der Reaktionsmischung (23 µL) wurden hinzugefügt und auf 

2 mL verdünnt. Die Fluoreszenz wurde erneut nach 10 Minuten vermessen.  

2.4.3 Spezifikationen des IMx®-Systems 

Im Folgenden sind die Angaben des Herstellers zum IMx®-Systems zusammen-

gefasst: 

 

Probenvolumen    25 µL 

Untere Bestimmungsgrenze  0,5 µM 

Messbereich      0,5-50,0 µM 

Konzentrationen der Kalibratoren  0,0; 2,5; 5,0; 10,0; 20,0; 50,0 µM 

Konzentrationen der QC-Proben  7,0; 12,5; 25,0 µM 

Testzeit      54 min 

Durchsatz     20 Tests/h  

 

2.4.4 Validierung der FPIA-Methode durch den Hersteller 

Spezifität 
Die Kreuzreaktivität wurde an Substanzen getestet, deren chemische Struktur zu 

einer möglichen Interferenz mit dem IMx®-Homocystein-Assay führen könnte. Die 

Ergebnisse sind in Tab. 2-8 dargestellt. Es sei angemerkt, dass die verwendeten 

Konzentrationen jeweils über dem 20fachen Wert der physiologischen Konzentration 

lagen.  
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Tab. 2-8: Kreuzreaktivitäten bei der Bestimmung von Homocystein im Plasma mittels 

FPIA (IMx®-System). 

Substanz Konzentration [mM] Kreuzreaktivität [%] 

S-Adenosyl-L-Methionin 0,50 012,9 

L-Cystein 100  < 0,1 

L-Cystathionin 0,50 000,1 

Adenosin 5,00 000,9 

Glutathion 100  < 0,1 

DL-Homocystein-Thiolacton 0,25 000,2 

 
 
Interferenzen 

Die Interferenz von Bilirubin, Hämoglobin, Triglyceriden, Erythrozyten, Eiweiß und 

Natriumfluorid mit dem IMx®-Homocystein-Assay wurde untersucht. Hierzu wurden 

Plasmaproben mit potentiell interferierenden Substanzen angereichert und auf 

Homocystein getestet. Der IMx®-Homocystein-Assay wies die in der Tab. 2-9 

aufgeführten Interferenzen auf. 

Tab. 2-9: Interferenzen bei der Bestimmung von Homocystein im Plasma mittels 

FPIA (IMx®-System). 

Substanz Konzentration Interferenz 

Bilirubin 0020 mg/dL < 10 %0 

Hämoglobin 1000 mg/dL 09 % 

Triglyceride 1000 mg/dL < 5 % 

Erythrozyten 5 % < 2 % 

Eiweiß 0  8 g/dL < 8 % 

Natriumfluorid 1000 mg/dL < 3 % 

 



Material und Methoden  Seite 67 

Präzision und Richtigkeit 

Die Präzision wurde ermittelt, indem drei Proben über 5 Tage hinweg zweimal täglich 

auf 10 Geräten in Doppelbestimmung analysiert wurden. Somit lagen pro Probe 

insgesamt 200 Messungen vor. Die Ergebnisse sind in Tab. 2-10 dargestellt. 

Tab. 2-10: Präzision der Bestimmung von HCY im Plasma mittels FPIA (IMx®-

System.  

Mittelwert der 
Konzentration [µM] n Within-day-Präzision  

VK [%] 
Between-day-Präzision 

VK [%] 
05,9  200 2,2 5,2 

10,8  200 1,9 4,1 

21,6  200 1,4 3,7 

 

Zur Bewertung der Richtigkeit des FPIA wurde ein Vergleich mit einem 

automatisierten HPLC-Verfahren durchgeführt175. 114 Plasmaproben mit einer 

Gesamt-Homocystein-Konzentration zwischen 3,9 und 40,2 µM wurden jeweils mit 

HPLC und IMx® getestet. Der ermittelte Korrelationskoeffizient betrug 0,989. 

Detailliertere Angaben zur Richtigkeit (z.B. relativer Fehler) gibt der Hersteller nicht 

an. 

2.4.5 Teilvalidierung der FPIA-Methode zur Bestimmung von 
Homocystein im Plasma 

Da die FPIA-Methode zur Bestimmung von Homocystein im Plasma ohne 

Änderungen übernommen wurde, wurde lediglich eine Teilvalidierung durchgeführt. 

Hierbei wurden die Richtigkeit sowie die Between- und Within-day-Präzision 

überprüft.  

Zur Bestimmung der Within-day-Präzision wurden drei QC-Proben (7 µM, 12,5 µM, 

25 µM) an einem Tag jeweils fünfmal vermessen.  

Die Between-day-Präzision wurde ermittelt, indem die Konzentration dieser QC-

Proben an 5 verschiedenen Tagen mittels einer Kalibriergeraden bestimmt wurde. 

Der Bezug auf eine Kalibriergerade erfolgte vor dem Hintergrund, dass die 

Kalibriergerade des FPIA laut Hersteller zwei Wochen lang verwendet werden kann. 
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Als Maß für die Präzision wurde die relative Standardabweichung 

(Variationskoeffizient) herangezogen (siehe Gl. 2-6). 

Zur Bestimmung der Richtigkeit wurden ebenfalls obige QC-Proben verwendet. Die 

Richtigkeit wurde an fünf aufeinander folgenden Tagen gemäß Gl. 2-7 ermittelt.  
 

 

2.5 Klinische Untersuchungen 

2.5.1 Pädiatrische Patienten mit akuter lymphatischer Leukämie  

In Zusammenarbeit mit Prof. M. Relling, St. Jude Children’s Research Hospital, 

Memphis, USA wurde ein Kollektiv pädiatrischer Patienten mit akuter lymphatischer 

Leukämie (ALL) untersucht, die im Rahmen der Therapie mit hochdosiertem MTX 

behandelt wurden. Das primäre Ziel der durchgeführten klinischen Untersuchung 

bestand darin, zu untersuchen, inwiefern eine Therapie mit HDMTX die Verstoff-

wechslung von Homocystein beeinflusst. Hierzu wurden sowohl Plasma- als auch 

Liquorproben nach Verabreichung von MTX auf Homocystein analysiert. Zusätzlich 

sollte untersucht werden, ob die Chemotherapie die Liquorkonzentrationen von 

Cystein, dem Endprodukt der Homocystein-Transsulfurierung, und Glutathion beein-

flusst.  

2.5.1.1 Patientencharakteristika  

Die Patienten wurden aufgrund des Immunophänotyps und -genotyps, des klinischen 

Bildes und des Ansprechens im Frühstadium der Therapie in drei Risikogruppen 

unterteilt:  

• LOW-RISK (LR) 

- Alter: 1-10 Jahre 

- B-Vorläufer ALL 

- Leukozytenzahl < 50 x 109/L 

 

• STANDARD-RISK (SR) 

- Alter: 1-16 Jahre 



Material und Methoden  Seite 69 

- B-Vorläufer ALL (mit der Translokation t(1;19), der E2A-PBXI-Fusion oder 

dem MLL-Rearrangement), T-Linien ALL, testikuläre Leukämie, hypodi-

ploider Chromosomensatz (< 45 Chromosomen) 

- ZNS-Status 3 (≥ 5 L eukozyten/µL Liquor, Nachweis von Blasten im Liquor) 

- ≥ 5 % Blasten im Knochenmark am 19. oder 26. Tag der Remission/ 

Induktion 

- Minimale Resterkrankung (≥ 0,01 %) am 46. Tag der Remission/Induktion 

 

• HIGH-RISK (HR) 

- Alter: 1-16 Jahre 

- Patienten mit Philadelphia-Chromosom (Bcr-Abl) 

- ≥ 1 % Blasten im Knochenmark am 46. Tag der Remission/Induktion 

- ≥ 0,1 % Blasten im Knochenmark 16 Wochen nach Remission/Induktion  

 

Standard- und High-Risk-Patienten erhielten in dieser Studie die gleiche 

Chemotherapie (s. Kap. 2.5.1.2). Daher wurde bei der Auswertung nur zwischen den 

Low-Risk- und den Standard-/High-Risk-Patienten (SHR-Patienten) unterschieden.  

Im Rahmen dieser Arbeit wurden von insgesamt 116 Patienten 390 Plasma- und 

190 Liquorproben untersucht. Von 17 Patienten standen sowohl Plasma- (104) als 

auch Liquorproben (47) zur Verfügung. Die Charakteristika der untersuchten 

Patienten sowie Anzahl und Art der untersuchten Proben sind Tab. 2-11 zu 

entnehmen.  

Tab. 2-11: Patientencharakteristika sowie Art und Anzahl der untersuchten Proben. 

Kollektiv Anzahl der 
Patienten

Median des 
Alters [Jahre] 

Anzahl der LR- bzw. 
SHR-Patienten 

Anzahl der 
Proben 

Patienten mit 
Plasmaproben 65 7,1 (1,0-18,3)* 28/37 390 

Patienten mit 
Liquorproben 65 5,7 (1,9-16,3)* 33/32 190 

Patienten mit Plasma-
und Liquorproben 17 7,2 (2,1-15,2)* 7/10 104 bzw. 

47 
 

* Minimum und Maximum 
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2.5.1.2 Therapieplan 

Sämtliche ALL-Patienten des St. Jude Children’s Research Hospital wurden nach 

dem Protokoll „Total XV“176 therapiert, welches im Wesentlichen aus drei 

Behandlungsblöcken, der Remission/Induktion, der Konsolidierung und der 

Erhaltungstherapie besteht.  

 

Remission/Induktion (Dauer 6-7 Wochen) 
Die Remission/Induktion wurde mit der intrathekalen Gabe von Cytarabin (je nach 

Alter 20-40 mg) und einer HDMTX-Infusion (1g/m2 über 4 bzw. 24 Stunden) 

eingeleitet (Upfront-HDMTX). MTX-Plasmakonzentrationen wurden nach 1, 4, 23 und 

42 Stunden (gerechnet ab Infusionsbeginn) mit einem Fluoreszenzpolarisations-

Immunoassay (TDx/TDcFLx®) der Firma Abbott bestimmt. 42 Stunden nach Beginn 

der MTX-Infusion wurde die Rescue-Therapie mit Calciumfolinat gestartet. Initial 

wurden 50 mg/m2 intravenös (IV) verabreicht, alle 6 Stunden später 15 mg/m2 IV. 

Insgesamt wurden, normale MTX-Plasmakonzentrationen vorausgesetzt, nach der 

Initialdosis sieben Dosen Calciumfolinat gegeben. Die Rescue-Therapie wurde im 

Falle erhöhter MTX-Plasmakonzentrationen (> 1 µM 42 Stunden nach Infusions-

beginn) intensiviert.  

4 Tage nach der HDMTX-Therapie wurde die Behandlung mit Prednison, Vincristin, 

Daunorubicin und Asparaginase fortgesetzt. Diese Zytostatika wurden über einen 

Zeitraum von insgesamt 3,5 Wochen verabreicht. In der zweiten Hälfte der 

Remission/Induktion wurde die Kombination aus hochdosiertem Cyclophosphamid, 

Cytarabin und Mercaptopurin eingesetzt. Die Tab. 2-12 zeigt das exakte 

Dosierungsschema dieser Arzneistoffe während der Remission/Induktion. 

Am 19. Tag der Remission/Induktion (Patienten mit ZNS-Status 2 oder 3, sowie 

Patienten mit Philadelphia-Chromosom: zusätzlich am 8. und 26. Tag) wurde eine 

intrathekale Tripeltherapie (TIT) bestehend aus MTX, Hydrocortison und Cytarabin 

verabreicht. Die Dosierung richtete sich nach dem Alter der Patienten (s. Tab. 2-13). 

Auch nach der intrathekalen MTX-Gabe wurde eine Rescue-Therapie mit 

Calciumfolinat (5 mg/m2 PO 24 und 30 Stunden nach Gabe der TIT) durchgeführt.  
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Tab. 2-12: Dosierungsschema der Arzneistoffe in der 2. Phase der Remission/ 

Induktion. 

Arzneistoff Dosierung  Applikationszeitraum Anzahl der 
Applikationen 

Prednison 00040 mg/m2 IV Tage 5-32 84 

Vincristin 001,5 mg/m2 IV Tage 5, 12, 19, 26 04 

Daunorubicin 0025 mg/m2 IV Tage 5, 12 02 

L-Asparaginase 10.000 U/m2 IM 
Tage 6, 8, 10, 12, 14, 16 

(19, 21, 23)* 
6-9 

Cyclophosphamid 1000 mg/m2 IV Tag 26 01 

Cytarabin 0075 mg/m2 IV Tage 27-30, 34-37 08 

Mercaptopurin 00060 mg/m2 PO Tage 26-39 14 
 

* Diese zusätzlichen Applikationen erfolgten, falls am 19. Tag der Remission/Induktion ≥ 5 % Blasten 

im Knochenmark vorlagen 

 

Tab. 2-13: Dosierung der intrathekalen Tripeltherapie (TIT) in der 3. Phase der 

Remission/Induktion. 

Alter [Monate] Methotrexat [mg] Hydrocortison [mg] Cytarabin [mg] 

13-23 08 16 24 

24-35 10 20 30 

≥ 36 12 24 36 
 
Konsolidierung (Dauer 8 Wochen) 
Im Rahmen der Konsolidierung wurde den Patienten täglich Mercaptopurin 

(50 mg/m2 PO) sowie viermal (Tag 1, 15, 29, 43) eine HDMTX-Infusion verabreicht, 

die mit einer intrathekalen Tripeltherapie (s. Tab. 2-13) kombiniert wurde. Die Dauer 

der HDMTX-Infusion betrug 24 Stunden, 10 % der Gesamtdosis (loading dose) 

wurden innerhalb der ersten Stunde gegeben. Die MTX-Dosierung richtete sich nach 

der Risikoklassifizierung der Patienten und der MTX-Clearance, die nach der ersten 

Infusion von HDMTX (Upfront-HDMTX) ermittelt wurde. Das Dosierungsschema von 

Mercaptopurin und MTX ist in Tab. 2-14 aufgeführt.  
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Tab. 2-14: Dosierungsschema der eingesetzten Arzneistoffe in der Konsolidierung. 

 

* Angestrebte Steady-State-Konzentration im Plasma bei Low-Risk-Patienten: 33 µM 
# Angestrebte Steady-State-Konzentration im Plasma bei Standard/High-Risk-Patienten: 65 µM 

 

MTX-Plasmakonzentrationen wurden 6, 23 und 42 Stunden nach Infusionsbeginn 

bestimmt. Die Rescue-Therapie wurde 42 Stunden nach Beginn der HDMTX 

gestartet und alle sechs Stunden wiederholt, bis insgesamt fünf Dosen Calciumfolinat 

(SHR-Patienten: 15 mg/m2 IV oder PO, LR-Patienten: 10 mg/m2 IV oder PO) 

verabreicht wurden. Wiederum wurde die Rescue-Therapie intensiviert, falls die 

MTX-Plasmakonzentrationen zur Stunde 42 über 1 µM lagen.  

 
Erhaltungstherapie (Dauer 120-146 Wochen) 
Mit der Erhaltungstherapie wurde 7 Tage nach der 4. HDMTX-Infusion der 

Konsolidierung begonnen. Die Chemotherapie in diesem Therapieabschnitt wurde 

stark auf das Risikoprofil der Patienten zugeschnitten. Das Therapieschema der 

Wochen 1-6 (bzw. 11-16) ist in der Tab. 2-15 zusammengefasst.  

Tab. 2-15: Therapieschema der Erhaltungstherapie (Woche 1-6 bzw. 11-16). 

Dosierung  Applikations-
zeitraum/Woche 

Gesamtzahl d.
ApplikationenArzneistoff 

LR SHR LR SHR LR SHR 

Dexamethason 08 mg/m2 PO 012 mg/m2 PO Tage 1-5* Tage 1-5* 30 30 

Doxorubicin --- 30 mg/m2 IV --- Tag 1* --- 2 

Vincristin 02 mg/m2 IV 02 mg/m2 IV Tag 1* Tag 1* 2 2 

L-Asparaginase --- 25000 U/m2 --- Tag 1 --- 6 

Methotrexat 40 mg/m2 IV --- Tag 1# --- 4 --- 

Mercaptopurin 075 mg/m2 PO 050 mg/m2 PO Tage 1-7 Tage 1-7 42 42 
 

* Nur in der 1. und 4. Woche; # nur in der 2. und 3. sowie 5. und 6. Woche  

Arzneistoff Dosierung  Applikationszeitraum Anzahl der 
Applikationen 

Mercaptopurin 50 mg/m2 PO000 Tage 1-56 56 

Methotrexat 
 

ca. 2,5 g/m2 IV (LR)*0
 ca. 5,0 g/m2 IV (SHR)# Tage 1, 15, 29, 43 04 
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Die erste Behandlungsphase (Woche 1-20) beinhaltete zusätzlich zwei dreiwöchige 

Reinduktionen (I und II), die in der Woche 7-9 bzw. 17-19 verabreicht wurden 

(s. Tab. 2-16). 

Tab. 2-16: Therapieschema der Reinduktionstherapie I (Woche 7-9) und II (Woche 

17-19). 

Reinduktionstherapie I 

Dosierung  Applikations-
zeitraum 

Gesamtzahl d. 
ApplikationenArzneistoff 

LR SHR LR SHR LR SHR 

Dexamethason 008 mg/m2 PO 008 mg/m2 PO
Tage 

1-8, 15-21
Tage 

1-8, 15-21 
48 48 

Doxorubicin 030 mg/m2 IV 030 mg/m2 IV Tag 1 Tage 1,8 01 02 

Vincristin 1,5 mg/m2 IV 1,5 mg/m2 IV
Tage 

1, 8, 15 
Tage 

1, 8, 15 
03 03 

L-Asparaginase 10000 U/m2 25000 U/m2 3x/Woche
Tage 

1, 8, 15 
09 03 

TIT* altersabh. altersabh. Tag 1 Tag 1 01 01 

Reinduktionstherapie II 

Dosierung  Applikations-
zeitraum 

Gesamtzahl d. 
ApplikationenArzneistoff 

LR SHR LR SHR LR SHR 

Dexamethason 08 mg/m2 PO 8 mg/m2 PO 
Tage 

1-8, 15-21
Tage 

1-8, 15-21 
48 48 

Doxorubicin 30 mg/m2 IV --- Tag 1 --- 01 --- 

Cytarabin --- 0002 g/m2 IV --- 
Tage 
15, 16 

--- 04 

Vincristin 1,5 mg/m2 IV 1,5 mg/m2 IV
Tage 

1, 8, 15 
Tage 

1, 8, 15 
03 03 

L-Asparaginase 10000 U/m2 25000 U/m2 3x/Woche
Tage 

1, 8, 17 
09 03 

TIT* altersabh. altersabh. Tag 1 Tag 1 01 01 
 
* Intrathekale Tripeltherapie (s. Tab. 2-13) 
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Ab der 21. Woche wurde die Therapie der Konsolidierung wie in Tab. 2-17 zusam-

mengefasst fortgesetzt.  

Tab. 2-17: Therapieschema der Erhaltungstherapie (Woche 21-28). 

Dosierung Applikations-
zeitraum/Woche 

Gesamtzahl der 
Applikationen Arzneistoff 

LR SHR LR SHR LR SHR 

Dexa- 
methason 

08 mg/m2 PO 012 mg/m2 PO Tage 1-5* Tage 1-5* 30 30 

Cytarabin --- 300 mg/m2 IV --- Tag 1# --- 02 

Cyclo-
phosphamid --- 300 mg/m2 IV --- Tag 1# --- 02 

Vincristin 02 mg/m2 IV 002 mg/m2 IV Tag 1* Tag 1* 02 02 

Methotrexat 40 mg/m2 IV 040 mg/m2 IV Tag 1x1 Tag 1x2 06 04 

6-Mercapto- 
purin 

75 mg/m2 PO 075 mg/m2 PO Tage 1-7 Tage 1-7 56 28 

 

* Nur in der 24. und 28. Woche; # nur in der 23. und 27. Woche; x1 nur in der 21.-23. sowie 25.-27. 

Woche x2 nur in der 21. und 22. sowie 25. und 26. Woche 

 

Das Therapieschema der Wochen 21-28 wurde fünfmal wiederholt. Anschließend (ab 

Woche 68) erhielten alle Patienten täglich Mercaptopurin (75 mg/m2), wöchentlich 

MTX (40 mg/m2) und alle vier Wochen Dexamethason (8 bzw. 12 mg/m2), kombiniert 

mit Vincristin (2 mg/m2). Ab der 100. Woche wurde nur noch MTX und Mercaptopurin 

verabreicht. Mädchen wurden 100 Wochen, Jungen 146 Wochen lang therapiert. 

Die intrathekale Tripeltherapie wurde je nach Risikoprofil der Patienten mindestens 

siebenmal, höchstens jedoch sechzehnmal verabreicht. 

2.5.1.3 Probenentnahmen 

Zur Bestimmung von Homocystein wurden während der Therapie sowohl Blut- als 

auch Liquorproben gezogen. Liquor (ca. 2 mL) wurde vor der Remission/Induktion 

(RI), sowie am ersten (C1) und 15. Tag (C15) der Konsolidierung durch eine 

Lumbalpunktion entnommen. Zusätzlich wurde zeitweise auch am 8. Tag der 
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Remissions-/Induktionstherapie Konsolidierung 

3 15 6 4 1 2 7 2 3 4 5 6 7 8 

HDMTX ITMTX 
Liquorprobe 
Blut- bzw. Plasmaprobe 

* *

* Nur bei Patienten mit besonders ausgeprägtem Risiko

Wo: 

Konsolidierung (C8) eine Liquorprobe gezogen. Die Liquorentnahmen erfolgten 

jeweils kurz vor der intrathekalen Verabreichung von MTX (ITMTX).  

 

Blutproben (ca. 3-4 mL), die anschließend zu Plasma aufgearbeitet wurden, wurden 

vor Beginn der Remission/Induktion (RI) – zum Zeitpunkt der Diagnose – und 

während der Konsolidierung gezogen. In letzterer Therapiephase erfolgte die 

Blutentnahme jeweils vor sowie 23 und 42 Stunden nach Verabreichung der 1. bzw. 

2. HDMTX-Infusion (gerechnet ab Infusionsbeginn). Insgesamt wurden in dieser 

Therapiephase von jedem Patienten sechs Blutproben entnommen (C1, C1h23 und 

C1h42, C15, C15h23, C15h42). Das Probenentnahmeschema ist in Abb. 2-11 

dargestellt.  

 

 

 

 

 

 

 

 

 

Abb. 2-11: Zeitpunkte der Entnahme von Liquor- bzw. Blutproben. 

 

Sowohl die Liquor- als auch die Plasmaproben wurden nach ihrer Gewinnung sofort 

bei -80 °C eingefroren. Die Versendung der Proben nach Bonn erfolgte auf 

Trockeneis, um ein zwischenzeitliches Auftauen der Proben zu vermeiden. Bis zur 

Untersuchung wurden alle Proben im Pharmazeutischen Institut der Universität Bonn 

bei -20 °C eingelagert.  
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2.5.2 Erwachsene Patienten mit primären Lymphomen des zentralen 
Nervensystems 

In Zusammenarbeit mit Prof. Dr. Schlegel (Klinik für Neurologie, Abteilung 

Neuroonkologie, Universitätsklinikum der Rheinischen Friedrich-Wilhelms-Universität 

Bonn) wurden vier Patienten mit primären Lymphomen des Zentralnervensystems 

(PZNSL) untersucht. PZNSL sind definiert als Lymphome, die in Gehirn, Augen, 

weichen Hirnhäuten und/oder dem Spinalmark entstehen177.  

2.5.2.1 Patientencharakteristika 

Die Charakteristika der vier untersuchten Patienten finden sich in Tab. 2-18.  

Tab. 2-18: Charakteristika der ZNS-Lymphompatienten. 

Patient Alter 
[Jahre] Geschlecht Köperober-

fläche [m2] Erkrankung 

1 40 w 1,62    PZNSL (B-Zellreihe) 
2 66 w 1,63    PZNSL (B-Zellreihe) 
3 64 w 1,79    PZNSL (B-Zellreihe) 
4 73 w 1,94    Rezidiv. PZNSL (B-Zellreihe) 

2.5.2.2 Therapieplan 

Sämtliche Patienten wurden nach dem so genannten „Bonner Protokoll für primäre, 

zentralnervöse Lymphome“ therapiert. Dieses Protokoll beinhaltet insgesamt sechs 

Blöcke einer Hochdosis-Chemotherapie (Block AI, BI, CI sowie AII, BII und CII), die 

im zeitlichen Abstand von zwei Wochen verabreicht werden. Patienten mit 

rezidivierendem PZNSL wurden nach einem leicht modifizierten Protokoll behandelt 

(es beinhaltete lediglich die Blöcke AI, CI sowie AII und CII). Das detaillierte 

Therapieschema ist in Tab. 2-19 aufgeführt. Die Dosis der MTX-Infusion wurde der 

Kreatinin-Clearance angepasst, die vor jedem Block bestimmt wurde.  

Eine Dosisreduktion wurde bei eingeschränkter Nierenfunktion, sowie bei älteren 

Patienten (> 65 Jahre) vorgenommen.  
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Tab. 2-19: Therapieschema zur Behandlung der Patienten mit PZNSL („Bonner 

Protokoll zur Therapie PZNSL“).  

Arzneistoff Dosierung Tag 
1 

Tag 
2 

Tag 
3 

Tag 
4 

Tag 
5 

Tag 
6 

Tag 
7 

Block A         
Methotrexat 005 g/m2 IV* +       

Vincristin 002 mg/m2 IV +       
Ifosfamid 800 mg/m2 IV  + + + +   

Dexamethason 10 mg/m2 PO  + + + +   
Methotrexat 03 mg ICV  + + +    
Prednisolon 2,5 mg ICV  + + +    
Cytarabin 30 mg ICV     +   
Block B         

Methotrexat 5 g/m2 IV* +       
Vincristin 002 mg/m2 IV +       

Cyclophosphamid 200 mg/m2 IV  + + + +   
Dexamethason 10 mg/m2 PO  + + + +   

Methotrexat 03 mg ICV  + + +    
Prednisolon 2,5 mg ICV  + + +    
Cytarabin 30 mg ICV     +   
Block C         
Cytarabin 3 g/m2 IV + +      
Vindesin 5 mg/m2 IV +       

Dexamethason 10 mg/m2 PO   + + + + + 
Methotrexat 03 mg ICV   + + + +  
Prednisolon 2,5 mg ICV   + + + +  
Cytarabin 30 mg ICV       + 

 

* Patienten > 65 Jahre bekamen 3 g/m2 infundiert  

ICV: intra(cerebro)ventrikulär  

Zur Beachtung: Die Blöcke A-C wurden in folgender Reihenfolge verabreicht: AI (Tag 1-5), BI (Tag 22-

26), CI (Tag 39-43), AII (Tag 64-68), BII (Tag 85-89), CII (Tag 106-112). Patienten, die aufgrund eines 

PZNSL-Rezidivs therapiert wurden, bekamen nur Block A (AI, AII) und C (CI, CII) verabreicht.  

 

MTX-Serumkonzentrationen wurden 24, 42, 48 und 54 Stunden nach jeder HDMTX-

Infusion (gerechnet ab Infusionsbeginn) mittels Fluoreszenzpolarisations-

Immunoassay (TDx/TDcFLx®) der Firma Abbott bestimmt.  

Calciumfolinat (30 mg/m2 IV) wurde 34, 42, 48 und 54 Stunden nach Beginn der 

MTX-Infusion verabreicht. Bei erhöhten MTX-Serumkonzentrationen (> 150 µM zur 

24., > 1 µM zur 42., > 0,4 µM zur 48. oder > 0,2 µM zur 54. Stunde) wurde eine 

intensivierte Rescue-Therapie vorgenommen. In diesem Fall wurde im Abstand von 
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vier Stunden solange Calciumfolinat (30 mg/m2 IV) verabreicht, bis die MTX-

Serumkonzentration < 0,2 µM betrug. Nach der intraventrikulären Gabe von MTX 

(ICVMTX) erfolgte keine Rescue-Therapie.  

2.5.2.3 Probengewinnung und -aufarbeitung 

Die Probenentnahme erfolgte jeweils kurz vor Verabreichung der intraventrikulären 

MTX- bzw. Cytarabin-Gabe durch Punktion eines Ommaya-Reservoirs (s. Abb. 2-12). 

Hierbei handelt es sich um einen Silikonport, der subkutan implantiert wird. Von dem 

Silikonport reicht ein anhängender Katheter durch das Cranium in einen lateralen 

Ventrikel. Das Reservoir erlaubt die vergleichsweise einfache Entnahme von 

Liquorproben bzw. Applikation von Arzneistoffen.  

 

 

Abb. 2-12: Schematische Darstellung eines intraventrikulären Zugangs mit Ommaya-

Reservoir. Die Vergrößerung zeigt den nach Applikation eines Arzneistoffs 

notwendigen Pumpvorgang94. 

Abb. 2-13 gibt eine Übersicht darüber, wann MTX infundiert bzw. intraventrikulär 

verabreicht wurde und zu welchen Zeitpunkten der Therapie Liquorproben 

entnommen wurden. Darüber hinaus ist der Abbildung das zeitliche Schema der 

Rescue-Therapie zu entnehmen.  
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ITMTX 

Liquorprobe 

Calciumfolinat 

Tag 1 Tag 2 Tag 3 Tag 4 Tag 5 

HDMTX 

 

 

 

 

 

 

 

 

 

 

Abb. 2-13: Zeitpunkte der Entnahme von Liquorproben im Block A/B.  

 

Zur Abtrennung zellulärer Bestandteile wurden die Liquorproben 10 min bei 

Raumtemperatur und 1000 g zentrifugiert. Der Überstand wurde bis zur quantitativen 

Analyse bei -24 °C eingelagert.  

 

2.5.3 Gesunde Erwachsene (Kontrollgruppe) 

In Zusammenarbeit mit Dr. Görtz (Neurologie des Universitätsklinikums der 

Heinrich-Heine-Universität Düsseldorf) wurde eine Kontrollgruppe für die 

Lymphompatienten-Studie zusammengestellt. Es wurde gefordert, dass die 

Personen der Kontrollgruppe  

• keine Erkrankung aufwiesen, die in irgendeiner Art und Weise den 

Homocysteinstoffwechsel hätte beeinflussen können, 

• gehobenen Alters waren und  

• über eine intakte Blut-Liquor-Schranke verfügten. 

Die Liquores dieser Personen wurden hinsichtlich des Gehaltes an schwefelhaltigen, 

exzitatorischen Aminosäuren (SEAA) sowie Cystein, Homocystein und Glutathion 

untersucht. Die ermittelten Konzentrationen dieser Substanzen dienten als 



Seite 80  Material und Methoden 

Referenzwerte für die Interpretation der Daten, die anhand der Studie mit den 

Lymphompatienten erhoben wurden.  

 

Die nachfolgende Tab. 2-20 beinhaltet die Charakteristika der Kontrollgruppe. Alle 

Personen dieser Kontrollgruppe erhielten aus diagnostischen Gründen eine 

Lumbalpunktion. Die Blut-Liquor-Schrankenfunktion wurde anhand des Albumin-

Quotienten beurteilt.  

Tab. 2-20: Charakteristika der Kontrollgruppe.  

Nr. Alter 
[Jahre]

Ge-
schlecht 

Protein* 
[g/L] 

Albumin-Quotient# 
(x10-3) 

Drittel-
zellenx 

01 72 m 0,53 5,44 1 
02 89 w 0,30 4,33 1 
03 69 m 0,59 8,68 2 
04 69 m 0,72 7,38 9 
05 69 w 0,50 9,17 1 
06 65 m 0,43 7,23 1 
07 64 m 0,15 4,66 1 
08 76 w 0,22 3,20 1 
09 69 w 0,20 3,33 1 
10 67 w 0,28 4,98 1 
11 67 m 0,77 10,220 1 
12 59 w 0,33 4,39 1 
13 70 w 0,39 6,34 1 
x  69,6  0,42 6,10  
s 7,09  0,20 2,27  

RSD [%] 10,2  47,3 37,2  
x~  69,0  0,39 5,44  

 

* Normwert des Proteingehalts im Liquor: 0,15-0,45 g/L (erhöht bei Schrankenstörungen und 

pathologischen Prozessen) 
# Quotient aus der Albuminkonzentration im Liquor und der Albuminkonzentration im Plasma; 

altersabhängiger Normwert: bis 15 Jahre: < 5,0x10-3, bis 40 Jahre: < 6,5x10-3, bis 60 Jahre: < 8,0x10-3 
x Drittelzellen: Zellzahl in 3 µL unverdünntem Liquor; Normwerte: 1 bis max. 12 Drittelzellen 

 

Die Albuminquotienten der Tabelle zeigen auf, dass alle Personen über eine intakte 

Blut-Liquor-Schranke verfügten. Die Albuminquotienten der Personen 3, 5 und 11, 

welche über dem Grenzwert der Altersklasse „bis 60 Jahre“ lagen, sind normal für 

Personen, die älter als 60 Jahre sind, und klinisch nicht von Bedeutung178. 
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2.5.4 Fallbericht einer Patientin mit MTX-Überdosierung 

In Zusammenarbeit mit Dr. Liebeskind (Klinikum Buch, Abteilung Hämatologie und 

Onkologie, Helios Klinikum Berlin) und Prof. Dr. Bode (Kinderklinik, Abteilung 

Hämatologie und Onkologie, Universitätsklinikum der Rheinischen Friedrich-

Wilhelms-Universität Bonn) wurde eine Patientin, die eine 10fach erhöhte MTX-Dosis 

intraventrikulär verabreicht bekam, untersucht.  

2.5.4.1 Fallbeschreibung 

Die Patientin wurde aufgrund eines Astrozytoms (WHO-Grad IV) nach dem 

sogenannten „HIT-SKK 2000-Protokoll“ therapiert. Zum Zeitpunkt der fehlerhaften 

MTX-Applikation – die Patientin bekam anstatt 2 mg 20 mg MTX intraventikulär 

verabreicht – befand sich die Patientin im zweiten Therapiezyklus (1. Tag des 

Elements E III S1, s. Tab. 2-21) und war ein Jahr alt.  

Sechs Stunden nach Applikation dieser hohen MTX-Dosis wurden folgende Notfall-

Maßnahmen eingeleitet: 

• Abbruch der laufenden MTX-Infusion (5 g/m2), die kurz vor der 

intraventrikulären Gabe von MTX gestartet wurde 

• Fraktionierte ventrikuläre Liquorspülung mit insgesamt 50 mL 

0,9 % Kochsalzlösung, die 16 Stunden nach Überdosierung wiederholt wurde  

• Intravenöse Gabe von insgesamt 11 Dosen Calciumfolinat (6 mg/m2), die im 

zeitlichen Abstand von jeweils 6 Stunden verabreicht wurden 

• Forcierte alkalische Diurese 

• Gabe von Dexamethason (3x1 mg IV), Phenobarbital (2x25 mg IV) und 

Furosemid (5 mg IV) 

 

Nach der fehlerhaften MTX-Gabe wurden keine neurologischen Komplikationen 

beobachtet179. Eine Kernspinuntersuchung (MRT), die 4 Monate nach der 

Überdosierung durchgeführt wurde, offenbarte keine Anzeichen einer 

Demyelinisierung bzw. Leukenzephalopathie179.  
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2.5.4.2 Therapieplan 

Nach der operativen Entfernung des Hirntumors erhielt die Patientin eine 

Chemotherapie, die neben Methotrexat die Zytostatika Vincristin, Cyclophosphamid, 

Carboplatin und Etoposid beinhaltete. Das genaue Therapieschema zeigt Tab. 2-21.  

Tab. 2-21: Therapieschema des „HIT-SKK 2000-Protokolls“. 

Arzneistoff Dosierung Tag 1 Tag 2 Tag 3 Tag 4 

Element E II S      
Vincristin 1,5 mg/m2 IV +    

Cyclophosphamid 800 mg/m2 IV0 + + +  
Methotrexat* 2 mg ICV + + + + 

Element E III S1      
Vincristin 1,5 mg/m2 IV +    

Methotrexat 0005 g/m2 IV +    
Methotrexat 2 mg ICV + +   

Element E III S2      
Vincristin 1,5 mg/m2 IV +    

Methotrexat 0005 g/m2 IV +    
Methotrexat 2 mg ICV + +   

Element E IV S      
Carboplatin 200 mg/m2 IV + + +  

Etoposid 150 mg/m2 IV + + +  
Methotrexat* 2 mg ICV + + + + 

 

Zur Beachtung: Die Elemente E II S, E III S1, E III S2 und E IV S stellen zusammen einen Zyklus dar. 

Dieser Zyklus wurde in der ersten Therapiephase insgesamt dreimal verabreicht (Zyklus 1-3), die 

Zeitspanne zwischen den einzelnen Zyklen betrug jeweils mindestens zwei Wochen. In einer späteren 

Therapiephase (nach kompletter Remission) wurden zwei weitere Zyklen (Zyklus 4-5) verabreicht, 

wobei in diesen Zyklen die Elemente E III S1 und E III S2 ausgelassen wurden. 

* Nur Zyklus 1-3 

Tab. 2-21 ist zu entnehmen, dass HDMTX insgesamt sechsmal, ICVMTX insgesamt 

36-mal verabreicht wurde. Die Rescue-Therapie nach HDMTX wurde 42 Stunden 

nach MTX-Infusionsbeginn mit der Gabe von Calciumfolinat (15 mg/m2 IV) gestartet 

und alle sechs Stunden solange wiederholt, bis insgesamt sechs Dosen 

Calciumfolinat verabreicht worden waren. Die letzte Gabe Calciumfolinat erfolgte 

somit 72 Stunden nach Beginn der MTX-Infusion. Bei erhöhten MTX-
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Serumkonzentrationen (> 1 µM zur Stunde 42, > 0,4 µM zur Stunde 48 oder 

> 0,25 µM zur Stunde 54) wurde die sechsstündliche Calciumfolinatdosis den MTX-

Serumkonzentrationen angepasst und solange fortgesetzt, bis die MTX-

Serumkonzentration < 0,25 µM betrug. Nach der intraventrikulären Gabe von MTX 

(ICVMTX) erfolgte keine Rescue-Therapie.  

2.5.4.3 Probenentnahmen 

Liquorproben wurden 6, 6 ¼ (nach der 1. Spülung), 10, 16 (vor der 2. Spülung), 24, 

34, 48, 62 und 66 Stunden nach der fehlerhaften intraventrikulären Instillation von 

MTX aus dem implantierten Ommaya-Reservoir entnommen. Diese Proben wurden 

weder zentrifugiert noch anderweitig behandelt.  

Im Klinikum Buch wurden in all diesen Proben die Konzentrationen an MTX mit 

einem Fluoreszenzpolarisations-Immunoassay (TDx/TDcFLx®) der Firma Abbott 

bestimmt.  

Cystein, Homocystein und Glutathion, die Metaboliten des Cysteins (CSA und CA) 

und Homocysteins (HCSA und HCA) sowie N5-Methyl-THF wurden in den Proben, 

die 10, 16 (vor 2. Spülung), 24, 34, 62 und 66 Stunden nach ICVMTX gezogen 

wurden, quantifiziert. Die übrigen Proben standen für diese biochemische Analyse 

nicht zur Verfügung.  

 

 

2.6 Pharmakokinetische Berechnungen  

Die MTX-Clearance und die AUC (Fläche unter der Konzentrations-Zeit-Kurve) der 

ALL-Patienten nach HDMTX (s. Kapitel 2.5.1) wurden basierend auf den MTX-

Steady-State-Konzentrationen, die während der 24-stündigen MTX-Infusion bestimmt 

wurden, ermittelt.  
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2.6.1 Clearance  

Die Gesamtclearance (CL) von MTX nach Verabreichung der hochdosierten MTX-

Infusion wurde aus der verabreichten Dosis und der mittleren Steady-State-

Konzentration im Plasma nach folgender Gleichung berechnet:  

 CL = 
τ⋅ss

avc
D  Gl. 2-11 

 D  = Dosis 

 ss
avc  = mittlere Steady-State-Konzentration 

 τ  = Infusionsdauer 

 

Die mittlere Steady-State-Konzentration wurde aus den MTX-Plasma-

konzentrationen, die zur 6. und 23. Stunde der insgesamt 24-stündigen MTX-Infusion 

bestimmt wurden, berechnet. 

 

2.6.2 AUC  

Die AUC nach HDMTX wurde nach Ermittlung der jeweiligen MTX-Clearance gemäß 

folgender Gleichung berechnet:  

 

 AUC = 
CL
D  Gl. 2-12 

 D   = Dosis  

 CL   = Gesamtclearance 
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2.7 Statistische Datenanalyse 

Die statistische Datenanalyse erfolgte mit Hilfe der Software Excel® 2002 (Microsoft®) 

und SPSS 11.0 für Windows® (SPSS Inc.).  

2.7.1 Deskriptive Statistik 

Zur zusammenfassenden Darstellung der Daten wurden verschiedene Lage- und 

Streumaße herangezogen. Dies waren: 

 Median ( x~ ):    Der Wert, über und unter dem jeweils die 

Hälfte aller Fälle liegt; das 50. Perzentil. 

Bei einer geraden Anzahl von Fällen ist 

der Median der Mittelwert der zwei 

mittleren Fälle, wenn diese auf- oder 

absteigend sortiert sind 

 Arithmetischer Mittelwert ( x ):  x  = 
n

x
n

i
i∑

=1   Gl. 2-13 

 Standardabweichung (SD):  SD  = 
1

)(
1

2

−

−∑
=

n

xx
n

i
i

 Gl. 2-14 

    x   = Mittelwert aus n Einzelmessungen 
    ix  = Messwert  
   n  = Anzahl der Messungen 
 
 Relative Standardabweichung (RSD): siehe Gl. 2-6 

 Spannweite (Range): Die Spannweite wird durch den größten 

(Maximum) und kleinsten Wert 

(Minimum) der Verteilung terminiert. 

 

Zur graphischen Darstellung der Lage- und Streumaße wurden in aller Regel 

Boxplots verwendet. Der Boxplot besteht aus einer Box, die vom ersten und dritten 
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kleinster Wert 

größter Wert 

Median 

Extremwert 

Ausreißer 

Quartil (25. und 75. Perzentil) begrenzt wird. Die innere horizontale Linie 

repräsentiert den Median, die obere Linie markiert den größten, die untere den 

kleinsten Wert. Ausreißer sind definiert als Werte, die um mehr als anderthalb 

Boxlängen außerhalb der Box liegen. Sie sind durch einen Kreis gekennzeichnet. 

Extremwerte liegen um mehr als drei Boxlängen außerhalb der Box und sind durch 

ein Sternchen markiert (s. Abb. 2-14). 

 

 

 

 

 

 

 

 

 

Abb. 2-14: Boxplot zur Darstellung der Lage- und Streumaße.  

 

2.7.2 Statistische Tests zur Prüfung von Unterschiedshypothesen 

Mit Hilfe der klassischen Teststatistik wird ermittelt, welche von zwei gegensätzlichen 

Hypothesen – Nullhypothese oder Alternativhypothese – angenommen werden kann. 

Die Nullhypothese ist eine Negativhypothese, mit der behauptet wird, dass die zur 

Alternativhypothese (HA) komplementäre Aussage richtig ist. Die Entscheidung, ob 

die Alternativhypothese, die die zu beweisende Theorie beinhaltet, akzeptiert werden 

kann oder nicht, wird von der Nullhypothese aus getroffen. Ziel der Teststatistik ist 

es, die Wahrscheinlichkeit (p) zu berechnen, mit der die Nullhypothese 

fälschlicherweise abgelehnt wird (Irrtumswahrscheinlichkeit). Im Rahmen dieser 

Arbeit wurde die Nullhypothese verworfen, wenn die Irrtumswahrscheinlichkeit 

kleiner oder gleich 5 % betrug (p < 0,05), das Signifikanzniveau lag somit bei 5 %. 

Ein hochsignifikantes Ergebnis lag bei p < 0,01, ein höchstsignifikantes bei p < 0,001 

vor. Nachfolgend werden die verwendeten Tests kurz erläutert. 
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Prüfung auf Normalverteilung 
Zur Prüfung auf Normalverteilung wurde bei Stichprobenumfängen mit bis zu 

50 Messwerten der Shapiro-Wilk-Test, bei größeren Stichprobenumfängen der 

Kolmogorov-Smirnov-Test angewendet. Bei beiden Tests stellt die Nullhypothese 

(die Daten sind normalverteilt) die „Wunschhypothese“ dar, d.h. bei einer 

Irrtumswahrscheinlichkeit p < 0,05 weicht die gegebene Verteilung signifikant von 

einer Normalverteilung ab. Die untere Grenze der „echten Signifikanz“ wurde bei 

p ≥ 0,2 festgelegt, d.h. bei p-Werten ≥ 0,2 wurden normalverteilte Daten 

angenommen. 

 

Gruppenvergleich 
Zur Beurteilung, ob sich Gruppen hinsichtlich bestimmter Merkmale signifikant 

unterscheiden, wurden diverse statistische Tests herangezogen. Die Testauswahl 

erfolgte in Abhängigkeit von der Skalierung und Verteilung der Daten, der 

Stichprobengröße und der Anzahl der untersuchten Gruppen. Des Weiteren wurde 

berücksichtigt, ob die Variablen voneinander abhängig waren oder nicht. 

Intervallskalierte, nicht-normalverteilte Daten wurden mit nicht-parametrischen Tests 

analysiert. Die Tab. 2-22 liefert einen Überblick über die verwendeten Testverfahren.  

Tab. 2-22: Statistische Tests zur Prüfung von Unterschiedshypothesen.  

Test Skalierung Anzahl der 
Stichproben Abhängigkeit 

Mann-Whitney-U-Test ordinal*     2 unabhängig 
Wilcoxon-Test ordinal*     2 abhängig 

Kruskal-Wallis-Test ordinal* > 2 unabhängig 
Friedman-Test ordinal* > 2 abhängig 

t-Test nach Student intervallskaliert     2 unabhängig 
Verbundener t-Test intervallskaliert     2 abhängig 

Einfache Varianzanalyse intervallskaliert > 2 unabhängig 
Varianzanalyse mit 

Messwiederholungen 
intervallskaliert > 2 abhängig 

 

* oder nicht-normalverteilt, intervallskaliert 
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2.7.3 Korrelationsanalyse  

Die Korrelationsanalyse eignet sich, um die Stärke und die Richtung eines 

Zusammenhangs zwischen zwei Variablen zu untersuchen. Die Berechnung basiert 

auf Wertepaaren, die aus den zur Verfügung stehenden Daten gebildet werden. Der 

Korrelationskoeffizient r gibt die Stärke des Zusammenhangs an. Er kann Werte 

zwischen -1 und +1 annehmen. Ein perfekter Zusammenhang liegt bei r = 1 vor; fehlt 

jeglicher Zusammenhang ist r = 0. Ein negativer Korrelationskoeffizient signalisiert 

einen gegenläufigen Zusammenhang. Es ist üblich, das Ausmaß der Korrelation in 

Abhängigkeit von r näher zu benennen: 

Tab. 2-23: Korrelationskoeffizient und Ausmaß des Zusammenhangs zwischen zwei 

Variablen. 

Korrelationskoeffizient Ausmaß der Korrelation  

r ≥ 0,9 sehr hoch 
r < 0,9 hoch 
r < 0,7 mittel 
r < 0,5 gering 
r < 0,2 sehr gering 

 

Die Berechnung des Korrelationskoeffizienten richtet sich nach dem Skalenniveau 

und der Verteilung der Variablen. Bei intervallskalierten, normalverteilten Variablen 

wurde der Korrelationskoeffizient nach Pearson, bei mindestens einer ordinal-

skalierten oder nicht-normalverteilten Variable wurde der Rangkorrelationskoeffizient 

nach Kendall berechnet.  

2.7.4 Regressionsanalyse 

Mit Hilfe der Regressionsanalyse wird der mathematische Zusammenhang zwischen 

einer unabhängigen und einer abhängigen Variablen ermittelt. Bei der einfachen 

linearen Regression mir nur einem unabhängigen Parameter wird, basierend auf 

dem Prinzip der kleinsten Fehlerquadrate, eine Geradengleichung ermittelt, die den 
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linearen Zusammenhang der unabhängigen Variablen x von der abhängigen 

Variablen y beschreibt:  

 bxay +⋅=  Gl. 2-15 

 a  = Steigung  

 b  = Ordinatenabschnitt 

 

Auch bei der linearen Regression wird der Korrelationskoeffizient herangezogen, um 

das Ausmaß des Korrelierens (oder Nicht-Korrelierens) zu beurteilen. Zur 

Berechnung des mittleren Korrelationskoeffizienten ( r ) wurde zunächst eine 

Z-Transformation nach Fisher vorgenommen (s. Gl. 2-16) und anschließend das 

arithmetische Mittel der Z-Werte zurücktransformiert (s. Gl. 2-17). 
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 Gl. 2-17 

 Z  = transformierter Korrelationskoeffizient (nach Fisher) 

 

Diese Umrechnung erfolgte vor dem Hintergrund, dass die Werte für den 

Korrelationskoeffizienten nicht Maßzahlen einer Kardinalskala sind und somit der 

Mittelwert der Korrelationskoeffizienten ohne vorherige Z-Transformation nicht 

interpretierbar ist180.  
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3 Ergebnisse 

3.1 CE-Methode zur Bestimmung von schwefelhaltigen, 
exzitatorischen Aminosäuren im Liquor 

Um die Liquores von Krebspatienten auf schwefelhaltige, exzitatorische 

Aminosäuren untersuchen zu können, wurde eine kapillarelektrophoretische 

Methode entwickelt, die es erlaubt, auch sehr niedrige Konzentrationen der SEAA im 

Liquor zu detektieren. Im Folgenden werden die Ergebnisse der 

Methodenentwicklung und Validierung aufgeführt.  

3.1.1 Trennung der schwefelhaltigen, exzitatorischen Aminosäuren 

Die Grundlage der Methodenentwicklung stellte ein von Lau et al. beschriebenes 

Verfahren dar, bei dem primäre Amine mit CFSE umgesetzt und anschließend 

kapillarelektrophoretisch getrennt werden170. Initial wurden sowohl die Derivatisie-

rungs- als auch die Trennbedingungen dieser Methode übernommen und überprüft, 

ob sich die Methode auch zur Bestimmung der SEAA eignete. Abb. 3-1 zeigt das 

entsprechende Elektropherogramm einer Lösung derivatisierter SEAA, welches unter 

den Bedingungen der Methode von Lau et al. erhalten wurde. Sie verdeutlicht, dass 

sowohl die Trennung als auch die Peakschärfe unzureichend waren. 

Da eine pH-Wert-gesteuerte Trennungsoptimierung nicht in Frage kam 

(s. Kap. 2.2.3.1), darüber hinaus die Analyten bei pH 9,0 über die gleiche 

Nettoladung und ähnliche Massen verfügten, wurde versucht, über die micellare 

elektrokinetische Chromatographie (MEKC, s. Kapitel 2.2.1) eine ausreichende 

Trennung der Analyten zu erzielen. Vor diesem Hintergrund wurden dem Laufpuffer 

(0,1 M Borat, pH 9,0) unterschiedlich große Mengen des Micellbildners SDS 

zugesetzt und der Effekt auf die Trennung der SEAA-Derivate verfolgt. Die 

SDS-Konzentration im Laufpuffer lag hierbei jeweils oberhalb der kritischen 

Micellbildungskonzentration (CMC) von 8,2 µM181. Eine Zusammenstellung der 

Puffer, die in dieser Studie verwendet wurden, zeigt Tab. 2-2.  

Der Abb. 3-2 A ist zu entnehmen, dass die SDS-Zugabe (Endkonzentration 20 mM, 

s. Puffer B der Tab. 2-2) die Auftrennung der Analyten deutlich verbesserte. 
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Abb. 3-1: Elektropherogramm einer Lösung derivatisierter SEAA (c: jeweils 0,5 mM). 

Trennbedingungen: 25 kV, Temperatur 25 °C, hydrodynamische Injektion (5 s), 

Laufpuffer: 0,1 M Borat (pH 9,0). CF: Carboxyfluorescein. 

Die Zunahme der Peakschärfe wurde durch eine Aufkonzentrierung der Probe in der 

Kapillare bewirkt („stacking“, s. Kapitel 2.2.1), denn der SDS-Zusatz führte zu einer 

deutlichen Erhöhung der Leitfähigkeit des Laufpuffers (s. Ströme der Laufpuffer in 

Tab. 2-2). Die Tatsache, dass sich nach Zugabe von SDS die Migrationszeiten aller 

Analyten verlängerten, ist ein Indiz dafür, dass Interaktionen zwischen den Analyten 

und den Micellen stattgefunden haben. Eine weitere Verbesserung der Auflösung 

konnte durch eine höhere Konzentration an SDS (Puffer C der Tab. 2-2) erzielt 

werden. Allerdings konnte auch mit diesem Trennsystem keine befriedigende 

Trennung zwischen CSA und HCA (jeweils als Derivat vorliegend) erreicht werden (s. 

Abb. 3-2 B). Zur weiteren Optimierung der Trennung und zur Senkung des Stromes 

in der Kapillare – es wird empfohlen mit Strömen unterhalb 100 µA zu arbeiten, um 

eine zu starke Erwärmung und eventuell nachfolgende Gasentwicklung zu 

vermeiden182 – wurde dem Laufpuffer zusätzlich Methanol hinzugesetzt. Organische 

Lösungsmittel, insbesondere Alkohole, werden recht häufig zur Verbesserung der 

Auflösung verwendet, da sie in der Lage sind, den EOF zu verringern und somit das 

Zeitfenster für die Trennung zu vergrößern. Mit einem 0,1 M Boratpuffer (pH 9,0), der 

SDS in einer Konzentration von 50 mM und zusätzlich 5 % (V/V) Methanol enthielt, 

konnte eine vollständige Trennung aller Aminosäuren erzielt werden (Abb. 3-2 C).
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Abb. 3-2: Optimierung der Trennung derivatisierter SEAA (0,5 mM jeweils). 

Trennbedingungen: 25 kV, 25 °C; Laufpuffer: A: 0,1 M Borat (pH 9,0), 20 mM SDS; 

B: 0,1 M Borat (pH 9,0), 50 mM SDS; C: 0,1 M Borat (pH 9,0), 50  mM SDS, 5 % 

(V/V) MeOH. 
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3.1.2 Optimierung der Derivatisierung  

pH-Abhängigkeit 
Abb. 3-3 zeigt die Abhängigkeit der korrigierten Peakfläche derivatisierter HCSA vom 

pH-Wert des Derivatisierungspuffers (0,1 M Borat). Die Kurvenanpassung erfolgte 

durch polynomische Regression. Vergleichbare Kurven wurden auch für CSA, CA 

und HCA erhalten. Die Maxima der Kurven lagen bei 8,98 für HCSA, 8,81 für HCA, 

8,92 für CSA und 8,73 für CA. Als pH-Optimum für die gemeinsame Derivatisierung 

der SEAA wurde der Mittelwert dieser Maxima (pH 8,87) definiert.  
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Abb. 3-3: pH-Abhängigkeit der Derivatisierungsreaktion. Korrigierte Peakfläche 

derivatisierter HCSA in Abhängigkeit vom pH-Wert des Derivatisierungspuffers 

(0,1 M Borat). Derivatisierungsdauer: 30 min, Konzentration der SEAA jeweils 

0,1 mM. 

Der Kurvenverlauf in Abb. 3-3 läßt sich dadurch erklären, dass vor dem Maximum die 

Protonierung der Aminogruppe, nach dem Maximum die Hydrolyse des 

Fluoreszenzmarkers die Reaktionsausbeute limitierte. Die Hydrolysereaktion von 

CFSE ist in Abb. 3-4 dargestellt.  
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Abb. 3-4: Hydrolysereaktion von CFSE.  

 

 

Zeitabhängigkeit  
Nach der Ermittlung des optimalen pH-Wertes für die Derivatisierung wurde die 

Derivatisierungszeit bestimmt, die die maximale Ausbeute an Produkten liefert. Abb. 

3-5 zeigt die korrigierten Peakflächen der Aminosäurederivate in Abhängigkeit von 

der Derivatisierungszeit. Abb. 3-5 A zeigt das Ergebnis unter Verwendung der UV-, 

Abb. 3-5 B unter Verwendung der sensitiven LIF-Detektion. 

Bedingt durch die empfindlichere Messtechnik ist der Anstieg der Kurven in Abb. 

3-5 B steiler, was zur Folge hat, dass das Maximum deutlicher sichtbar ist. Man 

sieht, dass sowohl bei Abb. 3-5 A als auch bei Abb. 3-5 B ein Maximum nach ca. 

35 min erreicht wird. Diese Zeit entspricht einer 30-minütigen Derivatisierungszeit, da 

ungefähr 5 min bis zur Vermessung der Probe verstreichen. Im Gegensatz zu Lau et 

al., die eine wesentlich längere Derivatisierung empfehlen (über Nacht)170, zeigt 

diese Studie, dass 30 min ausreichend sind, um eine maximale Ausbeute an 

Derivaten zu erzielen. 

Darüber hinaus lassen die Ergebnisse erkennen, dass die Reaktionsausbeute stark 

von der Reaktivität der Aminogruppe der jeweiligen Aminosäure beeinflusst wird. 

Aminosäuren, die eine Sulfinsäuregruppe tragen, zeigen im Vergleich zu den 

entsprechenden Aminosäuren mit einer Sulfonsäuregruppe gegenüber CFSE eine 

+ N

O

O

HO
H2O/OH 

N

O

O

OO O

C

COO

O O

+

OO O

C

COO

O O

Carboxyfluorescein CFSE 



Ergebnisse  Seite 95 

HCSA 

HCA 

CSA 

CA 

0 10 20 30 40 50 60

1x104

2x104

3x104

4x104

5x104

6x104

Zeit [min]

K
or

rig
ie

rte
 P

ea
kf

lä
ch

e

A 

B 
HCSA 

CSA 

CA 

0 10 20 30 40 50 60

1x106

2x106

3x106

4x106

5x106

6x106

Ko
rri

gi
er

te
 P

ea
kf

lä
ch

e 

Zeit [min]

HCA 

höhere Reaktivität. Dies ist dadurch zu erklären, dass die Basizität der Aminogruppe 

bei den Sulfinsäuren höher ist als bei den Sulfonsäuren, weil von der 

Sulfinsäuregruppe ein schwächerer negativer induktiver Effekt ausgeht als von der 

Sulfonsäuregruppe. Ferner reagieren Aminosäuren, die sich vom Homocystein 

ableiten lassen, besser als die Abkömmlinge des Cysteins, da die zusätzliche 

Methylengruppe der Homocysteinderivate den elektronenziehenden Effekt der Sulfin-

bzw. Sulfonsäuregruppe reduziert. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 3-5: Korrigierte Peakflächen derivatisierter SEAA in Abhängigkeit von der 

Derivatisierungszeit. Derivatisierungspuffer: 0,1 M Borat (pH 8,9). A: UV-Detektion 

(490 nm), B: LIF-Detektion.  
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3.1.3 Vergleich der Empfindlichkeit von UV- und LIF-Detektion 

Nach Optimierung der Trenn- und Derivatisierungsbedingungen wurde die 

Nachweisgrenze (LOD), basierend auf einem Signal-Rausch-Verhältnis von drei, 

unter Verwendung der UV-, sowie der empfindlichen LIF-Detektion bestimmt. Tab. 

3-1 sind die ermittelten LODs für beide Detektionsmethoden zu entnehmen.  

Tab. 3-1: Limits of Detection der SEAA (UV- und LIF-Detektion).- 

Substanz LOD [µM] 
UV-Detektion (490 nm) 

LOD* [pM] 
LIF-Detektion 

LOD*,# [amol] 
LIF-Detektion 

HCSA 5,4 90 2,1 
CSA 8,2 170 3,9 
HCA 5,6 210 4,6 
CA 4,2 600 13,8 

 
* Nach Verdünnung der Probe mit 0,01 M Boratpuffer 
# Massenempfindlichkeit (Injektionsvolumen: 23 nL) 

 

Für die UV-Detektion lagen die ermittelten LODs im unteren µM-Bereich. Die im 

Vergleich zu HPLC-Methoden relativ geringe Konzentrationsempfindlichkeit ist durch 

den geringen Kapillarinnendurchmesser (ID: 75 µm) begründet, der die Schichtdicke 

der Detektionszelle festlegt. Das Ergebnis zeigt deutlich, dass die UV-Detektion zur 

Bestimmung niedriger Konzentrationen (unterer µmolarer Bereich) der SEAA nicht 

ausreicht.  

Die Verwendung der LIF-Detektion führte zu einer extrem gesteigerten 

Empfindlichkeit. Für die 1:100 verdünnte Messprobe lagen die LODs im picomolaren 

Bereich. Die Massenempfindlichkeit lag zwischen 2,1 und 13,8 amol (10 x 10-18 mol).  

 

3.1.4 Methodenoptimierung für die Liquoranalyse  

Erste Elektropherogramme derivatisierter Liquorproben, die mit den SEAA 

aufgestockt wurden, zeigten, dass unter Verwendung des Laufpuffers, der die 

Trennung aller interessierenden Analyten in rein wässriger Lösung gewährleistete 
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(0,1 M Borat (pH 9,0), 50 mM SDS, 5 % (V/V) MeOH), die Aminosäure Aspartat 

(ASP) nicht von CSA bzw. HCA abgetrennt werden konnte.  

Da die Trennung der Analyten im Rahmen der Methodenentwicklung schnell und 

effizient durch Variation der SDS- und MeOH-Konzentration im Laufpuffer gesteuert 

werden konnte, wurde dieses Konzept auch für die Trennung im Liquor verfolgt. Die 

Zusammensetzung der eingesetzten Puffersysteme zeigt Tab. 2-3.  

Zunächst wurde die MeOH-Konzentration im Laufpuffer variiert (Puffer A-F der Tab. 

2-3). Die Erhöhung des MeOH-Anteils führte schrittweise zu einer besseren 

Trennung zwischen ASP und HCA (s. Abb. 3-6 A-C). Leider führte diese Maßnahme 

nicht zu einer befriedigenden Trennung zwischen CSA und ASP – sie wurde 

tendenziell eher schlechter. Dies war der Grund dafür, dass der MeOH-Anteil nicht 

über 10 % erhöht wurde. Stattdessen wurde die SDS-Konzentration im Laufpuffer 

variiert. Interessanterweise bewirkte das Absenken der SDS-Konzentration – trotz 

kürzerer Migrationszeiten – eine bessere Trennung zwischen CSA und ASP. Ein 

Optimum wurde bei einer SDS-Konzentration von 10 mM erreicht (s. Abb. 3-7 A). Der 

völlige Verzicht auf SDS führte zu einer deutlich schlechteren Auflösung – ein Beleg 

dafür, dass SDS eine tragende Rolle bei der Trennung der Analyten zukam (s. Abb. 

3-7 B). Eine Basislinientrennung aller derivatisierten Aminosäuren konnte schließlich 

durch ein Absenken der Kapillartemperatur von 25 auf 19 °C erzielt werden (Abb. 

3-7 C). Bedingt durch den verringerten EOF verlängerten sich die Migrationszeiten 

der Analyten um knapp sieben Minuten.  

Dieses Beispiel der Trennungsoptimierung zeigt, dass die Auftrennung ionischer 

Substanzen in der MEKC durch viele Faktoren beeinflusst werden kann und dass 

eine Vorhersage, wie sich die Variation eines Parameters auf die Trennung auswirkt, 

kaum zu treffen ist. Neben dem zugrunde liegenden elektrophoretischen 

Trennprinzip spielen Verteilungsprozesse und ionische Wechselwirkungen zwischen 

den Analyten und den Micellen eine Rolle, so dass insgesamt ein hoch komplexes 

Trennsystem vorliegt.  
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Abb. 3-6: Elektropherogramme einer Liquorprobe, gespikt mit SEAA (10 µM) sowie 

GLU und ASP. Laufpuffer: 0,1 M Borat (pH 9,0), 50 mM SDS (25 °C); Methanol-

gehalt: A: 5 %, B: 7 %, C: 10 % MeOH (V/V). 
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Abb. 3-7: Elektropherogramme einer Liquorprobe, gespikt mit SEAA (10 µM) sowie 

GLU und ASP. Laufpuffer: A: 0,1 M Borat (pH 9,0), 10 % MeOH (V/V), 10 mM SDS 

(25 °C). B: 0,1 M Borat (pH 9,0), 10 % MeOH (V/V), 0 mM SDS (25 °C) C: 0,1 M 

Borat (pH 9,0), 10 % MeOH (V/V), 10 mM SDS (19 °C). 

20 21 22 23

0

5

10

15

20

R
el

at
iv

e 
Fl

uo
re

sz
en

z

Zeit [min]

HCSA 

CA 

HCA
ASP 

GLU 

CSA 

C 

HCSA 

CA 

HCAASP 

GLU 

CSA 

15 16 17

0

5

10

15

20

R
el

at
iv

e 
Fl

uo
re

sz
en

z

Zeit [min]

B 

HCSA 

CA 

HCA

ASP 

GLU 

CSA 

16 17 18 19

0

5

10

15

20

R
el

at
iv

e 
Fl

uo
re

sz
en

z

Zeit [min]

A 



Seite 100  Ergebnisse 

3.1.5 Validierung  

3.1.5.1 Selektivität 

Im Rahmen der Selektivitätsuntersuchung wurden die Elektropherogramme fünf 

verschiedener Liquores vor und nach Zugabe der Analyten untersucht. Abb. 3-8 zeigt 

ein typisches Elektropherogramm einer Liquorprobe, die nicht mit den SEAA 

aufgestockt wurde.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 3-8: A: Typisches Elektropherogramm einer Liquorprobe. B: Ausschnitt des 

Elektropherogramms A (gestrichelter Kasten im Elektropherogramm A).  
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Da der Fluoreszenzmarker CFSE in verhältnismäßig hoher Konzentration eingesetzt 

wurde, prägten die Peaks von CFSE und dessen Hydrolyseprodukt CF die 

Elektropherogramme. Das Zeitfenster, in dem die SEAA detektiert wurden, ist durch 

den gestrichelten Kasten in Abb. 3-8 A angedeutet. In Abb. 3-8 B ist dieser 

Ausschnitt dargestellt. Neben Glutamat und Aspartat wurden Verunreinigungen (oder 

Abbauprodukte) des Fluoreszenzmarkers detektiert. Die Substanz, die kurz vor dem 

Glutamat-Peak detektiert wurde, war nicht in allen Chargen des Fluoreszenzmarkers 

CFSE vorhanden. An dieser Stelle sei angemerkt, dass für die empfindliche LIF-

Detektion ein höherer Reinheitsgrad von CFSE wünschenswert gewesen wäre. Abb. 

3-9 zeigt das Elektropherogramm einer Liquorprobe gespikt mit HCSA, CSA, HCA 

und CA (3 µM jeweils). Der Vergleich der Elektropherogramme in Abb. 3-8 und Abb. 

3-9 zeigt, dass HCSA, HCA und CA ohne störende Nebenpeaks detektiert werden 

konnten. Die Verunreinigung, die mit CSA komigrierte, führte dazu, dass sich der 

Ordinatenabschnitt der Kalibriergeraden von CSA signifikant von Null unterschied. 

Da die Fläche der „Störsubstanz“ relativ klein war, konnte CSA trotzdem mit 

hinreichender Genauigkeit bestimmt werden (siehe Tab. 3-4).  

 

 

 

 

 

 

 

 

Abb. 3-9: Elektropherogramm einer Liquorprobe, gespikt mit SEAA (3 µM).  
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3.1.5.2 Wiederfindung im Liquor 

Die Wiederfindung im vergleich zu 0,1 M Boratpuffer (pH 8,9) wurde anhand einer 

Liquormischung, die mit sechs verschiedenen Konzentrationen der SEAA (Tab. 3-2) 

versetzt wurde, bestimmt. Die prozentuale Wiederfindung (W) wurde nach Gl. 2-9 

berechnet.  

Die mittlere Wiederfindungsrate (n = 3) bezüglich der sechs untersuchten 

SEAA-Konzentrationen lag zwischen 92,6 (HCA, 10 µM) und 106,6 % (CA, 20 µM), 

die absolute Abweichung (von 100 %) betrug somit in allen Fällen weniger als 7,4 %. 

Konzentrationsabhängige Effekte konnten nicht beobachtet werden. Die 

Gesamtwiederfindungsrate (W ) betrug für HCSA 98,0 %, für CSA 97,7 %, für HCA 

97,0 % und für CA 102,9 % (s. Tab. 3-2). 

Tab. 3-2: Wiederfindungsraten (W) der SEAA unter Verwendung von Liquor als 

Probenmatrix (n = 3). 

czugesetzt [µM] W (HCSA) [%] W (CSA) [%] W (HCA) [%] W (CA) [%] 

100 99,0 101,9 98,3 104,6 
 (98,1-101,7) (101,2-104,1) (95,6-101,3) (99,2-106,0) 

50 102,2 102,5 99,5 103,9 
 (88,2-110,0) (89,1-110,6) (89,6-109,6) (99,2-106,6) 

20 95,4 94,8 97,2 106,6 
 (94,4-96,6) (86,3-105,0) (93,2-99,5) (102,0-110,6) 

10 93,8 93,8 92,6 102,7 
 (89,5-101,4) (86,5-101,9) (87,5-95,8) (97,9-106,3) 

3 98,8 93,2 95,8 104,1 
 (95,2-104,0) (88,8-101,1) (94,8-97,6) (99,6-107,7) 

1 98,9 99,8 98,9 95,5 
 (94,0-107,5) (93,3-107,4) (96,7-101,1) (92,3-97,5) 

W * [%] 98,0 97,7 97,0 102,9 
s 6,3 7,8 4,8 5,0 

VK [%] 6,5 8,0 5,0 4,9 
 

* Gesamtwiederfindungsrate (n = 18) 
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Die Versuche zur Wiederfindung verdeutlichen, dass 0,1 M Boratpuffer (pH 8,9) ein 

geeignetes Medium zur Kalibrierung ist.  

3.1.5.3 Linearität 

Da die Ergebnisse der Wiederfindung zeigten, dass sich Puffer zur Kalibrierung 

eignet, wurden die Untersuchungen zur Linearität unter Verwendung von 0,1 M 

Boratpuffer (pH 8,9) durchgeführt. Insgesamt wurden sechs Kalibriergeraden 

(Arbeitsbereich 1-100 µM, sechs Standards) ausgewertet. Die Ergebnisse sind in 

Tab. 3-3 zusammengefasst.  

Tab. 3-3: Korrelationskoeffizienten (r) und Residuen der Kalibriergeraden der SEAA 

in Abhängigkeit vom verwendeten Regressionsmodell. 

 HCSA CSA HCA CA 

linear (ungewichtet)    
r * 0,99958 0,99953 0,99958 0,99937 

Residuen (n = 36)     
Spannweite [%] -390,9-85,1 -12,6-29,0 -22,5-1104,5 -677,6-3124,2
Mittelwert# [%] 50,0 5,9 56,4 167,3 

linear (Wichtung 1/x)    

r *  0,99916 0,99908 0,99838 
Residuen (n = 36) 

Spannweite [%] -14,5-34,3 -13,4-11,9 -15,0-22,1 -17,9-40,1 
Mittelwert# [%] 6,5 3,6 6,9 11,0 

linear (Wichtung 1/x2)    

r * 0,99801 0,99777 0,99691 0,99457 
Residuen (n = 36) 

Spannweite [%] -13,2-8,6 -12,8-13,0 -10,1-9,4 -13,9-12,9 
Mittelwert# [%] 4,6 3,6 5,4 7,6 

 
* Mittelwert des Korrelationskoeffizienten, Berechnung nach Gl. 2-16 bzw. Gl. 2-17 (n = 6) 
# Die Mittelwerte wurden nach Betragsbildung berechnet 

 

Da Homoskedastizität, Varianzenhomogenität der Messwerte, bei großen 

Arbeitsbereichen (> Faktor 10) in aller Regel nicht gegeben ist, empfiehlt es sich, 
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eine Wichtung vorzunehmen, um einen zu starken Einfluss der hohen Messwerte auf 

die Regression zu vermeiden172. Die beste Anpassung wurde durch eine lineare 

Regression (gewichtet 1/x2) gefunden. Bei diesem Modell lagen die Residuen 

zwischen -13,9 und 13,0 %, die Mittelwerte (n = 36) zwischen 3,6 und 7,6 %. 

Ausreißer (Residuen > 15 %, LLOQ > 20 %) wurden unter Verwendung dieses 

Modells nicht gefunden. Aufgrund dieser Ergebnisse wurde dieses Modell zur 

Quantifizierung der SEAA gewählt.  

Die Abb. 3-10 zeigt eine charakteristische Kalibriergerade (HCSA), die durch eine 

lineare Regression (gewichtet 1/x2) erhalten wurde.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 3-10: Charakteristische Kalibriergerade der Aminosäure HCSA, Wichtung 1/x2. 
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3.1.5.4 Bestimmungs- und Nachweisgrenze  

Als Bestimmungsgrenze (Lower Limit of Quantification, LLOQ) wurde für alle SEAA 

eine Konzentration von 1 µM ermittelt. Die Tab. 3-4 zeigt die Daten zur Präzision und 

Richtigkeit bezüglich des LLOQ. Sie demonstrieren, dass das jeweilige LLOQ mit 

hinreichender Präzision und Richtigkeit erfasst werden konnte. 

Die Nachweisgrenze (LOD) der vier SEAA wurden anhand von drei 

unterschiedlichen Liquores, die mit den SEAA gespikt wurden (Endkonzentration 

1 µM), bestimmt. Pro Liquor wurde jeweils eine Doppelbestimmung durchgeführt. Die 

ermittelten LODs lagen im unteren nanomolaren Bereich und waren vergleichbar mit 

den LODs, die im Rahmen der Methodenentwicklung mit einem anderen Trennpuffer 

bestimmt wurden (s. Kap. 3.1.3). 

Tab. 3-4: LLOQ inklusive Daten zur Präzision und Richtigkeit sowie LODs der vier 

SEAA. 

 HCSA CSA HCA CA 

LLOQ [µM] (n = 5) 1,0  1,0 1,0 1,0 
Präzision, VK [%] 11,3 11,5 9,1 10,2 

Richtigkeit [%] 106,2 102,2 104,4 107,0 
LOD [nM] (n = 6) 5,7 13,6 9,1 33,3  

 

3.1.5.5 Präzision und Richtigkeit 

Injektionspräzision 
Die Injektionspräzision wurde ermittelt, indem dieselbe Probe sechsmal 

hintereinander injiziert wurde. Sie wurde für drei verschiedene Konzentrationen der 

SEAA untersucht. Tab. 3-5 zeigt, dass die Variationskoeffizienten der 

Injektionspräzision für die höheren Konzentrationen (90 und 50 µM) durchweg unter 

2 % liegen. Etwas weniger präzise war die Bestimmung der korrigierten Peakfläche 

der niedrig konzentrierten Probe (3 µM).  
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Tab. 3-5: Injektionspräzision der entwickelten Methode (n = 6).  

Injektionspräzision, VK [%] Konzentration [µM] 
(Puffer) HCSA CSA HCA CA 

90  0,28 0,53 0,47 0,71 
50  1,45 1,79 1,18 1,60 
03  1,85 1,95 2,35 5,79 

 

 

Within-day-Präzision 
Die Within-day-Präzision wurde sowohl unter Verwendung von Puffer als auch unter 

Verwendung von Liquor als Matrix untersucht. Der Tab. 3-6 sind die jeweiligen 

Variationskoeffizienten zu entnehmen.  

Tab. 3-6: Within-day-Präzision der entwickelten Methode (n = 5).  

Within-day-Präzision, VK [%] Konzentration [µM] 
(Puffer) HCSA CSA HCA CA 

90 3,8 3,6 4,3 4,0 
50 2,4 2,2 1,8 1,5 
3 2,3 2,5 2,8 3,7 

Within-day-Präzision, VK [%] Konzentration [µM] 
(Liquor) HCSA CSA HCA CA 

90 6,2 6,7 7,2 7,8 
3 2,5 2,9 2,9 4,3 

 

Alle ermittelten Variationskoeffizienten lagen unter 8 %. Die Ergebnisse zeigen, dass 

Liquor die Präzision der Methode nur unwesentlich beeinflusst. 

 

Between-day-Präzision 
Die Between-day-Präzision gilt als Kriterium der Reproduzierbarkeit der Methode 

über einen längeren Zeitraum. Die berechneten Variationskoeffizienten der Between-

day-Präzision sind in Tab. 3-7 aufgeführt. Die Ergebnisse sind mit den Ergebnissen 

zur Within-day-Präzision vergleichbar. Erwartungsgemäß war die Streuung der 

Messergebnisse im Rahmen der Between-day-Präzision etwas größer.  
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Tab. 3-7: Between-day-Präzision der entwickelten Methode (n = 5).  

Between-day-Präzision, VK [%] Konzentration [µM] 
(Puffer) HCSA CSA HCA CA 

90 3,1 3,0 2,4 5,0 
50 5,1 4,8 8,3 8,7 
3 4,5 5,7 11,5 11,6 

Between-day-Präzision, VK [%] Konzentration [µM] 
(Liquor) HCSA CSA HCA CA 

90 3,1 3,4 4,9 2,8 
3 7,3 5,3 13,7 9,9 

 

Richtigkeit 
Zur Untersuchung der Richtigkeit wurden drei QC-Proben (90, 50 und 3 µM) an fünf 

aufeinander folgenden Tagen vermessen. Die Richtigkeit wurde nach Gl. 2-8 

berechnet. In der folgenden Tab. 3-8 sind die Ergebnisse dargestellt. 

Tab. 3-8: Richtigkeit der Methode (n = 5). 

Richtigkeit [%] Konzentration [µM] 
(Puffer) HCSA CSA HCA CA 

90 103,7 99,9 93,6 93,3 
50  107,3 102,3 98,6 95,8 
3 97,5 97,5 103,1 96,7 

 

Die berechneten Konzentrationen wichen in allen Fällen um weniger als ± 8 % von 

den Nominalwerten ab. 

 

Zusammenfassend ist festzuhalten, dass die Methode hinsichtlich Präzision und 

Richtigkeit die Akzeptanzkriterien der FDA, wonach Variationskoeffizient und relativer 

Fehler nicht größer als 15 % sein dürfen, erfüllt171. 
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3.1.5.6 Stabilitätsuntersuchungen 

Einfrier-Auftau- und Langzeitstabilität der SEAA in der Stammlösung 
Initial wurde die Einfrier-Auftau-Stabilität der SEAA in der Stammlösung 

(Lösungsmittel: 0,1 M Boratpuffer, pH 8,9) untersucht. Diese Untersuchung erfolgte, 

um den Einfluss extremer Temperaturschwankungen von -24 °C (Tiefkühlfach) bis 

25 °C (Raumtemperatur) zu überprüfen. Die Stabilität wurde nach einem, zwei bzw. 

drei Einfrier-Auftau-Zyklen nach Gl. 2-10 berechnet. Als Referenz diente jeweils eine 

frisch hergestellte Lösung, die die SEAA in der gleichen Konzentration enthielt. 

Tab. 3-9: Einfrier-Auftau- und Langzeitstabilität der SEAA in der Stammlösung 

(Konzentration der SEAA: 1 mM jeweils). 

Einfrier-Auftau-Stabilität [%] Zyklus 
HCSA CSA HCA CA 

1 97,8 96,4 96,4 94,7 
2 98,1 96,4 96,4 97,0 
3 96,5 95,2 95,2 95,7 

Langzeitstabilität [%] Zeitdauer [Monate] 
HCSA CSA HCA CA 

7 97,9 99,0 98,8 98,6 
 
Die Ergebnisse der Tab. 3-9 zeigen, dass sowohl wiederholte Einfrier-Auftau-Zyklen 

als auch eine Zeitspanne von sieben Monaten keinen relevanten Einfluss auf die 

Stabilität der SEAA in der Stammlösung haben.  

 

Stabilität der SEAA in der Arbeitslösung  
Die Stabilität der SEAA in der Arbeitslösung (Konzentration der SEAA 0,1 mM 

jeweils, Lösungsmittel 0,1 M Boratpufffer, pH 8,9), die bei Raumtemperatur 

aufbewahrt wurde, wurde nach 2, 4, 6 und 8 Stunden untersucht. Tab. 3-10 legt dar, 

dass die Stabilität der Sulfin-, als auch die der Sulfonsäuren bis zu 8 Stunden 

gewährleistet ist. Die prozentualen Abweichungen vom Wert 100 % bewegen sich im 

Rahmen der Messpräzision (vgl. Tab. 3-6). 
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Tab. 3-10: Stabilität der SEAA in der Arbeitslösung, gelagert bei Raumtemperatur 

(Konzentration der SEAA: 0,1 mM jeweils). 

Stabilität der SEAA in der AL [%] Zeitdauer [h] 
HCSA CSA HCA CA 

2 99,8 102,3 103,1 103,5 
4 96,5 96,7 101,5 100,5 
6 103,1 102,6 104,4 102,9 
8 101,1 100,8 103,2 102,8 

 
 
Stabilität der SEAA im Liquor  
Die Stabilität der SEAA im Liquor, aufbewahrt bei Raumtemperatur, wurde anhand 

einer Mischung fünf verschiedener Liquores, welche mit den SEAA aufgestockt 

wurde (Endkonzentration im Liquor: 3 bzw. 90 µM) nach einer Lagerungszeit von 

9 Stunden untersucht. Diese Untersuchung erfolgte, um zu prüfen, ob eine 

zwischenzeitliche Lagerung der Liquorproben bei Raumtemperatur eine Veränderung 

der SEAA-Konzentrationen nach sich zieht (z.B. durch Adsorptionsphänomene, 

Proteinbindung oder Oxidationsreaktionen). Tab. 3-11 ist zu entnehmen, dass nach 

einer neunstündigen Lagerungszeit die berechnete prozentuale Stabilität im Bereich 

von 92,9 % (CA, 3 µM) bis 105,5 % (CSA, 90 µM) lag. Eine zwischenzeitliche 

Aufbewahrung der Liquorproben bei Raumtemperatur hat somit keine relevante 

Veränderung der Konzentrationen zur Folge.  

Tab. 3-11: Stabilität [%] der SEAA im Liquor. 

Stabilität der SEAA in Liquor [%] Zeitdauer [h] 
HCSA CSA HCA CA 

 90 µM 3 µM 90 µM 3 µM 90 µM 3 µM 90 µM 3 µM 
3,5 108,1 102,8 102,5 102,4 108,3 102,2 106,5 102,2 
6 109,5 104,5 106,5 108,9 107,5 104,0 108,9 99,9 
9 104,6 97,1 104,6 105,5 104,3 95,7 104,4 92,9 
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Stabilität der derivatisierten SEAA in der Messprobe 
Zusätzlich wurde die Stabilität der derivatisierten SEAA in der Messprobe, 

aufbewahrt bei Raumtemperatur im Autosampler des CE-Systems, über einen 

Zeitraum von ca. 10,8 Stunden untersucht (s. Tab. 3-12). 

Tab. 3-12: Stabilität der SEAA-Derivate in der Messprobe, gelagert bei Raum-

temperatur im Autosampler des CE-Systems.  

Stabilität der SEAA-Derivate [%] Zeitdauer [h] 
HCSA CSA HCA CA 

 90 µM 3 µM 90 µM 3 µM 90 µM 3 µM 90 µM 3 µM 
0,6 99,9 103,0 100,1 100,1 100,3 100,7 100,4 100,2 
2,5 96,0 98,9 96,7 97,9 97,5 99,1 96,9 98,9 
5,1 94,0 100,0 96,0 97,9 96,9 98,9 96,4 98,5 
8,2 96,4 98,8 98,3 95,5 101,9 96,9 100,8 96,6 

10,8 97,9 99,4 99,8 95,6 100,2 97,9 98,5 96,7 
 

Die Ergebnisse verdeutlichen, dass die Stabilität der Derivatisierungsprodukte über 

einen Zeitraum von 10,8 Stunden gewährleistet ist.  

Aufgrund dieser Stabilitätsdaten konnten somit bis zu 18 Messproben gleichzeitig 

hergestellt und nacheinander vermessen werden.  
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3.2 HPLC-Methode zur Bestimmung von Cystein, Homocystein 
und Glutathion im Liquor  

3.2.1 Methodenentwicklung/-optimierung 

Optimierung der chromatographischen Trennung  
Die Trennung der Analyten wurde durch schrittweises Abändern der 

Zusammensetzung der mobilen Phase optimiert, die sich aus Acetonitril und 0,1 M 

Phosphatpuffer (pH 2,0) zusammensetzte. Von einer pH-Wert gesteuerten Trennung 

wurde abgesehen, da die Fluoreszenzintensität der Benzofurazanderivate bei pH 2,0 

maximal ist.  

Die isokratische Elution mit 10 % Acetonitril und 90 % 0,1 M Phosphatpuffer (pH 2,0) 

führte bereits zu einer recht guten Auflösung der derivatisierten Thiole Cystein, 

Homocystein und Glutathion. Von Nachteil war allerdings, dass der zugesetzte 

interne Standard (N-Acetylcystein, NAC) erst nach ca. 23 Minuten eluiert wurde 

(siehe Abb. 3-11).  

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 3-11: Chromatogramm einer Liquorprobe, gespikt mit HCY (200 nM) und dem 

internen Standard NAC (1 µM), nach Derivatisierung mit ABDF. Isokratische Elution 

(Acetonitril/0,1 M Phosphatpuffer, pH 2,0: 10/90, V/V).  

0 10 20 30

0

20

40

60

80

R
el

at
iv

e 
Fl

uo
re

sz
en

z

Zeit [min]

CYS 

HCY 

GSH NAC 



Seite 112  Ergebnisse 

Zur Verkürzung der Retentionszeit des internen Standards wurden insgesamt drei 

Gradientenprogramme (A-C) getestet, die den Acetonitrilanteil in der mobilen Phase 

von der 5. zur 13. Minute unterschiedlich stark erhöhten (siehe Tab. 2-5). 

Die schnellste Elution des internen Standards – bei gleichzeitiger guter Auflösung 

aller interessierenden Analyten – konnte mit dem Gradientenprogramm C erreicht 

werden (s. Abb. 3-12 A und B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 3-12: A: Chromatogramm einer Liquorprobe, gespikt mit HCY (200 nM) und 

dem internen Standard NAC (1 µM), nach Derivatisierung mit ABDF. 

Gradientenprogramm C (s. Tab. 2-5). B: Ausschnitt aus dem Chromatogramm aus 

Abbildung A (gestrichelter Kasten).  
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Ein weiterer Vorteil dieses Gradienten bestand darin, dass, bedingt durch den 

zeitweise recht hohen Acetonitrilanteil in der mobilen Phase, weitere lipophile 

Verbindungen von der Säule eluiert wurden (s. Abb. 3-12 A und Abb. 3-11). Somit 

konnte auf ein Spülen der Säule zwischen zwei Läufen verzichtet werden.  

 

 

Optimierung der Derivatisierungsbedingungen 
Da der optimale pH-Wert für die Derivatisierung von Thiolen mit ABDF bei 8,0 liegt, 

Liquor hingegen normalerweise einen pH-Wert von 7,4 besitzt und zudem über 

Puffersysteme verfügt, wurde untersucht, welches Mischungsverhältnis zwischen 

Liquor und Boratpuffer (0,1 M Borat, pH 8,0, 2 mM Na2EDTA) zur maximalen 

Ausbeute der Derivatisierungsreaktion führt (s. Kapitel 2.3.3).  

Vor diesem Hintergrund wurde der Anteil an Boratpuffer in der Messprobe (Liquor) 

sukzessive erhöht und – nach Derivatisierung mit ABDF – jeweils die Fläche der 

gebildeten Derivatisierungsprodukte ermittelt. Das Ergebnis dieser Untersuchung, 

exemplarisch mit dem Aminothiol Homocystein durchgeführt, zeigt Abb. 3-13.  

 

 

 

 

 

 

 

 

 

 

 

Abb. 3-13: Peakfläche des Homocystein-Derivates (ABD-HCY) in Abhängigkeit vom 

Volumenverhältnis Liquor zu Derivatisierungspuffer (bezogen auf 200 µL Mess-

probe). 
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Die Abbildung verdeutlicht, dass mit steigendem Anteil an Derivatisierungspuffer in 

der Probe größere Peakflächen für das Homocysteinderivat erhalten wurden. Bei 

gleichen Volumina von Liquor und Puffer (jeweils 100 µL) war die Ausbeute der 

Derivatisierungsreaktion maximal. Größere Pufferanteile führten, bedingt durch die 

Verdünnung der Messprobe, zu einer Abnahme der Peakfläche. Aufgrund dieses 

Ergebnisses wurden alle Liquores vor der Derivatisierung mit ABDF 1:1 mit 0,1 M 

Boratpuffer verdünnt.  

 

3.2.2 Validierung der HPLC-Methode 

3.2.2.1 Selektivität 

Die Selektivität der Methode konnte durch den Vergleich der Chromatogramme fünf 

verschiedener Liquorproben, die jeweils vor und nach Zugabe von Cystein, 

Homocystein, Glutathion und N-Acetylcystein aufgenommen wurden, demonstriert 

werden (s. Abb. 3-14).  

 

Der Vergleich der Chromatogramme in Abb. 3-14 zeigt, dass sich durch das 

Aufstocken der Liquorprobe nur die Peakflächen der Aminothiole vergrößerten, der 

interne Standard NAC wurde nach ungefähr 12 min eluiert. In keiner der fünf 

untersuchten Liquorproben wurden störende Substanzen detektiert, d.h. die 

interessierenden Analyten konnten eindeutig identifiziert werden. 
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Abb. 3-14: A: Typisches Chromatogramm einer Liquorprobe ohne den internen 

Standard (NAC). B: Typisches Chromatogramm einer Liquorprobe, die zusätzlich mit 

CYS, HCY, GSH (2 µM) und NAC (4 µM) versetzt wurde.  

3.2.2.2 Wiederfindung 

Die Wiederfindung wurde anhand einer Mischung sechs verschiedener Liquores, die 

mit unterschiedlichen Konzentrationen an Cystein, Homocystein und Glutathion bzw. 

dem internen Standard NAC gespikt wurden (s. Tab. 3-13), untersucht. Die 

zugesetzte Menge des internen Standards NAC (Endkonzentration 4 µM) entsprach 

derjenigen Menge, die auch den Messproben jeweils zugesetzt wurde. Die jeweilige 

Wiederfindungsrate wurde nach Gl. 2-9 berechnet.  
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Tab. 3-13: Wiederfindungsraten (W) der Thiole CYS, HCY, GSH und NAC unter 

Verwendung von Liquor als Probenmatrix (n = 3). 

czugesetzt [nM]  W (CYS) [%] W (HCY) [%] W (GSH) [%] W (NAC) [%] 

200 97,4 102,7 99,0 --- 
 (96,0-105,0) (98,9-106,8) (94,4-106,5) --- 

600 104,3 98,6 99,2 --- 
 (98,3-108,8) (95,1-101,3) (95,3-105,9) --- 

1000 97,2 103,7 101,5 --- 
 (91,2-103,7) (98,7-108,5) (92,3-103,5) --- 

4000 --- --- --- 103,7 
 --- --- --- (100,4-107,4) 

W * [%] 99,6 101,7 98,4  
s 6,5 4,3 5,4  

VK [%] 6,5 4,2 5,4  
 

* Gesamtwiederfindungsrate (n = 9) 

 

Die Ergebnisse der Tab. 3-13 verdeutlichen, dass die Wiederfindung jeweils 

reproduzierbar war (die Variationskoeffizienten der Gesamtwiederfindungsrate (W ) 

lagen zwischen 4,2 und 6,5 %) und in keinem Fall wesentlich von 100 % abwich. 

Eine Kalibrierung in der Matrix Liquor war somit nicht von Nöten.  

3.2.2.3 Linearität 

Im Rahmen der Untersuchungen zur Linearität wurden sechs Kalibriergeraden 

(Arbeitsbereich 50-2000 nM, sechs Standards) ausgewertet, die Ergebnisse sind in 

Tab. 3-14 zusammengefasst.  

Eine gute Anpassung wurde durch eine lineare Regression (gewichtet 1/x) gefunden. 

Im Vergleich zur ungewichteten Regression fielen die Spannweiten der Residuen 

wesentlich geringer aus; die gemittelten Residuen (nach Betragsbildung) lagen 

zwischen 2,6 (Glutathion) und 5,1 % (Homocystein), ein Indiz für die gute 

Anpassung.  
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Tab. 3-14: Korrelationskoeffizienten (r) und Residuen der Kalibriergeraden von CYS, 

HCY und GSH in Abhängigkeit vom verwendeten Regressionsmodell. 

 CYS HCY GSH 

linear (ungewichtet)   
r *  0,99944 0,99978 

Residuen, n = 36  
Spannweite [%] -20,6-84,8 -49,3-27,1 -17,1-61,4 
Mittelwert# [%] 7,6 7,7 4,9 

linear (Wichtung 1/x)   

r * 0,99951 0,99930 0,99977 
Residuen, n = 36   
Spannweite [%] -14,7-22,4 -16,4-10,5 -11,6-7,2 
Mittelwert# [%] 3,8 5,1 2,6 

 
* Mittelwert des Korrelationskoeffizienten, Berechnung nach Gl. 2-16 bzw. Gl. 2-17 (n = 6) 
# Die Mittelwerte wurden nach Betragsbildung berechnet 

 

Die Abb. 3-15 zeigt eine charakteristische Kalibriergerade, die durch eine lineare 

Regression (gewichtet 1/x) erhalten wurde.  

 

Erweiterung des Arbeitsbereichs durch Verdünnung 
Da insbesondere die Liquores älterer Lymphompatienten Cystein- und 

Glutathionkonzentrationen oberhalb der oberen Bestimmungsgrenze (ULOQ) 

aufwiesen, wurde überprüft, ob höher konzentrierte Proben nach Verdünnung mit 

0,1 M Boratpuffer (pH 8,0) exakt quantifiziert werden können.  

Vor diesem Hintergrund wurde die Cystein- bzw. Glutathionkonzentration in einer 

Liquormischung auf 10,0 µM eingestellt und nach einer 1:10-Verdünnung mit 0,1 M 

Boratpuffer (pH 8,0) die Konzentration an Cystein bzw. Glutathion in den verdünnten 

Proben durch eine Dreifachbestimmung ermittelt. Durch den Vergleich von 

berechneter Konzentration und Nominalkonzentration wurde der relative Fehler des 

Verfahrens berechnet.  
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Abb. 3-15: Charakteristische Kalibriergerade der Aminosäure HCY, Wichtung 1/x. 

 
Die Tab. 3-15 zeigt, dass die berechneten Konzentrationen um 0,8 bzw. 1,3 % von 

der Nominalkonzentration abwichen. Somit konnten Cystein- und Glutathion bis zu 

einer Konzentration von 10 µM nach einer 1:10-Verdünnung mit 0,1 M Boratpuffer 

exakt bestimmt werden.  

Tab. 3-15: Relativer Fehler (RE) der Bestimmung einer 10 µM CYS- bzw. GSH-

Konzentration (n = 3). 

 c (Verdünnung) [nM] c (Liquor) [nM] cnom [nM] RE [%] 

CYS  1008,2 10082 10000 0,8 
GSH  987,3 9873 10000 -1,3 
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3.2.2.4 Bestimmungs- und Nachweisgrenze  

Die niedrigste Konzentration (LLOQ), die mit hinreichender Präzision und Richtigkeit 

bestimmt werden konnte, betrug jeweils 50 nM. Der Tab. 3-16 sind die Daten zur 

Präzision und Richtigkeit bezüglich des LLOQ zu entnehmen. 

Die Nachweisgrenze (LOD), ermittelt anhand eines Signal-Rausch-Verhältnisses von 

3, lagen zwischen 1,2 und 3,8 nM (s. Tab. 3-16).  

Tab. 3-16: Ermittelte LLOQs und LODs von CYS, HCY und GSH. 

 CYS HCY GSH 

LLOQ [nM] (n = 6) 50 50 50 
Präzision, VK [%] 12,2 12,2 13,6 

Richtigkeit [%] 103,5 106,9 105,6 
LOD [nM] (n = 3) 3,8 1,9 1,2 

 

3.2.2.5 Präzision und Richtigkeit 

Within-day-Präzision 
Die Within-day-Präzision wurde durch fünfmalige Bestimmung der QC-Proben 

ermittelt. Zusätzlich wurde eine Liquorprobe wiederholt analysiert, um zu unter-

suchen, ob die Matrix Liquor einen Einfluss auf die Präzision der Methode besitzt.  

Tab. 3-17: Within-day-Präzision der HPLC-Methode (n = 5). Konzentrationen der 

Thiole im Liquor: CYS: 1828 nM, HCY: 326 nM, GSH: 1123 nM. 

Within-day-Präzision, VK [%] Konzentration [µM] 
(Puffer) CYS  HCY  GSH 
1800 nM 4,8 5,8 5,9 
1000 nM 3,4 2,9 2,2 
130 nM 11,4 5,3 5,0 

Within-day-Präzision, VK [%] Konzentration [µM] 
(Liquor) CYS  HCY  GSH 

siehe Legende 4,3 3,5 2,2 
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Die Ergebnisse der Tab. 3-17 verdeutlichen, dass die Analyten sowohl im Puffer als 

auch im Liquor mit hoher Präzision bestimmt werden können. Dies ist insbesondere 

darauf zurückzuführen, dass der Messprobe ein interner Standard zugesetzt wurde. 

Bei Verzicht auf den internen Standard fiel die Präzision wesentlich schlechter aus 

und genügte teilweise nicht den gestellten Anorderungen.  

 

Between-day-Präzision 
Auch bei dieser Untersuchung wurde zusätzlich eine Liquorprobe analysiert. Die 

ermittelten Variationskoeffizienten zur Between-day-Präzision (s. Tab. 3-18) lagen 

durchweg alle unter 10 %.  

Da die Liquorprobe zwischen den einzelnen Bestimmungen bei -20 °C eingelagert 

wurde, zeigt diese Untersuchung auch, dass wiederholte Einfrier-Auftau-Zyklen 

keinen negativen Einfluss auf die Stabilität der Analyten im Liquor haben.  

Tab. 3-18: Between-day-Präzision der Methode (n = 5). Konzentrationen der Thiole 

im Liquor: CYS: 1752 nM, HCY: 133 nM, GSH: 461 nM. 

Between-day-Präzision, VK [%] Konzentration [µM] 
(Puffer) CYS HCY GSH 
1800 nM 7,8 9,9 6,6 
1000 nM 2,2 6,0 4,9 
130 nM 8,7 9,5 9,2 

Between-day-Präzision, VK [%] Konzentration [µM] 
(Liquor) CYS  HCY  GSH 

siehe Legende 9,2 6,9 9,7 
 

 

Richtigkeit 
Die Prüfung auf Richtigkeit erfolgte an fünf Tagen für jeweils drei verschiedene 

Konzentrationen der Aminothiole. Tab. 3-19 ist zu entnehmen, dass die Richtigkeit 

der HPLC-Methode den gestellten Anforderungen genügte, wonach die prozentuale 

Abweichung zwischen der berechneten Konzentration und der Nominalkonzentration 

maximal 15 % betragen darf. 



Ergebnisse  Seite 121 

Tab. 3-19: Richtigkeit der HPLC-Methode (n = 5). 

Richtigkeit [%] Konzentration [µM] 
(Puffer) CYS HCY GSH 

1800 92,8 98,0 98,7 
1000 95,5 98,0 99,7 
130 94,2 98,5 94,0 

3.2.2.6 Stabilitätsuntersuchungen 

Stabilität der Aminothiole im Liquor 
Die Stabilität der Aminothiole im Liquor, welcher bei Raumtemperatur gelagert 

wurde, wurde exemplarisch an einer frisch aufgetauten Liquorprobe, über einen 

Zeitraum von 6 Stunden untersucht. Die berechnete prozentuale Stabilität (s. Tab. 

3-20) verdeutlicht, dass eine zwischenzeitliche Lagerung der Liquorproben bei 

Raumtemperatur unproblematisch ist. Die Abweichungen vom Wert 100 % (maxi-

male Stabilität) bewegen sich im Rahmen der Präzision der Methode (vgl. 3.2.2.5).  

Es sei angemerkt, dass die Liquorproben kurz vor der Bestimmung mit einem 

Reduktionsmittel (TBP) behandelt wurden; somit ist nicht auszuschließen, dass 

während der sechsstündigen Lagerungszeit eine Oxidation der Thiolgruppe stattfand.  

Tab. 3-20: Stabilität [%] von CYS (1828 nM), HCY (326 nM) und GSH (1123 nM) im 

Liquor. 

Stabilität in Liquor [%] Zeitdauer [h] 
CYS HCY GSH 

2 98,1 101,4 102,8 
4 101,0 107,3 99,9 
6 95,1 97,8 95,7 

 
Stabilität der Aminothiolderivate in der Messprobe 
Die Stabilität der Aminothiolderivate in der Messprobe, welche bei Raumtemperatur 

im Autosampler des HPLC-Systems gelagert wurde, wurde unter anderem 

untersucht, um zu klären, über welchen Zeitraum sich Sequenzen von Analysen im 

Voraus programmieren lassen. Die Untersuchung wurde unter Verwendung von 

Boratpuffer (0,1 M, pH 8,0) und Liquor als Matrix durchgeführt.  
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Tab. 3-21. Stabilität der Aminothiolderivate in der Messprobe, gelagert bei Raum-

temperatur. Konzentrationen der Thiole: Puffer: CYS, HCY u. GSH: 1000 nM jeweils, 

NAC 4000 nM; Liquor: CYS: 3699 nM, HCY: 237 nM, GSH: 437 nM, NAC: 4000 nM. 

Stabilität der Aminothiolderivate [%] (Puffer) Zeitdauer [h] 
CYS HCY GSH NAC 

3 100,5 98,1 96,4 95,7 
7 101,6 97,4 87,9 92,0 

10 102,9 108,3 95,2 96,8 
Stabilität der Aminiothiolderivate [%] (Liquor) Zeitdauer [h] 

CYS HCY GSH NAC 
3 98,1 101,4 102,8 99,9 
7 101,0 107,3 99,9 100,3 

10 95,1 97,8 95,7 102,5 
 

Die Daten der Tab. 3-21 zeigen, dass die Derivate über eine Zeitraum von zehn 

Stunden stabil sind. Das Vorhandensein von Liquor in der Messprobe (100 µL in 

insgesamt 240 µL Probe) hatte keinen negativen Effekt auf die Stabilität.  

 

3.3 Ergebnisse der Teilvalidierung des FPIA 

Die Ergebnisse, die im Rahmen der Teilvalidierung des Fluoreszenzpolarisations-

Immunoassays erhoben wurden, sind in Tab. 3-22 zusammengefasst. Untersucht 

wurden die Validierungsparameter Präzision und Richtigkeit (s. Kapitel 2.4.5). 

Tab. 3-22: Präzision und Richtigkeit der immunologischen Bestimmungsmethode 

(FPIA); n = 5. 

c (HCY) [µM] Within-day-Präzision Between-day-Präzision Richtigkeit 
 VK [%] VK [%] [%] 

7,0  4,5 3,1 101,2 
12,5  1,1 1,6 100,2 
25,0  1,9 4,2 105,1 

 

Sowohl Präzision als auch Richtigkeit genügten in hohem Maße den gestellten 

Anforderungen an eine bioanalytische Methode171. 
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3.4 Einfluss von hochdosiertem MTX auf den Stoffwechsel des 
Homocysteins 

Der Einfluss von hochdosiertem MTX auf den Stoffwechsel des Homocysteins wurde 

an zwei Kollektiven – pädiatrischen Patienten mit ALL und erwachsenen Patienten 

mit primären, zentralnervösen Lymphomen (PZNSL) – untersucht. Beide Kollektive 

wurden im Rahmen der Therapie nicht bestrahlt und bekamen MTX sowohl 

intravenös als auch intrathekal verabreicht.  

3.4.1 Untersuchungen an pädiatrischen Patienten mit akuter 
lymphatischer Leukämie (Studie „Total XV“) 

Das Ziel der Studie „Total XV“, die voraussichtlich 2006 ausläuft183, besteht unter 

anderem darin, zu evaluieren, ob als Homocystein Biomarker für die MTX-induzierte 

Neurotoxizität eingesetzt werden kann. Insgesamt sollen mehr als 1000 Patienten in 

diese Studie eingeschlossen werden.  

Im Rahmen dieser Arbeit wurden von jeweils 65 Patienten die Homocystein-

konzentrationen im Plasma und Liquor untersucht. Die Liquorproben wurden 

zusätzlich auf Cystein und Glutathion untersucht. Auf die Bestimmung der 

exzitatorischen Metaboliten (CSA, CA, HCSA und HCA) im Liquor wurde verzichtet, 

da die Vorläuferstudie „Total XIV“, die an 53 Patienten durchgeführt wurde, 

offenbarte, dass keiner der vier Metaboliten 7 Tage nach HDMTX/ITMTX im Liquor 

der Patienten nachzuweisen war183. Die Nachweisgrenze der eingesetzten HPLC-

Methode betrug 5 nM. Eigene Untersuchungen, die an einem Kollektiv von 13 ALL-

Patienten durchgeführt wurden, bestätigten dieses Ergebnis.  

 

Homocysteinkonzentrationen im Plasma  
Nachfolgend werden die Homocysteinkonzentrationen aller untersuchten Patienten 

(n = 65) dargestellt. Das mediane Alter der Patienten betrug 7,1 Jahre 

(1,0-18,3 Jahre). Die Bestimmung der Homocysteinkonzentration erfolgte, wie in 

Kapitel 2.4 beschrieben, mit einem Fluoreszenzpolarisations-Immunoassay der 

Firma Abbott. Insgesamt wurden 390 Plasmaproben analysiert. Abb. 3-16 zeigt die 

Homocysteinkonzentrationen in Abhängigkeit vom Zeitpunkt der Therapie.  
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Abb. 3-16: Homocysteinkonzentrationen der ALL-Patienten im Verlauf der Therapie. 

 

Die mediane Homocysteinkonzentration der ALL-Patienten vor der anti-

neoplastischen Therapie (Tag 1 der Remission/Induktion) betrug 4,48 µM (s. Tab. 

3-23). Eine Korrelation zwischen diesen Homocysteinkonzentrationen und dem Alter 

der Patienten bestand nicht (p = 0,931, Rangkorrelation nach Kendall). 

 

Tab. 3-23: Homocysteinkonzentrationen (Mediane, Minima und Maxima) der ALL-

Patienten, bestimmt zu verschiedenen Zeitpunkten der Therapie. 

Zeitpunkt n HCY-Konzentration [µM] Kolmogorov-Smirnov-Test

RI 52 4,48 (0,00-36,83) p < 0,001  
C1 54 4,68 (2,81-14,31) p < 0,001 

C1h23 57 7,83 (4,19-34,80) p < 0,001 
C1h42 56 8,73 (2,21-49,60) p < 0,001  
C15 57 4,61 (2,79-11,92) p < 0,001  

C15h23 58 7,90 (4,02-20,15) p = 0,082  
C15h42 55 9,40 (4,43-25,54) p = 0,005  
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Fünf (Pat. 6, 13, 14, 60 und 63) der insgesamt 65 Patienten zeigten zu diesem 

Zeitpunkt erhöhte Homocysteinwerte im Plasma (> 10 µM), die sich 

interessanterweise nach der Remission/Induktion normalisierten.  

Der Vergleich der HCY-Plasmakonzentrationen vor (C1 bzw. C15), sowie 

23 Stunden nach (C1h23 bzw. C15h23) den MTX-Infusionen zeigt, dass MTX bereits 

nach 23 Stunden zu einer deutlichen Erhöhung des Homocysteins im Plasma führte, 

der Unterschied war jeweils höchstsignifikant (p < 0,001, Wilcoxon). Zu einem 

weiteren Anstieg der Homocysteinkonzentrationen kam es in den folgenden 

19 Stunden (s. Tab. 3-24); die Homocysteinkonzentrationen der Proben, die 

18 Stunden nach Ende der 24-stündigen MTX-Infusion gezogen wurden (C1h42 bzw. 

C15h42), waren im Vergleich zu den 23-Stunden-Konzentrationen signifikant höher 

(p = 0,04 bzw. p < 0.001, Wilcoxon) und ungefähr doppelt so hoch wie die 

Konzentrationen, die vor Verabreichung der MTX-Infusion bestimmt wurden (s. Tab. 

3-24). Der Anstieg der Homocysteinkonzentrationen nach der ersten bzw. zweiten 

MTX-Infusion der Konsolidierung war vergleichbar (s. Abb. 3-16 bzw. Tab. 3-24). 

Tab. 3-24: Vergleich der Homocysteinkonzentrationen, die zu verschiedenen 

Zeitpunkten der Therapie ermittelt wurden (Nicht-parametrische Testung).  

Kollektive Friedman-Test  Wilcoxon-Test 

RI, C1, C1h23, C1h42, C15, 
C15h23, C15h42 p < 0,001 (n = 40)  

RI, C1, C15 p = 0,397 (n = 46)  
C1, C1h23  p < 0,001 (n = 54) 
C1, C1h42  p < 0,001 (n = 52) 

C1h23, C1h42  p = 0,04   (n = 55) 
C15, C15h23  p < 0,001 (n = 54) 
C15, C15h42  p < 0,001 (n = 52) 

C15h23, C15h42  p < 0,001 (n = 52) 
 

Kein signifikanter Unterschied wurde zwischen den Homocysteinkonzentrationen des 

ersten Tages der Remission/Induktion (RI) und des 1. (C1) und 15. Tages (C15) der 

Konsolidierung festgestellt (p = 0,397, Friedman). Der Median der Konzentrationen 

zum Zeitpunkt C15 war mit dem Median der Konzentrationen zum Zeitpunkt C1 fast 

identisch (4,61 zu 4,68 µM). Somit wiesen die Patienten 14 Tage nach HDMTX wie-

der normale Homocysteinwerte im Plasma auf. 
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Homocystein- und MTX-Konzentrationen im Plasma der Low-Risk- bzw. SHR-
Patienten 
Neben einer gemeinsamen Auswertung aller Patienten wurden LR- und SHR-

Patienten auch getrennt voneinander untersucht, um den Effekt unterschiedlich hoch 

dosierter MTX-Infusionen beurteilen zu können (LR-Gruppe: ~2,5 g/m2, SHR-

Gruppe: ~5 g/m2).  

Hierzu wurde das gesamte Kollektiv in das Kollektiv der LR- und SHR-Patienten 

aufgeteilt und beide Gruppen getrennt voneinander ausgewertet.  

Nachfolgend werden zuerst die MTX-Plasmakonzentrationen vorgestellt. Sie wurden 

im St. Jude Children’s Research Hospital (Memphis, USA) mit einem 

Fluoreszenzpolarisations-Immunoassay bestimmt.  

 

Abb. 3-17: MTX-Plasmakonzentrationen der LR- und SHR-Patienten, die jeweils 6, 

23 und 42 Stunden nach Infusionsbeginn bestimmt wurden. 

 

Abb. 3-17 ist zu entnehmen, dass die MTX-Zielkonzentrationen von 33 (LR-Gruppe) 

bzw. 65 µM (SHR-Gruppe) annähernd erreicht wurden. Bedingt durch die 

Infusionstechnik (10 % der gesamten Dosis wurden in der ersten Stunde, die 
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restlichen 90 % wurden in den verbleibenden 23 Stunden der MTX-Infusion 

verabreicht) wurde relativ rasch ein Steady-State-Zustand erreicht: die MTX-

Konzentrationen, die sechs Stunden nach Infusionsbeginn bestimmt wurden, lagen in 

der gleichen Größenordnung wie die 23-Stunden-Werte (s. Tab. 3-25). Auffallend 

war jedoch, dass die MTX-Konzentrationen der SHR-Gruppe im Median von der 

6. zur 23. Stunde leicht anstiegen und die Werte des SHR-Kollektivs insgesamt eine 

deutlich größere Streuung aufwiesen als die des LR-Kollektivs. 

 

Tab. 3-25: MTX-Plasmakonzentrationen (Mittelwerte ( x ), Mediane ( x~ ), Minima und 

Maxima) der LR- und SHR-Patienten, bestimmt 6, 23 und 42 Stunden nach Beginn 

der 24-stündigen MTX-Infusion. 

LR-Patienten, c (MTX) [µM]  SHR-Patienten, c (MTX) [µM]  Zeit-
punkt x  x~  Spannweite n x  x~  Spannweite n  
C1h6 30,1 30,2 1,97-63,2 27 57,3 57,6 24,9-95,7 37 

C1h23 30,6 29,4 0,36-51,5 28 64,5 62,2 30,4-127,5 37 
C1h42 0,71 0,38 0,11-4,91 28 1,0 0,53 0,14-7,4 37 
C15h6 33,6 30,6 21,6-54,6 28 63,6 59,2 28,9-98,6 34 

C15h23 32,4 31,1 21,4-54,3 28 69,0 70,4 19,5-105,9 34 
C15h42 0,59 0,46 0,14-2,56 28 0,61 0,44 0,18-2,56 34 

 
 
Zwei Patienten der LR- (Pat. 2 und 13) und insgesamt sieben Patienten der SHR-

Gruppe (Pat. 31, 34, 42, 44, 46, 57, 59 und 60) besaßen nach der ersten MTX-

Infusion der Konsolidierung erhöhte MTX-Plasmakonzentrationen (> 1 µM 42 h nach 

Beginn der MTX-Infusion), die einen intensivierten Calciumfolinat-Rescue 

erforderten. Nach der zweiten MTX-Infusion, die am 15. Tag der Konsolidierung 

verabreicht wurde, wiesen drei Patienten der LR- (Pat. 10, 17 und 23) und nur noch 

zwei Patienten der SHR-Gruppe (Pat. 30 und 42) erhöhte MTX-Konzentrationen im 

Plasma auf (> 1 µM 42 h nach Beginn der MTX-Infusion).  
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Die getrennte Darstellung der Homocysteinkonzentrationen der LR- bzw. SHR-

Patienten zeigt Abb. 3-18. Der Abbildung ist zu entnehmen, dass sowohl in dem LR- 

als auch in dem SHR-Kollektiv die Verabreichung der 24-stündigen MTX-Infusion zu 

deutlich erhöhten HCY-Plasmakonzentrationen führte. Ein höchstsignifikanter 

Unterschied wurde bei beiden Kollektiven bereits nach den ersten 23 Stunden der 

Infusion festgestellt (s. Tab. 3-27).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 3-18: Homocystein-Plasmakonzentrationen der LR- und SHR-Patienten im 

Verlauf der Therapie. 

 

In beiden Patientengruppen waren die medianen Homocysteinkonzentrationen der 

Proben, die den Patienten 18 Stunden nach Beendigung der Infusion (C1h42 bzw. 

C15h42) entnommen wurden, höher als die Homocysteinkonzentrationen der 

Proben, die zur 23. Stunde der MTX-Infusion (C1h23 bzw. C15h23) gezogen 

wurden. Die höchste gemessene Homocysteinkonzentration betrug 49,57 µM 

(Patient 42, Zeitpunkt: C1h42). Tab. 3-26 liefert einen Überblick über die 

Homocysteinkonzentrationen beider Patientenkollektive.  
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Tab. 3-26: Homocysteinkonzentrationen (Mediane, Minima und Maxima) der LR- und 

SHR-Patienten, bestimmt zu verschiedenen Zeitpunkten der Therapie. 

LR-Patienten SHR-Patienten Zeit-
punkt HCY-Konzentration [µM] n HCY-Konzentration [µM] n 

RI 4,85 (0,93-12,48) 24 4,05 (< 0,50-36,83) 28 
C1 4,24 (2,80-14,30) 25 4,85 (2,90-7,80) 29 

C1h23 7,57 (5,00-20,99) 26 7,90 (4,19-34,80) 31 
C1h42 8,30 (2,21-20,13) 25 8,76 (4,31-49,60) 31 
C15 4,41 (2,91-9,20) 27 4,93 (2,79-11,92) 30 

C15h23 7,90 (4,20-20,15) 25 7,90 (4,02-16,50) 33 
C15h42 9,09 (5,90-25,54) 24 9,79 (4,43-21,30) 31 

 

Tab. 3-27: Vergleich der Homocysteinkonzentrationen innerhalb der Gruppe LR- 

bzw. SHR-Patienten (Nicht-parametrische Testung). 

LR-Patienten SHR-Patienten Kollektive 
 Wilcoxon-Test n Wilcoxon-Test n 

C1, C1h23 p < 0,001 25 p < 0,001 29 
C1, C1h42 p < 0,001  24 p < 0,001 28 

C1h23, C1h42 p = 0,716  25 p = 0,020 30 
C15, C15h23 p < 0,001  25 p < 0,001 29 
C15, C15h42 p < 0,001  23 p < 0,001 29 

C15h23, C15h42 p = 0,014  21 p < 0,001  30 
 
Tab. 3-26 ist zu entnehmen, dass die Homocysteinkonzentrationen nach HDMTX in 

der SHR-Gruppe tendenziell etwas höher waren, als die der LR-Gruppe. Ein 

signifikanter Unterschied bestand jedoch nicht (LR C1h42 und SHR C1h42: 

p = 0,9002, LR C15h42 und SHR C15h42 p = 0,387, Mann-Whitney-Test). Der 

mediane Anstieg der Homocysteinkonzentration – die Differenz zwischen den 

Homocysteinkonzentrationen 18 Stunden nach Beendigung der Infusion und den 

Homocysteinkonzentrationen vor Verabreichung der Infusion – betrug nach der 

1. und 2. MTX-Infusion der Konsolidierung in der LR-Gruppe 3,71 µM (n = 48), in der 

SHR-Gruppe 4,14 µM (n = 55).  
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Korrelation zwischen MTX-Exposition und Homocysteinkonzentration 
Um zu überprüfen, ob eine Korrelation zwischen der MTX-Exposition und der 

gemessenen Homocysteinkonzentration, die 18 Stunden nach Ende der MTX-

Infusion bestimmt wurde (C1h42 bzw. C15h42), bestand, wurde die AUC, die Fläche 

unter der Konzentrations-Zeit-Kurve, nach Gl. 2-12 berechnet. Die Gesamtclearance 

wurde aus den gemittelten Steady-State-Plasmakonzentrationen (6- und 42-

Stunden-Werte) nach Gl. 2-11 ermittelt. Die folgende Abbildung verdeutlicht, dass 

sowohl die MTX-Clearance als auch die AUC bei beiden Patientenkollektiven relativ 

stark variierte.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 3-19: MTX-Clearance der LR- bzw. SHR-Patienten und ermittelte AUCs nach 

der ersten (Zeitpunkt C1) und zweiten (Zeitpunkt C15) MTX-Infusion der 

Konsolidierung. 

 

Die Gruppe der SHR-Patienten zeigte eine etwas höhere Clearance als das LR-

Kollektiv – der Unterschied war allerdings nicht signifikant (p jeweils > 0,05, Mann-

Whitney). Die mediane Clearance nach der ersten und zweiten MTX-Infusion betrug 

5,32 und 5,13 L/h (LR-Kollektiv) bzw. 7,06 und 6,65 L/h (SHR-Kollektiv). Die Mediane 
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der AUCs (LR: 803,3 und 809 µM.h, SHR: 1604,9 und 1729,8 µM.h) spiegeln wieder, 

dass der SHR-Gruppe eine doppelt so hohe Dosis an MTX verabreicht wurde wie der 

LR-Gruppe.  

Für die Korrelationsanalyse wurden die Kollektive der LR- und SHR-Patienten 

zusammengefasst. Da eine Normalverteilung der Daten nicht vorlag, wurde eine 

Rangkorrelation nach Kendall durchgeführt. Abb. 3-20 zeigt, dass eine Korrelation 

zwischen der AUC von MTX und den Homocysteinkonzentrationen der Proben, die 

18 Stunden nach Ende der MTX-Infusion gezogen wurden, nicht bestand (r = 0,075, 

p = 0,247, n = 108). Offensichtlich bedingten alle verabreichten hochdosierten MTX-

Infusionen vergleichbar hohe Anstiege der Homocysteinkonzentration (vgl. hierzu 

auch Tab. 3-26).  

 

 

 

Abb. 3-20: Korrelation zwischen der AUC von MTX und der Homocystein-

konzentration (n = 108). 
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Homocysteinkonzentrationen im Liquor  
Zur Bestimmung von Homocystein im Liquor wurde die in Kapitel 2.3 beschriebene 

HPLC-Methode verwendet. Die Bestimmungsgrenze der Methode lag bei 50 nM. 

Insgesamt wurden von 65 Patienten 190 Liquorproben, die zu vier verschiedenen 

Zeitpunkten der Therapie gezogen wurden, analysiert. Die ermittelten 

Homocysteinkonzentrationen im Liquor sind in Abb. 3-21 dargestellt.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 3-21: Homocysteinkonzentrationen im Liquor der ALL-Patienten. Linke 

Abbildung: mit Extremwerten; rechte Abbildung: ohne Extremwerte. Die gestrichelte 

Linie der rechten Abbildung kennzeichnet das LLOQ (50 nM). 

 

Aus Abb. 3-21 geht hervor, dass zu allen Untersuchungszeitpunkten sehr niedrige 

Homocysteinkonzentrationen im Liquor bestimmt wurden. Ein Großteil der 

analysierten Proben besaß Homocysteinkonzentrationen, die unter der 

Bestimmungsgrenze von 50 nM lagen. Tendenziell am höchsten waren die 

Homocysteinkonzentrationen der Proben, die am achten Tag der Konsolidierung 

gezogen wurden (s. auch Tab. 3-28). Zu allen Probenentnahmezeitpunkten wurden 

vereinzelt extrem hohe Homocysteinkonzentrationen gefunden (Sternchen in Abb. 

3-21). Die höchste Konzentration mit 704,5 nM wurde bei Patient 111, 14 Tage nach 

Verabreichung der ersten MTX-Infusion der Konsolidierung (C15), gefunden. 
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Mediane, Minima und Maxima der Homocysteinkonzentrationen sind in der 

folgenden Tab. 3-28 zusammengefasst. Die medianen Homocysteinkonzentrationen 

zum Zeitpunkt RI, C1 und C8 waren praktisch identisch. Somit lagen (spätestens) 

14 Tage nach der Therapie mit MTX, welches intravenös und intrathekal verabreicht 

wurde, wieder normale Homocysteinkonzentrationen im Liquor vor.  

Tab. 3-28: Homocysteinkonzentrationen (Mediane, Minima und Maxima) im Liquor 

der ALL-Patienten (LLOQ: 50 nM). 

Zeitpunkt n HCY-Konzentration [nM] Kolmogorov-Smirnov-Test

RI 56 ~31,9 (0,0-178,3) p = 0,001 
C1 62 ~31,9 (3,0-667,8) p < 0,001 
C8 17  ~ 62,0 (32,5-268,0) p < 0,001 

C15 55   ~35,3 (10,8-704,5) p < 0,001 
 

Zum Zeitpunkt RI bzw. C1 waren die medianen Homocysteinkonzentrationen im 

Liquor der ALL-Patienten (~31,9 nM jeweils) mehr als 100-mal niedriger als die 

Homocysteinkonzentrationen, die zum selben Zeitpunkt im Plasma bestimmt wurden 

(4,48 µM bzw. 4,68 µM). Auch bei der Untersuchung der Liquorproben wurde die 

Beobachtung gemacht, dass sich erhöhte Homocysteinwerte nach der 

Remission/Induktion normalisierten (s. Patient 67, 72 und 75, Anhang A).  

Zum Vergleich der Homocysteinkonzentrationen wurde, da ein Großteil der Werte 

unter der Bestimmungsgrenze lag – und diese Werte folglich mit einem relativ 

großen Fehler behaftet sind – eine Transformation der Daten vorgenommen.  

Tab. 3-29: Einteilung der Homocysteinkonzentration im Liquor in sieben Klassen.  

Klasse Klassenbreite (b) [nM] Anzahl  

1            b < 50,0 131 
2 50,0 ≤ b < 60,0 14 
3 60,0 ≤ b < 70,0 8 
4 70,0 ≤ b < 80,0 14 
5 80,0 ≤ b < 90,0 6 
6 090,0 ≤ b < 100,0 1 
7              b ≥ 100,0 16 

 



Seite 134  Ergebnisse 

Die ermittelten Homocysteinkonzentrationen wurden sieben Klassen zugeordnet, 

wobei der untersten Klasse 1 alle Werte zugeordnet wurden, die unter der Bestim-

mungsgrenze lagen (s. Tab. 3-29). Die intervallskalierten Daten wurden somit in 

Ordinaldaten umgewandelt. Der Vergleich der transformierten Homocysteinkon-

zentrationen offenbarte, dass zwischen den verschiedenen Therapiephasen kein 

signifikanter Unterschied bestand (p = 0,771, n = 12, Friedman-Test). Auch der Ein-

zelvergleich der Konzentrationen zum Zeitpunkt C1 und C8 führte zu keinem signi-

fikanten Unterschied (p = 0,906, n = 17, Wilcoxon). Eine Korrelation zwischen den 

Plasma- und (transformierten) Liquorkonzentrationen (Zeitpunkt RI, C1 und C14) 

konnte bei den 17 Patienten, von denen sowohl Liquor- als auch Plasmaproben zur 

Verfügung standen, nicht gefunden werden (p = 0,484, Rangkorrelation nach 

Kendall).  

 

Cystein- und Glutathionkonzentrationen im Liquor  
Die Konzentrationen an Cystein und Glutathion sind in Abb. 3-22 dargestellt. Sie ver-  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abb. 3-22: CYS- und GSH-Konzentrationen (Liquor) zu verschiedenen Zeitpunkten 

der Therapie; aus Gründen der Übersichtlichkeit sind in der linken Abbildung (CYS-

Konzentrationen) die Extremwerte (insgesamt 11 Werte) nicht dargestellt. 
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deutlicht, dass sich die Konzentrationen an Cystein und Glutathion im Verlauf der 

Therapie nur marginal unterschieden.  

Auch die CYS- bzw. GSH-Konzentrationen waren am 8. Tag der Konsolidierung 

leicht erhöht (s. Tab. 3-30). Ein signifikanter Unterschied zu den Konzentrationen, die 

zum 1. Tag der Konsolidierung bestimmt wurden (Zeitpunkt C1) bestand nicht (CYS: 

C8/C1: p = 0,463, GSH: C8/C1: p = 0,435, Wilcoxon).  

Tab. 3-30: CYS- und GSH-Konzentrationen im Liquor (Mediane, Minima und 

Maxima).  

Kollektiv Cystein- 
konzentration [µM] n Glutathion- 

konzentration [µM] n 

RI  937,5 (515,5-2992) 56 486,5 (157,7-1078) 56 
C1   937,4 (405,0-52419) 62 542,7 (137,3-2696) 62 
C8 1161,7 (548,3-19202) 17 627,0 (353,4-2380) 17 

C15   887,5 (508,3-10864) 54 573,7 (264,5-2602) 55 
 
 
Im Rahmen von Korrelationsanalysen wurde zwischen den (transformierten) 

Homocystein- und den Cysteinkonzentrationen ein geringer (r = 0,316, p < 0,001, 

n = 189, Rangkorrelation nach Kendall), zwischen den Homocystein- und den 

Glutathionkonzentrationen ein sehr geringer Zusammenhang (r = 0,188, p = 0,001, 

n = 190, Rangkorrelation nach Kendall) festgestellt.  

Die individuelle Betrachtung der Thiolkonzentrationen ließ erkennen, dass all 

diejenigen Patienten, die extrem hohe Homocysteinkonzentrationen aufwiesen 

(Extremwerte der Boxplots in Abb. 3-21), auch extrem hohe Glutathion- und 

Cysteinkonzentrationen zeigten (Patienten 76, 85, 99, 105 und 111, s. Anhang B). 

Nur Patient 72 stellte diesbezüglich eine Ausnahme dar. Bei ihm wurde zu Beginn 

der Remission/Induktion eine deutlich erhöhte Homocysteinkonzentration festgestellt 

(178 nM), die sich im Verlauf der Therapie weitgehend normalisierte.  
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3.4.2 Untersuchungen an PZNSL-Patienten  

In Zusammenarbeit mit Prof. Dr. Schlegel (Neurologie des Universitätsklinikums 

Bonn) wurde ein Kollektiv von Patienten mit primären Lymphomen des zentralen 

Nervensystems untersucht. Diese Patientengruppe war äußerst interessant, da sie 

im Rahmen der zytoreduktiven Therapie intensiv mit MTX behandelt wurde (s. Tab. 

2-19 in Kap. 2.5.2) und über das implantierte Ommaya-Reservoir in allen 

Therapieblöcken mehrere Liquorproben entnommen werden konnten (s. Abb. 2-13). 

Somit ließen sich MTX-induzierte Veränderungen im Metabolismus des 

Homocysteins über mehrere Tage hinweg verfolgen. Die (glücklicherweise) niedrige 

Inzidenz der Erkrankung bedingte, dass trotz einer mehr als zweijährigen 

Rekrutierungszeit (Juni 2001 und Oktober 2003) insgesamt nur vier Patienten in die 

Studie eingeschlossen werden konnten. Alle Liquorproben wurden auf Homocystein, 

Cystein und Glutathion, sowie die exzitatorischen Metaboliten des Homocysteins und 

Cysteins (SEAA) analysiert. Die Projektpartnerin Sandra Vezmar übernahm die 

Bestimmung von Methotrexat, N5-Methyl-THF, SAM und SAH.  

 

Homocystein-, Cystein- und Glutathionkonzentrationen im Liquor der 
Lymphompatienten 
In den folgenden vier Abbildungen (Abb. 3-23 bis Abb. 3-26) werden jeweils die 

Konzentrationen an Homocystein, Cystein und Glutathion im Liquor der vier 

Lymphompatienten vorgestellt. Verspätete Einschlüsse in die Studie (Patient 2 und 

Patient 3: Studienbeginn ab Tag BI3 bzw. BI2), Komplikationen während der 

Therapie (Patient 1: Auslassen des Blocks AII), Therapieabbrüche (Patient 3: 

Abbruch nach Block AII, Patient 4: Abbruch nach CI) und ein modifiziertes Protokoll 

für ältere Patienten bedingten, dass bei keinem der untersuchten Patienten alle 

sechs Therapieblöcke (AI bis CII) verfolgt werden konnten. Ferner konnte aus 

medizinischen Gründen nicht immer aureichend viel Liquor entnommen werden, so 

dass teilweise nicht genügend Liquor für eine Untersuchung zur Verfügung stand 

(Patient 1: Proben AI2, CII6, Patient 2: Probe AII2, Patient 3: Probe AII2). Dennoch 

konnten von den vier PZNSL-Patienten insgesamt 63 Liquorproben gewonnen und 

analysiert werden. 
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Abb. 3-23: Konzentrations-Zeit-Profile der Thiole HCY, CYS und GSH im Liquor des 

Patienten 1.
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Abb. 3-24: Konzentrations-Zeit-Profile der Thiole HCY, CYS und GSH im Liquor des 

Patienten 2. 
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Abb. 3-25: Konzentrations-Zeit-Profile der Thiole HCY, CYS und GSH im Liquor des 

Patienten 3. 
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Abb. 3-26: Konzentrations-Zeit-Profile der Thiole HCY, CYS und GSH im Liquor des 

Patienten 4.  
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Bei den Cystein- und Glutathionkonzentrationen der vier Patienten konnte im 

zeitlichen Verlauf eines jeweiligen Therapieblocks kein eindeutiger Trend beobachtet 

werden. Auch zwischen den Cystein- bzw. Glutathionkonzentrationen der 

verschiedenen Therapieblöcke konnte kein wesentlicher Unterschied festgestellt 

werden.  

Abb. 3-27 zeigt, dass die Cystein- und Glutathionkonzentrationen der Patienten 

sowohl eine hohe intra-, als auch eine hohe interindividuelle Variabilität aufwiesen.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 3-27: Cystein- und Glutathionkonzentrationen (Liquor) der PZNSL-Patienten 

und der Kontrollgruppe.  

 

Der Verlauf der Homocysteinkonzentration war im Gegensatz zu den Cystein- und 

Glutathionkonzentrationen stark von der Therapiephase geprägt. Die niedrigsten 

Konzentrationen, wurden, abgesehen von der Homocysteinkonzentration des 

Patienten 1 zum Zeitpunkt BII2, jeweils am dritten Tag des Blocks C, kurz vor 

Verabreichung der ersten intraventrikulären MTX-Gabe gemessen. Zu diesem 

Zeitpunkt lag die letzte Applikation von MTX mehr als zwei Wochen zurück (s. Tab. 

2-19). 
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Im Block C ließ die wiederholte intraventrikuläre Verabreichung von MTX (ICVMTX) 

die Homocysteinkonzentrationen der Patienten stark ansteigen. Bei Patient 2 

(Block CII) fiel der Anstieg von Tag 3 zu Tag 7 am größten aus: die Homocysteinkon-

zentration stieg von 67,6 nM auf 1161 nM, also um mehr als das 17fache (s. Abb. 

3-24).  

Auch im zeitlichen Verlauf der Blöcke A und B konnte jeweils ein Ansteigen der 

Homocysteinkonzentrationen beobachtet werden. Mit Ausnahme des ersten 

Patienten waren die Homocysteinkonzentrationen der Proben, die am zweiten Tag 

des Blocks A bzw. B – also ein Tag nach Beginn der MTX-Infusion – gezogen 

wurden, deutlich höher als die Konzentrationen der Proben, die am dritten Tag des 

Blocks C entnommen wurden. Somit lagen bei diesen Patienten bereits gegen Ende 

der 24-stündigen MTX-Infusion erhöhte Homocysteinkonzentrationen im Liquor vor.  

 

Der Anstieg der Homocysteinkonzentrationen in therapiegleichen Behandlungs-

blöcken (Blöcke AI, AII, BI und BII zum einen sowie CI und CII zum anderen) fiel 

teilweise recht unterschiedlich aus. Bei Patient 1 waren die Homocysteinkonzentra-

tionen, die am 4.-7. Tag im Block CI bestimmt wurden, wesentlich höher als die 

entsprechenden Konzentrationen im Block CII (s. Abb. 3-23); Patient 2 zeigte im 

Verlauf der Blöcke AII und BII deutlich höhere Konzentrationen als im Block BI 

(s. Abb. 3-24).  

In allen Liquores mit sehr hohen Homocysteinkonzentrationen wurden normale 

Cystein- und Glutathionkonzentrationen ermittelt (s. Anhang B), so dass eine 

artifizielle Erhöhung der Homocysteinkonzentration durch eine defekte Blut-Liquor-

Schranke oder eine Kontamination mit Blut ausgeschlossen werden kann. 

 

Nach der individuellen Betrachtung der einzelnen Konzentrationsverläufe wurde die 

Gruppe der Lymphompatienten kollektiv ausgewertet. Im Rahmen dieser Auswertung 

wurden die Blöcke AI, AII, BI und BII zu A/B und die Blöcke CI und CII zu C 

zusammengefasst, da in diesen jeweils die gleiche Chemotherapie verabreicht 

wurde. Die folgende Tab. 3-31 liefert einen Überblick über die medianen 

Konzentrationen von Homocystein, Cystein und Glutathion im Verlauf der Blöcke A/B 

bzw. C. Zusätzlich finden sich in dieser Tabelle die Referenzwerte der Kontrollgruppe 
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(s. Kapitel 2.5.3). Die graphische Darstellung der Thiolkonzentrationen in Form von 

Boxplots zeigt Abb. 3-28 (Homocystein) bzw. Abb. 3-29 (Cystein und Glutathion).  

 

Tab. 3-31: HCY-, CYS- und GSH-Konzentrationen der Lymphompatienten während 

der Chemotherapie (Mediane, Minima und Maxima). 

Kollektiv c (HCY) [nM] 
(Median) 

c (CYS) [nM] 
(Median) 

c (GSH) [nM] 
(Median) 

Block A/B2 n = 5 195  (23,4-725) 1837 (1414-4965) 1433   (809-1746) 
Block A/B3 n = 9 295   (149-944) 2248 (1293-4502) 1177   (921-1658) 
Block A/B4 n = 9 389 (224-1088) 2075  (1732-4132) 1248   (882-2307) 
Block A/B5 n = 9 448 (277-1116) 2782 (1896-4873) 1399 (1022-1950) 
Block C3 n = 6 73,6 (50,6-200) 2804 (2186-3885) 1217 (1022-1539) 
Block C4 n = 6 238   (188-771) 2209   (867-4008) 1232   (927-1572) 
Block C5 n = 6 482 (151-1167) 3938 (1713-4904) 1268   (600-1703) 
Block C6 n = 5 689 (271-1010) 2813 (2279-4410) 1124 (1001-1337) 
Block C7 n = 6 569 (239-1162) 3423 (2044-8155) 1205 (1015-1974) 
Alle n = 61  2711   (867-8155) 1233   (600-2307) 
Kontrolle n = 13 71,3 (31,9-161) 3775 (2662-7688) 0746   (394-1034) 

 

 

Weder in den Blöcken A/B noch im Block C wurde eine signifikante Veränderung der 

Cystein- bzw. Glutathionkonzentration festgestellt (p jeweils > 0,05, Wilcoxon). Vor 

diesem Hintergrund wurden alle ermittelten Konzentrationen dieser Thiole zu einer 

Gruppe zusammengefasst und der jeweilige Median bestimmt (s. Tab. 3-31). Der 

Median der Cysteinkonzentrationen (2711 nM) war signifikant niedriger (p < 0,001, 

Mann-Whitney), der Median der Glutathionkonzentrationen (1233 nM) war hingegen 

signifikant höher als der der Kontrollgruppe (p < 0,001, Mann-Whitney).  

Tab. 3-31 ist zu entnehmen, dass die medianen Homocysteinkonzentrationen im 

Block A/B von 195 nM (A/B2) auf 448 nM (A/B5) und im Block C von 73,6 nM (C3) 

auf 569 nM (C7) stiegen. Homocysteinkonzentrationen, die einen Tag nach der 

intravenösen bzw. intraventrikulären MTX-Gabe gemessen wurden, waren 

vergleichbar hoch (Median der Proben A/B2: 195 nM, Median der Proben C4: 

238 nM).  

Trotz der geringen Fallzahl unterschieden sich die Homocysteinkonzentrationen der 

Tage A/B3-5 signifikant von den Konzentrationen der Tage A/B2 und die Homo-
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cysteinkonzentrationen der Tage C4-7 signifikant von den Konzentrationen des 

Tages C3 (s. Tab. 3-32). 

Tab. 3-31 und Abb. 3-28 zeigen, dass – abgesehen von den Konzentrationen, die am 

dritten Tag des Blocks C bestimmt wurden (sie waren ähnlich hoch wie die 

Homocysteinkonzentrationen der Kontrollgruppe) – alle Homocysteinkonzentrationen 

der Lymphompatienten durchweg deutlich höher waren als die der Kontrollgrupe.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 3-28: HCY-Konzentrationen der Lymphompatienten im Liquor im Verlauf der 

Chemotherapie. 
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Abb. 3-29: CYS- und GSH-Konzentrationen im Liquor der Lymphompatienten im 

Verlauf der Chemotherapie. 
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Tab. 3-32: Vergleich der Homocysteinkonzentrationen. 

Intragruppenvergleiche Intergruppenvergleiche 

Kollektive Wilcoxon-Test Kollektive Mann-Whitney 

A/B2, A/B3 p = 0,043 (n = 5) A/B2, K p = 0,095 (n = 5/13) 
A/B2, A/B4 p = 0,043 (n = 5) A/B3, K p < 0,001 (n = 9/13) 
A/B2, A/B5 p = 0,043 (n = 5) A/B4, K p < 0,001 (n = 9/13) 

C3, C4 p = 0,028 (n = 6) A/B5, K p < 0,001 (n = 9/13) 
C3, C5 p = 0,028 (n = 6) C3, K p = 0,639 (n = 6/13) 
C3, C6 p = 0,043 (n = 5) C4, K p < 0,001 (n = 6/13) 
C3, C7 p = 0,028 (n = 6) C5, K p < 0,001 (n = 6/13) 

  C6, K p < 0,001 (n = 5/13) 
  C7, K p < 0,001 (n = 6/13) 

 

Der Unterschied zwischen den Homocysteinkonzentrationen der Proben A/B3-5 und 

C4-7 und den Homocysteinkonzentrationen der Kontrollgruppe war jeweils 

höchstsignifikant (s. Tab. 3-32).  

Auch bei dieser Studie wurde zwischen den Homocystein- und den Cystein-

konzentrationen nur eine geringe Korrelation gefunden (r = 0,269, p = 0,002, 

Rangkorrelation nach Kendall). Ein Zusammenhang zwischen den Homocystein- und 

den Glutathionkonzentrationen bestand nicht (r = 0,110, p = 0,211, Rangkorrelation 

nach Kendall).  

 

Konzentrationen der SEAA im Liquor der Lymphompatienten 
Mittels der validierten kapillarelektrophoretischen Methode wurden sowohl die 

Liquores der Lymphompatienten als auch die der Kontrollgruppe auf die exzitato-

rischen Metaboliten des Homocysteins (HCSA, HCA) bzw. Cysteins (CSA, CA) 

untersucht.  

Bei drei der vier Patienten (Patienten 2-4) konnte nach MTX-Gabe die exzitatorische 

Aminosäure HCSA, nicht aber HCA, CSA und CA, nachgewiesen werden. In den 

Liquorproben der Kontrollgruppe konnte keine dieser vier Aminosäuren detektiert 

werden (LOD: 5,7-33,3 nM). Die HCSA-Konzentrations-Zeit-Profile der Patienten 2-4 

sind in Abb. 3-30 dargestellt. Ihnen ist zu entnehmen, dass auch die HCSA-

Konzentrationen am Tag 3 des Blocks C am niedrigsten waren (sie lagen unter der 

Nachweisgrenze der Methode). Alle anderen HCSA-Kozentrationen lagen zwischen 

1,48 und 2,78 µM.  
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Abb. 3-30: HCSA-Konzentrations-Zeit-Profile im Liquor der Patienten 2 (Abb. A), 3 

(Abb. B) und 4 (Abb. C); *: < 5,7 nM (LOD für HCSA) 
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Zusammenhänge zwischen den MTX- bzw. N5-Methyl-THF- und den 
Homocysteinkonzentrationen 
Zwischen den Homocystein- und den MTX-Konzentrationen, die im Liquor der 

PZNSL-Patienten bestimmt wurden, wurde eine geringe Korrelation ermittelt 

(r = 0,354, p < 0,001, n = 59, Rangkorrelation nach Kendall). Ließ man in die 

Korrelationsanalyse nur die Homocystein- und MTX-Konzentrationen, die im Verlauf 

der Therapieblöcke C (in diesen wurde kein Calciumfolinat verabreicht) bestimmt 

wurden, einfließen, wurde eine geringfügig höhere Korrelation gefunden (s. Abb. 

3-31). Diese Korrelation war auch dann hochsignifikant, wenn man die drei 

Ausreisser (Sternchen in der linken Darstellung der Abb. 3-31) nicht berücksichtigte 

(r = 0,407, p < 0,005, n = 25, Rangkorrelation nach Kendall).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 3-31: Korrelation zwischen den im Liquor gemessenen MTX-, bzw. N5-Methyl-

THF-Konzentrationen und den Homocysteinkonzentrationen (Rangkorrelation nach 

Kendall, n = 28). Dargestellt sind nur die Werte aus den Therapieblöcken C. 

Ausreisser sind durch ein Sternchen gekennzeichnet. 

 

Eine geringe, gegenläufige Korrelation wurde zwischen Homocystein und N5-Methyl-

THF – dem Cofaktor der Methioninsynthase – ermittelt (r = -0,217, p = 0,019, n = 57, 

Rangkorrelation nach Kendall). Unter Berücksichtigung der Homocystein- und 
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N5-Methyl-THF-Konzentrationen der C-Blöcke wurde eine mittlere, höchstsignifikante 

Korrelation gefunden (r = -0,571, p < 0,001, n = 28, Rangkorrelation nach Kendall, s. 

Abb. 3-31). Die zwischenzeitliche Gabe von Calciumfolinat (in der Regel dreimal 

30 mg/m2 am dritten, sowie einmal 30 mg/m2 am vierten Tag der Blöcke A/B), erwies 

sich somit als starker Störfaktor dieser Korrelation.  

 

Zusammenhang zwischen den Homocystein- und den HCSA-Konzentrationen  
Der Zusammenhang zwischen den Homocystein- und HCSA-Konzentrationen der 

Patienten 2-4 ist in Abb. 3-32 dargestellt. Sie zeigt, dass bei diesen Patienten HCSA 

nur dann nachgewiesen wurde, wenn die Homocysteinkonzentration mindestens 

146 nM betrug (s. gestrichelte Linie in Abb. 3-32).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 3-32: Zusammenhang zwischen den im Liquor gemessenen HCY- und HCSA-

Konzentrationen der Patientinnen 2, 3 und 4 (n = 42). 

 

Es sei an dieser Stelle erwähnt, dass eine ausführliche Darstellung und Diskussion 

der MTX- und 5-MTHF-Konzentrationen in der Dissertation der Projektpartnerin S. 

Vezmar zu finden sein wird.  
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Ergebnisse der Untersuchungen zur Evaluierung der Neurotoxizität  
Alle Untersuchungen zur Evaluierung der Neurotoxizität wurden von Prof. Dr. 

Schlegel bzw. Dr. Pels (Neuroonkologie des Universitätsklinikums Bonn) 

durchgeführt und ausgewertet.  

Patient 1 klagte im Verlauf des Blocks BI über starke Kopfschmerzen, die 

höchstwahrscheinlich durch eine Infektion im Bereich des Ommaya-Reservoirs 

hervorgerufen wurden. MRT-Untersuchungen ergaben keine Anzeichen einer MTX-

induzierten Demyelinisierung oder Arachnoiditis.  

Die Patienten 2 und 4 waren klinisch unauffällig. Dennoch ließen MRT-Bilder 

(T2-gewichtet) erkennen, dass sich bei diesen Patienten während der 

Chemotherapie fokal begrenzte Demyelinisierungen manifestiert hatten.  

Patient 3 entwickelte nach dem ersten Zyklus der Chemotherapie (nach Block CI) 

eine ausgeprägte Leukenzephalopathie. MRT-Bilder (T2-gewichtet) des Patienten 

zeigten flächig konfluente Signalsteigerungen, die als schwere Demyelinisierungen 

zu interpretieren sind. Die Leukenzephalopathie und der insgesamt reduzierte 

Allgemeinzustand bedingten, dass die Chemotherapie nach dem Block AII 

abgebrochen wurde.  

Symptome einer akuten bzw. subakuten Neurotoxizität wurden nach Bekunden des 

jeweils zuständigen Ärzteteams bei keiner der vier Patientinnen beobachtet.  
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3.4.3 Fallbericht einer Patientin mit MTX-Überdosierung  

In Kooperation mit Dr. Liebeskind (Helios Klinikum Berlin, Klinikum Buch, Abteilung 

Hämatologie und Onkologie) und Prof. Dr. Bode (Kinderklinik des Universi-

tätsklinikums Bonn, Abteilung Hämatologie und Onkologie) wurde eine Patientin, der 

irrtümlicherweise eine 10fach erhöhte MTX-Dosis (20 mg) intraventrikulär verabreicht 

wurde, untersucht.  

Diese Patientin wies sechs Stunden nach der fehlerhaften, intraventrikulären 

MTX-Instillation (kurz vor der ersten Liquorspülung) im Liquor eine MTX-

Konzentration von 87,20 µM auf. Trotz zweier ventrikulärer Liquorspülungen (6 bzw. 

16 Stunden nach Überdosierung) wurde noch 66 Stunden nach ICVMTX eine stark 

erhöhte MTX-Konzentration (9,46 µM) im Liquor gefunden (s. Abb. 3-33).  

 

 

 

 

 

 

 

 

 

 

 

Abb. 3-33: MTX-Konzentrationen im Liquor der Medulloblastom-Patientin. 

Die Tab. 3-33 zeigt die Konzentrationen der Substanzen, die in den Liquorproben 

quantifiziert wurden. Alle gemessenen Homocysteinkonzentrationen waren im 

Vergleich zu den Homocysteinkonzentrationen der pädiatrischen ALL-Patienten, die 

in der Regel ungefähr zwischen 30 und 40 nM lagen (s. Tab. 3-28), deutlich erhöht. 

Bereits 10 Stunden nach intraventrikulärer MTX-Gabe wurde mit 598 nM eine sehr 
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hohe Homocysteinkonzentration ermittelt, die bis zum Zeitpunkt der letzten 

Probenentnahme (Stunde 66) weiter anstieg (s. Tab. 3-33 bzw. Abb. 3-34). 

Tab. 3-33: Konzentrationen an HCY, CYS, GSH, HCSA, HCA, CA, MTX und 5-MTHF 

im Liquor der Medulloblastom-Patientin, die 20 mg MTX intraventrikulär verabreicht 

bekam. 

Zeit nach 
ICVMTX [h] 

HCY 
[nM] 

CYS 
[nM] 

GSH 
[nM] 

HCSA 
[µM] 

HCA 
[µM] 

CA 
[µM] 

MTX 
[µM] 

MTHF* 
[nM] 

6 KP KP KP KP KP KP 87,20 KP 
6,25 KP KP KP KP KP KP 67,87 KP 
10 598 16950 884 ~0,72 ~0,50 ~0,96 66,38 48,3 
16 652 17992 861 ~0,96 ~0,10 ~0,44 55,27 59,0 
24 799 19572 1099 1,12 ~0,20 ~0,40 40,79 59,7 
34 NB NB NB NB NB NB 29,76 78,5 
48 KP KP KP KP KP KP 18,82 KP 
62 930 18530 895 1,12 ~0,32 ~0,73 11,42 113,7 
66 1028 14222 1032 1,20 ~0,32 ~0,62 9,46 95,5 

 

* N5-Methyltetrahydrofolat 

NB: nicht bestimmt (Probe war sehr blutig!); KP: keine Probe verfügbar  

Zur Beachtung: Das LLOQ zur Bestimmung von HCSA, HCA und CA betrug 1,0 µM.  

 

 

 

Abb. 3-34: HCY-Konzentrationen im Liquor der Medulloblastom-Patientin. 
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Auch die Cysteinkonzentrationen (14,2-19,6 µM), nicht aber die Glutathion-

konzentrationen (861-1099 nM) der Patientin waren auffallend hoch (s. Tab. 3-33).  

 

In allen Proben wurden die Metaboliten des Homocysteins (HCSA und HCA) sowie 

Cysteinsulfonsäure (CA) detektiert. Mit Ausnahme der HCSA-Konzentrationen der 

Proben, die 24, 62 und 66 Stunden nach der intraventrikulären Verabreichung von 

MTX gezogen wurden, lagen die Konzentrationen der exzitatorischen Aminosäuren 

unter der unteren Bestimmungsgrenze (1 µM) der kapillarelektrophoretischen 

Methode. Die Konzentrationen an HCSA stiegen mit zunehmendem zeitlichem 

Abstand zur ICVMTX an und lagen in der gleichen Größenordnung wie die 

Homocysteinkonzentrationen.  

 

Die Konzentrationen an N5-Methyl-THF der 10-, 16-, 24- und 34 h-Proben lagen im 

Normbereich (40-90 nM)76,184,185. Die leicht erhöhten Konzentrationen, die 62 bzw. 

66 Stunden nach ICVMTX gemessen wurden, waren sehr wahrscheinlich Folge des 

intensivierten Rescue mit Calciumfolinat (s. Kapitel 2.5.4.1).  
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4 Diskussion 

Im Folgenden werden die in Kapitel 3 aufgeführten Ergebnisse diskutiert. Die 

Diskussion folgt dabei prinzipiell der Gliederung des Ergebnisteils. Im 

abschließenden Kapitel der Diskussion wird erörtert, ob Homocystein einen 

Biomarker für die MTX-induzierte Neurotoxizität darstellen könnte.  

 

 

4.1 CE-Methode zur Bestimmung von schwefelhaltigen, 
exzitatorischen Aminosäuren im Liquor  

Sowohl die exzitatorischen Metaboliten des Homocysteins (HCSA und HCA), als 

auch die des Cysteins (CSA und CA), sind in retrospektiv analysierten Liquorproben 

von Krebspatienten, die mit hochdosiertem MTX behandelt wurden, nachgewiesen 

worden. Bislang konnte allerdings nicht gezeigt werden, dass sich diese Substanzen 

im Verlauf einer Chemotherapie mit MTX im Liquor anhäufen. Der Stellenwert dieser 

exzitatorischen Aminosäuren für die MTX-induzierte Neurotoxizität ist, nicht zuletzt 

aufgrund der spärlichen Datenlage, bis heute weitgehend unklar.  

Zur simultanen Bestimmung aller vier SEAA in biologischen Matrices sind bislang 

fünf verschiedene HPLC-Methoden sowie eine GC-Methode publiziert worden, wobei 

nur die Arbeitsgruppe um Quinn76 die SEAA im Liquor bestimmten (s. Tab. 4-1). 

Leider finden sich in den Publikationen, die diese Methoden beschreiben, kaum 

Informationen zur Validierung. Oftmals werden nur Angaben zur Nachweisgrenze 

(Limit of Detection, LOD) und der unteren Bestimmungsgrenze (Lower Limit of 

Quantification, LOQ) gemacht.  

Darüber hinaus konnte, mit Ausnahme der GC-Methode, bei allen Methoden die 

eindeutige, selektive Bestimmung der Analyten nur in wässriger Lösung demonstriert 

werden. Die Trennleistung der verwendeten HPLC-Systeme reichte nicht aus, die mit 

o-Pthaldialdehyd (OPA) derivatisierten SEAA untereinander bzw. von anderen 

Aminosäuren oder Bioaminen der biologischen Matrix eindeutig abzutrennen (mit 

OPA werden alle Substanzen erfasst, die eine primäre Aminogruppe tragen, s. Abb. 

4-1). 
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Tab. 4-1: Analytische Methoden zur simultanen Bestimmung von HCSA, HCA, CSA 

und CA in biologischen Matrices.  

Referenz Methode Matrix 
LOD 
bzw. 

LLOQ 
Anmerkungen 

Waller et 
al. 

(1991)186 

HPLC-FD 
(OPA/ME*) 

 

Mikro-
dialyse-
proben 

(Rattenhirn)

LODs:  
~2-3 nM 

- Unzureichende 
  chromatographische Trennung 
- Geringe Stabilität der Produkte 
- Keine Angaben zur Validierung

Orwar et 
al. 

(1991)187  

HPLC-ECD 
(nach 

Derivati-
sierung mit 
OPA/ME*) 

Mikro-
dialyse-
proben 

(Rattenhirn)

LOD 
(HCSA): 
1,3 nM  
LLOQ:  
50 nM  

- Unzureichende 
  chromatographische Trennung 
- Geringe Stabilität der Produkte 
- Keine Angaben zur Validierung
- Teure Arbeitselektrode (Hg-Au-
   Elektrode) mit sehr begrenzter
   Lebensdauer187 

Orwar et 
al. 

(1994)188 

HPLC-LIFD 
(OPA/ME*) 

 

Mikro-
dialyse-
proben 

(Rattenhirn)

LOD:  
35- 

380 pM 
LLOQ:  

0,3-
13,3 nM 

- Unzureichende 
  chromatographische Trennung 
- Geringe Stabilität der Produkte 
- Keine Angaben zur Richtigkeit 
  und Wiederfindung 

Santosh-
Kumar et 

al. 
(1994)189  

GC-MS 
(nach 

Derivati-
sierung mit 
MTBSTFA#) 

Plasma 

LOD:  
2,5-

40 nM 
LLOQ:  

0,3-
1,8 µM 

- Aufwändige, zeitintensive 
  Probenaufarbeitung  
- Erfordert Synthese von 
  Isotopen  
- Sehr kostenintensiv 

Quinn et 
al. 

(1997)76 

HPLC-
FD/ECD 

(OPA/MPX) 
 

Liquor 

LOD:  
50 nM 
LLOQ:  
k. A. 

- Keine Beurteilung der  
  chromatographischen  
  Trennung im Liquor möglich 
- Keine Angaben zur Validierung

 

* ortho-Phthaldialdehyd/Mercaptoethanol 
# N-Methyl-N-t-butyldimethylsilyl-trifluoracetamid 
X ortho-Phthaldialdehyd/Mercaptopropanol 

k. A.: Keine Angaben 
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Abb. 4-1: Derivatisierung primärer aromatischer Amine mit o-Phthaldialdehyd (OPA) 

und Mercaptoethanol (Mercaptopropanol).  

Die mangelnde Trenneffizienz der HPLC-Methoden ist damit begründet, dass eine 

Vielzahl von vergleichsweise polaren Substanzen (unter den gegebenen 

chromatographischen Bedingungen lagen die Derivate der SEAA sogar zweifach 

negativ geladen vor) auf Reversed-phase-Säulen (RP-18) getrennt wurden. Es ist 

nicht überraschend, dass unter den chromatographischen Bedingungen der oben 

angeführten HPLC-Methoden Analyten, die sich hinsichtlich ihrer Lipophilie kaum 

unterscheiden (z.B. Isoindolderivate von CSA, CA und ASP bzw. Isoindolderivate 

von HCSA, HCA und GLU), nicht ausreichend getrennt werden konnten.  

Ein weiterer Nachteil der oben angeführten HPLC-Methoden liegt darin, dass der 

eingesetzte Fluoreszenzmarker OPA, insbesondere aber die Produkte der 

Derivatisierungsreaktion, die fluoreszierenden Isoindolverbindungen (s. Abb. 4-1), 

sehr instabil sind. Dieser Umstand bedingt, dass Derivatisierungszeiten auf die 

Sekunde genau eingehalten werden müssen und dass Methoden, bei denen OPA als 

Derivatisierungsreagenz verwendet wird, kaum zu automatisieren sind169,190. 

 

Da sich – wie oben erläutert – HPLC-Methoden nur in begrenztem Umfang eignen, 

SEAA selektiv in einer komplexen biologischen Matrix zu bestimmen und die GC-

MS-Methode sehr kostenintensiv ist, wurde zur quantitativen Analyse der SEAA in 

Liquor die Kapillarelektrophorese (CE) ausgewählt. Im Gegensatz zur HPLC werden 

bei kapillarelektrophoretischen Methoden die Analyten nicht nach Lipophilie, sondern 

nach Größe und Ladung getrennt (s. Gl. 2-2). Daher ist diese Methode prinzipiell 

besser geeignet, geladene Aminosäuren, die sich hinsichtlich der Lipophilie teilweise 

nur geringfügig unterscheiden, zu trennen. Die Trennleistung der CE ist im 

Allgemeinen deutlich höher als die der HPLC, da keine Bandenverbreiterungen durch 

o-Pthaldialdehyd Fluoreszierendes Isoindolderivat 

CHO

CHO
N R'

SR'
SHR R' NH2/
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laminare Flussprofile entstehen191. Des Weiteren besitzt die Kapillarelektrophorese 

im Vergleich zur HPLC den Vorteil, dass man mit kleineren Probenvolumina 

auskommt (teilweise reichen schon wenige nL aus), die Analysenzeiten in der Regel 

deutlich kürzer und die Kosten generell niedriger sind, da größere Mengen an 

hochreinen Lösungsmitteln nicht benötigt werden.  

 

Um auch sehr niedrige Konzentrationen der Metaboliten im Liquor nachzuweisen, 

wurden die SEAA mit einem Fluoreszenzfarbstoff (CFSE) markiert und die Derivate 

durch die energiereiche Hauptspektrallinie (488 nm) eines Argon-Lasers angeregt 

(Konzept der Laser-induzierten Fluoreszenz (LIFD, s. Abb. 2-5). Als Fluoreszenz-

marker wurde CFSE eingesetzt, da das Absorptionsmaximum der Derivate nahe der 

Anregungswellenlänge des Argon-Lasers liegt, es gegenüber primären Aminen eine 

hohe Reaktivität und Selektivität aufweist und die gebildeten Produkte über eine 

hohe Stabilität verfügen. Aufgrund dieser Eigenschaften zeigt CFSE gegenüber 

Fluoresceinisothiocyanat (FITC), welches in großem Maßstab zur Derivatisierung von 

primären Aminen, im Besonderen Aminosäuren, verwendet wird, deutliche Vorteile 

(s. Tab. 4-2).  

Die eigenen Ergebnisse bestätigten, dass CFSE zur Derivatisierung primärer Amine 

hervorragend geeignet ist. Die hohe Stabilität der Derivatisierungsprodukte (s. 

Kapitel 3.1.5.6) trug dazu bei, dass die Analyten präzise bestimmt werden konnten 

und ermöglichte, dass bis zu 18 Liquorproben gleichzeitig derivatisiert und 

anschließend der Reihe nach vermessen werden konnten. Unter Verwendung der 

LIFD lagen die LODs zwischen 5,7 und 33,3 nM. Somit ist die Methode vergleichbar 

empfindlich wie die Methode von Quinn et al. (1997), nach der die SEAA (ebenfalls 

im Liquor vorliegend) zuerst mit OPA derivatisiert und anschließend coulometrisch 

detektiert werden (s. Tab. 4-1). Die hohe Empfindlichkeit der LIFD bedingte leider 

auch, dass selbst Spuren von Verunreinigungen bzw. Abbauprodukten von CFSE, 

welches eine intrinsische Fluoreszenz (Autofluoreszenz) aufweist, detektiert wurden 

(s. hierzu Abb. 3-8). Dieser Umstand erforderte eine 1:100-Verdünnung der 

Messprobe, brachte aber gleichzeitig den Vorteil mit sich, dass die Liquorprobe ohne 

weitere Aufarbeitung (z.B. Proteinfällung) problemlos in das CE-System injiziert 

werden konnte.  
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Tab. 4-2: Fluoreszenzmarker, die im Rahmen kapillarelektrophoretischer Verfahren 

mit LIFD zur Derivatisierung primärer Amine eingesetzt werden. 

Fluoreszenzmarker λex 
[nm] 

λem 
[nm] Vorteile Nachteile 

CFSE     

 
 
 
 
 

494 520 

- Hohe Reaktivität und 
  Selektivität170 
- Hohe Stabilität der 
  Produkte192,193 
- Hohe 
  Empfindlichkeit170,193 

- Intrins. Fluoreszenz 

FITC*1     
 

 
 
 

490 519 

- Hohe 
  Empfindlichkeit194 
 

- Intrins. Fluoreszenz 
- Mäßige Reaktivität170

- Geringe 
  Selektivität169,195 
- FITC und Derivate 
  sind relativ instabil169 

FQCA#1     
 

 
 
 

 
 
 

486*2 591*2 

- Keine intrins. Fluores-
  zenz 
- Gute Reaktivität196 
- Hohe Selektivität 
- Hohe 
  Empfindlichkeit196,197 

- Derivatisierung 
  erfordert tox. KCN  
- Begrenzte Stabilität 
  der Produkte196 
- Spezieller Bandpass-
  Filter erforderlich#2 

CBQCAX1     
 

 

 
 

456*2 552*2 

- Keine intrins. Fluores-
  zenz 
- Gute Reaktivität198 
- Hohe Selektivität 
- Hohe 
  Empfindlichkeit198 

- Derivatisierung 
  erfordert tox. KCN 

- Begrenzte Stabilität 
  der Produkte  
- Teurer He-Cd-Laser 
  erforderlich 

 

Anmerkung: Absorptions- und Emissionsmaximum wurden unter Verwendung des Lösungsmittels 

MeOH bestimmt169. 
*1 Fluoresceinisothiocyanat; #1 3-(2-Furoyl)-chinolin-2-carbaldehyd; X1 4-(2-Formyl-3-chinolincarbonyl)-

benzoesäure; 
*2 Bezogen auf das Derivatisierungsprodukt aus CBQCA bzw. FQCA, CN- und Glycin;  
#2 Kommerziell erhältliche LIF-Detektionssysteme, die Argonlaser als Anregungsquelle nutzen, sind 

mit einem 520 nm Bandpass-Filter ausgestattet 
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Da verschiedene Chargen des Fluoreszenzmarkers unterschiedliche Verun-

reinigungen beinhalteten (sowohl in quantitativer als auch in qualitativer Hinsicht), 

wurde vor einer Probenmessung immer zuerst das Elektropherogramm einer 

Leerprobe (CFSE gelöst in 0,1 M Boratpuffer, pH 9,0) aufgezeichnet.  

Vor diesem Hintergrund mögen die Fluoreszenzmarker CBQCA (4-(2-Formyl-3-

chinolincarbonyl)-benzoesäure) und FQCA (3-(2-Furoyl)-chinolin-2-carbaldehyd), 

speziell entwickelt zur Derivatisierung von primären Aminen mit anschließender 

LIFD, vorteilhaft sein, da sie wie OPA selbst keine Fluoreszenz zeigen (s. Tab. 4-2). 

Allerdings erfordert FQCA einen Umbau kommerziell erhältlicher LIF-

Detektionssysteme, die mit einem 520 nm Bandpass-Filter ausgestattet sind und 

CBQCA einen Helium-Cadmium-Laser, der im Vergleich zu einem Argon-Laser 

erheblich teurer ist und nur eine sehr begrenzte Lebensdauer besitzt. Darüber hinaus 

ist zur Umsetzung von primären Aminen bei beiden Substanzen hochtoxisches 

Kaliumcyanid erforderlich.  

 

Im Rahmen der Methodenentwicklung konnte die Trennung der derivatisierten SEAA 

vergleichsweise einfach und effizient durch Variation des SDS- bzw. MeOH-Gehalts 

im Laufpuffer (0,1 M Borat, pH 9,0) optimiert werden. Für die Trennung war von 

Vorteil, dass die SEAA-Derivate, aufgrund der sauren Sulfin- bzw. 

Sulfonsäuregruppe, nicht drei – wie die meisten Aminosäuredrivate – sondern vier 

negative Ladungen trugen. Die zusätzliche negative Ladung bedingte, dass die 

CFSE-markierten Analyten eine relativ niedrige effektive Mobilität (s. Gl. 2-5) 

besaßen und erst nach ca. 20 min detektiert wurden (s. „Detektionsfenster der 

SEAA“ in Abb. 3-8). Nur die sauren Aminosäuren Glutamat und Aspartat, die nach 

Umsetzung mit CFSE auch über vier negative Ladungen verfügten, wurden ebenfalls 

in diesem Zeitfenster detektiert. Die selektive Bestimmung aller interessierenden 

Analyten konnte mit einem 0,1 M Boratpuffer (pH 9,0), der 10 mM SDS sowie 10 % 

MeOH enthielt, bei einer Kapillartemperatur von 19°C erzielt werden.  

 

Waller et al. wiesen darauf hin, dass starke Säuren (z.B. Trichloressigsäure in 

Kombination mit Ether oder Perchlorsäure), die häufig im Rahmen von 

Proteinfällungen eingesetzt werden, Homocystein und Cystein zur entsprechenden 

Sulfin- bzw. Sulfonsäure oxidieren können186. Aufgrund dieser Tatsache sind SEAA-
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Konzentrationen, die in biologischen Matrices bestimmt wurden, immer dann kritisch 

zu bewerten, wenn im Rahmen der Probenaufarbeitung eine Proteinfällung mit 

starken Säuren vorgenommen wurde. Bei der entwickelten CE-Methode ist, aufgrund 

der 100fachen Verdünnung der Liquorprobe mit 0,1 M Boratpuffer (pH 8,9), eine 

Proteinfällung nicht notwendig.  

Die Thiolgruppe des Homocysteins bzw. Cysteins wird auch im Alkalischen 

aufoxidiert, wenn ausreichend Sauerstoff und zweiwertige Kupferionen zu gegen 

sind80. Da Cu(II)-Ionen obligat im Liquor vorkommen (~0,13-0,75 µM80) und die 

Derivatisierung der Liquorproben im alkalischen Milieu durchgeführt wurde, wurde 

getestet, ob im Rahmen der 30-minütigen Derivatisierungszeit aus Homocystein bzw. 

Cystein die entsprechenden Sulfinsäuren entstehen. Hierzu wurde einer 

Liquormischung, in der keine der vier SEAA detektiert werden konnte, größere 

Mengen Homocystein bzw. Cystein zugesetzt (jeweils 10 µM) und überprüft, ob nach 

der 30-minütigen Derivatisierung (pH 8,9) HCSA bzw. CSA gebildet wurden. Da 

weder HCSA noch CSA in den anschließend aufgezeichneten Elektropherogrammen 

detektiert wurden, kann ausgeschlossen werden, dass im Rahmen der 

Derivatisierung größere Mengen an HCSA bzw. CSA entstehen, die zu einer 

Verfälschung der Ergebnisse führen würden. 

 

Zusammenfassend kann festgehalten werden, dass eine einfache 

kapillarelektrophoretische Methode zur Bestimmung von schwefelhaltigen, 

exzitatorischen Aminosäuren entwickelt und nach international anerkannten Kriterien 

validiert wurde. Sie zeichnet sich im Besonderen durch eine hohe Empfindlichkeit, 

kurze Analysenzeiten und niedrige Kosten aus.  
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4.2 HPLC-Methode zur Bestimmung von Homocystein, Cystein 
und Glutathion im Liquor 

Aufgrund des ständig wachsenden Interesses an Homocystein, welches 

insbesondere darauf zurückzuführen ist, dass Homocystein eine größere Rolle in der 

Genese vieler kardiovaskulärer Erkrankungen zukommt (s. Kapitel 1), sind eine 

Vielzahl an analytischen Methoden entwickelt worden, die die Bestimmung von 

Homocystein im Plasma erlauben. Übersichtsarbeiten zu diesem Thema finden sich 

unter Ueland et al.199 und Bayle et al.200. In der Regel sind diese Methoden allerdings 

nicht empfindlich genug, die geringen Mengen an Homocystein, die im Liquor 

vorkommen, exakt zu quantifizieren. Bei gesunden Menschen, insbesondere bei 

Kindern, liegen die Homocysteinkonzentrationen im Liquor oftmals deutlich unter 

100 nM52,201,202. 

Die erste Methode, die die Bestimmung von Homocystein in Liquor erlaubte, wurde 

1992 von Hyland et al. veröffentlicht203 (s. Tab. 4-3). Sie setzt, da OPA als 

Derivatisierungsreagenz verwendet wird, eine Maskierung der Thiolgruppe mit 

Iodessigsäure voraus. Das LOD (80 nM) der Methode – Angaben zur Bestimmungs-

grenze werden nicht gemacht – deutet darauf hin, dass Konzentrationen unter 

100 nM nicht mit ausreichender Präzision und Richtigkeit erfasst werden können. 

Somit ist die Methode nur geeignet, Homocystein in Liquores von Patienten zu 

bestimmen, die aufgrund einer Störung im Homocysteinstoffwechsel deutlich erhöhte 

Liquor-Homocysteinkonzentrationen aufweisen.  

Wesentlich empfindlicher ist die Methode nach Quinn et al.76, nach der Homocystein 

mit dem Fluoreszenzmarker SBDF (4-Sulfo-7-Fluor-Benzofurazan) umgesetzt und 

anschließend auf einer Microbore-Säule (Säule mit einem Innendurchmesser von ca. 

1 mm) von anderen Thiolen getrennt wird (s. Tab. 4-3). Leider liegen auch zu dieser 

Methode nur wenige Informationen zur Validierung vor, so dass auch sie nur in 

begrenztem Umfang beurteilt werden kann.  

Nach der bis dato wohl empfindlichsten Methode wird Homocystein elektrochemisch 

(coulometrisch) detektiert204 (s. Tab. 4-3). Obwohl zur Bestimmung von Homocystein 

(und anderer Aminothiole) im Plasma entwickelt und validiert, wird diese Methode 

mittlerweile auch zur Quantifizierung von Homocystein in Liquor eingesetzt205.  
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Tab. 4-3: Analytische Bestimmungsmethoden, die die Bestimmung von Homocystein 

in Liquor erlauben. 

Referenz Methode LOD bzw. 
LLOQ Anmerkungen 

Hyland et 
al. (1992)203 

HPLC-FD 
(ME/OPA/ 

IES*) 

LOD: 
80 nM 

LLOQ: ? 
 

- Zeitintensive Probenvorbereitung  
- Fluoreszenzmarker ist nicht spezifisch 
  für Thiole 
- Methode ist nicht empfindlich genug, 
  HCY-Konzentrationen von Gesunden 
  exakt zu quantifizieren 
- Keine Angaben zur Richtigkeit, 
  Wiederfindung und Bestimmungsgrenze 

Quinn et al. 
(1997)76 

HPLC-FD 
(TBP/SBDF#) 

 

LOD: ? 
LLOQ :  
5 nM 

- Keine Beurteilung der chromatogra- 
  phischen Trennung in der Matrix Liquor 
  möglich 
- Sehr zeitintensive Probenvorbereitung  
- Keine Angaben zur Selektivität, 
  Richtigkeit und Wiederfindung 

Melnyk et 
al. (1999)204 

HPLC-ECD 
(NaBHx) 

 

LOD: 5 pM
LLOQ:?  

- Proteinfällung notwendig 
- Daten zur Validierung in Liquor sind 
  nicht bekannt 
- ECD ist relativ teuer und störanfällig204 

 

* Reduktionsmittel: Mercaptoethanol (ME), Derivatisierungsreagenz: ortho-Phthaldialdehyd (OPA), 

Reagenz zur Maskierung der Thiolgruppe: Iodessigsäure (IES) 
# Reduktionsmittel: Tributylphosphin, Derivatisierungsreagenz: 4-Sulfo-7-Fluor-Benzofurazan (SBDF) 
x Reduktionsmittel: Natriumborhydrid (NBH)  

 

Von Nachteil ist bei diesem Bestimmungsverfahren, dass auch bei der Analyse von 

Liquorproben eine zeit- und kostenintensive Proteinfällung notwendig ist, um eine 

Schädigung der coulometrischen Messzelle zu vermeiden205. Um die oben erwähnte 

Empfindlichkeit zu erreichen, sind absolut hochreine Lösungsmittel, ein 

kontinuierliches Entgasen der mobilen Phase mit Helium, äußerst pulsationsarme 

Pumpen sowie ein Pulsdämpfer notwendig204.  

Von den drei aufgeführten Methoden besticht die Methode nach Quinn et al., die eine 

leicht abgeänderte Variante der Methode von Araki et al.174 darstellt, durch ihre 
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Einfachheit bei gleichzeitig guter Empfindlichkeit und niedrigen Kosten. Dies war der 

Grund dafür, eine vergleichbare Methode zur simultanen Bestimmung von 

Homocystein, Cystein und Glutathion im Liquor aufzubauen.  

 

Für die Derivatisierung wurde nicht SBDF, sondern das Benzofurazanderivat ABDF 

(4-(Aminosulfonyl)-7-Fluor-Benzofurazan) verwendet, das wie SBDF keine Eigen-

fluoreszenz zeigt. ABDF besitzt eine hohe Selektivität gegenüber Thiolen, aber im 

Vergleich zu SBDF eine deutlich höhere Reaktivität: während zur Derivatisierung von 

Thiolverbindungen mit SBDF eine 60-minütige Inkubationszeit bei 60 °C und pH 9,5 

von Nöten ist206, reichen im Falle von ABDF bereits 10 min bei 50 °C und pH 8,0173. 

Darüber hinaus ist gezeigt worden, dass bei Verwendung von ABDF die 

Empfindlichkeit höher207,208 und die Produkte stabiler sind als im Falle von SBDF209.  

 

Die Trennnung der Aminothiolderivate wurde durch einen binären Gradienten (0,1 M 

Phosphatpuffer, pH 2,0 und Acetonitril) optimiert. Aufgrund der hohen Selektivität des 

eingesetzten Fluoreszenzmarkers wurden, trotz der hohen Empfindlichkeit, 

vergleichsweise wenige Substanzen detektiert (s. Abb. 3-12), wodurch sich die 

Trennung der Aminothiolderivate als recht unkompliziert erwies. Erwartungsgemäß 

ließen sich die Retentionszeiten leicht anhand des Acetonitrilanteils in der mobilen 

Phase steuern, wobei ein höherer Acetonitrilanteil die Retentionszeiten verkürzte. 

Das Gradientenprogramm C (s. Tab. 2-5) erlaubte die selektive Bestimmung von 

Homocystein, Cystein, Glutathion und N-Acetylcystein (interner Standard) in einer 

Zeit von 20 min (s. Abb. 3-12 und Abb. 3-14).  

 

Um die Methode so empfindlich wie möglich zu gestalten, wurden  

• die optimalen Derivatisierungsbedingungen für die Matrix Liquor ermittelt (s. 

Kap. 3.2.1)  

• möglichst konzentrierte Lösungen verwendet, um eine Verdünnen der 

Messprobe weitestgehend zu vermeiden (s. Kap. 2.3.2) 

• ein möglichst großes Injektionsvolumen gewählt (150 µL) 

• der pH-Wert der mobilen Phase auf pH 2,0 eingestellt, weil bei diesem pH-

Wert die Fluoreszenz der gebildeten Aminothiolderivate maximal groß ist173 
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• und ein sehr empfindlicher Fluoreszenzdetektor verwendet (FL-7480, Merck-

Hitachi). 

 

Mit diesen Maßnahmen wurde, für Homocystein, ein LOD von 1,9 nM erzielt. Die 

untere Bestimmungsgrenze (LLOQ) wurde bei 50 nM festgelegt. Die entwickelte 

Methode ist somit empfindlicher als die Methode von Hyland et al., aber weniger 

empfindlich als die Methode nach Quinn et al., bei der anstatt ABDF das 

Benzofurazan SBDF zur Derivatisierung eingesetzt wird.  

Es wurde gezeigt, dass der Arbeitsbereich durch einfaches Verdünnen konzentrierter 

Liquorproben erweitert werden kann. Dieses Vorgehen war notwendig, um die zum 

Teil deutlich erhöhten Cystein- bzw. Glutathionkonzentrationen einiger Patienten zu 

bestimmen.  

Die gute Within- bzw. Between-day-Präzision der Methode (s. Kap. 3.2.2.5) ist auf 

die hohe Stabilität der derivatisierten Aminothiole und den internen Standard 

zurückzuführen. Er kompensiert Fehler, die beim Pipettieren oder bei der Injektion 

auftreten können, sowie Fehler, die durch nicht exakt eingehaltene Zeiten im 

Rahmen der Reduktion und Derivatisierung entstehen können.  

 

Insgesamt ist die Methode hinreichend empfindlich, um Homocystein im Liquor von 

Erwachsenen zu bestimmen und – wie die kapillarelektrophoretische Methode – 

nach international anerkannten Kriterien vollständig validiert. Alle untersuchten 

Validierungsparameter genügten den Anforderungen, die an eine bioanalytische 

Methode gestellt werden171.  

 

Um die sehr niedrigen Homocysteinkonzentrationen im Liquor gesunder Kinder, die 

nach eigenen Untersuchungen nur ungefähr halb so hoch sind wie die von 

Erwachsenen, exakt zu bestimmen, wäre eine weitere Steigerung der Empfindlichkeit 

notwendig. Sie ließe sich bei dieser Methode nur mit einem noch empfindlicheren 

Fluoreszenzdetektor realisieren.  
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4.3 Einfluss einer hochdosierten MTX-Chemotherapie auf den 
Stoffwechsel des Homocysteins 

4.3.1 Untersuchungen an pädiatrischen Patienten mit ALL  

Die Studie „Total XV“ geht unter anderem der Fragestellung nach, ob Homocystein 

einen Biomarker für die MTX-induzierte Neurotoxizität darstellt oder nicht. Die 

Vorläuferstudie („Total XIV“), die an 53 pädiatrischen ALL-Patienten durchgeführt 

wurde, ließ erkennen, dass Kinder, die unter einer akuten Neurotoxizität litten, 

tendentiell höhere Homocysteinkonzentrationen im Plasma besaßen als Kinder ohne 

neurotoxische Symptome156. Da die Inzidenz der Neurotoxizität unter „Total XIV“ 

relativ niedrig war, sollen in die laufende Studie „Total XV“ mindestens 

1000 Patienten eingeschlossen werden. Sie wird voraussichtlich Ende 2006 

abgeschlossen sein.  

Im Rahmen dieser Arbeit wurden von insgesamt 116 Patienten der „Total XV-Studie“ 

Plasma- und Liquorproben analysiert; die Ergebnisse werden nachfolgend diskutiert. 

Aus statistischen Gründen wurde davon Abstand genommen, bei dieser 

Zwischenauswertung Zusammenhänge zwischen erhöhten Homocysteinkonzentra-

tionen im Plasma- bzw. Liquor und neurotoxischen Symptomen zu untersuchen. 

Diese Evaluation wird erst nach Beendigung der Studie in Kooperation mit Prof. M. 

Relling durchgeführt werden.  

 
Homocysteinkonzentrationen im Plasma der ALL-Patienten 
Die Plasma-Homocysteinkonzentrationen der ALL-Patienten zum Zeitpunkt der 

Diagnose (Median: 4,48 µM) lagen in einem Bereich, der als normal anzusehen 

ist11,12. Allerdings wiesen fünf der 65 untersuchten Patienten (Pat. 6, 13, 14, 60 und 

63, s. Anhang A) zu Beginn der Chemotherapie erhöhte Homocysteinkonzentra-

tionen (> 10 µM) auf, die sich nach der Remission/Induktion normalisierten. 

Vermutlich hatten diese Patienten zu Beginn der Therapie eine besonders hohe 

Tumorlast. Kishi et al. zeigten, dass die Plasma-Homocysteinkonzentration von ALL-

Patienten mit der Zahl der weißen Blutkörperchen korreliert und stellten die 

Hypothese auf, dass ein tumorinduzierter Mangel an reduzierten Folaten das 

Ansteigen der Homocysteinkonzentration bedingte156.  
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Die Plasma-Homocysteinkonzentrationen, die am ersten Tag der Konsolidierung 

(Zeitpunkt C1), also nach der Phase der Remission/Induktion, gemessen wurden, 

lagen in der gleichen Größenordnung wie die Konzentrationen vor der 

Chemotherapie. Somit wurden – im Gegensatz zur Vorläuferstudie „Total XIV“ – 

nach dem ersten Therapieabschnitt keine signifikanten Änderungen der 

Homocysteinkonzentration beobachtet. Aufgrund voranstehender Erläuterungen 

scheint es plausibel, dass die ALL-Patienten dieser Studie zu Beginn der Therapie 

eine niedrigere Tumorlast hatten. Informationen zur Leukozytenzahl lagen leider 

nicht vor.  

Die hochdosierten MTX-Infusionen der Konsolidierung führten zu einem deutlichen 

Anstieg des Homocysteins im Plasma. Bereits 23 Stunden nach Beginn der 

24-stündigen MTX-Infusionen waren die Homocysteinkonzentrationen im Plasma 

signifikant erhöht. Ein weiterer Anstieg der Homocysteinkonzentrationen wurde über 

die folgenden 19 Stunden beobachtet: die 42-Stunden-Werte waren signifikant höher 

als die, die zur 23. Stunde der MTX-Infusion ermittelt wurden. Die prozentuale 

Erhöhung der Homocysteinkonzentration zur Stunde 23 betrug 67,3 bzw. 71,3 % 

(C1h23, C15h23) und 86,5 bzw. 103,9 % (C1h42, C15h42) zur Stunde 42. Da die 

Rescue-Therapie erst 42 Stunden nach Beginn der MTX-Infusionen eingeleitet 

wurde, wurde der Anstieg der Homocysteinkonzentration in Abwesenheit von 

Calciumfolinat verfolgt. 

Studien mit kleineren, zum Teil recht heterogenen Patientenkollektiven führten zu 

ähnlichen Ergebnissen (s. Tab. 4-4). Auffällig ist allerdings, dass bereits 10-25 mg 

MTX (oral oder intramuskulär verabreicht) ähnlich hohe Homocysteinkonzentrationen 

induzierten wie HDMTX (1-33,6 g/m2)157-159. Die offensichtlich fehlende Dosis-

abhängigkeit wurde von Refsum et al. darauf zurückgeführt, dass die Dauer der 

MTX-Exposition (bis zur Rescue-Therapie mit Calciumfolinat) unterschiedlich war, 

Homocystein auch über folatunabhängige Enzymsysteme verstoffwechselt werden 

kann (Betain-Homocystein-Methyltransferase, Cystathionin-ß-Synthase), zytoto-

xische MTX-Konzentrationen den Efflux von Homocystein aus Zellen inhibieren und 

die renale Elimination des Homocysteins durch MTX beeinflusst wird158,210. Letzterer 

Aspekt konnte von Guttormsen et al. widerlegt werden211.  
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Tab. 4-4: Homocysteinkonzentrationen im Plasma von Patienten, die mit MTX 

behandelt wurden.  

Referenz Patienten
Dosis der 

MTX-
Infusion 

Beginn 
des 

Rescue

Zeitpunkt d. 
Proben-

entnahme 
nach MTX 

HCY-
Konz.
[µM] 

Ver-
ände-
rung 
[%] 

Analyt. 
Methode

Refsum 
et al. 

(1986)157 

5 NHL-
Pat. ; 

1 Pat. mit 
Ewing-
sarkom 

1-13,6 g/m2 
über 2-4 h 

24 h 
nach 

HDMTX 

vor HDMTX 
24 h 
48 h  

 

6,4* 
9,1* 
6,1* 

 

 
42,2 
 -4,7 

 

Radio-
Immuno-
Assay212

Refsum 
et al. 

(1989)158 

13 
Psoriasis-

Pat. 

25 mg IM/ 
10 mg PO 
(wöchentl.) 

--- 
vor LDMTX 
1-3 Tage 

nach LDMTXx

14,7# 
 

20,1# 

 
 

36,7 

Radio-
Immuno-
Assay212

6 ALL-
Patienten

33,6 g/m2 
über 24 h 

36 h 
nach 

HDMTX 

vor HDMTX 
  6 h 
24 h 
36 h 
48 h 
72 h 

5,2# 
5,3# 
6,6# 
7,8# 
6,9# 
5,6# 

 
  1,9 
26,9 
50,0 
32,6 
  7,7 

Broxson 
et al. 

(1989)213 
5 Osteo-
sarkom-

Pat. 

8 g/m2  
über 4 h 

24 h 
nach 

HDMTX

vor HDMTX 
4,5 h 
24 h 
48 h 

9,9# 

11,9# 
15,2# 
12,3# 

 
20,2 
53,5 
24,2 

GC-
MS214 

Refsum 
et al. 

(1991)159 

12 ALL-
Pat. 

8 g/m2  
über 24 h/ 
3-6 mg IT 

36 h 
nach 

HDMTX

vor HDMTX 
24 h 
36 h 
48 h 
72 h 

5,8# 
7,4# 
8,3# 
7,1# 
6,4# 

 
27,6 
43,1 
22,4 
10,3 

HPLC-
FD215 

Kishi et 
al. 

(2003)156 
53 ALL-

Pat.  

2,5-5 g/m2 
über 24 h/ 
8-12 mg IT

44 h 
nach 

HDMTX

vor HDMTX 
23 h 
44 h 

5,8* 
9,0* 

10,1* 

 
55,2 
74,1 

HPLC-
FD174 

Diese 
Studie 

65 ALL-
Pat.  

2,5-5 g/m2 
über 24 h/ 
8-12 mg IT

42 h 
nach 

HDMTX

vor HDMTX 
(Konsolid. 1) 

23 h 
42 h 

vor HDMTX 
(Konsolid. 2) 

23 h 
42 h 

 
4,7* 
7,8* 
8,7* 

 
4,6* 
7,9* 
9,4* 

 
 

65,9 
85,1 

 
 

71,7 
104,3 

FPIA 

 

* Median; # Mittelwert  
x Für die Auswertung wurden nur die jeweils höchsten Homocysteinkonzentration, die 1-3 Tage nach 

LDMTX gemessen wurden, berücksichtigt 
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Vor dem Hintergrund der fehlenden Dosisabhängigkeit ist auch erwähnenswert, dass 

Psoriasis-Patienten, die keinen Calciumfolinat-Rescue verabreicht bekamen, recht 

unterschiedlich auf MTX reagierten. Während bei einigen dieser Patienten bereits 

innerhalb von 24 Stunden maximal hohe Plasma-Homocysteinkonzentrationen 

beobachtet wurden (schnelle Responder) wurden bei anderen erst nach ca. drei 

Tagen Homocystein-Spitzenkonzentrationen registriert (langsame Responder)158. 

Aufgrund dieser Tatsache ist plausibel, dass auch Patienten, die unter einer 

Hochdosis-Chemotherapie mit MTX stehen, erst mehrere Tage nach der Gabe von 

MTX maximal hohe Homocysteinkonzentrationen im Plasma aufweisen würden, 

wenn nicht Calciumfolinat, welches rasch den Mangel an N5-Methyl-THF ausgleicht, 

verabreicht werden würde. Unter den Gegebenheiten der bisherigen Studien sind 

somit dosisabhängige Effekte kaum herauszuarbeiten. Die Frage, wann maximal 

hohe Homocysteinkonzentrationen nach HDMTX erreicht werden, kann nur anhand 

von Therapieprotokollen beantwortet werden, die nicht Calciumfolinat, sondern 

Thymidin zur Rescuebehandlung vorsehen216.  

Die eigenen Untersuchungen zeigten, dass bei den meisten Patienten die 

Homocysteinkonzentrationen 42 Stunden nach HDMTX deutlich höher waren als 

23 Stunden nach HDMTX, was die Vermutung zulässt, dass bei diesen Personen die 

maximale Response zur Zeit der zweiten Probenentnahme noch nicht erreicht wurde. 

Allerdings wurden bei fünf der 65 Patienten bei beiden MTX-Infusionen der 

Konsolidierung zur Zeit der ersten Probenentnahme (23-Stunden-Wert) höhere 

Homocysteinkonzentrationen gemessen als zur Zeit der zweiten (42-Stunden-Wert). 

Diese – nach Refsum – schnellen Responder müssen in der Lage sein, Homocystein 

effizienter zu metabolisieren bzw. auszuscheiden als die langsamen Responder.  

Bislang undiskutiert ist auch die Frage, ob niedrige MTX-Dosen (10-100 mg) 

bezüglich der Homocystein-Plasmakonzentration ähnliche Veränderungen 

hervorrufen können wie hohe (> 1 g/m2). Die Frage ist nicht unberechtigt, wenn man 

bedenkt, dass MTX-Konzentrationen von ~0,01-0,1 nM eine 50%ige Hemmung der 

Dihydrofolatreduktase bewirken83 und Kesavan et al. belegen konnte, dass bereits 

LDMTX (10-100 mg) rasch einen intrazellulären Mangel an N5-Methyl-THF 

hervorruft217.  

Nach vorhergehender Diskussion ist es nicht überraschend, dass auch im Rahmen 

der „Total XV-Studie“ LR- und SHR-Patienten, trotz unterschiedlich hoch dosierter 
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MTX-Infusionen (2,5 g/m2 bzw. 5 g/m2), vergleichbare Anstiege der Homocystein-

konzentration im Plasma zeigten und auch keine Korrelation zwischen der Exposition 

mit MTX (AUC) und den Homocysteinkonzentrationen der Proben, die 42 Stunden 

nach der MTX-Infusion gezogen wurden, ermittelt wurde. An dieser Stelle sei 

angemerkt, dass eine Korrelation zwischen der MTX-Exposition und der 

Homocysteinkonzentration wesentlich aussagekräftiger ist als eine Korrelation 

zwischen der MTX-Dosis und der Homocysteinkonzentration, da gleiche MTX-Dosen 

selbst bei dem gleichen Patienten zu stark unterschiedlichen Plasmakonzentrationen 

führen können. 

 

Erwartungsgemäß wurden zwei Wochen nach der ersten MTX-Infusion der 

Konsolidierung vergleichbar hohe Homocysteinkonzentrationen bestimmt wie vor der 

MTX-Infusion, da 18 Stunden nach Ende der MTX-Infusion eine Rescue-Therapie mit 

Calciumfolinat eingeleitet wurde. Sowohl Broxson et al.155, als auch Refsum et 

al.157,159 konnten herausstellen, dass die Gabe von Calciumfolinat eine rasche 

Normalisierung der Plasma-Homocysteinkonzentration bewirkt (s. Tab. 4-4).  

 

Die zweite MTX-Infusion der Konsolidierung führte zu einem ähnlich ausgeprägten 

Response (Anstieg der Homocysteinkonzentration) wie die vorausgehende MTX-

Infusion. Diese Beobachtung steht im Einklang mit den Beobachtungen von Refsum 

et al., die bei acht hochdosierten MTX-Infusionen jeweils vergleichbar hohe Anstiege 

der Homocysteinkonzentration im Plasma registrierten159. Beide Untersuchungen 

sprechen dafür, dass nach wiederholter MTX-Gabe keine adaptiven Mechanismen 

zum Tragen kommen, die die (indirekt) hemmende Wirkung von MTX auf die 

Methioninsynthase abschwächen oder die (folatunabhängige) Verstoffwechslung 

oder Ausscheidung von Homocystein erhöhen.  

 

Bei einigen Patienten (z.B. Pat. 2, 6, 12 und 42) wurde nach HDMTX ein besonders 

drastischer Anstieg der Homocysteinkonzentration beobachtet. Diese Patienten 

hatten auch vor Verabreichung der MTX-Infusion deutlich höhere Homocysteinkon-

zentrationen als die anderen Patienten. Möglicherweise besaßen diese Patienten 

angeborene Störungen im Bereich des Homocysteinstoffwechsels und/oder einen 

ausgeprägten Mangel an B-Vitaminen (s. hierzu auch Kap. 1.1.2).  
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Homocysteinkonzentrationen im Liquor der ALL-Patienten 
Zur Zeit der Diagnose wurden im Liquor der ALL-Patienten sehr niedrige 

Homocysteinkonzentrationen gemessen. Sie lagen in der Regel unter der 

Bestimmungsgrenze der entwickelten HPLC-Methode (50 nM). Ob diese Werte 

Normwerte darstellen, lässt sich bei dem heutigen Kenntnisstand nur schwer 

abschätzen, da „normale“ Liquor-Homocysteinkonzentrationen bislang kaum 

publiziert wurden. Dies hängt zum einen damit zusammen, dass aufgrund der sehr 

niedrigen Konzentrationen im Liquor nur wenige analytische Methoden zur 

Verfügung stehen, die die Bestimmung im Liquor erlauben und zum anderen Liquor –

 abgesehen von wenigen Ausnahmen – aus ethischen Gründen nur zu 

diagnostischen Zwecken entnommen werden darf (jede Lumbalpunktion ist mit 

Risiken verbunden und erfordert einen stationären Aufenthalt). Eine 

Zusammenfassung der bis dato veröffentlichten Liquor-Homocysteinkonzentrationen 

zeigt Tab. 4-5. Diese Daten sind durchaus kritisch zu hinterfragen, da die 

eingesetzten analytischen Methoden oftmals nur in begrenztem Ausmaß geeignet 

waren, die niedrigen Homocysteinkonzentrationen im Liquor exakt zu quantifizieren 

(s. hierzu auch Kapitel 4.2). Den bisher veröffentlichten Daten zufolge, scheinen 

Erwachsene tendenziell etwas höhere Homocysteinkonzentrationen zu besitzen als 

Kinder. Ausgeprägter Folat- bzw. Vitamin B12-Mangel184,218, sowie ein Mangel der 

Cystathionin-ß-Synthase52 kann mit deutlich erhöhten Homocysteinkonzentrationen 

im Liquor verbunden sein.  

Die ermittelten Homocysteinkonzentrationen der ALL-Patienten, die zwischen 1,9 

und 16,3 Jahren alt waren, liegen in der gleichen Größenordnung wie die Liquor-

Homocysteinkonzentrationen, die van Hove et al. 201 bei Kindern bestimmte, die sich 

aus diagnostischen Gründen einer Lumbalpunktion unterziehen mussten (20-80 nM). 

Auch Surtees et al. zeigten, dass die Homocysteinkonzentrationen von Kindern, die 

weder eine Störung im Bereich des Homocysteinstoffwechsels noch einen Mangel an 

B-Vitaminen hatten, durchweg unter 100 nM liegen52. Der recht hohe Referenzwert 

(210 nM), den Quinn et al.76 publizierten, ist vermutlich darauf zurückzuführen, dass 

ein Großteil der untersuchten Liquores von Kindern stammte, bei denen eine 

Leukämie diagnostiziert wurde. Da diese Kinder – wie erwähnt – häufig erhöhte 

Homocysteinkonzentrationen im Plasma aufweisen, ist nicht auszuschließen, dass 

auch in dem von Quinn et al. untersuchten Kollektiv viele Kinder anormal hohe  
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Tab. 4-5: Bislang publizierte Homocysteinkonzentrationen im Liquor von Kindern und 

Erwachsenen. 

Referenz Patienten Erkrankung HCY-Konz. 
[nM] Analyt. Methode 

Stabler et al. 
(1991)218 4 Erwachsene 

Spinocerebellare 
Degeneration  

(Vit. B12-Mangel)
500-3000 GC-MS214, *1 

Hyland et al. 
(1992)203 9 Erwachsene Neurologische 

Erkrankung#3 
280-660 

(Median: 460) 
HPLC-FD203, #1 

Blom et al. 
(1993)202 6 Erwachsene Neurologische 

Erkrankung#3 7-20 HPLC-FD215, X1 

Castagna et 
al. (1995)219  18 Erwachsene Neurologische 

Erkrankung#3 Median: 88 HPLC-FD220, *2 

18 Erwachsene Neurologische 
Erkrankung#3 15-140 

1 Erwachsener Folatmangel 493  Bottiglieri et 
al. (1996)184 

4 Erwachsene 
Spinocerebellare 

Degeneration  
(Vit. B12-Mangel)

1377-4732 

Keine Angaben 

5 Kinder 
Klassische 

Homocystinurie 
Median: 1180 

(Median:320)#2Surtees et 
al. 

(1997)52,52 27 Kinder 
Neurologische 
Erkrankung#3 < 100 

Radioenzyma-
tische Methode 

(RIA)X2 

Quinn et al. 
(1997)76 34 Kinder 

ALLX3/Neuro-
logische 

Erkrankung 

3-700 
(Median: 210) HPLC-FD76, *3 

van Hove et 
al. (1998)201 13 Kinder 

Neurologische 
Erkrankung#3 20-80 HPLC-FD220, *2 

 
*1 Gaschromatographie mit Massenspektrometrie, LOD der Methode: 200 nM;  
#1 Reduktionsmittel: Mercaptoethanol, Derivatisierungsreagenz: o-Phthaldialdehyd/Iodessigsäure; 

LOD der Methode: 80 nM (s. Tab. 4-3) 
X1 Reduktionsmittel: Natriumborhydrid, Derivatisierungsreagenz: Monobrombiman; keine Angaben zur 

Validierung der Methode  
*2 Reduktionsmittel: Tributylphosphin, Derivatisierungsreagenz: SBDF; keine Angaben zur Validierung 

der Methode 
#2 nach Betainbehandlung 
X2 LOD der Methode: 100 nM 
*3 Reduktionsmittel: Tributylphosphin, Derivatisierungsreagenz: SBDF (s. hierzu auch Tab. 4-3) 
#3 Keine mit dem Homocysteinstoffwechsel assoziierte Erkrankung; X3 Zur Zeit der Diagnose 
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Liquor-Homocysteinkonzentrationen besaßen. Die eigenen Untersuchungen geben 

hierfür ebenfalls Hinweise, denn bei drei der insgesamt 65 untersuchten ALL-

Patienten wurden zur Zeit der Diagnose auch im Liquor deutlich erhöhte 

Homocysteinkonzentrationen (> 125 nM) gemessen, die sich nach der zytoreduktiven 

Remission/Induktion normalisierten.  

Bei den 17 Patienten, von denen sowohl Plasma- als auch Liquorproben zur 

Verfügung standen, wurde keine Korrelation zwischen den Homocystein-

konzentrationen im Plasma und Liquor (Untersuchungszeitpunkte RI, C1 und C15) 

ermittelt. Dieses Ergebnis steht im Einklang mit dem Ergebnis von Kishi et al., die 

diesbezüglich bei insgesamt 53 ALL-Patienten ebenfalls keinen Zusammenhang 

finden konnten156.  

 

Zwischen den Homocysteinkonzentrationen der vier Untersuchungszeitpunkte 

(s. Abb. 2-11) wurden keine signifikanten Unterschiede festgestellt. Höchst 

wahrscheinlich bedingten der Calciumfolinat-Rescue, sowie die relativ großen 

Zeitabstände zwischen HDMTX bzw. ITMTX und Probenziehung, dass zu den 

Zeitpunkten C1, C8 und C15 keine erhöhten Homocysteinkonzentrationen gemessen 

wurden. Die Daten, die im Rahmen der Untersuchung der Lymphompatienten 

gewonnen wurden (s. Kap. 4.3.2) bekräftigen diese Vermutung. Zum Untersuchungs-

zeitpunkt C1 lag die letzte intrathekale MTX-Gabe mindestens 3 Wochen, die letzte 

intravenöse Gabe (Upfront-HDMTX) etwa sieben Wochen zurück; bezogen auf die 

Zeitpunkte C8 und C15 lag die letzte MTX-Gabe (HDMTX/ITMTX) ein bzw. zwei 

Wochen zurück. Tendenziell wurden in den 17 Proben, die eine Woche nach der 

ersten MTX-Infusion der Konsolidierung gezogen wurden, leicht erhöhte 

Homocysteinkonzentrationen gefunden. Leider war es aus ethischen Gründen nicht 

möglich, weitere Liquorproben zu entnehmen, die zeitlich gesehen näher an 

vorausgehenden HDMTX-Infusionen gelegen hätten221.  

Auch Kishi et al. konnten in der Vorläuferstudie „Total XIV“ keine signifikanten 

Unterschiede der Homocysteinkonzentration während der Therapie mit MTX 

beobachten. Die gemessenen Homocysteinkonzentrationen waren – eventuell durch 

die andere analytische Bestimmungsmethode bedingt – durchweg höher als die, die 

im Rahmen der eigenen Studie bestimmt wurden (s. Tab. 4-6).  



Diskussion  Seite 173 

Tab. 4-6: Homocysteinkonzentrationen im Liquor von Patienten, die zur Therapie 

onkologischer Erkrankungen mit MTX behandelt wurden. 

Referenz Patienten 
Dosierung/ 
Applikation 

von MTX 

Rescue 
nach 
MTX 

Zeitpunkt 
d. Proben-
entnahme 

Mediane 
HCY- 
Konz. 
[nM]  

Analyt. 
Methode

Quinn et 
al. 

(1997)76 

23 ALL-
Patienten/ 
1 Pat. mit 

Neuro-
blastom 

100 mg/m2 IV 

bis 2 g/m2 IV 
k.A. 

In der 
Regel 

1 Woche 
nach MTX-

Gabe 

567  
(8-3862) 

HPLC-
FD76 

 

9 Pat. mit 
akuter/ 

subakuter 
Neuro-
toxizität 
(13-32 
Jahre) 

12 g/m2 IV 
(2 Osteo-

sarkom-Pat.) 
12 mg IT 

(NHL-Pat.) 
100 mg/m2/ 

12 mg IT 
bzw.1 g/m2/ 
7,5 mg ICV  
(2 ALL-Pat.) 

k.A. 
2-12 Tage 
nach MTX-

Gabe 

925 
(340-
4710) 

 
Dracht-

man et al. 
(2002)160 

10 asymp-
tomatische 
Patienten  

k.A. k.A. k.A. 
201 

(170-
980) 

HPLC-
ECD204 

Kishi et al. 
(2003)162 

53 ALL-
Patienten 

(0-18 
Jahre) 

2,5-5 g/m2 IV
über 24 h/ 
8-12 mg IT 

5 Dosen 
Calcium-
folinat à 
10 bzw. 

15 
mg/m2 

vor HDMTX
7 Tage u. 
14 Tage 

nach 
HDMTX 

~98* 
~100* 
~104* 

 

HPLC-
FD76 

 

Quinn et 
al. 

(2004)222 

1 ALL-
Patient  

(4 Jahre) 

2 mg/Tag ICV 
an drei 

aufeinander-
folgenden 

Tagen 
(2 Zyklen) 

--- 

vor 1. 
ICVMTX 

vor 2. 
ICVMTX 
vor. 3. 

ICVMTX 

~240* 
(~250*)X 

~700* 
(~850*)X 

~800* 
(~900*)X 

HPLC-
FD76 

 

Diese 
Studie 

65 ALL-
Patienten 

2,5-5 g/m2 IV 
über 24h/ 

8-12 mg IT 

5 Dosen 
Calcium-
folinat à 
10 bzw. 

15 
mg/m2 

vor HDMTX
7 Tage u. 
14 Tage 

nach 
HDMTX 

~32# 

~62# 

~35# 

 

HPLC-
FD 

 

* Exakte Konzentrationen wurden nicht angegeben, die aufgeführten Konzentrationen wurden 

graphischen Darstellungen entnommen; # LLOQ: 50 nM; X zweiter Zyklus 
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In der Tab. 4-6 finden sich auch die Ergebnisse weiterer Untersuchungen, die 

ebenfalls der Frage nachgingen, ob MTX die Homocysteinkonzentration im Liquor 

ansteigen lässt.  

Quinn et al. (1997) zeigten, dass Kinder ein bis sieben Tage nach einer Therapie mit 

MTX höhere Homocysteinkonzentrationen im Liquor aufwiesen (Median: 567 nM) als 

Kinder einer Kontrollgruppe, die nicht mit MTX behandelt wurden (Median: 

210 nM)76. Leider gibt die Studie wenig Aufschluss darüber, ob MTX oder andere 

Parameter für die erhöhten Homocysteinkonzentrationen verantwortlich waren, da 

vor der Chemotherapie mit MTX keine Liquoranalysen durchgeführt wurden und 

zudem weder die genauen Zeitpunkte der Probenentnahme im Hinblick auf die 

vorausgehende MTX-Gabe noch Informationen zum Calciumfolinat-Rescue berichtet 

wurden.  

Aus selbigen Gründen erlaubt auch die retrospektive Untersuchung nach Drachtman 

et al.160 keine Aussage darüber, ob MTX einen Anstieg der Homocysteinkonzentra-

tion im Liquor induziert. Das Hauptergebnis der Studie, Patienten mit akuter bzw. 

subakuter Neurotoxizität zeigen höhere Liquor-Homocysteinkonzentrationen als 

asymptomatische Patienten, ist kritisch zu hinterfragen, da zum zeitlichen Bezug 

zwischen Liquoranalyse und dem Auftreten der neurotoxischen Symptome keine 

näheren Angaben gemacht werden und Informationen zur Kontrollgruppe völlig 

fehlen (s. hierzu auch Kapitel 4.4).  

Lediglich der Fallbericht von Quinn et al. (2004)222 konnte Hinweise darauf geben, 

dass MTX (intraventrikulär verabreicht) zu einem Anstieg der Homocysteinkonzentra-

tion im Liquor führt. Bei zwei Behandlungszyklen wurden jeweils einen Tag nach 

ICVMTX ungefähr dreimal so hohe Homocysteinkonzentrationen gemessen wie vor 

MTX-Gabe.  

 

Bei der Interpretation von Homocysteinkonzentrationen im Liquor muss erwähnt 

werden, dass eine Kontamination der Liquorprobe mit Blut zu beträchtlichen Fehlern 

führen kann. Bedenkt man, dass die Homocysteinkonzentrationen im Plasma mehr 

als 100-mal höher sind als im Liquor, so können schon wenige µL Blut große 

Mengen an Homocystein in die Liquorprobe eintragen. Um diesen Fehler zu 

minimieren sollten Liquorproben nach der Gewinnung sofort zentrifugiert werden, um 

eventuell vorhandene Erythrocyten, die besonders viel Homocystein enthalten223, 
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abzutrennen. Des Weiteren ist zu bedenken, dass leichte Schrankenstörungen, die 

nicht selten bei cerebrospinaler Aussaat von Tumorzellen vorkommen, ebenfalls 

erhöhte Homocysteinkonzentrationen im Liquor bedingen können. Daher sollte 

idealerweise zu jedem Zeitpunkt der Liquorentnahme auch die Schrankenfunktion 

charakterisiert sein (z.B. anhand des Albuminquotienten).  

Die extrem hohen Homocysteinkonzentrationen, die in den Liquorproben der 

Patienten 76, 85, 99, 105 und 111 gemessen wurden, sind höchstwahrscheinlich auf 

eine dieser beiden (oder beide) Fehlerquellen und nicht auf die Wirkung von MTX 

zurückzuführen, denn in den entsprechenden Liquorproben wurden gleichzeitig auch 

extrem hohe Cystein- und Glutathionkonzentrationen gemessen (s. Anhang A). Auch 

bezüglich dieser Substanzen werden bei Kindern im Plasma wesentlich höhere 

Konzentrationen gefunden als im Liquor: für Cystein beträgt der Quotient aus 

Plasma- und Liquorkonzentration ~100, für Glutathion ~40204,224. Leider lagen keine 

Informationen vor, anhand derer man die Blut-Hirn-Schranke hätte charakterisieren 

können. Die Tatsache, dass die Liquorproben, die sehr hohe Homocystein-

konzentrationen aufwiesen, leicht rötlich gefärbt waren und eine Zentrifugation der 

Proben nicht erfolgte, spricht dafür, dass diese Proben mit Blut kontaminiert waren. 

Da bei keinem der oben aufgeführten Patienten in durchweg allen Proben erhöhte 

Homocysteinkonzentrationen vorgefunden wurden, kann ausgeschlossen werden, 

dass genetische Defekte die hohen Homocysteinkonzentrationen bedingten. 

 
Cystein- und Glutathionkonzentrationen im Liquor der ALL-Patienten 
Im Rahmen dieser Arbeit wurden zum ersten Mal Daten zu Cystein- bzw. 

Glutathionkonzentrationen im Liquor von Kindern erhoben, die aufgrund einer 

onkologischen Erkrankung mit HDMTX therapiert wurden.  

Die Quantifizierung dieser Substanzen erfolgte aus verschiedenen Gesichtspunkten. 

Cystein wurde bestimmt, um zu prüfen, ob eine MTX-induzierte Störung der 

Remethylierung mit einer gesteigerten Transsulfurierung einhergeht. In diesem Fall 

sollten nach HDMTX die Konzentrationen von Cystein, welches das Endprodukt der 

Transsulfurierung darstellt, zunächst im Plasma und anschließend auch im Liquor 

ansteigen. Da Cystein potentiell neurotoxisch ist78-80, könnten eventuell auch erhöhte 

Cysteinkonzentrationen neurologische Symptome hervorrufen, die man bei der 

Neurotoxizität von MTX beobachtet.  
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Glutathion wurde in die Liquoruntersuchungen einbezogen, da gezeigt wurde, dass 

neurotoxische Wirkungen des Homocysteins durch Glutathion deutlich abgeschwächt 

werden können69,70. Es ist denkbar, dass bereits leicht erhöhte Homocystein-

konzentrationen toxische Wirkungen hervorrufen, wenn gleichzeitig ein Mangel an 

Glutathion vorliegt.  

Bei den 65 untersuchten Patienten der Studie „Total XV“ wurden weder bei den 

Cystein- noch bei den Glutathionkonzentrationen signifikante Änderungen 

beobachtet (s. Kap. 3.4.1). Die zum Teil deutlich erhöhten Cystein- und Glutathion-

konzentrationen einiger Proben sind – wie bereits erläutert – vermutlich auf eine 

Kontamination mit Blut zurückzuführen. Abgesehen von diesen Ausreißern, lagen 

alle ermittelten Cystein- und Glutathionkonzentrationen in einem Bereich, der für 

Kinder als normal anzusehen ist201.  

 

Aufgrund der Tatsache, dass unter dem gegebenen Probenentnahmeschema der 

Studie „Total XV“ keine biochemischen Veränderungen bei der Analyse der 

Liquorproben beobachtet werden konnten, wurde in Absprache mit der 

Studienleitung beschlossen, auf weitere Liquoruntersuchungen zu verzichten.  

Die Daten, die an insgesamt 65 ALL-Patienten erhoben wurden, zeigen, dass eine 

Woche nach Verabreichung einer hochdosierten MTX-Infusion (und anschließendem 

Calciumfolinat-Rescue) Homocystein und dessen Abbauprodukt Cystein im Liquor in 

normalen Konzentrationen vorliegen.  

Um anhand von Liquorproben biochemische Veränderungen im Homocysteinstoff-

wechsel nach HDMTX untersuchen zu können, wäre ein engmaschigeres 

Probenentnahmeschema von Nöten. Da nach einer hochdosierten MTX-Therapie 

obligat eine Rescue-Therapie mit Calciumfolinat eingeleitet wird und gezeigt wurde, 

dass Calciumfolinat schnell eine Senkung der erhöhten Homocysteinkonzentrationen 

bewirkt155,157,159, sollte nach Möglichkeit vor Beginn der Rescue-Therapie eine 

Liquorprobe untersucht werden. Dieser Aspekt sollte bei zukünftigen Liquoranalysen 

berücksichtigt werden.  

Es bleibt abzuwarten, ob diejenigen Patienten, die deutlich erhöhte 

Homocysteinkonzentrationen im Plasma aufwiesen, auch neurologische 

Komplikationen hatten.  
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4.3.2 Untersuchungen an Patienten mit PZNSL 

Das Ziel dieser Untersuchungen bestand darin, die Liquores der PZNSL-Patienten 

auf Substanzen des Homocysteinstoffwechsels zu untersuchen, die eine Rolle bei 

der Genese der MTX-induzierten Neurotoxizität spielen könnten (s. Kap. 1.3). Im 

Vordergrund stand hierbei die Frage, ob und in welchem Ausmaß MTX (intravenös 

oder intraventrikulär verabreicht) die Konzentrationen dieser Substanzen im Liquor 

beeinflusst. Im Rahmen dieser Arbeit wurde besonderes Augenmerk auf 

Homocystein und Cystein, sowie die oxidativen Metaboliten dieser beiden 

Aminosäuren gerichtet.  

Da bezüglich Homocystein, aber auch bezüglich der schwefelhaltigen exzitatorischen 

Metaboliten (SEAA), kaum valide Daten zu „normalen“ Konzentrationen im Liquor 

existieren und von den untersuchten PZNSL-Patienten leider keine Liquorproben vor 

Therapiebeginn untersucht werden konnten (und somit keine Referenzwerte für 

dieses Kollektiv zur Verfügung standen), wurden zusätzlich die Liquores von 

Erwachsenen, die aus diagnostischen Gründen eine Lumbalpunktion erhielten, auf 

die oben genannten Substanzen untersucht.  

Im Folgenden werden die Ergebnisse der Liquoranalysen, die bei den 

Lymphompatienten vorgenommen wurden, diskutiert. Eine ausführliche Diskussion 

zum Verlauf der Methotrexat-, N5-Methyl-THF-, SAM- und SAH-Konzentrationen wird 

in der Dissertation von Frau S. Vezmar zu finden sein.  

 

Homocysteinkonzentrationen im Liquor der PZNSL-Patienten 
Anhand des Kollektivs der PZNSL-Patienten konnte erstmalig gezeigt werden, dass 

sowohl intravenös (3-5 g/m2) als auch intraventrikulär verabreichtes MTX (3 mg) 

einen deutlichen Anstieg der Homocysteinkonzentration im Liquor bewirkt (s. Kap. 

3.4.2).  

Zieht man den Median der Homocysteinkonzentrationen, die jeweils am dritten Tag 

des Blocks C, also mindestens 14 Tage nach der letzten Applikation von MTX, 

gemessen wurden, als Referenzwert heran – er war mit 73,6 nM fast identisch mit 

dem Median der Homocysteinkonzentrationen der Kontrollgruppe (71,3 nM) – so 
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bedingte sowohl die intravenöse als auch die intraventrikuläre Gabe von MTX 

ungefähr eine Verdreifachung der Homocysteinkonzentrationen im Liquor.  

Einen vergleichbar hohen Anstieg beobachteten Quinn et al. bei einem vier Jahre 

alten Kind, das 2 mg MTX intraventrikulär verabreicht bekam222 (s. Tab. 4-6).  

Die eigenen Untersuchungen, die an den PZNSL- und den ALL-Patienten (Studie 

„Total XV“) durchgeführt wurden, geben Hinweise darauf, dass HDMTX die Homo-

cysteinkonzentration im Liquor stärker beeinflusst als die im Blut (bzw. Plasma), 

obwohl MTX nur in begrenztem Maße die Blut-Hirn-Schranke passieren kann (im 

Steady-State betragen die MTX-Konzentrationen im Liquor in der Regel nur 1-5 % 

der Konzentrationen, die man im Plasma misst90-92). Während bei dem Kollektiv der 

ALL-Patienten 23 Stunden nach Beginn der 24-stündigen MTX-Infusion die 

Homocysteinkonzentrationen im Plasma nur moderat erhöht waren (65,9 bzw. 

71,7 %, s. Tab. 4-4), führte – wie bereits erwähnt – die MTX-Infusion, die den 

PZNSL-Patienten verabreicht wurde, nach ca. 24 Stunden annähernd zu einer 

Verdreifachung der Homocysteinkonzentration im Liquor. Bei Patient 2 wurde einen 

Tag nach der MTX-Infusion des Blocks BII mit 725 nM eine Homocystein-

konzentration bestimmt, die sogar ca. 10-mal höher war als die „Referenz-

Konzentrationen“ zum Zeitpunkt CI3 (79,5 nM) bzw. CII3 (67,6 nM).  

Der Grund für diesen unterschiedlich ausfallende Response liegt höchstwahr-

scheinlich darin, dass in neuronalen Geweben nur die Methioninsynthase zur 

Verstoffwechslung von Homocystein zur Verfügung steht13,14. Wird dieses Enzym 

durch MTX inaktiviert, kann Homocystein nur noch im Rahmen der Liquorresorption, 

die hauptsächlich im Subarachnoidealraum des Rückenmarks stattfindet, aus dem 

zentralen Nervensystem entfernt werden. Für diese Theorie spricht auch die 

Tatsache, dass man bei Patienten mit ausgeprägtem Vitamin B12-Mangel – 

Vitamin B12 ist Cofaktor der Methioninsynthase – extrem hohe Homocysteinkon-

zentrationen im Liquor gefunden hat184,218(s. Tab. 4-5).  

Vermutlich waren limitierte Verstoffwechslungskapazitäten auch der Grund dafür, 

dass wiederholte intraventrikuläre Verabreichungen von MTX zu einer Akkumulation 

von Homocystein im Liquor führten (s. Abb. 3-28).  

Erwartungsgemäß war der Anstieg der Homocysteinkonzentration im Block C 

besonders ausgprägt, da in diesem kein Rescue mit Calciumfolinat erfolgte. Einen 

Tag nach der dritten intraventrikulären Gabe von MTX (Zeitpunkt C6) waren die 
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Homocysteinkonzentrationen 9,4-mal so hoch wie zu Beginn des Blocks C (Zeitpunkt 

C3). Die höchstsignifikante (gegenläufige) Korrelation, die zwischen den 

Homocystein- und den N5-Methyl-THF-Konzentrationen des Blocks C bestimmt 

wurde (s. Abb. 3-31), ist ein starkes Indiz, dass ein MTX-induzierter Mangel an 

N5-Methyl-THF die hohen Homocysteinkonzentrationen bedingte.  

 

Überraschend war, dass die Lymphompatienten auch am dritten, vierten und fünften 

Tag der Blöcke A und B sehr hohe Homocysteinkonzentrationen im Liquor zeigten (s. 

Tab. 3-31), obwohl in diesen Blöcken aufgrund der initialen MTX-Infusion mit Beginn 

des dritten Tages eine Rescue-Therapie mit Calciumfolinat eingeleitet wurde und 

dieser Rescue – wie in Anhang B ersichtlich – in aller Regel zu einer raschen 

Normalisierung der N5-Methyl-THF-Konzentrationen im Liquor führte. Noch 

überraschender war die Tatsache, dass die höchsten Homocysteinkonzentrationen 

der Blöcke A/B bei Patient 2 im Verlauf der Blöcke AII und BII beobachtet wurden. In 

diesen Therapieblöcken erhielt dieser Patient ab der 42. Stunde nach HDMTX (ca. 

6 Stunden vor Ziehung der Probe AII3 bzw. BII3) einen intensivierten Calciumfolinat-

Rescue, der bis zur 72. Stunde (kurz vor Ziehung der Probe AII4 bzw. BII4) 

fortgesetzt wurde. Diese Gegebenheiten bedingten, dass nur ein geringer 

Zusammenhang zwischen den N5-Methyl-THF- und den Homocysteinkonzentra-

tionen gefunden wurde, ließ man auch die Daten der Therapieblöcke A und B in die 

Korrelationsanalyse einfließen (s. Kap. 3.4.2). 

Dass größere Mengen an Homocystein trotz ausreichender Verfügbarkeit von 

N5-Methyl-THF offensichtlich nur in begrenztem Ausmaß metabolisiert werden 

können, könnte darauf zurückzuführen sein, dass die Methioninsynthase eine 

vergleichsweise niedrige Kapazität besitzt (sie ist ungefähr 200-mal niedriger als die 

mer Cystathionin-ß-Synthase15) und deren Aktivität durch SAH, welches bei erhöhten 

Homocysteinkonzentrationen vermutlich ebenfalls vermehrt vorliegt (leider lagen die 

Ergebnisse der SAH-Analysen bei Fertigstellung der Arbeit noch nicht vor), gehemmt 

werden kann. Kishi et al. konnten anhand von ALL-Patienten zeigen, dass unter 

einer Chemotherapie mit MTX die SAH-Konzentrationen im Liquor ansteigen162.  

Wahrscheinlicher ist, dass Homocystein aufgrund eines intrazellulären Mangels an 

N5-Methyl-THF nur unzureichend verstoffwechselt werden konnte. Vermutlich hatten 

die hohen extrazellulären MTX-Konzentrationen zur Folge, dass nur geringe Mengen 
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an N5-Methyl-THF in das Zellinnere gelangen konnten (MTX und reduzierte Folate 

konkurrieren um den gleichen Transporter (RFC) an der Zellmenbran, s. Abb. 1-6).  

Eine direkte Hemmung der Methioninsynthase durch MTX oder MTX-PG kann 

ausgeschlossen werden, da Broxson et al. anhand von In-vitro-Versuchen zeigten, 

dass die humane Methioninsynthase weder durch MTX (10 µM) noch durch MTX-

Heptaglutamat (10 µM), welches hauptsächlich im Rahmen der Polyglutamierung 

gebildet wird, gehemmt wird155.  

 

Die individuelle Analyse offenbarte, dass selbst in therapiegleichen 

Behandlungsblöcken (AI, AII, BI und BII sowie CI und CII) die Konzentrationsverläufe 

von Homocystein zum Teil recht unterschiedlich ausfielen. Bei Patient 1 wurden 

beispielsweise im Block CI wesentlich höhere Homocysteinkonzentrationen bestimmt 

als im Block CII und die Homocysteinkonzentrationen, die bei Patient 2 im Block AII 

und BII gemessen wurden, waren um ein Vielfaches höher als die des Blocks BI. Die 

Gründe hierfür mögen in einer unterschiedlichen Exposition mit MTX (Patient 1 wies 

im Block CI deutlich höhere MTX-Konzentrationen im Liquor auf als im Block CII), 

unterschiedlichen Aktivitäten der Methioninsynthase, einer unterschiedlichen 

Tumorlast (Informationen zur Anzahl der Leukozyten im Liquor lagen nicht vor) oder 

tumorbedingten Störungen der Liquorzirkulation liegen – um nur die wichtigsten zu 

nennen. Unwahrscheinlich ist, dass eine Kontamination mit Blut die differierenden 

Konzentrations-Zeit-Profile bedingte, da keine der analysierten Proben sichtbar 

kontaminiert war, alle Proben zur Abtrennung von Erythrocyten zentrifugiert wurden 

und auch die Cysteinkonzentrationen der Proben, die extrem hohe 

Homocysteinkonzentrationen besaßen, keine extrem hohen Cysteinkonzentrationen 

auswiesen (s. Anhang B). Den Befunden von MRT-Untersuchungen zufolge, wies 

nur Patient 3 während der Chemotherapie eine Störung der Blut-Liquor-Schranke 

auf. Da allerdings in allen Liquorproben dieses Patienten sowohl ein normaler 

Proteingehalt (0,14-0,31 g/L), als auch normale Cystein- und Glutathionkon-

zentrationen vorgefunden wurden, kann davon ausgegangen werden, dass die 

diagnostizierte Schrankenstörung nur schwach ausgeprägt war und keine klinische 

Relevanz besaß. 
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Die Homocysteinkonzentrationen, die im Liquor der PZNSL-Patienten im Verlauf der 

Therapieblöcke A/B, insbesondere aber im Block C, bestimmt wurden, liegen in der 

gleichen Größenordnung wie die Homocysteinkonzentrationen von Patienten mit 

Vitamin B12- bzw. Folsäuremangel und ausgeprägten neurologischen 

Symptomen184,218 (s. Tab. 4-5). Wie lange die Patienten den hohen Homocystein-

konzentrationen exponiert waren, kann nicht beantwortet werden, da ethische 

Gründe weitere Liquorentnahmen nicht zuließen. Die Tatsache, dass zu Beginn der 

C-Blöcke Homocysteinkonzentrationen bestimmt wurden, die ähnlich hoch waren wie 

die der Kontrollgruppe (s. Tab. 3-31), lässt den Schluss zu, dass spätestens zwei 

Wochen nach Block B (und somit vermutlich auch nach Block A) die 

Homocysteinkonzentrationen wieder im Normbereich lagen. Höchstwahrscheinlich 

waren die Patienten in den C-Blöcken länger hohen Homocysteinkonzentrationen 

ausgesetzt als in den Blöcken A/B, da das Therapieprotokoll für die C-Blöcke keine 

Rescue-Therapie mit Calciumfolinat vorsah.  

 

Dass zwischen den im Liquor gemessenen MTX- und Homocysteinkonzentrationen 

ein geringer Zusammenhang gefunden wurde, könnte darauf zurückzuführen sein, 

dass die Korrelation über einen recht großen Konzentrationsbereich von MTX 

untersucht wurde (0-10 µM) und Homocystein im ZNS nur durch die 

Methioninsynthase verstoffwechselt werden kann. Wie bereits mehrfach erläutert, 

steht zur Verstoffwechslung von Homocystein im ZNS weder die Cystathionin-ß-

Synthase noch die Betain-Homocystein-Methyltransferase zur Verfügung, so dass 

weder eine Betain-vermittelte Remethylierung noch eine Transsulfurierung im ZNS 

stattfinden kann.  
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Cystein- und Glutathionkonzentrationen im Liquor der PZNSL-Patienten 
Bei den PZNSL-Patienten konnten trotz des engmaschigen Probenentnahme-

schemas im Verlauf der Blöcke A/B, die eine hochdosierte MTX-Infusion 

beinhalteten, keine signifikanten Änderungen bezüglich der Cysteinkonzentrationen 

im Liquor festgestellt werden. Die Hypothese, dass eine MTX-induzierte Hemmung 

der Remethylierung mit einer gesteigerten Transsulfurierung in der Leber einhergeht 

und diese gesteigerte Transsulfurierung sich auch in erhöhten Liquor-

Cysteinkonzentrationen niederschlägt76, konnte anhand der Untersuchungen an den 

Lymphompatienten somit nicht bestätigt werden. Die Cysteinkonzentrationen der 

Liquorproben, die einen Tag nach HDMTX gezogen wurden (Proben A/B2) – sie 

hätten nach der Hypothese von Quinn et al.76 besonders hoch sein müssen – waren 

sogar niedriger als die Cysteinkonzentrationen der übrigen Untersuchungszeitpunkte 

(s. Tab. 3-31).  

Leider standen von den PZNSL-Patienten keine Plasmaproben nach HDMTX zur 

Verfügung, so dass nicht völlig auszuschließen ist, dass in den Blöcken A/B 

zeitweise erhöhte Cysteinkonzentrationen im Plasma der PZNSL-Patienten vorlagen. 

Da die Aktivität der CBS insbesondere durch SAM reguliert wird (hohe 

Konzentrationen an SAM steigern, niedrige Konzentrationen hingegen senken die 

Aktivität der CBS15) und nach Verabreichung von MTX SAM nur noch in begrenztem 

Ausmaß zur Verfügung steht154,162, ist es unwahrscheinlich, dass HDMTX die 

Transsulfurierung induziert. Bekräftigt wird diese Vermutung durch die Tatsache, 

dass Broxson et al. bei einem Kollektiv von ALL- und Osteosarkompatienten 6, 24, 

36, 48 und 72 Stunden nach Beginn einer 24-stündigen, hochdosierten MTX-Infusion 

keine Veränderungen bei den Cysteinkonzentrationen (Plasma) der Patienten 

beobachten konnte155.  

Erwartungsgemäß wurden auch im Verlauf der C-Blöcke keine signifikanten 

Veränderungen der Cysteinkonzentrationen beobachtet, da in diesen 

Behandlungsblöcken MTX ausschließlich intraventrikulär verabreicht wurde und 

daher hohe MTX-Konzentrationen nur im ZNS nicht aber im Blut erzielt wurden (nach 

ITMTX werden im Plasma MTX-Konzentrationen gemessen, die um mehr als das 

100fache niedriger sind als die MTX-Konzentrationen im Liquor94). Vor diesem 

Hintergrund und der Tatsache, dass Homocystein im ZNS nicht transsulfuriert 
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werden kann, sollten die Cysteinkonzentration im Liquor nach intraventrikulärer Gabe 

nicht ansteigen.  

Insgesamt gesehen lagen die Cysteinkonzentrationen der PZNSL-Patienten (der 

Median aller Cysteinkonzentrationen betrug 2,71 µM) im Normbereich. Er liegt bei 

Erwachsenen ungefähr zwischen 1,5 und 4,0 µM219. Unklar ist, warum mehrere 

Personen der Kontrollgruppe leicht erhöhte Cysteinkonzentrationen zeigten (s. 

Anhang C). Sowohl die Albuminquotienten als auch die ermittelten Zellzahlen in den 

Liquorproben dieser Personen lagen im Normbereich (s. Tab. 2-20). Eine Störung 

der Blut-Liquor-Schranke oder eine Kontamination der Liquorproben mit Blut kommt 

daher für die erhöhten Cysteinkonzentrationen nicht in Frage.  

 

Auch bei den Glutathionkonzentrationen der PZNSL-Patienten konnten keine 

eindeutigen Veränderungen während der Chemotherapie registriert werden (s. Abb. 

3-29). Interessanterweise besaßen alle vier PZNSL-Patienten signifikant höhere 

Glutathionkonzentrationen als die Personen der Kontrollgruppe (s. Kap. 3.4.2), die 

ihrerseits normale Glutathionkonzentrationen zeigten (Normbereich: 300-900 nM219).  

Die Glutathionkonzentration des Liquors wird im Wesentlichen durch die Freisetzung 

von Glutathion aus Gliazellen (insbesondere den Astrocyten) und die Aktivität des 

Glutathion-abbauenden Enzyms γ-Glutamyltranspeptidase (γ-GT), welches im ZNS 

in hohem Maße in den Endothelzellen des Choroid-Plexus und zerebraler Blutgefäße 

vorkommt, bestimmt225.  

Erhöhte Glutathionkonzentrationen im Liquor werden insbesondere bei gesteigertem 

oxidativen Stress gefunden. Sagara et al. konnten zeigen, dass oxidativer Stress die 

Aufnahme von Cystein in Gliazellen erhöht und hierdurch bedingt die Biosynthese 

von Glutathion gesteigert wird225 (Cystein stellt in aller Regel den limitierenden Faktor 

der Glutathionsynthese dar). Da im Rahmen der Oxidation von Homocystein reaktive 

Sauerstoffspezies (ROS) anfallen68,70,71, könnte eventuell die Akkumulation von 

Homocystein die erhöhten Glutathionkonzentrationen der PZNSL-Patienten bedingt 

haben. Eine gesteigerte Glutathionsynthese könnte somit einen adaptiven 

Mechanismus darstellen, neurotoxische Effekte des Homocysteins, die teilweise über 

ROS vermittelt werden (s. Kap. 1.1.4), abzufangen. Ein Zusammenhang zwischen 

den im Liquor gemessenen Homocystein- und Glutathionkonzentrationen konnte 

allerdings nicht gefunden werden (s. Kap. 3.4.2).  
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Die Abb. 4-2 zeigt die Entgiftung von Radikalen und Peroxiden durch Glutathion.  

 

 

Abb. 4-2: Entgiftung von Radikalen (R) und Peroxiden (ROOH) durch Glutathion 

(GSH). Enzyme: (1): Glutathionperoxidase (GP), (2): Glutathionreduktase (GR). 

Möglicherweise führte auch die intensive intraventrikuläre Chemotherapie mit 

Cytarabin, die den PZNSL-Patienten verabreicht wurde, zu einer höheren Belastung 

mit reaktiven Sauerstoffspezies und folglich zu einer verstärkten Glutathionsynthese. 

Geller et al. konnte anhand von In-vitro-Versuchen zeigen, dass unter Cytarabin 

vermehrt ROS gebildet werden und diese dazu beitragen, dass Cytarabin auch 

apoptotische Vorgänge induziert226.  

 

SEAA im Liquor der PZNSL-Patienten 
Im Rahmen dieser Arbeit konnte zum ersten Mal eindeutig gezeigt werden, dass 

MTX eine Anhäufung von Homocysteinsulfinsäure (HCSA) im Liquor von 

Krebspatienten verursachen kann.  

Leider konnte aufgrund des Probenentnahmeschemas keine Aussage darüber 

gemacht werden, über welchen Zeitraum die Patienten mit dieser exzitatorischen 

Aminosäure exponiert waren. Dass HCSA in keiner Probe, die zum Zeitpunkt C3 

gezogen wurde, detektiert wurde (s. Abb. 3-30), lässt lediglich den Schluss zu, dass 

nach einer Zeitspanne von zwei Wochen HCSA mehr oder weniger vollständig aus 

dem Liquor eliminiert wurde.  

Unklar ist, warum HCSA nicht im Liquor des Patienten 1 nachgewiesen werden 

konnte, obwohl auch dieser Patient unter der Therapie mit MTX deutlich erhöhte 

Homocysteinkonzentrationen zeigte. Da HCSA nicht auf enzymatischem Weg 
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entsteht (bis dato wurde zumindest kein Enzym gefunden, welches die Bildung von 

HCSA katalysieren könnte), kann nur geschlussfolgert werden, dass bei diesem 

Patienten Bedingungen vorlagen, die die Oxidation von Homocystein zu HCSA 

unterdrückten. Möglicherweise besaß dieser Patient im Liquor eine besonders 

niedrige Konzentration an zweiwertigen Kupferionen (Kupfer(II)-Ionen katalysieren 

die Oxidation von Homocystein zu HCSA189) und/oder einen sehr hohen Gehalt an 

antioxidativ wirksamen Biomolekülen. Neben Glutathion (die Glutathionkon-

zentrationen des Patienten waren im Vergleich zur Kontrollgruppe signifikant erhöht, 

s. Abb. 3-27) stellen die Vitamine E und C, sowie Flavonoide die wichtigsten 

Antioxidantien im Liquor dar227. Dass bei den Patienten 2, 3 und 4 – trotz hoher 

Glutathionkonzentrationen (sie waren ebenfalls signifikant höher als die 

Glutathionkonzentrationen der Kontrollgruppe) – HCSA nachgewiesen wurde, lässt 

vermuten, dass allein hohe Glutathionkonzentrationen nicht ausreichen, die Bildung 

von HCSA zu vermeiden.  

Aufgrund der Tatsache, dass die Cysteinkonzentrationen der PZNSL-Patienten im 

Normbereich lagen und in der Kontrollgruppe kein Metabolit des Cysteins 

nachgewiesen werden konnte (obwohl mehrere Personen der Kontrollgruppe sogar 

leicht erhöhte Cysteinkonzentrationen zeigten), überraschte es nicht, dass auch in 

den Liquores der PZNSL-Patienten weder CSA noch CA detektiert wurde.  

 

Quinn et al. konnte in retrospektiv untersuchten Liquorproben von Kindern, die 

mehrheitlich eine Woche nach der vorangegangenen MTX-Gabe gezogen wurden, 

ebenfalls HCSA nachweisen76 (s. Tab. 4-7). Die ermittelten HCSA-Konzentrationen 

lagen in der gleichen Größenordnung wie die, die bei den PZNSL-Patienten 

bestimmt wurden. Im Gegensatz zu den eigenen Untersuchungen konnten Quinn et 

al. in den Liquores dieser Kinder jedoch auch HCA (Median: 96,0 µM) und die 

oxidativen Metaboliten des Cysteins, CSA (Median: 24,9 µM) und CA (Median: 

0,2 µM) nachweisen. Keine der SEAA wurde hingegen in den Liquores einer 

Kontrollgruppe, die aus 29 Kindern bestand, detektiert (s. Tab. 4-7).  

Da die Untersuchungen an den Lymphompatienten zeigten, dass weder die 

intravenöse noch die intraventrikuläre Gabe von MTX die Cysteinkonzentrationen im 

Liquor beeinflusst, ist überraschend, dass Quinn et al. bei den Patienten solch hohe 

Konzentrationen der Cysteinmetaboliten ermittelte. Noch überraschender ist aber die 
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Tatsache, dass HCA in Konzentrationen von bis zu 416 µM(!) vorgefunden wurde. 

Leider gibt die Studie keinen Aufschluss darüber, ob diejenigen Patienten, die extrem 

hohe HCA-Konzentrationen aufwiesen, auch stark erhöhte Homocysteinkonzentra-

tionen besaßen.  

Tab. 4-7: SEAA-Konzentrationen im Liquor von Kindern, die zur Therapie 

onkologischer Erkrankungen mit MTX behandelt wurden. 

Referenz Patienten 
Dosierung/ 
Applikation 

von MTX 

Rescue 
nach 
MTX 

Zeitpunkt 
d. Proben-
entnahme 

SEAA- 
Konz. [µM] 

Analyt. 
Methode

23 ALL-
Patienten/ 
1 Pat. mit 

Neuro-
blastom 

4 x 25 
mg/m2/Tag 
PO bzw. 

2 g/m2 über 
4 h IV 

k.A. 

In der 
Regel 

1 Woche 
nach MTX-

Gabe 

HCSA: 01,3* 
HCA: 96,0* 
CSA: 24,9* 

CA: 00,2* Quinn et 
al. 

(1997)76 29 Kinder 
(neurolog. 

Erkran-
kung) 

--- --- --- 

HCSA: ND 
HCA: ND 
CSA: ND 

CA: ND 

HPLC-
ECD76 

 

* Median  

k.A.: Keine Angaben 

 

Die Ergebnisse bezüglich der HCA-Konzentrationen müssen angezweifelt werden, 

da (1) die extrem hohen HCA-Konzentrationen durch eine länger andauernde, 

intensive enzymatische Verstoffwechslung, nicht aber durch eine spontan ablaufende 

Oxidation von Homocystein erklärbar wären (die bisherigen Forschungsergebnisse 

sprechen dagegen, dass ein Enzym, welches die Bildung von HCA katalysieren 

könnte, existiert17,18), (2) Relling im Liquor von insgesamt 53 ALL-Patienten eine 

Woche nach HDMTX (2,5-5 g/m2) weder die Metaboliten des Homocysteins noch die 

des Cysteins nachweisen konnten (die Nachweisgrenze bezüglich der SEAA lag 

zwischen 5 und 50 nM221), (3) die Patienten, trotz extrem hoher Konzentrationen an 

HCA keine Anzeichen von Krämpfen zeigten – HCA stellt ein stark wirksames 

Convulsivum dar228,229 und (4) es fraglich ist, ob die eingesetzte analytische Methode 

die exakte Bestimmung von HCA im Liquor gewährleisten konnte (s. hierzu auch 

Kap. 4.1). Nicht beantwortet werden kann die Frage, ob HCA (und die anderen 
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Metaboliten) eventuell im Rahmen der Probenaufarbeitung gebildet wurden, da 

nähere Informationen zur Methode nicht publiziert wurden76. 

 

Zusammenfassend kann festgehalten werden, dass MTX zu einer Anhäufung von 

HCSA im Liquor führen kann. Welche Faktoren die Bildung dieser exzitatorischen 

Aminosäure fördern bzw. unterdrücken ist unbekannt. Unbekannt ist auch, wie lange 

(nach Applikation von MTX) erhöhte HCSA-Konzentrationen im Liquor vorliegen. 

HCSA kann aufgrund fehlender Enzymsysteme nicht enzymatisch abgebaut werden. 

Somit kommt der Liquorresorption und -neubildung eine entscheidende Rolle bei der 

Elimination von HCSA aus dem Liquor/ZNS zu. Aufgrund der Tatsache, dass pro 

Stunde ungefähr 20 mL Liquor produziert werden und somit der gesamte Liquor 

(beim Erwachsenen beträgt das Liquorvolumen ungefähr 130-150 mL) mehrmals 

täglich erneuert wird, kann man annehmen, dass HCSA vermutlich nur für begrenzte 

Zeit in deutlich erhöhten Konzentrationen im Liquor vorliegt. Diese Annahme setzt 

natürlich voraus, dass sich nach MTX auch die Homocysteinkonzentrationen rasch 

normalisieren und dass keine Liquorzirkulationsstörungen vorliegen. Die eigenen 

Untersuchungen zeigten, dass PZNSL-Patienten, die nach Gabe von MTX stark 

erhöhte HCSA-Konzentrationen im Liquor aufwiesen, innerhalb von zwei Wochen 

soviel HCSA aus dem Liquor eliminierten, dass die HCSA-Konzentrationen unter der 

Nachweisgrenze lagen.  

 

Ob unter MTX auch die Konzentrationen der Cysteinmetaboliten (CSA und CA) 

ansteigen, ist ungewiss. Da – wie bereits erläutert – die bislang durchgeführten 

Untersuchungen keinen Anlass dazu geben, dass die MTX-induzierte Hemmung der 

Remethylierung mit einer gesteigerten Transsulfurierung in der Leber einhergeht, 

und Homocystein im ZNS nicht transsulfuriert werden kann, sollte MTX keinen 

Einfluss auf die Cysteinkonzentrationen im Liquor haben. Somit ist es auch 

unwahrscheinlich, dass MTX die Konzentrationen von CSA und CA beeinflusst, da 

beide aus Cystein hervorgehen.  

Deutlich erhöhte Cysteinkonzentrationen im Liquor werden bei einer Störung der 

Blut-Hirn-Schranke oder bei blutkontaminierten Liquorproben gefunden. Es ist 

denkbar, dass in diesen Fällen auch größere Mengen der Cysteinmetaboliten im 

Liquor vorkommen. Prinzipiell könnten erhöhte Konzentrationen der Cystein-
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metaboliten auch infolge einer gesteigerten Biosynthese oder infolge eines 

gehemmten Abbaus beobachtet werden (s. hierzu Abb. 4-3).  

 

 

 

Abb. 4-3: Biosynthese und Abbau der exzitatorischen Aminosäuren CSA und CA 

(nach Griffiths16). Enzyme: (1): Cystein-Dioxygenase, (2): Cysteinsulfinsäure-

(ß-Sulfinyl-Pyruvat)-Transaminase, (3): Cysteinsulfinsäure-Decarboxylase (CSD), (4): 

Cysteinsulfinsäure-Dehydrogenase, (5): Hypotaurinoxidase. 

Welche Faktoren die Aktivität der einzelnen Enzyme, die Biosynthese und Abbau 

regeln, beeinflussen, ist kaum erforscht. Bekannt ist lediglich, dass HCA die 

Cysteinsulfinsäure-Decarboxylase (CSD) inhibieren kann und dass HCSA weder ein 

Substrat noch ein Hemmstoff der CSD darstellt230.  
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4.3.3 Fallstudie einer Patientin mit MTX-Überdosierung  

In dieser Arbeit wurde eine einjährige Medulloblastom-Patientin, der anstatt 2 mg 

20 mg MTX intraventrikulär verabreicht wurden, untersucht. Diese Patientin zeigte 

trotz der stark überhöhten MTX-Dosis keine neurotoxischen Symptome.  

Hohe Dosen an intrathekal appliziertem MTX führen häufig zu Kopfschmerzen und 

Krämpfen. In besonders ausgeprägten Fällen wird eine toxische Enzephalopathie 

beobachtet, die mit schwerwiegenden Komplikationen – unter Umständen auch dem 

Tod des Patienten – verbunden sein kann231,232. Eine Übersicht über die bislang 

publizierten Fälle von MTX-Überdosierungen liefert Tab. 4-8. Ihr ist zu entnehmen, 

dass selbst bei extrem hohen MTX-Dosen (> 100 mg IT) neurologische Störungen 

auch völlig ausbleiben können.  

Notfall-Maßnahmen nach intrathekaler MTX-Überdosierung schließen – neben einer 

sofortigen Liquorspülung – einen intensiven Rescue mit Calciumfolinat (nicht IT oder 

ICV, da Calciumfolinat nach diesen Applikationsarten epileptogen wirken kann233), 

sowie die Gabe von Phenobarbital und Dexamethason ein. Phenobarbital wird zur 

Erhöhung der Krampfschwelle, Dexamethason zur Vermeidung einer Arachnoiditis 

gegeben. Bei massiver Überdosierung (> 100 mg IT bzw. ICV) wird eine lumbale 

Liquorspülung über zwei implantierte Katheter sowie die Verabreichung von 

Carboxypeptidase, einem Enzym, welches MTX inaktiviert (s. hierzu auch Abb. 1-5), 

empfohlen233,234. Letztere Maßnahmen sollten auch bei mäßiger Überdosierung und 

ausgeprägter Toxizität in Erwägung gezogen werden233.  

Im Falle der Medulloblastom-Patientin beschränkte man sich aufgrund der 

vergleichsweise moderaten Überdosierung und der Tatsache, dass neurotoxische 

Symptome nicht beobachtet wurden, auf zwei fraktionierte Liquorspülungen (sechs 

bzw. 16 Stunden nach Überdosierung), um die MTX-Konzentrationen im Liquor zu 

senken. Im Rahmen der ersten Liquorspülung wurden ungefähr 20 % des im Liquor 

vorliegenden MTX entfernt (die MTX-Konzentration sank von 87,2 auf 67,9 µM).  
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Tab. 4-8: Übersicht über bislang publizierte Fälle von MTX-Überdosierungen 

(intrathekale Applikation jeweils).  

Referenz 
Patient 
(Alter, 

Geschlecht) 

MTX-
Dosis 
[mg] 

Neurotoxische 
Symptome  

Maßnahmen
zur MTX-

Elimination 
Spät-
folgen 

Lampkin et 
al.235 4 Jahre 52 mg IT Nein Keine Nein 

Ettinger et 
al.236 2 Jahre 85 mg IT Milde 

Enzephalopathie Keine Nein 

12 Jahre 50 mg IT Milde 
Enzephalopathie

Lumbal-
drainage Nein 

4 Jahre 50 mg IT Nein Lumbal-
drainage Nein Addiego et 

al.231 

9 Jahre 650 mg IT Ausgeprägte 
Enzephalopathie

Lumbal-
drainage 

Schwere 
Hirn-

schäden

Ettinger et 
al.232 9 Jahre, m 650 mg IT Ausgeprägte 

Enzephalopathie
Liquor-

spülung# 

Tod  
(1 Monat 
später) 

Spiegel et 
al.237 26 Jahre, m 625 mg IT Ausgeprägte 

Enzephalopathie

Ventrikulo-
lumbale 
Liquor-

Spülung# 

Nein 

11 Jahre, m 120 mg IT Nein Liquor-
spülung# Nein Jacobsen et 

al.234 4 Jahre, m 100 mg IT Nein Liquor-
spülung# Nein 

O’Marcaigh 
et al.233 6 Jahre, m 600 mg IT Ausgeprägte 

Enzephalopathie

Ventrikulo-
lumbale 
Liquor-

Spülung#, 
CPG2 (IT) 

Nein 

3 Jahre, w 125 mg IT Krämpfe Keine Nein Lee et al.238 4 Jahre, m 125 mg IT Krämpfe Keine Nein 
Riva et 
al.239  7 Jahre, m 300 mg IT Starke 

Kopfschmerzen Keine Nein 

Finkelstein 
et al.240 34 Jahre, m 1200 mg 

IT  

Starke Rücken-
schmerzen, 

Krämpfe 

Ventrikulo-
lumbale 
Liquor-

Spülung# 

Nein 

 

* CGG2:Carboxypeptidase G2, spaltet von MTX den Glutamatrest ab, so dass ein unwirksamer 

Metabolit (DAMPA) entsteht (s. hierzu auch Abb. 1-5) 
# 30-50 mL Liquor wurden durch physiologische Kochsalzlösung ersetzt 
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Warum die zweite Spülung (zumindest dem Verlauf der MTX-Konzentrationen nach 

zu urteilen, s. Abb. 3-33) keinen bzw. nur einen unwesentlichen Einfluss auf die 

MTX-Konzentrationen ausübte, ist unklar. Nach Bekunden der verantwortlichen 

Ärztin wurden beide Spülungen in der gleichen Art und Weise durchgeführt179. 

Plausibel wäre, dass durch die MTX-Infusion (5 g/m2), die kurz vor der 

intraventrikulären MTX-Gabe gestartet und sechs Stunden später abgebrochen 

wurde (dies war der Zeitpunkt, an dem man feststellte, dass eine zu hohe Dosis an 

MTX intraventrikulär appliziert wurde), nach der zweiten Spülung größere Mengen an 

MTX in den Liquor gelangten und hierdurch der Effekt der Liquorspülung mehr oder 

weniger kompensiert wurde.  

 

Von besonderem Interesse war, wie sich die hohen Liquor-MTX-Konzentrationen auf 

den Stoffwechsel des Homocysteins im ZNS auswirkten. Daher wurden die zur 

Verfügung stehenden Liquorproben auf Homocystein, Cystein und Glutathion sowie 

die Metaboliten des Homocysteins bzw. Cysteins untersucht. Zusätzlich wurden die 

Konzentrationen an N5-Methyl-THF bestimmt (diese Analyse wurde wiederum von 

Frau S. Vezmar durchgeführt). Eine solche biochemische Liquoranalyse nach MTX-

Überdosierung existiert bislang nicht.  

Die Homocysteinkonzentration, die 24 Stunden nach der intraventrikulären Gabe von 

MTX bestimmt wurde (799 nM), war vergleichbar hoch wie die Homocysteinkon-

zentrationen, die bei einem vierjährigen Kind einen Tag nach ICVMTX (2 mg) 

ermittelt wurden (700-850 nM)222, aber deutlich höher als die Homocystein-

konzentrationen, die im Liquor der PZNSL-Patienten, ebenfalls einen Tag nach 

ICVMTX (3 mg), gefunden wurden (Median: 238 nM). Im weiteren Verlauf stieg die 

Homocysteinkonzentration leicht an; 66 Stunden nach der intraventrikulären MTX-

Gabe betrug die Homocysteinkonzentration 1028 nM. Da der Patientin vor der 

fehlerhaften MTX-Applikation keine Liquorprobe entnommen wurde, kann nicht 

beurteilt werden, in welchem Ausmaß die Liquor-Homocysteinkonzentration von der 

überhöhten MTX-Dosis beeinflusst wurde. Geht man davon aus, dass die 

Homocysteinkonzentration der Patientin vor der intraventrikulären MTX-Gabe nicht 

erhöht war (die letzte Verabreichung von MTX lag mehr als zwei Wochen zurück, s. 

Kap. 2.5.4.2) und in der gleichen Größenordnung lag, wie die Homocysteinkon-

zentrationen, die bei den pädiatrischen ALL-Patienten im Rahmen der Total XV-



Seite 192  Diskussion 

Studie bestimmt wurden (~30-40 nM), so hätte die MTX-Überdosierung die Liquor-

Homocysteinkonzentration innerhalb von 24 Stunden um mehr als das 20fache 

ansteigen lassen – obwohl innerhalb dieses Zeitraums zwei Liquorspülungen 

vorgenommen wurden. Die sehr hohen Cysteinkonzentrationen (16,95-19,95 µM) –

 sie waren um ein Vielfaches höher als die der ALL- und PZNSL-Patienten – sowie 

die leicht erhöhten Glutathionkonzentrationen (861-1099 nM), die in den Liquor-

proben der Medulloblastompatientin bestimmt wurden, lassen allerdings vermuten, 

dass im Rahmen der Probengewinnung jeweils geringe Blutmengen in die 

Liquorproben gelangten (optisch konnte allerdings keine rötliche Verfärbung der 

Proben festgestellt werden) und/oder eine Schrankenstörung bei der Patientin vorlag. 

Die hohen Homocysteinkonzentrationen sind daher höchstwahrscheinlich nicht allein 

auf die intraventrikuläre Instillation von MTX zurückzuführen.  

Wiederum wurde (wie auch bei dem Kollektiv der PZNSL-Patienten) die 

Beobachtung gemacht, dass der Calciumfolinat-Rescue keine Senkung der Liquor-

Homocysteinkonzentration bewirkt, wenn zeitgleich hohe MTX-Konzentrationen im 

Liquor präsent sind.  

Dass mit CA auch ein Metabolit des Cysteins im Liquor nachgewiesen wurde, mag 

an den hohen Cysteinkonzentrationen gelegen haben. Neben CA wurden in allen 

Proben auch geringe Mengen an HCA sowie HCSA detektiert. Die Konzentrationen 

der letztgenannten Aminosäure waren ähnlich hoch wie die, die bei den PZNSL-

Patienten nach intravenöser bzw. intraventrikulärer Gabe von MTX ermittelt wurden.  

 

Insgesamt zeigt die biochemische Analyse der Liquorproben, dass nach der hohen 

intraventrikulär verabreichten MTX-Dosis (20 mg) vermutlich ähnlich ausgeprägte 

Veränderungen im Homocysteinstoffwechsel induziert wurden wie nach zehnfach 

niedrigeren, therapeutisch angewendeten Dosierungen (2-3 mg). Dieses Ergebnis ist 

nicht überraschend. Bereits die Daten, die im Rahmen der Bonner Lymphomstudie 

erhoben wurden, zeigten, dass sehr hohe MTX-Konzentrationen im Liquor (30-

40 µM) mit vergleichbar hohen Homocystein- und HCSA-Konzentrationen assoziiert 

waren wie MTX-Konzentrationen, die im therapeutischen Bereich von ungefähr 1 µM 

lagen (s. Kap. 3.4.2).  

Trotz der spärlichen Datenlage kann daher angenommen werden, dass bereits 

therapeutische Dosen an intraventrikulär verabreichtem MTX zu einem maximalen 
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Anstieg des Homocysteins im Liquor führen. Wie stark die Erhöhung der 

Homocysteinkonzentrationen im Liquor letzten Endes ausfällt und wie lange (nach 

erfolgter Verabreichung von MTX) Patienten erhöhten Homocysteinkonzentrationen 

im Liquor ausgesetzt sind, hängt von weiteren Faktoren ab, die ebenfalls die Liquor-

Homocysteinkonzentration beeinflussen. Hierunter fallen insbesondere die Aktivität 

der im ZNS lokalisierten Methioninsynthase (bei reduzierter, intrazellulärer N5-Methyl-

THF-Konzentration), die Intensität der Rescue-Therapie mit Calciumfolinat und die 

Geschwindigkeit der Elimination von Homocystein aus dem Liquor bzw. ZNS. Diese 

Faktoren tragen vermutlich auch dazu bei, ob nach massiver, intrathekaler MTX-

Überdosierung neurologische Komplikationen auftreten oder nicht. 

 

 

4.4 Homocystein — ein Biomarker der MTX-induzierten Neuro-
toxizität? 

Patienten, die aufgrund einer Störung im Homocysteinstoffwechsel deutlich erhöhte 

Homocysteinkonzentrationen im Plasma aufweisen, zeigen neben atherosklero-

tischen Gefäßerkrankungen auch neurologische Störungen (Krampfanfälle, 

psychomotorische Retardierung, Demenz). Die neurologische Symptomatik ist – wie 

eingangs erläutert – besonders ausgeprägt, wenn hohe Homocysteinkonzentrationen 

Folge einer massiv beeinträchtigten Remethylierung sind40-43. Da auch Methotrexat 

die Remethylierung des Homocysteins inhibiert und gezeigt wurde, dass nach einer 

Therapie mit MTX sowohl im Plasma als auch im Liquor erhöhte Homo-

cysteinkonzentrationen vorliegen, wurde die Hypothese aufgestellt, dass 

Homocystein und dessen Metaboliten (HCSA und HCA) auch Symptome der MTX-

induzierten Neurotoxizität hervorrufen können76.  

Um diese Hypothese zu verifizieren, wurden bislang lediglich drei kleinere Studien 

durchgeführt (alle drei wurden im Rahmen dieser Arbeit bereits mehrfach erwähnt, 

an dieser Stelle soll nur der Aspekt, ob Homocystein und dessen Metaboliten 

Mediatoren der MTX-induzierten Neurotoxizität darstellen, näher beleuchtet werden).  

Quinn et al. beobachteten, dass Kinder nach einer Therapie mit MTX höhere 

Homocysteinkonzentrationen im Liquor aufwiesen als Kinder einer unbehandelten 

Kontrollgruppe und dass bei denjenigen Patienten, die unter neurotoxischen 
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Symptomen litten, im Liquor besonders hohe Konzentrationen an Homocystein und 

dessen Metaboliten vorlagen76.  

Drachtman et al. analysierten die Liquores von Patienten mit subakuter 

Neurotoxizität auf Homocystein und bestimmten in diesen Liquores signifikant höhere 

Homocysteinkonzentrationen als in den Liquores einer Kontrollgruppe, bei der keine 

neurologischen Komplikationen beobachtet wurden160.  

Der Evidenzgrad beider Studien ist jedoch gering, da sie retrospektiv durchgeführt 

wurden und sowohl die Untersuchungs-, als auch die Kontrollgruppen sehr 

heterogen waren. Somit konnten weder Beobachtungs- noch Strukturgleichheit –

 wichtige Qualitätsstandards klinischer Studien – gewährleistet werden. Beide 

Untersuchungen geben daher bestenfalls Hinweise darauf, dass Homocystein in die 

Pathogenese der MTX-induzierten Neurotoxizität involviert ist. 

Die bis dato größte und methodisch beste Studie zu dieser Thematik wurde von Kishi 

et al. durchgeführt (Studie „Total XIV“)156. Sie analysierten prospektiv von insgesamt 

53 pädiatrischen ALL-Patienten, die mit hochdosiertem MTX behandelt wurden, 

sowohl Plasma- als auch Liquorproben auf Homocystein und konnten herausstellen, 

dass diejenigen Patienten, die Symptome einer akuten Neurotoxizität entwickelten 

(insbesondere Krampfanfälle), tendentiell höhere Homocysteinkonzentrationen im 

Plasma besaßen als solche, die neurologisch unauffällig waren. Die Kontrollgruppe 

wurde – zur Gewährleistung maximaler Strukturgleichheit – so zusammengestellt, 

dass jedem Patienten der Untersuchungsgruppe ein sogenannter statistischer 

Zwilling zugeordnet wurde, der eine möglichst große Ähnlichkeit mit dem 

neurologisch auffälligen Patienten aufwies („paarweises matching“). Zwischen den 

Liquor-Homocysteinkonzentrationen und dem Auftreten neurotoxischer Symptome 

konnte kein Zusammenhang festgestellt werden. Dies wurde im Wesentlichen darauf 

zurückgeführt, dass die Liquorproben zu Zeitpunkten gezogen wurden, an denen 

keiner der Patienten durch neurologische Ausfälle auffiel.  

Es bleibt abzuwarten, ob die Nachfolgestudie („Total XV“), die momentan in 

Kooperation mit Prof. M. Relling durchgeführt wird, zeigen kann, ob Patienten mit 

MTX-induzierter Neurotoxizität signifikant höheren Homocysteinkonzentrationen 

exponiert waren als symptomfreie. Wie bereits zuvor erläutert, wurde aus 

statistischen Gründen davon abgesehen, dies im Rahmen einer Zwischen-

auswertung zu überprüfen.  
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Die Untersuchungen an den PZNSL-Patienten und der Medulloblastompatientin (Fall 

der MTX-Überdosierung) zeigen, dass selbst hohe Homocystein- und HCSA-

Konzentrationen im Liquor nicht zwangsläufig mit akut/subakut neurotoxischen 

Reaktionen verbunden sein müssen. Welche weiteren Faktoren die Entstehung 

neurotoxischer Symptome fördern bzw. abschwächen, ist weitgehend unklar. 

Glutathion mag aufgrund seiner neuroprotektiven Eigenschaften in der Lage sein, 

Homocystein-vermittelte toxische Wirkungen abzumildern. Möglicherweise wurden 

bei den PZNSL-Patienten keine Symptome einer akuten/subakuten Toxizität 

beobachtet, da deren Glutathionkonzentrationen im Liquor deutlich erhöht waren (sie 

waren signifikant höher als die der Kontrollgruppe).  

Die Tatsache, dass bei zwei der vier untersuchten Lymphompatienten leichte und bei 

einem Patienten stark ausgeprägte Demyelinisierungen auftraten, lässt vermuten, 

dass Homocystein und dessen exzitatorische Metaboliten (insbesondere HCSA) 

prädisponierend für die chronische Toxizität sein können. Diese Vermutung wird 

dadurch bekräftigt, dass die Homocysteinkonzentrationen, die nach wiederholter 

intraventrikulärer Gabe von MTX im Liquor der PZNSL-Patienten gemessen wurden, 

in einem Bereich lagen, der für Neurone als zytotoxisch angesehen wird. Kruman et 

al. konnten anhand von Zellversuchen demonstrieren, dass bereits Homo-

cysteinkonzentrationen von 0,5 µM innerhalb weniger Tage zur Apoptose von 

Neuronen führen können67.  

Die Ergebnisse der PZNSL-Studie bieten einen Erklärungsansatz, warum 

Chemotherapieprotokolle, die eine intensive intraventrikuläre oder intrathekale MTX-

Therapie vorsehen, insbesondere dann mit einem hohen Maß an Toxizität verbunden 

sind, wenn auf IT-/ICVMTX kein oder nur ein gering dosierten Calciumfolinat-Rescue 

folgt112,241-243. Es liegt auf der Hand, dass diese Patienten über einen besonders 

langen Zeitraum schädlichen Homocysteinkonzentrationen ausgesetzt sind und 

dadurch bedingt neurotoxische Wirkungen verstärkt auftreten.  

Vor diesem Hintergrund erfordert der Einsatz einer solch intensiven, ZNS-gerichteten 

Chemotherapie eine sorgfältige Nutzen-Risiko-Abschätzung. PZNSL-Patienten, die 

oftmals einer besonders aggressiven Behandlung mit ITMTX unterzogen werden, 

scheinen neueren Studien zufolge nicht von der intrathekalen MTX-Instillation zu 

profitieren, wenn sie auch mit HDMTX behandelt werden244,245. Bei ihnen ist daher 
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eine häufige intrathekale bzw. intraventrikuläre MTX-Gabe vermutlich mit mehr Nach- 

als Vorteilen behaftet.  

Zusammenfassend kann festgehalten werden, dass insbesondere die 

Untersuchungen an den PZNSL-Patienten weitere Hinweise darauf geben, dass 

Homocystein (und dessen oxidativen Metaboliten) eine Schlüsselrolle bei der 

Genese der MTX-induzierten Neurotoxizität zukommen könnte.  

 

Weitere prospektiv angelegte Studien müssen zeigen, ob zwischenzeitlich stark 

erhöhte Homocysteinkonzentrationen, die man insbesondere im Liquor von MTX-

behandelten Patienten nachweisen kann, mit akuten/subakuten toxischen 

Symptomen korrelieren oder einen prädiktiven Parameter für die besonders 

gefürchtete chronische Neurotoxizität darstellen. Diese Untersuchungen sollten auch 

weitere Erkenntnisse darüber liefern, ob ein zwischenzeitliches Methylierungsdefizit 

ebenfalls das Entstehen der chronischen Neurotoxizität begünstigen kann.  

Genetische Defekte, die einen negativen Einfluss auf die Aktivität Homocystein-

verstoffwechselnder Enzymsysteme (MTHFR, MS, BHMT, CBS) besitzen, sowie ein 

ausgeprägter Mangel an Folsäure, Vitamin B6 und/oder Vitamin B12 (sie stellen die 

Cofaktoren der MS bzw. der CBS dar) könnten ein besonderes Risikopotential für die 

MTX-induzierte Neurotoxizität darstellen. Es wäre daher sinnvoll, bei zukünftigen 

Studien auch diese Aspekte zu berücksichtigen.  

 

Erhöhte Homocysteinkonzentrationen, die im Rahmen von Remethylierungs-

störungen auftreten, können durch die kombinierte Gabe von Vitamin B12, Vitamin B6 

und Betain effektiv gesenkt werden44. Diese Substanzen interferieren im Gegensatz 

zur Folsäure nicht mit der Wirkung von MTX, so dass sie unbedenklich zusammen 

mit der MTX-haltigen Chemotherapie gegeben werden können. Da eine solche 

Komedikation kostengünstig und praktisch ohne unerwünschte Wirkungen ist, sollte 

eher früher als später evaluiert werden, ob Patienten, die einer intensiven 

Chemotherapie mit MTX unterzogen werden müssen, von einer solchen 

Begleitmedikation profitieren.  
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5 Zusammenfassung 

Der Folsäureantagonist Methotrexat (MTX) wird zur Behandlung rheumatoider und 

onkologischer Erkrankungen eingesetzt. Hochdosiertes MTX (> 1 g/m2, HDMTX) mit 

anschließendem Calciumfolinat-Rescue wird heute insbesondere zur Therapie von 

Osteosarkomen, primären Lymphomen des zentralen Nervensystems (PZNSL) und 

der akuten lymphatischen Leukämie (ALL) verabreicht. Die Hochdosis-

Chemotherapie mit MTX konnte die Prognosen dieser malignen Erkrankungen 

entscheidend verbessern, brachte andererseits aber auch ein hohes Maß an akut 

und chronisch auftretenden neurotoxischen Symptomen mit sich. Letztere sind 

besonders gefürchtet, da sie Ausdruck einer Leukenzephalopathie – einer 

demyelinisierenden Enzehalopathie – sind. Ausgeprägte Formen der chronischen 

Neurotoxizität verlaufen nicht selten letal.  

Die Genese der MTX-induzierten Neurotoxizität ist im Wesentlichen unklar. Es gibt 

allerdings Hinweise, dass der Interaktion von MTX mit dem Homocysteinstoffwechsel 

eine größere Rolle bei der Entstehung der Neurotoxizität zukommen könnte. MTX ist 

in der Lage, die Umwandlung von Homocystein zu Methionin (Remethylierung) zu 

unterdrücken, indem es einen Mangel an N5-Methyltetrahydrofolat hervorruft; 

N5-Methyltetrahydrofolat ist Cofaktor der Methioninsynthase, die die Remethylierung 

des Homocysteins katalysiert.  

 

Im Rahmen dieser Arbeit wurde untersucht, welchen Einfluss intravenös bzw. 

intraventrikulär verabreichtes MTX auf den Homocysteinstoffwechsel ausübt und ob 

Veränderungen im Stoffwechsel des Homocysteins eine Rolle bei der Genese der 

MTX-induzierten Neurotoxizität spielen könnten. Hierzu wurden Homocystein und 

Cystein, sowie deren exzitatorischen Metaboliten – Homocysteinsulfinsäure (HCSA) 

und Homocysteinsulfonsäure (HCA) bzw. Cysteinsulfinsäure (CSA) und 

Cysteinsulfonsäure (CA) – insbesondere in Liquorproben von ALL- und PZNSL-

Patienten bestimmt, die unter einer Chemotherapie mit hochdosiertem MTX standen. 

All diese genannten Substanzen sind potentiell neurotoxisch und daher als Auslöser 

für MTX-induzierte neurologische Komplikationen diskutiert worden. Zusätzlich 

wurden die zur Verfügung stehenden Liquorproben auch auf Glutathion, welches 

neuroprotektive Effekte entfalten kann, analysiert.  
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Der erste Teil der Arbeit bestand darin, analytische Methoden zu entwickeln und 

nach international anerkannten Kriterien zu validieren, um die oben erwähnten 

Substanzen auch im Liquor von Krebspatienten exakt bestimmen zu können. Bislang 

existierten weder für Homocystein noch für die schwefelhaltigen, exzitatorischen 

Aminosäuren (HCSA, HCA, CSA und CA) solche Methoden. Dies hängt nicht zuletzt 

damit zusammen, dass diese Biomoleküle – Cystein und Glutathion ausgenommen –

im Liquor nur in Spuren vorkommen und die Abtrennung von anderen Liquor-

assoziierten Substanzen eine extrem hohe Trennleistung des analytischen 

Verfahrens voraussetzt.  

Zum Nachweis von HCSA, HCA, CSA und CA wurde eine spezielle kapillar-

elektrophoretische Methode (micellare, elektrokinetische Chromatographie, MEKC) 

aufgebaut. Sie erlaubt die selektive und empfindliche Bestimmung der Homocystein- 

bzw. Cysteinmetaboliten im Liquor. Die hohe Empfindlichkeit der Methode – die 

Nachweisgrenze der exzitatorischen Aminosäuren liegt im unteren nanomolaren 

Bereich – wurde durch den Detektionsmodus der Laser-induzierten Fluoreszenz 

(LIFD) erzielt. Als Fluoreszenzmarker wurde 5-Carboxyfluoresceinsuccinimidylester 

(CFSE) eingesetzt. Die Methode wurde nach den Richtlinien der Food and Drug 

Administration (Guidance for Industry: „Bioanalytical Method Validation“) vollständig 

validiert und zeichnet sich im Besonderen dadurch aus, dass sie einfach 

anzuwenden und mit geringen Kosten verbunden ist.  

Zur simultanen Bestimmung der Aminothiole Homocystein, Cystein und Glutathion 

wurde eine HPLC-Methode entwickelt. Auch sie wurde nach den international 

anerkannten Richtlinien der Food and Drug Administration validiert. Die selektive und 

hinreichend empfindliche Bestimmung von Homocystein im Liquor (die Liquor-

Homocysteinkonzentrationen gesunder Menschen liegen in der Regel unter 100 nM), 

konnte durch den Thiol-selektiven Fluoreszenzmarker ABDF (4-(Aminosulfonyl)-7-

Fluor-Benzofurazan) gewährleistet werden.  

Im weiteren Fortgang der Arbeit wurden beide Methoden eingesetzt, um 

Liquorproben von Tumorpatienten zu analysieren. Zur Bestimmung von Homocystein 

im Plasma wurde ein vollautomatischer (und ebenfalls validierter) Fluoreszenz-

polarisations-Immunoassay der Firma Abbott verwendet.  
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Ein wesentlicher Teil der klinischen Untersuchungen erfolgte an pädiatrischen ALL-

Patienten, die im St. Jude Children’s Research Hospital in Memphis (USA) nach dem 

Protokoll der gegenwärtig noch laufenden Studie „Total XV“ behandelt wurden. Diese 

Studie geht unter anderem der Frage nach, ob Homocystein einen Biomarker für die 

MTX-induzierte Neurotoxizität darstellt.  

Im Rahmen einer Zwischenauswertung, bei der die Daten von insgesamt 116 ALL-

Patienten analysiert wurden, konnte gezeigt werden, dass die häufig angewendete 

Kombination aus intravenös (2,5-5 g/m2, HDMTX) und intrathekal verabreichtem 

MTX (8-12 mg, ITMTX) einen raschen Anstieg der Plasma-Homocysteinkonzen-

trationen hervorruft. 18 Stunden nach Ende der 24-stündigen MTX-Infusionen (kurz 

vor Beginn der Rescue-Therapie mit Calciumfolinat) wurden annähernd doppelt so 

hohe Homocysteinkonzentrationen im Plasma ermittelt wie vor MTX-Gabe, der 

Unterschied war höchstsignifikant. Es konnte weiterhin gezeigt werden, dass die 

wiederholte Exposition mit MTX die Plasma-Homocysteinkonzentrationen ähnlich 

stark ansteigen lässt und – entgegen bisheriger Vermutungen – keine adaptiven 

Mechanismen zum Tragen kommen, die diesen unerwünschten Nebeneffekt einer 

hochdosierten MTX-Therapie abschwächen könnten. Ferner konnte demonstriert 

werden, dass (spätestens) zwei Wochen nach HDMTX und anschließendem 

Calciumfolinat-Rescue wieder normale Homocysteinkonzentrationen im Plasma 

vorliegen. Ähnlich umfassende Untersuchungen zu dieser Thematik sind bislang 

nicht durchgeführt worden. Die bisherigen Studien beschränkten sich in der Regel 

auf Einzelfälle oder wurden nur punktuell, d.h. zu einem bestimmten Zeitpunkt der 

Chemotherapie, durchgeführt.  

Die Homocysteinkonzentrationen der Liquorproben, die eine bzw. zwei Wochen nach 

HDMTX/ITMTX gezogen wurden, waren nicht signifikant höher als die Homocystein-

konzentrationen, die kurz vor Beginn der MTX-Infusion bestimmt wurden. Sie lagen 

in der Regel unter 50 nM, einem Bereich, der für Kinder als normal angesehen wird. 

Vermutlich bedingten der relativ große Zeitabstand zwischen der Chemotherapie mit 

MTX und der Probenziehung sowie die Rescue-Therapie mit Calciumfolinat (sie 

gleicht einen MTX-induzierten Mangel an reduzierten Folaten rasch aus), dass im 

Liquor keine erhöhten Homocysteinkonzentrationen gefunden wurden. Dieser Aspekt 

sollte bei zukünftigen Liquoranalysen berücksichtigt werden.  
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Auch bezüglich der im Liquor bestimmten Cystein- und Glutathionkonzentrationen 

konnten keine signifikanten Veränderungen im Verlauf der Therapie festgestellt 

werden. Alle ermittelten Cystein- und Glutathionkonzentrationen der ALL-Patienten 

lagen – von einigen Ausnahmen abgesehen – im Normbereich.  

Aus statistischen Gründen wurde im Rahmen der Zwischenauswertung davon 

abgesehen, zu überprüfen, ob Patienten mit neurologischen Komplikationen höhere 

Homocysteinkonzentrationen nach HDMTX aufwiesen als symptomfreie. Diese 

Analyse wird in Kooperation mit einem Ärzteteam des St. Jude Children’s Research 

Hospital erst nach Abschluss der Studie (vermutlich im Jahr 2006) durchgeführt 

werden.  

 

Untersuchungen, die an vier erwachsenen PZNSL-Patienten durchgeführt wurden, 

lieferten weitere Informationen darüber, welche biochemischen Veränderungen im 

Liquor durch MTX hervorgerufen werden können. Diese Patienten wurden nach dem 

so genannten „Bonner Protokoll zur Therapie von primären Lymphomen des ZNS“ 

therapiert, welches eine besonders aggressive, ZNS-gerichtete Chemotherapie 

vorsieht. MTX wurde unter anderem über ein implantiertes Ommaya-Reservoir direkt 

in die Hirnkammern (intracerebroventrikulär, ICV) der Patienten instilliert. Das 

Ommaya-Reservoir ermöglichte, dass in allen sechs Behandlungsblöcken mehrere 

Liquorproben vergleichsweise problemlos entnommen und somit MTX-induzierte 

biochemische Veränderungen im Liquor besonders engmaschig untersucht werden 

konnten. Insgesamt wurden von den PZNSL-Patienten 63 Liquorproben analysiert.  

Anhand des Kollektivs der PZNSL-Patienten wurde erstmals gezeigt, dass eine 

einzige Gabe von intravenös (HDMTX) oder intraventrikulär appliziertem MTX 

(ICVMTX) einen deutlichen Anstieg der Homocysteinkonzentration im Liquor 

bewirken kann. 24 Stunden nach HDMTX (3-5 g/m2) bzw. ICVMTX (3 mg) wurden 

ungefähr dreifach erhöhte Homocysteinkonzentrationen ermittelt. Darüber hinaus 

konnte demonstriert werden, dass drei – im zeitlichen Abstand von jeweils einem 

Tag – aufeinander folgende intraventrikuläre Instillationen von MTX mit einer 

besonders ausgeprägten Erhöhung der Liquor-Homocysteinkonzentrationen 

einhergingen. Dieser Anstieg wurde überraschenderweise auch dann beobachtet, 

wenn zeitgleich eine Rescue-Therapie mit Calciumfolinat durchgeführt wurde. Die 

Homocysteinkonzentrationen, die nach wiederholter intraventrikulärer MTX-Gabe im 
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Liquor der PZNSL-Patienten gemessen wurden, waren ähnlich hoch wie die, die bei 

Patienten mit Vitamin B12- bzw. Folsäuremangel und ausgeprägten neurologischen 

Symptomen vorgefunden werden und bis zu 16fach höher als die Homocystein-

konzentrationen, die im Liquor gesunder Erwachsener bestimmt wurden.  

Weiterhin wurde erstmals eindeutig gezeigt, dass HDMTX bzw. ICVMTX auch eine 

Akkumulation von HCSA im Liquor bedingen kann. HCSA stellt einen oxidativen 

Metaboliten des Homocysteins dar, der normalerweise nicht im Liquor präsent ist; er 

steht im Verdacht, an der Entstehung neurodegenerativer Erkrankungen beteiligt zu 

sein.  

Weder die Cystein- noch die Glutathionkonzentrationen im Liquor der PZNSL-

Patienten wurden durch die intensive Chemotherapie mit MTX beeinflusst. Die zuvor 

aufgestellte Hypothese, dass die durch MTX gehemmte Remethylierung die Aktivität 

der in der Leber lokalisierten Cystathionin-ß-Synthase (sie katalysiert den Abbau von 

Homocystein zu Cystein) erhöht und dadurch bedingt auch die Cystein-

konzentrationen im Liquor ansteigen, konnte somit nicht bestätigt werden. Da alle 

gemessenen Cysteinkonzentrationen im Normbereich lagen und die oxidativen 

Metaboliten des Cysteins im Liquor gesunder Erwachsener nicht detektiert werden 

konnten, überraschte es nicht, dass auch bei den PZNSL-Patienten weder CSA noch 

CA nachgewiesen wurden.  

 

Bei der Liquoranalyse einer einjährigen Medulloblastompatientin, die fälsch-

licherweise anstatt 2 mg 20 mg MTX intraventrikulär verabreicht bekam, wurden 

ähnliche biochemische Veränderungen festgestellt wie bei den PZNSL-Patienten, so 

dass die Vermutung nahe liegt, dass auch Dosierungen, die oberhalb des 

therapeutischen Dosierungsbereichs liegen, den Stoffwechsel des Homocysteins 

nicht stärker beeinflussen als solche, die normalerweise im Rahmen onkologischer 

Therapiekonzepte verabreicht werden.  

 

Die Untersuchungen an den PZNSL- und der Medulloblastompatientin offenbarten, 

dass stark erhöhte Homocystein- und HCSA-Konzentrationen im Liquor nicht 

zwangsläufig mit akut/subakut neurotoxischen Symptomen verbunden sein müssen.  

Sie geben andererseits weitere Hinweise dafür, dass stark erhöhte Homocystein- 

und HCSA-Konzentrationen neurodegenerative Prozesse der chronischen 
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Neurotoxizität auslösen können, da bei zwei der vier PZNSL-Patienten im Verlauf der 

Chemotherapie leichte und bei einem Patienten stark ausgeprägte Demyelini-

sierungen beobachtet wurden. 

 

Ob Homocystein und HCSA Biomarker für akut bzw. subakut auftretende Symptome 

der MTX-induzierten Neurotoxizität darstellen und/oder prädiktiv für neurologische 

Spätfolgen einer MTX-haltigen Chemotherapie sind, müssen weitere prospektiv 

angelegte Studien an großen Patientenkollektiven zeigen.  

Diese Studien sollten auch der Frage nachgehen, ob genetische Störungen, die mit 

einer verminderten Aktivität von Homocystein-verstoffwechselnden Enzymen 

(N5,N10-Methylentetrahydrofolatreduktase, Methioninsynthase, Cystathionin-ß-Syn-

thase, Betain-Homocystein-Methyltransferase) einhergehen, das Entstehen der 

MTX-induzierten Neurotoxizität begünstigen.  
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7 Anhang 

 

 

ANHANG A 

Einzelergebnisse der Plasma- und Liquoranalysen der ALL-Patienten, die im St. 

Jude Children’s Research Hospital (Memphis) behandelt wurden: 

(1) Homocysteinkonzentrationen im Plasma der LR-Patienten 

(2) Homocysteinkonzentrationen im Plasma der SHR-Patienten 

(3) Homocystein-, Cystein- und Glutathionkonzentrationen im Liquor  
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(1) Homocysteinkonzentrationen der LR-Patienten. 

Patient Homocysteinkonzentration im Plasma [µM] 
 RI C1 C1h23 C1h42 C15 C15h23 C15h42 
1 KP KP KP KP 2,91 5,44 6,91 
2 KP KP KP KP 7,78 20,15 25,54 
3 KP 4,81 10,45 7,56 4,40 9,38 KP 
4 KP 7,02 14,74 13,09 5,66 10,74 12,69 
5 5,88 3,33 5,05 6,55 4,05 6,99 6,58 
6 12,48 8,92 12,72 20,13 KP KP KP 

 7* 5,24 3,88 6,08 7,01 4,02 6,24 7,44 
 8* 4,91 3,71 7,24 8,29 3,89 7,16 8,93 
 9* 4,83 3,95 6,58 6,36 3,71 5,36 5,91 
 10* 1,07 3,03 5,03 6,40 4,62 7,90 10,10 
 11* 4,46 3,83 8,54 10,64 3,18 KP 9,40 
 12* 8,58 14,31 20,54 17,48 3,36 8,84 KP 
 13* 11,17 7,59 14,02 18,13 6,90 12,37 15,89 
14 12,27 7,92 15,39 11,59 9,15 11,57 11,17 
15 6,49 3,87 7,54 8,89 4,69 10,56 7,26 
16 1,00 2,81 6,79 6,39 4,63 6,61 6,31 
17 3,79 4,45 5,34 7,27 3,19 4,24 KP 
18 0,93 5,66 7,64 5,53 3,77 5,8 9,52 
19 5,44 3,41 7,49 9,10 3,70 4,97 6,55 
20 5,38 10,47 20,99 17,50 5,66 8,27 10,74 
21 2,95 KP 5,10 9,45 3,45 5,47 6,95 
22 6,34 3,95 8,36 7,69 4,57 7,71 7,75 
23 4,39 4,66 10,17 10,56 4,97 9,68 9,73 
24 3,59 5,51 13,23 13,47 5,67 8,52 9,08 
25 3,28 4,71 7,14 6,16 4,43 7,06 8,09 
26 2,48 4,24 9,13 KP 4,24 KP 14,10 
27 4,15 3,48 7,04 7,94 4,41 9,57 9,84 
28 9,25 3,30 5,11 2,21 5,83 12,69 9,09 

 

* Von diesen Patienten standen zusätzlich Liquorproben zur Verfügung 

KP: keine Probe verfügbar 
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(2) Homocysteinkonzentrationen der SHR-Patienten.  

Patient Homocysteinkonzentration im Plasma [µM] 
 RI C1 C1h23 C1h42 C15 C15h23 C15h42 

29 KP KP KP 5,44 KP KP KP 
30 KP KP KP KP KP 13,26 KP 
31 KP 7,73 12,30 11,13 5,75 9,09 11,20 
32 KP 3,12 6,91 6,24 3,05 4,02 4,43 
33 KP KP KP KP 6,03 9,76 9,42 
34 KP 5,61 7,83 7,10 KP KP 9,79 

 35* 5,94 4,92 10,40 KP 4,63 10,16 14,3 
 36* 2,38 4,42 8,88 6,04 4,06 5,52 8,25 
 37* 0,15 5,80 11,06 9,44 4,19 7,23 7,40 
 38* 4,95 4,70 8,12 6,89 3,85 6,52 6,73 
 39* 0,00 7,60 10,59 12,26 6,65 9,34 10,72 
 40* 5,53 3,79 6,05 6,53 5,02 7,85 8,58 
 41* 3,96 3,39 6,35 8,66 4,81 7,13 16,46 
 42* 4,07 7,83 34,79 49,57 10,58 16,48 21,34 
43 4,77 5,46 9,45 7,66 7,95 KP KP 
44 8,33 6,76 12,36 16,92 6,63 10,80 14,39 
45 8,10 KP KP KP KP KP KP 
46 6,30 2,92 7,92 8,12 KP 7,16 7,12 
47 0,53 5,24 6,48 7,16 4,38 6,26 6,35 
48 2,58 3,93 6,12 6,73 5,07 6,42 7,59 
49 1,67 3,05 4,98 7,70 2,79 9,03 10,29 
50 3,02 5,64 6,25 9,54 4,09 8,15 8,51 
51 3,87 3,02 5,23 4,31 3,12 6,67 7,06 
52 2,97 4,11 4,19 7,80 3,55 5,77 7,69 
53 5,31 2,93 5,64 8,65 3,75 5,16 7,70 
54 0,00 5,28 8,79 9,91 5,52 9,41 13,43 
55 2,73 4,77 9,89 9,11 4,86 9,68 11,78 
56 0,00 4,66 10,22 10,21 5,51 11,69 11,09 
57 5,67 KP 7,22 11,95 6,82 9,36 11,29 
58 4,49 3,81 6,67 11,22 4,61 5,98 8,91 
59 0,00 4,94 14,00 12,79 5,79 9,82 10,33 
60 36,83 7,03 6,42 10,51 9,06 7,72 12,57 
61 5,67 KP 9,36 11,68 5,05 10,96 12,44 
62 3,35 4,85 6,62 8,76 4,18 5,04 6,47 
63 10,83 5,33 8,01 9,75 11,92 9,67 10,48 

 64* KP KP KP KP KP 6,49 KP 
 65* KP KP KP KP KP 7,69 KP 

 

* Von diesen Patienten standen zusätzlich Liquorproben zur Verfügung 

KP: keine Probe verfügbar 
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(3) Konzentrationen an HCY, CYS und GSH im Liquor der ALL-Patienten. 

Pat. Konzentration im Liquor [nM] 
 RI C1 C8 C15 
 HCY CYS GSH HCY CYS GSH HCY CYS GSH HCY CYS GSH

7 21,3 735 431 73,9 612 470 KP KP KP 17,8 517 450 
8 23,1 934 441 19,6 716 495 KP KP KP 14,3 749 583 
9 19,6 680 467 KP KP KP KP KP KP 47,6 3625 816 
10 47,6 853 733 42,3 741 710 KP KP KP 30,1 775 384 
11 KP KP KP 24,8 856 491 KP KP KP 10,8 626 426 
12 31,8 609 455 24,8 654 570 KP KP KP 23,1 685 618 
13 77,4 758 547 63,4 803 583 KP KP KP 28,3 789 560 
35 2,0 542 480 26,6 758 687 KP KP KP 24,8 710 746 
36 0,0 528 232 9,0 803 624 KP KP KP 35,3 1097 879 
37 9,0 741 491 24,8 789 556 KP KP KP 16,1 738 546 
38 44,1 578 615 14,3 705 858 KP KP KP 10,8 508 667 
39 KP KP KP 10,8 696 431 KP KP KP 16,1 831 547 
40 19,6 1033 353 24,8 912 542 KP KP KP KP KP KP 
41 26,6 696 291 33,6 957 378 KP KP KP 58,1 1602 622 
42 35,3 1019 449 16,1 1005 496 KP KP KP 24,8 1579 710 
64 35,3 1394 808 31,8 1672 1066 KP KP KP 30,1 1537 759 
65 47,6 1243 326 49,3 1100 444 KP KP KP 72,1 864 804 
66 29,0 980 641 51,6 1017 543 KP KP KP 81,1 1102 549 
67 124,5 2992 375 44,6 1877 322 KP KP KP KP KP KP 
68 84,6 1096 449 56,8 619 567 72,4 966 714,3 77,6 957 740 
69 56,8 1724 866 75,9 73 453 32,5 602 866,1 34,2 651 322 
70 58,5 736 1044 46,4 892 1587 49,8 548 792,3 34,2 1088 1640 
71 63,7 540 650 60,2 972 680 116 1540 979,6 74,1 1511 753 
72 178,3 1380 472 89,8 1204 662 44,6 588 353,4 55,0 747 337 
73 74,1 900 415 82,8 943 411 77,6 1162 446,3 32,5 577 265 
74 KP KP KP 72,4 1000 308 65,5 1162 451,8 51,6 679 415 
75 133,2 1670 426 44,6 554 137 111 886 457,3 KP KP KP 
76 0,0 2606 574 49,8 1304 401 56,8 1338 416,3 175 4679 1398 
77 46,4 1838 662 74,1 1088 408 62,0 1048 529,8 KP KP KP 
78 KP KP KP 104 2475 1125 81,1 1366 583,1 79,3 1542 776 
79 35,9 1488 1078 37,7 932 631 48,1 1664 1131,4 102 1650 828 
80 KP KP KP 20,0 1343 689 86,3 2137 723,3 26,8 1000 576 
81 48,9 1577 822 40,4 762 928 38,7 1324 858,3 47,2 648 647 
82 74,4 861 463 125 1096 340 33,6 1105 429,1 13,2 1247 492 
83 30,2 1025 448 35,3 1179 575 KP KP KP 47,2 1176 511 
84 KP KP KP 59,1 1244 386 KP KP KP KP KP KP 
85 26,8 812 416 288 28620 2606 268 19201 2379,9 127 10863 1483 
86 64,2 889 932 21,7 771 600 42,1 1185 627,0 38,7 1266 447 
87 3,0 515 182 18,3 688 325 KP KP KP 25,1 707 394 
88 13,2 518 158 21,7 901 223 KP KP KP 31,9 1284 451 
89 23,4 753 297 13,2 728 376 KP KP KP 57,4 907 491 
90 38,7 1750 520 18,3 873 558 KP KP KP 30,2 802 443 
91 60,8 1340 361 31,9 1046 353 KP KP KP 33,6 1250 398 
92 11,5 991 603 8,1 537 311 KP KP KP 11,5 673 447 
93 31,9 1207 575 20,0 1139 433 KP KP KP 57,4 4997 639 
94 25,1 858 320 3,0 407 320 KP KP KP 38,7 883 580 
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95 21,7 935 484 25,1 592 421 KP KP KP KP KP KP 
96 40,4 1377 559 61,6 1299 1143 KP KP KP 51,1 2559 1476 
97 44,1 1854 470 12,6 1462 360 KP KP KP 51,1 1324 554 
98 19,6 940 629 31,8 1591 657 KP KP KP 26,6 892 532 
99 KP KP KP 267 24470 1866 KP KP KP KP KP KP 

100 19,6 1103 406 31,8 867 495 KP KP KP 40,6 730 574 
101 16,1 696 232 21,3 1391 457 KP KP KP 23,1 786 383 
102 14,3 679 696 28,3 1610 909 KP KP KP 38,8 735 1232 
103 KP KP KP KP KP KP KP KP KP 91,4 1450 359 
104 19,6 836 922 30,1 845 608 KP KP KP 37,1 881 823 
105 79,1 1215 560 147 17531 1048 KP KP KP KP KP KP 
106 14,3 1195 493 17,8 1363 578 KP KP KP 59,9 1941 696 
107 17,8 1038 507 52,8 1579 597 KP KP KP 17,8 1016 286 
108 49,3 1100 444 30,1 876 378 KP KP KP 28,3 735 335 
109 35,3 1077 387 66,9 2587 830 KP KP KP 42,3 578 308 
110 KP KP KP 17,8 707 452 KP KP KP 33,6 859 624 
111 37,1 548 409 668 53419 2696 KP KP KP 704 NB 2602 
112 5,5 766 275 10,8 693 373 KP KP KP KP KP KP 
113 31,8 870 423 KP KP KP KP KP KP KP KP KP 

 

NB: nicht bestimmt  

KP: keine Probe verfügbar 



Anhang Seite 227 

 

 

 

ANHANG B 

Einzelergebnisse der Liquor- und Serumanalysen der Lymphompatienten, die in der 

Neurologie des Universitätsklinikums Bonn therapiert wurden: 

(1) Konzentrationen an Homocystein, Cystein, Glutathion, HCSA, MTX und 

N5-Methyl-THF im Liquor der Lymphompatienten. 

(2) MTX-Konzentrationen im Serum der Lymphompatienten nach HDMTX 

(1,5-5 g/m2). 
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(1) Konzentrationen an Homocystein, Cystein, Glutathion, HCSA, MTX und 

N5-Methyl-THF im Liquor der Lymphompatienten. 

Pat. Zeit-
punkt 

HCY 
[nM] 

CYS 
[nM] 

GSH 
[nM] 

HCSA 
[µM] 

MTX    
[µM] 

MTHF* 
[nM] 

1 AI 2 KP KP KP KP KP KP 
1 AI 3 343 1914 1174 ND 2,61  32,4 
1 AI 4 406 2162 1139 ND 6,65 22,7 
1 AI 5 482 3632 1698 ND 1,57 27,1 
1 BI 2 195 1775 1560 ND 0,68  ND 
1 BI 3 329 1726 1177 ND 5,47 65,6 
1 BI 4 389 1997 1211 ND 18,67 55,1 
1 BI 5 450 2050 1169 ND 9,17 44,2 
1 CI 3 200 3051 1021 ND 0,00 63,0 
1 CI 4 771 2927 1175 ND 39,43 47,2 
1 CI 5 628 3051 1480 ND 8,33 40,0 
1 CI 6 689 2279 1001 ND 35,34 NB 
1 CI 7 671 2125 1233 ND 30,76 26,0 
1 BII 2 23 1414 809 ND 0,91 9,6 
1 BII 3 273 1908 1325 ND 1,54  44,4 
1 BII 4 288 1732 1313 ND 2,54 50,7 
1 BII 5 316 3576 1456 ND 15,07 82,2 
1 CII 3 64,2 2773 1249 ND 0,00 75,0 
1 CII 4 190 2186 981 ND 1,46 62,5 
1 CII 5 151 3599 980 ND 2,13 56,8 
1 CII 6 KP KP KP KP KP KP 
1 CII 7 239 3144 1115 ND 3,37 48,5 
2 BI 2 KP KP KP KP KP KP 
2 BI 3 193 1293 1009 1,48 5,60 97,9 
2 BI 4 224 2094 1083 2,03 2,24 35,9 
2 BI 5 443 2649 1116 2,14 1,60 71,3 
2 CI 3 79,5 2835 1185 ND ND 59,5 
2 CI 4 280 867 1289 1,84 1,27 32,8 
2 CI 5 1167 4564 1242 1,89 1,42 21,0 
2 CI 6 1010 4410 1337 1,83 9,11 12,0 
2 CI 7 852 4811 1015 2,18 3,35 15,3 
2 AII 2 KP KP KP KP KP KP 
2 AII 3 944 2248 1024 1,96 20,34 48,3 
2 AII 4 1088 2773 1247 1,82 3,54 90,9 
2 AII 5 1049 3082 1136 2,02 2,25 75,4 
2 BII 2 725 4965 1433 2,58 2,00  8,7 
2 BII 3 803 4502 1495 2,62 1,25 63,8 
2 BII 4 1014 4132 1871 2,60 2,06 84,8 
2 BII 5 1116 4873 1399 2,54 0,00 NB 
2 CII 3 67,6 2711 1066 ND ND 74,1 
2 CII 4 488 2231 1572 1,82 1,51 23,4 
2 CII 5 1048 4277 1702 1,83 1,28 33,2 
2 CII 6 1004 3607 1099 1,79 1,49 28,2 
2 CII 7 1161 3702 1215 2,18 2,18 20,6 
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Pat. Zeit-
punkt 

HCY 
[nM] 

CYS 
[nM] 

GSH 
[nM] 

HCSA 
[µM] 

MTX    
[µM] 

5-MTHF 
[nM] 

3 BI 2 224 1837 821 1,99 1,08  13,3 
3 BI 3 293 1664 1259 2,14 1,91 57,5 
3 BI 4 389 1936 1381 1,80 1,34 41,8 
3 BI 5 375 1896 1021 2,78 2,57 23,0 
3 CI 3 50,6 2186 1451 ND ND NB 
3 CI 4 188 1241 927 1,52 3,19 27,9 
3 CI 5 263 1713 600 1,72 1,39 17,8 
3 CI 6 370 2813 1124 1,90 2,80 16,2 
3 CI 7 467 2044 1195 1,89 1,79 14,0 
3 AII 2 KP KP KP KP KP KP 
3 AII 3 295 2538 921 1,48 1,39 18,8 
3 AII 4 268 2075 882 2,10 3,80 27,8 
3 AII 5 448 2782 1473 2,19 1,87 7,9 
4 AI 2 146 3329 1746 1,75 1,59  ND 
4 AI 3 149 2927 1658 2,40 0,79 122,4 
4 AI 4 253 3655 2307 2,02 0,33 75,9 
4 AI 5 277 3607 1949 1,85 0,40 30,0 
4 CI 3 103 3885 1539 ND 0,00 91,8 
4 CI 4 197 4008 1387 1,76 0,74 72,1 
4 CI 5 336 4904 1294 2,13 NB 35,9 
4 CI 6 271 2588 1286 1,70 0,33 56,2 
4 CI 7 333 8155 1868 2,25 0,16 48,1 

 

* N5-Methyltetrahydrofolat 

ND: nicht detektierbar 

NB: nicht bestimmt 

KP: keine Probe verfügbar 
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(2) MTX-Konzentrationen, die im Serum der Lymphompatienten nach HDMTX 

bestimmt wurden. 

MTX-Konzentrationen im Serum [µM] 
Pat. Infusions-

beginn 
MTX-

Dosis* 24 h 42 h 48 h 54 h 60 h 66 h 72 h 
1 AI2 5 g/m2 25,73 0,36 0,17 k.A. NB NB NB 
1 BI2 5 g/m2 78,00 0,29 k.A. k.A. NB NB NB 
1 AII2 5 g/m2 33,60 0,44 0,31 k.A. NB NB NB 
1 BII2 5 g/m2 104,00 0,48 0,22 k.A. NB NB NB 
2 BI 3 g/m2 21,5 0,84 0,39 0,32 k.A. 0,23 k.A. 
2 AII 3 g/m2 59,1 1,90 1,19 0,99 k.A. 0,28 0,21 
2 BII 3 g/m2 43,79 1,02 0,33 0,14 k.A. 0,13 0,08 
3 BI  3 g/m2 33,46 0,77 0,19 NB NB NB NB 
3 AII 1,5 g/m2+ NB 0,73 0,38 0,12 NB NB NB 
3 BII entfiel --- --- --- --- --- --- --- 
4 AI 3 g/m2 59,47 0,57 0,24 k.A. NB NB NB 
4 BI  entfiel# --- --- --- --- --- --- --- 

 

* Die Dosis wurde an das Alter angepasst; Patienten, die älter als 65 Jahre waren, bekamen anstatt 

5 g/m2 nur 3 g/m2 verabreicht 
# Patient 4 wurde nach einem modifizierten Protokoll therapiert, da er wegen eines Rezidivs therapiert 

wurde 
+ Patient 3 bekam im Block AII – vermutlich aufgrund einer sich manifestierenden Leukenzepha-

lopathie – eine reduzierte MTX-Dosis  

Erläuterungen: 

NB: nicht bestimmt, k.A.: keine Angaben in den Patientenakten, vermutlich wurden diese Werte zum 

Teil nicht bestimmt  

Ein intensivierter Rescue mit Calciumfolinat wurde eingeleitet, falls die MTX-Serumkonzentrationen 

zur Stunde 42 oberhalb 1 µM, zur Stunde 48 oberhalb 0,4 µM oder zur Stunde 54 oberhalb 0,2 µM 

lagen. In diesen Fällen wurden weitere Messungen bezüglich der MTX-Serumkonzentrationen 

vorgenommen.  
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ANHANG C 

Einzelergebnisse der Liquoranalyse der Kontrollgruppe, die in der Neurologie des 

Universitätsklinikums der Heinrich-Heine-Universität (Düsseldorf) untersucht wurden: 
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HCY-, CYS- und GSH-Konzentrationen im Liquor (lumbal) der Kontrollgruppe. 

Nr.  HCY 
[nM] 

CYS 
[nM] 

GSH 
[nM] 

HCSA 
[µM] 

HCA 
[µM] 

CSA 
[µM] 

CA 
[µM] 

1 54,7 5533 799 ND ND ND ND 
2 73,3 3236 898 ND ND ND ND 
3 65,1 3236 544 ND ND ND ND 
4 71,3 3775 637 ND ND ND ND 
5 ~44,3 6037 820 ND ND ND ND 
6 92,0 5390 865 ND ND ND ND 
7 160 6611 925 ND ND ND ND 
8 107 7688 1034 ND ND ND ND 
9 ~31,9 6360 746 ND ND ND ND 
10 158 3488 586 ND ND ND ND 
11 87,9 3667 394 ND ND ND ND 
12 ~46,4 2662 524 ND ND ND ND 
13 56,8 3164 591 ND ND ND ND 
x  80,7 4681 720     
s 40,6 1645 189     

RSD [%] 50,3 35,2 26,2     
x~  71,3 3775 746     

 

ND: nicht detektierbar 
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