Efficient Implementation of Elliptic Curve Cryptography
on FPGAs

Dissertation
zur
Erlangung des Doktorgrades (Dr. rer. nat.)
der
Mathematisch-Naturwissenschaftlichen Fakultat
der

Rheinischen Friedrich-Wilhelms-Universitat Bonn

vorgelegt von
Jamshid Shokrollahi
aus

Tehran, Iran

Bonn 2006

Angefertigt mit Genehmigung der Mathematisch-Naturwissbaftlichen Fakultat der

Rheinischen Friedrich-Wilhelms-Universitat Bonn

1. Referent: Prof. Dr. Joachim von zur Gathen
2. Referent: Prof. Dr. Ulrich Ruckert (Universitat Pdolem)
Tag der Promotion: 18.12.2006

Erscheinungsjahr: 2007
Diese Dissertation ist auf dem HochschulschriftensereetlB Bonn

http://hss.ulb.uni-bonn.de/dissline elektronisch publiziert.

| would like to thank my supervisor Prof. Dr. Joachim von zwati@en for giving me the
opportunity of doing a PhD, for his support, and for teachimgghow to work efficiently.
Gratitude goes also to my co-referent Prof. Dr. Ulrich Rértland the other members of
my committee Prof. Dr. Jens Vygen und Prof. Dr. Michael Céaus

| would also like to thank Courtney Tenz and Jeff Godden feirtproofreadings.

Contents

1 Introduction 1
1.1 RelatedWorks 3
1.2 Cryptography e 8
1.2.1 Private Key Cryptography 8
1.2.2 PublicKey Cryptography 8
1.2.3 Elliptic Curves and the Discrete Logarithm Problem 11
1.2.4 Applications 12
1.3 Hardware for Cryptography 15
131 SmartCards. 15
1.3.2 AcceleratorCards. 16
1.3.3 FPGA . . . e 16
1.3.4 CircuitParameters 18
1.3.5 A Typical Scenario, ECDSA AcceleratorCard 20
1.4 Conclusion 23
2 FPGA-based Co-processor 25
2.1 Introduction 25
2.2 Finite Field Arithmetic 27
2.2.1 Polynomialand NormalBases 28
2.2.2 Multiplication. 28
2.23 SQUaring e e 38

ii Contents
2.2.4 InVersion 41
2.3 Point Additionand Doubling 41
2.3.1 SimpleRepresentations.
2.3.2 Mixed Representations
2.4 Scalar Multiplication 46
2.5 FPGA-Based Co-Processor 3 5
2.5.1 Data-path Architecture
252 ControlModule 55
26 Benchmarks
2.7 Conclusion
3 Sub-quadratic Multiplication 61
3.1 Introduction
3.2 The Karatsuba Algorithm 36
3.3 HybridDesign.
3.4 Hardware Structure
3.5 FewRecursions
3.6 Code Generator
3.6.1 Code Generator Functionalities 78
3.7 Conclusion
4 Small Normal Basis Multipliers 83
4.1 Introduction
4.2 GaussPeriods
4.3 Multiplier Structure 87
431 ExampleovelFy . . . L L 88
4.4 PolynomialsfromNormalBases 93

4.5 Factorizations of the Conversion Matrices 95

4.6 Costsof Computing, andr,, 106

CONTENTS

47 OtherCosts
4.8 Comparison,

49 Conclusion,

5 Conclusion and Future Works

A Special Karatsuba Formulas

Al Degree
A2 Degreer

Chapter 1

Introduction: Cryptography and

Hardware

In the past traditional communications were based on &tfEyments were done using
checks or cash, and secret documents were saved in sealesl bibday everything is
changed, and is changing quickly. Everyday more people bilypbones, the number
of e-mail users goes up, and more people pay their paymeatdim internet. Paperless
office strategies save and process documents in electiami@af. These trends are going
to make the life easier but at the same time produce secuskg.r Traditional paper-
based systems have been developed during a long time, ihepéoasuitable laws for
their security and reliability. The rapid development a&fatonic communication systems
requires a secure infrastructure, too. Cryptography isntiaghematical tool which is
used by security engineers to secure data against unagtaccess or manipulation.
Cryptography supplies the people, who are responsiblesimurtty, the required utilities
to hide data, control accesses to them, verify their intggand estimate the required cost

and time to break the security.

Like every other useful service, security will not be acki@vor free. Implement-

ing cryptography tasks costs time, money, and energy. Ttesfof this work is about

1

2 Chapter 1introduction

the design of an FPGA-baskslliptic curve cryptography co-processor (ECCo) and the
study of different techniques which can be used to increaggerformance. Such a co-
processor can influence applications in different ways:rigyaasing the speed, it enables
more people to use the system in the same time and increasasdiability. It can re-
duce the overall system costs. If energy consumption ismma&d, this processor can
decrease the total energy, and for example increase therypéfetime in cell phones.
Such improvements can be done in different levels as we sgbkapter 2. Implementing
a fast co-processor, in this work, is done by studying the-lwedwn methods in differ-
ent areas. But the proposed novel improvements concera fiaitt multiplication only.
This task is at the root of elliptic curve cryptography andmnmprovement in that can
influence directly the performance of the co-processorité-iields of characteristi@
are specially attractive for hardware designers since coation in these fields does not
produce a carry, which contributes to long and complicatgtigin hardware designs. It

is the main reason that we study such fields.

There are two popular kinds of cryptographic protocols, elgmublic key and private
key protocols. In private key protocols, a common key is usgthoth communication
partners and for both encryption and decryption. Among thesrDES, IDEA, and AES.
These systems provide high speed but have the drawback ttaah@mon key must be
established for each pair of participants. In public keytg@eols we have two keys, one is
kept private and used either for decryption (confidentinlitr encryption (signature) of
messages. The other key, the public key, is published todxtfos the reverse operation.
RSA, ElGamal, and DSS are examples of public key systemsselégstems are slower
than the symmetric ones, but they provide arbitrarily hig¥els of security and do not
require an initial private key exchange. In real applicasidooth types are used. The pub-
lic key algorithm first establishes a common private key @reinsecure channel. Then
the symmetric system is used for secure communication wgththroughput. When this

key expires after some time, a new key is established viaubégkey algorithm again.

!Field Programmable Gate Array

1.1. Related Works 3

Due to the comparative slowness of the public key algorithdeslicated hardware
support is desirable. In the second chapter of this work, kgeegnt different structures
for FPGA-based implementations of a cryptographic co-gseor using elliptic curves.
Then we will present some results about efficient finite fieithenetic which can be used
to improve the performance of such processors. FPGA-bagptbgraphy co-processors

avoid a series of drawbacks of ASIBased systems:

e A cryptography algorithm is secure as long as no effectitachtis found. If this
happens, the algorithm must be replaced. FPGAs facilitédstaand cost effective

way of exchanging the algorithm, in particular of switchioga higher key length.

¢ In electronic commerce servers, cryptographic algoritbarsbe exchanged often
for the purpose of adaption to the current workload, dependn the type of cryp-
tography that is mainly used (public key or symmetric keyhisTcan be done by

exploiting the FPGASs reconfigurability.

e Elliptic curve cryptosystems possess several degreesefiém like Galois field
characteristic, extension degree, elliptic curve paramsebr the fixed point gener-
ating the working subgroup on the curve. FPGAs allow for dardéss adaption

to changing security or workload requirements.

e The empirical results of testing various approaches on aA-may later be of
help in designing an efficient ASIC, where such experimermsld’/be much more

costly.

1.1 Related Works and Document Structure

The contributions of the present work can be summarizeddridtowing items:

e The comparison of the costs of polynomial and normal baglsmaetic in two-input
and FPGA models in Section 2.2.

2Application-Specific Integrated Circuit

4 Chapter 1introduction

e Analyzing the effect of different point representationsloa performance of paral-
lel implementations of elliptic curve cryptography ovetdgof characteristi@ in

Sections 2.3 and 2.4.

e Implementing a very fast FPGA-based ECCo using paralltimetic units in Sec-

tion 2.5.

e Analyzing combinations of different recursive polynormmalltiplications to reduce

the area requirements of hardware implementations in@e8tB.

e Decreasing the latency of pipelined recursive polynomialtipliers by decreasing

the recursion degree in Section 3.4.

e Introducing a new structure for efficient changing betweelymomial representa-
tions and optimal normal bases of type Il in special finitediel This technique
which is introduced in Chapter 4 results in efficient normesib multipliers which

are analyzed in that chapter.

Due to the importance of elliptic curve cryptography, thare a lot of publications
in this area. The following paragraphs describe the docusteucture together with the
most important publications related to each chapter.

Chapter 1, this chapter, is the opening of the work and costadinters to references
for further information. It begins with a very short introztion to cryptography and the
group of points on an elliptic curve, and is continued withoaarview of the structure of
the specific FPGAs which are used. These topics are followttdtie definitions of the
cost parameters which are considered when designing thtsir Finally this chapter is
concluded with some possible applications where the esiithis work can be applied.
A sample application, a PCl-based cryptography co-pracelas been implemented and
the benchmarks are presented. It should be mentioned hthataterials in this chapter
are in no way, a complete text book about cryptography or FRGMe assume, that the

reader is familiar with finite fields and basic hardware mdthidke pipelining.

1.1. Related Works 5

Chapter 2 describes the steps of the design and implenm@amtdtan elliptic curve co-
processor (ECCo). The ECCo should be optimized to have sl Comparisons have
been performed between multipliers which can be adaptedtbarea constraints. Since
the target platforms are FPGAs, implementation costs haea lscompared in classical
circuit analysis models and other models which are closérdastructure of the FPGAS
used. Some of the algorithms use a particular representatipoints on an elliptic curve
called “mixed coordinates”. There are some computatiomsidering the mixed coor-
dinates when fields of characterisficare used. These results can be derived from the
works of Lopez & Dahab (1999b) and Cohenal. (1998). Materials of this chapter
which are the results of cooperation with the working groupT&ich are already pub-
lished in Bednarat al.(2002a) and Bednast al.(2002b). There are several other works
which describe the application of FPGAs for elliptic curwe\e cryptography or finite
field arithmetic (see Gaet al. (1999), Gregoryet al. (1999), Leong & Leung (2002),
Orlando & Paar (1999) and Lutz & Hasan (2004)). The distiagung factor in our work
is the application of parallelism in both bit and finite fielpdevations. As we will see in
Chapter 2, the area and time costs of finite field multipliems\gfaster than linear when
the number of output-bits per clock-cycle is increasedsBhiows that it is always better
to use as many small parallel multipliers as possible imstéaising a single multiplier
with a large number of output bits per clock cycle. Unfortighathe performance of the
FPGA-based systems depends on the platform used and a@raparison is possible
only when considering the same target FPGA. From the abopkementations the only
comparable work belongs to Lutz & Hasan (2004) which reguit233 ms for a point
multiplication on a generic curve ov&k.ss, when a clock frequency @6 MHz is used.
Our design on the other hand requife$8 ms for a generic curve ovéf,i: with the
same clock frequency and on the same FPGA. It should be ponnitethat their design is

optimized for the Koblitz curves (see Hankersaral. (2003)) and not generic cases.

Chapter 3 can be considered the most important part of thgghlt contains results

about applications of asymptotically fast multiplicatiorhardware. These methods have

6 Chapter 1introduction

been known for a long time but their high crossover pointiitvgare did not let design-
ers enjoy their high performance in practical situationsftiare implementations of the
Karatsuba multipliers using general purpose processme h@en discussed thoroughly
in the literature (see Paar (1994), Bailey & Paar (1998), &&rdem (2002), Hankerson
et al. (2003), Chapter 2, and von zur Gathen & Gerhard (2003), @&t There are,
on the contrary, only few publications about the hardwarplé@mentations. Jungt al.
(2002) and Weimerskirch & Paar (2003) suggest the use ofigiges with O(n?) oper-
ations to multiply polynomials which contain a prime numbébits. The number of bit
operations is, by a constant factor, smaller than the daksiethod and yet asymptoti-
cally larger than those for the Karatsuba method. Gragilad. (2003a) propose a hybrid
implementation of the Karatsuba method which reduces teads by pipelining and by
mixing sequential and combinational circuits. The goallo$ tthapter is to present a
method to decrease the resource usage of polynomial meitttdy means of both known
algorithmic and platform dependent methods. This is adudwy computing the best
choice of hybrid multiplication algorithms which multippolynomials with at mos$192
bits using six recursive methods, namely: classical, lsalzd, a variant of Karatsuba
for quadratic polynomials, and three methods of Montgon29@5) for polynomials of
degreest, 5, and6, respectively. In addition to the above algorithmic, or tnae inde-
pendent optimization we use a second type of optimizatidnghivis machine-dependent,
to design &40-bit multiplier with small area-time cost. Thist0-bit multiplier covers
in particular the233-bit polynomials proposed by NIST for elliptic curve crygtaphy
(FIPS PUB 186-2 (2000)). Many of the materials of this chapte new results and some
of them are published in Grable¢al.(2003a), von zur Gathen & Shokrollahi (2005), and
von zur Gathen & Shokrollahi (2006). For example, finding dpgimum hybrid limits,

decreasing the number of recursive stages, and the codeagmne

Chapter 4 describes the use of sub-quadratic multiplicatiethods for normal basis
arithmetic in finite fields. Amin Shokrollahi initiated thésdoveries in this chapter. Nor-

mal bases are popularized in finite fields because of the dagpiaring but they have

1.1. Related Works 7

the drawback that multiplication in these bases is more @sige than in polynomial
bases. Multiplication in normal bases of small type has irgyd applications in cryp-
tography, so that most of cryptography standards suggestgh of finite fields which
contain such bases (see FIPS PUB 186-2 (2000)). There ambaworks detailing the
implementation of these multiplications, starting with Gnaa & Massey (1986) which in-
troduced the Massey-Omura multiplier. Mulkt al. (1989) define optimal normal bases,
which minimize the area and the time complexities of thistiplier and Gao & Lenstra
(1992) specify exactly the finite fields for which optimal @l bases exist. Follow-
ing these works there are several proposals for the effiomesttiplications using optimal
normal bases and especially those of tgpelhe parallel Massey-Omura multiplier for
F,. can be implemented, with at least3n — 2) gates, whereas multiplications of poly-
nomials of degree. — 1 is done, classically, usingn? — 2n + 1 gates. Sunar & Kog
(2001) and Reyhani-Masoleh & Hasan (2002) decrease theotogie 2 multiplication
to n(5n — 1)/2 by suitably modifying the Massey-Omura multiplier. Getoal. (2000),
on the other hand, decrease the multiplication cost in g@timarmal bases of typg as-
ymptotically, to2M(n), whereM(n) is the cost of multiplying two polynomials of degree
n — 1 (of lengthn). This allows the application of asymptotically fast pabynial multi-
plication methods for normal bases as well. The structyserted in Chapter 3 decreases
this cost asymptotically tM(n) + O(nlogn) by the addition of a suitable small size cir-
cuit to a polynomial multiplier. This small circuit is useasl¢onvert from the normal basis
to an appropriate polynomial representation. A compardahe area of this multiplier
with the other proposed architectures in the literaturevshits suitability for small area
implementations. Results of this chapter can also be usedffoient change of basis be-
tween the polynomial and the normal bases as a mechanismsagale-channel attacks

(see Parlet al. (2003)). Chapter 5 summarizes the results of this work.

8 Chapter 1introduction

1.2 Cryptography

In this section we describe the two kinds of cryptographytesys, namely public and
private key systems. The results of this work can be usedyiptegraphy systems but
are not directly cryptographical results. Hence, we avoitntal definitions and limit

ourselves to brief explanations which are sufficient toespnt applications of this work.

1.2.1 Private Key Cryptography

Almost all cryptographic protocols are based on the sammeple. They contain a func-
tion which, by means of a parameter called the encryption éay be easily computed.
The inverse of this function is hard to compute unless a rapéflunction (a second key
corresponding to the former one) is known. A general assiamptade during the analy-
sis of the security of a system is that all information abbetsystem except the trapdoor
key are known by the adversary. The previously mentionedmuod public and private
key systems are based on the way these keys are generategjpand k

In a private key system encryption and decryption are domguke same key which
should be kept secret, otherwise the system is broken. &yarshows a scenario where
communication is secured via a private key system. Here Bes dot know the private
key and cannot get any information even if she has access twhtmnel.

There are several private key algorithms like Rijndael (AN&&d 3DES. Private key
systems are generally characterized by very high perfocmaBut they cannot normally
be used alone. Their applications will be completed withliglkey cryptosystems which
are introduced in Diffie & Hellman (1976).

1.2.2 Public Key Cryptography

As we have already mentioned private key systems are ggneeay efficient but there
is the need for other kinds of cryptosystems in practice. ditlar as an example the

setup in Figure 1.1. Alice and Bob have never met each othethaeir only connection

1.2. Cryptography 9

O
Q 0
Al Enon ﬁ

coo ‘)
\ Soo
Sag
.
H
1

Decryption

Encryptiony Bob

v Decryption

Figure 1.1: A private key cryptography scenario

is a channel which is accessible to Eve. In this case they haver the possibility of
establishing a common secret key using private key crygtesys only. As another case
consider the scenario in which instead of Alice and Bob, aigraf 1000 people want to
communicate with each other. In this case every user regipfixekeys and the overall

system require899000 keys to be generated.

In public key cryptosystems encryption and decryption ameedusing two different
keys. One of the keys is published and the other is kept sedfieén one party is going
to sign a message the encryption key is kept secret but thekeyify the signature will
be published. On the other hand when a secret message is émtea encryption key

will be published while the key to open the message will bet kepret by the owner.

Figure 1.2 is an example for a public key system where thenmétion should be kept
secret during transmission. In this system messages senager are encrypted by his
encryption system and he is the only person who has access tmtresponding private

key and can decrypt the message.

There are several types of public key cryptosystems. A ngajoup of these systems
is based on the difficulty of solving the discrete logarithralgem or DLP for short. In

the next section we explain the elliptic curve variant o bwoblem.

10 Chapter 1introduction

__Userd _

Encryption

7 0
B %

Encryption |

Ev¢ User 2

Figure 1.2: A public key cryptography scenario

1.2. Cryptography 11

1.2.3 Elliptic Curves and the Discrete Logarithm Problem

Let £ be an elliptic curve defined, in the affine version, by the \\&fass equation:
E:y* 4+ aivy + azy = 2° + a2” + aux + ag,

which is defined over a finite fiel&. It can be shown, that there is a group associated
with the points on this curve (see Silverman (1986), Chdfite3ection 2, Page 55 for the
proof). The operation of this group, the addition of poimgsjefined in a special manner
which is shown in Figure 1.3. L&t andQ, in the part (a) of that figure, be two distinct
points on an elliptic curve. There is a straight line throtiggse points which intersects
the curve in another third point; R in that figure. The mirror of~R with respect to the
x-axis is a new pointR, which is defined as the sum 8fandQ. When a point is added
to itself the tangent line at that point is used instead, asvahin Figure 1.3-b. Like the
last case, the sum is computed as the mirror of the next adgon with respect to the
zr-axis. As a common precept in group theory, here a zero eleimereeded. It can be
easily verified, that if the straight line through a point & allel to they-axis, it intersects
the curve in the mirror of the original point with respecthe t-axis. Mirroring this point
results in the original point. The zero poiftis virtually defined to be in the infinity on
the y-axis to achieve a line which is parallel to theaxis for every point on the curve.
This point is generally called the “point at infinity”.

Now that we can add two points, distinct or equal, we can cdempny integer mul-
tiple of a point. We call this operation the “point multipditon”. In this waynQ is the
point which is computed by — 1 times addition of the poin@ to itself. Since the set of
points generate a group this product is well defined and doedapend on the way the
points are added together. The aim of our co-processor isrtgpatenQ for a givenQ
and an integen, when the elliptic curve is already specified.

The DLP on elliptic curves is the problem of computimffom Q andnQ. It is gener-
ally assumed that, at least for general enough curves,dhisat be solved in polynomial

time, i.e., in a number of operations which is expressibla polynomial of the bit-size

12 Chapter 1introduction

a
v

[
\

() (b)
Figure 1.3: (a) Addition and (b) doubling of points on angik curve

of the finite field, i.e.]Jog, # F'. 1t should be pointed out that for some very special elliptic
curves the DLP is known to be easy (see Blakal. (1999), Chapter lll, Section 3.2,
Page 37). We assume that the given finite field and the curveatref this form. Our

elliptic curves, for fields of characterist; are of the general form:
E:y*+ay=2°+ax® + b,

with a, b € Fan, b # 0.
To show where and how this project can be used, we describe appilications of
elliptic curve cryptography and how using an elliptic cuogeprocessor can improve the

performance of the system.

1.2.4 Applications
Key Establishment

Consider again the scenario presented in Figure 1.1. As we dleeady mentioned, if
Alice and Bob have never met each other they cannot agreeaipenure and common
private key. Even if they establish a key and later doubt #eusty of this key (for

example if they find out Eve could recover some or all of bitghef key) they cannot

1.2. Cryptography 13

change the key unless they have a secure channel or meetteachA solution to the
key establishment problem has been suggested for the fivstliy Diffie & Hellman
(1976). This situation which is shown in Figure 1.4 makesafgge difficulty of solving
the DLP. It is assumed that Alice and Bob have already seleateelliptic curve and a

pointQ on it. The order of the group of points, is already known .

1 Alice selects a random numbér< r < n, computes-Q,
and sendsQ to Bob.

2 Bob selects arandom numbek s < n, computesQ, and
sendssQ to Bob.

3 Alice and Bob usesQ as the common secret key for secure

communication using the private key system.

Figure 1.4: The Diffie-Hellman key establishment protocsihg elliptic curves.

As we see Eve’s task should be computing from »Q andsQ. If the DLP were easy
to solve Eve could find ands by observing the communication. But she could probably
solve her problem even without solving the DLP. It is conjeet! that her task is as hard
as solving the DLP but, despite numerous efforts to proveabsertion, the general case
is still open (see e.g. Maurer (1994)).

Here all required operations except finding random numbersraltiplications on
elliptic curves which shows how useful an elliptic curve pr@cessor can be for this

application.

Digital Signatures

As another scenario consider a situation, where Bob res@vaessage from Alice. For
example a message that the key has been lost and a new sessitasko be established.
How can Bob be sure that this message is from Alice? Couldtibadhe case that Eve

wants to completely redirect Bob’s communication with &lio herself?

14 Chapter 1introduction

A public key protocol has been suggested by ElGamal (198&%ed on which the
digital signature standard (or DSS for short) has been megpdsee FIPS PUB 186-2
(2000)). Algorithms for signing and signature verificasdn elliptic curve counterparts
of this scenario (ECDSA) are shown in Algorithms 1 and 2 respely. The function”
in these algorithms is some secure hash algorithm (FIPSmeemds SHA); we do not
discuss security of hash functions here. For us at the mgména function that takes a
sequence of bits and outputs a sequence of fixed length68dyits, with some specific
properties (see FIPS PUB 180-1 (1993) for more information)

Algorithm 1 Message signing in ECDSA
Input: An elliptic curve with a fixed poinf) on it, together with its orden, the private

key1l < d < n — 1, the public keyR = dQ, and the message to be signed.

Output: The pair of integerér, s) as the signature of the message

1: Select arandom integér< k <n — 1

2: ComputekQ = (z1,y;) andr = z; mod n

3. if r = 0then

4: Goto1l

5. end if

6: Computek~! mod n

7: Computes = k~Y(H(m) + dr) mod n

8: if s = 0then

9: Gotol

10: end if

11: return (r,s)

Here we see that the key generation has one elliptic curvépticétion and the sign-
ing and verification phases require one and two multiplicegirespectively. These are

operations which can be accelerated using elliptic curvprogessors.

1.3. Hardware for Cryptography 15

Algorithm 2 Signature verification in ECDSA.
Input: An elliptic curve with a fixed poinf on it, together with its order, the public

key R = dQ, the message: which is signed, and a pair of integefs s) as the
signature.
Output: TRUEIf (r, s) is a valid signature fom, FALSE otherwise.
1: Computec = s~! mod n andH (m)
2: Computeu; = H(m) - ¢ mod nandus =r-¢ mod n
3: Computeu;Q + usR = (xg, yo) @andv = g mod n
4: if r = v then
5. OutputTRUE
. else
OutputFALSE

8: end if

(o]

~

1.3 Hardware for Cryptography

In the last section we saw where elliptic curve cryptograpduy be used. But is it really
necessary to build a special co-processor for it or all ofpzablems can be solved using
current processors to perform algorithms? In this sectiercansider two special cases
where co-processors can have important advantages whichatde achieved by only

using general purpose microprocessors.

1.3.1 Smart Cards

Smart cards are going to be a part of our life. A lot of our aggilons are done using smart
cards. ldentifying ourselves in a mobile network is donengs$IM cards (Subscriber
Identity Module). We use smart cards as insurance cardg,dzds, and in several other
applications. These are some chips with limited amountserhory and small general
purpose processors. Implementations of cryptographicritfigns on these processors

are generally slow and require several operations but caaecheed to fewer ones when

16 Chapter 1introduction

special purpose co-processors are used. These reduciansrsergy and time.
Another possibility is to extend the smart card microprgoesvith some special arith-
metic modules. Results which are gathered in this projectbeaused in each of these

strategies.

1.3.2 Accelerator Cards

Another situation where a crypto co-processor can be uggeiitile-commerce servers. In
these applications the computational power is not so laratein smart cards but there are
several requests which should be responded to simultalyedusn e-commerce server
several users try to connect to a server and send requesthiict a signature must be
generated or verified. At the same time users, who are alreawiyected, send and re-
ceive information which should be encrypted. The processioere not only responsible
for cryptographic algorithms but it should also process sather tasks like network
operations which are assigned to every server. Equippireqeiswith a cryptography
accelerator card will help the main microprocessor to cotreée on server operations.

Otherwise each user would face a long waiting delay for His jo be done.

1.3.3 FPGA

FPGAs or field programmable gate arrays are valuable toolshndan help in several
design stages. On the one hand an FPGA module can be usecetoavprototyping
model. Developing an ASIC chip is very expensive because andesign is finished,
changing its structure requires a completely new chip. F®GiRe designers the oppor-
tunity to test the complete hardware (up to some timing ltmoins) for possible bugs and
problems.

On the other hand with the development of large and inexpe®$?GAs it is possible
to design the complete system in a single chip (an SoC, orteraysn chip). These

systems perform all necessary operations and can be regadigt any time. A system

1.3. Hardware for Cryptography 17

=
=
H

0000
OOOD0O000E
OO0O000O00E
OO000000E
DDDQQDDD%

ol AOOOOOOLE

HENNN
[]

N
L[]
LU

|

I
Bl ock Sel ect RAM

HEnERnnR=E
[T T T LT

Figure 1.5: A simplified version of a Virtex-Il FPGA

which is developed and encounters a problem needs only tedomfigured to solve the
problem. For our example with the accelerator card it is {pbs$o0 make the co-processor
on an FPGA and modify it with respect to the workload during dperation.

The designs explained later, in Chapters 2 and 3, are impieden the FPGASs from
Xilinx company. A simplified overview of the structure of aRGA in the Virtex Il family,
on which the designs are implemented, is shown in FigureFobcomplete information
about these FPGAs see the online documentation on the éntetdinx 2005). There
are several modules on such an FPGA, but we mention herewalgftthem which are
important in our designs.

Block SelectRAM memory modules provide large Kbit storage elements of dual-
port RAM. These modules can be separately read and writtéwdyrocessor modules
and can be especially used as interfaces between procasscs-processors.

The Virtex-1l configurable logic blocks (CLBs) are orgardze an array and are used

to build combinational and synchronous logic designs. HatkB element is tied to a

18 Chapter 1introduction

LurT Regi st er

LuUT Regi ster

Figure 1.6: A simplified view of a single slice in a CLB of a \éx-1l FPGA

switch matrix to access the general routing matrix. A CLByedat comprised similar
slices, with fast local feedbacks within the CLB. There dse &ast connections between
each CLB and its neighbors. Each slice includes severa frann which the most im-
portant ones for our designs are: twanput function generators, two single-bit D-type
registers, and two multiplexers. The arrangement of thass jis shown in Figure 1.6.
In this figure look-up tables (LUTs) areinput modules which have a single-bit output.
These LUTs are each capable of implementing any arbitrdefined boolean function
of four inputs. The output of each LUT goes to the multipleaad the register. The
multiplexer selects, whether the LUT or the register shdaéldonnected to the output of

the slice. This configuration is helpful when designing pipe circuits.

1.3.4 Circuit Parameters

The cost parameters which we use to compare different designthe implementation
areas and the times required for the computation of resWts.do not consider energy
efficient implementation techniques and do not use the coadienergy as a cost func-

tion. The area of a combinational circuit — a circuit conitaghno memory element — is

1.3. Hardware for Cryptography 19

expressed as the number of two-input gates. In FPGA-basauditsithis parameter can
be compared with the number of LUTs since these blocks apmnsible for the imple-

mentation of boolean functions in FPGAs. However, most afadesigns use memory
elements and are sequential. The pipelined multipliershaper 3 especially use regis-
ters of the slices. To make a fair comparison between twermifft circuits in the case
of sequential circuits, i.e., when timing and memory elets@mne important, we use the
number of slices for the comparisons. In this way we counh ltioé number of boolean

function gates and the bit-registers.

The time parameter of a combinational circuit is computethaslepth of the circuit.
This is the minimum allowable clock period, when this citesiused without any further
modifications. For the FPGA-based implementations it iselbéd compute the time cost
as the product of the number of the clock cycles by the minimallawable clock period.
The latter contains several parameters like the propagatetays of cascaded LUTS,
delay of routing resources including buffers in high fant-nets, and setup times of the
registers. For the case of two-input gate model the numbgatas in the longest path

represents the time cost.

The best method to compare two circuits is to analyze theia and time costs in-
dividually. But in some situations one parameter is moredrtgnt (or more expensive)
than the other. For example in a very small FPGA a much fastpleimentation which
does not fit on the FPGA is of no use. Here the fair measure opeaason, which is
also well established in the literature, is the product efay time or AT. We use this
measure to compare circuits when there is a conflict betweemwio parameters. The
area-time measure has also another property which can ldefasthe comparison of
parallel implementations of a method. Considering a ciritube a parallel algorithm the
area-time measure can be thought of as the consumed enetwt afgorithm. Here the
area is the sum of the power of processors which will be digsgbin the computation
time. The energy of an ideal parallel implementation shdécequal to that of a serial

implementation, but there is often a penalty factor due &opérallelism. This measure

20 Chapter 1introduction

JAVA application

JAVA security provider
| t 1
ECDSASignature ECDSAKeyPairGeneratdr

! | f

JAVA Native Interface

Raptor card

Figure 1.7: Using the raptor card as an ECDSA co-processor

shows how good different parallel implementations of aadeligorithm are.

1.3.5 A Typical Scenario, ECDSA Accelerator Card

As a typical scenario we have used our FPGA-based impleti@mttp be on a PCI
card in a PC. The system was designed to be JAVA compatibledaneloped in such
a way that a programmer can access the processor functies#firough JAVA libraries.
The platform which we used was the Rapid prototyping platf@Raptor card) from the
working group AGRuckert in the university of Paderbornthie next section we describe

the specifications of the system.

1.3. Hardware for Cryptography 21

Digital Signatures in JAVA

The communication between JAVA applications and the ECCosk®own in
Figure 1.7. The JAVA application starts by instantiatingotwobjects of type
ECDSAKeyPai r Gener at or and ECDSASI gnat ure which are derived from
DSAKeyPai r Gener at or andDSASI gnat ur e in the JAVA security provider respec-
tively.

The clasDSAKeyPai r Gener at or is a placeholder for classes which generate a
set of public and private keys once a security parametee(@éy the key length) and the
algorithm are specified. In our implementation the secysdayameter, which specifies
the extension degree of the finite field, can be dfly. To use other parameters the co-
processor has to be synthesized again ,while the genexddttbe required VHDL-codes
can be done automatically. The generated key pair is raedume structure which is
already defined by JAVA.

The clasDSASI gnat ur e contains virtual definitions of the necessary operations to
perform digital signature algorithm, namely signing andifyeng the signature. Again
parameter passing is done in a standard way predefined by. JAVA

As we have already said these two classes contain only erpptations which have
to be implemented for a cryptography system in JAVA. Our ienpéntations perform the
operations according to Algorithms 1 and 2. For the genamadf a key pair only one
multiplication over the elliptic curve is required which dene using the co-processor.
There are several other operations like generation of rndanbers, long integer arith-
metic, and computing the SHA. These are performed usingnaktémplementations of
JAVA.

The security objects which we have implemented communigdkethe card through
Java Native Interface (or JNI). JNI is a facility which is poto JAVA systems to enable
them to access libraries in other languages like the C laggyua

The driver for the card which is developed in the working gréG Teich of the Uni-

versity of Paderborn is able to get @l -bit integer and a poir?, start the card to perform

22 Chapter 1introduction

Finite field Fai01

Elliptic curve v oy =2 +ax +0b
a=1
b="7BC86L2102902EC4D5890FE8 B6 34981
FE2TE0482750 FEFC03

Number of points | 156927543384667019095894735583461499581
5261150867795429199 - 4

Key generation time 3.6 ms

Signing time 3ms

Verification time 4 ms

Table 1.8: The specifications of our PCI based ECDSA co-msmrewith the timings
achieved on a XCV2000e FPGA when the clock frequendy is MHz.

the point multiplication, and return the result. This driwdich has been developed using

C++ is a part of the system and is accessed through the JNI.

Some information about our design is shown in Table 1.8. istdble the parameter
b is the hexadecimal representation of that elemefitin. The best software based time
known to us is abous.5 ms using @00 MHz UltraSPARC Il processot (see Gupta
et al. (2004)). We know of no hardware implementation of ECDSA. Peeformance
of our ECDSA co-processor can be increased by implementing integer arithmetic
in FPGA instead of using the JAVA inherent libraries. As ihdae seen this system is
fairly fast even with a very slow clock frequency. Embeddsugh a design in a handheld

device can result in energy saving which is an importantrpatar.

3The time is not accurate since it has been visually intetpdlrom a continuous curve.

1.4. Conclusion 23

1.4 Conclusion

In this chapter, elliptic curve cryptography, the struetof FPGAs, and the parameters
used to compare different hardware designs were brieflewad. The structure of a test
elliptic curve digital signature (ECDSA) co-processorngsan XCV2000e FPGA, has

also been studied and the benchmarks have been presented.

24

Chapter 1introduction

Chapter 2

An FPGA-Based Elliptic Curve
Cryptography Co-Processor

2.1 Introduction

Elliptic curve cryptosystems are public key protocols wdescurity is based on the con-
jectured difficulty of solving the discrete logarithm prebi on an elliptic curve.

AssumingQ to be a point of order. on an elliptic curve it is desirable to compute
mQ, wherem is an integer smaller tham This will be done by using several additions,
doublings, or possibly negations of points on the elliptio/e to achieve the result. These
operations boil down to arithmetic operations in the finiddix = ., over which
the elliptic curve has been defined. In this work we concéatom fields which have
characteristic 2, i.eq is a power oR.

The required computations to comput&) can be categorized at three levels. Each
requires thorough investigations to enable the design ajlaperformance elliptic curve

co-processor (see Figure 2.1):

25

26 Chapter 2FPGA-based Co-processor

Scalar multiplication

Point addition and doubling

Finite field arithmetic

Figure 2.1: Three stages of performing elliptic curve pomitiplication.

e Scalar multiplication: By scalar multiplication or point multiplication we mean
the combination of additions and doublings of points to catapQ for givenm
and Q. There are several methods like the additive variant ofatguksquaring
or addition-subtraction chains which do this task usin@ogm) doublings and
additions (see Knuth (1998) and Morain & Olivos (1990)).

¢ Point addition and doubling: Multiplication of a point by a scalar consists of
several additions, doublings, and possibly negations witpon the elliptic curve.
Negation or computing-Q is almost free of cost but the other two operations are
more expensive. There are several representations ofspoirdn elliptic curve

which influence point addition and doubling costs dependim¢he platform used.

e Finite field arithmetic: Point coordinates which have to be processed during point
additions and doublings are elements of a finite figld By accelerating opera-
tions in this field, we can improve the efficiency of point lanitetic and as an effect
increase the performance of the co-processor. This can e lpoptimal selec-
tion of finite field representations and by the hardware stnes which perform

addition, multiplication, and division in the field.

There are several published reports of efficient implentemts of elliptic curve co-
processors. see Gabal.(1999), Gregonet al. (1999), Leong & Leung (2002), Orlando
& Paar (1999), and Lutz & Hasan (2004)). The distinguishiagtdr in our work is the

2.2. Finite Field Arithmetic 27

application of parallelism in both bit and finite field opeoats. Unfortunately the perfor-
mance of the FPGA-based systems depends on the platformes dirett comparison is
possible only when the same target is used. Lutz & Hasan jd6{zlemented their co-
processor on the same FPGA model as used in this projectr 3ystem require8.233
ms for a point multiplication on a generic curve oW&fiss when the clock frequency is
66 MHz. The current design on the other hand requiré8 ms for a generic curve over
F4101 With the same clock frequency and on the same FPGA. It shafbimted out that
their design is optimized for Koblitz curves (see Hankersbal. (2003)) and not generic
curves.

This chapter is arranged in the following manner: Sectighcdmpares two popu-
lar finite field representations, namely the polynomial ®asid the normal basis for the
efficiency of arithmetic, when elliptic curves are implertesh Section 2.3 compares dif-
ferent representations of points and their effect on theieffcy when parallel and serial
implementations are considered. Section 2.4 comparesreliff methods of computing
an integer multiple of a point. Section 2.5 presents the-gath and important modules
in the implemented FPGA-based co-processor followed bypdrehmarks achieved in
Section 2.6. Finally Section 2.7 summarizes the result@fprevious sections. Some
of the materials of this chapter have been already publishBédnaraet al. (2002a) and
Bednareet al. (2002b).

2.2 Finite Field Arithmetic

It is known that the additive group of a finite fieR}. can be represented as a vector space
of degreen overF,. In this manner elements &%. are represented by vectors of length
n consisting of0’s and1’s which can be added using XOR operations. The operations of
multiplication, squaring, and inversion depend highly loa $elected basis.

There are three famous finite field representations, nanpelynomial, normal, and

dual bases. Arithmetic in dual bases requires a change cégeptation for each oper-

28 Chapter 2FPGA-based Co-processor

ation. This makes these bases inefficient for cryptograpbiposes because the finite
fields which are used here are of significant size and correvgould be inefficient. We

consider only the two other bases in this section.

2.2.1 Polynomial and Normal Bases

One popular representation for finite fields is the polyndbaais. A polynomial basis of
[y is a basis of the fornl, w,w?, -+ ,w" 1), wherew is a root of an irreducible poly-
nomial f(x) of degreen over[F,. In this basis elements of the finite field are represented
by polynomials of degree smaller tharand operations are done by means of polynomial
arithmetic modulof (z).

Another representation for finite fields is the normal bassesentation. Here a basis
of the form(a, a2, - - ,a*" ") is used for the finite field,.. It is easily verifiable that
squaring in this basis can be done using only a circular.gkittitiplication in this basis
is more complicated than in the polynomial basis. Furthfarination about finite fields

and bases can be found in several books, e.g., McEliece Y1987

2.2.2 Multiplication

Multiplication and inversion are the most resource consignoperations in elliptic curve
cryptography. However, although inversion requires mgace and time than multipli-
cation it is possible to use a single inversion for the whobda multiplication by means
of appropriate point representations. It is also impeeativoptimize the multiplication
algorithms.

Finite field multipliers, depending on the generated bitscherck cycle, can be grouped
into the three categories of serial, parallel, and seraiel multipliers. The general
structure of a finite field multiplier foF,», together with the timings of the three groups
are shown in Figure 2.2.

We consider only parallel-in multipliers, meaning that thes of the representations

2.2. Finite Field Arithmetic 29

a (input) £ (input)
Multiplier
clock —;
~ (output)
(a)
output: Cr0) Cr(1) Cr(2) Cr(n-1)

clock: e

~—— nclock cycles ——
(b)

Cr(0)

Cr(1)

output: Cre)

clock: cee

1 clock cycle

(€)

output: Co Cp Oy o Cm-1

cock: [LI L] L L

— m = [2] clock cycles—

(d)

Figure 2.2: (a) The general structurelof. multipliers, together with the timing dia-
grams of (b) serial, (c) parallel, and (d) serial-paralleiltipliers of word-lengthw. The

elementsy and are multiplied to get their product,

30 Chapter 2FPGA-based Co-processor

of inputs are simultaneously loaded into the multiplierisTiequires that each of the input
buses ben-bits wide. The clock signal, like other sequential desjgpecifies the timing.
The rising edge of each clock cycle defines the beginning etiome-interval. The period
of the clock signal cannot be arbitrarily short. To see whystder the multiplier block
which contains both logic elements and flip-flops. When thmiis of a path, which
consists of logic elements only, are applied there is some teeded for its output to
be valid and the inputs should remain constant over this.tiflere is also the settling-
time requirement. The settling-time is the time during vhtlse input-pin of a flip-flop
must remain stable before the sample-pin of the flip-flop actieated. The clock period
should not be shorter than the sum of these times. We reféidstim by the “delay”
or the “minimum clock-period”. Obviously the multiplicat time is the product of the

number of clock cycles and this delay.

Figure 2.2-b shows the timing of a serial multiplier. A sénmultiplier generates each
of the output bits in one clock cycle, hence it requitedock cycles for a multiplicationin
[Fon. The sequence of output bits), ¢-1), - - -, ¢-m—1), I.€., the bits of the representation

of the producty can have the same or the reverse orderingas,--- ,¢,_1.

Parallel multipliers, whose timing is shown in Figure 2,23enerate all of the output
bits in a single clock cycle. The output-bus is in this cadgts wide. The serial-parallel
multipliers fill the gap between the serial and the paralleltipliers. They generate
w > 1 bits of output in each clock cycle These sets ofy bits are shown ag), (1,

-+, C,_1 In Figure 2.2-d. The parameteris henceforth referred to by “word-length”.
A serial-parallel multiplier of word-lengthy performs a multiplication iffy. in [n/w]

clock cycles.

It should be mentioned that there are other parallel migtiphwhich require: cycles

to compute the result, but in this time other data can be felem to be processed. We

1Each serial multiplier can also be considered as a speaialafserial-parallel withv = 1. The reason
for the separation of these two concepts in this text is theret are arithmetic methods which are serial but

do not possess any direct serial-parallel implementation.

2.2. Finite Field Arithmetic 31

categorize them depending on their application. If theypgvelined multipliers and there
are several input values to be fed into these multipliersisetjally we group them as
parallel multipliers. The reason is that the multiplicatiaf ¢ values in this case requires
m + t — 1 cycles. The parametérbecomes insignificant for large values »af and
effectively only one clock cycle has been used. If on the otfaed no new input can be
loaded during the multiplication, either due to the stroetof the multiplier or because
there are not enough input-data available, we assume thehsulto be serial-parallel.
In all of these cases the multiplication time is the minimuatk-period times the number
of clock cycles. Parallel multipliers are generally chéeazed by large area and delays.
They are used for small input lengths. Serial multiplietsvalsmaller area and shorter

delays. They are used when there is only a limited amountsaf an the chip.

In this section we discuss only multipliers with low numbétbds per clock cycle,
i.e., we assume that many clock cycles are required for desimgltiplication. Some
parallel multipliers will be studied in the next two chaterThe multipliers which we
analyze in this section are linear feedback shift regi¢te5R) and Massey-Omura (MO)
multipliers. These are the two most popular serial-parahés for polynomial and nor-
mal bases respectively. We analyze and compare them in llbevifog three models to
reflect different abstraction levels of a circuit (See Bedre al. (2002a) and Bednara

et al. (2002b)).

e Theoretical 2-input gate: This is the most popular model in the literature. It is
very well suited to analyze the gate complexity of ASIC or YIb&sed hardware
modules. But its time analysis results are inaccurate éspemn FPGAS, since
they do not reflect the delay of buffers used in high fan-othgar routing elements

which are used in FPGAs.

e FPGA 4-input LUT model: This is a more practical abstraction of many FPGA

based circuits. This model does not only compute the numbdriput units

32 Chapter 2FPGA-based Co-processor

(like LUTS?) but also estimates the propagation delays correspondingfters in
high fan-out nets. These results can be extracted from adianalyzer before
running the “Place and Route” (par) program. This prograthedinal part during
the synthesization of a circuit for FPGA implementation. &ulevery block of the
hardware design is converted to segments which exist onRi@AFand a net-list
is generated, this program finds the appropriate positiadscannections on the
target FPGA and generates a binary configuration file (trstrbam file) which can
be downloaded onto the FPGA.

e FPGA model: This description of the circuit contains real gate and tirmeplex-
ities of the circuit when implemented on the platform FPGAa& complexity
is computed as the number of used slices and timing complagithe minimum
allowable period for the clock signal across the circuit tiplied by the number
of clock cycles required to compute the result. The clockguedepends on the
propagation delay which contains delays of logic elemdnitgh fan-out buffers,
and routing resources. The costs in this model will gengddpend on the imple-
mented circuit which will not be unique due to the used noewheinistic place and
route algorithms. To achieve more convergent results wegggtiming constraints

for “par”.

2-input Gate Model

The LFSR multiplier is best known because of its simplicttyperform finite field multi-
plication in polynomial basis. It generates, in its simpfesm, a single bit of output in
each clock cycle, but can be easily extended to a serialkglamaultiplier. A schematic
diagram of such a multiplier foF,. is shown in Figure 2.3. In this figures = [Z],

wherew is theword-lengthor the number of generated bits per clock cycle.

2Lookup tables

Bl — " _’Bm—l AO] Al — " _)Am—l

o bl

Overlap circuit

| |

O o =0 o f o —O e

Feedback circuit

Figure 2.3: Schematic diagram of a serial-parallel LFSRtipitgr

d_WIYINY pIaiq |julq g2

€e

34 Chapter 2FPGA-based Co-processor

At the beginning the polynomialgz) = 327 a;2" andb(z) = Y1) b2’ are loaded

m

into the word registeré andB to generate) _; _01 A7 and ZT:_Ol B;x" respectively,

where eachd; and B; are polynomials of degree smaller than The word multipliers
Mmultiply the highest word of the registBrby the words ofA. The Overlap circuit adds
the coefficients of common powers with each other. In eacbkobycle the registerB
andC will be shifted to right byw bits, which is equivalent to multiplying by*. During
shifting C to right, some powers of will be generated which are greater than or equal
to n and should be converted to their representation in the potyal basis. This will
be accomplished by the feedback circuit which hardwiresehe smaller powers of
according to the polynomial basis representation‘dbr n < i < n + w. The product
of a(z) and By, is a polynomial of degree + w — 2 which is again larger than — 1
whenw > 1. We call the action of converting the produced powers whiehgaeater
thann — 1 into the polynomial basi® “Feed forwarding”. This task will also be done
using the “Feedback circuit”. Theorem 1 states the spacdiar@complexities of this

multiplier.

Theorem 1. LetP be a polynomial basis fdf,» generated by the irreducible polynomial
f(z) € Fylz]. In an LFSR multiplier of word lengtty for P the required number oAND
gates isnw? and the number aKOR gates is

(w—1)(mw—1)+n—1+ H(@"™ 1) + 2“’2”:_ H(z").

Herem = [2] and H (') is the Hamming weight, or the number of nonzero coefficients,
in the representation of’ in the basisp.

Proof. Each of them word multipliers requires? AND and (w — 1)? XOR gates. The

ith word multiplier computes the powerg'~b to z*(~D+2w=2 Hence, theth & the

(¢ + 1)st multipliers havev — 1 common coefficients. There ane — 1 overlap modules
which require in tota[m — 1)(w — 1) XOR gates. Output bits of the overlap circuit can

be categorized into two groups, namely the powers smaléamitand the powers which

2.2. Finite Field Arithmetic 35

are greater than or equal to Adding the first group to the contents of memory cells
during shifting in the registeC requires, — 1 XOR gates (the constant coefficient has no
neighbor on the left side and requires no addition). But tireogroup should be com-
puted in the basi® and added to the register values. It will be doneXBy*"* H(a")
XOR gates. Finally the feedback circuit has to increment thestegvalues by the poly-

nomial basis representation of the high powers génerated by shift to right. It requires

Sl i (2') XOR gates. Table 2.4 summarizes these resullts. O
Module AND gates XOR gates
Word multipliers muw? m(w — 1)?
Overlap circuit 0 (m—1)(w—1)
Overlap circuit 20 gl 0 n—1
to registerC g g2 0 SR (1)
Feedback module 0 S (2

Table 2.4: Number of gates in a serial-parallel LFSR mu#ipl

The propagation delay depends on the distribution of ondseipolynomialf (z). If
representations of no two different powefsandz’ for n < i, j < n + w have the same
nonzero coefficients, the feedback circuit will contribtdgean increment of at most two
gates. One for the power generated by the shifting and one thhe parallel multipliers.
For an irreducible polynomigl(z) = 2"+ ";_, ™%, wheres, is an ascending sequence
of positive numbers, this happensuf < s;. For example for the two cases that the
irreducible polynomials are trinomials and pentanomiais 2, 4, respectively. The next
corollary computes the area and time complexities of theR_Riltiplier for small values

of w.

36 Chapter 2FPGA-based Co-processor

Corollary 2. Let? be a polynomial basis fdf,. generated by the irreducible polynomial
"+ 1 2" %, wheres; < s; if i < j. If the word lengthw is smaller thans; then the

area and minimum clock periods of an LFSR multiplier in trasib are given by

ii Arpsr(n, P, w) = mw? + (w—1)(mw+2r —1)+n—1+r,

Ty + 2T ifw=1,and
Ta+ (34 [logy(w))Tx ifw>1

DLFSR(n7 iP? ’UJ) =

respectively. Her& ', is the delay of alAND gate, andl'y is the delay of arKOR gate.

Proof. The area complexity (casecan be computed by settidg(x?) tor in Theorem 1.

To compute the minimum clock period in case ii we observesihett parallel multiplier
has a delay of 4 + [log,(w)]Tx. The overlap circuit, shift register adders, and feedback
circuit, according to what already mentioned for the case: s, resultin a delay 027’y

forw = 1and3Ty if w > 1 (there is no overlap circuit ifv = 1). 0

It is also known that in a finite fiel@,~, in which an optimal normal basis of type
exists, a Massey-Omura multiplier of word lengthrequireswn andw(2n — 2) gates of
typesAND & XORrespectively and has a propagation dela¥ of- (1+ [log,(n—1)])Tx
(See Ko¢ & Sunar (1998)).

A comparison of the two multipliers in the 2-input gate mofielF,i0: is shown in
Figure 2.5. Here the computation time, as the product of theber of clock cycles by
the minimum clock-period, as a function of required aredasted. Values are computed
for different word lengthsv. The polynomial basi® is generated using the irreducible
polynomialz'! 4 22 4 1 andF4e: contains an optimal normal basis of typeAs it can
be seen the LFSR multiplier is dominant in all practical apieg points.

Table 2.6 displays the comparison of the two multipliersim4-input LUT and FPGA
models. The area in these two models are equal and the minimum geckeds are

shown in the second and third columns for each multipliepeesvely. It can be seen

3A Massey-Omura multiplier fow = 96 does not fit on our FPGA and no delay can be computed.

2.2. Finite Field Arithmetic 37

— LFSR
- —- Massey-Omura

500 1
400 A
300 -
200 1

100 +

~—_
-~

Time (Number of clock cycles Minimum clock-period)

4000 8000 12000 16000

Area (Number of LUTS)
Figure 2.5: Time versus Area comparison of LFSR and Massay@ multipliers in

o101

o

o

38 Chapter 2FPGA-based Co-processor

from Table 2.6, that the delay grows faster than estimateshwihe multiplier gets larger.

An effect which is caused by the routing resources.

Bits per LFSR Massey-Omura
clock | Slice| Delay (ns) | Delay (ns)| Slice Delay (ns) | Delay (ns)
(4-input LUT) | (actual) (4-input LUT) | (actual)
1 288 1.577 3.136 397 7.506 9.847
2 383 2.116 4.295 509 7.506 10.619
4 436 3.194 4.967 730 7.506 12.670
8 762 3.733 6.278 1172 7.506 15.666
16 1513 4.811 11.554 2052 7.506 18.403
32 2558 5.889 15.423 3814 7.506 16.568
48 3642 8.584 21.745 584 7.506 26.720
64 4712 7.506 22.419 7347 7.506 26.886
96 6837 7.506 27.846 10847 - -

Table 2.6: Comparing the LFSR and Massey-Omura multipliefB,:o: implemented
on a XCV2000e FPGA. Delays are the minimum clock period inorsgconds for the

4-input LUT model and the actual FPGA implementations respely.

2.2.3 Squaring

Another important operation in elliptic curve cryptogrgps the squaring. It can be done
more efficiently than multiplication. For comparison we simer again two different

cases of normal and polynomial bases.

Normal Bases

Squaring an element which is represented in normal basisresgonly a cyclic shift of

the corresponding vector. We assume the space and time exitrgd of this operation to

2.2. Finite Field Arithmetic 39

2-input gate | 4-input LUT FPGA model

Space| Delay | Space| Delay | Space| Delay
95 2T 91 6.477ns 91 8.012ns

Table 2.7: Space and time complexities of squaring,im using three different models.

be 0.

Polynomial Bases

Computing the square of a polynomial ovgr can be easily done by inserting zeros
between each two adjacent coefficients. The resulting pohyal should then be reduced
modulo the irreducible polynomial characterizing the baSome upper bounds for the
space and time complexities are reported in Wu (2000). [fitteglucible polynomial
is of the formf(z) = 2™ + 2 + 1 andk < 5, then reducing a general polynomial of
degree2n — 2 modulo f(z) can be done using a circuit with at mast. — 1) XOR gates.
The depth of the circuit would be at madxt’y. Figure 2.8 shows the circuit to perform
squaring inFy01. In this figure the circles in théh column show the input coefficients
which must be added to compute tik output-bit. For example the circles in the gray
box show that the coefficient afin the resulting polynomial is the sum of; (for 21%2)
anda,g; (for ™). Here the circles in the first row are the low-order coeffitée to aos
of the original polynomial corresponding with the poweét® 2.

This kind of squarer is especially attractive for FPGA basieclits where the struc-
ture of circuits can be modified in each design depending esdtected finite field. For

the case off,11 we have used the trinomiaf®! + 2° + 1 to represent the finite field.

Results in three models are shown in Table 2.7.

0 2 4 6 g 10 12 14 16 180 182 184 186 188 190

aO-. -a95
(1 _$190)

age (33192) [J o

agy (33194) [o
agg (33196) [] [

agg (33198) ([] [

a187(x374) [] [] []
a188 (5E376) [] ([] []
a189 (33378) {] [] []

a190 (SL’380> [] [] []

Figure 2.8: The Distribution of additions for squaringfine: in the polynomial basis generated by' + z° + 1

oy

10Ss3201d-0D) paseq-yod-g J1a1deyd

2.3. Point Addition and Doubling 41

2.2.4 Inversion

There are generally two different methods for inversionnitdifields, namely the Euclid-
ean algorithm and Fermat’s theorem. Classical Euclidegorighm requires one polyno-
mial division and two multiplications in each stage. Thera most: stages to compute
the inverses iff,.. This fact makes it inefficient for hardware implementasiomstead
the binary Euclidean method is often used where only adddfgolynomials is required
(see Guo & Wang (1998), Takagi (1998), and Shantz (2001) bihary Euclidean al-
gorithm requires in the worst cage clocks which cannot be reduced using more space.

We use here the second method which is based on the fact that:
g% =gt (2.2)

for any element: € FJ,. To compute thé2" — 2)th power of an element we use the
method by Asanceet al. (1989) and von zur Gathen & Nocker (2003). Application of
this method tadF,i0: can be summarized as represented in Figure 2.9. As can be seen
an inversion requires0 multiplications and 90 squarings independent of the finite field

representation.

2.3 Point Addition and Doubling

Point arithmetic is another building block for multipliean in elliptic curves. As it is
mentioned in Chapter 1, points on an elliptic curve togethign the point at infinityO
form an abelian group. There have been different proposalpdint representations.
Each of them has its own advantages and drawbacks and soinenofare suitable for
special implementation platforms. For a detailed surveditierent representations in
prime finite fields see Cohest al. (1998); Lopez & Dahab (1999a) give a survey for
binary finite fields. We review such representations and tiesiource consumptions for
parallel implementations. Most of these works are alredigylén Bednaraet al. (2002a)

and Bednara&t al. (2002b). In our analysis we count only the number of inversiand

42 Chapter 2FPGA-based Co-processor

00 ye= {«¥ 71}
L peyion {«%1}
20 yeyom o {277
3 ey {27
4: Yio < yés "Ys {55210_1}
3! Y20 y%éo Y10 {55220_1}
6y —uh v {21
7 Yso yiéo Yy {271
8: Ygs y§8 " Ys {55285_1}
9 Yos yééo Y10 {$295_1}
10: Y190 < y3§5 " Y95 {$2190_1}

11: Output— g%, {z2"' 2}

Figure 2.9: Sequence of multiplications and squaringsrfeenision inFio

multiplications because of their higher costs compareditihteon and squaring in FPGA

designs.

Parallel implementations are interesting both from haréwand software point of
views. It is shown in Section 2.2.2 that multiplication gtow faster than linear when
the word length is increased. In hardware designs, thisesigdpreaking up large multi-
pliers into as many parallel multipli€ras possible. Efficient arithmetic with processors
which contain several ALUs like C6000 DSP series requiresljeh algorithms to be
developed. This would be also advantageous for better upgeline stages in RISC
processors (see Hennesy & Patterson (2003)). An analygessible parallelism for
some special types of finite fields has been already desdop&mart (2001). We con-
sider here again only fields of characteristisince they are more suitable for hardware

implementations.

“We assume efficient communication inside the FPGA.

2.3. Point Addition and Doubling 43

2.3.1 Simple Representations

Possibly the most straightforward representation of goamt elliptic curves is the affine
representation from which other representations can beedler Here every point is
specified using two coordinatasandy. We consider the general equation of a non-
supersingular elliptic curve over a field of characterigtaccording to Blaket al.(1999),

namely:

v 4oy = 2% + ax® +b.
Two different point$2; = (x1,y;) andQ, = (x4, y) can be added to result in a third

pointQ3 = (3, y3) using the following formula ifc; + x5 # 0:

\ = y1+y2’
$1+l’2
r3 =M+ A+ 1+ 25 +a, (2.2)

ys = (1 + 23)A + 23 + V1.

The sum of two different points if the sum of theictoordinates i§ is the point at infinity,
or 0.

The pointQ, = (x4, y4) = 294, if 21 # 0, can be computed by:

)\224—1’1’
x1

b
:E4:)\2+)\+a:a:f+ﬁ, (2.3)
1

Ys = (21 + T4) A + T4 + 1.

If ;1 = 0 thenQ, will be the point at infinity.

As can be seen, each of the addition or doubling operatiaqnsres1 inversion,?2
multiplications, and squaring orl division, 1 multiplication, andl squaring. We denote
this cost byl I + 2M since the costs of addition and squaring in the field are giig.
The second multiplication in each of these relations depamdthe first one and they

cannot be performed in parallel.

44 Chapter 2FPGA-based Co-processor

Representation| Mappings Addition Doubling

x Yy costs| depth| costs| depth
Jacobian{) X/Z*|Y/Z3 | 16M | 4M | 5M | 2M
Lopez/Dahabf) | X/Z | Y/Z2 | 13M | 4M | 4M | 2M

Table 2.10: Some elliptic curve point representations Witgir corresponding costs.

A possibility to avoid inversion in each point addition aneldbling is to use a projec-
tive point representation. In this casandy from the affine representation are substituted
by X/Z™ andY/Z" for some specific values af andn which result in different projec-
tive representations. All poinf{e X, oY, aZ) for a # 0 belong to the same equivalence
class which is represented B : Y : 7). Setting theZ-coordinate equal td results
in the sameX andY coordinates as the corresponding affine representatianpdimt at
infinity will be the equivalence clag® : 1 : 0). Here we consider the most popular Ja-
cobian and the most efficient Lopez-Dahab representatiaide 2.10 summarizes these
representations, their costs, and the length of the lormgesputation path when a parallel
implementation is used. It should be mentioned that thebhlanaddition can be done
with fewer multiplications, but that implementation hasgker depth and is not efficient
for parallel implementation. Data dependency diagramsdare of these representations
are shown in Figures 2.11, 2.12, 2.13, and 2.14.

2.3.2 Mixed Representations

Mixed representations for elliptic curves have been inddpatly published by Cohen
et al. (1998) and Lopez & Dahab (1999b) for prime and binary finieddfs respectively.
Indeed the work by Coheat al. (1998) is more general and can be applied to simple
double-and-add and addition-subtraction chains as welltlaar sophisticated methods
like Brauer methods (see Brauer (1939)). Because of menmaiations in FPGA cir-
cuits we do not consider windowing methods and discussIpanaiplementation of the

method by Lopez & Dahab (1999b) only.

2.3. Point Addition and Doubling 45

Figure 2.11: Data dependency of parallel implementatiopadit addition in Jacobian

representation

46 Chapter 2FPGA-based Co-processor

Figure 2.12: Data dependency of parallel implementatiopadt doubling in Jacobin

representation

Representation Addition Doubling

costs| depth| costs| depth
Mixed Jacobian{) 12M | 4M | BM | 2M
Mixed Lopez/DahabQ) | 10M | 4M | 4M | 2M

Table 2.15: Addition and doubling costs for mixed repreagon arithmetic over elliptic

curves.

The mixed Lopez-Dahab and mixed Jacobian addition methoglother kinds of
projective additions in which th¢ coordinate of one of the points is set 1o In this
way some multiplications and squarings can be saved reguitinew addition formulas

which are shown in Figures 2.16 and 2.17. The new costs aversinorable 2.15.

2.4 Scalar Multiplication

Scalar multiplication or the task of computingQ, for a given integern and a pointQ,
consists of many additions, doublings, and possibly negatwhich must be combined

together. The selected method to perform these simpleatpes depends on several

2.4. Scalar Multiplication 47

Figure 2.13: Data dependency of parallel implementationpofnt addition in

Lopez/Dahab representation

48 Chapter 2FPGA-based Co-processor

Figure 2.14: Data dependency of parallel implementationpoint doubling in

Lopez/Dahab representation

parameters like the point arithmetic costs and the amouavafable memory (for pre-
computation and intermediate results). FPGAs have onlgdoramount of memory, and
these memory blocks (see Block SelectRAM in Section 1.3)d&®&ibuted across the
FPGA. Accessing these memory cells is one of the slowestatipas inside FPGAs.

Hence, we limit our study to methods which do not require pnggutations.

There are three methods which can be applied here: The “daurdl add” and the
“addition-subtraction chains” methods which are thordyghvestigated in the litera-
ture (see Knuth (1998), Morain & Olivos (1990), and Otto (2)0and the Montgomery
method which is developed by Montgomery (1987). Lopez & &8afl1999a) have used
the closed form formulas of point addition and doubling ifiref representation to ap-
ply the method to fields of characteristic The “double and add” method requires on
averagen doublings andq/2 additions for multiplication of by an bit random num-
ber. Addition-subtraction chains which are introduced byr&dn & Olivos (1990) insert
subtractions into addition chains. These structures dseréthe number of operations to
n doublings and:/3 additions on average. The Montgomery method requires lgxact
n doublings andh additions for the complete multiplication, which is moreuhother

methods, but in each of these operations, aklyand Z coordinates have to be com-

2.4. Scalar Multiplication 49

Figure 2.16: Data dependency of parallel implementatiomixed mode point addition

in Jacobian representation

50 Chapter 2FPGA-based Co-processor

Figure 2.17: Data dependency of parallel implementatiomixed mode point addition

in Lopez/Dahab representation

2.4. Scalar Multiplication 51

Figure 2.18: Parallel implementation of point addition e tMontgomery method, in

which z is thez-coordinate of the difference of the two points which areeatitbgether.

Figure 2.19: Parallel implementation of point doublinghe Montgomery method

puted. The computation of thé coordinate is postponed to the last stage. Figure 2.4
compares the average number of required multiplicationkerbest method for each of
these representations. In part (a) of this figure the avarageer of multiplications are
compared whereas in part (b) the average number of cascadéglivations in parallel

implementations is shown.

Data dependency diagrams for addition and doubling in thatiflmmery method are
shown in Figures 2.18 and 2.19, respectively. In Figure Bvb8pointsR ands are added

such thatR — § = Q andx thez-coordinate of is already known.

52 Chapter 2FPGA-based Co-processor

RXX Mixed Jacobian representation

/] Mixed Lopez-Dahab representation
[Montgomery method

2000 T 1000 T
1600 T - 800 + 7777
1200 + 600 T /
800 + 400 +
400 + 200 +
0 0
(a) (b)

Figure 2.20: Average numbers of (a) total and (b) cascadde field multiplications
to multiply a point on an elliptic curve by a random scalar (2! < m < 2!91),
when addition-subtraction chains are used for the paradisions of Jacobian and Lopez-
Dahab methods.

2.5. FPGA-Based Co-Processor 53

2.5 FPGA-Based Co-Processor

As we have seen in Section 2.4 if precomputation is avoidedMbntgomery method
results in the best performance. Based on this observagdrmawe implemented an ECCo
(Elliptic Curve Co-processor) (see Bednataal. (2002a) and Bednarat al. (2002b)).
There are several such implementations, see &ab. (1999), Orlando & Paar (2000),
and Goodman & Chandrakasan (2001) for example. The disshong factor in our
work is the deployment of parallel units. Because of diffenglatform FPGAs, a direct
comparison of these implementations is not possible. Butave shown in Section 2.2.2
that parallel small multipliers (as long as parallelismasgible) would result in a better

performance than larger multipliers.

2.5.1 Data-path Architecture

The generic data-path architecture for the co-processtioiwn in Figure 2.21. Itis based
on the implementation of Daldrup (2002) which uses the migpdesentation. Flexibility
due to finite field extension is achieved by using “generid’apaeters. Modules which
could not be parameterized using VHDL structures are prediloy means of code gen-
erators which are written in C++.

Modularity of the structure makes it flexible to meet varigesformance/area con-
straints which we describe in subsequent sections. Thiststie also lets prototyping
of other point representations by modifying the state nreehParticular modules of the

system are described in the following paragraphs:

e Dual port RAM
This memory stores input and output data together with ttexnmediate results of
computations. This module is implemented using the Blode@&BAM modules
which are briefly explained in Section 1.3. The width of it® lbuses is equal
to the extension degree of the selected finite field,. since it should store and

load polynomials of degrees smaller than One of its ports will be written by

54 Chapter 2FPGA-based Co-processor

Control
module ... ,,,,Contro/l\SjgnaIs ,,,,,,,,,,,,,,,,,,

address

Dual
port
RAM

Multiplexer i i i i
v v v v

‘ Adders ‘ ‘ Squarers ‘ Multipliers ‘ Register ‘

A

Figure 2.21: Data-path structure.

a host processor interface module and the other one will beestied through a

multiplexer to the arithmetic modules.

e Multiplexer

There are three groups of data buses in the processor, mainly

— input data to the dual port RAM which are also the outputs itfiaretic units,
— output data from the dual port RAM,

— and input data to the arithmetic units.

Saving and loading data to and from the dual port RAM is alwage consuming.
It requires at least two clock cycles and it is sometimes nedfieient to load an
arithmetic unit directly from another or the same modulee Tultiplexer decides

which of the first two data lines should be used to load eat¢hragtic module.

e Adders
This module consists of two adders, each of them having tpatibuffers and one
output buffer. Each input buffer requires one clock cycld#¢oloaded. Addition
which is only a bitwise XOR combination will be done in oneatacycle. The

code uses “generic” parameters.

2.5. FPGA-Based Co-Processor 55

e Squarers
There are two squarers which can be used in parallel. Thaitiautput structures
are like those of adders. They are generated using a codeag@ni®r each field

extension.

e Multipliers
As we have already seen at most two multipliers can be deglayehe same
time during the Montgomery algorithm. The multipliers ane tost time and area
consuming elements in our design. They are LFSR multipligrish are generated
using a code generator. They are flexible both with respepblgnomial length
and parallelism degree. So if there is more space on theptafPGA, the word-
length of the multipliers can be increased. But it shoulddien into account that
this structure uses extra clock cycles to load and save frmnirgo register files

and is effective as long as the multipliers require sevdoakecycles.

e Control module
This is probably the most complicated module in our ECCo.oftols the over-
all point multiplication and consists of several other sobites. So we devote a

complete section to it.

2.5.2 Control Module

This part is responsible for performing the Montgomery mplittation algorithm. The
required sequence of point additions and doublings of tigisrdhm is shown in Algo-
rithm 3 in whichk = [log, n]. The point additions and doublings can be in any represen-
tations and thg-coordinate needs to be computed only in the last stage. @additions
and doublings as stated in Figures 2.18 and 2.19.

This module consists of a state machine, performing Algori8, which communi-
cates with several other submodules as shown in Figure ZHke different submodules

are described as follows:

56 Chapter 2FPGA-based Co-processor

Algorithm 3 The Montgomery point multiplication algorithm expressegoint level.
Input: An elliptic curve with a fixed poing on it, together with the binary representation

of the scalar multipliern as(my_1my_o ... mimg)s.
Output: mQ
1: Q; «+— Q,Qy «— 29

2: for 7 from k& — 2 downto 0 do

3: if m; = 1then
4. Q1<—Ql+Q2,Qg<—QQg
5 else
6: QQ<_Q1+QQ,Q1 H2Q1
7 end if
8: end for
Counter
,, : Shift register
v v v A
o g R
w] o
z S 3 >| Control
o g s module _
<l<. ... >| | ___Indirect addresses_ _ -
| A Hardwired ___ |
v v v " addresses Y

Control line mux. } ,,,,,,,,,,,,,,,,,,,

. Control+Address lines. ... i !
\Y

DPRAM address

Figure 2.22: The structure of the control module in ECCo.

2.5. FPGA-Based Co-Processor 57

Counter
The counter in the control module takes care of the numbdemitions in Algo-
rithm 3 to be exactlyflog, n] — 1 whenn is the order of the group of points on the

elliptic curve.

Shift register

This register will be directly loaded from the dual port RAMdacontains the
multiplier m. By each repetition of Algorithm 3 this register will be ded to
right. The LSB of this register is the decision criterion tbe control module state

machine.

Control module state machine
This state machine controls the overall operation of thegssor. It starts other

modules, gives the control to them, and waits for their teations.

Add, Double, and Compute Y

These state machines perform the operations additionJidguand computing the
y-coordinate. The latter will be activated only once durihg total point multipli-
cation. Each of these operations will be started with theroamd of the control
module state machine, which at the same time gives the darfitatl of the proces-
sor elements to these modules. After finishing, they a@i@asignal in the main
state machine which takes their control back by changingthieesses of the con-

trol line multiplexer.

Control line multiplexer

There is a single control bus in the processor which conefstégldress lines for
the dual port RAM, commands to arithmetic units, and theadgestatus signals.
The control module state machine can change the mastersdbulsiby activating

the corresponding address in this multiplexer.

58 Chapter 2FPGA-based Co-processor

e Address multiplexer
As stated above there is a single control line in the proce3se point additions
and doublings in Algorithm 3 consist of the same operatiohgkvare performed
on different variables. Results should also be written ac#ifferent addresses.
This is done during an indirect addressing process. Theaambdule state ma-
chine puts the addresses of the arguments and return valube ondirect address
line inputs of the multiplexer. The module which controls firocessor can select

these addresses by activating the indirect address lingi®@multiplexer.

2.6 Benchmarks

Using the above structure on a XCV2000e FPGA we have perfbeneomplete point
multiplication overF,i9: in 0.18 ms using clock frequency @f6 MHz. Our finite field
multipliers generaté4 bits in one clock cycle. Since the performance of hardware im
plementations depends on the amount of used area we can @oyaesults to Lutz

& Hasan (2004) only, which is on the same FPGA and the samé& élequency. Their
implementation, which is optimized for Koblitz curves, vags0.238 ms for a point mul-
tiplication on a generic curve ovékis:. As a measure of comparison, one of the known
running times for point multiplication in software is givéay Hankersoret al. (2000),
where a point multiplication if¥y:6s is done in3.24 ms. Assuming a cubic growth factor
for the point multiplication (quadratic for finite field migtications times linear for the
size of the scalam) these hardware and software times can be extrapolatedi@nd
5.21 ms over our fieldFy101, respectively. The above hardware implementation reaudts

summarized in Table 2.23.

2.7. Conclusion 59

Implementation Multiplication time
Lutz & Hasan (2004) fofyies 0.238 ms
Extrapolating the results of Lutz & Hasan (2004)i0s: 0.38 ms
Our results forfyi0: 0.18 ms

Table 2.23: Comparisons of different elliptic curve scafaultiplication times on a
XCV2000e FPGA with a clock frequency 66 MHz. To extrapolate the multiplication

time of Lutz & Hasan (2004) foF,:s1 we have used a cubic growth factor.
2.7 Conclusion

This chapter presents the stages of the design and implatitenbf an FPGA-based
co-processor for elliptic curve cryptography. It is shovowhoptimizations in different
levels of finite field arithmetic, point addition and doulgljrand scalar multiplication can
be combined to achieve a high performance co-processoe tHerscalar multiplication
refers to the sequence of additions and doublings which ctergm integer multiplier of
a point. Finally the data-path of the designed co-procesgmther with the benchmarks,
when implemented on a XCV2000e FPGA are presented and cechpéth a published

result on a similar FPGA. The topics of this chapter are:

e Polynomial and normal bases as two popular finite field regpregions are com-
pared. This comparison is made for the costs of arithmetfaite fields for the
special case of elliptic curve cryptography using genemwes. It is shown that,
especially when serial-parallel multipliers are usedypomial bases are always

better than normal bases.

e Several point representations and their effect on the effayi of point addition and

doubling are compared. The mixed representations of pamtsliscussed.

e The double-and-add, addition-subtraction chains, and/thetgomery method for

point multiplication are compared. It is shown that, the Mmmery method re-

60

Chapter 2FPGA-based Co-processor

quires fewer operations than the other two methods, simbeeis not compute the

y-coordinate at each iteration.

e The structure of an FPGA-based co-processor using the Morggy method to-
gether with the benchmarks, when implemented on a XCV200UeA; are pre-

sented.

Chapter 3

Sub-quadratic Multiplication in

Hardware

3.1 Introduction

As mentioned in Chapter 2, arithmetic and in particular fplittation in finite fields are
central algorithmic tasks in cryptography. The multiptioa in our case, in finite fields of
characteristi@, can be achieved by multiplying two polynomials o¥&rfollowed by a
reduction modulo the irreducible polynomial defining thédfiextension. This reduction
can be done again using multiplications or very small ctecui

Classical methods for multiplying twe-bit polynomials requir€ (n?) bit operations.
The Karatsuba algorithm reduces thigt(n'°#23) (see Karatsuba & Ofman (1963)). The
Fast Fourier Transformations (FFT) with a cost@fn lognloglogn) and the Cantor
multiplier with a cost ofO(n(logn)?(loglog n)?) are efficient for high extension degrees
and therefore are not studied here for applications to ognaphy (see Cantor (1989) and
von zur Gathen & Gerhard (1996)).

In this chapter hardware implementations of the Karatsubidad and its variants are
studied. Even the Karatsuba method which has the lowest@ves point with the clas-

sical algorithm is asymptotically good and thus efficientlfoge degrees. Sophisticated

61

62 Chapter 3-Sub-quadratic Multiplication

implementation strategies decrease the crossover pdinebe different algorithms and

make them efficient for practical applications.

Efficient software implementations of the Karatsuba mué#ig using general pur-
pose processors have been discussed thoroughly in threuiter(see Paar (1994), Bailey
& Paar (1998), Ko¢ & Erdem (2002), Hankersenal. (2003), Chapter 2, and von zur
Gathen & Gerhard (2003), Chapter 8). Hardware implemenrtatio the contrary have
attracted less attention. Juagal.(2002) and Weimerskirch & Paar (2003) suggest to use
algorithms withO(n?) operations to multiply polynomials which contain a primenher
of bits. Their proposed number of bit operations is by a amtstactor smaller than the
classical method but asymptotically larger than thoseteitaratsuba method. In Grabbe
et al.(2003a) we have proposed a hybrid implementation of thetkaba method which

reduces the latency by pipelining and by mixing sequentidl@mbinational circuits.

The goal of this chapter is to decrease the resource usagdywfgonial multipliers
by means of both known algorithmic and platform dependenthods. This is achieved
by computing the best choice of hybrid multiplication aligfoms which multiply polyno-
mials with at mosB8192 bits. This choice is restricted to six recursive methods)els:
classical, Karatsuba, a variant of Karatsuba for quadpatignomials, and three methods
of Montgomery (2005) for polynomials of degre¢s5, and6, respectively. The “best”
refers to minimizing the area measure. This is an algorithenid machine independent
optimization. The240-bit multiplier of Grabbeet al. (2003a) is re-used here, which was
implemented on a XC2V6000-4FF1517-4 FPGA, to illustrate@ad type of optimiza-
tion, which is machine-dependent. The goal &18-bit multiplier with small area-time
cost. A single30-bit multiplier is put on the used FPGA and three Karatsubpsare ap-
plied to get from240 = 23-30 to 30 bits. This requires judicious application of multiplexer
and adder circuitry, but the major computational cost stgides in the&0-bit multiplier.
Twenty seven(3%) small multiplications are required for or2e0-bit product and these
inputs are fed into the single small multiplier in a pipetirfashion. This has the pleasant

effect of keeping the total delay small and the area redue#t,correspondingly small

3.2. The Karatsuba Algorithm 63

propagation delays. Thisl0-bit multiplier covers in particular the33-bit polynomials
proposed by NIST for elliptic curve cryptography (FIPS PUE542 (2000)).

Substantial parts of this chapter have been published ibliget al. (2003a), Grabbe
et al. (2003b), von zur Gathen & Shokrollahi (2005), and von zurh®at& Shokrollahi
(2006).

The structure of this chapter is as follows. First the Karbésmethod and its cost
are studied in Section 3.2. Section 3.3 is devoted to themigeid hybrid Karatsuba
implementations. Section 3.4 shows how a hybrid structnceppelining can improve
resource usage in the circuit of Grabékal. (2003a). Section 3.5 analyzes the effect
of the number of recursion levels on the performance. Se&i6 briefly describes the
structure of our developed code generator for the used c@tibnal pipelined multiplier,

and finally Section 3.7 concludes this chapter.

3.2 The Karatsuba Algorithm

The three coefficients of the produet« + ag) (b1 + by) = a1biz? + (a1by + aghy)z +
apby are “classically” computed with multiplications andl addition from the four input
coefficientsay, ag, b1, andby. The following formula uses onl$ multiplications andt

additions:
(alx + CLQ)(blI + bo) = alblx2 + ((al + ao)(bl + bo) — albl — aon)QE + CLQbo. (31)

We call this the2-segment Karatsuba method &k. Settingm = [n/2], two n-bit poly-

nomials (thus of degrees less thancan be rewritten and multiplied using the formula:
(flxm + fo)(gll’m + g()) = h2$2m + hlxm + ho,

wherefy, f1, g0, andg; arem-bit polynomials respectively. The polynomidig, /,, and
h, are computed by applying the Karatsuba algorithm to therpotyials fy, fi, g0, and

g1 as single coefficients and adding coefficients of common power together. This

64 Chapter 3-Sub-quadratic Multiplication

method can be applied recursively. The circuit to performngle stage is shown in

Figure 3.1.

QP fo @
High multiplier <>T<>/ \(—D (—D/ \<>T<) Low multiplier

Middle multiplier

| Overlap circuit |

® ®

Figure 3.1: The circuit to perform one level of the Karatsohdtiplication

The “overlap circuit” adds common powers.oin the three generated products. For
example ifn = 8, then the input polynomials have degree at nigstach of the poly-
nomials fy, f1, go, @andg; is 4 bits long and thus of degree at m@stand their products
will be of degree at mogt. The effect of the overlap module in this case is represanted

Figure 3.2, where coefficients to be added together are shothie same columns.

| f191 |
| Jog1 + f190 |

14 13 12 11 10 9 8

Figure 3.2: The overlap circuit for thiebit Karatsuba multiplier

Figures 3.1 and 3.2 show that we need three multiplicatitle easizem = [n/2]
and some adder2 for input, 2 for output, an for the overlap module of lengths,
2m — 1, andm — 1 respectively. Below we consider various algorithm®f a similar
structure. We denote the size reduction factor, the numtreutiiplications, input adders,

output adders, and the total number of bit operations toiptylivo n-bit polynomials in

3.3. Hybrid Design 65

Abyby, muly,ias, cas, andMy(n), respectively. Then
M4(n) = muly M(m) +iaa m +o0ay (2m — 1) + 2(bsy — 1)(m — 1), (3.2)

wherem = [n/b,] andM(m) is the cost of the multiplication call for.-bit polynomials.

For A = K, this becomes:
Mgk, (n) =3 M(m) +8m —4, m = [n/2].

Our interest is not the usual recursive deployment of tmd kif algorithms, but rather
the efficient interaction of various methods. We include um study the classical multi-
plication C;, on b-bit polynomials and algorithms fa, 5, 6, and7-segment polynomials
which we call K3 (3-segment Karatsuba, see Blahut (1985), Section 3.4, pagé g5
Mg, and M, (see Montgomery (2005)). The parameters of these algositima given in
Table 3.3.

Algorithm A | by | muly | iag oay
K, 2 3 2 2
K 3 6 6 6
M 5 13 | 22 30
Mg 6 17 | 61 40
M 7 22 21 55
Cy,b>2 b b? 0 | (b—1)

Table 3.3: The parameters of some multiplication methods

3.3 Hybrid Design

For fast multiplication software, a judicious mixture obtalook-up and classical, Karat-
suba and even faster (FFT) algorithms must be used (see voBahen & Gerhard

(2003), chaptes, and Hankersoet al. (2003), chapte?). Suitable techniques for hard-
ware implementations are not thoroughly studied in thedttge. In contrast to soft-

ware implementations where the word-length of the proages$ise datapath, and the set

66 Chapter 3-Sub-quadratic Multiplication

of commands are fixed, hardware designers have more fléyibiifi software solutions
speed and memory usage are the measures of comparison svharéaare implementa-
tions are generally designed to minimize the area and tinmyl&@neously or with some
weight-factors. In this section we determine the least-cosbination of any basic rou-
tines for bit sizes up t8192. Here, cost corresponds to the total number of operations in
software, and the area in hardware. Using pipelining andtheture of Grabbet al.

(2003a) this can also result in multipliers which have srasdha-time parameters.

We present a general methodology for this purpose. We si#iitastoolboxJ of
basic algorithms, namely = {classical K», K3, M5, Mg, M,}. EachA € T is defined
for b,-bit polynomials. We denote by* the set of all iterated (or hybrid algorithms)

compositions fronT; this includesT, too.

Figure 3.4 shows the hierarchy of a hybrid algorithmi@+bit polynomials using our
toolbox 7. At the top level,K, is used, meaning that tHe-bit input polynomials are
divided into two6-bit polynomials each and’; is used to multiply the input polynomi-
als as if eacl®-bit polynomial were a single coefficient,C'; performs the threé-bit
multiplications. One of theseé-bit multipliers is circled in Figure 3.4 and unravels as

follows:

(asz® + -+ +ag) - (bs2® + -+ by) =

((as2® + agz + a3)r® + (a2® + a1 + ag))

- ((bs2® + byz + b3)a® + (bea® + by + by)) =
(Ay2® + Ag) - (Bi2® + By) = A1 Bya®+

((A1 + Ag)(B1 + By) — A1 By — AgBy)z® + Ao By

Each ofA; By, (A1 + Ay)(B1 + By), and Ay B, denotes a multiplication of-bit polyno-

3.3. Hybrid Design 67

mials and will be done classically using the formula

(a2x2 + a1 + ao)(b2$2 + blx + bo) = a2b2x4+
(&le + &1b2)$3 + (&Qbo + &161 + &0b2)$2+

(&160 + &le).CE -+ aobo.

Thick lines under eaclt’; indicate the ninel-bit multiplications to performC;. We
designate this algorithm, far2-bit polynomials, withK, K,Cs = K2C'3 where the left

hand algorithm, in this cask,, is the topmost algorithm.
K2
/ -
\I JX |
|
3 C3 C3 s 31 C3 C3 C3

l
J.J.J.\ 111

\ /

=

;OL

J.

|_

Figure 3.4: The multiplication hierarchy faf, K,C's
As in (3.2), the cost of a hybrid algoritha, A; € T* with A, A, € T* satisfies

Ma, 4, (n) <muly, My, (m) +iaa, m+

oas, (2m —1)+2(by, —1)(m —1), (3.3)

whereM,(1) = 1 forany A € T andm = [n/(ba,ba,)] = [[n/ba,]/ba,]. Each
A € T* has a well-defined input lengthy, given in Table 3.3 for basic tools and by mul-
tiplication for composite methods. We extend the notioniyyigng A also to fewer than
b bits, by padding with leading zeros, so tha&f(m) = Ma(ba) for 1 < m < bu. For
some purposes, one might consider the savings due to sudbrazero coefficients. Our
goal, however, is a pipelined structure where such a coratida cannot be incorporated.
The minimum hybrid cost over is

M(n) = min Mgu(n).

AET* ba>n

68 Chapter 3-Sub-quadratic Multiplication

We first show that the infinitely many classical algorithmgTilo not contribute to

optimal methods beyond size.

Lemma 3. For A € T* and integersn > 1 andb, ¢ > 2 we have the following.
(i) Mg,c.(be) = Mg, (be).
(i) Mg, a(babm) > Myc, (babm).

(iii) For anyn, there is an optimal hybrid algorithm all of whose composere non-

classical, except possibly the right most one.
(iv) If n > 13, thenC,, is not optimal.
Proof. (i) This can be easily shown using (3.2) and Table 3.3.
(i) We only show this forA = K. Using (3.2) and Table 3.3 we have
M, i, (2bm) — Mgy, (2bm) = 2(b— 1)(3bm — b — 1) > 0.
(i) LetA = A;A,--- A, be a hybrid algorithm wit4,, ..., A, € T and suppose that
A; = Cp, for somes < randb > 2 and A, € {Ks, ..., M;}. Now (i) shows that

the cost of
A/ == AIAQ t 'As-‘,-lAs c 'Ar

is smaller than that ofi, and A is not optimal. Hence if somd, is classical, then

eachA; for s < t < ris also classical. These can all be combined into one)by (
(iv) We letm = [n/2]. Then

Mcn (n) - MKQCm (Qm) ==

2n? —2n+2—6m* —2m+2>n*/2 —6n—1/2>0

using(n + 1)/2 > m andn > 13. On the other handy < 2m and the2m-bit

algorithmK,C,,, can also be used for-bit polynomials, and we have

MKQCm (77,) < MKQCW(Qm) < MC'n (n)

3.3. Hybrid Design 69

O

Algorithm 4 presents a dynamic programming algorithm widomputes an optimal

hybrid algorithm fromT™* for n-bit multiplication, forn = 1,2,

Algorithm 4 Finding optimal algorithms ifl™*
Input: The toolboxT = {classical K, K3, M;, Mg, M-} and an integel.

Output: TableT with N rows containing the optimal algorithms for< » < N and
their costs.
1: Enter the classical algorithm and cador n = 1 into T’

2. forn=2,...,Ndo

3: bestalgorithm < unknown,mincost «— +infinity
4: for A=K,,...,M;do

5: ComputeM 4(n) according to (3.2)

6: if Ma(n) < mincost then

7: bestalgorithm «— A, mincost < M(n)
8: end if

9 end for

10: if n < 13 then

11: Mc, < 2n? —2n + 1

12: if M¢, (n) < mincost then

13: bestalgorithm «— C,,, mincost «— M¢, (n)
14: end if

15: end if

16: Enterbestalgorithm andmincost for n into T’

17: end for

Theorem 4. Algorithm 4 works correctly as specified. The operationglfaretic, table

look-up) have integers with (log N) bits as input, and their total number(ig N).

70 Chapter 3-Sub-quadratic Multiplication

Proof. We only show correctness, by induction an The case: = 1 is clear. So let
n > 1, and A € T* be an optimal algorithm forn-bit polynomials as in Lemma 3-
(ii). We write A = BC with B € TandC € T*. If B is non-classical, then it is
tested for in steps 4-9, and by induction, an optimal algariD is chosen for the calls
at sizem = [n/bg]. ThusMp(m) < Mc(m) and in fact, equality holds. Therefore
M4(n) = Mgp(n), and indeed an optimal algorithBD is entered intdl’. If B is
classical, then indeed = B andn < 13 by Lemma 3-{), and A = C,, is tested in

steps 10-14.]

—_
)
|
T

ot
|
T

------ classical
- — - Karatsuba
——— hybrid

Number of bit operationsc 10~3

| | I
I I I i

34 96
Poﬁlnomial length

Figure 3.5: The number of bit operations of the classicalurgve Karatsuba, and the

hybrid methods to multiply polynomials of degree smallertih2s

The optimal recursive method for each polynomial length @g192 is shown in
Table 3.6. The column “length” of this table represents émgth (or the range of lengths)
of polynomials for which the method specified in the columrethod” must be used. As
an example, fot 94-bit polynomials the method/- is used at the top level. This requires
22 multiplications of polynomials witfj194/7] = 28 bits, which are done by means of
K5 ontop of14-bit polynomials. Thesé4-bit multiplications are executed again usifg
and finally polynomials of lengtii are multiplied classically. Thus the optimal algorithm
is A = M7 K35C, of total costM 4 (194) = 22- Mgz, (28) +3937 = 26575 bit operations.

Figure 3.5 shows the recursive cost of the Karatsuba metisagsed by Weimerskirch

& Paar (2003), of our hybrid method, and the classical method

3.3. Hybrid Design

length method length method length method
1—5 C1 — Cs 301 — 320 Ko 1603 — 1610 Ms
6 Ko 321 — 343 My 1611 — 1728 Mg
7 Cr 344 — 360 My 1729 — 1792 My
8 K> 361 — 384 K> 1793 — 1800 Ms
9 K3 385 — 392 My 1801 — 1920 Mg
10 Ko 393 — 400 My 1921 — 1960 M7
11 C11 401 — 420 My 1961 — 2048 Ko
12 — 14 Ko 421 — 432 Ko 2049 — 2058 My
15 K3 433 — 448 My 2059 — 2100 Ms
16 — 20 Ko 449 — 450 M5 2101 — 2240 My
21 M~ 451 — 454 Ko 2241 — 2304 Mg
22 — 24 Ko 455 Ms 2305 — 2352 My
25 Ms 456 Ko 2353 — 2400 Mg
26 — 27 K3 457 — 460 My 2401 — 2560 Ko
28 — 40 Ko 461 — 512 Ko 2561 — 2744 M~
41 — 42 M~ 513 — 525 My 2745 — 2800 M5
43 — 45 K3 526 — 560 M7 2801 — 2880 Mg
46 — 48 Ko 561 — 576 Ko 2881 — 3072 Ko
49 M~ 577 — 588 M7 3073 — 3136 M7
50 M5 589 — 600 My 3137 — 3200 M5
51 — 64 Ko 601 — 640 Ko 3201 — 3456 Mg
65 — 70 M~ 641 — 686 My 3457 — 3584 M7
71 — 80 K> 687 — 720 Ms 3585 — 3840 Mg
81 — 84 M~ 721 — 768 Ko 3841 — 3920 My
85 — 96 K> 769 — 784 M7 3921 — 4096 Ko
97 — 98 M~ 785 — 800 My 4097 — 4116 My
99 — 100 Ms 801 — 840 M~ 4117 — 4200 M5
101 — 105 M~ 841 — 864 Mg 4201 — 4320 Mg
106 — 108 Ko 865 — 896 M~ 4321 — 4480 M~
109 — 112 M~ 897 — 900 My 4481 — 4608 Mg
113 — 128 Ko 901 — 912 Mg 4609 — 4704 M~
129 — 140 M~ 913 — 920 My 4705 — 4800 Mg
141 — 144 Ko 921 — 936 Mg 4801 — 5120 Ko
145 — 147 M~ 937 — 940 My 5121 — 5184 Mg
148 — 150 Ms 941 — 960 Mg 5185 — 5488 M
151 — 160 Ko 961 — 980 My 5489 — 5600 M5
161 — 168 M~ 981 — 1024 Ko 5601 — 5880 Mg
169 — 175 M5 1025 — 1029 My 5881 — 5888 Ko
176 — 192 K> 1030 — 1050 Ms 5889 — 5952 Mg
193 — 196 M~ 1051 — 1120 My 5953 — 6016 Ko
197 — 200 Ms 1121 — 1152 Mg 6017 — 6144 Mg
201 — 210 M~ 1153 — 1176 My 6145 — 6272 My
211 — 216 Ky 1177 — 1200 Mg 6273 — 6400 Ms
217 — 224 M~ 1201 — 1280 Ko 6401 — 6912 Mg
225 Ms 1281 — 1372 M~ 6913 — 7168 My
226 — 256 Ko 1373 — 1440 My 7169 — 7680 Mg
257 — 280 M~ 1441 — 1536 Ko 7681 — 7840 M~
281 — 288 Ko 1537 — 1568 My 7841 — 8064 Mg
289 — 294 M~ 1569 — 1600 Ms 8065 — 8192 K>

295 — 300 M5 1601 — 1602 Mg

Table 3.6: Optimal multiplications for polynomial lengthg to8192

72 Chapter 3-Sub-quadratic Multiplication

Lemma 3 implies that the classical methods need only be deresd forn < 12. We
can prung further and now illustrate this fdk’s. One first checks that/ 4, 5(3babg) <
My, ap(3babg) for A € {Ky, M5, Mg, Mz}, B € T*, andbg > 2. Therefore forK; to
be the top-level tool in an optimal algorithm ovEthe next algorithm to it must be either
K3 or (), for someb. Since the classical method is not optimal for> 13 and Table 3.6
does not listK; in the intervald6 to 3 - 45 = 135, K3 is not the top-level tool fon, > 135.

Table 3.7 gives the asymptotic behavior of the costs of therdahms in the toolboX
when used recursively. It is expected that for very larggpamials only the asymptot-
ically fastest method, namel{/s, should be used. But due to the tiny differences in the
cost exponents this seems to happen only for very large potial lengths, beyond the

sizes which are shown in Table 3.6.

algorithm k

Cp b >2 logy, b2 = 2
K3 logs 6 ~ 1.6309
Ms logs 13 ~ 1.5937
My log, 22 ~ 1.5885
K> logy 3 &~ 1.5850
Msg logg 17 ~ 1.5812

Table 3.7: Asymptotical cogb(n*) of algorithms in the toolbof

3.4 Hardware Structure

The delay of a fully parallel combinational Karatsuba npliér is4[log, n|, which is al-
most4 times that of a classical multiplier, namélyg, n| + 1. Itis the main disadvantage
of the Karatsuba method for hardware implementations. Addien, we have suggested
in Grabbeet al. (2003a) a pipelined Karatsuba multiplier ft0-bit polynomials, shown
in Figure 3.8.

The innermost part of the design is a combinational pipdliebit classical multi-

plier equipped witht0-bit and79-bit adders. The multiplier, these adders, and the overlap

3.4. Hardware Structure 73

240-bit multiplier
120-bit multiplier
| 40-bit adder] | 120-bitadder |

40-Dbit

multiplier 79-bit adde

| 239-bitadder |

| Overlap module |

| Overlap module |

Figure 3.8: The40-bit multiplier in Grabbeet al. (2003a)

module, together with a control circuit, constitutd 20-bit multiplier. The algorithm
is based on a modification of a Karatsuba formulaZaegment polynomials which is
similar to but slightly different from what we have used inc8en 3.3. Another suit-
able control circuit performs thzzsegment Karatsuba method foi0 bits by means of a

120-bit recursion 239-bit adders, and an overlap circuit.

This multiplier can be seen as implementing the factomzetit0 = 2-3-40. Table 3.6
implies that it is preferable to useor 5-segment for larger polynomials rather than the
3-segment method. On the other hand the complicated steusfihe5-segment method
makes it difficult to use it for pipelining in the upper level& new design is presented
here which is based on the factorizatidth) = 2 - 2 - 2 - 30. The resulting structure is
shown in Figure 3.9.

The 30-bit multiplier follows the recipe of Table 3.6. It is a comilational circuit
without feedback and the design goal is to minimize its alegeneral k pipeline stages
can performn parallel multiplications im + k£ — 1 instead ofnk clock cycles without
pipelining.

The new design, the structure of Graldial. (2003a), and a purely classical method
are designed on an XC2V6000-4FF1517-4 FPGA. The last désigra classical0-bit
multiplier and applies the three classical recursion steis The results after place and

route are shown in Table 3.10. The second column shows théewmh clock cycles for

74 Chapter 3-Sub-quadratic Multiplication

240-bit multiplier
120-bit multiplier
60-bit multiplier

[30-bitadder| | | 60-bitadder| | [120-bitadder |
multiplier| [59-bit adder]
- | 119-bit adder]
| Overlap module | o IMI

| Overlap module |

| Overlap module

Figure 3.9: The new40-bit multiplier

a multiplication. The third column represents the area imgeof the number of slices.
This measure contains both logic elements, or LUTs, andléips used for pipelining.
The fourth column is the multiplication time as returned bg hardware synthesis tool.
Finally the last column shows the product of area and timerdeioto compare the AT
measures of our designs.

The synchronization is set so that th@bit multipliers requirel and4 clock cycles
for classical and hybrid Karatsuba implementations, rebpey. The new structure is
smaller than the implementation in Grabéteal. (2003a) but is larger than the classical
one. This drawback is due to the complicated structure oKématsuba method but is
compensated by the speed as seen in the time and AT measuites next section this is

further improved by decreasing the number of recursions.

Multiplier type Number of | Number of | Multiplication AT
clock cycles slices time Slicesx us
classical 106 1328 1.029us 1367
Grabbe et al. (2003a) 54 1660 0.655.s 1087
(Fig. 3.8)
Hybrid Karatsuba (Fig. 3.9) 55 1513 0.670pus 1014

Table 3.10: Time and area of different multipliers faf)-bit polynomials

3.5. Few Recursions 75

3.5 Hybrid Polynomial Multiplier with Few Recursions

The timing diagram of the recursive multiplier for the tinmarval50 ns < ¢t < 280 ns

is shown in Figure 3.11. In this figure the lowest level whisthe combinational module
communicates with the highest level through intermedittges in several clock cycles.
Attimet = 180 ns after two120-bit blocks being multiplied thé0-bit multiplier activates
its READY6Gsignal to inform thel 20-bit multiplier to load it with new data. Th&20-bit
multiplier has to transfer this request to thé)-bit multiplier. Each of the multipliers
require one clock cycle to start the lower multiplier. As auieit takess clock cycles for
the whole communication. This example reveals that in thersave Karatsuba multiplier
of Grabbeet al. (2003a), the core of the system, namely the combinationipter, is
idle for several clock cycles during the multiplication. ifoprove resource usage, we
reduce the communication overhead by decreasing the lef/eécursion. In this new
240-bit multiplier, an8-segment Karatsuba is applied at oncéaebit polynomials. The
formulas describing three recursive levels of Karatsulgacamputed symbolically and
implemented directly.

The new circuit is shown in Figure 3.12. The multiplexamgx1to mux6are adders
at the same time. Their inputs a@-bit sections of the two original40-bit polynomials
which are added according to the Karatsuba rules. Now #ieutput pairs are pipelined
as inputs into th&0-bit multiplier. The27 corresponding9-bit polynomials are subse-
guently combined according to the overlap rules to yieldfithe result. Time and space
consumptions are shown in Table 3.13 and compared with gdtseof Grabbeet al.
(2003a). The columns are as in Table 3.10. It can be seerhibatdsign improves on the

previous ones in all respects.

clk UuuuurrrrUUiUUUUtUU Uy

READY30

READY60

READY120

START120

START60

START30

time = 180 ns

Figure 3.11: Timing diagram of the recursive Karatsuba ipligt for 240-bit polynomials in Figure 3.9

9,

uonesldniny dreIpenb-gns-€ Jaideyd

3.6. Code Generator

77

Inplutl Inplut2
a(x) b(x)
I I I
\ : mux1 , / \ mux2 , /
mux3 mux4
o s / NV
>
©
@]
IS
g 30 bit
5 multiplier
O
|
Decoder

accO

accl

accl4

Overlap circuit

Ou'tput

Figure 3.12: The structure of the Karatsuba multiplier viegdver number of recursions.

Multiplier type Number of | Number of | Multiplication AT
clock cycles slices time Slicesx us
classical 65 1582 0.523us 827
Grabbe et al. (2003a) 54 1660 0.6554s 1087
(Fig. 3.8)
Fewer recursions (Fig. 3.12) 30 1480 0.378us 559

Table 3.13: Time and area of differe?0-bit multipliers compared with the structure

with reduced number of recursion levels

3.6 Code Generator

As it has been shown in Sections 3.4 and 3.5, using a pipehmadiular structure to
implement the Karatsuba multiplication algorithm has savadvantages. However, im-
plementing the parallel multipliers for smaller polynoisi& the main difficulty of this

structure. Handwriting a VHDL code for these blocks is tinemguming, particularly

78 Chapter 3-Sub-quadratic Multiplication

when accurate insertion of pipeline stages is desired.

In this section an object oriented library is presented Wwitian be used for automat-
ically generating the VHDL code of a combinational pipetimaultiplier of any degree.
This has been achieved by combining the Karatsuba and teeicdé methods. The gen-

erated code is in register transfer level (RTL).

3.6.1 Code Generator Functionalities

The code generator gives the user the ability of supplingjaesgce of pairs of polyno-
mial lengths and type selection parameters. The type saleparameter specifies the
algorithm which is used for each polynomial degree, e.@ Kharatsuba or the classical
algorithm. Then, the program generates the appropriatépfichtion method for each
of these degrees and combines them recursively to creatdgbethm and consequently
the multiplier.

An important functionality of the code generator is theigpdf computing algorithms
for multiplying polynomials, when an algorithm to multipignger polynomials is found.
The program automatically inserts zero coefficients to #garimings of the smaller poly-
nomials, makes the multiplication graphs, and removes timecessary gates.

The library is also able to report the time and space comjuaxof the design and
create appropriate pipeline stages by getting the depthabf gipeline stage as the number
of two input gates.

The main part of this code generator consists of the follgvalasses. Each class is

represented with its functionalities:

Multiplication

The classrul ti pl i cati on manages the multiplication methods. It creates the appro-
priate classical and Karatsuba methods, their shorteminds€ombines them recursively.
This class is able to simplify the resulting expressionstarjlt pipeline registers in the

appropriate positions. Finally, it generates a VHDL codéchhiescribes the multiplier.

3.6. Code Generator 79

An important functionality of the classul ti pl i cati on is the generation of a
computation graph for the polynomial multiplication. Itmputes the depth of the graph,
puts pipeline registers according to a specified depth,kshir possible hazards, and
increases the number of these registers when required tavesamy hazards (see the sec-
tion on pipelining below). Therefore, a pipelined multgrlcan be generated in which the
depth of the stages can be specified by the user as a paramstnple program which
generates a multiplication method for polynomials of degmaller thart is shown in
Figure 3.14

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <i ostreanr
#include "mul tiplication.hh"

int main(int argv, char* argc[]){

mul tiplication ng;
n2.init(); //Linear polynomals

mul tiplication nb;

init();

. expand(nR); //Cubic polynom als
.shorten(3); //Quadratic polynom als
.expand(nR); //Polynom als of degree 5

. pi pedepth = 4;
. makeconput ati onsequence();

> Do o>

.witeVHDL("mult.vhdl");

Figure 3.14: A sample code which uses the code generatarilisrto produce a Karat-
suba multiplier for polynomials of degree smaller tifawhen the pipeline depth is set to
4.

80 Chapter 3-Sub-quadratic Multiplication

Addition Simplifier

The order of performing the additions in an expression haseatgmpact on the re-
source consumption. When the Karatsuba algorithm is useuditiiply polynomials with
large degrees, there are some additions which are reduaddrdan be performed only
once. clasaddi ti on_si nplifi er takes a set of additions and generates a specific
sequence to compute it which contains only additions of twerands. This sequence
can be optimized to achieve smaller area or shorter projagdelay. Achieving smaller

area is done in a heuristic manner.

Reducing the Number of Gates

It has already been mentioned that the delay of small blockiphiars does not have a
large impact on the whole multiplication time. This happethgn the number of indepen-
dent multiplications is higher than the number of pipelieels (which is often the case).
Hence it is better to reduce the number of two input gates thighcost of increasing the
propagation delay.

In order to identify and simplify redundant additions we nbthe number of simul-
taneous occurrences of each two variables. The two vasatith the most number of
occurrences are gathered together and represented withhaarnable, which replaces all
of their simultaneous occurrences. This is repeated uatio variables occur simulta-

neously in more than one expression.

Pipelining

The parallel combinational multipliers have complicated&ures in which manually in-
serting the pipeline registers is a complicated task. Ripg) is an optimization technique
which is used in the code generator. However, the pipelipghdaust be supplied by the
user as an input to the code generator. In an object ofrtydéplication, the sequence of

operations is saved as a set of binary trees in which theipogit pipeline registers are

3.7. Conclusion 81

stored.

The most important issue in such a pipeline strategy ishdweard problem. It is
possible that the inputs of a gate arrive in different timees which will lead to failure
in the computation of the result. To solve this problem, theeline generation module
checks all the gates to see if the inputs arrive at the sange timot, the path to the faster
input will be delayed by an extra register. The Inputs to othedules will be taken from
the former register as shown in Figure 3.15, in which regssdee shown with boxes. This

method solves the hazard problem without increasing theativatency.

Figure 3.15: Pipelining the multiplier circuit (a) beforada(b) after solving thénazard

problem

3.7 Conclusion

Since finite field arithmetics play an important role in cggrtaphy and elliptic curves,

this chapter is devoted to the application of asymptotyckbkt methods, in particular

82

Chapter 3-Sub-quadratic Multiplication

the Karatsuba method in hardware. The materials of thistehape presented in the

following sequence:

In Section 3.2 essentials of the Karatsuba method and its acs analyzed.

Section 3.3 proposes a hew methodology which can be usedrtbige different
multiplication methods of a toolbox to achieve a new aldont The new algorithm
can be found in a time that is linear in the polynomial degneé iéss number of
bit operations for each polynomial degree is at most equahéonumber of bit

operations for the best algorithm of the toolbox for thatreéeg

Section 3.4 is devoted to the review of the multiplier of Grabt al. (2003a). The
main contribution of this section is the application of thebtid method to that

multiplier and reducing the area in this way.

In Section 3.5 fewer recursions are used to decrease the goioation time be-
tween different modules in the modular Karatsuba multiplie this way multipli-
ers are achieved which are better than the classical anddattenhof Grabbet al.

(2003a) with respect to both time and area.

Finally Section 3.6 introduces a C++ based code generatdebgribing its func-
tionalities and structure. This library is developed togyarte the VHDL description
of combinational pipelined multipliers and is used for thea#ler multipliers of this

chapter.

Chapter 4

Small Area Normal Basis Multipliers:

Gauld meets Pascal

4.1 Introduction

Normal basis representation of finite fields enables easyuatation of the;th power of
elements. Assumingto be a prime power, a basis of the fofm a4, - - - | oﬂ"‘l) for Fn

is called a normal basis generated by the normal elementF .. In this basis theth
power of an element can be computed by means of a single glfic This property
makes such bases very attractive for parallel exponeoriiati finite fields (see Nocker
(2001)).

Since multiplication in these bases is more expensive thgolynomial basis it is
especially desirable to reduce their multiplication cobtghis chapter, a new method for
multiplication in normal bases of typeis suggested. It uses an area efficient circuit to
convert the normal basis representation to polynomialsvaselversa. Any method can
be used to multiply the resulting polynomials. Althoughstkiructure has small area, its
propagation delay is longer than other methods and is oiitigida for applications where
the area is limited.

One popular normal basis multiplier is the Massey-Omuraiplidr presented for the

83

84 Chapter 4Small Normal Basis Multipliers

2 3 d 11 23 29 41 53 83 89
113 131 173 179 191 233 239 251 281 293
359 419 431 443 491 509 593 641 653 659
683 719 743 761 809 911 953 1013 1019 1031
1049 1103 1223 1229 1289 1409 1439 1451 1481 1499
1511 1559 1583 1601 1733 1811 1889 1901 1931 1973
2003 2039 2063 2069 2129 2141 2273 2339 2351 2393
2399 2459 2543 2549 2693 2699 2741 2753 2819 2903
2939 2963 2969 3023 3299 3329 3359 3389 3413 3449
3491 3539 3593 3623 3761 3779 3803 3821 3851 3863
3911 4019 4073 4211 4271 4349 4373 4391 4409 4481
4733 4793 4871 4919 4943

Table 4.1: The prime numbers< 5000 for whichF,. contains an optimal normal basis

of type2.

first time by Omura & Massey (1986). The space and time coniteyof this multiplier
increase with the number of nonzero coefficients in the magpresentation of the en-
domorphismz — ax overF,., wherea generates the normal basis. Muléhal. (1989)
show that this number is at least — 1 which can be achieved for optimal normal bases.
Gao & Lenstra (1992) specify exactly the finite fields for whigptimal normal bases
exist. Relating these bases with the Gauss periods thepgddhem into optimal normal

bases of typé and2 according to the Gauss periods used.

For security reasons only prime extension degrees are nsgyptography, whereas
the extension degrees of the finite fields containing an @gtmormal basis of typé
are always composite numbers. Cryptography standards siiggest the finite fields for
which the type of normal bases are small (see for example PIPS 186-2 (2000)) to
enable designers to deploy normal bases. Table 4.1 showsithe numbers:, when
n < 5000, for which Fy. contains an optimal normal basis of type Applications in
cryptography have stimulated research about efficientiphigkition using optimal nor-
mal bases of typ@. The best space complexity results for the tgpmultipliers aren?

and3n(n—1)/2 gates of typeAND andXOR, respectively reported in Sunar & Kog¢ (2001)

4 .1. Introduction 85

and Reyhani-Masoleh & Hasan (2002). Their suggested tsrané obtained by suitably
modifying the Massey-Omura multiplier. A classical polymal basis multiplier, how-
ever, requires? and(n — 1)? gates of type&ND andXOR respectively for the polynomial
multiplication, followed by a modular reduction. The latiedone using a small circuit of
size of (r — 1)n, wherer is the number of nonzero coefficients in the polynomial which
is used to create the polynomial basis. It is conjecturedday a2ur Gathen & Nocker
(2005) that there are usually irreducible trinomials ofréeg and for the cases that there
is no irreducible trinomial an irreducible pentanomial cenfound. The above costs and
the fact that there are asymptotically fast methods for patyial arithmetic suggest the
use of polynomial multipliers for normal bases to make gosel af both representations.
The proposed multiplier in this chapter works in normal Isdset its space complexity
is similar to polynomial multipliers. Using classical patymial multiplication methods,

it requires2n?® + 16nlog,(n) gates inF,.. Moreover, using more efficient polynomial
multiplication algorithms, such as the Karatsuba algamithve can decrease the space

asymptotically even further down to(n'°s23),

The connection between polynomial and normal bases, tegetith its application
in achieving high performance multiplication in normal esshas been investigated in
Gaoet al. (1995) and Gaet al. (2000). The present work can be viewed as a concep-
tual continuation of the approach in those papers. &aal. (2000) describe how the
multiplication using the normal bases generated by the §&pesods can be reduced to
multiplications of polynomials. For the case of the Gaussoges of type(n, 2), their
proposed method requires multiplication of t@&e-bit polynomials which will be done

using asymptotically fast methods, as suggested in theksvo

The multiplier of this chapter is based on a similar approa€br optimal normal
bases of type we present a very efficient method which changes the reptiasams
between the normal basis and suitable polynomials. Thelsmgmials are multiplied
using any method of choice, such as the classical or the &dratmultiplier. Using

the inverse transformation circuit and an additional smiatluit the result is converted

86 Chapter 4Small Normal Basis Multipliers

back into the normal basis representation. The heart ohteitod is a factorization of
the transformation matrix between the two representaiitiosa small product of sparse
matrices. The circuit requires roughl}(n log n) gates and resembles the circuit used for
computing the Fast Fourier Transformation (FFT). The apato the FFT circuit goes
even further: as with the FFT, the inverse of the transfoiondtas a very similar circuit.
It should be noted that a general basis conversion, and nat gpecific set of bases,
requiresO(n?) operation as also reported by Kaliski & Liskov (1999).

This chapter will begin with a review of the Gauss periods #t@normal bases of
type2. Then the structure of the multiplier is introduced and tbsts of each part of the
multiplier are computed. The last section focuses the tesul fields of characteristiz

and compares the results with the literature.

4.2 Gauss Periods

Letn, k > 1 be integers such that= nk + 1 is a prime, and lef be a prime power which
is relatively prime ta-. Then the groufZ.* of units modulor is cyclic, hasnk elements,
and since/™ =1 mod r, r divides¢g™ — 1 = #IF.... Hence there exists a primitiveh
root of unity 3 € F ... Let§ < Z, be the unique subgroup of the cyclic grazp with
#SG =k, and:

a:Zﬁ“

Thena is called a prime5auss periodf type (n, k) overF,. Wassermann (1993) and

Gaoet al. (2000) prove the following theorem:

Theorem 5. Letr = nk+ 1 be a prime not dividing, e the index of; in Z*, G the unique
subgroup of ordet: of Z), and 3 a primitive rth root of unity inF,-. Then the Gauss

period
a:Zﬂ“

is a normal element iff» overF, if and only ifged (e, n) = 1.

4.3. Multiplier Structure 87

In this chapter we consider the Gauss periods of type). In this case§ = {1, -1}
anda is of the form3 + 3-1, whereg is a2n + 1st root of unity inIFg". Hence the normal
basis is

n—1

= (B4 871,81+ 57% - BT+ 87T (4.1)
and as is shown in Wassermann (1993) and &ax. (2000):
{17 _]-7 q,—4," 7qn_17 _qn_l} = {17 _]-7 27 _27 N, _n}

if the computations are modul» + 1. SinceB**! = 1 eachB? + 39,0 < r < n,
equals3’ + 3~ for a suitable value of, wherel < i < n. It follows that the normal basis

representation

3
,_.

D (B 4 gty
0

e
Il

can be written as:

3

o> (8 + B, 4.2)

=1

where(q, (N))1<l<n is a permutation o(ak)ogk<n- We call the sequence

= (ﬁ+ﬁ_l7ﬁ2+6_27”' aﬁn_‘_ﬁ_n)a

in this case, the permuted normal basis and the véafglr))lggn the permuted normal

representation af.

4.3 Multiplier Structure

The structure of the multiplier is described in Figure 4.@ multiply two elements, b €
F,» given in the basis (4.1) we first convert their representatio the permuted form as
a—Za (6 + 37", and b= b+ 57,
i=1
with aEN), bEN) e F,. By inserting a zero at the beginning of the representatetors

and a linear mapping, ., which we define in Section 4.4, froﬁ’lg“rl to F,[x]=" the

88 Chapter 4Small Normal Basis Multipliers

vectors of these representations are converted to polyaemj(x) andy,(z) such that
the evaluations of these two polynomialsiat- 3-! area andb, respectively. The poly-
nomialsy, andy, are then multiplied using an appropriate method with resfethe
polynomial degrees and implementation platform. Obviptist evaluation of the result-
ing polynomialy,.(z) at 5 + 57! is the product = a - b. The polynomialkp.(x) is of
degree at motn and the evaluation is a linear combinatior(6f+- 5~1)" for 0 < i < 2n.
Using another linear mapping,,., from F,[z]=*" to F>"+!, namely the inverse ofy,, .1,
this linear combination is converted to a linear combinmatibthe vectord and3 + 3~
for 1 <i < 2n. This is then converted to the permuted normal basis usiathanlinear
mappingr,.

The linear mappings, 1 takes a polynomial if¥,[z]=*", evaluates it as + 3!, and
represents the result as a linear combination ahd3° + 57, for 1 < i < 2n. Since
the above vectors are linearly dependent there are sevevaes forv,, ;. One way
to compute the resulting linear combination is that egéh- 571)7, for 1 < j < 2n
be expanded as a linear combination%f+ 37¢, for 1 < i < 2n. The coefficients of
these expansions have tight connections with the binomigifficients or the entries of
the Pascal triangle. Singe € F .., if we denote the characteristic Bf, by p, we have
p- = 0 and the matrix representation@f, . ; has a similar structure as the Pascal triangle
in which the entries are reduced modplduch a triangle which has a fractal structure has
attracted a lot of attention and has been given various nanths literature. One of the
most famous ones is “Sierpinski triangle” or “Sierpinsksget” (see Wikipedia (2006))
for p = 2. In Section 4.5 we find a special factorization for the matagresentation
of 5,41 in @an appropriate basis which allows the mapping to be coetpitO (n logn)

operations.

4.3.1 Example overFys

Here the overall operation of the multiplier fBgs is exemplified. Sincé1 divides2!® —1

there is anl1th root of unity inFyi0 which is represented by. Settingr, k£, andg of

4.3. Multiplier Structure 89

(a™)1<i<n (B 1<in
Permutation Permutation
(a®)1<i<n (0™)1<izn
zero insertion zero insertion
(a8 o<izn (0" o<i<n
Linear mappingr,, .1 Linear mappingrn+1
pa(B+87) =0a |palz) po(z) | @u(B+ P71 =
\ / Polynomial multiplication
pe(T) = ¢a -

Linear mappings,, .1
c=a-b=¢cy+ Z?Zl & (B4 7| (€i)o<i<on
Linear mapping,

(™) 1<izn

Permutation
(™)1 <i<n

Figure 4.2: Overview of our multiplier structure to mulypiwo elements:y, b € Fn,
where their two representation vectc(bé‘m)lggn and (bzm)lggn with respect to the

normal basis\ are given. See the text for more information.

90 Chapter 4Small Normal Basis Multipliers

Theorem 5 tal1, 2, and2, respectively, implies that = 3 + 5~ constructs the normal
basisN for Fys overF,:

N = (o, o, a22, a23, a24).
Sinceg is an11th root of unity the following equalities hold:

B+O7 = PP =
523 +5—23 =3+ 573 524 +ﬁ_24 = (354 375,

and

(4.3)

N =B+ +628+678+676+67)
is the permuted normabasis. We represent the vectors of the permuted normal-repre

sentations of; andb by ay = (al(.N'))lg@ andby = (b(-N,))lgng’), respectively. These

(2

vectors satisfy the equations:
a = Nl . Cla/, and b - Nl : bT/. (44)

Our strategy is to find polynomials, (z) andy, () overFF, whose evaluations @+ 5!

give the elements andb, respectively. Then these polynomials are multiplied dred t

evaluation of the result at + 3! is converted back to the normal basis representation.
Each power(3 + 37!)/ can be represented as a linear combinatiof‘of 3, for

0 < i < j, in which the coefficients are ifi,. Hence we have the following equality:
P =N L, (4.5)
in which:
N =LA+ +528+87 8 +078+67),
P=(LA+ B+ B+ B+ (B+87Y)),

and the matrix_g, whose entries are calculated using the binomial coeffisigrodulo2,
is shown in part (a) of Figure 4.3. This matrix is upper trialag and hence invertible.

We represent its inverse, which is shown in part (b) of Figu& by F, then:

N =P P (4.6)

4.3. Multiplier Structure 91

e

Figure 4.3: (a) The matriXq and (b) its inversé’s

The entries of the vector®” and P are elements oF,s, which has dimensiof over

F,. These entries in each of the vectors are linearly depertaéngtill spanF,s and
each element oF,s can be written as a linear combination — which is not unique —
of these elements. To representand b with respect to these new vectors we insert
a zero at the beginning of the permuted normal representatm get the new vectors
a5, = (@)gzics andbs, = (B))o<i<s, respectively, i.e.,

)

“ T d™ otherwise, b otherwise.
Similar to (4.4) we have:
S N T
a=N". N/, and b=N- b3 4.7)
Substituting\’ from (4.6) we have:
a=P F-al,and b="7-F;-bl,. (4.8)

Now consider the two vectors, = P6-ajT~\f, = (CLZ(-:P))OSiSE) andby = P6-bjT~\f, = (b§“’>)0<,.<5
They correspond to the two polynomiats(z) = 37 !zt andg,(z) = 320, b7 4
whose evaluations at + 5!, according to (4.8), give and b, respectively. Let the

polynomialy.(z) = wa(z) - s() be

and we have

92 Chapter 4Small Normal Basis Multipliers

Figure 4.4: The matrix;

In the same way as above we can use the mafrix which corresponds
(B 4+ B71))o<i<10 With the vector containing and 3’ + g~ for 1 < i < 10. The
matrix L;; is shown in Figure 4.4. The product &f; andc¢y = (cET))OS@O is a new

(N .
vectorey, = (CE))ogiglo-

and we have:

c=e 3@ g+ 5.

As it will be seen Iate " for fields of characteristi@ is always zero. For other fields
we need to compute the representatiorl @ind multiply it byc0 . On the other hand

sinceB!! = 1 we have

B+ =p+p575 [+ 7=p+p",
B+pB8=04+p53 p+52=062+52 and
510+ﬁ_10=ﬁ+ﬁ_1.

Also the permuted normal and normal representations ofribugt are
), éff(ﬁ) + 5@, ééﬂ') +é ~(N) and

B R e

(~(N’) ~(NV) (V)

")
+ ¢ 5 Gy

AU AR
~(N ~(N) ~ ~
@+, &+ &, + &

)

respectively. In the next sections we compute the costs df efithe above tasks for

generalp andn.

4.4. Polynomials from Normal Bases 93

4.4 Polynomials from Normal Bases

The most important parts of the multiplier are the convertegtween polynomial and
permuted normal representations. Since the elenigntss)", for 0 < i < n, and also
1andp’ + 37¢ for 1 < i < 2n, are linearly dependent there are different possibilities
for the selection of the mappings .1 andv,, 1 from Section 4.3. These mappings are
defined via matrice®,.; € FY ™) and Ly, ., € FE > \wherep is the
characteristic off,». These matrices have special factorizations which let theive

multiplied by vectors of appropriate length usi@gn log n) operations ir¥,.

The idea behind the construction of these matrices is sirtuléhe example in Sec-
tion 4.3. The permuted representationsacnd b are preceeded by zero amgj,; is
multiplied by the resulting vectors. The structure of theerse ofF, . ; which we denote
by L, ., is easier to describe. Hence we define a candidaté for and show that this
matrix can be used to convert from polynomial to the extenuehuted normal repre-

sentation, i.e., it satisfies

(17ﬁ+ﬁ_17ﬁ2 +ﬁ_27' T ’571 +ﬁ_n)Ln+l =
(Lﬁ—i_ﬁ_la (6 +ﬁ_1)27 e a(ﬁ_‘_ﬁ_l)n)

We also show thal,,, . is invertible. Then we study its structure and show how it can
be factored into sparse factors in Section 4.5. This fazation is also used to find a

factorization forP,.

Definition 6. Letp be the characteristic df,, for integersi, j let [, ; € I, be such that
(. + 27" = 3, liyat inFylz], for a variablex, and Ly, = (i)o<ij<n € Fp*™.

Obviouslyl; ; = 0 for |i| > |j|. (L, depends op but not onlog, q.)

Example 7. Letq = 9, i.e.,p = 3. For0 < j < 9, the powergz + ')’ are:

94 Chapter 4Small Normal Basis Multipliers

(x+ a7

1

x4+t

22+ 2+ 272

x4+ 273

i N RN I

+28 +r+a 42273 4270

28+ 24276

2T+ 2+ 20 T

B +20 + 202+ 14202+ 274 + 2070 4+ 278,

0 O Uk W= O

Hence the matrixg o is:

102000201
010001020
001010002
000102000
00001O0O0O0T1
0000O0O1O0T10
0000O0OO0OT1TSQO02
0000O0O0O0OO0OT1@0
0000O0O0O0TO0T1

Theorem 8. The matrixL, ,, of Definition 6 satisfies

(]-75 + 6_1762 + 6_27 et 7671_1 + ﬂ_n—i_l)Lq,n -

LB+ (BB (Bt)Y, (4.9

is upper triangular withl on the diagonal, hence nonsingular, and its entries satrsy

relation:
I _J o ifi > jorj—1iisodd,and
(Lan)is ((j—]i)/2> otherwise

Proof. Since(z + 27 ') = (¢~ + z)? we havel, ; = [_; ; and for any0 < j < n:

J J n—1
B+87Y =D LB =log+ > LB+ 87 =loj+ > _li;(B+ 67,
=1

i=—j i=1

4 5. Factorizations of the Conversion Matrices 95

sincel; ; = 0 for ¢ > j. This shows that thgth entries on the left and right sides of (4.9)
for 0 < j < n are equal. For the values @f, ,,); ; we have:
J . J .

(x+27 1) = kz:; <‘;) e C L kz:; <£) s (4.10)
in which the binomial coefficients are reduced moduland the coefficient of’ is the
entry(L,,): ;. All of the powers ofz in (4.10) wheni > j have zero coefficients. For
the remaining terms if — j is odd there is no integér such that = j — 2k, hence the
entry(L,,): ; is zero. For even valugs= j — 2k implies thatk = (j —i)/2 and(L,):
is ((jj;)/z). SinceL,, is upper triangular its determinant is the product of alhetats
on the main diagonal. The entfy,,,);; is (}) = 1 and the determinant is also equal to
1.]

Definition 9. Let L,,, be as defined in Definition 6. We denote its inversePpy =

(pi.j)o<ij<n, Wherep; ; € F,, andp is the characteristic of,.

As we have seen the entries of the matrjx, and consequentl¥, ,, depend o, the
characteristic off,, andn. Since the finite field is usually fixed during our analysis we
drop the symbof and show the matrices ds, and P, for the sake of simplicity. In the
next sections we see how special factorization8,chndL,, result in fast methods for the

multiplication of these matrices by vectors.

4.5 Factorizations of the Conversion Matrices

The costs of computing the isomorphismsandy,, of Section 4.3 depend on the structure
of the corresponding matrices. As in the last section, itasier to initially study the
structure ofL,, and use this information to analyZs. The former study will be simplified
by assuming: to be a power op, sayp”, and extending the results to generdater. This
simplification enables a recursive studylgf which is shown in Example 10 and will be
discussed in Lemma 15. This recursive structure is thenueted in Theorem 17 to find

a factorization ofL,, into sparse matrices.

96 Chapter 4Small Normal Basis Multipliers

102000201
010001020
001010002
000102000
00001O0O0O0T1
000001O010
0000O0O0OT1O02
0000O0O0OO0OT1O0
00000O0O0O0T1

Figure 4.5: The block representation of the mafrix

Example 10. The matrixLy has been computed in Example 7. The entries of this matrix

are rewritten in Figure 4.5. In this figuré, is divided into nine blocks which have three
rows and three columns each. These blocks can be groupectadifferent groups. The
ones which are colored in light gray contain only zero erdri§Ve show these blocks as
Z3v3. The second group are the ones in blue and have structurehare very similar to
the block in the first row and first column which is obviously Each block of this group
in theith row andjth column is the product c(f(j_éw) by Ls;. The elements of the third
group are colored in green. They are equal in our special g¥arbut if we represent the
block in the first row and second column with, the block in theth row andjth column
can be written as the product cé[j_if D /2) and L}. Indeed the matrix.; can also be
written as the product of the matr&; which is

000
O;= 0 0 1
010

and L3. Also the matrix_y can be written using the block representation:

L5 (0)0sLs (})Ls
Ly = Z3x3 (é) Ls (g) O3L3
Z3><3 Z3><3 (S) L3

The above recursive relation is generally true betwegrandLL,--: as will be proved
in Lemma 15. To formally describe the above relation we dédfinee matrices ofeflec-

tion, shifting andfactorizationdenoted by®,,, ¥,,, andB,, respectively.

4 5. Factorizations of the Conversion Matrices 97

Figure 4.6: The matri¥©;

Figure 4.7: The matrix;

Definition 11. The entries of theeflectionmatrix ©,, = (6; ;)o<i j<n € [, <™ are defined

by the relation:

o — 1 ifi+j5=n,
“ 1 0 otherwise

An example,©s, is shown in Figure 4.6 where the coefficients equd) end1 are
represented by empty and filled boxes, respectively. Leftiptication by ©,, reflects a

matrix horizontally and shifts the result by one row downsgar

Definition 12. The entries of thehifting matrix ¥,, = (¢; j)o<:j<n € F,*" are defined

1 ifj—1=1,
wi,j:{ J

0 otherwise

by the relation:

Right multiplication byWV,, shifts a matrix by one position upwards. As an example

U5 is shown in Figure 4.7.

Definition 13. Let I,,—: be the identity” ' x p"~! matrix and®,.-: and ¥, as in Def-

initions 11 and 12, respectively. Then we definefétorizationmatrix B, € F£'**" to

98 Chapter 4Small Normal Basis Multipliers

be:
B, =L, ® L1+ (V,L,) ® Opr—1,

in which® is the Kronecker or tensor product operator.

The following theorem gives us more information about thecttire of B, which can

be helpful for constructing this matrix.

Theorem 14. The matrixB, can be splitintg x p blocksB@1) € F£""*»""" such that
B, = (B(il7jl))0§i1,j1<l7 and

the zero block it; > ji,
Bl — ((jljgl)p)]prfl if i1 < j; andj; — i, is even, and
((jl—izl—l)/z) ©,-1 otherwise.

Proof. For0 < iy, jo < p"~! we conside(B(171)) Definition 13 implies that:

10,J0 "
(B(h’jl))io,jo - (BT)i1p7'*1+io,j1p’"*l+jo - (L;D>il,j1 (Ip’"*l)iodo + (\IJPLP)il,jl (9107"*1)!'0,]'0‘

Using Definition 12 the only nonzero entry of tiagh row of ¥, is al in thed; + 1st
column, ifi; +1 < p, and hencéV¥,L,); ;, = l;;+1,; and the above equation can be

written as:
(BUI);0 50 = liy iy (L=)ig o + Livr1,1 (©pr—1)ig o (4.11)

Now using Theorem 8:

e If iy > 7, thenl;, ; andl;, ., ; and hence alsGB171)), . are zero.

10,J0

e If i, < j; andj, — 4, is even, ther;, ;, = ((jl_jglm) andl;, ;1 j, is zero.

e If iy < j; andj; — 4, is odd, ther;, ;, = 0 andl;, 4 ;, equals(, since

j
(jl—ill—l)/2)
j1—1i; — liseven.

4 5. Factorizations of the Conversion Matrices

99

..I .I. .-I
e i s

r=2
r=4

Figure 4.8: The matriceB, for p = 3 and4 values ofr

100 Chapter 4Small Normal Basis Multipliers

The matricesB, for 4 values ofr = 1,2, 3,4 are shown in Figure 4.8 with colors
light blue, green, and dark blue for valuesipfl, and2 respectively. We now prove the

following lemma.

Lemma 15. The following equation holds for> 1:

Ly = B,(I, ® Ly1). (4.12)

Proof. For0 < 4,5 < p” we computgL,-); ; by writing:
i =0’ o, J =500 + Jo, (4.13)

with 0 < i1, 51 < pand0 < i, jo < p" L. Sincep - x = 0:

r—1

+ x—p“l)jl (z + x—l)jo _
(Z lkl,j1xk1p7.71)(z lko,joxko) = Z lk1,j1lko7joxklpril+k0 (4-14)

k1€Z koEZ ko,k1€Z

(42 = (x4)" (z+a27")0 = (2P

wherel, ; is as Definition 6 and is zero fok| > |j|. For the coefficient of? = 717" ' +io,
which is(L,-); ;, we have:
klp’"_l + kg = ilpr_l +i9g = kg = ip mod pr—l —

ko =do +tp"!
]{31 - 7:1 —t

with ¢ € Z. (4.15)

In the above equation except for= —1,0 we have|i, + tp" | > |p" | > |jo| which

meand, -1 ;, = 0 and hence:
(Lp’“)i,j = lil,jlli(),jo + li1+1,j1li0—prfl,jo (416)

inwhichl;, ;, = (Lp)i,ji» liojo = (Lyr-1)is.59, @and we have seen in the proof of Theo-
rem 14 that;, ,;, = (V¥,L,);, ;. The value ofl;_,—1 ; can be replaced bi--1_;, ;,

because of the symmetry of the binomial coefficients. Therdaan again be replaced by

(©pr—1Lyr-1)4. 4, Since for0 < iy < p"~! the only nonzero entry in thigth row of ©,,-1

4 5. Factorizations of the Conversion Matrices 101

is in thep™™! — 4oth column and henc€d,—1L,-1);, j, is the entry in they"™! — 4pth

10,J0

row andjoth column of L,,-1. Fori, = 0 the entry(©,--1L,--1);, 5, iS zero since there

10,J0
is no nonzero entry in théth row of ©,,-1, andl,~: ;, is also zero sincg, < p"'.

Substituting all of these into (4.16) we will have the follo equation:
(Lpr)ig = (Lp)irjr (Lyr=1)io,jo + (VpLip)ir 1 (Opr—1 Liyr=1)ig o (4.17)
which together with (4.13) shows that:
Ly = Ly ® Lyt + (U, L,) @ (O 1 Ly 1), (4.18)
It is straightforward, using Definition 13 to show that (4.18equivalent to (4.12). [

Example 16. The matrixLg; is shown in Figure 4.9 where the numb@rsl, and2 are
shown with colors light blue, green, and dark blue respetyivThe relation betweehs:

and Lz-—1 is also shown in Figure 4.10.

This recursive relation resembles that for the DFT matri€ivapter 1 of Loan (1992)
and enables us to find a matrix factorization fgy in Theorem 17. Using this factor-
ization the map of a vector under the isomorphigntan be computed using(n logn)

operations as will be shown later in Section 4.6.

Theorem 17. The matrixL,- can be written as:

Ly = (I ® B)(I, ® By_y) -+ - (Iyr—> @ By)(Lr—1 ® By). (4.19)

Proof. We use induction on. If » = 1, then©, is zero and Definition 13 implies that:
L,=B =1, ®B,.
Now assume that (4.19) is correct. Then using Lemma 15 :
Lyre1 = Bryi(Ip @ Lyr) =
Bryr- (I, @ (L @ Br)(Ip, © Bra) -+ (Ip—> @ By)(Iyr1 @ B1))) =
(I1 ® By1) - (I @ By) -+ - (Iyr—1 @ Bo)(Ir ® By). (4.20)

O

102

Chapter 4Small Normal Basis Multipliers

L T - -
.I .l: .I l: .-:
ey

L

Figure 4.9: The matrixg;

4 5. Factorizations of the Conversion Matrices 103

Figure 4.10: The relation between the matfix and its sub-blocks. The sub-block at the

ith row andjth column, ifi < j andj — 7 is odd, is(J) multiplied by the mirror

(j—i=1)/2
Of L3'r—1 .

104 Chapter 4Small Normal Basis Multipliers

Instead of multiplyingL,- by a vector, we successively multiply the matrices in the
factorization of (4.19) by that vector. In the next sectioa sount the number of op-
erations required for the computations of the mappingsand v,,, but before that we
informally describe the relation between Lemma 15 and trse&driangle. This infor-
mal description helps in better understanding of that leranthcan probably give some

insights into data structures which are based on the mo®alseal triangle.

Consider a new triangle which is generated from the Pasealgie in the following
way (See Figures 4.11 and 4.12): At first a zero is inserteddszt any two horizontally
adjacent entries of the Pascal triangle and every entrgisced modulg. This will result
in the expansion of the Pascal triangle and the new triarsgtban rotated0 degrees
counter-clockwise. This triangle can be split into two piEms as shown in Figure 4.11.

In this figure the lower partition consists of the nonzeraiestof L,-, whereas the upper
partition contains the coefficients of the negative powérs m the expansions afr +
z~')J. These negative powers construct, in a similar way to thenitiefd of Z,-, a new
matrix which is shown by in Figure 4.11. The symmetry in the Pascal triangle can now

be interpreted as the relation:

L;DT — @ . Lpr,

and is demonstrated in the following example.

Example 18. The powergz + z~')7 € Fg[z], for 0 < j < 9, were shown in Example 7
and can be used to construt§. This matrix together witlly are shown in Figure 4.12-a.
The entrieq; ;, fori < j, and oddj — 4, andl; ;, for j > p" — i and every — i, are zero,
independent of the binomial coefficients, and are shown ay grhile other entries are
in black. The rotated Pascal triangle moduwas shown in Figure 4.12-b for the ease of

comparison.

To analyze the recursive dependency betwkgnand L,--:» we write0 < 7,5 < p”

4 5. Factorizations of the Conversion Matrices 105

Figure 4.11: The relation between the matridgs, L., and the Pascal triangle. The
gray area is the Pascal triangle rotated 90 degrees cotlotkwise in which each entry

is reduced modulp, and a zero is inserted between any two horizontally adjaar@nes.

1 1
1 1
102 1 2
L, 101 11
10001 1 0 1
10200 1 2 0
1010002 1 1 0 2
1000102 1 0o 1 2
102000201 1 2 0 2 1
1000102 1 0o 1 2
1010002 1 1 0 2
10200 1 2 0
Lo 10001 1 0 1
101 11
102 1 2
1 1
1 1
(a) (b)

Figure 4.12: (a) The entries of the matridesand Ly, and (b) the rotated Pascal triangle

modulo3

106 Chapter 4Small Normal Basis Multipliers

asi = i;p"~ ' +io,j = j1p" " + jo and expand:

(42 = (@42)Y (a7)0 =

(2" 2P (g4) (4.21)
displa‘c,ements bIS(r:ks

Since0 < j, < p" ! the coefficients of the powers ofin “blocks” make the concatena-
tions of the columns of,» andL;,«_1 as shown in Figure 4.11 and Example 18. The
terms in each block created by “blocks” are multiplied by ofh¢he terms in “displace-
ments” which are generally of the formlxﬁp“l. This can be thought of as multiplying
the block by the scalar;; and moving it byj;p ! positions downwards, in the ma-
trix L,-. Different values ofj; correspond to horizontal positions of blocks. Singe
is multiplied byp"~! and the difference of two powers ofwith nonzero coefficients in
“displacements” is at leagp” ! and regarding the size of each blo(:kfﬂ,’“_1 — 1) xp 1,
the blocks are non-overlapping. This is shown in Figure 418 this figure the blocks
of non-negative and negative powersccdre shown with blue and green triangles, respec-
tively. Note that although the triangles of each group héeesame color, their entries
are not equal. All of them are scalar multipliers of the satoel

Since the coefficients of negative powersaofre not directly present ih,- their
corresponding blocks will be created by multiplyi®g--. by L,--:. Now the two parts of
B,,i.e.,L,®I,- and(¥,L,)®0,--1, can be considered as two masks which multiply the
non-negative and negative blocks, -1 andL;,.,l, by appropriate binomial coefficients

and put them in the correct positions as shown in Figures-4.43d 4.13-c.

4.6 Costs of Computing,, and 7,

Multiplication by L, consists of several multiplications @y for different values of.
Hence it is better to start the study by counting the requiggatations for multiplying3;.

by a vector inf®".

4.6. Costs of Computing, andr, 107

“

Lp ®]pr—l
(b)

r
A

Ly (VpLp) ® Opr—1
(a) ()

Figure 4.13: (a) The recursive structure of the modified &asiangle together with the
masking effect ofB, for (b) non-negative and (c) negative powersrah the recursive

construction ofZ,- in Lemma 15.

108 Chapter 4Small Normal Basis Multipliers

Definition 19. Let By, for the finite fieldF,, be as in Definition 13 angd be the charac-
teristic of F',. We defingiqqq(k) and i, (k) to be the number of additions and multipli-

cations inF, to multiply By, by a vector inf?", respectively.

It should be noted that to compute the functiong,(k) and j,,...(k) we use the
structure of the matrix3, which is already known and hence the cost of adding an entry
which is known to be zero to an element or that of multiplyimg &y an element is zero.
As an example sincé,, for p = 2, is the identity matrix bothiqqq1y and fi,ui 1) are

Zero.

Lemma 20. Let 4, ; be the Kronecker delta, i.e., farj € N, 9, ;is1if 7 = 5 and

otherwise). Then fork > 1 the functionu,q, (k) is given by:

,uadd(k?) = (p - 1)(2pk — P 1)/4 - 517,2/4'

Furthermoreit, (k) < (1 — 6p.2) ftada(k)-

-3 -2 —1
OIer| - (252 (3y 72) | (0 72)
ph—1 @pk—l ph—1
(0) Tor—1 (0)©zk—1
0 ") |)
ka—l @pk—l ka—l
0 o | 9| (9h
Ipk-1 O k-1 0 ()T
0 0 0 (pal)'
ka—l
() (b)

Figure 4.14: The partitioning @By, according to Theorem 14, for two different cases of

(a) odd primep and (b)p = 2.

4.6. Costs of Computing, andr, 109

Proof. The block partitioning of3,, according to Theorem 14, for two different cases of
odd primep andp = 2 are shown in Figure 4.14. As it can be seen the blocks on the mai
diagonal are of the fornf?) /.1, for 0 < j < p, which equals/,.-:. Hence all of the
entries on the main diagonal &, arel. If we denote the number of nonzero entries in
theith row of B, by H;(By) thenH,(By,) > 0 and the number of additions to multiply the
ith row of By, by a vector is at most/;(B,) — 1. This implies that the number of additions

to multiply By, by a vector is at most

If we show the number of nonzero entriesiy, or Zfigl H;(By), by H(By), then the

number of additions to multiply, by a vector can be written as:
taaa(k) = H(By) — p*. (4.22)

To computeH (By,) we use the fact that the nonzero blocksfare scalar multiples of
.- with p*~! nonzero entries an@,-: with p*~! — 1 nonzero entries and we count the
number of each of these blocks k.

If pisoddtherearé+1+---+(p—1)/2+(p—1)/2+ (p+1)/2 =23 Vi 4
(p+1)/2 blocks which are multiples af.—. and1 +1+4---+(p—1)/2+(p—1)/2 =
2 5172 blocks which are multiples db,«1. Since3"""/?i = (p2 —1)/8 we have:

2
p°—1,,_ _ p+1 ,_
H(By) =p" =—— 0" +p" =)+ —=p" =" =
p—1 _ N
— 2+ —p—1 -2 Y =(p-1)(2 —p-1)/4.

4
(4.23)
Forp = 2 the results of (4.23) i8~! — 3/4. In this case there are two blocks which are
Ix—1 and oneDy—1 in By. HenceH (By,) — 2% =21 —1 =21 _3/4 —1/4.
We observe thatl (B,,) — p* is also an upper bound for the number of multiplications

in IF, since from the nonzero entries i), there arep® entries which are on the main

110 Chapter 4Small Normal Basis Multipliers

diagonal and aré. These elements do not contribute to any multiplicationser® are
possibly other elements iB;, which arel but specifying them is complicated. gf= 2
there are onlyis and0s in B;, and hence multiplication aB,, by a vector is done without

anyF,-multiplications. 0
Using Lemma 20 we are now in the position to compute the costutfiplication by

L,- as shown in the following theorem.

Lemma 21. Multiplying L, by a vector inIF‘gT for r > 1 requiresn(r) number of addi-

tions, where

n(r)=rip—1p"/2—(p+1)(p" —1)/4 = 0p2(p" = 1)/(4(p — 1)).
The number of multiplications is not larger than the numblesaditions.

Proof. Itis clear from (4.20) that the number of additions and nplittations are

Z pr_k/iadd(k) and Z pr_k,umult(k)
k=1

k=1
respectively and singe,,..:(r) < pq.qqa(r) the total number of multiplications is not larger

than the number of additions. Replacingq(k) with its value from Lemma 20 we have:

T

DM -1@p —p—1) = 62) /4=

k=1
T 2 T
r p _1+6P72 r—k __
> (p=1p" /2= = > ph =
k=1 k=1
2 T

r p _1+57 r—

r(p—1)p /2——4 P2 g p k. (4.24)

k=1

Puttingd",_, p" " = (p" — 1)/(p — 1) in (4.24) gives the function(r) given above. [
The following theorem is the result of Lemma 21.

Theorem 22. Multiplication of L,, from Definition 6 by a vector iiii;, can be done using

O(nlogn) operations ink,,.

4.6. Costs of Computing, andr, 111

Proof. Letp be the characteristic @f, andr = [log,n|. Obviously the above number of
operations is upper bounded by the number of operations topfyul,,- by a vector in
F2". This is given by the function(r) from Lemma 21. But we have— 1 < log,n < r

and hence:

n(r) <rp™'/2 < p’n(log,n + 1)/2.

O

One interesting fact about this factorization, which digtiishes it from other recur-
sive methods like FFT, is that it is not necessary to use ah@entries of_,,- for values
of n which are betweep”~! andp”. To find a factorization of.,, in this case we use the

factorization ofL,-. Using (4.20) we can write:
Ly =AoA;--- A,

whereA;, 0 < j < r, are upper triangular and; = I, ® B,_;. ObviouslyL,, consists

of the firstn rows and columns of,-. Now we can write:

L, = AyAy--- Al

r—1»

(4.25)

where eachd’;, is made up of the firsb rows and columns ofi; because each of the
involved matrices are upper triangular. This can be bextgliagned by the following block

matrix multiplication assuming that the sizes of the mafiare such that the operations

A B\(D E\ [AD AE+BF
o c)\o F) \ o CF '

As it can be seen the first block of the product matrix depemdis @n the first blocks of

are allowed.

the multiplicands.

In the next paragraphs we show that the cost of multiplyi)gby a vector can be
computed by the same formulas as for the cost of multiplyipgby a vector. First we
observe that eacB, is nonsingular since it is upper-triangular and all of thé&ies on

the main diagonal aré. Now we can factorize®,-, since it is the inverse aof,-, using

112 Chapter 4Small Normal Basis Multipliers

the factorization of_,- in (4.20):
Py =Ly @ By (Iy—2® By') -+ (I, ® B, ,) (I, ® B). (4.26)

Finding an exact expression fét ! is not easy but the computation of an upper bound
for the number of nonzero entries in this matrix is achiewedymbolically invertingB,.

As we will see later, the resulting matrix has a block repmésstgon in which each block is

a polynomial in©,--: with even or odd powers only. In the next paragraphs we cdunt t
number of nonzero entries in these blocks. The followingtenexpresses the number of

nonzero elements in the matrices constructed by such paliate.

Definition 23. We define even and odd polynomials to be polynomials of thesfoiz?)
andz - f(x?), for a general polynomiaf, respectively. The product of two even or odd
polynomials is an even polynomial whereas that of an everaamtld polynomial is an

odd polynomial.

Lemma 24. Let H = (h;;)o<ij<n € F,*" be such thatd = ¢(6,,) for a polynomial
g. If h; ; is nonzero, then = j for eveng and: + j = n for an odd polynomiay. The
number of nonzero entries i is at mostn andn — 1 for even and odd polynomigl

respectively.

Proof. Let ®,, € F;*" be the identity matrix with the top-left entry set to zere, ,i.
(@) — { 1 ifq :j.andz' # 0,
0 otherwise
We have®? = ¢, and®,0, = O,,. It follows by induction tha®d:, for s > 0, equals
o, and©O,, for even and odd, respectively. Hence sums of even and odd powef3,of
can have at most andn — 1 nonzero entries, respectively. Note ti@f} = I, is an
even power obB which containg: nonzero entries. These nonzero entries must be on the

positions where the entries &f and©,, are nonzero, respectively. O

Before we start the last theorem about the number of nonzdres we need more

information about the structure &, which is gathered in the following lemma.

4.6. Costs of Computing, andr, 113

1

Lemma 25. Let T = Ix — By = (T;;)o<ij<p With T;; € F£**P""". ThenT has the

following properties:

the zero block it > 4,
Tp; = —<(j_ji)/2)lp7-fl if j — i is even, and
~((j—i’1)2)Op—1 Otherwise,

k—

2. For anys > 0 the blocks of* = (7\%)o<; j<, With 7,5 € F2*~ """ satisfy

(s) _
7 =

{ the zero block ifi —i < s, (4.27)

Gij(©pr-1) otherwise,

wherey; ; € F,[z] is odd and even fof — i odd and even, respectively, and

3. 77 =0.

Proof. Part 1 can be directly verified bY = I,» — B;, and Theorem 14. Sinc€ is
strictly upper triangular the blocks on the main diagonal’doands — 1 diagonals on top
of that are zero, i.eTZ.(j) is the zero block whenevgr— ¢ < s. To show the condition on
the polynomialsy; ; we use again induction on For the beginning], . and7" obviously
satisfy (4.27) according to Part 1. Now assume that thistemues satisfied for all integers
s < sp and letsy, sy < sg andsy = s; + so. Then the block on théh row and;th column
of T is:

p
L3 =3 T (4.28)
t=1

Now if j — 7 is even — t andt — ¢« must be both even or odd. In these cases two even or
odd polynomials 0oB,,:-: are multiplied and the resulting polynomial will be even.dh

the other handj — 7 is odd either — i or j — t is odd and the other one is even. In this
case two polynomials .. are multiplied, so that one of them is odd and the other one
even. This results in an odd polynomial@):-.. Part 3 is also a direct result of Part 2

since all of the blocks satisfy— i < p. O

114 Chapter 4Small Normal Basis Multipliers

Lemma 26. Multiplication of B, by a vector iank requires at mostu,qq(k) and
imut(k) additions and multiplications i, respectively where,qq(k) and g, (k)

are given in Lemma 20.

Proof. SinceT? = 0 we can write:

Lp =TV =1Ip=(Lp—T)(Lx+T+---+T"").

Hence using the definition &f in Lemma 25:
ILp=Bp - (Ipy+T+-+T")= B ' =L +T+ - +T" " (4.29)

Lemma 25 shows that eadfy, for s > 0, and henceB, ' can be partitioned in a way
similar to Lemma 25, such that the block on titk row andjth column is the zero
block fori > j and an even or an odd polynomial &,:-: for even and odd — 1,
respectively. Note that the zero blocks in the identity imatre even and odd polynomials
in ©,+-1. These even and odd polynomials have at mastdn — 1 nonzero coefficients,
respectively according to Lemma 24. Now the same methodea®th.emma 20 shows
that the number df ,-additions and multiplications are boundedbyi; (k) andu (k),

respectively. O

Theorem 27. Multiplication of 7, from Definition 9 by a vector iiii; can be done using

O(nlogn) operations ink,,.

Proof. Lemma 26 and the same argumentation as Lemma 21 show thgblroation of
P, by a vector is done using(r) operations, wherg(r) is given in Lemma 21. Now the

proof is similar to Theorem 22. O

We conclude this section with the following theorem. Althbuits result is not con-
cerned with normal basis multiplication directly, it emplzes the most important prop-
erty of our multiplier. Namely a specific change of basi&ja which can be done using
O(nlogn) instead ofO(n?) operations, which is the cost of general basis conversion in

Fon.

q

4.7. Other Costs 115

Theorem 28. Let N be a type-Il normal basis df,» overF, generated by the normal

element? + 3~ and

P=(LA+F (BT
be the polynomial basis generated by the minimal polynoafig}-3-!. Then the change
of representation between the two badesnd?P can be done usin@(n log n) operations
inIF,.
Proof. TheN-basis vector representation of an element is convertduetesttended per-
muted representation, as in Figure 4.2, without any arittmo@erations. Then the matrix
P,,1 is multiplied by this vector using at mos{r) operations, where = [log,n| and
p is the characteristic df,, and the coefficient of3 + 5~!)" is converted to the polyno-
mial basis using at mo&t: additions and multiplications ifi,. This cost isO(nlogn)
according to Theorem 22.

To convert the representation of an element ffmto N we insert a zero, as the coef-
ficient of (3+ 3-1), to the end of the representation vectofinThenL,,,, is multiplied
by the resulting vector and finally the first entry which is to@stant term is converted to
the normal basis representation by multiplying it by theteecepresentation of using

at most2n operations irf,. This again can be done usinyn log n) operations. O

4.7 Other Costs

There are two other operations in our multiplier which wil Biscussed in this section.
Namely polynomial multiplication and conversion from theéemnded permuted represen-
tation to the normal basis representation.

The polynomial multiplication method can be selected eabiy among all avail-
able methods depending on the polynomial lengths and thiemgntation environments.
Chapter 3 was devoted to moderate polynomial sizes whichgpkcable to cryptogra-
phy. Although Table 3.6 of that chapter compares our mugtiplwith others for polyno-

mial lengths up t®192, the methods can be applied to larger polynomials as well. Fo

116 Chapter 4Small Normal Basis Multipliers

a thorough analysis of other methods of polynomial multigtion see von zur Gathen &
Gerhard (2003), Chapter 8. We assume the polynomial miegltgpbf Chapter 3 to require
[7.6 n'°%23] two-input gates. The above expression has been computedigpar bound
for the area of those multipliers in the interva&l0 < n < 10000.

Another cost which we analyze is the number of bit operationsonvert from ex-
tended permuted to the permuted representation. By myihiplthe polynomials of
lengthn + 1 the product which is of lengtBn + 1 is converted to a linear combina-
tion of 3° + 3~¢ for 0 < ¢ < 2n. These values should be converted to the permuted
representation, i.e3* + 5~ for 1 < i < n. This conversion is done using the fact ti¥at
is a2n + 1st root of unity. The costs for the case of odd prime numbexgaen in the

next theorem.

Theorem 29. Letp, the characteristic oF ,», be an odd prime number. Conversion from
extended permuted representation of the product in Figu2eirto the permuted basis

can be done using at moat additions and: scalar multiplications irfF,.

Proof. The conversion from the extended permuted representatithetpermuted basis
must be done for the constant term atid+ 5~ wheni > n. Since is a2n + 1th root
of unity gnt* = grti=* for 1 < k < nandp"t* + gk = prti-k L g—n=1+F Hence
the corresponding coefficients must be added together. i3liene using: additions.
The mapping of the constant term is done by multiplying itrwthie vector of represen-
tation of 1 in the permuted normal basis. This is done with at mostiditions and

multiplications inkF,. O

The above task can be done usim@dditions when the characteristic of the finite
field is 2 since in that case the constant term vanishes, as will berskaer using the

following lemma.
Lemma 30. For any positive integen the binomial coefficien(tzg) is an even number.

Proof. This can be easily proven using Lucas’ theorem. This thedsma PlanetMath

(2002)) states that for any two positive integerand b with p-adic representations

4.7. Other Costs 117

12+ + - ag @ndb,,,_1b,,_o - - - by respectively, we have:

a Am—1 Am—2 Qo
= . d p. 4.30
()= o) Grs) () o @20
Letn,,_1n.,._2 - - - ng be the binary representationofindk be its first nonzero digit from
the right, i.e., for each < k£ we haven; = 0 andn;, = 0. Since the binary representation

of 2n is that ofn shifted by one position to left, the digit on tlkéh position of the binary

representation din is zero. The relation

(2n) =0 mod?2
n

is hence the result of the fact th@) is equal to zero and (4.30). O

Theorem 31. Let p.(x) be the polynomial representation of the producas shown in

Figure 4.2 andy be a power of. Then the constant term in.(z) is zero.

Proof. According to Theorem 8 and Lemma 30 the erdryis the only nonzero entrly ;

of L, , for every integek and0 < j < 2*. On the other hand, as we saw in Section 4.4,
zeros are inserted to the beginning of the permuted norme¢sentations af andb and

the entries at the indexof these two new vectors are zero. Hence the constant terms in
polynomialsy, andy, in Figure 4.2 are zero and singeg is the product ofp, andy, the

constant term in that polynomial is zero, too. 0

Using the materials which are presented herein we can suertie costs of our
multiplier in the following theorem. Since we can use anyahle polynomial multiplier,

the presented costs depend on the polynomial multiplicatiethods used.

Theorem 32. Let [F,» be a finite field of characteristip, which contains an optimal
normal basis of typ@. Let furtherd; ; be the Kronecker delta as stated in Lemma 20,
M(n) be the number df ,-operations to multiply two polynomials of degree- 1, n(r)

be as given in Lemma 2&; = [log,(n + 1)], andr, = [log,(2n + 1)]. Multiplication

in this finite field, in normal basis, can be done using at most

n+2(1 = 8y)n + 20(r1) + n(r2) + M(n + 1)

118 Chapter 4Small Normal Basis Multipliers

(@)

K

(b)

Figure 4.15: (a) The matrice% and P; and (b) their factorizations. All nonzero entries

which belong only taP; are in black and other nonzero entriesinare in gray.

operations inF,. For sufficiently largen the above expression is upper bounded by

M(n + 1) + 3n +2(2n + 1)p*log,(2n + 1).

It should be pointed out that for the case- 2 we havel™? = 0, for the matrixL in
Theorem 26, and Equation 4.29 implies that e&ghs its own inverse and computing,
has the same cost as.

The matriced.;; and P; whenp = 2, i.e., the case of the example in Section 4.3 and

their factorizations are shown in Figures 4.15 and 4.1Geaetdvely.

4.8 Comparison

The multiplier which is proposed in this section is espégiefficient when the extension
degreen is much larger than the size of the ground figld One practical application

of this kind is the cryptography in fields of characteristicin this section we compare

4.8. Comparison 119

(b)

Figure 4.16: (a) The matricds; and L and (b) their factorizations. All nonzero entries

which belong only td.,4 are in gray, whereas common entried.gf andL,; are in black.

this multiplier with some other structures, from the litewr@, which are proposed for
multiplication in such fields using normal bases of tgpd he field extensions which are
discussed here are from Table 4.1.

The first structure, which we study here is the circuit of SufadKo¢ (2001) with
n(bn — 1)/2 gates. The second circuit is from Gabal. (1995). The idea behind this

multiplier is to consider the representation
a(B+ 67"+ +au (B + 67
as the sum of two polynomials
af+---+a,fanda,3 "+ -+ a8

To multiply two elements four polynomials of degreeshould be multiplied together.
However, because of the symmetry only two multiplicatiors mecessary which also

result in the other two products by mirroring the coefficeethe cost of a multiplication

120 Chapter 4Small Normal Basis Multipliers

using this circuit iM(n) + 2n, whereM(n) is the cost of multiplying two polynomials
of lengthn.

Since we are interested in hardware implementations ofrigtigs we compare the
circuits with respect to both area and area-time. The praj@ydelay of the multiplier
of Sunar & Kog (2001) id + [log, n| gates. The propagation delay of the multiplier of
this chapter consists of two parts: the first one belongsd@tmversion circuits which is
2+2[log, n] and the other part corresponds to the polynomial multipide compute the
propagation delay of each polynomial multiplier for thaesial case. The propagation
delay of the multiplier of Gaeet al. (1995) is two plus the delay of each polynomial
multiplier which must again be calculated for each speaakc

The area and AT parameters of these three circuits are cechpath each other
and the results are shown in Figure 4.17. In these diagramysgraial multiplication
is done using the methods of Chapter 3. As it can be seen tlaechrine proposed
multiplier is always better than the other two structurest e AT parameter is larger
for small finite fields. This shows that, as we have mentiottgd,method is appropriate
for applications where only small area is available or whbeefinite fields are large.
Economical applications, where small FPGAs should be usedituations of this sort.
The AT parameter of the proposed multiplierd$n log® n(log logn)?), whereas that of
the structure in Sunar & Kog (2001) 3(n? log n).

4.9 Conclusion

This chapter presented a new method for multiplication iififields using optimal nor-
mal bases of typ@. The area of this multiplier is smaller than other propodeacsures
but has a higher propagation delay, hence is suitable foml@a implementations. The
most important property of this multiplier, which is inhtexd from its conceptual par-
ent in Gaoet al. (1995), is the ability of using polynomial multipliers foormal bases.

This enables designers to select the most appropriatdusteyifrom the well studied area

4.9. Conclusion 121

The multiplier of Sunar & Kog (2001)
The multiplier of Gacet al. (1995)
The proposed multiplier

i~
< 51
0 [l [l [l [l

0 1000 2000 3000 4000 5000 n

(@)

50 +
10 1
S30 4
=20 +
10 +

0 I I I i i
0 1000 2000 3000 4000 5000 n

(b)

Figure 4.17: Comparing the (a) area (as the number of twotigptes) and (b) the AT

parameter (as the product of the number of two-input gatéstendelay of a single gate)

of three multipliers for binary finite fields with extensioagtees from Table 4.1.

122 Chapter 4Small Normal Basis Multipliers

of polynomial multipliers, to fit their special conditiond’he advantage of this struc-
ture, compared to that of Gaat al. (1995), is the reduction of the number of operations
from two polynomial multiplications to one multiplicatigolus a small circuit of size
O(nlogn) for the change of representation. The materials of this telmapere arranged

in the following parts:

e First the definitions of the Gauss periods and optimal nottmasks of type re-

viewed from the literature.

e The structure of the multiplier and the definitions of thedudata structures were

presented in Section 4.3.

e The data structures for the change of representations weogluced. Some facts
about their matrices were proved, which resulted in spda@brizations. These
factorizations allowed the change of representations tddree usingO(nlogn)

operations.
e The costs corresponding to the other parts of the multiplietbriefly studied.

e Finally Section 4.8 compared the area and AT measures of rihgoped mul-
tiplier with two other structures from the literature foretliinite fieldsF,., for
160 < n < 5000, in which optimal normal bases of ty@eexist. Results showed
that the asymptotically small area of the multiplier makesven attractive for el-
liptic curve cryptography, where the finite field sizes aré¢ very large (60 <
n < 600). But designers should note the long propagation delay aadtwnly for

applications where the area is limited or too expensive olaige finite fields.

Chapter 5

Conclusion and Future Works

The aim of this work is to present the design stages of antiellqurve co-processor.
Elliptic curve cryptography is going to be an important pHrtryptography because of its
relatively short key length and higher efficiency as comgaoeother well-known public
key crypto-systems like RSA. Chapter 1 contains a very laefview of cryptography,
FPGAs, and parameters which are used for designing thetcircu

Chapter 2 studies the stages of the design of a high perfaenelfiptic curve co-
processor. It is shown in this chapter that for small arediegdmons, the combination
of polynomial basis for the finite field representation ane khontgomery method for
the point representation and scalar multiplication, ig.bksaddition, it is shown in this
chapter that it is always better to use as much parallelispoasible in the finite field
arithmetic level rather than in the bit-level. This meanrat ttor example, if allowed by
the algorithm two serial multipliers are better than a snglltiplier which produces two
output bits in one clock cycle. A comparison between all @f plublished reports is not
possible due to differences in hardware platforms. But thmagarison with a circuit on
the same FPGA shows the high performance of the co-procpessented here.

The rest of this work studies different methods to improwedfficiency of the finite
field multiplication as a ground operation in elliptic curegyptography. The results of

Chapter 3 propose a novel pipelined architecture for theiplightion of polynomials

123

124 Chapter 5-Conclusion and Future Works

overlF,. This chapter begins with a machine-independent impromewiehe Karatsuba
method by combining different multiplication methods armhtinues with the applica-
tion of pipelining as a machine-dependent optimizationutthfer improve the results. Al-
though these results are not built into the designed cogssmr, the comparisons between
this structure and other classical method2&i-bit polynomials show the suitability for
applications in elliptic curve cryptography by covering tRIST finite finite fieldFys;.
Finally Chapter 4 presents a small area normal basis mieltipl'his multiplier re-
duces the multiplication in optimal normal bases of tgp® one polynomial multipli-
cation and a small circuit of siz&(nlogn). These results are probably not directly
applicable to generic elliptic curves because of the higipagation delay in their circuits
and the fact that for these curves polynomial bases arerpattés shown in Chapter 2.
They can instead be applied to Koblitz curves, where sesgrarings should be done for
a single point multiplication (see Hankersenal. (2003), Section 4.1.2, Page 163) or to
finite field inversion, where there are a lot of squarings carag to multiplications. It is
better to perform these squarings in normal bases. Anotharaage of this structure is
its efficiency for the change of representation betweenrmotyial and normal bases. This
change of representation, which is used by Rarkl. (2003) to strengthen the systems
against side channel attacks, can be done by the multigliriscchapter using) (n logn)
instead of the assume@(n?) operations. Another possible application of this system is
in systems where several normal basis multiplications eashdme in parallel. In this case
pipelining can be used to decrease the latency of the systela keeping the area to a
minimum. This happens, in fields of characteristior identity based cryptosystems, as
also mentioned in Granget al. (2005). These can be considered as the future research

directions of this project.

Appendix A

Karatsuba multiplication Formulas for
Polynomials of Degree< and 7 for fields

of characteristic 2

A.1 Degree2

a(z) = asx® + a1 + ao,
b(l‘) = b2.1'2 + bll‘ + bo),

Py = agby, P = (ao + al)(bo + bl), P, = a0y,
P; = (ag + a2)(bp + b2), Py= (a1 +az)(by +b2), P5= agby,
a(x)b(x) = Py(1+2z+2%) + P+ Pz + 2% + 2%)+

P3x? 4 Pyx® 4 Ps(2? + 23 + %),

125

126 Chapter A-Special Karatsuba Formulas

A.2 Degree7

a(z) = (a72” + agxS + asz® + agx? + azz® + ar? + ayx + ag),

b(x) = (bra” + bea® + bsa® + byat + b3ad + bez® + byx + by),

Py =agby, P1=aib, Py=agby, P3=agbs, Py=a4by, P5=asbs,
Ps = agbs, Pr = arbr,

Pg = (ag +a1)(bo +b1), Py=(ag+az)(bo+0b2), Pio=(ar+a3)(bs+b3),
Piy = (ag +a3)(ba +b3), Pia = (ag +a4)(bo +0bs), P13 = (ar+as)(by + bs),
Py = (ag + CLG)(bQ + b@), Pi5 = (CL3 + a7)(b3 + b7), Pig = (CL4 + a5)(b4 + b5),
P = (a4 + (16)(b4 + b@), Pis = (CL5 + a7)(b5 + b7), Pg = (CL@ + a7)(b6 + b7),
Py = (ao + a1+ a2 +a3)(b0 + b1+ by +b3) Py = (a() +a1 +ay +a5)(b0 + b1 + by +b5),
Py = (ao + a2 + aq +a6)(b0 + by + by + b@) Pys = (a1 +as + as + a7)(b1 + b3 + b5 + b7),
Py = (al “+ a2 + as +a6)(b1 + by + b5 + 56),P25 = (ag + a3 + ag + a7)(b2 + b3 + bg + b7),
P26—(ao+a1—I—ag—I—a3+a4—|—a5—|—a6+a7)(b0+b1—|—b2—|—b3+b4+b5—|—b6—|—b7),
a(@)b(x) = P(l+azt+a2?+a3+a2t+2°+25+2)+
Pzt + 23+ 2% + ")+ P(ot + 2?2 + 22 + 2t + 25 + 28 + 27 + 28)+
Py(z? + 23 + 20 4+)+on(:c +)+P10(333+:c4+a:7+338)+
P2+ a3+ 2t + 25+ 28 + 27+ 28 +2%) + Py (a3 +2° + 27 +:c)+
Py(z? + 2t + 2% + 2% + 27 + 28 + 2 +a:10)+P12(a: + 2% + 2% + 27)+
Poy (2% +27) + Pi3(2® + 28 + 27 + 28) + Poo(28 + 27) + Pyg(z7)+
Py3(z” +a:)+P14(33 + 27 + 28 +33)+P24(SC -1—33)—1-
Pis(2" + 2% + 29 + 219 + Py(a* + 2° + 2% + 27 4+ 2% 4+ 2° +:z10+m”)+
Pig(z® + 2" + 2% + 2 + Py(a® + 28 + 27 + 28 + 29 + 210 + 21! 4 212)+

Pi7(25 + 27 + 210 + 211) + Py (27 + ') + Pig(2” + 28 + 2! + 212)+
Ps(xb + 2" + 28 +2° + 210 4 211 + 212 4 213)4

Bibliography

Y. ASANO, T. ITOH & S. TsuJil (1989). Generalised fast algorithm for computing multative
inverses inGF'(2™). Electronics Letter25(10), 664—665.

DANIEL V. BAILEY & CHRISTOF PAAR (1998). Optimal Extension Fields for Fast Arithmetic
in Public-Key Algorithms. InAdvances in Cryptology: Proceedings of CRYPTO S&nta Bar-
bara CA, HUGo KrRAwCZYK, editor, number 1462 in Lecture Notes in Computer Scien¢g;-4

485. Springer-Verlag. ISBN 3-540-64892-5.

M. BEDNARA, M. DALDRUP, J. SHOKROLLAHI, J. TEICH & J. VON ZUR GATHEN (2002a).
Reconfigurable Implementation of Elliptic Curve Crypto atghms. InProc. of The 9th Recon-

figurable Architectures Workshop (RAW-0Bdrt Lauderdale, Florida, U.S.A.

M. BEDNARA, M. DALDRUP, J. SHOKROLLAHI, J. TEICH & J. VON ZUR GATHEN (2002b).
Tradeoff Analysis of FPGA Based Elliptic Curve Cryptogrgpim Proc. of the IEEE International
Symposium on Circuits and Systems (ISCASWatyme V, 797-800. Scottsdale, Arizona, U.S.A.

RICHARD E. BLAHUT (1985). Fast Algorithms for Digital Signal Processinghddison-Wesley,
Reading MA.

IAN BLAKE, GADIEL SEROUSSI& NIGEL SMART (1999). Elliptic Curves in Cryptography

Number 265 in London Mathematical Society Lecture Note€3eCambridge University Press.

A. BRAUER (1939). On addition chainsBulletin of the American Mathematical Societ,
736-739.

DAvID G. CANTOR (1989). On Arithmetical Algorithms over Finite Field3ournal of Combina-
torial Theory, Series A0, 285-300.

127

128 Bibliography

HENRI COHEN, ATSUKO MIYAJI & TAKATOSHI ONO (1998). Efficient Elliptic Curve Expo-
nentiation Using Mixed Coordinates. Bdvances in Cryptology - ASIACRYPT,38. OHTA &
D. Pel, editors, number 1514 in Lecture Notes in Computer Sciebtef5. Springer-Verlag.
ISBN 3-540-65109-8. ISSN 0302-9743.

MICHAEL DALDRUP (2002). Entwurf eines FPGA-basierten Koprozessors zur Kryptogiemit

Elliptischen Kurven Diplomarbeit, University of Paderborn.

WHITFIELD DIFFIE & M ARTIN E. HELLMAN (1976). New directions in cryptographyEEE
Transactions on Information Theoly-22(6), 644—654.

T. ELGAMAL (1985). A Public Key Cryptosystem and a Signature Schemedas Discrete
Logarithms.IEEE Transactions on Information Theoli31(4), 469-472.

FIPS PUB 180-1 (1993).Secure Hash StandardU.S. Department of Commerce / National
Institute of Standards and Technology. Federal InformmaBoocessings Standards Publication

180-1.

FIPS PUB 186-2 (2000).Digital Signature Standard (DSS)U.S. Department of Commerce
/ National Institute of Standards and Technology. Feder&rination Processings Standards

Publication 186-2.

L1JUN GAO, SARVESH SHRIVASTAVA & GERALD E. SOBELMAN (1999). Elliptic Curve Scalar
Multiplier Design Using FPGAs. I€ryptographic Hardware and Embedded SysteGhK. Ko¢
& C. PAAR, editors, number 1717 in Lecture Notes in Computer ScieR6&-268. Springer-
Verlag. ISBN 3-540-66646-X. ISSN 0302-9743.

S. GAO, JOACHIM VON ZUR GATHEN & D. PANARIO (1995). Gauss periods, primitive normal
bases, and fast exponentiation in finite fields. TechnicaloRe296-95, Dept. Computer Science,

University of Toronto.

S. GAO & H. W. LENSTRA, JR. (1992). Optimal normal baseBesigns, Codes, and Cryptogra-
phy?2, 315-323.

BIBLIOGRAPHY 129

SHUHONG GAO, JOACHIM VON ZUR GATHEN, DANIEL PANARIO & V ICTOR SHOUP (2000).

Algorithms for Exponentiation in Finite Fielddournal of Symbolic Computati&®9(6), 879—889.

JOACHIM VON ZUR GATHEN & JURGEN GERHARD (1996). Arithmetic and Factorization of
Polynomials overFs. In Proceedings of the 1996 International Symposium on Symiaold
Algebraic Computation ISSAC '9&rich, Switzerland, Y. N. BKSHMAN, editor, 1-9. ACM

Press.

JOACHIM VON ZUR GATHEN & JURGEN GERHARD (2003). Modern Computer AlgebraCam-

bridge University Press, Cambridge, UK, 2nd edition. ISBBZ1-82646-2. First edition 1999.

JOACHIM VON ZUR GATHEN & M ICHAEL NOCKER (2003). Computing special powers in finite

fields. Mathematics of Computatiori3(247), 1499-1523. ISSN 0025-5718.

JOACHIM VON ZUR GATHEN & M ICHAEL NOCKER (2005). Polynomial and normal bases for

finite fields. Journal of Cryptologyl8(4), 313—-335.

JOACHIM VON ZUR GATHEN & JAMSHID SHOKROLLAHI (2005). Efficient FPGA-based Karat-
suba multipliers for polynomials ovét,. In Selected Areas in Cryptography (SAC 2Q@ART
PRENEEL & STAFFORD TAVARES, editors, number 3897 in Lecture Notes in Computer Science,

359-369. Springer-Verlag, Kingston, ON, Canada. ISBN 3-33108-5.

JOACHIM VON ZUR GATHEN & JAMSHID SHOKROLLAHI (2006). Fast arithmetic for polynomials
overF, in hardware. INEEE Information Theory Workshop (200@)07-111. IEEE, Punta del
Este, Uruguay.

J. GOODMAN & A. P. CHANDRAKASAN (2001). An energy-efficient reconfigurable public-key

cryptography processotEEE Journal of Solid-State Circuit36(11), 1808-1820.

C. GRABBE, M. BEDNARA, J. SHOKROLLAHI, J. TEICH & J. VON ZUR GATHEN (2003a). FPGA
Designs of parallel high performancgF (2233) Multipliers. In Proc. of the IEEE International

Symposium on Circuits and Systems (ISCASM@Byme Il, 268—-271. Bangkok, Thailand.

130 Bibliography

C. GRABBE, M. BEDNARA, J. SHOKROLLAHI, J. TEICH & J. VON ZUR GATHEN (2003b). A
High Performance VLIW Processor for Finite Field Arithneetiln Proc. of The 10th Reconfig-
urable Architectures Workshop (RAW-03)

ROBERT GRANGER, DANIEL PAGE & M ARTIIN STAM (2005). Hardware and Software Normal
Basis Arithmetic for Pairing-Based Cryptogaphy in Chagastic Three.lEEE Transactions on
Computersb4(7), 852—-860.

C. GREGORY, C. AHLQUIST, B. NELSON& M. RICE (1999). Optimal Finite Fields for FPGAs.
In Proceedings of the 9th International Workshop on Field Paogmable Logic and Applications
(FPL 99), number 1673 in Lecture Notes in Computer Science, 51-@in@p-Verlag, Glasgow,
UK.

J. H. Guo & C. L. WANG (1998). Hardware-efficient systolic architecture for irsien in

GF(2™). IEE Proc. -Comp. Digit. TechLl454), 272—-278.

VIPUL GUPTA, DOUGLAS STEBILA, STEPHEN FUNG, SHEUELING CHANG SHANTZ, NILS
GURA & HANsS EBERLE (2004). Speeding up secure Web Transactions Using Ell(tio/e
Cryptography. InThe 11th Annual Network and Distributed System SecurityS8)C35ymposium
San Diego.

DARREL HANKERSON, JULIO LOPEZ HERNANDEZ & A LFRED MENEZES (2000). Software
Implementation of Elliptic Curve Cryptography Over Bindfields. InCryptographic Hardware
and Embedded Systems - CHES 20D0K. Koc¢ & C. PAAR, editors, number 1965 in Lecture
Notes in Computer Science, 1-24. Springer-Verlag. ISBM3-81455-X. ISSN 0302-9743.

DARREL HANKERSON, ALFRED MENEZES & SCOTT VANSTONE (2003). Guide to Elliptic

Curve Cryptography Springer-Verlag. ISBN 0-387-95273-X.

JOHN L. HENNESY & DAVID A. PATTERSON (2003). Computer Architecture A Quantitive Ap-

proach Morgan Kaufmann Publishers, 3rd edition. ISBN 1-55866-39

M. JUNG, F. MADLENER, M. ERNST & S. Huss (2002). A Reconfigurable Coprocessor for
Finite Field Multiplication inGF'(2™). In Workshop on Cryptographic Hardware and Embedded
SystemslEEE, Hamburg.

BIBLIOGRAPHY 131

BURTON S. KALISKI & M 0SeEsLIskov (1999). Efficient Finite Field Basis Conversion Involv-
ing Dual Bases. IrCryptographic Hardware and Embedded Syste@sK. Ko¢ & C. PAAR,
editors, number 1717 in Lecture Notes in Computer Sciengs;-143. Springer-Verlag. 1SBN
3-540-66646-X. ISSN 0302-9743.

A. KARATSUBA & Y U. OFMAN (1963). Multiplication of multidigit numbers on automatoviet
Physics—Doklady(7), 595-596. Translated from Doklady Akademii Nauk SSS#, 345, No. 2,
pp. 293-294, July, 1962.

DONALD E. KNUTH (1998). The Art of Computer Programming, vol. 2, Seminumerical Algo

rithms Addison-Wesley, Reading MA, 3rd edition. First editior629

C. K. Ko¢c& S. S. ERDEM (2002). Improved Karatsuba-Ofman Multiplication@¥#'(2™). US
Patent Application.

C. K. Ko¢ & B. SUNAR (1998). Low-Complexity Bit-Parallel Canonical and Nornissis
Multipliers for a Class of Finite FielddEEE Transactions on Compute43(3), 353—-356.

P: LEONG & I. L EUNG (2002). A microcoded elliptic curve processor using FPCGehitmlogy .
IEEE Transactions on VL3IQ(5), 550-559.

CHARLES VAN LOAN (1992). Computational Frameworks for the Fast Fourier Transforgoci-

ety for Industrial and Applied Mathematics (siam), Philptiéa. ISBN 0-89871-285-8.

JuLio LOPEZ& RICARDO DAHAB (1999a). Fast Multiplication on Elliptic Curves ovetr' (2™)
without Precomputation. Ii€ryptographic Hardware and Embedded Systef@s K. Koc¢ &
C. PAAR, editors, number 1717 in Lecture Notes in Computer Scie3ib@-327. Springer-Verlag.
ISBN 3-540-66646-X. ISSN 0302-9743.

JuLio LOPEZ& RICARDO DAHAB (1999b). Improved Algorithms for Elliptic Curve Arithmeti
in GF(2™). In Selected Areas in Cryptograph$TAFFORD TAVARES & HENK MEIJER editors,
number 1556 in Lecture Notes in Computer Science, 201-2f@nger-Verlag. ISBN 3-540-
65894-7. ISSN 0302-9743.

132 Bibliography

JONATHAN LUTZ & A NWARUL HASAN (2004). High Performance FPGA based Elliptic Curve
Cryptographic Co-Processor. International Conference on Information Technology: Cugdi

and Computing (ITCC'04)volume 2, 486. IEEE.

UELI M. MAURER (1994). Towards the Equivalence of Breaking the Diffie-Hlh Protocol
and Computing Discrete Logarithms. Advances in Cryptology: Proceedings of CRYPTO '94,
Santa Barbara CA, Yo G. DESMEDT, editor, number 839 in Lecture Notes in Computer Science,

271-281. Springer-Verlag. ISSN 0302-9743.

ROBERT J. MCELIECE (1987). Finite Fields for Computer Scientists and Engineeksluwer

Academic Publishers. ISBN 0-89836-191-6.

PETERL. MONTGOMERY (1987). Speeding the Pollard and Elliptic Curve Methodsauitbriza-
tion. Mathematics of ComputatiofB(177), 243—-264.

PETER L. MONTGOMERY (2005). Five, Six, and seven-Term Karatsuba-Like Formul&EE

Transactions on Computet(3), 362—-369.

FRANCOIS MORAIN & JORGEOLIVOS (1990). Speeding up the computations on an elliptic curve
using addition-subtraction chaingformatique tieorique et Applications/Theoretical Informatics

and Application24(6), 531-544.

R. C. MULLIN, I. M. ONYSZCHUK, S. A. VANSTONE& R. M. WILSON (1989). Optimal normal
bases in GB™). Discrete Applied Mathematic?2, 149-161.

MIicHAEL NOCKER (2001). Data structures for parallel exponentiation in finite field3oktorar-

beit, Universitat Paderborn, Germany.

JMmy K. OMURA & JAMES L. MASSEY (1986). Computational method and apparatus for finite

field arithmetic.United States Patent 4,587,6Pate of Patent: May 6, 1986.

G. ORLANDO & C. PAAR (1999). A Super-Serial Galois Fields Multiplier for FPGAwdats Ap-
plication to Public-Key Algorithms. Iifeventh Annual IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM ‘9®%apa Valley, California, USA.

BIBLIOGRAPHY 133

G. ORLANDO & C. PAAR (2000). A High-Performance Reconfigurable Elliptic Curnvap@ces-
sor forGF'(2™). In Cryptographic Hardware and Embedded Systems - CHES,2DO&. Ko¢
& C. PAAR, editors, number 1965 in Lecture Notes in Computer Sciefibe56. Springer-Verlag.
ISBN 3-540-41455-X. ISSN 0302-9743.

MARTIN OTTO (2001). Brauer addition-subtraction chainsDiplomarbeit, University of Pader-

born.

C. AR (1994).Efficient VLSI Architectures for Bit-Parallel ComputationGalois Fields Ph.D.

thesis, Institute for Experimental Mathematics, Univigrsif Essen, Essen, Germany.

DONG JN PARK, SANG GYOO SIM & PIL JOONG LEE (2003). Fast Scalar Multiplication
Method Using Change-of-Basis Matrix to Prevent Power AsialyAttacks on Koblitz Curvesg.
In WISA 2003K. CHAE & M. Y UNG, editors, number 2908, 474-488. Springer-Verlag, Berlin,
Heidelberg.

PLANETMATH (2002). Lucas’ theorem. Webpage. http://planetmatheoigy/clopedia/LucassTheorem.html.

A. REYHANI-MASOLEH & M. A. H ASAN (2002). A new construction of Massey-Omura parallel

multiplier overGF'(2™). IEEE Transactions on Compute®4(5), 511-520.

SHEUELING CHANG SHANTZ (2001). From Euclid’s GCD to Montgomery Multiplication thet
Great Divide. Technical Report TR-2001-95, Sun microsyste

JoseEPHH. SILVERMAN (1986). The Arithmetic of Elliptic Curves Number 106 in Graduate

Texts in Mathematics. Springer-Verlag, New York.

N. P. SVART (2001). The Hessian form of an elliptic curve. @Gryptographic Hardware and
Embedded Systems CHES 20@1 K. Kog¢, D. NACCACHE & C. PAAR, editors, number 2162
in Lecture Notes in Computer Science, 118-125. Springdalye ISBN 3-540-42521-7. ISSN
0302-9743.

B. SUNAR & C. K. Kog¢ (2001). An Efficient Optimal Normal Basis Type Il Multiplie [EEE
Transactions on Compute&)1), 83-87.

134 Bibliography

NAOFUMI TAKAGI (1998). A VLSI Algorithm for Modular Division Based on the igary GCD
Algorithm. IEICE Trans. Fundamentalg81-A(5), 724-728.

ALFRED WASSERMANN (1993). Zur Arithmetik in endlichen Korpern.Bayreuther Math.

Schriften44, 147-251.

A. WEIMERSKIRCH& C. PAAR (2003). Generalizations of the Karatsuba Algorithm for &fint

Implementations. Technical report, Ruhr-UniversitéaeBum, Germany.

WIKIPEDIA (2006). Sierpinski triangle. Webpage.
http://en.wikipedia.org/wiki/Sierpinskiriangle.

HUAPENG WU (2000). On Computation of Polynomial Modular Reduction.cfii@cal Report
CORR2000-31, Centre for Applied Cryptographic ResearchGR), University of Waterloo,

Canada.

XILINX (2005). Virtex-1l Platform FPGAs: Complete Data Sheet Xilinx.
http://direct.xilinx.com/bvdocs/publications/dsOBdf.

BIBLIOGRAPHY

135

List of symbols

F,e
M(n)

ALFSR(”> P, w)

DLFSR(n7 :P? ’UJ)

The finite field withg™ elements
Number of bit operations for multiplication of polynomiai$

lengthn

A fixed point on an elliptic curve

The additive inverse of the poifit on an elliptic curve

The point at infinity: the zero element of the group of points

on an elliptic curve

The integem times the poinfR on an elliptic curve
Parameters of an elliptic curve over a field of characteristi
The root of the irreducible polynomial generating a polymam

basis

The irreducible polynomial defining a polynomial basis
Normal element

The word-length of serial-parallel multipliers

Polynomial basis

The Hamming weight or the number of nonzero coefficients in

the representation af®
The area or the number of two-input gates in an LFSR multi-

plier for F,» of word-lengthw and in a polynomial basi®
The delay (or the minimum clock period) of an LFSR multi-

plier for Fy. of word-lengthw and in a polynomial basi8
The delay of arKOR gate

The delay of arAND gate

The2-segment Karatsuba method

The number of bit operations to multiply twebit polynomi-

als by recursively applying thie=segment Karatsuba method
The 3-segment Karatsuba method
The number of bit operations to multiply twebit polynomi-

als by recursively applying th& segment Karatsuba method
The number of bit operations to multiply two polynomials of

length6n by applyingX, on top of K3
The number of bit operations to multiply two polynomials of

length6n by applyingXs on top ofX,
The characteristic df ;»

Bibliography

:uadd(k)
Hmalt (k)

n(r)

o,

The group of units module
The number of elements ify .
A primitive rth root of unity inlF .

The vector of the representation of the elemenmtith respect

to the basisB

Theith entry in the vector of the representation of the element

a with respect to the basB
Polynomials in variable: overF, with degree not larger than

n.
See Section 4.3. The polynomial representation of the eleme

a

The vector of elementg for 1 <i <n

The entry in theth row andjth column of the matrix4
See Definition 6. The parametgcan be omitted.
The linear mapping correspondingig,,

See Definition 9. The parametgcan be omitted.
The linear mapping corresponding &,

See Definition 6.

See Definition 11

The block in theth row andjth column in the block represen-

tation of L,,-

See Definition 13

The number off,-additions to multiply5;, by a vector irﬂ?gk
The number off ,-multiplications to multiplyB;, by a vector
in F#*

The number off,-additions to multiplyZ,,- by a vector inf?’,

See Theorem 21
See Lemma 24

BIBLIOGRAPHY 137

List of acronyms

AES Advanced Encryption Standard
ASIC Application-Specific Integrated Array
AT Area-time
CLB Configurable Logic Block
DES Digital Encryption Standard
DFT Discrete Fourier Transformation
DLP Discrete Logarithm Problem
DSP Digital Signal Processor
DSS Digital Signature Standard
ECCo Elliptic Curve Cryptography Co-Processor
ECDSA Elliptic Curve Digital Signature Algorithm
FFT Fast Fourier Transformation
FPGA Field Programmable Gate Array
IDEA International Data Encryption Algorithm
JNI JAVA Native Interface
LFSR Linear Feedback Shift Register
LUT Look-Up Table
MO Massey-Omura
PAR Place and Route
PCI Peripheral Component Interface
RAM Random Access Memory
RISC Reduced Instruction Set Computer
RSA (Ron) Rivest, (Fiat) Shamir, and (Leonard) Adleman
RTL Register Transfer Level
SIM Subscriber Identity Module
SHA Secure Hash Algorithm
SoC System on Chip
VHDL VHSIC Hardware Description Language
VLSI Very-Large-Scale Integration

Index

accelerator card, 16

adder, 54

addition of points, 11
addition-subtraction chains, 48
address multiplexer, 58

affine representation, 43

area, 5

area complexity, 35

area-time (AT), 19

ASIC, 3

asymptotically fast multiplication, 5

binary Euclidean method, 41
bit-registers, 19

bitstream file, 32

Block SelectRAM, 17

Cantor multiplier, 61
characteristic, 25
clock frequency, 5
clock period, 19
co-processor, 2

code generator, 6, 78
combinational, 6, 18

combinational pipelined multiplier, 82

computation graph, 79

configurable logic blocks (CLBs), 17
control line multiplexer, 57

control module, 55

control module state machine, 57
conversion matrix, 95

counter, 57

crossover point, 61

Data-path Architecture, 53
decryption, 2

delay, 30

delay of buffers, 31

digital signature standard (DSS), 13

Discrete Logarithm Problem (DLP), 9, 13

Discrete Fourier Transformation (DFT), 101

double and add, 48
DSAKeyPairGenerator, 21
DSASignature, 21

dual bases, 27

e-commerce server, 16
ECDSA accelerator card, 20
ECDSAKeyPairGenerator, 21
ECDSASiIgnature, 21

138

INDEX

139

electronic commerce servers, 3

elliptic curve, 11

Elliptic Curve Co-processor (ECCo), 2

elliptic curve cryptography, 2

Elliptic Curve Digital Signature Algorithm

(ECDSA), 14
encryption, 2
energy efficient, 18

Euclidean algorithm, 41

factorization, 86, 95

factorization matrix, 96, 97

hazard, 79, 81
hybrid implementation, 62
hybrid design, 65

inversion, 41

irreducible polynomial, 35, 39

Jacobian representation, 44
JAVA Native Interface (INI), 21
JAVA security provider, 21

Karatsuba algorithm, 6, 61, 63
key establishment, 12

Fast Fourier Transformation (FFT), 61, 86Koblitz curves, 5

feed forwarding, 34
feedback circuit, 34

Fermat’s theorem, 41

Kronecker delta, 108

Kronecker product, 98

latency, 6

Field Programmable Gate Array (FPGA), 2,

16
finite field arithmetic, 26
finite field multipliers, 5
finite fields, 4
FPGA 4-input LUT model, 31
FPGA model, 32
FPGA-Based Co-Processor, 53

Gauss period, 84, 86
generic elliptic curves, 5

group of points on elliptic curve, 11

Hamming weight, 34

Linear Feedback Shift Register (LFSR), 32

Look-Up Tables (LUTSs), 18
Lucas’ theorem, 116

Lopez-Dahab representations, 44

Massey-Omura (MO) multiplier, 36
matrix factorization, 101

minimum clock-period, 30

mixed coordinates, 5

mixed representation, 44
Montgomery method, 48
multiplexer, 54

multiplication time, 30, 31

140

Index

multiplier, 55

normal basis, 6, 28, 38, 83

normal element, 83

optimal normal bases, 84
optimum hybrid limits, 6

overlap circuit, 34

parallel-in, 28

parallelism, 5

Pascal triangle, 104
pentanomial, 35

permuted normal basis, 87
pipeline registers, 19, 79
pipelined Karatsuba multiplier, 72
pipelining, 4, 6

place and route (par), 32
point multiplication time, 5
point addition, 26, 43

point at infinity, 11, 41

point doubling, 26, 43

point multiplication, 11, 26
point negation, 26
polynomial basis, 28, 39
private key, 2, 8

projective representation, 44
propagation delay, 19, 32
public key, 2, 8

Rapid prototyping platform (Raptor) card,

20
recursive, 6
reflection matrix, 96, 97
Register Transfer Level (RTL), 78

routing resource, 19

scalar multiplication, 26, 46
Secure Hash Algorithm (SHA), 14
sequential, 6, 19

settling-time, 30

setup time, 19

shift register, 57

shifting matrix, 96, 97
side-channel attacks, 7

simple representations, 43

slice, 18

smart cards, 15

space complexity, 32

squarer, 55

squaring, 38

Subscriber Identity Module (SIM), 15

theoretical 2-input gate model, 31
time, 5

time complexity, 32, 35

time parameter, 19

trapdoor, 8

trinomial, 35

INDEX 141

Weierstrass equation, 11
word multipliers, 34
word register, 34
word-length, 30, 32

