
Probabilistic Image Models and their
Massively Parallel Architectures -

A Seamless Simulation- and VLSI Design-Framework
Approach

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhems-Universität Bonn

vorgelegt von

Stephan C. Stilkerich

aus

Bonn Bad-Godesberg

München, 2006

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

Erscheinungsjahr: 2007

Promotionskommission:
1. Referent: Univ.-Prof. Dr. Joachim M. Buhmann, ETH Zürich
2. Referent: Univ.-Prof. Dr. Joachim K. Anlauf, Universität Bonn
Fachnahes Mitglied: Univ.-Prof. Dr. Armin B. Cremers, Universität Bonn
Fachangrenzendes Mitglied: Univ.-Prof. Dr. Wolfgang Förstner, Universität Bonn

Tag der Promotion: 27. 04. 2007

Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn
http://hss.ulb-bonn.de/diss online elektronisch publiziert.

Abstract

Probabilistic Image Models and their Massively Parallel Architectures -
A Seamless Simulation- and VLSI Design-Framework Approach

by

Stephan C. Stilkerich

Algorithmic robustness in real-world scenarios and real-time processing capabil-
ities are the two essential and at the same time contradictory requirements modern
image-processing systems have to fulfill to go significantly beyond state-of-the-art
systems. Without suitable image processing and analysis systems at hand, which
comply with the before mentioned contradictory requirements, solutions and devices
for the application scenarios of the next generation will not become reality. This
issue would eventually lead to a serious restraint of innovation for various branches
of industry.

This thesis presents a coherent approach to the above mentioned problem. The
thesis at first describes a massively parallel architecture template and secondly a
seamless simulation- and semiconductor-technology-independent design framework
for a class of probabilistic image models, which are formulated on a regular Marko-
vian processing grid.

The architecture template is composed of different building blocks, which are rig-
orously derived from Markov Random Field theory with respect to the constraints of
massively parallel processing and technology independence. This systematic deriva-
tion procedure leads to many benefits: it decouples the architecture characteristics
from constraints of one specific semiconductor technology; it guarantees that the
derived massively parallel architecture is in conformity with theory; and it finally
guarantees that the derived architecture will be suitable for VLSI implementations.

The simulation-framework addresses the unique hardware-relevant simulation
needs of MRF based processing architectures. Furthermore the framework ensures
a qualified representation for simulation of the image models and their massively
parallel architectures by means of their specific simulation modules. This allows
for systematic studies with respect to the combination of numerical, architectural,
timing and massively parallel processing constraints to disclose novel insights into
MRF models and their hardware architectures.

The design-framework rests upon a graph theoretical approach, which offers
unique capabilities to fulfill the VLSI demands of massively parallel MRF archi-
tectures: the semiconductor technology independence guarantees a technology un-
committed architecture for several design steps without restricting the design space
too early; the design entry by means of behavioral descriptions allows for a func-
tional representation without determining the architecture at the outset; and the
topology-synthesis simplifies and separates the data- and control-path synthesis.

Detailed results discussed in the particular chapters together with several addi-
tional results collected in the appendix will further substantiate the claims made in
this thesis.

Acknowledgment

I owe a lot to my adviser Prof. J. M. Buhmann. The dissertation on hand lives and
significantly profits from the in-depth insights on statistical image analysis Prof.
Buhmann is working on in his research department, and which he is also lecturing
on. I appreciate Prof. Buhmann’s inspiring discussions, his constructive help and
the experience of being asked crucial and sometimes even unpleasant questions. I
also want to emphatically thank Prof. Buhmann for having been spontaneously
prepared to supervise this external dissertation. Thank you very much!

I would also like to thank my second thesis evaluator Prof. J. K. Anlauf for
accepting to evaluate this thesis. Prof. Anlauf also contributed to my work as a
discussion partner for research issues related to digital chip design and hardware
relevant design-methodologies.

I am deeply indebted to my employer EADS Corporate Research Center Ger-
many for part-time funding and continuously supporting my research work. The
very inspiring and unique discussion atmosphere in the multi-discipline research
group of Dr. Gerald Sobotta was an essential enrichment for the research direction
of my work. Thank you very much Gerald Sobotta! At this point I also grate-
fully thank Dr. Helmut Zinner, the senior manager and former head of the EADS
Corporate Research Center department ”Optronic Systems and Signal Processing”,
for his never ending willingness to invest in expensive software- and FPGA testing-
environments, which were indispensable for my research. This can definitely not be
taken for granted in times of a substantial economic downturn and layoffs.

I also want to thank my research colleagues around the world. Their kind pre-
paredness to discuss problems and conceptions at conference meetings were very
helpful for this thesis. These discussions and remarks sometimes prevented me from
pursuing directions and ideas, which have already been proved to fail by my col-
leagues, but are not published so far and perhaps will not be published at all.

My very special thanks go to Susanne A. Barr at Synplicity Inc. and her
team. Synplicity Inc. patiently supported my research by means of special re-
search software-licenses and by countless discussions on synthesis issues of hardware
description languages.

I also have to thank Inge Prächtl and Helga Beyer for their administrative sup-
port, humor in all situations - sometimes even black humor - and their-all-time
patience with me.

At most I would like to thank Maren for her patience, continuous support and
her understanding. Thanks a lot Maren. With regard to the last months I also need
to thank my daughter Olivia for her patience.

I

ACKNOWLEDGMENT

to my parents

II

Contents

1 Introduction 1

2 Fundamentals - Bayesian Image Analysis 7
2.1 Bayesian Image Analysis Paradigm 9
2.2 Markov Random Fields & Gibbs Fields 11
2.3 Optimization Schemes . 15
2.4 Parallel Processing Strategies . 20
2.5 Considered MRF-Class . 23
2.6 Exemplary Image Processing Models 24

2.6.1 Cost Function - Edge Preserving & Noise Removing 25
2.6.2 Cost Function - Unsupervised Histogram Segmentation . . . 28

2.7 Analog Technologies versus Digital Technologies 33
2.8 Summary . 38
2.9 Bibliographical Comments . 42

3 System-Architecture Template 45
3.1 Universal Constituents . 47
3.2 Architectural Building Blocks . 49

3.2.1 Topology & Structure Building Blocks 50
3.2.2 Processing Building Blocks 59
3.2.3 Control Building Blocks . 64

3.3 VLSI Specific Issues . 72
3.4 Cycle Scheme . 75
3.5 Relation of Thesis Parts . 78
3.6 Dealing with Large Images . 79
3.7 Exemplary Model’s Architectures . 84

3.7.1 Edge Preserving & Noise Removing 84
3.7.2 Unsupervised Histogram Segmentation 87

3.8 Summary . 90
3.9 Bibliographical Comments . 91

4 MRF Simulation Framework 93
4.1 Simulation Framework Overview . 95
4.2 Simulation Modules . 100

4.2.1 Supporting Modules . 100
4.2.2 Topology & Structure Simulation Modules 100

III

CONTENTS

4.2.3 Processing Simulation Modules 108
4.2.4 Control Simulation Modules 113

4.3 Building MRF Simulation Models . 117
4.3.1 Building the Simulation Model - Model Preparation 117
4.3.2 Building the Simulation Model - Model Generation 118

4.4 Results - Simulation Framework . 118
4.5 Implementation Issues . 127
4.6 Relation of Thesis Parts . 130
4.7 Summary . 131
4.8 Bibliographical Comments . 132

5 VLSI Design Framework 135
5.1 Design Framework Overview . 137
5.2 Canonical Design Representation . 142

5.2.1 Elementary Data Container 144
5.2.2 Topology & Structure Graphs 145
5.2.3 Processing Graphs . 154
5.2.4 Control Graphs . 157

5.3 High-Level Design Flow . 161
5.3.1 Expanding the Topology & Structure Graphs 161
5.3.2 Expanding the Processing Graphs 166
5.3.3 Expanding the Control Graphs 171

5.4 Compiling - From Abstract Graphs to Circuit Descriptions 176
5.4.1 Compiling Topology & Structure Parts 176
5.4.2 Compiling Processing Parts 181
5.4.3 Compiling Control Parts . 183

5.5 Results - Design Framework . 186
5.6 Implementation Issues . 198
5.7 Relation of Thesis Parts . 202
5.8 Summary . 202
5.9 Bibliographical Comments . 203

6 Conclusion 207

A Simulation Framework Results 211

B Design Framework Results 251

Bibliography 267

Index 280

IV

Symbols

Common Symbols
X, Y Finite state spaces
R, N, B Set of real, natural and Boolean numbers
∅ Empty set
E[x] Expected value of variable x

Common Image Representation
Ω Site grid
si Destined site on grid
n Total number of grid sites, n = |Ω|
{< i, t >} Neighbors of destined site si

NΩ Neighborhood system on Ω
N 1−5 First five neighborhood systems on regular site-grids Ω
CN Set of cliques induced by N
Π Gibbs field induced by H
H Energy functional on X inducing Gibbs field Π

Chapter 2 - Bayesian Image Analysis
X̂ Estimator; see Def. 2.2
L(x, x̂) Loss function
R(χ) Bayes risk; cf. Eq. 2.3
S(p) Entropy of distribution p; S(p) = −Ep[log p]
F Generalized free energy; cf. Eq. 2.15
V (m) Site visitation scheme
T , β Temperature resp. inverse temperature
Θ Set of free model parameters; model dependent

Chapter 3 - System Architecture Template
Cuniversal Set of MRF specific universal constituents
BBTS Set of Topology & Structure Building Blocks; cf. Def. 3.1
BBPC Set of Processing Building Blocks; cf. Def. 3.2
BBCT Set of Control Building Blocks; cf. Def. 3.3
BBSystem Set of System Building Blocks; cf. Eq. 3.37
Λ Set of Mappings onto BBTS components; cf. Section 3.2.1
Φ Set of Mappings onto BBPC components; cf. Section 3.2.2
Υ Set of Mappings onto BBCT components; cf. Section 3.2.3

V

SYMBOLS

Chapter 4 - Simulation Framework
STS Set of Topology & Structure representing simulation modules; cf. Def. 4.1
SPC Set of Processing functionality representing simulation modules; cf. Def. 4.2
SCT Set of Control functionality representing simulation modules; cf. Def. 4.3
Π Set of Mappings onto STS modules; cf. Section 4.2.2
Σ Set of Mappings onto SPC modules; cf. Section 4.2.3
∆ Set of Mappings onto SCT modules; cf. Section 4.2.4

Chapter 5 - VLSI Design Framework
C

P Data Container - Parameter Container; cf. Def. 5.1
C

ST Data Container - Structure Core Container; cf. Def. 5.2
GTS Set of Topology & Structure blocks representing Graphs; cf. Def. 5.3
GPC Set of Processing blocks representing Graphs; cf. Def. 5.6
GCT Set of Control blocks representing Graphs; cf Def. 5.10
Ξ Set of Mappings onto GTS graphs; cf. Section 5.2.2
Ψ Set of Mappings onto GPC graphs; cf. Section 5.2.3
Γ Set of Mappings onto GCT graphs; cf. Section 5.2.4
GD Complete graph theoretical design graph; cf. Corollary 5.6

VI

Abbreviations

BS Behavioral Synthesis
CDR Canonical Design Representation
CPU Central Processing Unit
DA Deterministic Annealing
DAG Directed Acyclic Graph
DFG Design Flow Graph
DRC Design Rule Checker
EDA Electronic Design Automation
ESL Electronic System Level
IEEE Institute of Electrical and Electronics Engineers
FPGA Field Programmable Gate-Array
FSM Finite State Machine
GUI Graphical User Interface
HDL Hardware Description Language
HLS High-Level Synthesis
ICM Iterated Conditional Modes
MCMCM Markov Chain Monte Carlo Method
MRF Markov Random Field
RTL Register Transfer Level
SA Simulated Annealing
SoC System on Chip
VLSI Very large-scale Integration

VII

ABBREVIATIONS

VIII

Chapter 1

Introduction

“We are so familiar with seeing, that it takes a leap of imagination to realize that
there are problems to be solved. But consider it. We are given tiny distorted

upside-down images in the eyes, and we see separate solid objects in surrounding
space. From the patterns of stimulation on the retina we perceive the world of

objects and this is nothing short of a miracle”

Richard L. Gregory, Eye and Brain, 1966

Motivation

Definitely some of the vision ”miracles” respectively processing principles of insects
and mammals have been investigated and explained since R. L. Gregory’s statement
dated 1966. Especially the first processing stages of vision [43] and their underlying
processing principles have been exhaustively explained and described over the last
three decades and are thought to be well understood today. In contrast to these first
image processing stages and their profound scientific findings, higher stages of pro-
cessing, which, for instance, are responsible for depth- and form-perception, object
forming, semantic assignment and the final task of image understanding, still pose
challenging research questions today and the scientific picture is not yet coherent.
This observation is especially true for the binding problem, which is discussed in
neural science [91] [2] as the problem of how perception emerges from information
processed independently in different cortical areas. The binding problem remains
one of the essential unresolved problems in the understanding of perception.

The preceding short summary roughly characterizes the current situation in neu-
ral science with respect to insects’ and mammals’ vision systems [80]. However, all
of the very detailed knowledge about the structure, topology, electrical respectively
chemical signal transmission paths and elementary processing principles of these nat-
ural vision systems might create a misleading impression. One could rashly come to
the conclusion that there are exhaustive answers and solutions derived from neural
science to solve nearly all image analysis problems, which emerge along the entire
image processing chain of technical systems from low-level image processing to com-
plete image understanding. But these exhaustive answers and solutions are definitely
not available. Till this day there are still essential problems to be solved [116] to

1

INTRODUCTION

form a coherent comprehension of vision and to realize the corresponding technical
counterparts with the same astonishing capabilities of natural vision systems.

On the basis of the preceding discussion it should become obvious that it is ex-
tremely difficult to establish a well-defined and systematic procedure, which transfers
the diverse insights and scientific results on neural science vision to mathematically
consolidated theoretical image processing approaches or even to technical realiza-
tion of image processing systems [62] and its hardware-architectures. This fact is
the reason why even today most of the feasible approaches and system realizations
are based on ad-hoc models, algorithms or hand-tuned hardware-architectures. This
state-of-the-art was acceptable in the past and above all feasible for industrial image
processing platforms, which were guaranteed to operate in predefined environments
and under controlled ambient lightning. The primary application area of these
environmentally tuned image processing systems is currently to be found in the au-
tomated production of industrial goods in factories, where these systems perform
their assigned specific task very well and reliable.

However, for numerous application scenarios currently discussed in the domains
of video-, infrared- and radar-surveillance, medicine, man-machine interface and
the significant autonomous vehicle guidance on ground, air and water, to name
just a few of them, an ad-hoc approach is probably neither reliable nor put into
practice in order to realize the appropriate image processing and analysis systems
for these applications. Thus it is no longer possible to neglect the relevancy and
meaningfulness of image processing and analysis systems as they have emerged over
the last years as one of the crucial building blocks for these different applications
in mind. Algorithmic robustness in real-world scenarios and real-time processing
capabilities are the two essential and at the same time contradictory requirements
modern image-processing systems have to fulfill to go significantly beyond state-of-
the-art systems. Without suitable image processing and analysis systems at hand,
that comply with the before mentioned contradictory requirements - algorithmic
robustness in real world scenarios and real-time processing capabilities - solutions
and devices for the application scenarios of the next generation will not become
reality. This issue would eventually lead to a serious innovation restraint for various
branches of industry.

Regarding the low-level image processing domain we can determine that it is prin-
cipally possible to fulfill the contradictory requirements of algorithmic robustness in
real world scenarios and real-time processing capabilities. The property of algorith-
mic robustness is achieved by formulating the considered low-level image processing
problems within a Bayesian Image Analysis framework with probabilistic process-
ing models. This statistical approach deals very well with modeling uncertainties,
incomplete knowledge [167] and changing environmental settings in real world sce-
narios and thus gives its competitive edge with respect to algorithmic robustness in
real world scenarios. The plain potential of the statistical image processing approach
and its models foremost develops to its full extent by accommodating and ingraining
the probabilistic models into the spatially regular topologies and parallel processing
principles of Markov Random Field (MRF) grids.

These topological configurations and spatially parallel processing principles are
promising and practicable structures respectively processing directives imitated from
neural science vision, which were put into practice by a solid mathematically statisti-

2

INTRODUCTION

cal framework. Thus real-time processing capabilities can be achieved by massively
parallel hardware architectures, which efficiently exploit the inherent algorithmic
parallelism of statistical image models on Markov Random Fields.

Contributions

This dissertation contributes to the scientific and technical progress by introducing:
(a) a novel architecture template for a large class of MRF models [160] [154], which is
rigorously derived on the basis of MRF theory. (b) a hardware-relevant and scalable
simulation approach for MRF systems of industrial-relevant size. (c) a semicon-
ductor technology independent VLSI design methodology for Markovian processing-
grids. The advocated approaches are put into practice by a novel hardware-relevant
Simulation-Framework and semiconductor independent VLSI Design-Framework.
These two novel frameworks render it possible to systematically realize MRF process-
ing grids with limited and regular neighborhood support, which are characterized by
(i) an industrial-relevant size, (ii) a purely digital realization, (iii) massively parallel
processing capabilities and (iv) an overall physical compactness (System-on-Chip).

Independent of the two frameworks’ brought task-diversity, which range from
modeling and simulation of massively parallel system architectures to the tool-
supported generation of circuit representations in IEEE-standardized Hardware De-
scription Languages (HDLs), both described frameworks rest upon a common funda-
mental data-structure. The Simulation-Framework and the VLSI Design-Framework,
commonly rely on the solid, abstract and widely-approved fundamentals of graph-
theory, its modeling capabilities, data-structures and algorithms. The uniquely and
rigorously based graph theoretical approach for the VLSI Design-Framework, paved
the way for the novel Development-Environment and its highly competitive proper-
ties.

Summarizing, the key contributions of the novel Simulation- and VLSI Design-
Framework are:

• Firstly, the Simulation-Framework possesses simulation capabilities, which for
the first time ever renders it possible to simulate complete MRF hardware-
architectures with industrial relevant grid sizes of parallel processing elements
and a limited neighborhood support [152] [153] [161] [156] [158].

• Secondly, the Simulation-Framework comprises simulation capabilities to in-
vestigate and study the parallel processing dynamics of these Markov Random
Field based image processing systems. Additionally, the simulation models can
be configured to operate with float-point numbers as well as with hardware-
relevant fixed-point numbers [152] [153] [161] [156] [158].

• Thirdly, the Simulation-Framework possesses mechanisms to enable an auto-
matic compilation-process of the specific MRF simulation models. Further-
more, the Simulation-Framework includes a simulation run-time, which is an
order of magnitude faster than standard HDL simulators. The improved run-
time is realized by means of the SystemC kernel [81] our Simulation-Framework
is built up on as well as by the components of the Simulation-Framework itself
[152] [153] [161] [156] [158].

3

INTRODUCTION

• Fourthly, the VLSI Design-Framework is able to systematically handle the de-
sign complexity of industrial relevant MRF-systems, i.e. the graph-theoretical
representation as well as the HDL-code of MRF-systems with grid sizes of up
to 1024x1024 parallel processing elements has been successfully generated and
tested [152] [153] [159] [155] [157].

• Fifthly, the VLSI Design-Framework is semiconductor-technology independent
and thus applicable to all worldwide available digital semiconductor technolo-
gies, which support a standard HDL-based synthesis and back-end process,
i.e. FPGAs, structured ASICs, standard cells to name just the widely used
technologies can be utilized [152] [153] [159] [155] [157].

• Sixthly, the VLSI Design-Framework can generate automatically IEEE-conform
HDL circuit descriptions, which are well-structured, modularly organized and
above all still readable, checkable and modifiable by the framework users [152]
[153] [159] [155] [157].

The novel Development-Environment is finally extensively validated by various
artificial test cases and real-world scenarios to not only focus on the capabilities and
advantages of the Simulation- and VLSI Design-Framework but also to disclose its
so-far-known limitations and drawbacks.

Outline

Following Chapter 1, which serves as a short introduction regarding the motivation
and topics of the thesis, Chapter 2 presents the required theoretical fundamentals on
Bayesian Image Analysis, Markov Random Fields and the corresponding determin-
istic and stochastic optimization strategies. This discussion establishes the profound
theoretical basics to which the consecutive chapters will refer, justifies their specific
approaches and finally draws conclusions. Furthermore two vital image process-
ing models, that of simultaneous noise removing and edge preserving and that of
unsupervised segmentation, will be introduced, followed by the derivation of their
complete cost functions. Throughout this dissertation both models will be used as
exemplary low-level image processing models and realistic test cases, which are of
significant practical and industrial relevance. The chapter closes with a discussion
on semiconductor technologies, which provides a formal justification to exclusively
consider digital implementation technologies.

Chapter 3 introduces the massively parallel system architecture template for the
defined class of statistical image processing models, which are formulated on Marko-
vian pixel-grids with a limited neighborhood support. The general topology, the
particular architectural building blocks, support structures, wiring and the depen-
dencies of the different components among each other are derived on the foundation
of the theoretical fundamentals presented in Chapter 2. This architectural decom-
position is the basis for later discussions and it links our formal description to graph
theoretical modeling, simulation and representation of these massively parallel ar-
chitectures and their circuits.

Chapter 4 finally describes the Simulation-Framework with its internal arrange-
ment and the features issued thereof. By utilizing the specific module-structures and

4

INTRODUCTION

their interdependence, a well-defined and systematic approach to system modeling,
system simulation set-up, system complexity handling, simulation run-time improve-
ment and the automated generation of simulation models has been established and
exhausted on a large scale.

The VLSI Design-Framework introduced and explained in Chapter 5 is the con-
stituent part of the novel Development Environment, which handles the abstract
representation of the image processing architectures as graph structures. In a se-
quence of steps it automatically performs the generation of graph-representations
and the following transformation from these graphs to concrete hardware architec-
tures in standardized IEEE HDLs. The thesis is concluded with Chapter 6, which
provides a summary of the scientific progress as well as statements about the corre-
sponding technical novelties achieved.

Some additional appendices exhaustively illustrate the capabilities of the pre-
sented novel Simulation- and VLSI Design-Framework. The numerous illustrations
of simulation-runs and VLSI Place&Route results have been moved to the appen-
dices to enhance the readability of the text. Furthermore each single chapter is
enriched by a ”Bibliographical Comments” section at the end to improve the read-
ability of each single chapter, to identify the international state-of-the-art and above
all to stress the contributions and innovations of this dissertation in the respective
fields of the academic and industrial research community.

5

INTRODUCTION

6

Chapter 2

Fundamentals - Bayesian Image
Analysis

This introductory chapter discusses the fundamentals, which are required to present
the central topics of this thesis:

• The derivation of an architecture template (Chapter 3) for massively parallel
Markov Random Field based image processing devices.

• The introduction of a novel hardware-relevant simulation framework (Chapter
4) for massively parallel Markov Random Field based image processing devices.

• The introduction of a novel graph-theoretical VLSI design framework (Chapter
5) for massively parallel Markov Random Field based image processing devices.

Hence, we will discuss the basic idea and motivation of a Bayesian image analysis
approach in this chapter and will present a synopsis of the corresponding theoreti-
cal fundamentals, including optimization methods and parallel processing strategies
with a guaranteed convergence behavior. Furthermore the considered class of image
processing models and its requirements are defined in this chapter. Additionally,
two exemplary types of image processing, noise removing with intensity preserving,
as well as unsupervised segmentation are presented. These two models will serve
as examples throughout the whole text. A vital discussion on semiconductor imple-
mentation technologies and novel VLSI high-level design methodologies will finally
close this introductory chapter. All these fundamentals serve as common basis for
the definitions, derivations, discussions and conclusions of the following chapters.

On an abstract level of consideration, image processing respectively image anal-
ysis1 problems can mathematically be represented by optimization questions, i.e.
by cost-functionals [167] and their corresponding costs. Thus an image processing
problem is regarded as an abstract optimization problem. Such cost-functionals
systematically capture the image processing problem in one coherent representa-
tion [126] [16]. The image configuration, which finally optimizes the costs of the
cost-functional, represents the desired image processing solution. The specific class
of cost-functionals, addressed in this thesis, combines two types of information:

1both denotations are used synonymously throughout this text

7

FUNDAMENTALS - BAYESIAN IMAGE ANALYSIS

First, information regarding the generation process of the observed empirical data.
Secondly, information about any kind of previous knowledge and expectations, in
summary called a priori knowledge. Obviously such an cost-functional represen-
tation implies two elements of uncertainty: On the one hand the observed data,
which is distorted respectively partially erased ideal-data and on the other hand
the a priori knowledge, which is naturally imprecise, incomplete and just a vague
perception of reality. Consequently, it would be advantageous to exchange rigid a
priori constraints, which will merely result in an accept or reject decision regarding
the solution, for constraints that permit a soft decision in form of a weighted answer
regarding to what extent a solution is suitable. Within the Bayesian framework
such a treatment of uncertainty is realized by an a priori probability distribution,
which is then combined with the observed data. The prior distribution is adapted
according to the extracted information of the observed data, which finally results in
an a posteriori distribution. But such a Bayesian setting of image analysis makes
it mandatory to systematically model and represent distributions in a numerically
tractable form. This requirement leads us back to the concept of cost-functionals
and its costs mentioned at the beginning.

But first we will discuss another important observation with respect to image
analysis: Real world pictures own a lot of spatial regularity, i.e. neighboring pixels
often have similar intensity values, edge-lines incline to be continuously linked, tex-
tures define homogeneous image regions and different objects show preferred orien-
tations. Markov Random Fields are a suitable modeling structure to capture spatial
regularities and to represent the distributions of the Bayesian paradigm in a numer-
ically tractable form. Furthermore, Markov Random Fields represent a structure,
which possesses inherent massively parallel processing capabilities. Thus a statis-
tical image analysis approach, formulated on the basis of Markov Random Fields,
ideally combines the two contradicting requirements that modern image-processing
systems have to fulfill to go significantly beyond state-of-the-art systems: Firstly,
the requirement of algorithmic robustness in real world scenarios, which is realized
by means of probabilistic models. Secondly, the requirement of real-time processing
capabilities, which is put into practice by massively parallel processing.

In summary the chapter is structured as follows: Section 2.1 informally presents
the ideas, arguments and advantages of a statistical image analysis approach for-
mulated in the Bayesian framework. This informal presentation is more precisely
stated in Section 2.2, which establishes the fundamental definitions, theorems and
literature-links to Markov Random Fields (MRFs). Hereafter, Section 2.3 discusses
different common optimization schemes of the cost-functionals resulting from a
Bayesian image processing approach with MRFs. Section 2.4 describes variants of
theoretically well-founded parallel processing strategies of cost-functionals mapped
on MRFs. In Section 2.5, we precisely define the class of MRFs, which will be
regarded for simulations as well as for massively parallel VLSI implementations.
Section 2.6 presents two exemplary image processing models and their particular
cost functional derivation. These two image processing models are used throughout
this thesis. Finally, Section 2.7 discusses the question of which semiconductor im-
plementation technology variant - digital, analog or mixed-mode - is suitable and
advantageous for hardware realizations. Section 2.7 also discusses the question of
which VLSI design methodology is required to adequately address the system com-

8

FUNDAMENTALS - BAYESIAN IMAGE ANALYSIS

plexity and specific design needs of massively parallel MRF based processing devices.
This discussion also closes the first chapter.

2.1 Bayesian Image Analysis Paradigm

The Bayesian approach to image and signal analysis is characterized [167] by at least
two features, which summarize the essential elements of this specific approach. At
first this approach requires a detailed model of the statistical mechanisms, which
has degraded the observed data. Hence the degradation model itself has to be a
probabilistic model. Secondly, all rigid constraints and decisions are substituted by
soft ones, i.e. rigid decision outputs are replaced by a measure, which represents
the degree to which the outcome is accepted or rejected. If this measure is properly
normalized, one receives a probability measure that is named prior. Within the
Bayesian framework the a prior probability measure is systematically combined with
the data model to form the a posterior distribution, in order to allow signal- and
image-processing problems to be finally formulated with probabilities and Bayes law.
In detail, Bayes law reads, with y denoting some observed data and x denoting one
possible solution of the signal- or image-processing problem, as follows:

P (x|y) =
P (y|x)P (x)

P (y)
. (2.1)

The probability P (x|y) is called the a posteriori probability, P (x) the a priori
probability and P (y|x) the likelihood probability. Thus we are looking for a highly
probable solution x. A careful interpretation of Equation 2.1 makes it obvious that
this approach not only requires the modeling and representation of the probabilities
P (x) and P (y|x) in a mathematical exact, flexible and tractable way (cf. Section
2.2) but we also have to provide some estimators for x. As already mentioned, the
Bayesian approach to image analysis combines the prior expectations and the fit-
to-data (likelihood) in a well-balanced manner. Nevertheless there are still several
possibilities to systematically estimate a result, which is hopefully a proper solution
of the image processing problem. The following paragraph provides an overview and
describes selected estimators, including the Maximum A Posteriori (MAP) estima-
tor, which is often used in the Bayesian image analysis community.

Formally an estimator is a mapping from the sample-space Y to the result-space
X, given by

X̂ : Y −→ X, y −→ X̂(y), (2.2)

where X̂(y) denotes the estimated result - abbreviated by x̂ in the following - and
Y,X are finite spaces. In order to rigorously measure the quality of the estimated
result x̂ compared with the unknown true result x, a loss function L is defined, with
L(x, x̂) ≥ 0 and L(x, x) = 0. The corresponding Bayes risk w.r.t. L and X̂ is given
by

R(X̂) = E
[
L(x, X̂(y))

]
=
∑
x,y

L(x, X̂(y)) · P (x, y). (2.3)

An estimator X̂, which optimizes, precisely minimizes, the Bayes risk R(X̂) is
called Bayes estimator. Thus a Bayes estimator provides an estimation result x̂

9

FUNDAMENTALS - BAYESIAN IMAGE ANALYSIS

which formally reads

x̂ = arg min
X̂(y)

∑
x

L(x, X̂(y)) · P (x|y). (2.4)

Essentially there are several estimators that minimize the Bayes risk R(X̂) (cf. Equa-
tion 2.3) and all these estimators are called Bayes estimators. But merely the three
widely used image-processing specific Bayes estimators X̂(y) and their corresponding
loss function L are described in the following text section.

The probably most popular Bayes estimator in image analysis, maximizes the
posterior distribution P (x|y) and is consequently denoted as Maximum A Posteriori
(MAP) estimator. Its loss function is defined by

L(x, x∗) = 1 − ∆x∗(x), (2.5)

where the delta function2 ∆x∗(x) represents the dirac point-action in x∗. Plugging
2.5 into 2.4 leads to the formulation of the MAP estimator

x̂MAP = arg max
x∈X

P (x|y). (2.6)

Image processing applications and their models, in which contextual information
is of subordinated relevance, can be addressed by the Marginal A Posteriori (MPM)
estimator, where the estimation is performed site by site. The loss function L of
this MPM estimator is defined as follows

L(x, x∗
s) =

∑
s∈Ω

(
1 − ∆x∗

s
(xs)

)
, (2.7)

which leads, by plugging 2.7 into 2.4, to the MPM estimator

∀s ∈ Ω : x̂MPM
s = arg max

xs∈X
P (xs|y). (2.8)

The last Bayes estimator introduced here is called Minimum Mean Square (MMS)
estimator. Its corresponding loss function L is given by

L(x, x∗) =
∑
s∈Ω

(xs − x∗
s)

2 . (2.9)

This leads, if we plug 2.9 into 2.4, to the MF estimator

∀s ∈ Ω : x̂MF =
∑
x∈X

xsP (x|y). (2.10)

The following section substantiates and formalizes the previous informal discus-
sion on probabilistic image processing models, on the Bayesian approach to im-
age analysis, on the representation of these probabilistic models as computational
tractable cost-functionals with their corresponding costs and on the optimization
of these costs to determine the solution of the image processing problem. In sum-
mary, the central ingredients of this specific image- and signal analysis approach
are strictly positive probability measures, which possess differentiating features and
Markov Random Fields as topological structures that are advantageous to model
spatial interactions as well as to efficiently organize the calculations.

2∆x∗(x) covers the discrete Kronecker δi,j , with δi,j = 1 iff i = j and otherwise δi,j = 0 (i and j
are integers) as well as the continues δ(X) with δ(X) = 0 for X �= 0 and

∫∞
−∞ δ(X)dX = 1

10

FUNDAMENTALS - BAYESIAN IMAGE ANALYSIS

2.2 Markov Random Fields & Gibbs Fields

The concept of Markov Random Fields, although not explicitly denoted as such, was
firstly presented by Lévy [106] in a paper published by the Académie française of
science dated 1948. Lévy did not use the term Markov Random Field but instead
introduced the term double Markov chains. The terminology used today goes back
to the classical formalizations of Besag [11]. Foremost the groundbreaking paper of
D. Geman and S. Geman from 1984 [59] renewed the interest in Bayesian modeling
of signal- and image processing problems on Markovian site grids. Markov Random
Fields are a theoretically well-founded setting to appropriately deal with probability
distributions on sets of possible images.

The image data is assumed to be discrete and thus images are representable
by components of finite product spaces. These product spaces are defined with
respect to a set Ω of sites. Each site s ∈ Ω can have a state xs from the state
space Xs. Consequently, X =

∏
s∈Ω Xs represents the complete space of possible

configurations, the site set Ω can adopt. Any strictly positive probability measure
Π on X with ∀x ∈ X : Π(x) > 0 ∧∑x∈X Π(x) = 1 is called random field. Before
Markov Random Fields can formally be defined, a structure with interrelating sites
has to be established. The site interrelation and thus the global site structure is
given by the following definition of site neighborhood systems N .

Definition 2.1 Neighborhood-System N and Cliques C

• Every site s ∈ Ω has an associated set Ns ⊂ Ω of neighbors so that:

1. s /∈ Ns,

2. t ∈ Ns ⇔ s ∈ Nt

The collection N = {Ns, s ∈ Ω} of sets Ns is called a neighborhood system and
consequently the sites t are called neighbors of site s. Exactly this relation, if
t is a neighbor of s, will be denoted by < s, t > in the sequel.

• A subset C of Ω is a clique if all its elements are mutual neighbors: s, t ∈
C ⇔ t ∈ Ns, or if C is a singleton C = {s} or even the empty set ∅. In
the following we write CN to denote the set of cliques associated with the
neighborhood system N defined on Ω and CN

i denoting the cliques for one
particular site.

The pair (Ω,N) constitutes an undirected graph with nodes defined by the sites
s ∈ Ω and edges defined by the neighbor relation < s, t >. From an opposite point
of view an undirected graph constitutes a neighborhood system N .

Obviously there are two extreme cases of neighborhood systems; the first one
is given by N = ∅ and the second one by N = {Ω/{s} : ∀s ∈ Ω}. Especially in
the low-level image processing domain, Ω is very often organized as a regular and
finite two-dimensional site-grid {(i, j) ∈ Z × Z : −m ≤ i, j ≤ m} and the imposed
neighborhood system is represented by

Ni,j = {(k, l) : 0 ≤ (k − i)2 + (l − j)2 ≤ v}, (2.11)

11

FUNDAMENTALS - BAYESIAN IMAGE ANALYSIS

b)a) c)

d) e)

Figure 2.1: Regular two-dimensional site-grid Ω and first five complete neighbor-
hood systems N 1 - N 5. (a)-(e) Neighborhood systems of 1st to 5th order with
respect to the regular site-grid.

for some number v ∈ Z and w.r.t. to site s with coordinate (i, j). For the sake of
simplicity the first five complete neighborhood systems of a regular two-dimensional
site-grid Ω are denoted by N 1, N 2, N 3, N 4 and respectively N 5 in the sequel. Figure
2.1 depicts these five neighborhood systems. Naturally, the sites s ∈ Ω directly at
and near the grid boundaries have incomplete neighborhood systems.

Recapitulating, a strictly positive probability measure Π on X, i.e. ∀x ∈ X :
Π(x) > 0 ∧ ∑

x∈X Π(x) = 1, is called random field. Incorporating any kind of
dependencies between the sites s ∈ Ω by a neighborhood system N (cf. Definition
2.1) and thus influencing the characteristic of each site s ∈ Ω only locally, leads to
the formal definition of Markov Random Fields.

Definition 2.2 Markov Random Field (MRF)
A random field Π is called a Markov Random Field with respect to the imposed
neighborhood system N if ∀x ∈ X,

Π(Xs = xs|Xt = xt, t
= s) = Π(Xs = xs|Xt = xt, t ∈ Ns). (2.12)

Apparently small and spatially limited neighborhoods for all sites s ∈ Ω of a
Markov Random Field are favorable in order to compute the conditional distribution.
Exactly this spatially local site-dependency structure together with the upcoming
general discussion on the representation of random fields in Gibbsian form [107]
[167] lead to efficient and highly parallel algorithms (Section 2.3 and 2.4) and finally
in Chapter 3 to the proposed massively parallel hardware architecture template for
Markov Random Field based image processing systems.

So far only probability measures have been used to represent image processing
problems in the Bayesian framework. Additionally, the introduction of neighborhood
systems (cf. Definition 2.1) as well as the Markovian property of random fields
with locally determined site characteristics derived from it, has not changed the
actual mathematical representation of its distributions. Therefore a computationally
tractable representation of distributions is mandatorily required to adequately model
the probabilities and utilize them for calculations. This requirement is systematically
realized with an approach, in which strictly positive probability measures (random

12

FUNDAMENTALS - BAYESIAN IMAGE ANALYSIS

fields) are represented in the Gibbsian form and with the help of potentials. The
formal arguments are introduced in the following.

Like a random field a Gibbs-distribution is a strictly positive probability measure
and possesses the following mathematical form:

Π(x) =
exp (−H(x))∑
z exp (−H(z))

=
exp (−H(x))

Z
, (2.13)

where H is called the cost functional and the denominator Z =
∑

z exp (−H(z)) is
called a partition function. It follows that every random field, which establishes a
strictly positive probability measure, can be written in the above introduced Gibb-
sian form. In the Gibbsian representation the cost functional H captures the depen-
dencies respectively mutual interactions of the sites s ∈ Ω. From a conceptual point
of view, one can state that H encodes the complete image processing model. The
representation of H can moreover be designed to be computationally advantageous,
which will be explained directly following.

Despite the fact that probability measures in the Gibbsian form (2.13) are conve-
nient for the representation and computation of distributions, these Gibbs measures
Π also have an advantage compared to all other distributions. If one considers an
arbitrary distribution p on X, then the following inequality holds

E[H; p] − S(p) ≥ Z, (2.14)

where S(p) = −Ep[log p] = −∑x p(x) log p(x) denotes the entropy (with the conven-
tion t log t = 0 if t = 0). The equality condition is only valid for p = Π. Inequality
2.14 is known in statistical physics as Gibbs variational principle. From inequality
2.14 one derives the property of Gibbs distributions being maximally uncommitted
distributions, because among all distributions with expected costs E[H; Π] the Gibbs
measure Π has the greatest entropy and consequently is maximally disordered. In
addition, the property that the Gibbs distribution optimizes, precisely minimizes,
the so-called free energy at temperature T ∈ R

+0

F = E[H] − TS (2.15)

is of crucial importance in the following sections. The temperature term T can be
interpreted as a Lagrange parameter for the entropy or - when regarding the inverse
temperature β = 1/T - as a Lagrange parameter for the expected costs. More details
are presented in Section 2.3 on optimization schemes. These fundamental insights
into Gibbs measures Π guarantee that the representation of random fields in the
Gibbsian form does not introduce any unintended constraints determined by the
Gibbs distribution itself.

The overall costs, which are defined by the cost functional H, are split up into
their particular mathematical terms and thus into their contributions to the costs,
generated by arbitrary subsets of the sites Ω in the general case and by a neighbor-
hood NΩ system in the special case. This is formalized by the potential, which is
defined as follows

Definition 2.3 Potential
A family of functions {UA : X(A) → R, A ⊂ Ω} on X is called a potential, if the
following holds

13

FUNDAMENTALS - BAYESIAN IMAGE ANALYSIS

1. U∅ = 0,

2. UA(x) = UA(y) if xs = ys ∀s ∈ Ω.

The particular costs of potential U are given by

HU
A =

∑
A⊂Ω

UA. (2.16)

Furthermore, whenever A is not a clique and it holds UA = 0 w.r.t. the neighborhood
system N , then U is called neighbor potential also w.r.t. N .

Such potentials represent cost functionals and can be used in the probability
measure representation in the Gibbsian form. This introduces the spatially local
characteristic into the Gibbsian representation of random fields by means of a com-
putational tractable potential. Formally we receive [167]

Definition 2.4 Gibbs Field
A random field Π is called a Gibbs field w.r.t. the potential U , if it has the following
form

Π(x) =
exp

(−∑A⊂Ω UA(x)
)∑

y exp
(−∑A⊂Ω UA(y)

) . (2.17)

The probability measure Π is called a neighbor Gibbs field whenever U is a neighbor
potential.

Now it becomes possible to formulate the equivalence theorem, which formally
establishes the fact that a random field can be represented as a Gibbs field with a cor-
responding potential. Additionally, each Markov Random Field can be represented
as a neighbor Gibbs field with the same neighborhood system. The equivalence
theorem, sometimes also called Hammersely-Clifford theorem, states:

Theorem 2.1 Equivalence Theorem
If a pair (Ω,N) with sites s ∈ Ω and an imposed neighborhood system N is given,
then the following holds:

1. A random field is a Markov Random Field (MRF) w.r.t. the neighborhood
system N if and only if the random field is a neighborhood Gibbs field w.r.t.
N .

2. ∀A ⊂ Ω of a Markov Random Field with the neighborhood system N .

Π(Xs = xs, s ∈ A|Xs = xs, s ∈ Ω/A)

= Π(Xs = xs, s ∈ A|Xs = xs, s ∈ N (A)).

The formal proof of this essential equivalence theorem on Markov Random Fields
and neighbor Gibbs Fields is technically involved and published in the contemporary
literature (e.g. [167] [64] [61]) in various versions. By far the largest number of the
equivalence theorem proofs are based on the Möbius inversion. Alternatively the
proof can also be conducted based on the factorization theorem of D. Brook [24].

14

FUNDAMENTALS - BAYESIAN IMAGE ANALYSIS

Recapitulating, the previously presented theoretical fundamentals imply that
the neighborhood Gibbs representation Π of 2.17 factorizes over the cliques of the
neighborhood system. Thus the neighborhood Gibbs field Π is represented by non-
negative functions on cliques and shortly reads Π(x) ∝ exp (−∑CN UCN (x)). Con-
sequently, the generic cost-functional H of a neighborhood Gibbs field respectively
Markov Random Field is given by

H =
n∑

i=1

∑
CN

i

UCN
i

, (2.18)

with CN
i denoting the cliques of site si with respect to the neighborhood-system N

defined on Ω. The cost-functional representation 2.18 serves as basis for the deriva-
tion of the universal constituents in Section 3.1 of the following chapter. Exactly
this functional representation by means of cliques establishes a numerically tractable
and computationally efficient mathematical form of neighborhood Gibbs fields and
consequently also of Markov Random Fields by characterizations merely defined by
the neighborhood system. Obviously, the computational efficiency directly depends
on the size of the neighborhood system and the locality of the characterizations
derived out of it. Limited neighborhood systems with smaller cliques are computa-
tionally advantageous compared with proliferated neighborhood-systems spanning
larger portions of the sites. In the following section we turn to a family of Markov
Chain Monte Carlo Methods (MCMCM), which explore a Markov Random Field
and optimize its corresponding costs, defined by the cost-functional H.

2.3 Optimization Schemes

Systematically investigating the performance of developed probabilistic signal- and
image processing models and thus exploring its Markov Random Fields is appar-
ently a key task in the Bayesian approach to image analysis with MRFs. The cost
functional H defines the costs of the model configurations and consequently, it poses
a combinatorial optimization problem. As H is typically a non-convex function, it is
advisable to develop global optimization methods, i.e. optimization methods which
principally escape from local minima and converge to a global minimum in the cost
landscape defined by H. Often we have to restore to heuristic for shortcutting the
exponentially slow global optimization problem.

The underlying ideas and concepts recapitulated in this section on optimiza-
tion schemes undoubtedly have their roots in statistical physics and among others
go back to the works of Jaynes [89] [88] on maximum entropy inference principles
dated 1957. Especially the global optimization principle with annealing was origi-
nally motivated and developed on the basis of observations, which were made with
respect to physical systems at thermal equilibrium. It was observed that the struc-
ture and solidness of materials, mainly metal and glass, improved with the help of
an annealing process of controlled heating-up and cooling-down. Although the early
simulation work of Metropolis et al. [122] on the dynamics of physical systems at
different temperatures marked the foundation of annealed optimization methods,
foremost Kirkpatrick et al. [95] [96] and independently Cerny [31] recognized the

15

FUNDAMENTALS - BAYESIAN IMAGE ANALYSIS

fact that a stochastic search scheme, mimicking the annealing procedure normally
applied to physical systems in order to settle the systems in its equilibrium ground-
state, is favorable when having to solve optimization problems. Besides Metropolis
et al. [122] also Pincus [135] and Khachaturyan et al. [94] contributed to the early
conceptual and theoretical insights into the analogy of physical systems and com-
binatorial optimization problem-settings, which finally culminated in the work of
Kirkpatrick et al. and Cerny. The physical roots are particularly important as they
lead to the introduction of a varying temperature term T , controlling the anneal-
ing procedure, into the optimization algorithms of Kirckpatrick and Cerny. These
optimization methods are called, in reminiscence of the physical jargon, Simulated
Annealing (SA).

Formally the simulated annealing methods perform a random search process in
the cost landscape of the function H, whereby the shape of the cost landscape is
controlled by the temperature term T and the state transition process is mathe-
matically realized by an inhomogeneous and time-discrete Markov chain in order to
determine a configuration with optimized costs. The temperature term T affects the
cost landscape of H in such a way that configuration changes with an overall cost
difference smaller than the actual temperature value will not be represented by the
cost landscape. Consequently, the temperature term T influences the roughness of
the cost landscape and thus the appearance of local and global maxima respectively
minima of the cost landscape, in which the search is taking place. It can be shown
that the SA induced Markov chain converges to the stationary distribution of the
Gibbs distribution and finally establishes the relation to Jaynes maximum entropy
principle. In the following we describe variants of simulated annealing methods and
for this purpose an additional Definition 2.5 on site visitation schemes is required.

A site visitation scheme on Ω is defined as follows:

Definition 2.5 Site Visitation Scheme
An enumeration V = {s1, ..., sm, ..., s|Ω|} of the sites Ω is called a site visitation
scheme, where V (m) denotes the distinct site sm.

In Section 2.1 different estimators have been introduced. Estimators, which
determine maximum modes, are of special interest within the Bayesian approach
to image analysis because methods like simulated annealing [144] [49] - which will
shortly be defined in more detail - can determine the maximum modes of the discrete
configuration space X.

The maximum a posteriori mode Estimator 2.6 for instance represents such an
estimator [167]. With a Gibbs field and a cost functional given, Π(x) ∝ exp(H(x)),
we will introduce the previously explained temperature term as inverse temperature
β = 1/T . Hence, the Gibbs field with cost functional H and inverse temperature
reads Π(x) = (Z)−1 exp(−βH(x)). For a steadily increasing temperature the mass
of the Gibbs distribution Π accumulates around the modes [165], which represent
the global minimizers of H. Consequently, sampling from this distribution extracts
the maximum modes. Apparently, there exist different sampling strategies with
corresponding transition probabilities to accept new configurations. Four acceptance
rules to adopt new configurations are described in the following. This comprises

1. Metropolis criterion (cf. Definition 2.6),

16

FUNDAMENTALS - BAYESIAN IMAGE ANALYSIS

2. Heat-Bath criterion (cf. Definition 2.7),

3. Gibbs Sampler (cf. Definition 2.8) and

4. Iterated Conditional Modes criterion (cf. Definition 2.9).

The generic structure of optimization procedures based on simulated annealing
is presented in Algorithm 2.1, whereas this SA-algorithm is designed to be used
with respect to the Metropolis criterion as well as with respect to the Heat-Bath
criterion.

Algorithm 2.1 Simulated Annealing (SA) - Metropolis-Hastings Variant
Require: (1) Arbitrary initial configuration x0, (2) temperature schedule β(n)
1: INITIALIZE n=1
2: while
= Convergence() do
3: for z = 1, ..., zMAX do
4: SAMPLE xnew

V (m) ∈ XV(m) from the proposal distribution q on {Ω,X}
5: if T n

Prob = 1 according to 2.19 then
6: xV (m) = xnew

V (m)
7: else
8: if T n

Prob > RANDOM(0,1) according to 2.19 ∧ 2.20 then
9: xV (m) = xnew

V (m)
10: else
11: xV (m) = xV (m)

12: end if
13: end if
14: end for
15: n=n+1
16: end while

The transition probabilities T n
Prob for the temperature scheduling steps β(n) and

the cost-functional H on X of the Metropolis Markov chain [122] are defined as
follows:

Definition 2.6 (Acceptance Rule - Metropolis Criterion)
The acceptance rule of the Metropolis criterion is given by the state transition prob-
abilities T n

Prob. The transition probabilities are given by

T n
Prob(x

′, x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min

{
1, exp

[H(x) −H(x′)
β(n)

]}
, if x′
= x

1 −
∑
z∈X

exp
[H(z) −H(x′)

β(n)

]
, if x′ = x.

(2.19)

Alternatively, Definition 2.7 represents another acceptance rule called Heat-Bath
criterion [67] with slightly different transition probabilities Tn

Prob compared to the
Metropolis criterion. The structure of Algorithm 2.1 makes it obvious that for the
Metropolis criterion as well as for the Heat-Bath criterion a two-phase sampling

17

FUNDAMENTALS - BAYESIAN IMAGE ANALYSIS

procedure is required. In the first phase configuration candidates are sampled from
the proposal distribution q and the following second phase realizes the acceptance
decision. In its original formulation Metropolis [123] [122] has restricted the proposal
distribution q to be symmetric, i.e. for the proposal distribution it holds q(x1, x2) =
q(x2, x1). This constraint has been weakened by Hastings [67] by formulating an
arbitrary proposal distribution q.

Definition 2.7 (Acceptance Rule - Heat-Bath Criterion)
The acceptance rule of the Heat-Bath criterion is given by the state transition prob-
abilities

T n
Prob(x

′, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1 + exp
[H(x) −H(x′)

β(n)

] , if x′
= x

1 −
∑
z∈X

⎛⎜⎜⎝ 1

1 + exp
[H(z) −H(x′)

β(n)

]
⎞⎟⎟⎠ , if x′ = x.

(2.20)

Obviously the two-phase procedure of the Metropolis and Hastings algorithm
implies a significant limitation. An improved variant of an one-phase sampling
scheme with an increased acceptance rate for possible configurations is given by
the Gibbs sampler, depicted in Algorithm 2.2, and its transition probabilities (cf.
Definition 2.8). This acceptance scheme is advantageous, if it becomes possible

Algorithm 2.2 Simulated Annealing (SA) - Gibbs Sampler Variant
Require: (1) Arbitrary initial configuration x0, (2) site visitation scheme V ,

(3) temperature schedule β(n)
1: INITIALIZE n=1, m=1
2: while
= Convergence() do
3: for z = 1,, zMAX do
4: COMPUTE W = {HV(m)(x)|∀x ∈ XV(m)}
5: SAMPLE W according to 2.8
6: xV (m) = xW

V (m)
7: m=m+1
8: end for
9: n=n+1;

10: end while

to calculate the local characteristics fast and efficiently, i.e. the local costs of all
configurations with respect to the site regarded and the neighborhood defined have
to be evaluated effectively. The Gibbs sampler was first analytically studied in the
seminal paper of D. Geman and S. Geman [59]. Additionally, this paper presents
a convergence proof of a logarithmic temperature annealing schedule β(n), which
shows that the Gibbs sampler converges to the uniform distribution of the global

18

FUNDAMENTALS - BAYESIAN IMAGE ANALYSIS

minimizers of the cost-functional H.

Definition 2.8 (Acceptance Rule - Gibbs Sampler)
The transition probabilities of the Gibbs sampler are given by

T n
Prob(x

′, x) =
exp[−H(x′)/β(n)]∑
w exp[−H(w)/β(n)]

. (2.21)

A fast variant to the optimization of the cost-functional H is the Iterated Con-
ditional Modes (ICM) method illustrated in Algorithm 2.3. ICM was originally
proposed by J. Besag [13]. This algorithm also belongs to the Simulated Annealing
family but represents a special case of these methods. Essentially ICM is a tem-
perature frozen Gibbs sampler at β = 0, i.e. ICM follows a solely greedy strategy
and thus accepts only configurations with lower costs (Eq. 2.22) compared to the
actual configuration. Consequently, the ICM optimization scheme converges to a

Algorithm 2.3 Iterated Conditional Modes (ICM)
Require: (1) Good initial configuration x0, (2) site visitation scheme V
1: INITIALIZE m=1
2: while
= Convergence() do
3: CALCULATE HV (m)(xm) ∀xV (m) ∈ XV(m)

4: UPDATE value xV (m) according to 2.9
5: SET m=m+1
6: end while

local minimum of the cost landscape. Obviously a local minimum can be signifi-
cantly worse than the global cost minimum and thus the generated solution of the
ICM method might be of poor quality. In the worst case ICM might even produce
completely useless solutions. Apart from the ICM variant, in general Simulated
Annealing is an extremely robust optimization method.

Definition 2.9 (ICM Acceptance Rule)
The acceptance rule of the local and deterministic algorithm ICM (Iterated Condi-
tional Modes) with a site visitation scheme V(m) is defined by

xV (m) = arg min
xV (m)∈XV(m)

HV m. (2.22)

However, the main disadvantage of SA optimization methods is the exhaustive
usage of computing resources, manifested by their long run-times until a satisfacto-
rily solution has been generated respectively found by the random search process.
The reason for the long computational run-times is substantiated by the logarithmic
temperature annealing schedules [59], and even the improvement of Hajek [65] did
not eliminate this deficiency of SA methods. For pragmatic reasons a faster tem-
perature cooling schedule is sometimes used, but as a far-reaching consequence the
convergence to a global minimum of H is no longer guaranteed.

The optimization paradigm Deterministic Annealing (DA) represents an impor-
tant alternative if run-time constraints are an essential application concern. In

19

FUNDAMENTALS - BAYESIAN IMAGE ANALYSIS

contrast to SA approaches, which sample solutions from the Gibbs distribution, DA
directly determines the distribution with its free parameters. The DA optimization
scheme is depicted in Algorithm 2.4 and follows the presentation in [70]. Essen-
tially, Deterministic Annealing performs a deterministic optimization process over a
probabilistic configuration space. It has been shown in [137] that the Gibbs distri-
bution factorizes under certain conditions, and consequently it becomes possible to
represent the Gibbs distribution Π as a product of probabilities E[Hi]. Hence, the
combinatorial optimization problem has been relaxed to a continuous optimization
problem. It will be solved by a two-step alternating calculation scheme, which de-
termines the average costs E[.] in the first step and optimizes the parameters in the
second processing step. The computational temperature will not affect the search

Algorithm 2.4 Deterministic Annealing (DA)
Require: (1) Temperature schedule β(n), (2) site visitation scheme V
1: INITIALIZE m=1
2: while
= Convergence() do
3: CALCULATE E[HV (m)(x,Θ)] w.r.t. Π(x|Θ)
4: OPTIMIZE E[HV (m)(x,Θ)] w.r.t. Θ
5: SET m=m+1
6: end while

process, which is deterministic, as the randomness is encoded in the probabilistic
configuration space in DA [70]. By freezing the temperature T to one we receive the
classical Expectation Maximization algorithm [39]. For the unsupervised segmenta-
tion model, which will be presented in Section 2.6.2, the update formulas for the
alternating deterministic annealing optimization scheme (E-step and M-step) will
be derived.

2.4 Parallel Processing Strategies

The optimization methods previously described (cf. Section 2.3) either use site
visitation schemes defined by the proposal distribution q or predefined and fixed
site visitation schemes V (m) (cf. Definition 2.5) in order to organize the update
of the current configuration. Until now it has been assumed that the configuration
x changes only on one site at the same time and sequentially over all sites s ∈ Ω,
i.e. for a given configuration x and one selected site s, determined by the proposal
distribution or the site visitation scheme, the old site-local value xs is eventually
replaced by a sample ys from the local characteristic Π(xs|xΩ/{s}). Following this
the next configuration-update eventually alters the actual configuration ysxΩ/{s},
which has been generated in the previous step. After all sites have been selected and
eventually updated their local value, a full site sweep is completed. Consequently,
such a sequential site processing scheme requires O(n) steps, with n = |Ω| to finish
one sweep over all sites. A significant speed-up of processing could principally be
achieved, if several independent processing units work in parallel on the sites. The
highest degree of parallelism is obtained, if each site s ∈ Ω represents an independent
processing unit. In this massively parallel processing setting a single sweep can be

20

FUNDAMENTALS - BAYESIAN IMAGE ANALYSIS

completed in O(1) steps, as all sites update their local values simultaneously.
However, when regarding the situation with respect to parallel processing strate-

gies, it proves to be much more complicated. A naive implementation of a parallel
processing scheme can lead to completely erroneous results, since the convergence
is eventually no longer guaranteed and an oscillatory update behavior might oc-
cur. Thus it is indispensable to formulate fundamental rules, which ensure a correct
parallel processing scheme for a concrete MRF model. The following two limit The-
orems 2.2 and 2.3 establish the formal justification of parallel processing strategies
based on the Gibbs sampler, which possess a guaranteed converge behavior [167]
[59]. Obviously, these parallel processing strategies can equally be combined with
the deterministic ICM method, because the ICM method is a temperature frozen
Gibbs sampler. Thereby, it is ensured that the parallel processing strategy will not
further affect the performance of the ICM method, which converges only to a local
minimum.

For the rest of this section I denotes a set of sites from Ω and x as before denotes
a given configuration. The simultaneous update of the sites s ∈ I is defined by the
following transition probability

RI(x, y) =
{ ∏

s∈I Π(ys|xt, t
= s) if yΩ/I = xΩ/I

0 otherwise.
(2.23)

The probability to generate the configuration y from the configuration x in one
single site sweep is given by the composition Q(x, y) = RI1 ...RIk(x, y), where I =
{Ii|1 ≤ i ≤ K} is the complete partitioning of Ω into K site-sets I. A site set
I is called independent with respect to the imposed neighborhood system N on
Ω, if I contains no neighboring sites. Figure 2.2 shows the partition of a regular
site-grid Ω with first and second order neighborhood system into independent sets
I. Consequently, the conditional probabilities of the sites s of an independent site
set I solely depend on the values of I. Thus the transition probability RI(x, y) =
Πs1...Πs|I|(x, y) is valid for every permutation of the sites in the independent set
I. The transition probability Q(x, y) = RI1 ...RIk(x, y) thus corresponds to the
transition probability generated by a single sweep, which runs serially over all sites
s ∈ Ω. If a cost functional H on X induces a Gibbs field Π, then it can be shown by
extending the results [59] of serial site sweeps that sampling from the Gibbs field Π
is characterized by

Theorem 2.2
For every initial distribution ν the marginals νQn converge to the Gibbs field Π if
(1) the site-set Ω is partitioned into independent sets I and if (2) n goes to infinity.

In the following the annealing-procedure and the optimization of the cost-func-
tional β(n)H with Gibbs field Πβ(n), where β(n) denotes a valid schedule of the
temperature value on the n-th sweep over the sites, is regarded. The transition
probability is given by Q(x, y)n = RI1,n...RIk,n(x, y), if I represents a partition of
Ω into K independent sets I. Again, it can be shown by extending the results of
serial site-sweeps (cf. [166]) that the following holds true for the parallel updating
of independent site sets I.

21

FUNDAMENTALS - BAYESIAN IMAGE ANALYSIS

Theorem 2.3
Let I be a partition of Ω into independent sets I and β(n) a valid schedule for
the temperature value in annealing, then for an arbitrary initial distribution ν the
marginals νQ1...Qn converge to the uniform distribution on the minimizers of H as
n goes to infinity.

Consequently, the essential point for the design of convergent parallel processing
schemes, is the partitioning of the sites s ∈ Ω into independent sets I, i.e. the sets
I contain no sites that are neighbors. For some models it is not a straightforward
task to partition the sites into independent sets I. However, for the MRF-class (cf.
Definition 2.10) considered in this thesis, which will be formally defined in Section 2.5
directly following, the partitioning into independent sets I will be simplified as only
regular two-dimensional site-grids with limited neighborhood systems are regarded
(see e.g. Figure 2.2). The partitioning of a site set Ω with an imposed neighborhood
system N can be illustrated by tinting the sites to provide all neighboring sites
with different colorings. The smallest number of colors defines the cardinality of
the independent sets and thus the maximum degree of parallelism, which can be
realized by this strategy with regard to a specific set of sites Ω and its corresponding
neighborhood system N .

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
������
���
���
���

���
���
���
���

a) b)

c) d)

Independent Sets: Independent Sets:

Figure 2.2: Independent Sets.(a) Two independent sets {I1, I2} for a regular site-
grid with first order neighborhood system (b) Four independent sets {I1, I2, I3, I4}
for a regular site-grid with second order neighborhood system (c) First order neigh-
borhood system N 1 and (d) second order neighborhood system N 2 for regular site-
grid Ω

Obviously, there are other parallel processing strategies for Markovian site grids
(see e.g. [5] or [165]), which are equally applicable to improve the calculation speed
of Markov Random Field based statistical signal- and image processing models. But
these strategies are of minor interest for the purpose of this thesis, as they are
structurally not advantageous [4] [6] for massively parallel hardware-architectures
and VLSI realizations.

22

FUNDAMENTALS - BAYESIAN IMAGE ANALYSIS

2.5 Considered MRF-Class

Taking Definition 2.1 and Definition 2.2 without any restrictions into account, the
class of Markov Random Fields is obviously quite large and diverse. Many struc-
turally and functionally different MRFs can be composed, if no additional constraints
are imposed on the arrangement and number of the sites si, the neighborhood sys-
tems N , the neighbor potentials U and the optimization methods. Due to the
arrangement of the distinct sites and the used neighborhood system not all of the
MRFs, which are principally possible, are equally suitable both for massively par-
allel implementations and for VLSI realizations. This is the reason why we restrict
ourselves to a sub-class of Markov Random Fields. This MRF sub-class is charac-
terized by features and limitations, which are advantageous for massively parallel
implementations and VLSI realizations.

This limitation to a sub-set of MRFs does not imply a severe restriction, as
the regarded class of MRFs (see Definition 2.10) is still comprehensive enough to
capture most of the Markov Random Field models, which have been proposed in
the literature on low-level image processing. Thus Definition 2.10 ensures that the
contemplated MRF class is of scientific and industrial relevance and does not only
comprise an oversimplified and unrealistic caricature of a Markov Random Field.

Definition 2.10 MRF Class
The class of MRFs under consideration possesses the following features and restric-
tions:

• The set of sites {si : 1 ≤ i ≤ |Ω|} are placed in the plane and arranged among
each other, so that they form a regular and equally spaced site-grid Ω.

• Only neighborhood systems N 1 - N 5 (first to fifth order) are admissible.

• There are no restrictions in terms of the neighbor potentials
∑

CN
i

UCN
i

.

• There are no restrictions with regard to the used optimization methods.

Together, all these features and limitations simplify and support the VLSI design
of massively parallel Markov Random Field processing devices and at the same time
are general enough to define a comprehensive MRF image processing class. The
arrangement of the particular sites si as a regular two-dimensional grid establishes
a structure gantry, which is well-suited for large scale integration. This structure is
meshed by neighborhood systems N of maximally fifth order. Hence, the connections
between the sites remain spatially local and regular, which is again advantageous
for VLSI realizations. In principle there are no restrictions regarding the neighbor
potentials. However, not all arithmetic operations are equally advantageous for
VLSI implementations with respect to the required chip area and the cycle-time
behavior. This fact has to be taken into account, if a specific MRF is intended to
be implemented in massively parallel VLSI structures.

The used optimization method is also not restricted, but undoubtedly the meth-
ods differ with respect to the computational complexity, the required implementa-
tion resources and the results produced. The Iterated Conditional Modes (ICM)

23

FUNDAMENTALS - BAYESIAN IMAGE ANALYSIS

method is characterized by a low computational complexity as well as a low usage
of implementation resources, but the produced results crucially depend on the ini-
tial configuration (see Algorithm 2.3). In contrast to the ICM method, stochastic
methods of the simulated annealing family possess a high computational complexity
as well as a significant usage of implementation resources, but the produced results
are largely independent of the initial configuration (see Algorithm 2.1, 2.2).

2.6 Exemplary Image Processing Models

Two types of low-level image processing problems occur at regular intervals and
are of central importance for nearly every image processing chain and its technical
realization. The first type of early vision problems comprises the task of noise re-
moving with simultaneously preserving distinct image features to avoid the blurring
of these image features, which will in the end lead to the loss of structure and image
details. One prominent and robust feature, representing a generic image structure,
is definitely that of intensity changes in image data. These intensity changes tag
boundaries of different objects respectively regions. Thus a device for noise remov-
ing and simultaneously preserving intensity changes, which is both algorithmically
robust and capable of real-time processing would be desirable in view of projected
technical machine vision systems. To further stress the practical and far-reaching
relevance of this elementary and specific model for a brought scope of applications,
we refer the reader to the summary section of this chapter for a more detailed dis-
cussion on some scenarios of industrial utilization. This discussion formally justifies
the importance of this concrete model and the demand of realizing it as a massively
parallel processing device. The model’s assumptions and the derivation of its cost
function is described in Section 2.6.1. Furthermore, the update equation for the
model’s free parameter is derived.

The second type of early vision problems comprises the task of image cluster-
ing, i.e. partitioning of the image sites into a set of disjoint clusters. One of the
very first steps toward any kind of image understanding and object recognition is
segmenting the image sites into a predefined number k of disjoint clusters based
on a well-defined measure between distinct data features. Statistical similarity or
homogeneity, measured in the spatially local neighborhood of each image site, are
robust features. Histograms, locally generated at each site, represent empirical dis-
tributions and, from a statistical point of view, are robust and reliable features.
These empirical distributions, the histograms, are compared with estimated proto-
typical distributions of each cluster. The assignment of a site to a specific cluster
is then based on the outcome of this measurement. Again, we refer the reader to
the summary section of this chapter for a discussion on essential scenarios of indus-
trial utilization, which underpins the relevance of this image processing model. The
model’s structure and the derivation of its cost function, represented by its negative
data log-likelihood, is described in Section 2.6.2. In addition, we derive the update
equations for the cluster assignments and the free parameters in the Deterministic
Annealing framework.

24

Cost Function - Edge Preserving & Noise Removing

2.6.1 Cost Function - Edge Preserving & Noise Removing

The following paragraph describes the Edge Preserving & Noise Removing image
processing model and derives its corresponding cost function H within the Bayesian
framework. Essentially the complete Edge Preserving & Noise Removing image pro-
cessing model is composed of two model parts: The first part of the model describes
the degradation process of the observed data and thus represents the likelihood
probability within the Bayesian setting. The second part of the model describes the
assumptions about the expected results and thus represents the a priori probability
within the Bayesian formulation. Because we can efficiently determine the costs
of H, which will become evident during the following discussion, it is possible to
calculate and optimize the posterior. In this case maximizing the posterior leads to
the MAP estimator (cf. Section 2.1, Eq. 2.6).

Let us assume that a set of image sites Ω = {si|i = 1, ..., n} is defined as follows:
These sites are organized as a regular two-dimensional grid of size N × M , N,M ∈
N with an imposed spatial neighborhood system of first order N 1, i.e each site
is connected with its directly neighboring sites - the site above, the site beneath,
the leftmost side and the rightmost side respectively. Hence, the model respects
the structural features of the considered MRF class, introduced in Section 2.5 and
Definition 2.10. The measure of the intensity changes between neighboring sites
is realized by a function with a cup shaped functional progression [167], which for
instance can take on the form of κ(u) = −1

1+|u|/γ or alternatively of κ(u) = −1
1+(u/γ)2

.
The parameter γ adjusts the function to respect intensity changes of a specific
difference, i.e. a single large intensity step is cheaper than smaller ones. Additionally,
the noise, which is responsible for any distortion of the observed image data, is
represented by a particular function. It is assumed that the noise can be described
by an independent white Gaussian noise distribution, with m representing the mean-
and σ2 denoting the variance-parameter.

The free parameters of the model, which have to be estimated, are summarized
and denoted by Θ = {m, σ2, γ} in the sequel. The previous description of the Edge
Preserving & Noise Removing image processing model introduced the structure of
the model and commented on all its parts. Consequently, we can summarize the
model with respect to (1) observed data, (2) latent variables, (3) model specific
functions and (4) model parameters as follows:

• Observed data y = {yi|i = 1, ...,n}

– yi, 1 ≤ i ≤ n, describing a raw image datum, which is locally observed at
site si, 1 ≤ i ≤ n of the site-grid Ω. The set of observations, summarized
by y = {yi|i = 1, ...,n} represents the completely observed raw image,
which in the case of that model is assumed to be corrupted by noise.

• Latent data x = {xi|i = 1, ...,n}

– xi, 1 ≤ i ≤ n, denoting a restored image datum at site si, 1 ≤ i ≤
n, i.e. the additive white Gaussian noise component is removed while
simultaneously preserving intensity changes. The set x = {xi|i = 1, ...,n}
represents the completely restored image.

25

Cost Function - Edge Preserving & Noise Removing

• Gaussian Degradation Model G

– The observed data y is the result of a degradation process G. This noise
process is additive with respect to each particular yi and the noise vari-
ables are identically and independently distributed by a Gaussian law of
mean m and variance σ2, i.e. the pdf is given by f(x) = 1

σ
√

2π
exp(− (x−m)2

2σ2).

• Intensity Change Grading κ(v1, v2)

– Given two gray-scaled values v1 and v2, the intensity difference v1 − v2 is
graded by the function κ(v1, v2) = −1

1+|v1−v2|/γ or κ(v1, v2) = −1
1+(v1−v2/γ)2

,
alternatively.

• Parameters Θ = {m, σ2, γ}
– m, representing the mean parameter of the assumed identical independent

Gaussian noise distribution,

– σ2, denoting the variance parameter of the Gaussian noise distribution.

– γ, representing the scaling value of the intensity differences evaluating
function.

Although the free model parameter can be estimated during the processing,
we restrict the parameter estimation procedure to the variance σ2 of the specific
Gaussian noise, because the mean m is set to zero. Furthermore it is assumed
that the remaining free parameter γ is predefined by the user. Thus the list of
free parameters in the following discussion becomes reduced to the variance σ2, i.e.
Θ = {σ2}. By means of the model fundamentals described above, we can define
the posterior distribution in Gibbsian form (cf. Eq. 2.13) and the detailed posterior
cost function of that model.

The posterior distribution in Gibbsian form is given by

P (x|y) =
exp(−H(x,y))∑
z∈X exp(H(z,y))

, (2.24)

with H(x,y) denoting the posterior cost function. The posterior cost function it-
self is composed of two components, the data degradation model and the a priori
assumptions.

The a priori assumptions are summarizing covered by the intensity change grad-
ing function κ(v1, v2) and thus the a priori cost function H1 reads as follows

H1(x) =
n∑

i=1

4∑
t=1

∑
<xi,xt>

κ(xi, xt). (2.25)

The degradation process is additive and Gaussian with mean m and variance σ2.
Furthermore it is assumed that m = 0. Hence, we receive the cost function H2 of
the degradation process as

H2(y,x) =
n∑

i=1

(xi − yi)2

2σ2
(2.26)

26

Cost Function - Edge Preserving & Noise Removing

for the degradation model.
Consequently, putting Eq. 2.25 and Eq. 2.26 together, the posterior cost function

H of the Edge Preserving & Noise Removing image processing model finally reads

H(x,y) = H1(x) + H2(y,x) (2.27)

=
∑

i

4∑
t=1

∑
<xi,xt>

κ(xi, xt) +
1

2σ2
(xi − yi)

2 . (2.28)

The following section presents the optimization strategy for the described Edge
Preserving & Noise Removing image processing model. The strategy is characterized
by an alternating calculation scheme, which at first determines the free parameters
and following the optimization of Eq. 2.28.

Alternating Optimization

We consider an optimization procedure, which simultaneously estimates the model
parameters in an edge preserving way by removing noise [13] [107]. The particular
steps of the optimization procedure are given below:

1. Start with an initial estimate of x as well as with an useful initialization of the
free parameter Θ = {σ2}.

2. Estimate [19] the free parameter by σ2 = arg max P (y|x, σ2).

3. Update the latent data by x = arg max P(x|y, σ2) based on the current values
of x and σ2.

4. Continue with step 2 for a number of iterations.

For step 2 one has to maximize the likelihood of σ2, which is given by

P (y|x, σ2) =
1

(
√

2πσ2)n
exp

(
−

n∑
i=1

(xi − yi)2

2σ2

)
, (2.29)

or equivalently the log likelihood

ln P (y|x, σ2) = −n ln(2π) − n ln σ −
n∑

i=1

(xi − yi)2

2σ2
. (2.30)

The free parameter σ2 is optimized by setting the partial derivation of the log
likelihood 2.30 equal to zero.

Hence the optimization condition for the model’s free parameter σ2 reads

∂

∂σ

(
−n ln(2π) − n ln σ −

n∑
i=1

(xi − yi)2

2σ2

)
= 0. (2.31)

When finally solving Eq. 2.31, we receive the formula to determine the model
parameter σ2 in step 2, which reads

σ2 =
1
n

n∑
i=1

(xi − yi)2. (2.32)

27

Cost Function - Unsupervised Histogram Segmentation

For step 3 one of the optimization methods, described in Section 2.3 has to be
utilized.

We continue the discussion with the description of the Unsupervised Histogram
Segmentation model.

2.6.2 Cost Function - Unsupervised Histogram Segmentation

This section introduces the cost function H of the Unsupervised Histogram Segmen-
tation image processing model. The model is motivated and influenced by histogram
clustering respectively segmentation models, which have been proposed for instance
in [138, 133, 137]. This specific cost function is naturally given by the complete
negative data log-likelihood L of the model. Essentially the model described in the
following represents the prototypical cluster distributions - exactly one prototypical
distribution for each single cluster ν - by discrete histograms and thus by a nonpara-
metric cluster representation. In contrast to these nonparametric representations of
cluster distributions, recently suggested models (e.g. [169] [69]) have proposed and
successfully tested parametric representations of cluster distributions.

Let us assume that a set of image sites, denoted by Ω = {si|i = 1, ..., n}, is given
in the following. These sites si are organized as a regular two-dimensional site-
grid Ω. We further assume that the site-grid possesses the form and size N × M ,
N,M ∈ N with an imposed spatial neighborhood system, i.e each site is connected,
up to some extent, with its neighboring sites. As we are considering the MRF
class introduced in Section 2.5, only neighborhood systems of first to fifth order are
regarded and used for this model. Furthermore, each single site si ∈ Ω holds a finite
set of discrete observations, summarized by xi for a specific site and summarized
by X = x1, ..., xn for all sites of the grid Ω with n = |Ω|. The finite set of discrete
observations is collected in the defined neighborhood of si and further organizing the
values of xi by means of a histogram with m bins leads to an empirical distribution
hi = {xij|1 ≤ j ≤ m} with xij denoting the number of entries in particular bins j.
Additionally, it is assumed that the segmentation is done in k different clusters ν,
where the total cluster number k typically ranges from 2 to 8. With pν we denote
the probability of cluster ν with respect to the actual image data and with qν the
prototypical distribution of cluster ν. During the actual segmentation pass, each site
si ∈ Ω is assigned to exactly one specific cluster ν. Exactly this cluster membership
of a site si is mathematically formalized by a boolean assignment variable Miν ,
ν = 1, ..., k in the following. Thus we actually set Miν = 1, if site si is assigned to
cluster ν. The assignment variables of Ω are summarized in an overall assignment
matrix M ∈ M = {0, 1}n×k. We further impose the requirement that

∑
ν≤k Miν = 1

holds true for avoiding multiple cluster assignments per site. Obviously each Mi

possesses the boolean vector form Mi = (0, ..., 0, 1, 0, ..., 0), if site si is assigned to
cluster ν.

The cluster probabilities pν with respect to the actual image data as well as
to the prototypical cluster distributions qν represent free parameters of the model,
which have to be estimated and are summarized by

Θ = {pν , qν : 1 ≤ ν ≤ k} (2.33)

in the sequel.

28

Cost Function - Unsupervised Histogram Segmentation

The previous description of the Unsupervised Histogram Segmentation image
processing model introduced and commented on all model ingredients so that we
can summarize the model with respect to (1) observed data, (2) latent variables and
(3) model parameters in the following way:

• Observed data X = {xi|i = 1, ...,n}
– xi describing a set of values, observed in the defined neighborhood of

site si. Further structuring xi and simplifying the following notation we
define histograms hi = {xij|1 ≤ j ≤ m} with j bins.

• Latent cluster assignment matrix M ∈ M = {0, 1}n×k

– Miν , 1 ≤ i ≤ n, 1 ≤ ν ≤ k, signifying the boolean assignment variable
that site si is assigned to exactly one cluster ν;

∑
ν≤k Miν = 1.

• Parameters Θ = {pν , qν : 1 ≤ ν ≤ k}
– pν , 1 ≤ ν ≤ k, representing the probability of a specific cluster ν with

respect to the data currently available,

– qνj, 1 ≤ ν ≤ k, 1 ≤ j ≤ m, denoting the prototypical distribution of
cluster ν, represented by an empirical distribution, which is realized as a
histogram with j bins.

With these model fundamentals formally introduced we can derive the appropri-
ate cost function of the model, which is given by its corresponding negative complete
data log-likelihood . The derivation is started with the likelihood of the assignment
matrix p(M|Θ), followed by the likelihood of the observed data p(X|M,Θ) and
finally put together to gain the complete data likelihood p(X,M|Θ). The likelihood
of the specific boolean assignment vector Mi at site si ∈ Ω, without regarding the
observed image data xi in its neighborhood, is defined by

p(Mi|Θ) =
k∑

ν=1

Miνpν , (2.34)

where the parameter pν ∈ Θ represents the probability that a site si belongs to
cluster ν. The following overall equation - extended by the product term of the last
equation - holds true as the assignment variable Mi is a boolean vector with the
imposed constraint

∑
ν≤k Miν = 1. Thus the product term sums up to one and we

can equivalently write

p(Mi|Θ) =
k∑

ν=1

Miνpν =
k∏

ν=1

pMiν
ν . (2.35)

As it is assumed that the image sites si ∈ Ω are statistical independent among
one another it follows that the likelihood for the complete assignment matrix M of
the site-grid Ω is defined by

p(M|Θ) =
n∏

i=1

[
k∑

ν=1

Miνpν

]
=

n∏
i=1

k∏
ν=1

pMiν
ν . (2.36)

29

Cost Function - Unsupervised Histogram Segmentation

Equation 2.36 finalizes the derivation of the first part of the negative complete
data log-likelihood so that the likelihood of the observed data p(X|M,Θ) has to be
derived in the next step to complete the model’s data likelihood.

A first observation reveals that the probability of a site si, which belongs to
cluster ν, of having a value xj out of the value range defined by bin j, is given by

p(xj |ν,Θ) = qνj. (2.37)

The likelihood of observations xi at site si, which belongs to cluster ν and given
parameters Θ is defined by

p(xi|ν,Θ) =
m∏

j=1

(qνj)
xij . (2.38)

For all n = |Ω| sites si and with respect to the complete cluster assignment
matrix M the likelihood p(X|M,Θ) of the observed data is given by

p(X|M,Θ) =
n∏

i=1

k∏
ν=1

⎡⎣ m∏
j=1

(qνj)
xij

⎤⎦Miν

. (2.39)

Bringing the likelihood of the assignment matrix p(M|Θ) (2.36) and the likeli-
hood of the observed data p(X|M,Θ) (2.39) together, we receive the complete data
likelihood

p(X,M|Θ) = p(M|Θ) · p(X|M,Θ)

=
n∏

i=1

k∏
ν=1

[pν · p(xi|ν,Θ)]Miν

=
n∏

i=1

k∏
ν=1

⎛⎝pν

⎡⎣ m∏
j=1

(qνj)
xij

⎤⎦⎞⎠Miν

. (2.40)

Hence the complete negative data log-likelihood function L of the Unsupervised
Histogram Segmentation model reads

L(Θ|X,M) = − log p(X,M|Θ)

= −
∑

i

∑
ν

Miν

⎛⎝log pν +
∑

j

xij log qνj

⎞⎠
= −

∑
i

∑
ν

Miν log pν −
∑

i

∑
ν

Miν

∑
j

xij log qνj . (2.41)

Adding the empirical entropy of x, which does not depend on Θ to the expanded
complete negative data log-likelihood function L of Eq. 2.41, we receive

= −
∑

i

∑
ν

Miν log pν −
∑

i

∑
ν

Miν

∑
j

xij log qνj −
∑

i

∑
j

xij log xij. (2.42)

30

Cost Function - Unsupervised Histogram Segmentation

Additional rearranging and simplifying leads to

= −
∑

i

∑
ν

Miν log pν −
∑

i

∑
ν

Miν

∑
j

xij(log qjν − log xij) (2.43)

and finally to the following representation

= −
∑

i

∑
ν

Miν log pν +
∑

i

∑
ν

Miν

∑
j

xij

(
log

xij

qjν

)
. (2.44)

The term
∑

j xij

(
log xij

qjν

)
of Equation 2.44 is distinguished and represents an

information theoretical measure between two distributions. This specific measure is
called cross-entropy or Kullback-Leibler divergence DKL(P ||Q) [101] [102] and serves
as divergence respectively distance measure among the distributions P and Q, which
are defined w.r.t. a discrete state space; with DKL(P ||Q) ≥ 0 and DKL(P ||Q) = 0 iff
P = Q. The Kullback-Leibler divergence is neither symmetric nor does it generally
respect the triangle inequality and thus DKL is not a metric.

Consequently, we write Equation 2.44 in the following as

= −
∑

i

∑
ν

Miν log pν +
∑

i

∑
ν

MiνDKL(x·|i||q·|ν). (2.45)

Thus, the cost function H of the Unsupervised Histogram Segmentation image
processing model finally reads

H = L(Θ|X,M)

=
∑

i

∑
ν

Miν

[− log pν + DKL

(
x·|i||q·|ν

)]
. (2.46)

The following two paragraphs present in detail the update formulas of the al-
ternating calculation scheme (M-Step and E-Step), which will finally optimize the
costs of the unsupervised segmentation model’s cost functional 2.46. The EM algo-
rithm recalculates the cluster assignments in the E-step, whereas in the M-step the
model’s free parameters Θ are optimized. The discussion starts with the E-step of
the alternating optimization scheme.

Expectation Maximization - E-step

During the E-step calculation phase, the alternating optimization scheme recalcu-
lates the cluster assignment probabilities miν = E[Miν], 1 ≤ i ≤ n, 1 ≤ ν ≤ k, which
are determined in accordance with the Gibbs distribution [68]. In [137] Puzicha
proved that the distinct assignment variables miν must fulfill the n × k equations

miν =
exp(1

T hiν)∑
µ≤k exp(1

T hiµ)
1 ≤ i ≤ n, 1 ≤ ν ≤ k. (2.47)

The particular term hiν represents the costs of assigning site i to cluster ν with T
being the computational temperature. For the unsupervised histogram segmentation

31

Cost Function - Unsupervised Histogram Segmentation

model and its costs, defined by the equation 2.46 of the cost-functional, the expected
costs hiν read

hiν = − log pν + DKL(x·|i||q·|ν)) = − log pν +
∑

j

xij

(
log

xij

qjν

)
. (2.48)

The concrete calculation procedure for the particular miν and hiν , defined by
Equation 2.47 and 2.48, for this image processing model is straightforward to per-
form. The outermost sum of Equation 2.46, which runs over all sites si of the site
grid Ω, shows that all sites are absolutely independent of each other. Consequently,
a single E-step can be performed by one complete run over all sites si, whereas the
mean fields hiν are calculated according to Equation 2.48 and the cluster assignment
probabilities miν are finally updated with respect to Equation 2.47.

The most important feature of this image processing model, namely that of
all sites si, i = |Ω| being decoupled, is of far-reaching relevance. First of all the
derivation of Eq. 2.48 becomes simpler and the arithmetical structure less complex.
Secondly each site si can conduct its calculations (hiν and miν) independent of the
other sites in the grid. What follows is the fact that this particular model can be
implemented fully in parallel, with all sites si being independent processing units.
The equations of the M-step, which represent the calculation rules for the model´s
free parameter Θ, are given in the next paragraph.

Expectation Maximization - M-step

During the M-step calculation phase, the alternating optimization scheme re-esti-
mates the model´s two free parameters Θ (cf. Equation 2.33). On the one hand pν ,
which represents the cluster-specific probabilities with respect to the data actually
observed is re-estimated, and on the other hand qν , which represents the distributions
of the cluster prototypes are updated. Obviously, the re-estimation of the free
parameters is performed on the basis of the cluster assignment probabilities miν ,
which have been determined in the E-step.

The cost functional H (cf. Eq. 2.46) induces the Gibbs measure with a varia-
tional characteristic (see e.g. [167]), which essentially means that the Gibbs measure
has least free energy F = E[H]−TS compared with all other distributions and thus
marks this probability measure. The term S of the free energy denotes the entropy
of the model´s cluster assignment. Consequently, the model´s free parameters Θ
are optimized by setting the partial derivatives of the free energy with respect to pν

and qν equal to zero.
Thus the optimization condition for the model’s parameter pν reads

∂

∂pν

⎛⎝F + λ ·
k∑

µ=1

pµ

⎞⎠ =
∂

∂pν

⎛⎝[E(H) − TS] + λ ·
k∑

µ=1

pµ

⎞⎠ = 0. (2.49)

In Equation 2.49 the term λ represents a Lagrange correction parameter, which
establishes a normalization of the cluster specific probabilities pν . The partial deriva-
tion simplifies as the M-step re-estimates only the model´s free parameters Θ and
simultaneously leaves the cluster assignment probabilities miν unaltered. Hence, it

32

Cost Function - Unsupervised Histogram Segmentation

is sufficient to particularly regard E[H], as the entropy S of the cluster assignment
remains unchanged. Expanding Equation 2.49 leads to the following optimality
condition for pν

∂

∂pν

⎛⎝⎡⎣− n∑
i=1

k∑
ν=1

miν log pν −
n∑

i=1

k∑
ν=1

miν

∑
j

xij

(
log

xij

qjν

)⎤⎦− TS + λ ·
k∑

µ=1

pµ

⎞⎠ = 0.

(2.50)
When finally solving Equation 2.50, we receive the formula to determine the model
parameter pν, which reads

pν =
1
n

n∑
i=1

(miν) , ν = 1, ..., k. (2.51)

Following up the same procedure for the second free model parameter qν , the
condition to optimize qν is given by setting the derivation of the free energy F with
respect to qν equal to zero. Consequently, the optimization condition for the model’s
parameter qν is given by

∂

∂qν

⎛⎝F + λ ·
k∑

µ=1

qµ

⎞⎠ =
∂

∂qν

⎛⎝[E(H) − TS] + λ ·
k∑

µ=1

qµ

⎞⎠ = 0. (2.52)

Again, λ represents a Lagrange correction parameter, which ensures a sufficient
normalization of the cluster prototype distributions qν. Solving Equation 2.52 for
qν we receive the formula to determine the model parameter qν , which reads

qν =
∑n

i=1 ximiν∑n
i=1 miν

, ν = 1, ..., k. (2.53)

In summary the first phase of the alternating optimization scheme, the E-step,
updates the cluster assignment probabilities miν according to the formulas, which
are given by Eq. 2.47 and Eq. 2.48. In the second phase, the M-step, all free
parameters Θ of the model are updated. The update formulas are given by Eq.
2.51 and Eq. 2.53. Thus the complete set of update Equations for the unsupervised
histogram segmentation model are derived to systematically optimize the model´s
cost-functional H, given by Eq. 2.46.

2.7 Analog Technologies versus Digital Technologies

This section discusses in depth the advantages and limitations of possible semicon-
ductor technologies for massively parallel processing devices, which are based on
the processing principles of Markov Random Fields. This discussion establishes the
basis and justification regarding the selection of a semiconductor implementation-
technology made in this thesis.

Today there are principally only a few basic implementation-technology variants
available, which systematically support the physical realization of Turing-universal
processing devices. The industrial focus lies on semiconductor technologies with var-
ious integration capabilities and essentially comprises purely digital, purely analog

33

Cost Function - Unsupervised Histogram Segmentation

and mixed-mode technology-libraries for the implementation of processing devices.
Optical and opto-electrical implementation technologies represent, in contrast to
the technologies mentioned before, only niche technologies with extremely specific
application domains. Furthermore, quantum computing and molecular computing
approaches and their carrier-technologies are research directions with no current in-
dustrial relevance, but it is conceivable that these approaches will mature to main-
stream technologies with a significant impact on future computing devices and their
integration densities. Consequently, either pure digital, pure analog or mixed-mode
semiconductor technologies are the logical choice of most processing device imple-
mentations. This is equally true for those kinds of processing devices, which are
based on stochastic data processing models, and processing principles characterized
by distributed calculation units arranged on a regular grid with spatially limited
interactions, as dealt with in this thesis.

In the neural network community these processing approaches and their corre-
sponding processing devices are in summary denoted by the term Cellular Neural
Networks (CNNs) since the seminal publications of L.O. Chua and I. Yang [35] [34].
Generally neural networks have their theoretical roots and inspirational sources in
biological- as well as neuro-science. These roots are the reason why artificial neural
networks pursued to functionally imitate respectively copy the astonishing capa-
bilities of biological nervous-compounds by means of idealized and often simplified
models and their corresponding technical implementations. As biological systems
use analog electrical signals during the fast signal transmission path along the ner-
vous line [91], analog semiconductor technologies were and are still used to imitate
these biological signal shapes and the integration of these signals in technical real-
izations of neural networks. This is especially true for the Cellular Neural Network
community as analog realizations have a long-standing tradition in this research field
[74] - [79]. Another argument for analog implementations is the possibility of spa-
tially combining the sensing structures and the processing structures on one chip-die
with high integration densities. Perhaps the most prominent and influential Cellular
Neural Network example, presented in different variants and numerously realized in
analog technologies (see e.g. [97], [113], [112]), is that of a simplified mammalian
retina model. This artificial retina and all its variants are often used for early vision
tasks in the neural network community.

In contrast to the neural network community, the image understanding com-
munity denotes the above mentioned processing approaches with the term Markov
Random Field (MRF) or sometimes Gibbs Random Field. Whereas an image anal-
ysis approach, which uses Markov Random Field, is mostly more generally referred
to as Bayesian image analysis. One of the most influential papers in this area is that
of D. Geman and S. Geman [59] and earlier the contributions of Besage [10] [11]
[12]. The Bayesian image analysis approach with Markov Random Fields as pro-
cessing structures has its theoretical roots in mathematics and statistics, but also
substantially borrows ideas and insights from statistical physics. Consequently, these
signal and image-processing models, which are derived within a Bayesian framework
and formulated on MRFs, solely require a standard digital number representation,
well-defined operators working on these numbers and a serial processing machine.
Obviously this can be achieved by means of digital number representations either as
fix-point or as float-point type.

34

Cost Function - Unsupervised Histogram Segmentation

In summary, the previous discussion shows that the Cellular Neural Network
community as well as the Bayesian image analysis community investigate, develop
and popularize signal- and image-processing models, which share the same funda-
mental processing principles. In the end both communities are based on the same
mathematical basics. However, both communities have found their fundamentals
and derivations in different scientific disciplines. This mainly leads to the situation
that the CNN community prefers analog semiconductor technologies for the imple-
mentation of CNN models in order to stress the biological aspect. In contrast to the
CNN community, the Bayesian image analysis community prefers flexible and pro-
grammable digital processing platforms, in order to investigate the performance of
proposed image processing models. The Bayesian image analysis community mainly
uses commercial off-the-shelf computers, as it is the modeling aspect on which the
community’s focus is set and not the compact and real-time capable realizations.

Consequently, the discussion raises the central question of which implementation
technology is more advantageous and forward-looking with regard to the realization
of CNN/MRF based processing devices. Many different aspects have to be taken into
account to finally come to a qualified conclusion regarding a suitable MRF/CNN
implementation technology, which is more or less uncommitted to any scientific
discipline. We advocate the position to essentially base the technology selection-
process of digital, analog or mixed-mode technologies on the following aspects:

• Semiconductor technology trends,

• Design methodology trends,

• Advantageous CNN/MRF modeling and representation technology and

• Far-reaching application scenarios and their requirements.

Semiconductor Technology Trends

In the last decade a continuous and impressive progress in the field of semiconductor
technology has taken place [83] [84]. The feature sizes of the individual transistors
are steadily shrinking down to the nanometer scale. Consequently, with each single
technology shrinking step the integration density tremendously increases. Further-
more, new surface polishing approaches [25] make it possible to stack up to 12
global wiring levels on top of the transistors, which further significantly supports
the overall integration density. All these technology improvements are in principle
equally available for analog as well as digital technologies. But the precise represen-
tation respectively generation of well-defined analog shaped signals reaches its limits
as electron mobility decreases with shrinking feature sizes and as absolute voltage
values decrease. Additionally, semiconductor-fabrication carriers are almost solely
focused on digital design technologies with respect to the latest transistor feature
sizes [93] and also do not offer the corresponding analog design technologies. Con-
sequently, only digital design technologies fully profit from todays semiconductor
process improvements. This situation, which will not change in the near future [17]
[83], explicitly favors pure digital design approaches of CNN/MRF based processing
devices over analog or mixed-mode implementations.

35

Cost Function - Unsupervised Histogram Segmentation

In addition to this, the argument of the CNN community that only analog de-
sign technologies can offer the capabilities to realize adequately large CNN/MRF
site grids, which for a long time was correct and striking as analog CNN/MRF sites
are smaller, is no longer valid because of todays integration densities of digital design
technologies. Actually modern digital design technologies can theoretically outper-
form analog design technologies with respect to the overall size of the CNN/MRF
site-grid. Consequently, compared to analog technologies, digital semiconductor
technologies offer a far more advantageous technology basis for the implementation
of massively parallel CNN/MRF processing devices, than analog technologies.

Design Methodology Trends

The research field of design methodologies for integrated circuits, independent of
the technology variant - digital, analog or mixed-mode -, has developed almost as
impressively as the semiconductor technologies itself. This fact is not astonishing as
the continuously and tremendously increasing number of available and theoretically
usable transistors per integrated circuit generates the demand to adapt, improve or
newly develop electronic design automation methodologies and tools. Without the
technical progress and the innovations of the electronic design automation (EDA)
community it would not have been possible to design, to verify and to manufacture
the complex devices prevalent today.

However, most of the research work, innovation and tool-development [98] has
been conducted for the design-support of purely digital devices. Two internation-
ally standardized hardware description languages (HDLs), VHDL and Verilog, are
available and frequently used to design purely digital chips. Highly specialized and
well-approved synthesis engines translate the corresponding hardware description
into boolean equations, which can finally be mapped onto logical gates and transis-
tors. Furthermore, modern synthesis engines optimize the boolean representation
of the described chip and thus improve the chip-area utilization and the maximum
clock-frequency the chip can operate in. Today the chip-layout generation with the
main sub-tasks of placing & routing is a well-approved and tool-supported procedure
too. Additionally, the simulation of digital circuits is systematically supported by
different simulation-tools and can be conducted time-efficiently both for moderately
sized and complex circuits; however, for extremely large and complex digital systems
it quickly reaches its limit with respect to overall simulation-time and memory-usage.

In the analog domain the situation looks completely different. Foremost, hard-
ware description languages, as VHDL-AMS and Verilog-A, have recently been inter-
nationally standardized to systematically represent analog circuits. But until now
any hardware description of analog circuits using these languages is only suitable for
simulation purposes. The generation of the corresponding transistor representation
is currently not possible. Consequently, the design of analog circuits is still low-level
handwork [26] for each single analog design technology with its specific parameters.
The simulation of analog circuits is extremely time-consuming and memory-usage
intensive as the analog circuit is represented by a non-linear, ordinary differential
equation system, which must be solved to simulate the analog behavior. Obvi-
ously the simulation of large and complex analog circuits is affected and limited
by this kind of circuit representation as a differential equation system. Thus com-

36

Cost Function - Unsupervised Histogram Segmentation

pared to analog design technologies, digital design technologies are advantageous
with respect to design methodologies, available tools - including simulators - and
industrial-approved design flows.

Suitable Representation Technology

The question of which technology is more suitable to model and technically represent
CNNs/MRFs can be answered straightforwardly. At the first glance, if we do not
consider any technological issues and limitations, each technology variant - purely
digital, purely analog or mixed-mode, seems equally suitable to model CNN/MRF
processing devices. No technology variant implies fundamental theoretical limita-
tions with respect to signal representation and calculation capabilities, to become
less powerful compared to other technology variants. Secondly, if we consider tech-
nological aspects, then purely digital technology variants become more advantageous
for implementing CNN/MRF processing units than purely analog or mixed-mode
technologies. This is substantiated by the fact that a precise representation of sig-
nal values with different co-domains and the arbitrary calculation with these signal
representations is much easier and more stable to implement within purely digital
technologies. Consequently, purely digital design technologies are definitely equiva-
lent to analog or mixed-mode technologies with respect to their signal representation
and calculation capabilities, and in addition offer several practical implementation
advantages.

Applications and their Requirements

Potential and far-reaching application scenarios for CNN/MRF processing devices
are affected by the chosen implementation technology, which in the extreme case
leads to a complete failure when realizing specific CNNs/MRFs in that technol-
ogy. For several application scenarios [42] it is essential to regard and process sig-
nal sources like radar, infrared, sonar and laser within the CNN/MRF paradigm.
Therefore it becomes indispensable to process these signal sources within technical
implementations of CNN/MRF devices.

All these sensors principally possess a digital interface and thus a digital rep-
resentation of their output-signals. This fact favors digital CNN/MRF realizations
to establish a seamless digital signal-processing flow. Principally, the digital sen-
sor signals can be converted to appropriate analog signals and then passed over to
an analog CNN/MRF for processing. But this conversion procedure, which has to
guarantee the overall signal compatibility of the signals of both the digital-analog
conversion process and the analog CNN/MRF signal representation, is technically
rather complex and contains several analog-specific design issues. If we assume for
the purpose of this discussion that it is possible to directly receive analog sensor sig-
nals, the signal-level adaptation process, the signal-integrity process and the overall
electrical signal compatibility all need to be completely executed within the analog
signal-domain before the analog sensor signals can pass over to an analog CNN/MRF
device. Again, all these tasks are technologically involved and define additional ana-
log design and system-integration challenges, which can only be mollified by an
analog-digital-analog conversion process. Undoubtedly this analog-digital-analog

37

Cost Function - Unsupervised Histogram Segmentation

signal conversion effort can by no means be justified.
The situation previously described becomes even more complicated, if a data-

fusion approach is addressed with the help of the CNN/MRF paradigm and realized
with the corresponding analog CNN/MRF processing device. Generally in these
data-fusion settings several analog signals from different sources have to be modified
and adapted to be compatible with each other and with the analog CNN/MRF
device. Consequently, certain generic application requirements, determined by the
sensor-sources, raise serious analog design issues, which finally lead to a purely digital
signal-processing flow and as a result purely digital CNN/MRF processing devices.

A completely different class of applications is defined by various aviation and
space-flight scenarios, which could profit from the CNN/MRF signal- and image
processing paradigm and its massively parallel processing devices. The technological
key issue of this specific application-scenario class is the tolerance of the electronic
components against harsh environments and radiation. Essentially - besides other
parameters - temperature becomes an important parameter in harsh environments.
All three technology variants - digital, analog and mixed-mode - are equally affected
by the environment temperature and thus none of these implementation technologies
shows any advantage with respect to this parameter.

Likewise, heavy ions, neutrons, and protons scatter the atoms in a semiconductor
lattice [72] [120], independent of the technology variant. This introduces on the one
hand short SEU (Single Event Upset) effects and on the other hand long lasting
noise and error sources in semiconductor structures [110] [121], which finally alter
the functionality of the devices. With regard to the topic radiation-tolerance also
none of the technology variants owns any advantage compared to the others.

We conclude this section with the statement that modern ultra-deep sub-micron
digital design technologies are more advantageous compared with purely analog
and mixed-mode design technologies to implement signal- and image processing
devices, which are based on the principles of CNNs/MRFs. This equally includes
all high-density, digital and reconfigurable technologies available, which represent
an extremely cost effective developing, testing and prototyping platform.

2.8 Summary

In this chapter we have introduced the theoretical fundamentals, which are required
for the upcoming discussions and conclusions of this thesis. The fundamentals are
divided up into two parts: The first part of the fundamentals covers Section 2.1 -
2.5 and presents more fundamental material on Bayesian image analysis, Markov
Random Fields and different optimization schemes. The second part of describing
the fundamentals, which covers Section 2.6 and 2.7, presents two concrete and prac-
tically relevant image processing models, used throughout the thesis as test mod-
els. Additionally, an in-depth discussion on suitable semiconductor implementation
technologies and the conclusion drawn justifies the purely digital implementation
approach advocated in this thesis.

Firstly, in Section 2.1 we introduced the central motivation and ideas of the
Bayesian approach to image analysis and understanding. Starting with a general and
flexible image-description as an array of components, representing different observed

38

Cost Function - Unsupervised Histogram Segmentation

or unobserved image-attributes, we have derived the principle of defining image
processing problems as attribute-labeling problems. In the discussion exactly this
attribute-labeling principle has been connected with the common statistical inference
idea to direct the argumentation toward probability distributions.

Section 2.2 presented in greater depth the essential definitions of and theoretical
insights into probability measures (random fields). Furthermore the representation
of random fields in the Gibbsian form with respect to a particular potential has
been defined. Finally, the equivalence theorem, also called Hammersley-Clifford
theorem has been formulated. It formally states the fact that a random field can
be represented by a Gibbs field with a corresponding potential, and reversely each
Markov Random Field can be represented by a neighboring Gibbs field with the
same neighborhood system.

Section 2.3 has presented and discussed optimization schemes in order to sys-
tematically investigate the performance of probabilistic image processing models
formulated in the Bayesian framework on Markovian site grids. We have discussed
the ideas and concepts of the optimization methods, which have their origin in sta-
tistical physics and partly go back to the maximum entropy inference principle of
Jaynes. This led us to the family of Simulated Annealing optimization methods. The
general Simulated Annealing (SA) algorithm (cf. Algorithm 2.1) has been presented
as well as different acceptance rules. The described Gibbs sampler in particular
means an improvement of the two-phase sampling scheme, used before the Gibbs
sampler was introduced by Geman et. al. Additionally, a special variant of the
general SA method, the temperature frozen ICM algorithm, which is often used in
Bayesian image analysis community has been presented.

In Section 2.4 we have discussed parallel processing strategies for Markov Ran-
dom Fields keeping the constraint of designing massively parallel VLSI hardware
architectures in mind. The concept of independent sets (site-sets) has made it possi-
ble to formally establish conditions under which the convergence of the optimization
methods to the optimizers of the cost-functional can be guaranteed. These condi-
tions of parallel processing schemes have defined the fundamentals for the specifica-
tion and definition of parallel processing hardware architectures for Markov Random
Fields.

Since the general class of Markov Random Fields is large and diverse we have
defined a smaller MRF sub-class in Section 2.5. The members of this specific MRF
sub-class are structurally advantageous with regard to massively parallel VLSI imple-
mentations and are additionally comprehensive and flexible enough to cover low-level
image processing problems.

Section 2.6 has presented two image processing models in detail. The first model
at the same time removes noise and preserves intensity changes, which represent
robust characteristics of object boundaries. The second model represents a non-
parametric unsupervised segmentation; nonparametric as the cluster prototypes are
modeled by an empirical distribution, namely by local histograms. For both models
we have derived the corresponding cost function and the update equations for the
model’s free parameters. Especially for the unsupervised segmentation model, the
Deterministic Annealing (DA) optimization approach has been utilized to determine
the cluster assignments and the model’s free parameters in a sequence of alternating
optimization steps. In this section also the corresponding DA update equations for

39

Cost Function - Unsupervised Histogram Segmentation

the cluster assignment of the model as well as for the model’s free parameters, have
been derived.

In Section 2.7 we have discussed the advantage and disadvantage of three ma-
tured and industrial-relevant semiconductor implementation technologies - purely
digital, purely analog and mixed-mode - for massively parallel Markov Random Field
based processing devices. The technology comparison was performed on the basis
of four central aspects: (1) common semiconductor technology trends (2) design
methodologies trends (3) advantageous CNN/MRF modeling and representation
technology and (4) potential and far-reaching application scenarios. The discussion
has revealed that a purely digital semiconductor implementation technology is out-
classing the analog and mixed-mode technologies with respect to aspect (1), (2) and
(3). Regarding aspect (4) none of the technology variants has a clear advantage
compared to the others. In summary, the discussion of Section 2.7 has shown that
purely digital semiconductor implementation technologies are far more suitable for
massively parallel VLSI hardware implementations of MRF based image processing
devices than analog or mixed-mode semiconductor implementation technologies.

Application Scenarios

As already announced in the introductory part of Section 2.6 we will now discuss
far-reaching industrial utilization scenarios for the two presented statistical image
processing models in order to underpin their practical relevance and importance.
Recapitulating the first model at the same time removes noise and preserves intensity
changes, whereas the second model realizes an unsupervised segmentation process.
The novel application scenarios for both image processing models herein discussed
are resided in the domains of civilian aviation and automotive industries.

At first we discuss projected applications [42] for the image processing model,
which simultaneously removes noise and preserves respectively enhances intensity
changes. The first application comes from civilian aviation and the field of flight-
assistance systems. Passive flight-assistance systems for helicopters, which merely
display enriched image information to the pilot or co-pilot, are crucial for the heli-
copter safety during the operational flight-phase. Image data, which has undergone
a preprocessing-step of noise removing and preserving or even enhancing of intensity
changes, as represented by our first model, is a useful source of information for the
pilot or co-pilot to grasp the essential ingredients of the current scene. Preserving
respectively enhancing intensity changes and smoothing the regions between inten-
sity changes through the noise removing process accentuates the different objects in
the scene by their enhanced boundaries. Such objects are, among other uncritical
objects, for instance obstacles like high-power transmission lines and their corre-
sponding power poles. If the pilot or co-pilot perceives this obstacle information
in the processed images earlier compared to his normal perception, he gets valu-
able seconds to alter the flight-path of the helicopter. Furthermore, this application
scenario and its corresponding passive pilot or co-pilot assistance system is equally
realizable for various sensor signals including standard video, infrared and laser
radar - to name just a few with the presented image processing model, of course
including small model-modifications for each sensor source. Consequently, passive

40

Cost Function - Unsupervised Histogram Segmentation

flight-assistance systems based on the image processing model of Section 2.6.1 could
significantly support the overall flight-safety and all weather flight-capabilities of
modern helicopters.

The second application scenario comes from automotive industries and covers
the field of passive driver-assistance systems for motor cars and trucks, i.e. systems,
which support the automotive driver by means of visually displayed information
without directly interfering with the driving process by automatically steering or
retarding. These driver assistance systems are conceptualized to support the driver
during night and dawn rides as well as in bad weather rides; mainly visually en-
hancing obstacles on the road in time. For this purpose it is planned to display
information together with complete images on the windscreen shifted with respect
to the drivers field of view. Because the application field is focused on night, dawn
and bad weather situations, infrared and laser radar sensors are the logical choice.
As with helicopter assistance systems, automotive assistance systems are also in-
tended to display processed image data to the driver, in order to raise the driver’s
attention and allow him to perceive possible obstacles earlier than with normal
perception. Removing noise with simultaneously enhancing respectively preserving
intensity changes and thus distinguishing object boundaries, as done by our image
processing model, is a conceivable image processing step for these projected driver
assistance systems. This finalizes the discussion on application scenarios for the first
image processing model and underpins the practical relevance of this specific model.

The following applications are discussed with respect to the second image pro-
cessing model introduced in Section 2.6.2, which segments image data in an un-
supervised manner, i.e. the segmentation process is completely data driven. In
contrast to the applications of the first image model, where the processed data will
be directly displayed to the users of the assistance systems, the segmentation model
has been projected to be part of an image processing chain and thus the model will
pass its segmentation results over to further analysis stages of the image processing
chain. The image processing chain is planned to generate results, where obstacles
are marked and eventually tracked. Precisely in the field of civilian aviation the
following applications are discussed and planned. Firstly the application of detect-
ing in advance large and dangerous objects will be looked at, which come up on
the runway while the aircraft is landing, in order to avoid serious accidents. These
systems are interesting for airlines, which already operate at or want to expand to
countries and airports with lower runway security standards. Again, this system
will also be passive in the sense that it will not be connected to the central aircraft
flight-control system; rather an appropriate information will be provided to the pilot
or co-pilot. Secondly the application of detecting obstacles including other aircrafts
at the gangway during the taxiing phase of an aircraft will be discussed. This ap-
plication scenario is not mainly motivated, as could be thought of first, to prevent
fatal aircraft accidents with personal injuries, but rather to prevent damages at the
aircraft structure. Even small damages of the aircraft shell will ground the plane
for a long time, which will in turn be very costly for the airline. Consequently, any
system, which could significantly reduce the rate of these accidents and the resulting
damages, would be most welcome and thus supported by airlines and insurances.

The third application is concerned with the detection and tracking of power-
poles and their corresponding high-power transmission lines for helicopters. Thus,

41

Cost Function - Unsupervised Histogram Segmentation

the projected system is an advanced system compared to the previously described
system and can be enriched with information about the time-to-contact of the heli-
copter. In the field of automotive applications an image processing chain including
the unsupervised segmentation model is discussed, which will detect pedestrians and
cyclists to reduce the accidents between cars, trucks and these road users. Addi-
tionally, a system is discussed, which monitors the blind spot in order to detect cars
and motorcyclists when changing to the passing lane.

In summary, the previous discussion reveals that the two exemplary image pro-
cessing models, described in Sections 2.6.1 and 2.6.2, are of practical and far-reaching
industrial relevance. Both models are critical components of an image processing
chain for projected systems in the fields of civilian aviation and automotive indus-
tries. Consequently, from an industrial point of view, processing devices with phys-
ically compact packages - ideally realized as a single chip solution - and real-time
processing capabilities are highly recommendable.

2.9 Bibliographical Comments

Next to contemporary conference and journal papers, there are some excellent mono-
graphs on the themes of Bayesian Image Analysis, Gibbs Fields, Markov Chain
Monte Carlo methods and statistical inference for random fields, including the Gibbs
sampler, the Metropolis-Hastings class of algorithms, model’s free-parameter esti-
mation and links to already known principles of statistical physics.

The monograph of Gerhard Winkler [167] is definitely the most exhaustive and
profound presentation currently available. Starting with an intuitive introduction to
Bayesian image analysis, the author continues with finite random fields, their neigh-
borhood structure and their representation in the Gibbsian form as the fundamental
mathematical objects. The Gibbs sampler is thereafter discussed and analyzed with
respect to fully parallel updating schemes. One complete part discusses the topic
of appointing the free parameters or hyper-parameters of the model - an essential
topic of Markovian modeling -, which is often neglected or even ignored in textbooks.
Maximum likelihood estimation is a general principle and approach to estimate these
free parameters and becomes discussed in detail in this part.

The monograph of Bremaud [23] differs slightly from that of Winkler [167]. Bre-
maud devoted his monograph mainly to the studies of homogeneous Markov Chains
(HMCs) with a countable state space, and thus not solely to probabilistic image
analysis. Independent of this fact, the in-depth discussion of Markov chains on the
real-line is later generalized to arbitrary discrete index sets by means of Gibbs fields,
which establishes the link to image processing in this textbook of Bremaud. The
formal presentation of Gibbs Fields and the Gibbs-Markov equivalence is profound
and well structured. In the following, the discussion concentrates itself on Markov
Chain Monte Carlo simulation algorithms with an introduction to simulated anneal-
ing optimization.

Chalmond’s work [33] is dedicated to modeling issues and is divided into two
parts, representing two model types. The first type are Bayesian models issued
from statistics, and the second type are models derived from physics and mechan-
ics (splines). The second part of this textbook considers inverse image processing

42

Cost Function - Unsupervised Histogram Segmentation

problems as a Markovian cost optimization task. Additionally, this monograph pro-
vides an in-depth discussion of the model’s parameter estimation problem and thus
differs profoundly from other textbooks. Several practical low-level image process-
ing problems, like de-noising, de-blurring and detecting lines respectively curves are
discussed in exhaustive detail and in different variants.

Finally the monograph of Stan Z. Li [107] is mainly devoted to applications of
Markov Random Fields in the low-level domain and to object matching and recog-
nition in the high-level domain. The author uses different examples in order to ex-
plain how one can systematically convert a specific image processing problem with
modeling uncertainties and constraints into a pure optimization problem within the
Bayesian framework on Markov Random Fields. But the most remarkable character-
istic of this monograph is the detailed discussion of the model’s parameter estimation
problem.

The number of contemporary literature on probabilistic image analysis in a
Bayesian framework and Markov Chain Monte Carlo methods is tremendously large
and still growing. Hence it is impossible to provide a nearly complete list of publica-
tions. The most influential and basic publications on these topics are the papers of
Geman et al. [59] and Besag et al. [10] [11] [12]. Furthermore [55] and [56] present
vital ideas on texture- and object-boundary location in a Bayesian framework with
MRFs. The restoration and recovery of discontinuities by means of Markovian site-
grids as statistically robust feature of object boundaries is described in [58] [13]. A
more general presentation and synopsis of Markov Random Fields and Bayesian im-
age analysis is available in [14] [57]. Shannon derived the entropy principle axiomat-
ically and established this concept in the field of communication and information
theory as a measure of uncertainty [147]. Maximum entropy methods in statistical
inference were first proposed by Jaynes [89] [88]. Additionally, P. Smolensky [149]
[150] [148] [136] further generalized the cost-functional and optimization formalism,
which finally led to the connectionist-based formalism of Harmonic Grammar.

The book of Salamon et al. [144] summarizes the theoretical foundations and
ideas of SA methods - until then only published in a scattered way - in one single
representation. An exhaustive introduction and overview on Simulated Annealing
concepts can be found in [165]. In addition to the book of Laarhoven et al. [165],
a comprehensive bibliography with respect to the Simulated Annealing theme is
available in [36]. The temperature frozen SA variant Iterated Conditional Modes
(ICM) is ascribed to the work of Besag [13] and frequently used in the context of
Markov Random Fields, although this method is often trapped in local minima due
to its purely greedy and local search strategy. Mean Field methods, which have
been adopted from statistical physics are summarized for instance in the edition of
Opper et al. [129].

Several basic parallel processing strategies for Simulated Annealing are summa-
rized in Azencott et al. [5] and Salamon et al. [144]; where Salamon et al. is
concerned with different application domains of SA and is not specifically focused
on image analysis problems. The two book chapters [4] and [6] are in this context of
particular interest. The SA variant Gibbs sampler discussed in detail and formally
analyzed with respect to massively parallel processing schemes in [167]. Exactly this
discussion on independent site sets is essential for parallel processing strategies on
regular two-dimensional site grids, which are prevalent in low-level image analysis

43

Cost Function - Unsupervised Histogram Segmentation

settings. Furthermore, VLSI hardware architectures can ideally be adjusted and
designed to match these parallel processing strategies.

The basic probabilistic model formulated in a Bayesian imaging framework,
which simultaneously removes noise and preserves edges respectively local intensity
changes is due to [59]. This model is recapitulated and revised in [56] and covers
different terms for structure-regularities of boundaries, but the core idea presented
in [59] remains unchanged. The authors of [16] presented a similar model with the
essential difference compared to [59] of not using the Bayesian imaging approach
but the special setting with the GNC algorithm. This restricts the flexibility of
their model with respect to noise modeling and incorporating various statistically
robust boundary features. In addition, in [54] and [58] edge respectively boundary
features are presented and repeated, which have already been successfully tested in
probabilistic models formulated in a Bayesian imaging approach.

On an abstract level of contemplation the image segmentation task can be re-
garded as a pixel-clustering problem, where particular pixels are classified and as-
signed to a specific cluster based on some predefined features. General data clus-
tering methods, not exclusively dedicated to image processing, are presented in
[85]. Image segmentation variants, based on the clustering idea, are for instance the
central clustering method (see [90]), the non-parametric cluster-prototype represen-
tation models, to which histogram clustering belongs [137] [138], methods based on
similarity-matrices [115] [71] and hierarchical variants [105]. An excellent segmen-
tation model with a parametric cluster-prototype representation is presented in [69]
[169] [68].

Analog realizations and image processing models based on the CNN paradigm
are mainly presented in [74] - [79] [45] during the last decade. The initiation of
this community and the seminal papers are due to Chua [35] [34]. The proposed
models are diverse and rich, ranging from simple binary models for contour and
letter enhancement, which are advantageous for analog VLSI designs with respect
to their structure, to imitations of the mammalian retina [43].

44

Chapter 3

System-Architecture Template

In this chapter we present a novel system-architecture concept for statistical image
processing models, which are formulated on a regular Markovian site-grid with spa-
tially limited neighborhood support. The proposed concept serves as an architecture-
template for the defined class of MRF models (cf. Section 2.5) and their purely
digital, very large-scale integrated (VLSI) implementations. Hence the architecture-
template is conceptualized to match with and exclusively adjusted to the two char-
acteristics of (1) massively parallel processing and (2) semiconductor technology
independent System-on-Chip (SoC) integration. The first attribute of the novel
system-architecture template is substantiated by the fact that even if we rely on the
impressive semiconductor progress to continue in the near future, all single serial
processing approaches fall short of providing real-time processing capabilities for
the class of statistical image processing models under consideration. Due to this
unchangeable constraint and deficit we propose this massively parallel processing
requirement in order to fulfill the real-time processing constraint posed by many
application domains. The second feature is stated, as the majority of applications
require physically compact image processing systems to be of practical and indus-
trial relevance. Furthermore the second features is stated, in order to decouple the
architecture characteristics from constraints of a specific implementation technology.

It is common practice to change or adapt mathematical models, solution strate-
gies and algorithms for the sake of practicability, to allow them to match with specific
structures of a processing architecture or even with a fully predefined architecture.
This adaptation procedure, not exclusively limited to the image processing domain,
is frequently influenced by experience values and ad hoc assumptions of the corre-
sponding developer. In contrast to this prevalent approach, we advocate a systematic
approach with different levels of abstraction in this chapter, where the definite archi-
tecture is finally solely derived and defined within the scope of Markov Random Field
theory. Our approach thus systematically defines the system-architecture template
by exhaustively taking advantage of the available properties provided by Markov
Random Field theory, strictly respecting them and at the same time realizing the
two before mentioned characteristics.

The proposed procedure for the derivation and definition of the system-architec-
ture template comprises the following three main steps, which simultaneously rep-
resent the afore mentioned levels of abstraction (see Figure 3.1):

45

SYSTEM-ARCHITECTURE TEMPLATE

• In the first step we identify universal constituents. These universal constituents
are exclusively derived from the theoretical fundamentals of Markov Random
Field theory and thus represent an excellent architecturally uncommitted orig-
inator for the following architecture-derivation process. Additionally, as an
inherent property, these universal constituents are - by derivation and defini-
tion - unrestricted with regard to any VLSI relevant constraints and concrete
implementation details. The universal constituents represent the lowest level
of abstraction (see Figure 3.1).

• The second step systematically details the universal constituents to become ar-
chitectural building blocks, where the emphasis is exclusively set - as already
said - firstly on parallel processing and secondly on semiconductor technology
independent large scale integration. The process of detailing the particular
universal constituents is formalized by mappings between the universal con-
stituents and the architectural building blocks. This set of optimized archi-
tectural building blocks represents the average level of abstraction (see Figure
3.1).

Universal Constituents

Building Blocks

VLSI Scheme

A
bstraction Levels

High

Low

Figure 3.1: Abstraction levels. Derivation and refinement of VLSI appropriate
building blocks.

• The systematic and controlled handling of VLSI specific tasks, like system com-
plexity, technology synthesis, placing and global routing, clock-tree synthesis
and memory-block integration is another fundamental issue. We have devel-
oped a method to cope with these problems, which in step three categorizes the
architectural building blocks along a VLSI-appropriate scheme. This classifi-
cation scheme differentiates between structure and topology relevant building
blocks, processing functionality relevant building blocks and control function-
ality relevant building blocks. Exactly this well-defined classification scheme
ideally addresses different large-scale integration questions, which in this sys-
tematic way is currently not provided for any system-architecture at all and for
a massively parallel architecture-template of statistical image processing mod-
els less than ever before. This last step defines the highest level of abstraction
(see Figure 3.1).

In order to complete the novel massively parallel architecture-template, a cycle

46

SYSTEM-ARCHITECTURE TEMPLATE

scheme for the ordering of operations and data transfers during the complete oper-
ational phase is introduced. With this massively parallel architecture-template and
the cycle scheme at hand, we also introduce a processing strategy, which handles
image sizes larger than the size of the Markov Random Field itself.

In summary, this chapter discusses the following topics: Section 3.1 introduces
the universal constituents of MRF based signal- and image processing models. The
architectural building blocks, organized along the VLSI-appropriate scheme, are
introduced in the sequencing Section 3.2. In Section 3.4 a flexible and extensible
cycle scheme template for the data-flow and operator ordering of the processing
architecture is proposed. The relation diagram, which illustrates the context of the
different chapters and its contents is presented in Section 3.5. Section 3.6 defines the
different cases and at the same time systematically describes MRF device settings
to process image sizes larger than the realized MRF field itself. Section 3.7 finally
comments on the concrete massively parallel processing architectures of the two
exemplary models, composed out of the defined architectural building blocks.

3.1 Universal Constituents

The derivation process of universal constituents merely based on the fundamentals
of Markov Random Field theory is of vital significance for any further development
and refinement of architectural building blocks. As the universal constituents are
solely derived from theory, they are unrestricted regarding application and imple-
mentation assumptions or any other constraints and consequently form a set of ba-
sic elements. These universal constituents of Markov Random Fields thus represent
an excellent, well-founded and architecturally uncommitted common originator for
specific architectural developments and refinements. Independently of the scientific
discipline one belongs to and thus which scientific perspective one takes, the one of
a mathematician or statistician, of a computer scientist or of an electrical engineer,
the identification outcome of the universal constituents of Markov Random Field
based statistical image processing models is always comparable. This fact is by no
means astonishing as the universal constituents are exclusively determined by the
corresponding unique mathematical findings of Markov Random Field theory.

Thus it is per derivation and definition of these universal constituents excluded
that our own constraints imposed, which are used during the definition and devel-
opment process of the architectural building blocks in Section 3.2, interfere with
already encoded constraints and architectural suggestions of other applications or
implementations. To stress this point again, our approach ensures that the derived
architectural building blocks in Section 3.2 are exclusively constrained by our own
limiting conditions. The architectural building blocks will be developed and defined
with respect to the capability of massively parallel processing and the ability to
realize highly integrated and complex VLSI systems in an arbitrary purely digital
semiconductor technology.

But first of all the architecturally uncommitted universal constituents of Markov
Random Fields are derived and defined in this section. In order to enhance the
readability and simplify the derivation of the universal constituents we shortly reca-
pitulate the central Equation 2.18 from Section 2.2 enhanced by the OPTIMIZE(·)

47

SYSTEM-ARCHITECTURE TEMPLATE

operator, here:

OPTIMIZE
(
HImage

Model

)
= OPTIMIZE

⎛⎝ n∑
i=1

∑
CN

i

UCN
i

⎞⎠ . (3.1)

Exactly this general equation of the energy functional of statistical image pro-
cessing models formulated on Markov Random Field grids and its respective opti-
mization strategy is the exclusive source of information for our derivation and defini-
tion of universal constituents. We will identify four different universal constituents
in the following text passages. Three of the constituents are explicitly encoded
and represented by components of Equation 3.1. Only one universal constituent is
mathematically further encapsulated and has to be extracted and concluded from
the original representation. But obviously for this last universal constituent the
architecturally uncommitted principle is also fulfilled.

The first universal constituent of Markov Random Fields is explicitly expressed
by the outermost sum with the summation index i = 1, ..., |Ω| of Equation 3.1. This
sum runs over all sites si of a Markov Random Field site-grid Ω. Consequently,
we identify the set of sites {si : 1 ≤ i ≤ |Ω|} as our first universal constituent. It
should be pointed out that definitely each particular site si of the Markov Random
Field site-grid Ω is considered. In the context of universal constituents, the site set
{si : 1 ≤ i ≤ |Ω|} is in the sequel denoted by

Ssites = {si : 1 ≤ i ≤ |Ω|}. (3.2)

The second universal constituent is also explicitly represented by a component of
Equation 3.1. In this case the universal constituent is given by the family of functions
at site si, called neighbor potentials {UCN

i
: C = Cliques of si, 1 ≤ i ≤ |Ω|}; cf.

Definition 2.3, 2.1. We notice here that the neighbor potentials are normally assumed
to be identical for all sites si ∈ Ω and thus {UCN : C = Cliques ∀si, 1 ≤ i ≤ |Ω|} is
true. In the context of universal constituents we consider the general case, and thus
the neighbor potential set is denoted by

Ppot = {UCN
i

: C = Cliques of si, 1 ≤ i ≤ |Ω|} (3.3)

in the sequel.
The third universal constituent is induced by the neighbor potentials. Such a

neighbor potential itself is in its part determined by the cliques C. The cliques C
on the other hand are defined by an overall neighborhood system N on the site-
grid Ω, which defines the set of neighbors at every site si. We write < si, t >, if t
is a neighbor of site si defined by the neighborhood system N on the site grid Ω.
Thus we identify another universal constituent as the neighborhood system itself
and denote it by

Nsites = {< si, t >: 1 ≤ i ≤ |Ω|, ∀t ∈ Ni}. (3.4)

The three universal constituents derived earlier on, all formally justified by Equa-
tion 3.1, are summarized in the sequel by

Cuniversal = {Ssites ∪ Ppot ∪ Nsites}. (3.5)

48

SYSTEM-ARCHITECTURE TEMPLATE

In a last step we identify the optimization method

OPTIMIZE(.)si (3.6)

as the final universal constituent. Thus Eq. 3.5 and 3.6 together represent the
complete set of universal constituents, which form the architecturally uncommitted
originator for the development and refinement of the architectural building blocks,
discussed in the upcoming sections.

IN
P

U
T

S
O

U
T

P
U

T
S

O
P

T
IM

IZ
E

(H
)

C
A

L
C

U
L

A
T

E
(U

)

Figure 3.2: Diagrammatic representation of the identified universal constituents
on the basis of one exemplary site si.

A summarizing diagrammatic preparation of the universal constituents (Eq. 3.5
and 3.6) mentioned before, solely derived on the fundamentals of Markov Random
Field theory, by means of exactly one exemplary site si is depicted in Figure 3.2.
The universal constituent site si is graphically represented by a circle and frames the
carrier-structure, where all other universal constituents are embedded or linked to.
The neighborhood system Ni of a site si is logically and for the sake of illustration
split up into INPUTS transferring information from all neighbors t ∈ Ni to the site
si, and secondly into OUTPUTS distributing the relevant data of site si to all its
neighbors. Thus, as depicted in Figure 3.2, a flow of information takes place from
the INPUTS to the OUTPUTS and, in the case of our illustration from, the left
side to the right side of the exemplary site si. The two universal constituents left
over, the neighbor potential set {UCN

i
: C = Cliques of si} and the optimization

method OPTIMIZE(.)si , are embedded into the carrier-structure of the site si.
The data from the INPUTS are processed by the neighbor potentials and finally op-
timized to calculate the value(s) for the OUTPUTS . As can also be seen from this
schematic representation of the universal constituents and their dependencies among
each other, neither hardware relevant aspects or assumptions nor VLSI specific fea-
tures are hitherto directly or indirectly integrated into in the universal constituents
and their representation.

3.2 Architectural Building Blocks

Based on the previously derived universal constituents, summarized by Eq. 3.5
and 3.6, the next step to systematically gain a well-founded definition of a system-

49

Topology & Structure Building Blocks

architecture template compiled of different building blocks can be conducted. Dur-
ing this architectural definition and refinement step we develop respectively detail
hardware relevant building blocks, which are ideally tuned for massively parallel
processing at first and secondly for a semiconductor technology independent repre-
sentation, always to stress this point again, exclusively based on the earlier defined
universal constituents.

Furthermore, all architectural building blocks are categorized along a VLSI-
appropriate scheme, which differentiates topology & structure modeling building
blocks BBTS , processing functionality modeling building blocks BBPC and control
functionality modeling building blocks BBCT . The complete set of building blocks is
denoted by BBSystem in the sequel. Exactly this categorizing scheme, covering the
different architectural building blocks, represents a systematic method to reasonably
deal with the diverse but specific issues of large scale integration, which occur at
regular intervals. These are for example design complexity handling, controllable
synthesis of complex and large systems, guided technology mapping and system
floor-planning, to name just the most important ones.

In Section 3.3 we comment on the relevant large scale integration issues of the
different building block since each block poses slightly different VLSI challenges. In
order to tighten the discussion, the derivation and definition of the architectural
building blocks and their categorization along the VLSI-appropriate scheme are
summarized in one single step.

3.2.1 Topology & Structure Building Blocks

The first category of the VLSI-appropriate scheme covers architectural building
blocks, which either directly determine the topology respectively structure of the
massively parallel system-architecture or at least have a significant influence on the
system topology. Obviously the two universal constituents Ssites (cf. Definition 3.2)
and Nsites (cf. Definition 3.4) are the sources for further architectural definitions and
refinements regarding the topology of the architecture template. As mentioned in
the introduction of this chapter, the systematic process of developing architectural
building blocks depends on the two constraints namely parallel processing and large
scale integration, whereas the mapping of universal constituents to architectural
building blocks is formalized by Λ = {ΛHulls,ΛW,ΛPM,ΛGMem}.

When taking these constraints and the above mentioned universal constituents
into account, we at first derive the empty hulls of each site si ∈ Ω as a topology
defining architectural building block. In addition to that, we derive the wiring among
the sites, defined by the neighborhood system N on the site-grid Ω as the second
topology defining architectural building block. Together with the assumption of
the two-dimensional embedding of the site-grid in the plane as regular grid, a first
version of the architecture gantry - with sites, site connections and site arrangements
as regular grid - has been fixed.

Another two topology & structure defining building blocks are essentially re-
quired with respect to digital large scale integrations. That is the site port memory
of each site, which stores the incoming data from its neighbors. Of course, these
memory parts are site internal structures, but their arrangement determine the shape
of the site and thus the overall topology & structure of the system-architecture tem-

50

Topology & Structure Building Blocks

plate. Consequently, it is useful and justified to include these blocks into the topology
& structure building blocks. The last building block is derived from the fact that
data has to be dispensed to the distributed particular sites and collected after the
processing. Hence we mandatorily require a distributed global memory hierarchy to
organize the data transportation task within the site-grid.

Precisely, we formally define the set of architectural topology & structure build-
ing blocks, denoted by BBTS in the sequel, as follows:

Definition 3.1 (Topology & Structure Building Blocks BBTS)
The set BBTS of topology & structure defining architectural building blocks is

BBTS = {SHull,WN ,MPorts,MGMem} (3.7)

with

• SHulls = {sHull
i : 1 ≤ i ≤ |Ω|}, the particular hulls of all sites si ∈ Ω.

• WN = {w<i,t>
i : 1 ≤ i ≤ |Ω|, ∀t ∈ Ni}, the neighborhood wiring between all

sites si ∈ Ω and all its neighbors t, defined by the corresponding neighborhood
system N on Ω.

• MPorts = {mPort<i,t>x

i : 1 ≤ i ≤ |Ω|, ∀t ∈ Ni, x = #bits}, the port memory
of each site i, storing the incoming data from their neighboring sites t.

• MGMem, the distributed global memory hierarchy in order to handle data
transfers from and to each site si ∈ Ω.

This finalizes the overview and formal definition of the topology & structure
determining architectural building blocks BBTS . We continue with the detailed
discussion of each of these building blocks, following the chronological order of Def-
inition 3.1.

Site Hull

This specific architectural building block, denoted by sHull
· for an arbitrary site

s· ∈ Ω, represents the most elementary building block of our VLSI relevant system-
architecture template. It is directly derived from the universal constituent Ssites

under the constraints of massively parallel processing and large scale integration.
First of all the constraint of massively parallel processing leads to the mapping
ΛHulls of each universal site constituent si ∈ Ssites to its corresponding site hull
sHull
i ∈ SHulls, formalized by

ΛHulls : si −→ sHull
i , 1 ≤ i ≤ |Ω|. (3.8)

Consequently, the architecture template consists of |Ω| distinct site hulls sum-
marized by SHulls = {sHull

i : 1 ≤ i ≤ |Ω|} and indexed by i. The strictly monotone
increasing indexing-sequence i defines an ordering on the sites si and thus also on the
site hulls sHull

i . Assuming a regular and entirely two-dimensional site-grid, which
is definitely appropriate for the herein discussed and in Section 2.5 defined class

51

Topology & Structure Building Blocks

of Markov Random Fields, the indexing sequence 1 ≤ i ≤ |Ω| uniquely defines
matrix-like coordinates (x, y) of each site hull by

(x, y)i = (i − (�i/Sites per Row� − 1) ∗ Sites per Row, �i/Sites per Row�) (3.9)

and with an algebraic sign change (x,−y)i also coordinates in the Cartesian system.
Essentially, the |Ω| derived site hulls sHull

i are uniquely defined and embedded in the
plane by their index i and thus pattern a topology gantry of the system-architecture
template.

(a) (b)

Figure 3.3: Diagrammatic representation of exemplary site hulls sHulls
· with possi-

ble VLSI relevant shapes. (a) Modules without encapsulating site hull. (b) Modules
with encapsulating site hull.

So far only parallel processing aspects have been called on for the derivation
and definition of this first and elementary topology & structure constituting build-
ing block during the previous discussion. Large scale integration aspects have not
been taken into consideration. But of course large scale integration aspects also
significantly contribute to the particular peculiarity of this topology and structure
defining building block. Purely digital VLSI semiconductor technologies mainly pos-
sess silicon structures, as the result of the etching process, with rectangular shapes
and an orientation in the plane in 90 degree steps. When putting several mate VLSI
structures respectively sub-modules together in an uncoordinated and loose way, one
eventually comes up with a module-shape schematically illustrated in Figure 3.3a.
Obviously, such module-accumulations and the resulting module-shapes will cause
difficulties within the back-end steps of the design flow. This is the reason why the
distinct site hulls sHull

i additionally take over a central role with respect to large
scale integration issues. By forming a self-contained site hull object, encapsulating
other sub-modules, the shape of the site hulls sHull

i can again be systematically re-
alized as a regular rectangular in contrast to the loose accumulation of modules, as
depicted in 3.3b. Thus the site hulls impose a shape constraint advantageous for the
floor-planning step as well as for the place&route implementation step. In addition,
the realization as distinct objects with the unique ordering index i systematically
organizes the set of site hulls and allows it to separately identify each site hull sHull

i .

52

Topology & Structure Building Blocks

Site Wiring

Next to the previously introduced site hulls, the site wiring building block, denoted
by w<·,t>

· for an arbitrary site of the site grid Ω and one of its neighbors t, is the
second elementary topology & structure defining building block for the massively
parallel and hardware relevant system-architecture template. Both building blocks,
the site hulls and the site-neighborhood wirings, together form the connected grid-
gantry of the architecture template.

The site hulls are assigned several wiring building blocks, one particular wiring
building block for each neighbor t. This building block type is directly derived
from the universal constituent Nsites, again with respect the two constraints of (1)
massively parallel processing and (2) large scale integration. With this building
block, also similar to the site hulls, the applied constraint of massively parallel
processing leads to a mapping ΛW , which in this case assigns each universal neighbor
constituent < si, t > to its corresponding site-neighborhood wiring building block
w<i,t>

i , formally represented by

ΛW :< si, t >−→ w<i,t>
i , 1 ≤ i ≤ |Ω|,∀t ∈ Ni. (3.10)

Thus the set of neighbor relations < si, t >, defined by the universal constituent
Nsites = {< si, t >: 1 ≤ i ≤ |Ω|, ∀t ∈ Ni}, translates into connections respectively
wiring-structures between the site hulls sHull

i and all its neighboring site hulls t
defined by Ni. Consequently, the architecture template is composed of a set of site-
neighbor wiring blocks, which is denoted by WN = {w<i,t>

i : 1 ≤ i ≤ |Ω|, ∀t ∈ Ni}
and indexed by i and t, respectively. Both indexing sequences i as well as t determine
the position of the site hull i and all its neighboring site hulls t within the two-
dimensional regular site-hull-grid by Equation 3.9. If site hull i takes up a position
i = (x, y) within the regular site-hull-grid, then possible neighboring site hulls t can
take the following positions with respect to site hull i:

t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x + u, y) : right of site i

(x + u, y − v) : right up of site i

(x, y − v) : up of site i

(x − u, y − v) : left up of site i

(x − u, y) : left of site i

(x − u, y + v) : left down of site i

(x, y + v) : down of site i

(x + u, y + v) : right down of site i

(3.11)

with
1 ≤ |(x ± u)| ≤ Sites per Row, 1 ≤ u ≤ Sites per Row

1 ≤ |(y ± v)| ≤ Sites per Column, 1 ≤ v ≤ Sites per Column

to ensure proper positions only within the definition-range of the site-hull-grid. Thus
every wiring building block w<i,t>

i owns a preferred direction encoded by the indexes
i = (xi, yi) and t = (xt, yt) within the site-hull-gantry of the architecture template.

The encoding of preferred directions by the indexes i = (xi, yi) and t = (xt, yt)
has a far-reaching relevance, when we switch from the parallel processing constraint

53

Topology & Structure Building Blocks

(a) (b)

Figure 3.4: Illustration of site-hull-grid and imposed wiring structure together
forming the architectural topology-gantry. Green: reference site, blue: neighbors.
(a) Overview site-hull-grid with 1st order wiring. (b) Close-up: Site-hull with direct
site-hull neighbors and their wirings. Solid lines: 2nd order wiring. Dashed lines:
Higher order wirings to not shown neighbors.

to the large scale integration constraint with regard to the discussion of wiring
building blocks WN = {w<i,t>

i : 1 ≤ i ≤ |Ω|, ∀t ∈ Ni}. But firstly the large
scale integration constraint results in each wiring block w<i,t>

i ∈ WN representing
physical peer to peer wiring connections from site hull i to its neighboring site hull
t. The concrete number of wires and thus the bus bit-width of each wiring block
is per definition not fixed in the architecture template and can thus vary within
a broad range, depending on application- and VLSI requirements. For instance, a
mbit-width datum can be transmitted from site hull i to a neighbor site hull t in m
steps by means of a purely serial wire building block or just in one step by a m bit-
width wiring block, to mention the two extreme cases. All other useful combinations
of bit-width and transmission steps are equally possible and represent a trade-off
between transmission steps and wiring-lines. We shortly remark that processing
speed has absolute priority in order to fulfill real-time processing capabilities and
thus the setting is chosen where a mbit-width datum is transmitted in one step over
a mbit-width wiring block. As long as a specific VLSI technology can not realize
this wiring setting, one has to modify it.

Now we return to the preferred directions of the wiring building blocks encoded
by the indexes i and t in our discussion. The consequence, which follows from
this direction preference of the wiring building blocks with respect to large scale
integration, is that each wiring block will be assigned to exactly one side of the
rectangular site hull to ensure a straight and minimum length connection between
each site hull i and all its neighboring site hulls t, which are uniquely defined by Ni.
Thus the wires of a specific wiring block will only arise from one predefined side of
the site hull. This assignment scheme of wiring building block reads as follows:

TopSide =
{

(x, y − v) : up of site
(x + u, y − v) : right up of site

(3.12)

54

Topology & Structure Building Blocks

RightSide =
{

(x + u, y) : right of site i

(x + u, y + v) : right down of site i
(3.13)

BottomSide =
{

(x, y + v) : down of site i

(x − u, y + v) : left down of site i
(3.14)

LeftSide =
{

(x − u, y) : left of site i

(x − u, y − v) : left up of site i
(3.15)

Where TopSide, RightSide, BottomSide and LeftSide refers to the sides of the ref-
erenced site hull. This scheme is further illustrated in Figure 3.5 for neighborhood
systems covered by our regarded class of Markov Random Fields (cf. Section 2.5
respectively Definition 2.10) and in addition to this for much larger neighborhood
systems.

(a)

TopSide

L
ef

tS
id

e
BottomSide

R
ig

h
tS

id
e

(b)

Figure 3.5: Origin and arrangement of wiring blocks at specific site-hull boarders.
Red: reference site, blue: 5th order neighbors, green: 6th and higher order neigh-
bors. (a) Overview, wiring origin for 5th order neighborhood system (blue) and
larger system (green). (b) Close-up, wiring origin for direct neighbors (2nd order
neighborhood system).

Obviously, the proposed scheme scales with arbitrary sized neighborhood sys-
tems on regular two-dimensional site-grids. Only such a systematic ordering and
assignment of the wiring building blocks to specific sides of the site hull leads to
VLSI architectures with a congestion-free wiring characteristic. Furthermore, the
assignment of wiring building blocks to destined sides of the site hull, uniquely de-
fined by Eq. 3.12, 3.13, 3.14 and 3.15, directly impinges on the site hull shape in
VLSI realizations. A minimum side-length is mandatorily required to connect all
wires, which are assigned to this specific site hull boarder.

Port Memory

The port memory building block for an arbitrary site i ∈ Ω and one of its neigh-
bors t will be denoted by mPort<i,t>x

i , with x = #bits, in the sequel. This module
represents another fundamental topology & structure defining building block for the

55

Topology & Structure Building Blocks

architecture template. These port memory blocks mPort<·,t>x
· are closely aligned

with the site hulls sHull
· and conditioned by the wiring blocks w<t,·>

· of the corre-
sponding neighbor site hulls, i.e. a particular memory block mPort<i,t>x

i is connected
with the correct wiring block w<t,·>

· of the neighboring site hull t in order to store
these input data.

But despite this fact, the building block is solely derived from the universal
constituent Nsites = {< si, t >: 1 ≤ i ≤ |Ω|, ∀t ∈ Ni}, with respect to the two
constraints of massively parallel processing and large scale integration. However,
for this building block first of all the constraint of large scale integration is taken
into account, which leads to the conclusion that storing elements are required to
enable a proper data exchange between neighboring sites. Such a storing element
is represented by the port memory building block mPort<i,t>x

i . When furthermore
applying the parallel processing constraint to Nsites, it finally comes to a mapping
ΛPM , where each universal neighbor constituent < si, t > is assigned to its corre-
sponding port memory building block mPort<i,t>x

i with 1 ≤ i ≤ |Ω| and t neighbors
of site i. The mapping thus reads

ΛPM :< si, t >−→ mPort<i,t>x

i , 1 ≤ i ≤ |Ω|, ∀t ∈ Ni, x = #bits. (3.16)

Therefore, the set of neighbor relations < si, t >, defined by the universal con-
stituent Nsites = {< si, t >: 1 ≤ i ≤ |Ω|, ∀t ∈ Ni}, translate into storing elements
respectively memory structures for each site s ∈ Ω. By definition the memory struc-
tures are divided up in separate blocks for each neighbor relation < i, t > of site
si. Furthermore, the memory blocks are located within the site hull. Figure 3.6

......

...

...

Figure 3.6: Arrangement of port memory building blocks within site hull and
assignment to corresponding wiring blocks at the site hull boarders. Yellow: port
memories, green: site hull.

schematically illustrates this arrangement. Consequently, the architecture template
so far defined is extended by the set of port memory building blocks, which is rep-
resented by MPorts = {mPort<i,t>x

i : 1 ≤ i ≤ |Ω|, ∀t ∈ Ni, x = #bits} in the sequel.
Thus the recapitulations of the architecture template comprises

BBSystem = {SHull,WN ,MPorts}. (3.17)

Again, the indexes i and t define an ordering on and among the so-far-defined
building blocks of the architecture template. Naturally, by means of index i, all

56

Topology & Structure Building Blocks

building blocks, which belong together, can be uniquely identified. Precisely, by
means of index i we can identify a site hull sHull

i , a set of wiring blocks w<i,t>
i and

a set of port memory blocks mPort<i,t>x

i for each site si ∈ Ω. These three building
block types form a tightly coupled unit for each index i. Within such a unit the index
t orders the different wiring blocks as well as the particular port memory ports. At
the same time the index t determines the position of the wiring blocks with respect
to the sides of the site hull and thus also the position of the port memory blocks
which are directly located beside them.

Such a unit, consisting of a site hull, the wiring blocks and the port memory
blocks, is exemplary depicted for one site i in Figure 3.7a. If one puts n units together
and arranges them onto a regular two-dimensional grid, the topology gantry of
our massively parallel system-architecture template for statistical image- and signal
processing models formulated on regular Markovian site grids emerges. A closer
lock at Equation 3.16 (mapping wiring) but also at Figure 3.7b reveals that only
the incoming side of the wiring block possesses a corresponding port memory block.
The outgoing part of the wiring block is merely connected with the neighboring site

...

...

... ...Site Hull

Port Memory Blocks

Wiring Blocks

Wiring Blocks

W
iring B

locksW
ir

in
g

B
lo

ck
s

Port Memory Blocks

(a) (b)

Figure 3.7: Site architecture (hull, port memories and wiring blocks) and small site
cluster. Yellow: port memories, green: site hull, blue: wiring blocks. (a) Summary
of so far derived site architecture. (b) Small site cluster and detailed relation wiring
blocks to port memories.

hull and not buffered by memory elements. The data, which has to be transmitted
from the site to its neighbors, is directly transfered to the outgoing wire-part.

Global Memory Hierarchy

The global memory hierarchy building block represents a single and self-contained
structure within the building block compound of the system-architecture template.
This building block is denoted in the sequel by MGMem. This part of the architecture
template also represents a basic topology & structure forming building block. The

57

Topology & Structure Building Blocks

complete memory hierarchy MGMem is closely connected to the site hulls sHull
i .

Again, this specific building block is solely derived from the universal constituent
Ssites = {si : 1 ≤ i ≤ |Ω|}. Certainly the architectural building block memory
hierarchy is also derived fulfilling the two constraints of massively parallel processing
and large scale integration.

(a) (b)

Figure 3.8: Structure and memory-elements of the global memory hierarchy. (a)
Abstract representation as quad-tree structure. (b) Topological embedding into
two-dimensional regular site-grid.

As already done with respect to the port memory building blocks for the current
building blocks, the constraint of large scale integration will once again regarded at
first. When recapitulating, the sites - currently just site hulls and their connections -
are spatially distributed and arranged on a regular two dimensional grid. This leads
to the conclusion that a data distribution and collection structure is required to
yield correct data-transportations to and from each site within the grid. Such a data
distribution and collection structure is put into practice by the memory hierarchy
building block MGMem. When finally applying the parallel processing constraint to
Ssites = {si : 1 ≤ i ≤ |Ω|}, a data transportation hierarchy and thus a mapping
ΛGMem is obtained, where each site si ∈ Ω is assigned to, respectively connected
with the memory hierarchy building block MGMem. This mapping ΛGMem thus
reads

ΛGMem : {si : 1 ≤ i ≤ |Ω|} −→ MGMem. (3.18)

Each site i, represented in the architecture template by its corresponding site hull
sHull
i , is tightly affiliated and also logically connected with the memory hierarchy

building block MGMem, in order to receive raw data and to send processed data.
Within the memory hierarchy both data paths, the one to the sites and the one
back from the sites, are merged together in one single building block structure.
Furthermore, both paths are absolutely independent from each other, to allow data
to be passed to the sites and to be collected back from the sites simultaneously.
This specific arrangement, respectively the separation of the two paths, supports
the massively parallel processing constraint, as data can efficiently flow through
the site-hull grid. Furthermore the memory hierarchy is additionally used for the

58

Processing Building Blocks

calculation of global statistic of Markov Random Fields. The details are discussed
in paragraph Parameter Estimation of Section 3.2.2.

Additionally, the memory hierarchy is organized as a graph (cf. Figure 3.8a), to
permit the data to flow through the graph, which will further improve the parallel
processing capabilities by means of increasing the data flow throughput in the site-
hull grid. The graph is planar to be embeddable in the plane and in order to support
its weaving into the site-hull grid and the realization as VLSI structures. Such a
combined site-hull grid and memory hierarchy arrangement is schematically shown in
Figure 3.8b. Consequently, the system-architecture template so far defined becomes
extended by the memory hierarchy building block MGMem. With this additional
building block at hand, the architecture template shows the following components

BBSystem = {SHull,WN ,MPorts,MGMem}. (3.19)

Each of the building blocks (cf. 3.19) so far defined contribute to the develop-
ment of the system-architecture topology, which essentially determines the real-time
processing capabilities by means of a regular mesh of processing units.

3.2.2 Processing Building Blocks

The second category of the VLSI-specific organization scheme covers all architectural
building blocks, which represent any kind of data processing tasks within the system-
architecture template. Apparently the universal constituent Ppot = {UCN

i
: C =

Cliques of si, 1 ≤ i ≤ |Ω|} as well as the universal constituent OPTIMIZE(.)si

(cf. Definition 3.6) are definitely the originators of any derivations and definitions
of architectural processing building blocks. For these processing building blocks the
systematic process of developing is also guided by the two constraints of parallel
processing and large scale integration and formalized by the set of mappings Φ =
{ΦEF,ΦOPT,ΦPAR}.

If we take the two universal constituents mentioned above and additionally these
constraints into account, we derive the so-called energy functional of each site si ∈ Ω,
which is essentially represented by the potentials of si, as one of the processing build-
ing blocks. In addition to this block, we straightly derive the optimization method
for each site si, if we regard the universal constituent OPTIMIZE(.)si . Another
processing building block is also extracted from the universal constituent Ppot and
defines the task of parameter estimation, which is embedded in the energy func-
tional of the image processing model. These three processing building blocks alone
represent the complete set of modules, which is required to perform all processing
tasks within Markov Random Field based image- and signal processing systems.

We formally define the architectural processing blocks, in the sequel denoted by
BBPC , as follows:

Definition 3.2 (Processing Blocks BBPC)
The set BBPC of architectural processing building blocks reads

BBPC = {PCEF , PCOPT , PCPAR} (3.20)

with

59

Processing Building Blocks

• PCEF = {HEF
i : 1 ≤ i ≤ |Ω|}, the set of building blocks representing the

energy functionals of each site si.

• PCOPT = {opti : 1 ≤ i ≤ |Ω|}, the set of building blocks representing the
optimization methods of each site si.

• PCPAR, the parameter estimation block.

This short introductive discussion finalizes the overview and formal definition of
the processing relevant architectural building blocks BBPC . The discussion continues
with an exhaustive presentation of the different control building blocks, following
the chronological order of Definition 3.2.

Energy Functional

The energy-functional respectively cost-functional building block, in the sequel de-
noted by HEF

· for an arbitrary site i ∈ Ω, represents the most elementary processing
building block within the system-architecture template. This basic processing build-
ing block is directly derived from the universal constituent Ppot (cf. Definition 3.3),
once again subject to the constraints of parallel processing and large scale integra-
tion. Dealing with this building block first of all the constraint large scale integration
is considered, which leads to the conclusion that a compact arithmetic data-path is
mandatorily required to realize the calculation defined by this universal constituent
in full-custom hardware. A subsequent applying the constraint of parallel processing
finally leads to the mapping ΦEF , where the functions UCN

i
on the cliques of a site

i ∈ Ω are mapped to their corresponding processing building block, represented by
HEF

i . Thus the mapping formally reads as follows

ΦEF : {UCN
i

: C = Cliques of si} −→ HEF
i , 1 ≤ i ≤ |Ω|. (3.21)

Consequently, the system-architecture template consists of |Ω| distinct and com-
pactly represented energy-functionals, respectively cost-functional building blocks,
solely indexed by i. Such an energy-functional building block is schematically de-
picted in Figure 3.9a. Together with this first processing building block the system-
architecture template comprises hitherto

BBSystem = BBTS ∪ {PCEF}. (3.22)

By means of the unique index i once again an ordering and relation of the so-
far introduced system-architecture building blocks is defined. All building blocks,
which functionally and logically belong together, are undoubtedly identified by their
index i. When considering the building blocks already defined by Eq. 3.22, we - at
this stage - identify with each index i ∈ Ω a site hull sHull

i , a set of wiring blocks
w<i,t>

i , a set of port memory blocks mPort<i,t>x

i and an energy-functional block HEF
i .

Furthermore, the index i uniquely determines the position of all these tightly coupled
blocks within the overall site-grid arrangement. By the agglomeration of building
blocks belonging together over the index i, the index t is further automatically
constrained for the set of wiring blocks w<i,t>

i and the set of port memory blocks
mPort<i,t>x

i . The index t organizes the arrangement of these blocks within each site
hull sHull

i .

60

Processing Building Blocks

+

+

−
/

+
*

+ ++

− −

(a)

......
...

...

+

+

−
/

+
*

+ ++

− −

(b)

Figure 3.9: Energy-functional representation and corresponding site-hull embed-
ding. (a) Abstract representation of energy-functional as data-flow graph. (b) Topo-
logical embedding of energy-functional into site hull.

Optimization

The next architectural building block is the optimization block. This optimization
building block for each site i ∈ Ω is denoted by opti in the sequel. It represents
the second processing building block within the system-architecture template and
obviously forms a central element as the optimization method and its performance
fundamentally determines the outcome of the whole calculation process. This fun-
damental processing building block is directly derived from the universal constituent
OPTIMIZE(·)si , where the derivation process is typically determined by the two
constraints of (1) parallel processing and of (2) large scale integration.

When first of all dealing with this building block, the constraint of parallel
processing is taken into account. This fact leads to the conclusion that |Ω| dis-
tinct optimization building blocks opt· are required to optimize the outputs of the
energy functional blocks HEF

· . After the application is finished the constraint of
large scale integration leads to a mapping ΦOPT , where the universal constituents
OPTIMIZE(.)si are mapped to building blocks opti performing the optimization
task. Formally the mapping thus reads

ΦOPT : OPTIMIZE(.)si −→ opti, 1 ≤ i ≤ |Ω|. (3.23)

The set of optimization-functionality building blocks, defined by the universal
constituent OPTIMIZE(.)si , thus translates to VLSI-relevant and compact build-
ing blocks opti, again uniquely indexed by i. An optimization processing building
block is schematically shown in Figure 3.10a. Putting all building blocks together,
the system-architecture template thus comprises the following blocks

BBSystem = BBTS ∪ {PCEF , PCOPT}. (3.24)

By means of the global and unique index i we impose an ordering scheme upon
on all building blocks, which is required to compose a system-architecture for a

61

Processing Building Blocks

specific Markov Random Field based signal- and image processing model. Primarily
the index i brings all the different blocks so far defined (cf. Eq. 3.24) together,
which are required to compile a site-module and its capabilities to connect and fit
into a larger processing-grid. Each site-module currently identifies a site hull by the

OPTIMISATION
(ICM, Gibbs, SA, DA)

(a)

(ICM, Gibbs, SA)

OPTIMISATION

......

...

...

+

+

−
/

+
*

+ ++

− −

(b)

Figure 3.10: Illustration of optimization module and its corresponding site-hull
embedding. (a) Block-schematic optimization module. (b) Topological embedding
of optimization block into site-hull structure.

index i as well as a set of wiring blocks, a set of port memory blocks, an energy-
functional block and an optimization block. A site-module compiled in this way is
schematically shown in Figure 3.10b. Secondly the index i uniquely determines the
position of all such site-modules on the grid.

Parameter Estimation

The last architectural building block, which defines the processing thread is the
parameter estimation block. We denote this specific building block as PCPAR in the
sequel. In addition to the two processing building blocks introduced by Eqs. 3.22,
3.24, the parameter estimation building block PCPAR completes the set of processing
specific blocks within the system-architecture template (cf. Definition 3.2). This
third processing building block is also derived from the universal constituent Ppot =
{UCN

i
: C = Cliques of si, 1 ≤ i ≤ |Ω|}, once again guided by the two constraints

of parallel processing and large scale integration.
At first the parallel processing constraint is regarded when looking at this specific

processing building block PCPAR. As the parameter estimation task represents a
global calculation process of the complete actual data and thus over all sites i ∈ Ω of
the grid, it does not become obvious how to organize and realize this important cal-
culation step in parallel within the massively parallel system-architecture template.
But the question of how to parallelize the parameter estimation task is crucial, as
it is a serial bottleneck within this processing building block and will oppose our
claim of defining a massively parallel system-architecture in order to achieve real-
time processing capabilities. To recapitulate, the parallel processing constraint is
required, because of the fact that even if we rely on the impressive semiconductor

62

Processing Building Blocks

progress to continue in the near future, all single serial processing approaches fall
short of providing real-time processing capabilities for the class of statistical image
processing models herein considered.

Par_Estim

(a) (b)

Figure 3.11: Parameter estimation schemes embedded along the memory hierarchy
(Yellow: parameter estimation blocks). (a) Centered parameter estimation scheme;
conducted at the highest level of the memory hierarchy in one step. (b) Local and
distributed parameter estimation scheme; successively conducted on each memory
hierarchy level.

Consequently, a purely serial parameter estimation process will lead our previ-
ous efforts ad absurdum. However, the global estimation process can be split up in
several local calculations, which can be executed in parallel. The partitioning of the
global estimation process into parallel and local calculations is organized along the
memory-hierarchy structure and, therefore, shares the same algorithmic complex-
ity as memory access. Additionally - taking the large scale integration constraint
and the described memory hierarchy into account - we are able to define an ideally
balanced processing scheme with respect to the serial and parallel nature of the
parameter estimation process. Each memory-bank element of the memory hierar-
chy has to be equipped with the processing capabilities required for the parameter
estimation. All these conclusions lead to a mapping ΦPAR, where the universal con-
stituents Ppot = {UCN

i
: C = Cliques of si, 1 ≤ i ≤ |Ω|} are mapped to a building

block structure PCPAR performing the parameter estimation task. The mapping
formally reads

ΦPAR : {UCN
i

: C = Cliques of si, 1 ≤ i ≤ |Ω|} −→ PCPAR, 1 ≤ i ≤ |Ω|. (3.25)

The set of parameters hidden and embedded in the universal constituent Ppot =
{UCN

i
: C = Cliques of si, 1 ≤ i ≤ |Ω|}, becomes translated into a processing build-

ing block structure arranged along the memory hierarchy, which exactly estimates
these free model parameters. The system-architecture template is extended by the

63

Control Building Blocks

parameter estimation building block and until now comprises the following building
blocks

BBSystem = BBTS ∪ BBPC . (3.26)

Obviously, the parameter estimation building block PCPAR and the memory
hierarchy building block MGMem form a tightly coupled structure within the ar-
chitecture template, which structures and organizes both the data transportation
within the site-hull grid and the parameter estimation task in a parallel manner.

The organization of the memory hierarchy, e.g. as quad-tree (cf. discussion in
paragraph Global Memory Hierarchy of Section 3.2.1), directly determines the per-
formance of the architecturally coupled parameter estimation process. To elucidate
the dependence of the performance of the parameter estimation on the organization
of the memory hierarchy one can call on multiscale approaches, which are used in
applied mathematics to solve partial differential equations (PDEs), as analogy. This
arrangement avoids a profound and critical serial data transportation or calculation
bottleneck within the system architecture template.

Thus the global and putatively serial parameter estimation task as a first step
has been successfully divided into independent and parallel processes and secondly
has been seamlessly integrated and coupled with the VLSI appropriate memory-
hierarchy structure. In summary we can state that the serial-parallel nature of the
parameter estimation task is equivalent to the serial-parallel nature of the data trans-
portation within the memory hierarchy. Definitely no additional serialization has
been introduced into the system architecture template by the parameter estimation
building block.

3.2.3 Control Building Blocks

The third category of the VLSI-appropriate scheme comprises architectural building
blocks, which define all kinds of control tasks to ensure a coordinated processing-
sequence within the massively parallel system-architecture. Obviously, as we have al-
ready derived VLSI relevant building blocks in the previous discussion, which need to
be controlled, not all of the following control building blocks are directly derived from
universal constituents but rather from already defined architectural building blocks.
Nevertheless, the derivation and definition process of the control building blocks,
formalized by the set of mappings Υ = {ΥSystem,ΥGMem,ΥPortMem,ΥEF,ΥOPT}, is
still guided by the two constraints of parallel processing and large scale integration.

Furthermore a global system control, denoted by CTSystem, is required to control
the complete hardware architecture. This system control block is neither derived
from universal constituents nor from already defined building blocks. It is solely
justified by the conditions of VLSI integration. The control units for the memory
hierarchy CTGMem and the port memories CTPortMem = {ctrlPortMem

i : 1 ≤ i ≤
|Ω|} represent control building blocks, which are derived from previously defined
building blocks. The control units of the port memories take up a special position
in the sense that certain conditions and architecture settings require these control
units, but normally these control units are not needed at all. We will comment
on this in the corresponding section dealing with these blocks. Nevertheless, to
accentuate it, we did not violate or soften our claim of solely deriving all architectural
building blocks within the boundaries of Markov Random Field theory and without

64

Control Building Blocks

introducing theoretically unfounded features, although the above mentioned control
units are not directly derived from these universal constituents. These control units
are only required for hardware purposes and will not affect MRF relevant features.
We will justify and put some light on this argument in the corresponding sections
on control units.

Precisely, we formally define the architectural control blocks, denoted by BBCT

in the sequel, as follows:

Definition 3.3 (Control Blocks BBCT)
The set BBCT of architectural control building blocks reads

BBCT = {CT System, CTGMem, CTPortMem, CTEF , CTOPT} (3.27)

with

• CT System, the overall system control unit.

• CTGMem, the control unit for the global distributed memory hierarchy.1

• CTPortMem = {ctrlPortMem
i : 1 ≤ i ≤ |Ω|}, the set of port memory control

units.

• CTEF = {ctrlEF
i : 1 ≤ i ≤ |Ω|}, the set of energy functional control units.

• CTOPT = {ctrlOPT
i : 1 ≤ i ≤ |Ω|}, the set of optimize control units.

This short introductory discussion finalizes the overview and formal definition
of the control-relevant architectural building blocks BBCT . The discussion contin-
ues with an exhaustive presentation of the different control building blocks, thus
following the chronological order of Definition 3.3.

System Control Unit

This single architectural control building block, denoted by CTSystem in the fol-
lowing, represents a distinguished building block within the VLSI relevant system-
architecture template and in many aspects differs from the other control building
blocks, which will be introduced in the upcoming sections. The differences charac-
terizing this control building block are profound.

First of all, this block is neither directly derived from any of the universal con-
stituents defined by 3.5 and 3.6 nor is it derived from any building blocks already
defined. Secondly, this structure is the only building block of the system-architecture
template, which has direct connections with all site hulls sHulls

i and thus also with
selected building blocks encapsulated in the site hulls. Furthermore the system con-
trol unit is directly connected with the control unit of the memory hierarchy. As
this control building block is not derivable from the universal constituents and also
not derivable from any building block of the system-architecture template at all,

1Due to the close linkage between the memory hierarchy and the parameter estimation, the
control functionality for the parameter estimation is included in CT GMem. This fact is valid for
the remaining text.

65

Control Building Blocks

its formal existence is solely substantiated and justified by the constraint of large
scale integration. Thus the mapping ΥSystem to that specific system control building
block CT System is conducted by the empty set being exclusively motivated respec-
tively justified by the large scale integration constraint. In this case the mapping
formally reads

ΥSystem : ∅ −→ CT System. (3.28)

Being extended by this system control building block CTSystem, the set of intro-
duced building blocks of the MRF system-architecture template hitherto comprises

BBSystem = BBTS ∪ BBPC ∪ {CT System}. (3.29)

Figure 3.12b schematically illustrates the architecture topology overview of an
exemplary MRF system-architecture, composed of the building block set 3.29 so far
defined. The internal structure of the system control building block is schematically
represented by Figure 3.12a. At this point it should be remarked that the system
control building block can principally be placed on any side around the site-grid,
where - with respect to the routing task - a side-concentric position is favorable.
It is definitely not limited to the position shown in Figure 3.12b, which was only
chosen for the purpose of illustration.

(a)

FIELD
MR

System_Control

(b)

Figure 3.12: The MRF System Control Block, its representation and overall system
embedding. (a) Schematic representation as finite automaton. Circles: States.
Edges: Possible state transitions. (b) Embedding of system control block into overall
site-grid structure.

Finalizing this section on the system control building block CTSystem we will
comment in detail on the fact that this building block is not derived from the uni-
versal constituents (cp. Eq. 3.5 and 3.6) or other system building blocks BBSystem,
and on how this fact corresponds with our claim and principle of deriving all build-
ing blocks of the system-architecture template within the scope of Markov Random
Field theory.

For all this the derivation process is determined by the two constraints of parallel
processing and large scale integration. First of all we will not contradict to or weaken
our claim, as this system control building block is influenced by the large scale

66

Control Building Blocks

integration constraint even though it is not derived from any universal constituent
or any other building block. Its existence is solely based on the requirements of large
scale integration. Secondly, we will not violate any fundamentals of MRF theory,
as this control block does not affect MRF relevant processing parts. The system
control block is only responsible (1) for initiating the data transportation to the
sites down through the complete memory hierarchy, (2) for initiating the calculation
within the sites and finally (3) for initiating the data/result transportation from
the sites up through the complete memory hierarchy. Consequently, the derivation
process remains consistent with our claim although this building block essentially
differs from all other blocks within the system-architecture template with respect to
its derivation.

Memory Hierarchy Control Unit

The memory hierarchy control building block is denoted by CTGMem in the fol-
lowing. In addition to the previously defined system control block, it is another
central control block, which essentially coordinates and influences the overall pro-
cessing sequence of the massively parallel system-architecture template. By means
of this block the flow of data to and from the site hulls through the memory hierar-
chy is coordinated. The control-functionality of the system- as well as the memory
hierarchy control block can be illustrated by processing-sequence frames (cf. [151]
and Section 3.4), which uniquely define the outermost order of events within the
system-architecture template. Following the upcoming derivation and definition
of the mapping, we will further comment on this control frame scheme just men-
tioned. In Section 3.4 dealing with the cycle scheme of the system-architecture, this
frame scheme is presented as an alternative to the prevalent state-transition model.
The memory hierarchy control building block is derived from the memory hierarchy
building block MGMem already defined, and is also strictly influenced by the two
constraints of parallel processing and large scale integration. Regarding this build-
ing block the constraint of large scale integration alone guides the definition process
and finally leads to a mapping ΥGMem, which reads

ΥGMem : MGMem −→ CTGMem. (3.30)

Thus the mapping 3.30 translates the memory hierarchy building block already
defined into its matching control block, which is mandatorily required with respect
to large scale integration realizations. In summary the system-architecture template
includes, CTGMem being already added, the following building blocks

BBSystem = BBTS ∪ BBPC ∪ {CT System, CTGMem}. (3.31)

Figure 3.13 shows a simplified overview of this control building block and its
possible location at the global memory hierarchy. The position of this control block
on the chip should be chosen according to the position of the first level of the memory
hierarchy and additionally should be located in the vicinity of the wires entering the
chip and the first level of the hierarchy.

As mentioned at the beginning of this section the interplay of the different con-
trol blocks and the overall processing-sequence of the system-architecture is advan-
tageous to explain and illustrate by a graphical representation of nested frames,

67

Control Building Blocks

(a) (b)

Figure 3.13: The Memory Hierarchy Control Block, its abstract representation
and connection with the memory hierarchy. (a) Representation as finite automaton.
Circles: States. Edges: Possible state transitions. (b) Topological connection with
memory hierarchy.

where each frame represents a control building block. The ordering of the system-
architecture’s processing-sequence and the dependencies of the control blocks on
each other are illustrated by nesting the control frames, which encodes that control
frames nested in other control frames execute after the enfolding frame. Hence, the
complete processing-sequence of the system-architecture, referring to the control se-
quence, proceeds from the outermost frame to the innermost frame and back in a
pulsating way. The details are discussed in Section 3.4.

Port Memory Control Units

The set of port memory control building blocks, denoted by CTPortMem in the fol-
lowing, exactly represents these control building blocks of the system-architecture
template, which directly coordinate the information flow as well as the informa-
tion buffering between each site sHull

i and all its neighboring site hulls t; defined
by the neighborhood system N . All these port memory control building blocks
ctrlPortMem

i are derived from the port memory building blocks mPort<i,t>x

i already
defined, whereas only one control block controls the complete set of port memory
blocks embedded in each site hull i. As before the derivation process of this control
unit is guided by the two constraints of parallel processing and large scale integra-
tion.

When considering the constraint of parallel processing it can be concluded at
first that |Ω| distinct control building blocks are needed, one for each site hull i,
to fulfill this condition. The large scale integration constraint leads to the ob-
servation that VLSI-appropriate control structures are required to coordinate the
data-flow. Furthermore the large scale integration constraint justifies the decision to
realize |Ω| distinct control blocks, because any other architectural arrangement with
ctrlPortMem

· building blocks controlling several site hull port memory blocks would
break up the site hull container and thus generating needless floor-planning and

68

Control Building Blocks

place&route problems. Hence, our proposed system-architecture template possesses
|Ω| distinct ctrlPortMem

· control blocks. The mapping ΥPortMem formally reads

ΥPortMem : {mPort<i,t>
i : ∀t ∈ Ni} −→ ctrlPortMem

i , 1 ≤ i ≤ |Ω|. (3.32)

The set of port memory building blocks by the mapping 3.32 translates to
hardware relevant and compact control building blocks ctrlPortMem

i , which are also
uniquely indexed by i. An exemplary memory port control block is schematically de-
picted in Figure 3.14a. Figure 3.14b shows a complete constellation of a site hull, the
memory ports and its control block. At the current state, the system-architecture
template is composed of the following building blocks

BBSystem = BBTS ∪ BBPC ∪ {CT System, CTGMem, CTPortMem}. (3.33)

The port memory control blocks are also uniquely indexed by i, which defines
an ordering on these blocks and as already mentioned on all other building blocks
of the system-architecture template. By means of this index i we identify the set
of different building blocks, which belong together to form a specific site processing
unit.

(a)

ctrl

(b)

Figure 3.14: Illustration of Port-Memory Control Block and its embedding into
the site hull structure. (a) Abstract representation as finite automaton. Circles:
States. Edges: Possible state transitions. (b) Topological embedding.

Energy Functional Control Units

The energy functional control block, denoted by ctrlEF
· for an arbitrary site, next to

the port memory control block afore described, forms the second unit, which coordi-
nates the flow of data within each site hull. Both site internal control units represent
the first part of the overall site control structure, which is finally completed by the
optimization control block introduced in the next section. This control building
block is derived from the energy functional building blocks HEF

· already defined;
where the derivation process is as before guided by the two constraints of paral-
lel processing and large scale integration. The condition of large scale integration

69

Control Building Blocks

results in requiring a hardware relevant control structure in order to control the
flow of data within the energy functional building block. Furthermore, the parallel
processing constraint determines that for all |Ω| energy functional building blocks
control structures are required. Additionally particular energy functional control
blocks for each site hull conserve the container-functionality of the site hulls, which
becomes advantageous for floor-planning and place&route tasks. This leads to the
mapping ΥEF , which is formally defined by

ΥEF : HEF
i −→ ctrlEF

i , 1 ≤ i ≤ |Ω|. (3.34)

Consequently, the set of already defined energy functional building blocks HEF
i

translates into distinct hardware relevant control structures for each of these energy
functional building blocks. Figure 3.15a schematically illustrates such an energy
functional control building block. The arrangement of the energy functional building
block and its corresponding control block is shown in Figure 3.15b. In summary the
system-architecture template comprises the following parts:

BBSystem = BBTS ∪ BBPC ∪ {CT System, CTGMem, CTPortMem, CTEF}. (3.35)

Naturally these energy functional control building blocks are also uniquely in-
dexed by i, in order to establish an ordering of these parts of the system-architecture
and to assign respectively connect them over the index i to all other blocks, which
belong together. By means of index i, the elementary processing units - the sites -
are compiled out of the different building blocks (cf. Eq. 3.35).

(a)

+

+

−
/

+
*

+ ++

− −

STEP_1

STEP_2

STEP_3

STEP_4

STEP_5

(b)

Figure 3.15: Energy-Functional Control Block. (a) Representation as finite au-
tomaton. (b) Relation of energy-functional’s operators and states of the automaton.

Optimization Control Units

This architectural control building block, in the sequel denoted by ctrlOPT
· for an

arbitrary control optimization building block, represents a fundamental structure
and at the same time forms the last missing part of the system-architecture template.
Both parts, the optimization building block and its control block, together form

70

Control Building Blocks

the essential unity, which significantly determines the performance of the complete
image processing device. This control building block is derived from the processing
building block opt· already defined and summarized by PCOPT .

With regard to this building block of the system-architecture template, the
derivation process is once again definitely guided by the two constraints of parallel
processing and large scale integration. First the constraint of large scale integration
is being looked at, which leads to the conclusion that a hardware respectively VLSI
qualified structure is required to control the flow of data within the optimization
block. Finally the constraint of parallel processing constraint leads to the fact that
for each optimization building block such a control structure is needed. In the end
all this results in the mapping ΥCtrlOPT , which is formally defined as follows

ΥCtrlOPT : opti −→ ctrlOPT
i , 1 ≤ i ≤ |Ω|. (3.36)

Thus the defined set of control optimization building blocks CTOPT = {ctrlOPT
i :

1 ≤ i ≤ |Ω|} by the mapping 3.36 translates into VLSI hardware qualified control
structures; exactly one control block for each optimization building block. Figure
3.16a depicts an exemplary optimization control building block - whereas Figure
3.16b schematically shows the arrangement of the optimization building block and
its control block within the site hull. With this last building block, the system-
architecture template for massively parallel VLSI architectures of Markov Random
Field based signal- and image processing devices is finalized and completely reads

BBSystem = BBTS ∪ BBPC ∪ BBCT . (3.37)

As before the last building block is uniquely indexed by i and thus can be assigned
to respectively combined with the rest of the building blocks, which together form
the complete, basic processing unit within the system-architecture; extended by
structures to transfer data to and from the sites and to exchange data between the
sites.

(a)

OPTIMISATION
(ICM, Gibbs, SA, DA)

(b)

Figure 3.16: Optimization control block and its relation to the optimization block.
(a) Abstract representation as finite automaton. Circles: States. Edges: Possible
state transitions. (b) Arrangement of control block and optimization block.

71

Control Building Blocks

3.3 VLSI Specific Issues

The different sets of building blocks, which have been introduced in the preceding
sections, cause various difficulties during all phases of the VLSI design flow. Two
groups of building blocks can be distinguished, which cause similar difficulties in
nearly all processing steps of the VLSI realization chain. But these two groups also
share similar strategies to alleviate these problems.

The first group comprises the following building blocks, with 1 ≤ i ≤ |Ω|,
∀t ∈ Ni, x = #bits: (1) The set of site hulls SHulls = {sHull

i }, (2) the set of
wiring building blocks WN = {w<i,t>

i }, (3) the set of port memories MPorts =
{mPort<i,t>x

i }, (4) the set of energy-functional blocks PCEF = {HEF
i }, (5) the set

of optimization-functionality blocks PCOPT = {opti}, (6) the set of port memory
control blocks CTPortMem = {ctrlPortMem

i }, (7) the set of energy-functional control
blocks CTEF = {ctrlEF

i } and (8) the set of optimization-functional control blocks
CTOPT = {ctrlOPT

i }
The second group comprises the building blocks: (1) The global distributed

memory hierarchy MGMem, (2) the parameter estimation functionality PCPAR, (3)
the system control block CTSystem and finally (4) the memory hierarchy control
block CTGMem.

BB Types HDL Compile Tasks

Topology&Structure analyze synthesis mapping copying

sHull
· prototype O(1) O(1) O(1) -

sHull
i , 1 ≤ i ≤ |Ω| O(|Ω|) - - O(|Ω|)
w<·,·>
· prototype O(1) O(1) O(1) -

w<i,t>
i , 1 ≤ i ≤ |Ω| O(|Ω|) - - O(|Ω|)

mPort<·,·>
· prototype O(1) O(1) O(1) -

mPort<i,t>
i , 1 ≤ i ≤ |Ω| O(|Ω|) - - O(|Ω|)

1 MGMem O(|Ω| log |Ω|) O(|Ω| log |Ω|) O(|Ω| log |Ω|) -

Table 3.1: Processing Complexity for topology & structure representing graphs
with respect to particular HDL compile tasks.

The main problem of the building blocks in the first group is essentially caused
by the tremendous number of at least |Ω| distinct objects per building block set.
We shortly remark that the number of wiring blocks WN and port memories blocks
MPorts exceed |Ω|, as every site hull sHull

i , 1 ≤ i ≤ |Ω| needs several wiring and
port memory building blocks (see Figure 3.7a-b), at least four for the first order
neighborhood system. The total number of building blocks is unalterable, as we
pursue a massively parallel processing approach in order to realize real-time pro-
cessing capabilities. At the beginning of the design process, each particular building
block has to be represented by a synthesizeable model in a standardized hardware
description language for driving modern and approved design flows. Normally hun-

1Logarithmically bounded memory hierarchy.

72

Control Building Blocks

dreds and thousands of textual descriptions, each with m lines, have to be created
and stored in a bunch of huge files, which quickly reaches unmanageable file-sizes
with respect to further analyzing, synthesis and mapping tasks. This disregards
the fact of whether the building block descriptions are handcrafted or automatically
generated.

But the overall textual description length can significantly be reduced, if we
exploit the feature that all components of each building block set are structurally
identical within the MRF processing grid. This leads to a strategy of organizing
building block descriptions, where one prototype for each building block set is fully
described (with mfull lines) and the |Ω| respectively |Ω| × |Ni| for WN and MPorts

are i respectively i, t parametrized instantiations (each with minstance lines) of the
corresponding prototype. Consequently, the total description length is reduced from
|Ω|×mfull lines to no more than |Ω|×minstance respectively |Ω|× |Ni|×minstance
lines, with mfull � minstance. This basic optimization strategy of organizing the
descriptions of the building blocks in the first group alone, overcomes the critical
bottleneck of transferring large design descriptions to the following VLSI design
steps of analysis, synthesis and technology-specific gate-mapping.

BB Types HDL Compile Tasks

Processing analyze synthesis mapping copying

HEF
· prototype O(1) O(1) O(1) -

HEF
i O(|Ω|) - - O(|Ω|)

opt· prototype O(1) O(1) O(1) -

opti O(|Ω|) - - O(|Ω|)
1 PCPAR O(1) O(1) O(1) -
2 PCPAR O(|Ω| log |Ω|) O(|Ω| log |Ω|) O(|Ω| log |Ω|) -

Table 3.2: Processing Complexity for processing functionality representing graphs
with respect to particular HDL compile tasks.

All processing complexities, subdivided into analyze, synthesize, mapping and
copying, are illustrated in Table 3.1 for topology & structure defining building blocks,
in Table 3.2 for processing-functionality defining building blocks and in Table 3.3
for control-functionality defining building blocks. These tables illustrate the savings,
which can be obtained by systematically applying the above described strategy of
prototypes and replacements of instantiations.

Likewise the large number of distinct building blocks alone cause problems during
the chip floor-planning. However, the index i uniquely identifies each site hull sHull

i ,
1 ≤ i ≤ |Ω| and its corresponding position within the regular two-dimensional
site-grid. Additionally, the index i uniquely identifies all other building blocks and
above all interlink these blocks with the correspondingly correct site hull sHull

i .
Furthermore, the index t assigns the wiring blocks WN and port memories blocks

1Parameter estimation executed at the top of the logarithmically bounded memory hierarchy.
2Parameter estimation executed along the logarithmically bounded memory hierarchy.

73

Control Building Blocks

BB Types HDL Compile Tasks

Control analyze synthesis mapping copying

CT System O(1) O(1) O(1) -

CTGMem O(1) O(1) O(1) -

ctrlPortMem
i prototype O(1) O(1) O(1) -

ctrlPortMem
i O(|Ω|) - - O(|Ω|)

ctrlEF
i prototype O(1) O(1) O(1) -

ctrlEF
i O(|Ω|) - - O(|Ω|)

ctrlOPT
i prototype O(1) O(1) O(1) -

ctrlOPT
i O(|Ω|) - - O(|Ω|)

Table 3.3: Processing Complexity for control functionality representing graphs
with respect to particular HDL compile tasks.

MPorts to their intended position within the site hull. Therefore the chip floor-
planning can systematically be conducted. Evidently, a detailed floor-plan, with all
site hulls assigned to their correct chip regions, interlinked with their other building
blocks and related to each other, essentially speeds up the successful placing of these
extremely large structures. The site hulls serve as strict boundaries in which only
routing of the assigned other building blocks is allowed. This prevents the chip
layout to become routed in a complicated way, which will finally prevent timing
violations.

The problems of the building blocks in the second group are completely different
compared to each other and to the first group. Essentially, the problems of MGMem

are, (1) how to flexibly link RAM model descriptions with predefined and technology
specific RAM blocks, (2) how to separate the memory hierarchy gantry and the
RAM models (RAM encapsulation) from each other, (3) how to flexibly exchange
tri-state drivers with multiplexer and (4) how to merge the memory hierarchy with
the complete site-grid. RAM-blocks represent very specific components within each
digital semiconductor technology, as these blocks are hand-tuned to improve area,
speed and power consumptions. These RAM components are either automatically
provided by the semiconductor company in very common sizes or on request of the
customer. Furthermore, it is also possible to compile larger RAM-blocks out of
smaller RAM-blocks - this approach is prevalent in FPGA technologies. Within the
memory hierarchy building block we have to link these technology specific RAM-
blocks with our description. The complete RAM-block linking problem is even made
worse by the fact that the memory hierarchy building block consists of RAM-blocks
with different sizes at each level of the hierarchy. Thus we have to link a number of
different RAM-blocks, which equals the levels of the memory hierarchy.

To organize and systematically conduct this linking process for a broad class of
semiconductor technologies, we have developed and implemented the following ap-
proach consisting of two phases: In the first phase the description itself loosely links
to several RAM-blocks. The second phase finally makes the linking non-ambiguous

74

Control Building Blocks

by means of additional constraints or embedded directives. In order to further
simplify and structure the linking task, we have to separate the memory hierarchy
gantry from the RAM-blocks. This is done by means of special memory-wrappers
and by encapsulating these memory-wrappers within the hierarchy. This allows us
to change and modify the linking process without destroying the overall memory hi-
erarchy gantry. As an ultimate consequence of this strategy, we can systematically
study synthesis and place & route issues in changing RAM-block settings, includ-
ing early design settings, where the RAM-blocks are represented by dummy filling
blocks. By this arrangement and encapsulation strategy, it is possible to selectively
pick up particular memory-wrappers, in order to assign tri-state bus drivers or multi-
plexers. Thus we can systematically exchange or mix these two types of bus-drivers,
depending on the technology requirements and resources available; whereas only the
data-path, which collects the results from the sites, requires bus-drivers.

The control block CTSystem as well as CTGMem only cause problems during
the place&route implementation task. In the CTSystem block a limited number of
control connections arise, which run to all |Ω| site hulls and thus have to be routed
over the complete chip. The connections, even though limited in number, have to be
handled like clock-nets and have to be routed in a balanced signal-propagation tree.
The overall routing effort of these control signals is therefore higher than compared
with normal signal nets. This routing problem worsens depending on the absolute
chip-area and the wire-length of these global signals.

In the CTGMem block address wires traverse the complete hierarchy of this struc-
ture, which need signal buffering respectively signal refreshing as soon as the load
and overall wire length increases a certain limit. This problem can become so seri-
ous that special and semiconductor technology specific buffers or logic-neutral signal
refreshers need to be added into the hardware description itself to solve the prob-
lem. But this situation is only recognizable, if a complete VLSI design flow for
this building, including placing and routing, has failed to meet the final timing-
check. In order to diminish this building block specific problem, it is possible to
regard the memory hierarchy and its control building block separately from the
complete system-architecture. Hence, it is possible to isolate and study possible
signal-buffering problems so that implementation technology specific strategies can
be developed to solve these problems.

3.4 Cycle Scheme

The massively parallel architecture template, introduced in Section 3.2, was con-
ceptualized and adjusted to comply with purely digital semiconductor design tech-
nologies. Purely digital design technologies offer several profound advantages with
respect to the realization of massively parallel image processing devices, which are
based on the calculation principles of Markov Random Fields, as discussed in Sec-
tion 2.7. Thus, as we are dealing with purely digital and consequently with clocked
systems, which evolve in discrete time steps respectively cycles, a template to order
the sequence of events is required for the massively parallel system-architecture tem-
plate to become a well-defined, complete and operational one. Without a template
of ordered events no coordinated and correct data transportation and calculation is

75

Control Building Blocks

possible within the clocked massively parallel processing devices.
An order of events template for the introduced massively parallel architecture

template is described by means of two different representations. The first represen-
tation uses nested frames [151] to illustrate the order of events, whereas this specific
representation hides certain details. Within this representation each frame depicts
a discrete system state. The nested frames indicate that a state transition takes
place starting at an outer frame and continuing to the inner frame directly follow-
ing. State transitions from inner frames to arbitrary outer frames are also possible
but not illustrated by this frame representation. The second representation makes
use of a directed graph to define the order of events. In this representation nodes
depict discrete system states and edges indicate the possible transition from one
state to another.

UPDATE

Site

OPTIMIZE

Energy−Functional

SEND/RECEIVESiteI/O

MemoryHierarchy SEND/RECEIVE

IDLE

SET/RESET

Figure 3.17: Order of events illustrated by frame representation. Discrete system
states are represented by particular frames. State transitions take mainly part from
outer frames to inner frames.

The nested frame notation is illustrated in Figure 3.17. Each frame represents a
system super-state, which may contain further states, and thus Figure 3.17 shows the
main system states each MRF processing device traverses through. The outermost
frame represents the SET/RESET state of the system, which sets the complete
device in a predefined starting state. Starting with this state the system migrates to
the IDLE state, where it rests until the processing device gets a signal to start. When
the device starts operating, it migrates to the MemoryHierarchy SEND/RECEIVE
state. At this state the different levels of the memory hierarchy are periodically
changing from the SEND to the RECEIVE state, in order to distribute or collect the
data within the site grid. After having finished each SEND/RECEIVE state-change
of the memory hierarchy, the system migrates to the SiteI/O SEND/RECEIVE
state, where the sites are either set in the SEND or RECEIVE state or the sites are
simultaneously set in the SEND and RECEIVE state, depending on their activity

76

Control Building Blocks

status within the site-grid (see Section 2.4 and Figure 2.2).
Sites, whose I/Os have finished their receive or simultaneous send/receive phase

migrate to the Energy-Functional state, whereas all those sites who have finished
their send-phase remain in their current state and wait to change to the SiteI/O
RECEIVE state. In the Energy-Functional state each active site calculates the
value of the energy functional and migrates to the OPTIMIZE state. At this state
the costs of the energy-functional are optimized, which leads to a recalculation of
the energy functional and thus to an iterative state transition between the Energy-
Functional and the OPTIMIZE state. When the OPTIMIZE state has finished and
determined a new site value, the system migrates to the Site UPDATE state. From
this state the system can migrate to the SiteI/O SEND/RECEIVE state to enable
inactive sites to become active. Or, if all sites have become active exactly once, the
system can migrate to the MemoryHierarchy SEND/RECEIVE to distribute new
data and collect results. Obviously there are several improvements at hand to allow
the order of events template to enhance the overall data throughput of the system
and to decrease the processing time. However, various improvements depend on
the actual MRF model and the overall integration of the MRF processing device
in a larger systems’ environment. Consequently, the introduced order of events
template is flexible enough to cover the contemplated class of MRFs (cf. Definition
2.5) and additionally represent an adequate starting point for developing further
improvements.

OPT

EF

RECEIVE

MH

PortMem
RECEIVE

PortMem
SEND

RESET
SET

IDLE

MH

SEND UPDATE
Site

Figure 3.18: Order of events illustrated by a directed graph. Circles: system
states. Edges: possible state transitions.

Irrespectively of the compact and elegant frame representation, one major draw-
back of this method is that it hides certain state transition details. Even though the
overall order of the event’s sequence is represented by the frame method, sometimes
it is required to show additional state transition details. Because these modeling

77

Control Building Blocks

details can not be illustrated in the frame representation, one has to fall back on
the standard graph representation.

The graph representation method offers the features to illustrate all state tran-
sition details if necessary. In this representation method the different states are
illustrated by nodes and the transition to other states is modeled by directed and
marked edges between particular nodes. The edge marks define the requirements
that have to be met to allow the state transition to take place. The order of events’
template in graph notation for the massively parallel MRF architecture template
is illustrated in Figure 3.18. Additionally the graph representation is helpful with
regard to digital hardware realizations, because finite state machines (FSM), which
realize control machines in hardware, are also modeled by means of these graph
structures.

3.5 Relation of Thesis Parts

All main parts of this thesis, are interdependent but also closely linked to each, in
order to form together a seamless simulation- and design-environment for massively
parallel hardware architectures of Markov Random Field based image processing
systems. The thesis comprises the following part: (1) the fundamentals of Markov
Random Field theory (Chapter 2), (2) the building blocks of the system-architecture
template introduced in the current chapter, (3) the simulation-modules of the simu-
lation framework (Chapter 4), (4) the graph-theoretical representation of the MRF
device in the design framework, and (5) finally the concrete VLSI implementation
of a MRF model (Chapter 5). Exactly this interplay of the different thesis parts
becomes formally expressed by a relation diagram, which is shown in Figure 3.19.
Even though only the fundamentals of Markov Random Field theory, the univer-

VLSI

BBSystem

C

SSystemGD

Λ,Φ,Υ

Ξ,Ψ,Γ Π,Σ,∆

Figure 3.19: Relation diagram. Established relation of the different thesis parts.

sal constituents and the building blocks derived out of them, which makes up the
system-architecture template, have been introduced, Figure 3.19 already shows the
complete relation diagram this thesis establishes. Even though the details of the
different parts of the relation will be presented in the corresponding chapters, the
complete relation diagram already becomes presented here to introduce the line of
thought this thesis pursues.

78

Control Building Blocks

Up to now we have established the following parts and relations of the overall
thesis part relation: At first we have established the relation of the fundamentals
of Markov Random Field theory and a generic structure of models, which are for-
mulated on regular two-dimensional site-grids. Based on this generic MRF model
structure we have defined universal constituents, which are architecturally uncom-
mitted and represent the first part of the relation. The second part comprises the
building blocks BBSystem of the system-architecture template. This part is connected
with the universal constituents by the set of mappings Λ for topology & structure
relevant parts, by the set of mappings Φ for processing functionality relevant parts
and finally by the set of mappings Υ for control functionality relevant parts. As a
result, the first detail of the relation has been established.

3.6 Dealing with Large Images

Several reasons and practical requirements exist, which make it necessary to regard
system-settings, where image-sizes larger than the implemented Markov Random
Field site-grid itself have to be processed. These system-settings with MRF devices
realizing site-grids, which are smaller than the image-size, are solely caused either
by semiconductor technology limitations or by economic limitations. Even with the
ultra-deep sub-micron semiconductor technologies today available and the shrinking
of the technology structures, which is expected to take place in the future, there
is always an upper-bound of the chip integration density, which limits the overall
MRF site-grid size. Obviously, by far the largest portion of the overall chip area of a
MRF implementation is consumed by the sites. The absolute chip-area size of each
site within the site-grid significantly depends on the implemented MRF model and
its calculations, which have to be executed on each site.

Consequently, MRF models, which are more advanced with respect to their cal-
culations on each site, will always be realizable as smaller MRF site-grid devices
compared to VLSI realizations of simpler MRF models. Since the production of
semiconductors for MRF devices, which implement large size-grids and thus ex-
haust the capabilities of modern ultra-deep sub-micron technologies, is extremely
expensive, economic arguments eventually impose the restriction of producing the
cheaper MRF devices with smaller site-grids and less chip area.

Primarily three different variants of system-settings with MRF devices can be
distinguished, if image sizes have to be processed that are larger than the imple-
mented Markov Random Field site-grid itself. These variants are completely covered
by the previously introduced system-architecture template and will be described and
discussed in the following section. The three MRF system-setting variants identified,
are:

• Several physically identical MRF realizations, in which each specific MRF site-
grid implementation is smaller than the overall image-size, are arranged in such
a way that the complete image-size is covered by the site-grids. However, each
MRF site-grid only processes a distinct and fixed part of the image at a time.
Figure 3.20a schematically illustrates this system-setting.

• One physical MRF realization alone, where this MRF site-grid implementation

79

Control Building Blocks

is smaller than the overall image-size, serially processes the whole image. Each
time exactly one part of the image is processed, which equals the size of the
site-grid. This system-setting is schematically shown in Figure 3.20b.

• This system-setting represents a combination of the previously described two
settings. In this system-setting, where each of the MRF site-grid implementa-
tions is significantly smaller than the input image itself, several physical MRF
realizations process the complete image in a serial manner. During the pro-
cessing sequence each of the MRF site-grids at first work in parallel on one
part of the image in one single step, which equals its site-grid size, and as a
second step switches to a different part of the image. This scheme continues
until the complete image is processed. Figure 3.20c schematically depicts this
specific system-setting.

MRF_2

MRF_3 MRF_4

MRF_1

(a)

MRF_1

(b)

MRF_1

MRF_2

MRF_4

MRF_3

(c)

Figure 3.20: Illustration of three system-setting variants with MRF devices covered
by the proposed architecture template. (a) Several MRFs cover the complete image
and process the image data in parallel. (b) A single MRF device serially processes
the complete image. (c) Several MRFs process different image parts in parallel and
serially the complete image.

Regarding the first variant, Figure 3.20a illustrates an exemplary system-setting
with exactly four realizations of a Markov Random Field site-grid working in parallel
on the image. In this setting each MRF device processes exactly one quadrant of
the image in total. If it is assumed that the total image size is n × m pixels and
each MRF works on a not sub-sampled pixel set, then the site-grid of each MRF is

80

Control Building Blocks

obviously n/2 × m/2 large. From a practical point of view, any setting with two
or four MRF devices represents the technically and economically most profitable
configuration. System configurations with even six to nine distinct MRF devices
- under certain circumstances - may be conceivable and justifiable; for instance as
technology prototypes. However, any configuration with more than nine distinct
MRF devices becomes easily technically impractical and fault-prone.

This statement is substantiated by the following facts: First of all, the MRF
devices have to be arranged and mounted either on one printed circuit board or on
several printed circuit boards, which need to be connected to form a complete sub-
system. Technical constraints limit the integration capabilities of printed circuit
boards and thus the absolute number of devices per printed circuit board area.
Several long connections on or between the boards significantly slow down the overall
data throughput and consequently the performance of the system, which directly
affects the real-time processing capabilities, which are in any event difficult to fulfill.
Furthermore, systems with more than nine distinct MRF devices physically become
too large to be of practical relevance for industrial applications or products. It
would also contradict the central claim of this thesis to make physically compact
image- and signal processing systems possible, which are based on Markov Random
Fields. The only consequent step would be to increase the overall site number and
integration density per MRF device in order to limit the number of distinct MRF
devices to a count of two to six devices in this system-setting variant.

In addition to this, merely one MRF device setting of this variant makes it
necessary to use memory-types within the device’s memory hierarchy (cf. mapping
3.18 and corresponding section), which can simultaneously be written and read to
capture the continuous flow of incoming data without latching the image data. In
this specific constellation, exactly two MRF devices process their corresponding two
image parts, which are horizontally aligned. By means of this constellation the data
is written onto the first levels of the memory hierarchy of each MRF device, whereby
each image-data row is split into two parts; the first half of each image-data row is
transfered to the first MRF device and the second half of the data row to the second
MRF device. The data on the first level of the memory hierarchy can be passed over
to the next level as soon as the last image-data row is completely transfered. But
following shortly after the last image-data row, the first image-data row of the next
image appears and has to be stored onto the first level of the memory hierarchy.
Thus we mandatorily need memory-types, which support simultaneous read- and
write-actions on the same memory-cell and furthermore guarantee data-consistence
and data-correctness. Any other constellation of this variant will not require these
special memory types within the memory hierarchy, because of the image being
vertically split. This results in assigning the first and last image-data row to different
MRF devices, equalizes the data transfer within the memory hierarchy and allows
the read- and write-actions to happen sequentially.

The second variant of a system-setting with exactly one MRF device, in which
the site-grid of the implemented MRF device is once again smaller than the image
itself, is exemplarily depicted in Figure 3.20b. In this specific configuration only one
MRF device sequentially processes the complete image. The illustration of Figure
3.20b feigns the image data to be completely available in one single time step;
however, this is definitely not the case in technical systems. The detailed flow of

81

Control Building Blocks

data looks slightly differently there. Normally image data or, - more generally -, any
kind of signal data is transmitted in a continuous row- or column-serial flow by the
corresponding sensor device. Consequently, it is required to latch that part of the
image data, which can not be immediately processed by the MRF device. This fact
leads to the requirement that the single MRF device of this system setting variant
mandatorily has to finish the calculations on one image before the next image-data
arrives. Consequently it is guaranteed that the incoming data does not overrun the
previously received data, which is currently being processed by the MRF device.
Should the MRF device not be capable of processing the data with the incoming
frequency, it would in principle be possible to drop as many complete images as
required, to allow the MRF device to process one complete image. Obviously, this
procedure of dropping data decreases the number of images the system can process
in each second and is in addition to this not usable for application scenarios, where
the complete image-sequence dynamic is required.

The third variant of a system-setting is a combination of the two previously de-
scribed variants in terms of the first variant having several distinct MRF realizations.
Their site-grid is smaller than the image itself and works in parallel on different parts
of the image and with regard to the second variant sequentially processes the com-
plete image by the different MRF devices. Consequently, this system-setting variant
represents a trade-off between parallel and serial processing with several distinct
MRF realizations. Exactly this system-setting is schematically and exemplarily de-
picted in Figure 3.20c by a setting with exactly four MRF site-grid devices. In this
system setting Figure 3.20c feigns the complete image data to be concurrently avail-
able too, which is definitely not the case as the data normally arrives in a continuous
row- or column-serial manner, when leaving the specific sensor device. Thus, the
data which can not be directly processed by the MRF devices, has to be latched at
first and later on transmitted to the MRF devices for processing. The arguments
and conclusions presented in the discussion about the first system-setting variant
regarding the overall number of distinct MRF devices in a technical system realiza-
tion are also valid for this third system-setting variant. Additionally, the arguments
and conclusions of the second system-setting variant regarding the frequency of the
incoming data are also valid for this third variant, which is, as already mentioned,
a combination of the previously introduced two system-setting variants.

For all three system-setting variants afore presented one specific peculiarity,
which is caused by the fact that distinct physical MRF devices serially process the
image-data, should be preconceived and adequately handled. Every realization of
a MRF site-grid with a specific grid-size is essentially composed of the sites, which
conduct the processing, and the neighborhood system, which establishes the connec-
tions between the MRF sites. But the neighborhood system is not complete for sites
directly located at the boarder of the grid or sites beyond the boarder, which de-
pends on the order of the used neighborhood system. These grid boarder-sites have
definitely not the complete set of neighboring sites and thus also not a complete set
of values for the calculation. In order to provide a principally complete set of values
for the sites with an incomplete neighborhood system, in technical MRF realizations
the missing values are provided by means of a fixed and hard-wired value. From a
VLSI point of view it is advantageous - with respect to chip-area and wiring - to
fix the missing values either to logical ”one” or to logical ”zero”. Obviously, this

82

Control Building Blocks

(a) (b)

Figure 3.21: Example of segmentation-result without overlapping boarders of the
MRF devices. (a) Original segmentation result with 2nd order neighborhood system
MRF (size 64 × 64) and probabilistic unsupervised segmentation model of Section
2.6.2 (b) Overlapping border structure generated by 64 × 64 MRFs.

procedure affects the outcome of the calculation on these sites, which is exemplarily
illustrated in Figure 3.21a-b. The processing results of these specific boarder sites
are not coherent with the results of sites, which possess a complete set of neighboring
sites defined by the neighborhood system of the MRF site-grid.

The previous discussion explains the checkerboard-like-patterns respectively de-
fects of the result image shown in Figure 3.21a. Figure 3.21b shows the result image
with the overlapped MRF-device boarders, where defects can occur. For each of the
three system-setting variants the distinct MRF devices process just a specific part of
the image at one time, and due to the incomplete neighborhood system sometimes
generates erroneous results on the grid-boarder. Exactly this peculiarity of the in-
troduced system-setting variants can easily be handled and the defects respectively
errors on the grid-boarder can be removed. The processed image parts merely have
to overlap in order to allow only those results, which are generated by sites with a
complete neighborhood system, to be stored. Of course, this results in some image
data being processed several times, more precisely the data on those sites with an
incomplete neighborhood system. This processing overhead is not vital and has to
be accepted, if one of the three system-setting variants without site-grid boarder
defects are used.

If one of the three system-setting variants are realized, the estimation of the
model’s free parameters for a complete image is a different issue. For the first vari-
ant the parameter estimation looks relatively simple. Each MRF device estimates
the parameters with respect to the image part the specific MRF device is assigned

83

Edge Preserving & Noise Removing

to. Since the complete image is covered by MRF devices, we just have to combine
the parameter estimation results of each MRF to specify the model’s final parameter
set. The final parameter set is then transferred to each of the MRF devices to allow
the the device to conduct the calculations of the implemented MRF model. For
both system-setting variants two and three the situation with respect to the model’s
parameter estimation looks slightly different and is more involved. In principle there
are two feasible approaches to organize the parameter estimation process for these
two system-setting variants. The first proposed approach, which systematically or-
ganizes the parameter estimation task for the system-setting variants two and three
uses exactly those parameters, which were determined by the part of the image the
MRF devices started their processing with. For the second system-setting variant,
where only one MRF device serially processes different parts of the complete image,
the model’s parameters are solely determined on the basis of partial data the MRF
device starts its processing with. After this initial parameter determination process
is finished, the parameters are fixed with regard to the rest of the image. This
approach is also applicable for the third system-setting variant, with the difference
that the parameter estimation results of the different distinct MRF devices - again
solely calculated for the part of the image each MRF devices starts its processing
with - are combined to form one single set of parameters. Again these parameters
are fixed for the rest of the image. The second approach proposed, which defines
the parameter estimation task for the second and third system-setting variant, es-
sentially requires two complete processing passes over the image data to complete
the calculation. During the first pass the parameters as well as the processing is
executed. The different parameter sets are combined to form one single set, which is
available after the first processing pass over the image data is finished. Exactly this
parameter set is fixed for the second pass. During the second pass over the complete
image data only the processing with the parameters of the first pass is done without
changing respectively re-estimating the model’s parameters.

3.7 Exemplary Model’s Architectures

With the architecture template introduced in this chapter and its different building
blocks for topology & structure BBTS , control functionality BBCT and processing
functionality BBPC at hand, it becomes a well-defined and straightforward pro-
cedure to derive the concrete hardware relevant and massively parallel processing
architectures for the two exemplary image processing models presented in Section
2.6.1 and Section 2.6.2. Both massively parallel system-architectures, the concrete
characteristics of the building blocks as well as its possible architectural variants,
are described in detail in the following subsections, to define a complete building
plan for the specific architectures of the two models.

3.7.1 Edge Preserving & Noise Removing

The compiling of the specific massively parallel hardware architecture for the edge
preserving and noise removing MRF model (for model-details see Section 2.6.1)
begins with the topology defining site-hull gantry and thus with the set BBTS , which
comprises the required topology & structure defining building blocks = SHulls, WN ,

84

Edge Preserving & Noise Removing

MPorts, MGMem. This specific massively parallel hardware architecture consists of
|Ω| site hulls SHulls = {sHull

i : 1 ≤ i ≤ |Ω|}. These particular site hulls sHull
i are

arranged in the plane as a regular and equally spaced site-hull grid (cf. Figure 2.1).
This topology setting establishes the first part of the architecture gantry and at the
same time the overall shape of the chip floor-plane, because all other building blocks
are embedded into this site-hull gantry structure. By means of the neighborhood
wiring WN all site hulls sHull

i are connected among each other in a specific and
model-dependent kind.

For the Edge Preserving & Noise Removing model a first order N 1 neighborhood
system is sufficient, because the intensity change grading function κ operates on the
four direct neighbors of each site hull (see Section 2.6.1 and Eq. 2.6.1), i.e. the
values of the right and left as well as the top and bottom neighbors with respect to
sHull
i are needed to determine κ. Within this architecture all neighborhood wiring

blocks w<i,t>
i are characterized by their maximum bus-width of 8-bit, as it has been

assumed for this model that it processes gray-valued images with a gray value range
of [0, ..., 255]. Beside the 8-bit bus-width variant of the wiring blocks, there are
other architectural variants with a 1-bit, 2-bit or 4-bit width busses, in order to
transfer the 8-bit datum in 8-steps, 4-steps or respectively 2-steps. These variants
on the one hand significantly reduce the risk of wiring congestion during the chip
routing process but on the other hand introduce additional steps to transfer the
data. Depending on the processing time requirements and the used implementation
technology, one variant has to be chosen.

The next category of building blocks are the port memory blocks MPorts each
having a size of 8-bit to store the incoming data of the neighbors. Either the 8-
bit datum is stored in one step, if the wiring blocks have 8-bit width buses, or
the 8-bit datum becomes transfered in several steps and successively stored within
the corresponding memory places of the 8-bit register bank. The global memory
hierarchy building block MGMem completes the topology of the model’s architecture.
In view of VLSI implementations and the demand to use regular structures, it is
advantageous to realize the building block MGMem as a completely balanced quad-
tree, i.e. at the top of the quad-tree there is merely an interface to an external
memory, which represents the root of the tree. At first the first level of the quad-
tree is incorporated into the topology and thus into the VLSI implementation. This
kind of organization saves important chip resources, especially for large MRF site-
grids. All memory elements of the quad-tree have to store the corresponding input-
and output values as well as additionally the single free parameter Θ = {σ2} and
the user defined value γ of the intensity change grading function κ.

The memory hierarchy (cf. Figure 3.8) is separated into two distinct paths:
One down-path, i.e. the input values are transferred to the sites, and one up-path,
which transfers the output-results of the sites out of the hardware-structure. This
makes it necessary to regard both paths separately. The bus-width of the memory’s
down-path is 8-bit in order to transfer the assumed gray scaled pixel values (range
[0, ..., 255]) to the particular sites. For the free parameter σ2 and the user defined
value γ a bit-length-representation can be chosen, which is a multiple of the 8-bit
memory hierarchy bus-width. Even 16-bit are mostly sufficient for σ2 and γ and 32-
bit are definitely sufficient for the just discussed model. The up-path of the memory

85

Edge Preserving & Noise Removing

BB Types MRF site-grid size

(number of) 64x64 128x128 256x256 512x512

sHull
i 4096 16384 65536 262144

w<i,t>
i 16384 65536 262144 1048576

wires w<i,t>8

i 131072 524288 2097152 8388608

wires w<i,t>4
i 65536 262144 1048576 4194304

wires w<i,t>2

i 32768 131072 524288 2097152

mPort<i,t>
i 16384 65536 262144 1048576

bits mPort<i,t>
i 131072 524288 2097152 8388608

kByte mPort<i,t>
i 16 64 256 1024

MGMem 1 1 1 1

HEF
i 4096 16384 65536 262144

opti 4096 16384 65536 262144

PCPAR 341 1365 5461 21845

CT System 1 1 1 1

CTGMem 1 1 1 1

ctrlPortMem
i 4096 16384 65536 262144

ctrlEF
i 4096 16384 65536 262144

ctrlOPT
i 4096 16384 65536 262144

Table 3.4: Required architectural building block resources for the Edge Preserving
& Noise Removing MRF model with N 1. The number of building blocks for each
type as well as the detailed number of wires and bits for particular building blocks
are given. Four different site-grid sizes have exemplary be used for the calculations.

hierarchy is 8-bit wide to transfer the results, which are the restored gray-values in
the range [0, ..., 255], from the particular sites and out of the hardware architecture.
This finalizes the architecture topology of the edge preserving and noise removing
MRF model.

All building blocks BBPC = {PCEF , PCOPT , PCPAR}, which represent any
kind of processing functionality within the model’s architecture are incorporated
into the so-far-established topology. The energy-functional building block is for all
sites of the site grid Ω functionally identical. Hence, Eq. 2.27 has to be implemented
in hardware. The mathematical operations are, despite the division-operators, re-
sources efficiently implementable in VLSI structures. A 16-32bit number represen-
tation (cf. discussion Section 4.4) is sufficient for all results, signals and variables.
If the architecture will use the ICM-optimization method we can prevent to use
the exp function. Should the architecture have to use a SA-optimization method
then we have to realize exp and the temperature 1/T schedule. The operator exp
is realized as look-up table with a piecewise linearization, whereas the temperature

86

Unsupervised Histogram Segmentation

schedule is realized by a simple shift operation. Obviously, this will not mimic the
logarithmic temperature decrease dictated by theory, but this approach is a good
compromise in view of hardware-area consumption. Again 16-32bit are sufficient
for all results, signals and variables. Finally, the processing block for the parameter
estimation task has to be incorporated into the architecture. Principally there are
two possibilities: Either as a single block at the root of the memory hierarchy or
as a distributed structure along the memory hierarchy. The calculation of the free
parameter is given by Eq. 2.32. It is a summing followed by a division operation;
should the term 1/n be a power of two, the division simply translates in hardware
to a shift-operation. Thus also the processing building blocks have been incorpo-
rated into the topology. In order to finalize the architecture the control-functionality
representing blocks have to be added.

The set BBCT = {CT System, CTGMem, CTPortMem, CTEF , CTOPT} of control
units is finally added to the hardware-relevant architecture in order to complete
it. At first an overall control unit, realized as time discrete finite automaton, is
added to the architecture. This control unit guides the MRF processing device
through the repeated phases of (1) data-transfer, (2) processing and (3) parameter
estimation. The control unit CTGMem of the memory hierarchy is triggered by
the system control unit and signals back to the system control when this phase is
finished. In case the wiring blocks possess a smaller bus-width as the port memory,
the data has to be transfered in several steps, which will be controlled by the port-
memory control unit CTPortMem. This module is realized as a finite automaton. The
control block for the energy-functional is realized |Ω|-times and located in each site
hull in close conjunction with the energy-functional data-path. This unit controls
the flow of data and results within the energy-functional data-path. The optimize
control unit block is also realized |Ω|-times and located within each site hull in
close conjunction with its optimize data-path. Finally the parameter estimation
control unit is either realized as a single unit at the root of the memory hierarchy,
if the parameter estimation is completely done at the root-node or realized several
times, if the parameter estimation becomes executed along the memory hierarchy.
With this we have completed the more detailed description of the massively parallel
architecture for the Edge Preserving & Noise Removing model presented in Section
2.6.1.

For the massively parallel architecture of the Edge Preserving & Noise removing
model Table 3.4 shows the number of building blocks BB, which the different grid-
sizes will have. This demonstrates the large number of elements, which are required
to compile a massively parallel architecture for this specific model. The simulation
framework (Chapter 4), as well as the VLSI design framework (Chapter 5), has to
adequately cope with this complexity of the system architecture and the complexity
of the particular elements.

3.7.2 Unsupervised Histogram Segmentation

The derivation procedure of the concrete massively parallel hardware architecture
for the unsupervised histogram segmentation model (for details see Section 2.6.2)
starts with the set BBTS = {SHulls,WN ,MPorts,MGMem} made up of topology &
structure defining building blocks. The massively parallel hardware architecture of

87

Unsupervised Histogram Segmentation

the segmentation model consists of |Ω| site hulls SHulls = {sHull
i : 1 ≤ i ≤ |Ω|}.

These particular site hulls sHulls
i are arranged as a regular grid in the plane (cf.

Figure 2.1), which establishes the first part of the architecture gantry and, at the
same time, a coarse shape of the chip floor-plane. All sites are connected among each
other by means of the neighborhood wiring WN . In the case of the segmentation
model and with respect to the given constraints of the contemplated MRF class, the
neighborhood wiring can be realized to implement neighborhood systems ranging
from the first order N 1 up to the maximum fifth order N 5. The segmentation model
operates for all these neighborhood systems, but larger neighborhood systems will
tend to lead to more homogeneous segments (see e.g. Figure A.5). Each particular
neighborhood wiring block w<·,t>8

· is further characterized by its bus-width of 8-bit,
as it has been defined to segment gray-scaled images with a gray value range of
[0, ..., 255]. Additionally useful architectural variants of the wiring blocks are real-
izations with a 1-bit, 2-bit or 4-bit width bus, in order to transfer the 8-bit datum in
8-steps, 4-steps or 2-steps, respectively. The next building blocks are the port mem-
ory blocks with each having a size 8-bit to store the incoming data of the neighbors.
Finally the global memory hierarchy block MGMem completes the topology of the
segmentation model’s architecture. This block is realized as a completely balanced
quad-tree, which is organized to render possible a memory element with the size of
the image plus the number of parameter values to be located at the quad-tree root.
Furthermore it results in the memory elements, which have the size to store values
of four sites plus the parameters on the leaves. The bus-width of the memory’s
down-path is 8-bit in order to transfer the assumed gray scaled pixel values (range
[0, ..., 255]) respectively 24bit to transfer the values (range [0, ..., 255] per channel)
of the RGB channels as well as the parameters pν and qν , which are represented by
8-bit values, too. In contrast to this the up-path of the memory hierarchy is up to
3-bit wide to encode eight different classes plus 8-bit respectively 24bit for the pixel
values, which are required to estimate the qν parameters (cf. update Eq. 2.53).
This setting is not influenced by the fact if the parameter estimation is executed
along the memory hierarchy or if it is done completely on the root of the memory
hierarchy (see Figure 3.8).

The set of processing building blocks BBPC = {PCEF , PCOPT , PCPAR} is in-
corporated into the so-far-established topology of the segmentation model’s archi-
tecture. Especially with regard to the unsupervised segmentation model, the pro-
cessing building blocks PCEF and PCOPT are combined and represented by Eq.
2.47 and Eq. 2.48. These equations contain the operators log and exp, which are
resource-intensive with respect to VLSI implementations. For this reason we suggest
to realize the operators log and exp as look-up tables with a piecewise linearization
as suggested by Vassiliadis et al. [143]. It is also suggested to realize the expression
1/T as a look-up table or alternatively by a shift-operation, which will not exactly
implement 1/T . The bit-width in this combined data-path varies from 16-bit to
32-bit. Each site hull possesses its own combined PCEF and PCOPT processing
block. Finally the processing block for the parameter estimation has to be incorpo-
rated into the architecture. There are two possibilities: Either as a single block at
the root of the memory hierarchy or as a distributed structure along the memory
hierarchy. The calculations are given by Eq. 2.51 and Eq. 2.53. For the p parameter
it is a simple summing followed by a division operation. If the term 1/n is a power of

88

Unsupervised Histogram Segmentation

BB Types MRF site-grid size

(number of) 64x64 128x128 256x256 512x512

sHull
i 4096 16384 65536 262144

w<i,t>
i 98304 393216 1572864 6291456

wires w<i,t>8

i 786432 3145728 12582912 50331648

wires w<i,t>4
i 393216 1572864 6291456 25165824

wires w<i,t>2

i 196608 786432 3145728 12582912

mPort<i,t>
i 98304 393216 1572864 6291456

bits mPort<i,t>
i 786432 3145728 12582912 50331648

kByte mPort<i,t>
i 96 384 1536 6144

MGMem 1 1 1 1

HEF
i 4096 16384 65536 262144

opti 4096 16384 65536 262144

PCPAR 341 1365 5461 21845

CT System 1 1 1 1

CTGMem 1 1 1 1

ctrlPortMem
i 4096 16384 65536 262144

ctrlEF
i 4096 16384 65536 262144

ctrlOPT
i 4096 16384 65536 262144

Table 3.5: Required architectural building block resources for the Unsupervised
Segmentation MRF model with N 5. The number of building blocks for each type
as well as the detailed number of wires and bits for particular building blocks are
given. Four different site-grid sizes have exemplary be used for the calculations.

two, the division operation simply translates in hardware to a shift-operation. The
operations for the parameter q are more involved and with respect to the division
operator rather VLSI hardware resources-intensive. Again the bit-width varies from
16-bit to 32-bit.

The set BBCT = {CT System, CTGMem, CTPortMem, CTEF , CTOPT} of control
units is finally incorporated into the architecture to complete it. At first an overall
control unit, realized as time-discrete finite automaton, is added to the architecture.
This unit mainly guides the MRF processing device through the repeated phases of
data-transfer, processing and parameter estimation. The control unit of the memory
hierarchy is triggered by the system control unit and signals back to the system
control when this phase is finished. If the wiring blocks possess a smaller bus-width
as the port memory, then the data has to be transfered in several steps, which will
be controlled by the port-memory control unit. This module becomes realized as
a finite automaton. The energy-functional control block is realized |Ω|-times and
located in each site hull together with the energy-functional data-path. Finally

89

Unsupervised Histogram Segmentation

the optimization control unit is either realized as a single unit, if the parameter
estimation is finished, at the root of the memory hierarchy or realized several times, if
the parameter estimation is executed along the memory hierarchy. Consequently we
have completed the more detailed description of the massively parallel architecture
for the unsupervised segmentation model presented in Section 2.6.2.

Table 3.5 summarizes the number of building blocks BB, which are required for
different grid-sizes of the massively parallel architecture. The particular table val-
ues refer to the Unsupervised Segmentation model with a fifth order neighborhood
system N 5. This table clearly illustrates the tremendous number of building block
elements, which are required to compile a massively parallel architecture for the
unsupervised segmentation model. Concurrently the table values demonstrate that
larger neighborhood system become quite difficult to realize in semiconductor tech-
nologies, due to the number of wires and port memories. The simulation framework
(Chapter 4) as well as the VLSI design framework (Chapter 5) have to adequately
cope with this overall complexity of the system architecture and the complexity of
the particular elements.

3.8 Summary

In this chapter we have introduced a novel massively parallel system-architecture
template for a large class of statistical image processing models - including the con-
templated MRF class of Section 2.5 and Definition 2.10 -, which are formulated on
regular Markovian site grids with a spatially limited neighborhood support. The
Markov Random Field system-architecture template has been conceptualized and
specifically adjusted to simultaneously fulfill two constraints. At first the constraint
of massively parallel processing in order to put real-time processing capabilities of
MRFs into practice and secondly the constraint of semiconductor technology inde-
pendent large-scale integration to realize physically compact electronic MRF pro-
cessing systems in different purely digital semiconductor design technologies.

The complete derivation and definition process of the system-architecture tem-
plate was exclusively achieved within the theoretical scope of Markov Random Field
theory. At first we have therefore extracted from and within the scope of MRF-
theory universal constituents, which are characterized by the feature that they are
architecturally uncommitted, i.e. the universal constituents are free from inherent
implementation and VLSI assumptions. Exactly this architecturally uncommitted
originator for the derivation and definition of the system-architecture template has
been described in Section 3.1.

Based on the universal constituents in Section 3.2 we have systematically and
formally derived the different building blocks of the system-architecture template
with respect to our two driving-on constraints of parallel processing and large scale
integration. The building blocks were systematically categorized either as topology &
structure building blocks, processing building blocks or as control building blocks in
order to structure and guide the compilation process of concrete MRF architectures
and also to simplify large-scale integration issues. To finalize the description of each
building block, we have added a discussion (see Section 3.3) on VLSI issues and
strategies to adequately deal with them.

90

Unsupervised Histogram Segmentation

In Section 3.4 we have introduced a cycle scheme template for the system-
architecture template, which defines the sequence of operations the MRF architec-
ture has to pass through to complete a calculation run. The cycle scheme template
represents a valid but not finally optimized time-discrete cycle scheme.

Section 3.5 has presented the first part of the thesis part relation, which formally
establishes the links between the different thesis parts to each other and especially
the connections to the fundamentals of Markov Random Field theory. The relation
represents the condensed content of this thesis.

An essential topic of massively parallel Markov Random Field VLSI hardware
architectures has been discussed in Section 3.6. In this section we have systematically
analyzed three system-settings, where image sizes larger than the site-grid of the
MRF architecture have to be processed. All three system settings can be covered by
massively parallel MRF architectures composed of the system-architecture template.

In the last Section 3.7 we have successfully used our proposed system-architecture
template in order to define the massively parallel architectures of the two concrete
and industrially relevant MRF image-processing models (cf. Section 2.6). These re-
sults underpin the features and the applicability of the proposed system-architecture
template for the contemplated class of Markov Random Field based image- and sig-
nal processing systems. Additional results in terms of hardware-relevant simulations
(cf. Section 4.4) and prototypical VLSI implementations (cf. Section 5.5) support
the features of the proposed system-architecture template.

3.9 Bibliographical Comments

Due to the novelty of the introduced massively parallel system-architecture template
and the applied derivation approach - the rigorous derivation of building blocks
from the architecturally uncommitted universal-constituents, which by their own
have been defined based on the fundamentals of MRF theory as well as the focus
on purely digital semiconductor design technologies - no directly related additional
literature is currently available. Massively parallel hardware architectures, which
are based on the processing principles of MRFs or CNNs are almost exclusively
proposed in publications of the CNN or Neural Network community [75] [76] [77]
[78] [45]. The CNN community investigates a special architectural setting, in which
the sensing elements and the processing structures form an inseparable and spa-
tially closely arranged unit [74] [79], realized in analog design technologies. By far
the largest number of proposed architectures is exclusively defined for one image
processing model, one specific analog technology and one system-environment [131]
[132] [124]. As to the authors best knowledge, until now no systematically derivation
of an system-architecture template for purely digital semiconductor implementation
technologies has been discussed within contemporary literature.

91

Unsupervised Histogram Segmentation

92

Chapter 4

MRF Simulation Framework

One of the very first steps toward a VLSI realization of massively parallel MRF
devices, which are based on the introduced architecture template (Chapter 3), is
simulating the complete hardware architecture. Only detailed simulations offer the
option to systematically study architecturally, timing and numerically caused effects,
which otherwise can not be determined analytically. Without hardware-relevant
simulations of the complete architecture unpredictable error-sources would remain,
which would never justify a costly VLSI implementation of a MRF device. The
mask costs of modern semiconductor-technologies alone are in the range of several
million dollars. But up to now neither a systematic approach nor a flexible simulation
environment is available to allow for hardware-relevant simulations of complete MRF
devices.

In this chapter we introduce a novel simulation framework for massively paral-
lel Markov Random Field based processing devices, which is specifically tuned to
support the distinct hardware-relevant simulation requirements these MRF archi-
tectures pose. Our proposed simulation framework

• offers the unique option to systematically study MRF models with respect
to the combination of numerical, architectural, timing and massively parallel
processing constraints and thus to receive novel insights into MRF models and
their hardware architectures.

• overcomes the existing hardware-relevant simulation deficit of MRF architec-
tures and thus paves the way for massively parallel VLSI implementations of
MRFs.

The reasons for the hardware-relevant simulation deficit of MRFs are diverse.
It is state-of-the-art to model, simulate and synthesize digital hardware with one
of the IEEE-standardized hardware description languages VHDL or Verilog. But
both languages suffer from the profound limitation that they are not intended to
simulate complete systems. Rather these hardware description languages are mainly
dedicated to logic simulation of particular modules; a fact that also has not been
changed with recently revisions of the standards. Additionally, the simulation-run
times are tremendous and quickly reach the order of magnitude of days and even
weeks. For large distributed systems, as represented by massively parallel MRF

93

MRF SIMULATION FRAMEWORK

architectures, already the simulation set-up fails with a fatal error due to the over-
all complexity. In summary VHDL and Verilog are not suitable to offer simulation
capabilities for complete massively parallel MRF architectures of an application rel-
evant size. Simulation environments [128] [127] for large distributed systems are
almost exclusively focused and tuned on communication networks and thus are not
suitable for hardware relevant simulation settings. Likewise specialized image pro-
cessing environments fail in supporting distributed processing features as well as
hardware relevant features right from the outset.

An appropriate hardware-relevant simulation and modeling environment for mas-
sively parallel MRF architectures has to provide the following key-capabilities:

1. complexity handling of complete MRF architectures, owning a realistic MRF
grid size,

2. reproduction of massively parallel processing dynamics,

3. systematic support for architecture modeling with a minimum of error-prone
hand coding.

Our proposed MRF simulation framework combines the previously mentioned
requirements, which are all necessary to simulate and investigate our regarded class
of MRF models and their architectures within one single environment. The required
simulation capabilities are put into practice by means of reusable and parameteriz-
able simulation modules, disposed with respect to similar functionality and collected
within different module libraries. A specific MRF simulation model becomes real-
ized by the Simulation-Model Generator module, which automatically compiles the
simulation model based on user-defined specifications. The automated generation
process of simulation models is supported by inherent self-generating and referenc-
ing capabilities of the library modules. In order to prevent a time-consuming and
error-prone development of an event-driven simulation-kernel from scratch, we de-
cided to build up our framework on the SystemC [81] class hierarchy, its event-driven
simulation kernel and its support for hardware-relevant modeling.

The structure and arrangement of the proposed MRF simulation framework will
be introduced in Section 4.1 directly following. Furthermore, this introductory sec-
tion will provide a short synopsis of the most important framework parts. In the
subsequent Section 4.2 the different parts of the MRF simulation framework will be
exhaustively explained and illustrated by the corresponding simulation prototypes,
which cover the common structure and functionality of the particular simulation
modules. Section 4.3 presents the methodology to automatically construct respec-
tively generate the simulation model of the intended MRF and the overall simulation
environment. Section 4.4 exhaustively presents selected simulation results to under-
pin the capabilities of the proposed simulation framework. Additionally, this section
summarizes the novel insight into the combination of MRF models and their archi-
tectures yielded by our proposed simulation framework. Section 4.5 comments on
implementation issues of the MRF simulation framework version so far realized.
Finally, Section 4.6 discusses the extension of the relation diagram.

94

MRF SIMULATION FRAMEWORK

4.1 Simulation Framework Overview

The novel hardware relevant simulation framework is conceptualized as a modular
and open software system, built up on the event-driven SystemC [81] simulation
kernel. Figure 4.1 diagrammatically depicts the overall structure of the novel simu-
lation framework and its contributing components. All components of the proposed
simulation framework are functionally complete standalone units and thus from the
first neither linked to nor interrelated with each other. The procedure of linking,
relating and parameterizing the different simulation framework components in or-
der to form a coherent simulation-model for a specific MRF architecture is finally
realized by the central Simulation-Model Generator module. Consequently, this

Inter Cluster Wiring
Modules

Energy Functional
Modules

Modules
Optimization Method

Frame Cell
Modules

Display & Analysis

Monitor

Data Storing
System

GUI
Control

Model

Simulation−Model Modules
Cell & Cell−Cluster

Directives, Definitions

Generator

Framer
Modules

Interface
Modules

a

b

1

2
d

c

Figure 4.1: Arrangement and components of the proposed Simulation Framework
for massively parallel Markov Random Field based image processing devices.

generator component represents a central instance within the simulation framework
during the MRF simulation-model generation and set-up process. However, the cen-
tral simulation-model generator does not affect or contribute to the simulation-run
itself. Thus the overall task of simulating massively parallel hardware architec-
tures for MRF based signal- and image processing models divides into two steps:
In the first step the simulation-model of a specific MRF architecture is generated
with respect to predefined specifications, whereas in the second step the generated
simulation-model is executed. These two steps of a particular MRF simulation also
have a correspondence within the proposed simulation framework illustrated by the
dotted line in the schematic presentation of Figure 4.1, which separates the model’s
generation part from the simulating part.

Essentially, the two main steps and the limited number of additional sub-steps

95

MRF SIMULATION FRAMEWORK

execute the following actions, in order to generate and execute a MRF specific
simulation model. Step 1 analyzes general directives and user-defined parameters
before the central module, named Simulation-Model Generator, compiles the MRF
specific simulation model. Step 2 executes the afore generated model, whereas the
simulation-run is user-controlled by means of a GUI. In additional to that, any kind
of data or provisional results of the model can be displayed or simultaneously stored
for later off-line analysis. In order to complete step 1 and to produce a correct
simulation-model, the user has to execute two sub-steps by hand. Firstly, in sub-
step a, the user has to provide and adjust basic parameters, and secondly in sub-step
b a special module has to be written to allow the automatic generation process of
the simulation-model to be executed. To realize step 2 the user eventually has to
modify some routines in sub-step c as well as sub-step d to display and store the
relevant data of the specific simulation-run.

The modular and open character of the proposed simulation framework for
massively parallel MRF-architectures implies vital advantages with respect to the
simulation-model’s generation process, the simulation itself and any further frame-
work modifications respectively extensions. Adding new modules to the simulation
framework or modifying existing modules is systematically supported by means of
module-libraries, which comprise functionally similar modules. Furthermore, the
separated simulation-model generation process significantly supports the extensibil-
ity of the framework, as module-libraries and final simulation-models are decoupled
with the help of this arrangement. Additionally, the execution of the model itself
represents a separate part of the simulation framework. Thus all three main parts
of the simulation framework, the module-libraries, the simulation-model generation
process and the simulation itself, do not form a monolithic and heavily interdepen-
dent unit, which is complicated to be modified or extended, but rather represents
an open and upgradeable simulation environment with loosely connected parts. All
these feature have been regarded during the conception-phase and the implementa-
tion of the simulation framework. Thus, the introduced simulation framework from
the outset is not exclusively limited to the class of MRFs, which has been defined in
Section 2.5, respectively Definition 2.10. Rather, the simulation framework is also
usable for other classes of MRFs, if the necessary modifications were added to the
framework.

Up to now a rich set of module-libraries has been implemented and integrated
together with the model-generator module and the SystemC simulation kernel [81] in
order to establish a functionally complete simulation framework carrying the above
mentioned features and module arrangements. In the following we will shortly intro-
duce and describe each single part or module of the simulation framework exactly in
the chronological order, which is used during simulation set-up and execution. This
concludes the overview of the proposed simulation framework for massively paral-
lel architectures of MRF based signal- and image processing models. The set-up
procedure and the features of self-generating simulation-models will be exhaustively
explained and discussed in Section 4.3; right after the formal mapping of architec-
tural building blocks to their simulation modules has been described. The modules
each library can principally represent are illustrated by means of a prototype. Based
on these prototypes we show in Section 4.2 that the framework is powerful enough
to represent the derived MRF architecture-template for simulation.

96

MRF SIMULATION FRAMEWORK

Overview Framework Modules

In the following we will shortly introduce and describe the central features of each
type of simulation module exactly in the chronological order, which is used during
simulation set-up and execution. This discussion concludes the overview of the
proposed simulation framework for massively parallel architectures of MRF based
signal- and image processing models.

Additionally, this overview prepares for the discussion of Section 4.2 where the
concept of simulation Prototypes is used to verify the powerfulness of the proposed
framework to represent the architecture-template for simulation.

Cell & Cell-Cluster Modules

The collection of Cell and Cell-Cluster modules comprises differently sized simula-
tion models, which represent the cell processing units within the MRF site-grid. The
single cell models as well as the cell-cluster models are equipped with trigger ports,
the ports of the neighborhood system and a mechanism to automatically incorpo-
rate inter-cluster wiring modules in order to wire the cell components of the cluster.
Furthermore each particular simulation module possesses specific parts, which will
be exclusively used during the generation respectively self-expansion (see Section
4.3.2) process of the complete MRF simulation model. One of these specific module
parts realizes the automatic embedding of sub-cluster modules in the corresponding
parent-module. Thus, larger cell-clusters automatically fill them with smaller cell-
clusters until finally only particular cells will be embedded. Another module part,
which will not be used during simulation, automatically connects the ports of the
cell-cluster modules to the inter-cluster wiring module in order to establish a correct
connection scheme. Due to the recursive self-expanding scheme, the numbering of
the particular cells does not correspond to a standard column by row numbering.
Thus it is not possible to uniquely address the top most left cell number 1 or the
bottom most right cell number n = |Ω| in the MRF grid. Hence each cell-cluster
possesses routines, which re-number the cells to form a standard column by row
numbering.

Inter-Cluster Wiring Modules

The Inter-Cluster Wiring modules are a collection of parameterizable models, which
wire particular cells or cell-clusters among each other. These modules form together
with the cells and cell-clusters the topology gantry of MRF simulation models, which
are covered by the MRF-class of Definition 2.10. Consequently, the wiring modules
in principle support neighborhood systems of up to an order of five. Due to the
tremendous usage of memory and processing resources of larger neighborhood sys-
tems, we often used fully-modeled second order neighborhood systems and pseudo-
wirings with direct data access for third to fifth order wirings.

Frame-Cell Modules

The Frame-Cell modules represent supporting simulation structures, which encap-
sulate the complete cell-grid and ensure that cells with an incomplete neighborhood

97

MRF SIMULATION FRAMEWORK

system receive predefined signals at the defect neighborhood positions. Furthermore
the encapsulation into the frame-cell generates a single object, which can easily be
referenced to and addressed by other components, especially by the Simulation-
Model Generator of the simulation framework.

Framer Modules

The Framer modules represent supporting structures within the simulation frame-
work that collect all other modules of a specific MRF simulation model to combine
them in one object. This ensures that all data-interfaces and interrelations of the
different simulation modules are well-defined and that the expanding of the simula-
tion model can systematically take place.

Energy Functional Modules

The block of Energy Functional modules comprises a collection of more elementary
functions, which can be used by different MRF models as well as very specific func-
tions, which are tuned for just one specific MRF model. Consequently, a complete
energy functional of a specific MRF model can be compiled by these functions and,
if necessary, additional functions can easily be added to this collection. Each compo-
nent of this energy functional collection is seamless pluggable into the cell modules
to form an operationally correct cell processing unit.

Optimization Method Modules

This library of simulation modules comprises different functionalities to form op-
timization methods, which have been described in Section 2.3. We have decided
to realize sub-functionalities instead of complete optimization methods, since this
approach offers a greater flexibility and adaptability without significantly affecting
the integration effort of the user. Furthermore it is easier to realize flexible and
adaptable sub-functionalities compared to a complete optimization method.

Interface Modules

This collection of modules within the simulation framework comprises blocks, that
are required to establish standard data-interfaces with the control GUI as well as
with the display & analysis monitor and the data storage system. Mechanisms to
systematically incorporate the Matlab engine into the simulation framework are also
be included.

Simulation-Model Generator

The Simulation-Model Generator block is the central unit within the simulation
framework, which is also illustrated by its central emplacement in Figure 4.1. This
specific block of the simulation framework establishes the connection between the
other components and module libraries, which are from the outset independent from
each other. Consequently, in a first step this block integrates the different module
components and put them into relation with each other in order to form the condition
for a coherent MRF simulation model. During an additional step the simulation-

98

MRF SIMULATION FRAMEWORK

model generator block triggers the expansion of the full MRF simulation model by
executing the self-expanding features of the different modules.

Control GUI

The Control GUI of the proposed simulation framework represents a well-defined
man-machine interface in order to guide the user through the different set-up steps
and the actual simulation. Consecutive set-up steps are only unlocked for the user
if the previous step was successfully and error-free executed. This strict user guid-
ance prevents misleading simulation set-ups and simultaneously allows it to identify
problems as early as possible during the simulation run. Consequently, operating er-
rors, which otherwise might have falsified the simulation results, are systematically
addressed by the control GUI. Obviously, a GUI also makes the overall handling
more comfortable.

Display & Analysis Monitor

The block Display & Analysis Monitor comprises an interface and various mecha-
nisms to visualize any kind of data the simulation models hold and generate during
the actual simulation-run. Naturally, this block is closely linked to the Data Stor-
age System to save these data for later off-line analysis. One of the elementary
visualization tasks is displaying the input data, which has been transfered to the
simulation model as well as displaying the results after each processing iteration.
These elementary visual information is already sufficient to allow the experienced
user to identify problems with respect to the model, the optimization schemes or
the simulation framework. Additionally, the displayed internal signals and data of
the model reveal further valuable insights with respect to the processing dynamics,
numerical sensitivity and quantitative convergence properties.

Data Storage System

The Data Storage System is a collection of user-defined routines, which process the
data and results of the simulation run. It is currently possible to save the raw data
as well as different image formats. It has been shown that a Matlab interface and
the integration of the complete Matlab engine is a comfortable and highly flexible
solution for the data storage system and the processing of the generated data. But
the Matlab engine approach has a clear drawback caused by its inferior processing
speed and its tremendous memory-usage. Consequently, the complete simulation
is slowed-down, in case Matlab is excessively used. Hence, it is advantageous to
only store raw-data and have an off-line process after the complete simulation-run
is finished.

Based on the architectural building blocks BBSystem, which have been derived in
Section 3.2 and the previously described overall structure of the simulation frame-
work, we will define in the following sections a set of simulation modules for the
set of architectural building blocks BBSystem. Thus the simulation framework can
both represent and simulate the massively parallel MRF architectures compilable by
BBSystem blocks. The types of simulation modules are organized along the organi-

99

Topology & Structure Simulation Modules

zation scheme, which has been introduced in Chapter 3. Consequently, we discrimi-
nate between topology & structure representing simulation modules STS, processing
functionality representing simulation modules SPC and finally control functionality
representing simulation modules SCT .

This specific organization scheme systematically structures the compiling of
MRF simulation models and simplifies the extension of the corresponding collections
of simulation modules in order to realize and study different MRF model/architecture
combinations. Furthermore the strict separation of the different types of simulation
modules supports the formal verification that the simulation modules can represent
the architectural building blocks for simulation.

4.2 Simulation Modules

Next to the different core simulation modules that comprise the processing cells, the
cell wiring, the energy-functionals, the optimization methods the proposed simula-
tion framework contains additional support-modules. All these different collections
of simulation modules together form the operationally approved framework for mas-
sively parallel architectures, which are based on the principles of Markov Random
Fields.

4.2.1 Supporting Modules

The support-modules are indispensable in order to coordinate the set-up process of
the specific simulation model as well as the simulation-run itself. Without these
supporting simulation modules it becomes difficult to form a flexible and coher-
ent simulation environment for massively parallel and MRF-based image processing
devices. The proposed simulation framework (cf. Figure 4.1) possesses the fol-
lowing collections of support-modules: (1) Interface Modules, (2) Framer Modules,
(3) Frame-Cell Modules and the (4) Control GUI module. Each of these module
collections has previously been described and shortly commented on regarding its
functionality. We forgo to further detail the description of these supporting mod-
ules, because they do not represent any essential part of the proposed simulation
framework.

4.2.2 Topology & Structure Simulation Modules

In the first category of the organization scheme simulation modules STS are sum-
marized, which model topology & structure defining architectural building blocks
BBTS. There does not exists a strict one-to-one mapping between the particular
members of the two sets STS and BBTS. Consequently, several architectural build-
ing blocks from the set BBTS are simultaneously modeled by one simulation module
taken from the set STS . That is the three topology & structure representing types of
architectural building blocks, SHulls, MPorts and MGMem are modeled by simulation
modules of S

C . In contrast to that the wiring building blocks WN are represented
by distinct simulation modules of S

W .
The set of topology & structure representing simulation modules will be denoted

by STS in the sequel. This set comprises the sets of simulation modules S
C and S

W ,

100

Topology & Structure Simulation Modules

and reads as follows:

Definition 4.1 (Topology & Structure Modules STS)
The set STS of topology & structure representing simulation modules reads

STS = {SC , SW} (4.1)

with

• S
C = {cS

z , cc
S
y : |z|, |y| � 1}; cS

· denoting simulation modules of single cells and
ccS

· denoting simulation modules of cell-cluster. 1

• S
W = {wS

u : |u| � 1}, representing the wiring simulation modules, which
model the architectural building blocks WN .

The decision to model the building block types SHulls, MPorts and MGMem to-
gether is justified by the following unchangeable constraints and arguments: (1) The
simulation module for the site hulls SHulls contains the ports of the neighborhood
system in order to provide a well-defined communication to the outside as well as
to the inside of the site hull. The signals on the ports can directly be taken and
stored into port memory variables located inside the side hull. An additional en-
capsulation of the port memory variables into a distinct simulation module would
generate ports - input- as well as output ports - for this module and wires between
the ports of the site hull and the port memory model. All together the simulation
module would become more complex without offering further capabilities to investi-
gate the complete massively parallel MRF processing device. (2) The memory usage
and the processing time for executing the simulation would increase by a separate
modeling of SHulls and MPorts without causing any advantage for the particular
simulation as well as for the overall simulation framework. (3) Furthermore, the
functional and hardware-relevant representation of a combined SHulls and MPorts

model is equal to that of a separated SHulls and MPorts simulation model. (4)
The globally distributed memory hierarchy block MGMem also becomes incorpo-
rated into the simulation modules S

C , because S
C contains agglomerations of cells

into which the corresponding parts of MGMem are seamlessly integrated. Again,
this simplifies the structure of the simulation model, improves the overall memory-
and processing-time-usage but does not affect the functional and hardware-relevant
equivalence between a separated and combined model.

The set STS of simulation modules represents the most basic part of modules
within the simulation framework, as this type of modules determine the fundamen-
tals for compiling the architecture gantry of massively parallel MRF-based process-
ing systems. All other simulation modules become plugged into such a simulation
module later on. The pooling of topology-relevant building blocks in the two sets
S

C and S
W , as well as the pooling of several building blocks in one single type

of simulation module (cf. Definition 4.1) systematically structures the compilation
of larger MRF simulation models and interrelates the corresponding parts, which
structurally belong together. This creates the fundamental conditions for the self-
generating capabilities of the MRF models.

1The term cell is tightly associated with the terms site and sHull, but the particular objects are
not identical. Hence the term cell was chosen to clearly separate the objects during the discussion.

101

Topology & Structure Simulation Modules

The simulation prototypes, which will be introduced directly following are com-
posed of three parts. At first a STRUCTURE part, which defines the basic struc-
tural components. Secondly, a INIT RULES part, which conducts all kinds of
initialization and thirdly, a FUNCTIONALITY part, which realizes various cal-
culations and actions executed during the MRF model set-up procedure and during
the simulation itself. All operational simulation modules of the framework are de-
rived from their corresponding prototypes and hence possess an identical structure.

The prototype of one single cell simulation module as well as the prototype of a
cell-cluster module, which will be proved to realize the architectural building blocks
of SHulls,MPorts and MGMem are depicted in Prototype 4.1 and Prototype 4.2.

Topology & Structure Prototypes - Single Cell

The structure part of Prototype 4.1 for single cell modules comprises a list of
TRIGGER signals, which start and stop particular actions. Additionally, the struc-
ture part contains a WATCH PORT list, which allows it to connect internal signals
to these ports and observe them from outside. It further contains the COM PORT

Simulation Prototype 4.1 Single Cell Modules
1: BEGIN STRUCTURE
2: TRIGGER< a, b, ... >
3: WATCH PORT< A,B, ... >
4: COM PORT< N 1,N 2,N 3,N 4,N 5 >
5: PORT MEM< N 1,N 2,N 3,N 4,N 5 >
6: INTERNAL VAR< α, β, ... >
7: END STRUCTURE
8: ——————————–
9: BEGIN INIT RULES

10: CALL MODULE(CT S

k)
11: CONNECT< (a, FUNC•), (b, FUNC•), ... > // • = 1, 2, ...
12: INIT VAR< α(V alue), β(V alue), ... >
13: GENERATE MODULE< EF S

i,k >
14: END INIT RULES
15: ——————————–
16: BEGIN FUNCTIONALITY
17: FUNC1: SyncReset Behavior
18: FUNC2: AsyncReset Behavior
19: FUNC3: StartInit Behavior
20: FUNC4: CALL MODULE(EF S

i,k)
21: END FUNCTIONALITY

list, which defines the ports for the neighborhood wiring and the PORT MEM
list to store the incoming data from the neighboring sites. Finally the structure
part of Prototype 4.1 possess an INTERNAL V AR list for various support vari-
ables and constants. Within the initialization part (INIT RULES) the triggers are
equipped with specific rules and conditions and in the following will be connected
with functions of the FUNCTIONALITY part. Thus, specific functional parts

102

Topology & Structure Simulation Modules

are executed if the conditions of a trigger are fulfilled. Furthermore, the variables
become assigned with their values in the initialize part. In the functionality part
all routines and calculations are collected, which are executed during the simulation
run as soon as the corresponding trigger conditions are fulfilled. The prototype con-
tains several functionalities; some of them are generic and thus independent with
respect to the specific MRF model under consideration. The functionalities for the
SyncReset Behavior, AsyncReset Behavior and the StartInit Behavior behav-
ior are identical to all cell modules. These functions realize behavior, which takes
place during a synchronous rest, during an asynchronous rest and during the start
phase of the simulation. All together these behaviors guarantee that the simulation
modules of this type are set in a well-defined and controlled overall simulation state.
In contrast to the above mentioned functionalities the module call of the energy
functional depends on the concrete MRF model and varies thus.

The following proposition establishes the formal guarantee that all simulation
modules of single cells are qualified representations of specific architectural building
blocks for simulation. We show that Prototype 4.1 for single cells is an admissible
representation of particular building blocks A ⊂ BBTS. Hence it follows that all
operational simulation modules of single cells, which are derive from this prototype
are qualified representations of architectural building blocks for simulation, too.

Proposition 4.1 (Admissible ⊂ BBTS Modeling)
The Prototype 4.1 for single cell modules is an admissible representation of building
blocks A ⊂ BBTS for simulation and hence all the operational simulation modules
cz ∈ S

C derived from it.

Proof: The proof is subdivided into two part. At first we show that Pro-
totype 4.1 represents specific topology & structure defining building blocks and
hence all the modules derived from it, i.e. Prototype 4.1 models−→ A ⊂ BBTS ⇒
∃cS

· ∈ S
C : cS

·
models−→ A ⊂ BBTS ⇒ ∀cS

· ∈ S
C : cS

·
models−→ A ⊂ BBTS. Secondly,

we show that Prototype 4.1 did not model a /∈ BBTS , which eventually change the
represented architecture.
(1) The Prototype itself establishes a distinct and closed object with a COM PORT

structure for N 1 − N 5. Hence it is justified to say Prototype 4.1 models−→ sHull
· ∈

SHulls. For operational modules it follows ∃cS
· ∈ S

C : cS
·

models−→ sHull
· ∈ SHulls ⊂

BBTS ⇒ ∀cS
· ∈ S

C : cS
·

models−→ sHull
· ∈ SHulls ⊂ BBTS. Additionally, the structure

PORT MEM < ... > defines that Prototype 4.1 models−→ {mPort<·,t>x
· } ∈ MPorts. It

follows ∃cS
· ∈ S

C : cS
·

models−→ {mPort<·,t>x
· } ∈ WN ⊂ BBTS ⇒ ∀cS

· ∈ S
C : cS

·
models−→

{mPort<·,t>x
· } ∈ WN ⊂ BBTS .

(2) Only the elements of the STRUCTURE part contribute to the representation of
the topology for simulation. It remains to clarify that WATCH PORT /∈ BBTS ∧
TRIGGER /∈ BBTS ∧ INTERNAL V AR /∈ BBTS do not change the represented
architecture and thus the simulation outcome. TRIGGER is a concept to guide the
execution of specific functionalities and does not contribute to or change the repre-
sented structure of the architecture. WATCH PORT and INTERNAL V AR are
passive structures, which do not alter or enhance the representation of A ⊂ BBTS

for simulation. Thus none of these elements add components a /∈ BBTS .

103

Topology & Structure Simulation Modules

Putting (1) and (2) together, we have: Prototype 4.1 models−→ sHull
· ∧ {mPort<·,t>x

· } ⊂
BBTS ⇒ ∃cS

z ∈ S
C : cS

·
models−→ sHull

· ∧ {mPort<·,t>x
· } ⊂ BBTS ⇒ ∀cS

z ∈ S
C : cS

·
models−→

sHull
· ∧ {mPort<·,t>x

· } ⊂ BBTS . This proves the Proposition.

�

Topology & Structure Prototypes - Cell-Cluster

The Prototype 4.2 for cell-cluster differs in many aspects with respect to the three
functional parts compared to the single cell prototype. Because a cell-cluster en-
capsulates several cell modules or sub-cluster modules, it requires o-times the links
for each neighborhood system, with o representing the number of cells respectively
sub-cluster within the particular cell-cluster. Hence, Prototype 4.2 possesses a

Simulation Prototype 4.2 Cell-Cluster Modules
1: BEGIN STRUCTURE
2: TRIGGER< a, b, ... >
3: WATCH PORT< A,B, ... >
4: LINK< {N 1}×Cells, ..., {N 5}×Cells, >
5: MEM HIERARCHY< MGMem

Parts >
6: END STRUCTURE
7: ——————————–
8: BEGIN INIT RULES
9: GENERATE< CELLS ∨ CELL CLUSTERS >

10: SORT< w.r.t. to overall CELL GRID Ω >
11: GENERATE< WIRE MODULES >
12: WIRE< CELLS ∨ CELL CLUSTERS >
13: END INIT RULES
14: ——————————–
15: BEGIN FUNCTIONALITY
16: EMPTY
17: END FUNCTIONALITY

LINK < ... > definition compared to the COM PORT < ... > definition of the
single cell prototype. Furthermore this prototype implements parts of the global
memory hierarchy with MEM HIERARCHY < MGMem

Parts >, which is completely
realized by putting several cell-cluster together. Within the initialization rule part
the following actions are performed: (1) The corresponding cells or sub-cell-cluster
are generated. (2) The labeling of the generated cells or cell-sub-cluster is adjusted
to match with the labeling of a regular two dimensional grid, i.e. the top leftmost
cell has label one and the bottom rightmost cell has label |Ω|. (3) The components
of the prototype are finally wired to form a complete and correct part of the Ω
cell grid. These actions of the cell-cluster prototype are of vital importance for the
self-generating capabilities. We will explain and further discuss this in Section 4.3.2.
The functionality part of cell-cluster prototype is empty, because all functionality is
exclusively located within the cells.

Proposition 4.2 states the formal guarantee that all simulation modules of the
cell-cluster type are qualified representations of architectural building blocks for sim-

104

Topology & Structure Simulation Modules

ulation. The proposition proves that Prototype 4.2 is an admissible representation
of a particular part b∗ of a building block b ∈ BBTS , i.e. b∗ ⊂ b ∈ BBTS . From this
fact follows that all operational simulation modules of cell-cluster, which are derive
from this prototype are qualified representations of architectural building blocks for
simulation.

Proposition 4.2 (Admissible ⊂ BBTS Modeling)
The Prototype 4.2 for cell-cluster modules is an admissible representation of building
block parts b∗ ⊂ b ∈ BBTS for simulation and hence all operational simulation
modules ccS

y ∈ S
C derived from it.

Proof: First, we show that Prototype 4.2 models topology & structure defining
building blocks, i.e. Prototype 4.2 models−→ (B ⊃ A) ⊂ BBTS ⇒ ∃ccS

· ∈ S
C : ccS

·
models−→

(B ⊃ A) ⊂ BBTS ⇒ ∀ccS
· ∈ S

C : ccS
·

models−→ (B ⊃ A) ⊂ BBTS. Secondly, we show
that Prototype 4.2 models no additional topology & structure defining components
b /∈ BBTS .
(1) The Prototype of the cell-cluster incorporates the structure for a specific part
MGMem

Part of the global memory hierarchy MGMem =
⋃

Parts MGMem
Part . Hence, it holds:

Prototype 4.2 models−→ (MGMem
Part ⊂ MGMem) ∈ BBTS. For operational modules derived

from the prototype it holds ∃ccS
· ∈ S

C : ccS
·

models−→ (MGMem
Part ⊂ MGMem) ∈ BBTS ⇒

∀ccS
· ∈ S

C : ccS
·

models−→ (MGMem
Part ⊂ MGMem) ∈ BBTS . Furthermore, the cell cluster

prototype either encapsulates several cell modules or other cell cluster, i.e. Prototype
4.2 models−→

[(
sHull
· ∧ {mPort<·,t>x

· }
)
∨ {cc·}

]
∈ BBTS .

(2) Only the elements of the STRUCTURE part contribute to the topology of the
cell module. The encapsulated cell modules have been proved in Lemma 4.1 not to
add components a /∈ BBTS . It remains to clarify that WATCH PORT /∈ BBTS ∧
TRIGGER /∈ BBTS ∧ LINK /∈ BBTS do not change the represented architecture
and thus the simulation outcome. WATCH PORT , LINK and TRIGGER are
passive structures, which do not alter or enhance the simulation representation of
(B ⊃ A) ⊂ BBTS . Hence none of these elements add components b /∈ BBTS .
Putting (1) and (2) together we receive: Prototype 4.2 models−→ MGMem

Part ∧[(
sHull
· ∧ {mPort<·,t>x

· }
)
∨ {cc·}

]
∈ BBTS ⇒ ∃ccS

· ∈ S
C : ccS

·
models−→ MGMem

Part ∧
[{c·} ∨ {cc·}] ∈ BBTS ⇒ ∀ccS

· ∈ S
C : ccS

·
models−→ MGMem

Part ∧ [{c·} ∨ {cc·}] ∈ BBTS .
This proves the Proposition.

�

Remark 4.1 ((B ⊃ A) ⊂ BBTS)

1. The statement (B ⊃ A) ⊂ BBTS follows directly from the fact that cell-cluster
modules either incorporate cell-modules or other cell-cluster modules. Conse-
quently, if cell-modules are embedded in a cell-cluster also their representation
is incorporated in the particular cell-cluster and hence (B ⊃ A) ⊂ BBTS holds.

105

Topology & Structure Simulation Modules

A cell cluster module can generate and instantiate other cell cluster modules (cf.
INIT RULES of Prototype 4.2) in order to realize the global memory hierarchy
as well as to implement a recursive method for the automatic expansion of the site-
grid. With respect to the recursive process the questions comes up, whether the
total number t of cell cluster modules a MRF simulation model is composed of is
bounded from above. The following theorem states an upper bound.

Theorem 4.1 (Upper bound)
The number t of particular cell-cluster modules within a complete MRF simulation
model of size |Ω| is bounded from above by

t ≤
2i≤|Ω|∑

i=1

⌊(|Ω|
2i

)⌋
. (4.2)

Constraints:

1. Site grids in accordance with Definition 2.10, i.e. regular and equally spaced
two-dimensional site grids (see Figure 2.1).

2. Single cell modules as well as single cell cluster can not encapsulated into
another cell cluster, again.

3. Always two cells respectively cell cluster are merged into a new cell cluster.
Except Condition 2 is violated then moe than two cell cluster have to be
merged into a new cell cluster.

�

We continue with the prototype of wiring. This prototype finalize the discus-
sion of simulation prototypes, which represent the topology & structure defining
architectural building blocks.

Topology & Structure Prototypes - Wiring

The corresponding Prototype 4.3 of wiring, connecting cell and cell-cluster, possesses
only in the STRUCTURE part information in the form of wire definitions, which
will be used to connect the COM PORT of cell modules respectively the LINK of
cell-cluster modules. In accordance with the considered class of MRFs the prototype
supports wire structures for N 1 - N 5 neighborhood systems. Additionally, the IN
and OUT wires of each neighborhood systems are pooled, i.e. the wires to the
neighbors as well as the wires from the neighbors, defined by the corresponding
neighborhood systems, are pooled in one wire structure.

Proposition 4.3 formally accounts that all simulation modules of the wiring type,
which are derived from Prototype 4.3 are qualified representations of architectural
building blocks for simulation. Precisely the Proposition proves that Prototype 4.2
is an admissible representation of particular building blocks C ⊂ BBTS ∧ C
⊂ B.
From this fact directly follows that all operational simulation modules, which are
derive from this prototype are qualified representations of architectural building
blocks for simulation.

106

Topology & Structure Simulation Modules

Simulation Prototype 4.3 Wiring Modules
1: BEGIN STRUCTURE
2: WIRES< {N 1}×Cells >IN∧OUT

3: WIRES< {N 2}×Cells >IN∧OUT

4: WIRES< {N 3}×Cells >IN∧OUT

5: WIRES< {N 4}×Cells >IN∧OUT

6: WIRES< {N 5}×Cells >IN∧OUT

7: END STRUCTURE
8: ——————————–
9: BEGIN INIT RULES

10: EMPTY
11: END INIT RULES
12: ——————————–
13: BEGIN FUNCTIONALITY
14: EMPTY
15: END FUNCTIONALITY

The proof is straightforward because this prototype contains only one type of
information within its STRUCTURE part.

Proposition 4.3 (Admissible ⊂ BBTS Modeling)
The Prototype 4.3 for wiring modules is an admissible representation of building block
parts C ⊂ BBTS ∧ C
⊂ B for simulation and hence all the operational simulation
modules wu ∈ S

C derived from it.

Proof: We show that Prototype 4.3 models−→ C ⊂ BBTS ⇒ ∃wS
· ∈ S

C : wS
·

models−→
C ⊂ BBTS ⇒∀wS

· ∈ S
C : wS

·
models−→ C ⊂ BBTS. Additionally we show that Prototype

4.3 models no additional topology & structure defining components c /∈ BBTS .
(1) The simulation module of the wirings solely provides structures to wire up cells
or cell cluster among each other. Because the wiring module realizes both directions
to and from a cell respectively cell cluster we have: Prototype 4.3 models−→ {(w<k,t>

k ∧
w<t,k>

t) : k, t ⊂ {1 ≤ i ≤ |Ω|}} ∈ BBTS . For operational modules, derived from

this protoype, it follows: ∃wS
· ∈ S

W : wS
·

models−→ {(w<k,t>
k ∧ w<t,k>

t) : k, t ⊂ {1 ≤ i ≤
|Ω|}} ∈ BBTS ⇒ ∀wS

· ∈ S
W : wS

·
models−→ {(w<k,t>

k ∧ w<t,k>
t) : k, t ⊂ {1 ≤ i ≤ |Ω|}} ∈

BBTS.
(2) All information is located in the STRUCTURE part of this prototype and
contributes solely to the first case. Thus none of these elements add components
c /∈ BBTS .
Consequently, putting (1) and (2) together, we have: Prototype 4.3 models−→ {(w<k,t>

k ∧
w<t,k>

t) : k, t ⊂ {1 ≤ i ≤ |Ω|}} ∈ BBTS ⇒∀wS
u ∈ S

W :: wS
·

models−→ {(w<k,t>
k ∧w<t,k>

t) :
k, t ⊂ {1 ≤ i ≤ |Ω|}} ∈ BBTS . This proves the Proposition.

�

The preceding simulation prototypes have been proved (Proposition 4.1, 4.2
and 4.3) to represent the functionality of specific topology & structure defining

107

Processing Simulation Modules

architectural building blocks and no additional components. In order to guarantee
that the complete set BBTS = {SHull,WN ,MPorts,MGMem} of building blocks is
covered by the introduced prototypes, and hence the proposed simulation framework
is able to completely image the topology & structure defining components of the
derived architecture-template (cf. Chapter 3), the following Corollary is stated.

Corollary 4.1 (Complete BBTS Coverage)
The simulation modules STS are able to completely represent the building blocks
BBTS of the architecture-template for simulation.

Proof: The proof falls back upon Proposition 4.1, 4.2 and 4.3. The Propositions
guarantee the representation of specific building blocks BBTS for simulation. It
holds:

1) ∀cS
z ∈ S

C : cS
z

models−→
[
sHull
· ∈ SHulls ∧ {mPort<·,t>x

· } ∈ MPorts
]
⊂ BBTS .

2a) ∀ccS
y ∈ S

C : ccS
y

models−→ [
(MGMem

Part ∈ ⋃Parts MGMem
Part) ∧ [{c·} ∨ {cc·}]

] ⊂ BBTS ⇒
2b) ∃{ccS

v : v ≤ y} ∈ S
C models−→ ⋃

Parts MGMem
Part ≡ MGMem.

3) ∀wS
u ∈ S

W : wS
u

models−→ {(w<k,t>
k ∧ w<t,k>

t) : k, t ⊂ {1 ≤ i ≤ |Ω|}} ⊂ BBTS.
1 ⇒ SHulls = {sHull

i : 1 ≤ i ≤ |Ω|} ∧ MPorts = {mPort<i,t>x

i : 1 ≤ i ≤ |Ω|, ∀t ∈
Ni, x = #bits} is covered by STS .
2b ⇒ MGMem is covered by STS .
3 ⇒ WN = {w<i,t>

i : 1 ≤ i ≤ |Ω|, ∀t ∈ Ni} is covered by STS.
Hence, BBTS is completely covered by STS. This proves the Corollary.

�

Propositions 4.1, 4.2, 4.3 and Corollary 4.1 establish the specific relation between
the topology & structure representing set of building blocks BBTS and the topology
& structure representing set of simulation modules STS, which is formally expressed
by the mapping ΠTS . The mapping of subsets of the architectural building blocks
SHulls,MPorts and MGMem to the set of simulation modules S

C and the mapping
of wiring blocks WN to the set S

W is, with 1 ≤ i, t ≤ |Ω|, given by

ΠTS :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⋃
|z|+|y|

{
{sHull

k⊂{i}}, {mPort<i,t>·
k⊂{i} ∨ ∅},MGMem

Parts ∨ ∅
}
−→ S

C

⋃
|u|

{{
(w<k,t>

k ∧ w<t,k>
t) : k, t ⊂ {1 ≤ i ≤ |Ω|}

}}
−→ S

W

(4.3)

This completes the discussion of the topology & structure defining simulation
modules of the framework. In the next section we continue with simulation modules
and their prototypes, which represent the processing functionalities of the MRF
architecture.

4.2.3 Processing Simulation Modules

The second category of the ordering scheme comprises the type of simulation mod-
ules, which model the set of processing functionality defining architectural building

108

Processing Simulation Modules

blocks BBPC (cf. Definition 3.2). The different kinds of processing building blocks
are individually modeled by their corresponding simulation modules, i.e. the energy
functional building block, the optimization as well as the parameter estimation block
are modeled by different simulation modules.

The set of processing functionality representing simulation modules will be de-
noted by SPC in the sequel.

Definition 4.2 (Processing Modules SPC)
The set SPC of processing representing simulation modules reads

SPC = {SEF
PC , SOPT

PC , SPAR
PC } (4.4)

with

• S
EF
PC = {EF S

k : k � 1}, the collection of simulation modules representing
energy functionals.

• S
OPT
PC = {OPT S

l : l � 1}, the collection of simulation modules representing
optimization methods.

• S
PAR
PC = {PARS

m : m � 1}, the collection of simulation modules representing
parameter estimation tasks.

Normally it is assumed that HEF
i ∈ PCEF , 1 ≤ i ≤ |Ω|, are functionally identical

and thus only one simulation module, which is replicated |Ω|-times, is required for
a particular MRF architecture. If this assumption is not applicable, the proposed
simulation framework offers the flexibility to generate other constellations of en-
ergy functional simulation modules. For the set of PCOPT optimization processing
building blocks the same arguments as for the energy functional building blocks are
valid. Finally, the building block PCPAR is modeled by simulation modules S

PAR
PC .

If the parameter estimation process is distributed within the site-grid structure and
interlinked with the memory hierarchy, then several different simulation modules are
required. Otherwise, and in case the parameter estimation is done at the top of the
memory hierarchy, only one single simulation module is needed.

The set SPC of simulation modules solely models those kinds of architectural
building blocks, which are exclusively dedicated to numerical processing tasks within
a massively parallel MRF architecture. Each processing module is an independent
and functionally closed unit, embedded in the topology gantry established by the
simulation modules STS . Merely the neighborhood signals have to be transfered
to the processing modules in order to conduct the local MRF specific calculations.
The strict separation of the simulation sets STS and SPC supports the study of
particular variants of MRF simulation models, since each part can be separately
changed, without affecting the other parts.

The prototypes of the processing functionality modules are illustrated in Pro-
totype 4.4, 4.5 and 4.6. In the ongoing discussion it will be proved that these
prototypes represent the architectural building blocks PCEF , PCOPT and PCPAR

for simulation.
Due to the clear separation of the different processing functionalities within the

proposed architecture-template and also among each other it is convenient for the

109

Processing Simulation Modules

ongoing discussion on prototypes to give the ”Admissible SPC Modeling” proof of all
these prototypes together at the end of this section. Proposition 4.4 establishes the
formal arguments for all prototypes of the processing functionality type to model
the building blocks PCEF , PCOPT and PCPAR for simulation.

Processing Prototypes - Energy-Functional

Prototype 4.4 represents the structure of energy functional simulation modules
EF S

· . This kind of modules possesses an empty STRUCTURE as well as an
INIT RULES part. All functionality of the energy functional modules is located
in the equally named part and starts with a reset-command, which clears or sets
the complete local memory of the simulation module. The following command

Simulation Prototype 4.4 Energy-Functional Modules
1: BEGIN STRUCTURE
2: EMPTY
3: END STRUCTURE
4: ——————————–
5: BEGIN INIT RULES
6: GENERATE MODULE< OPT S

i,l >
7: END INIT RULES
8: ——————————–
9: BEGIN FUNCTIONALITY

10: RESET< Local Memories >
11: CALCULATE< Hi >
12: CALL MODULE(OPT S

i,l(Hi))
13: END FUNCTIONALITY

calculates the local energy Hi, and the last command finally calls the corresponding
optimization module OPT S

i,l (see Prototype 4.5) with the value of Hi. Obviously,
the calculation of a specific energy functional Hi depends on the MRF model and
can be diverse and complex. In this discussion it is approximately expressed by the
single line command CALCULATE< Hi >.

Processing Prototypes - Optimization

The corresponding prototype of the optimization modules is depicted in Proto-
type 4.5. For these simulation modules the STRUCTURE part as well as the
INIT RULES part contains no commands or signal assignments. All commands
are located within the FUNCTIONALITY part and they start with the reset-
ting of the local memories of the module. In the following the energy functional
Hi becomes optimized, to allow different optimization strategies, which were de-
scribed in Section 2.3, to become possible. The outcome of this optimization pro-
cess determines the actual value of the site state, which is set by the next command
SET STATE< New State >. Similar to the commands of the energy functional
Prototype 4.4, the commands of the optimization prototype eventually also feign
calculations with low complexity and numerical simplicity. However, this is not nec-

110

Processing Simulation Modules

Simulation Prototype 4.5 Optimization Modules
1: BEGIN STRUCTURE
2: EMPTY
3: END STRUCTURE
4: ——————————–
5: BEGIN INIT RULES
6: EMPTY
7: END INIT RULES
8: ——————————–
9: BEGIN FUNCTIONALITY

10: RESET< Local Memories >
11: OPTIMIZE< Hi >
12: SET STATE< New State >
13: END FUNCTIONALITY

essarily correct and solely depends on the specific energy functional and the used
optimization method for each particular MRF model.

Processing Prototypes - Parameter-Estimation

For Prototype 4.6 two different cases can occur, which are determined by index k.
In the first case with k = 1 the complete parameter estimation becomes executed
on the top level of the memory hierarchy, where the complete data is available for
conducting the calculation of Θ - the set of free parameters a MRF model possesses.
In the second case with k
= 1 the parameter estimation is executed - if the formulas

Simulation Prototype 4.6 Parameter Estimation Modules
1: BEGIN STRUCTURE
2: EMPTY
3: END STRUCTURE
4: ——————————–
5: BEGIN INIT RULES
6: EMPTY
7: END INIT RULES
8: ——————————–
9: BEGIN FUNCTIONALITY

10: RESET< Local Memories >
11: if k==1 then
12: CALCULATE< Θ > at top of MGMem hierarchy
13: else
14: CALCULATE< Θ > along MGMem hierarchy
15: end if
16: END FUNCTIONALITY

of the free parameters Θ factorize appropriately - along the memory hierarchy. The
second case additionally includes the setting where each site determines the free
parameters only on the basis of their locally available information. Consequently,

111

Processing Simulation Modules

only the bottom most level of the memory hierarchy is equipped with parameter
estimation modules.

The following Proposition 4.3 establishes the formal justification that all simula-
tion modules of the processing functionality type, which are derived from Prototype
4.4, 4.5 and 4.6 are qualified representations of BBPC building blocks for simulation.
In detail the Proposition proves that Prototype 4.4, 4.5 and 4.6 are admissible repre-
sentations of BBPC . From this fact follows that all operational simulation modules,
which are derive from these prototypes are qualified representations of architectural
building blocks for simulation.

Proposition 4.4 (Admissible ⊂ BBPC Modeling)
Prototype 4.4, 4.5 and 4.6 are admissible representations of building blocks BBPC

for simulation and hence all the operational simulation modules derived from them.

Proof: The proof contains two parts. In the first part we show that the Proto-
type 4.4, 4.5 and 4.6 models−→ D ⊂ BBPC ⇒ ∃EF S

· ∈ S
EF
PC∧∃OPT S

· ∈ S
OPT
PC ∧∃PARS

· ∈
S

PAR
PC : EF S

· , OPT S
· , PARS

·
models−→ D ⊂ BBPC . The second part shows that these

Prototypes 4.4, 4.5 and 4.6 do not model A
∈ BBPC .
(1) All Prototypes 4.4, 4.5 and 4.6 are distinct simulation modules with well sepa-
rated processing functionalities. Prototype 4.4 is solely dedicated to building blocks
HEF

· , Prototype 4.5 is exclusively dedicated to opt· and finally Prototype 4.6 is
made for PCPAR. Due to this clear structure of the prototypes it directly follows:
∃EF S

· ∈ S
PC : EF S

·
models−→ HEF

· ∈ BBPC ∧ ∃OPT S
· ∈ S

PC : OPT S
·

models−→ opt· ∈
BBPC ∧ ∃PARS

· ∈ S
PC : PARS

·
models−→ PCPAR ∈ BBPC

(2) Only the elements of the FUNCTIONALITY part realize processing tasks and
because each prototype is dedicated to a specific MRF processing functionality it is
straightforward that no functionality d /∈ BBPC is added.
Consequently, putting (1) and (2) together we have: Prototypes 4.4, 4.5 and 4.6
models−→ EF S

· ∧OPT S
· ∧PARS

· ⇒ ∀EF S
· ∈ S

PC : EF S
·

models−→ HEF
· ∈ BBPC ∧ ∀OPT S

· ∈
S

PC : OPT S
·

models−→ opt· ∈ BBPC ∧ ∀PARS
· ∈ S

PC : PARS
·

models−→ PCPAR ∈ BBPC .
This proves the Proposition.

�

In the preceding discussion we have proved that the simulation Prototypes
4.4, 4.5 and 4.6 exclusively represent processing functionality defining architectural
building blocks. To formally guarantee that the simulation framework is powerful
enough to completely cover the set BBPC = {PCEF , PCOPT , PCPAR} of building
blocks (see derivation in Chapter 3), Corollary 4.2 is stated.

Corollary 4.2 (Complete BBPC Coverage)
The components of the simulation modules SPC are able to completely represent the
functionality of the architectural building blocks BBPC for simulation.

Proof: The proof falls back upon Proposition 4.4, which guarantees
1) ∀EF S

· ∈ S
PC : EF S

·
models−→ HEF

· ∈ BBPC

112

Control Simulation Modules

2) ∀OPT S
· ∈ S

PC : OPT S
·

models−→ opt· ∈ BBPC

3) ∀PARS
· ∈ S

PC : PARS
·

models−→ PCPAR ∈ BBPC

1 ⇒ PCEF = {HEF
i : 1 ≤ i ≤ |Ω|} is covered by SPC .

2 ⇒ PCOPT = {opti : 1 ≤ i ≤ |Ω|} is covered by SPC .
3 ⇒ PCPAR is covered by SPC .
Consequently, BBPC = {PCEF , PCOPT , PCPAR} is completely covered by SPC .

�

The specific relation between the processing functionality representing building
blocks BBPC and the processing functionality representing simulation modules is
established by Proposition 4.6 and Corollary 4.2. This coherence between the build-
ing blocks BBPC and the collection of simulation modules is given by the mappings
Σ, which read

ΣEF :
⋃
|k|

HEF −→ S
EF
PC . (4.5)

ΣOPT :
⋃
|l|

opt −→ S
OPT
PC . (4.6)

ΣPAR :
⋃
|m|

PCPAR −→ S
PAR
PC . (4.7)

This concludes the presentation of the set SPC available within the simulation
framework. Until now we have introduced different simulation module sets: One
set for topology & structure modeling modules and the other set for processing
modeling modules. The following paragraph describes the simulation modules for the
architectural control building blocks. These control modules complete the simulation
sets of the framework in order to model the massively parallel architecture of a
particular Markov Random Field, which is covered by the considered MRF-class
defined in Section 2.5.

4.2.4 Control Simulation Modules

The third and final category of the organization scheme comprises the type of sim-
ulation modules SCT , which exclusively model control functionalities. In view of
the reasons for simplification the complete control-functionality of the architectural
building blocks BBCT are represented by one single simulation module. This spe-
cific simulation module realizes the functionality of the system control building block
CT System and the memory hierarchy building block CTGMem, whereby both control
units are only once represented within a massively parallel architecture. The situa-
tion looks slightly different with regard to the control building block sets CTPortMem,
CTEF and CTOPT . Not all members of these building block sets are represented
by particular control modules; rather for all sets the same control module as for
CT System and CTGMem is used. This can be justified as it is assumed that the
components of ctrlPortMem

i , ctrlEF
i and ctrlOPT

i , with 1 ≤ i ≤ |Ω|, are required for
functionally and structurally identical processing modules (see Section 4.2.3). For

113

Control Simulation Modules

the case that a differing setting becomes necessary, several control modules can be
generated and used within one particular MRF model. The simulation framework
also supports these settings.

The set of simulation modules representing the control-functionality will be de-
noted by SCT in the sequel and reads as follows:

Definition 4.3 (Control Modules SCT)
The set SPC of control representing simulation modules reads

SCT = S
CT (4.8)

with

• S
CT = {CT S

o : o � 1}, the set of control modules, which determines the
sequence of processing order during simulation runs.

This finalizes the description and formal definition of the simulation modules
SCT representing the control-functionality available within the proposed framework.
We continue the discussion with the description of a prototypical control simulation
module.

The complete control-functionality of a MRF simulation model, which mimics
the massively parallel architecture compiled out of building blocks BB, is repre-
sented by a single simulation module CT S

o ∈ SCT . Naturally, these modules are
solely dedicated to take on control tasks within the simulation model. Each control-
functionality is pooled within one single control simulation module for each MRF
model. This module is not independent and functionally self-contained as it refers to
the TRIGGER signals of other modules. Thus it is guaranteed that the simulation
model can be systematically generated step by step and module by module. The
strict separation of all simulation module sets and their corresponding elements sys-
tematically structures the compilation and refinement of particular MRF simulation
models as each module can be separately changed and improved.

The prototype of the control functionality representing simulation modules is
depicted in Prototype 4.7. After a short description of this prototype we prove that
Prototype 4.7 represents the architectural building blocks BBCT .

Control Prototypes

The Prototype 4.7 for control functionality contains commands only within the
INIT RULES part. The STRUCTURE and FUNCTIONALITY part is empty
and thus no instructions become executed during the generation process of the sim-
ulation model or during the simulation run itself. Each SET RULES· < ... >
instruction assigns one ore several TRIGGER signals to specific RULES, i.e. as
soon as the RULES are evaluated as true the corresponding TRIGGER is acti-
vated.

In the next Proposition 4.7 we show that all simulation modules of the control
type are qualified representations of architectural building blocks for simulation. In
order to achieve this statement we prove that Prototype 4.7 is an admissible rep-
resentation of a building blocks E ⊂ BBCT . Again it follows that all operational
simulation modules, which are derive from this prototype are qualified representa-
tions of control building blocks for simulation.

114

Control Simulation Modules

Simulation Prototype 4.7 Control Modules
1: BEGIN STRUCTURE
2: EMPTY
3: END STRUCTURE
4: ——————————–
5: BEGIN INIT RULES
6: SET RULESSystem < (a,Rule), (b,Rule), ... >
7: SET RULESCell < (a,Rule), (b,Rule), ... >
8: SET RULESEF < (a,Rule), (b,Rule), ... >
9: SET RULESOPT < (a,Rule), (b,Rule), ... >

10: SET RULESPAR < (a,Rule), (b,Rule), ... >
11: SET RULESGMem < (a,Rule), (b,Rule), ... >
12: END INIT RULES
13: ——————————–
14: BEGIN FUNCTIONALITY
15: EMPTY
16: END FUNCTIONALITY

Proposition 4.5 (Admissible ⊂ BBCT Modeling)
The Prototype 4.7 for control modules is an admissible representation of building
blocks E ⊂ BBCT for simulation and hence all the operational simulation modules
CT S

o ∈ S
CT derived from it.

Proof: We show that Prototype 4.7 models−→ E ⊂ BBCT ⇒ ∃CT S
· ∈ S

CT : CT S
·

models−→ E ⊂ BBCT ⇒ ∀CT S
· ∈ S

CT : CT S
·

models−→ E ⊂ BBCT . Additionally, we show
Prototype 4.7 ¬models−→ e /∈ BBCT .
(1) Within the INIT RULES part TRIGGER signals are affiliated to specific
RULES. The rule assignment is separately done for the components SY STEM ,
Cell, EF , OPT , PAR and GMem. Hence it is justified to conclude that Prototype
4.7 models−→ CT System ∧ CTGMem ∧ ctrlPortMem

· ∧ ctrlEF
· ∧ ctrlOPT

· ∈ BBCT .
(2) Merely the INIT RULES part contains instructions. But none of these ele-
ments add functionality e /∈ BBCT .
Putting (1) and (2) together we receive: Prototype 4.7 models−→ CT System∧CTGMem∧
ctrlPortMem

· ∧ ctrlEF
· ∧ ctrlOPT

· ∈ BBCT ⇒ ∃CT S
· ∈ S

CT : CT S
·

models−→ CT System ∧
CTGMem∧ctrlPortMem

· ∧ctrlEF
· ∧ctrlOPT

· ∈ BBCT ⇒ ∀CT S
· ∈ S

CT models−→ CT System∧
CTGMem ∧ ctrlPortMem

· ∧ ctrlEF
· ∧ ctrlOPT

· ∈ BBCT This proves the Proposition.

�

The preceding Proposition gives rise to the following Corollary on the complete
coverage of the building blocks BBCT by the simulation modules SCT .

Corollary 4.3 (Complete BBCT Coverage)
The components of the simulation modules SCT completely represent the control
functionality of the architectural building blocks BBCT for simulation.

115

Control Simulation Modules

�

The specific relation between the building blocks BBCT for control functionalities
and the corresponding simulation modules S

CT has been established by Proposition
4.5 and Corollary 4.3. The mapping formally reads

∆CT :
⋃
|k|

{
CT System, CTGMem, CTPortMem, CTEF , CTOPT

} −→ S
CT . (4.9)

Simulation Framework - BBSystem Coverage

The previous discussion of this section finally cumulates in Theorem 4.2, which states
that the proposed simulation framework with its different kind of simulation modules
is powerful enough to represent the complete massively parallel MRF architecture
template.

Theorem 4.2 (Complete BBSystem Coverage)
The architecture template, which is composed of the building blocks BBSystem is
completely representable by the simulation sets S

TS, S
PC and S

CT of the proposed
simulation framework.

Proof: Follows immediately from: (1) Mapping 4.3 between all types of topol-
ogy & structure defining building blocks BBTS and representing simulation models
from S

TS.
(2) Mapping 4.5, 4.6 and 4.7 between all processing functionality representing build-
ing blocks BBPC and simulation models from S

PC .
(3) Mapping 4.9 between all building blocks for control BBCT and representing sim-
ulation models from S

CT .
Consequently, putting (1), (2) and (3) together it follows that the architecture tem-
plate can be composed by the simulation modules of the proposed framework. This
proves the Theorem.

�

The following remarks, which accentuate some features of particular MRF sim-
ulation models, finalize this section.

Remarks 4.1 (Particular MRF simulation model)

1. Each MRF simulation model is composed of exactly |Ω| distinct simulation
modules of single cells. Hence each cell module is a closed object, which is
independent with respect to data and structure from the other cell modules.

2. Within each cell module are embedded distinct modules for the three different
processing functionalities. Consequently, a MRF simulation model comprises
3 × |Ω| modules for the three processing functionalities of each cell module.

3. All other components of the architecture are also represented by distinct sim-
ulation modules to reflect the massively parallel architecture.

116

Building the Simulation Model - Model Preparation

4. The number representation and calculation can be switched between float-point
and fixed-point precision in order to study MRF models and their massively
parallel architectures under hardware relevant conditions.

5. Different parallel processing sequences, which can arise due to the demands of
the various MRF models of the considered class, can be systemically realized
by defining and setting the corresponding trigger of each single cell module.

4.3 Building MRF Simulation Models

The construction of a hardware-relevant simulation model with the help of the intro-
duced framework, which represents the massively parallel architecture (cf. Chapter
3) of a specific MRF model, as from the user’s perspective is executed in two phases.
During the first building phase - further discussed in the section directly following -
the user has to do some coding work by hand in order to provide modules, which are
specific for the intended simulation setting and the MRF model. The second phase,
described in Section 4.3.2, just needs to be triggered by the user. The following
steps of this phase will automatically be executed by the simulation framework and
the particular simulation modules to make a complete simulation model available at
the end of the second phase.

4.3.1 Building the Simulation Model - Model Preparation

During the first phase of the simulation model building process the MRF simulation
framework requires a close user-interaction in order to coordinate and realize the
compilation of the model. At this stage the Frame-Cell Module represents the central
module. This kind of module has to be coded by hand respectively has to be modified
for each particular MRF simulation model and simulation setting. The second phase,
which is automatically executed in order to expand the complete model, starts with
information of this module. Within the Frame-Cell module several mechanisms are
embedded, which will be sequentially executed in the second phase of the building
process. Each triggered mechanism executes other processes on his part and so on
and so forth, to allow the simulation model to be completely expanded within the
framework environment at the end of this sequence.

One mechanism of a Frame-Cell module, which has to be adapted by the frame-
work user, generates and instantiates the top-level Cell-Cluster module, i.e. that
mechanism generates ccx×y ∈ S

C with the MRF grid size x × y. Furthermore, an-
other mechanism, which has to be adapted by the user, assigns predefined values to
the COM PORT (cf. Simulation Prototype 4.2) of the top-level cell-cluster. This
step is required as the top-level cell-cluster does not possess neighboring cell-clusters,
which are connected to the COM PORT of the top level cell-cluster. Therefore the
incomplete neighborhood system of the top level cell-cluster has to be completed by
this mechanism. In view of digital hardware realizations and resources usage, it is
useful to either assign logical 0 or logical 1 to the COM PORT of the top level cell-
cluster simulation module. Additionally, the user has to adapt a mechanism, which
connects the TRIGGER and WATCH PORT signals of the top level cell-cluster.
Moreover, the user can change the standard display functionalities of the framework

117

Building the Simulation Model - Model Generation

as well as the standard functionalities of the data-storage system. However, nor-
mally these changes are not necessary as the standard functionalities are sufficient
to monitor the simulation run. The rich set of stored data is also appropriate for
most off-line processing tasks and investigations.

Consequently, the number of required adaptations hand-made by the user is
moderate for each particular MRF simulation model and, in addition to this, is
essentially located within the Frame-Cell module. Larger volumes of user-made
hand-coding are only needed, if the existing module collections have to be extended
because they can not provide the required functionalities.

4.3.2 Building the Simulation Model - Model Generation

During the second phase of the model building process only a supporting user-
interaction is required. The user of the Simulation-Framework merely has to trigger
the generation of the particular MRF simulation model by means of a predefined
graphical user-interface. Any other generation process of the particular simulation
model is hidden from the user and executed automatically within and between the
different module types. Starting with the information encoded by the Frame-Cell
module, the Simulation-Model Generator triggers the first generation procedures in
order to compile the simulation model. During this step the framework generates
wires for the different clock domains, wires with predefined values in order to provide
values for the incomplete neighborhood of the top-level site-cluster and special ports
to observe and collect simulation data. After this is finished the framework gener-
ates the top-level site-cluster. By doing this additional mechanisms are triggered,
which generate the sub-site-clusters, wire them up, sort the indexes of the sites gen-
erated until now and triggers the next mechanisms, which continue with this scheme
until single-site simulation modules are generated. The single-site modules gener-
ate respectively instantiate their corresponding energy-functional and optimization
module. Furthermore, the single-site modules set the trigger signals in order to make
the control-module for the simulation run operational. After all these mechanisms
have successfully been executed, the framework finally connects the wires and sig-
nals of the top-level module, a step which finalizes the automatic generation process
of the corresponding MRF simulation model.

Provided that the generation process of the simulation model has been executed
successfully, the complete simulation model of the massively parallel architecture
for a specific MRF model is modeled and held within the memory of the computer,
which runs the Simulation-Framework. At this point the user can make input data
available to the model and start the simulation.

4.4 Results - Simulation Framework

The proposed simulation framework and its software-technical realization has been
intensively tested by means of static tests of the particular simulation modules and
the complete framework. Foremost the two exemplary MRF image processing mod-
els (Section 3.7.1, 3.7.2) have been used to prove the capabilities of the simulation
framework. Since we can only present and discuss a few selected simulation results
in this section without impairing the section’s readability, we have moved additional

118

Building the Simulation Model - Model Generation

simulation results to Appendix A. We kindly advise the inclined reader to study
the rich set of simulation results in Appendix A, which underpin the capabilities
of the proposed simulation framework. In the following we will discuss simulation
results, which have been achieved with the histogram segmentation model and its
corresponding massively parallel hardware architecture. We have selected the RGB-
encoded landscape image depicted in Figure 4.2 a and the gray-scaled balloon image
shown in Figure 4.3 a as image data.

(a) (b) (c)

(d) (e) (f)

Figure 4.2: Ground-Truth Segmentation Results. (a) Original RGB image
data. (b)-(f) Segmentation results for 1st to 5th order neighborhood system.
Model/Architecture settings: 4 classes and 8 equally sized and spaced bins for each
of the RGB channels. RGB channels: value range [0,255].

In order to study and assess the performance of a specific architecture/model
combination it is indispensable to define the ground-truth architecture of the model,
and thus to determine the ground-truth results of this specific architecture/model
combination. With our advocated approach, put into practice by the architecture
template and the Simulation-Framework, the realization becomes straightforward.
Only one single simulation-structure is required for the ground-truth simulations
as well as for the hardware relevant simulations. The simulation model for the
ground-truth architecture/model combination differs only with respect to the num-
ber precision - double precision float-point versus fixed-point precision - from the
simulation model of the hardware-relevant architecture/model combination. Al-
ready with respect to this task we significantly profit from the capabilities of the

119

Building the Simulation Model - Model Generation

(a) (b) (c)

(d) (e) (f)

Figure 4.3: Ground-Truth Segmentation Results. (a) Original gray-scaled im-
age data. (b)-(f) Segmentation results for 1st to 5th order neighborhood system.
Model/Architecture settings: 3 classes and 4 equally sized and spaced bins for the
gray-scale channel. Gray-scale channel: value range [0,255].

framework, because only one simulation model is required, which can be configured
to handle double precision float-point numbers or alternatively fixed-point num-
bers. Consequently, it is automatically guaranteed by our proposed framework that
errors, which are induced by structural and architectural mismatches between the
float- and fixed-point architecture/model variant, are excluded right from the outset.
Furthermore it is guaranteed that each architecture/model combination is consistent
with MRF theory, because the simulation framework has been shown to represents
the architecture template, which was derived with respect to the claim of strictly
respecting Markov Random Field theory.

The simulation results of the float-point architecture/model combination and
thus the ground-truth results are depicted in Figure 4.2 (b)-(f) (landscape im-
age) and Figure 4.3 (b)-(f) (balloon image) for the first five neighborhood systems
N 1−N 5. To receive these different results it is sufficient to activate the correspond-
ing neighborhood system (ports and wirings) and to adopt the histogram forming
procedure. Due to the modular character of the framework and the strict separation
of the simulation modules among each other we only have to parameterize the corre-
sponding single cell module for histogram based segmentation. All other simulation
modules are not affected. Again we profit from features the framework offers to

120

Building the Simulation Model - Model Generation

systematically compile variants of a specific architecture/model combination.

(a) (b) (c)

(d) (e) (f)

Figure 4.4: Comparison of ground-truth and 32 bit fixed-point precision architec-
ture. (a,d) Shows the ground-truth of the segmentation model for the 5th order
neighborhood system. (b,e) Shows the result for a 32bit fixed-point number rep-
resentation and calculation. (c,f) Differences (black) between ground-truth and
fixed-point model. The fixed-point is located in the middle of the 32bit. Over- and
Underflow is covered by truncation respectively saturation.

Comparing the ground-truth results among each other it becomes obvious that
the segmentation model with larger neighborhood systems (3rd, 4th and 5th order)
produces more homogeneous segments and thus a smoother segmentation within
unstructured image parts like the treetop of the landscape image. Even at image
data with homogeneous portions like the balloon picture we observe this behavior (cf.
Figure 4.3 b with f). This segmentation behavior is determined by the larger number
of values forming the histograms when using the 3rd, 4th or 5th order neighborhood
system as well as the larger spatial portion of the image. Both interrelation features
cause a more ”discriminative” empirical distribution, which is compared with the
prototypes to determine the cluster-assignment. At smaller neighborhood systems
(1st and 2nd) the bins are either empty or the masses of the bins concentrate at
specific bins. Regard for instance the treetop of the landscape image: When using a
1st order neighborhood system it is mostly likely that some of the neighbors take the
values of the sky, which shines through leaves of the treetop, and hence the masses
are concentrated to this bin, following a cluster-assignment equally with the sky-

121

Building the Simulation Model - Model Generation

cluster. These expected and consistent results, received by the architecture/model
combination for segmentation, manifest the capabilities of the proposed simulation
framework to correctly represent the architecture template and the massively parallel
processing dynamic for simulation. Several additional results, collected in Appendix
A, further underpin this statement.

For the following discussion we will take the model/architecture combination
with the 5th order neighborhood system as a basis and thus also the corresponding
ground-truth result of this variant. Figure 4.4 illustrates the segmentation perfor-
mance of the 32bit model/architecture variant in comparison with the ground-truth
model/architecture variant. Picture 4.4a,d shows the ground-truth segmentation-
result for the landscape respectively balloon image and picture 4.4b,e the segmenta-
tion result of the 32bit variant. At first look it is difficult to identify any differences
between the segmentation results. The particular cluster-sizes, their separation as
well as the overall cluster-structure seems to be identical for both model/architecture
variants. A detailed site-by-site comparison confirms this visual observation. In Fig-
ure 4.4c,f are depicted the sites in black, which have a different cluster assignment,
when comparing the cluster-assignments of the ground-truth result with the cluster-
assignments of the 32bit model/architecture variant. For the landscape image we
have in summary that the 32bit variant possesses 34 sites (see Table 4.1), which
have different cluster-assignments. Consequently, the classification rate of the 32bit
model/architecture variant is 99.79% compared with the ground-truth rate of 100%.

In Figure 4.5 we have opposed the segmentation result of the 16bit model/archi-
tecture variant to the segmentation result of the ground-truth model/architecture
variant. The ground-truth segmentation-results are depicted in Figure 4.5a,d and
Figure 4.5b,e shows the segmentation result of the model/architecture variant with
16bit fixed-point precision. Although the different cluster-assignments of particular
sites are evident, the 16bit model/architecture variant is still able to reproduce very
similar cluster-sizes, their separation as well as the overall cluster-structure com-
pared with the ground-truth model. Figure 4.5c,f shows the particular sites in black,
whose cluster-assignment differs from the cluster-assignment of the ground-truth re-
sult. In detail, for the landscape image data, the 16bit variant possesses 1222 sites
respectively 965 sites without counting the border sites (see Table 4.1), which have
different cluster-assignments. The classification rate of the 16bit model/architecture
variant is thus 94.11%, when neglecting the results of the border sites, compared
with the ground-truth rate of 100%. These results of different fixed-point architec-
ture/model variants demonstrate the capabilities of the proposed simulation frame-
work to represent massively parallel MRF architectures in a hardware-relevant set-
ting. To stress this point again, the simulation framework offers the unique op-
portunity to simulate and hence study complete MRF hardware-architectures, their
parallel processing dynamics, their numerical sensitiveness and their overall conver-
gence behavior with respect to hardware constraints.

Figure 4.6 shows different results of the 12bit segmentation model/architecture
variant, with Fig. 4.6a depicting the ground-truth segmentation result, Fig. 4.6b
depicting the segmentation result of the 12bit variant and Fig. 4.6c-d showing inter-
mediate results with a significant worse segmentation compared with the segmenta-
tion result of the previous relaxation step. The 12bit model/architecture variant is
the first variant that possesses obvious segmentation problems caused by the lim-

122

Building the Simulation Model - Model Generation

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Comparison of ground-truth and 16bit fixed-point precision architec-
ture. (a,d) Shows the ground-truth of the segmentation model for the 5th order
neighborhood system. (b,e) Shows the result for a 16bit fixed-point number rep-
resentation and calculation. (c,f) Differences (black) between ground-truth and
fixed-point model. The fixed-point is located in the middle of the 16bit. Over- and
Underflow covered by truncation respectively saturation.

ited precision of the 12bit fixed-point number representation. When comparing the
ground-truth Fig. 4.6b and the segmentation result of the 12bit model/architecture
variant depicted in Fig. 4.6b it becomes evident that the 12bit variant generates
only a three cluster segmentation although four clusters are encoded within the
MRF model and its corresponding 12bit architecture. This specific behavior is
caused by the limited numerical 12bit fixed-point precision and the situation that
two estimated prototypes qν have became identical. Because the model performs the
comparison of the site-local empirical distributions (histograms) with the different
prototypes sequentially it always assigns an appropriate site to the cluster, which is
represented by the first of the identical prototypes. The comparison with the second
of the identical prototypes will not generate a new comparison scoring and thus als
not a change of the cluster assignment. This is the reason why only three differ-
ent cluster marks are used by the 12bit model/architecture variant although four
different clusters are principally available. Figure 4.7 shows the estimated proto-
types from the simulation run, which has calculated the images of Figure 4.6. From
this illustration of the prototypes it becomes apparent that class 3 and class 4 have

123

Building the Simulation Model - Model Generation

Architecture/Model Classification Rate Misclassification Misclassification

Combination [%] [%] w. b. [# of sites] [# of sites] w. b.

Ground Truth 100 100 0 0

32bit 99.79 99.79 34 34

30bit 99.77 99.77 37 37

26bit 99.75 99.75 40 40

22bit 99.63 99.67 60 53

20bit 99.10 99.16 147 137

18bit 97.39 97.50 427 409

16bit 92.54 94.11 1222 965

14bit 87.07 92.98 2117 1149

Table 4.1: Segmentation Performance of different Architecture/Model combina-
tions with respect to landscape image data. Color segmentation architecture with
5th order neighborhood system and 8 equally spaced bins. Abbreviation w.b. means
without boarder sites.

(a) (b) (c)

Figure 4.6: Comparison of ground-truth and 12bit fixed-point precision archi-
tecture. (a) Shows the ground-truth of the segmentation model for the 5th order
neighborhood system. (b) Shows the result for a 12bit fixed-point number represen-
tation and calculation. The fixed-point is located in the middle of the 12bit. Over-
and Underflow covered by truncation respectively saturation. (c)-(d) Exemplary
model-convergence defects.

identical prototypes.
Figure 4.8a-d shows different intermediate results of the 8bit model/architecture

variant. The numerical precision of 8bit is no more sufficient for the unsupervised
segmentation model and its massively parallel processing architecture to calculate
usefulness segmentation results. Furthermore the limited 8bit fixed-point precision
causes the model/architecture variant to oscillate between completely different clus-
ter assignments of consecutive relaxation steps, i.e. the intermediate segmentation
results of this specific model/architecture variant did not converge to a plausible

124

Building the Simulation Model - Model Generation

Prototypes

Ite
ra

tio
n

St
ep

s

10 20 30 40 50 60 70 80 90

20

40

60

80

100

120

140

160

180

200

220

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Class 1 Class 2 Class 3 Class 4

Figure 4.7: Estimated prototypes qν . Prototypes of the architecture/model variant
with 12bit fixed point precision and with respect to the landscape image. Each
class prototype is composed of probability distributions for the RGB channels. The
probability values are encoded corresponding to the colorbar.

(a) (b) (c)

Figure 4.8: Model/Architecture divergence. Results of the segmentation model for
the 5th order neighborhood system. The result are received for a 8bit fixed-point
number representation. The fixed-point is located in the middle of the 8bit. Over-
and Underflow covered by truncation respectively saturation. (a)-(c) Exemplary
results of the model, which does not converge.

segmentation at all (see Figure 4.8). We notice that the segmentation behavior re-
spectively the segmentation performance of the 8bit model/architecture variant is
not surprising because we have to realize that only 4bit are available for the inte-
ger part of the fixed-point number and 4bit are available for the fractional part.
Hence the model can utilize a max value of 15 for the integer part and a min

125

Building the Simulation Model - Model Generation

value of 1/16 for the fractional part of the 8bit fixed-point number representation
(23222120.2−12−22−32−4).

During each simulation run of a specific architecture/model variant the simu-
lation framework is able to display and store the complete state of the simulation
model. Hence the simulation model and its intermediate results are completely ob-
servable and analyzable. The MSE and PSNR analysis depicted in Figure 4.9 is
one possibility to further analyze the states of the simulation model and to receive
insights in the convergence dynamic of a particular architecture/model variant. In
this case the PSNR curve of the 16bit architecture/model variant gives rise to ques-
tion how the PSNR curve-progression is explainable. A detailed analysis of the

14 16 18 20 22 24 26 28 30 32
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

number of bit

M
ea

n
 S

q
u

ar
e

E
rr

o
r

14 16 18 20 22 24 26 28 30 32
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
0 50 100 150 200 250

0

5

10

15

20

25

30

number of iterations

P
S

N
R

 [
d

B
]

LandscapeLandscape

32bit fixed−point model

16bit fixed−point model

12bit fixed−pointmodel

Figure 4.9: Means Square Error (MSE) and Peak signal-to-noise ratio (PSNR)
analysis of fixed-point simulation runs (landscape image, cf. Figure 4.2a) of the
segmentation model. MSE versus number of bit used for the model. PSNR versus
number of iterations.

estimated prototypes (see. Figure 4.10) reveals that the limited numerical precision
with truncation and saturation for over- and underflow causes the prototypes to
change significantly between particular iterations steps. This induces several sites
to change their cluster assignment. Exactly this behavior can be observed for the
segmentation results at each iteration step. In contrast to the changing prototypes of
the 16bit architecture/model variant the prototypes of the 32bit architecture/model
variant (see Figure 4.11) are stable and hence in accordance with the PSNR curve.

Because the contemporary literature has not been investigated and reported on
the fixed-point precision behavior respectively parallel processing performance of

126

Building the Simulation Model - Model Generation

Prototypes

Ite
ra

tio
n

S
te

ps

10 20 30 40 50 60 70 80 90

20

40

60

80

100

120

140

160

180

200

220

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Class 1 Class 2 Class 3 Class 4

Figure 4.10: Estimated prototypes qν . Prototypes of the architecture/model vari-
ant with 16bit fixed point precision and with respect to the landscape image. Each
class prototype is composed of probability distributions for the RGB channels. The
probability values are encoded corresponding to the colorbar.

MRF based models, the herein presented insights and results are of far reaching
relevance for any kind of fixed-point MRF model implementation. Based on the
currently gained insights it can be expected that the required fixed-point bit-width
becomes moderate - ranging from 16bit to 32bit - for low-level MRF image processing
models formulated on regular site-grids, with a neighborhood system of 1st to 5th
order.

4.5 Implementation Issues

Obviously, the software technical realization of the proposed simulation framework,
whose structure is summarized and illustrated in Figure 4.1, raises various problems
respectively questions. It is mandatorily necessary to identify and adequately deal
with them, in order to realize a flexible and modular simulation framework for
massively parallel MRF based processing architectures. We focus the discussion on
the major concerns, which have been considered during the conception-phase and
the following iterations of the implementation. The major concerns, which have
been identified are:

• Extensibility & Flexibility. The current software-technical realization of the
proposed MRF simulation framework has been operationally approved by

127

Building the Simulation Model - Model Generation

Prototypes

Ite
ra

tio
n

St
ep

s

10 20 30 40 50 60 70 80 90

20

40

60

80

100

120

140

160

180

200

220

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Class 1 Class 2 Class 3 Class 4

Figure 4.11: Estimated prototypes qν . Prototypes of the architecture/model vari-
ant with 32bit fixed point precision and with respect to the landscape image. Each
class prototype is composed of probability distributions for the RGB channels. The
probability values are encoded corresponding to the colorbar.

means of several artificial testing simulations and above all also by the in-
tensive simulations of the two regarded image processing models. In spite of
the status of the simulation framework reached until now, further improve-
ments and enhancements, eventually caused by new MRF models, should still
systematically be supported. Thus the software structure of the framework
as well as the particular module collections have to be open and changeable.
Furthermore all enhancement should be possible without changing large por-
tions of the framework software and their overall conception or even changing
the SystemC simulation kernel.

• Efficiency & Scalability. The MRF models, which already have been investi-
gated and are intended to be investigated and simulated by the framework,
possess distended site-grids, neighborhood systems of up to fifth order and
energy functions. This leads to specific demands within the simulation frame-
work in order to be able to generate and simulate such models within the
framework. The demands are split up into pure memory resource-usages and
processing-time resource-usages. Both demands have to be equally addressed
by the simulation framework. Obviously, the memory resource-usages as well
as the required processing-time for a particular simulation model directly af-
fect the scalability capabilities of the simulation framework. Additionally, it
is assumed that standard and cost-efficient personal computers can be used to

128

Building the Simulation Model - Model Generation

simulate the contemplated class of MRF models and no expensive supercom-
puters.

• Compatibility. The proposed simulation framework is built up on the open-
source SystemC kernel and environment, which is constantly evolved by the
improvements of the community and its developers. Consequently, it has to
be ensured that the simulation framework is compatible with new versions of
SystemC or at least adaptable to either obsolete or new features. In view of
this constraint it is important that all necessary changes are kept small without
affecting fundamental software-structures of the framework.

• Self-Checking. The MRF simulation models under consideration as well as the
models, which are intended to be addressed by the simulation framework, are
generally large site-grids with neighborhood systems of up to the fifth order.
This leads to complex site-grid constellations, which are not obvious to over-
look and debug. Thus it is mandatorily required to integrate a self-checking
functionality into the simulation framework as well as into its particular mod-
ules.

With regard to the proposed simulation framework the above mentioned concerns
become realized by means of the following implementation approaches and features.
They are described in exactly the same chronological order as mentioned above.

• The extensibility and flexibility of the MRF simulation framework significantly
profits from the modular structure and the pooling of functionally similar mod-
ules into distinct libraries. Furthermore the Simulation-Model Generator as
central unit and exclusive instance to generate simulation models addition-
ally supports the extensibility and flexibility of the framework. This specific
arrangement guarantees that only one single interface toward the simulation-
model generator has to be fostered to keep the framework operational, i.e.
any kind of extension and change only has to be compatible with this specific
interface. Thus a new module can systematically be added to the correspond-
ing collection just by guaranteeing a compatible interface; if, in any case, it
should not be possible to establish a compatible interface for such a new model,
an interface-wrapper around this module can solve all kinds of problems. In
addition to this appropriate wrapper, which establishes the interface to the
simulation-model generator any programming language can be chosen, which
together with C++ is compilable in all the current development environments.
This offers a far-reaching flexibility to implement new simulation modules.

• The efficiency and scalability of the simulation framework is mainly realized by
the specifically tuned simulation modules. Each single simulation module be-
comes conceptualized and implemented with respect to an optimized memory-
and processing-time usage. Furthermore the pooling of several modules with
an identical functionality into larger modules - e.g. cell-cluster modules and
wiring modules - increases the event-driven simulation performance because
the dynamic event-list data-structure is kept small to largely prevent memory
fragmentation. In contrast to that, a flat simulation model structure with its
large number of ungrouped modules (cf. Table 3.5, 3.4) would even more lead

129

Building the Simulation Model - Model Generation

to a tremendous data transfer between the CPU and the external memory
without efficiently using the CPU-cache. Additionally, each module gener-
ates its internal sub-modules and variables, dependent on its own concrete
functionality within the MRF simulation model. Hence, the memory usage is
optimized for each specific MRF model. The implementation of the central
components in C++ also supports the efficiency and scalability of the simu-
lation framework. The complete simulation framework likewise profits from
the fact that it is built up on open-source SystemC, which becomes steadily
improved by the community.

• The compatibility of the simulation framework with respect to the eventually
changing SystemC part, to its large extent is ensured by the modular orga-
nization. If a significant SystemC change will take place to become certain
features obsolete and new features are introduced, only specific modules are
affected. This is caused by the fact that the module collections are function-
ally disjunct and a SystemC change will not equally involve all modules. It
is therefore possible to adequately deal with SystemC changes as only small
adoptions of the framework are necessary at a certain time.

• The self-checking capabilities of the MRF specific simulation framework, which
are focused on the site-grid structure and the neighborhood wiring, are realized
by the simulation modules as well as by the simulation kernel during initializa-
tion. Within the cell simulation modules algorithms are embedded, which sort
the particular cells to assign a unique number to ech cell. This number equals
the value, which is received by the standard row-by-column scanning. The
consistency of the numbers as well as the maximum value correctly indicates
the generated cell modules, constituting the grid gantry. Furthermore each cell
cluster ensures a correct instantiation and wiring of the corresponding sub-cell
cluster. Finally the simulation kernel scans all ports during the instantiation
of the model to identify unconnected ports of the modules. These mechanisms
all together guarantee a completely generated and wired cell-grid.

4.6 Relation of Thesis Parts

The main parts of this thesis, including the fundamentals of Markov Random Field
theory (Chapter 2), the building blocks of the system-architecture template (Chapter
3), the simulation-modules of the simulation framework and the graph-theoretical
representation of the MRF device in the design framework (Chapter 5), are closely
linked to each other, are interdependent and together form a seamless simulation-
and design-environment for massively parallel hardware architectures of Markov
Random Field based image processing systems this thesis is dealing with. The inter-
play of the different thesis parts is, as already introduced in Chapter 3, represented
by the relation of the thesis parts, which is shown in Figure 4.12. So far we have
established the part of the relation diagram, which represents the coherence of the
universal constituents and the different building blocks derived out of them. This
has defined the step toward the system-architecture template, for massively parallel
MRF-based processing devices (see Figure 4.12). Additionally, this chapter deal-

130

Building the Simulation Model - Model Generation

VLSI

BBSystem

C

SSystemGD

Λ,Φ,Υ

Ξ,Ψ,Γ Π,Σ,∆

Figure 4.12: Established congruence relation.

ing with the simulation framework has established the relation of the architectural
building blocks to their corresponding simulation modules.

Recapitulating, we have up to now established the following parts and relations
of particular thesis parts: At first the fundamentals of Markov Random Field theory
and a structure of models, which are formulated on regular two-dimensional site-
grids. Based on this MRF model structure, we have defined the architecturally
uncommitted universal constituents, which represent the first part of the relation.
The second part comprises the building blocks BBSystem of the system-architecture
template. This part is connected with the universal constituents and vice versa
by means of the corresponding mappings. The third part is represented by the
simulation modules, which are linked to the architectural building blocks by the
corresponding mappings. This forms the second relation. The consecutive chapter
will present the final part and third relation.

4.7 Summary

This chapter has presented a novel simulation framework for massively parallel im-
age processing architectures, which are based on the processing principles of Markov
Random Fields. The simulation framework has been conceptualized and tuned to
support the specific simulation requirements that are prevalent in hardware-relevant
and massively parallel MRF processing architectures. Furthermore, the overall
framework has been designed to systematically simplify, structure and centralize
the compilation procedure of different MRF simulation models. Hence, the set-up
procedure, the model refinement and the generation of the simulation model has
been automated in large parts by the introduced simulation framework. In order to
prevent a time-consuming and proprietary development from scratch of an event-
driven simulation kernel as well as from elementary simulation capabilities, we have
decided to built our simulation framework up on the open-source SystemC [81] class-
hierarchy. This offers the advantage of allowing our simulation framework to profit
from further developing the simulation kernel within the open-source community as
well as our simulation framework to be easily and cost efficiently used within the
community.

131

Building the Simulation Model - Model Generation

In Section 4.1 we have introduced the proposed simulation framework. The mod-
ular and open software structure as well as the principal steps through the framework
in order to generate and simulate a MRF model have been presented. Additionally,
each of the framework components has been shortly described and qualified either as
a core module component or as a supporting module component. Within the follow-
ing sections of this chapter only the core modules have been further discussed. All
core modules of the simulation framework have been classified in Section 4.2 accord-
ing to the scheme of Chapter 3, which discriminates between Topology & Structure,
Processing and Control representing simulation modules. This section has further-
more formally defined the different simulation module collections and also formally
established the coherence between the building blocks BBSystem and the particu-
lar simulation module collections. Thus we have mapped the architectural building
blocks to corresponding simulation modules to model and simulate the massively
parallel MRF architectures, which have previously been derived in Chapter 3. For
each kind of simulation module, we have also presented prototypes to illustrate the
principle structure of the modules, which is divided up in a structure part, an ini-
tialization part and a functionality part (cf. e.g. Prototype 4.1). Section 4.3 has
presented the particular steps, which have to be executed to trigger the simulation
framework for generating a MRF model and for starting the simulation. These steps
have been divided up into two major phases: During the first phase the user has to
do some manual coding and arranging of modules. In contrast to this the simulation
framework executes its operation automatically the second phase, i.e. the defined
MRF model is represented by the corresponding simulation model, which becomes
executed to receive the simulation results.

The relation diagram of the different thesis parts, which illustrates the inter-
dependencies of the central thesis parts as well as it gives an overview of the main
thesis-topics has been presented in Section 4.6. This section has discussed the branch
of the relation diagram, which represents the mapping of the architectural building
blocks to its corresponding simulation modules. The following Section 4.5 has com-
mented on essential implementation issues of the proposed and software-technically
realized simulation framework. In summary, the MRF simulation framework fea-
tures itself by means of a flexible and modular framework arrangement, which rests
upon the SystemC kernel, parametrized modules, extensible module collections and
a self-generating capability of the simulation models. Various simulation results,
presented and discussed in Section 4.4, have demonstrated the capabilities of the
proposed simulation system. These results have underpinned our claim for a flex-
ible simulation framework for massively parallel and hardware-relevant processing
architectures, which are based on MRF processing principles. The selected results of
Section 4.4 are completed with additional simulation results, collected in Appendix
A.

4.8 Bibliographical Comments

The topic hardware-relevant simulation of massively parallel processing structures,
which are based on MRF/CNN principles until today is only partially addressed
within the CNN community. As the CNN community has its origin [35] [34] in

132

Building the Simulation Model - Model Generation

biologically motivated models, it was the logical deduction to only look at analogue
implementation technologies [18]. Additionally, the research focus is currently set to
mimic the biological signal shape by means of analogue signals. Thus only single cell
models or very small cell-cluster structures have been simulated and investigated.
Consequently, the demand for supporting simulation frameworks was not present,
as the simulation models of the particular cells or small cell-structures have been
coded by hand and adjusted to the specific analogue semiconductor technology.

Disregarding the current situation, Krieger and Chua [100] conceptualized in
ASIM a supporting simulation environment 1990, which was specialized to work
with analogue Cellular Neural Networks. The ASIM simulation environment pro-
vided an efficient simulation approach compared with traditional analogue simula-
tion approaches, which are very slow and cumbersome. The required computations
performed by ASIM are directly derived from the nonlinear differential equations,
describing the processing at each node. Cell-cluster and small systems are merely
represented by the internal data structure of ASIM. The modeling and simulation of
large CNN/MRF systems is not supported by this system. In addition, a direct link
to the complete architecture and the implementation technology is missing. This
is a typical feature and at the same time represents the major drawback of ASIM
and other introduced simulation environments [104]. The recently presented simu-
lation environment SCNN [108] [109] does also not focus on detailed and hardware-
relevant architecture modeling capabilities. Furthermore SCNN does not address
the massively parallel processing dynamic of CNN/MRF based processing devices.
The same applies for the SIRENA [30] simulation system. The massively parallel
processing dynamic of CNN/MRF systems is systematically investigated and visual-
ized by Hanggi et al. [66]. Whereas Matei and Goras [117] regarded a time-discrete
evolving simulation setting, similar to event driven approaches, for 1D CNN models.
Already Schikuta [145] followed up a data-parallel simulation approach, which tries
to implement event-driven simulation capabilities. But again detailed architectural
models are not systematically supported, so that the direct link to VLSI imple-
mentations and the massively processing dynamic is missing. The combined CAD
system of Carmona et al. [41] only supports a behavioral modeling and simulation
approach, too. Consequently, the link to hardware-relevant architecture variants
and the VLSI implementation technology is once again missing.

133

Building the Simulation Model - Model Generation

134

Chapter 5

VLSI Design Framework

This chapter introduces a novel, completely semiconductor-technology independent
VLSI design framework for Markov Random Field based processing devices, which
is specifically tailored to address the distinct system design needs of these massively
parallel hardware architectures. The proposed VLSI design framework rests upon
two essential and uniquely combined design principles in order to fulfill the demand
for a completely semiconductor-technology independent VLSI design framework for
massively parallel Markov Random Field based processing devices. The first design
principle claims that the level of abstraction for the design descriptions has been
shifted from the currently predominant VLSI specific register-transfer-level (RTL)
to a hardware-neutral behavioral and specification-like level. This first design princi-
ple systematically supports the semiconductor-technology independent description
of MRF devices as well as the complexity handling of MRF architecture descrip-
tions. The second design principle claims that the synthesis of the global MRF
device topology is addressed as a completely independent design step. Furthermore
this topology-synthesis procedure represents the very first step toward any MRF
specific hardware architecture in the advocated VLSI design approach introduced
in this chapter. This second design principle organizes and simplifies the archi-
tecture synthesis process insofar as global structures, which establish the overall
architecture-topology, did not mix either with local control blocks or with local
data-path blocks.

The continuously impressive progress of semiconductor-technology [82] [84] and
the resulting availability of advanced digital design technology families pave the
way for highly complex and densely integrated System-on-Chips (SoCs), and thus
in a similar way also for massively parallel Markov Random Field based process-
ing devices. This optimistic statement at least seems correct when viewed from an
exclusive semiconductor technology specific point of view. However, with respect
to the field of well-founded and systematic VLSI design methodologies this promis-
ing prospect soon ceases to be valid. The design methodologies established [111],
which are qualified to support the new and advanced technologies, are not able at
all to adequately handle the design of highly complex and distributed processing ar-
chitectures. Additionally, a technology-independent design entry is not supported.
Thus, a suitable VLSI design methodology for Markov Random Field based pro-
cessing devices is still missing, too. The reasons for this deficit cropping up in the

135

VLSI DESIGN FRAMEWORK

field of VLSI design methodologies are multifaceted and multi-layered. However,
the essence of the problem lies in the abstraction-level of the design descriptions
[83]. Today the design description is realized by one of the two IEEE standardized
hardware description languages (VHDL, Verilog), whose customized capabilities to
represent hardware designs are mainly limited to take place on the VLSI specific
register-transfer-level [3]. Exactly this abstraction-level is not adequate and efficient
enough to describe large, complex and distributed systems, which are principally
possible with todays’ multi-million gate VLSI semiconductor technologies. This
situation is well known within the EDA-community as design productivity gap [84].
Due to this fact a paradigm change with respect to design descriptions and represen-
tations [28] [51] is mandatorily needed to overcome this limitation and to establish
new design methodologies. In general VLSI design approaches, which start from
hardware-neutral or behavioral descriptions are called High-Level Synthesis (HLS)
or sometimes Behavioral Synthesis (BS) [51].

The VLSI design approach we propose for massively parallel MRF hardware
architectures and which we realize by means of the novel VLSI design framework,
performs exactly this paradigm change within the design methodology. The de-
sign representations are shifted from the pure RT-level to hardware-neutral and
specification-like design descriptions. Foremost this step allows it to systemati-
cally capture and design MRF devices with an appropriate size and to realize them
with different semiconductor-technologies. Due to this paradigm change the es-
tablished RTL-based design flow becomes altered. A direct technology synthesis
and mapping is no longer possible as we have left the RT-level, which only allows
a straight technology-synthesis and mapping. Consequently, the hardware-neutral
and specification-like MRF descriptions first have to be parsed and analyzed to
extract the relevant information. Secondly, this information becomes further pro-
cessed in order to expand graph-structures, which represent the architecture of the
MRF model in a hardware-neutral and technology-independent manner. Finally
these graphs are compiled into synthesizeable RTL-representations to drive estab-
lished and approved RT-level VLSI design flows. In contrast to already proposed
High-Level design approaches, where the overall design topology is implicitly defined
by the inherent structure of the data- and control-paths, we advocate a design ap-
proach, in which the graph representation of the architecture topology is generated
at first and as part of a separate design step. All other architectural representa-
tions, generated in the following design steps, are linked with and embedded in this
topology.

The following Section 5.1 describes the structure, the different components and
the arrangement of the components among each other characterizing the novel VLSI
design framework. Section 5.2 defines the guidelines, the definitions of the parts
and the relevant features of the canonical design representation for Markov Ran-
dom Fields. Section 5.3 represents the complete design flow of Markov Random
Fields supported by the VLSI design framework. In Section 5.4 we describe the
algorithms, which generate a IEEE-conform hardware description from the abstract
graph representation. Section 5.5 demonstrates the capabilities and the technology
independence by means of different prototypical FPGA implementations. Section
5.6 comments on concrete implementation issues of the design framework. Section
5.7 finally classes the design framework within the relation-diagram of thesis parts.

136

VLSI DESIGN FRAMEWORK

5.1 Design Framework Overview

The proposed technology independent VLSI design framework for massively parallel
hardware architectures of Markov Random Field based signal- and image-processing
models is software-technically realized as a modular and thus extensible design envi-
ronment. This modular and tool-box like environment is arranged around one single
data structure, called canonical design representation, which serves as the only cen-
tral data-basis. Thus the canonical design representation apparently stands for the
integrative design and information container of the MRF specific design flow.

Specifications, Definitions, Constraints

Parser Front End

Back−End
HDL Code Generator

Extractor
Structure

Extractor
Data Path

Scheduler

4

Canonical Design
Representation

2

1

3

Control−Path
Generator

Generator
Data−Path

Topology & Structure

Generator

Generator

Memory Hierarchy

Figure 5.1: Arrangement and components of the proposed VLSI Design Frame-
work.

Two different data-type groups form the foundation of the canonical design rep-
resentation. The first data-type group of the VLSI development process contains
the complete specification of the Markov Random Field, which has to be realized.
This specific information has been parsed and extracted from several descriptions
and specifications at the beginning of the design flow. Whereas the second group of
data-types covers the actual version of the generated massively parallel MRF hard-
ware architecture. Obviously merely some parts of the architecture are represented
at the beginning of the generation process by the second group of data-types. The
architecture is successively completed with the progress of the generation process.
Several different modules are arranged around the central canonical design repre-
sentation and each of these modules either generates or systematically manipulates
the MRF design representation in order to finally result in the intended massively
parallel VLSI architecture. This design framework configuration and all its single

137

VLSI DESIGN FRAMEWORK

components is diagrammatically depicted in Figure 5.1.
The modular arrangement of the proposed VLSI design framework offers several

vital advantages for future extensions of the framework. Due to the modular charac-
teristic of the VLSI design framework, arranged around the central and integrative
design data basis, subjoining additional modules for the design environment, which
generate, manipulate, restructure and optimize the canonical design representation,
are systematically supported and were included in the conception of that VLSI de-
sign framework. Consequently, the design framework available is at the outset not
restricted to the sub-class of MRF models, which is investigated in this thesis (cf.
Definition 2.10 and Section 2.5), but is rather open, including the corresponding
extensions, to other MRF classes. With a corresponding parsing front end, every
grammatically well-defined specification-, programming- and modeling language is
suitable as input language for the design framework. Apparently the proposed VLSI
design framework is principally not limited to one specific input language. The same
flexibility applies to the back-end code generation part. Currently the focus of in-
tention is exclusively set on IEEE standardized HDL languages such as Verilog or
VHDL, because only these two languages systematically support later technology-
specific VLSI design implementation steps and industrially-approved tape-out pro-
cedures.

Essentially, the MRF specific design flow by means of the proposed VLSI design
framework passes through four main steps (cf. Figure 5.1) and is set-up as follows:
Step 1 parses the specifications, descriptions and constraints of the Markov Random
Field model to be developed. In the following this information is processed and
stored in the first data-type group within the canonical design representation. Step
2 analyzes and processes the stored data of step 1 with regard to structure and
topology information in order to synthesize the topology defining gantry of the
MRF architecture. The MRF architecture-gantry is set up of the building blocks
BBTS, which have been described in Section 3.2.1. Step 3 generates the control-
blocks BBCT , defined in Section 3.2.3 as well as the data-paths BBPC , defined in
Section 3.2.2 of the MRF architecture. As a next step these parts are embedded
in the MRF topology earlier defined, i.e. the building blocks BBCT and BBPC are
embedded in their corresponding distinct site hulls. This third step finally completes
the MRF architecture, which is now completely represented by the canonical design
representation. In step 4 the canonical design representation of the compiled MRF
architecture is analyzed in order to generate synthesizeable HDL source-code, which
will be used for the following standard VLSI implementation process.

So far a basic set of modules has been implemented and integrated together
with the canonical design representation to form a functioning realization of our
proposed VLSI design framework with the previously described main features and
an overall structure as shown in Figure 5.1. Each part of the design environment will
be shortly described in the following, listed exactly in the chronological order they
are used in during the design flow. This will conclude the introduction and overview
of the proposed VLSI design framework for massively parallel VLSI architectures of
Markov Random Fields. The details of the design flow, with all different steps, will
be exhaustively explained and further commented on in Section 5.3, after having
finalized the formal presentation of the required graph-theoretical definitions and
foundations in Section 5.2.

138

VLSI DESIGN FRAMEWORK

Overview Framework Modules

The following discussion shortly introduces the central components of the proposed
design framework for massively parallel architectures of MRF based signal- and im-
age processing models. This presentation concludes the overview of the proposed
design framework and prepares for the following discussion on the graph-theoretical
representation.

Parser Front End

The parser front end pass reads and analyzes the different specifications and de-
scriptions of the MRF image processing model, which is intended to be realized as a
VLSI device. Several parameters have to be made available to sufficiently describe
and define a MRF device. These parameters comprise the size of the site set, its
arrangement, the neighborhood, the memory hierarchy and the processing function-
alities, to name just the essential ones. After a first syntax- and consistency check
was successfully performed on the different input sources, the MRF defining param-
eters are stored in the data container C

P (cf. Definition 5.1) within the canonical
design representation. The following design steps further process these information
to step by step compile a graph-theoretical representation of the massively parallel
MRF architecture.

Structure & Topology Extractor

The structure & topology extractor component processes the MRF parameters in
C

P stored before and collects all structure- and topology-relevant data, works this
data up and finally embeds the resulting information as structure-core data container
C

ST (cf. Definition 5.2) into the canonical design representation. This advocated
approach, where generic structure respectively topology information is preprocessed
and stored in a structure-core data container, ensures an advantageous flexibility
for the subsequent topology generator stage of the proposed design flow. Different
topology generator modules, producing different structure and topology character-
istics, can consequently fall back upon a common data structure with a well-defined
data interface.

Data- and Control Path Extractor

Likewise the previously described Structure & Topology Extractor, also the Data-
and Control Path Extractor component systematically scans the information stored
in C

P . But in contrast to the structure & topology extractor pass, this process solely
collects and pre-processes all information on data- and control-flow definitions and
dependencies. With respect to MRFs data- and control-flow dependencies are es-
sentially encoded by the energy-functional, the parameter estimation procedure as
well as by the optimization method. The worked up data- and control-flow informa-
tion is stored back in C

P . Again, this information storing scheme allows different
data- and control-path generators to fall back upon common data structures with
well-defined data interfaces.

139

VLSI DESIGN FRAMEWORK

Structure & Topology Generator

The structure and topology generator pass represents the very first step toward
a systematic synthesis approach of massively parallel MRF hardware architectures.
Hitherto this component scans the structure and topology information filed in the
structure-core container C

ST and expands the corresponding topology representing
graph. Therefore the concrete expanding sequence and thus the outcome of this pro-
cessing step - the topology representing graph - obviously depends on two factors.
Firstly on the specifications, which have been extracted and stored, and secondly
on the strategies to generate the representing graph.

Memory Hierarchy Generator

This component of the proposed framework creates a graph representation of the
required distributed memory hierarchy (cf. Section 3.1). This specific generator also
makes use of the stored information of the structure-core data container to synthe-
size a memory hierarchy representation. Different memory hierarchy generators are
obviously able to synthesize memory hierarchy representations with certain pecu-
liarities to flexibly match with numerous requirements and VLSI technologies.

Data-Path Generator

The data-path generator pass represents the processing step within the design flow,
which systematically creates the corresponding graph theoretical representation of
the MRF data-paths as part of the canonical design representation. During this
process the container, which holds the data-path relevant information is scanned
to receive the required data-path information and its dependencies. The additional
sub processing steps completely resolve all existent data dependencies to form a con-
nected graph, which completely encodes the data-path. Furthermore several specific
features establish essentially required links to the control path structures in order
to form a well-defined and hardware-relevant processing scheme at the end of the
design flow.

Control-Path Generator

The control-path generator pass represents the processing step as part of the pro-
posed design flow, which systematically creates the corresponding graph represen-
tation of the control-paths necessary for the previously generated MRF data-paths
within the canonical design representation. This processing step also establishes the
links to the data-path structure in order to embed these operations into the control-
flow.

Scheduler

So far the generated data-paths as well as the generated control-paths both solely
model data and control dependencies but not a time discrete processing scheme re-
quired for clocked digital devices. Therefore the scheduler pass of the design flow
assigns each operation of the data- and control flow to discrete time slots respectively
steps, simultaneously respecting all data and control dependencies. As a result a

140

VLSI DESIGN FRAMEWORK

time-discrete processing sequence is finally defined, which is suitable for purely dig-
ital and clocked VLSI architectures.

FSM Embedding

Besides the control structures for the data path several additional control schemes,
realized by finite state machines, are required to guarantee a correct and determin-
istic overall processing sequence of the MRF device. These finite state machines
are generated in this pass and finally all control structures, defining the processing
sequence of the MRF device, are embedded into the canonical design representation
together with the other architecture representing parts.

Canonical Design Representation

The canonical design representation is the basis and above all the central integrative
data container of our proposed VLSI design framework. As already partly mentioned
when describing the framework components, during the first phase of the design flow
different data containers are instantiated within the canonical design representation
and filled with the parsed Markov Random Field specifications. Thus a complete
specification of the specific Markov Random Field, which is intended to be realized
as a VLSI device, is available in an uniform data representation and with well-defined
data interfaces after the first design phase. These data containers are exclusively
designed to hold specifications of the Markov Random Field device. Therefore they
represent by no means parts of the massively parallel VLSI architecture. The sec-
ond design phase is based on these data containers and their stored information.
During this second design phase the different components generate - sequentially
and step by step - a graph-theoretical design representation G

D (see Section 5.4 and
Definition 5.6) of the massively parallel Markov Random Field processing device.
Such a central and uniquely arranged data representation offers some fundamental
advantages regarding flexibility, extensibility and portability. This is what charac-
terizes the software implementation of the VLSI design framework and the proposed
design flow itself. This main concept structures the definition and inheritances of
the software classes, their methods, design patterns and polymorphisms. In Sec-
tion 5.2 directly following the features and formal definitions of the canonical design
representation as well as exhaustive comments on the requirements and principles,
which lead to these definitions, are presented.

Back-End - HDL Code Generator

Finally the back-end code generation component analyzes the graphs within canon-
ical design representation and generates the source code of this architecture in a
standardized hardware description language. In order to be compatible and con-
sistent with advanced VLSI processing steps like synthesis, technology mapping,
placing & routing and design rule checking (DRC) the back-end module currently
supports the IEEE standardized HDL languages VHDL. However, not the complete
HDL language complexity is supported by the back-end code generator, because
merely the synthesizeable language subset is required for VLSI implementations.
The simulation-specific HDL language ingredients are currently of no importance

141

VLSI DESIGN FRAMEWORK

for the back-end code generation pass and have been excluded.

The next section provides a detailed introduction of the canonical design rep-
resentation. Starting with fundamental principles of a MRF specific design rep-
resentation suitable for high-level design flows, the discussion continues with the
presentation of elementary data container and formal graph definitions. Further-
more several qualities of the different graphs will be derived. These particular graph
properties support specific VLSI design steps, which are indispensable to realize a
massively parallel processing device for MRF based image processing models.

5.2 Canonical Design Representation

A flexible and extensible Canonical Design Representation (CDR) has to fulfill some
general requirements to tackle abstract design representation issues and concrete
VLSI implementation problems of massively parallel processing architectures, which
are derived from a Markov Random Field based statistical image- and signal pro-
cessing approach. So far neither any systematic VLSI design approach or high-level
synthesis flow has been proposed for this kind of highly complex and massively par-
allel digital systems, nor has this design automation problem at all been addressed
within the communities. This is why we have specified and developed from scratch
a new canonical design representation matching exactly this purpose. Some of these
guidelines are generally valid for any high-level design approach [51] [29] and other
principles are specifically formulated to represent of massively parallel Markov Ran-
dom Field architectures. Our advocated novel canonical design representation is
established on the basis of the following fundamental guidelines and principles:

Principles 5.1 (MRF specific CDR)

• The canonical design representation serves as an integrative container, which
at any time of the design flow contains the complete design specification and
furthermore the generated abstract, massively parallel architecture. The de-
sign representation is said to be design-integrative and complete.

• The canonical design representation is completely independent of the con-
crete languages and their grammatical forms, which are used for the design
specifications and design descriptions. The design representation is said to be
language-neutral.

• The canonical design representation possesses the capabilities to model and
represent all language constructs, which are used to specify and describe the
Markov Random Filed processing device. The design representation is said to
be language-expressive.

• The canonical design representation by itself does not directly or indirectly
constrain the structure and the outcome of the massively parallel architecture.
The design representation is said to be architecturally-neutral.

• The canonical design representation possesses a form and data-structure imple-
mentation, which allows the back-end task of automatic HDL code generation

142

VLSI DESIGN FRAMEWORK

to systematically be conducted, whereas the HDL code generation process is
focused on the synthesizeable HDL language subset. The design representation
is said to be HDL-code-generation-appropriate.

• The canonical design representation and its underlying data-structure is de-
signed and implemented to meet the requirement of scaling with large MRF
systems. The design representation is said to be design-complexity-appropriate.

The first guideline states that the initial design specification as well as the cur-
rent version of the massively parallel MRF system architecture is at any time of the
design flow represented within this novel canonical design representation. Thereby
the encapsulated information among others comprises the initial design specifica-
tion, generated design representations of the different architectural building blocks,
all kinds of dependencies between different design parts and various embedded con-
straints to guide the VLSI back-end process of synthesis and placing & routing.

The second guideline implies that the design representation is completely de-
coupled from specific language features and specification verbalizations. Merely the
the specification information and elementary definitions are extracted from the in-
put specifications. Thus the parsing module has to ensure that these qualities are
totally extracted, regardless of any concrete specification and description language.

The following guideline expresses that the canonical design representation is
expressive and also abstract enough to model and represent the extracted qualities
of the MRF specifications. Thus the canonical design representation must at least
have the same expressiveness as the input specification language.

Finally the next guideline states the important fact that only the generation and
transformation algorithms, systematically applied to the canonical design represen-
tation, determine the concrete structure and form of the massively parallel MRF pro-
cessing architecture and definitely not any inherent features and constraints of the
canonical design representation. The fact that all different modules, arranged around
the design representation, influence and define the architecture further stresses this
point.

The second to last guideline describes another essential feature namely the con-
crete internal realization of the design representation. The underlying data-structure
of the canonical design representation is implemented in such a way that the proce-
dure of hardware-description code-generation in VHDL can systematically be con-
ducted and automated by appropriate algorithms.

The last guideline finally states that the canonical design representation and its
underlying data-structure is designed to meet complexity constraints of ultra-large
massively parallel MRF processing architectures. To substantiate this statement,
the canonical design representation has been designed to handle complete MRF ar-
chitectures of realistic and industrially relevant size - a quadratic size of 1024 by
1204 processing elements has been successfully generated. But this size does not
represent the inherent limitation of the canonical design representation and its un-
derlying algorithms or data-structures. Additional features of the data-structure
such as the partial collapsibility and also expandability of the design representation
and the principle capability of the algorithms to work on these structures, in the
future allow larger MRF architectures.

143

Elementary Data Container

In the following paragraph, we define the set of graph theoretical representa-
tions GSystem for the set of architectural building blocks BBSystem. The graph rep-
resentations GSystem are also organized along the organization scheme, introduced
in Chapter 3, and thus we distinguish between topology & structure representing
graphs GTS , processing functionality representing graphs GPC and finally control
functionality representing graphs GCT . This specific organization scheme, applied
to the various graph representations GSystem, systematically supports and simplifies
the graph generation process itself as well as the back-end HDL code generation
process because topology, processing and control graphs are clearly separated and
can thus be treated independently of each other by using specific graph-expansion
and code-generation algorithms.

At first the elementary data containers of the canonical design representation
will be shortly introduced to explain the algorithms of the VLSI design framework
in the upcoming discussions of this chapter.

5.2.1 Elementary Data Container

In order to establish a flexible and expandable data-interface between the parser
front-end and the different graph-generation components of the VLSI design frame-
work, two elementary data container, which store the complete design specification
of the MRF, have been defined and incorporated into the canonical design represen-
tation. This arrangement allows it to change the specific parser front-end and thus
the specification language without altering any other consecutive steps of the design
flow, since solely the parser front-end process has to ensure that the correct data is
stored within the corresponding elementary data container.

The parsing process stores its results in the MRF parameter container C
P for

further processing by other components (see Figure 5.1) of the VLSI design frame-
work. Generally, the MRF parameter container C

P holds several different string-
and integer-values.

Definition 5.1 (MRF Parameter Container C
P)

The data container for Markov Random Field specific parameters is denoted by C
P

and comprises several different sets of string and integer data-types.

However, without detailing and listing all elements of C
P , the MRF parameter

container for instance comprises the extracted data- and control path information,
the absolute directory-path location for the generated files, various naming rules,
the x × y size of the MRF field, the absolute port bit-width and the port wiring
bit-width, to name just the most important one.

In the first phase of the topology and structure generation process, i.e. before
the corresponding graph is fully expanded, information from the MRF parameter
container C

P becomes edited by the structure & topology extractor and transfered to
the structure-core container C

ST in order to establish a well-defined data interface
with the other components of the VLSI design framework (see Figure 5.1). The
structure-core container C

ST stores different string- and integer-values.

144

Topology & Structure Graphs

Definition 5.2 (Structure-Core Container C
ST)

The structure-core container is denoted by C
ST and comprises sets of string and

integer data-types.

Again, without further detailing and listing all components of the string set
as well as the integer set, the container C

ST essentially stores values regarding
the grid-size of the MRF, wiring-specific parameters and some user-defined naming
conventions to enhance the overall readability of the compiled HDL code.

5.2.2 Topology & Structure Graphs

In the first category of the organization scheme we find collected graphs, which
represent architectural building blocks for topology & structure, i.e. the set BBTS

of topology & structure defining architectural building blocks is completely covered
by the set GTS of topology & structure graphs. But there is no strict one to one
linkage between the members of the two sets BBTS and GTS . Consequently, several
architectural building blocks of the set BBTS are covered by one graph of the set
GTS . The topology & structure defining architectural building block sets SHulls, WN

and MPorts (cf. Definition 3.1) are all represented in a semiconductor-technology
independent manner by one single graph, which is denoted by G

GT .
Unchangeable constraints of the two hardware description languages VHDL or

Verilog, into which the graphs will be compiled, alone justify to the decision of
representing the architectural building block sets SHulls and WN by one single
graph. The creation of the site hulls and their ports, to which the wiring blocks
will connect, has to be done in one single step and in textual unity, whereby the
precise port definition can solely be derived from the wiring blocks. Furthermore,
the MPorts are also included in the graph G

GT because the precise definition of
these parts is determined by the wiring blocks, too. All these arguments justify the
merging of these three parts in one single graph representation in order to allow and
simplify the graph compilation and HDL generation process.

The distributed global memory hierarchy building block MGMem is represented
by a particular graph, to allow the distinctiveness of this large memory dominant
structure to be addressed separately and to be well-controlled within the VLSI design
framework.

In summary we formally define the set of topology & structure representing
graphs, denoted by GTS in the sequel, as follows:

Definition 5.3 (Topology & Structure Graphs GTS)
The set GTS of topology & structure representing graphs reads

GTS = {GGT , GMH} (5.1)

with

• G
GT , the representing graph for the architectural building block sets SHulls,

WN and MPorts.

• G
MH , the representing graph for the building block MGMem.

145

Topology & Structure Graphs

This finalizes the formal definition of the topology & structure representing
graphs GTS within the canonical design representation. The discussion continues
with a detailed presentation of the particular GTS graphs G

GT (cf. Definition 5.4)
and G

MH (cf. Definition 5.5), and their features relevant for VLSI implementation
steps.

Topology & Structure Graph Set GTS

The specific graph-set GTS of the canonical design representation represents the most
fundamental graph-set as it completely models the massively parallel architecture
gantry in a semiconductor-technology independent manner. Exactly this pooling of
the topology- and structure-relevant building blocks within one graph-set, where the
graph G

GT models the architectural building blocks SHulls, WN , MPorts and the
graph G

MH models the distributed global memory hierarchy MGMem, realizes one
basic design principle of the VLSI design framework, namely that the generation of
the MRF device topology is addressed as a completely independent design step. The
two topology and structure representing graphs are realized separately and thus can
also be treated completely independent without mixing up with the processing- and
control-graphs during the advocated MRF specific design flow.

The graph G
GT itself, which represents the architectural building blocks SHulls,

WN and MPorts in an hardware-abstract and semiconductor-technology indepen-
dent manner, is realized as a directed acyclic graph (DAG) and formally reads

Definition 5.4 (Topology & Structure Graph G
GT)

The directed acyclic graph for the design’s topology and structure is denoted by
G

GT = (VGT , EGT). The vertex set VGT = {VGTTOP
∪ VGT ∪ VPhysConGT} con-

sists of three entirely different node sets and comprises:
(1) VGTTOP

= {GTTOP } the root at graph-level 0,
(2) VGT = {clusteri,k|i = 1, ...,mcluster; k = 1, ..., nlevel} representing the sub-cluster
set of its split predecessor or a singl cell and
(3) VPhysCon = {Consti,(k+1) | i = 1, ...,mcluster ; k = 1, ..., nlevel} representing the
physical constraint set associated with each single node of VGT .
The edge set EGT = {ETOP ∪ EGT ∪ EPhysCon} comprises:
(1) the directed edges ETOP = {ei,1|e = (GTTOP , clusteri,1); i = 1, ...,mcluster} to
indicate the connection between the node GTTOP ∈ VGTTOP

and the grid-split blocks
VGT = {clusteri,1|i = 1, ...,mcluster} of level 1,
(2) EGT = {ei,k|e = (clusteri,k, clusteri,k+2)} representing directed edges between a
clusteri,k on level k and its successors on level k + 2 and
(3) EPhysConGT = {ei,k = (clusteri,k, Consti,k)} representing directed edges between
the blocks on level k and their physical constraints on level k + 1.

Graph Description - In summary an arbitrarily expanded graph G
GT first of all

consists of the root node VGTTOP
at graph-level 0, which serves as an entry point

for algorithms as well as a link to the data container C
P and C

ST in order to pass
specification data forward to algorithms. The root node VGTTOP

is connected with
site-cluster nodes, denoted by cluster·,1 ∈ VGT . These nodes represent split site-
clusters of the original MRF site-grid, i.e. the MRF site-grid with size x×y is either

146

Topology & Structure Graphs

divided into several smaller site clusters or, if the site-grid is small enough into its
particular sites. Each node cluster·,1 ∈ VGT carries information about its sub-grid
size, the inter-cluster wiring and several other parameters, which are required for
the graph compilation procedures. Eventually these nodes cluster·,1 ∈ VGT possess
children-nodes representing an additional splitting of the parent site-cluster. This
scheme can be continued to expand a graph. Additionally, each node cluster·,· ∈ VGT

of the graph owns a child node Const·,·, which can carry very specific constraints
for the VLSI design realization steps.

With the previously given definition of G
GT at hand, several fundamentally

different graphs can be constructed, which completely represent the architectural
building blocks SHulls,WN ,MPorts in an abstract and semiconductor-technology in-
dependent manner. But not all principally possible graphs G

GT are equally suitable
for the design flow and later stages of the physical device implementation. There-
fore Section 5.3.1 presents Algorithm 5.1, which systematically expands appropriate
graphs G

GT .
Next, we will establish the basic graph-properties of G

GT , which are essential
for different VLSI design phases and realization steps. Naturally these properties of
G

GT have been in mind when defining G
GT and thus have been explicitly constructed

into this graph-structure and are not incidental properties, which were discovered
later on.

Graph Features

We continue with the proof of any topology and structure graph G
GT , which is

expanded with respect to Definition 5.4, being acyclic. This specific graph feature
will be discussed with respect to the support of other G

GT graph features and the
occurring effects regarding different VLSI implementation issues directly after the
following lemma.

Lemma 5.1 (GGT is acyclic)
Any topology and structure graph G

GT , which is generated according to Definition
5.4, is acyclic.

Proof: From the root node GTTOP on graph-level 0 only directed edges e·,· ∈
ETOP run to site(s) respectively site cluster cluster·,1 ∈ VGT on graph-level 1. Be-
tween VGT nodes on graph-level 1 as well as between VGT nodes on the same k
graph-level there are no edges and consequently no cycles. Each cluster·,1 ∈ VGT

is source of no more than two types of directed edges. The first type of directed
edges is derived from the set EPhysConGT and connects nodes cluster·,1 ∈ VGT with
nodes Const·,2 ∈ VPhysCon without forming cycles. Generally the set EPhysConGT

connects nodes cluster·,k ∈ VGT with nodes Const·,k+1 ∈ VPhysCon. Also between
VPhysCon nodes on graph-level 2 as well as between VPhysCon nodes on the same
graph-level k +1 there are no edges and thus no cycles. The second type of directed
edges derives from the set EGT and connects nodes cluster·,1 ∈ VGT with nodes
cluster·,3 ∈ VGT . Generally the edge set EGT connects nodes cluster·,k ∈ VGT with
nodes cluster·,k+2 ∈ VGT without generating cycles. Furthermore there are no edges

147

Topology & Structure Graphs

between nodes cluster·,k ∈ VGT and Const·,k−1 ∈ VPhysCon. Thus any topology and
structure graph G

GT , which is expanded according to Definition 5.4, is acyclic. This
proves the Lemma.

�
The feature that any topology and structure graph G

GT , which is generated
according to Definition 5.4, is acyclic has various useful consequences. On the one
hand the acyclic feature of G

GT causes the graph to be topologically sortable [40],
on the other hand it significantly simplifies the following proof of graph planarity
[164] (see Theorem 5.2). Consequently, the acyclic feature of G

GT represents a
very fundamental quality, explicitly encoded into Definition 5.4, which causes and
supports more profound G

GT graph features. But the acyclic feature of graph G
GT

neither complicates the overall data-structure and its implementation nor the graph-
expanding- and graph-processing procedures.

Next Theorem 5.1 proofs the G
GT feature that a hierarchical ordering on the

node set VGT = {cluster·,·} exists.

Theorem 5.1 (Hierarchical clusteri,k Order)
The graph G

GT is topologically sortable and a list of the topologically sorted G
GT

nodes with TOPOLSort = {v1 ≤ v2 ≤ ... ≤ vu|vu ∈ VGT , 1 ≤ u ≤ |VGT |} does exist.
Furthermore subsets of TOPOLSort are uniquely identified by their graph-level index
k. Within each k-indexed subset the index i defines an ordering and consequently
for each odd k an ordering on the cluster·,· nodes.

Proof: The proof is divided up into two parts: At first we show that G
GT

is topologically sortable and secondly we show that on each k-indexed subset there
exists an order. (1) The graph G

GT is directed, according to Definition 5.4, as well as
acyclic shown by means of Lemma 5.1, and is thus a directed acyclic graph (DAG).
Each DAG is topologically sortable, which proves the first part of the Theorem. (2)
The k-indexed subsets are ordered among each others by means of the topological
sorting and further sortable within each subset by means of the unique index i. This
proves the Theorem.

�
Design Step Support - This property of the topology & structure representing
graph G

GT reveals that this graph possesses an inherent structure and arrangement,
which follows well-defined rules and establishes useful coherences between the site
cluster or sites essentially modeled by the graph nodes VGT . These coherences are
used in conjunction with the planarity feature of G

GT , which will be proved in The-
orem 5.2 directly following, during the chip floor-planning procedure.

In order to elegantly prove Theorem 5.2 dealing with the planarity of G
GT1

by induction, we have to introduce K. Kuratowskis [103] [162] criterion of graph
planarity [114].

Lemma 5.2 (Graph Planarity Criterion)
Each finite graph is planar if and only if it does not contain a subgraph, which can
be generated by extensions of K5 or K3,3.

148

Topology & Structure Graphs

�

Remark 5.1 (K5 or K3,3)

1. K5 denotes the complete graph with five nodes.

2. K3,3 denotes the bipartite graph with two node sets of cardinality three each.

3. K5 and K3,3 are the smallest non-planar graphs, which follow directly from
Kuratowskis Corollary.

Now we are able to formulate and prove the following Theorem 5.2 on the pla-
narity of the G

GT1 graph type, which is a specialized variant of the topology &
structure graph G

GT without the nodes and edges of the physical constraints.

Theorem 5.2 (GGT1 = (VGT \VPhysCon, EGT \EPhysCon) Planarity)
The topology and structure modeling graph G

GT1 is planar.

Proof: We apply induction on |GGT1 |. Obviously, for |GGT1| ≤ 4 neither K5

nor K3,3 can be contained as subgraph and thus every G
GT1
≤4 is planar. In the

following we regard |GGT1 | � 4, and we additionally assume that neither K5 nor
K3,3 is included as subgraph. If we extend this graph G

GT1 it is only possible to add
nodes cluster·,k+2 and edges e = (cluster·,k, cluster·,k+2) according to Definition 5.4.
Because G

GT is acyclic, which is obviously also valid for G
GT1 , every extension by

nodes VGT and edges EGT will not generate a cycle. Thus it is impossible that the
extension of G

GT1
	4 contains either K5 or K3,3 as subgraph. Consequently, each G

GT1

is K5 and K3,3 subgraph-free and thus planar. This proves the theorem.

�

Design Step Support - This planarity feature of the graph G
GT1 is of far-reaching

relevance for the chip floor-planning. The chip floor-planning itself is required for
the expected extremely large MRF hardware architectures in order to realize the
technology placing and routing at all. A placing and routing of these hardware
architectures without any kind of floor-planning is completely unrealistic. The es-
tablished relations of the cluster·,· nodes among each other by the graph G

GT1 are
conserved during the graph compilation process and translated into a corresponding
hierarchy, encoded in the hardware descriptions. Consequently, the planarity feature
is also valid for the hierarchy of site-clusters respectively sites represented by the
hardware descriptions, which have been compiled from the cluster·,· nodes of G

GT1 .
Hence the chip floor-planning, conducted along the planar site-cluster respectively
site hierarchy, becomes well-organized and above all is significantly simplified. Ad-
ditionally, the hierarchical ordering feature of Theorem 5.1 further structures the
chip floor-planning as all children site-cluster, compiled from each cluster·,· node,
can be arranged in a particular rectangular chip area according to their ordering.

The following Theorem 5.3 about the combinational-logic neutrality of G
GT dur-

ing graph compilation affects the synthesis step for this part of the architecture and
reads:

149

Topology & Structure Graphs

Theorem 5.3 (GGT is combinational-logic neutral)
The topology and structure representing graph G

GT is combinational-logic neutral at
compilation.

Proof: We assume that the compilation process of graphs into hardware descrip-
tions itself will not generate any combination-logic. The root node GTTOP does not
model any part of the system’s topology & structure, but rather serves as an unique
entry point for algorithms and a link to specifications. Consequently, GTTOP will
not introduce any combinational-logic during the compilation process. Furthermore
the node set VGT only represents the structure definition of sites respectively site-
clusters and wiring definitions between sites or site-clusters. Hence these nodes will
not translate into combinational-logic during compilation. By definition of physical
constraints in VLSI design flows, these constraints cannot produce combinational
logic by themselves and this is equally valid for each VPhysCon of G

GT . Finally each
single edge of G

GT establishes an ordering and linkage of the nodes and does not
represent topology & structure components of the architecture. Thus the edges will
not be translated into hardware description parts at all. This proves the Theorem.

�

Design Step Support - Each topology & structure representing graph G
GT , which

is expanded in accordance to Definition 5.4, fulfills Theorem 5.3. This specific G
GT

quality ensures that every hardware description compiled of G
GT is combinational-

logic free. Thus the VLSI synthesis step can be conducted without finite state ma-
chine (FSM) extraction, without FSM state encoding, without FSM optimization as
well as without any kind of logic optimization. Consequently, the synthesis step for
G

GT compiled hardware descriptions reduces to the technology-independent gener-
ation of wires for WN and block structures for SHulls as well as to the technology-
dependent generation of storage elements for MPorts.

So far the topology and structure defining building block sets SHulls, WN and
MPorts of BBTS have been captured and represented by its graph G

GT . Conse-
quently, the graph theoretical representation of the distributed memory hierarchy
building block MGMem has to be defined.

The graph G
MH itself, which represents the architectural building block MGMem,

in a hardware-abstract and semiconductor-technology independent manner, is real-
ized by a directed acyclic graph. G

MH is formally defined as follows

Definition 5.5 (Memory Hierarchy Graph G
MH)

The directed acyclic graph for the distributed memory hierarchy is denoted with
G

MH = (VMH , EMH). The vertex set VMH = {VMHTOP
∪ VMH ∪ VPhysConMH}

consists of the three entirely different node types and comprises:
(1) VMHTOP

= {MHTOP} a single unique node, the root of the memory hierarchy
graph,
(2) VMH = {MEMblockik ,k|i = 1, ...,mblocks; k = 1, ..., nlevels} representing the split
sub-grid blocks of its predecessor and

150

Topology & Structure Graphs

(3) VPhysConMH = {Consti,(k+1) | i = 1, ...,mblocks ; k = 1, ..., nlevels} representing
the physical constraints associated with each single node of VMH .

The edge set EMH = {ETOP ∪ EMH ∪ EPhysConMH} comprises:
(1) the directed edges ETOP = {ei,1|e = (MHTOP , blocki,1); i = 1, ...,mblocks} to in-
dicate the connection between the node MHTOP ∈ VMHTOP

and the grid-split blocks
VMH = {blocki,1|i = 1, ...,mblocks} of level 1,
(2) EMH = {ei,k|e = (blocki,k, blocki,k+2)} representing directed edges between a
blocki,k on level k and its successors on level k + 2 and
(3) EPhysConMH = {ei,k = (blocki,k, Consti,k)} representing directed edges between
the blocks on level k and their physical constraints on level k + 1.

Graph Description - Every arbitrary graph G
MH , which is generated according

to Definition 5.5, consists of the root node MHTOP at graph-level 0. The root
node serves as starting point for various algorithms and also as a link to the el-
ementary data containers C

P and C
ST so that required parameters can easily be

provided. Each node MEMblock·,1 ∈ VMH at graph-level 1 represents a memory-
block, which stores specific parts of the input- respectively output-data during the
transmission process to and from particular site-clusters. Consequently, the overall
input- and output-data is distributed and stored within memory-blocks represented
by the nodes MEMblock·,1 ∈ VMH . The nodes MEMblock·,1 ∈ VMH themselves
carry information about the required storage size derived from the overall storage
size and the distribution to the nodes. This information will be used during the
HDL-code generation process. If the particular memory-blocks represented by the
nodes MEMblock·,1 ∈ VMH are too large, it is principally possible to further split
each memory-block and thus to generate children nodes MEMblock·,3 ∈ VMH . This
split-procedure can be continued several times until a specific graph G

MH becomes
expanded. Obviously the actual shape of the graph G

MH depends on the split-
respectively expanding-procedure.

The definition of G
MH is - similar to the Definition 5.5 of G

GT - generic enough
to allow many different graphs to principally be generated according to this defini-
tion. Obviously, not all graph variants are equally qualified for further processing
procedures within the VLSI design framework and are also not properly tuned with
respect to their structure to support back-end technology implementation tasks.
Hence Section 5.3.1 introduces Algorithm 5.2, which systematically expands ap-
propriate graphs G

MH for the design framework and further implementation steps
according to Definition 5.5.

Next, we will prove essential features of the graph G
MH , which are important

for different steps of the VLSI design flow and the physical device implementation.

Graph Features

Each expanded and distributed memory hierarchy graph G
MH , irrespective of its

expanding-procedure, possesses fundamental features, which are advantageous for
different processing steps along the complete VLSI realization flow. First we will
prove the characteristic feature of the graph G

MH being acyclic.

151

Topology & Structure Graphs

Lemma 5.3 (GMH is acyclic)
Any distributed memory hierarchy graph G

MH , which is generated according to Def-
inition 5.5, is acyclic.

Proof: The argumentation follows that of Lemma 5.1. Essentially the root node
MHTOP and its children MEMblock·,1 ∈ VMH do not form a cycle. Furthermore
there are no edges and consequently also no cycles between VMH nodes at the same
k graph-level. Every node MEMblock·,· ∈ VMH has no more than two different
children on the two directly following graph-levels. First these are nodes Const·,· ∈
VPhysConMH , which are connected by a directed edge and thus will not generate any
cycles. Additionally, the nodes Const·,· ∈ VPhysConMH possess no edges between
nodes on the same k graph-level and thus no cycles. The second group contains the
nodes MEMblock·,· ∈ VMH , which are connected by a directed edge. Again this will
not form a cycle. This node pattern can be continued several times without forming
any cycle. Thus any distributed memory hierarchy graph G

MH , which is expanded
according to Definition 5.5, is acyclic. This proves the lemma.

�

Design Step Support - The acyclic quality of G
MH implies the essential and,

for the place and route back-end VLSI task, important feature of planarity. Thus
the acyclic feature of the abstract and semiconductor-technology independent rep-
resentation simplifies technology specific implementation-tasks and their underlying
algorithms.

The following Theorem 5.4 proves the planarity of any graph G
MH
1 , which is

expanded according to Definition 5.5. Each graph G
MH
1 is a specialized variant of

the memory hierarchy graph G
MH , which excludes all nodes and edges representing

the physical constraints. As for the topology and structure representing graph, we
also use Kuratowskis [103] planarity criterion of Lemma 5.2 to prove the planarity
of G

MH
1 .

Theorem 5.4 (GMH
1 = (VMH\VPhysConMH , EMH\EPhysConMH) Planarity)

The memory hierarchy graph G
MH
1 is planar.

Proof: The proof runs by induction on |GMH1|. For every graph |GMH1 | ≤ 4
it becomes obvious by Definition 5.5 that neither K5 nor K3,3 is contained as a
subgraph. Consequently, each G

MH1
≤4 is planar. Next we regard |GMH1 | � 4 with

graph level k and furthermore we assume that neither K5 nor K3,3 is included as
a subgraph. It directly follows that G

MH1 is planar for |GMH1 | � 4. Extending
this graph G

MH1 it is only possible to add nodes MEMblockik ,k+2 and edges e =
(blocki,k, blocki,k+2) in accordance with Definition 5.5. Because G

MH is acyclic (cf.
Lemma 5.3), which is obviously also valid for G

MH1 , none of the graph extension
will generate a cycle. Consequently, it is not possible that the extension of G

MH1
	4

contains a K5 or K3,3 as a subgraph. Hence, every G
MH1 is planar. This proves the

theorem.

152

Topology & Structure Graphs

�

Design Step Support - As already discussed for the topology and structure graph
G

GT1, the property of planarity of the graph G
MH1 is also of vital relevance for

the chip floor-planning of the architectural topology, which the memory hierarchy
belongs to (see Section 3.2.1). The planarity of G

MH1 is conserved during the graph
compilation process and encoded by the corresponding hardware descriptions of the
memory hierarchy. Hence, the planarity of G

MH1 also remains valid for the mem-
ory blocks and their interdependencies represented by the hardware descriptions,
which have been compiled from the MEMblock·,· nodes of G

MH1 . Consequently,
the chip floor-planning for the memory hierarchy becomes a well-organized task.
Furthermore, the unique indexing i on each level of graph G

MH1, also embedded
into the hardware descriptions, further organizes the chip floor-planning procedure
as all children of a memory-block can be assigned to their particular rectangular
chip area - according to the imposed ordering of index i.

The next Theorem 5.5 establishes the combinational-logic neutrality of G
MH

during compilation.

Theorem 5.5 (GMH is combinational-logic neutral)
The memory hierarchy representing graph G

MH is combinational-logic neutral dur-
ing compilation.

Proof: We presuppose that the graph compilation process itself will not generate
any kind of combinational-logic. When considering the root node MHTOP , we
remark that this node does not model any part of the memory hierarchy. This
specific node rather serves as starting point for algorithms and at the same time
as small data container for parameters. Hence, MHTOP will not be translated
into combinational-logic during the compilation process. Furthermore, the node
set VMH of G

MH only represents the memory-blocks. Obviously these nodes will
not translate into combinational-logic while being compiled. Physical constraints
of VLSI design flows normally cannot produce combinational-logic by themselves
and thus each VPhysCon ∈ G

MH will not generate combinational-logic. Furthermore
the edge set between the nodes VMH of G

MH forms the shape of the hierarchy and
the connections of the memory blocks among each other. Consequently, these edges
only contribute to wiring structures of the memory hierarchy and by no means to
combinational-logic structures. This proves the Theorem.

�

Design Step Support - Each memory hierarchy graph G
MH is combinational-logic

free during compilation, which has been shown by the previous Theorem 5.5. This
property of G

MH simplifies the synthesis- and technology-mapping step, because
it is not necessary to extract finite state machines (FSM), to encode and optimize
the states of FSMs or to optimize any kind of combinational logic. Therefore, the
synthesis- and technology-mapping step for the memory hierarchy is reduced to the
technology-independent generation of hierarchy structures and connecting wires as
well as to the technology-dependent mapping onto memory blocks. In summary the

153

Processing Graphs

synthesis process of the hardware descriptions of the memory hierarchy only covers
the mapping to special and technology-dependent memory blocks.

Based on Definition 5.4, 5.5 and the preceding discussion the coherence between
the building block set BBTS and the representing graph set GTS for VLSI realizations
is formally given by the mappings

ΞTS : {SHulls,WN ,MPorts} −→ G
GT . (5.2)

and
ΞGMem : MGMem −→ G

MH . (5.3)

The mappings 5.2 and 5.3 give rise to the following corollary on the complete
representation of BBTS in a semiconductor technology independent manner.

Corollary 5.1 (BBTS Representation)
The building block set BBTS, which represents the topology & structure of the pro-
posed architecture template, is completely modeled by the graph set GTS in a semi-
conductor technology independent manner.

�

This finalizes the discussion on the graph theoretical representation of topol-
ogy and structure defining building blocks of the proposed architecture template.
We continue with the introduction of specific graphs, which model the processing
functionality of the architecture template.

5.2.3 Processing Graphs

The second category of the ordering scheme comprises graphs, which represent ar-
chitectural building blocks BBPC defining processing functionality (cf. Definition
3.2). Consequently, the set BBPC of processing building blocks is completely cov-
ered by the graph set GPC . In contrast to the topology and structure building
blocks each processing building block of Definition 3.2 is represented by exactly
one graph. The set PCEF of energy functional processing building blocks is repre-
sented in a semiconductor-technology independent manner by the single graph G

EF
PC ,

whereas the graph prototypically models only one energy functional processing build-
ing block HEF

· ∈ PCEF , as it is assumed that all HEF
i≤n ∈ PCEF are functionally

and structurally identical. If this assumption cannot be applied then functionally
and structurally differentiating energy functional building blocks have to be modeled
simultaneously by different graphs G

EF
PCz≤k

. Likewise, the set of PCOPT optimiza-
tion processing building blocks is represented by the single graph G

OPT
PC , because

all optimization processing building blocks HOPT
i≤n ∈ PCOPT are functionally and

structurally identical. The last processing building block PCPAR, which represents
the parameter estimation process is modeled by the graph G

PAR
PC .

Precisely this set of processing building blocks representing graphs, denoted by
GPC in the sequel, is formally defined as follows:

154

Processing Graphs

Definition 5.6 (Processing Graphs GPC)
The set GPC of architectural processing graphs reads

GPC = {GEF
PC , GOPT

PC , GPAR
PC } (5.4)

with

• G
EF
PC , the representing graph for the prototype of the functionally and struc-

turally identical elements of the building block set {HEF
i : 1 ≤ i ≤ n}.

• G
OPT
PC , the representing graph for the prototype of the functionally and struc-

turally identical elements of the building block set {opti : 1 ≤ i ≤ n}.
• G

PAR
PC , the representing graph for the architectural building block PCPAR.

This finalizes the introduction of the graphs GPC , which represent processing
building-blocks, as part of the canonical design representation. The discussion con-
tinues with a detailed presentation and definition of the particular GPC graphs G

EF

(cf. Definition 5.7), G
OPT (cf. Definition 5.8) and G

PAR (cf. Definition 5.9), fol-
lowing the chronological order of Definition 5.6.

Although the processing graphs G
EF , G

OPT and G
PAR resemble each other

with respect to their global graph structure in the following, we will further detail
the presentation for each processing graph and will provide a separate definition.
This detailed presentation simplifies the discussion as well as the referencing in later
sections of this chapter.

Processing Graph Set GPC

The graph set GPC of the canonical design representation solely models architectural
building blocks, which are dedicated to numerical processing tasks within the mas-
sively parallel architecture. These processing blocks are independent and distributed
units, embedded into the architectural gantry modeled by the graph set GTS . Con-
sequently, none of these processing blocks and their abstract graph representation
GTS alters the architectural topology gantry and their corresponding abstract graph
representation GPC . Hence the design principle of the proposed VLSI design frame-
work, claiming the topology and structure generation process to be independent,
and the first design step also remain valid for the introduction of the graph set GPC .
Furthermore, the strict separation of the graph sets GTS , GPC and their particular
elements simplify all further design steps because very specific processing-strategies
can be applied to distinct parts of the system architecture.
The representing graph G

EF
PC itself is realized as a directed acyclic graph, which

prototypically captures the data flow dependencies of the energy functional building
blocks. This is why such a graph is called Data Flow Graph (DFG). The data flow
graph G

EF
PC formally reads

Definition 5.7 (DFG Energy Functional G
EF
PC)

The data flow graph G
EF
PC = {V EF

PC , EEF
PC } of the energy functional is a directed

acyclic graph. The node set V EF
PC = {opi|i = 1, ..., nops} describes the different op-

erators, and the edge set EEF
PC = {ei,j |(opi, opj)} represents the data dependencies

155

Processing Graphs

and flow of information between the corresponding operators, i.e. ∃ei,j ∈ EEF
PC if

the result of operator opi is used by operator opj . Some of the nodes op· ∈ V EF
PC

are specialized because they model the data-inputs and data-outputs of the energy
functional. Furthermore the root node is represented by EFTOP .

Graph Description - The previous definition reveals that a data flow dependency
determines, when a specific operator can start its processing. Consequently, if op-
erator opi ∈ V EF

PC establishes a data flow dependency with operator opj ∈ V EF
PC ,

then operator opj ∈ V EF
PC can start its processing only after operator opi ∈ V EF

PC has
finished its processing. As already mentioned the following graphs that represent
processing-functionality G

EF
OPT and G

EF
PAR, are also data flow graphs and thus, com-

pared with graph G
EF
PC , only differ with respect to the node- and edge-set.

The graph G
OPT
PC is also realized as a directed and acyclic graph, which proto-

typically models the data flow dependencies of an arbitrary optimization building
block opt·. A single prototypical graph representation is justified, because it is as-
sumed that all optimization building blocks are functionally identical. The formal
definition of the data flow graph G

OPT
PC is given by

Definition 5.8 (DFG Optimization G
OPT
PC)

The model’s optimization data flow graph G
OPT
PC = {V OPT

PC , EOPT
PC } is a directed

acyclic graph. The node set V OPT
DFG = {opi|i = 1, ..., nops} describes operators and

the edge set EOPT
DFG = {ei,j |(opi, opj)} represents the data dependencies and flow of

information between the operators. Some of the nodes op· ∈ V OPT
DFG are specialized

because they model the data-inputs and data-outputs of the energy functional. Fur-
thermore the root node is represented by OPTTOP .

What was already stated for the data flow graph G
EF
PC of Definition 5.7, also

applies to the data flow graph G
OPT
PC . Each single data flow dependency of an op-

timization building block is prototypically modeled by this graph of the canonical
design representation.

Definition 5.9 (DFG Parameter Estimation G
PAR
PC)

The model’s parameter estimation data flow graph G
PAR
PC = {V PAR

PC , EPAR
PC } is a

directed acyclic graph. The node set V PAR
PC = {opi|i = 1, ..., nops} describes the op-

erators and the edge set EPAR
PC = {ei,j |(opi, opj)} represents the data dependencies

and flow of information between the operators. Some of the nodes op· ∈ V PAR
DFG are

specialized because they model the data-inputs and data-outputs of the energy func-
tional. Furthermore the root node is represented by PARTOP .

The description and definition of the parameter estimation graph G
PAR
PC con-

cluded the discussion of the processing graph set GPC as part of the canonical design
representation. So far abstract and semiconductor-independent graph representa-
tions for topology & structure defining building blocks as well as for processing-
functionality defining building blocks have been introduced in the preceding sub-
sections. The following paragraph defines the graph representations still missing

156

Control Graphs

to completely model the architectural control building blocks. These graphs rep-
resenting control-functionalities will complete the graph set of the canonical design
representation in order to model a particular Markov Random Field, which is covered
by the contemplated MRF-class defined in Section 2.5.

Based on Definition 5.7, 5.8, 5.9 and the discussion the coherence between the
processing building blocks BBPC and the representing graphs GPC are given by the
mappings:

ΨEF : {HEF
i : 1 ≤ i ≤ n} −→ G

EF
PC . (5.5)

ΨOPT : {opti : 1 ≤ i ≤ n} −→ G
OPT
PC . (5.6)

ΨEF : PCPAR −→ G
PAR
PC . (5.7)

The previous mappings 5.5, 5.6 and 5.7 give rise to the following corollary:

Corollary 5.2 (BBPC Representation)
The processing functionality defining building block set BBPC is completely repre-
sented by the graph set GPC in a semiconductor technology independent manner.

�

We continue the ongoing discussion with the description of specific graphs, which
model the control functionality of the architecture template.

5.2.4 Control Graphs

The third and last category of the organization scheme comprises a set of graphs
GCT relevant for control functionalities. These graphs model the architectural con-
trol building block set BBCT (cf. Definition 3.3) in an abstract and semiconductor-
technology independent manner. Between the control-functionality of the architec-
tural building blocks BBCT and the representing graphs GCT exists a one-to-one
correspondence, i.e. each particular control-functionality of BBCT is represented
by exactly one distinct graph of GCT . The architectural control building blocks
CT System and CTGMem are at the time modeled by the distinct graphs G

System and
G

GMem, respectively. With regard to the control building block sets CTPortMem,
CTEF and CTOPT the situation looks slightly different: Not all members of these
building block sets are represented by particular graphs; rather for each particular
set exactly one graph (GPortMem, G

EF and G
OPT) prototypically models the com-

ponents of the corresponding architectural building block sets. This procedure can
be justified, as it is assumed that the components ctrlPortMem

i≤n , ctrlEF
i≤n and ctrlOPT

i≤n

are functionally and structurally identical for a specific MRF model. Should a differ-
ing setting be necessary, then several graphs per set have to be generated to represent
this setting. Such settings are principally possible within the proposed novel VLSI
design framework, but until now software-technically have not been realized.

Formally, the control graphs will be denoted by GCT in the sequel and are defined
as follows:

157

Control Graphs

Definition 5.10 (Control Graphs GCT)
The set GCT of architectural control building blocks reads

GCT = {GSystem
CT , GGMem

CT , GPortMem
CT , GEF

CT , GOPT
CT } (5.8)

with

• G
System
CT , the graph representing the overall system control building block

CT System.

• G
GMem
CT , the graph representing the distributed memory hierarchy control

building block CTGMem.

• G
PortMem
CT , the graph prototypically representing the set port memory control

building blocks CTPortMem = {ctrlPortMem
i≤n }.

• G
EF
CT , the graph prototypically representing the set of energy functional control

building blocks CTEF = {ctrlEF
i≤n}.

• G
OPT
CT , the graph prototypically representing the set of control building blocks

CTOPT = {ctrlOPT
≤n } for the optimization procedure.

The previous Definition 5.10 finalizes the formal definition of the control-func-
tionality representing graph set GCT within the canonical design representation. We
continue the discussion with the presentation of a generic control graph. All graphs
of GCT can be derived from a customized version of this generic control graph, which
will be introduced in the upcoming section. This kind of presentation tightens the
section of graphs for control building blocks. Additionally, it allows us to sum up the
essential features of control graphs in the single Definition 5.11 on a generic control
graph.

The strict separation of topology & structure graphs GTS , processing graphs
GPC and control graphs GCT leads to the fact that none of these graph sets can
alter components of the other ones. In addition, specifically adjusted procedures
can be applied to these graph sets in a controlled manner, as the graph sets GTS ,
GPC and GCT are strictly separated and thus can be addressed individually. The
different mappings between building blocks respectively building block sets will be
described in the following.

All previously mentioned graphs are directed graph variants, which capture the
control-flow-dependencies of the architectural control building blocks BBCT in an ab-
stract an semiconductor-technology independent manner. Because these graph types
model the flow of control [48], such graphs are called Control Flow Graphs (CFG).
As already mentioned, in order to tighten the following text-paragraph and the dis-
cussion on control building-block representing graphs, we will define one generic
control flow graph instead of several detailed variants for the set BBCT . The generic
control flow graph is formally given by

Definition 5.11 (Generic Control Flow Graph G
Generic
CT)

The generic control flow graph is denoted with G
Generic
CT = (VCT , ECT). G

CT
Generic

is a directed graph. The node set VCT = vTOP
CT ∪ {sbi|i = 1, ..., nsb} describes the

158

Control Graphs

scope blocks of the control statements and the edge set ECT = {ei,j = (sbi, sbj)|i, j =
1, ..., nsb} the control flow between different scope blocks. Furthermore each edge is
marked by conditions which determine the scope block transitions.

Graph Description - Every control representing graph out of GCT is a customized
version of the generic control graph G

CT
Generic, i.e. the canonical design representa-

tion at the same time contains a customized version of G
CT
Generic for G

System
CT , G

GMem
CT ,

G
PortMem
CT , G

EF
CT as well as of G

System
OPT . For each of these control graphs G

·
CT the

node-sets and the edge-sets are separated and the graphs themselves are completely
independent from each other. The graph of Definition 5.11 determines the flow of
control between the scope blocks. These scope blocks sbi≤nsb

∈ VCT are wildcards
for the operations, signal assignments etc., which will take place between control
transitions. Consequently, if the scope block sbi is connected with the scope block
sbj by the edge ei,j = (sbi, sbj), a transition from sbi to sbj takes place, if and only if
the condition of ei,j is valid. The formulation with scope blocks is advantageous and
more flexible compared with a pure state formulation, because conditional branches
and loops can be represented in a much clear manner.

Obviously, the previously introduced data-flow-graphs as well as the control-
flow-graphs alone cannot totally and generally represent a well-defined sequence
of operations and control-conditions. Only a linkage of a data-flow-graph and its
appropriate control-flow-graph can achieve this. The next text paragraph explains
the DFG- and CFG-linkage in detail, which is mandatorily necessary to form a
correct sequence of operations and control-conditions.

Linkage between DFG and CFG

A special case exists, when a control flow graph can be view in isolation without
its corresponding data flow graph. This case is given when a pure control task has
to be modeled in a graph-theoretical manner. The system control graph G

System
CT

models such a pure control task and thus G
System
CT as a standalone control flow graph,

becomes a valid representation of pure control-functionalities within the massively
parallel MRF system architecture. All other control-flow-graphs of the set GCT

possess corresponding data-flow-graphs. The following corollary formalizes these
specific DFG-CFG linkages within the canonical design representation and the as-
signment of data-flow operators to control-flow scope blocks.

Corollary 5.3 DFG and CFG Linkage
For each of the control flow graph and data flow graph tuple (GGMem

PC , GGMem
CT),

(GPortMem
PC , GPortMem

CT), (GEF
PC , GEF

CT) and (GOPT
PC , GOPT

CT), a many-to-one mapping
of the corresponding operators op· ∈ V ·

DFG to its scope blocks sb· ∈ V ·
CT exist.

The pairing of control-flow-graphs and data-flow-graphs is given for the canonical
design representation of the proposed design framework. The assignment of data-
flow operators op· to their control-flow scope blocks sb· is just as straightforward.
The operators op· are encapsulated by control statements (conditional- and loop-
constructs), whose beginning- and end-labels uniquely define a scope block. Thus

159

Control Graphs

all operators op· can uniquely be assigned to their corresponding scope blocks to
form a correct control-flow-graph and data-flow-graph linkage [118] [63].

Based on the generic Definition 5.11 on control graphs and the corresponding
discussion the coherence between the building blocks BBCT and the representing
graphs GCT are given by

ΓSystem : CT System −→ G
System
CT , (5.9)

ΓGMem : CTGMem −→ G
GMem
CT , (5.10)

ΓPortMem : CTPortMem −→ G
PortMem
CT , (5.11)

ΓEF : CTEF −→ G
EF
CT , (5.12)

ΓOPT : CTOPT −→ G
OPT
CT . (5.13)

The previous discussion and the above stated mappings give rise to Corollary
5.4.

Corollary 5.4 (BBCT Representation)
The processing functionality defining building block set BBCT is completely repre-
sented by the graph set GCT in a semiconductor technology independent manner.

�

MRF-System Design Representation

The discussion and derivations of Section 5.2 have established important graph the-
oretical fundamentals to represent the architectural building blocks BBSystem (cf.
Section 3.2) and thus a massively parallel MRF architecture in an abstract and
technology-independent manner. Hence, we can formulate the following essential
theorem regarding the complete MRF design representation by system graph GD.

Theorem 5.6 (Design Graph GD)
For each massively parallel MRF architecture, which is exclusively compiled out of the
architectural building blocks BBSystem and which is also conformable with Definition
2.10, an abstract and semiconductor-technology independent graph representation
GD does exists. This design graph GD is composed out of the topology and structure
graph set GTS, the processing graph set GPC and the control graph set GCT and thus
reads

GD = {GT S ∪ GPC ∪ GCT }.
�

The next sections present the entire design flow by means of the proposed novel
VLSI design framework for massively parallel MRF architectures. The discussion
starts with the parsing- and analysis-steps and continues with the central graph
expanding procedures, which generate the design graph GD. Finally Section 5.4
discusses the HDL code generation process based on the design graph representation
GD, which finalizes the presentation of the proposed design flow (cf. Figure 5.1).

160

Expanding the Topology & Structure Graphs

5.3 High-Level Design Flow

The design flow traverses through several steps in order to generate a HDL code for
the massively parallel architecture, introduced in Chapter 3, of a specific MRF model
from hardware-abstract specifications and definitions. It starts with the reading and
analysis of specifications and definitions, which describe the MRF model and funda-
mental features of the massively parallel architecture. Essentially each specific MRF
model is represented by its corresponding energy-functional and the neighborhood
system, whereas the neighborhood system represents a vital structural component
of the architecture. Furthermore, the optimization method (cf. Section 2.3) deter-
mines the MRF model as well as its performance. The features of the massively
parallel architecture are mainly determined by the already mentioned neighborhood
system, the port memories and the memory hierarchy. This parsed information is
processed and stored in the elementary data container C

P (cf. Definition 5.1). In
the following design flow step the content of the data container C

P is further pro-
cessed with respect to topology- and structure defining architectural information
and these values are finally stored in C

ST . The content of C
ST is used to expand

the graph set GT S defined in Definition 5.3. The next design step generates the
graph sets GPC as well as GCT , which represent the processing and control parts of
the architecture. Finally the last design step generates a HDL code from the design
graph set GD = {GT S ∪ GPC ∪ GCT }.

The corresponding software-technical realization of the proposed VLSI design
framework, depicted in Figure 5.1, in its current version possesses a XML 1.0 parsing
front end [168]. Consequently, all specifications and descriptions of MRFs have to
be realized in a special XML template. We decided to use XML as input language
for the first version of the VLSI design framework, because of its flexibility as well as
the availability of XML parser front-ends free of charge. The parsed information is
processed and stored in the data container C

P . This data container is the exclusive
data-source C

P for the rest of the design flow. It therefore becomes obvious that the
XML parsing front-end can be exchanged for or mixed up with any parsing front-
end of any well-defined language. Based on the stored information in C

P , which
comprises the operands and operators of the energy-functional, their dependencies
among each other, the optimization method, the kind of the neighborhood system
and naming conventions, the graph-generation and graph-expansion of the topology
& structure representing graphs GTS can begin. This process will be introduced and
explained in the following section.

5.3.1 Expanding the Topology & Structure Graphs

According to Definition 5.3 the topology and structure representing graph set GTS

first comprises the graph G
GT , which models the site hulls, the neighborhood wiring

and the port memory building blocks of the massively parallel architecture. Sec-
ondly it comprises the graph G

MH , which models the globally distributed memory
hierarchy building block. The representing graph G

GT of topology and structure
components of a specific Markov Random Field model is expanded respectively gen-
erated by the Algorithm 5.1 based on the stored information of C

P and C
ST .

161

Expanding the Topology & Structure Graphs

Algorithm Description - The algorithm of generating graph G
GT works as follows:

Firstly, the algorithm requires the elementary data containers C
P and C

ST , which
store fundamental information. Furthermore the algorithm needs a data-structure
Predecessor List with stack-functionalities and the two values SPLITx = 2 and
SPLITy = 2, which define the x-direction and y-direction division-factors of the
site-grids. These values have been set to the value two, since this will always

Algorithm 5.1 G
GT Generator

Require: C
P , C

ST , SPLITx = 2, SPLITy = 2, Predecessor List
1: EXTRACT(Gridx, Gridy, minx, miny) ∈ C

ST ;
2: GENERATE(GTTOP (Gridx, Gridy)); // Graph-level 0 per Def. 5.4
3: PUSH BACK(GTTOP);
4: while HEAD[Gridx] ≤ minx ∨ HEAD[Gridy] ≤ miny do
5: for k = 1; k <= ∞; 2 ∗ (k + +) do
6: for i = 1; i <= (SPLITx ∗ SPLITy); i + + do
7: � X � =HEAD[Gridx]/SPLITx; � Y � =HEAD[Gridy]/SPLITy;
8: GENERATE(clusteri,k(X,Y) ∈ VMH);
9: GENERATE(Consti,k+1 ∈ VPhysConMH);

10: if k = 1 then
11: GENERATE(ei,1 ∈ ETOP);
12: CONNECT(HEAD(Predecessor List), ei,1, clusteri,k);
13: GENERATE(ei,k ∈ EPhysConMH);
14: CONNECT(clusteri,k, ei,1, Consti,k+1);
15: else
16: GENERATE(ei,k ∈ EMH);
17: CONNECT(HEAD(Predecessor List), ei,k, clusteri,k);
18: GENERATE(ei,k ∈ EPhysConMH);
19: end if
20: PUSH BACK(clusteri,k);
21: end for
22: POP FRONT();
23: end for
24: end while

generate four children of each parent node. This organizes the chip-floorplanning
and placing task with respect to the four quadrants in the chip-plane. In line 1 of
Algorithm 5.1 the data necessary to run the algorithm becomes extracted from C

ST .
This comprises the overall MRF grid-size in x- and y-direction (Gridx, Gridy) as
well as the smallest size of site-clusters (minx and miny) within the expanded graph
G

GT . Lines 2-3 generate the top node GTTOP of G
GT .

Line 4 is the while-loop, which checks whether the smallest size - defined by
minx and miny - of each site-cluster in the Predecessor List has been reached. Line
5 denotes the counter for the k graph levels, which doubles with each iteration
because the graph possesses cluster·,· nodes at graph level k and the corresponding
physical constraints at level k+1. The next cluster·,· nodes are located at graph level
k + 2. Line 6 realizes the counter for the particular cluster·,· nodes and its physical
constraints Const·,·. The counter value is calculated by means of the product of

162

Expanding the Topology & Structure Graphs

the x- and y-direction split factors SPLITx and SPLITy. Lines 7-22 generate the
different nodes and edges of the graph G

GT and connect them among each other
in order to expand the complete graph G

GT . Line 7 extracts the x and y grid-
size of the first element of the Predecessor List and divides these values with the
corresponding predefined split factors SPLITx and SPLITy in order to calculate the
two values X and Y . These two values serve as name-components of the cluster·,·
node-generation process in line 8. Line 8 generates particular cluster·,· ∈ VMH

nodes, which are named by a predefined string extended by the values X and Y as
well as uniquely indexed by i and k. Furthermore, line 9 generates the corresponding
physical-constraint nodes Const·,· ∈ VPhysConMH , which are indexed by i and k +1.

Lines 10-15 generate the corresponding edges and connect the cluster·,· and
Const·,· nodes, which have already been generated in lines 8-9, with the GTTOP node
respectively the physical constraints with their cluster nodes. The graph level check
k = 1 (line 10) within the algorithm and the following processing steps of lines 11-14
become necessary as all cluster·,1 nodes at graph level k = 1 have to be connected
to the GTTOP node by means of special edges ei,1 ∈ ETOP (cf. Definition 5.4).
These specific connections between the top-node GTTOP and the cluster nodes at
the next graph level are mainly substantiated by software-technical implementation
requirements. Lines 16-18 connect all generated nodes (lines 8-9) with a graph level
k >= 3.

Line 20 pushes all newly generated cluster nodes to the end of the Predeces-
sor List for further processing. Line 22, which lies outside of the for-loop of the
index i, pops the top element from the Predecessor List and thus removes this el-
ement since its processing has been completed. If the conditions of the while-loop
(line 4) are evaluated as being true, Algorithm 5.1 terminates.

After a successful termination of the algorithm, the canonical design representa-
tion contains a fully expanded graph G

GT . This graph can be specifically selected
and processed within the canonical design representation by means of its top node
GTTOP , which serves as central and only entry point into this graph structure.

Obviously, the introduced Algorithm 5.1 can produce different graphs G
GT with

various shapes, depending on the parameter pairs SPLITx, SPLITy and minx,
miny. Let us for instance consider the following extreme case: If the values of
SPLITx and SPLITy are equal to the overall site-grid size Gridx and Gridy, then
the algorithm expands a graph G

GT , which at graph level 1 possesses a total number
of Gridx ×Gridy clusteri,1(1, 1) nodes. Each of these clusteri,1(1, 1) nodes model a
particular site of the grid.

The second graph of the topology and structure representing graph set GTS

is graph G
MH , which models the global and distributed memory hierarchy of the

massively parallel system architecture. This specific graph G
MH is expanded respec-

tively generated by Algorithm 5.2. Obviously, the algorithm can generate differently
shaped G

MH graphs, according to its formal Definition 5.5. The expanding Algo-
rithm 5.2 of graph G

MH operates in the same way as the graph G
GT expanding

Algorithm 5.1. However, the graph G
MH is completely separated from G

GT within
the canonical design representation, and G

MH models a fundamentally different part
of the massively parallel hardware architecture.

163

Expanding the Topology & Structure Graphs

Algorithm Description - Without detailing all steps of Algorithm 5.2, which have
already been exhaustively explained for Algorithm 5.1, the generator procedure of
graph G

MH works as follows: The algorithm requires the elementary data containers,
the split parameter and a list-data structure, which possesses stack functionalities.
Lines 1-3 cover the initialization sequence of the algorithm. Firstly, important pa-
rameters are extracted from the elementary data container (cf. Section 5.2.1) and
stored in internal variables of the algorithm. Secondly, the top node MHTOP of

Algorithm 5.2 G
MH Generator

Require: C
P , C

ST , SPLITx∗y, Predecessor List
1: EXTRACT(MemSizex∗y , minx∗y) ∈ C

ST ;
2: GENERATE(MHTOP (MemSizex∗y)); // Graph-level 0 per Def. 5.5
3: PUSH BACK(MHTOP);
4: while HEAD[MemSizex∗y] ≤ minx∗y do
5: for k = 1; 2 ∗ (k + +) do
6: for i = 1; i <= (SPLITx∗y); i + + do
7: MEMSIZE=HEAD[MemSizex∗y]/SPLITx∗y ;
8: GENERATE(blocki,k(MEMSIZE) ∈ VMH);
9: GENERATE(Consti,k+1 ∈ VPhysCon);

10: if k = 1 then
11: GENERATE(ei,1 ∈ ETOP);
12: CONNECT(HEAD(Predecessor List), ei,1, blocki,k);
13: GENERATE(ei,k ∈ EPhysConGT);
14: CONNECT(blocki,k, ei,1, Consti,k+1);
15: else
16: GENERATE(ei,k ∈ EGT);
17: CONNECT(HEAD(Predecessor List), ei,k, blocki,k);
18: GENERATE(ei,k ∈ EPhysConGT);
19: end if
20: PUSH BACK(blocki,k);
21: end for
22: POP FRONT();
23: end for
24: end while

the global and distributed memory hierarchy graph G
MH is generated and pushed

onto the Predecessor List for further processing by the following algorithmic steps.
Lines 4-24 represent the complete graph expansion procedure in which all nodes

and edges of the graph G
MH are generated and connected with each other. Line 4

represents the outermost while-loop of the algorithm, which terminates as soon as
the top node of the Predecessor List has reached the predefined minimum of the
represented memory block. Lines 5-6 realize the two increasing parameters k and i,
where k represents the graph level index and i the index of the nodes on each graph
level k. Lines 7-9 determine one part of the node name (line 7) and generate the
corresponding node and its physical constraint node.

Lines 10-14 check whether the previously generated nodes have to be connected
with the top node MHTOP . If this is true, the corresponding edges are generated and

164

Expanding the Topology & Structure Graphs

connected with the top node as well as with the already generated nodes. If this is
not true, the algorithm continues with lines 16-18, which generate the corresponding
edges and connect them with the nodes located within the graph, i.e. nodes with a
graph level k > 2.

Line 20 adds the newly generated nodes block·,· to the end of the Predecessor List.
Line 22 finally removes the top element of Predecessor List after the processing is
finished.

From the viewpoint of VLSI implementations, where the particular functional
units are composed of transistors, which are arranged in the plane, the split-factor
SPLITx∗y = 4 of Algorithm 5.2 is advantageous and preferable compared to other
split-factors. A split-factor of 4 results in a sub-graph G

MH/VPhysCon∪EPhysConGT ,
which possesses a quad-tree structure, i.e. each block·,· node has exactly four block·,·
children-nodes. As each block·,· node represents a memory-unit of a specific size
within the graph G

MH , it follows from a quad-tree structure of G
MH that the

memory-unit size of each node is always divided up by four and represented by four
block·,· children-nodes.

Consequently, this quad-tree structure determines the overall data-flow speed all
the way through the global and distributed memory hierarchy. When abstracting
from physical clock-cycles as a processing-step measure, which is prevalent in digital
semiconductor technologies, we use δ-steps as a measure. A single δ-step comprises
all tasks, which have to be executed to transfer a single datum from one level of the
memory hierarchy to the next level.

For a quad-tree structure with M and N denoting the x and y size of the MRF
respectively, the following theorem holds true:

Theorem 5.7 (δ-steps for a quad-tree G
MH)

The δ-steps of the data flow within the global and distributed memory hierarchy,
which is represented by the graph G

MH , can be approximated by 3
2M × N δ-steps

upper-bound for one direction (completely up or down the memory hierarchy) if
G

MH/VPhysCon ∪ EPhysConGT is a quad-tree.

Proof: At the top level of the memory hierarchy all data has to be stored in one
single memory-unit and serially extracted from this memory-unit, a process which
requires M×N δ-steps. At the next level four particular memory-units - represented
by the block·,· nodes of the quad-tree graph G

MH - are available in order to distribute
the data in 1

4M ×N δ-steps to the next level of the memory hierarchy. This scheme
continues with 1

8M × N δ-steps, 1
16M × N δ-steps and 1

2n M × N δ-steps for the
consecutive levels of the memory hierarchy. The numerical series

1 +
1
2

+
1
4

+
1
8

+ . . . +
1
2n

+ . . . = 2, (5.14)

describes this scheme, except for the second term 1
2 . We have thus reached the

upper-bound of 3
2M × N δ-steps, which proves the Theorem.

�

The result of 3
2M × N δ-steps for one direction, either completely down or up

the memory hierarchy represents only a rough upper-bound of the required steps.

165

Expanding the Processing Graphs

A more precise δ-step-approximation and upper-bound is given by

2∑
i=1

⌊
(M × N)
(i ∗ 4) − 4

⌋
. (5.15)

The particular VLSI results of the global memory hierarchy, presented in Section
5.5, and Appendix B, are based on quad-tree graphs G

MH/VPhysCon ∪EPhysConGT ,
due to the resulting advantageous features for the processing steps of the VLSI-
implementation chain.

5.3.2 Expanding the Processing Graphs

The graph set GPC , which comprises the graphs representing processing-functionality,
consists of three particular graphs in accordance with Definition 5.6. This is graph
G

EF
PC ∈ GPC , which represents the prototype of the energy functional embedded in

each particular processing cell. As it is assumed that the energy functionals of all
processing cells are functionally and structurally identical, only a single modeling
graph G

EF
PC is needed. Furthermore the graph G

OPT
PC ∈ GPC models the optimization

method, which is used to determine a solution of the image processing problem. Fi-
nally the graph G

PAR
PC ∈ GPC models the processing-functionality of the parameter

estimation task within the MRF system. The generation procedure for the afore
mentioned graphs G

·
PC ∈ GPC will be presented and discussed in the upcoming

paragraph.

Algorithm Description - Algorithm 5.3, which generates the graphs G
·
PC ∈ GPC ,

executes as follows: The algorithm requires the elementary data container C
P , which

stores the parsed specifications of the MRF processing-functionalities. Additionally,
two dynamical list data-structures, Spec List and Node List, are needed for oper-
ating of Algorithm 5.3. The naming of the lists already makes clear that Spec List
stores specifications extracted from C

P and Node List stores nodes of the graphs
G

·
PC ∈ GPC . Line 1 is the outermost for all − loop, which makes sure that all

graphs of GPC will be expanded. Next, line 2 generates the specific root-node of
the graph G

·
PC ∈ GPC , which is currently generated. The following line 3 extracts

the specifications of the graph G
·
PC from C

P , works them up and stores them in
Spec List for additional processing.

Within lines 4 - 9 the algorithm generates the first nodes of the graphs G
·
PC ,

which model the inputs (signals as well as data) of the corresponding processing
building block. Line 4 scans the Spec List and extracts all specifications, which de-
fine the INPUTS of the building block. For these INPUTS′ parts line 5 generates
a special op· node. The following line 6 pushes this node onto the Node List for
further processing. Line 7 generates an edge e·,· to connect the generated node with
its predecessor, in this case with the root-node. The connection is established in
line 8 of the algorithm. So far the explained algorithm generates the portion of the
graphs, which consists of the root-nodes as well as the nodes of the input signals
and data.

Lines 10 - 25 generate the rest of the graphs. The for all − loop in line 10
selects all nodes within the Node List. Line 11, directly following, starts another

166

Expanding the Processing Graphs

Algorithm 5.3 G
·
PC ∈ GPC Generator

Require: C
P , Spec List, Node List

1: for all G
·
PC ∈ GPC do

2: GENERATE(Root Node of G
·
PC);

3: Spec List = EXTRACT(∀ Specs of G
·
PC ∈ C

P);
4: for all Specs[INPUTS] ∈ Spec List do
5: GENERATE(op·);
6: PUSH BACKNL(op·)
7: GENERATE(e·,·);
8: CONNECT(Root Node, e·,·, op·);
9: end for

10: for all op· ∈ Node List do
11: for all Specs ∈ Spec List do
12: if op·[Result] = Specs[Operand] then
13: if op·[Specs[Operand]] ∈ G

·
PC then

14: GENERATE(e·,·);
15: CONNECT(op·, e·,·, op·[Specs[Operand]]);
16: else
17: GENERATE(op·[Specs[Operand]]);
18: PUSH BACKNL(op·)
19: GENERATE(e·,·);
20: CONNECT(op·, e·,·, op·[Specs[Operand]]);
21: end if
22: end if
23: end for
24: end for
25: end for

for all − loop, which runs over all Specs ∈ Spec List. These two for all − loops
ensure that elements of Node List and Spec List can be processed among each
other. This process is executed in the following line 12. The if − case of line 12
checks whether the result of the operation, represented by the node op·, is used as
an operand within any other operation, which will be searched for in the Spec List
(Specs[Operand]). As soon as a match between op·[Result] and Specs[Operand] has
been found, two different cases have to be considered. In the first case (line 13 -
line 15) the graph G

·
PC already contains the node op·[Specs[Operand]] so that only

one edge and its connection has to be established. In the second case (lines 16 -
21) also the node op·[Specs[Operand]] itself has to be generated. The generation
of the unique indexes i, j for the nodes opi and the edges ei,j have been omitted in
Algorithm 5.3 and the preceding discussion to tighten the overall presentation.

So far all graphs G
·
PC ∈ GPC - expanded by Algorithm 5.3 - just model the

different operations, operands and data-dependencies of the building blocks repre-
senting processing-functionality. None of these graphs contains any directly usable
information, which determines the execution order of the different operations [51].
The data-dependencies of the graphs contain the required information, but not in

167

Expanding the Processing Graphs

a directly usable form. Hence, these data-dependencies have to be systematically
exploited in order to extract parallel processing capabilities as well as to establish
a well-defined, deterministic and overall processing order for the operations of each
particular graph. This is done by scheduling-algorithms, which assign to each node
of the graph G

·
PC ∈ GPC an integer-valued mark, which defines the scheduling step of

this operation. Several nodes can possess the same mark (scheduling-step) and con-
sequently will be executed in parallel. All these marks form a strict, monotonously
increasing sequence of integer values and thus a well-defined order of execution.

Scheduling steps and scheduling sequences are formally presented in Definition
5.12, which reads

Definition 5.12 Scheduling Step & Scheduling Sequence
A scheduling step denoted by stepj = {opk|k = 1, ..., n; j = 1, ...,m} is an agglomer-
ation of n different operators op·, which can be executed in parallel in this scheduling
step without violating the data dependencies and the flow of information between the
operators defined by any of the data flow graphs G

·
PC ∈ GPC.

A scheduling sequence is a strict, monotonously increasing sequence of integer
values {j|j = 1, ...,m}, which define the partial ordering {j ≤ j + 1|∀j = 1, ...,m}
on the scheduling steps.

As soon as each of the graphs G
·
PC ∈ GPC have been enriched with the informa-

tion of Scheduling-Steps, which together define the strict, monotonously increasing
and unique Scheduling Sequence, it becomes possible to expand the correspond-
ing control-graphs (see Section 5.3.3) for those processing parts of the MRF ar-
chitecture. A processing graph and a corresponding control graph together form
a tuple (G·

PC , G·
CT) (cf. Corollary 5.3), which completely models the processing-

functionality in a digital-electronic appropriate kind. Each of the algorithms, de-
scribed in the following and realized within the VLSI design framework, enrich the
graphs G

·
PC ∈ GPC with scheduling step marks by means of different strategies. At

first the so called ASAP (As-Soon-As-Possible) scheduling algorithm [60] will be
presented. This algorithm assigns an operation op· to a specific scheduling step as
soon as the data-dependencies allow this action to be performed.

Algorithm Description - The As-Soon-As-Possible (ASAP) [51] scheduling algo-
rithm is outlined in Algorithm 5.4 and works as follows: This scheduling method
requires only the graph set GPC to be executed correctly. Any additional information
is already embedded within the structure of the graphs G

·
PC ∈ GPC or will be added

by the algorithm step-by-step and re-used later on.
Line 1 is the outermost for all − loop, which runs over all graphs G

·
PC ∈ GPC .

The scheduling algorithm ensures that to each node opi ∈ V ·
PC an integer valued

mark Indexstep
i is assigned, which represents the single time steps operations are

executed in. More than one node opi ∈ V ·
PC can be assigned by the same mark

Indexstep
i , which means that these operations are executed parallel during this time

step. Naturally it is assumed that the scheduling algorithm respects the data de-
pendencies between the single operations opi. The expression of Predecessorsopi

denotes the list of direct predecessor operations of the node opi. These predeces-
sor operations are uniquely determined by the structure of the corresponding G

·
PC

168

Expanding the Processing Graphs

graph. The help function maxIndex(Predecessorsopi) returns the maximum value
Index of all predecessors of operation opi.

Algorithm 5.4 ASAP Schedule ∀G
·
PC ∈ GPC

Require: GPC

1: for all G
·
PC ∈ GPC do

2: for all opi ∈ V ·
PC do

3: if Predecessorsopi = ∅ then
4: Indexstep

i = 1;
5: else
6: Indexstep

i = 0;
7: end if
8: end for
9: while V ·

PC
= ∅ do
10: for all opi ∈ V ·

PC do
11: if ∀Predecessorsopi holds Indexstep
= 0 then
12: Indexstep

i = maxIndex(Predecessorsopi) + OperationSteps(opi);
13: V ·

PC = V ·
PC − {opi};

14: end if
15: end for
16: end while
17: end for

Lines 2 - 8 of Algorithm 5.4 represent the initializing sequence of the ASAP
scheduling-method. Here to all nodes opi, which have no direct predecessors, are
assigned the value Indexstep

i = 1 and are thus scheduled to the first time step. All
other nodes obtain the initializing value Indexstep

i = 0. Lines 9 - 16 describe the
crucial part of the scheduling method, where each node is assigned to a time step
represented by the value Indexstep. The assignment process of Indexstep continues
as long as to all nodes opi have been assigned a valid index (line 9). The following
for all − loop of line 10 ensures that those nodes previously not scheduled are
processed later, as long as a valid schedule is possible. Lines 11 - 14 assign to the
node opi a valid index as soon as to all its predecessors have before been assigned
a valid index. The current index value of node opi is derived from the largest index
value of its predecessors.

Another scheduling method is called ALAP (As-Late-As-Possible) scheduling
and will be presented in the paragraph directly following. This method assigns each
operation op· to the latest scheduling-step this specific operation can be executed
[60]. ALAP is regularized by a given constraint T of maximum scheduling steps.

Algorithm Description - The As-Late-As-Possible (ALAP) [51] scheduling method
is depicted in Algorithm 5.5 and works as follows: This scheduling algorithm requires
the graph set GPC as well as the afore mentioned constraint T of maximum schedul-
ing steps in order to run correctly. Any kind of additional information is already
represented by the structure of the graphs G

·
PC ∈ GPC or will be added by the

algorithm.

169

Expanding the Processing Graphs

Line 1 is the outermost for all − loop, which runs over all graphs G
·
PC ∈ GPC

to allow all these graphs to become equipped with the ALAP mark after the suc-
cessful execution of this scheduling algorithm. In contrast to the ASAP scheduling
method it is possible that the ALAP scheduling method completely fails because
the constraint T has been improperly chosen. To each node opi ∈ V ·

PC is assigned
an integer valued mark Indexstep

i , which represents the scheduling step this oper-
ation becomes executed in. Obviously, to more than one node opi ∈ VDFGEF

can
be assigned the same mark Indexstep

i , i.e. the operations with identical marks exe-
cute in parallel during this scheduling step. Of course it is assumed that the ALAP
scheduling algorithm respects the data dependencies, which are defined by the struc-
ture of the corresponding graph G

·
PC ∈ GPC . The expression Successorsopi denotes

Algorithm 5.5 ALAP Schedule ∀G
·
PC ∈ GPC

Require: GPC , T
1: for all G

·
PC ∈ GPC do

2: for all opi ∈ V ·
PC do

3: if Successorsopi = ∅ then
4: IndexALAP

i = T ;
5: V ·

PC = V ·
PC − {opi};

6: else
7: IndexALAP

i = 0;
8: end if
9: end for

10: while V ·
PC
= ∅ do

11: for all opi ∈ V ·
PC do

12: if ∀Predecessorsopi holds IndexALAP
= 0 then
13: if minIndex(Successorsopi) − OperationSteps(opi) < 0 then
14: IndexALAP

i = minIndex(Successorsopi) − OperationSteps(opi);
15: else
16: break with ERROR;
17: end if
18: V ·

PC = V ·
PC − {opi};

19: end if
20: end for
21: end while
22: end for

the list of the direct successor nodes with respect to the node opi. The successors
are uniquely determined by the graph structure of G

DFGEF . The help function
minIndex(Successorsopi) returns the minimum value Index of all successors of the
contemplated node opi.

Within lines 2 - 8 of Algorithm 5.5 the currently processed graph G
·
PC ∈ GPC

is initialized, i.e. all nodes, which do not possess successors are assigned to the
last possible state (line 4), defined by the constraint T and the other nodes are
assigned to the first state (line 6). Lines 10 - 21 describe the crucial part of the
ALAP scheduling method where to each node is assigned a time step represented
by the value of Indexstep. The Indexstep assignment process continues as long as to

170

Expanding the Control Graphs

all nodes opi are assigned a valid index (line 14). In the ALAP scheduling method
it becomes possible that negative values of Indexstep are generated, in case the
constraint T was chosen improperly. This case is checked in line 13 to allow the
complete algorithm to be terminated in line 16 as soon as the value of Indexstep

becomes negative. The for−loop of line 11 ensures that all previously not scheduled
nodes will be processed during a later process-pass of the scheduling algorithm. Line
14 assigns to the node opi a valid index, when to all its successors were assigned a
valid index before. The current index value of node opi is derived from the smallest
index value of its predecessors.

5.3.3 Expanding the Control Graphs

The set of control-unit representing graphs GCT (cf. Definition 5.10) comprises the
system control-unit graph G

System
CT , which handles the overall sequence of operations

and data-flows within the MRF device. This control unit triggers and stops the
different parts of the architecture to allow a well-defined processing sequence to be
always guaranteed. The control-unit graph G

GMem
CT manages the operation of the

globally distributed memory hierarchy and is triggered and stopped by the system
control-unit. Furthermore, the port memory control-unit graph G

PortMem
CT models

the data transfer between the particular processing elements. Depending on the data
transfer strategy, which can be vary from being fully parallel to being fully serial,
the graph G

PortMem
CT is generated to cover the corresponding data-transfer function-

ality. G
EF
CT is the graph, which models the control-unit of the energy-functional.

Finally G
System
CT comprises, the control-unit representing graph G

OPT
CT that handles

the execution of the optimization method. In the following we present the particu-
lar graph-generation algorithms one after the other for all control-unit representing
graphs GCT .

Algorithm Description - Algorithm 5.6 describes the generation process of the
system control graph G

System
CT , which the proposed design framework is currently ex-

ecuting. The algorithm works as follows: Two dynamic list data-structures named
Predecessor List 1, Successor List 1 with PUSH, CLEAR and copying function-
alities next to the generated graph data structure are the only additional algorithmic
conditions for Algorithm 5.6. As the names of the list data-structures already sug-
gest, one list contains all direct predecessors and the other list all direct successors.

Line 1 generates the root-node of G
System
CT , which serves as an unique identification-

node for this graph and pushes it onto the predecessor list. Line 2 fills the successor
list with the Sync Reset and ASync Reset nodes, which have to be connected with
the top root-node of the predecessor list.

The connection procedure runs in lines 3 - 7. Obviously, line 5 represents an
essentially condensed instruction, which executes several different tasks. At first the
corresponding edge between the nodes Pre Nodes and Suc Nodes is generated and
marked with the state transition conditions encoded by CONDITIONS.

Secondly, this previously generated edge will then be connected to its nodes to
form a valid sub-graph. If the for − loops are finished, line 8 copies the successor
list to the predecessor list and in line 9 completely clears the successor list. Thus
new nodes can be generated and pushed into the successor list and in the following

171

Expanding the Control Graphs

Algorithm 5.6 Synthesizer FSM for G
System
CT

Require: Predecessor List 1, Successor List 1
1: PUSH FRONTPL1(GENERATE(Root Node of G

System
CT));

2: PUSH BACKSL1(GENERATE(Sync Reset),GENERATE(ASync Reset));
3: for all Pre Nodes ∈ Predecessor List 1 do
4: for all Suc Nodes ∈ Successor List 1 do
5: CONNECT(Pre Nodes, Suc Nodes, CONDITIONS);
6: end for
7: end for
8: Predecessor List 1 = Successor List 1;
9: CLEAR(Successor List 1);

10: PUSH BACKSL1(GENERATE(IDLE));
11: EXECUTE Line 3 - Line 9;
12: PUSH BACKSL1(GENERATE(Start Cell),GENERATE(Start Mem));
13: PUSH BACKSL1(GENERATE(Start MemCell));
14: EXECUTE Line 3 - Line 9;
15: PUSH BACKSL1(GENERATE(RETURN STATE));
16: EXECUTE Line 3 - Line 9;
17: CONNECT(RETURN STATE, IDLE, CONDITIONS)

can be connected with the nodes of the predecessor list. The processing of lines 3
- 9 is repeated in the current algorithm as well as in all other control graph gen-
eration algorithms. In order to tighten the presentation we will use the statement
EXECUTE Line 3 - Line 9 of Algorithm 5.6 to refer to the repeated processing just
described. Lines 10 - 16 complete the graph G

System
CT by means of the described re-

peating scheme. Algorithm 5.6 closes with line 17, which generates a feedback-loop
between the RETURN STATE node and the IDLE node.

Algorithm Description - The graph expansion procedure for G
GMem
CT , which mod-

els the control-unit of the globally distributed memory hierarchy is explained in Al-
gorithm 5.7. This algorithm is executed within the following steps: The algorithm
requires the two elementary data-containers C

P , C
ST (cf. Definition 5.1, 5.2) as well

as the two dynamic list data-structures Predecessor List 1, Successor List 1 as a
precondition to be able to operate.

Line 1 extracts two values from the elementary data container C
P and C

ST ,
which together are necessary to generate the corresponding control graph of the
global memory hierarchy for a specific MRF architecture. At first the overall grid
size becomes extracted from C

ST , which determines the maximum number of in-
put/output values that have to be stored and transported within the memory hier-
archy. Secondly, the number of parameters is extracted from C

P , which, together
with the input/output values, has to be stored and transported within the memory
hierarchy, too. If necessary the value of Parameter Size already covers the case
in which parameters with bit-sizes larger than the memory hierarchy up- and down
path have to be considered; i.e. a 16-bit parameter value is broken up into two parts
in a 8-bit memory hierarchy setting and thus with a value of two contributes to the

172

Expanding the Control Graphs

overall Parameter Size value.
In Line 2 both values Grid Size and Parameter Size are simply added to de-

termine the overall size of GMem and thus the maximum number of the address
range the control-unit counts up to. In Line 3 the root node of this control graph
is generated and pushed into the predecessor list to allow Line 4 to generate the
standard reset sequence and connect it with the root node of GGMem

CT .

Algorithm 5.7 Synthesizer FSM for G
GMem
CT

Require: C
P , C

ST , Predecessor List 1, Successor List 1
1: EXTRACT(Grid Size) ∈ C

ST ; EXTRACT(Parameter Size) ∈ C
P

2: GMem Size = Grid Size + Parameter Size;
3: PUSH FRONTPL1(GENERATE(Root Node of G

GMem
CT));

4: EXECUTE Line 2 - Line 9 of Algorithm 5.6;
5: PUSH BACKSL1(GENERATE(IDLE));
6: EXECUTE Line 3 - Line 9 of Algorithm 5.6;
7: PUSH BACKSL1(GENERATE(ADDR STATE));
8: EXECUTE Line 3 - Line 9 of Algorithm 5.6;
9: CONNECT(ADDR STATE, ADDR STATE, Addr ≤ GMem Size);

10: PUSH BACKSL1(GENERATE(RETURN STATE));
11: EXECUTE Line 3 - Line 9 of Algorithm 5.6;
12: CONNECT(RETURN STATE, IDLE, CONDITIONS);

The following lines 5 - 6 generate the IDLE node of this control graph and con-
nect it with the previously added reset nodes. This finalizes the generation of the
trunk G

GMem
CT graph. Lines 7 - 8 add the ADDR STATE node to the graph, which

models the address generation for the global memory hierarchy. This is why line
9 establishes a special feedback edge for the ADDR STATE node, which controls
the feedback. As long as the generated address Addr is smaller than or equals
GMem Size, the feedback path will be used within the G

GMem
CT graph. If the

Addr ≤ GMem Size condition becomes false, the path generated in Line 10-12
will be used. Line 10 generates the RETURN STATE node and in Line 11 con-
nects it to the ADDR STATE node. Finally line 12 generates a feedback edge
between the RETURN STATE node and the IDLE node.

Algorithm Description - An additional control-unit representing graph is G
PortMem
CT ∈

GCT . This specific graph models the port memories of the cells and the correspond-
ing send- and receive-actions in order to coordinate the data transfer between the
cells. Algorithm 5.8 describes the generation procedure for this control-unit repre-
senting graph G

PortMem
CT and works as follows: Both elementary data containers C

P

and C
ST (cf. Definition 5.1, 5.2) as well as two list data structures are required as

a precondition for this algorithm.
At first Line 1 extracts the port length respectively the port bit-width of the cells.

As the bit-width of the cell ports is equal for all cells n ∈ Ω and also for all ports of
the cells by definition of the architecture template, it is merely necessary to evaluate
an arbitrary port specification in C

ST . Furthermore Line 1 extracts the value of
DIV , which determines the factor by which the port bit-width is divided from C

P .

173

Expanding the Control Graphs

Algorithm 5.8 Synthesizer FSM for G
PortMem
CT

Require: C
P , C

ST , Predecessor List 1, Successor List 1
1: EXTRACT(Port Length) ∈ C

ST ; EXTRACT(DIV) ∈ C
P

2: PUSH FRONTPL1(GENERATE(Root Node of G
PortMem
CT));

3: EXECUTE Line 2 - Line 9 of Algorithm 5.6
4: PUSH BACKSL1(GENERATE(IDLE Send),GENERATE(IDLE Receive));
5: EXECUTE Line 3 - Line 7 of Algorithm 5.6;
6: CLEAR(Successor List 1); CLEAR(Predecessor List 1);
7: PUSH BACKPL1(SEARCH(Root Node, IDLE Send));
8: if MOD(Port Length,DIV)==0 then
9: for (i=1; i=< (Port Length/DIV); i++) do

10: PUSH BACKSL1(GENERATE(Send State(i)));
11: EXECUTE Line 3 - Line 9 of Algorithm 5.6
12: end for
13: CONNECT(Pre Nodes, IDLE Send, CONDITIONS)
14: CLEAR(Successor List 1); CLEAR(Predecessor List 1);
15: PUSH BACKPL1(SEARCH(Root Node, IDLE Receive));
16: for (i=1; i=< (Port Length/DIV); i++) do
17: PUSH BACKSL1(GENERATE(Receive State(i)));
18: EXECUTE Line 3 - Line 9 of Algorithm 5.6
19: end for
20: CONNECT(Pre Nodes, IDLE Receive, CONDITIONS)
21: else
22: DIV = DIV+1;
23: if Port Length > DIV then
24: GOTO Line 8;
25: else
26: BREAK;
27: end if
28: end if

Lines 2 - 3 generate the root-node as well as the reset nodes and connect them in
order to form the standard reset sequence all control units possess. Following lines
4 - 5 generate the IDLE nodes for the send- and receive-part of the control-unit
and connect them to the reset nodes. After this both list data-structures in Line 6
are cleared since the algorithm needs a new initialization to separately generate the
state-nodes for the send part and the receive part.

Line 7 traverses the so-far generated graph, starting from the Root Node, until
the IDLE Send node is found. This node is pushed into the predecessor list, to
allow the additional send nodes to be appended. The outermost if − condition
checks whether the partitioning of the port length by DIV is correct, i.e. expression
mod(Port Length,DIV) == 0 is valid. If this condition evaluates to be false, the
algorithm increases DIV by one and checks whether Port Length is still bigger than
DIV (Lines 22 - 27), in order to have a valid port-length partitioning, and repeated
Line 8. Lines 9 - 12 generate the send-nodes and connects them. The last send-node
is connected with the IDLE Send node by means of a feedback edge (Line 13). The

174

Expanding the Control Graphs

same procedure takes place with regard to the receive-nodes and becomes realized
in lines 14 - 20. This finalizes the algorithm under normal conditions without dis-
turbing abnormally the processing with any kind of fatal errors.

Algorithm Description - The graphs G
EF
CT , G

OPT
CT and G

PAR
CT representing control-

units are synthesized by Algorithm 5.9, which processes the graphs G
EF
PC , G

OPT
PC ,

G
PAR
PC and especially the embedded scheduling index in order to expand the cor-

responding control graphs. In detail this algorithm works as follows: Besides the
processing graphs G

EF
PC , G

OPT
PC and G

PAR
PC , whose control graphs should be syn-

thesized by Algorithm 5.9, three dynamic list data-structures Predecessor List 1,
Successor List 1, and Index List as well as the scheduling type Schedule Type are
required to execute this algorithm. The scheduling type determines, which indexes
(ASAP, ALAP etc.) of the graphs G

·
PC will be used during processing.

Line 1 starts the outermost for− loop, which selects the graphs G
EF
PC , G

OPT
PC and

G
PAR
PC one after the other for further processing. Lines 2 - 6 parse G

·
PC and extract

all scheduling indexes with respect to the Scheduling Type. But only indexes,

Algorithm 5.9 Synthesizer FSM for G
EF
CT , G

OPT
CT , G

PAR
CT

Require: G
EF
PC , G

OPT
PC , G

PAR
PC , Predecessor List 1, Successor List 1, Index List,

Schedule Type
1: for (GEF

PC , G
OPT
PC , G

PAR
PC) do

2: for all (nodes ∈ G
·
PC) do

3: if (EXTRACT(Schedule Type, Index) /∈ Index List) then
4: PUSH BACKIL(EXTRACT(Schedule Type, Index));
5: end if
6: end for
7: SORT≤(Index List);
8: PUSH FRONTPL1(GENERATE(Root Node of G

·
CT));

9: EXECUTE Line 2 - Line 9 of Algorithm 5.6
10: PUSH BACKSL1(GENERATE(IDLE));
11: EXECUTE Line 3 - Line 9;
12: while (Index List
= ∅) do
13: PUSH BACKSL1(GENERATE(POP FRONT(Index List)));
14: EXECUTE Line 3 - Line 9 of Algorithm 5.6
15: end while
16: CONNECT(Pre Nodes, IDLE, CONDITIONS)
17: end for

which are not already stored within the Index List (line 3) are pushed (line 4) onto
this list.

The following line 7 sorts the elements of the Index List to allow the elements
to be stored in an ascending order within the list. Consequently, the Index List
contains a sequence of indexes, which are arranged in accordance with Definition
5.12 about scheduling sequences. Lines 8 - 11 perform the generation of the standard
sub-graph, which consists of the root node of the corresponding graph G

·
CT , the reset

nodes, the IDLE node as well as the connecting edges.

175

Compiling Topology & Structure Parts

Lines 12 - 15 generate the nodes for the scheduling steps and connect them
among each other. Therefore the first element of the Index List always becomes
processed and is popped from the list until the list is empty. Finally line 16 connects
the last node of the generated graph, which models the last scheduling step, with
the IDLE node in order to start the control sequence again.

5.4 Compiling - From Abstract Graphs to Circuit De-
scriptions

After the graph generation process, which is specific for different MRF models,
has successfully and completely been finished, the canonical design representation
(CDR) contains a graph theoretical representation GD (cf. Corollary 5.6) of the
corresponding massively parallel processing architecture. The different graphs of
the CDR will be compiled, described in the next steps, into well-defined hardware
descriptions, which can be handed over to industrially approved design flows for
synthesis and technology specific placing & routing. Two IEEE standardized lan-
guages - VHDL and Verilog - are available today to describe hardware systems and
to conduct industrially approved synthesis and technology back-end processes.

The language back-end part of our proposed VLSI design framework (see Figure
5.1) currently supports VHDL as output description and can be extended to support
Verilog as well. The Verilog language back-end extension is possible because the rep-
resenting graphs of GD are completely neutral with regard to hardware-description
languages and the compilation process and its algorithms follow up deterministic
procedures to allow the concrete language dependent constructs of VHDL and Ver-
ilog to be systematically exchanged. Because of the strict separation of the graph
sets GTS , GPC and GCT , which model the architectural functionalities of topology
& structure, processing and control, respectively, the synthesis algorithms for each
graph set can be specifically adjusted and tuned to match with the requirements the
particular graph sets pose due to their different architecture-functionalities. The
next three sections will describe the general synthesis approaches for each graph set
as well as discuss the corresponding algorithms.

5.4.1 Compiling Topology & Structure Parts

In summary, the graph set GTS , which represents the topology & structure modeling
graphs within the canonical design representation, in particular covers the graphs
G

GT (cf. Definition 5.4) and G
MH (cf. Definition 5.5). Each graph of GTS is pro-

cessed by Algorithm 5.10 and the Function 5.11, which is called in line 4 and line 9.
The procedure of compiling the HDL-code for all graphs G

· of GT S has been split
up into its two parts (Algorithm 5.10 and Function 5.11) in order to separate two
principally different functionalities and also to improve the overall presentation of
the topology&structure specific compilation procedure. Within the first part, repre-
sented by Algorithm 5.10, the different graphs of GTS are selected, files are opened
and closed, a top-level module wrapper becomes written and the nodes of G

· ∈ GT S

become further processed by Function 5.11. Within the second part, represented by
Function 5.11, the hardware description of a module, which is modeled by a partic-

176

Compiling Topology & Structure Parts

ular node and its sub-graph, is synthesized. This function is executed by Algorithm
5.10, when traversing the topology & structure defining graphs of GTS .

Algorithm Description - The complete HDL-compilation procedure for the topol-
ogy & structure defining architecture-parts in detail works as follows: Algorithm 5.10
requires the topology & structure representing graph set GTS as well as a dynamic
list data-structure with stack functionalities. As the name of the list data structure
already suggests, this dynamic list stores nodes of the graph G

· ∈ GT S , which is
currently processed.

Line 1 is the outermost loop, which one after the other selects all graphs of
GTS for further processing. The selected graph G

· ∈ GT S is referenced by its
root-node, which is not required for the algorithm, so that line 2 pushes the child-
nodes to the Node List. The information of the first element in the Node List
is used to build up a unique file-name in order to open the file in line 3 of the
Algorithm 5.10. The following steps will write the hardware description of the
module, which is represented by the node, to this file. Line 4 calls the function
SY NTHESIZEGT S

HDL(G·, Node List) (see Function 5.11) with the two parameters
G

· and Node List, which synthesizes the virtual hardware description. After re-
turning from the function SY NTHESIZEGT S

HDL(·, ·) line 5 removes the first element
of the Node List, which has been processed. Finally line 6 closes the correspond-
ing file. Within the function SY NTHESIZEGT S

HDL(·, ·) additional nodes of the

Algorithm 5.10 Compiling HDL-code from GTS

Require: GTS , Node List
1: for all G

· ∈ GT S do
2: PUSH FRONTNL(CHILDREN(Root Node of G

·)
3: OPENFILE(FRONT(Node List));
4: SYNTHESIZEGT S

HDL(G·, Node List); // Function 5.11
5: POP FRONT(Node List);
6: CLOSEFILE();
7: while Node List
= ∅ do
8: OPENFILE(FRONT(Node List));
9: SYNTHESIZEGT S

HDL(G·, Node List); // Function 5.11
10: POP FRONT(Node List);
11: CLOSEFILE();
12: end while
13: end for

processed graph are pushed to the end of the Node List for additional processing.
The details will be explained directly during the discussion of Function 5.11. All
elements of the Node List are regarded in the while − loop of line 7. Within the
while − loop line 8 opens a file for the first element of the Node List. In line 9
the function SY NTHESIZEGT S

HDL(·, ·) is called, which synthesizes the hardware de-
scription model of the processed node. Line 10 removes the processed node from
Node List and line 11 finally closes the file. Either the algorithm will continue with
the while − loop of line 7 or the for − all − loop of line 1 or the algorithm will

177

Compiling Topology & Structure Parts

completely terminate.
The function SY NTHESIZEGT S

HDL(·, ·), which is called in line 4 and line 9 of Al-
gorithm 5.10 is illustrated in Function 5.11 and runs as follows: Two parameters are
required to execute the function SY NTHESIZEGT S

HDL(·, ·). Firstly, the Node List,
which represents the common data-structure of Algorithm 5.10 and Function 5.11
and thus the connection between them. Secondly, the actual graph G

· ∈ GT S , which
is currently processed. This function is divided into two parts by the outermost
if − else case. The if -branch runs from line 1 - line 11 and exclusively processes
the root-node of each G

· ∈ GT S , whereas the else-branch runs from line 12 - line 25
and processes all other nodes of the graphs G

· ∈ GT S . The if -branch synthesizes
a specific wrapper for the top-components of G

· ∈ GT S to address special issues,
which will be explained in the following.

Function 5.11 SYNTHESIZEGT S

HDL(·, ·)
Require: Node List and actual G

· ∈ GT S from Algorithm 5.10
1: if FRONT(Node List) == (Root Node of G

·) then
2: OPENFILE(Wrapper);
3: WRITEFILE(STD Header);
4: WRITEFILE(Constraints);
5: while Port List(FRONT(Node List))
= ∅ do
6: WRITEFILE(Port List[Definition]);
7: end while
8: WRITEFILE(Wire Definition);
9: WRITEFILE(WRAPPER(FRONT(Node List)));

10: CLOSEFILE(Wrapper);
11: CONTINUE;
12: else
13: WRITEFILE(STD Header);
14: WRITEFILE(Constraints);
15: while Port List(FRONT(Node List))
= ∅ do
16: WRITEFILE(Port List[Definition]);
17: end while
18: WRITEFILE(Wire Definition);
19: for all Child Node of FRONT(Node List) do
20: WRITEFILE(COMPONENT(Child Node));
21: if Child Nodex,y /∈ Node Listx,y then
22: PUSH BACKNL(Child Node);
23: end if
24: end for
25: end if

Line 1 checks whether the first node of Node List is a root-node of G
·. If eval-

uated as true, line 2 opens an additional file, which will be written until it closes
in line 10. In line 3 a standard HDL-header becomes synthesized, which includes
standard IEEE library definitions and also user specific definitions. The content of
this header is partially predefined by the design-framework and can be extended by

178

Compiling Topology & Structure Parts

user-definitions included in the MRF-specifications (cf. Figure 5.1). Line 4 adds a
section of physical constraints to the file, which will be used in later processing-steps
of the VLSI implementation flow. Within the while− loop of lines 5 - 7 the specific
Port List data-structure of the top node is scanned and the corresponding port-
definitions become synthesized and finally written to the file. Each port-definition is
composed of a port-name, which has to be unique for that component, a specification
of the signal transmission direction, the signal type of the port and eventually the
bit-length of the port, if not already implicitly defined by the signal type. Further-
more, the complete port-definition part has to be surrounded by marks, which define
the beginning as well as the end of the port-definitions. The details are language
dependent and vary depending on VHDL or Verilog is generated. We again remark,
that the design-framework currently synthesizes VHDL.

Line 8 synthesizes different wire definitions, which are required to connect ports
and parts among each other. The wire definitions differ in detail with regard to this
part is synthesized for the graph G

GT or the graph G
MH . Essentially for the graph

G
GT wires with a predefined logic-value are required, which fix the input ports of

the neighborhood system located at the boarder of the MRF grid, where no more
neighboring processing elements are available. Additionally, wires are required for
G

GT , which collect the outputs of the neighborhood system at the boarder of the
MRF grid and assign them to a single dummy output-port. For the graph G

MH wire
definitions are required, which connect sub-components to a particular memory com-
ponent. The following line 9 synthesizes the encapsulation of the component, which
represents the central part of the wrapper component. In detail the WRAPPER(·)
function in line 9 instantiates the component, which is represented by the root-node
itself and connects either the component ports with the port-definitions or with
the wire definitions, depending on which graph G

· currently becomes processed.
Obviously, the WRAPPER(·) function has to establish functional correct connec-
tions among the particular ports and wires. The technical details are hidden by the
WRAPPER(·) function in order to tighten the presentation. Finally line 10 closes
the file, where the synthesized wrapper has been written to. The following line 11
forces the function to continue with the else-branch. This procedure is necessary,
since a component description, which has been instantiated within the wrapper, also
has to be synthesized for the root-node and this is done within the else-branch.

Before the description is continued with the else-branch of Function 5.11, we
justify the synthesis of the wrapper components. The synthesis of the wrapper com-
ponents for the graphs G

· ∈ GT S has been included in the design-framework due to
requirements of the back-end place & route implementation process. Without the
wrapper components it becomes possible that the design flow will fail or becomes
difficult to manage. When regarding the graph G

GT and its root-node, which repre-
sents the complete MRF grid and its neighborhood wiring, it becomes obvious that
the neighborhood system on the MRF grid boarder is incomplete. Consequently,
there are missing input-sources and output-destinations for particular neighborhood-
connections of sites on or near the grid-boarder. Together with the fact that this
component is the top-, respectively the main-component of the MRF system, this
leads to the situation that all inputs and outputs of this component are normally
treated as physical chip I/Os. Hence, the technology mapper will generate for each
of these I/Os special I/O buffers, which are linked with the pads of the chip-package

179

Compiling Topology & Structure Parts

pins. But the physical chip-package pins are limited and furthermore the pin as-
signment is one of the very first back-end implementation steps cause the design
process to fail before placing and routing takes place. If one decides to prevent the
technology mapper from generating I/O pads, the design will contain dangling nets,
which cause the following design steps to abort, because electrical consistency is no
longer guaranteed. For the graph G

GM the wrapper encapsulates the top stage of
the up- and down-path within the memory hierarchy as well as the instantiations
of the next level in one component. This simplifies the floor-planning procedure
because all components can be referenced to by the wrapper component. Thus the
wrapper components are mandatorily required to resolve different practical issues
regarding design implementation.

The else-branch runs from lines 12 - 25 and works up to line 19 similar with
to if -branch, i.e. the standard header is written (line 13), the constraints are gen-
erated (line 14), the port definitions are synthesized (lines 15 - 17) and finally line
18 writes the wire definitions. The following lines synthesize the sub-components
and additionally decide, which sub-component has to be further processed in order
to iteratively traverse the graph. Line 19 starts the for all − loop, which picks
all children of the first node stored in the Node List data-structure. For each of
the children Function 5.11 writes a component description to the already opened
file, i.e. the component represented by the first node in Node List is composed out
of sub-components, which are represented by their children nodes. The command
WRITEFILE(COMPONENT (Child Node)) also hides several technical details
and processing steps that have to be conducted in order to synthesize the corre-
sponding components and their wirings. These processing details have been omit-
ted to stress the essential algorithmic steps. Line 21 checks whether the currently
regarded type of child node, which is defined by its x, y size, is already stored in the
Node List. If this is not the case, line 22 pushes this node type onto the list. When
the for all− loop of line 19 finishes its processing, the function returns to the calling
line of Algorithm 5.10 and the processing of the nodes, stored in the data structure
Node List, continues.

The lines 20, 21 and 22 of Function 5.11 are central with respect to several
aspects. Firstly, these lines ensure that only those sub-graphs are processed, whose
parent-nodes are different with respect to their x, y sizes. Consequently, not the
complete graph is traversed but only a single part of the graph, which improves
the processing-performance of Algorithm 5.10. This algorithmic-feature becomes
significant, when the processing of the modeling-graphs G

· ∈ GT S of MRF systems
with grid sizes that are larger than 100 sites in x as well as y direction takes place.
Furthermore this approach results in an effective and optimal synthesis procedure
of hardware descriptions for components with respect to the generated number of
different components and files. Only components with different x, y sizes become
synthesized and equal components are just instantiated. This limits the data, which
has to be passed over to the technology synthesis and mapping tools, and likewise
reduces the overall technology synthesis and mapping effort, since instantiations are
merely renaming and copying tasks (cf. particular discussions of Chapter 3). The
run-time improvements of the 3rd party technology synthesis and mapping tools
achieved by this kind of hardware description synthesis are tremendous and result
in a substantial reduction of the processing time for for even small MRF grid sizes.

180

Compiling Processing Parts

5.4.2 Compiling Processing Parts

The graph set GPC , which represents the processing functionalities within the canon-
ical design representation, consists of the graphs G

EF
PC , G

OPT
PC and G

PAR
PC (cf. Defi-

nition 5.5). All these graphs of GPC will be systematically processed by Algorithm
5.12 and the Function 5.13 in order to synthesize a hardware description for the
processing functionalities of the corresponding MRF architecture. Again the overall
procedure of compiling the HDL-code for the graphs of GPC has been split up into
two parts (Algorithm 5.12 and Function 5.13) in order to separate the two prin-
cipally different functionalities and also to improve the overall presentation. The
Algorithm 5.12 selects each graph of GPC for processing, opens and closes files and
calls the Function 5.13, which synthesizes the hardware descriptions by means of
the information of the modeling graphs.

Algorithm 5.12 Compiling HDL-code from GPC

Require: GPC , Node List, Schedule Type
1: for all (G· ∈ GPC) do
2: OPENFILE(FRONT(Node List));
3: SYNTHESIZEGPC

HDL(G·, Schedule Type); // Function 5.13
4: CLOSEFILE();
5: end for

Algorithm Description - The complete HDL-code compilation procedure for the
parts representing processing-functionality of the massively parallel architecture runs
as follows: Algorithm 5.12 requires the graph set GPC , a dynamic list data-structure
and the type of the scheduling method. Within the compilation process the schedul-
ing type determines which kind of time-partitioning has to be used during the gener-
ation of hardware descriptions for processing functionalities. As the name Node List
of the data-structure already suggest, this dynamic list stores the nodes of the cur-
rently processed graph G

· ∈ GPC . Line 1 is the outermost for all − loop, which
selects each graph of GPC for further processing steps. The following line 2 opens
the specific file into which the synthesized hardware description is written. The
actual synthesis of the hardware description is realized by Function 5.13, which in
line 3 is called with its required parameters. Finally, line 4 closes the file into which
Function 5.13 has written the synthesized hardware description. Either the algo-
rithm continues with another graph G

· ∈ GPC , or if all graphs have been processed,
the algorithm terminates normally.

The function SY NTHESIZEGPC

HDL(·, ·), which is called in line 3 of Algorithm
5.12, is illustrated in Function 5.13 and runs as follows: SY NTHESIZEGPC

HDL(·, ·)
requires two parameters to work correctly. At first the actual graph G

· ∈ GPC is se-
lected, which has to be processed and secondly the information about the scheduling
type, whose results will be used during the synthesis of the hardware description.
Furthermore two dynamic list data-structures are needed, which store the nodes of
sub-graphs of G

·. At the beginning (line 1) a standard header is written to the file,
which references IEEE libraries and sub-packages with different basic functionali-
ties. Line 2 eventually adds a section of constraints to the file to allow later steps of

181

Compiling Processing Parts

the VLSI implementation flow to be evaluated and uses them. The while − loop of
lines 3 - 5 scans the root-node of the actual graph and synthesized the correspond-
ing port-definitions, which are written to the file in the following. Each particular
port-definition is composed of several parts as it has already been explained in Sec-
tion 5.4.1. Furthermore the port-definitions are surrounded by special marks, which
define the beginning as well as the end of this part within the hardware description.

Function 5.13 SYNTHESIZEGPC

HDL(·, ·)
Require: Node List1, Node List2, Schedule Type and actual G

· ∈ GPC from Algo-
rithm 5.12

1: WRITEFILE(STD Header);
2: WRITEFILE(Constraints);
3: while Port List(G

·)
= ∅ do
4: WRITEFILE(Port Definition);
5: end while
6: WRITEFILE(Signal Definition);
7: for all RESET Nodes ∈ G

· do
8: for all CHILDREN do
9: Node List1 = DFS(CHILDREN);

10: for all Nodes ∈ Node List1 do
11: if STATE(Node(Schedule Type,Index)) /∈ State List then
12: PUSH BACKSL(STATE(Node, Schedule Type));
13: end if
14: WRITEFILE(State List);
15: end for
16: end for
17: end for
18: WRITEFILE(Reset Sequence);
19: Schedule Index = any RESET Node(Schedule Type,Index)+1
20: while Node(Schedule Type,Schedule Index) ∈ G

· do
21: WRITEFILE(STATE(Schedule Type,Schedule Index))
22: for all Nodes ∈ G

· do
23: if Node(Schedule Type,Index) = Schedule Index then
24: WRITEFILE(Node(Op));
25: end if
26: end for
27: Schedule Index++;
28: end while

Line 6 synthesizes wire-definitions, which are eventually used to connect ports
and different parts of boolean-logic within the component. Within lines 7 - 17 the
discrete states operations are defined with respect to the used scheduling type and
index, i.e. the different discrete states to which the operations will be assigned to
later on, become synthesized in these lines. As the reset nodes and their hardware
description synthesis are treated differently, only the sub-graphs of the reset nodes

182

Compiling Control Parts

are relevant for the synthesis of the states. Hence line 7 starts a for all− loop with
respect to the reset-nodes, and the following line 8 starts an additional for all−loop,
however in this case with respect to the children of the reset nodes.

Line 9 executes a depth-first-search with these children nodes and stores the
visited nodes in Node List1. All nodes within Node List1 become examined with
respect to their Index of the Schedule Type and the resulting state and afterward
compared with all elements of State List. If the state is not yet stored within this
list, line 12 pushes the new state to the end of the State List. This comparison-
procedure is mandatorily required since nodes that have been scheduled to the same
processing-step, as they can be executed in parallel, will have identical index values
and thus also identical state descriptions. In order to prevent multiple identical
states, the comparison-procedure has to be conducted. Finally line 14 writes the
state definitions to the file. After that line 18 synthesizes the hardware description
for the reset-sequence and writes it to the file. When preparing for the assignment
of the operations to their states, line 19 extracts the index value with respect to the
Schedule Type of an arbitrary reset-node and adds 1 to receive the next state after
the reset-node state. The while − loop of line 20 checks whether a node with the
actual Schedule Index lies within the processed graph G

·. If this is not the case,
the graph G

· has to be processed completely and Function 5.13 returns to its calling
line. Otherwise line 21 writes a STATE marker, which matches with the defined and
generated elements of State List. This state is assigned to all operations of nodes
with the same Schedule Index. Therefore line 22 starts a for all − loop, which
processes all nodes of G

·. If the node’s Index, with respect to the Schedule Index,
matches with the Schedule Index, the operations become written to this state. Line
27 increases the Schedule Index by one each time until the forall− loop of line 22
has finished.

5.4.3 Compiling Control Parts

All graphs, which represent control functionalities within the canonical design rep-
resentation, are formally pooled in the graph set GCT . This particularly graph set
consists of the graphs G

System
CT , G

GMem
CT , G

PortMem
CT , G

EF
CT , G

OPT
CT and G

PAR
CT (cf. Def-

inition 5.10). The particular graphs of GCT are processed by Algorithm 5.14 and
the Function 5.15, which is called within the main algorithm. For this compilation
procedure of HDL-code we have also split up the algorithm into two part (Algorithm
5.14 and Function 5.15) to structure both the presentation and the corresponding
discussion. The Algorithm 5.14 traverses each graph of GCT in order to extract the
graph nodes for further processing, opens and closes files and calls the Function
5.15, which synthesizes the hardware description for the different control units of
the massively parallel MRF hardware architecture.

Algorithm Description - The HDL-code compilation procedure for the control-
functionalities within the massively parallel architecture runs as follows: Algorithm
5.14 requires only the graph set GCT as input data. Line 1 is the outermost
for all−loop, which selects each graph of GCT in order to systematically analyze and
process these graph structure to allow the HDL-code describing the corresponding
control-functionality to be synthesized. The following line 2 opens the specific file

183

Compiling Control Parts

Algorithm 5.14 Compiling HDL-code from GCT

Require: GCT

1: for all (G· ∈ GCT) do
2: OPENFILE(Root Node(G·));
3: SYNTHESIZEGCT

HDL(G·); // Function 5.15
4: CLOSEFILE();
5: end for

to which the synthesized hardware description is written. The necessary informa-
tion for compiling an unique file name becomes extracted from the root-node of the
graph G

·. The actual synthesis of the hardware description is realized by Function
5.13, which in line 3 is called with its required parameters. Finally line 4 closes the
file to which Function 5.13 has written the synthesized hardware description. The
algorithm either continues with another graph G

· ∈ GPC or, if all graphs of GPC have
been processed, it terminates.

Function 5.15 SYNTHESIZEGCT

HDL(·)
Require: Node List and actual G

· ∈ GPC from Algorithm 5.14
1: if G

·
CT

= G
EF
CT &G

OPT
CT &G

PAR
CT then

2: WRITEFILE(STD Header);
3: WRITEFILE(Constraints);
4: while Port List(G

·)
= ∅ do
5: WRITEFILE(Port Definition);
6: end while
7: end if
8: WRITEFILE(Signal Definition);
9: for all IDLE Node ∈ G

· do
10: WRITEFILE(FSM STATES(BREADTH FIRST SEARCH(IDLE Node));
11: end for
12: WRITEFILE(Reset Sequence);
13: for all IDLE Node ∈ G

· do
14: Node List=BREADTH FIRST SEARCH(IDLE Node);
15: for all Nodes ∈ Node List do
16: WRITEFILE(FSM State(Node List));
17: WRITEFILE(Signal Assignment(Node List));
18: WRITEFILE(State Transition(Node List));
19: end for
20: end for

The function SYNTHESIZEGCT

HDL(·), which is called in line 3 of Algorithm 5.14
for all graphs G

· ∈ GCT , is outlined in Function 5.15. SYNTHESIZEGCT

HDL(·) takes
a graph G

· ∈ GCT as input parameter and additionally requires the dynamic list
data-structure Node List to work properly. Within the if − case of lines 1 - 7
only control-functionality graphs are processed, which did not possess a correspond-
ing processing-functionality graph, and hence did not form a tuple (G·

PC , G·
CT)

184

Compiling Control Parts

(cf. Corollary 5.3). These graphs require a hardware description, which contains
a standard header (line 2), constraints (line 3) and above all port-definitions. In
contrast to these graphs those graphs representing control-functionality, which form
a (G·

PC , G·
CT), did not require these hardware description parts, because these spe-

cific parts have already been synthesized during the HDL-code generation of the
processing graphs. Line 8 generates various signal-definitions. The for all− loop of
lines 9 - 11 searches all IDLE Nodes of G

· and for the sub-graphs - identified by
breath-first-search (line 10) - synthesizes the state definitions of the control unit. In
line 12 the reset sequence, defined by a sub-graph of G·, is synthesized and written
to the file. Finally lines 13 - 20 synthesize the complete states of the control unit,
which are composed of the state-label, the affiliated signal-assignments and the rule
of the state-transition. Line 13 extracts all IDLE Node of G

· to allow line 14 to
generate a list Node List by means of breadth-first-search, which contains all nodes
of the corresponding IDLE Node sub-graph. The following for all − loop synthe-
sizes for each of the nodes within Node List the control-unit state (line 16), the
signal assignments (line 17) and the state transition (line 18).

Figure 5.2: Modeling of system’s control unit. State transition scheme extracted
from generated HDL code by third party synthesis engine.

185

Compiling Control Parts

5.5 Results - Design Framework

The previously introduced novel VLSI design methodology for the massively parallel
architectures of the defined MRF model class has software-technically been put into
practice by the Design-Framework. This framework has been intensively tested
and steadily improved in several software revisions. Two stages have been applied
to systematically test the framework, its output and to disclose the framework’s
current limitations. At first numerous artificial test cases have been used to check
the complete framework and all its particular modules. During the second stage we
have used the two exemplary MRF image processing models (Section 3.7.1, 3.7.2) to
further check and prove the capabilities of the framework. In the following discussion
we omit the artificial test cases and the corresponding results and only present
selected results, which are convincing to underpin the capabilities of the proposed
design framework. Additional results have been moved to Appendix B.

Figure 5.3: Modeling of MRF system’s control unit. Detailed graph representation
G

System
CT within design framework.

186

Compiling Control Parts

Figure 5.4: VLSI Implementation of system’s control unit. RTL schematic syn-
thesized from generated HDL code.

The control unit of a particular massively parallel architecture represents an ideal
part of the architecture to illustrate and discuss aspects of the design framework.
Within the canonical design representation the system control unit is modeled by
the graph G

System
CT . Figure 5.3 depicts the original graph structure of G

System
CT as

it is expanded by the framework and stored in the canonical design representation.
The entire data, each node holds within the canonical design representation is not
completely shown in the nodes of Figure 5.3. The graph G

System
CT possesses the root

node ”TOP FSM SoC” and its child nodes are the ”SyncReset”- and ”ASyncReset”
node in accordance with Definition 5.11 and Algorithm 5.6 (Line 1-7). Both reset
nodes assign the logic value 0 to the output signals ”StartCELLS” and ”StartMem”.
The child of the reset nodes is the ”IDLE 1” node and this node can be reach from
the reset nodes when the condition ”MRFStart=’1’” is true as is indicated by the
marked edges connecting these nodes. The ”IDLE 1” node is connected to three
nodes, which represent the states to start the processing of the cells, the memory
hierarchy or alternative to start the processing of the cells and the memory hierarchy
concurrently. Each of these nodes can be reached from the ”IDLE 1” node if the
condition of the corresponding marked edge is true. Furthermore each of these nodes
assign different values to the output signals ”StartCELLS” and ”StartMem” (cf.
Figure 5.3; node data). As soon as the cells, the memory hierarchy or both indicate

187

Compiling Control Parts

the end of their operation (conditions of marked edges evaluate true) it is possible to
reach the last node at the bottom of Figure 5.3. This return node is automatically
left without evaluating any conditions and goes back to the ”IDLE 1” node. Starting
from the ”IDLE 1” node the process can execute again. The described functionality
is illustrated by Figures 5.6, 5.7 and 5.8, which show particular simulation sequences
of the generated VHDL code of the system’s control unit

Figure 5.5: FPGA implementation (Xilinx Virtex 2 family) of system’s control
unit.

The graph representation of G
System
CT , illustrated in Figure 5.3 undoubtedly demon-

strates the technology independence and hardware abstract modeling capabilities of
the design framework for this part of the architecture.

Algorithm 5.14 and Function 5.15 process this graph to synthesize a hardware
description of this control unit. Figure 5.2 shows the transition scheme of the fi-
nite state machine, which was extracted by a commercial third party hardware-
development tool from the generated HDL code of the design framework. First of
all, this state transition scheme underpins that the generated HDL code was syn-
tactically and logically correct because it has been processed by the third party
hardware-development tool. The functional correctness of the HDL code genera-
tion process can be systematically verified by means of the two Figures 5.3 and 5.2.
First of all, it is remarkable that the number of vertexes (top node of G

System
CT not

considered) of Figure 5.3 and Figure 5.2 are not identical. This fact is caused by

188

Compiling Control Parts

(a)

(b)

Figure 5.6: Wave-Diagram of HDL-Code Simulations. (a) Impulse sequence for
starting the cell-processing of the complete site-grid. (b) Impulse sequence for stop-
ping the cell-processing (complete grid). Signals (Top-Down): Clock, Synchronous
Reset, Asynchronous Reset, MRF-Start, MRF-StartMem, MRF-StartCells, Start-
Cells (internal signal, Start-Mem (internal signal), Cells-Ready (internal signal),
Mem-Ready (internal signal), FSM State next, FSM State current.

the special role of the reset nodes. These nodes will not translate to a particular
state within the transition scheme depicted in Figure 5.2. Rather the reset nodes
of G

System
CT resolve to edges of the states ”state startmem”, ”state startcell” and

”state startmem startcell” back to the ”idle 1” state in the transition scheme (see
Figure 5.2). These back-edges of the state transition scheme are sufficient to model
the reset behavior, because a synchronous- as well as asynchronous reset is no more
than a state transition to the initial state.

The detailed discussion on the reset nodes of G
System
CT and their resolving within

the transition scheme clearly demonstrates the capabilities of the framework to gen-
erated qualified HDL code from control functionality representing graphs; exemplar-
ily verified by means of the system’s control unit.

Our statement that the design framework generates qualified HDL code from
control graphs is further substantiated by analyzing the RTL schematic of the sys-
tem’s control unit, which is shown in Figure 5.4. The schematic shows a clear and

189

Compiling Control Parts

(a)

(b)

Figure 5.7: Wave-Diagram of HDL-Code Simulations. (a) Impulse sequence for
starting the activity of the memory hierarchy. (b) Impulse sequence for stopping
the activity of the memory hierarchy. Signals (Top-Down): Clock, Synchronous
Reset, Asynchronous Reset, MRF-Start, MRF-StartMem, MRF-StartCells, Start-
Cells (internal signal, Start-Mem (internal signal), Cells-Ready (internal signal),
Mem-Ready (internal signal), FSM State next, FSM State current.

well separated structure of particular elements from left to right, i.e. we can iden-
tify input ports, an encapsulated state-machine, muxes, flip-flops and finally output
ports. Furthermore, the schematic is free of feedback signals and this fact complies
with the expected input-output signal flow for this control unit. Additionally, the
two storing elements of the outputs are realized as flip-flops and not as latches,
which shows the complete and unique output assignment at each state. Figure 5.5
shows the complete place&route of the system control unit in FPGA technology.
Summarizing, the discussion has demonstrated that the design framework is able to
generate qualified HDL-code for control units from abstract graphs.

The control unit for the port memories and the corresponding connection with
the memory elements, which are associated with the cell hull, is another insightful
example. Figure 5.9 shows a graph G

PortMem
CT from the canonical design represen-

tation, which realizes the send and receive of data in two steps, i.e. the input and

190

Compiling Control Parts

(a)

(b)

Figure 5.8: Wave-Diagram of HDL-Code Simulations. (a) Impulse sequence for
starting the cell-processing of the complete site-grid and the activity of the memory
hierarchy. (b) Impulse sequence for stopping the cell-processing (complete grid) and
the activity of the memory hierarchy. Signals (Top-Down): Clock, Synchronous
Reset, Asynchronous Reset, MRF-Start, MRF-StartMem, MRF-StartCells, Start-
Cells (internal signal, Start-Mem (internal signal), Cells-Ready (internal signal),
Mem-Ready (internal signal), FSM State next, FSM State current.

output data of a cell is transferred in two portions. Again this graph possesses a
top node with the two children representing the reset behavior. Each of the reset
nodes are connected to sub-trees, which model the send or the receive procedure,
respectively. Due to the separation of the send and receive sub-trees the graph offers
the option that this control unit can execute the send and receive process in parallel.

Figure 5.10 depicts the state transition schemes, which have been extracted from
the generated HDL-code. The HDL-code was generated by the design framework
with respect to the graph shown in Figure 5.9. As expected two distinct transition
schemes have been extracted from the generated code, one scheme for the send
part and another scheme for the receive part. A short simulation sequence of the
generated VHDL code is shown in the wave diagrams of Figure 5.11 a-b. The reset
nodes have, as already explained, been resolved to edges, which go back to the
initial (idle) state (cf. Figure 5.10). Figure 5.12 a-b shows the wave diagrams of the

191

Compiling Control Parts

Figure 5.9: Modeling of port memory control unit. Graph representation
G

PortMem
CT within design framework.

192

Compiling Control Parts

(a) (b)

Figure 5.10: Modeling of port memory control unit. State transition schemes
extracted from generated HDL code by third party synthesis engine. (a) State
transition scheme for SEND functionality. (b) State transition scheme for RECEIVE
functionality.

simulated VHDL code for the synchronous and asynchronous behavior, respectively.
The port memory control unit is closely linked with single cells, the used neigh-

borhood system and the port memories of the cell. Hence, the generated HDL-code
for G

PortMem
CT can not regarded in isolation; rather it has to be discussed in conjunc-

tion with the cell component. Figure 5.13 shows a RTL schematic - synthesized from
generated HDL-code, which comprises the port memory control unit, the port mem-
ory elements and the input and output ports for a N 1 neighborhood system. The
RTL schematic of Figure 5.13 illustrates the seamless integration of the port memory
control unit with the corresponding port memory elements. We further identify two
separated state-machines within the schematic, which represent the parallel send
and receive part in accordance with graph G

PortMem
CT . An FPGA implementation of

the schematic in Figure 5.13 is shown in Figure 5.14.
The discussion on the results of the port memory control unit has again demon-

strated the capabilities of the design framework to generate qualified HDL-code from
an abstract graph representation. In addition to the system control unit it has been
manifested that the generated HDL-code fits together with other parts of HDL-code,
which was generated from different graphs.

A challenging architectural part of each massively parallel MRF architecture is
the memory hierarchy, which is represented by graph G

MH . Figure 5.15 shows the
graph G

MH of a memory hierarchy, which is suitable for a 64 × 64 sized MRF. Ob-
viously, the graph G

MH in Figure 5.15 hides any kind of detailed information. But
the important structural feature of planarity as well as of a well defined hierarchy is
clearly demonstrated for this type of graph in Figure 5.15. This essential structural
feature is conserved by the design framework during the HDL-code generation pro-

193

Compiling Control Parts

(a)

(b)

Figure 5.11: Wave-Diagram of HDL-Code Simulations. (a) Sending 8bit datum
01011010 as two 4bit data packages. (b) Receiving 8bit data 10101010 (UP input)
01010101 (DOWN input) as two 4bit data packages, at a time. Signals (Top-Down):
Clock, Synchronous Reset, Asynchronous Reset, Start Sending, Start Receiving, UP-
Input (only image b), DOWN-Input (only image b), Register Bank for UP-Input,
Register-Bank for DOWN-Input, State Receive-FSM, State Send-FSM.

cess and hence available for floor-planning and place&route implementation steps.
The ongoing discussion and the following Figures 5.16, 5.17 and 5.18 further

substantiate the previous statement. Graph G
MH is processed by the design frame-

work and translated to HDL-code by Algorithm 5.10 and Function 5.11. Figure
5.16 shows the top level of the RTL schematic, which has been synthesized from the
generated HDL-code. The complete memory hierarchy, which is represented by the
graph G

MH in Figure 5.15 is recursively folded within the middle box of Figure 5.16.
The boxes left and right represent the memory wrapper modules (see discussion in
Section 5.4.1) for the up and down path of the memory hierarchy.

In Figure 5.17 parts of the memory hierarchy have been resolved to illustrate
the hierarchical structure and the particular contents. The part shown in Figure
5.17 was before folded within the middle box of Figure 5.16. The schematic of the
memory hierarchy, depicted in Figure 5.17, demonstrates that the proposed design
framework preserves the hierarchical structure of graph G

MH during the HDL-code

194

Compiling Control Parts

(a)

(b)

Figure 5.12: Wave-Diagram of HDL-Code Simulations. (a) Synchronous (rising
clock edge) reset behavior. Resetting (zeros) register banks of UP and DOWN
input. (b) Asynchronous reset behavior. Resetting (zeros) register banks of UP
and DOWN input. Signals (Top-Down): Clock, Synchronous Reset, Asynchronous
Reset, Start Sending, Start Receiving, Register Bank for UP-Input, Register-Bank
for DOWN-Input, State Receive-FSM, State Send-FSM.

generation process for this part of the architecture.
Additionally, the planarity of the hierarchy elements as shown at graph G

MH in
Figure 5.15 is also preserved by the algorithms of the design framework. The relevant
information of planarity is encoded within the generated HDL-code by means of the
relations among the different RTL blocks and their mutual embedding.

Figure 5.18a-b shows a floor-plan and the corresponding FPGA implementation
of the discussed memory hierarchy. The planarity- and hierarchy features have been
utilized for the creation of this floor-plan. As can be seen at Figure 5.18a the
floor-plan reflects the planarity feature of graph G

MH (cf. Figure 5.15) and hence
demonstrates that the design framework preserves this central feature. Without the
encoding of the planarity- and hierarchy feature within the generated HDL-code of
the memory hierarchy the floor-planning would become extremely difficult for this
large and distributed part of the architecture.

Summarizing, it has been shown that the proposed design framework can repre-

195

Compiling Control Parts

Figure 5.13: VLSI Implementation of combined single cell, port memory control
unit and corresponding memory elements. RTL schematic synthesized from gener-
ated HDL code.

196

Compiling Control Parts

Figure 5.14: VLSI Implementation of combined single cell, port memory control
unit and corresponding memory elements. FPGA implementation (Xilinx Virtex 2
family).

Figure 5.15: Modeling of memory hierarchy. Graph representation G
MH within

design framework. Suitable for a 64 × 64 sized MRF.

197

Compiling Control Parts

Figure 5.16: RTL schematic of memory hierarchy. Schematic synthesized from
generated HDL-code.

sent the large graph of the memory hierarchy within the canonical design represen-
tation and is able to generate qualified HDL-code for this structure. Additionally,
it has been demonstrated by means of the memory hierarchy that the algorithms
of the design framework preserve elementary graph features within the generated
HDL-code, which are exploited for instance during the floor-planning process.

5.6 Implementation Issues

The software technical realization of the introduced design framework (cf. Figure
5.1) generates some issues, which have to be respected and adequately dealt with.
Without describing all software-implementation details exhaustively, the following
vital concerns have been considered during implementation:

• Efficiency & Scalability. The graph data-structures of the framework, which
will be generated and processed during the particular steps of the design
flow are huge and complex, i.e. these structures are extremely memory-
and processing-intensive. Consequently, the concrete software implementation
should use different strategies in order to adequately cope with the memory
and CPU-time usage during the design flow.

• Extensibility. The proposed and implemented MRF specific VLSI design frame-
work represents a software-version, which operationally has been approved
with respect to the claimed architectural requirements and the contemplated
MRF-class. Despite the current state of the framework, further enhancements
and improvements should be possible and systematically supported by the
structure and arrangement of the software implementation without changing
larger portions of the software or even changing the complete data-structure
concept.

• Consistency & Correctness. The canonical design representation (CDR) is
a diverse and complex data-structure, which consists of data-container and

198

Compiling Control Parts

Figure 5.17: Partially collapsed RTL schematic of memory hierarchy. Schematic
synthesized from generated HDL-code.

199

Compiling Control Parts

(a) (b)

Figure 5.18: FPGA Implementation of memory hierarchy. (a) Floor-plan of mem-
ory hierarchy. (b) Complete Place&Route based on created floor-plan.

different separated graph-structures. Consequently, the design flow, the par-
ticular graph generation procedures as well as the CDR itself should offer
mechanisms, which ensure a guided and deterministic design flow, consistent
graph-structures and an overall consistent CDR.

• Platform Independence. The outputs of the proposed MRF specific VLSI de-
sign framework are further processed by HDL simulation-tools and back-end
tool chains, which are partially semiconductor technology dependent. All these
additional and sometimes semiconductor-technology dependent tools are avail-
able for different computing and operation system platforms. Consequently, it
would be of far-reaching practical relevance that the proposed design frame-
work is platform-independent in order to establish a seamless MRF implemen-
tation flow on one single computing and operating system platform.

Concretely, the following implementation strategies and features of the design
framework put into practice the above mentioned concerns. They are presented in
the chronological order as above.

• The efficiency and scalability of the design framework, especially in view of the
canonical design representation and its underlying graph data-structures, is re-
alized by a fully customized and from scratch developed C++ class hierarchy.
This graph-class solely rests on standardized C++ language constructs with-
out applying any commercial or open-source library extensions. This approach
of developing the basic data-structures from scratch gives us the optimum de-
gree of control over the data-structures we need to put the claim of efficiency
with regard to memory and CPU-time usage into practice. We are able to

200

Compiling Control Parts

tune the memory usage of each distinct node and edge within the canonical
design representation till particular bytes. Each single byte saved is definitely
an advantage as the canonical design representation typically contains several
ten-thousands of nodes and edges for the representation of a massively parallel
MRF architecture. Likewise we are able to tune the algorithms to allow them
to be well-adjusted to the customized graph data-structures. By using open-
source or commercial libraries we have never been in the position to receive
the efficiency with respect to memory and CPU-time usage we are currently
receiving with our fully customized basic data-structures and algorithms devel-
oped from scratch. Obviously, the overall scalability of the implemented design
framework is a direct consequence of the tuned and adjusted data-structures
and their algorithms.

• The extensibility of the MRF specific VLSI design framework is basically en-
abled by our fully customized data-structures as well as their algorithms and
practically realized by the modular implementation (cf. Figure 5.1), which is
arranged around the central data basis - the canonical design representation
(CDR). The modular character of the framework allows it to easily add and
replace specific modules, e.g. the parsing front-end, particular graph genera-
tors or the HDL back-end, which will improve or alter the capabilities of the
framework. As all modules will always work on the CDR, which is fully cus-
tomized and thus to its full extent open to us, it is a straightforward task to
provide the interfaces between the CDR and new or modified modules.

• The consistency and correctness of the design flow as well as the canonical
design representation at each time of the framework-internal development pro-
cess is essentially realized by means of a strictly guided graphical user inter-
face and checking procedures of the graph generation methods, the particular
graphs and the complete canonical design representation. The graphical user
interface is conceptualized to allow the user to only proceed with appropri-
ate design steps without having the opportunity to execute misleading design
actions. Furthermore, the design flow and CDR-inherent mechanisms addi-
tionally ensure the consistency and correctness of the design flow data. Each
graph generation method is enhanced by procedures, which traverse the gen-
erated graph and at the same time check against typical features of that graph
in order to identify profound structural errors. Likewise the complete design
graph GD (cf. Section 5.4 and Corollary 5.6) is checked. Additionally, each
single graph of the canonical design representation as well as the complete de-
sign graph can be written out in the standardized GraphML format for further
detailed visual inspections with appropriate tools.

• The computing platform and operating system independence of the proposed
design framework is put into practice by two strategies. At first we have com-
pletely forgone open-source or commercial libraries in order to realize data-
structures and algorithms. All data-structures and algorithms are fully cus-
tomized and developed from scratch with standardized C++, whereas the
C++ standard today includes the STL. Furthermore the platform indepen-
dence with respect to the graphical user interface is realized by using Qt [139],

201

Compiling Control Parts

which supports Windows, MAC and X11 platforms.

5.7 Relation of Thesis Parts

As already mentioned, all parts of this thesis are closely related to each other and
together form a seamless development-environment for massively parallel hardware
architectures of Markov Random Fields. In summary, the environment rests on
the theoretical fundamentals of Markov Random Field theory (Chapter 2) and the
building blocks of the system-architecture template (Chapter 3) derived out of it.
Essentially, the MRF specific development-environment comprises the simulation
framework (Chapter 4) and the design framework (Chapter 5). The interplay of
the different thesis parts is formally expressed by the congruence relationalready
introduced, which is repeatedly shown in Figure 5.19.

VLSI

BBSystem

C

SSystemGD

Λ,Φ,Υ

Ξ,Ψ,Γ Π,Σ,∆

Figure 5.19: Established congruence relation.

This chapter has presented the formal fundamentals, that allows us to establish
the last open branch of the congruence relation, which describes the relation of the
building blocks and the corresponding representing graphs (see left branch in Figure
5.19). The building blocks and the graphs are related to each other by the set of
mappings Ψ, Γ and Ξ, which have been defined and commented on in the preceding
sections of this chapter. This finalizes the description of the congruence relation,
which represents the interrelation of the different thesis parts and the overall line of
thought this thesis pursues.

5.8 Summary

In this chapter we have presented a semiconductor-technology independent VLSI
design framework for massively parallel Markov Random Field based processing de-
vices, which rests upon a graph theoretical architecture representation and graph
compilation techniques in order to transform graphs into synthesizeable hardware
descriptions. Particular MRF model definitions are handed over to the design frame-
work by means of hardware abstract specifications. The language front-end of the
framework currently supports XML as input for the hardware abstract specifica-
tions of MRF models. Due to the modular structure of the framework, which has

202

Compiling Control Parts

been described in Section 5.1, other input languages can be used, in case the XML
front-end is replaced by the corresponding front-end of the regarded language.

Many different graphs are required to completely model the massively parallel
architecture of a specific MRF in accordance with the architecture template (see
Chapter 3) in a semiconductor-technology independent manner. All these different
graphs, which are collected in the Canonical Design Representation (CDR) of the
framework, have been formally defined in Section 5.2. Furthermore each single graph
has been classified with respect to a VLSI appropriate scheme, which distinguishes
between Topology & Structure, Processing and Control representing graphs. Exactly
this graph-classification scheme simplifies the structure, the definition and compila-
tion to HDLs of the particular graphs, as they are specially tuned to model specific
architectural components of the massively parallel architecture. Important and for
consecutive VLSI implementations steps - especially place&route steps - far-reaching
inherent features of the graphs have been proved in Section 5.2.

The overall MRF-specific VLSI design flow, which parses and analyzes the input
specification, generates the different representing graphs and in the following com-
piles these graphs into synthesizeable HDL representations, has been presented in
Section 5.3 respectively in Section 5.4. In Section 5.3 we have described the different
algorithms, which expand all graphs of the canonical design representation in accor-
dance with the definitions and features of the particular graphs given in Section 5.2.
The graph generation algorithms also have been presented in the chronological order
of the scheme, which distinguishes between Topology & Structure, Processing and
Control representing graphs. Finally, Section 5.4 has presented the strategies and
procedures to translate hardware-abstract graphs into hardware-concrete and syn-
thesizeable HDL (hardware description language) representations, which are suitable
for industrially relevant synthesis and technology back-end steps.

The congruence relation, which illustrates the interdependencies of the different
thesis parts and simultaneously gives an overview of the thesis theme, has been pre-
sented in the following section. This Section 5.7 has explained the last branch of
the congruence relation, which is given by the mappings of the building blocks to
hardware-abstract graph representations. Some essential implementation issues of
the proposed and software-technical realized VLSI design framework for massively
parallel MRF-based processing devices have been identified and discussed in Section
5.6. In summary, the VLSI design framework distinguishes itself by a completely
customized data- and algorithm structure, a modular and thus extensible software
structure, a computing resources (memory and computing-time) tuned processing
procedure and inherent self-checking capabilities of the data-structures and the de-
sign flow. Exemplary graphs, RTL schematics and prototypical FPGA implementa-
tions, which have been generated by means of the proposed design framework, have
been presented and described in Section 5.5. These selected results are completed
by numerous VLSI implementation results, collected in Appendix B.

5.9 Bibliographical Comments

The basic idea to raise the level of abstraction with respect to the description re-
spectively representation of technical systems in order to cope with complexity, is

203

Compiling Control Parts

neither new within the computer science- and engineering-community nor in the
electronic design automation community [51] [118]. All these disciplines have un-
dergone a steady process of raising the description-level of abstraction in the past.
Obviously, the computer science and software community has made the greatest
and fastest progress in this field [50] [1] and this community is rather prepared to
adopt new approaches [46] [8], whereas the electronic design automation community
is traditionally more conservative in this field [83] [98].

This is caused by the fact that firstly new methods and design approaches must
work absolutely correct from the beginning as a failure of the method, which leads
to a bug in a produced semiconductor device, is seldom fixable and thus extremely
costly. Secondly, the next level of abstraction will shift hardware descriptions to
an algorithmic and behavioral level (currently discussed under the topic electronic
system level (ESL) design [111]). This abstraction level mostly neglects hardware
specific aspects - e.g. clocks, ports, fix-point number representation and finite state
machines [28] [9] - and approaches toward software-like descriptions. This fact and
situation is hardly to accept for VLSI designers as their familiar description kind
changes fundamentally [22] [81].

The origin of High-Level Synthesis in the electronic design automation com-
munity goes back to R. Camposano and his early research work conducted at the
German National Research Center for Computer Science (GMD Sankt Augustin,
Germany, now Fraunhofer-Gesellschaft). This fundamental research cumulated in
the first operational silicon compiler, called Yorktown [22] [28] [27] [29], owned by
IBM, where R. Camposano led the project on high-level synthesis at the IBM T.J.
Watson Research Center, between 1986 and 1991.

Based on the successful technology demonstration of High-Level Synthesis by
means of IBM’s operational approved silicon compiler a few textbooks respectively
collections, e.g. [3], [22] in D.D. Gajski, Editor, Silicon Compilation and [51], on
this topic appear in this time period. But none of these textbooks rigorously covers
the fundamental themes of High-Level Synthesis and a comprehensive presentation
of the High-Level Synthesis topic is up to now still missing.

Hence, several suggestions exists and are still proposing in the contemporary
literature for each of the representation and processing steps of High-Level Synthesis.
In [20] Borriello proposed a design representation with combined data- and control-
flow graphs in one unified data structure in order to simplify the overall processing of
the representation. Curatelli extended the unification approach to general systems
in [38] and enhanced the graph structure with various information and constraints.
In contrast to that Ge [53] proposed a control flow graph centered representation
with a linkage to the relevant data-flow information. Summarizing, the picture
of design representations is diverse and not consistent. Furthermore it is difficult
to compare and assesses the different approaches among each other. A well-defined
categorization of the different approaches to represent a design respectively a system
is still missing.

A similar situation can be found with respect to the processing steps schedul-
ing and binding of High-Level Synthesis. Over the last decade several different
scheduling approaches have been investigated and reported on [27] [163] [32] [51]
[73]. Recently Chabini and Wolf [32] discussed a combined scheduling, binding and
ritiming approach under constraints in a systematic optimization setting. The re-

204

Compiling Control Parts

ported results are promising but it remains to clarify whether this approach can be
efficiently generalized for other application domains and systems.

205

Compiling Control Parts

206

Chapter 6

Conclusion

“Alles Gescheidte ist schon gedacht worden,
man muss nur versuchen es noch einmal zu denken.”

Johann Wolfgang von Goethe (1749-1832)
Wilhelm Meisters Wanderjahren 1829

(Betrachtungen im Sinne der Wanderer. Kunst, Ethisches, Natur)

It was the aim of this work to introduce a novel and seamless approach to
the hardware-relevant simulation and semiconductor-independent VLSI design of
Markov Random Field based processing-grids. The Markovian processing architec-
tures are characterized by their topology of processing elements, their neighborhood-
system support, their massively parallel processing capabilities and their specifica-
tion for purely, digital semiconductor implementation technologies. Without antici-
pating the readers opinion about how far this dissertation has succeeded in present-
ing appropriate approaches and results for the above stated claim, we will summarize
the content and the results of this work from our point of view. Finally, we will close
this thesis with a realistic outlook on how we intend to proceed in the next months
as well as on what we have in mind for the future with respect to the presented
research-direction.

Each single decision-making within this thesis is rigorously justified and realized
in accordance with established theoretical foundations as well as with respect to
the central requirements of algorithmic robustness in real world scenarios, real-time
processing capabilities and the physical compact realizations this work is built-up.
Therefore it was the main purpose of Chapter 2 to attain a self-contained and
independent basis the work can refer to. In particular, a condensed synopsis of
Bayesian image analysis and the related general processing structures of Markov
Random Fields have been presented as well as the theoretically well-founded crite-
ria for massively parallel processing approaches. Furthermore we have defined the
contemplated class of MRF models so that a well-defined delimitation of the models
this thesis deals with, is given. Additionally, we have presented an independent
analysis, which likewise regards semiconductor-technologies variants and their de-
sign methodologies. Our analysis has revealed that purely digital implementation
technologies offer profound advantageous compared with other technology variants.
This discussion as well as the presented approach and the result of this thesis re-

207

CONCLUSION

futes the prevalent claim made by the CNN community, which advocates design
approaches and implementations based on purely analog technologies for more than
a decade. Finally two realistic and industrially relevant image processing models,
which serve as test-cases throughout the thesis, have been derived.

Within Chapter 3 we have systematically derived the different building blocks,
which together define the architecture-template of the proposed massively parallel
processing topology. Our advocated derivation process of these architectural build-
ing blocks is characterized by two features worth mentioning. At first we have exclu-
sively based the derivation process on architectural uncommitted constituents, which
are solely justified by well-founded theoretical fundamentals, i.e. we have defined a
basis for the derivation process of the building blocks, which is architecturally neu-
tral and strictly in accordance with theory. Secondly, the actual derivation process
is conducted with respect to the general architectural constraints of (1) massively
parallel processing and (2) VLSI implementation capability. These constraints im-
pose several structural features to allow the architectural uncommitted constituents
to take shape of architectural building blocks. Finally we have demonstrated how
the proposed architecture-template can be used by applying it to the two test-case
models.

Our simulation approach for the defined class of Markov Random Fields and
the derived architecture-template, which is put into practice by the Simulation-
Framework, has been introduced in Chapter 4. In particular, we have presented
the overall structure of the framework and the different essential components, which
pool functional similar building blocks. Furthermore, we have presented the prin-
cipal structure of each building block by means of prototypes. In addition the
mechanisms of centralizing the compilation procedure of specific MRF simulation-
models has been explained as well as the automated set-up process of MRF models
within the proposed simulation-framework. The capabilities and performance of the
proposed Simulation-Framework has been intensively studied by means of numerous
simulation-runs and result analyzes, which undoubtedly confirm the stated features
of the software-technical realized simulation-framework.

The VLSI design approach described in Chapter 5 introduces a novel graph-
theoretical methodology, which adequately covers the defined model class as well
as the complexity of the particular massively parallel architectures. In particular,
this advocated methodology maps the different building blocks to special graph-
structures, which represent the functionality in a hardware-neutral, a semiconductor-
technology and a coding-language neutral manner. This overcomes the problem of
providing the complete hardware details of these large and complex architectures
already at the beginning of the design-flow and thus of fixing the architecture at the
outset without exploring variants. Architecture variants are generated by adjust-
ing the corresponding graph appropriately. The following algorithms analyze the
particular graphs and synthesize a HDL-code in accordance with the IEEE VHDL
language specification. Several different FPGA-implementations of building blocks
have demonstrated the capabilities of the proposed design methodology. To further
underpin the advocated approach and illustrate the intermediate steps, we have also
shown particular graph structures, RTL schematics, gate netlists and the prototyp-
ical FPGA place & route results.

The short term outlook of the so-far pursued research covers the following topics:

208

CONCLUSION

Although the already implemented scheduling methods have proved to be adequate,
we want to adapted scheduling approaches in order to further improve the data-
paths of the architecture. As the debugging and analysis of the generated graphs
becomes unmanageable by means of visual inspection, we plan to add a scalable and
flexible graph-checking mechanism, which replaces the currently more rudimentary
realized checking-routines for graph-consistency.

As a long term research and development perspective for the two introduced
frameworks, we plan to extend them to allow irregular site-topologies with more
irregular neighborhood systems to be supported. This will offer the option to sys-
tematically address various applications in the fields of speech processing, control-
systems, communication-systems and of course again in the domain of image pro-
cessing by means of differently shaped graphical models. It is to be expected that the
resulting processing devices with their physically compact realizations and advanta-
geous packaging, their power consumption characteristic and their better processing
speed realized by parallelism, will make novel systems for completely new application
scenarios possible.

I personally believe that the discussed architectures and their resulting processing
devices are a key-enabling element for novel systems and applications. Hopefully,
I have convinced the reader that the presented approach, which has been put into
practice by the two frameworks, adequately addresses the specific simulation- and
design needs of these high-performance processing architectures.

209

CONCLUSION

210

Appendix A

Simulation Framework Results

This appendix recapitulating presents various simulation results, which have been
relocated from the main text and the result Section 4.4 to this appendix to en-
hance the overall readability of this thesis. Furthermore several additional results
have been included, especially complete simulation series to illustrate the processing
dynamics of the models and thus also of the proposed hardware architecture.

The illustrated simulation results of this appendix are based on the collection of
raw image data, which is composed of artificial pictures and real world pictures. In
order to receive a realistic assessment of the processing architecture and the MRF
model combination, we have consciously chosen image data with different fitness for
the models. Central features of the raw image data are summarized in Table A.1.

Figure Description

Figure A.1a-b Grayscaled raw image data. Image size: 128 × 128. Grayscale
channel: 8bit; value range [0,255]. Image features: Artificial im-
age scenes. Advantageously grayscale-object relation for segmen-
tation.

Figure A.1c-f Grayscaled raw image data. Image size: 128 × 128. Grayscale
channel: 8bit; value range [0,255]. Image features: Real-world
image scenes. Figure A.1c is difficult to segment on the basis of
purely local grayscale information.

Figure A.2a-d Colored raw image data. Image size: 128 × 128. RGB channels:
each 8bit; value range [0,255]. Image features: Real-world image
scenes. Advantageously color-object relation for segmentation.

Figure A.2e-f Colored raw image data. Image size: 128 × 128. RGB channels:
each 8bit; value range [0,255]. Image features: Real-world image
scenes. Unfavorably color-object relation for segmentation.

Table A.1: Overview of raw image data features.

Selected simulation sequences have been chosen to illustrated the processing
dynamic of the segmentation model in a massively parallel calculation setting. Table
A.2 summarizes the features of the simulation sequences.

211

SIMULATION FRAMEWORK RESULTS

Figure Description

All Figures 5th order neighborhoods. Massively parallel processing dynamic.
Float-point precision.

Figure A.3 Simulation sequence for grayscaled image A.1a.

Figure A.4 Simulation sequence for color image A.2c.

Table A.2: Overview of simulation sequence features.

In Table A.3 all segmentations are listed, which have been calculated for the
grayscaled raw image data with 1st-5th order neighborhood systems and full float-
point precision.

Figure Description

All Figures 1st-5th neighborhoods. Float-point precision. Massively parallel
processing dynamic. Relaxation steps: 225.

Figure A.5 Segmentations for grayscaled image A.1a. 3 Classes and 4 Bins.

Figure A.6 Segmentations for grayscaled image A.1b. 3 Classes and 3 Bins.

Figure A.7 Segmentations for grayscaled image A.1c. 4 Classes and 8 Bins.

Figure A.8 Segmentations for grayscaled image A.1d. 3 Classes and 6 Bins.

Figure A.9 Segmentations for grayscaled image A.1e. 3 Classes and 6 Bins.

Figure A.10 Segmentations for grayscaled image A.1f. 3 Classes and 4 Bins.

Table A.3: Overview of segmentation results for grayscaled images.

Table A.4 summarizes all segmentations, which have been calculated for the
colored raw image data with 1st-5th order neighborhood systems and full float-point
precision.

Figure Description

All Figures 1st-5th order neighborhoods. Float-point precision. Massively
parallel processing dynamic. Relaxation steps: 225.

Figure A.15 Segmentations for color image A.2a. 4 Classes and 8 Bins.

Figure A.16 Segmentations for color image A.2b. 3 Classes and 4 Bins.

Figure A.17 Segmentations for color image A.2c. 2 Classes and 5 Bins.

Figure A.18 Segmentations for color image A.2d. 3 Classes and 5 Bins.

Figure A.19 Segmentations for color image A.2e. 3 Classes and 5 Bins.

Figure A.19 Segmentations for color image A.2f. 3 Classes and 10 Bins.

Table A.4: Overview of segmentation results for color images.

212

SIMULATION FRAMEWORK RESULTS

Table A.5 summarizes all segmentations, which have been calculated for the col-
ored raw image data with 5th order neighborhood systems and fixed-point precision
(typically 26bit, 20bit and 16bit).

Figure Description

Figure A.20 Segmentations for color image A.2a. 5th order neighborhood.
30bit, 26bit and 22bit fixed-point precision.

Figure A.21 Segmentations for color image A.2a. 5th order neighborhood.
20bit, 18bit and 14bit fixed-point precision.

Figure A.24 Segmentations for color image A.2b. 5th order neighborhood.
26bit, 20bit and 16bit fixed-point precision.

Figure A.25 Segmentations for color image A.2c. 5th order neighborhood.
26bit, 20bit and 16bit fixed-point precision.

Figure A.27 Segmentations for color image A.2d. 5th order neighborhood.
26bit, 20bit and 16bit fixed-point precision.

Figure A.32 Segmentations for color image A.2e. 5th order neighborhood.
26bit, 20bit and 16bit fixed-point precision.

Figure A.35 Segmentations for color image A.2f. 5th order neighborhood.
26bit, 20bit and 16bit fixed-point precision.

Figure A.29 Analysis of PSNR and corresponding sequence of iteration steps
for color image A.2d.

Table A.5: Overview of segmentation results with fixed-point precision.

Table A.6 summarizes particular segmentations, which have been calculated for
selected grayscaled images with 5th order neighborhood systems and fixed-point
precision (26bit, 20bit and 16bit).

Figure Description

Figure A.11 Segmentations for grayscaled image A.1c. 5th order neighborhood.
26bit, 20bit and 16bit fixed-point precision.

Figure A.12 Segmentations for grayscaled image A.1d. 5th order neighbor-
hood. 26bit, 20bit and 16bit fixed-point precision.

Figure A.13 Segmentations for grayscaled image A.1e. 5th order neighborhood.
26bit, 20bit and 16bit fixed-point precision.

Figure A.14 Segmentations for grayscaled image A.1f. 5th order neighborhood.
26bit, 20bit and 16bit fixed-point precision.

Table A.6: Overview of segmentation results with fixed-point precision.

Table A.7 summarizes the estimated prototypes of selected architecture/model
variants and image data and Table A.8 summarizes MSE and PSNR analysis.

213

SIMULATION FRAMEWORK RESULTS

Figure Description

All Figures 5th order neighborhood. Massively parallel processing dynamic.
Relaxation steps: 225.

Figure A.30 Class prototypes for color image A.2d. 3 Classes and 5 Bins for
each RGB channel. Fixed-point precision: 26bit.

Figure A.31 Class prototypes for color image A.2d. 3 Classes and 5 Bins for
each RGB channel. Fixed-point precision: 20bit.

Figure A.34 Class prototypes for color image A.2e. 3 Classes and 5 Bins for
each RGB channel. Fixed-point precision: 20bit.

Figure A.37 Class prototypes for color image A.2f. 3 Classes and 10 Bins for
each RGB channel. Fixed-point precision: 16bit.

Table A.7: Overview of estimated class prototypes.

Figure Description

All Figures MSE and PSNR taken with respect to number of misclassifica-
tion between float-point precision segmentation (ground-truth)
and corresponding fixed-point precision segmentation. 5th order
neighborhood. Massively parallel processing dynamic. Relaxation
steps: 225.

Figure A.22 MSE and PSNR for segmentations of color image A.2a. MSE
for fixed-point precisions: 32bit, 30bit, 26bit, 22bit, 20bit, 18bit,
16bit and 14bit. PSNR for fixed-point precisions: 32bit, 20bit and
14bit.

Figure A.23 MSE and PSNR for segmentations of color image A.2a. MSE
for fixed-point precisions: 32bit, 30bit, 26bit, 22bit, 20bit, 18bit,
16bit and 14bit. PSNR for fixed-point precisions: 32bit, 26bit and
22bit.

Figure A.26 MSE and PSNR for segmentations of color image A.2c. MSE for
fixed-point precisions: 32bit, 26bit, 20bit and 16bit. PSNR for
fixed-point precisions: 32bit, 26bit, 20bit and 16bit.

Figure A.28 MSE and PSNR for segmentations of color image A.2d. MSE for
fixed-point precisions: 26bit, 20bit and 16bit. PSNR for fixed-
point precisions: 26bit, 20bit and 16bit.

Figure A.33 MSE and PSNR for segmentations of color image A.2e. MSE for
fixed-point precisions: 26bit, 20bit and 16bit. PSNR for fixed-
point precisions: 26bit, 20bit and 16bit.

Figure A.36 MSE and PSNR for segmentations of color image A.2f. MSE for
fixed-point precisions: 26bit, 20bit and 16bit. PSNR for fixed-
point precisions: 26bit, 20bit and 16bit.

Table A.8: Overview of MSE and PSNR plots.

214

SIMULATION FRAMEWORK RESULTS

(a) (b)

(c) (d)

(e) (f)

Figure A.1: Collection of raw image data used during experiments.

215

SIMULATION FRAMEWORK RESULTS

(a) (b)

(c) (d)

(e) (f)

Figure A.2: Collection of colored raw image data used during experiments.

216

SIMULATION FRAMEWORK RESULTS

Figure A.3: Simulation sequence (left to right and up to down). Processing dy-
namic of unsupervised segmentation model. Half of the pictures show the first
processing steps and the remaining pictures show processing steps with larger spac-
ings. The sequence reads: 1, 2, 3, 4, 5, 6, 50, 60, 70, 80, 90, 100. Model/architecture
parameters: 3 classes, 4 equally spaced bins, 5th order neighborhoods, massively
parallel processing dynamic and float-point precision.

217

SIMULATION FRAMEWORK RESULTS

Figure A.4: Simulation sequence (left to right and up to down). Processing dy-
namic of unsupervised segmentation model. Half of the pictures show the first
processing steps and the remaining pictures show processing steps with larger spac-
ings. The sequence reads: 1, 2, 3, 4, 5, 6, 50, 60, 70, 80, 90, 100. Model/architecture
parameters: 3 classes, 4 equally spaced bins, 5th order neighborhoods, massively
parallel processing dynamic and float-point precision.

218

SIMULATION FRAMEWORK RESULTS

Figure A.5: Grayscale image segmentation. Segmentation results with 1st to 5th
order neighborhood system (left to right and up to down; topmost left: Original
image). Model/architecture settings: 3 classes, 4 equally sized and spaced bins,
float-point precision and massively parallel processing dynamic. Grayscale channel:
8bit; value range [0,255].

219

SIMULATION FRAMEWORK RESULTS

Figure A.6: Grayscale image segmentation. Segmentation results with 1st to 5th
order neighborhood system (left to right and up to down; topmost left: Original
image). Model/architecture settings: 3 classes, 3 equally sized and spaced bins,
float-point precision and massively parallel processing dynamic. Grayscale channel:
8bit; value range [0,255].

220

SIMULATION FRAMEWORK RESULTS

Figure A.7: Grayscale image segmentation. Segmentation results with 1st to 5th
order neighborhood system (left to right and up to down; topmost left: Original
image). Model/architecture settings: 4 classes, 8 equally sized and spaced bins,
float-point precision and massively parallel processing dynamic. Grayscale channel:
8bit; value range [0,255].

221

SIMULATION FRAMEWORK RESULTS

Figure A.8: Grayscale image segmentation. Segmentation results with 1st to 5th
order neighborhood system (left to right and up to down; topmost left: Original
image). Model/architecture settings: 3 classes, 6 equally sized and spaced bins,
float-point precision and massively parallel processing dynamic. Grayscale channel:
8bit; value range [0,255].

222

SIMULATION FRAMEWORK RESULTS

Figure A.9: Grayscale image segmentation. Segmentation results with 1st to 5th
order neighborhood system (left to right and up to down; topmost left: Original
image). Model/architecture settings: 3 classes, 6 equally sized and spaced bins,
float-point precision and massively parallel processing dynamic. Grayscale channel:
8bit; value range [0,255].

223

SIMULATION FRAMEWORK RESULTS

Figure A.10: Grayscale image segmentation. Segmentation results with 1st to 5th
order neighborhood system (left to right and up to down; topmost left: Original
image). Model/architecture settings: 3 classes, 4 equally sized and spaced bins,
float-point precision and massively parallel processing dynamic. Grayscale channel:
8bit; value range [0,255].

224

SIMULATION FRAMEWORK RESULTS

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.11: Comparison of ground-truth with fixed-point model/architecture
variants. (a) Ground-Truth. (b) 26bit model/architecture variant. (c) Difference
(black) between (a) and (b) segmentation results. (d) Ground-Truth. (e) 20bit
model/architecture variant. (f) Difference (black) between (d) and (e) segmentation
results. (g) Ground-Truth. (h) 16bit model/architecture variant. (i) Difference
(black) between (g) and (h) segmentation results. Ground-Truth (a),(d) and (g) are
identical and only depicted for the purpose of illustration.

225

SIMULATION FRAMEWORK RESULTS

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.12: Comparison of ground-truth with fixed-point model/architecture
variants. (a) Ground-Truth. (b) 26bit model/architecture variant. (c) Difference
(black) between (a) and (b) segmentation results. (d) Ground-Truth. (e) 20bit
model/architecture variant. (f) Difference (black) between (d) and (e) segmentation
results. (g) Ground-Truth. (h) 16bit model/architecture variant. (i) Difference
(black) between (g) and (h) segmentation results. Ground-Truth (a),(d) and (g) are
identical and only depicted for the purpose of illustration.

226

SIMULATION FRAMEWORK RESULTS

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.13: Comparison of ground-truth with fixed-point model/architecture
variants. (a) Ground-Truth. (b) 26bit model/architecture variant. (c) Difference
(black) between (a) and (b) segmentation results. (d) Ground-Truth. (e) 20bit
model/architecture variant. (f) Difference (black) between (d) and (e) segmentation
results. (g) Ground-Truth. (h) 16bit model/architecture variant. (i) Difference
(black) between (g) and (h) segmentation results. Ground-Truth (a),(d) and (g) are
identical and only depicted for the purpose of illustration.

227

SIMULATION FRAMEWORK RESULTS

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.14: Comparison of ground-truth with fixed-point model/architecture
variants. (a) Ground-Truth. (b) 26bit model/architecture variant. (c) Difference
(black) between (a) and (b) segmentation results. (d) Ground-Truth. (e) 20bit
model/architecture variant. (f) Difference (black) between (d) and (e) segmentation
results. (g) Ground-Truth. (h) 16bit model/architecture variant. (i) Difference
(black) between (g) and (h) segmentation results. Ground-Truth (a),(d) and (g) are
identical and only depicted for the purpose of illustration.

228

SIMULATION FRAMEWORK RESULTS

Figure A.15: Color image segmentation. Segmentation results with 1st to 5th
order neighborhood system (left to right and up to down; topmost left: Original im-
age). Model/architecture settings: 4 classes and 8 equally sized and spaced bins for
each of the RGB channels. Float-point precision and massively parallel processing
dynamic. RGB channels: each 8bit; value range [0,255].

229

SIMULATION FRAMEWORK RESULTS

Figure A.16: Color image segmentation. Segmentation results with 1st to 5th
order neighborhood system (left to right and up to down; topmost left: Original im-
age). Model/architecture settings: 3 classes and 4 equally sized and spaced bins for
each of the RGB channels. Float-point precision and massively parallel processing
dynamic. RGB channels: each 8bit; value range [0,255].

230

SIMULATION FRAMEWORK RESULTS

Figure A.17: Color image segmentation. Segmentation results with 1st to 5th
order neighborhood system (left to right and up to down; topmost left: Original im-
age). Model/architecture settings: 2 classes and 5 equally sized and spaced bins for
each of the RGB channels. Float-point precision and massively parallel processing
dynamic. RGB channels: each 8bit; value range [0,255].

231

SIMULATION FRAMEWORK RESULTS

Figure A.18: Color image segmentation. Segmentation results with 1st to 5th
order neighborhood system (left to right and up to down; topmost left: Original im-
age). Model/architecture settings: 3 classes and 5 equally sized and spaced bins for
each of the RGB channels. Float-point precision and massively parallel processing
dynamic. RGB channels: each 8bit; value range [0,255].

232

SIMULATION FRAMEWORK RESULTS

(a) (b)

(c) (d)

(e) (f)

Figure A.19: Color image segmentation. Segmentation results with 1st and 5th
order neighborhood system. (a) and (d) Original image. (b) and (e) 1st neighbor-
hood system. (c) and (f) 5th neighborhood system. Model/architecture settings for
(a)-(c): 3 classes and 5 equally sized and spaced bins for each of the RGB channels.
Model/architecture settings for (d)-(f): 3 classes and 10 equally sized and spaced
bins for each of the RGB channels. RGB channels: each 8bit; value range [0,255].
Float-point precision and massively parallel processing dynamic.

233

SIMULATION FRAMEWORK RESULTS

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.20: Comparison of ground-truth with fixed-point model/architecture
variants. (a) Ground-Truth. (b) 30bit model/architecture variant. (c) Difference
(black) between (a) and (b) segmentation results. (d) Ground-Truth. (e) 26bit
model/architecture variant. (f) Difference (black) between (d) and (e) segmentation
results. (g) Ground-Truth. (h) 22bit model/architecture variant. (i) Difference
(black) between (g) and (h) segmentation results. Ground-Truth (a),(d) and (g) are
identical and only depicted for the purpose of illustration.

234

SIMULATION FRAMEWORK RESULTS

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.21: Comparison of ground-truth with fixed-point model/architecture
variants. (a) Ground-Truth. (b) 20bit model/architecture variant. (c) Difference
(black) between (a) and (b) segmentation results. (d) Ground-Truth. (e) 18bit
model/architecture variant. (f) Difference (black) between (d) and (e) segmentation
results. (g) Ground-Truth. (h) 14bit model/architecture variant. (i) Difference
(black) between (g) and (h) segmentation results. Ground-Truth (a),(d) and (g) are
identical and only depicted for the purpose of illustration.

235

SIMULATION FRAMEWORK RESULTS

14 16 18 20 22 24 26 28 30 32
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

number of bit

M
ea

n
Sq

ua
re

 E
rro

r

14 16 18 20 22 24 26 28 30 32
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

number of bit

M
ea

n
Sq

ua
re

 E
rro

r
Landscape

14 16 18 20 22 24 26 28 30 32
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

number of bit

M
ea

n
Sq

ua
re

 E
rro

r
Landscape

14 16 18 20 22 24 26 28 30 32
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

number of bit

M
ea

n
Sq

ua
re

 E
rro

r

14 16 18 20 22 24 26 28 30 32
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

number of bit

M
ea

n
Sq

ua
re

 E
rro

r
Landscape

14 16 18 20 22 24 26 28 30 32
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

number of bit

M
ea

n
Sq

ua
re

 E
rro

r
Landscape

14 16 18 20 22 24 26 28 30 32
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

number of bit

M
ea

n
Sq

ua
re

 E
rro

r
Landscape

14 16 18 20 22 24 26 28 30 32
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

number of bit

M
ea

n
Sq

ua
re

 E
rro

r
Landscape

14 16 18 20 22 24 26 28 30 32
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

number of bit

M
ea

n
Sq

ua
re

 E
rro

r
Landscape

14 16 18 20 22 24 26 28 30 32
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

number of bit

M
ea

n
Sq

ua
re

 E
rro

r
Landscape

14 16 18 20 22 24 26 28 30 32
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

number of bit

M
ea

n
Sq

ua
re

 E
rro

r
Landscape

0 50 100 150 200 250

0

5

10

15

20

25

30

number of iterations

PS
NR

 [d
B]

Landscape

32bit fixed−point model

14bit fixed−point model

20bit fixed−point model

Figure A.22: Means Square Error (MSE) and Peak signal-to-noise ratio (PSNR)
analysis of simulation runs (landscape image, cf. Figure A.20, A.21) of the segmen-
tation model. MSE versus number of bit used for the model. PSNR versus number
of iterations.

14 16 18 20 22 24 26 28 30 32
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

number of bit

M
ea

n
Sq

ua
re

 E
rro

r

0 50 100 150 200 250

0

5

10

15

20

25

30

number of iterations

PS
NR

 [d
B]

Landscape

22bit fixed−point model

32bit fixed−point model

26bit fixed−point model

Figure A.23: Means Square Error (MSE) and Peak signal-to-noise ratio (PSNR)
analysis of simulation runs (landscape image, cf. Figure A.20, A.21) of the segmen-
tation model. MSE versus number of bit used for the model. PSNR versus number
of iterations.

236

SIMULATION FRAMEWORK RESULTS

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.24: Comparison of ground-truth with fixed-point model/architecture
variants. (a) Ground-Truth. (b) 26bit model/architecture variant. (c) Difference
(black) between (a) and (b) segmentation results. (d) Ground-Truth. (e) 20bit
model/architecture variant. (f) Difference (black) between (d) and (e) segmentation
results. (g) Ground-Truth. (h) 16bit model/architecture variant. (i) Difference
(black) between (g) and (h) segmentation results. Ground-Truth (a),(d) and (g) are
identical and only depicted for the purpose of illustration.

237

SIMULATION FRAMEWORK RESULTS

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.25: Comparison of ground-truth with fixed-point model/architecture
variants. (a) Ground-Truth. (b) 26bit model/architecture variant. (c) Difference
(black) between (a) and (b) segmentation results. (d) Ground-Truth. (e) 20bit
model/architecture variant. (f) Difference (black) between (d) and (e) segmentation
results. (g) Ground-Truth. (h) 16bit model/architecture variant. (i) Difference
(black) between (g) and (h) segmentation results. Ground-Truth (a),(d) and (g) are
identical and only depicted for the purpose of illustration.

238

SIMULATION FRAMEWORK RESULTS

16
18

20
22

24
26

28
30

32
0

0.
00

5

0.
01

0.
01

5

nu
m

be
r o

f b
it

Mean Square Error

0
50

10
0

15
0

20
0

25
0 051015202530354045

nu
m

be
r o

f i
te

ra
tio

ns

PSNR [dB]

Ho
rs

es

16
bi

t f
ixe

d−
po

in
t m

od
el

32
bi

t f
ixe

d−
po

in
t m

od
el

26
bi

t f
ixe

d−
po

in
t m

od
el

20
bi

t f
ixe

d−
po

in
t m

od
el

Figure A.26: Means Square Error (MSE) and Peak signal-to-noise ratio (PSNR)
analysis of fixed-point simulation runs (horses, cf. Figure A.25) of the segmentation
model. MSE versus number of bit used for the model. PSNR versus number of
iterations.

239

SIMULATION FRAMEWORK RESULTS

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.27: Comparison of ground-truth with fixed-point model/architecture
variants. (a) Ground-Truth. (b) 26bit model/architecture variant. (c) Difference
(black) between (a) and (b) segmentation results. (d) Ground-Truth. (e) 20bit
model/architecture variant. (f) Difference (black) between (d) and (e) segmentation
results. (g) Ground-Truth. (h) 16bit model/architecture variant. (i) Difference
(black) between (g) and (h) segmentation results. Ground-Truth (a),(d) and (g) are
identical and only depicted for the purpose of illustration.

240

SIMULATION FRAMEWORK RESULTS

16
17

18
19

20
21

22
23

24
25

26
0.

02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

nu
m

be
r o

f b
it

Mean Square Error

0
50

10
0

15
0

20
0

25
0 0510152025

nu
m

be
r o

f i
te

ra
tio

ns

PSNR [dB]

Ai
rp

la
ne

26
bi

t f
ix

ed
−p

oi
nt

 m
od

el

20
bi

t f
ix

ed
−p

oi
nt

 m
od

el

16
bi

t f
ix

ed
−p

oi
nt

 m
od

el

Figure A.28: Means Square Error (MSE) and Peak signal-to-noise ratio (PSNR)
analysis of fixed-point simulation runs (airplane image, cf. Figure A.27) of the
segmentation model. MSE versus number of bit used for the model. PSNR versus
number of iterations.

241

SIMULATION FRAMEWORK RESULTS

0 50 100 150 200 250
0

5

10

15

20

25

number of iterations

P
S

N
R

 [d
B

]

Airplane
26bit fixed−point model

Ground Truth

Figure A.29: Peak signal-to-noise ratio (PSNR versus number of iterations) anal-
ysis of 26bit fixed-point model. PSNR for iteration steps 125-154 (green box) and
the corresponding segmentation results shown beneath. Iteration steps 125-154: Im-
age sequence from left to right and top to bottom. PSNR with respect to binary
difference data.

242

SIMULATION FRAMEWORK RESULTS

Pr
ot

ot
yp

es

Iteration Steps

5
10

15
20

25
30

35
40

45

2040608010
0

12
0

14
0

16
0

18
0

20
0

22
00

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

C
la

ss
 1

C
la

ss
 2

C
la

ss
 3

Figure A.30: Estimated prototypes qν . Prototypes of the architecture/model
variant with 26bit fixed point precision and with respect to the airplane image (rotate
to view). Each class prototype is composed of probability distributions for the RGB
channels. The probability values are encoded corresponding to the colorbar.

243

SIMULATION FRAMEWORK RESULTS

P
ro

to
ty

pe
s

Itertion Steps

5
10

15
20

25
30

35
40

45

2040608010
0

12
0

14
0

16
0

18
0

20
0

22
00

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

C
la

ss
 1

C
la

ss
 3

C
la

ss
 2

Figure A.31: Estimated prototypes qν . Prototypes of the architecture/model
variant with 20bit fixed point precision and with respect to the airplane image (rotate
to view). Each class prototype is composed of probability distributions for the RGB
channels. The probability values are encoded corresponding to the colorbar.

244

SIMULATION FRAMEWORK RESULTS

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.32: Comparison of ground-truth with fixed-point model/architecture
variants. (a) Ground-Truth. (b) 26bit model/architecture variant. (c) Difference
(black) between (a) and (b) segmentation results. (d) Ground-Truth. (e) 20bit
model/architecture variant. (f) Difference (black) between (d) and (e) segmentation
results. (g) Ground-Truth. (h) 16bit model/architecture variant. (i) Difference
(black) between (g) and (h) segmentation results. Ground-Truth (a),(d) and (g) are
identical and only depicted for the purpose of illustration.

245

SIMULATION FRAMEWORK RESULTS

16
17

18
19

20
21

22
23

24
25

26
0

0.
51

1.
52

2.
53

x
10

−3

nu
m

be
r o

f b
it

Mean Square Error

0
50

10
0

15
0

20
0

25
0 051015202530354045

nu
m

be
r o

f i
te

ra
tio

ns

PSNR [dB]

C
ar

 2

26
bi

t f
ix

ed
−p

oi
nt

 m
od

el

16
bi

t f
ix

d−
po

in
t m

od
el20

bi
t f

ix
ed

−p
oi

nt
 m

od
el

Figure A.33: Means Square Error (MSE) and Peak signal-to-noise ratio (PSNR)
analysis of fixed-point simulation runs (car 2 image, cf. Figure A.32) of the segmen-
tation model. MSE versus number of bit used for the model. PSNR versus number
of iterations.

246

SIMULATION FRAMEWORK RESULTS

Pr
ot

ot
yp

es

Iteration Steps

5
10

15
20

25
30

35
40

45

2040608010
0

12
0

14
0

16
0

18
0

20
0

22
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Cl
as

s 1
Cl

as
s 2

Cl
as

s 3

Figure A.34: Estimated prototypes qν . Prototypes of the architecture/model
variant with 20bit fixed point precision and with respect to the utility car image
(rotate to view). Each class prototype is composed of probability distributions
for the RGB channels. The probability values are encoded corresponding to the
colorbar.

247

SIMULATION FRAMEWORK RESULTS

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.35: Comparison of ground-truth with fixed-point model/architecture
variants. (a) Ground-Truth. (b) 26bit model/architecture variant. (c) Difference
(black) between (a) and (b) segmentation results. (d) Ground-Truth. (e) 20bit
model/architecture variant. (f) Difference (black) between (d) and (e) segmentation
results. (g) Ground-Truth. (h) 16bit model/architecture variant. (i) Difference
(black) between (g) and (h) segmentation results. Ground-Truth (a),(d) and (g) are
identical and only depicted for the purpose of illustration.

248

SIMULATION FRAMEWORK RESULTS

16
17

18
19

20
21

22
23

24
25

26
0

0.
00

5

0.
01

0.
01

5

0.
02

0.
02

5

nu
m

be
r

of
 b

it

Mean Square Error

0
50

10
0

15
0

20
0

25
0 05101520253035

nu
m

be
r

of
 it

er
at

io
ns

PSNR [dB]

C
ar

 1

26
bi

t f
ix

ed
−

po
in

t m
od

el

20
bi

t f
ix

ed
−

po
in

t m
od

el

16
bi

t f
ix

ed
−

po
in

t m
od

el

Figure A.36: Means Square Error (MSE) and Peak signal-to-noise ratio (PSNR)
analysis of fixed-point simulation runs (car 1 image, cf. Figure A.35) of the segmen-
tation model. MSE versus number of bit used for the model. PSNR versus number
of iterations.

249

SIMULATION FRAMEWORK RESULTS

Pr
ot

ot
yp

es

Iteration Steps

10
20

30
40

50
60

70
80

90

2040608010
0

12
0

14
0

16
0

18
0

20
0

22
00

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

Cl
as

s 1
Cl

as
s 2

Cl
as

s 3

Figure A.37: Estimated prototypes qν . Prototypes of the architecture/model
variant with 16bit fixed point precision and with respect to the sports car image
(rotate to view). Each class prototype is composed of probability distributions
for the RGB channels. The probability values are encoded corresponding to the
colorbar.

250

Appendix B

Design Framework Results

This appendix presents various prototypical VLSI results and abstract graph rep-
resentations, which have been relocated from the main text and the result Section
5.5 to this appendix to enhance the readability of this thesis. Several VLSI results
and graph representations have been included to illustrate the capabilities of the
proposed design framework and hence to underpin its practical relevance. All VLSI
implementations have been done with Xilinx FPGA technologies of different gate-
capacities and family-types. The particular graphs are the original representations,
which have been taken from the canonical design representation of the proposed
design framework.

Results - Design Framework

Figure Description

Figure B.1 Illustration of cell-cluster wrapper by means of gate-level
schematic.

Figure B.2 Floorplan guided by hierarchy- and planarity feature encoded
within the HDL of 64 × 64 large cell grid.

Figure B.3 Detailed floorplan and resulting place & route of 4×4 site cluster.

Figure B.4 Utilization of hierarchy- and planarity feature for different groups
of cell-cluster within one MRF grid.

Figure B.5 Original graph of global memory hierarchy. Extracted from canon-
ical design representation.

Figure B.6 Floorplan and place & route of exemplary memory hierarchy. Il-
lustration of overall structure and wiring characteristic.

Figure B.7 Constraint-driven floorplan of combined cell-cluster and memory
hierarchy structures.

251

DESIGN FRAMEWORK RESULTS

Results - Design Framework

Figure Description

Figure B.8 Graph representation of port memory block with a 2-step send
and receive procedure. Port memory block for first neighborhood
system. (Schematic cf. Figure B.9)

Figure B.9 RTL schematic of port memory block with a 2-step send and re-
ceive procedure. Port memory block for first neighborhood sys-
tem. (Graph representation cf. Figure B.8)

Figure B.10 Close-up of RTL schematic. Schematic of port memory block for
5th order neighborhood system.

Figure B.11 Schematic cut-out of histogram forming design. Illustration of
design.

Figure B.12 Place & Route and extracted FSM of histogram forming design.
Illustration of design and FSM details.

Figure B.13 Complete graph representation of noise removing and edge pre-
serving energy functional.

Figure B.14 Close-up of Figure B.13 - graph representation of noise remov-
ing and edge preserving energy functional. Illustration of graph
details.

Figure B.15 Close-up of Figure B.13 - graph representation of noise remov-
ing and edge preserving energy functional. Illustration of graph
details.

Figure B.16 RTL schematics of a specific portion (cup-function) of the noise
removing and edge preserving energy functional. Illustration of
combined control- and data-path.

Figure B.17 Close-up of RTL schematic of a specific portion (cup-function) of
the noise removing and edge preserving energy functional. Illus-
tration of operator-wrapping.

Figure B.18 Extracted FSM of a specific portion (cup-function) of the noise
removing and edge preserving energy functional. Illustration of
FSM state transitions.

252

DESIGN FRAMEWORK RESULTS

Figure B.1: Illustration of cell-cluster wrapper by means of gate-level schematic.
Controlled handling of incomplete neighborhoods at the boarder of the MRF grid.
32 × 32 large cell grid.

Figure B.2: Floorplan of 64×64 large cell grid. Clustering and quadrant organized
floorplanning of four 32 × 32 sub-cluster. Floorplanning guided by hierarchy- and
planarity feature encoded within the HDL code and preserved from representing
graph.

253

DESIGN FRAMEWORK RESULTS

(a) (b)

Figure B.3: Detailed floorplan and resulting place & route of 4 × 4 site cluster.
(a) Floorplan of the 16 particular sites generated by using the embedded hierarchy-
and planarity feature. (b) Place and Route of floorplan.

(a) (b)

Figure B.4: Utilization of embedded hierarchy- and planarity feature for different
groups of site cluster. Illustrated by means of 32 cell grid. (a) Topmost left and
bottom right cluster: Floorplan derived from placer without using the hierarchy-
and planarity feature. Topmost right cluster: Split of cluster and floorplan derived
from placer. The floorplan becomes largely unstructured even for small cell-cluster.
Bottom left: (b) Place and Route of floorplan. Illustration of neighborhood structure
between the cell and hence the cell-cluster.

254

DESIGN FRAMEWORK RESULTS

Figure B.5: Overview memory hierarchy graph. Original graph extracted from
canonical design representation. Suitable for a 64 × 64 MRF grid. Illustration of
principle hierarchy-structure and arrangement.

255

DESIGN FRAMEWORK RESULTS

(a)

(b)

Figure B.6: Floorplan and place & route of memory hierarchy. (a) Floorplan of
the particular memory elements of the hierarchy. Usage of different memory blocks
and their corresponding placing. (b) Place & Route of the floorplan. Illustration of
the memory hierarchy’s wiring characteristic.

256

DESIGN FRAMEWORK RESULTS

Figure B.7: Constraint-driven floorplan of combined cell-grid and memory hierar-
chy. Clearly separated structures. Top row of cell-cluster equipped with constraints
to partially relocate the elements of the memory hierarchy in the floorplan. Bottom
row of cell-cluster equipped with constraints to completely relocate the elements of
the memory hierarchy in the floorplan.

257

DESIGN FRAMEWORK RESULTS

Figure B.8: Graph representation of port memory block with a 2-step send and
receive procedure. Original graph representation extracted from canonical design
representation (not all node information is shown).

258

DESIGN FRAMEWORK RESULTS

Figure B.9: RTL schematic of port memory block with a 2-step send and receive
procedure. RTL schematic of port memory block synthesized by 3rd party tool from
generated HDL code. Port memory for first order neighborhood system.

259

DESIGN FRAMEWORK RESULTS

Figure B.10: Close-up of RTL schematic. Schematic of particular port memory
block with a 2-step send and receive procedure. Support of 5th order neighborhood
system. Data-flow from left to right. Left most side: Inputs (not complete) from
5th order neighbors and corresponding register-banks. Middle part: FSM block
and ”Inner Cell” block encapsulating the rest of the cell circuits. All register-banks
(only partially shown) of the port memory block are connected to the ”Inner Cell”
block to provide the neighborhood data for the cell internal processing. Right most
side: Distribution of cell-state datum to the 5th order output ports. Multiplexer
unit (topmost right) realizes the 2-step send process; controlled by FSM.

260

DESIGN FRAMEWORK RESULTS

Figure B.11: Design of histogram forming process (1st order neighborhood system,
8 equally spaced bins, channel value-range [0,255], support for 1 channel). Cut-out
of RTL schematic. Illustration of comparator operators to determine the bin of a
value, and register-banks with feedback to plus operator to store and increase the
bin values.

261

DESIGN FRAMEWORK RESULTS

(a)

(b)

Figure B.12: Design of histogram forming process (1st order neighborhood sys-
tem, 8 equally spaced bins, channel value-range [0,255], support for 1 channel). (a)
Compact Place & Route result of histogram design. No place and route difficulties
identified for this design. (b) Extracted Finite State Machine of histogram design.

262

DESIGN FRAMEWORK RESULTS

Figure B.13: Overview - original graph representation of noise removing and edge
preserving energy functional. Graph extracted from canonical design representation.
Trapezoid shaped node: Top node of the graph. Octagon shaped node: Data-Input
node. Ellipse shaped node: Operator node.

263

DESIGN FRAMEWORK RESULTS

Figure B.14: Close up - Top left and top right part of Figure B.13. Graph extracted
from canonical design representation. Trapezoid shaped node: Top node of the
graph. Octagon shaped node: Data-Input node. Ellipse shaped node: Operator
node.

264

DESIGN FRAMEWORK RESULTS

Figure B.15: Close up - Bottom right part of Figure B.13. Graph extracted from
canonical design representation. Octagon shaped node: Data-Input node. Ellipse
shaped node: Operator node. Rectangular shaped node: Data-Output node.

265

DESIGN FRAMEWORK RESULTS

(a)

(b)

Figure B.16: RTL schematics of a specific portion (cup-function) of the noise
removing and edge preserving energy functional. (a) Overview schematic of cup
function. Highlighted red: FSM (left most block), register banks between operators
and control signals from the FSM to the register banks. (b) Close-up of schematic.
Highlighted red: FSM block, connections and first register bank.

266

DESIGN FRAMEWORK RESULTS

Figure B.17: Operator wrapping. Close-up RTL schematic (cup function). High-
lighted red: Partially resolved operator wrapping for the plus operator.

267

DESIGN FRAMEWORK RESULTS

Figure B.18: FSM state transition graph. State transition graph of FSM (cup
function). State 2 and 4 are assigned to the division operators and possess three
sub-states 2 1, 2 2, 2 3 respectively 4 1, 4 2, 4 3. These consecutive states model
the divisions as multi-cycle (4-cycle) operations.

268

Bibliography

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compiler: Principles, Techniques and
Tools. Addison-Wesley, 1986.

[2] T.D. Albright, T.M. Jessell, E.R. Kandel, and M.I. Posner. A century of
progress and the mysteries that remain. Cell and Neuron, 1(25):1–55, 2000.

[3] J.R. Armstrong. Chip Level Modeling with VHDL. Prentice-Hall, 1989.

[4] R. Azencott. Parallel Simulated Annealing: An Overview of Basic Techniques.
In R. Azencott, editor, Simulated Annealing, Parallelization Techniques, chap-
ter 4, pages 37–46. John Wiley & Sons, Inc., 1992.

[5] R. Azencott, editor. Simulated Annealing, Parallelization Techniques. John
Wiley & Sons, 1992.

[6] R. Azencott and C. Graffigne. Parallel Annealing by Periodically Interacting
Multiple Searches: Acceleration Rates. In R. Azencott, editor, Simulated
Annealing, Parallelization Techniques, chapter 6, pages 81–90. John Wiley &
Sons, Inc., 1992.

[7] M.A.E. Beaumont and D. Jackson. Visualising complex control flow. In IEEE
Symposium on Visual Languages, pages 244 – 251. Proceedings, September
1998.

[8] K. Beck and D. Andres. Extreme Programming Explained. Addison-Wesley
Professional, October 1999.

[9] N. Bergmann. A Case Study of the F.I.R.S.T. Silicon Compiler. Third Caltech
Conference on VLSI, 1983.

[10] J. Besag. Nearest-neighbour systems and the auto-logistic model for binary
data. Journal of the Royal Statistical Society, 34 (1):75–83, 1972.

[11] J. Besag. Spatial interaction and the statistical analysis of lattice systems.
Journal of the Royal Statistical Society, series B, 36 (2):192–236, 1974. (with
discussion).

[12] J. Besag. Statistical analysis of non-lattice data. The Statistician, 24:179–195,
1975.

[13] J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal
Statistical Society, series B, 48 (3):259–302, 1986. (with discussion).

269

BIBLIOGRAPHY

[14] J. Besag. Towards Bayesian image analysis. Journal of Applied Statistics, Vol.
16(3):395–407, 1989.

[15] D. Binkley and M. Harman. Results from a large-scale study of performance
optimization techniques for source code analyses based on graph reachability
algorithms. In Third IEEE International Workshop on Source Code Analysis
and Manipulation, pages 203 – 212. Proceedings, September 2003.

[16] A. Blake and A. Zissermann. Visual Reconstruction. Series in Artifical Intel-
ligence. The MIT Press, 1987.

[17] M.T. Bohr. Nanotechnology goals and challenges for electronic applications.
IEEE Trans. Nanotechnol., 1:56–62, March 2002.

[18] V. Bonaiuto, A. Maffucci, G. Miano, M. Salerno, F. Sargeni, and C. Visone.
Design of a cellular nonlinear network for analogue simulation of Reaction-
Diffusion PDE’s. In Proceedings of IEEE International Symposium on Circuits
and Systems, pages 431–434, 2000.

[19] C.F. Borges. On the Estimation of Markov Random Field Parameters. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 21(3):216–224,
March 1999.

[20] G. Borriello. Combining Event and Data Flow Graphs in Behavioral Synthesis.
In Proceedings of the International Conference on Computer-Aided Design,
pages 56–59, 1988.

[21] R. Boute. Declarative Languages - Still a Long Way to Go. In Proceedings of
the 10th International Symposium on Computer Hardware Description Lan-
guages and their Applications. Invited Paper, 1991.

[22] R.K. Brayton, R. Camposano, G. De Micheli, R.H.J.M. Otten, and J.T.J. van
Einjndhoven. The Yorktown Silicon Compiler System, chapter in D.D. Gajski,
Editor, Silicon Compilation. Addison-Wesley, 1988.

[23] Pierre Brémaud. Markov Chains, Gibbs Fields, Monte Carlo Simulation, and
Queues. Number 31 in Texts in Applied Mathematics. Springer-Verlag, 1999.

[24] D. Brook. On the distinction between conditional probability and joint
probability approaches in the specification of nearest-neighbourhoodsystems.
Biometrika, 51:481–483, 1964.

[25] A.S. Brown. Flat, Cheap, and under control. IEEE Spectrum, pages 34–39,
January 2005.

[26] Cadence. Inc. http://www.cadence.com.

[27] R. Camposano. Path-based scheduling for synthesis. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 10(1):85 – 93,
January 1991.

270

BIBLIOGRAPHY

[28] R. Camposano and W. Rosenstiel. Synthesizing Circuits from Behavioral De-
scriptions. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 8:171–180, 1989.

[29] R. Camposano, L.F. Saunders, and R.M. Tabet. VHDL as input for high-level
synthesis. IEEE Design & Test of Computers, 8:43–49, 1991.

[30] R. A. Carmona, G. Linan, R. Dominguez-Castro, S. Espejo, and A. Rodriguez-
Vázquez. SIRENA: A CAD Environment for Behavioural Modelling and Sim-
ulation of VLSI Cellular Neural Network Chips. Int. J. Circuit Theory and
Applications - Special Issue: Theory, Design and Applications of Cellular Neu-
ral Networks: Part II: Design and Applications, 27:43–76, 1999.

[31] V. Cerny. Thermodynamical Approach to the Traveling Salesman Problem:
An Efficient Simulation Algorithm. J. Opt. Theory Appl., 45(1):41–51, January
1985.

[32] N. Chabini and W. Wolf. Unification of Scheduling, Binding, and Retiming to
Reduce Power Consumption Under Timing and Resources Constraints. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 13(10):1113–
1126, October 2005.

[33] Bernard Chalmond. Modeling and Inverse Problems in Image Analysis. Num-
ber 155 in Applied Mathematical Sciences. Springer-Verlag, 2003.

[34] L.O. Chua and I. Yang. Cellular neural networks: Applications. IEEE Trans-
actions on Circuits and Systems, 35:1273–1290, October 1988.

[35] L.O. Chua and I. Yang. Cellular neural networks: Theory. IEEE Transactions
on Circuits and Systems, 35:1257–1272, October 1988.

[36] N. Collins, R. Eglese, and B. Golden. Simulated Annealing - an annotated
bibliography. American Journal of Mathematical and Managment Science,
8:209–308, 1988.

[37] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction
to Algorithms -VI Graph Algorithms. MIT Press, 1994.

[38] F. Curatelli, L. Mangeruca, and M. Chirico. S-CFG: a representation model
for system synthesis. In International Symposium on Signals, Systems, and
Electronics, pages 326 – 331. ISSSE 98, September-October 1998.

[39] A.P. Dempster, N.M. Laired, and D.B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm (with discussion). Journal of the Royal
Statistical Society B, 39:1–38, 1977.

[40] Reinhard Diestel. Graphentheorie. Springer-Verlag, second edition, July 2000.

[41] R. Domińıguez-Castro, S. Espejo, A. Rodŕıguez-Vázquez, I. Garćıa-Vargas,
J. F. Ramos, and R. A. Carmona. SIRENA: A Simulation Environment for
CNNs. In Proceedings of IEEE Int. Workshop on Cellular Neural Networks
and Their Applications, pages 417–422. Proceedings, 1994.

271

BIBLIOGRAPHY

[42] P. Donaldson. Collision Avoidance Systems Mature. Defence Helicopters,
pages 41–45, April/May 2005.

[43] J. E. Dowling. The Retina - An Approachable Part of the Brain. Harvard
University Press, 1987.

[44] T. Roska et al. A digital multiprocessor hardware accelerator board for cellular
neural networks. Int. J. Circuit Theory, 20:589–599, 1992.

[45] European Conf. on Circuit Theory and Design. Special Session on Cellular
Neural Networks, September 1991.

[46] M. Fowler. Refactoring - Improving the Design of Existing Code. Addison-
Wesley, 1999.

[47] D.J. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur, and H.-S. P.
Wong. Device scaling limits of Si MOSFET’s and their application dependen-
cies. Proc. IEEE, 89:259–288, March 2001.

[48] D.G. Fritz and R.G. Sargent. An overview of hierarchical control flow graph
models. In Simulation Conference Proceedings, 1995. Winter, pages 1347 –
1355, December 1995.

[49] D. Gamerman. Markov Chain Monte Carlo: Stochastic Simulation for
Bayesian Inference. Chapman & Hall/CRC, 1st edition, 1997.

[50] E. Gamma, R. Helm, and R.E. Johnson. Design Patterns - Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, July 1997.

[51] D.D. Gasjski, N.D. Dutt, A.C-H. Wu, and S.Y-L. Lin, editors. High-Level
Synthesis: Introduction to Chip and System Design. Kluwer Academic, 1992.

[52] M. Gasteier and M. Glesner. Bus-based communication synthesis on system-
level. In Proc. 9th Int. Symp. Syst. Synthesis, pages 65–70, November 1996.

[53] Zhiguo Ge, Jirong Liao, and Weng-Fai Wong. Compiling to FPGAs via an
EPIC compiler’s intermediate representation. In IEEE International Confer-
ence on Field-Programmable Technology (FPT), pages 431 – 434. Proceedings,
December 2003.

[54] D. Geman. Stochastic model for boundary detection. Image and Vision Com-
puting, 5:61–65, 1987.

[55] D. Geman, S. Geman, and C. Graffigne. Locating texture and object bound-
aries. In P. A. Devijver and J. Kittler, editors, Pattern Recognition Theory
and Applications. Springer Verlag, Heidelberg, 1987.

[56] D. Geman, S. Geman, C. Graffigne, and P. Dong. Boundary detection by con-
strained optimization. IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-12(7):609–628, July 1990.

272

BIBLIOGRAPHY

[57] D. Geman and B. Gidas. Image analysis and computer vision. In Spatial
Statistics and Digital Image Analysis, chapter 2. National Academy Press,
Washington, D.C., 1991.

[58] D. Geman and G. Reynolds. Constrained restoration and the recovery of
discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, Vol. PAMI-14(No. 3):367–383, 1992.

[59] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. PAMI-6(1):721–741, 1984.

[60] Sabih H. Gerez. Algorithms for VLSI Design Automation. Wiley and Sons,
2002.

[61] G.R. Grimmet. A theorem about random fields. Bull. Lond. Math. Soc.,
5:81–84, 1973.

[62] M. M. Gupta and G. K. Knopf, editors. Neuro-Vision Systems. IEEE Press,
1994.

[63] Sumit Gupta, Nick Saoiu, Nikil Dutt, Rajesh Gupta, and Alex Nicolau. Using
Global Code Motions to Improve the Quality of Results for High-Level Syn-
thesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 23(2), February 2004.

[64] X. Guyon. Random Fields on a Network, Modeling, Statistics and Applica-
tions. Probabilities and its Application. Springer-Verlag, 1991.

[65] B. Hajek. Cooling schedules for optimal annealing. Mathematics of Operations
Research, 13(2):311–329, 1988.

[66] M. Hanggi, S. Moser, E. Pfaffhauser, and G. S. Moschytz. Simulation and
visualization of CNN dynamics. Int. Journal of Bifurcation and Chaos, 9:1237–
1261, 1999.

[67] W.K. Hastings. Monte Carlo sampling methods using Markov chains and their
applications. Biometrica, 57:97–109, 1970.

[68] L. Hermes. Entropy-Based image segmentation and its application to remote
sensing, volume 727 of Fortschritt Berichte VDI Reihe 10. VDI Verlag, 2003.

[69] L. Hermes, T. Zöller, and J.M. Buhmann. Parametric Distributional Clus-
tering for Image Segmentation. In Computer Vision - ECCV 2002, pages
577–591. LNCS 2352, Springer, 2002.

[70] T. Hofmann. Data Clustering and Beyond - A Deterministic Annealing Frame-
work for Exploratory Data Analysis, volume D98. Shaker Verlag, computer
science edition, 1997.

[71] T. Hofmann, J. Puzicha, and J.B. Buhmann. Unsupervised texture segmen-
tation in a determinisitc annealing framework. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(8):803–818, August 1998.

273

BIBLIOGRAPHY

[72] A. Holmes-Siedle and L. Adams. Handbook of Radiation Effects. Oxford
University Press, Oxford, 1993.

[73] C. Huang, S. Ravi, A. Raghunathan, and N.K. Jha. Generation of Dis-
tributed Logic-Memory Architectures Through High-Level Synthesis. IEEE
Transactions on Computer-Aided Desing of Integrated Circuits and Systems,
24(11):1694–1711, November 2005.

[74] IEEE. Proceedings CNNA 1990,1992, IEEE International Workshop on Cel-
lular Neural Networks and their Applications, 1990,1992.

[75] IEEE. Proceedings CNNA 1994, IEEE International Workshop on Cellular
Neural Networks and their Applications, 1994.

[76] IEEE. Proceedings CNNA 1996, IEEE International Workshop on Cellular
Neural Networks and their Applications, 1996.

[77] IEEE. Proceedings CNNA 1998, IEEE International Workshop on Cellular
Neural Networks and their Applications, 1998.

[78] IEEE. Proceedings CNNA 2000, 2002, 2004, IEEE International Workshop
on Cellular Neural Networks and their Applications, 2000, 2002, 2004.

[79] IEEE. Proceedings CNNA 2005, IEEE International Workshop on Cellular
Neural Networks and their Applications, 2005.

[80] Trends in Neurosciences. TINS, 1997-2004.

[81] The Open SystemC Initiative. SystemC Community. http://www.systemc.org,
2004.

[82] R.D. Isaac. The future of CMOS technology. IBM J. Res: Develop., 44:369–
378, May 2000.

[83] ITRS 1999. International Technology Roadmap for Semiconductors. Available:
http://public.itrs.net/files/1999 SIA Roadmap/.

[84] ITRS 2003. International Technology Roadmap for Semiconductors. Available:
http://public.itrs.net/Files/2003ITRS/Home2003.htm.

[85] A.K. Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice Hall,
1988.

[86] S. Jankowski, R. Buczynski, A. Wielgus, W. Pleskacz, T. Szoplik, I. Veretenni-
coff, and H. Thienpont. Digital cnn with optical and electronic processing. In
Proceedings of 14 European Conference on Circuit Theory and Design, pages
1183–1186. Proceedings, 1999.

[87] S. Jankowski, A. Wielgus, W. Pleskacz, B. Buczynski, and M. Wisniewski.
Ic design of 8x8 digital cnn with optoelectronic interface. In Proceedings of
IEEE Int. Workshop on Cellular Neural Networks and Their Applications,
pages 431–436, 2000.

274

BIBLIOGRAPHY

[88] E. Jaynes. Information theory and mechanics II. Physical Review, 108(2):171–
190, 1957.

[89] E. Jaynes. Information theory and statistical mechanics. Physical Review,
106(4):620–630, 1957.

[90] M.I. Jordan, editor. Learning in Graphical Models. MIT Press, 1999.

[91] Eric R. Kandel, James H. Schwarz, and Thomas M. Jessell, editors. Principles
of Neural Science. McGraw-Hill, 4th edition, 2000.

[92] P. Keresztes, Á. Zarándy, T. Roska, P. Szolgay, T. Bezák, T. Hı́dvégi, P. Jónás,
and A. Katona. An emulated digital cnn implementation. Journal of VLSI Sig-
nal Processing Special Issue: Spatiotemporal Signal Processing with Analogic
CNN Visual Microprocessors, 23:291–304, 1999.

[93] R.W. Keyes. Fundamental limits of silicon technology. Proc. IEEE, 89:227–
239, March 2001.

[94] A. Khachaturyan, S. Semenovskaya, and B. Vainshtein. The Thermodynamical
Approach to the Structure Analysis of Crystals. Acta Cryst., A(37):742–754,
1981.

[95] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by Simulated
Annealing. Technical report, IBM Research Report RC 9355, 1982.

[96] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by Simulated
Annealing. Science, 220:671–680, 1983.

[97] C. Koch and H. Li (editors). Vision Chips: Implementing Vision Algorithms
with Analog VLSI Circuits. IEEE Computer Society Press, 1995.

[98] J.-T. Kong. CAD for Nanometer Silicon Design Challanges and Success. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 12(11):1132–
1147, November 2004.

[99] Bernhard Korte and Jens Vygen. Combinatorial Optimization - Theory and
Algorithms. Springer-Verlag, 2nd edition, October 2001.

[100] K. R. Krieg and L. O. Chua. ASIM, an Efficient Simulation Environment for
Cellular Neural Networks. In Proceedings of IEEE Int. Workshop on Cellular
Neural Networks and Their Applications, pages 149–15. Proceedings, 1990.

[101] S. Kullback and R.A. Leibler. On information and sufficiency. Annals of
Mathematical Statistics, 22:79–86, 1951.

[102] S. Kullback and R.A. Leibler. Information Theory and Statistics. John Wiley,
New York, 1959.

[103] K. Kuratowski. Sur le problème des courbes gauches en topologie. Fund.
Math., 15:271–283, 1930.

275

BIBLIOGRAPHY

[104] C. C. Lee and J. Pineda de Gyvez. Single-Layer CNN Simulation. In Pro-
ceedings of IEEE International Symposium on Circuits and Systems, pages
217–220, 1994.

[105] S. Lee and M.M. Crawford. Unsupervised multistage image classification using
hierarchical clustering with a bayesian similarity measure. IEEE Transactions
on Image Processing, 14 (3):312–320, March 2005.

[106] P. Lévy. Châınes doubles de Markov et fonctions aléatoires de deux variables.
Académie des Sciences, 226:53–55, 1948.

[107] S.Z. Li. Markov Random Field Modeling in Image Analysis. Number XIX in
Computer Science Workbench. Springer Verlag, 2001.

[108] A. Loncar, R. Kunz, and R. Tetzlaff. SCNN 2000 - Part I: Basic Structure and
Features of the Simulation System for Cellular Neural Networks. In Proceedings
of IEEE Int. Workshop on Cellular Neural Networks and Their Applications,
pages 123–128. Proceedings, 2000.

[109] A. Loncar, R. Kunz, and R. Tetzlaff. SCNN 2000 - Part II: The Simulation
Control System. In Proceedings of IEEE Int. Workshop on Cellular Neural
Networks and Their Applications, pages 129–134. Proceedings, 2000.

[110] T. P. Ma and P. V. Dressendorfer. Ionizing Radiation Effects in MOS Devices
and Circuits. Wiley-Interscience, New York, 1989.

[111] D. MacMillen, R. Camposano, D. Hill, and T.W. Williams. An Industrial
View of Electronic Design Automation. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 19:1428 – 1448, 2000.

[112] M.A. Mahowald and C.A. Mead. A silicon model of early visual processing.
Neural Networks, 1:91–97, 1988.

[113] M.A. Mahowald and C.A. Mead. Silicon retina. In Analog VLSI and Neural
Systems, pages 257–278. Addison-Wesley, 1989.

[114] Yury Makarychev. A Short Proof of Kuratowski’s Graph Planarity Criterion.
Journal of Graph Theory, 25:129–131, 1997.

[115] J. Malik, S. Belongie, T. Leung, and J. Shi. Contour and texture analysis for
image segmentation. International Journal of Computer Vision, 43(1):7–27,
1982.

[116] David Marr. Vision. W.H. Freeman and Company, New York, 1982.

[117] R. Matei and L. Goras. On the Discrete Simulation of 1D CNN’s. In Pro-
ceedings of IEEE International Symposium on Signals Circuits and Systems,
pages 113–115, 1997.

[118] M.C. McFarland, A.C. Parker, and R. Camposano. High-Level Synthesis of
Digital Systems. Proceedings of the IEEE, 78(2):301–318, February 1990.

276

BIBLIOGRAPHY

[119] S.O. Memik, R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh. A Schedul-
ing Algorithm for Optimization and Early Planning in High-Level Synthesis.
ACM Transactions on Desing Automation of Electronic Systems, 10(1):33–57,
January 2005.

[120] G. C. Messenger and M. S. Ash. The Effects of Radiation on Electronic Sys-
tems. Van Nostrand Reinhold, New York, 1992.

[121] G. C. Messenger and M. S. Ash. Single Event Phenomena. Kluwer Academic
Publishers, New York, 1997.

[122] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and M. Teller. Equa-
tion for state calculations by fast computing machines. Journal of Chemical
Physics, 21:1087–1092, 1953.

[123] N. Metropolis and S. UIam. The Monte Carlo method. J. Amer. Statist.
Assoc., 44:335–341, 1949.

[124] Alireza Moini. Vision chips or seeing silicon. Technical report, The University
of Adelaide, March 1997.

[125] G. Moore. Cramming more components onto integrated circuits. Electronics,
38(8), 1965.

[126] D. Mumford and J. Shah. Optimal approximation by piecewise smooth func-
tions and associated variational problems. Comm. Pure Appl. Math., 42:577–
685, 1989.

[127] OMNet++. http://www.omnetpp.org.

[128] OPNET Technologies, Inc. http://www.opnet.com/.

[129] Manfred Opper and David Saad, editors. Advanced Mean Field Methods -
Theory and Practice. Neural Information Processing Series. The MIT Press,
2001.

[130] A. Orailoglu and D.D. Gajski. Flow graph representation. In Design Automa-
tion Conference, 1982.

[131] A. Paasio, J. Paakkulainen, and J. Isoaho. A compact digital cnn array for
video segmentation system. In Proceedings of IEEE Int. Workshop on Cellular
Neural Networks and Their Applications, pages 229–234, 2000.

[132] A. Paasio, J. Paakkulainen, and J. Isoaho. A compact digital cnn array for
video segmentation system. In Proceedings of IEEE International Symposium
on Circuits and Systems, pages 710–713, 2000.

[133] F.C.N. Pereira, N. Tishby, and L. Lee. Distributional clustering of english
words. Metting of the Association for Computational Linguistics, pages 183–
190, 1993.

277

BIBLIOGRAPHY

[134] M. Perko, I. Fajfar, T. Tuma, and J. Puhan. Fast fourier transform computa-
tion using a digital cnn simulator. In Proceedings of IEEE Int. Workshop on
Cellular Neural Networks and Their Applications, pages 230–236, 1998.

[135] M. Pincus. A Monte Carlo Method for the Approximate Solution of Certain
Types of Constrained Optimization Problems. Oper. Res., 18:1225–1228, 1970.

[136] A. Prince and P. Smolensky. Optimality: From neural networks to universal
grammar. Science, 275:1604–1610, 1997.

[137] J. Puzicha. Multiscale Annealing for Grouping, Segmentation and Image
Quantization, volume 601 of Fortschritt Berichte VDI Reihe 10. VDI Ver-
lag, 1999.

[138] J. Puzicha, T. Hofmann, and J. Buhmann. Historgram clustering for un-
supervised segmentation and image retrieval. Pattern Recognition Letters,
20:899–909, 1999.

[139] Qt. http://www.trolltech.com, 2005.

[140] M. Rahmouni and A.A. Jerraya. Formulation and evaluation of scheduling
techniques for control flow graphs. In European Design Automation Conference
with EURO-VHDL, pages 386 – 391. Proceedings EURO-DAC ’95, September
1995.

[141] P.N. Robillard and M. Simoneau. A new control flow representation. In Pro-
ceedings of the Fifteenth Annual International Computer Software and Appli-
cations Conference, pages 225 – 230. COMPSAC ’91, September 1991.

[142] K.K. Ryu and V.J. Mooney III. Automated bus generation for multiproces-
sor soc design. IEEE Transactions on Computer -Aided Desing of integrated
Circuits and Systems, 23(11):1531–1549, November 2004.

[143] M. Zhang S. Vassiliadis and J.G. Delgado-Frias. Elementary Function Gener-
ators for Neural-Network Emulators. IEEE Transactions on Neural Networks,
11:1438–1449, November 2000.

[144] P. Salamon, P. Sibani, and R. Frost. Facts, Conjectures, and Imporvements
for Simulated Annealing. Monographs on Mathematical Modeling and Com-
putation. SIAM (Society for Industrial and Applied Mathematic), October
2002.

[145] E. Schikuta. Data Parallel Software Simulation of Cellular Neural Networks.
In Proceedings of IEEE Int. Workshop on Cellular Neural Networks and Their
Applications, pages 267–272, 1996.

[146] Robert Sedgewick. Algorithms in C++, Part 5 Graph Algorithms. Addison-
Wesley, 2002.

[147] C. Shannon. A mathematical theory of communication. Bell System Tech.
Journal, 27:379–423,623–659, 1948.

278

BIBLIOGRAPHY

[148] P. Smolensky. Information processing in dynamical systems: Foundations of
harmony theory, volume 1: Foundations of Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, pages 194–281. MIT Press /
Bradford Books, 1986.

[149] P. Smolensky. The Harmonic Mind. MIT Press, 2005.

[150] P. Smolensky and M.S.Riley. Harmony theory: Problem solving, parallel cog-
nitive models, and thermal physics. Technical report, Institute for Cognitive
Science, University of California at San Diego, April 1984.

[151] S.C. Stilkerich. Behavioral generic hardware-description of statistical models
for low-level image processing problems (in german), volume 16. GMD Re-
search Series, ISBN 3-88457-365-9, 1999.

[152] S.C. Stilkerich. Generic Simulation- and Development-Environment for Mas-
sively Parallel Markov Random Field VLSI-Implementations. In Proceedings
of the 2003 IEEE Third International Workshop on Spectral Methods and Mul-
tirate Signal Processing. SMMSP ’03, 13-14 September 2003.

[153] S.C. Stilkerich. MRF-Simulation- and MRF-SoC-Development System for
Massive Parallel Digital Processing Architectures. In Proceedings of the
2003 International Conference on Signal Processing and Embedded Systems.
ISPC/GSPx ’03, 31 March - 3 April 2003.

[154] S.C. Stilkerich. Massively Parallel System-On-Chip Grid-Architecture of Sta-
tistical Image-Processing Models. In Proceedings of the 2004 International
Embedded Systems Conference. GSPx ’04, 27-30 September 2004.

[155] S.C. Stilkerich. Graph Theoretical Modelling and VLSI Design Framework for
Entropy based Signal Processing Models. In Proceedings of the 2005 Interna-
tional Embedded System Conference. GSPx ’05, 24-27 October 2005.

[156] S.C. Stilkerich. Simulation-Framework for Purely Digital CNN/MRF-
Architectures. In Proceedings of the 2005 IEEE International Workshop on
Cellular Neural Networks and their Application. CNNA ’05, pages 94–97, 28-
30 May 2005.

[157] S.C. Stilkerich. Graph Theoretical Representation of Grid-based ANN Archi-
tectures for VLSI Implementations. In Proceedings of the 2006 IEEE Congress
on Evolutionary Computing. CEC ’06. Held at the 2006 IEEE World Congress
on Computational Intelligence. WCCI ’06, 16-21 July 2006.

[158] S.C. Stilkerich. On the Hardware-Relevant Simulation of Regular Two-
Dimensional CNN Processing Grids. In Proceedings of the 2006 IEEE In-
ternational Joint Conference on Neural Networks. IJCNN ’06. Held at the
2006 IEEE World Congress on Computational Intelligence. WCCI ’06, 16-21
July 2006.

279

BIBLIOGRAPHY

[159] S.C. Stilkerich and J.K. Anlauf. High-Level Design Environment for Mas-
sive Parallel VLSI-Implementations of Statistical Signal- and Image Process-
ing Models. In Proceedings of the 2004 IEEE International Symposium on
Circuits and Systems. ISCAS ’04, pages 37–40 Vol. 3, 23-26 May 2004.

[160] S.C. Stilkerich and J.M. Buhmann. Massively Parallel Architecture for an
Unsupervised Segmentation Model. In Proceedings of the 2004 IEEE Interna-
tional Conference on Signal and Electronic Systems. ICSES ’04, 13-15 Septem-
ber 2004.

[161] S.C. Stilkerich and R. Reiger. On the Simulation and Development of Mas-
sively Parallel Digital Architectures for Markov Random Fields. In Proceedings
of the 2004 IEEE International Conference on Acoustic, Speech & Signal Pro-
cessing. ICASSP ’04, 17-21 May 2004.

[162] C. Thomassen. Kuratowski’s theorem. Journal of Graph Theory, 5:225–241,
1981.

[163] M.K. Unaltuna, M.E. Dalkilic, and V. Pitchumani. Solving the scheduling
problem in high level synthesis using a normalized mean field neural network.
IEEE International Conference on Neural Networks, Proceedings:275 – 280,
March-April 1993.

[164] Gabriel Valiente. Algorithms on Trees and Graphs. Springer-Verlag, July 2002.

[165] P. J. M. van Laarhoven and E. H. L. Aarts. Simulated Annealing: Theory
and Applications. Mathematics and Its Applications. D. Reidel Publishing
Company, 1987.

[166] G. Winkler. Image Analysis, Random Fields and Dynamic Monte Carlo Meth-
ods. Number 27 in Applications of Mathematics. Springer-Verlag, 1995.

[167] G. Winkler. Image Analysis, Random Fields and Dynamic Monte Carlo Meth-
ods. Number 27 in Applications of Mathematics. Springer-Verlag, 2003.

[168] Xerces. http://xml.apache.org/xerces-c/.

[169] T. Zöller, L. Hermes, and J.M. Buhmann. Combined Color and Texture Seg-
mentation by Parametric Distributional Clustering. In Proceedings of the IEEE
International Conference on Pattern Recognition, ICPR 2002, pages 627–630.
IEEE Computer Society, 2002.

280

Index

Acyclic, 147, 151
Annealing, 15
Architectural Building Blocks

Energy Functional, 60
Energy Functional Control Units, 69–

70
Global Memory Hierarchy, 57–59
Memory Hierarchy Control Unit, 67–

68
Optimization, 61–62
Optimization Control Units, 70–71
Parameter Estimation, 62–64

Schemes, 63
Port Memory, 55–57

Arrangement, 56
Port Memory Control Units, 68–69
Site Hull, 51–52

Grid Coordinates, 52
VLSI Shape, 52

Site Wiring, 53–55
Preferred Direction, 53, 54

System Control Unit, 65–67

Behavioral Synthesis, 136
Building Blocks

Control, 64–71
Processing, 59–64
Topology & Structure, 50–59

Canonical Design Representation, 137, 141–
144

Control Flow Graph, 158
Control Machine

Energy Functional, 175
Memory Hierarchy, 173
Optimization, 175
Parameter Estimation, 175
Port Memory, 174
System, 172

Cycle Template, 75–78
Frame Representation, 76–77
Graph Representation, 77–78

Data Container, 144–145
Data Flow Graph, 155

Energy Functional, 155
Optimization, 156
Parameter Estimation, 156

Design Flow, 161–176
Design Framework

Arrangement, 137
Back-End Code Generator, 141
Canonical Design Representation, 141
Control-Path Generator, 140
Data Container, 144–145
Data- & Control Path Extractor, 139
Data-Path Generator, 140
FSM Embedding, 141
Memory Hierarchy Generator, 140
Parser Front End, 139
Scheduler, 140
Structure & Topology Extractor, 139
Structure & Topology Generator, 140

Design Gap, 136
Design Graph, 160
Design Methodology

Behavioral Synthesis, 136
High-Level Synthesis, 136
RTL Synthesis, 136

Exemplary Architectures
Edge Preserving & Noise Removing,

84–87
BB Resources, 85

Unsupervised Histogram Segmenta-
tion, 87–90

BB Resources, 88
Extractor

281

INDEX

Data- & Control Path, 139
Structure & Topology, 139

Finite State Machine
Energy Functional, 175
Memory Hierarchy, 173
Optimization, 175
Parameter Estimation, 175
Port Memory, 174
System, 172

Generator
Control-Path, 140
Data-Path, 140, 167
Memory Hierarchy, 140, 164
Structure & Topology, 140, 162, 164

Generic H, 15
Graph Compilation

Control, 183–185
Processing, 181–183
Synthesis Algorithm, 177, 178, 181–

184
Topology & Structure, 176
Topology&Structure, 180

Graph Feature
Acyclic, 147, 151
Combinational-Logic Neutral, 149, 153
Planarity, 148, 149, 152
Topologically Sortable, 148

Graph Representation
Control Functionality, 157
Processing Functionality, 154
Topology & Structure, 145

High-Level Synthesis, 136
Design Flow, 161–176

Image Processing Model
Restoration, 24–28

Application Scenarios, 40–41
Cost Function, 27
Cup Function, 25
Update Formula, 27

Unsupervised Segmentation, 24, 28–
33

Application Scenarios, 41–42
Cost Function, 31
Update Formula, 32, 33

Implementation Technology
Design Methodologies, 36–37
HDL, 36
Representation Capabilities, 37
Technology Trend, 35–36
Variants, 33–38
VHDL, Verilog, 36

Markov Random Field
Cliques, 11–12
Equivalence Theorem, 14
Free Energy, 13
Generic H, 15
Gibbs Distribution, 13
Neighborhood System, 11–12
Potential, 13

Maximum Entropy, 15

Optimization Scheme
Deterministic Annealing, 19
Energy Landscape, 15
Gibbs Sampler, 18
Heat-Bath Criterion, 18
Iterated Conditional Modes, 19
Metropolis Criterion, 17
Simulated Annealing, 16
Site Visitation, 16

Oversized Images, 79–84
System Variants, 79–80

Parallel Processing
Convergence, 20–22
Degree of Parallelism, 22
Independent Sets, 21
Local Characteristic, 20
Site Partitioning, 21
Site Sweep, 21

Planarity, 149, 152
Prototype Module

Cell, 102
Cell-Cluster, 104
Control, 114
Energy Functional, 110
Optimization Method, 111
Parameter Estimation, 111
Wiring, 106

Scheduling

282

INDEX

ALAP, 170
ASAP, 169
Sequence, 168
Step, 168

Simulation Framework
Data Storage System, 99
Display & Analysis Monitor, 99
Overview, 95
Simulation-Model Generator, 98
Supporting Modules, 100
SystemC, 95

Simulation Modules
Cell & Cell-Cluster, 97, 102, 104
Control, 114
Control Functionality, 113–116
Energy Functional, 98, 110
Optimization Method, 98, 111
Parameter Estimation, 111
Processing Functionality, 108–113
Topology & Structure, 100–106
Wiring, 97, 106

Simulation Results, 211
Supporting Modules

Control GUI, 99
Frame-Cell Modules, 97
Framer Modules, 98
Interface Modules, 98

System-Architecture Template
BB Resources, 85, 88
Architectural Building Blocks, 49–71
Cycle Scheme, 75–78
Exemplary Architectures, 84–90
Oversized Images, 79–84
Universal Constituents, 47–49

Thermal Equilibrium, 15

Universal Constituents
Central Equation, 48
Constituents, 48

VLSI Results, 251

283

INDEX

PUBLICATIONS Stephan C. Stilkerich. Graph Theoretical Representation of Grid-based
ANN Architectures for VLSI Implementations. Special Issue on Hard-
ware Architectures for Neural Networks. Elsevier Journal on Neuro-
computing. (invited journal contribution of extended CEC’06 confer-
ence paper, accepted)

Stephan C. Stilkerich. Graph Theoretical Representation of Grid-based
ANN Architectures for VLSI Implementations. Special Session on
Hardware Architectures for Genetic, Neural and Fuzzy Systems. In
Proceedings of the 2006 IEEE Congress on Evolutionary Computing.
CEC’06, Vancouver, British Columbia, Canada, 16-21 July 2006.

Stephan C. Stilkerich. On the Hardware-Relevant Simulation of Regu-
lar Two-Dimensional CNN Processing Grids. Special Session on Cellu-
lar Sensory Wave Computers. In Proceedings of the 2006 IEEE Inter-
national Joint Conference on Neural Networks. IJCNN’06, Vancouver,
British Columbia, Canada, 16-21 July 2006.

Stephan C. Stilkerich, P. Dunn, N. Harold, C. Petri and D. Stark.
High Performance FPGA Computing Platform for a Closed-Loop Flight
Control Turbulence Detection System. In Proceedings of the 2005 In-
ternational Embedded System Conference. GSPx’05, Santa Clara, CA,
USA, 24-27 October, 2005.

Stephan C. Stilkerich. Graph Theoretical Modelling and VLSI Design
Framework for Entropy based Signal Processing Models. In Proceed-
ings of the 2005 International Embedded System Conference. GSPx’05,
Santa Clara, CA, USA, 24-27 October, 2005.

Stephan C. Stilkerich. Simulation Framework for Purely Digital
CNN/MRF Architectures. In Proceedings of the 2005 IEEE Interna-
tional Conference on Cellular Neural Networks and their Applications.
CNNA’05, pages 94-97, Hsinchu, Taiwan, May 28-30, 2005. (invited
contribution)

Stephan C. Stilkerich and J.M. Buhmann. Massively Parallel Architec-
ture for an Unsupervised Segmentation Model. In Proceedings of the
2004 IEEE International Conference on Signals and Electronic Sys-
tems. ICSES’04, Poznan, Poland, 13-15 September 2004.

Stephan C. Stilkerich. Massively Parallel System-On-Chip Grid-
Architecture of Statistical Image-Processing Models. In Proceedings of
the 2004 International Embedded Systems Conference. GSPx’04, Santa
Clara, CA, USA, 27-30 September 2004.

Stephan C. Stilkerich and J.K. Anlauf. High-Level Design Environ-
ment for Massive Parallel VLSI-Implementations of Statistical Signal-
and Image Processing Models. In Proceedings of the 2004 IEEE Inter-
national Symposium on Circuits and Systems. ISCAS’04, Vancouver,
British Columbia, Canada, 23-26 May 2004.

Stephan C. Stilkerich and R. Reiger. On the Simulation and Develop-
ment of Massively Parallel Digital Architectures for Markov Random
Fields. In Proceedings of the 2004 IEEE International Conference on
Acoustic, Speech & Signal Processing. ICASSP’04, Montreal, Quebec,
Canada, 17-21 May 2004.

Stephan C. Stilkerich. Generic Simulation- and Development-
Environment for Massive Parallel Markov Random Field VLSI-
Implementations. In Proceedings of the 2003 IEEE Third Interna-
tional Workshop on Spectral Methods and Multirate Signal Processing.
SMMSP’03, Barcelona, Spain, 13-14 September 2003.

284

INDEX

PUBLICATIONS Stephan C. Stilkerich. MRF-Simulation- and MRF-SoC-Development
System for Massive Parallel Digital Processing Architectures. In
Proceedings of the 2003 International Signal Processing Conference.
ISPC’03/GSPx’03, Dallas, Texas, USA, 31 March - 3 April 2003.

Stephan C. Stilkerich. Behavioral hardware-description of statistical
models for low-level image processing problems. (in german), Vol. 16
in GMD Research Series, GMD, 1999.

ADDITIONAL
PUBLICATIONS

Stephan C. Stilkerich. Reconfigurable Computing - An Alternative Ar-
chitecture Paradigm for Space Applications. In Proceedings of the 2006
International Embedded System Conference. GSPx’06, Santa Clara,
CA, USA, October 30- November 2, 2006. (in press)

N. Schmitt, P. Zeller, W. Rehm, S. C. Stilkerich, K. Schertler, H. Zin-
ner and H. Diehl. The AWIATOR Airbrone LIDAR Turbulence Sen-
sor. In Proceedings of DGLR Deutscher Luft- und Raumfahrtkongress.
Friedrichshafen, Bavaria, Germany, September 26-29, 2005.

N. Schmitt, S. C. Stilkerich, K. Schertler, H. Zinner, P. Zeller and
H. Diehl. The AWIATOR Airbrone LIDAR Turbulence Sensor. In
Proceedings of the 2005 IEEE Conference on Laser and Electro-Optics /
European Quantum Electronics. CLEO/EQEC 2005, Munich, Bavaria,
Germany, June 12-17, 2005.

H. Zinner, N. Schmitt, S. C. Stilkerich and P. Zeller. Flight test of
a short pulse UV Doppler LIDAR for Turbulence Detection. Proceed-
ings of the International Optronics Symposium. OPTRO 2005, Paris,
France, May 9-12, 2005.

H. Zinner, H. Diehl. T. Halldorsson, T. Pistner, W. Rehm, K. Schertler,
N. Schmitt, S. C. Stilkerich, P. Zeller. Short pulse UV Doppler LIDAR
for Turbulence and Wake Vortex measurement. In Proceedings of the
2nd France-Singapure-Workshop on Optoelectronics and RF Photonics
Technology. October 27-28, 2005.

285

