Realistic Visualization
of Animated Virtual Cloth

Dissertation

zur Erlangung des Doktorgrades (Dr. rer. nat.)
der
Mathematisch-Naturwissenschaftlichen Fakultit
der Rheinischen Friedrich-Wilhelms-Universitit Bonn

vorgelegt von

Dipl.-Geophys. Mirko Sattler

aus Ratzeburg

Bonn, Dezember 2006

Universitit Bonn,
Institut fiir Informatik II
Romerstralle 164, 53117 Bonn

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultéit
der Rheinischen Friedrich-Wilhelms Universitat Bonn.

Dekan: Prof. Dr. Armin B. Cremers, Universitit Bonn

1. Referent: Prof. Dr. Reinhard Klein, Universitit Bonn

2. Referent: Prof. Dr.-Ing. Philipp Slusallek, Universitdt Saarbriicken
Tag der Promotion: 26.10.2007

Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn
http://hss.ulb.uni-bonn.de/diss_online
elektronisch publiziert.

Erscheinungsjahr: 2007

I

This work 1s dedicated to my parents
Ingrid and Bernd-Uwe
for all their love & support.

m

If it looks right, it is right.

v

Acknowledgments

The presented work has been produced within the scope of the Computer Gra-
phics group at the Institute of Computer Science II of the University of Bonn.

I wish to thank all the people who were directly or indirectly involved in the crea-
tion of this work. First of all, I wish to thank Prof. Reinhard Klein without his
ideas and the fruitful discussions this work had not been possible. I also thank
him for providing a pleasant working atmosphere and for giving an “outsider the
chance to get into the field of computer graphics.

Furthermore, 1 thank all current and former members of the group, especially (in
alphabetical order): Bjorn Ganster, Michael Guthe, Ferenc Kahlesz, Jan Meseth,
Gero Miiller, Marcin Novotni and Gabriel Zachmann and some colleagues from
other universities, namely Jan Kautz, Markus Wacker, Stefan Kimmerle and Mi-
chael Keckeisen for joint publications and useful discussions.

Our secretary Simone Schifer to keep up the good spirit in the group and intro-
duction to the Kolsche Lebensart. My office fellows Ralf Sarlette and Gerhard
Bendels, for the endless hours of fun we spent together. Ralf did a tremendous job
creating and maintaining our laboratory.

In addition, I want to thank the Stanford 3D Scanning Repository for their great
3D models and all the people involved in the Virtual-Try On and the RealReflect
project.

Thanks ;-)
Mirko, Bonn 2006

\%4

Abstract

Photo-realistic rendering of real-world objects is a broad research area with appli-
cations in various different areas, such as computer generated films, entertainment,
e-commerce and so on. Within photo-realistic rendering, the rendering of cloth is
a subarea which involves many important aspects, ranging from material surface
reflection properties and macroscopic self-shadowing to animation sequence ge-
neration and compression.

In this thesis, besides an introduction to the topic plus a broad overview of related
work, different methods to handle major aspects of cloth rendering are described.

Material surface reflection properties play an important part to reproduce the look
& feel of materials, that is, to identify a material only by looking at it. The BTF
(bidirectional texture function), as a function of viewing and illumination direc-
tion, is an appropriate representation of reflection properties. It captures effects
caused by the mesostructure of a surface, like roughness, self-shadowing, occlu-
sion, inter-reflections, subsurface scattering and color bleeding. Unfortunately a
BTF data set of a material consists of hundreds to thousands of images, which
exceeds current memory size of personal computers by far.

This work describes the first usable method to efficiently compress and decom-
press a BTF data for rendering at interactive to real-time frame rates. It is based
on PCA (principal component analysis) of the BTF data set. While preserving the
important visual aspects of the BTF, the achieved compression rates allow the sto-
rage of several different data sets in main memory of consumer hardware, while
maintaining a high rendering quality.

Correct handling of complex illumination conditions plays another key role for
the realistic appearance of cloth. Therefore, an upgrade of the BTF compression
and rendering algorithm is described, which allows the support of distant direct
HDR (high-dynamic-range) illumination stored in environment maps.

To further enhance the appearance, macroscopic self-shadowing has to be taken
into account. For the visualization of folds and the life-like 3D impression, the-
se kind of shadows are absolutely necessary. This work describes two methods
to compute these shadows. The first is seamlessly integrated into the illuminati-
on part of the rendering algorithm and optimized for static meshes. Furthermore,
another method is proposed, which allows the handling of dynamic objects. It
uses hardware-accelerated occlusion queries for the visibility determination. In
contrast to other algorithms, the presented algorithm, despite its simplicity, is fast

\%11

and produces less artifacts than other methods. As a plus, it incorporates change-
able distant direct high-dynamic-range illumination.

The human perception system is the main target of any computer graphics appli-
cation and can also be treated as part of the rendering pipeline. Therefore, opti-
mization of the rendering itself can be achieved by analyzing human perception
of certain visual aspects in the image. As a part of this thesis, an experiment is
introduced that evaluates human shadow perception to speedup shadow rendering
and provides optimization approaches.

Another subarea of cloth visualization in computer graphics is the animation of
the cloth and avatars for presentations. This work also describes two new methods
for automatic generation and compression of animation sequences.

The first method to generate completely new, customizable animation sequences,
is based on the concept of finding similarities in animation frames of a given basis
sequence. Identifying these similarities allows jumps within the basis sequence to
generate endless new sequences.

Transmission of any animated 3D data over bandwidth-limited channels, like ex-
tended networks or to less powerful clients requires efficient compression sche-
mes. The second method included in this thesis in the animation field is a geo-
metry data compression scheme. Similar to the BTF compression, it uses PCA
in combination with clustering algorithms to segment similar moving parts of the
animated objects to achieve high compression rates in combination with a very
exact reconstruction quality.

\211}

Zusammenfassung

Das photorealistisches Rendering realer Gegenstinde ist ein weites Forschungs-
feld und hat Anwendungen in vielen Bereichen. Dazu zdhlen Computer generierte
Filme (CGI), die Unterhaltungsindustrie und E-Commerce. Innerhalb dieses For-
schungsbereiches ist das Rendern von photorealistischer Kleidung ein wichtiger
Bestandteil. Hier reichen die wichtigen Aspekte, die es zu beriicksichtigen gilt,
von optischen Materialeigenschaften iiber makroskopische Selbstabschattung bis
zur Animationsgenerierung und -kompression.

In dieser Arbeit wird, neben der Einfiihrung in das Thema, ein weiter Uber-
blick iiber dhnlich gelagerte Arbeiten gegeben. Der Schwerpunkt der Arbeit liegt
auf den wichtigen Aspekten der virtuellen Kleidungsvisualisierung, die oben be-
schrieben wurden.

Die optischen Reflektionseigenschaften von Materialoberfldchen spielen eine wich-
tige Rolle, um das so genannte look & feel von Materialien zu charakterisieren.
Hierbei kann ein Material vom Nutzer identifiziert werden, ohne dass er es di-
rekt anfassen muss. Die BTF (bidirektionale Texturfunktion) ist eine Funktion die
abhéngig von der Blick- und Beleuchtungsrichtung ist. Daher ist sie eine angemes-
sene Reprisentation von Reflektionseigenschaften. Sie enthilt Effekte wie Rau-
heit, Selbstabschattungen, Verdeckungen, Interreflektionen, Streuung und Farb-
bluten, die durch die Mesostruktur der Oberflidche hervorgerufen werden. Leider
besteht ein BTF Datensatz eines Materials aus hunderten oder tausenden von Bil-
dern und sprengt damit herkdmmliche Hauptspeicher in Computern bei weitem.

Diese Arbeit beschreibt die erste praktikable Methode, um BTF Daten effizient zu
komprimieren, zu speichern und fiir Echtzeitanwendungen zum Visualisieren wie-
der zu dekomprimieren. Die Methode basiert auf der Principal Component Ana-
lysis (PCA), die Daten nach Signifikanz ordnet. Wihrend die PCA die entscheide-
nen visuellen Aspekte der BTF erhilt, konnen mit ihrer Hilfe Kompressionsraten
erzielt werden, die es erlauben mehrere BTF Materialien im Hauptspeicher eines
Consumer PC zu verwalten. Dies erlaubt ein High-Quality Rendering.

Korrektes Verwenden von komplexen Beleuchtungssituationen spielt eine weitere,
wichtige Rolle, um Kleidung realistisch erscheinen zu lassen. Daher wird zudem
eine Erweiterung des BTF Kompressions- und Renderingalgorithmuses erldutert,
die den Einsatz von High-Dynamic Range (HDR) Beleuchtung erlaubt, die in en-
vironment maps gespeichert wird.

Um die realistische Erscheinung der Kleidung weiter zu unterstiitzen, muss die

IX

makroskopische Selbstabschattung integriert werden. Fiir die Visualisierung von
Falten und den lebensechten 3D Eindruck ist diese Art von Schatten absolut not-
wendig. Diese Arbeit beschreibt daher auch zwei Methoden, diese Schatten schnell
und effizient zu berechnen. Die erste ist nahtlos in den Beleuchtungspart des obi-
gen BTF Renderingalgorithmuses integriert und fiir statische Geometrien opti-
miert. Die zweite Methode behandelt dynamische Objekte. Dazu werden hardwa-
rebeschleunigte Occlusion Queries verwendet, um die Sichtbarkeitsberechnung
durchzufiihren. Diese Methode ist einerseits simpel und leicht zu implementie-
ren, anderseits ist sie schnell und produziert weniger Artefakte, als vergleichbare
Methoden. Zusitzlich ist die Verwendung von verdnderbarer, entfernter HDR Be-
leuchtung integriert.

Das menschliche Wahrnehmungssystem ist das eigentliche Ziel jeglicher Anwen-
dung in der Computergrafik und kann daher selbst als Teil einer erweiterten Ren-
dering Pipeline gesehen werden. Daher kann das Rendering selbst optimiert wer-
den, wenn man die menschliche Wahrnehmung verschiedener visueller Aspekte
der berechneten Bilder analysiert. Teil der vorliegenden Arbeit ist die Beschrei-
bung eines Experimentes, das menschliche Schattenwahrnehmung untersucht, um
das Rendern der Schatten zu beschleunigen.

Ein weiteres Teilgebiet der Kleidungsvisualisierung in der Computergrafik ist die
Animation der Kleidung und von Avataren fiir Prasentationen. Diese Arbeit be-
schreibt zwei neue Methoden auf diesem Teilgebiet. Einmal ein Algorithmus, der
fiir die automatische Generierung neuer Animationssequenzen verwendet werden
kann und zum anderen einen Kompressionsalgorithmus fiir eben diese Sequenzen.

Die automatische Generierung von vollig neuen, anpassbaren Animationen basiert
auf dem Konzept der Ahnlichkeitssuche. Hierbei werden die einzelnen Schritte
von gegebenen Basisanimationen auf Ahnlichkeiten hin untersucht, die zum Bei-
spiel die Geschwindigkeiten einzelner Objektteile sein konnen. Die Identifizie-
rung dieser Ahnlichkeiten erlaubt dann Spriinge innerhalb der Basissequenz, die
dazu benutzt werden konnen, endlose, neue Sequenzen zu erzeugen.

Die Ubertragung von animierten 3D Daten iiber bandbreitenlimitierte Kanile wie
ausgedehnte Netzwerke, Mobilfunk oder zu sogenannten thin clients erfordert ei-
ne effiziente Komprimierung. Die zweite, in dieser Arbeit vorgestellte Methode,
ist ein Kompressionsschema fiir Geometriedaten. Ahnlich wie bei der Kompres-
sion von BTF Daten wird die PCA in Verbindung mit Clustering benutzt, um die
animierte Geometrie zu analysieren und in sich dhnlich bewegende Teile zu seg-
mentieren. Diese erkannten Segmente lassen sich dann hoch komprimieren. Der
Algorithmus arbeitet automatisch und erlaubt zudem eine sehr exakte Rekonstruk-

X

tionsqualitit nach der Dekomprimierung.

XI

Contents

Abstract VII
Zusammenfassung L. oL IX
Contents L XV
1 Preface 1
1.1 Motivation 2
1.2 Main Contributions Lo 5
1.3 Thesis Overview 6
2 Background 7
2.1 Rendering Techniques 8
2.1.1 Radiometry 8

2.1.2 Colorimetry & Photometry 11

213 Shape 12

214 Material 14

215 8D:BSSRDF 15

21.6 6D:BTF 16

2.1.7 4D:BRDF/LF/RF 17

2.1.8 2D: Texture, Bump & Displacement maps 19

2.1.9 Data Acquisition 21
2.1.10 Compressiono 29
2.1.11 Fitting Analytical BRDF-Models 31
2.1.12 Linear Basis Decomposition 34
2.1.13 Rendering 41
2.1.14 Solving the Rendering Equation 42
2.1.15 BTF-Rendering using Real-Time Raytracing 44
2.1.16 BTF-Rendering using Graphics Hardware 44

XII

Contents

2.1.17 Interactive Rendering of BTFs with Point Lights 44
2.1.18 Interactive Rendering of BTFs with Distant Illumination . 48
2.1.19 Hierarchy 54
2.1.20 RadianceData 56
2.1.21 Mlumination 59

2.2 Geometry Processing Techniques 62
2.2.1 Mesh Simplification 62

222 LevelofDetall 63

2.2.3 Silhouette Edge Detection 64

2.3 Graphics Hardware 67
231 Overview 67

232 Architecture 68

2.3.3 Shader Programming 72

234 Occlusion Queries 73

24 Shadows L 75
24.1 Shadow Volumes 76

242 ShadowMaps oL 79

2.4.3 Hard versus Soft Shadows 82

2.4.4 Ambient Occlusion & Self-Shadowing 85

25 Animation 92
2.5.1 Historical Overview 92

2.5.2 Animation Terminology 93

2.5.3 Animation Data Generation 95

2.6 Cloth Visualization 99
2.6.1 Historical Overview 100

2.6.2 Geometry Simulation 100

2.6.3 RenderingofCloth 107

2.7 Data Analysis Techniques 109
27.1 Introduction. 109

2.77.2 Data Fitting and Reduction 109

2.7.3 Multivariate Analysis L. 110

274 Clusteringo i 112

3 Animation 117
3.1 Introduction 117
3.2 Sequence Generation 119
32.1 Introduction. 119

322 DataAnalysis. oL 121

323 Results 128

3.3 Sequence Compression 136
33.1 Imtroduction. 136

X

Contents

3.3.2 Algorithm Overview 138

333 Results 146

4 Shadows 153
4.1 Introduction e 153
42 Perception 155
421 Introduction., 155

422 RelatedWork oo 156

423 Experimentalsetup 156

4.2.4 Experimental procedure 158

425 Results 159

426 Conclusionso 160

4.3 Self-Shadowing: StaticCase 162
43.1 Introduction. 162

432 RelatedWorko oL 162

43.3 Algorithm Outline 163

434 Preprocessing 164

4.3.5 Comparison of Rendering Methods 166

4.3.6 Realtime Rendering 169

437 Results 171

438 Conclusions 176

4.4 Self-Shadowing: Dynamic Case 177
44.1 Introduction., 177

442 RelatedWork oo 178

443 Ambient Occlusion Calculation 179

444 Optimizations 183

4.4.5 Image Based [llumination 185

4.4.6 Dynamic Geometry and Animations 186

447 Resultso 187

5 Material Reflection Properties 191
5.1 Introduction L 191
5.2 Related Work & Introduction 193
5.2.1 Modeling Mesostructure 195

5.2.2 Measuring reflection properties 196

5.3 Acquisition 198
5.3.1 Measuring and synthesizing BTFdata 198

5.3.2 Setup and Data Acquisition 199

5.3.3 Postprocessing 200

54 Compression i e e e e 203
5.5 Visualization 206

X1v

Contents

5.5.1 Shadow Enhancements 207

5.5.2 Image-based illumination. 209

5.6 VisualizationResults 216

5.7 Silhouette Enhancements 220
57.1 PreviousWork, 220

5.7.2 Acquisition & Postprocessing 221

5773 Rendering 224

5774 Results & Conclusions 227

6 Applications 229
6.1 Introduction 229

6.2 Virtual Try-On 230
6.2.1 Project Description 231

6.3 RealReflect 236
6.3.1 Project Description, 237

7 Conclusions & Future Work 241
7.1 Conclusions i e 241
72 FutureWork 243

A Miscellaneous 245
Videos e 246
Data Sources 247
Listof Figures 250
Listof Tables 254
References 255

XV

Contents

XVI

CHAPTER 1

Preface

Chapter 1. Preface

1.1 Motivation

Visualization of real-world surface materials is a broad research area in computer
graphics. Apart from the movie and entertainment industry, computer generated
images containing material surfaces are also of interest for virtual-reality applica-
tions, e-commerce, customer decision support and interior and fashion design.

One of the main goals of these images is to convince the viewer of the realism of
the shown objects. Besides the correct modeling of the geometry, the used surface
reflection properties contribute an essential part to the overall acceptance of the
image. This of course has to be combined with realistic illumination conditions
and the resulting shadows. For some applications, the objects have to be reali-
stically animated as well. For internet applications, this data has to be efficiently
transferred over bandwidth limited channels. Therefore, it is indispensable to ac-
quire, store and render the reflection properties fast and efficiently.

A specific example of the areas described above, is the realistic visualization of
virtual humans, especially the visualization of textiles and clothing. Here, besi-
des the correct physically-based simulation of the geometry, methods to compu-
te correct self-shadowing and efficiently handle material reflection properties are
needed. Without these methods, virtual try on applications and preservation of the
look & feel of the cloth are not possible.

Computation of the cloth geometry and shape consists of solving physically-based
equations to determine new vertex positions relative to a base mesh. Therewith,
effects like friction and inherent material forces can be simulated. Also draping
and collision detection, especially self-collision, has to be considered. As of today,
there exist a lot of methods to efficiently compute these new vertex positions, e.g.
incorporating measured physical material properties, even on the GPU (graphic
processing unit).

Concerning the cloth surface, in addition to the microstructure, the mesostruc-
ture of a fabric is of great importance for the reflectance behavior of cloth. The
mesostructure is responsible for fine-scale shadows, occlusions, secularities and
subsurface scattering effects. Altogether these effects are responsible for the look
& feel of cloth. There are essentially two techniques of cloth rendering according
to the way in which mesostructure is captured.

The first approach explicitly models the mesostructure of the fabric in detail and
renders it using different lighting models and rendering techniques. This approach
requires a great amount of modeling and user intervention in combination with so-

2

1.1. Motivation

phisticated geometry models.

The second approach, which is used in this thesis, is based on the explicit measu-
rement of the optical surface reflection properties using camera devices. To store
the accrued data, the bidirectional texture function (BTF) has been proved valua-
ble. This representation captures the spatial varying reflection properties under
different viewing and lighting conditions. To achieve a certain level of realism,
the huge data amount has to be stored and accessed efficiently, to allow for inter-
active rendering. Therefore, this thesis includes a chapter for BTF compression
and rendering and introduces state-of-the-art methods.

To further enhance the realism of virtual cloth, the addition of some sort of time-
dependent motion is beneficial. This is usually done via animated virtual charac-
ters combined with natural effects, like for example wind and gravity.

Some areas of usage also require the transmission of the animation data over band-
width limited channels, for example the internet or cellular phones. Therefore,
efficient compression schemes are needed. For presentations it is also desired to
automatically generate new animation sequences, that is without the intervention
of a human animator.

When displaying real-world objects under real-world illumination conditions, com-
puter graphics always tries to make it look right to the human observer. For non-

artificial objects this is most difficult, because the human observer is used to see

the objects in the real-world, and concerning structure and material surface re-

flection properties, is very sensitive to errors. Besides this, computer graphics has

also to cope with low-dynamic-output devices in contrast to the human eye. On

the other hand, slight variances in shadows and objects in motion are very good

interpolated by the human brain. Therefore, using knowledge about the human vi-

sual system allows for approaches, that can speedup certain part of the rendering

pipeline.

Combing all aspects mentioned above, an exemplary production work flow could
look like the chart, shown in Figure 1.1.

Chapter 1. Preface

\

I 1 1 I

Measurement of material ' Mesh (animation) !
' generation / !

1 1

!

reflection properties physically based simulation

___________________ Motion sequence [T
generation

[reparametrization /] .]
compression

compression

Shadow / illumination

/ \precomputation
Visualization
Shadow perception
> “““““““““ < experiment
Rendering with real-time
soft shadows

- J

Fig. 1.1: Overview chart of the aspects covered in this thesis (excluding dashed parts).

1.2. Main Contributions

1.2 Main Contributions

Several aspects of the work described in this thesis have been already published
at different conferences, journals and tutorial notes [Sattler et al. 2005a; Sattler
et al. 2005b; Miiller et al. 2005a; Wacker et al. 2004; Sattler et al. 2004a; Sattler
et al. 2004b; Sattler et al. 2003; Hauth et al. 2002].

The content of this thesis is based on these publications, explaining the proposed
methods in more detail and providing necessary background knowledge. This is
completed with improvements and further results to the presented methods and
algorithms.

The main contributions of this thesis can be summarized as follows:

e BTF compression scheme

BTF rendering pipeline

Animation sequence generation

Animation sequence compression

Enhanced BTF rendering pipeline with shadows
e Self-Shadowing for dynamic objects

e Evaluation of human shadow perception

The work presented in this thesis consists of the first practicable BTF compression
scheme and the integration into the Virtual Try-On [VTO 2005] pipeline, inclu-
ding the efficient calculation of geometry self-shadowing. Furthermore, a visual
perception experiment to evaluate human shadow perception is described. Con-
cerning cloth animations, existing algorithms are adopted to animation sequence
generation and a new animation sequence compression scheme is proposed. Most
of the presented methods make use of programmable graphics hardware.

Chapter 1. Preface

1.3 Thesis Overview

The rest of this thesis is organized according to the diagram shown in Figure 1.1.

In chapter 2 background and detailed information about rendering techniques,
geometry processing techniques, graphics hardware, shadows, animation, cloth
visualization and data analysis techniques is given.

Chapter 3 deals with the animation branch of the overview chart, including se-
quence generation and sequence compression.

Chapter 4 describes the shadow aspects of this thesis. This includes perception
and self-shadowing for static and dynamic meshes.

Main subject of chapter 5 are material reflection properties. Here, emphasize is
laid on acquisition, compression and rendering techniques.

After demonstrating the practical application of the described methods and ap-
proaches in chapter 6 on the basis of two industrial projects (Virtual Try-On and
Real-Reflect), the thesis concludes in chapter 7 with a discussion and possible di-
rections for future work.

Accompanying Video Material

Several described techniques in this thesis are accompanied by additional video
material. The following icon indicates that a video file is available on the thesis
DVD:

CHAPTER 2

Background

Chapter 2. Background

2.1 Rendering Techniques

The ultimate goal of nearly all computer graphic applications is to produce some
kind of image on an output device. Therefore, some kind of computer understan-
dable description of the content of the image has to exist. Due to the complexity of
real-world physics and the deficiency of computer hardware, the way to generate
realistic images is build upon approximations. The following section introduces
basic and advanced topics of generating a realistic image in computer graphics
and gives an overview of the physical background.

2.1.1 Radiometry

There exist mainly two different models to describe the physics of light. The first
describes light as a flow of particles (photons) carrying energy, while the opposite
describes light as an electromagnetic wave. Radiometry describes the entire radi-
ant power and the quantities derived from it.

Fig. 2.1: General light-matter interaction.

Figure 2.1 illustrates the general light-matter interaction from a light source (sun)
to an observer (face). A surface S is hit by a beam of light coming out of the di-
rection w; with the wavelength)\; at the time ¢;. The surface is hit at the point x;
with the surface normal n;. The direction wj; is defined by two angles, namely 6;

2.1. Rendering Techniques

and ¢;. The latter is attached to a local coordinate system vector t;.

After traveling through the matter, the beam leaves the surface at the time ¢, at
the outgoing point X, into the direction w,. It might has changed the wavelength
to \,. Similar to the entrance direction, the direction is defined by the two angles
0, and ¢, with the local coordinate vector t,,. This description of the light-matter
interaction therefore results in a 12-dimensional function.

For a more detailed description of optics, see for example [Bergmann & Schaefer
2004]. In the following, basic radiometric terms are introduced. The notation used
is given in Table 2.1 and 2.2. All units are given in the S/ (Systeme International
d’unités [BIPM 2006]) system and the symbols are defined in [CIE1987].

’ symbol \ radiant term \unit ‘

v |frequency st
A |wavelength m

E,, |photon energy J

Q. |radiant energy J

®, |radiant flux %74

E, |irradiance (incident) Wm—?2

M, |radiant exitance (outgoing) | Wm >

I, |radiant intensity Wsr—t

L. |radiance Wm ™ 2sr—!

Tab. 2.1: Important radiant terms.

’ symbol \ term \ value ‘

h |Planck’s constant|6.626 x 10734 Js
co |speed of light [299 792 458 ms—!

Tab. 2.2: Important constant values in radiometry.

A photon, as the atomic unit, is a quantum of light. It has a position, direction and
a wavelength. Depending on the refractive index n of the medium through which
it travels, it has a constant speed c:

2.1

>

Chapter 2. Background

and a certain amount of energy:

B, = hv = h—; (2.2)

The radiant energy Q., that is the energy sum of a number of photons over all
wavelengths, per time gives the radiant flux:

_ Q.

P,
dt

(2.3)
with the unit Wart [W] with W = Js~ 1.

Radiant flux area density, that is the differential flux of light, which hits or leaves
a differential area at a surface point x is divided into the

irradiance (incident):

_add.
==

E.(x) Le - cosf - dS) (2.4)

2msr

and the radiant exitance (outgoing) or as it is also known in computer graphics
radiosity :

_dd,
a7

M, (x) / L. - cosf - dS) (2.5)
2msr

The solid angle () is measured in steradians [sr~']. It is defined as the solid angle

that, having its vertex at the center of a sphere, cuts off an area of the surface of

the sphere equal to that of a square with sides of length equal to the radius of the

sphere:

dA

dQ) = — (2.6)

r2
The radiant intensity of a light source in a given direction & is defined as follows:

aa,

[6((’3) - dQ

(2.7)

One of the most important radiometric terms in computer graphics is radiance
(see also Figure 2.2). That is the radiant flux transmitted by an elementary beam

10

2.1. Rendering Techniques

passing through a given point x and propagating in the solid angle df) containing
the outgoing direction . d A is the area of a section of that beam and 6 defines the
surface normal at point x:

d*P dl
L J) = c = = 2.
(%, &) dA - cosf-dQ) dA - cosH (2:8)
7]
dA
Jzi (10,
X
L (x, @)

Fig. 2.2: Basic principle for radiance.

2.1.2 Colorimetry & Photometry

In contrast to radiometry (see Section 2.1.1), which is the science of the physical
measurement of electromagnetic energy, colorimetry is the science that describes
colors independently of the observer. To include the properties of the human eye
and to provide psychophysical measurements, photometry is used. Here, for each
unit used in radiometry, a counterpart exists.

Colorimetry

The CIE (Commission Internationale de I’Eclairage) [CIE 2006] has defined a
standard observer and a set of guidelines for performing color measurements. Al-
so, standard light sources, such as the D50 or D65 are defined [CIE 2004]. The
D65 standard resembles natural daylight including the ultraviolet region. In [CIE
2004] also color matching and color spaces such as CIE-LAB, CIE- LUV or CIE-
XYZ are defined.

11

Chapter 2. Background

Photometry

The human eye is sensitive to electromagnetic radiation with wavelengths bet-
ween 380 and 770 nm. It is a complex and nonlinear detector using two types of
photoreceptors (cones and rods). Nonlinearity is involved, because the sensitivi-
ty varies with the wavelength. An average human visual response function is the
spectral luminous efficiency function V (\):

(2.9)

Details and data values can be found in [CIE1987]. Two important details are
eminent. The sensitivity varies also with overall brightness which is perceived.
That is, during daylight, the photopic curve is valid, while during the night, the
scotopic curve is valid. During the day, there is a clear peak in sensitivity around
550 nm, which is perceived as green.

2.1.3 Shape

A real-world object has two main properties: shape & material. These two proper-
ties may also vary over time and may be influenced by the environment as shown

in Figure 2.3.

Fig. 2.3: Object representation.

Figure 2.4 shows the basic representation of shape or geometry in computer gra-
phics. Starting on the left side, an object is first segmented into basic surfaces.
These surfaces are substituted by a polygonal representation. A polygon finally is
described by (corner-) vertices, which are connected by edges. Therefore, object
animation (see Section 2.5), that is, the time aspect, can simply be achieved by

12

2.1. Rendering Techniques

changing vertex positions in space over time. While there exist other (mathema-
tical inspired) non-polygonal representations such as parametric or quadric surfa-
ces [Foley et al. 1996], modern graphics hardware is optimized to handle triangles
(see Section 2.3).

Q @ /Vertex
C Y 4
i i P Edge
L~
O 7

Object —> Surfaces —> Polygons —> Vertices &
Edges

Fig. 2.4: Basic geometry representation.

Fig. 2.5: Triangle setup.

Figure 2.5 shows the basic triangle setup. As the simplest polygonal geometric
primitive to describe an area in space, a triangle py is defined by its corner vertices
vo — vo. It is customary, to use the right hand rule to define the front facing side.
The face normal 7 is perpendicular to the triangle face. This conventions will later

13

Chapter 2. Background

be used for lighting calculations and culling algorithms.

2.1.4 Material

In the following the term material or material properties means all physical pro-
perties like reflection, transparency, specific gravity and so on. In the context of
computer graphics, especially the optical properties are important. Table 2.3 lists
important terms, their dimension and the section where they are described in de-
tail.

’ term \ dimension \ description \ section ‘

BSSRDF 8D Bidirectional Surface Scattering Re-{2.1.5
flectance Distribution Function

BTF 6D Bidirectional Texture Function 2.1.6

BRDF 4D Bidirectional Reflectance Distributi-{2.1.7
on Function

RF 4D Reflection Fields 2.1.7

LF 4D Surface Light Fields 2.1.7

DSRF 4D Diffuse Subsurface Reflectance|2.1.7
Function

displacement map|2D image storing additional geometry|2.1.8
information

bump map 2D image storing normal information |2.1.8

texture 2D image storing color information 2.1.8

Tab. 2.3: Important terms in rendering.

While the general scattering of light is a 12-dimensional process, it is common to
make the following assumptions to reduce the complexity (see also Figure 2.1):

e light transport take zero time (¢;=t,), i.e. no phosphorescence;
e reflectance behavior of the surface is time invariant (tc = ¢; = t,)
e no change in wavelength (\;=),), i.e. no fluorescence;

e wavelength is not continuous, but discretized into red, green and blue bands
(A = ArgB);

14

2.1. Rendering Techniques

Now, the 12 dimensions are reduced to 8 and the function is called BSSRDF (Bidi-

rectional Surface Scattering Reflectance Distribution Function) [Nicodemus et al.
1977].

In computer graphics light is modeled as ray optics, that is, light interaction is
treated as independent rays traveling through space. While this geometrically ap-
proach might be computational efficient, complex effects of light, like polarizati-
on, interference or diffraction are generally also neglected.

Figure 2.6 gives shows an overview of reflectance functions, their dimensions and
their connections to each other.

(BSSRDF |

| no subsurface scattering | | homogeneous material |
/ \
(BTF]\ [homogeneous BSSRDF |
|
fixed lighting fixed view fixed position no subsurface scattering
| | . || |
4D [Surface Light Fields][spatially varying 2D RF] [BRDF]

| diffuse & (nearly) flat |

[Isotropic BRDF]

[2D Textures/Bumpmaps]

Fig. 2.6: Global overview of reflectance functions.

2.1.5 8D: BSSRDF

A practical model for rendering of the BSSRDF has been proposed by Jensen et
al. [2001] and is based on a dipole approximation of a diffusion model. The model
handles homogeneous materials via two parameters obtained from a single HDR
image (o,: absorption cross section and o’: reduced scattering cross section). Vi-
sual good results were obtained for materials like marble and fluids like milk.

15

Chapter 2. Background

Goesele et al. [2004] presented a laser-based measurement setup for translucent
inhomogeneous objects. They assumed diffuse surface reflection in combination
with a strong subsurface scattering, because no angular dependency is measured.

2.1.6 6D: BTF

If no implicit subsurface scattering is considered, the BSSRDF reduces to the six-
dimensional BTF (bidirectional texture function), which mainly will be used in the
latter methods introduced in this thesis. First proposed by Dischler [1998] and Da-
na et al. [1999b], the BTF still captures the most important visual effects of nearly
flat material surfaces. This includes shadowing, masking, and self-interreflections
(see Figure 2.7).

Fig. 2.7: Comparing simple texture mapping and rendering from a measured BTF.

The BTF might also be interpreted as a ABRDF (apparent bidirectional distribu-
tion function). As explained in 2.1.7, the BRDF is the reflection function on an
infinitesimal surface element. Extending this local function spatially, as shown in
Figure 2.8, gives a special BRDF for every surface point. This ABRDF contains
parts of the material BRDFS, but also includes all shadowing and masking effects
described above.

16

2.1. Rendering Techniques

SN \
i v N\
¢ - “\w\» v
NN
94
u L5

Fig. 2.8: BTF representation consisting out of spatial distributed ABRDFs.

2.1.7 4D: BRDF/LF /RF
BRDF

For many applications it is convenient to drop spatial dependence and consider re-
flection taking place on an infinitesimal surface element. This process is described
by the 4-dimensional BRDF (see Figure 2.9) and the classical measurement device
for this quantity is the gonioreflectometer, which samples the angular dependency
sequentially by positioning a light source and a detector at various directions from
the sample [Nicodemus et al. 1977]. Several methods attempted to reduce measu-
rement times by exploiting CCD-chips for taking several BRDF-samples at once.
Ward [Larson 1992] used a hemispherical half-silvered mirror and a camera with
a fish-eye lens to acquire the whole exitant hemisphere of the flat probe at once.
Alternatively one could take images from a curved sample as it was done by Mar-
schner et al. [Marschner et al. 1999] and Matusik et al. [Matusik et al. 2003]. The
latter work was tailored to measuring isotropic BRDFs. It demonstrates also how
measurement times can be significantly reduced by using sophisticated learning
algorithms and a database of densely acquired BRDFs.

LF/RF

Pure image-based rendering considers the flow of light independent of a physi-
cal surface and became popular with the works on light fields (LF) [Levoy &
Hanrahan 1996] and lumigraphs [Gortler ef al. 1996]. They observed that the fi-
ve dimensional plenoptic function (pencil of light rays flowing through points in

17

Chapter 2. Background

Fig. 2.9: BRDF representation for an infinitesimal surface element.

space) can be described by a 4-D function if the viewer moves in unoccluded
space outside or inside a virtual surface (e.g. a cube) over which the light field
is parameterized. The variation of this light field according to a 4-D light field of
radiance incident at the virtual surface is described by the 8-D reflectance field.
[Debevec et al. 2000]. If parameterized over a physical surface this structure is
equivalent to the BSSRDF. Fixing the incident light field gives the light field as
originally introduced by Levoy et al. [1996] and Gortler et al. [1996] and which
has been sampled using an array of cameras. Parameterized over physical surfaces
it is called the surface light field (SLF) [Miller et al. 1998; Wood et al. 2000]. The
surface light field is measured using many images from different viewpoints of an
object with known geometry.

In order to capture the lighting variability of the reflectance field, many images of
the scene under varying lighting conditions have to be taken. Debevec et al. [2000]
built a so called light-stage which records the appearance of a human face while
a light source is rotating around the face. They assumed infinitely distant lighting
and fixed the view, ending up with spatially varying 2-D reflectance functions(RF)
to reduce the dimensionality of the reflectance field. For measuring the reflectance

18

2.1. Rendering Techniques

functions of small and nearly planar objects Malzbender et al. [2001] constructed
a hemispherical gantry attached with 50 strobe light sources. They also introdu-
ced Polynomial Texture Maps (PTM), a compact representation for the acquired
data that is especially suited for diffuse materials. A very complex acquisition se-
tup was built by Matusik et al. [2002]. It captures the object also from varying
viewpoints and handles objects with complex silhouettes using multi-background
matting techniques and thus actually (sparsely) samples a 6D slice of the reflec-
tance field. Masselus et al. [Masselus et al. 2003] fixed the viewpoint again but
instead used a spatially located light basis which enabled the relighting of the
scene by the full 4-D incident light field.

2.1.8 2D: Texture, Bump & Displacement maps
Texturing

After the rasterization stage (see Section 2.35), a triangle might occupy several
pixels on the screen. There exist several ways to assign a color value to a pixel.
With basic shading models only a uniform or interpolated color value is assigned
to each pixel.

n

shading
interpolation /

flat shading Gourand shading Phong shading
triangle

Fig. 2.10: Different shading models.

Figure 2.10 shows several basic shading models. Beginning on the left, flat sha-
ding assigns one color per polygon, while Gourand shading interpolates the colors
computed at the vertices over the polygon. The more sophisticated Phong shading
interpolates the normals of the polygon and then computes the per pixel shading.

To resemble real-world surfaces, a two-dimensional fexture can be used. That is,
some kind of image is mapped onto the triangle or a set of triangles. The image
can be a part of a real-world object, hand-drawn or computer generated (see Figure
2.11).

The image lives in the texture space (u, v) which is parameterized in [0, 1]. A tex-
ture coordinate (u,,v,) is assigned to each vertex (vy — vy) of a specific triangle.

19

Chapter 2. Background

(0,0 (1,0

texture space
(u,v) in [0,1]

Fig. 2.11: Basic texturing principle.

Bump Mapping

In contrast to this, Bump mapping can be used to generate pseudo micro-geometry
by perturbing the normals to generate the shading effects of virtual geometry
[Blinn 1978] (see Figure 2.12). The effect is achieved at the point, where the
lighting calculation is done. Bump mapping can also be combined with normal
texturing in a multi-pass texturing process.

Bump mapping

Fig. 2.12: Bump mapping with disturbed per-pixel normals.

20

2.1. Rendering Techniques

Displacement Mapping

Another kind of information which can be stored in 2D images is displacement as
introduced by Cook [Cook 1984]. Vertex positions of a base geometry are shif-
ted according to movement vector information stored in a displacement map as
shown in Figure 2.13. It is also possible to generate complete new geometry for
example through subdivision (see Section 2.2.1), if the displacement map has a
higher spatial resolution then the base geometry. Displacement mapping is hard-
ware supported in several ways [Pixar 2005; Matrox 2006] and also included in
Shader Model 3.0 (see also Section 2.3).

Displacement mapping

Fig. 2.13: Displacement mapping with shifted vertex positions.

2.1.9 Data Acquisition

There exist two orthogonal approaches to generate reflection data. The first is the
explicit modeling, the second is the measurement. Because this thesis is based on
the latter, modeling is only briefly mentioned in the following, while the rest of
the section is fully dedicated to the measurement process.

Modeling

There are essentially two techniques of cloth rendering according to the way in
which mesostructure is captured. The first approach explicitly models the me-
sostructure of the fabric in detail and renders it using different lighting models
and rendering techniques [Groller ef al. 1995; Daubert & Seidel 2002]. Although
these algorithms produce impressive results and some of them are already appli-
cable at interactive frame rates, using these methods, it is difficult to reproduce
the special appearance of a given fabric.

21

Chapter 2. Background

BTF-Measurement

From now on, the BTF can be seen as a measured six-dimensional slice of the
general light scattering function of a surface .S:

BTFrgb (X) 92'5 ¢i) 97“5 ¢T) = / BSSRDFT‘gb(Xia X, eiv ¢ia 01”7 ¢T)dx’i
S

It this sense the BTF integrates subsurface scattering from neighboring surface lo-
cations, as it is done by the most existing measurement setups. Nevertheless, this
definition allows also for the mathematical interpretation of the BTF as spatial-
ly varying BRDF. The corresponding previous work can be grouped roughly into
two categories.

The first group captures the geometry of a small object and its reflection properties
parameterized over the surface, that is the spatially varying BRDF. The works of
Lensch et al. [2001] and Furukawa et al. [2002] fall into this category. They cap-
ture the geometry of the object using laser scanners and take several images under
varying light and viewing conditions. The methods differ in their data representa-
tion. While Furukawa et al. map the images onto the triangles of the model and
compress the appropriately reparameterized data using tensor product expansion,
Lensch et al. fitted the data to a parametric reflection model. In order to cope with
insufficient sample density they used an iterative clustering procedure.

The second group aims at capturing the appearance of an opaque material inde-
pendently from geometry. These methods have in common, that they capture the
BTF of a planar material sample. The acquired data can be used instead of simple
2D-textures and mapped onto arbitrary geometry. In the following these methods
are described in detail.

Gonioreflectometer-like Setup with CCD-Chips

The most common approaches use a gonioreflectometer-like setup with a CCD-
chip instead of a spectrometer in order to capture the spatial variation of reflection.
This approach has proved to be reliable and several variations of it have been pu-
blished. However its drawback are the long measurement times.

The first measurement system that used such a gonioreflectometer like setup as de-
picted in Figure 2.14 was presented in the pioneering work of Dana et al. [1999b].
Their system takes 205 images of isotropic materials which is a too sparse samp-
ling for high-quality rendering, in particular for rough surfaces and materials with

22

2.1. Rendering Techniques

measurement
points

light b
source " I

sample

camera

Fig. 2.14: Capturing the BTF of a planar sample using a gonioreflectometer-like setup with a fixed
light source, sampleholder and a moving camera.

strong specular pikes. Even though they mentioned the possibility of using the da-
ta for rendering, the original intent of the work was building up a material database
for computer vision related tasks such as texture recognition, texture segmentati-
on and shape-from-texture. They measured 61 real-world surfaces and made them
available through the CUReT database [Curet 2005].

Similar, but improved versions of the measuring system were described in [McAl-
lister et al. 2002] and [Hauth et al. 2002]. Some measurements of the latter system
are now also publicly available through the BTF database Bonn [BTFDBB 2005].

This system will be described in greater detail in the following.

Measurement Setup The measurement setup is designed to conduct an auto-
matic measurement of a BTF that also allows the automatic alignment and post-
processing of the captured data. A high-end digital still camera is used as image
sensor. The complete setup, especially all metallic parts of the robot, are covered
with black cloth or matte paint, with strong diffuse scattering characteristics.

The system uses planar samples with a maximum size of 10 x 10 ¢cm?. In spite
of these restrictions, measurement of a lot of different material types, for example
fabrics, wallpapers, tiles and even car interior materials is possible. As shown in
Figure 2.15, the laboratory consists of a HMI (Hydrargyrum Medium Arc Length
Iodide) bulb, a robot holding the sample and a rail-mounted CCD camera (Kodak
DCS Pro 14N). Table 2.4 shows the sampling density of the upper hemisphere for
light and view direction which results in n = 81 unique directions for camera and
light position. Hence, 6561 pictures of a sample are taken.

23

@

Video 1

Chapter 2. Background

Fig. 2.15: Measurement setup of the Bonn-System consisting out of an HMI lamp, a CCD camera
and a robot with a sample holder.

0[°1 | A¢[°] || No. of images
0 —* 1

15 60 6

30 30 12

45 20 18

60 18 20

75 15 24

Tab. 2.4: Sampling of viewing and illumination angles of the BTF database Bonn. *= only one
image taken at ¢ = 0°

Figure 2.16 shows several measured samples. The top row shows frontal views of
the different samples, whereas the bottom row shows oblique views. In the latter
case especially the mesostructure of the samples becomes visible. Each raw image
is 12 megabytes in size (lossless compression) with a resolution of 4500 x 3000
pixels (Kodak DCR 12-bit RGB format). A film is also available, showing the
complete measurement process.

With this setup, the measuring time is about 14 hours, where most of the time is
needed for the data transfer from the camera to the host computer.

Calibration To achieve high-quality measurements, the equipment has to be
calibrated.

24

2.1. Rendering Techniques

Fig. 2.16: Measured BTF samples; from left to right (top row): CORDURQY, PROPOSTE, STO-
NE, WOOL and WALLPAPER. Bottom row: perspective views (§ = 60,¢ = 144)
of the material and sample holder with illumination from (6 = 60, ¢ = 18). Note the
mesostructure and changing colors.

e To compensate the positioning error due to the robot and the rail system,
one has to track the sample holder mounted on the robot arm using the
camera. Experiments determined that these errors are small in the described
setup. Therefore, marker points, which are placed on the sample holder, are
detected only during the post-processing phase, allowing a software jitter
correction.

e A geometric calibration has to be applied to the camera to reduce geometric
distortion, caused by the optical system of the camera. Details and further
references to camera calibration can be found for example in [Zhang 2000].

e For each sample to be measured, the aperture of the camera is adjusted in
such a way that the number of saturated or dark pixels in the pictures is
minimized given a fixed aperture during the measurement process.

e To achieve the best possible color reproduction, the combination of the ca-
mera and the light source has to be color calibrated. For the measurement
of the camera color profile a special CCD-Camera standard card (Gretag
Macbeth - Color Checker DC) is used.

Data Postprocessing After the measurement the raw image data is converted
into a set of rectified, registered images capturing the appearance of the material
for varying light and view directions. Now, a complete set of discrete reflectance
values for all measured light and viewing directions can be assigned to each texel

25

Chapter 2. Background

of a 2D texture.

Registration is done by projecting all sample images onto the plane which is de-
fined by the frontal view (# = 0,¢ = 0). To be able to conduct an automatic
registration, borderline markers were attached to the sample holder plate, see Fi-
gure 2.16. After converting a copy of the raw data to a binary image, standard
image processing tools are used to detect the markers. In the following steps the
mapping (which maps these markers to the position of the markers in the frontal
view) is computed and utilized to fill the registered image with appropriate colors.

To convert the 12-bit RGB images stored in the proprietary format of the came-
ra manufacturer to standard 8 bit RGB file formats, the standard color profiles
provided with the Camera SDK (look and output profile) and camera (tone curve
profile) are applied to the image. The most appropriate 8 bit color range is extrac-
ted after applying an exposure gain to the converted data.

After this postprocessing step, the final textures are cut out of the raw reprojected
images and resized appropriately (256 x 256 pixels in size for probes in the data-
base, up to about 800 x 800 in principle). A final dataset with 256 x 256 pixels
spatial resolution has a data amount of 1.2GB.

Using Video Cameras

Koudelka et al. [2003] presented a system resembling the before mentioned ones,
but it fixes the image sensor (a Canon XL-1 digital video camera) and moves the
light source (a white LED mounted on a robot arm). The employed hemisphere
sampling results in a dataset of about 10.000 images. Due to the use of a video
camera with relatively low resolution compared to a high-end still camera, a mea-
surement takes about 10 hours. Samples from this system are publicly available
for research purposes and include interesting natural materials like lichen or moss
and man-made materials like carpet or even LEGO™bricks.

Using Mirrors

Inspired by BRDF measurement techniques, it has also been proposed to use mir-
rors for BTF measurement in order to avoid hemispherical movements or to make
several measurements in parallel.

An approach using a concave parabolic mirror has been published by Dana and
Wang [2004]. In this device the parabolic mirror is focused on the sample and thus

26

2.1. Rendering Techniques

an image of the mirror captures the appearance of the surface point in focus as seen
from different viewing directions. Spatial variation of the sample is captured by
planar movement of the mirror (or the sample). [llumination from different directi-
ons is achieved by focusing a light beam on the appropriate spot in the mirror. With
this setup no hemispherical movement is required and the resulting data is of high
quality. But a high spatial resolution (comparable to the gonioreflectometer-like
devices which achieve about 300DPI) requires an enormous amount of images.
Please note also that interreflections and subsurface scattering from neighboring
parts of the surface are not integrated. Furthermore for a substantial range of azi-
muthal angles ¢ the covered range of the polar angle @ is restricted by the size
of the mirror. For example for ¢ = 7 the presented prototype can capture polar
angles only up to 22.6°.

Han et al. [2003] presented a measurement system based on a kaleidoscope which
allows to capture several images of the whole sample at once. The advantages
in measurement time and registration precision (no moving parts) are accompa-
nied by a number of disadvantages. Multiple reflections on mirrors (not perfect
reflectors) cause low image quality and lead to a difficult color calibration. Slight
asymmetries in the configuration of the mirrors result in registration errors. An-
gular sampling and spatial resolution are often coupled, that is a higher angular
resolution leads to a lower spatial resolution.

Radloff [2004] has analyzed different kaleidoscope configurations by simulation
and built several prototypes. But due to the mentioned difficulties in building a
perfect kaleidoscope the quality of the results turned out to be rather low.

Using a camera array

For a fast high quality acquisition of BTFs, an array of 151 digital still cameras
mounted on a hemispherical gantry is proposed in [Miiller ef al. 2004a]. Figure
2.17 shows a sketch and a real image of the DOME device. Details can be found
in [Miiller ef al. 2005b].

A similar gantry with mounted light sources was used by Malzbender et al. [2001]
to capture polynomial texture maps (PTMs). Although the setup is costly to build,
a camera array is capable of measuring many samples in a short time. Due to the
parallel structure of the acquisition, the example setup would be capable of cap-
turing a BTF dataset of 1512 = 22801 images in less than one hour. No moving
parts are needed. Therefore, the region of interest (ROI) is known for every ca-
mera and can be extracted at subpixel precision. Hence, there is no need for a
time-consuming detection of the ROI, the post-processing (reprojection, geome-

27

Chapter 2. Background

Fig. 2.17: Sketch and real image of the proposed camera array. 151 digital cameras with built-in
flash lights are mounted on a gantry, focusing on the sample, which is placed in the
center of the hemisphere.

tric correction, color correction) is fast enough to be done in parallel to the measu-
rement. The angular resolution depends on the number of cameras and the spatial
resolution on the imaging chips. This will result in a high angular resolution; every
measured direction represents an average solid angle of only 0.04161 steradians.
The spatial resolution would be up to 280DPI for a resulting BTF texture size of

28

2.1. Rendering Techniques

1024x1024 pixels. As light sources, the built-in flash lights of the cameras will be
used.

Discussion

Currently only the standard gonioreflectometer-like measurement setups have pro-
ven that they can be used to capture high-quality BTFs reliably. Their drawback
is the speed - several hours is too long and makes measured BTFs an expensive
resource. Using mirrors may be a promising approach in the future, but the current
systems are far from reaching the resolution and quality of the gonioreflectometer-
like setups. Using a camera array will greatly reduce measurement times while
keeping quality and resolution at the expense of the costs for a large number of
cameras.

2.1.10 Compression

Due to its huge size the pure image-based representation of a BTF consisting of
the thousands of images taken during the measurement process is neither suitable
for rendering nor for synthesis. In order to achieve real-time frame rates and ac-
ceptable synthesis times, some sort of data-compression has to be applied.

Such a method should of course preserve as much of the relevant features of the
BTF as possible, but should also exploit the redundancy in the data in an effi-
cient way and provide a fast, preferably real-time decompression stage. An opti-
mal method would achieve high compression rates with low error and real-time
decompression. For integration into current real-time rendering systems an imple-
mentation of the decompression stage on modern GPUs would also be of great
value.

Most existing compression techniques interpret the BTF as shown in Figure 2.18:
as a collection of discrete textures

{T(Vvl) }(V,I)GM)
where M denotes the discrete set of measured view- and light-directions, or as a

set of spatially varying apparent BRDFs (ABRDF, the term was introduced in a
paper of Wong et al. [1997]):

{Bx}erCN2

29

Chapter 2. Background

Fig. 2.18: Two arrangements of the BTF data: as set of images (left) and as set of ABRDFs (right).

Note, that ABRDFs do not fulfill physically demanded properties like reciprocity,
since they include scattering effects from other parts of the surface.

Fig. 2.19: An ABRDF (right) from the PLASTERSTONE BTF (left). While the reflectance of the
white plaster alone is quite regular, the holes introduce strong meso-scale shadowing
and masking.

As illustrated in Figure 2.19 they can also contain a factor (n - 1) between incident
direction and surface normal and strong effects from meso-scale shadowing and

30

2.1. Rendering Techniques

masking.

2.1.11 Fitting Analytical BRDF-Models

As mentioned already, BTFs can be understood as spatially varying ABRDFs.
Therefore, a natural approach for compressing BTFs is via a pixel-wise represen-
tation using BRDF models which are fitted to the synthetic or measured BTF data.
Candidate BRDF models need to be efficiently computable to achieve real-time
capabilities. Therefore, fitting either the widely used Phong [1975] model, the
Blinn [1977] model, the model of Ward [1992] or the Generalized Cosine-Lobe
model of Lafortune et al. [1997] to the measured data leads to straightforward
extensions from BRDF to BTF representations.

Lafortune Lobes

The simplest BTF model based on analytic function fitting was published by
McAllister et al. [2002] and is directly based on the Lafortune model. Lafortu-
ne et al. propose to approximate the BRDF by a sum of lobes

s(v,)) = (v'-M-1)" (2.10)

with v and 1 denoting local view and light direction respectively, while the general
3 x 3 matrix M and the exponent n define the lobe.

To fit these parameters to the reflectance properties of a synthetic or measured
BRDF, non-linear fitting methods like the Levenberg-Marquardt algorithm [Press
et al. 1992] are employed. Fitting the complete matrix allows for very general
BRDFs but is very time consuming. Therefore, McAllister et al. decided to em-
ploy a more restricted, diagonal matrix D, since fitting and rendering efforts are
significantly reduced without major loss in rendering quality. Thus, they use the
following, spatially varying lobes:

sx(v,1) = (v' - Dy -1)"™. (2.11)
This results in the following BTF approximation:

k
BTF(x,v,1) % pax + Y _ paxi $x(¥,]) (2.12)
j=1
where p, and p, denote diffuse and specular albedo (specified as RGB values) and
k is the number of lobes.

31

Chapter 2. Background

The model requires only a few parameters to be stored per pixel resulting in a very
compact material representation (about 2 MB per material depending on the spati-
al resolution and number of lobes). Due to the expensive non-linear minimization,
the number of Lafortune lobes is practically limited to about 4 lobes. Therefore
the method achieves pleasing results only for a very limited range of materials
with minor surface height variation.

Scaled Lafortune Lobes

BRDF models were not designed for the spatially varying ABRDFs which can
contain strong effects from meso-scale shadowing, masking (Figure 2.19). The-
refore, more specialized models for ABRDFs were developed which also try to
model some of these effects.

Daubert et al. [2001] proposed a material representation, which is also based on
the Lafortune model but includes an additional, multiplicative term 7% (v) mode-
ling occlusion. Following their proposal, the BTF is evaluated as follows:

k
BTF(x,v,1) ~ Ty(v) - (pdp(+) sl 1)) . (2.13)
j=1

The view-dependent lookup-table 7" is defined per pixel and therefore the model
requires significantly more parameters to be stored. It is thus necessary to combi-
ne this method with quantization approaches when handling materials that require
significant spatial resolution. The model, as presented originally, was intended to
independently represent the three channels of the RGB model by fitting individual
Lafortune lobes and lookup-tables for each color channel.

Reflectance Functions

As a qualitative improvement over the previous method, Meseth et al. [Meseth
et al. 2004b] published an approach to BTF rendering based on fitting a set of
functions to the spatially varying reflectance functions of the BTF only and per-
forming a simple linear interpolation for view directions not contained in the mea-
sured set. Following this proposal, the BTF is evaluated as follows:

BTF(x,v,1) wav- Fyeo(1) (2.14)

Here, N(v) denotes the set of closest view directions (a subset of the measu-
red view directions), wy , denotes the spatially varying interpolation weight, and

32

2.1. Rendering Techniques

RF , is the spatially varying reflectance function for view direction v which is
approximated either by a biquadratic polynomial following the Polynomial Tex-
ture Map approach of Malzbender et al. [2001] or adopting Lafortune lobes as
follows:

k
RFy (1) & pax + paxa(d) - Y sx(l) (2.15)
i=1
with sy, similar to a spatially varying Lafortune lobe but for fixed view direction
and k being the number of lobes.

Since the reflectance functions are fitted per pixel and measured view direction,
the amount of parameters necessary to evaluate the model is higher than for the
scaled Lafortune lobes model. Like the model of McAllister et al. [2002], the ap-
proach is designed for efficient rendering and therefore the lobes are intended to
compute luminance values that scale the RGB color albedo instead of fitting indi-
vidual lobes for each color channel. Unlike previous methods based on function
fitting, the approach requires interpolation between view directions, since the re-
flectance functions are defined for fixed view directions.

Reflectance Function Polynomials

Recently, Filip and Haindl [2004] suggested an even more accurate model based
on the idea of Lafortune lobes: instead of approximating reflectance functions by
summing lobe contributions like Meseth et al. [2004b], they interpolate view and
light-dependent polynomials:

k

RE ()~ Y w > aixoi (psw - sxw() (2.16)
leN() i=1

Here, a denotes the coefficients of the polynomial, s , is defined as in equation

2.15 and w; denotes interpolation weights for the contributions of the nearest light

directions N (1) which is a subset of the measured light directions.

Although approximation quality is superior to the previously mentioned approa-
ches based on analytic function fitting and the data requirements are comparable
to those of Meseth et al. [2004b], the evaluation of the BTF requires substantially
more computation time due to the necessary interpolation of both view and light
direction. Especially if applied to each color channel individually, as intended by
the authors, this drawback severely limits use in real-time applications. Other ap-
plications areas, like texture synthesis - for which the model was intended - or

33

Chapter 2. Background

offline rendering, might still find this method useful.

2.1.12 Linear Basis Decomposition

Using parametric BRDF-models fitted to the measured data per pixel has some
drawbacks concerning realism. Many models were originally designed to model
only a particular class of uniform materials and all models are only an approxima-
tion of real reflectance using some simplifying assumptions about the underlying
physical process (refer to the recent work of Matusik et al. [Matusik et al. 2003]
on data-driven reflectance modeling for a more detailed discussion of this topic).
The situation becomes even worse for the apparent BRDFs since they contain ad-
ditional complex effects resulting from the surrounding meso structure.

One way to overcome this problem would be the relaxation of the restricting as-
sumptions of BRDF modeling and the interpretation of the measured data as a
multi-dimensional signal. Then general signal-processing techniques such as Prin-
cipal Component Analysis (PCA) [Press et al. 1992] can be applied. PCA mini-
mizes the variance in the residual signal and provides the in a least-squares sense
optimal affine-linear approximation of the input signal. The terms PCA and Sin-
gular Value Decomposition (SVD) are used synonymously during the rest of this
section, since the principal components of the centered data matrix X are the co-
lumns of the matrix V with X = UAV7 being the SVD of X.

PCA has been widely used in the field of image-based rendering to compress
the image data. For example Nishino et al. [2001] applied PCA to the reparame-
terized images of an object viewed from different poses and obtained so-called
eigen-textures. Matusik et al. [2002] compressed the pixels of the captured reflec-
tance field applying PCA to 8 by 8 image blocks.

The several BTF-compression methods that use PCA differ mainly in two points:
(1) the slices of the data to which PCA is applied independently and (ii) how these
slices are parameterized.

Per-Texel Matrix Factorization

One approach especially suited for real-time rendering applies PCA to the per-
texel ABRDFs. Such methods were developed in the context of real-time rende-
ring of arbitrary BRDFs at the time when the Phong-model was the state of the
art in real-time rendering. The original idea as introduced by Kautz and McCool

34

2.1. Rendering Techniques

[1999] can be stated as follows: Given the 4-dimensional BRDF By, find a facto-
rization into a set of 2-dimensional functions:

By(v,1) = Z G (T1(V, 1)) Dy (m2(V, 1)) (2.17)

J

The functions 7; and 7, are projection functions which map the 4D-dimensional
BRDF parameters (v,1) to a 2D-space. These projection functions have to be
chosen carefully, because the parameterization significantly affects the quality of
low-term factorizations. Given such a factorization real-time reconstruction of the
BRDF using graphics hardware becomes easy, since the functions gx ; and hy ;
can be stored in texture maps and combined during rendering. A trade-off bet-
ween quality and speed is possible by controlling the number of terms c.

Several methods to find such factorizations have been proposed. Given the sam-
pled values of the BRDF arranged in a 2D-matrix X the SVD of X provides the
solution with the lowest RMS-error. But the resulting functions contain negative
values which may be problematic for a GPU implementation and the RMS-error
may not be the perceptually optimal error metric. As an alternative McCool et al.
[2001] presented a technique called Homomorphic Factorization (HF). Instead of
using a sum of products they approximate the BRDF by an arbitrary number of
positive factors:

By(v,1) ~ [[pxi(mi(v,1)) (2.18)
J

A solution is computed by minimizing RMS-error in the logarithmic space which
in fact minimizes relative RMS-error in the original minimization problem which
was found to be perceptually more desirable. Furthermore, the resulting factors
are positive and an arbitrary number of projection functions 7; can be used which
allows for highly customized factors that capture certain BRDF features. This is of
special importance for the ABRDFs from a measured BTF. They contain horizon-
tal and vertical features like shadowing and masking and also diagonal features
like specular peaks. Depending on the parameterization a simple single term ex-
pansion can capture only the one or the other.

Recently Suykens et al. [Suykens et al. 2003] presented a method called Chai-
ned Matrix Factorization (CMF) which encompasses both previous factorization
methods by accommodating the following general factorization form:

35

Chapter 2. Background

Cj

d
Be(v,1) ~ [D Pei(ma (v. 1) Qu e (7j2(v, 1)) (2.19)
J k

Such a chained factorization is computed using a sequence of simple factorizati-
ons using for example SVD, but each time in a different parameterization. As a
comparison the authors approximated the ABRDFs of synthetic BTFs using CMF
and HF. In floating precision they reported similar approximation errors but the
factors computed from CMF had a much smaller dynamic range and thus could
be safely discretized into 8-bit textures used for rendering on graphics hardware.
Furthermore, they stated CMF to be easier to compute and implement.

The compression ratio of per-texel matrix factorization depends on the size of the
matrix X, i.e. the sampling of the angular space, and the number of factors. Plea-
se note, that these techniques where originally designed for BRDF rendering and
for scenes containing a few (maybe some hundred) BRDFs. A single BTF with
2562 texels contains 64k ABRDFs! Hence to reduce the memory requirements for
real-time rendering a clustering of the factors may be necessary.

Full BTF-Matrix Factorization

The per-texel factorization methods from the previous section have the disadvan-
tage, that they do not exploit inter-texel coherence. This can be accomplished by
applying a PCA to the complete BTF-data arranged in a | M| - || matrix

X = (BXO,BXI,...,BXM>.

Keeping only the first ¢ eigenvalues results in the following BTF-approximation:

BTF(x,v,1) Z g(x (2.20)

This approach was used in the works of Liu et al. [2004] and Koudelka et al.
[2003].

The remaining issue is, how to choose c. Ravi Ramamoorthi [2002] showed by an
analytic PCA construction, that using about five components is sufficient to recon-
struct lighting variability in images of a convex object with Lambertian reflectan-
ce. Therefore, for nearly diffuse and relatively flat samples a good reconstruction
quality can be expected for low c. However, as illustrated in Figure 2.20, this will

36

2.1. Rendering Techniques

(r‘("
100 F . 3”
f(,
90 PEFPLESTONES ‘; ?“}'
— — — — PLASTERSTONE 3"
80 1—--—- SWEATER m?‘
Aa & \%I‘
70 PEBBLESTONES
60
50
40 Ty
I‘.‘,
30 L PLASTERSTONE
i T i
20 +— —
10 i — Pl e A —
0

1 5 9 18 17 21 26 29 33 37 41 45 49 SWEATER

Fig. 2.20: RMS-error of the full BTF-matrix factorization depending on the number of terms c.
There is a direct correspondence between the magnitude and decrease of error and the
BTF-complexity.

not be sufficient for complex BTFs containing considerable self-shadowing, mas-
king and obviously for non-diffuse reflectance.

Therefore, Koudelka et al. chose ¢ = 150 to represent all significant effects with
enough fidelity. To reduce the size of the resulting dataset even further they stored
the basis-vectors as JPG-images resulting in very high compression rates. But of
course real-time reconstruction from this representation is not possible.

An alternative approach for full BTF-matrix factorization was presented by Vasi-
lescu and Terzopoulos [Vasilescu & Terzopoulos 2004]. They arranged the BTF-
data in a 3-mode tensor and applied multi-linear analysis (3-mode SVD), which
corresponds to the application of standard SVD to different arrangements of the
data. It is worth noting, that the resulting reconstruction formula provides a more
flexible dimensionality reduction by allowing to reduce the represented variation
in view and lighting directions independently. Compared to standard PCA with
the same number of components the methods leads to a higher RMS-error, but the
authors claim that keeping more variation in the viewing direction gives percep-
tually more pleasing results.

A serious problem of the full BTF-matrix factorization methods is the size of
the matrix X which easily could reach several gigabytes in float-precision. In

37

Chapter 2. Background

this case, even the computation of the covariance matrix X X7 would be a very
lengthy operation and special out-of-core routines have to be implemented. As an
alternative the factorization can be computed for a subset of the data only.

Per-View Factorization

The full BTF-matrix factorization suffers from memory problems during compu-
tation and reconstruction is only fast and correct for relatively simple materials.
Therefore, Sattler et al. [Hauth et al. 2002; Sattler et al. 2003] published a method
that deals with these problems. Because their original intention was to visualize
cloth BTFs that exhibit a significant amount of depth variation and hence highly
non-linear view-dependence, they use an approach similar to the work of Meseth
et al. [Meseth et al. 2004b] in the sense that they applied PCA to slices of the BTF
with fixed view-direction. This leads to the following set of data-matrices:

Xy, 1= <T(vi,10), Tivig), - - - 7T(vi7lei)>

with M, denoting the number of sampled light directions for the given view di-
rection v;. The PCA is applied to all matrices X, independently which poses no
computational problems compared to the full BTF matrix. Then keeping only the
first ¢ eigenvalues gives the following BTF approximation:

BTF(x,v,1) ~) gv;(1)hy ;(x) (2.21)
j=1

Compared to equation 2.20, the value of ¢ can be set much lower (the authors
chose c between 4 and 16) which enables interactive or even real-time rendering
frame rates with good visual quality. However, the memory requirements are much
higher. For example, ¢ = 16 and M,,, = 81 lead to more than 1200 terms that have
to be stored.

Per-Cluster Factorization

As already mentioned, a complex BTF contains highly non-linear effects like self-
shadowing, self-occlusion and non-diffuse reflectance. Nevertheless, many high-
dimensional data sets exhibit a local linear behavior. Applying per-texel or per-
view factorization implicitly exploits this observation by selecting fixed subsets
of the data and approximating these subsets with an affine-linear subspace. A mo-
re general approach would choose these subsets depending on the data. This is
the idea behind the local PCA method, which was introduced by Kambhatla and
Leen [Kambhatla, N. & Leen, T.K. 1997] to the machine-learning community in

38

2.1. Rendering Techniques

competition to classical non-linear/neural-network learning algorithms. It combi-
nes clustering and PCA using the reconstruction error as metric for choosing the
best cluster.

Recently, Miiller et al. [Miiller et al. 2003] applied this method to BTF-compression
and proposed the following approximation:

BTF(x,v,1) & Y g (%) i, (V. 1) (2.22)
J

The operator k(x) is the cluster index look-up given a position x. In this case clu-
stering is performed in the space of ABRDFs which was found being better suited
for real-time rendering than clustering in the space of images. Now the number of
clusters can be chosen according to computational resources and quality require-
ments. Figure 2.21 compares per-cluster factorization to full matrix factorization
with the same number of terms c. Good results were obtained for cluster counts
between 16 and 32, which is much smaller than the fixed cluster number (e.g.
M, = 81) used in per-view factorization.

original FMF PCMF

Fig. 2.21: Comparing full matrix factorization and per-cluster matrix factorization. From left to
right: original frontal view of PROPOSTE BTF, reconstruction from full matrix facto-
rization (FMF) with ¢ = 8 terms, reconstruction from per-cluster matrix factorization
(PCMF) with 32 clusters and 8 terms per cluster. Second row: enhanced and inverted
difference images.

39

Chapter 2. Background

Discussion
| original | SLAF | RF | CMF | PVMF | PCMF |
~--‘ _'.-?_; I-';;; e R ¥ A -1
www w4 LAY | o weeed A R S R R R R R R |
O R A AR Y e e

wew N w N
LA AR

1.2 GB 32 MB 106 MB 60 MB 121 MB 11 MB

Fig. 2.22: Comparison of selected BTF-compression methods. Top row: original and reconstruc-
ted ABRDFs. Second row: inverted difference images. Bottom row: storage require-
ments for the compressed representations using parameters suitable for interactive ren-
dering. From left to right: Original ABRDF of PLASTERSTONE BTF, Scaled Lafortu-
ne Lobes with 2 lobes (SLAF), Reflectance Functions with per-view polynomial (RF),
Per-Texel Chained Matrix Factorization with 4 factors (CMF), Per-View Matrix Fac-
torization with 8 terms (PVMF), Per-Cluster Matrix Factorization with 32 clusters and
8 terms (PCMF). The original dataset consists of 6561 8-bit RGB-images with 2562
pixels in size. Numerical precision is 16 bit for PCMF and 8 bit for all other methods.

Figure 2.22 shows a comparison of several methods discussed above. Obvious-
ly, the quality of the reconstruction from linear basis decompositions is better
than from parametric reflectance models even if additional parameters like sca-
ling values per view or even a full fit per view are used. Furthermore, the incre-
ased quality achieved by using this additional complexity does not legitimate the
increased memory requirements. The qualitatively best result is achieved using
per-view factorization but unfortunately the memory requirements are very high,
since for every measured view direction a set of textures and weights has to be
stored. Using per-texel matrix factorization does not exploit spatial coherence and
thus the quality is not as good as per-view or per-cluster factorization even for
considerable memory requirements. Furthermore, the chained resampling steps
can introduce additional resampling error. Suykens et al. [Suykens et al. 2003]
propose k-means clustering of the factors across the spatial dimension to reduce
memory requirements. This obviously could be applied to every per-texel BTF
compression method, but for complex materials that do not contain uniform areas
this will introduce cluster artifacts. These cluster artifacts are reduced using PCA
in each cluster as done in the per-cluster factorization method. Hence, this method
seems to offer a good compromise between reconstruction cost, visual quality and

40

2.1. Rendering Techniques

memory requirements.

In conclusion, current acquisition systems are expensive and the measurement
process is time consuming as the directional dependent parameters (light- and
view-direction) have to be controlled very accurately. Otherwise the resulting da-
ta will be incorrect. Furthermore, the size of measured BTFs lies in a range from
hundreds of megabytes to several gigabytes. This hampers both synthesis and ren-
dering so that only effective compression techniques can provide a solution.

Due to these limitations BTF rendering is still not mature enough for industrial ap-
plications. Nevertheless, there is a growing demand for interactive photo-realistic
material visualization in the industry. For special applications such as high-end
virtual reality environments, BTF rendering can already satisfy these demands.
Simple material representations like 2-D texture or bump-maps sooner or later
will be replaced by more complex representations that reproduce all the subtle
effects of general light-material interaction.

The acquisition of the BTF of real world materials requires a complex and con-
trolled measurement environment. As BTF acquisition is physical measurement of
real-world reflection, special attention has to be paid to the device calibration and
image registration. Otherwise the measurements will contain inaccuracies which
may generate visible rendering artifacts.

2.1.13 Rendering

Generally accurate and physically plausible rendering algorithms have to compute
a solution of the rendering equation at every surface point x (neglecting emissive
effects):

L.(x,v) = /px(v, 1)L;(x,1)(ny - 1) dl (2.23)
Q;

Here, px denotes the BRDF, L; denotes incoming radiance, ny is the surface nor-
mal and §2; is the hemisphere over x.
Including measured BTFs into the rendering equation 2.23 is very simple:

L.(x,v) = /BTF(X, v, 1) L;(x,1)(ny - 1) dl (2.24)
Q;

Now the measured BRDF at point x is simply looked up from the BTF. It is assu-
med, that a mapping from the 3D-surface to the 2D spatial texture domain already

41

Chapter 2. Background

exists. Please note that the BTF also models meso-scale geometry. However, sin-
ce this information is projected into the BTF the rendering will not be correct for
example at object silhouettes.

2.1.14 Solving the Rendering Equation

Currently there are two popular approaches that are primarily used to solve the
rendering equation.

Monte-Carlo Sampling

The first approach tries to solve equation 2.23 accurately using Monte-Carlo samp-
ling methods. Many variants of this approach such as path tracing [Kajiya 1986],
distribution ray tracing [Cook et al. 1984] and photon mapping [Jensen, H.W.
1996], to mention a few, have been developed over the years. Despite recent ad-
vances towards interactive global illumination (for example [Wald et al. 2003b])
accurate solutions of arbitrary complex scenes can still take hours or even days to
compute.

Obviously equation 2.24 can be solved using Monte-Carlo sampling as well. In
this case the renderer simply has to be extended to support a particular BTF com-
pression scheme which in fact corresponds to the implementation of the decom-
pression stage on the CPU. This is possible for any compression method introdu-
ced in Section 2.1.10.

Approximate Solutions for Real-Time Rendering

The second approach makes a priori several simplifying assumptions so that the
integral can be solved more quickly and is amenable to hardware implementation.
The goal is to reduce the integral in equation 2.23 to a finite sum containing only
very few terms.

Point Lights The most popular simplification is using only a set A = {1;} of
point or directional light-sources and discarding general interreflections (i.e. the
recursion in equation 2.23). For notational simplicity the term 1; encodes both
intensity and direction of the light source. Since these lights are given in global
coordinates and the BRDF is usually given in the local frame at x, the local coor-
dinates 1 are also needed:

|A|
L.(x,v) ~ Z px(v, 1) G(x,1;) (ny - 1)1 (2.25)
J

42

2.1. Rendering Techniques

The geometry term (G(x,1;) contains the visibility function and an attenuation
factor depending on the distance. In the following, the visibility function in the
geometry term is neglected, because interactive large-scale shadowing is an inde-
pendent research topic in its own right (for a survey refer for example to [Hasen-
fratz et al. 2003]). Using equation 2.25 a scene can be rendered real-time using
today ‘s consumer graphics hardware. Arbitrary BRDFs can be implemented using
the programmable vertex- and fragment-shader capabilities. In the case of BTF-
rendering the following sum has to be computed:

A
Ly(x,v) = Y BTF(x,v,1;)G(x,1;)(nx - 1))l (2.26)

J

In fact, the challenge of developing a fast BTF-rendering algorithm for point lights
is reduced to the implementation of a fragment program that evaluates the BTF
for given parameters. For several of the compression schemes presented in Sec-
tion 2.1.10 such an implementation has been proposed. Details can be found in
Section 2.1.17.

Infinitely Distant Illumination Another widely used simplification assumes in-
finitely distant incident illumination and no interreflections. In this case the depen-
dency of incident lighting on surface position x can be removed:

Lo(x,v) ~ / (v,) Li(1) (e - 1) 1 2.27)
Q;

For special types of BRDFs this integral can be precomputed (for example [Kautz
et al. 2005]) and the results can be displayed in real-time. Another approach is to
reduce the integral to a finite sum by projecting light and BRDF onto a basis like
Spherical Harmonics (SH) [Sloan et al. 2002] or wavelets [Ng et al. 2003] and
keeping only a finite number of terms. Using this approach even transport effects
like shadows and interreflections can be precomputed and projected onto the basis.

Special care has to be taken while transferring such an approach to BTF-rendering.
The methods were originally designed only for special types of BRDFs or the re-
sults are only computed per vertex. Hence, only few algorithms for BTF-rendering
using distant illumination have been published so far. The details will be discussed
in Section 2.1.18.

43

Chapter 2. Background

2.1.15 BTF-Rendering using Real-Time Raytracing

The recent advances in computation power and improved algorithms allow for in-
teractive ray-tracing even on a single desktop PC [Wald ef al. 2003b]. Real-time
performance can be achieved using PC clusters. As in Section 2.1.14 the integra-
tion of a particular BTF compression scheme into such a system corresponds to
the implementation of the decompression stage on the CPU.

2.1.16 BTF-Rendering using Graphics Hardware

To incorporate BTFs into current real-time rendering systems, the evaluation of
the BTF should be done on the graphics processing unit (GPU) i.e. integrated into
the fragment-shading process. To achieve this, the compressed representation of
the BTF must be stored in textures and the reconstruction is performed using the
programmable units of the graphics board. The parameters for BTF evaluation are
the standard 2D-texture coordinates x, the local view direction v and in the case
of point light sources the local light direction 1.

A crucial point in all BTF-rendering methods is interpolation. Since a measured
BTF is discrete in all 6 dimensions, smooth renderings require interpolation in
each dimension. To achieve high frame-rates it is indispensable, that at least some
of these dimensions are interpolated using built-in hardware interpolation. For the
other dimensions either the nearest neighbor must be chosen or the interpolation
of the nearest neighbors has to be executed explicitly in the fragment shader. In
both cases there has to be an operator N(-) that supplies the nearest samplings.
Such a look up can be performed on the GPU using dependent texture look-ups.
To perform explicit interpolation in the fragment shader, the corresponding inter-
polation weights 7; should also be precomputed and stored in textures.

In the following sections existing BTF-rendering methods will be presented, that
achieve interactive or even real-time frame-rates exploiting the capabilities of cur-
rent graphics hardware.

2.1.17 Interactive Rendering of BTFs with Point Lights
Parametric Reflectance Models

Efficient implementations of the parametric reflectance models from Section 2.1.11
have been presented by various publications. McAllister et al. [2002] describes a

44

2.1. Rendering Techniques

real-time evaluation scheme for equation 2.12. Coefficients of the spatially vary-
ing Lafortune lobes are stored in 2D textures. Evaluation can efficiently be done
using vertex and fragment shaders. Since Lafortune lobes are continuous in the
angular domain, no interpolation is required in the angular domain. Spatial inter-
polation has to be done explicitly in the fragment shader (magnification) or is left
to the multisampling and built-in MIP-mapping capabilities of graphics hardware,
although MIP-maps have to be built manually (for example by fitting new sets of
Lafortune lobes for each BTF resolution).

As an extension to the model of McAllister et al., the BTF model of Daubert et
al. [2001] only requires an additional evaluation of the view-dependent visibility
term. Although significant numbers of parameters are required to store this term,
it can easily be encoded in a texture. Interpolation of the view-direction can be
achieved using graphics hardware. Spatial interpolation is done like in the pre-
vious approach.

The even more complex model of Meseth et al. [2004b] is evaluated very similarly
to the previous two ones with the significant difference that the discretization of
the view direction requires an additional manual interpolation (as denoted in equa-
tion 2.14). Therefore, two cube maps are utilized which store for each texel in the
cube map (representing a certain view direction) the three closest view directions
and respective interpolation weights. Interpolation is achieved by evaluating the
reflectance functions for the three closest view directions and interpolating the
results based on the interpolation factors stored in the cube map. Spatial interpo-
lation can be done exactly like in the previous approaches.

Efficiently evaluating the BTF model of Filip and Haindl [2004] constitutes an
even more complex problem since it requires interpolation of both view and light
direction, effectively requiring evaluation of the basic model nine times. Since the
model was not intended for real-time rendering, no such algorithm was proposed
yet and it is questionable if the improved rendering quality can compensate the
significantly increased rendering costs.

Per-Texel Matrix Factorization

Generally, the rendering algorithms for BRDF-factorizations can be used [Kautz
& McCool 1999; McCool et al. 2001] with the difference, that the factors now
change in every fragment. Suykens et al. [2003] detailed how this can be accom-
plished:

Every factor is reparameterized and stored into a parabolic map [Heidrich & Sei-

45

Chapter 2. Background

del 1998]. Then all these factors are stacked into 3D-textures and normalized to
a range between 0 and 1. The resulting scale factors are stored in a scale map. A
particular factor is selected in its 3D-texture using transformed 2D texture coor-
dinates or, if clustered factors are employed, by the values from an index map. To
avoid mixing of neighboring factors in the 3D-texture the z-coordinate has to be
chosen carefully. A value within a particular factor is indexed using the appropria-
tely reparameterized local view and light directions. While interpolation inside a
factor is supported by the hardware, spatial interpolation between neighboring tex-
els is not implemented. equation 2.19 now can be executed in a fragment shader.

Per-View Matrix Factorization

Sattler et al. [2003] demonstrated how equation 2.21 can be implemented using
a combination of CPU and GPU computations. Figure 2.23 shows the basic ap-
proach: Combination of the eigen-textures h., ;(x) with the appropriate weights
gv;(1) using the multi-texturing capabilities of modern graphics boards. This com-
bination is done for every triangle-vertex. A smooth transition is ensured by blen-
ding the resulting three textures over the triangle using a fragment program [Chen
et al. 2002].

reconstructed mean
texture

Fig. 2.23: Schematic rendering using the per-view matrix factorization.

While the interpolation in the spatial domain is done by the graphics hardware,
light and view direction are interpolated explicitly. To interpolate between the
nearest measured light directions the term

BTF(x,v.)~ > 7 Z gv.i(Dhy () (2.28)

len@ J=1

has to be evaluated. In order to speed up this computation the weights A, ;(1) =
Y e N TT v (1) are computed on the CPU per frame and sent to the GPU resul-
ting in the term

46

2.1. Rendering Techniques

BTF(x,v,1) &) Av;(Dhy,;(x). (2.29)

To perform view-interpolation different sets of eigen-textures have to be combined
resulting in an expensive combination:

BTF(x,v,)~) TUZA y (2.30)

PEN(v) Jj=1

Full BTF-Matrix Factorization

To evaluate equation 2.20 the factors g;(x) and h;(v,1) have to be evaluated, whe-
reas the factors g;(x) can be stored as simple 2D-textures and the factors h;(v,1)
as 4D-textures. But unfortunately neither 4D-textures nor their full interpolation
is currently supported by graphics hardware.

Therefore, Liu et al. [2004] store the factors h;(v,1) into stacks of 3D-textures.
The tri-linear filtering capabilities of graphics hardware now can be exploited to
interpolate the view direction and the polar angle of the light direction. The final
step for 4D filtering is performed manually by blending two, tri-linearly filtered
values with closest azimuth angles in light direction. As usually, the values of
h;(v,1) parameterized over the hemispheres of view and light directions have to
be resampled and reparameterized in order to be stored in textures. In order to
avoid the fragment shader’s online effort of calculating the reparameterized local
light and view directions, which are necessary for accessing the 3D-textures and
interpolation weights, the mapping is precomputed and stored in a cube map.

Per-Cluster Matrix Factorization

Apart from the additional cluster look-up, evaluating equation 2.22 is essentially
the same as evaluating 2.20. Hence the real-time rendering algorithm for equation
2.22 presented by Schneider [2004] is similar in style to the approach presented in
the previous section. He also stores the factors hyx) ; (v, 1) in stacks of 3D-textures
and accesses them through reparameterized local light and view directions. The
cluster index introduces an additional dependent texture look-up. Since existing
graphics boards only support hardware supported interpolation of fixed point va-
lues, every factor is quantized to 8-bit separately yielding scaling factors s ;. As
compensation the factors g;(x), which can be stored as floating-point values sin-
ce they require no interpolation, have to be divided by the corresponding scaling

47

Chapter 2. Background

factor s; .

Mipmapping the BTF can simply be implemented by executing the shader in-
structions twice (once for the currently best mipmap level and once for the next
best mipmap level) and interpolating the resulting colors. Bilinear, spatial inter-
polation is currently not supported, since the additional overhead is prohibitive.
Fortunately, hardware supported full-screen antialiasing can reduce potential arti-
facts significantly.

2.1.18 Interactive Rendering of BTFs with Distant Illuminati-
on

Relighting of BTFs with distant illumination is considered according to equation
2.27. Typically this distant illumination is represented by an environment map.
Such an environment map can either be computed by the graphics hardware or
captured from a natural environment by taking pictures (for example of a metallic
sphere) [Debevec & Malik 1997; Lightprobes 2005].

Parametric Reflectance Models

Combining parametric reflectance models for BTFs with image-based lighting
relies on the concept of prefiltered environment maps, which was first applied to
the diffuse reflection model by Miller and Hoffman [1984] and Greene [1986].
For a diffuse BTF with spatially varying reflection coefficients (BTF(x,v,1) =
pa(x)), equation 2.27 reduces to:

L.(x,v) = /pd(x)Li(l)(nz-l) dl

Q;

—) [LO)m, D
/
D(

= pa(x)D(n,). (2.31)
The prefiltered environment map D(x, n,) can be precomputed on the CPU, sto-
red in a cube texture map and used during rendering. Kautz and McCool [Kautz
& McCool 2000] extended the concept to isotropic BRDFs. Since for non-diffuse
cases the prefiltered result becomes view-dependent, they approximated equation
2.27 as follows:

48

2.1. Rendering Techniques

L.(x,v) = (n-p(x, V))/BTF(X,V,I)Li(l) dl (2.32)
Q;
~ (n;t : p(X, V)) S<X’ V) (233)

where p(x,v) denotes the peak direction, i.e. the light direction with maximum
influence on L,.(x, v). The accuracy of this approximation increases with the spe-
cularity of the spatially varying ABRDFs. With this assumption, the specular pre-
filtered environment S(x, v) can be computed analogously to the diffuse case.

McAllister et al. [2002] applied this concept to equation 2.12. The diffuse and
specular terms are considered individually resulting in two prefiltered environ-
ment maps: the diffuse Dy (n,) and a specular one, which is computed based on
the ideas of Kautz and McCool [Kautz & McCool 2000]. Note that whenever x
is written as index, it refers to instances discretely sampled in the spatial domain.
First, the peak direction

px(v) = v - Dy

of each lobe is computed. Then the specular illumination part (for ease of notation,
a 1-lobe approximation is assumed) is rewritten as follows:

Lax) % [pun () D™ LilD - Dl
Q;

~ pox - (g - pa(V) / (p(¥) - I'=Ly(1)

% P - (1 - () [P 1S (p(v),) (2.34)
with
_ Px(V) s
S(px(v),nx)—!(—||px(v)|| 1)™L;(1) dl (2.35)

7

S(p,n) denotes the specular prefiltered environment map.

Evaluating Approximation 2.34 can efficiently be done using fragment shaders by
first computing py(v), looking up the respective specular prefiltered value from a
cube map, evaluating the specular part and adding the diffuse contribution. Special

49

Chapter 2. Background

care has to be taken only concerning the specular exponent, which is represented
as discrete versions in S(p,n) only. One can either choose the closest exponent
or interpolate from the two closest ones.

Like for point-like sources, the continuity of the Lafortune lobes in the angular
domain requires additional interpolation in the spatial domain only. Again, gra-
phics hardware features like multisampling and MIP-mapping are employed for
this task.

Whereas the extension of this approach to the model of Daubert et al. [2001]
requires an additional evaluation of the visibility term only, extending it to the
reflectance function based model of Meseth et al. [Meseth et al. 2004b] requi-
res interpolation from the results of the reflectance functions corresponding to
the closest measured view directions. Nevertheless, all three approaches allow for
real-time rendering.

Bi-Scale Radiance Transfer

Precomputed Radiance Transfer (PRT), as originally introduced by Sloan et al.
[2002], is evaluated per vertex only and interpolated across the triangle. In a fol-
low up work, Sloan et al. [2003a] extended PRT to support also spatially varying
reflectance across the triangle. They projected the BTF per pixel and fixed view
direction onto the SH basis generating a Radiance Transfer Texture (RTT) which
now represents the per-view response of the material to the spherical harmonics
basis. To cover large geometry with the memory-intensive texture they used the
synthesis algorithm of Tong et al. [2002] to generate an ID-map over the mesh
which references into the RTT.

Generation of the RTT and the ID-map The generation of the RTT B(x, V)
is accomplished by projecting the BTF onto the first ¢ elements of the SH basis

{Yj}jen:
B(x,v); = / BTF(x,v,1)Y;(1)dl (2.36)
Q;

Thus, the RTT is a 4D-array of ¢ Spherical Harmonics coefficients (typically
c = 25).

The ID-map is generated using BTF synthesis over densely resampled geometry
called a meso-mesh. This step assigns every vertex an ID into the RTT. Then a
texture atlas for the original coarse mesh is generated and for every texel in this

50

2.1. Rendering Techniques

atlas the nearest vertex in the meso-mesh is found and the corresponding ID is
assigned to the texel.

Real-Time Rendering Standard PRT-rendering is performed per-vertex. That
means computation of a matrix-vector multiplication between the transfer matrix
and the incident lighting SH-coefficients. The resulting transferred lighting vector
is interpolated across the triangle. To compute exitant radiance per-fragment the
interpolated transferred lighting vector is dot multiplicated with the corresponding
vector in the RTT which is accessed by the ID map and the local view direction.
This is done in a fragment program. Each texel of the RTT is stored in an 8x8
texture block encoding the view dependence. This allows smooth bilinear inter-
polation across views using built-in hardware interpolation. Interpolation between
spatial samples is not performed.

Since the RTTs are not compressed, the method supports only sparse samplings.
They used 8x8 view-samples and 64x64 spatial samples which results in 643 * 25
SH-coefficients that have to be stored per color band.

Per-View Matrix Factorization

Sattler et al. [2003] also proposed a method to relight the per-view factorized
BTFs could by environment maps. The main idea is to discretize the integral in
equation 2.27 using a hemicube [Cohen & Greenberg 1985], which leads to

Lo(x,v) = > pu(v,) Hix (D) (ns -) (2.37)
leH;

A

where H; x denotes the discretized hemicube. H; ({) returns the color in the he-
micube over x at direction [or zero if the direction is occluded. The hemicube is
precomputed and stored in a visibility map as follows:

Hemicube Precomputation The hemicube H; stores a discretization of the
hemisphere at the vertex x. Figure 2.24 (left) shows an unfolded hemicube. Using
a color-coded environment map (Figure 2.24 middle) a look-up table into a high
dynamic range map (Figure 2.24 right) is created. This allows easy exchange of
the environment map. By rendering the geometry in white color into the hemicube
the visibility function is computed and self-shadowing can be supported. Since the
directions in the visibility map not necessarily correspond to the measured light
directions in the BTF, the map furthermore stores the four nearest measured light
directions and the corresponding interpolation weights.

A hemicube pixel now stores the following information:

51

Chapter 2. Background

Fig. 2.24: Hemicube computation. Visibility map (left) with rendered color-coded lookup envi-
ronment map (middle). White color in the visibility map stands for occlusion caused by
the mesh. On the right side a HDR environment is shown, which is mapped onto the
color-coded one.

e visibility of a pixel of the environment map and if it is visible, the position
of this pixel in the map

e four nearest measured directions with respect to the direction represented
by this pixel

e corresponding interpolation weights

Rendering algorithm Given the nearest measured view direction v at vertex x
and substituting the BRDF in equation 2.37 by the per-view factored BTF repre-
sentation including the foreshortening term yields the following sum:

L(x,v)~) (Z)\V7j(l)hv,j(x)) Hi (1) (2.38)
leH; \j=1

The factors Ay (1) are from equation 2.29. As in equation 2.28 the factors vy ; =

> 1en, Mv.j (1) Hix(1) are precomputed per vertex and sent to the GPU where the

final expression is evaluated:

Li(x,v) & Y Yvihy (%) (2.39)
j=1

which again is only a linear combination of basis textures. For view interpolation
the same calculations as in equation 2.30 have to be applied.

Since 7y ; is computed for all vertices x of the geometry a vector U holding all
Vx,v,j ¢an be introduced:

U = (Yxovo.ds -« s Vxovoucs - - -) (2.40)

This vector has do be calculated once per environment map and allows real-time
changes of the viewing position. A drawback of this method is, that changing the

52

2.1. Rendering Techniques

environment map and even a simple rotation implies a complete recalculation of
U. Depending on the visibility map resolution and the number of vertices, this
computation can take too long for interactive change of lighting. Reducing the
visibility map resolution adaptively to achieve interactive changing rates introdu-
ces under-sampling artifacts of the environment map during motion, which can be
compensated if the change stops, by using an adaptively higher resolution for the
visibility map.

Per-Cluster Matrix Factorization

In Section 2.1.18 the Bi-Scale Radiance Transfer method for image-based lighting
of models covered with uncompressed BTFs was reviewed. To remove the limi-
tation on the BTF resolution — both in the angular and spatial domain — Miiller et
al. [2004b] presented a combination of local PCA compressed BTFs with image
based lighting.

Data Representation Similar to Sloan et al. [2003a] they compute Radiance
Transfer Textures but encode them using the local PCA method [Kambhatla, N.
& Leen, T.K. 1997]. In addition, similar to Sloan et al. [2003b], they apply local
PCA to the transfer matrices of the mesh vertices. An approximate solution to
equation 2.24 can now be computed by the weighted sum of dot products between
the PCA-factors of the RTT and the transfer matrices.

Real-Time Rendering Since the dot products remain constant as long as only
the camera is moving in the scene (that is, neither the mesh nor the environment
nor the BTF is changing), they can efficiently be precomputed on the CPU and
afterwards be stored in a texture. Since precomputation and upload times of the
dot products do not allow interactive rendering for very high quality settings, the
number of RTT and transfer matrix components is reduced in dynamic situations.
These reductions in quality do not significantly influence the perceived quality of
the rendered results as long as high quality solutions are presented in static cases.

Like in Sloan et al. [2003b], rendering requires clusters of triangles to be rende-
red independently, where a triangle belongs to a certain cluster if at least one of
its vertices belongs to the respective clusters. This increases the rendering time
slightly but the overhead is negligible for smooth meshes.

Most rendering power is spent in the fragment program which computes the weigh-
ted sum. Interpolation of the angular domain of the BTF can be achieved by stan-

53

Chapter 2. Background

dard filtering features, spatial interpolation and filtering can be achieved using
standard multisampling and MIP-mapping of the BTF.

Discussion

Almost all real-time BTF rendering methods pose a great challenge to the cur-
rent graphics boards and the performance differences vary greatly depending on
the board and driver versions. Therefore, a rigorous comparison of the different
rendering methods using for example frame-rates seems currently not possible.
Instead, some general hardware-independent properties of the algorithms are gi-
ven now, which might help judging the strengths and weaknesses of the methods.

The method of McAllister et al. [2002] is mainly suited for nearly flat and specu-
lar materials with spatially varying reflection properties. Since it only uses slightly
more memory than ordinary diffuse textures and can be rendered fast, it fits into
current rendering systems. This is not true for the methods which use additio-
nal data to capture also depth-varying BTFs such as [Daubert et al. 2001; Meseth
et al. 2004b; Filip & Haindl 2004]. Their memory consumption and increased ren-
dering cost restricts them to special domains and as pointed out in Section 2.1.10
the visual quality of the used analytical models still remains questionable.

Far better visual quality is offered by the methods based on matrix factorization.
But using PCA alone as done by Liu et al. [2004] is only real-time for very few
terms, and thus only applicable for simple materials. Therefore, a segmentation of
the data into subsets may be necessary. Using a segmentation per fixed view direc-
tion as done by Sattler et al. [2003] provides excellent visual quality but requires
too much texture memory to be used in complex scenes with many materials. Spa-
tial clustering as in the method of Mueller et al. [2003] or [Suykens ef al. 2003]
reduces the memory requirements drastically while retaining high-quality but the-
se methods face the not sufficiently solved problem of spatial interpolation and
Mip-Mapping. This can result in decreased quality for texture magnification and
minification. A problem of all matrix factorization based methods is the required
random access to many textures, which can form a bottleneck on current graphics
architectures.

2.1.19 Hierarchy

Object detail varies at many scales, as it is shown in Figure 2.25. Three main
distinctions are commonly made: macroscopic, mesoscopic and microscopic. The
figure shows a slightly modified version of the hierarchy of detail as introduced in
[House & Breen 2000].

54

2.1. Rendering Techniques

Macroscopic

geometry shape

__________ displacement e e e e e e e e

Mesoscopic map

————————————————————————————————— BTF - material

BRDF

Fig. 2.25: Hierarchy of object details.

Starting at the coarsest (macroscopic) scale, the main geometry defines the sha-
pe of the object. Additional geometric details might be generated on the fly by
2D displacement maps (see Section 2.10). At the next finer level (mesoscopic),
material surface properties come into effect. Besides the displacement maps, no
explicit geometry is present at this level and all information is commonly stored
in image textures. The simplest form is the 2D bump or normal map (see Sec-
tion 2.10), which only alters per-pixel normals. In contrast to this, the 6D BTF
(bidirectional texture function) (see Section2.1.6) stores on the one side subpixel
surface-variant BRDF information, but also includes mesoscopic details, like self-
occlusion in the material, interreflections, subsurface-scattering effects and so on.

At the finest level (microscopic), surface variations are subpixel. For uniform ma-
terials, the reflection properties can be described by the 4D BRDF (bidirectional
reflectance distribution function) (see Section 2.1.7). or 6D SBRDF for surface
variant BRDFs. The SBRDF is comparable to the BTF, while not capturing cer-
tain effects like self-shadowing in the material.

More advanced reflection functions, which include for instance subsurface scatte-
ring are shown in the overview chart in Figure 2.6.

55

Chapter 2. Background

2.1.20 Radiance Data

Real world radiance data, as for example shown in Figure 2.28 covers a large range
of radiances values or exposures differences. If all radiance values are mapped
into the RGB space, Table 2.5 shows the large difference between the average
pixel values and the brightest spot at the location of the sun.

Fig. 2.26: Real world radiance data example.

| [_R[6| B
o | 13] 12] 10
sun|2648.0[3640.0]2280.0

Tab. 2.5: Real world radiance data example values.

Therefore, the dynamic range D is defined as the ratio of the highest (lightest)
signal I, to the lowest (darkest) signal /,,;,.

D= log—Irmax (2.41)
min

There are several stages between the real-world radiance data and the output de-
vice, as illustrated in Figure 2.27.
In case of radiance data, beginning on the left side with real-world data, some sort
of capture device (for example a laser scanner or a digital camera) is used to mea-
sure the data. Therefore, the analog signal is commonly converted into a digital
one and further processed and stored in a specific internal data format. In the end,

56

2.1. Rendering Techniques

real-world — 3 |measurement | __, | internal data | —____ | output device
radiance data device format

A/D internal tone

conversion conversion mapping

Fig. 2.27: Radiance data processing pipeline.

tone mapping (details are further down) is used to transfer the data to an output
device (usually a monitor or TFT). Of course the measured data can be any kind
of signal, for example sounds.

Due to the several stages of processing, it is important to clarify in which stage
the specific data is used.

There exist a vast range of applications in computer graphics, where HDR data
is necessary or will drastically enhance the visual quality. A list of applications

might include the following:

e physically-based visualization

special effects for movies or commercials

digital film and compositing

human vision and psychophysics

remote sensing

In computer graphics, High Dynamic Range Imaging (HDRI) is the synonym for
digital images with far greater dynamic range of exposures than normal (low dy-
namic range (LDR)) images. It is customary, that more than 8-bit information per
usable channel is called HDR. That corresponds to a contrast ration of 255:1, in
contrast to real-world values up to 100.000:1 for sunlit scenes or scenes with shiny
material reflections. The 8-bit limitation is based on the historical fact, that most
displays or printed media are limited at their capabilities by their very nature. For-
tunately, HDR display begin to emerge [Seetzen et al. 2004].

There exist several formats to store HDR data. Ward and Shakespeare [1998] first
introduced the radiance format. Amongst others, common formats are:

e Radiance RGBE Encoding

57

Chapter 2. Background

e PIXAR Log Encoding

e SGI LogLuv

e ILM OpenEXR [OpenEXR 2006]
e Microsoft/HP scRGB Encoding

These formats differ in the orders of magnitude, that is the dynamic range, they
cover and therefore their accuracy in which the original data is maintained. Due
to the properties of the human visual system, which is capable to distinguish lu-
minance in a range of 10.000:1 in a single view, most often 16-bit (half precision)
or 32-bit floating point numbers are used to represent HDR data.

Other mile stone publications in computer graphics regarding HDR usage include
[Debevec & Malik 1997; Debevec 1998; Debevec et al. 2003]. A common tech-
nique to capture HDR scenes with LDR devices, like consumer digital cameras is
to photograph a specific scenes with different exposure levels and using calibrati-
on data and the response curve of the camera to combine all LDR images into a
single HDR one (see also [HDRShop 2005]).

Display of Radiance Values

The raw radiance data has to be fitted to a certain limited luminance range of the
output device, which in most cases is a LDR one. The process of fitting the data to
the screen gamut, that is a subset of colors, which can be accurately represented,
is called tone mapping.

There exist several different mapping operators which can be roughly divided into
the following groups [Debevec et al. 2004; Meseth et al. 2004a]:

e based on image formation

— frequency-based

— gradient-domain
e based on human vision

— global operators
— local operators
Here, depending on the desired output, the complexity of the operator will change.

For several applications (for example gaming), also real-time performance is de-
sired.

58

2.1. Rendering Techniques

Another, historical enforced technique to display radiance values, is gamma cor-
rection. Due to the nonlinear relationship between the voltage input and the light
output of a Cathode-Ray Tube (CRT) (see also [Akenine-Moller & Haines 2002]),
each color value has to be adjusted accordingly to match the perceived brightness:

c=cl (2.42)

)

where ¢; is the input color and 7 is device specific (for example 2.3-2.6).

2.1.21 Illumination

Scene illumination is a key element for rendering realistic images. In a nutshell:
illumination calculation is visibility determination

That is, the algorithm has to determine, whether a specific point in space is visible
(and being lit) by parts of or the complete light source, or not (and lies in shadow).

In addition to that:
illumination calculation is relative position in space determination

That is, the algorithm has to determine the relative positions in space of the light
source and the receiver to each other. This is necessary to be able to apply the
correct illumination or shading model (see also Section 2.1.4 and 2.1.8).

To accomplish this task efficiently it is common to use some approximations. On
the one hand the usable type of light source may be limited or as with some of the
shading models, visibility determination is skipped completely.

Light Source Types

Several light source types exist in computer graphics:
e point light sources
e directional light sources

e area or extended light sources

59

Chapter 2. Background

Point or directional light sources are the simplest form of light sources imagina-
ble. Defined only by a position or direction in space, they are most suitable for
simple ray geometry calculations. In addition and based on the OpenGL standard,
shading operations with them are hardware-supported. On the other hand they ha-
ve no real-world counterpart and therefore it is hard to achieve visual pleasing
results using only this type of light source.

Area or extended light sources closely resemble real-world lighting. On the other
hand, while not directly hardware-supported, algorithms which can handle this
type of light sources are usually hard to perform due to their computational com-
plexity if both, visibility and position determination are done for all parts of the
light source.

Environment Illumination

Environment or reflection mapping as introduced by Blinn and Newell [1976] is
a technique to approximative generate reflections of the environment on a curved
surface. It is based on computation of a reflection vector and a transformation into
spherical coordinates.

Miller and Hoffmann [1984] introduced sphere mapping. Here, the environment
is stored in a perfectly reflective sphere, the light probe. An example of this is
shown in Figure 2.28.

Fig. 2.28: High-dynamic range assembly with LDR images.

The measurement and processing of environment illumination is illustrated in Fi-
gure 2.28 and 2.29. The probe is used to capture the illumination at a specific
point. Using multiple exposure times, HDR data can be generated. With a program

60

2.1. Rendering Techniques

like HDRshop [HDRShop 2005] the images can be transformed and integrated in-
to a so called cube map.

In contrast the original environment mapping, Greene [1986] uses a cubic en-
vironment map. An example is shown in Figure 2.29. The creation process and
storage is far easier than the original method and it is well suitable for hardware
acceleration.

Fig. 2.29: Illumination stored in a cubic environment map.

As an variation on sphere mapping, paraboloid mapping was proposed by Hei-
drich and Seidel [1998]. Here, two paraboloids are used to store the reflections
of the environment. As an advantage, this method generates no singularity and
reflection interpolation is possible. Therefore, it is view-independent and can also
be hardware-supported.

More details about the discussed methods can be found for example in [Akenine-
Moller & Haines 2002].

61

Chapter 2. Background

2.2 Geometry Processing Techniques

This section briefly describes the geometry processing techniques Mesh Simplifi-
cation and the Level of Detail concept, which are used in Section 4.2.1 (Shadows:
Perception) and Silhouette Edge Detection used throughout Chapter 4 (Shadows).

2.2.1 Mesh Simplification

The main goal of polygonal mesh simplification is the generation of a new mesh
M,,_1 containing less geometry, than the original mesh M,,, while resembling a
similar appearance. This procedure is carried out until the coarsest mesh M.

edge collapse

vertex split

Fig. 2.30: Mesh simplification through edge collapse and the reverse operation vertex split.

Several simplification operators exist, which allow the geometry reduction. The
well known edge collapse and its reverse operation vertex split are illustrated in
figure 2.30. The edge uv of the mesh M,, is collapsed into the point v, thereby
removing the shown triangles A and B and resulting in mesh M,,_;.

The vertex merge operator is shown in figure 2.31. The two vertices vy and v, are
merged into a single new one vs.

In addition to this, Borodin et al. [2003] have produced high-quality results by
combining generalized pair contractions and extension of the vertex merge opera-
tion. In 2005, the computationally expensive dense regular sampling was replaced
with a significantly faster adaptive sampling method by Guthe et al. [2005].

Although through the usage of the simplification operators the geometry is re-
duced, the quality of such an operation has to be determined. That is, the error

62

2.2. Geometry Processing Techniques

vertex merge

ERR)

Fig. 2.31: Mesh simplification through vertex merge.

introduced by the operation is measured and compared against other errors in-
troduced by alternative operations. All possible local operations are performed
virtually and each error is determined. The operation with the least error compa-
red to the allowed error is chosen. Several error measurements exist, using metrics
based on viewer position, object features, object volumes etc. The complexity of
the chosen error measurement significantly influences the processing speed.

As a measurement criterium for the simplification, the Hausdorff!-Error can be
used. The Hausdorff-Error describes the geometrical distance between the origi-
nal and the simplified mesh and vice versa. Klein et al. [1996] first used it to
control the simplification.

For further reading, [Puppo & Scopigno 1997] and Luebke et al. [2001] give a
detailed review of simplification algorithms and links to relevant literature.

The reverse process of simplification is called refinement as also shown in Figure
2.30 as vertex split. Different subdivision schemes exit, for example [Loop 1987].

2.2.2 Level of Detail

Using the above techniques for mesh simplification, several Leve! of Details (LODs)
can be generated out of a given object. That is, several versions of a geometric ob-
ject with decreasing number of faces and vertices.

An example is illustrated in Figure 2.32. Here, the top row shows the Stanford
Bunny in the original (70k faces) and simplified versions (2k and 0.2k faces) as
wireframe renderings. The middle row shows the shaded versions.

Felix Haussdorff, mathematician

63

Chapter 2. Background

The bottom row shows the common usage of several LODs. Assuming that the
objects moves away from the user, it is possible to use increasing LOD without
loosing the visual appearance of the object. On the other hand, rendering speed is
increased, because of the lower number of geometry to be drawn and shaded.

556

\ /

Fig. 2.32: Example for a LOD generation.

2.2.3 Silhouette Edge Detection

Silhouette detection in a rendered image is needed in different areas of computer
graphics. Non-Photorealistic Rendering (NPR) for example makes heavy use of
silhouettes and also some shadow rendering algorithms need the detection of sil-
houettes (Shadow Volumes, see 2.4.1).

64

2.2. Geometry Processing Techniques

To detect silhouette edges, two main approaches exist. The image based approach
renders the geometry in such a way, that the silhouettes fall out during rendering,
for example through efficient rendering of front -and backfacing polygons.

Another image based approach is to analyze the image after it is rendered. The ex-
traction of the silhouettes (which is done like edge detection) can be supported by
the rendering, for example via depth images, color coding, object-IDs or special
shading. This kind of approach can easily be done within a shader program (see
2.3.3) on the GPU. Using image based approaches, most of the time no geometri-
cal information about the silhouette edges is available.

The second group tries to find all edges geometrically, that is object based. Whi-
le this approach might involve a significant computational load, it gives the most
flexibility in how silhouettes are handled after detection.

Assuming a polygonal model with adjacency information, silhouette edges are
defined as follows.

\E

Fig. 2.33: Silhouette edge (red line) from vs to v, with adjacent faces A and B.

As shown in Figure 2.33 the two triangles A and B with the face normals n 4
and np respectively, share the edge vov,. This edge is a silhouette edge, if the
two normals face different directions in respect to a defined viewer position (to-
wards/away from the viewer).

Per definition, border edges, that are edges which are only belong to one single
triangle, are also silhouette edges.

65

Chapter 2. Background

The brute force way, that is to check every edge every frame the viewer position is
changed, might be very time consuming. Markosian et al. [1997] have proposed a
method to speed up this process. They mainly use frame-to-frame coherence and
a statistical approach to detect most of the silhouette edges fast. Other methods
propose to use simplified versions of the original mesh to do the detection process
[Kirsanov et al. 2003]. The center image in Figure 2.34 illustrates the brute force
way.

The detection process can also be ported directly onto the GPU as shown for
example in [Brabec & Seidel 2003; McGuire & Hughes 2004]. One possibility
to detect the silhouette edges is shown on the left image in Figure 2.34. Here,
hardware supported Occlusion Queries (2.3.4) are used to determine visibility of
triangles, therefore automatically detect also the silhouette edges.

Fig. 2.34: Silhouette Edge Detection example for the dragon model.

For further reading, a good overview article is Isenberg et al. [2003].

66

2.3. Graphics Hardware

2.3 Graphics Hardware

2.3.1 Opverview

The evolution of computer graphics hardware started back in the beginning of the
sixties. The first graphic output devices were called vector displays. They simply
stored point- and line-plotting commands, which were interpreted by a vector ge-
nerator, which finally modified an electron beam accordingly for the direct screen
output. In 1963, Sketchpad was introduced by Sutherland [1963]. Using a light
pen device, interactive design with a vector display was possible.

In the mid 80°s the Video Graphics Array (VGA) card was invented at IBM. With
the decrease of memory prizes, these raster displays showed up. The drawing
commands now were interpreted and converted into a raster, which simply was a
piece of memory. Therefore, the term rasterization was born. The memory, called
display buffer, was arranged in form of a matrix. The matrix cells represented the
entire visible screen and were scanned out sequentially by a video controller befo-
re the output on a screen. The matrix cells were called picture elements or pixels.
At this time, Silicon Graphics (SGI) workstations that supported real-time raster
line drawing were state-of-the-art.

At the beginning of the 90°s of the last century, specialist hardware from SGI
had 24-bit raster display and hardware support for interpolated Gouraud shading
and depth buffers (2.3.2). Due to the difficulties with different hardware types and
their Application Programming Interfaces (APIs) and the time consuming pro-
gramming process, a standard programming interface emerged in 1992.

Based on SGI’s IrisGL, the Open Graphics Language [OpenGL 2005] API was
created by the Architecture Review Board (ARB), a network of hardware and soft-
ware manufacturers led by SGI. In contrast to its predecessor, OpenGL does not
rely on any hardware support of its functions. Therefore, as long as the code is
written against the specification, the program will run on any graphics card with
OpenGL support, regardless if it provides hardware or software driver support for
the used function.

As stated in [Neider et al. 1997], “OpenGL is really a hardware-independent spe-
cification of a programming interface. You use a particular implementation of it
on a particular kind of hardware.”

In 1995, Microsoft released his own API, called D3D, which later was renamed
into DirectX. DirectX does not only include graphics, but also standards for sound

67

Chapter 2. Background

or network programming and input devices. It does only work with the Windows
operating system.

Beginning with this year and the success of the personal computer in the mass
market, the first graphic accelerator cards emerged. The growing game and enter-
tainment market was the driving power behind development since then, culmina-
ting in a new hardware generation each six months in nowadays.

The evolution is closely related to Figure 2.35, showing the general graphics pi-
peline. This pipeline is mainly based on the internal OpenGL rendering pipeline.
The first graphic cards only integrated parts of the rasterization stage on the hard-
ware. 3Dfx (now part of NVidia) and their Voodoo 2 card were the first to have
the complete triangle setup on the card. While the first cards only supported nati-
ve APIs, the RIVA chipset by NVidia was the first one to fully support OpenGL.
Parts of the transform & lighting stage (T&L) first appeared in 1999 on a graphics
chip in form of the GeForce 256 by NVidia.

Since then, graphics memory sizes increased and more and more functionality
made it onto the graphics board. Along with this, several extensions were inven-
ted by the major manufactures and in parts also integrated into the OpenGL and
DirectX specifications. That is, the APIs and the hardware influenced each other
in their evolution.

2.3.2 Architecture

Figure 2.35 shows the general architecture of a state-of-the-art graphics proces-
sing unit (GPU) and its relation to the central processing unit (CPU). GPUs are
highly parallel streaming processors optimized for vector operations, with both
MIMD (multiple instructions multiple data) and SIMD (single instruction multi-
ple data) pipelines in the vertex and in the rasterization part, respectively.

The memory bus between the CPU and the GPU is one of the possible bottlen-
ecks of a graphics application. Depending on the used algorithm, data has to be
processed on the CPU first, before it could be sent to the GPU. If this data amount
is too large, the application might be bus width limited.

The GPU itself is mainly split up into two processing stages. The first is the Geo-
metry Processing stage. The second is the Rasterization stage. The hardware is op-
timized for serial data flow and the processing of huge amounts of simple shaded
primitives (for example triangles). There exist possibilities to send data against
the pipeline or back to the CPU, but this normally involves the loss of speed. Each

68

2.3. Graphics Hardware

-_— o . -y

Geometry

Processing High Order Surface

Tessellation

Fixed Function

Transform & Lighting Vertex Data

Backface Culling

Clipping
Viewport Transform

Rasterization

Texture Data

Occlusion Query

Frame Buffer

Fig. 2.35: Graphics pipeline overview.

69

Chapter 2. Background

stage has access to certain areas of memory, namely vertex data and texture data
to store intermediate results or data from the CPU.

Main purpose of the first stage is to calculate the transform and lighting (T&L)
aspects of the primitives. That is, to geometrically orientate the vertices of the
primitives in space and do vertex based lighting calculations. There are special
functions available to tesselate high order surfaces like Bezier Surfaces on the fly
from control points first.

To reduce the computational load in the later stage, basic visibility calculations
are also performed. All surfaces which point away from the viewer are culled and
all surfaces which lie outside the visible screen space are clipped. Finally, to map
the scene onto the used window size, viewport transformation is used.

In the second stage, the mapping of the remains of the geometry into the display
buffer is performed. This is done via the triangle setup. Here, the rasterization
generates so-called fragments out of the geometry data. At this point, it is not cle-
ar if the fragment finally gets rendered on the screen to become a pixel, because
several following stages, for example the visibility test, can kill the fragment.

To further enhance visual quality of the fragment, it can be textured, filtered and
blended with several functions defined by the OpenGL API.

The next substage is the addition of fog blending. Due to performance reasons,
graphic applications tend to limit the distance the viewer could look at. Therefore,
all parts of the scene which are further away, will be covered by distance fog and
not be rendered.

The last stage before writing the fragment as a pixel into the frame buffer (see
Section 2.3.2), is the visibility test. Here, the depth value of the fragment is com-
pared to the existing depth value in the depth buffer, which is explained in Section
2.3.2.

After the visibility test is passed the fragment finally becomes a pixel. This infor-
mation can be efficiently read back by an occlusion query, which is described in
detail in section 2.3.4.

Most substages are optional along the pipeline and can be switched on or off du-
ring rendering, allowing for speed up certain algorithms. Some stages (fixed func-
tions) can completely be replaced by programmable shaders (see Section 2.3.3).

70

2.3. Graphics Hardware

Modern graphics cards also integrate several rendering pipelines. This means,
parts of the rasterization stage are performed in parallel on several fragments at
once.

The future of graphic cards will definitely be an enhanced programmability. That
is, all parts of both stages will be completely reprogrammable. In addition, the two
main stages might be merged together to allow for completely new algorithms to
be implemented entirely on the GPU. Therefore, an efficient memory and pipeline
management will be the greatest challenge for the engineers.

Frame Buffer

Color Buffer

Depth Buffer

Stencil Buffer

Accumulation Buffer

Fig. 2.36: Frame buffer organization.

The frame buffer (see also Figure 2.35) itself consists out of four main parts, as
shown in Figure 2.36. These parts are called buffers and each buffer is organized
as a 2-dimensional matrix. The size of the buffers is only limited by the available
graphics memory, but is at least as large as the screen resolution to be displayed
[Neider et al. 1997].

The color buffer is the most important one. For each pixel it stores four 8-bit va-
lues, which are called RGBA. This stands for Red, Green, Blue and Alpha. The
first three values simply represent the color of the pixel, the last is commonly
used as a transparency value. To allow for flicker-free animation double buffering
is used. That is, two color buffers (front and back) are switched each frame. One
is used for display, and the other is used for writing the new image. For stereo
display this method is extended to quad buffering, which is simply the addition of
two more buffers (left and right).

71

Chapter 2. Background

The depth buffer, which often is also called Z-buffer, contains depth information
for each pixel position. Depth is usually measured in terms of distance to the view-
ing position. Smaller values will overwrite larger ones. That is, after rendering the
depth buffer contains pixel-wise information to the closest objects in respect to
the viewer. Using the so called depth-test operation, these values can for example
be used to control further rendering.

The stencil buffer is used for masking. It contains 1-bit values for each pixel po-
sition, which are used to allow or restrict writing color information into the color
buffer for the specific position. This can be used to prevent certain screen areas
from overwriting.

The last buffer is the accumulation buffer. It is organized similar to the color
buffer, containing RGBA values. The main purpose is to accumulate a series of
images into one final one. This feature can be used for certain post-processing ef-
fects like motion-blur or anti-aliasing. Direct writing is not possible, only copying
between the accumulation and the color buffer.

2.3.3 Shader Programming

With the emerge of new generations of graphics hardware since the beginning of
the new millennium, the programmability increased in large steps. As illustrated
in Figure 2.35, the fixed function parts in Geometry Processing and Rasterization
are replaceable by so called shaders (colored in red). These shaders are opera-
ted by little shader programs, consisting out of a certain set of basic instructions,
which are executed each time the stages are passed.

varying vec3 normal;

varying vec3 vertex-to_light_vector;

void main ()
/! Defining The Material Colors
const vec4 AmbientColor = vec4 (0.1, 0.0, 0.0, 1.0);
const vec4 DiffuseColor = vec4 (1.0, 0.0, 0.0, 1.0);
/! Scaling The Input Vector To Length 1
vec3 normalized_normal = normalize (normal);

vec3 normalized_vertex_-to_light_vector = normalize(vertex_-to_light_vector);

// Calculating The Diffuse Term And Clamping It To [0:1]
float DiffuseTerm = clamp(dot(normal, vertex-to_light_vector), 0.0, 1.0);

// Calculating The Final Color
gl_FragColor = AmbientColor + DiffuseColor % DiffuseTerm;

Listing 2.1: example GLSL Fragment Shader

72

2.3. Graphics Hardware

The shading languages are similar to the C programming language [Rost 2004],
supporting loops and branching, including if, else, if/else, for, do-while, break,
continue, etc. Listing 2.1 shows an example fragment shader for simple lighting
computation. Using the ARB_fragment_shader extension [OSS 2005], this shader
is loaded onto the graphics card.

The most used representatives of shading languages are GLSL (Graphics Library
Shading Language) [GLSL 2006] and CG by NVidia [CG 2006]. By now, GLSL
is included into the OpenGL 2.0 core. Benefits of using GLSL are its cross plat-
form compatibility on multiple operating systems and cross hardware platform
compatibility on any card which supports GLSL. In addition, each hardware ma-
nufacturer can exploit optimized code for their particular graphics cards architec-
ture in the driver.

A kind of predecessor to the high level languages were the shader programs, which
were used with the ARB_fragment_program extension [OSS 2005]. An example is
shown in Listing 2.2. The programs are simple text files, containing assembly-like
instructions like MUL (multiply) or TEX (texture lookup). Coding and debugging
these programs is time-consuming, therefore the new shading languages described
above are going to replace this kind of graphic card programming.

— OV AW —

! ARBfp1.0
texturing with HDR environment

OUTPUT output=result.color;
TEMP component00 ;

TEX component00 , fragment.texcoord [0],texture [0],2D;
MUL component00 , fragment.texcoord[1],component00;

MUL output , fragment.texcoord[2].x,component00;
END

Listing 2.2: example pixel shader code

2.3.4 Occlusion Queries

Occlusion Queries were first proposed by HP [OSS 2005], to be integrated into
OpenGL. As shown in Figure 2.35 they provide a way to get information from
the GPU back to the CPU after all stages of the rendering pipeline. Their typical
usage is for visibility testing and culling.

The first version of occlusion queries worked the following way. First, an occlu-
sion query counter is switched on, then geometry is rendered. After the counter is
switched off, a boolean flag is send back to the CPU, stating if the depth buffer

73

Chapter 2. Background

was modified during the rendering, that is if the geometry was rendered at all.

Therefore, if a complex scene is present, efficient culling is possible. A bounding
box of a certain part of the geometry is rendered first. If the query test fails, all
geometry inside the box is skipped. Several algorithms use this form of occlusion
queries, for example [Staneker et al. 2003; Staneker 2003; Bittner ef al. 2004].

The HP version of the query uses a stop-and-wait execution model. That is, it is
not capable of doing multiple tests in parallel. Therefore, the latest OpenGL versi-
on of the occlusion query [OSS 2005] now provides two improvements. First, not
only a boolean information is sent back, but the exact number of rendered pixels.
And second, it is now possible to issue several queries at once and exploit the
parallelism between CPU and GPU.

Other examples for the usage of occlusion queries are Order Independent Trans-
parency (OIT) [Rege 2002] or shadow calculations [Sattler et al. 2004a] (see also
Section 4.4.1).

74

2.4. Shadows

2.4 Shadows

While in nature shadows are simply the absence of light (photons), in computer
graphics calculating shadows is commonly a hard problem.

In essence, all shadow algorithms are visible-surface detection algorithms. That
is, they somehow calculate, whether a surface point has a direct line-of-sight to a
light source. If multiple light sources are present, the classification must be done
relative to each of them. Those points, which have none direct light-of-sight are
in complete shadow.

Photon Mapping as described in [Jensen 2001] is one of the techniques, which
comes closest to the physical understanding of light transport by calculating paths
of a vast amount of virtual photons through the scene. This approach is time con-
suming and requires efficient memory handling.

Mainly three parts are concerned, when calculating shadows. At first, the light
source itself, which illuminates the scene. The emitted light first hits the occluder,
which blocks this light from hitting the receiver. Occluders and receivers can be
different objects or fragments of objects down to geometric primitives. Of course
it is possible, that a receiver is the occluder relative for another receiver.

But due to close relation of computer graphics to mathematics, two sorts of light
sources are considered. Point light sources are treated as infinitesimal small points
in space emitting light. Compared to the real world, they have no direction equi-
valent and have to be considered as infinite distant directional light sources. On
the other hand, calculations can be done very quickly and depending on the used
scene resolution, point light sources can be a reasonable approximation.

In contrast to this, area or extended light sources resemble real-world light sources
like torches, light bulbs or the sun. While this light source type produces realistic
shadows, no direct hardware support is available and computational complex al-
gorithms have to be used.

Therefore, depending on the used type of light source, two main shadow types
exist, as illustrated in Figure 2.37. The first, hard shadow, is cast by point light
sources (right image), while the second, soft shadow, is cast by area light sources
(left image). The latter is explained in Section 2.4.3. Regions, which are complete
in shadow, are the shadow s umbra, while regions which are only partially shado-
wed are the shadow’s penumbra.

75

Chapter 2. Background

Lightsource Lightsource

A
3
AN
Al
™
A
\

Object--..

Object--..

-~ Receiver =

- Umbra
|:| Penumbra

Fig. 2.37: Shadows cast by different light source types. Right: point light source. Left: extended
light source.

The common graphics hardware pipeline is optimized to render a lot of simple
shaded triangles fast (see Section 2.3) and has no direct support for visibility de-
termination. Therefore, a lot of the approaches originated on the CPU and were
not ported onto the GPU until the emerge of programmable shaders (see 2.3.3).
In the following, the most common techniques to generate these shadows in com-
puter graphics are described.

2.4.1 Shadow Volumes

A classic way to compute shadows for point light sources are shadow volumes as
introduced by Crow [1977].

The main idea is illustrated in Figure 2.38. Beginning with a point (light source)
and a blocker object (triangle), a truncated infinite pyramid is constructed (grey),
which is called shadow volume. All points within this volume are obviously in
shadow.

To evaluate, whether an arbitrary point in the scene is within the volume, a ray
from the observer to this point is traced. If the ray enters a shadow volume a coun-
ter is incremented. If the ray leaves a volume, the same counter is decremented.
This is done until the point is reached. If the counter is zero the point is not in
shadow, otherwise it is. This process is called the z-pass algorithm and illustrated
in Figure 2.39.

For each of the blocking objects shadow volumes have to be constructed. If there
is more then one light source, this process has to be repeated accordingly.

76

2.4. Shadows

Lightsource
»A

Shadow
Volume
Object

Fig. 2.38: Generating the shadow volume.

The shadow volume is defined by the position of the light source and bounded by
a set of shadow polygons. Each of the quadrilateral shadow polygons is attached
to one silhouette edges (see 2.2.3), which is found in respect to the light source.
Therefore, if the light source is moving, the shadow volume has to be recalculated,
that is, the new silhouette edges have to be detected.

Doing the counting geometrically is time-consuming. A smart solution is the usa-
ge of the stencil buffer (see 2.3.2) as proposed in [Heidmann 1991] or other buffers
for the counting. Here, the shadow polygons are rendered into the buffer, which is
adjusted automatically.

A major problem with the z-pass algorithm is the position of the observer. If the
observer is within a shadow volume, that is, if the counting starts within a sha-
dow volume, the result will be wrong. For correction, the fact that the observer is
within a volume has to be known beforehand. Another problem is introduced by
the near clipping plane of the viewing frustum used for rendering, which might
intersect with one of the shadow polygons.

Bilodeau and Songy [1999] presented an alternate approach, later called z-fail,

77

Chapter 2. Background

Shadow
Volumes

Lightsource

Objects =

Fig. 2.39: Shadow volumes in side view; z-pass algorithm.

which is illustrated in Figure 2.40 to cope with these problems. The main idea
is to close the infinite shadow volumes with endcaps and reverse the direction of
counting, that is counting from outside in the direction of the viewer. Thus, the
position of the viewer can not lead to wrong results.

The algorithm has several advantages. Because it is not image, but object based,
it produces sharp shadow boundaries and has no aliasing artifacts. It also only re-
quires a counter buffer (stencil buffer), which might even be hardware supported.

On the other hand, some disadvantages are also presented. Because of the limitati-
on of the stencil buffer size, semitransparent objects can not be handled correctly.
To reduce the complexity of the shadow volume computation, silhouette edge de-
tection is needed. Even with this reduction, a major performance problem is the
fill rate limitation of the algorithm. All shadow polygons have to be draw into
the stencil buffer. An approach to reduce this, can be found in [Aila & Akenine-
Moller 2004]. Independent of these limitations, several newer game engines use
this technique [UNR 2006; ID 2006].

For further reading and hardware implementation details [Akenine-Moller & Hai-
nes 2002; Everitt & Kilgard 2002; Brabec & Seidel 2003] are recommended.

78

2.4. Shadows

Shadow
Volumes

Lightsource
Ag

Objects o

Fig. 2.40: Shadow volumes in side view; z-fail algorithm.

2.4.2 Shadow Maps

Shadow volumes as mentioned above have the main disadvantage, that the com-
putational load scales with the scene complexity. In contrast to this, Williams
[1978] proposed to use the Z-buffer or depth buffer (see 2.3.2) to generate sha-
dows quickly on arbitrary objects and scene independent. The 2-pass algorithm
works in image space and is described in the following.

First, the scene is rendered from the view of the light source L(zj, v}, 2{) into the
depth buffer as shown in Figure 2.41. This results in a depth map (often called
shadow map), which contains the distance of each object closest to the light sour-
ce for each pixel. That is, the distances La; and Lb; are written at the positions a
and 0 in the depth map, respectively.

The resulting light view and the depth buffer is shown in Figure 2.43 in the left
and center image. Here, dark means closer to the viewer. The images were created
with the NVIDIA shadow map demo [NVD 2006].

79

Chapter 2. Background

L(X0:Y 0:Z o)

< >

Lightsource
vAg

Depth map

Fig. 2.41: Shadow map algorithm, first pass.

Lightsource S
9 VAVL(X oY 0Zo)

Viewer

V(X4,Y0:Zp)

Fig. 2.42: Shadow map algorithm, second pass.

80

2.4. Shadows

Now, the scene is rendered from the viewing position V' (g, 4o, z0) as shown in
Figure 2.42. While rendering, the position of each fragment is projected into the
local coordinate system of the light source (V' — L). The projected z-value is
now compared to the corresponding value stored in the shadow map. If the rende-
red fragment is farther away from L than the stored value, the point is in shadow,
otherwise it is not and the final image can be rendered (see right image in Figure
2.43). For example, the distance of the projected point by (L_b’Q) is larger than the
depth value stored at b in the depth map (Lb,), therefore b, is in shadow.

Fig. 2.43: Shadow map algorithm examples; Left: light view; Center: depth map; Right: eye
view.

To speed up the complete process, texture mapping hardware was exploited by
Segal et al. [1992] and the projection process is also hardware-supported with the
ARB _shadow extension [OSS 2005].

The shadow map algorithm with its image-based nature naturally implies two ma-
jor drawbacks, aliasing artifacts and incorrect self-shadowing. Fortunately, there
exist some algorithms to cope with each of them.

The resolution of the depth map usually is fixed to a certain size. Due to the per-
spective view onto the scene, closer objects are larger, than objects which are
farther away. This is not regarded by the shadow map. Therefore, Perspective
Aliasing occurs. That is, near the camera, the shadow map resolution is not high
enough, to avoid blocky shadow pixels.

To handle this problem perspective shadow maps were introduced [Stamminger
& Drettakis 2002] and extended [Wimmer et al. 2004]. The idea here is to redis-
tribute the shadow map pixels, to virtually increase the resolution near the camera.
This is done via an additional perspective transformation into light space to gene-
rate the shadow map in normalized device coordinate space.

81

Chapter 2. Background

Projection Aliasing is another sampling problem. If the angle between the light
source and an object is near the right angle, that is, if the light is almost parallel to
the surface, only a few shadow map pixels are used for this surface, and the sha-
dow stretches along that surface. This could only be solved with a local increase
of the shadow map resolution. Approaches to solve this aliasing problems can be
found in [Hourcade & Nicolas 1985; Reeves et al. 1987; Tadamura et al. 2001;
Fernando ef al. 2001; Aila & Laine 2004].

In a nutshell, the aliasing problems can be reduced, by redistributing the limited
number of shadow map pixels in an optimal way, depending on the viewed scene
configuration. This is combined with the increase of the numerical stability of the
projection calculations.

At last, incorrect Self-Shadowing can occur. Due to numerical precision during
the projection and the limited precision of the depth map, the comparison between
the depth values might produce incorrect results. Therefore, Moiré patterns can be
visible.

The problem is often unsatisfying solved, by introducing a so-called bias. That
is, to artificially increase the distance between the light source and the geometry.
Thus, the depth value comparison is more robust, reducing the errors.

Several other extension to the shadow mapping algorithm exist. For example,
Dachsbacher and Stamminger [2003] introduced Translucent Shadow Maps. For
the rendering of hair, fur, and smoke Deep Shadow Maps were proposed by [Lo-
kovic & Veach 2000].

The term shadow map was originally not used by Williams. The first appearance
was in a follow-up paper by Reeves et al. [1987] as a figure label of the first pass
depth images.

2.4.3 Hard versus Soft Shadows

The above-mentioned methods generally use point light sources. Therefore, they
always generate so called hard shadows. That is, there is only a binary informa-
tion, whether a point lies in shadow or not (see left side in Figure 2.44). Soft
shadows, cast by area or extended light sources, produce a much more realistic
image (right side).

82

2.4. Shadows

Fig. 2.44: Hard (left) versus soft shadows (right).

The soft shadow also varies dramatically with the distance from the occluder. This
is not true for the hard shadows with their straight shadow boundary. This might
even be mistakenly perceived as other objects in the scene.

The computational complexity to generate soft shadows lies in the fact, that not
as with hard shadows, a binary information (is the light source visible?) for each
receiver point has to be computed. Instead, the percentage of the light source seen
be the receiver point is evaluated. This has to be done for all points within the
penumbra region (see Figure 2.37).

There exist a lot of approximations, to carry out this evaluation [Akenine-Moller
& Haines 2002; Hasenfratz et al. 2003], which can be divided into image and
object -based approaches, whether they are based on the shadow map (2.4.2) or
shadow volume (2.4.1) approach.

The following methods are based on the shadow map approach. A technique to
generate soft shadow boundaries by blurring, is percentage closer filtering [Ree-
ves et al. 1987], which also runs in hardware [Brabec & Seidel 2001].

Sampling of the area light source and the combination of a number of hard sha-
dow images is proposed by Heckbert et al. [1997].

Soler and Sillion [1998] generate shadows for nearly parallel configurations by
using convolution on occluder images.

Lazy evaluation of the visibility function is used in [Hart ez al. 1999]. In a second
phase, analytic or stochastic integration is used to compute further illumination

83

Chapter 2. Background

values. This sort of filling algorithm is extend in [Jukka Arvo et al. 2004].

Another method, storing multiple depth samples for each shadow map pixel, was
introduced by Agrawala et al. [2000].

Heidrich et al. [2000] introduce an algorithm for generating soft shadows for li-
near light sources, which was extended by Ying et al. [2002] to polygonal light
sources.

With the help of graphics hardware, object IDs and a single shadow map, partial-
ly occluded pixels are found with the method described in [Brabec & Seidel 2002].

Wyman and Hansen [2003] introduce the Penumbra Map as an extension of the
shadow map algorithm, Here, using object silhouette edges, a map is generated
containing approximate penumbral regions.

In 2003, Chan et al. [2003] proposed to attach geometric primitives called smoo-
thies to the objects’ silhouettes. As an extension to the shadow map algorithm,
this addition produces fake shadows, which hide objectionable aliasing artifacts
that are otherwise noticeable with ordinary shadow maps.

The second class of algorithms is based on shadow volumes. The penumbra regi-
on is somehow geometrically identified and evaluated.

As with shadow maps, it is naturally possible, to combine several shadow volumes
generated from samples of the light source. Due to the needed number of samples
to achieve reasonable results, this method is rarely used.

A specialized approach for planar receiver surfaces was introduced in [Haines
2001]. Silhouette edges are transformed into volumes, depending on their positi-
on, simulating the effects of a spherical light source in the outer penumbra.

Another algorithm based on shadow volumes was introduced by Akenine-Moller
and Assarson [2002]. Each shadow volume polygon is replaced by a penumbra
wedge that encloses the penumbra region for a given silhouette edge. Then, linear
interpolation of the light intensity within the found wedge results in visual shadow
smoothness.

In 2003, the algorithm was generalized [Assarsson & Akenine-Moller 2003]. Wed-
ge construction was improved and robustness increased. The real-time algorithm
now handles every pixel inside a wedge.

84

2.4. Shadows

An example for simple projective shadows is given in [Gooch et al. 1999]. The
method was introduced with NPR for technical illustrations. Multiple occluder
projection onto several receiver planes and accumulation is used to generate ap-
proximative soft shadows.

A complete other approach uses occlusion queries [Sattler er al. 2004b] to com-
pute the light source visibility (see also Section 4.4.1).

2.44 Ambient Occlusion & Self-Shadowing

As the meaning of the word ambient: present on all sides suggests, ambient light
has no specific origin or direction. That is, an object is virtually inclosed in a
sphere and the complete inner surface of the sphere can be treated as an area light
source (see Figure 2.45).

Fig. 2.45: Ambient occlusion principle.

In contrast to local shading methods like Phong shading, ambient occlusion takes
global information about non-local geometry into account. On the other hand, it is
a crude or average approximation to the full global illumination calculation. Only
the visibility function and the cosine term are considering. The visual appearance

85

Chapter 2. Background

achieved is similar to the way an object would appear on an overcast day.

Ambient occlusion is also a form of self-shadowing. That is, a part of an object
is casting shadows onto other parts of itself. With this, the direct discrimination
between occluder and receiver objects vanishes and is broken down to the triangle
level. An example of the Stanford Dragon under ambient white light is illustrated
in Figure 2.46. Self-shadowing is clearly visible for example in the mouth region.

Fig. 2.46: Ambient occlusion example.

Computation of ambient occlusion is fairly complex. In contrast to the hardware-
supported ambient shading, which only adds a constant color intensity to each
geometric primitive, ambient occlusion evaluation requires visibility computati-
ons for every surface point, as illustrated in Figure 2.47. The point normal n de-
fines a hemisphere above the vertex v. Red arrows denote a blocked line-of-sight
to the surrounding, while green arrows contribute to the incoming light at point v.
Now the percentage of green arrows to the full number of rays is calculated and
a scalar value is assigned to the vertex. In the worst case of dynamic objects, this
evaluation has to be done each frame.

But only ambient occlusion allows for a subtle visualization of geometric im-
portant features, like folds or wrinkles. Figure 2.48 shows a comparison between
simple OpenGL shading (left image) and vertex-based ambient occlusion (right
image). The superior depth impression of ambient occlusion is apparent, for ex-

86

2.4. Shadows

Fig. 2.47: Ambient occlusion computation for surface point v.

ample in the crotch area and the end of the trousers. Therefore, this techniques is
also applicable to other areas such as car exterior design or terrain visualization
(see Figure 2.49).

To evaluate the illumination received by a point on the surface, that is to sample its
hemisphere defined by the vertex normal, there exist mainly two approaches. The
first is the inside-out approach. That is, the evaluation is originated at the specific
surface point.

As Figure 2.47 suggests the most straightforward way is to use rays to sample
the hemispherical visibility around the surface of the object. This can be done
either using classical rasterization or ray tracing techniques. For achieving visual
pleasant results, especially ray tracing is very time consuming. The complexity of
this approach depends on the number of intersection test which have to be perfor-
med and the sampling density. A speed-up might be achieved, when acceleration
structures are used, but in general this approach is not very suitable for real-time
applications or dynamic objects.

The second category is based on the approximation of the ambient environment
by point or directional light sources, which amounts to reversing the first approach
from inside-out to outside-in. That is, the visibility computation is originated at
the light sources. In Practise, the model with /V surface points is rendered from M

87

Chapter 2. Background

Fig. 2.48: Comparison between OpenGL shading left and vertex based ambient occlusion right
for a pair of trousers.

points on a sphere surrounding the object. The distribution of these points might
be random, uniform or based on some importance evaluation, for example of an
environment map. With this, the complexity without optimization is O(N x M).
Since M is generally much smaller than N, this approach is much more interesting
for dynamic objects and real-time applications, than the first one.

In the following, several methods to compute ambient occlusion are introduced.

Accessibility shading as introduced by Miller [1994] is a predecessor of the am-
bient occlusion method. It models the local variations of surface materials due to
processes such as dirtying, aging, tearing or polishing and is capable to achieve
similar visual results as ambient occlusion.

In [Zhukov et al. 1998] an empirical ambient illumination model is introduced.
It is based on distributed pseudo light sources and local obscurance calculations,

88

2.4. Shadows

Fig. 2.49: Comparison between OpenGL shading top and vertex based ambient occlusion bottom
for terrain visualization.

which are mainly distant based. Iones et al. [2003] further enhance the model.

The problem of shading folded surfaces, especially cloth, was addressed by Ste-
wart [1999]. The main idea of his algorithm is a preprocessing step, which compu-
tes 3D visibility cones for each vertex point. The cones are stored for each vertex

89

Chapter 2. Background

and used to evaluate the direct primary irradiance at runtime by doing several in-
tersection tests. This is done by reducing the 3D visibility cones to a number of
2D visibility computations by slicing a polygonal mesh with parallel planes. Due
to the geometric calculations this method is computational expensive.

Another method is to compute blocker maps [Hart ef al. 1999] in a two step ap-
proach. First, visibility information in the image plane is computed, using lazy
evaluation of the visibility function. After this, using analytic or stochastic inte-
gration, illumination values for each pixel are generated.

A Siggraph tutorial [Landis 2002] pointed out that ambient occlusion has become
a popular technique in production rendering.

Visibility maps were introduced by Neulander [2003]. In contrast to ray tracing
techniques, the hemispherical sampling is done via intermediate visibility maps.
These maps are later combined with an arbitrary environment map to produce an
approximate diffuse shaded texture.

Sattler et al. [2003] uses the standard graphics pipeline to render sides of hemi-
cubes [Cohen & Greenberg 1985]. While this precomputation is fast, hemicubes
cannot yet be evaluated efficiently on the graphics hardware, and therefore a cost-
ly read-back to the CPU is necessary.

To handle also dynamic geometry a new method based on occlusion queries was
introduced in 2004 [Sattler er al. 2004b]. Details of this method are described in
Section 4.4.1.

Related work was presented by Kautz et al. [2004]. It is mainly based on fast
hemicube rasterization in order to detect blocker triangles on a per-vertex basis.
For speed-up reasons, a coarser blocker mesh and a downsampled visibility mask
are used. Therefore, a mesh hierarchy has to be maintained in graphics memory
during run-time. On the other hand, the performance is well suited for interactive
usage.

NVIDIA proposed a hardware-accelerated 2-pass method, using accumulated sha-
dow maps [Pharr 2004; Randima 2004], which is also used in many shaders in
commercial rendering software packages. To minimize sampling artifacts, jitte-
ring of the depth maps is introduced. This approach involves common shadow
mapping projection problems [Kilgard 2002].

In the GPU Gems II book, Bunnell [2005] proposed a multi-pass shader, which

90

2.4. Shadows

uses disk-shaped elements per vertex to approximate ambient occlusion. The ap-
proximation is based on the solid angle of an oriented disk. This kind of LOD with
the surface elements method allows for dynamic objects.

Knuth et al. [2005] used a multi layer shadow map and importance sampling of
the environment map to evaluate the visibility on the GPU. Their method can also
be used for non-complex dynamic scenes.

Kontkanen and Laine [2005] precompute an occlusion field in the surrounding
of each object as an approximation. The volumetric information is evaluated on
the GPU at run-time to compute inter-object ambient occlusion. This approach
is especially suitable for computer games due to the speed and moderate storage
costs.

Another method to efficiently compute ambient occlusion and self-shadowing is
precomputed radiance transfer [Kautz et al. 2005]. Here, a linear operator that
maps distant incident illumination to the neighborhood of the object, that is the
full light flow from the low-frequency lighting environment is stored. Depending
on the desired visual quality, precomputation times and storage costs have to be
considered.

As stated in the beginning of this section, ray tracing is capable of handling glo-
bally illuminated scenes, but is naturally limited to the current camera position,
and normally lacks performance for complex scenes. Interactive rates are only
achieved in a massive parallel environment with optimal acceleration structures
[Wald et al. 2003b; Wald et al. 2003a], which take several seconds to build. Other
theoretical work [Purcell et al. 2002] on GPU-based raytracing is not yet available
in hardware. Very recently there have also been approaches to solve radiosity on
graphics hardware [Coombe et al. 2004], with interactive rates for small scenes.

91

Chapter 2. Background

2.5 Animation

Besides several other meanings, fo animate is described as to give life to [MWD
2005]. Following this definition, animation induces a change of one or several
aspects of an object or character. This might be the position, shape or color or
any other perhaps more artistic aspect. In the context of computer graphics, one
might say, that animation can be defined as a sequence of (still) images which are
correlated in some way.

In this section, basic topics of animation are explained. With regard to methods
described in chapter 3, emphasis is laid on the following aspects:

e historical overview
e animation terminology

e animation generation

Among other sources, [Watt & Watt 1991; Foley et al. 1996; House & Breen 2000;
Parent 2002] are recommended for further reading.

2.5.1 Historical Overview

From a historical point of view, first animations, that is a fast sequence of images
showing some kind of time-dependent change of an object, started in the 17th cen-
tury with the thaumatrope and the zoetrope [Parent 2002]. Here, some mechanical
image flipping was used to create the visual impression of motion.

Besides artistic animations, big steps were made in the beginning of the 20th
century by the cartoonist community. Important terms here are celluloid-based
translucent layers, camera panning over large drawn backgrounds or rotoscoping
combinations of drawn images with live action.

Disney was the first, who used additional sound effects in Steamboat Willie (1928)
to advance animation films in the direction of full-feature length films like Fanta-
sia (1940).

After these early days of conventional animation the computer enters the anima-
tion field at the beginning of the 1960s. The first computer animated film was
created by Edward Zajak at the Bell Labs in 1961 (Two-Gyro Gravity-Gradient
Attitude Control System). At the same time the first video game, Spacewar!, was

92

2.5. Animation

developed by Steve Russel at MIT.

The usage of computer animation in films and in the entertainment sector was and
still is one of the major driving forces. Until the 1980°s computers were used for
major film production and animation support. Using computers made animators
life a lot easier, but most techniques used, were just adopted from conventional
animation methods [Lasseter 1987].

The range for computer animation lasts from the first computer generated se-
quences (Genesis Effect) in Star Trek: The Wrath of Khan (1982) [STAR 1982],
over liquid and morphing effects in The Abyss (1989) [ABYSS 1989] and 7Ter-
minator II (1992) until the first fully computer-generated feature film 7oy Story
(1995) [TOY 1995].

Finally, with Lord of the Rings: The Two Towers (2003) [LOTR 2003], a fully-
realized computer generated main character (Gollum) is introduced. For a more
complete list of films see for example [CAM 2006].

Concerning computer usage, differentiation is made between computer-assisted
and computer-generated animation. The first is commonly used with a human
animator and here the computer provides tools, for example animation preview,
for the animator to perform his task. The latter describes algorithms and methods
which only use some kind of abstract description of the animation and the com-
puter finally generates the sequence without further intervention.

2.5.2 Animation Terminology

Concerning animation the three main sections motion dynamics, update dynamics
and environment dynamics are considered. Referring to an object, the first section
describes the time-varying position, while the update dynamics describes proper-
ties of the object such as shape, color, transparency, structure or texture. The latter
section deals with changes in lighting, camera parameters (position, focal length
etc.) or the used display technique.

Most technical terms evolved with the classical 2-dimensional animation cartoons.
The storyboard for example is a first (drawn) draft version of important points in
the story (key frames). Then, these key frames are drawn. It is common to use so-
me sort of interpolation to generate frames between key frames. Finished frames
are transferred to so called cels (sheets of acetate film) and finally filmed. Using

93

Chapter 2. Background

multiple cel layers separation between fore- and background is possible.

For creating effects like collision of objects or other physical based reactions, 2-
dimensional techniques such as squash & stretch or slow in & slow out are used
[Parent 2002] as interpolation schemes.

In the case of scientific visualization, each frame of the animation is usually the
result of some numerical simulation. Cloth simulation (see also Section 2.6) is a
good example for a scientific simulation, but also liquid or thermal dynamics are
important topics.

Another important aspect of animation in the context of this thesis are virtual cha-
racters (humans, animals), often called avatar or figurine. A sub-topic of charac-
ter animation is mimic or facial animation. For interaction, an avatar is a helpful
psychological tool. Besides gaming and entertainment, also education, training
environments, medical simulations or ergonomics studies profit from the usage of
a human-like counterpart. Several properties of a virtual human are given in Table
2.6.

property characteristic
appearance - 2d-drawing, cartoon-like
- 3d wireframe

- body surface properties

- muscles, adipose tissue

- biomechanics

- cloth, body equipment
functions - included bones model

- constraint angles

- constraint forces

- physical condition

- physical capabilities

- cognitive capabilities
individuality | - gender & age

- generic character

- hand-made character

- racial characteristics

- cultural characteristics

- psychological characteristics
- personality

Tab. 2.6: Overview of important animation terms.

94

2.5. Animation

Other aspects include time-dependent parts as real-time interaction or team coor-
dination and autonomy parts as communication capabilities or decision making.

Hierarchical Modeling

Especially for human characters, the enforcement of connectivity of the body
parts, that is the relative placement, is essential. Therefore, hierarchical mode-
ling is used.

To ensure a coherent motion of all body parts, a so-called articulated structure
or bones model is used. The structure contains of rigid parts (links) and mova-
ble connections (joints). A sequence of connected links without any branching is
denoted by the term kinematic chain. The free ends of the chains are called end
effectors. Changing the configuration of the joints is referred to as articulation.
And a certain entity of joint angles and link positions is called frame.

The left most image in Figure 2.50 shows an example of a bones model, as the cen-
ter images shows body parts of a figurine, which are associated to certain links and
joints. The right image finally shows an example pose for different joint angles.

There exist several joint types for bones models. It is common to use two diffe-
rent types in computer graphics. Rovolute joints are joints, where one link rotates
about a fixed point of the other link. The other are type are prismatic joints, in
which one link translates relative to another [Parent 2002].

The totality of possible motion direction is described as degree of freedom (DOF)
of a certain joint. Simple rotational joints for example therefore have only one
DOF, in contrast to complex joints.

To represent a hierarchy its is common to use a tree structure consisting of nodes
and arcs (referred to as links above). Connection to the global coordinate system
is achieved via the root node. All other positions and angles are relatively orienta-
ted towards this node. Dead ends in the hierarchy are called leaf nodes. The latter
definitions have there origin in the robotics literature.

2.5.3 Animation Data Generation

The next section describes several ways to generate animation data for computer
usage. Most terms of the 2-dimensional case can be also used for 3-dimensional

95

Chapter 2. Background

Fig. 2.50: Examples for a bones model.

animation data. In the following, always 3-dimensional computer animation data
is considered.

Kinematics & Dynamics

Kinematics, as part of the classical physical mechanics, describes all parts of the
motion itself, without considering the driving forces. That is, only geometric and
time-dependent object properties as positions and velocities are considered. In
contrast to this, dynamics only deals with the driving forces which cause the mo-
tion. That is, the fundamental physical laws are taken into account.

Differentiation is made between forward and inverse kinematics and dynamics.
That is, in the forward case, the resulting positions, velocities and forces are cal-
culated, while in the inverse case the necessary velocity and forces for a given end
position are calculated.

Therefore, in the case of inverse kinematics, the state vector for a given position of
an end-effector has to be calculated. That is, the animator defines the end position
and all necessary joint angles are calculated. There exist several algorithms for
calculation [Parent 2002], but no general, robust and efficient solution is known.
Coming along are further inequalities, for example restrictions for bending angles.

Due to the complexity of real-world physics, sometimes so-called dynamic cons-
traints are introduced, to enforce a certain behavior of an object. For example,
without prior knowledge, the static friction is adjusted accordingly or reachable
world positions are restricted.

96

2.5. Animation

Explicit Control

Using full explicit control, every aspect of the animation is defined. That is, every
translation, rotation or scaling of any part of all objects is user-controlled. While
this method naturally allows for maximal control and also allows for non-realistic
motions, it is complex to handle and time consuming.

Physically Based Generation

A lot of animations deal with natural phenomena or results of simulations of the
evolution of physical systems. That includes the simulation of fluids and liquids,
gaseous phenomena (like wind, smoke, clouds or fire) or simple gravitational ef-
fects. Practically, the animation frames are generated out of the solutions of a
numerical system, for example partial differential equations, which are often cal-
culated off-line. Also into this section fall particle systems for modeling systems
of massively present singletons, like grass blades on a meadow or swarms of birds
or flies (flocks or boids).

Due to the computational complexity, often particle-based simulation is used.
That is, instead of solving the equations for all points or properties of an object on-
ly equations of certain key points/properties are solved. Therefore, so-called guide
particles are created, which influence the behavior of their surroundings. Here, a
trade-off between simulation speed and accuracy is made.

The simulation of clothing (draping etc.) as an example for physically based ani-
mation generation is explained in detail in Section 2.6.

Motion Capturing

For fast generation of natural movements, motion capturing is used. Here, a real-
world object or human (actor) performs the desired movement, while tracked via
some sort of body markers. That is, instead to artificially synthesize the motion, it
is measured and afterwards transferred onto a virtual character. The principle was
also used back in 1915 with rotoscoping, that is real film sequences were used as
submittal for drawings.

For the tracking, several methods and sensors exist, as shown in Table 2.7. As of
today, optical infrared measurements with simultaneously captured surface tex-
tures are state-of-the-art. All methods have in common, that with all real-world
measurements, noise is present and data post-processing is recommended.

97

Chapter 2. Background

system advantages disadvantages sensors
optical - simultaneous several | - not outdoor usable - body markers
objects - visibility problems (passive)
- huge measurement - labeling of markers - body markers
area (active)
- precise
- simple calibration
- no harnessing
mechanical - intrusive - multiphase motor
- harnessing - potentiometers
- optical fibers
- acceleration sensors
acoustic - calibration - run time
- harnessing measurement
- sender - receivers
magnetic - outdoor usable - calibration - magnetic field
- imprecise vs. optical distortion
- harnessing

Tab. 2.7: Motion capture systems comparison.

One common and popular ascii-based data format is .bvh [BVH 2006] by the no
longer existing company BioVision.

98

2.6. Cloth Visualization

2.6 Cloth Visualization

In the context of virtual characters, the figurine itself, clothing and accessories (for
example tools or jewelry) are important for a realistic virtual reality creation. All
three parts require realistic geometry and animation for a life-like appearance.

Due to the fact, that clothing covers and decorates typically large parts of the
figurine, it provides essential clues for shape, speed and motion, cultural aspects
or attractiveness. Therefore, clothing contributes to a large extent to the overall
appearance of a figure.

/[material properties]

/| geometry simulation |

|animation| [avatar rendering]

_< cloth rendering] _ [environment]

illumination

forces (gravity, wind) |

Fig. 2.51: Overview of the cloth visualization pipeline.

Figure 2.51 shows the typical cloth visualization pipeline including animation. As
a cyclic process, geometry simulation (cloth and avatar), avatar and cloth rende-
ring alternate. This process is influenced by external parameters and forces like
material properties or environmental effects.

A well known example for realistic cloth visualization includes the Oscar-winning
Short Animated film Geri’s Game by PIXAR [Pixar 2005] with calculated cloth
dynamics. Or Matrix Triology [Matrix 2003; Borshukov 2003], in which measu-
red optical surface properties are used for certain cloth.

Using the animation pipeline in Figure 2.51 as a basis, other aspects arise, namely
avatar motion sequence generation and animation data compression, which are
discussed in detail in chapter 3.2.1 and 3.3.1.

99

Chapter 2. Background

2.6.1 Historical Overview

As stated above, areas of application include virtual-try-on, animation of virtual
characters for entertainment or virtual prototyping.

Requirements for the simulation include for example speed, accuracy in modeling
large deformations and nonlinearities down to details like folds and wrinkles and
numerical stability.

Until the mid 1980°s visualization of cloth was achieved by mapping textures to
rigid surfaces only. No geometry change was calculated, instead, the cloth was
modeled as a separate geometry part and hand-animated. This static clothing was
replaced by static draping [Weil 1986], mass-spring-systems [Terzopoulos & Flei-
scher 1988; Terzopoulos et al. 1987] on regular grids based on Lagrange equations
and elastic surface energy, and more and more complex complete geometry simu-
lations, for example in [Volino et al. 1995; Volino et al. 1996].

The need for enhanced collision detection algorithms and interaction with virtual
characters was introduced in [Carignan et al. 1992].

With the recent advance of the programmability of graphic processing units and
their capacity of parallel program execution, first steps to simulate cloth entirely
on the GPU have already been made [NV 2005].

The importance and practicability of cloth simulation is indicated by the integra-
tion in major graphics applications like Maya [MAYA 2006] or Poser [e-frontier
2005].

For state-of-the-art tutorials and techniques, [House & Breen 2000; Volino &
Magnenat-Thalmann 2000; Hauth et al. 2002; Magnenat-Thalmann et al. 2004;
Magnenat-Thalmann er al. 2005; Wacker et al. 2006] are recommended.

2.6.2 Geometry Simulation

Due to the fact, that it is rather complex to manually model deformable objects
and materials, physically-based simulation is used to generate form and motion.
Several techniques exist to perform the simulation, depending on the kind of ob-
jects:

e finite element methods
solving a system of partial differential equations

100

2.6. Cloth Visualization

e particle simulation
space discretization in particles; solving ordinary differential equations

e Cosserat models
baed on points, rods and shell; alternative to particles; engineering method

Some applications require real-time performance, like Virtual-Reality systems.
Due to the computational complexity of the above methods, it might suffice to just
produce the right appearance or natural behavior of the deformable object. That
is, trading performance against physically correctness as for example in [Desbrun
et al. 1999].

While Figure 2.51 shows several external influences and properties, cloth visua-
lization often requires real-time performance. Therefore, certain computational
complex aspects are neglected or approximated.

For up-to-date tutorials see [Hyeong-Seok et al. 2003] or [Hyeong-Seok et al.
2005].

Time Steps

Common to all methods is the discretization of space and time. Particularly im-
portant is the time discretization, that is, the simulation is split up into simulation
steps.

Static Clothing

The computational easiest form is complete static clothing. That is, there is a
separate geometry layer for clothing, but the complete cloth is attached to the
avatar geometry and has no possibility for self-movement.

Static Draping

More realism in modeling and simulation was first introduced by Weil [Weil
1986] with static draping. His paper describes a method for modeling cloth ma-
terial hanging in three dimensions when supported by any number of constraint
points. While assuming that the cloth is rectangular weave of inelastic threads,
even though this allows for the model to contain geometric folds for the first time.

101

Chapter 2. Background

Vertices can move freely on a line defined by two neighboring reference points.
This line is called catenary curve and has the form

y=c— <a - cosh (x ; b)) (2.43)

If the reference points are moved, the catenary curve all dependent vertices chan-
ges.

This two stage algorithm with a approximative draping within a given convex hull
and afterwards a relaxation process. With this method, self-intersection of cloth is
ignored.

Ignoring the physical properties of the cloth and using only geometric features
naturally produces fast results [Weil 1986; Hind & McCartney 1990]. This ap-
proaches require extensive user-intervention and are not capable of reproducing
realistic cloth dynamics.

Mechanical Models

Garment simulation heavily relies on the accurate usage of the mechanical proper-
ties of cloth. This properties can be measured using standardized methods [Kawa-
bata 1980].

One method from mechanical engineering is the usage of finite elements. That is,
the cloth surface is divided into a discrete set of patches with associated mechani-
cal parameters, which define the shape of the patch [Collier, J.R. et al. 1991; Gan,
L. et al. 1991; Eischen et al. 1996].

Based on energy variation, a set of equations with surface continuity constraints
has to be solved for simulation.

While the mathematical formulation and tools are available from engineering fi-
nite elements fails in modeling large nonlinear deformations or highly variable
collisions effectively.

Particle Systems

Farticle systems for cloth simulation represent an computational easier way. Here,
only a specific set of representative points (particles) are evaluated. The vertices of
the cloth geometry are geometrically associated with certain particles and moved

102

2.6. Cloth Visualization

accordingly. The particles itself are moved be the mechanical forces of the cloth,
by solving ordinary differential equations. Connections between particles can be
modeled in several ways, including also a mass-spring system.

The main idea is the discretization of a deformable objects into a number of fea-
ture mass points (particles). These particles are interconnected through springs
forming a mass-spring system. The connection topology can be adapted to the
specific problem using for example different masses or spring constants. Also
other constraints, for example at boundaries, can be integrated.

A particle itself is a infinitesimal small point in space, which position is descri-
bed by a vector in R3. For animation purposes also the time-dependent change
of velocity is of interest. Therefore, three positions and three impulse coordinates
(6-dimensional phase space) fully describe the particle behavior. This space might
be of higher dimension, if a particle systems with particle-particle interaction is
evaluated. For velocity and acceleration, basic Newton’s laws of mechanics are
used.

For complex simulations attention must be laid on numerical stability of the cal-
culations. Using implicit methods can reduce calculation times to a high degree,
which is crucial for certain applications, for example cloth simulation.

Among the implementation simplicity and fast computation times, particle sy-
stems are scalable and allow for complete body garment simulations [Eberhardt
et al. 1996]. Numerical accurate models were introduced by Breen et al. [1994],
which uses Kawabata data.

Complete Simulation

Terzopoulos and Fleischer [Terzopoulos & Fleischer 1988] introduce an advanced
method, using a material grid consisting of springs, dashpots (acting like shock
absorbers) and slip units. Therefore, deformations and stretches caused by the ap-
plied forces can be modeled. Using certain combinations of this, certain material
attributes can be simulated. Figure 2.52 shows four reference vertices, which are
combined with springs. The used spring constants k; can be globally and locally
adjusted.

For most realistic cloth behavior including wrinkling and bulging caused by the
given avatar animation, the complete simulation of the cloth with the spring model
is indispensable. The resolution of the cloth mesh, that is the size of the used tri-
angles, determines the realism. Therefore, the simulation constantly has to handle

103

Chapter 2. Background

Fig. 2.52: Mass-spring model for the geometry simulation.

collision between the cloth and the avatar and cloth parts with themselves has to
be detected and the response has to be computed.

To achieve a realistic motion, certain cloth characteristics such as weight, materi-
al and physical properties, even for different parts, have to be integrated into the
simulation model. Examples for the properties are stretch, bend or skew abilities
or wetness.

Also geometric properties as with woven fabrics have to be integrated. Warp and
weft patterns of the used threads define a complex internal structure.

As stated above, collision detection and response calculation is an essential part
of the simulation. Therefore, efficient algorithms have to be used to cope with cer-
tain levels of detail. To reduce the complexity organizing structures like bounding
box hierarchies are used. That is, parts of the cloth mesh are subsumed into larger
parts and only if global collision of the larger parts is detected, the child members
are investigated.

To integrate collision response into the model, transient springs can be virtually
attached to the figurine for example, to produce an opposing force for a cloth-
figurine collision.

104

2.6. Cloth Visualization

For realistic real-time simulation, implicit integration methods and their optimi-
zations [Baraff & Witkin 1998; Desbrun ef al. 1999; Choi & Ko 2002] allow fast
computations for simple settings. For complex clothing, for example multi-layer
garments, still heavy approximations have to be made.

Hybrid Approaches

Hybrid models combine a detailed global motion simulation with fast micro-scale
approximations to generate an overall realistic appearance. Additional detail can
be generated through subdivision algorithms (see also Section 2.2.1). Also other
details like wrinkles can be simulated using bump- or displacement maps (see also
Section 2.1.8) [Larboulette & Cani 2004].

Example-Based Methods

Data-driven techniques are also common for cloth visualization. That is, several
simulations are pre-computed and learned by a system. For a given new configu-
ration the result simulation is constructed based on the learned variants.

Examples for this approach include neural-network usage [Grzeszczuk et al. 1998]
or impulse response functions [James & Fatahalian 2003].

Collision Detection & Response

If several objects are involved into a simulation, object collision can occur. This
is also true, if boundary conditions are present, like walls or other spatial restric-
tions. Other fields of interest for collision detection include robotics, path-planing
or haptics.

A naive approach for collision detection with n objects results in testing all pos-
sibilities with a complexity of O(n x n). This quadratic algorithm is not suitable
for large n.

Therefore, this problem is efficiently broken down in computational less complex
parts.

A basic idea is the two stage process of broad and narrow phase. First, using
culling algorithms, all possible collisions are calculated for the current time step.
That is, pairs of objects, which are too far away from each other to collide are ne-
glected. In the second phase, costly micro-scale tests are performed, for example

105

Chapter 2. Background

triangle-triangle intersection tests.

Another basic idea are bounding volumes (BV) or hulls. Here, a geometrically
complex object is enclosed by a geometric primitive object like a sphere or a box.
With this simplification collision tests can be done more efficiently.

There are several different volumes possible. Ranging from simple spheres, axis-
aligned bound boxes (AABB), which reduce the problem down to one dimension,
in contrast to oriented bounding boxes (OBB). K-dops are discrete orientated po-
lyhedrons with £ faces, which combine efficient intersection tests with a better
object outlining.

It is also common, to form hierarchies out of the bounding volumes to reach ano-
ther abstraction level. For instance, two human avatars are roughly described as
two boxes, but in the next level of detail, each part of the body has a bounding
volumes down to the fingers. That is, if the two main volumes collide, the next
hierarchy level is used for collision testing and not the triangle level.

Distinction is made between rigid body and deformable objects collision. For the
collision of two or n convex polyhedrons, several explicit algorithms exist [Mir-
tich 1998; Lin & Canny 1992]. For non-convex polyhedrons, there is the possi-
bility to generate several convex ones and use the above methods or to use the
described bounding volume methods.

In the case of deformable objects, for example clothing, two main collision types
can occur. First, the deformable object can collide with the environment. In the
example, cloth parts can either collide with the figurine or the ground. And se-
condly, the deformable object can self-collide, that is, parts of the object collide
with other parts. Detection of self-collision can take up to 50% of the computing
time [Baraff & Witkin 1998].

In the worst case scenario of an animated figurine wearing cloth, as of today the
computational complexity does allow real-time results only for simplest configu-
rations. Therefore, using approximate solutions combined with a-priori knowled-
ge and pre-computation is state-of-the-art.

A typical example of pre-computations are distance fields. That is, for certain
points in space, for example, in the vicinity of a figurine, the distance to the figu-
rine is pre-calculated and transformed, if the figurine is in motion. Therefore, it
is possible to compute the distance cloth-figurine relatively fast. Several distance
fields also can be combined with a bounding volume hierarchy to achieve even

106

2.6. Cloth Visualization

faster detection.

If a collision is detected in the current simulation step, a collision response is
computed. Depending on the kind of object (rigid or deformable) there exist se-
veral possible responses. Ranging from virtual time relocation to avoid collision
to switching over discrete velocity changes to special object-object contact com-
putations.

Collision detection for clothing is a field with continual research, see for example
[Baraff et al. 2003; Teschner et al. 2004; Eberle et al. 2004; Teschner et al. 2005;
Teschner et al. 2006]

2.6.3 Rendering of Cloth

Recalling Figure 2.51, the rendering of both the avatar and the simulated cloth is
another mayor aspect in the visualization pipeline.

In this stage, the optical surface properties and the environmental illumination
influence are decisive for the final acceptance of the resulting image. For large
viewing distances, the optical appearance is much more important than the geo-
metric accuracy.

The visually important effects like self-shadowing, occlusions, anisotropic reflec-
tion or color bleeding take all place in the so-called mesostructure layer (see also
Section 2.1.19).

While for materials with nearly flat surface structures, for example silk, speci-
al reflection models are sufficient, structural more complex material groups, like
knitwear (wool) require additional treatment for the shadowing aspects.

For complex real-world materials, even approaches like bump- or normal mapping
(see Section 2.1.8) are not able to reproduce the look-and-feel. That is, informa-
tion about the structure and the properties of the underlying yarn has to be created.

Modeling vs. Measuring

Two orthogonal approaches exist for creating a realistic optical model. The first is
based on pure modeling of the mesostructure properties using volumetric approa-
ches. The second is based on example-based measurement of real-world materials

107

Chapter 2. Background

and the usage of advanced texturing methods.

Modeling the underlying mesostructure using volumetric textures was first de-
monstrated in [Groller et al. 1995; Groller et al. 1996]. Here, woven and knitted
fabrics are analyzed and different patterns are recreated in a basic volumetric ele-
ment. This pre-generated element can handle different materials and yarn thick-
ness and is repeated according to the weaving pattern.

It can also be enhanced with different lighting models and pre-computed shado-
wing [Daubert ef al. 2001; Daubert & Seidel 2002]. Rendering is either done with
conventional ray-tracing or using hardware support and lookup tables.

The second approach is the direct measurement of all mesostructural aspects.
Using this approach includes several advantages:

e real-world materials
e no complex modeling
e automatic measurement possible

e decoupling the base geometry from mesostructure

In particular the last point allows for the re-usage of measured materials on diffe-
rent geometries and therefore allows the transfer of optical material surface pro-
perties (see Section 2.1.4).

Because all effects are functions of viewing and illumination direction, the BTF
(see Section 2.1.6) is a very efficient representation. Details of general measure-
ment approaches can be found in Section 2.1.9.

An extensive overview tutorial, Realistic Materials in Computer Graphics, not
only covering clothing, was held at Siggraph 2005 [Lensch et al. 2005]. Practical
usage of the rendering aspects are shown in Chapter 6 and efficient acquisition,
compression and rendering is described in detail in Chapter 5.

108

2.7. Data Analysis Techniques

2.7 Data Analysis Techniques

2.7.1 Introduction

This section introduces common data analysis techniques, which are used by the
methods described in this thesis. The goal of an intelligent analysis of the data is
to find specific characteristics, which allow for example data compression, data
reduction or efficient data reorganization. That is, these techniques are intended to
find simultaneous relationships and similarities among some variables.

In the following, most techniques are applied to real-world measured data. That
is, data scattering, noise or other measurement artifacts are included in the raw
data.

For the practical implementation issues software packages like LAPACK [Lapack
2005], newmat [Newmat 2006] or the Numerical Recipes [Press et al. 1992] are
used. Details of the following methods can be found in [Dillon & Goldstein 1984],
[Jolliffe 1986] and [Berthold & Hand 2003].

2.7.2 Data Fitting and Reduction

Given some -for simplicity- 2-dimensional scattered xy-data set, data fitting tries
to fit a mathematical equation in the form, that the distances between the equation
and the data is minimized. Three classes of models are commonly in use:

e linear: f(z) = By + iz
e quadratic: f(z) = 5y + fix + [ar?
e cubic: f(z) = fy+ Sz + fox? + (32

To obtain a simple linear regression model for a given data set, 5y and 51 are
chosen in a way, that

m

Z[yz — (Bo + Brx)]? (2.44)

J=1

is minimal.

That is, the sum of squared differences is minimized and the obtained least squa-
res estimates can be used for data prediction of unknown zy-pairs.

109

Chapter 2. Background

In the case of data reduction or data compression, the amount of data to be stored
is smaller than the amount of the original data. One has to distinguish between
a lossless and a lossy process. That is, it is somehow possible to reconstruct the
original data without any error or not.

Most techniques to be discussed provide a simple description of the structure un-
derlying a set of data. Generally, this can be achieved by using a few linear com-
binations of the original variables.

Singular Value Decomposition

Singular value decomposition or SVD is a common technique to deal with equati-
ons or matrices which are either singular or numerically close to singular. It is also
a efficient technique to solve most linear least-squares problems (see also 2.7.4)
and based on the following theorem:

Theorem 1 Any (m X n) matrix X with m > n, can be written as the product
of an (m X n) column-orthogonal matrix U, an (n X n) diagonal matrix D with
positive or zero elements (so called singular values), and the transpose of an (n X
n) orthogonal matrix V:

X=U D VT (2.45)

For data analysis, SVD can provide information on the underlying structure of
the data set. Using the rows of matrix V' as vectors, these vectors are orthogonal.
They also can act as unit vectors for a new re-orientated coordinate system, which
is important for the following analysis, called PCA (see 2.7.3).

2.7.3 Multivariate Analysis

For multivariate analysis several techniques exist [Dillon & Goldstein 1984]. A
difference is made between dependence and independence methods. The former
analysis the association between two sets of variables where one set is a depen-
dent measurement outcome. The latter analysis the mutual association between
the variables, without any distinction being made between the sets.

110

2.7. Data Analysis Techniques

Principal Component Analysis

In the following, a technique of the independence class named principal com-
ponent analysis (PCA) is described (see also [Kendall 1975; Jolliffe 1986]. The
primary goal of this technique is to generate a set of linear combinations of the
original data variables that account as much as possible of the total variation. All
extracted linear components are uncorrelated and generally account for a smaller
amount of variation with higher rank. Therefore, it is easily possible to find a low
dimensional representation of the data. The first ¢ so-called principal eigenvectors
or principal axes are the most informative directions and they minimize the mean
square distance between the original data and the reconstructed data.

This technique is described in detail, because it is one of the main data analysis
techniques, which is used by most of the algorithms described in this thesis.

In a nutshell, PCA transforms a set of n-dimensional vectors, X1, Xz, - - -, X5, into
another set of n-dimensional vectors y1,ys, - -, ¥n. But here, most information
content is stored in the first few dimensions. Therefore, it is possible to do a (los-
sy) dimensional reduction by skipping the last vectors.

That is, to find a k£ < n affine subspace of R" such the sum of squares of the
projection errors onto this affine subspace is minimized.

To practically perform the dimensionally reduction for a m-dimensional data set
x, first the sample variance (covariance) C' is used:

1 - T
C = p—] ;(Xi —X)(x; — X) (2.46)
with
1 > (2.47)
X = — Xi .
e
The eigenvalues of C' are:
AMZ A2 A3 22N 20 (2.48)

with the corresponding eigenvectors or principal axes:

111

Chapter 2. Background

€1,€z,€63 € (2.49)

or

de=Ce =) (xi,e)x (2.50)

7

Therefore, the eigenvectors can be written as a linear combinations of the input
data multiplied with a weighting factor o

e; = Z ;X (251)

If the eigenvalues are sorted according equation 2.48 the first k eigenvectors or
principal components correspond to the directions of largest variances that are gi-
ven by the eigenvalues (times a constant).

Each original data point can be projected onto these new principal axes, but ge-
nerally, only £ < n axes are used (as described above). A good criterium for the
choice of k is the size of the important variance. Assuming, that all directions are
equally important and using the average value for the eigenvalues:

. > h (2.52)

Now, one can discard all principal components which fulfil the following equation:

Ai < A (2.53)

Note, that PCA always assumes a somewhat linear context in the data. For nonli-
near data, there exist special techniques like NLPCA (nonlinear principal compo-
nent analysis) [Berthold & Hand 2003].

2.74 Clustering

Clustering is the process of identifying groups, called clusters, of data points in a
data set. The type of the groups nor the number are usually pre-defined.

112

2.7. Data Analysis Techniques

All clustering methods must cope with some questions regarding their process.
First the clustering criteria has to be defined. That is, how the method decides
to which cluster a data point is assigned and how the clusters are formed. There-
fore, similarity measures have to be made. There exists two broad types, namely
distance-type and matching-type. While the first computes some sort of distan-
ce between data with metric properties, data with qualitative properties can be
handled with some matching criteria. Also, some clustering methods are recursi-
ve, that is an atomic clustering process is performed over and over again, until a
stopping criterium is met. Generally, some sort of minimal error or the number of
clusters is defined before the process starts. Figure 2.53 gives an overall overview
to clustering techniques.

[clustering]
’ allocation irrevocable ‘ ’ reallocation possible ‘
/ \
[hierarchical] [partitioning]

fusion of data points partition of clusters

| | | |

agglomerative divisive

[))

<« "~ T

’ single linkage ’ complete linkage ‘

average linkage

Fig. 2.53: Overview of several clustering schemes.

One primary feature of the hierarchical approach is that if a data point is allocated
to a cluster it stays there until the end of the whole process, that is there is no way
to change the cluster once assigned.

The agglomerative method starts out with all data points in their own cluster. That
is, at the beginning the number of clusters equals the number of data points. Now,
there exist several possibilities to fuse several clusters together. This is done by
computing distances or similarities between clusters.

Single linkage is a nearest-neighbor method. Using a minimum-distance rule the
two nearest data points are assigned to one cluster. The comparison process is re-
peated and either a new data point is assigned to the previous cluster or a complete

113

Chapter 2. Background

new cluster is formed. In a nutshell, the distance between two clusters is given by
the value of the shortest link between the clusters.

Complete linkage is a furthest-neighbor method and therefore the opposite to the
single linkage. Here, the distance between two clusters is given by the value of the
longest link between the clusters.

Another variation is average linkage. It is based on average distances, which are
computed between clusters. That is, for each cluster a cluster center is computed
and used for evaluation. Other fusion algorithms include centroid distance or sum
of squared deviations.

Note, that cluster fusion is always done with the two clusters, which have the mi-
nimum distance to each other. And another important point to mention is that the
choice of the linkage criteria leads to different clusters and must be done carefully
and problem specific.

The divisive method is a partitioning method and therefore behaves oppositional
to the agglomerative one. Here, all data points start within one huge cluster. This
cluster is recursively split up into two new ones. Therefore, a threshold distance
is defined beforehand. If the distance between the clusters is less than this thres-
hold, the clustering process stops. This method is computational more complex
and therefore only rarely used.

Both approaches show clearly that a user-defined stopping criteria might be ne-
cessary. In this case, when the given number of clusters is reached, the fusion or
partitioning process stops.

A well known example for non-hierarchical clustering is the k-means method
[MacQueen 1967]. With this partitioning method /N data points are assigned to
K disjoint subsets \S; containing N; data points so as to minimize the following
criterion:

K
E=) Y |z, —¢f (2.54)

7j=1 nESj

Here, x,, is a vector representing the n — th data point and c; is the centroid of the
data points in S; [MW 2006].

114

2.7. Data Analysis Techniques

The main idea with this relocation approach is to define % cluster centers or cen-
troids in advance. There are several possibilities to do this which lead to different
result clusters. For example, the first k£ data points, completely random chosen or
based on prior knowledge of the data set. Next, each data point is assigned to the
nearest centroid.

Now, a two-step procedure follows until the stopping criterium is met. In the first
step, new geometric centroids are computed. This is done by computing the cen-
ter of mass defined by all the data points belonging to the cluster. Therefore, the
position of the centroid in space changes while the process evolves. In the second
step, each data point once again is assigned to the nearest centroid.

With k-means, there is no guarantee to find the global optimum, but on the other
hand it is easy to implement and usually fast to compute.

Clustered Principal Component Analysis

A straight forward combination of k-means clustering (2.7.4) and PCA (2.7.3) as
introduced by [Kambhatla, N. & Leen, T.K. 1997] is clustered principal compo-
nent analysis. Here, the PCA reconstruction error is used as distance measure.

The algorithm can be summarized as follows:

1. Initialize k cluster centers (centroids) r; randomly chosen from the dataset.
Assign a collection of ¢ unity basis vectors e; ; to each cluster.

2. Partition the dataset into regions by assigning each data-vector to its closest
center. The distance to a center ; is given by squared reconstruction error:

C

e = &I = llz —r; = > _(z—rjeij)e]

i=1
where z is the original and ; the reconstructed data vector.
3. Compute new centers 7; as the mean of the data in the region j.

4. Compute a new set of basis-vectors e; ; per region, that is, perform a PCA
in each region.

5. Iterate steps 2.-4. until the change in average reconstruction error falls below
a given threshold.

115

Chapter 2. Background

116

CHAPTER 3

Animation

3.1 Introduction

Animate [MWD 2005]: Etymology: Middle English, from Latin ani-
matus, past participle of animare to give life to, from anima breath,
soul; akin to Old English Othian to breathe, Latin animus spirit, Greek
anemos wind, Sanskrit aniti he breathes.

117

Chapter 3. Animation

k .

Measurement of material H Mesh (a””T‘a“"”)
H generation /
1

reflection properties physically based simulation

_______________________________________ 4
Motion sequence
generation

reparametrization /
compression

Ne———— -

compression

Shadow / illumination

Ve L precomputation
Visualization
Shadow perception
> ———————————————— experiment

Rendering with real-time
soft shadows

- J

Fig. 3.1: Overview chart with animation branch.

The main topic of this thesis is to provide methods to realistic visualize virtu-
al cloth. Part of this is the animation of the geometry. Using the definition of
animate, generating motion for graphical objects describes the act of animation.
This chapter introduces two major aspects, which are highlighted in the animation
branch of Figure 3.1.

First, a new method to generate new motions is described, focusing of the automa-
tic generation of new animation sequences, which are based on sequences, which
already exist.

After the motion sequence is calculated the transfer to the client computer for
display often involves compression of the data. Therefore, efficient and simple
compression schemes are needed, which are discussed in the second part of this
chapter.

118

3.2. Sequence Generation

3.2 Sequence Generation

3.2.1 Introduction

The usage of computer generated images (CGI) and especially animations of hu-
mans or creatures in feature films [Nemo 2003; LOTR 2003; Matrix 2003] and
computer games is steadily increasing. Animation sequences are also of interest
in the e-commerce sector, for example for product presentations.

Creating long animation sequences with non-trivial repetitions is a time consu-
ming and often difficult task. This is true for 2D images and more than ever for
3D sequences. Often only short basis sequences exist and have to be extended to
longer sequences with non trivial repetitions (for example: a walk of an avatar).
This task can not be solved by simple copy and paste techniques. On the other
hand creating a large motion database or the usage of motion capture data, as it is
sometimes done in the gaming industry, is also a costly task.

In this section a simple algorithm by Sattler et al. [2004b] is introduced , which
is based upon the idea of video textures as introduced by Schodl et al. [2000].
It allows for the creation of new, user-controlled animation sequences, which are
based only on a few key frames of the original basis sequence. This is achieved
by the analysis of velocity and position coherence.

The speed and simplicity of the method is achieved by carrying out the calculati-
ons on the main principal components of the reference animation, hence reducing
the dimensionality of the input data. This also leads to significant compression.
The idea of video textures is extended to geometry and generalized attributes li-
ke vertex normals, velocities or reflection properties. Similar to Lee et al. [2002]
control of the avatar can be achieved, but in contrast to the latter the method is not
restricted to motion capture data.

The analysis of a given short basis animations leads to the creation of transition
matrices, which store frame-to-frame coherence information and transition proba-
bilities. Because the amount of data of the basis sequence might be impractical to
store and to be used during runtime, compression and computation speed of the
transition matrices is achieved by reducing the dimensionality of the input data,
using principal component analysis (PCA).

To ensure the preservation of the motion dynamics, geometry related data (vertex
positions) and animation related data (vertex velocities) is split up and analyzed
independently. During runtime the algorithm creates endless or fixed length se-

119

Chapter 3. Animation

quences, whereat the user can control the randomness and the direction of the
animation. Depending on the quality of the input data two blending schemes can
be used to ensure smooth animations.

Related Work

The basic idea to search for coherence in frames of image sequences was intro-
duced by Schodl et al. [2000] with the term video textures. The goal of this work
was to create endless or fixed length image sequences with non-trivial repetitions.
For example candle flames, clocks or a waterfall animations were generated with
their method. Modeling the textures as Markov processes simple frame-to-frame
distances are computed and mapped to transition probabilities. Simple filtering is
used to preserve dynamics and also a method for avoiding dead ends and antici-
pating the future is introduced.

Within this framework they also allow user control, for example a mouse-controlled
fish. This was achieved by modifying the distance function and therefore the tran-
sition probability in such a way, that the valid transitions to certain frames (in the
fish case towards the mouse location) are more likely than others (any other loca-
tions in the fish tank).

The latter work focuses only on image based animations, not on geometry. Geo-
metry animation in this field naturally focuses on human motion. The sequences
are driven by key frames, rule-based systems [Bruderlin & Calvert 1989; Perlin
& Goldberg 1995; Bruderlin & Calvert 1996; Perlin & Goldberg 1996; Chi et al.
2000], control systems and dynamics [Wooten & Hodgins 1996; Laszlo et al.
1996; Faloutsos et al. 2001a; Faloutsos et al. 2001b] and motion capture data
[Gleicher 2001; Lee et al. 2002].

Knowledge from biomechanics and motion studies is often involved to insure na-
tural looking output. A lot of recent work is restricted to special animation cases,
for example diving. Lee et al. [2002] used the video textures method to compu-
te coherence between motion capture data to generate new data based on several
input methods. They rely on a precomputed database and focus also on different
control mechanisms for the avatar.

To reduce the dimensionality of the input data, Alexa et al. [2000] used PCA of
the animation to compress the needed data, but are restricted to a whole given
sequence. Bowden [2000] also used PCA to simplify the motion based on feature
points of the objects. While Lee et al. [2002] are based on motion capture data and
Bowden [2000] introduces the idea to use dimensionality reduction for the data,

120

3.2. Sequence Generation

this section introduces the idea of combining video textures and PCA to allow
the handling of arbitrary geometry animations, including geometry attributes like
normals or local reflection properties.

Algorithm Overview

Motion or animation data is often given in the form of key frames containing all
necessary information like vertex positions, normals, connectivity information etc.
The following algorithm first does an analysis of the already finished animation A
of the length [, which can be modeled by an artist, based on motion capture data,
procedural created or obtained using any other form of data generation.

In the examples, animations of short or medium length (I = 115, 190) are used.
To have a diversity in the animation, the length and hence the data amount is often
much higher. But also using only a small [can involve huge data amounts. There-
fore, the animation A first is compressed using standard PCA techniques [Jolliffe
1986; Kendall 1975; Press et al. 1992].

The motion structure is computed, using only the weights of the eigenvectors,
hence can be computed efficiently depending only on the number of PCA com-
ponents used.

The main idea is, that similarities between frames are transferred into the PCA
weights. As in Schodl et al. [2000] coherence and transition matrices are compu-
ted, which can be used to create either infinite random or length controlled loops
during rendering, as shown in figure 3.2.

3.2.2 Data Analysis

Given an animation A of [frames length and constant connectivity, the vector A;
is defined to contain all vertex positions of the geometry for frame i € [0, ...,[] C
N. A PCA is performed on these vectors, resulting in a series of ¢ eigenvalues \;
and eigenvectors Fy, k € [1,...c] C N, latter will be called eigenframes. \jy = 1
and the mean of A are used as Fjy. The first ¢ < [eigenframes approximate any of
the original frame A; in such a way that the sum of the squares of the projection

errors onto the affine subspace spanned by { Fjo, . .., Fj.} is minimized
AiszikFik, i=0...1 (3.1
k=0

121

Chapter 3. Animation

Input motion sequence A

\ 4

PCA of A into components

v

Analysis of PCA weightset

v

[Find motion structure]

Random Play

(store coherence matrix)

Generate Loops

(store loop table)

Rendering

Fig. 3.2: Algorithm Overview. First a principal component analysis is used with the input motion
sequence. The motion structure is evaluated using only the weight set. For random play
or defined loops coherence and transitions matrices are computed, which are later used

for rendering together with the eigenvectors of A.

The coefficients w;, = (A;, i) are weights, were (,) denotes the standard scalar
product in R**¥, where N is the number of vertices of the geometry.

Following the work of Schddl et al. [2000] and Lee et al. [2002] the data is mo-
deled as a first-order Markov process, hence the transition between states depends

122

3.2. Sequence Generation

only on the current state, which with this method are the given key frames in A.
The Markov process is represented as a matrix F;; storing the probability of a
transition from frame ¢ to frame j. This matrix is computed, by first computing
the frame-to-frame distances D;;, which is defined by the differences of the PCA
weights w;y:

k=0

As in Schodl et al., the transition probabilities from frame ¢ to frame j are com-
puted using an exponential function F;;, as follows:

P ~ exp(—Djt1,/0) (3.3)

where o controls the mapping between the distance measure and the probability of
the transition. Higher values for o allow for a greater variety at the cost of poorer
transitions. Transitions with high probabilities are the ones, where the successor
of 7 is similar to j, hence D, ; is small. To propagate the forward motion, the
probability for frame 7 + 1 should be higher than for 7 itself. All probabilities are
normalized per row, hence) ;P =1

Motion Dynamics

To preserve the dynamics of the motion, all central velocities V; for all vertices
per frame i,7 € [1,...,1) are computed. Using the vertex positions p;, stored in
A; the velocity v;,, for vertex n and frame ¢ is computed:

Vin = ((Pin — Di—1n) + Pit1.0 — Pin))/2 (3.4)

where v,, = v;,, = 0 is defined for all n.

Computing a separate PCA on V; and denoting the weights as w}),, whereas ¢ €
[0,...,] is the number of the frame the velocities are to be reconstructed for,
k € [0,...,c*] with ¢* the number of components used, the distance matrix is
reconstructed similar to equation 3.2:

D= wh, —w) (3.5)
k=0

123

Chapter 3. Animation

and finally

P~ eXp(—Dl-*H,j/U*) (3.6)
where ¢* is the mapping parameter respectively.

Another simple method to propagate the forward motion is to store a simple list of
the last m visited frames. m should be a fairly small number (m < 5), to prevent
certain motions, for example waving arms up and down or other jittering. While
on the one hand according to the system itself this is a valid motion, it might be
desired to prevent this for more natural animations.

Generate Jump Map

~

To create the final probability map F;;, which later will be called jump map, posi-
tion and velocity coherence is used as follows:

A

P = P;Fj 3.7)

To allow different emphasis on either the position coherence (w), the velocity
coherence (w*) or both, the following extension to equation 3.7 can be used:

Py =g+ (1—q)Pyllg" + (1 — ¢*)P}] (3.8)

where ¢, ¢* € [0, 1] control the emphasis. Note that values between 0, 1 create a
base probability for either ¢ and/or ¢* to ensure that Ej € [0,1].

The resulting map now can be used either to generate infinite random or fixed
length looped sequences.

Besides the vertex positions, the vertex normals are also included in the vectors
A;. The reconstructed normals later can be used in the rendering step for pro-
per shading. Figure 3.3 shows examples for D;;,P;;,D};, P;; and 151-]- for the used
models avatar and skeleton (see also figure 3.4).

Adding vertex attributes

Besides the vertex normals, additional information could be stored with the vector
A;, for example reflections properties. For numerical stability it then might be
necessary to introduce another vector R; to store these attributes, to obtain optimal
results from the principal component computations.

124

3.2. Sequence Generation

Fig. 3.3: Difference matrices and jump maps for the avarar (left) and skeleton (right) sequence.
From top to bottom: Dij,Pij,ij,Pi y and 15” In the distance matrices black is zero
distance and green high distance. In the probability matrices stands white for high pro-
babilities and black for low ones. The usage of both geometry and velocity data for P;;

prevents wrong jumps.

125

Chapter 3. Animation

Fig. 3.4: Two models used to verify the proposed method. On the left side, the avatar model
consists of three parts and has 20948 vertices. The skelefon model with another shirt on
the right side consists of 12427 vertices.

126

3.2. Sequence Generation

Blending Transitions

Because some transitions from frame ¢ to frame j might have large Euclidian
distances, slight discontinuities can occur. Instead of jumping directly from frame
1 to j a chosen amount b of blending frames ¢° is integrated:

P =i =iy oy —] 3.9

For the shown examples b = 3 yields smooth animations. The blending itself is
done on the PCA weight set. Let w;; be the weights for the ¢ PCA components
for frame ¢ and wyy, for frame j, respectively. The blending weights w;s, for frame
ig,t € [1...0] are linear interpolated between the weights for ¢ and j:

Wi, — Wik

b(b—t+1) (3.10)

Wigk = Wik +
Vk,ke€l0...c.

Variable Length Transitions

In contrast to transitions with constant length, transitions with dynamic length can
also be used. This depends on the Euclidean distance between the frames 7 and ;.
Control is achieved by introducing a smoothness parameter s, which defines the
minimal distance which should be covered by a single transition step. A good
starting point for s is the mean distance s = d between the frames in the animation
sequence A. From this it follows that the parameter b in equation 3.9 is computed
for each transition as follows:

A= Al

S

b (3.11)

where A, is the reconstructed geometry for frame :.

Motion Control

If the random or looped sequence does not satisfy the user’s needs, a simple but
efficient way for more user control can be used. Instead of one input sequence, se-
veral small sequences have to be created, each containing only a specific motion
subtype, for example move forward.

127

Video 11

Chapter 3. Animation

The user then can select a target cell (blue), as illustrated in figure 3.5 using for
example a joystick. The algorithm now searches for coherence frames between
the originating cell (red) and the target cell, interrupts the random jumping and
continues with it, when blending to an appropriate frame within the target cell.
The target cell now becomes the new originating cell. This method should work
for arbitrary cell contents, as long as there is no change of the geometry connecti-
vity.

Other control interfaces based on choice, sketching or vision as described in [Lee
et al. 2002] could also be applied.

move move move move move
back back back back back

left right left right

move move move move move move

forward forward | | forward @forward j@forward §f | forward Wforward i forward
left right left 3 right left right

Fig. 3.5: Three examples for user control of the motion. Each cell contains PCA components for a
certain motion, for example move forward. Only red (currently in) and blue (target) cells
are valid. The blue cell is chosen through user input, for example via a joystick.

3.2.3 Results

The proposed method was implemented under Windows 2000 on a 1.5GHz Athlon
with a state-of-the art graphics accelerator. All computations besides the rendering
are done on the CPU. The accompanying video clips show two examples of initial
animations A and two new long sequences generated. The rendering is done with
OpenGL and Phong shading, using the reconstructed vertex normals.

PCA Reconstruction Error Analysis

The error of a reconstructed geometry depends on the number of PCA components
used. Because the usable number might be limited through speed and/or memory
restrictions two errors I~ and £ are introduced, corresponding to the position and
to the velocity with a given number of components ¢ and c*, respectively. They
are defined as follows using /V as the number of vertices in the geometry:

-1 N ~
E(e)=Y" Zn=0N”pm — Dinlly (3.12)
i=1 ano ||pm||2

128

3.2. Sequence Generation

-1 1 N ||U B ||
in 1Yin — Vin|lg
— E — E (3.13)
— N = [vinl

where I is a relative error for the geometry of the object and E* is expressed as
a relative velocity error per vertex. p;, is the position in world coordinates and v;,,
the central velocity of the vertex n, respectively. p;, and v;,, are the reconstructed
vertices and velocities.

Note, that this reconstruction error makes only sense to have a quality indicator for
the newly generated sequence, therefore, in which amount the PCA reconstructi-
on error determines the similarity between the original and the new sequence.
These errors are discussed in section Generated Sequences. Figure 3.6 shows the
eigenvalues for the avatar and skeleton data sets decreasing with the number of
components. For the figures ¢ = 10 for the geometry and ¢ = 5 for velocity
reconstruction were used.

PCA Compression Ratio

The number of used eigenvectors for the reconstruction directly effects the com-
pression ratio of the input basis sequence. Table 3.1 shows the ratio dependent of
the used number of components ¢ for the avatar and skeleton sequence. Compare
also table 3.2 for the error dependence.

c Avatar | Ratio | Skeleton | Ratio
[MB] [MB]

- 138 1:1 75,2 1:1

1 |26 1:53 | 14 1:54
2 140 1:34 | 1.9 1:40
4 146 1:30 | 2.8 1:27
6 |62 1:22 | 3.8 1:20
8 |77 1:18 | 4.7 1:16
10 | 9.2 1:15 | 5.6 1:13

Tab. 3.1: Compression ratios of the used sequences for several numbers of PCA components.
¢ > 8 results in visible good reconstructions, hence a compression ratio of >1:15 is
achievable.

Generated Sequences

The algorithm was tested with two animation sequences, namely avatar (115 fra-
mes) and skeleton (190 frames). Figure 3.7 shows sample frames of an animation

129

Chapter 3. Animation

1,20E+06

1,00E+06 -

8,00E+05 -

6,00E+05 -

eigenvalue

4,00E+05 -

2,00E+05 -

0,00E+00

-

1,00E+04

5 6 7
component (geometry)

10

9,00E+03 -

8,00E+03 4

7,00E+03 -

6,00E+03 +

5,00E+03 -

eigenvalue

4,00E+03 -

3,00E+03

2,00E+03 +

o \\‘b\l‘»\._

0,00E+00 T

-

5 6 7
component (velocity)

10

—e— Avatar
—&— Skeleton

—e— Avatar
—&— Skeleton

Fig. 3.6: Eigenvalues versus PCA component number for geometry (top) and velocity (bottom).

130

3.2. Sequence Generation

with several hundred frames. See also the accompanying video for the new ani-
mations.

Fig. 3.7: Sample frames of the avatar (top) and the skeleton (bottom) sequence. See also the
accompanying video. Yellow dots are vertex positions, red lines are velocity vectors.

Figures 3.8 and 3.9 show the influence of the parameter o and o*for the two basis
sequences. Normally, 0 = ¢* was used.

It is clearly visible, that if o is too low or too high, instability occurs and only a
specific range results in proper new animations.

For the avatar sequence o ~ 0.05 generates natural animations and for the ske-

131

Chapter 3. Animation

200
180
160
140
120 | | ‘

used frame
-
o
o

I

o]
o

—
|

Ii m
40 ” i
: |
0 T T T T T T T
0 50 100 150 200 250 300 350 400

200
180
160
140
120 4

used frame
)
o
|

80

60

40 1

20 1

0 50 100 150 200 250 300 350 400

1

40 A

0 T T T T T T T
0 50 100 150 200 250 300 350 400
frames

used frame

Fig. 3.8: Influence of o and ¢* for the avatar sequence. From top to bottom: ¢ = 0.05, 0 = 0.01
and o = 0.30. Note the changing dynamics of the generated sequence.

132

3.2. Sequence Generation

180

140 4

120

100 A

80 1

used frame

60 1
40 1

20

0 50 100 150 200 250 300 350 400

180

160 4

140

120 4

100 4

used frame

80

60

40 q

20 4

0 50 100 150 200 250 300 350 400

180

160

140

120 A

used frame
(2] 0 8
o o o

IS
S

N
S

0 50 100 150 200 250 300 350 400
frames

Fig. 3.9: Influence of o and o* for the skeleton sequence.

133

Chapter 3. Animation

leton 0 ~ (.30, respectively. The influence of the parameters ¢ and ¢* is shown
for the avatar sequence in figure 3.10. If only one criterium is considered, either
velocity ¢ = 0.0,¢* = 1.0 or position ¢ = 1.0,¢" = 0.0, the first 100 or 140
frames are sufficient to find good transitions for constant o. If both criteria are
considered, valid transitions are restricted to an extend, that the algorithm needs

all frames of the input sequence or even more.

200

B Maximum

frame

Fig. 3.10: Influence of different combinations of ¢ and ¢*, when equation 3.8 is used. See text for

details.

Table 3.2 shows the reconstruction errors £ and £* for the animations depending
on the number of PCA components used.

Average

¢ | Avatar(F) | Avatar(E*) | Skeleton(F£) | Skeleton(£™)
0 | 25.06 188.55 31.79 172.14

2 | 496 121.25 16.19 151.95

4 |1.89 62.85 10.61 119.52

6 | 1.63 48.49 8.042 92.76

8 | 1.24 31.04 6.29 82.66

10 | 0.99 26.09 5.09 73.82

Tab. 3.2: E and E* errors computed after equation 3.13. ¢ = 0 equals to only use the mean for

reconstruction. Similar to the eigenvalues the errors drop with increasing c.

134

3.2. Sequence Generation

Conclusions

This section introduced a method to handle arbitrary animated geometry to gene-
rate new endless or fixed length sequences with non-trivial repetitions.

The algorithm needs only a small basis animation and little preprocessing time to
generate transition matrices, which are based on frame-to-frame position and ve-
locity coherence of principal component reconstruction weights. Using the PCA
also delivers a good compression of the input animation for free. Depending on
the number of components used and the maximum error allowed, the complete re-
construction and evaluation of the jump map can be done at interactive to real-time
frame rates on consumer hardware. This allows the easy usage of this technique
in the entertainment field, for example for computer games. In practice, only the
jump maps, the eigenvectors and the weights for the reconstruction besides the
connectivity and texture coordinate information is needed on the client computer.

For practical usage it is worthwhile to use the increased possibilities of modern
graphics adaptors. It should be possible to do the PCA reconstruction of the mesh
directly on the GPU to avoid bus load. Also the random sequence generation
should be possible on the GPU using texture lookups, while storing the coherence
matrices as textures. To achieve even better compression results and to reduce
the number of needed components local principal component analysis (LPCA), as
introduced by Kambhatla et al. [1997] can be used.

135

Chapter 3. Animation

3.3 Sequence Compression

3.3.1 Introduction

3D objects are often represented as polygonal meshes, which consist of vertices,
edges and faces. This representation is supported by the majority of modeling
tools and graphics accelerator boards are optimized to use this form of data for
rendering.

For life-like soft body animations of this 3D data, for example of avatars, relati-
ve vertex positions change over time, while the face connectivity stays constant.
High-quality soft-body animations are widely used in fields which allow off-line
production, like films. On the other hand, this form of representation is not prac-
tical for real-time entertainment or transmission over the internet with limited
bandwidth, because of the huge amount of data.

Essentially, each frame contains the whole 3D scene. Hence, efficient compression
schemes are necessary. On the one hand, there should be significant compression.
On the other hand, the scheme should allow for reconstruction without visible ar-
tifacts and it should be fast enough for real-time applications.

In this section a method is developed to efficiently compress the geometry data of
animation sequences [Sattler ef al. 2005b]. This is achieved by two main features.
First, the data is reorganized to form vertex trajectories. Each trajectory is stored
separately. After that, all trajectories are clustered using Lloyd’s [1982] algorithm
in combination with principal component analysis, to segment the mesh into parts
which move almost independently.

These mesh parts then can be compressed more efficiently with lesser components
than using standard principal component analysis on the complete animation as
done in other approaches. The resulting eigenvectors and weights of the clustered
PCA afterwards are compressed in the time domain. All data is further quantized
to achieve an even better compression before transmission. Connectivity data is
also compressed using standard techniques.

The method allows for a fast reconstruction on the GPU, using programmable
shaders. Another application of the method is the user-controlled segmentation of
an object, based on a sample animation.

136

3.3. Sequence Compression

Related Work

The storage and transmission over bandwidth-limited channels of large data is al-
ways a challenging problem. In the context of computer graphics the existing me-
thods can be divided into the geometry compression of static and dynamic meshes.

A good overview of geometry compression is given in [Taubin & Rossignac 1999].
Most research is done to compress static geometry. Here, methods to compress
geometry (vertex positions) [Deering 1995; Taubin & Rossignac 1998; Karni &
Gotsman 2000], connectivity [Gumhold & Straler 1998; Touma & Gotsman 1998;
Rossignac 1999], multi-resolution [Alliez & Desbrun 2001; Karni et al. 2002] and
progressive meshes [Hoppe 1996; Khodakovsky et al. 2000; Pajarola & Rossignac
2000] exist.

While it is possible to use all static compression schemes also on a frame-to-frame
basis for animations, no time and space coherence can be used, which is crucial
to achieve higher compression rates for animations.

To compress complete animations geometry, Lengyel [1999] proposes the decom-
position of the mesh into subparts and the description of these parts as rigid-body
motion. For the segmentation process only a heuristic solution is provided. Alexa
et al. [2000] represent animations by using principal component analysis (PCA)
to reduce the data amount. For example Nishino et al. [2001] applied PCA to the
reparameterized images of an object viewed from different poses and obtained so-
called eigen-textures and Matusik et al. [2002] compressed the pixels of captured
reflectance fields applying PCA to 8 by 8 image blocks and Sloan et al. [2003a]
uses CPCA for efficient radiance transfer computation.

Karni et al. [2004] use the principal component idea and also linear prediction co-
ding to exploit temporal coherence. Briceno et al. [2003] use geometry images [Gu
et al. 2002] to compress every frame of an animation. Reconstruction artifacts can
occur due to sampling problems. A costly re-meshing process is also involved and
reconstruction is only fast for small image sizes. The Dynapack algorithm as in-
troduced by Ibarria and Rossignac [2003] exploits inter-frame coherence and uses
two predictors to encode the mesh motion. Most recently, Guskov et al. [2004]
uses wavelets to exploit parametric coherence in the animation sequences. Whi-
le a good compression performance is achieved, a multi-resolution transform is
needed and only inter-frame coherence is used. Due to the usage of wavelets, the
reconstruction may become computationally costly depending on the used filter
kernels.

137

Chapter 3. Animation

ENCODER DECODER

cluster index

animation
vertex data PCA data

connectivity
data

Fig. 3.11: Simplified data flow of the method.

It follows a brief overview of automatic mesh segmentation methods, because the
proposed method uses segmentation to achieve better compression results. Besi-
des the spectral compression method by Karni et al. [2000], mesh segmentation
was rarely used to compress animations sequences.

For static geometry several promising approaches exist. For instance, the algo-
rithm of Katz et al. [2003] uses geodesic distance and convexity information.
Shlafman et al. [2002] propose decomposition by assigning faces to a patch based
on physical and angular distances, to allow the metamorphosis between two mes-
hes.

GPU-based mesh segmentation was shown in [Hall & Hart 2004]. Because the
segmentation metric used in the following is based on the motion of a vertex
present in the animation, most of the above methods are not applicable.

3.3.2 Algorithm Overview

This section describes the compression method in detail. An overview of the data
flow is given in Figure 3.11. In the following a triangle mesh with 1 vertices and
an animation with F' frames in length is assumed, also constant mesh connectivity.
This is true for most animations based on bones models, space warps or simulati-
on results.

Animation Representation

Several methods exist to create 3D animations in computer graphics. Simple ani-
mations can be described with equations which model the trajectories of the verti-

138

3.3. Sequence Compression

ces. But to achieve highly complex motion, the classical approaches involves hu-
man animators, who first model a character or object and then create key-frames,
using techniques like inverse kinematic.

To achieve more realistic motion, physically based simulation, which describe, for
instance, cloth or hair behavior are also incorporated. Based on basic animations
and some constraints, new motions can be synthesized. For film and entertain-
ment, motion capturing systems with real actors are used to animate the bones
model of a virtual object. Therefore, assuming a constant face connectivity, ani-
mations can be thought of a matrix A which stores the vertex positions for each
frame in its columns:

V11 -+ UF Ty
A= — (3.14)
Vy1 -+ Uyvfp Ty

with V' as the number of vertices, F' as the number of frames in the animation
and 7' as the vertex trajectories. The main goal is to compress this data to save
memory and bandwidth.

If a lossy compression scheme is used, the reconstruction of the matrix should be
done with the least error with regard to the positions of the vertices during the
animation.

Mesh Segmentation and Linear Basis Decomposition

Given an animation, for example, based on physical simulation, the vertex paths
through space are different and the relative relationship between the paths might
show a highly nonlinear behavior. In this case, dimensionality reduction of the
complete animation using PCA, which projects the sequence onto a linear sub-
space, will not be very efficient.

Nevertheless, many high-dimensional data sets show a local linear behavior. That
is, some vertex trajectories lie similar in space, meaning that their vertices move
similar within the animation. The main idea of the proposed method is to consider
the vertex trajectories for compression and not the single frames, using the local
linear data assumption. Therefore, instead of clustering the frames (matrix A), the
trajectories (matrix A”) are clustered. It should be the goal, to find clusters of
local linear data, which is equivalent to a segmentation of the animated mesh in-
to parts. The efficiency of the final compression relies on these clusters of the data.

139

Chapter 3. Animation

As pointed out in the previous work, Lengyel [1999] proposes a heuristic solution
for the segmentation, but a better segmentation can be obtained using data analy-
sis techniques.

Therefore, a clustered PCA is applied to the animation data, which was introduced
by Kambhatla and Leen [1997] to the machine-learning community in competiti-
on to classical non-linear/neural-network learning algorithms. It combines cluste-
ring and PCA using the reconstruction error as metric for choosing the best cluster.

In contrast to more sophisticated non-linear dimensionality reduction techniques,
this method introduces no additional run-time cost to the reconstruction apart from
a simple cluster look-up. The clustering in the encoding stage (see Figure 3.11) of
the algorithm can be summarized as follows:

1. Initialize k cluster-centers r; randomly chosen from the dataset. Assign a
collection of c unity basis vectors e; ; to each cluster.

2. Partition the dataset into regions by assigning each data-vector to its closest
center. The distance to a center 7; is given by squared reconstruction error:

c

e = &P = |lx—r; = D (z—rje5)e

i=1
where z is the original and z; the reconstructed data vector.

3. Compute new centers 7; as the mean of the data in the region j.

4. Compute a new set of basis-vectors e; ; per region, i.e. perform a PCA in
each region.

5. Iterate steps 2.-4. until the change in average reconstruction error falls below
a given threshold.

After this process, a cluster index I,,,, m € [1,...,V] is generated, which stores
for each original vertex trajectory 7;,, the number of the cluster, it belongs to.

Also, c eigenvectors per cluster are generated, which in the latter are called Ei-
gentrajectories. These Eigentrajectories £;;, j € [1, ..., | were generated in the
last step 4 of the clustering process. Furthermore, the first ¢ Eigentrajectories ap-
proximate any of the original trajectories in their cluster ¢ in such a way that the
sum of the squares of the projection errors onto the affine subspace spanned by
{E1,...,E5, .} is minimized

140

3.3. Sequence Compression

Tm = w]th[mh (315)
h=1
The coefficients wy, ;, = (T, E1,,1) are weights for the cluster I,,,, were (,) de-
notes the standard scalar product in R3*

Using this method, for the given number of clusters, guarantees the best recon-
struction error per cluster for a given number of components. The clustering itself
heavily depends on the given model and the animation. While, on the one hand,
it is possible to let the user choose the number of clusters at the onset, based on
visual perception, it is also possible, to have an iterative determination of k.

The desired maximal reconstruction error or the available bandwidth for trans-
mission can be used as a stopping criterium for increasing £, starting with k = 1,
similar to [Katz & Tal 2003]. Clustering usually is in the order of minutes (see
Tab. 3.5). Therefore, the computer can search for an optimal .

Fig. 3.12: Sample frames of the compressed chicken sequence with 10 clusters, each colored
differently.

Results for the segmentation for some of the test animations can be seen in Figure
3.12 and 3.13. Each of the clusters is coded in a different color. Note the seg-
mentation of the POSER head, which is animated by facial expressions. It shows
clearly the three main parts (eye and mouth region, rest of the head).

In the case of F' > V, the matrices are rearranged in a way, that the covariance
matrix has the size of the smaller part of (F, V'), as shown in [Navarrete & del
Solar 2001]. Furthermore, due to the offline nature of this preprocessing step,
out-of-core techniques implemented in packages like LAPACK [Lapack 2005] are
used.

Error Measurement

To compare the performance of the proposed method with regard to compression
and reconstruction quality, a distortion factor d, similar to [Karni & Gotsman

141

Chapter 3. Animation

[

1
"Amw
! VAVAVA"

b

Fig. 3.13: Clustering based on animation data. Right to left: cow with 5, dance with 6 and head
with 3 clusters, each colored differently.

2004] is introduced in the following, which measures the quality of the vertex
position reconstruction for the complete animation. d,, is defined as follows:

d, = 10012 =Bl B
L=
1B=CBl

where B is a matrix with the dimensions 3V x F' containing the original animation
sequence. B is the same matrix after the compression and reconstruction stage.
C(B) is a matrix in which each column consists of the average vertex positions
for all frames. Also the per-frame distortion d; is computed, which is defined as
the L2 norm of all original and reconstructed vertex positions of a frame.

Compression of Eigentrajectories

Note, that the eigentrajectories £;;, which were computed above, are still of the
length . To further compress this data, again a PCA is applied to these vectors.
This results in c¢* new eigenvectors and the corresponding eigenvalues. This is
especially useful for long sequences.

In contrast to the first step, now the time axis is compressed. After this second
compression step, the new eigenvectors and weights are quantized for transmissi-
on, which is discussed in the next subsection.

142

3.3. Sequence Compression

Using more than ¢* = 100 components gives nearly the same error than without
time domain compression (d, = 0.03). Figure 3.14 shows the influence of dif-
ferent numbers of components ¢* on the reconstruction error d, of the complete
chicken animation (k = 10, ¢ = 20).

Influence of c*

7.00

6.00

5.00 -

4.00

3.00 H

2.00 ~

1.00 1

0.00 ; ; T ; ; " : T
0 20 40 60 80 100 120 140 160 180
components

Fig. 3.14: Influence of different numbers of components ¢* on the reconstruction quality d,, for
the chicken sequence.

Figure 3.15 shows the per frame distortion d.

Quantization

Before storing or transmitting data, quantization is a common technique to reduce
the floating-point data (32 or 64 bits), by using only ¢ bits to represent a float va-
lue. This is done via a normalization process, which computes a tight, axis-aligned
bounding box for the geometry. In the case of an animation, one first computes the
center of gravity of each frame and chooses the largest occurring bounding box
for all frames.

As pointed out by some authors [Karni & Gotsman 2004; Rossignac 2004] ¢ = 12
bits can be treated as losslesscompression with regard to visual quality as seen in
the top of Figure 3.16.

143

Chapter 3. Animation

Influence of ¢* ——100

10.0000

1.0000 ~

0.0010 -
{

0.0001 -

0.0000
Frame Number

Fig. 3.15: Influence of different numbers of components c¢* on the reconstruction quality per frame
dy for the chicken sequence.

But to operate with full precision, the PCA is computed on the original floating-
point data and quantization is only performed on the components and weights as
shown in the dataflow in Figure 3.11. This is done separately with two bit values ¢,
and ¢, for the components and the weights respectively before transmitting them.

The bottom of Figure 3.16 shows the reconstruction samples for different quan-
tization levels (top row) and different values for ¢. and ¢, (bottom row) for the
chicken sequence with 20 clusters and 10 components.

As shown in Figure 3.17 the reconstruction error d, is more effected by the quan-
tization of the components, than by the quantization of the weights. In practice,
the usage of at least 18 bits for both ¢. and gq,, is advised .

Decompression

After transmission, at first, the Eigentrajectories are decompressed. After this, k
clusters, each with ¢ PCA components and the corresponding weights from the

144

3.3. Sequence Compression

Fig. 3.16: Top row: Different quantization levels (¢=32,12,10,8,6 bits) of the original data for the
chicken sequence . Bottom row: Reconstruction results using different quantization for

qc and qq, (q.=12,q,=12/q.=12,q,,=32/9.=32,q,,=12/q.=16,q,,=16). Color-coded error
to original 32bit frame. See text for details.

clustering process are restored. The reconstruction of each trajectory of the ani-
mation, hence each frame, is now possible. In addition, the cluster index /,,, is also
restored.

As shown in Figure 3.11 the reconstruction can easily be done on the GPU, be-
cause all data can be stored in graphics memory and only simple matrix multi-
plications have to be computed to reconstruct a certain frame. This can easily be
done within a shader program [OSS 2005].

Figure 3.18 gives an overview of the GPU shader program written in GLSL pseu-
docode for decompression. The cluster index and the weights are stored in 2D
textures, while the PCA data is stored in 3D Textures. After several lookups the
new vertex position is calculated.

145

Chapter 3. Animation

Reconstruction errors vs. quantization
chicken

100.000

10.000 -

&5 1.000

0.100 4

0.010
bits (qc,dw)

‘—0—qc=32;qw=32 —-qc=12;qw=16 qc=32;qw=12 qc=16;qw=32 —%—qc=12;qw=32 ‘

Fig. 3.17: Reconstruction errors for different combinations of ¢. and q,, for the chicken sequence.

for all vertices 7 do
vec4 new VertexPos;
floatclusterldx = texture2D(texClusterIdx, texCoord[j]);
vecd weights = texture2D(texWeights, texCoord|[clusterldx]);
new VertexPos.xyz = texture3D(texClusterMean, texcoord[clusterldx]);
for i = 1 to NumComponents do
new VertexPos +=
weights[i]*texture3D(texClusterComponents, texcoord[clusterldx]);
end for
glPosition = glModel ViewProjectionMatrix * new VertexPos;
end for

Fig. 3.18: Pseudocode to compute new vertex positions in a shader program for decompression

3.3.3 Results

The following section describes the data used and introduces some error measu-
rements, followed by an evaluation of the method and the comparison to other

146

3.3. Sequence Compression

compression schemes.

Data Sets

All of the following data sets are animations of polygonal meshes and the number
of faces and their connectivity does not change over time. The animations were
done either by hand, by the usage of motion capture data or pre-generated basic fa-
cial expressions. Table 3.3 shows basic information for all animations sequences.

name | vertices V | triangles T | frames F
chicken 3030 5664 400
COwW 2904 5804 204
dance 452 570 1733
dolphin 6179 12337 101
face 539 1042 10001
head 8172 15974 500

Tab. 3.3: Used animation sequences.

Some of the animations can be viewed in the accompanying videos and sample
frames can be seen in Figure 3.19.

Fig. 3.19: Sample frames of the used animations. From left to right: chicken, cow, dance, dolphin,
face and head.

Compression & Reconstruction Results

For the evaluation of the method described here, the reconstruction error metrics
described in the subsection Error Measurement and the bpvf (bits per vertex per
frame) unit for bandwidth usage measurements are used.

147

-]

Video 11

)

Video IV

Chapter 3. Animation

name bpvf | d, |l c |k
chicken | 8.7 | 0.002 60 | 2
4.7 | 0.076 20 | 10
2.8 | 0.139 20| 5
COW 74 | 0.16 40 | 5
3.8 | 0.50 20| 5
2.0 1.47 10| 5
dolphin | 7.1 | 0.024 20| 2
4.1 |0.033 10 | 4
2.1 | 0.168 10| 2
head 7.4 | 0.003 40 | 10
5.3 | 0.003 60| 2
2.5 | 0.083 20| 5
dance 6.1 | 021 | - | 5 |10
49 | 025 |40 | 5 |10
43 | 048 |35 5 |10
25 | 087 | - | 2 |10
1.9 | 206 | 15| 2 |10
1.3 | 457 [10| 2 | 10
face 10.0 | 0.013 | - | 5 |20
5.1 0023 50| 5 |20
50 0029 | - | 5|10
25 10038 (25| 5 |10
1.5 10058 | 15| 5 |10

Tab. 3.4: Compression results.

The face connectivity is transmitted beforehand as payload and the data is dis-
tributed over the whole animation for comparison reasons. Note, that the Edge-
breaker method with freely available source code by [Rossignac 1999] is used to
compress the connectivity information. In the worst case 61 bits to store the data
are needed. Table 3.4 summarize the compression results for different bpvf for the
used animations. Note, that c* is used only for the long sequences.

Timings

The compression was done using an AMD Athlon64 XP 3200+ with Windows
2000. As graphics adapter an ATI Radeon X800pro was used. Table 3.5 shows
compression and decompression timings for several test animations. Compressi-
on times are in seconds for the clustering, principal component analysis and sa-

148

3.3. Sequence Compression

name clusters & | components c | t (sec) | FPS
chicken 2 60 258 105
chicken 10 20 206 | 214
chicken 5 20 395 | 215
COW 5 40 75 145
cow 5 20 59 218
cow 5 10 55 284
face 10 40 2730 | 648
face 2 40 979 | 654
face 5 20 1320 | 865

Tab. 3.5: Compression/Decompression timings for several animations.

ving. Frames per second (FPS) for display while reconstructing. It seems, that the
performance heavily depends on the number of clusters used.

Comparison

In comparison to other approaches the new method performs very well. Compari-
son is done against the wavelet (AWC) [Guskov & Khodakovsky 2004] and linear
prediction coding (KG) [Karni & Gotsman 2004]. The values were obtained from
the corresponding papers. Figure 3.20 shows a graphical result for the cow se-
quence.

Depending on the quantization level used (32 or 18 bits for the PCA components),
results come close or even outperform all other methods. The right side of Figure
3.20 uses fixed bpvf to visualize dy. k=5, c=40; k=10, ¢=20 and k=5, c¢=20 are
used for dy=7.4, 5.7 and 3.8 respectively. Besides this, the method outperforms
the KG method for long sequences, as can be seen in Figure 3.21.

To calculate the bpv per frame (bpvf) the following equation is used:

6V + q.kc3F + q,cV + 5V
bpvf = TG

with V and F as the number of vertices and frames of the animation. The first part
of the equation encodes the connectivity, the second part the PCA data (with &
as the number of clusters and ¢ as the number of components), the third part the
PCA weights and the last part represents the cluster index encoded with 5 bits. The
cluster index can be avoided, by rearranging the data in a way, that all trajectories
are ordered by the cluster number. Then, equation 3.16 becomes:

(3.16)

149

Chapter 3. Animation

Cow sequence

0.7

06) ——KG
: \ —=— AWC
0.5 —— CPCA32-

0.4 \ \ --- CPCA1l8
Sl T AN
0.2 A \

0.1
0.0

0.0 10.0 20.0 30.0 40.0 50.0
bpvf

d; for cow sequence

0.0018
0.0016 . — 7.4 bpvf||
0.0014 |
0.0012 -

.0.0010

0.0008 -
0.0006
0.0004 |
0.0002 {2 Ml
0.0000 o=

0 50 100 150 200
frame number

Fig. 3.20: . Left: Cow sequence comparison to other methods. The CPCA method with 18 bit PCA
quantization yields very good results. Left: d for the cow sequence with different bpvf
settings.

6V + q.kc3F + qucV
FVv

using some stopbits to indicate the cluster change. Note, that the latter will not
allow for random access the trajectories, which might become to costly during de-

bpvf = (3.17)

150

3.3. Sequence Compression

Face sequence

0.6

- KG
05 | =+ AWC |

-+ CPCA
0.4 -

< 0.3
0.2 -
3 \\xQ_L \.
0.0 | ; — : —4
0.0 2.0 4.0 6.0 8.0 10.0 12.0
bpvf

Fig. 3.21: . Comparison of the proposed method with other algorithms for the face sequence.

compression. With compression of the Eigentrajectories for long sequences 3.17
becomes:

6V + q.kec® 4+ qu3Ec™ + qucV

bpof” = FV

(3.18)

using ¢* < F.

Discussion and Conclusions

To achieve efficient compression of the 3D data of a soft-body animation se-
quence, the exploitation of the spatial and time correlation of is crucial.

The method uses clustered principal component analysis to separate the given geo-
metry into coherent parts, in regard to the animation. The animation is not treated
as a series of static meshes and frames, instead it is rearranged to analysis the
trajectory of each vertex individually. Compression is then done on the trajecto-
ries of all vertices of a cluster. Compression rates of the sub-meshes outperform
simple principal component compression or combination with linear prediction
encoding and for some animation types even wavelet-based methods. If the num-
ber of frames is much higher than the number of vertices in the animation, further

151

Chapter 3. Animation

PCA-based compression in the time domain of the Eigentrajectories is performed.

The method requires no meta knowledge besides the geometry data, for example
no bone model information. Given sufficient animation data, it allows for automa-
tic segmentation of the mesh. Memory problems which might can occur during
the principal component analysis, can be handled using out-of-core methods. Re-
construction is easily done on the GPU.

The method can be combined with linear prediction coding, which might lead to
even higher compression rates. As shown in the result section, using a different
number of clusters in combination with the distortion error, the method might be
able to predictd meaningful number of parts for the segmentation of the object.
In this version of the algorithm the number of components per cluster is fixed.
Given a global distortion error, the number of components per cluster might indi-
vidually be changed and a cluster-wise different quantization on a local basis can
be applied.

152

CHAPTER 4

Shadows

4.1 Introduction

Shadow [MWD 2005]: Etymology: Middle English shadwe, from Old
English sceaduw-, sceadu shade

1 : partial darkness or obscurity within a part of space from which
rays from a source of light are cut off by an interposed opaque body
2 : areflected image

3 : shelter from danger or observation

153

Chapter 4. Shadows

K I

Measurement of material . Mesh (an|n_1at|on)
' generation /
1

reflection properties physically based simulation

____________________ Motion sequence [[T
generation

reparametrization / .
. compression
compression

P

Shadow / illumination
precomputation

Visualization

Shadow perception

experiment

Rendering with real-time
soft shadows

Fig. 4.1: Overview chart with shadowing parts.

Realistic cloth visualization without correct shadowing, including self-shadowing,
is unthinkable. Within this chapter mayor aspects of shadowing are tackled, as
highlighted in Figure 4.1.

Starting with an experiment to evaluate the human shadow perception, approa-
ches are described, that allow for the speedup of rendering, due to the fact that
the average human observer is insensitive to slight errors or approximations in the
shadow rendering.

For the visualization of macroscopic geometry details, such as folds and wrinkles
and the correct handling of ambient lighting, two algorithms for correct self-
shadowing are introduced in the following.

While the first is integrated into the BTF rendering pipeline and is suitable for
pre-calculations, the more advanced algorithm uses hardware-accelerated visibi-
lity calculations and is capable of interactive to real-time frame rates.

154

4.2. Perception

4.2 Perception

4.2.1 Introduction

«. 6

t. &. t. i-.

Fig. 4.2: Visual perception of shadows. Decreasing level-of-detail for the shadow caster object
from left to right. Hard shadows cast by a point light source (top row) and soft shadows
cast by an area light source (bottom row) are shown.

Shadows are an important visual clue about the spatial structure of an object.
Using virtual reality applications for example, such as life-sized cloth visualiza-
tion, or medical surgery planning, they are important because they increase the
presence of the virtual objects and the overall realism. For the entertainment in-
dustry, where realistic images and high frame-rates are desired, this is also an
important aspect.

However, the shadows need to be computed at interactive frame rates, otherwi-
se usability and presence will break down. While local illumination models are
the strength of modern graphics hardware, more advanced techniques which are
capable of generating for example soft shadows are notoriously hard to perform
efficiently. For the overall realism of a computer generated image, the used il-
lumination is also important. While the classical graphics adapter pipeline only
supports artificial point light sources, realistic images would require area light
sources or image based illumination with environment maps.

But, if the indispensable ingredients to generate a realistic image are shadows cast
by area light sources, to what extend have these shadows to be correct, to be vi-
sually accepted by a human observer? If it is true, that the human observer is not
very good in detecting slight errors in shadow visualization, it would be possible
to use a simplified model of the object to cast the shadows, instead of the original
one and achieve the same acceptance rates of the resulting images.

155

Chapter 4. Shadows

Therefore, the main idea of the following experiment by Sattler et al. [2005a] is
to evaluate which level-of-detail (LOD) is sufficient for the shadow casting object
to produce acceptable shadows.

4.2.2 Related Work

There exists a lot of work on shadow perception. Wanger et al. [1992; 1992] have
done experiments about the context of object spatial position and size and shadow
shape and sharpness for simple objects. Other experiments show that shadows are
an import visual clue for object-object contact [Hu et al. 2000; Madison et al.
2001]. The importance of object motion and shadows for spatial perception was
investigated by Kersten et al. [1996; 1997].

However, a vast amount of work has also been published on rendering shadows.
Shadow maps [Williams 1978] or shadow volumes [Crow 1977] and all deriva-
tes are the classical approaches for point-like light sources. Both algorithms are
well suited for todays graphics adaptors [Kilgard 2002]. An important detail of the
shadow volume algorithm is the detection of silhouette edges. A silhouette edge is
an edge, where one of the normals of the corresponding faces points towards the
viewer (or the light source) and the other points away. Therefore it is necessary to
test all edges, each time the light source moves. There exist some approximations
[Markosian et al. 1997], which might lead to artifacts.

Recently, more advanced techniques for soft shadow generation were developed,
using various techniques, like wedges [Akenine-Moller & Assarsson 2002; As-
sarsson & Akenine-Moller 2003; Assarsson et al. 2003], smoothies [Chan & Du-
rand 2003] or penumbra maps [Wyman & Hansen 2003]. A good overview of
algorithms which produce soft shadows can be found in Hasenfratz et al. [2003].

Mesh simplification is one of the fundamental techniques used for polygonal mes-
hes, there is an extensive amount of different methods. Details are explained in
Section 2.2.1.

4.2.3 Experimental setup

The program used for the experiment (see Figure 4.3) shows two different images
of the same scene. The left side of the screen shows a high resolution version of
the shadow casting object above a plane. This high resolution version is also used
to calculate the shadows. The object shown on the right side is also the high reso-
lution version, but in contrast to the left side, the object to calculate the shadows

156

4.2. Perception

is a simplified version of the original.

In the bottom area of the graphical user interface several buttons for program
control can be seen.

-~
S ~ 2
\'ﬁ : - " Sy
R 3
Pt s
Y - - |
N S
‘ | ‘ \ i -
r [Esrter Duschgang st
[— i
| A | Esgsbrin spechem |

Fig. 4.3: Program used for the perception experiment

To compute the shadows, a modified version of the soft shadow algorithm [As-
sarsson et al. 2003] is used. This version uses shadow volumes, to compute the
umbra region. As test object the Stanford Bunny [Curless & Levoy 1996] consi-
sting out of about 70000 triangles is used. The simplified versions of the shadow
casting object were generated using techniques from [Borodin et al. 2003]. Thir-
ty six level of detail were precalculated, ranging from 100 (LOD=1) up to 50000
triangles (LOD=36). In each level the number of triangles is increased. See Figure
4.4 for details.

In the current version of the experiment, the shadow receiver is a plane. As the di-
stance between the object and the plane twice the object size is chosen, since this
allows a wide range of viewing angles from which both object and shadows are
fully visible. Increasing the distance further would make side views impossible,
while reducing the distance would increase the minimum viewing angle above 30
degrees. Note, that the radial size of the area light source also is chosen accordin-
gly. During the experiment, the test person is able to move the light source and

157

Chapter 4. Shadows

the point of view around the object, while the viewing distance is fixed. Thus, it
is possible to examine the generated shadows under several viewing angles. The
current LOD can also be changed interactively. On the left side of the screen, al-
ways the highest LOD with shadows is shown for comparison.

The Hausdorff-Error between each LOD level and the original mesh is precalcula-
ted. This allows for the comparison between the original mesh and the simplified
version. In Figure 4.4 the Hausdorff-Error is given in percentage of the bounding
box diagonal.

LOD levels with corresponding number of triangles and

Hausdorff error
100000 N I 1.2
—triangles
/\ —— Hausdorff error +1

R E
2 o
10000 + +08 =
g] 5
S
: £
= + 06 ©
- 0
s 3
5 A T
2 1000 04 g
E £

=]
€ »

+ 0.2
d \\\\
100 — = Pt e e o 0

Level of Detail

Fig. 4.4: LOD numbers with corresponding triangle count and Hausdorff error.

4.2.4 Experimental procedure

The experiment is performed in the following way. Perception is tested in two
directions. First, starting with the highest level-of-detail of the mesh (LOD=36),
the LOD number decreases. That is, the number of triangles used for calculating
the shadows, decreases. Following the tradition of the Just Noticeable Difference
experiment by Weber [1834], the test person can mark the level, which seems to
be the first to produce noticeable errors in the shadows. The second part of the

158

4.2. Perception

experiment starts with the lowest LOD level and the test person this time marks
the level, which seems to produce correct shadows for the first time.

These two parts are repeated with a different size of the light source. This allows
predictions about the influence of the size of the penumbra on the shadow per-
ception. Then, the area light source is substituted by a point light source and the
experiment is performed again, now with hard shadows. For the experiment, 20
test persons were interviewed.

4.2.5 Results

Because the perception of shadows by an observer differs from human to human,
there can not be an exact transition point between realistic and artificial percep-
tion, but more or less a transition region, in which most observers will fall. The
results of the first two parts of the experiment (area light sources) are shown in
Figure 4.5. In the first part of the experiment 17 test persons (=85%) are between
200 (LOD=5) and 600 (LOD=9) triangles. 8 (=40%) of these persons were satisfied
with a shadow cast from only 200 triangles and 25% from 300 triangles.

In the second part of the experiment (increasing LODs) nearly the same results
were observed. The mean value for the large area light sources is around LOD=5.6.
The third and fourth part of the experiment (larger light source) show similar re-
sults as the first and second part, as shown in Figure 4.6. It seems, that the size of
the penumbra region has only little influence on the perception. The mean value
for the large area light sources is around LOD=5.4.

To summarize the results for soft shadows and the object Stanford Bunny: less
than 1% of the original number of triangles for shadow calculation are sufficient
to produce realistic shadows for a majority (=90 %) of the test persons. On the
computer which was used for the experiment, the rendering time per frame for the
original mesh is about 1.15 seconds. Using only LOD=9, a speed-up of factor 16
can be achieved (0.07 seconds rendering time). In the last two parts of the experi-
ments hard shadows are rendered.

The scattering of the hits is more obvious, as in the parts with soft shadows, as can
been seen in Figure 4.7. For both directions, the majority of test persons (=87.5 %)
is between LOD=5 and LOD=17. Besides that, some outliers can be seen at LOD=30
and LOD=36. The mean value for the point light source is around LOD=10.9. It
seems, that errors in hard shadows are noticed more early, than in soft shadows,
which is reasonable, since soft shadows blur fine details. The possible performan-
ce gain in rendering speed is about factor 7 from 0.129 seconds for the original

159

Chapter 4. Shadows

Results for the soft shadow perception using a small area lightsource

% Hits at 1. pass
(descending)

WRASR AR S SESS S S ST

& Hits at 2. pass
(ascending)

Hit count
IS

N AN
vFrr
vFrr
]

B
&
B
@

21 23 25 27 29 31 33 35

Level Of Detail

Fig. 4.5: Results of the first two parts of the experiment for an area light source casting soft sha-

dows.
Results for the soft shadow perception using a large area lightsource
8
7 [
Fi
g
¢ g
‘ & Hits at 3. pass
L ‘\‘ (descending)
H A
§ ‘ a 8 @ Hits at 4. pass
E a § (ascending)
3 N ~
A N
" z
& ARg
A ANG N
A ANG N
11N - AN N - o - o a
ARY AAARY 7 Vo { ¢ 3
JAAE A Y g 4 § 2\
1 3 5 7 9 1 13 15 17 19 21 23 25 27 29 31 33 35

Level Of Detail

Fig. 4.6: Results for an increased size of the area light source.

mesh to 0.019 seconds using LOD=17 with 7000 triangles.

4.2.6 Conclusions

The presented experiment shows promising results to exploit the human shadow
perception for acceleration of the rendering of shadows in a computer generated
image. The first results suggest, that it is possible to use a highly simplified instead
of the original model to generate soft shadows. This allows for a high speed-up in
rendering times.

160

4.2. Perception

Results for the hard shadow perception using a point lightsource

% Hits at 5. pass
5 (descending)

| Hits at 6. pass
(ascending)

Hit count
IS

LSRN SRS NS SRR Y

ASSNERAR

a7 1 A

7 9 " 13 15 17 19 21 23 25 27 29 31 33 35

oy

o A

Level Of Detail

Fig. 4.7: Results for hard shadows cast by a point light source.

As a direction of future work, the generalization to other objects and real-world
scenes with a much higher complexity and larger shadow regions could be evalua-
ted. Another topic could be the evaluation of 3D shapes, which one has parametric
control over. Also, a nonplanar surface as shadow receiver could be used.

161

Chapter 4. Shadows

4.3 Self-Shadowing: Static Case

4.3.1 Introduction

In this section a method for real-time shading of folded surfaces such as cloth is
described. The surfaces, which possibly contain holes and complex folds are lit
under realistic illumination conditions.

The surface is assumed to be given as a static triangle mesh. The appearance of a
surface point is given by the radiance leaving the point in the direction of the view-
er. According to the rendering equation [Kajiya 1986; Jensen 2001], this radiance
is obtained by integrating the incoming radiance over all incoming directions at
the vertex v. These directions are typically represented by a hemisphere, H(v),
centered around v’s surface normal.

4.3.2 Related Work

The problem of shading folded surfaces, especially cloth, was addressed by Ste-
wart [Stewart 1999]. The main idea of his algorithm is a preprocessing step, which
computes 3D visibility cones for each vertex point, which are used to determine
the parts of the environment seen by this point. The cones are stored for each ver-
tex and used to evaluate the direct primary irradiance at runtime by doing several
intersection tests. The local illumination model described in [Stewart & Langer
1997] is used to calculate the resulting irradiance value.

Stewart reduces the calculation of the 3D visibility cones to a number of 2D visi-
bility computations by slicing a polygonal mesh with parallel planes. If the illu-
mination comes from a point light source, it is sufficient to test whether the point
lies in the visibility cone. If a uniform diffuse area light source illuminates the
surface, the area light source is intersected with the visibility cone and a contour
integral around the boundary of the part of the source inside the cone yields the
direct primary irradiance [Shirley 2000]. If the surface is illuminated by a uniform
diffuse spherical source that surrounds the surface, a contour integral can be app-
lied to the boundary of the visibility cone in the same manner as that of the area
source. Although the results presented by Stewart are convincing, the necessary
computation of intersection areas and the evaluation of the integrals prevent the
use of complex shaped light sources and changing lighting conditions in real-time.

To overcome these problems the presented method uses binary visibility maps in-
stead of the Stewart’s visibility cones. These binary visibility maps are computed
in a preprocessing step as follows: a finite set of directions on the hemisphere

162

4.3. Selt-Shadowing: Static Case

H (v) belonging to a vertex v is considered. For each such direction it is determi-
ned whether the environment is visible or occluded by the surface, and the binary
value at the corresponding position in the visibility map is set accordingly. Fol-
lowing the work of Stewart [Stewart & Langer 1997] the incoming light from
directions occluded by the surface itself is neglected. Only light from directions
in which the outside environment is visible contributes to the radiance of a surface
point.

To discretize the directions three different models are evaluated: a hemicube, a
single plane and a subdivision of the hemisphere into rectangles using spheri-
cal coordinates. This way, the algorithm can accurately handle all extended light
sources whose projection onto the hemisphere, the hemicube or the single plane
can be approximated with sufficient accuracy by the visibility map. To illuminate
the surface realistic lighting conditions are encoded in a global environment map.
During the rendering process, the radiance values stored in this environment map
are used to calculate the outgoing radiance in direction of the viewer for each ver-
tex of the mesh. For the computation various reflectance models of the surface can
be applied.

4.3.3 Algorithm Outline

This section gives a brief outline of the algorithm:

e Preprocessing

— For each vertex v of the mesh the visibility map is computed by ren-
dering the scene using v as eye point and the normal n of the mesh in
v as viewing direction. Pixels of the visibility map not covered by the
mesh encode their corresponding direction in the hemisphere.

— The visibility maps are computed and stored for each vertex.
e At runtime

— The radiance with respect to the observers’ position is calculated for
each vertex using a standard reflection model. The vertex” visibility
map is used to determine whether the radiance from a certain direction
contributes to its radiance value.

— The positions of point light sources are transformed into the coordinate
system of the visibility map. It is subsequently decided whether the
point light source contributes to the illumination of the vertex or not.
This can easily be performed using the visibility map.

163

Chapter 4. Shadows

— Finally, the calculated radiance values are assigned to their correspon-
ding vertices and Gouraud interpolation is performed.

4.3.4 Preprocessing

During the preprocessing phase the visibility maps for each vertex of the mesh are
generated. Figure 4.8 shows details of the computation.

Three different ways to encode a visibility map are compared: the hemicube [Co-
hen & Greenberg 1985], a single plane [Cohen & Wallace 1993] and the hemis-
phere discretized into a rectangular grid. To obtain the visibility map in a vertex v,
the mesh is projected by a central projection with center v to one of these models
(see Figure 4.9).

The hemicube, the hemisphere and the single plane are centered around v’s sur-
face normal n. The single plane is oriented perpendicularly to n. If the environ-
ment cannot be seen in a certain direction, the visibility of this direction in the
visibility map is set to the RGB value (0,0, 0), otherwise the direction itself is
encoded in an RGB value.

Because a cube model of the environment map is used, the RGB value (z,y,n)
is given by the = and y coordinate in the picture of the n-th side of the cube of
the environment map. The numbering of the sides is as follows: The top face is
numbered 0, the bottom face 5, the front face 1, the right face 2, the back face 3
and the left face 4.

Figure 4.8 shows a sample mesh and the corresponding visibility map for one ver-
tex. A hemicube model is used with a resolution of 64 x 64 for the top and 64 x 32
for the sides. The top image shows the mesh with a vertex (blue dot) inside a fold.
The vertex is marked by its red normal.

The bottom image shows the unfolded hemicube for the above mentioned vertex.
For simplicity in this picture the directions in which the environment can be seen
are coded by black and not by the direction itself. The directions where the envi-
ronment cannot be seen are drawn in green. The red dot shows a projected point
light source. In this example the light source can be seen by the specified vertex.
Therefore the vertex is lit.

The resolution of the visibility maps is n x m. Other resolutions tested lie in
n,m € [4,256]. The presented method allows the resolution to be defined by the
user. Good results are achieved using n X m > 64, as the possible resolution of the
outgoing radiance in a vertex is limited by this number in case of diffuse lighting

164

4.3. Selt-Shadowing: Static Case

Fig. 4.8: Visibility test. The top image shows the mesh with a vertex (blue dot) inside a fold. The
vertex is marked by its red normal.
The bottom image shows the unfolded visibility map of this vertex. The model used for
the visibility map is a hemicube with a resolution of 64 x 64 pixels for the top side of the
cube and 64 x 32 for the sides.
For simplicity, in this picture the directions in which the environment can be seen are
coded by black and not by the direction itself. The directions where the environment
cannot be seen are drawn in green. The red dot shows a projected point light source. In
this example the light source can be seen by the specified vertex. Therefore the vertex is
lit.

165

Chapter 4. Shadows

LEnvironmem Map

Surface —

Fig. 4.9: The mapping between the binary visibility map of vertex v and the global environment
map T; is encoded in each pixel P; of the visibility map itself. The environment patch
T; emits L; in the direction I. 6 is the angle between the surface normal N in v and the
direction [of the incoming radiance. For simplicity, only a side view is shown.

of the environment. For a resolution less than 64 this results in blotchy images.

The central projection for all three models can be computed using standard ray
tracing. For the hemicube and the single plane standard OpenGL rendering can be
applied. However, using standard OpenGL rendering to project the mesh onto the
sphere is complicated and involves specific hard to implement clipping steps.

For a static mesh the visibility map is fixed and is stored together with the coordi-
nates and the material parameters (reflectance parameters) of a point.

4.3.5 Comparison of Rendering Methods

Let v be the vertex of the mesh, the visibility map is determined for. The following
rendering methods for generating the visibility maps are evaluated:

1. OpenGL-Rendering: The mesh is rendered using a triangle stripped display
list of all triangles.

2. OpenGL-Rendering with triangle pre-selection: In a first step, all triangles
of the mesh are sorted into a three-dimensional grid. Then, triangle strips are

166

4.3. Selt-Shadowing: Static Case

Method Model | Resolution | Running time | Distance
(sec) (ums)
Triangle Rasterizer HC | 8x8 28.4 2.0
HC | 16x16 30.0
SP | 8x8 4.3
Sp 16x16 5.0
HS 16x4 51.5
HS | 32x8 54.7
Triangle Rasterizer HC | 8x8 15.2 1/6
with triangle HC | 16x16 17.0
preselection SP | 8x8 3.1
SP 16x16 3.7
HS 16x4 15.0
HS | 32x8 20.6
Raytracer with HC | 8x8 120.0 1/6
triangle preselection | HC | 16x16 457.9
SP | 8x8 32.2
SP 16x16 104.3
HS 16x4 333
HS | 32x8 110.6
Raytracer with grid HC | 8x8 27.1 2.0
traversal HC 16x16 103.8
SP | 8x8 9.3
SP 16x16 46.1
HS 16x4 7.2
HS | 32x8 26.8

Tab. 4.1: Overview of the running times of the visibility calculation routines. Abbreviations used:
HC= hemicube, SP= single plane, HS= hemisphere. UMS=units of mesh size.

167

Chapter 4. Shadows

generated for all triangles contained in a certain cell using a straightforward
stripping algorithm. Finally, the triangle strips are stored in display lists.
During the rendering of the mesh, the display lists of only those voxels are
called, that are within a given distance from the vertex v. This distance is
given in units of the maximum dimension of the mesh.

3. Raytracer: For every discretized direction of the visibility map all triangles
of the mesh are tested for an intersection with the ray leaving the point in
that direction.

4. Raytracer with triangle preselection: Similarly to OpenGL rendering with
triangle pre-selection, all triangles of the mesh are sorted into a three-dimensional
grid and only triangles in grid cells close to v are tested.

5. Raytracer with grid traversal: only triangles lying in grid cells passed by
the ray are tested.

Table 4.1 summarizes the run times for all combinations of methods and models.

The computations were performed on an Intel Celeron 800 MHz machine with
a NVIDIA TNT?2 graphics card. To evaluate the core speed of the visibility cal-
culation routines, the rendering of the environment map is not included into the
measurements, that is, no directions are encoded.

The table demonstrates quite clearly that OpenGL rendering with triangle prese-
lection in singleplane mode and raytracer with grid traversal in hemisphere mode
are the fastest techniques for the preprocessing step.

The singleplane model is efficient, however it has the disadvantage that the aper-
ture angle must be less than 180 degrees, so only part of the half space is evaluated.
Therefore, the model may miss some small folds.

Using the hemicube model is relatively slow compared to the singleplane model,
because five pictures must be rendered for each point (the other models only need
to render one image). On the other hand, it is more accurate than the single plane
model and in contrast to the hemisphere it can be hardware-accelerated.

The table also shows that the OpenGL runtime only slightly depends on the reso-
lution of the images that are generated. The situation is radically different in case
of the raytracer, the double resolution needs twice as many rays.

168

4.3. Selt-Shadowing: Static Case

4.3.6 Realtime Rendering

During the real-time rendering the outgoing radiances have to be computed for
every vertex of the mesh.

INluminating the surface using an environment map

The environment is stored in a cube map. For the result images the 24bit RGB
pictures are generated by hand. For real applications they can be generated using
high dynamic range images from real world environments. The resolution of the
environment map is adapted to the resolution of the visibility map in such a way
that one texel in the environment map corresponds to approximately one pixel of
the visibility map.

Calculating the outgoing radiance

The outgoing radiance in vertex v at the surface location z in direction of the
viewer has to be computed.

According to the rendering equation [Kajiya 1986] the amount of incident light
reflected towards the viewer has to be gathered. For this purpose, the incident ra-
diance of each pixel is weighted by the A-form factor of the pixel itself and then
used as incoming radiance of a reflection model.

The A-form factors are derived from the rendering equation as following [Jensen
20017:

Lo(x,d) = Le(z,d) + / fr(x, 2" — 2, d)Li(x, 2" —)V (x,2")G(x,2")dA’
s

4.1
with:

L,: outgoing radiance [Wm = 2sr—!]
L.: emitted radiance [Wm 2sr—1]
f.: BRDF [sr]

L;: incident radiance [Wm 2sr—!]
«': incidence direction

7: normal at the surface location x
2': another surface location

7i’: normal at x’

dA’: differential area at '

169

Chapter 4. Shadows

(2" — x): radiance leaving 2’ in the direction towards x
S: set of all surface points
The visibility between two points is defined by:

~ | 1 : «and 2 are mutually visible
Vie,z) = { 0 otherwise 42)
and a geometry factor is introduced:
—/ 3 —/ —/ =
G, o) = & 7) (4.3)

" —]?

For the evaluation of the hemicubes it is assumed, that every surface in the model
1s Lambertian, so that the reflected radiance is constant in all directions. This
reduces equation (4.1) to:

Bo) = Buo)+ [fula)B)V (.2)Glaa') A
pal) *+4)
= Be(r)+——= / B(2"\V(z,2")G(x,z") dA’
Q s
B: radiosity (outgoing) [Wm 2]
pa: diffuse reflectance for a Lambertian surface (pg = 7 f. 4(2))

Discretizing:
N

Bi=Bei+pi y_ BiF; (4.5)

Jj=1

The form factor F;; from differential area d A, to differential area dA; is
1 \%4 NG !
= _/ / (2, 2)G@) 4 aa, (4.6)
Ai Ja, Aj T

Delta form factors for the hemicube pixels: (A hemicube pixel covers the area
AA, the visibility information is encoded into the pixels):

G(z,2)

™

AFF =

AA 4.7

For the hemicube model the A-form factors for top and side faces are computed
analog to [Cohen & Greenberg 1985].

170

4.3. Selt-Shadowing: Static Case

The contribution of one pixel in the visibility map of = is computed using the ra-
diance stored in the corresponding texel of the environment map. This radiance
is weighted by the A-form factor of the pixel and then used as input of a local
illumination model, which is Lambertian reflection.

For real-world environment maps no A-form factor has to be applied to the out-
going radiance stored in the environment map, since it is already encoded in the
corresponding real-world picture.

Due to the superposition property of light the total amount of radiance leaving the
vertex in direction of the viewer is then easily obtained by summing the contributi-
ons of outgoing radiance of all pixels of the visibility map not marked as occluded.

The incident radiance corresponding to a pixel is taken from the environment map
using the texel of the environment map encoded in the visibility map, see Figure
4.9.

The A-form factors have to be computed only once and can be reused for every
vertex. After calculating the radiance values for all vertices, the mesh can be ren-
dered using a standard OpenGL-Renderer with Gouraud interpolation.

For the point light source any desired illumination model can be incorporated into
the algorithm.

Dynamic environment maps

Due to the above calculations, the algorithm allows the dynamic modification of
the illumination condition in realtime by using different cube maps. For example,
if the user wants to rotate the surface in the environment, a rotated cube map is
generated.

4.3.7 Results

Figure 4.10 and 4.12 show the static mesh of a cloth illuminated by virtual light
encoded in hand made cubic environment maps (Figures 4.11 & 4.13). Additional
videos are also available.

The environment maps faces represent uniformly emitting light sources. In all
pictures, the relative position of the model with respect to the environment map is
fixed. In order to visualize the effect of the different lighting conditions, the whole

171

Chapter 4. Shadows

Fig. 4.10: These three images show a folded dress consisting of 3120 vertices. The left image
shows a frontal view of the dress. Due to the pre-computed shadowing the folds in the
lower part of the dress are clearly visible. In the center image, the back of the dress is
shown, slightly rotated against the front side of the environment cube. The right image
is rendered using another point of view, showing the folds in more detail.

'

Fig. 4.11: Environment cube map used for the rendering of the above images in Figure 4.10. Only
the front side is white.

scene including the environment map is rotated.

The radiance especially in the foldings descents from the illuminated to the dark
side. Folds pointing towards the light source are fully illuminated. The situation
is even more apparent if the faces of the environment map are treated as colored
light sources, see Figure 4.13.

172

4.3. Selt-Shadowing: Static Case

Fig. 4.12: These images show the effects of the usage of the environment faces as colored light
sources. The mesh used, is the same as in Figure 4.10. The corresponding environment
maps are shown in Figure 4.13. The reflection of the different light sources can be
distinguished from each other in the folds.

Fig. 4.13: Environment cube maps used for the rendering of the above images. For the two left
images top and bottom are black. Sides are red, green, blue and yellow. For the two
right images left and right are blue and red, the top is white and the rest is colored
black.

Figure 4.14 shows a textured mesh of parts of the Grand Canyon based on satellite
altitude data with 66049 vertices. In the left image pre-computed shadows calcu-
lated with a hemicube model are used. In the right image no illumination is used.
The visual impression of the left images reveals a greater depth impression due to

173

Chapter 4. Shadows

the self-shadowing in the faults.

Fig. 4.14: These images show a textured mesh of parts of the Grand Canyon based on satellite al-
titude data with 66049 vertices. In the left image pre-computed shadows calculated with
a hemicube model are used. In the right image no illumination is used. The visual im-
pression of the left images reveals a greater depth impression due to the self-shadowing
in the faults.

Due to the vertex based shading it is necessary that the resolution of the triangle
mesh provides sufficiently high fidelity. An additional point light source is used in
Figure 4.15 with the Utah teapot mesh. The spout casts a shadow on the pot (left
image).

Fig. 4.15: The Utah teapot. The mesh consist out of 3907 vertices and is illuminated with a point
light source (yellow dot) in front of the teapot (left image). The light source visibility
is calculated on a per vertex basis, as described in the paper. The right image shows
the teapot with the light source moved above it. Self shadowing is also visible in both
images.

174

4.3. Self-Shadowing: Static Case

The images in Figure 4.16 show a spaceship consisting of 18720 vertices. Self-
shadowing is visible in the propulsion units, at the cockpit and under the wings.

LS] -

Fig. 4.16: These images show a spaceship model with 18720 vertices, provided by
www.3DCAFE.com. A hemicube model with a resolution of 64 x 64 pixels for the top
of the cube and no additional point light sources were used. Self-shadowing is visible
in the propulsion units, at the cockpit and under the wings.

175

Chapter 4. Shadows

4.3.8 Conclusions

The algorithm described in this section is able of illuminating folded surfaces with
extended light sources in realtime. The illumination conditions can be changed at
runtime.

So far, the meshes cannot be deformed in realtime. This would require a complete
new set of visibility maps at every frame. At the moment, the preprocessing step
needs at least about 3 seconds of runtime, using the hemiplane model, which is
not enough to achieve interactive frame rates.

A possible optimization could be to update only the parts of the mesh which have
changed. Furthermore, it might be possible to further exploit graphics hardware
acceleration for the preprocessing step, using a hemi-cube model. This enhance-
ment is described in combination with the BTF rendering in Chapter 5.

Moreover, a local illumination model described by Stewart and Langer [Stewart
& Langer 1997] can be applied to estimate secondary irradiance. The use of this
model yields perceptually acceptable shading without resorting to an expensive
global illumination step.

176

4.4. Self-Shadowing: Dynamic Case

4.4 Self-Shadowing: Dynamic Case

4.4.1 Introduction

Shadows are one of the most important visual clues about the spatial structure
of an object. For example for virtual reality applications, such as life-sized cloth
visualization, or medical surgery planning, shadows are important because they
increase the presence of the virtual objects and the overall realism.

However, the shadows need to be computed at interactive frame rates, otherwise
usability and presence will break down. While local illumination models are the
strength of modern graphics hardware, more advanced techniques, which include
for example soft shadows and ambient occlusion, are notoriously hard to perform
efficiently. On the other hand, recent methods like pre-computed radiance transfer
[Sloan et al. 2002] enable complex illumination effects at fast frame-rates, but are
limited to static objects or pre-defined animations due to their long precomputati-
on times.

Fig. 4.17: Stanford dragon under high-dynamic range illumination including ambient occlusion,
which has been computed on graphics hardware.

This section introduces a novel method to efficiently compute the visibility for
many light directions for each vertex on the GPU at interactive frame rates, as de-
scribed in [Sattler ez al. 2004a]. The method is capable of handling large objects
and also includes self-occlusion as well as occlusion caused by other objects. This
is done by using hardware occlusion query results from vertex fragments as seen

177

Chapter 4. Shadows

from a number of light directions. All geometry in the scene can deform and mo-
ve, and the illumination can change at no extra cost. Thus, the method computes
and renders a first-order approximation of the rendering equation [Kajiya 1986]
for opaque, polygonal objects on the graphics hardware.

The algorithm features the following advantages:

e no precomputation, no complex data structures or special preprocessing is
needed

handles arbitrary deforming geometry

fast hardware-accelerated occlusion calculation.

high-dynamic range image based illumination

easy implementation.

4.4.2 Related Work

A vast amount of work has been done on shadow algorithms. Shadow maps [Wil-
liams 1978] or shadow volumes [Crow 1977] and all derivates are the classical
approaches for point-like light sources. A good overview of algorithms which
produce soft shadows can be found in Hasenfratz et al. [2003].

All these algorithms cannot efficiently be used for arbitrary lighting environments.
On the other hand, environment mapping as introduced by Blinn et al. [1976] is
able to render reflections of incident lighting, but without shadows. Ray tracing
is capable of handling globally illuminated scenes, but is naturally limited to the
current camera position, Interactive rates are only achieved in a massive parallel
environment with optimal acceleration structures [Wald et al. 2003b; Wald et al.
2003a], which take several seconds to build. Other theoretical work [Purcell et al.
2002] on GPU-based raytracing is not yet available in hardware. Very recently
there have also been approaches to solve radiosity on graphics hardware [Coombe
et al. 2004], with interactive rates for small scenes.

To evaluate the illumination received by a point on the surface, there exist mainly
two approaches. The first category gathers the incoming radiance at each surface
point or vertex and scales with that count. The hemisphere defined by the vertex
normal is sampled in different ways. Either rays are shot into predefined directions
using standard ray tracing methods, or hemicube [Cohen & Greenberg 1985] sides

178

4.4. Selt-Shadowing: Dynamic Case

are rendered using the standard pipeline [Sattler e al. 2003]. With ray casting, in-
tensive intersection tests have to be calculated and acceleration structures have to
be maintained (for example space partitioning), whereas hemicubes cannot yet be
evaluated efficiently on the graphics hardware. Other methods compute visibility
cones [Stewart 1999], blocker maps [Hart et al. 1999], obscurance maps [Zhukov
et al. 1998; lones et al. 2003], visibility maps [Neulander 2003] or radiance trans-
fer [Sloan ef al. 2002] which also includes inter-reflections.

All these methods require certain amounts of pre-computation time, and are the-
refore not suitable for dynamic objects. Very recent work was presented by Kautz
et al. [2004]. It is mainly based on fast hemicube rasterization in order to detect
blocker triangles. Downsampling of the visibility mask and a coarser blocker mesh
are used for speed up. Interactive frame rates are achieved for small animated mo-
dels. In contrast to their work, the following described method does not need a
mesh hierarchy nor any additional graphics memory during run-time.

The second category is based on the approximation of the ambient environment
by point or directional light sources, which amounts to reversing the first approach
from inside-out to outside-in. That is, the visibility computation is originated at
the light sources. Lately, NVIDIA proposed a hardware-accelerated 2-pass me-
thod, using accumulated shadow maps [Pharr 2004; Randima 2004], which is also
used in many shaders in commercial rendering software packages [Landis 2002].

To minimize sampling artifacts, jittering of the depth maps is introduced. This
approach involves common shadow mapping projection problems [Kilgard 2002].
To achieve usable results, several seconds per frame are needed. Changing to a
new viewpoint requires new shadow mapping passes or an unwrapping process
to obtain an occludence texture. Superimposing images was also done by Keller
et al. [1997] to compute instant radiosity. This also requires space-partitioning
structures.

4.4.3 Ambient Occlusion Calculation

In this section, the core of the new method is presented. In the following, a triangle
mesh with vertex normals is given. To compute the outgoing radiance L, at a
surface point x into direction v the following equation has to be evaluated:

L.(x,v)= /er(x,v, D)L;(x,1)V(x,1)(ng - 1)dl

where (2 is the hemisphere domain over x, f,. the BRDF, L; the incident radiance
from direction 1, V'(x,1) the visibility from x to direction 1 and n, the vertex

179

Chapter 4. Shadows

normal at x. The integral is discretized by k light directions 1;, j € [1,... k],
which leads to

k

LT(X, V) =~ Z fT(X, v, lj)Li(X, lj)V(X, lj)(l’lx . 1])
j=1

The following sections concentrate on the efficient computation of the term
Li(x,1;)V(x,1;) (0 - 1).

Overview

The method relies on depth test results from renderings of the desired object. The
problem of light direction visibility for each vertex is approached by considering
a set of k directional light sources 1; and determine the visibility of all V vertices
at once as seen from each of the light source directions.

Because the number of light source directions & is much smaller than the number
of vertices N for large models, the outside-in approach is much more efficient
than the inside-out approach, that is, a much smaller number of render passes, k
instead of /V, of the object into the depth buffer is needed.

More precisely, all geometry as seen from a light source direction is rendered into
the depth buffer. Then, all vertices are rendered again as a point set. An individu-
al occlusion query per vertex allows the algorithm to retrieve those vertices that
passed the depth test. For these, the currently considered light source direction is
marked as visible and stored in a matrix M, which latter will be called visibility
matrix. This process is repeated for each light source, updating the appropriate
entries in M.

Visibility Matrix Computation

The method makes heavy use of the OpenGL OcclusionQuery extension! [OSS
2005] . The purpose of this extension is to deliver the number of fragments that
passed both depth and stencil test. In contrast to its predecessor” it is asynchro-
nous, that is, it does not use a stop-and-wait execution model for using multiple
queries.

'ARB_OCCLUSION _QUERY
HP_OCCLUSION_QUERY

180

4.4. Selt-Shadowing: Dynamic Case

This allows applications to issue many occlusion queries before asking for the re-
sult of any one. As mentioned above, in the first pass, the unlit scene is rendered
into the depth buffer from one of the light source directions. This is done in ortho-
graphic projection mode.

In the second pass, all vertices are rendered as glPoints with size 1, without upda-
ting the depth buffer. An offset (g/PolygonOffset) with default values (1.0, 1.0) 1s
used to avoid rounding issues. Each single vertex ¢« € N is handled by an individu-
al occlusion query and the visibility matrix A/, which stores visibility information
for each vertex ¢ to the light direction 1;, is updated for all j.

For later performance reasons, not a single boolean visibility bit is stored, but
instead the dot product computed from the vertex normal n; and the vector defined
by the light source direction 1; if the vertex is visible from that direction. 1; is
computed once for each virtual light source direction. Therefore the following
matrix entries are obtained:

Mo — n;-l; : vertex visible
v 0 : vertex invisible

Figure 4.18 gives an overview of the core algorithm as pseudo-code.

Rendering

After M;; has been computed, the final color ¢; for each vertex ¢ can be computed

as:
k
C; = E Mij]j
Jj=1

where I; is the 3-component (RGB) color of the light coming from direction 1;.
Figure 4.19 shows a simplified data flow of the approach. Note, that neither M;;
nor /; change, if the viewpoint is changed.

Creating the Lightsphere

To approximate ambient occlusion with single directional light sources, & light
directions have to be distributed. Each light direction is represented by a point on
the unit sphere. The distribution of points on the sphere should satisfy the fol-
lowing conditions. The visibility computation should be done only once and the
illumination environment should be changeable without doing new queries (see
subsection Image Based Illumination). Furthermore, to allow an easy increase of
the number of light directions, already computed parts of M should be re-usable.

181

Chapter 4. Shadows

enable orthographic projection
disable framebuffer
for all light directions j do
set camera at light direction 1;
render object into depth buffer with polygon offset
for all vertices ¢ do
begin query ¢
render vertex ¢
end query ¢
end for
for all vertices ¢ do
retrieve result from query ¢
if result is ,,visible ““ then

per viewpoint or
illumination change

Mij =1n;- lj
end if
end for
end for
Fig. 4.18: Outline of the core algorithm for visibility matrix calculation.

1
1
_ visibility :
triangle matrix |

mesh " . ! frame

occlusion queries ii

q M'J 1 buffer
vertices filter OpenGlL pipeline :
1
{ i

camera 1| environment
visibility 1| illumination

1
1
1
1
1
1

per mesh motion

Fig. 4.19: Simplified data flow of the method.

Therefore, the distribution should equally sample the environment in all directi-
ons. Recent approaches like [Agarwal et al. 2003; Kollig & Keller 2003] which
do an efficient sampling of the environment map are not easily adaptable for this

182

4.4. Self-Shadowing: Dynamic Case

approach. They need seconds to minutes of preprocessing time to reduce the num-
ber of light directions, therefore would not allow interactive change of the lighting
environment. For equal distribution of points on a sphere, several methods exist
[Fejes Toth 1972; Whyte 1952; Saff & Kuijlaars 1997].

The proposed algorithm uses the following preprocessing procedure, based on
subdivision of a regular solid. As a start the vertices of a unit octahedron are used,
for example k£ = 6 light directions at subdivision level s = 0. To generate level
s + 1, midpoint subdivision of the edges on level s is done and the new vertices
are projected on the unit sphere, thus creating a polyhedron with 2 - 457! faces
and 2 + 4°%! vertices. This structure allows to add new sets of well distributed
points, while using the occlusion queries of all coarser subdivision levels. Figure
4.20 shows several increasing configurations.

2898

Fig. 4.20: Object rendered with different number of light directions (k=6, 18, 66, 258). The upper
row shows the lightsphere configurations, where the yellow dots represent the light
directions.

4.4.4 Optimizations

Whenever the object is moved or deformed, that is when vertex positions change,
a complete re-computation of M is needed. In the following, several methods are
presented, that significantly reduce this effort, so that interactive frame rates can be
maintained even under these circumstances. Even for static geometry, depending
on the viewpoint, not all vertices must be evaluated.

183

Chapter 4. Shadows

Fig. 4.21: Vertex filtering optimization for the computation of M has to be done carefully, other-
wise artifacts will occur (middle). Left: wireframe; right: correct rendering.

Vertex filtering using temporal coherence

The first optimization exploits temporal coherence by observing that during a
viewpoint change only a small number of polygons become visible for the first
time (at most those that cross the object silhouette). Consequently, the visibility
matrix M can be computed lazily, thereby distributing the computation effort over
several frames.

More precisely, two lists of triangles are maintained: a list of unseen triangles, U,
containing all triangles that have not yet been visible and a list 7 (fodo), contai-
ning triangles that will be seen in the next frame for the first time. I/ is initialized
with all vertices once. Vertices which belong to triangles stored in I/ have not yet
been visible from the camera so far.

Thus, their occlusion information is not needed with respect to the light directions.
Vertices which belong to triangles which are stored in 7 have to be processed for
the next frame, because these triangles will then be visible.

Using the two lists in each frame, the occlusion information has to be determined
only for a small fraction of vertices (see also Figure 4.19). In order to compute list
7T, an algorithm similar to the one in subsection Ambient Occlusion Calculation
is performed, except that here triangles are rendered in the second pass and per-
spective projection is used.

More precisely, in the first pass, the unlit mesh is rendered into the depth buffer
as seen from the new camera position. In the second pass, only the triangles still
in list U are rendered, each with its own occlusion query (again with offset and
without depth buffer update). Obviously, when U/ contains less triangles than a
certain threshold, no performance increase is gained any more. In that case, all
triangles from U/ are just added to 7 and this optimization is skipped in the remai-

184

4.4. Selt-Shadowing: Dynamic Case

ning frames.

Note, that for this optimization triangles, not vertices are considered. Otherwise,
artifacts could occur, because a triangle might be visible although one of its ver-
tices is not, and thus its corresponding value in M has not yet been computed.
This is illustrated in Figure 4.21 and the performance gains introduced by this
optimization are discussed in the results section.

Changing the Lightsphere configuration

A further optimization is to dynamically change the lightsphere configuration.
While the scene is animated or objects are deformed, the number of light directi-
ons can be decreased. In idle time, in order to converge to the exact solution, that
count is increased as shown in the upper row in Figure 4.20.

Note, that if the number £ is too small, under-sampling artifacts (left bunny) can
occur depending on the used environment. In practice, a level of s = 3 and often
even level s = 2 produces reasonable results. The algorithm allows user control
through the choice of a desired frame rate or a certain configuration.

4.4.5 Image Based Illumination

In this section, the core algorithm is extended to incorporate image-based illumi-
nation [Miller & Hoffman 1984; Greene 1986; Debevec 1998], using high- dyna-
mic range environment maps [Debevec & Malik 1997; Lightprobes 2005]. Similar
to other approaches [Heidrich & Seidel 1999; Kautz. er al. 2000; McAllister et al.
2002] the environment is pre-filtered. Therefore, HDRshop [HDRShop 2005] is
used to generate a latitude-longitude lookup map out of a cube map and a gaussian
blur is applied as a filter as shown in Figure 4.22.

The black dots on the right image are the projected light directions. The environ-
ment is now parameterized with (6, ¢), with the angle 6 € [0, 7] and ¢ € [0, 27].
This is also known as Mercator projection. Thus, a look-up of the intensity from
the light coming out of the light direction 1; can easily be performed. When the
environment map is rotated relative to the object, the light directions are multi-
plied by the same rotation matrix to obtain the new look-up positions. A standard
gamma correction is applied to all vertex color values.

185

Chapter 4. Shadows

Fig. 4.22: [llumination information stored in a high-dynamic range environment cube-map (left)
and filtered version in latitude-longitude representation (right) with projected light sour-
ce positions (black dots).

4.4.6 Dynamic Geometry and Animations

It should be obvious by now, that in an environment with a single object, a rigid
transformation can be handled quite efficiently: a translation can be ignored, while
a rotation just amounts to an additional matrix multiplication before the look-up
into the visibility matrix. If there are several objects changing positions relative
to each other or an object changes shape, than the complete visibility matrix M
needs to be re-computed.

However, this can still be done at interactive frame rates, because the algorithm
does not need any spatial acceleration structures. Only the list I/ (Section 4.4.4)
needs to be re-initialized and the vertex arrays for the objects updated. Figure
4.23 shows sample key frames of an animation of a skeleton running at interactive
frame rates, while changing the viewpoint and the lighting environment. In each
frame, M is re-computed according to Figure 4.19.

Fig. 4.23: Sample key frames of the skelefon animation running at interactive frame rates. A lot
of self-shadowing occurs among the bones.

186

4.4. Selt-Shadowing: Dynamic Case

4.4.7 Results

This section presents performance measurements of the algorithm, which was
measured on an AMD Athlon64 3200+ (2.0 GHz) under Windows 2000 and an
ATI Radeon 9800 XT using OpenGL 1.5. All images and videos were rendered at
a resolution of 1280 x 960 pixels.

As for the rendering results, all objects are rendered without textures to make the
visual effects of the algorithm more evident. As a matter of course, the method can
be combined very easily with texturing or standard shadow mapping techniques
[Williams 1978; Kilgard 2002], in order to handle point light sources as well.
The left image on Figure 4.24 shows, that the method is also feasible to render
large objects for medical visualization. The teeth object consists of 116k verti-
ces. Detailed surface structures are visible. The middle and right image in Figure
4.24 show several objects that occlude each other from light directions, which is
handled correctly by the method.

T

Fig. 4.24: Left image: Large object teeth (116k vertices) rendered using the new algorithm under
homogeneous white illumination. Middle and right images: Scene with several objects,
rendered under high-dynamic range or homogenous white illumination. Note the darker
bunny between the dragons.

The bunny between the dragons is much darker, due to the occlusion. Figure 4.25
shows a comparison of the proposed method with OpenGL Phong lighting and a
ray-traced image, in a high-dynamic range illumination environment. To achieve
the same visual quality 500 samples/ray were needed and it took over half an hour
compared to under 1 minute using the new method. The Igea artifact consists out
of 134k vertices. The slight color shift is due to the slightly different exposures
and environment orientations.

Table 4.2 gives an overview over the computation time of the visibility matrix
(time,) in milliseconds for several different objects and light directions k. If the

187

Video V

e —;1

I

Chapter 4. Shadows

Fig. 4.25: Comparison between different rendering methods of the Igea artifact (134k vertices).
From left to right: wireframe, OpenGL Lighting, under HDR illumination with the new
algorithm and raytraced.

object vertices k| timeq| times| FPS; | FPSy
(msec) |(msec)| (Hz)| (Hz)

bunny 35k 6| 445| 339
static 18| 1082 797
66| 3606| 2666
258 | 13715| 10373
1026| 60304 | 39765
teeth 116k 6| 1495 1257
static 18| 3651| 3041
66| 12243| 10290
258 | 46482 | 38976

skeleton 8325 6 133 113| 8.08| 8.85
animation 18 337 245| 3.66| 4.10
66| 937| 740| 1.14| 1.35
258| 3301| 2472| 0.30| 0.40
trousers 3219 6 49 34118.85(22.75
animation 18 103 66| 9.23]12.80
66| 330| 222| 3.03| 4.63
258| 1217 811| 0.82] 1.35

Tab. 4.2: Computation times (time) for the visibility matrix for static objects and animations with
different lightsphere configurations (k) and frame rates (FPS) when rendered. Times
with ; are without and o with vertex filtering enabled. See text for details.

vertex filtering (time,) is enabled, the calculation performance is drastically in-
creased. FPS; and FPS, show the frame rates in Hertz with and without the ver-
tex filtering optimization, when the objects are rendered. Real-time frame rates

188

4.4. Selt-Shadowing: Dynamic Case

(> 30Hz) for static objects and interactive rates for the skeleton and pair of trou-
sers animation are achieved.

This section presented a new method to calculate vertex-light direction visibility,
thus providing a first-order approximation of the rendering equation. This is done
by sampling the environment by several directional light sources and efficiently
computing vertex visibility from these light directions using hardware-accelerated
occlusion queries. In conjunction with vertex filtering optimization, deformable
objects and animations can be handled at interactive frame rates.

The proposed method also allows the usage of image based illumination stored in
filtered high-dynamic environment maps. The algorithm drastically reduces visi-
bility calculation times and might be incorporated in other visibility determination
problems. Because the method is vertex based, artifacts may occur due to under-
sampling, which is, of course, true for all vertex-based approaches.

As a drawback, the proposed method has to store the visibility list M on the CPU,
because the query result is always sent back from the graphics card. It would be a
great performance increase, if this result would be available directly on the GPU
on future hardware. Additional speed-up could be achieved by allowing parallel
query updates through segmented result buffers.

To achieve real-time frame rates for an animation or as a general speed-up, imple-
mentation in a parallel environment could be a direction of research.

189

Chapter 4. Shadows

190

CHAPTER 5

Material Reflection Properties

5.1 Introduction

Material [MWD 2005]: Etymology: Middle English materiel, from
Late Latin materialis, from Late Latin materia

1 : relating to, derived from, or consisting of matter; especially :
PHYSICAL the material world

2 : of or relating to the subject matter of reasoning; especially :
EMPIRICAL material knowledge

3 : being of a physical or worldly nature

191

Chapter 5. Material Reflection Properties

' Mesh (animation)
' generation /
' physically based simulation

Motion sequence” [T
generation

compression }

Measurement of material
reflection properties

NSe————~

reparametrization /
compression

Shadow / illumination
precomputation

Visualization

Shadow perception
experiment

Rendering with real-time
soft shadows

Fig. 5.1: Overview chart with material parts.

The most important part in cloth rendering is the processing of material reflection
properties. Within this chapter mayor aspects of this part as highlighted in Figure
5.1 are introduced.

Starting with a detailed description of the acquisition of real-world material sur-
faces, the complete pre-processing process is described, which allows a fast and
semi-automatic processing of different kind of materials.

After that, advanced compression schemes based on principal component analysis
are described, to reduce the huge amounts of image data.

Finally, the main topic of this thesis, the visualization aspect of the cloth, is explai-
ned. Using programmable graphics hardware in combination with efficient storage
and compression schemes, interactive cloth visualization is demonstrated.

192

5.2. Related Work & Introduction

5.2 Related Work & Introduction

Efficient and realistic rendering of cloth is of great interest especially in the con-
text of e-commerce. Aside from the simulation of cloth draping, the rendering has
to provide the look and feel of the fabric itself.

In addition to the microstructure, the mesostructure of a fabric is of great im-
portance for the reflectance behavior of cloth. The mesostructure is responsible
for fine-scale shadows, occlusions, specularities and subsurface scattering effects.
Altogether these effects are responsible for the above mentioned look and feel of
cloth.

In this chapter a novel interactive rendering algorithm is presented, which preser-
ves this look and feel of different fabrics. This is done by using the bidirectional
texture function (BTF) of the fabric, which is acquired from a rectangular probe
and after synthesis, mapped onto the simulated geometry. Instead of fitting a spe-
cial type of bidirectional reflection distribution function (BRDF) model to each
texel of the BTF, view-dependent texture-maps are generated using a principal
component analysis of the original data. These view-dependent texture maps are
then illuminated and rendered using either point-light sources or high dynamic
range environment maps by exploiting current graphics hardware. In both cases,
self-shadowing caused by geometry is taken into account. An example rendering
is shown in Figure 5.2. An animated example can be found on the video.

For point light sources, a novel method to generate smooth shadow boundaries on
the geometry is also presented. Depending on the geometrical complexity and the
sampling density of the environment map, the illumination can be changed inter-
actively. To ensure interactive frame rates for denser samplings or more complex
objects a principal component based decomposition of the illumination of the geo-
metry is introduced. The algorithm is also suitable for materials other than cloth,
as far as these materials have a similar reflectance behavior.

There are essentially two techniques of cloth rendering according to the way in
which mesostructure is captured. The first approach explicitly models the me-
sostructure of the fabric in detail and renders it using different lighting models
and rendering techniques [Groller ef al. 1995; Daubert & Seidel 2002] Although
these algorithms produce impressive results and some of them are already appli-
cable at interactive frame rates, using these methods, it is difficult to reproduce
the special appearance of a given fabric.

In the second approach the reflectance properties of a given real fabric are mea-

193

@

Video VII

Chapter 5. Material Reflection Properties

sured and then used to generate realistic images [Dana et al. 1999b; McAllister
et al. 2002].

Fig. 5.2: Wool shirt rendered under natural illumination (Uffizi street scene).

As shown by [Dana et al. 1999b], the most important optical parameters of opaque
materials including their mesostructure can be described by the bidirectional tex-
ture function (BTF). This six-dimensional function describes how a planar texture
probe changes its appearance when illuminated and viewed from different direc-
tions. The resulting texture probes capture all effects caused by the mesostructure
like roughness, self-shadowing, occlusion, inter-reflections and subsurface scat-
tering. Furthermore, the BTF describes how the texture has to be filtered when
viewed from different directions.

Therefore, in order to achieve the most realistic visualization of a given cloth,
the following approach is based on the second approach based on measured BTF

194

5.2. Related Work & Introduction

data. For the illumination two different methods are provided: first by point or
directional light sources. Second, illumination by utilizing high dynamic range
environment maps. Both techniques are of interest, since on one hand, illumina-
ting the material by point light sources allows the user to inspect the material
under a controlled lighting situation and reveals the mesostructure nicely.

Here, also a new method is introduced, to generate smooth shadow boundaries on
polygonal meshes. On the other hand, people can judge and recognize the mate-
rial more easily under natural illumination than under the simplified and artificial
one provided by point light sources. The algorithm uses a decomposition of the
illumination of the geometry, to ensure the change of the environment maps at
interactive frame rates.

In addition to the mesostructure captured by the BTF, a further essential ingre-
dient for the realistic rendering of cloth are macroscopic shadows caused by self-
shadowing of the object. These shadows enhance especially the draping of the
fabrics. The main contribution of this algorithm is a realistic real-time visualizati-
on of a wide variety of cloth, including highly structured materials like corduroy
or knitwear based on measured reflection properties. Special features of this algo-
rithm are

e Preserving the look and feeldf the real cloth.

e Support of point and directional light sources as well as image based ligh-
ting at interactive frame rates.

e A simple, but efficient technique to calculate dynamic shadows caused by
point or directional light sources with smooth shadow boundaries on poly-
gonal meshes

¢ A new efficient decomposition technique for illumination of geometry with
BTF data, including self-shadowing.

5.2.1 Modeling Mesostructure

Previous work in cloth rendering falls into two main categories. The first is the ex-
plicit modeling of the underlying mesostructure and rendering it using volumetric
techniques. Modelling has the general advantage of being able to create comple-
te artificial results for non-existing materials. While certain approaches are not
real-time capable [Groller et al. 1995; Groller et al. 1996; Xu et al. 2001], some
interactive methods exist which use special shading models [Daubert et al. 2001;
Daubert & Seidel 2002]. Up to now, these algorithms are mainly used for knitwear

195

Chapter 5. Material Reflection Properties

and cannot handle materials like for example corduroy. Image based lighting and
macroscopic self-shadowing are neglected.

5.2.2 Measuring reflection properties

Using measured reflection properties of real world surfaces naturally implies hig-
her realism. Effects, which give important visual clues for material identification,
like microstructure self-shadowing or scattering are preserved. On the other hand
careful measuring is required. Details follow in Section 5.3.

Light fields

Capturing images of models under different lighting conditions and from diffe-
rent viewing angles automatically captures the reflection properties and yields
very realistic renderings of the objects, although using these so called light field
approaches [Levoy & Hanrahan 1996; Gortler et al. 1996; Debevec et al. 2000;
Chen et al. 2002], it is not possible to change the lighting conditions. A general
drawback of these approaches is that the measured material properties are coupled
with a fixed geometry, thus not allowing to change the geometry or the material
without remeasuring the object.

Malzbender et al. [2001] introduced polynomial texture maps, where the coeffi-
cients of a biquadratic polynomial are stored per texel, and used to reconstruct the
surface color under varying lighting conditions.

Lensch et al. [2001] proposed a method to capture spatially varying materials on
known geometry, by finding basis BRDFs for reconstruction on a per-pixel level.
These approaches can also be applied for cloth.

BRDFs

BRDFs are four dimensional functions and were introduced by Nicodemus [1970].
These functions describe the reflection distribution at a surface point depending
on incoming and outgoing light directions. BRDFs overcome the limitations of
geometry coupling, fixed lighting and viewing directions. Early results approxi-
mated a single BRDF by a Ward [Larson 1992] or Lafortune [Lafortune et al.
1997] model. Ashikhmin [Ashikhmin et al. 2000] for example produces good re-
sults for velvet by incorporating a special shadowing term.

Kautz and McCool [1999] approximate the four-dimensional BRDF by a product
of two two-dimensional functions splitting viewing and light direction, which are

196

5.2. Related Work & Introduction

stored as textures and combined during the rendering step. McCool et al. [2001]
improved the above method by employing homomorphic factorization, leading to
approximations with user controllable quality features. The above approaches we-
re further improved [Ramamoorthi & Hanrahan 2002; Sloan et al. 2002; Latta &
Kolb 2002], which all enable the BRDF to be lit by image based illumination while
relying on different approximation functions. Unfortunately, their representations
cannot easily be applied for realtime rendering of spatially varying materials.

BTFs

BTFs were introduced by Dana et al. [1999b]. A planar surface sample is lit
by a directional light source and photographed from different directions. Thus
the resulting images are a function of viewing and illumination direction, hence
capturing effects caused by the mesostructure of a surface, like roughness, self-
shadowing, occlusion, inter-reflections, subsurface scattering and color bleeding.
Registering the different images of the BTF the data can be considered as a 6
dimensional reflectance field

L= L(flf, Y, 91‘, ¢ia ‘907 ¢0)

which connects for each surface point (z,y) of a flat sample the outgoing to the
incoming radiance in the direction (6,, ¢,), (¢;, ;) respectively. The measurement
is done in RGB space, wavelength changes and time dependent effects like fluo-
rescence are ignored.

Due to the computational complexity of the 6 dimensional function only a few re-
altime rendering algorithms exist [Kautz & McCool 2000; McAllister et al. 2002].
To achieve interactive rates, Kautz et al. use an approximation to an anisotropic
version of the Blinn-Phong model and to the Banks model. In his recent work
McAllister et. al. represented the 6D-reflectance field as a spatially varying BRDF.
At each discretized surface position a Lafortune model is fitted and the parameters
are stored in a texture map, which is called SBRDF. This representation can effi-
ciently be evaluated in current graphics hardware. In addition to point and direc-
tional light sources their algorithm also supports image based illumination [Blinn
& Newell 1976; Miller & Hoffman 1984; Greene 1986; Debevec 1998]. Though
their algorithm yields good results for materials with low depth range, it proves
unsatisfactory for more structured materials with high depth, as even for a high
number of lobes the Lafortune model is hardly capable of capturing the variation
in the reflectance behavior caused by the mesostructure.

197

Chapter 5. Material Reflection Properties

5.3 Acquisition

Fig. 5.3: The images show texture mapped cubes using the post-processed CUReT BTF data sam-
ple crumpled paper. In the left image only a frontal viewed texture is applied. The right
image uses the complete BTF data set.

5.3.1 Measuring and synthesizing BTF data

In their pioneering work, Dana et. al. measured 61 samples of real-world surfaces
and made them publicly available in the CUReT [Curet 2005] database. Unfortu-
nately, the data is not spatially registered.

In order to demonstrate the enhancement over common texture mapping, a manu-
ally performed registration for a small number of samples and the mapping onto
a cube is shown in Figure 5.3.

Self-shadowing and self-occlusion of the mesostructure on the surface are clear-
ly visible. A drawback of the CUReT database is that it contains some graphical
errors, caused by frame-grabber artifacts or reflections of the robot sample holder
plate visible in the raw data.

Synthesizing BTF data addresses two problems. If only a discrete set of BTF
samples is available it allows to synthesize the continuous BTF and furthermore
it allows to synthesize BTF data of arbitrary size. Liu et al. [2001] registered so-
me samples from the CUReT database using statistical properties and appearance
preserving procedures.

198

5.3. Acquisition

Further methods to synthesize BTF data on a surface is described in Tong et al.
[2002] using 3D textons or using histogram models [Dana et al. 1999a]. The ad-
vantages of these methods are the low memory requirements and that the overall
structure and appearance is preserved. On the other hand, by introducing statisti-
cal and random components these methods destroy certain mesostructures, hence
changing the BTF significantly and are not suitable for all kinds of materials, see
for example [Tong et al. 2002].

In order to preserve the mesostructure measured image data is used, which is
sampled dense enough to not require any synthesis and nevertheless stored in a
compact form in memory. Because of the tileability of the used fabrics the size of
the measured probe is sufficient.

5.3.2 Setup and Data Acquisition

The setup is designed to conduct an automatic measurement of a BTF that also al-
lows the automatic alignment and postprocessing of the captured data. Restriction
1s made to planar samples with the maximum size of 10 x 10 cm. In spite of these
restrictions measurement of a lot of different material types, for example fabrics,
wallpapers, tiles and even car interior materials is possible.

As shown in Figure 5.4, the used laboratory consists of a HMI (Hydrargyrum
Medium Arc Length Iodide) bulb (broncolor F575), a robot (intelitek SCORBOT-
ER4u) holding the sample and a rail-mounted CCD camera (Kodak DCS 760).
Table 5.1 shows two different samplings /{; and H of the halfspace of point X
above the sample. According to the varying reflection properties of each sample,
the sampling must be sparser or denser. A maximum of n = 81 unique directions
for camera and light position is used resulting in an approximately equal sampling
of the hemisphere.

01 [°1 | Ap[°] || 621°1 | Aé[°] || No. of images
0 —* 0 —* 1

17 60 15 60 6

34 30 30 30 12

51 20 45 20 18

68 18 60 18 20

85 15 75 15 24

Tab. 5.1: Two different sampling densities H; and Hs of viewing and illumination angles of the
BTF database. *= only one image taken at ¢ = 0° .

199

Chapter 5. Material Reflection Properties

» Measurement Points
Lightsource E #‘%

Camera

Fig. 5.4: Measurement setup consisting out of an HMI lamp, a CCD camera and a robot with a
sample holder.

Figure 5.5 shows three measured samples: CORDURQOY, PROPOSTE and WOOL.
6561 raw images were captured for each sample, each 6 megabytes in size (los-
sless compression) with a resolution of 3032 x 2008 pixels (Kodak DCR 12-bit
RGB format). To ensure the correct correspondence of the measured reflection
properties to a fixed surface position on the sample, close attention is paid to mi-
nimize positioning errors.

5.3.3 Postprocessing

After the measurement the raw image data is converted into a BTF representation,
that is the perspectively distorted images must be registered. In this representation
a complete set of discrete reflectance values for all measured light and viewing
directions is assigned to each texel of a 2D texture. Registration is done by pro-
jecting all sample images onto the plane which is defined by the frontal view
@ =0,0=0).

To be able to conduct an automatic registration point and borderline markers are
attached to the sample holder plate, as can be seen in Figure 5.6.

200

5.3. Acquisition

TrrrrEey

Fig. 5.5: Measured BTF samples; from left to right (top row): CORDURQY, PROPOSTE. Bottom
row: WOOL frontal and perspective view.

After converting a copy of the raw data to black-and-white (8-bit TIFF),standard
image processing tools are used to detect the markers during the measurement
process. Restriction is made to the common 8-bit RGB texture format. To take
advantage of the linear part of the camera response curve, the central 8-bit range
of the 12-bit images is chosen. As a fixed focal length is used during one mea-
surement, the maximum effective resolution of the sample holder in the image is
1100 x 1100 pixels. After all transformations are carried out, all images are re-
scaled to an equal size of 1024 x 1024 pixels, which now are called normtextures
(V).

After this postprocessing step, the data amount of 167 gigabytes captured by the
camera CCD chip is reduced to roughly 20 gigabytes of uncompressed data. By
measuring planar probes of a certain size, the method relies on the tileablility
of the fabrics. Therefore, a manually chosen region of interest (approximately

201

Chapter 5. Material Reflection Properties

Fig. 5.6: Sample holder with the PROPOSTE sample. The left image shows the frontal view (0 =
0°,¢ = 0°); the right image shows (6 = 60°, ¢ = 342°). White point and border markers
are visible.

550 x 550 pixels) is cut out and resized. To create the final normtextures (256 x 256
pixels in size) linear edgeblending is applied, which reduces the usual tiling arti-
facts.

To allow a closer inspection of the measured fabrics, single point or directional
light sources can be used. The easiest way to texture an object with a BTF texture
would be to store a complete database in memory and fetch the nearest measured
BTF image to the current viewing and lighting direction.

This way, the textures would approximately be viewed under the same angle they
were acquired and therefore artifacts due to anisotropic sampling are avoided. The
texturing can be done on a per face basis, introducing edge artifacts or on a per-
vertex basis using blending, as described in [Chen et al. 2002].

Unfortunately the size of the database of one sample at a resolution of 256 x 256
pixels exceeds 1230 megabytes, which is not practical on today’s hardware. To
overcome this problem, the main idea is, to replace for each viewing direction the
BTF defined by the normtextures into a series of basis textures by using a prin-
cipal component analysis. Utilizing only a few components (< 16) of this series,
the texture can be reconstructed at runtime.

202

5.4. Compression

5.4 Compression

Principal component analysis [Kendall 1975; Jolliffe 1986; Press et al. 1992] has
been widely used to compress image data [Nishino et al. 2001]. Ramamoorthi
[2002] showed by an analytic PCA construction, that using about five components
is sufficient to reconstruct lighting variability in images of a lambertian object.

The measured samples all have a certain three-dimensional mesostructure, which
leads to significantly varying surface appearance for changing viewing directions.
To ensure a pixel position coherence, thus coping with the varying height of a
surface position on the sample, a principal component analysis for each of the n
viewing directions is done separately.

These directions are called view slots S;,7 € (1...n). Thus, in these slots the
viewing direction is fixed so that only the light direction varies and therefore the
analysis is done only on the effects caused by the changing illumination.

The n normtextures N;;,7 € (1...n) per view slot j are represented as vectors
Xij = (11,911,015 - - - s Thows Ghows brw) Of dimension 3 x h x w, where h and w
are the height and width of the normtextures, respectively.

A PCA of these vectors is performed, resulting in a series of eigenvalues Ay, ..., A,
and eigenvectors E;, . .., E,; which corresponds to eigennormtextures B, . . ., B,
for this slot. The first ¢ < n eigennormtextures approximate any of the original
normtextures /V;; in such a way that the sum of the squares of the projection errors

onto the affine subspace spanned by { B, ..., B.;} is minimized
Nij~> pujBr, i=1...n. (5.1)
k=1

The coefficients p;,; = N;; - By; are weights, were - denotes the standard scalar
product in R3>*w,

Figure 5.7 gives examples for reconstructed textures with a different number of
eigennormtextures, and also shows difference images. For that, difference images
are calculated using the length of the 8-bit RGB error vector between the original
normtexture and the reconstructed images. Green color indicates a length of zero,
whereas red indicates a length of 255 units.

Figure 5.8 shows the absolute eigenvalues for all components of three different
view slots. The decay of the absolute values indicate the statistical dimensionality

203

Chapter 5. Material Reflection Properties

0 I ‘
255

Fig. 5.7: Texture reconstruction using PCA. From left to right (top row): original normtexture, 16,
10, 5 components. Bottom row: difference images to the original.

1,0E+07
1,0E+06 -|
g 1.0E+05 k =—1tv000 pv000 ||
= —1tv045 pv300
>
s —1tv075 pv045
2
i 10E+04
1,0E+03 -
LLOEF02 “ oot
1 4 7 101316 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

component

Fig. 5.8: Eigenvalues for the PROPOSTE sample in three different view slots j (f = 0°, ¢ = 0°),
(0 = 45°, ¢ = 300°), (8 = 75°, ¢ = 45°).

of the given normtextures. As the eigenvalues decrease rapidly in all the examples,
¢ = 16 components were sufficient to reproduce the look and feel of the sample
materials.

204

5.4. Compression

Note, that performing a principle component on the different view-slots reduces
the size of the data set from about 1230 megabytes to 260 megabytes per sample
for a 256 x 256 resolution.

205

Chapter 5. Material Reflection Properties

5.5 Visualization

In this section the algorithm to reconstruct the texture 7" for a vertex V' of a given
triangle mesh at runtime is described. This is done while using a single point or
directional light source. The emitted radiance g from the light source is stored as
a three-component RGB float vector.

First the light and view vectors (Z , 0) for the vertex V' are computed. Because of the
memory requirements for storing the raw normtextures, now the representation of
the textures as a series of basis normtextures By; is used. Choosing the nearest
slot j corresponding to © and the weights p;;; corresponding to [the texture T;
can be reconstructed.

Q

T; g Zpiijkj (5.2)
k=1

Because in general [does not match a measured direction exactly the known samp-
lings H; or H, from the measurement are used to compute the four nearest measu-
red light directions i,,, m € (1...4) from the texture database for bilinear interpo-
lation with the interpolation weights 7,,, and with 1V; ; denoting the reconstructed
textures corresponding to 7,,:

Q

T; g (1Niyj + 12Niy; + T3 Niyj + 7aNiy)

4
= g E T’m Nimj
m=1

4 c
= g Z Tm Zpimijkj
k=1

m=1
c 4
= gz (Z TmPij) By;
k=1 m=1

= g Z Viej B (5:3)
k=1
This means, that the texture 77 is simply a weighted sum of basis textures.

T; =g (vjBoj +1jB1j + - .. + V¢ Bej) (5.4)

A fragment program is used to accomplish the reconstruction of the texture with
¢ = 16 components using a ATI Radeon 9700. When blending the three resulting

206

5.5. Visualization

textures per triangle, a smooth transition is ensured as in [Chen et al. 2002].

If also view interpolation is desired, denote the four nearest view slots as j,,, m €
(1...4) with the corresponding interpolation weights w,,. Following (5.3) leads
to:

T = wlle + W2Tj2 + w3Tj3 + W4Tj4

Cc1 c2
= Wi Y i Briy w2 Y s B,

k=1 k=1
c3 Cq
+ w3 > VhisBrgs +ws Y Wi Bri, (5.5
k=1 k=1

Note, that in the case of j; # jo # j3 # Jjs four different eigennormtexture sets
By;,, are needed.

5.5.1 Shadow Enhancements

In the context of cloth rendering, incorporating shadows and geometry self-shadowing
is crucial for realistic rendering. Using point and directional light sources implies
rendering hard shadow boundaries.

An efficient method for this purpose are the well known shadow maps [Wil-
liams 1978]. The calculation is hardware accelerated, for example through several
OpenGL extensions [OSS 2005]. Nevertheless, a common problem with shadow
mapping is projection aliasing [Akenine-Moller & Haines 2002]. Increasing depth
buffer size and precision, as well as polygon offsets [Kilgard 2002] reduce these
artifacts. Further improvements could be made using perspective shadow maps as
introduced by Stamminger et. al [2002].

Unfortunately, in spite of self-shadowing, these artifacts are still visible, and de-
stroy the realistic appearance of cloth. Therefore, the following method uses volu-
metric shadows, as proposed by Crow [1977]. The shadow volumes technique is
artifact free [DeLoura 2001] and was enhanced to use hardware accelerated sten-
cil buffers by Heidmann [1991]. A problem of the algorithm, when the camera is
in a shadow volume, was solved by Bilodeau et. al and Carmack [1999; 2001].
Robust computation and hardware acceleration is also possible [Everitt & Kilgard
2002]. The computational complex shadow volume calculation can also be done
in vertex shaders [Hart ef al. 2001; Brennan 2002; Brabec & Seidel 2003], which

207

Chapter 5. Material Reflection Properties

minimizes one of the major drawbacks of this technique.

Nevertheless, there is a further problem, that leads to disturbing artifacts in cloth
rendering: the shadow boundary always coincide with the silhouette of the mesh
as seen from the light source. This silhouette is defined by those edges in the mesh
which are incident to one front-facing and one back-facing triangle with respect
to the light source position, respectively, see Figure 5.9 left side.

Fig. 5.9: Shadow boundaries. Left image shows the zigzag behaviour, which is gone in the right
image using the described technique.

Therefore, in an arbitrary triangle mesh the silhouette edges does not define a
smooth path but instead show a zigzag pattern. Note, that this is independent of
the accuracy of the shadow computation and is worse for low-resolution meshes
which are common in cloth modeling. Furthermore, if the light source moves the
silhouette edge jumps between adjacent triangles leading to disturbing artifacts.

One way to cope with these problems is to consider the mesh as a smooth surface.
This is actually also assumed during rendering, when interpolating the vertex nor-
mal vectors for lighting calculations. Using this observation leads to a simple so-
lution to the problem.

If the sign of the scalar product between the normalized vertex normal 7; and the
normalized light-vector I, of V; and Na, o, respectively, changes along an edge
V1 V5 of a triangle , the shadow boundary lies between these two vertices and the
position of this boundary (P) on an assumed smooth surface can be estimated by
the proportion of the angles at the two vertices V; and V5, as shown in Figure 5.10.

208

5.5. Visualization

Fig. 5.10: Computing position P of the shadow boundary between V; and V5.

Therefore, for each vertex V' of a triangle one-dimensional texture coordinates are
computed

(u)y = (1.0 + cos(a + Z(hwy, 1y))) /2.0, (5.6)

into a one-dimensional 1D half black and half white texture of size 1024 pixels.
Using this texture leads to the smooth shadow boundary. In order to generate soft
boundaries this texture can be blurred.

« 1s an offset, to compensate the popping artifacts, caused by the silhouette edge
jumps, which was chosen to o = 15° for the high resolution pair of trousers. The
combination of this simple texturing method with the shadow volume algorithm
delivers nice results as shown in figure 5.9 right side.

It should be noted, that the presented algorithm is also well suited for rendering
dynamic meshes with macroscopic shadows, since the needed computations and
the shadow volumes can be carried out each frame easily.

5.5.2 Image-based illumination

In this section, the algorithm is enhanced to illuminate the geometry using high
dynamic range environment maps [Debevec & Malik 1997; Debevec 1998].

209

Chapter 5. Material Reflection Properties

Next, the numerical integration of the rendering equation, the computation of vi-
sibility maps, the runtime algorithm for using image based illumination and a
method to decompose the illumination of the geometry, to allow a faster change
of the environment map are described.

Numerical integration of the Rendering Equation

Following the notation of Jensen [2001] at a surface point x the outgoing radiance
L, is given by

Lo(x,w) = Le(x,w) + / fr(z,2'—z, w)Li(z'—)V (z,2")G(z,2")d A", (5.7)
s

where w is the outgoing direction, L. the emitted radiance, S the hemisphere
domain over z, f, the BRDF, 2’ another surface point, L; the incident radiance,
V' (z, ") the visibility between the two surface points and G(x, z’) a geometrical
term defined as

w -) (w - n)

Gla,a') = (5.8)

[= x||?

with the normal n at z and n’ at 2/, respectively. The proposed method sets the
emitted radiance L.(x,w) = 0 and does not compute any inter-reflections. The
hemisphere domain is discritized using a hemicube [Cohen & Greenberg 1985],
which leads to

Lo(x, W) = Y fo(#, pa— 2, W) Li(pa—)V (2, pa) G(2, P (5.9)

where p,, is a pixel of the hemicube.

Visibility Map Pre-computation

Because image based illumination is used and the radiance values are stored in an
environment map, a lookup into this map has to be provided. Therefore, visibility
maps M are precalculated for each vertex. These maps store a discretization of the
hemisphere of the vertex V/, which is a hemicube with its top side perpendicular
to the vertex normal.

Figure 5.11 (left image) shows an unfolded hemicube. Using a color-coded envi-
ronment map (center image) a look-up table into a high dynamic range map (right

210

5.5. Visualization

Fig. 5.11: Visibility map computation. Visibility map (left) with rendered color-coded lookup
environment map (middle). White color in the visibility map stands for occlusion caused
by the mesh. On the right side a HDR environment is shown, which is mapped onto the
color-coded one.

image) is created. This allows easy exchange of the environment map. By also
rendering the geometry itself, macroscopic self-shadowing is included.

Because a pixel p,, represents a certain direction (V' — p,) and does not necessa-
rily match one of the measured directions, the visibility map is subdivided into n
direction patterns, as seen in the Figure 5.12.

Fig. 5.12: Visibility map (64 x 64 resolution) direction encoding with n grey levels. From left to
right: Nearest, second nearest, third and fourth nearest direction.

The four nearest measured directions in respect to (V' — p,,) are assigned to p,,.
This allows for a bilinear interpolation with the interpolation weights hgq, , k €
(1...4) for all four directions dj. A visibility map pixel now stores the following
information:

e visibility of a pixel of the environment map and if it is visible, the position
of this pixel in the map

e four nearest measured directions in respect to the direction represented by
this pixel

e corresponding interpolation weights

211

Chapter 5. Material Reflection Properties

Real-time Algorithm using image-based Illumination

It would require n = 81 multi-texturing passes for each triangle to incorporate all
measured light directions, which cannot be done in real-time. In the following, the
usage of the visibility maps and the representation as a series of basis normtextu-
res, to illuminate a triangle mesh using high dynamic range images is described.

First the view vector ¢ for each vertex V' is calculated and the nearest view slot j
is chosen. At this point the radiance g; coming out of the n measured directions
at each vertex has to be evaluated. Similar to equation 5.2 the texture 7; now is
computed as follows:

T; = Z gi Vi
i=1

= Z gi Z Pikj Bl
k=1

=1

- Z <i gipika) Bi;

k=1 i=1

= Y By (5.10)
k=1

Introducing a multiplication factor f, denoting the exposure level of the high dy-
namic range map, the texture 7; is reconstructed very similar to 5.4:

T;=1f- (’YSJ'BOJ + ’V:TjBlj ..ot ’Y:J'Bcj) (5.11)

It should be noted, that now ~; is also a three component float vector.

In order to compute g; for a vertex V/, for all p, € My a lookup into the environ-
ment map at the position stored in p,, is performed. The radiance r stored at that
position is assigned to gq, and weighted with h,, . Here di, k € (1...4) denotes
the four directions stored with p,, as described above.

For view interpolation the same calculations as in (5.5) have to be applied. ~y; is

computed for all vertices V¢, € (1...N) were NN is the number of vertices of
the geometry. Thereby a new vector U is introduced, which stores all ;.

U= (,}flkll""Y;kll?"'v/YTnN""Y:nN) (5.12)

212

5.5. Visualization

with the dimension 3 X ¢ X n X N.

This vector has do be calculated once per environment map and allows the real-
time change of the viewing position and of the exposure f.

A drawback of this method is, that changing the environment map implies a com-
plete new calculation of g; for all vertices. This heavily depends on the visibility
map resolution and the number of vertices and therefore on the hardware rende-
ring speed.

Reducing the visibility map resolution adaptively to achieve interactive changing
rates introduces under-sampling artifacts of the environment map during motion,
which can be compensated if the change stops, by using an adaptively higher re-
solution for the visibility map.

Decomposition of the Environment Map

To overcome the problems mentioned in the last section, now a new decompositi-
on method is proposed. Again principal component analysis is used.

As aforementioned, all incoming radiance have to be evaluated, if the object is
rotated or the environment is changed. Daily observation shows that for exam-
ple rotation of an object under natural illumination leads only to slight irradiance
changes on the object surface, if the rotation angle is small.

The key idea is, that a set of vectors U,, a € (1...A) is computed, where A denotes
the number of different environment maps used. Performing a PCA on these vec-
tors, results in a series of new eigenvalues and eigenvectors . The latter correspond
to eigenweightsets Wy, ..., Wjy. The first e < A eigenweightsets can be used to
approximate any of the original weightsets U,,:

U, ~ Zoaka, a=1... A (5.13)
k=1

The coefficients o, = U, - W}, are weights, were - denotes the standard scalar
product in R3*exnxN,

To test the method, an object is rotated relative to the environment and the vector
U 1s computed for each rotation step. This is equal to the usage of several different
environment maps. By using v = 12° degree steps A = 30 weight sets are ob-

213

Chapter 5. Material Reflection Properties

tained. Furthermore, a high resolution environment and visibility map (256 x 256
pixels) are used. A comparison between reconstructed (e = 5 eigenvectors) and

original images is shown in Figure 5.13.
Fig. 5.13: Decomposition of the illumination of the geometry (from second to bottom row) origi-

nal, reconstructed and difference error images. In the error image green denotes no error,

while red denotes maximum error, see text for details. From left to right: 2,3,4 and 5
PCA components were used. The reconstruction was done with e = 5 eigenweight sets.

255

Here, the length of the RGB error vector between the original and the reconstruc-
ted images is calculated. Green color indicates a length of zero, whereas red indi-
cates a length of 255 units. Increasing the number e of the used eigenweightsets
clearly minimizes the error.

Figure 5.14 shows the weights o, for all A = 30 sets for all eigenvectors. It
should be noted, that the oscillation is denoting the rotation around the object
axis. As a result, the object or the environment now can be rotated, hence the
lighting situation and the view can be changed at interactive frame rates. The

214

5.5. Visualization

200

A N~
7 AN\ X \

/2345 9\10 11 12 1314 7 18 19 20 21 “22..2 24 25 26 27 28 29

-100

weight
o
l

-150

-200

animation step

‘—component 1 ===component 2 ===component 3 component 4 component 5 ‘

Fig. 5.14: Change of the weights for each component during the animation. Note the oscillating,
denoting the rotation of the object.

complete weight set U for a desired rotation angle § € (0. ..360°) is reconstructed
at runtime.

215

Video VIII

~

Chapter 5. Material Reflection Properties

5.6 Visualization Results

All results were obtained under Windows 2000 on a 1.5GHz Athlon with a ATI
Radeon 9700 graphics accelerator and OpenGL. For the texture reconstruction
a fragment program (GL_ARB _fragment_program) and multi-texturing are used.
The Eigentextures for all samples have a resolution of 256 x 256 and need about
260 megabytes memory per sample.

Figure 5.2 and all images in Figure 5.24 and 5.17 were rendered at a 1280 x 960
resolution. The used mesh complexity range from nearly 800 vertices to 9200
vertices. More result images are shown in Figure 5.16. Additional animations are
shown in the video.

Fig. 5.15: Result images. Top row (from left to right): CORDUROQOY sample in Kitchen and RNL
environment, PROPOSTE in Kitchen; next row: PROPOSTE in Building, WALLPA-
PER with point light source and STONE in Uffizi.

The algorithm is capable of rendering several BTF sets onto one geometry, if pro-
per texture coordinates and material id’s per vertex are supplied and sufficient
system memory is available (see also the avatar in figure 5.17). The algorithm
handles non-fabric materials (WALLPAPER, STONE) as well, as can be seen in
figure 5.24 in the second row.

Table 5.2 gives an overview over the frame rates achieved. While enabling the de-
composition, 2.0 frames per second are achieved, including the dynamic change
of illumination and camera position, instead of the recalculation time of 3700 mil-
liseconds per change for the shirt mesh (900 vertices).

216

5.6. Visualization Results

Fig. 5.16: Effects of using BTF data of different materials under natural illumination conditions.
The images on the left side show the BTF rendering, while the images on the right side
were rendered using only normal texturing (frontal texture only). The mesostructure and
the characteristic reflection properties are completely missing, the Look & Feel is gone.
This can be seen especially in the close-ups. As high-dynamic range backgrounds some
data from [Debevec 1998] is used.

To conclude, the presented method is able to capture and visualize reflection pro-

217

Chapter 5. Material Reflection Properties

Fig. 5.17: Top row (from left to right): WOOL and CORDURQY with avatar at Beach, with point

light source and in Uffizi. Next row: WOOL sample in Grace environment, left using
BTF data, right normal texturing. Notice the angular illumination dependence.

mesh vertices | illumination | average HEM

name method frame rate | update
[FPS] time

[msec]

shirt 900 PLS 9.3

shirt 900 HEM 9.5 3.8k

shirt 9208 PLS 1.3

shirt 9208 HEM 1.1 38.5k

pair of trousers | 833 PLS 9.5

pair of trousers | 833 HEM 10.1 3.7k

pair of trousers | 5222 PLS 2.1

pair of trousers | 5222 HEM 2.1 23.2k

Tab. 5.2: Results for different meshes and illumination models. The frame rates were obtained
using four times view blending with a total of 16 PCA components. PLS=point light
source, HEM=high dynamic environment map.

perties of cloth at interactive frame rates. The approach decouples reflection pro-
perties from geometry while preserving the look and feel of a fabric, including

218

5.6. Visualization Results

important mesostructural features.

Furthermore, the image based illumination allows the usage in a desired clothing
shop environment. With the presented decomposition method, interactive change
of viewing and illumination is possible. While using single point or directional
light sources a simple but effective method to compute smooth shadow boundari-
es was added.

With the emersion of new graphic hardware in the near future, which supports
more multi-texturing operations per pass the four times view blending could be
done in one pass and/or the number of used PCA components could be increased.

219

Chapter 5. Material Reflection Properties

5.7 Silhouette Enhancements

For the realistic visual impression of an object, not only the em look & feel of the
rendered material is important. Besides the usage of measured material reflection
properties, the correct rendering of the silhouette parts of an object, giving im-
portant visual clues, has to be considered. This section proposes a method to use
measured material silhouette properties with textured, low resolution meshes, to
visually enhance the objects silhouette with effects like fur, lints or the thread of
a tyre.

Normal or bump maps simulate a more detailed geometry, but can not cope with
these effects. The algorithm uses measured bidirectional texture functions (BTF),
a height field representation of the material sample, precomputed visibility in-
formation and incorporates illumination by high dynamic environment maps and
point or directional light sources.

All previous approaches do not take special care of the silhouette regions of the
objects. But the silhouette gives important visual clues [Koenderink 1984], and
has to be considered especially when using low polygonal model and texturing.
Viewed under certain illuminations, correct rendering of for example fur or lints
has to be taken into account. And if the used texture suggests a macrostructure to
the viewer, which is the case, for example for tread or coarse wool, the objects
silhouette has to be changed accordingly.

5.7.1 Previous Work

The fins and shells rendering technique was introduced by Lengyel et al. [2001]
to render fur in real-time. While this approach was also texture based, the authors
used only one randomly chosen texture from a geometric hair model. Isidoro et
al. [2002] enhanced this technique by incorporating a light model, which is also
used in [Heidrich & Seidel 1999]. Both methods do not use image based illumi-
nation nor do they use measured data. Other approaches for fur and hair rendering
are based on volumetric data [Kajiya & Kay 1989; Van Gelder & Wilhelms 1997].

As already explained in Section 2.1.8, the missing normal information of sim-
plified meshes needed for correct shading can be stored easily in normal maps,
which can be shaded efficiently in software or on programmable graphics hard-
ware. As with bump maps [Blinn 1978], a detailed geometry is only simulated via
shading and perturbed pixel normals. As stated above, with low polygon objects,
missing macroscopic silhouettes at the objects silhouette edge are a clearly visible

220

5.7. Silhouette Enhancements

problem.

To detect an object’s silhouette edges, several methods exist, based on normal
comparison or probabilistic approaches [Markosian et al. 1997]. The common
method is also used with volumetric shadows, as proposed by Crow [1977]. Ro-
bust computation and hardware acceleration is possible and can also be done in
vertex shaders [Brennan 2002; Hart et al. 2001; Brabec & Seidel 2003]. In the
following, the silhouette edges are computed with the latter technique.

Other papers dealt already with the problem of the enhancement of object sil-
houettes. Sander et. al. [2000] stored the edge information from a highly detailed
model into an hierarchy and used stencil buffer techniques to apply this informa-
tion to a coarse mesh, resulting in a smooth silhouette. They also introduced an
edge antialiasing algorithm [Sander ez al. 2001] to smooth polygonal silhouettes.

Previous work in cloth rendering falls into two main categories. The first is the ex-
plicit modeling of the underlying mesostructure and rendering it using volumetric
techniques, introduced by Kajiya et al. [1989], storing opacity values and other
reflection properties.

While certain approaches are not real-time capable [Groller ef al. 1995; Groller
et al. 1996; Xu et al. 2001], some interactive methods exist which use special
shading models [Daubert ef al. 2001; Daubert & Seidel 2002]. All volumetric ap-
proaches depend on their used voxel resolution, wether they can provide sufficient
macrostructure silhouettes or not. Rendering lints and other above surface effects
were not addressed so far for silhouette edges. Recent texture based approaches
[Dana et al. 1999b; McAllister et al. 2002; Sattler et al. 2003] lack also this effects.

With low polygon cloth models using a technique like [Sander et al. 2000] is not
possible, because a high resolution mesh does not exist. The following method
extends the texture based approach of Sattler et al. [2003], to be able to handle
also object silhouettes correctly. The method is a combination of BTF and fin &
shell rendering.

5.7.2 Acquisition & Postprocessing

This section describes the acquisition of BTF fins (BTFF). A more detailed mea-
surement setup can be found in Sattler et al. [Sattler et al. 2003].

221

Chapter 5. Material Reflection Properties

0r [°1 | A¢r [°] | No. of images
0 —* 1

15 60 6

30 30 12

45 20 18

60 18 20

75 15 24

Tab. 5.3: 61, and ¢, values for the light directions used for the acquisition. 81 images were taken.
*= only one image taken at ¢7, = 0°

The acquisition itself is done automatically, using a robot arm and a fixed HMI
(Hydrargyrum Medium Arc Length Iodide) light source (broncolor F575), which
emits a sun-like spectrum. 81 different light directions 6, ¢, (see Table 5.3) were
measured, using a fixed view of 6y = 90°, ¢y = 0° on the upper edge of the
sample. The images were captured against a black background to easily obtain the
alpha mask for each image. Colored backgrounds proved not to be good enough
to extract the fine fur details. Figure 5.18 shows the robot arm holding the wool
sample and an extracted image for 6, = 45°, ¢, = 200°. The sample is spanned
over a wooden sample holder to have a half cylinder like form. More details of the
setup can be found in [Sattler et al. 2003].

Fig. 5.18: Robot arm holding the WOOL sample and an extracted image for 8, = 45°, ¢, = 200°

Note, that depending on the complexity of the material fin structure, more mea-
surements might be necessary. Figure 5.19 gives an overview, what should be

222

5.7. Silhouette Enhancements

measured. S is the material sample, R the region of interest, cut out later. S' is
subdivided into G; regions, where ¢ depends on the material complexity. ¢y is the
rotation angle of the material sample on the sample holder and GG; the measuring
slices, viewed with 6y, = 90°. For the WOOL sample one fixed view is sufficient
to produce good results.

’

¢,

€ ——mmmm e - -

Fig. 5.19: Sketch of the measurement needed for materials with complex structured surfaces.

All measured 81 images were registered, a region of interest is chosen and square
result F' images were cut out. The extraction of the background color is done en-
tirely on the GPU, as explained later.

Similar to the basis method in Sattler et al. [2003], a principal component analysis
is used, to reduce the data amount.

The first ¢ < n eigennormtextures approximate any of the original normtextures
Fj; in such a way that the sum of the squares of the projection errors onto the

affine subspace spanned by { By, ..., B.} is minimized
FizZpikBk, i=1...n. (5.14)
k=1

223

[

w

® N o w»n A

Chapter 5. Material Reflection Properties

The coefficients p;, = F; - By are weights, where - denotes the standard scalar
product in R3*/xw,

5.7.3 Rendering

In this section the basic algorithm for rendering BTFF is described. First of all,
all silhouette edges for a given viewpoint are computed at runtime. As stated, this
can be done hardware accelerated, defining a set of edges I/ which are called fin
edges. Each edge I/ € Ef is defined by two vertices V7, V5.

As described by Lengyel [2001] vertex normals are used to compute the two nee-
ded fin vertices V3, V. Using point or directional light sources the direction of the
incoming radiance at V7, V5 is computed. Then, a fin is reconstructed as follows
using the eigentextures By:

F; (5.15)

~ g Z Pik By

k=1
where g is the float vector holding the radiance for the light source. Because
there are two vertices with different incoming radiances a fading between the
two fin ends is computed. This is done by using two blend textures blend01 and
blend02 which simply are linear black white color interpolations. All color chan-
nels (.r.g.b.) are added up into the alpha channel (.x) of the image. After this, the
noise induced by the camera is compensated and both blend results are added to-
gether. The following fragment program (5.1) accomplishes this task (shown for
the left part only resultOl. Here, alpha_adjust compensates any camera noise
and is chosen manually to 0.04.

!TARBfpl1.0

MUL resultO1 , blendOl1, resultOl;

MOV resultO1 .w, resultOl .x;

ADD resultO1 .w, resultOl .w, resultOl.y;
ADD resultO1 .w, resultO1 .w, resultOl.z;
SGE temp.x, resultOl .w, alpha_adjust;
MUL resultO1 .w, temp.x, resultOl .w;
ADD endresult, resultOl1 , result02;

Listing 5.1: “fragment program for fin blending

The Figure 5.20 shows a reconstructed WOOL fin with the alpha channel genera-
ted by the fragment program. The fin on the right side shows the original measured

224

5.7. Silhouette Enhancements

image. The left image shows the reconstructed fin rendered against a green back-
ground. To show the fading between two different radiance (RGB) triplets, the left
outermost part of the reconstructed fin is lit by red light and the right part is lit by
white light.

'-u"""-‘ e e L e

Fig. 5.20: Example of a reconstructed WOOL fin.

Texture Coordinate Computation

All fin textures are equal in size. While rendering a silhouette edge E(V7, V5),
defined by the vertices V) and V5, texture coordinates have to be computed. The
following calculations are done in texture space (S,T). Because only one fin set is
used, first the distance D from the texture space origin to the first texture coordi-
nate at 1 is computed:

D =/Sv.? + Ty, 2 (5.16)

To do correct scaling of the fin texture, the length L of the edge in texture space is
calculated:

L =+/(Sy, — Sw,)? + (Ty;, — Ty,)? (5.17)

With the material specific fin offset O, which defines the beginning of the fin space
above the sample, the complete set of texture coordinates is computed:

225

Chapter 5. Material Reflection Properties

Vi:L,O (5.18)
Vy:D,0 (5.19)

Vs:L,1.0 (5.20)
Vi:D, 1.0 (5.21)
(5.22)

BTFF Rendering Problem

Due to the unknown surface curvature of the geometry, several silhouette edges
can overlap each other with regard to the current viewing position. Without depth
sorting the fins and drawing them back to front, alpha blending artifacts can occur,
as can be seen in Figure 5.21 (left image). Because depth sorting all needed fins is
computational expensive at runtime, in the following a simple 2-pass rendering is
proposed as described with the following pseudo code (5.22) and the result shown
the right image.

Fig. 5.21: BTFF alpha blending problem. In left image BTFF are drawn without sorting. In the
right image, the problems are gone, using the described algorithm.

Image based illumination

In the case of image based illumination a visibility map [Sattler et al. 2003] is pre-
computed for each vertex of the base geometry. The map is a texture, which stores
a lookup into an high dynamic range environment map for 81 directions in the
local vertex coordinate frame. This texture is later on used to weight the different

226

5.7. Silhouette Enhancements

procedure DrawAllFins()

glDepthMask(GL_FALSE);
glDisable(GL_CULLFACE);
GenerateFinTexture()
glBindTexture(GL_TEXTURE_2D, fintexture);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_BLEND);
for all fins do

DrawTheFins()
end for
glDepthMask(GL_TRUE);
: for all fins do
DrawTheFins()
: end for

D e N I

—_— = =
w2

Fig. 5.22: Pseudo code to solve the BTFfin rendering problem.

PCA components for the rebuild of each fin. See also [Sattler et al. 2003] for a de-
tailed description. Note, that without precomputation of the visibility maps, which
is the case for point light sources, the BTFF can also be computed for dynamic
objects.

5.7.4 Results & Conclusions

The method was implemented within an interactive hardware-accelerated OpenGL
system. The results were obtained under Windows 2000 on a 1.5GHz Athlon with
a ATI Radeon 9700 graphics accelerator. For the texture reconstruction a fragment
program and multi-texturing is used. The Eigentextures for all samples have a re-
solution of 256 x 256 pixels.

The Figures 5.23 and 5.24 show the difference between BTFFin usage and nor-
mal BTF texturing (without fins). The preprocessing time for using BTFF is less
than one minute. The storage requirements are fairly small, around 16 additional
textures for the BTFF are required.

The presented method for cloth rendering clearly enhances the silhouette region.
The visual appearance for low polygon models is improved and should be used
if BTF rendering of the material is also applied. The needed data is easily captu-
red and due to compression only a little memory overhead is added compared to

227

Chapter 5. Material Reflection Properties

Fig. 5.23: Result images using a simple sphere object (top) and a complex pair of trousers (bottom
row) with the WOOL data set. On the left side, BTFF are used, on the right side only
conventional BTF rendering is applied.

Fig. 5.24: Result images using objects within a complex lighting environment.

normal fin rendering.

228

CHAPTER 6

Applications

6.1 Introduction

This chapter introduces two industrial projects, which are directly correlated to
the algorithms and methods described in the previous parts of this thesis.

The first project, Virtual Try-On (VTO), deals with cloth rendering. The process
chain spans from customer virtualization over virtual tryon to bespoke clothing.
Here, the focus lies on customer decision support.

The main topic of the second project, RealReflect (RR), is car and interior rende-
ring. In contrast to VTO, the focus lies on manufacturer design support and visual
quality of VR systems. The process chain includes acquisition, processing and the
rendering pipeline of different types of materials and geometries.

229

Chapter 6. Applications

6.2 Virtual Try-On

The Virtual Try-On [VTO 2005] project lasted from March 2001 until June 2004
and was funded by the German Ministry of Education and Science (BMBF) under
project 0IIRAO1A. Table 6.1 lists the project partners.

|partner |country]|
HUMAN SOLUTIONS GmbH GER
University of Tiibingen GER
University of Bonn GER

Fraunhofer Institute for Computer Graphics | GER
Hohenstein Institute for Clothing Physiology| GER

DFKI GmbH GER
Odermark GER
Cove & Co GER

Tab. 6.1: All project partners for the VTO project.

230

6.2. Virtual Try-On

6.2.1 Project Description

As stated in the introduction, VTO was designed to assist in customer decision for
clothing. Figure 6.1 shows an overview over the different aspects of the project.

POS - Real Shop Virtual Try-On Infrastructure
Customer Virtual Producer o ‘Prnduct
Virtualization Customer Bespoke Clothing | * DB
I |
virtual = = l
Customer
Mirror
\ﬂj
Cloth Product
Parts Infe
Virtual Shop - .
Customer

- Catalogue Selection

Selection \
-\irtual

Tryon Visualization:

Virtual o

- Order Customer «—— - FastVisualization

Conduction + Cloths - Virtual Dressing

- Draping Simulation
Internet

Fig. 6.1: Overview of the project pipeline.

The main idea of the project is to pre-visualize cloth on a real-world body of the
customer before it is manufactured. This allows the customer to answer fitting and
aesthetic questions in beforehand.

The concept is centered around a real-world point-of-sale (POS) and an e-commerce
application. Within the POS, the customer body data can be scanned and after con-
sultation with the sales person, the virtual cloth can be viewed on a virtual mirror.
Here, different types of material and cloth can be visualized and the chance can
be reduced, that the final cloth is returned due to unsatisfactory customers.

In the back-end of the system, cloth manufactures can maintain databases which
contain materials, cloth parts and additional customer data, which is used to gene-

rate the final visualization.

In the following, several stages of the infrastructure are explained in detail.

231

Chapter 6. Applications

Customer Virtualization

First, the customer has to be virtualized. That is, the body geometry has to be
automatically measured and transferred into the computer, see Figure 6.2. This
should be combined with textural information about the customers skin to ensure
a high self-recognition in the subsequent stages.

Fig. 6.2: Body scanning technology is used for customer virtualization.

Virtual Shop

As shown in Figure 6.1, a Virtual Shop is also included in the project, to support
the e-commerce section of the project (see Figure 6.3). Here, in combination with
a customer database and without the direct access to a real point-of-sale, orders
can be carried out.

Fig. 6.3: Screenshot of the virtual shop.

232

6.2. Virtual Try-On

Data Input

One essential part of the photo-realistic visualization is the usage of real-world
optical material surface properties. Therefore, each available material has to be
measured and stored for usage within the system, as shown in Figure 6.4. Further
details about the measurement and compression can be found in Chapter 5.

Fig. 6.4: Measurement and storage of the optical material properties.

Prepositioning

After the customer has chosen the material and cloth type, automatic prepositio-
ning is necessary to ensure a smooth simulation of the cloth on the virtualized

customer. This process, which is based on 2d cloth patterns, is shown in Figure
6.5.

T
]|

Fig. 6.5: Several prepositioning steps based on cloth parts.

233

Chapter 6. Applications

Dressing & Draping Simulation

Besides the optical material properties, the mechanical properties were also mea-
sured. This allows for a complete cloth simulation, which lead to a realistic gene-
ration of cloth geometry. Several time steps of the simulation are shown in Figure

BRI

Fig. 6.6: Dressing & draping advances with time.

Virtual Mirror

Within the POS a Virtual Mirror (Figure 6.7) allows the customer to see a virtual
counterpart, which finally supports the buying decision.

Fig. 6.7: Virtual Mirror with real-world person and clothing.

234

6.2. Virtual Try-On

Final Rendering

For all output channels, that is the Virtual Mirror, the e-commerce applications or
handouts, high-quality BTF rendering is used, which is also explained in Chapter
3.

In the following, several project-related result images are shown (6.8). There is
also a video available on the thesis DVD. Further details about the project can be
found in [Wacker et al. 2004; Wacker et al. 2005].

Fig. 6.8: Several project-related result images.

235

Video 6.2

Chapter 6. Applications

6.3 Real Reflect

RA

The RealReflect [RealReflect 2006] project lasted from March 2002 until April
2005 and was funded by the European Union under project IST-2001-34744. All
shown car models were kindly provided by the DaimlerChrysler AG. Table 6.2

lists the project partners.

’ partner \ country ‘
Vienna University of Technology| AUT
University of Bonn GER
UTIA Prague CZE
MPI for Computer Science GER
INRIA Grenoble FRA
DaimlerChrysler AG GER
Faurecia FRA
vr architects AUT
IC:IDO GmbH GER

Tab. 6.2: All project partners for the RR project.

236

6.3. Real Reflect

6.3.1 Project Description

As stated in the introduction, RR was designed to assist in manufacturer design
support for car interior and architecture. Figure 6.9 shows an overview over the
input part of the project pipeline.

Automatic
Material

Acquisition

Material !
Probe

Light .
Source 3

Automatic Light
Source
Acquisition

Geometry
Data
Texture | |
Mapping
BTF Analysis, Occlusion
Compression + Culling, LOD
Synthesis Generation
i v i
Spectral HDR ! Textured '
BTF data Geometry
— Scene
> File
Spectral Light :
Source Properties i
Light Source
Estimation

Fig. 6.9: Overview of the input part of the project pipeline.

The main idea of the project is to create a process chain for high-quality car inte-
rior and architectural design system, which in huge parts is fully automatic.

The usage of measured real-world data for materials, lighting and geometry al-
lows for a degree of simulations, which is unalterable for safety design issues, for
example car interior lighting. It allows also for rapid prototyping and supports al-
so decision support for new design and manufacturing models. Besides the phase,
which handles all the input data, the second rendering phase includes also tone
mapping and integration of the projects parts into existing VR systems.

In the following, several stages of the preprocessing phase, which results in the
scene file, are explained in detail.

237

Chapter 6. Applications

Preprocessing Phase

As with the VTO project, real-world data is needed for input data (see Figure
6.10).

Fig. 6.10: Input details for the pipeline. Light source data, material probes and geometry data.

Here, automatic material acquisition of the optical material properties, light sour-
ce acquisition and real-world geometry form the integral input parts. The measu-
red data is further processed and later used for visualization.

Therefore, the gathered BTF data is analyzed and compressed. Automatic texture
coordinate generation (see Figure 6.11) is performed and the properties of the used

light sources are captured.

Fig. 6.11: Automatic texture coordinate generation.

For performance reasons, occlusion culling and LOD generation of the geometry
files are performed. All processed information is stored in the scene file, which is
transferred to the second rendering phase (see Figure 6.12).

238

6.3. Real Reflect

Rendering Phase

The rendering phase uses the scene file as input and has two major rendering queu-
es. The first is real-time BTF rendering, which is used for VR systems or systems
which require interaction. The second takes advantage of a full global illuminati-
on simulation to produce high-quality stills.

The generated temporary image is further processed with real-time tone mapping
to produce the final image.

BTF Rendering

i Real-Time
; Tone Mapping
Scene — — Temporary ; , Final
File] > Image Image
» Global lllumi-

, nation Solution :

Physically SLF Rendering

Correct Light
Simulation

Fig. 6.12: Rendering part of the process pipeline.

Figure 6.13 shows several exemplary renderings.

Fig. 6.13: Full car, seat and middle console final renderings.

239

Chapter 6. Applications

240

CHAPTER 7/

Conclusions & Future Work

In this chapter I will summarize the main contributions of this thesis and explain
my thoughts for future research directions in the field of cloth visualization.

7.1 Conclusions

Recalling the first overview diagram in Figure 1.1, important aspects of a lot of
topics in cloth visualization in computer graphics are addressed in this work.

Cloth Visualization

The main topic of this thesis is cloth visualization. Besides the following rele-
vant subtopics, this work describes the first integrated acquisition and rendering
pipeline using measured real-world material reflection properties (see Chapter 5).

241

Chapter 7. Conclusions & Future Work

The pipeline was successfully used in an industrial project (see Chapter 6) and
includes also a ground-breaking compression scheme for the measured data.

Shadows

While the necessity for realistic shadows in real-world scene is obvious, the al-
gorithms to efficiently compute these shadows are by far straight forward. In the
context of cloth visualization especially self-shadowing is important. Chapter 4
introduces two new methods to efficiently compute these kind of shadows using
graphics hardware acceleration. The first method is optimized to handle static geo-
metry and is integrated into the BTF rendering pipeline. Evaluation of rendered
hemi-cubes is used for visibility computations.

The second method provides a solution for animated meshes, for examples avatars
with clothing. Here, visibility computation is performed using occlusion queries.
Shadow computation itself is closely related to perception. Understanding the hu-
man visual system therefore might provide hints to optimize shadow computati-
on by leaving out perceptional less important parts. An experiment is described
which uses level of detail optimized shadow calculation and perception evaluation
to speed up the shadow calculation process.

Animation

Animation topics addressed in this thesis are motion sequence generation and
sequence compression. Both are closely related to cloth visualization. Besides a
method to easily and automatically create new animation sequences (3.2.1), also
a state-of-the-art compression scheme for the animation geometry is presented
(3.3.1), which is adopted from the compression scheme of the material reflection
properties (see below).

Material Reflection Properties

Concerning optical material reflection properties, which play an essential role wi-
thin cloth visualization, three main topics are addressed in this work: acquisi-
tion, compression and rendering (see Chapter 5). The measurement is done via
a computer-controlled semiautomatic robot assembly and is designed to measu-
re real-world material samples. The compression scheme uses principal compo-
nent analysis (PCA) to analyze and sort the data for efficient compression without
too much loss of visual quality. The rendering system uses hardware accelerated
multi-texturing to decompress and render several materials under natural illumi-
nation in real-time.

242

7.2. Future Work

7.2 Future Work

Is the topic cloth visualization in computer graphics finished yet? Is it depletive
researched? Of course not.

I still believe, that the holy grail for all topics in computer graphics is the holo-
deck as introduced by Star Trek [STAR 1982] or a super form of a CAVE (Cave
Automatic Virtual Environment) as it is also named. That is, a computer gene-
rated completely virtual part of the world, that is more or less indistinguishable
from reality. Or, as an intermediate step, computer generated images, that are truly
photo-realistic.

Besides the huge steps made in computer hardware and algorithm development
since the beginning of computers, there is no holodeck yet. Therefore, also the
topic of cloth visualization research is not finished.

In the following, I will give pointers to future research directions for the various
aspects I presented in the last chapters.

Perception

I want to start with the general topic of perception. That is, besides all the effort put
into generating highly realistic images, what is actually perceived by the human
observer? Understanding the physiological interactions between the human visual
system and the brain and understanding the kind of filters which are applied to
all the information overflow which the human observer is bombarded with, might
lead to important insights, which parts of an image are really important. Perhaps,
as the introduced experiment in this thesis suggests, a lot of computational effort
is not necessary to convince the average human observer, that the image is photo-
realistic or correct.

Therefore, I believe besides thinking about more advanced and efficient algo-
rithms it is of equal importance to perform perception experiments, for example
also in the context of material reflection properties, to achieve a much greater
performance increase.

Shadows

Self-shadowing, as stated above, is a computational complex problem, due to the
fact that each surface point has to be evaluated. I think that further research should
focus on parallel processing and the combination of the calculation with the over-
all perception of shadows. Parallelism could be achieved using the advancing ca-
pabilities of modern graphics hardware.

243

Chapter 7. Conclusions & Future Work

Animation

As in this work described, the transfer of compression schemes from one to-
pic (material surface properties) to another (animation sequences) might be suc-
cessful. Therefore, computer graphics should furthermore try to adopt existing
compression algorithms to fields of applications, where they were not used befo-
re. The introduced clustered PCA compression might also be combined with other
schemes like linear prediction coding or wavelet compression.

Material Reflection Properties

I think this work and all related work in the group made clear, that using measured
real-world material reflection properties is superior to any other form of artificial
generated data, when it comes to create a realistic look & feel. The drawback of the
huge data amount and the coupled compression of this data was already tackled
within this work and of course is already topic of current research.

It might be useful to investigate other signal processing algorithms and apply them
to the data to ultimately decouple not only geometry and reflection but also me-
sostructure effects and the core material reflection properties.

Cloth Visualization

While the above mentioned topics are more general in nature, some future work
directions in the field of cloth visualization itself arose for example from the Vir-
tual Try-On project (see Chapter 6).

To further enhance the visual acceptance of the rendered cloth, more subtle details
should be added. That is, knobs, zippers or pockets should also be measured and
integrated into the rendering pipeline. This also includes the further measurement
and integration of the silhouette enhancements (see 5.7).

244

ANHANG A

Miscellaneous

This appendix includes a list of all videos, figures and tables throughout this the-
sis. In addition, the used data sources are referenced.

This is followed by the list of all references, a short curriculum vitae and the
publication list.

245

Videos

This chapter lists all videos with a short description accompanying this thesis. The
following icon marks parts where additional video material is available.

I BTF acquisition setup [2:39 min] 2.19
II Animation sequence generation [6:13 min] 323
III Animation compression: sequence [0:14 min] 3.3.3
v Animation compression [1:53 min] 3.3.3
A% Self-shadowing: static results [3:17 min] 4.3.7
VI Self-shadowing: dynamic results [9:25 min] 4.4.7
VII Materials: textures vs. BTF [0:54 min] 5.2

VIII Materials: rendering results [4:31 min] 5.6

IX VTO results [2:23 min] 6.2.1

246

Data Sources

This chapter includes the used external data sources in this work and their refe-
rences.

The textiles shown in this work were generated with the cloth simulation engine
TiiTex and provided by M. Wacker, M. Keckeisen, and S. Kimmerle from the
WSI/GRIS at the University of Tiibingen. For further details refer to [Etzmuss
et al. 2003; Kimmerle et al. 2003; Mezger et al. 2003] and the Virtual Try-On
project [VTO 2005].

247

Chapter A. Miscellaneous

The Stanford bunny model is courtesy of the
3D scanning repository, University of Stanford
[Turk & Levoy 1994].

The stanford dragon model is courtesy of the
3D scanning repository, University of Stanford.

The chicken sequence is property of Microsoft
Inc. and was kindly provided by John Snyder.

The Igea artifact model is courtesy of Cyber-
ware [Cyberware 2005].

The avatar sequence was created by the Uni-
versity of Tuebingen in the focus of the Virtual
Try-On project [VTO 2005].

248

POSER® from e-frontier, Inc. was used for
the creation of the skeleton sequence [e-frontier
2005].

The cow animation was created by Matthias
Miiller (ETH Ziirich).

The dolphin sequence was kindly provided by
Zachi Karni.

The face sequence was kindly provided by Za-
chi Karni.

POSER® from e-frontier, Inc. and demon-
strational motion capture data were used for

the creation of the dance sequence [e-frontier
2005].

POSER® from e-frontier, Inc. and inbuild fa-
cial expressions were used for the creation of
the head sequence [e-frontier 2005].

249

1.1

2.1
2.2
23
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
222
2.23
2.24

Preface: overview chart

Background: Rendering Techniques

Background:
Background:
Background:
Background:
Background:
Background:
Background:
Background:
Background:
Background:
Background:
Background:
Background:
Background:
Background:
Background:
Background:
Background:
Background:
Background:
Background:
Background:
Background:

: general light-matter interaction
Rendering Techniques:
Rendering Techniques:
Rendering Techniques:
Rendering Techniques:
Rendering Techniques:
Rendering Techniques:
Rendering Techniques:
Rendering Techniques:
Rendering Techniques:
Rendering Techniques:
Rendering Techniques:
Rendering Techniques:
Rendering Techniques:
Rendering Techniques:
Rendering Techniques:
Rendering Techniques:
Rendering Techniques:
Rendering Techniques:
Rendering Techniques:
Rendering Techniques:
Rendering Techniques:
Rendering Techniques:
Rendering Techniques:

radiance principle
object representation
geometry representation . . .
triangle setup
reflectance functions
BTF/Texture comparison . .
BTF
BRDF
shading models
texturing
bump mapping
displacement mapping
goniometer setup
Bonn laboratory
BTF samples
DOMEsetup
BRDF images
ABRDF
PCARMS
clusterplot.
compression comparison
PCArendering.
hemicube lookup

List of Figures

8

12
13
13
15
16
17
18
19
20
20
21
23
24
25
28
30
30
37
39
40
46

250

List of Figures

2.25 Background: Rendering Techniques: hierarchy of object details . . 55

2.26 Background: Rendering Techniques: real world radiance data . . . 56
2.27 Background: Rendering Techniques: radiance data processing . . 57
2.28 Background: Rendering Techniques: HDR assembly 60
2.29 Background: Rendering Techniques: cubic environment 61
2.30 Background: Geometry Processing: simplification edge collapse . 62
2.31 Background: Geometry Processing: simplification vertex merge . 63
2.32 Background: Geometry Processing: Level of Detail generation . . 64
2.33 Background: Geometry Processing: silhouette edge detection . . . 65
2.34 Background: Geometry Processing: silhouette edge examples . . . 66
2.35 Background: Graphics Hardware: pipeline overview 69
2.36 Background: Graphics Hardware: frame buffer 71
2.37 Background: Shadows: hard and soft shadows 76
2.38 Background: Shadows: shadow volume 77
2.39 Background: Shadows: shadow volume (z-pass) 78
2.40 Background: Shadows: shadow volume (z-fail) 79
2.41 Background: Shadows: shadow map algorithm (Ist pass) 80
2.42 Background: Shadows: shadow map algorithm (2nd pass) 80
2.43 Background: Shadows: shadow map algorithm examples 81
2.44 Background: Shadows: hard versus soft shadows 83
2.45 Background: Shadows: ambient occlusion principle 85
2.46 Background: Shadows: ambient occlusion example 86
2.47 Background: Shadows: ambient occlusion details 87
2.48 Background: Shadows: ambient occlusion comparison 88
2.49 Background: Shadows: ambient occlusion comparison IT 89
2.50 Background: Animation: bones model example 96
2.51 Background: Cloth Visualization: visualization pipeline 99
2.52 Background: Cloth Visualization: mass-spring model 104
2.53 Background: Data Analysis: clustering overview 113
3.1 Animation: overview chart L. 118
3.2 Sequence generation: overview chart00 122
3.3 Sequence generation: matrices & jump maps 125
3.4 Sequence generation: avatar and skeleton model 126
3.5 Sequence generation: motion control 128
3.6 Sequence generation: eigenvalues 130
3.7 Sequence generation: sample frames 131
3.8 Sequence generation: o avatar 132
3.9 Sequence generation: o skeleton L. 133
3.10 Sequence generation: g, ¢, influence 134
3.11 Sequence compression: dataflow 138

List of Figures

3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25

5.1
5.2
5.3
54

Sequence compression: sample frames of the chicken sequence . . 141
Sequence compression: clustering examples 142
Sequence compression: influence of ¢* / distortiond, 143
Sequence compression: per frame c¢* / distortiondy 144
Sequence compression: quantization levels 145
Sequence compression: reconstruction errors 146
Sequence compression: shader pseudocode 146
Sequence compression: sample frames L. 147
Sequence compression: COW S€qUENCe 150
Sequence compression: face sequence 151
Shadows: overview chart 154
Shadow perception: visual perception of shadows 155
Shadow perception: program screenshot 157
Shadow perception: used Level-of-Detail 158
Shadow perception: results area light source 160
Shadow perception: results area light source IT 160
Shadow perception: results point light source 161
Self-shadowing: static: visibility test 165
Self-shadowing: static: hemicube 166
Self-shadowing: static: resultimages T 172
Self-shadowing: static: environment maps 172
Self-shadowing: static: resultimages Il 173
Self-shadowing: static: environmentmaps I 173
Self-shadowing: static: result images III 174
Self-shadowing: static: resultimages IV 174
Self-shadowing: static: resultimages V.. 175
Self-shadowing: dynamic: Stanford dragon 177
Self-shadowing: dynamic: pseudocode 182
Self-shadowing: dynamic: dataflow 182
Self-shadowing: dynamic: different number of light directions . . 183
Self-shadowing: dynamic: using temporal coherence 184
Self-shadowing: dynamic: image based illumination 186
Self-shadowing: dynamic: sample key frames 186
Self-shadowing: dynamic: large objects 187
Self-shadowing: dynamic: rendering comparison 188
Material Reflection Properties: overview chart 192
MRP: introduction: example rendering 194
MRP: acquisition: curetcubes 198
MRP: acquisition: measurement setup 200

252

List of Figures

55

5.6

5.7

5.8

59

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

MRP: acquisition: material probeso 201
MRP: acquisition: sample holder 202
MRP: compression: PCA combination 204
MRP: acquisition: Eigenvalues 204
MRP: visualization: shadow boundaries 208
MRP: visualization: shadow calculation 209
MRP: visualization: lookup 211
MRP: visualization: hemicube splitup 211
MRP: visualization: PCA comparison 214
MRP: visualization: PCA weights 215
MRP: visualization: results I 216
MRP: visualization: results IT 217
MRP: visualization: results IIT 218
MRP: BTFfins: acquisition 222
MRP: BTFfins: acquisition I 223
MRP: BTFfins: reconstruction 225
MRP: BTFfins: rendering problem 226
MRP: BTFfins: pseudocode 227
MRP: BTFfins:results 228
MRP: BTFfins: results II 228
Applications: VTO: pipeline 231
Applications: VTO: customer virtualization 232
Applications: VTO:shop 232
Applications: VTO: datainput 233
Applications: VTO: prepositioning 233
Applications: VTO: dressing & draping 234
Applications: VTO: virtual mirror 234
Applications: VTO: final rendering 235
Applications: RR: pipeline 237
Applications: RR: inputdata 238
Applications: RR: texture mapping 238
Applications: RR: renderingpart 239
Applications: RR: rendering 239

253

List of Tables

2.1
2.2
2.3
24
25
2.6
2.7

3.1
3.2
3.3
3.4
3.5

4.1
4.2

5.1
5.2
5.3

6.1
6.2

Background: Rendering Techniques: radiant terms 9
Background: Rendering Techniques: radiometry constants 9
Background: Rendering Techniques: rendering terms 14
Background: Rendering Techniques: BTFDBB sampling 24
Background: Rendering Techniques: real world radiance data values 56
Background: Animation: terminology overview 94
Background: Animation: motion capture system comparison . . . 98
Sequence generation: compression 129
Sequence generation: error analysis L. 134
Sequence compression: used datasets 147
Sequence compression: compressionresults 148
Sequence compression: timings 149
Self-shadowing: static: timings 167
Self-shadowing: dynamic: computation times 188
MRP: acquisition: BTF sampling 199
MRP: results: timings 218
MRP: BTFfins: acquisition 222
Applications: VIO partners 230
Applications: RR partners 236

254

References

ABYSS. (1989). The Abyss.
Fox Studios. 93

AGARWAL, S., RAMAMOORTHI, R., BELONGIE, S. AND JENSEN, H. (2003).

Structured Importance Sampling of Environment Maps. Transactions on
Graphics, 22, 605-612. 182

AGRAWALA, M., RAMAMOORTHI, R., HEIRICH, A. AND MoOLL, L. (2000).
Efficient image-based methods for rendering soft shadows. Pages 375-384
of: SIGGRAPH ’00: Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co. 84

AILA, T. AND AKENINE-MOLLER, T. (2004). A Hierarchical Shadow Volume
Algorithm. Pages 15-23 of: Proceedings of Graphics Hardware 2004. Eu-
rographics Association. 78

AILA, T. AND LAINE, S. (2004). Alias-Free Shadow Maps. Pages 161-166 of:
Proceedings of Eurographics Symposium on Rendering 2004. Eurographics
Association. 82

AKENINE-MOLLER, T. AND ASSARSSON, U. (2002). Approximate soft sha-
dows on arbitrary surfaces using penumbra wedges. Pages 297-306 of: Pro-
ceedings of the 13th Eurographics workshop on Rendering. Eurographics
Association. 84, 156

AKENINE-MOLLER, T. AND HAINES, E. (2002). Real-Time Rendering, 2nd edi-
tion. A K. Peters Ltd. 59, 61, 78, 83, 207

255

References

ALEXA, M. AND MULLER, W. (2000). Representing Animations by Principal
Components. Computer Graphics Forum, 19(3), 411-418. 120, 137

ALLIEZ, P. AND DESBRUN, M. (2001). Progressive compression for lossless
transmission of triangle meshes. Pages 195-202 of: Proceedings of the 28th
annual conference on Computer graphics and interactive techniques. ACM
Press. 137

ASHIKHMIN, M., PREMOZE, S. AND SHIRLEY, P. (2000). A Microfacet-based
BRDF Generator. In: ACM Siggraph 2000 Conference Proceedings. 196

ASSARSSON, U. AND AKENINE-MOLLER, T. (2003). A geometry-based soft

shadow volume algorithm using graphics hardware. ACM Trans. Graph.,
22(3), 511-520. 84, 156

ASSARSSON, U., DOUGHERTY, M., MOUNIER, M. AND AKENINE-MOLLER,
T. (2003). An optimized soft shadow volume algorithm with real-time per-
formance. Pages 33—40 of: Proceedings of the ACM SIGGRAPH/EURO-
GRAPHICS conference on Graphics hardware. Eurographics Association.
156, 157

BARAFF, D. AND WITKIN, A. (1998). Large steps in cloth simulation. Pages
43-54 of: SIGGRAPH ’98: Proceedings of the 25th annual conference on
Computer graphics and interactive techniques. New York, NY, USA: ACM
Press. 105, 106

BARAFF, D., WITKIN, A. AND KASS, M. (2003). Untangling cloth. ACM Trans.
Graph., 22(3), 862-870. 107

BERGMANN, L. AND SCHAEFER, C. (2004). Lehrbuch der Experimentalphysik,
Band 3, Optik, Wellen- und Teilchenoptik. 10. edn. de Gruyter. 9

BERTHOLD, M. AND HAND, D. J. (eds). (2003). Intelligent Data Anakysis, An
Introduction, 2nd edition. Springer-Verlag. 109, 112

BILODEAU, B. AND SONGY, M. (1999). Real Time Shadows. In: Creativity ’99.
77,207

BIPM 2006. http://www.bipm.fr/en/si/.
Bureau International des Poids et Mesures. 9

BITTNER, J., WIMMER, M., PIRINGER, H. AND PURGATHOFER, W. (2004).
Coherent Hierarchical Culling: Hardware Occlusion Queries Made Useful.
Pages 615-624 of: Proceedings of Eurographics. 74

256

References

BLINN, J. F. AND NEWELL, M. E. (1976). Texture and reflection in computer
generated images. Communications of the ACM, 19, 542-547. 60, 178, 197

BLINN, J. F. (1977). Models of Light Reflection for Computer Synthesized Pic-
tures. Computer Graphics, 11(3), 192—-198. 31

BLINN, J. F. (1978). Simulation of Wrinkled Surfaces. Pages 286—292 of: Com-
puter Graphics (SIGGRAPH ’78 Proceedings), vol. 12. 20, 220

BORODIN, P., GUMHOLD, S., GUTHE, M. AND KLEIN, R. (2003)(September).

High-Quality Simplification with Generalized Pair Contractions. Pages 47—
154 of: Proceedings of GraphiCon’2003. 62, 157

BORSHUKOV, G. (2003). Measured BRDF in Film Production - Realistic Cloth
Appearance for *The Matrix Reloaded’. In: SIGGRAPH 2003 Sketches. 99

BOWDEN, R. (2000). Learning statistical models of human motion. In: ICV-
PR2000, IEEE Workshop on Human Modelling, Analysis and Synthesis. 120

BRABEC, S. AND SEIDEL, H. P. (2001). Hardware-accelerated Rendering of
Antialiased Shadows with Shadow Maps. Pages 209-214 of: Proceedings of
the Computer Graphics International 2001. 83

BRABEC, S. AND SEIDEL, H.-P. (2002). Single sample soft shadows using depth
maps. In: Proceedings of the Graphics Interface (GI) 2002. 84

BRABEC, S. AND SEIDEL, H.-P. (2003). Shadow Volumes on Programmable
Graphics Hardware. In: Proceedings EUROGRAPHICS 2003. 66, 78, 207,
221

BREEN, D. E., HOUSE, D. H. AND WOZNY, M. J. (1994). Predicting the drape
of woven cloth using interacting particles. Pages 365-372 of: SIGGRAPH

'94: Proceedings of the 21st annual conference on Computer graphics and
interactive techniques. New York, NY, USA: ACM Press. 103

BRENNAN, C. (2002). ShaderX: Vertex and Pixel Shaders Tips and Tricks. Word-
ware. Chap. Shadow Volume Extrusion using a Vertex Shader, pages 188—
192. 207, 221

BRICENO, H. M., SANDER, P. V., MCMILLAN, L., GORTLER, S. AND HOP-
PE, H. (2003). Geometry videos: a new representation for 3D animations.
Pages 136—146 of: Proceedings of the 2003 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. Eurographics Association. 137

257

References

BRUDERLIN, A. AND CALVERT, T. W. (1989). Goal-directed, dynamic anima-
tion ofhuman walking. Pages 233—-242 of: Proceedings of SIGGRAPH 89,
vol. 23. 120

BRUDERLIN, A. AND CALVERT, T. W. (1996). Knowledge-driven, interactive

animation of human running. Pages 213-221 of: Graphics Interface ’96.
120

BTFDBB 2005. http://btf.cs.uni-bonn.de.
BTF Database Bonn. 23

BUNNELL, M. (2005). Dynamic Ambient Occlusion and Indirect Lighting. In:
GPU Gems 2. Addison-Wesley. 90

BVH 2006. http://www.wotsit.org.
Wotsit Data Formats. 98

CAM 2006. http://www.cocs.com/poser/movies.htm.
History of Computer Animation in the Movies. 93

CARIGNAN, M., YANG, Y., THALMANN, N. M. AND THALMANN, D. (1992).
Dressing animated synthetic actors with complex deformable clothes. Pages
99-104 of: SIGGRAPH ’92: Proceedings of the 19th annual conference on
Computer graphics and interactive techniques. New York, NY, USA: ACM
Press. 100

CG 2006. http://developer.nvidia.com/page/cg _main.html.
NVidia CG. 73

CHAN, E. AND DURAND, F. (2003). Rendering Fake Soft Shadows with Smoo-
thies. Pages 208-218 of: Proceedings of the Eurographics Symposium on
Rendering. Eurographics Association. 84, 156

CHEN, W.-C., BOUGUET, J.-Y., CHU, M. H. AND GRZESZCZUK, R. (2002).
Light Field Mapping: Efficient Representation and Hardware Rendering of
Surface Light Fields. In: Proceedings of ACM SIGGRAPH 2002. 46, 196,
202, 207

CHI, D. M., COSTA, M., ZHAO, L. AND BADLER, N. (2000). The emote model
for effort and shape. Pages 173—182 of: Siggraph 2000. 120

CHol, K.-J. AND Ko, H.-S. (2002). Stable but responsive cloth. Pages 604—611
of: SIGGRAPH ’02: Proceedings of the 29th annual conference on Computer
graphics and interactive techniques. New York, NY, USA: ACM Press. 105

258

References

CIE. (2004). Colorimetry. Tech. rept. Commission Internationale de 1’Eclairage.
11

CIE 2006. http://www.cie.co.at/cie/.
CIE, Commission Internationale de 1’Eclairage. 11

CIE1987. International Lighting Vocabulary, Publication Commission Interna-
tionale de I’Eclairage (CIE) 17.4. ISBN 3 900 734 0 70. 9, 12

COHEN, M. F. AND GREENBERG, D. P. (1985). The hemi-cube: a radiosity so-
lution for complex environments. Pages 3140 of: SIGGRAPH ’85: Procee-
dings of the 12th annual conference on Computer graphics and interactive
techniques. ACM Press. 51,90, 164, 170, 178, 210

COHEN, M. F. AND WALLACE, J. R. (1993). Radiosity and Realistic Image
Syynthesis. Morgan Kaufmann Publishers, Inc. 164

COLLIER, J.R., COLLIER, B.J., O’TOOLE, G. AND SARGAND, S.M. (1991).
Drape Prediction by Means of Finite-Element Analysis. Journal of the Textile
Institute, 82, 1. 102

CooOK, R. L. (1984). Shade trees. Pages 223-231 of: SIGGRAPH ’84: Procee-
dings of the 11th annual conference on Computer graphics and interactive
techniques. New York, NY, USA: ACM Press. 21

COOK, R. L., PORTER, T. AND CARPENTER, L. (1984). Distributed ray tracing.
Pages 137-145 of: Proceedings of the 11th annual conference on Computer
graphics and interactive techniques. ACM Press. 42

COOMBE, G., HARRIS, M. J. AND LASTRA, A. (2004). Radiosity on Graphics
Hardware. In: Graphics Interface. 91, 178

Crow, F. C. (1977). Shadow algorithms for computer graphics. Pages 242-248
of: SIGGRAPH ’77: Proceedings of the 4th annual conference on Computer
graphics and interactive techniques. ACM Press. 76, 156, 178, 207, 221

CURET 2005. http://wwwl.cs.columbia.edu/CAVE/curet/.
Columbia-Utrecht Reflectance and Texture Database. 23, 198

CURLESS, B. AND LEVOY, M. (1996). A Volumetric Method for Building Com-
plex Models from Range Images. Computer Graphics, 30(Annual Confe-
rence Series), 303-312. 157

CYBERWARE 2005. http://www.cyberware.com/.
Cyberware. 248

259

References

DACHSBACHER, C. AND STAMMINGER, M. (2003). Translucent Shadow Maps.
Pages 197-201 of: Rendering Techniques. 82

DANA, K. J., NAYAR, S. K., VAN GINNEKEN, B. AND KOENDERINK, J. J.
(1999a). 3D Textured Surface Modeling. In: WIAGMOR Workshop CVPR
’99. 199

DANA, K. J., VAN GINNEKEN, B., NAYAR, S. K. AND KOENDERINK, J. J.
(1999b). Reflectance and Texture of Real-World Surfaces. ACM Transactions
on Graphics, 18, 1-34. 16, 22, 194, 197, 221

DANA, K. J. AND WANG, J. (2004). Device for convenient measurement of
spatially varying bidirectional reflectance. Journal of the Optical Society of
America, A(January), 1-12. 26

DAUBERT, K. AND SEIDEL, H.-P. (2002). Hardware-Based Volumetric Knit-

Wear. Computer Graphics Forum 21(3) - Proceedings of Eurographics,
63(2), 314-325. 21, 108, 193, 195, 221

DAUBERT, K., LENSCH, H. P. A., HEIDRICH, W. AND SEIDEL, H.-P. (2001).
Efficient Cloth Modeling and Rendering. Pages 63—70 of: 12th Eurographics
Workshop on Rendering. 32, 45, 50, 54, 108, 195, 221

DEBEVEC, P., HAWKINS, T., TCHOU, C., DUIKER, H.-P., SAROKIN, W. AND
SAGAR, M. (2000). Acquiring the Reflectance Field of a Human Face. Pages
145-156 of: SIGGRAPH ’00: Proceedings of the 27th annual conference on
Computer graphics and interactive techniques. 18, 196

DEBEVEC, P. (1998). Rendering Synthetic Objects Into Real Scenes: Bridging
Traditional and Image-Based Graphics With Global Illumination and High
Dynamic Range Photography. Pages 189-198 of: COHEN, M. (ed), SIG-
GRAPH 98 Conference Proceedings. Annual Conference SeriesAddison
Wesley, for ACM SIGGRAPH. ISBN 0-89791-999-8. 58, 185, 197, 2009,
217

DEBEVEC, P., WARD, G. AND LEMMON, D. (2003)(June). HDRI and Image-
Based Lighting. In: Proceedings of SIGGRAPH 2003: Course Notes 19. 58

DEBEVEC, P., REINHARD, E., WARD, G. AND PATTANAIK, S. (2004)(June).
High Dynamic Range Imaging. In: Proceedings of SIGGRAPH 2004: Course
Notes 13. 58

260

References

DEBEVEC, P. E. AND MALIK, J. (1997). Recovering High Dynamic Range Ra-
diance Maps from Photographs. Pages 369-378 of: WHITTED, T. (ed), SIG-
GRAPH 97 Conference Proceedings. Annual Conference SeriesAddison
Wesley, for ACM SIGGRAPH. 48, 58, 185, 209

DEERING, M. (1995). Geometry compression. Pages 13-20 of: Proceedings of
the 22nd annual conference on Computer graphics and interactive techni-
ques. ACM Press. 137

DELOURA, M. A. (ed). (2001). Game Programming Gems 2. Charles River
Media Inc. 207

DESBRUN, M., SCHRODER, P. AND BARR, A. (1999). Interactive Animation of
Structured Deformable Objects. Pages 1-8 of: Graphics Interface. 101, 105

DILLON, W. AND GOLDSTEIN, M. (1984). Multivariate Analysis: Methods and
Applications. Wiley and Sons. 109, 110

DISCHLER, J. M. (1998). Efficiently Rendering Macro Geometric Surface Struc-
tures with Bi-Directional Texture Functions. In: Proceedings of the Eurogra-
phics Workshop on Rendering. 16

E-FRONTIER 2005. http://www.e-frontier.com/.
e-frontier, Inc. 100, 249

EBERHARDT, B., WEBER, A. AND STRASSER, W. (1996). A Fast, Flexible,
Particle-System Model for Cloth Draping. I[IEEE Comput. Graph. Appl.,
16(5), 52-59. 103

EBERLE, D., HADAP, S., ERICSON, C., LIN, M. C., REDON, S. AND VOLINO,
P. (2004). Collision Detection and Proximity Queries. In: Siggraph 2004
Course Notes 14. ACM Siggraph. 107

EISCHEN, J. W., DENG, S. AND CLAPP, T. G. (1996). Finite-Element Modeling
and Control of Flexible Fabric Parts. IEEE Comput. Graph. Appl., 16(5),
71-80. 102

ETzMUSsSs, O., KECKEISEN, M. AND STRASSER, W. (2003). A fast finite ele-
ment solution for cloth modelling. In: PG ’03: Proceedings of the 11th Pa-
cific Conference on Computer Graphics and Applications. 247

EVERITT, C. AND KILGARD, M. J. (2002). Practical and Robust Stenciled Sha-
dow Volumes for Hardware-Accelerated Rendering. In: NVIDIA White pa-
per. 78, 207

261

References

FALOUTSOS, P., VAN DE PANNE, M. AND TERZOPOULOS, D. (2001a). Com-

posable Controllers for Physics-Based Character Animation. Pages 251-260
of: SIGGRAPH 2001 Proceedings. 120

FALOUTSOS, P., VAN DE PANNE, M. AND TERZOPOULOS, D. (2001b). The

virtual stuntman: dynamic characters with a repertoire of autonomous motor
skills. Computers & Graphics, 6(25), 933-953. 120

FEJES TOTH, G. (1972). Lagerungen in der Ebene, auf der Kugel und im Raum,
2nd ed. Springer-Verlag. 183

FERNANDO, R., FERNANDEZ, S., BALA, K. AND GREENBERG, D. P. (2001).
Adaptive shadow maps. Pages 387-390 of: SIGGRAPH ’01: Proceedings
of the 28th annual conference on Computer graphics and interactive techni-
ques. New York, NY, USA: ACM Press. 82

FILIP, J. AND HAINDL, M. (2004). Non-linear Reflectance Model for Bidirectio-
nal Texture Function Synthesis. In: ICPR 2004. 33, 45, 54

FOLEY, J. D., VAN DAM, A., FEINER, S. K. AND HUGHES, J. F. (1996). Fun-

damentals of Interactive Computer Graphics. 2nd Edition in C. Addison-
Wesley. 13, 92

FURUKAWA, R., KAWASAKI, H., IKEUCHI, K. AND SAKAUCHI, M. (2002).
Appearance based object modeling using texture database: acquisition, com-
pression and rendering. Pages 257-266 of: Proceedings of the 13th Eurogra-
phics workshop on Rendering. Eurographics Association. 22

GAN, L., Ly, N. G. AND STEVEN, G. P. (1991). A Finite Element Analysis
of the Draping of Fabrics. In: Proc. 6th Int’l Conf. in Australia on Finite
Element Methods. 102

GLEICHER, M. (2001). Comparing constraint-based motion editing methods.
Graphical Models, 2(63), 107-123. 120

GLSL 2006. http://www.opengl.org/documentation/oglsl.html.
GL Shading Language. 73

GOESELE, M., LENSCH, H. P., LANG, J., FucHs, C. AND SEIDEL, H.-P.
(2004)(August). DISCO-Acquisition of Translucent Objects. In: Procee-
dings of SIGGRAPH 2004. 16

262

References

GOOCH, B., SLOAN, P.-P. J., GOOCH, A., SHIRLEY, P. AND RIESENFELD, R.
(1999). Interactive technical illustration. Pages 31-38 of: SI3D ’99: Procee-
dings of the 1999 symposium on Interactive 3D graphics. New York, NY,
USA: ACM Press. 85

GORTLER, S. J., GRZESZCZUK, R., SZELISKI, R. AND COHEN, M. F. (1996).
The Lumigraph. Computer Graphics, 30(Annual Conference Series), 43-54.
17, 18, 196

GREENE, N. (1986). Environment Mapping and Other Applications of World
Projection. IEEE Computer Graphics and Applications, 6(11), 21-29. 48,
61, 185, 197

GROLLER, E., RAU, R. AND STRASSER, W. (1995). Modeling and Visualization

of Knitwear. IEEE Transactions on Visualization and Computer Graphics,
1(4), 302-310. 21, 108, 193, 195, 221

GROLLER, E., RAU, R. AND STRASSER, W. (1996). Modeling textiles as three
dimensional textures. Pages 205—ff. of: Proceedings of the eurographics
workshop on Rendering techniques ’96. Springer-Verlag. 108, 195, 221

GRZESZCZUK, R., TERZOPOULOS, D. AND HINTON, G. (1998). NeuroAni-
mator: fast neural network emulation and control of physics-based models.
Pages 9-20 of: SIGGRAPH ’98: Proceedings of the 25th annual conference
on Computer graphics and interactive techniques. New York, NY, USA:
ACM Press. 105

GU, X., GORTLER, S. J. AND HOPPE, H. (2002). Geometry images. Pages 355—
361 of: Proceedings of the 29th annual conference on Computer graphics
and interactive techniques. ACM Press. 137

GUMHOLD, S. AND STRASSER, W. (1998). Real Time Compression of Triangle
Mesh Connectivity. Pages 133—140 of: SIGGRAPH ’98: Proceedings of the
25th annual conference on Computer graphics and interactive techniques.
137

GUSKOV, I. AND KHODAKOVSKY, A. (2004). Wavelet Compression of Parame-
trically Coherent Mesh Sequences. In: SCA ’04: Proceedings of the 2004
ACM SIGGRAPH/Eurographics symposium on Computer animation. 137,
149

GUTHE, M., BORODIN, P. AND KLEIN, R. (2005). Fast and accurate Hausdorff
distance calculation between meshes. Journal of WSCG, 13(2), 41-48. 62

263

References

HAINES, E. (2001). Soft planar shadows using plateaus. 6(1), 19-27. 84

HALL, J. D. AND HART, J. C. (2004). GPU Acceleration of Iterative Clustering.
Manuscript accompanying poster at GP2: The ACM Workshop on General
Purpose Computing on Graphics Processors, and SIGGRAPH 2004 poster.
138

HAN, J. Y. AND PERLIN, K. (2003). Measuring bidirectional texture reflectance
with a kaleidoscope. ACM Trans. Graph., 22(3), 741-748. 27

HART, D., DUTRE, P. AND GREENBERG, D. (1999). Direct illumination with
lazy visibility evaluation. In: SIGGRAPH 99 Conference Proceedings. 83,
90, 179

HART, E., GOSSELIN, D. AND ISIDORO, J. (2001). Vertex Shading with Di-
rect3D and OpenGL. In: Game Developers Conference 2001. 207, 221

HASENFRATZ, J., LAPIERRE, M., HOLZSCHUCH, N. AND SILLION, F. (2003).

A survey of Real-Time Soft Shadows Algorithms. In: Eurogra-
phicsEurographics, for Eurographics. State-of-the-Art Report. 43, 83, 156,
178

HautH, M., ETZMUSS, O., EBERHARDT, B., KLEIN, R., SARLETTE, R.,
SATTLER, M., DAUBERT, K. AND KAUTZ, J. (2002). Cloth Animation
and Rendering. In: Eurographics 2002 Tutorial Notes T3. The Eurographics
Association. 5, 23, 38, 100

HDRSHOP 2005. http://www.debevec.org/HDRShop/.
HDRShop. 58, 61, 185

HECKBERT, P. S. AND HERF, M. (1997)(Jan.). Simulating Soft Shadows with
Graphics Hardware. Tech. rept. CMU-CS-97-104. CS Dept, Carnegie Mel-
lon U. 83

HEIDMANN, T. (1991). Real shadows, real time. Iris Universe, 18, 28-31. 77,
207

HEIDRICH, W. AND SEIDEL, H.-P. (1998). View-Independent Environment
Maps. In: Proceedings of Eurographics/SIGGRAPH Workshop on Graphics
Hardware '98. 46, 61

HEIDRICH, W. AND SEIDEL, H.-P. (1999). Realistic, Hardware-Accelerated
Shading and Lighting. In: ROCKWOOD, A. (ed), Siggraph 1999, Annual
Conference Proceedings. Annual Conference Series. Addison Wesley Long-
man. 185, 220

264

References

HEIDRICH, W., BRABEC, S. AND SEIDEL, H.-P. (2000). Soft Shadow Maps for
Linear Lights. Pages 269-280 of: Proceedings of the Eurographics Workshop
on Rendering Techniques 2000. London, UK: Springer-Verlag. 84

HIND, K. AND MCCARTNEY, J. (1990). Interactive Garment Design. Visual
Computer, 6, 53-61. 102

HopPPE, H. (1996). Progressive meshes. Pages 99—108 of: Proceedings of the
23rd annual conference on Computer graphics and interactive techniques.
ACM Press. 137

HOURCADE, J. C. AND NICOLAS, A. (1985). Algorithms for Antialiased Cast
Shadows. Computers and Graphics, 9(3), 259-265. 82

HOUSE, D. AND BREEN, D. (2000). Cloth Modeling and Animation. A K Peters.
54,92, 100

Hu, H. H., GoocH, A. A., THOMPSONA, W. B., SMITS, B. E., SHIRLEY, P.
AND RIESER, J. J. (2000). Visual Cues for Imminent Object Contact in
Realistic Virtual Environments. In: IEEE Visualization 2000. 156

HYEONG-SEOK, K., DAVID, B., MICHAEL, H., RONALD, F. AND ROB, H.
(2003). Clothing Simulation and Animation. [In: Siggraph 2003 Course
Notes 29. ACM Siggraph. 101

HYEONG-SEOK, K., KWANG-JIN, C., FEDKIW, R. AND DONGLIANG, Z.
(2005). Advanced Topics on Advanced Topics on Clothing Simulation and
Clothing Simulation and Animation. [In: Siggraph 2003 Course Notes 6.
ACM Siggraph. 101

IBARRIA, L. AND ROSSIGNAC, J. (2003). Dynapack: space-time compression of
the 3D animations of triangle meshes with fixed connectivity. Pages 126—135
of: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. Eurographics Association. 137

ID 2006. http://www.idsoftware.com/.
Doom3, id software. 78

IONES, A., KRUPKIN, A., SBERT, M. AND ZHUKOV, S. (2003). Fast realistic

lighting for video games. IEEE Computer Graphics & Applications, 23, 54—
64. 89, 179

ISIDORO, J. AND MITCHELL, J. L. (2002). User-Customizable Real-Time Fur.
In: SIGGRAPH 2002-Sketch. 220

265

References

JAMES, D. L. AND FATAHALIAN, K. (2003). Precomputing interactive dynamic
deformable scenes. ACM Trans. Graph., 22(3), 879-887. 105

JENSEN, H. W. (2001). Realistic Image Synthesis Using Photon Mapping. AK
Peters. 15, 75, 162, 169, 210

JENSEN, H.W. (1996). Global Illumination using Photon Maps. In: Eurographics
Workshop on Rendering 1996. 42

JOLLIFFE, I. (1986). Principal Component Analysis. Springer-Verlag. 109, 111,
121, 203

JUKKA ARVO, MIKA HIRVIKORPI AND JOONAS TYYSTJARVI. (2004). Appro-

ximate Soft Shadows Using Image-Space Flood-Fill Algorithm. Computer
Graphics Forum, 23(3), 271-280. 84

KAJIYA, J. T. (1986). The rendering equation. Pages 143-150 of: SIGGRAPH
'86: Proceedings of the 13th annual conference on Computer graphics and
interactive techniques. ACM Press. 42, 162, 169, 178

KAJtya, J. T. AND KAy, T. L. (1989). Rendering Fur with Three Dimensional
Textures. In: SIGGRAPH 89 Proceedings. 220, 221

KAMBHATLA, N. AND LEEN, T.K. (1997). Dimension Reduction by Local PCA.
Neural Computation, 9, 1493-1516. 38, 53, 115, 135, 140

KARNI, Z. AND GOTSMAN, C. (2000). Spectral Compression of Mesh Geometry.
Pages 279-286 of: AKELEY, K. (ed), Siggraph 2000, Computer Graphics
Proceedings. ACM Press / ACM SIGGRAPH / Addison Wesley Longman.
137, 138

KARNI, Z. AND GOTSMAN, C. (2004). Compression of Soft-Body animation
sequences. Computer and Graphics, 28, 25-34. 137, 142, 143, 149

KARNI, Z., BOGOMJAKOV, A. AND GOTSMAN, C. (2002). Efficient compressi-
on and rendering of multi-resolution meshes. Pages 347-354 of: Proceedings
of the conference on Visualization ’02. IEEE Computer Society. 137

KATZ, S. AND TAL, A. (2003). Hierarchical mesh decomposition using fuzzy
clustering and cuts. ACM Trans. Graph., 22(3), 954-961. 138, 141

KAuTz, J. AND McCooL, M. (1999). Interactive Rendering with Arbitrary

BRDFs using Separable Approximations. In: 10th Eurographics Workshop
on Rendering. 35, 45, 196

266

References

KAUTZ., J., VAZQUEZ, P.-P., HEIDRICH, W. AND SEIDEL, H.-P. (2000). A
Unified Approach to Prefiltered Environment Maps. In: Proc. 11th Eurogra-
phics Workshop on Rendering. 185

KAuUTzZ, J., LEHTINEN, J. AND AILA, T. (2004). Hemispherical Rasterization
for Self-Shadowing of Dynamic Objects. Pages 179—184 of: Proceedings of
Eurographics Symposium on Rendering 2004. 90, 179

KAuTz, J. AND McCooL, M. D. (2000). Approximation of Glossy Reflection
with Prefiltered Environment Maps. Pages 119-126 of: Graphics Interface
2000. 48, 49, 197

KAuTZ, J., LEHTINEN, J. AND SLOAN, P.-P. (2005). Pre-Computed Radiance
Transfer: Theory and Practice. In: Proceedings of ACM SIGGRAPH 2005:
Course Notes. 43,91

KAWABATA, S. (1980). The Standardization and Analysis of Hand Evaluation,
2nd Edition. The Textile Machinery Society of Japan. 102

KELLER, A. (1997). Instant Radiosity. In: Computer Graphics Proceedings SIG-
GRAPH 97. 179

KENDALL, M. (1975). Multivariate Analysis. Charles Griffin Co. 111, 121, 203

KERSTEN, D., KNILL, D., MAMASSIAN, P. AND BULTHOFF, 1. (1996). Illusory
motion from shadows. Nature, 379, 31. 156

KERSTEN, D., MAMASSIAN, P. AND KNILL, D.C. (1997). Moving cast shadows
induce apparent motion in depth. Pages 171—192 of: Perception, vol. 26. 156

KHODAKOVSKY, A., SCHRODER, P. AND SWELDENS, W. (2000). Progressi-
ve geometry compression. Pages 271-278 of: Proceedings of the 27th an-
nual conference on Computer graphics and interactive techniques. ACM
Press/Addison-Wesley Publishing Co. 137

KILGARD, M. J. (2001). More Advanced Hardware Rendering Techniques. In:
Game Developers Conference 2001. 207

KILGARD, M. J. (2002). Shadow Mapping with Todays OpenGL Hardware. In:
SIGGRAPH 2002 Course. 90, 156, 179, 187, 207

KIMMERLE, S., KECKEISEN, M., MEZGER, J. AND WACKER, M. (2003).

Tiitex: A cloth modelling system for virtual humans. In: Proceedings 3D
Modelling. 247

267

References

KIRSANOV, D., SANDER, P. V. AND GORTLER, S. J. (2003). Simple silhouet-
tes for complex surfaces. Pages 102—106 of: SGP ’03: Proceedings of the
2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing.
Eurographics Association. 66

KLEIN, R., LIEBICH, G. AND STRASSER, W. (1996). Mesh Reduction with Error
Control. In: YAGEL, R. AND NIELSON, G. M. (eds), IEEE Visualization 96.
ACM Press. 63

KNUTH, M. AND FUHRMANN, A. (2005). Self-Shadowing of dynamic scenes
with environment maps using the GPU. Pages 31-38 of: WSCG FULL papers
proceedings. 91

KOENDERINK, J. J. (1984). What does the occluding contour tell us about solid
shape. Perception, 3(13), 321-330. 220

KoLLIG, T. AND KELLER, A. (2003). Efficient Illumination by High Dyna-

mic Range Images. In: Proceedings Eurographics Symposium on Rendering
2003. 182

KONTKANEN, J. AND LAINE, S. (2005). Ambient Occlusion Fields. Pages 41—
48 of: Proceedings of ACM SIGGRAPH 2005 Symposium on Interactive 3D
Graphics and Games. ACM Press. 91

KOUDELKA, M. L., MAGDA, S., BELHUMEUR, P. N. AND KRIEGMAN, D. J.
(2003). Acquisition, Compression and Synthesis of Bidirectional Texture
Functions. In: 3rd International Workshop on Texture Analysis and Synthesis.

26, 36

LAFORTUNE, E. P. F., FOO, S.-C., TORRANCE, K. E. AND GREENBERG, D. P.
(1997). Non-Linear Approximation of Reflectance Functions. Pages 117-
126 of: Proc. SIGGRAPH 97. 31, 196

LANDIS, H. (2002). Production-Ready Global Illumination. In: 'RenderMan in
Production’ SIGGRAPH Course Notes 2002. 90, 179

LAPACK 2005. http://www.netlib.org/lapack.
LAPACK. 109, 141

LARBOULETTE, C. AND CANI, M.-P. (2004). Real-Time Dynamic Wrinkles. In:

Computer Graphics International. IEEE Computer Society Press. Greece.
105

268

References

LARSON, G. W. AND SHAKESPEARE, R. A. (1998). Rendering with Radiance
The Art and Science of Lighting Visualization. Morgan Kaufmann Publishers
Inc. 57

LARSON, G. J. W. (1992). Measuring and Modeling Anisotropic Reflection. In:
Proc. SIGGRAPH 92. 17, 31, 196

LASSETER, J. (1987). Principles of Traditional Animation Applied to 3D Com-
puter Animation. Computer Graphics (SIGGRAPH 87), 4(21), 35-44. 93

LASzLO, J. F., VAN DE PENNE, M. AND FIUME, E. L. (1996). Limit cycle
control and its application to the animation of balancing and walking. In:
Proceedings of Siggraph 96. 120

LATTA, L. AND KOLB, A. (2002). Homomorphic factorization of BRDF-based
lighting computation. Pages 509-516 of: Proceedings of the 29th annual
conference on Computer graphics and interactive techniques. ACM Press.
197

LEE, J., CHAIL J., REITSMA, P., HODGINS, J. AND POLLARD, N. (2002). In-

teractive control of avatars animated with human motion data. In: Proc. SIG-
GRAPH 2002. 119, 120, 122, 128

LENGYEL, J., PRAUN, E., FINKELSTEIN, A. AND HOPPE, H. (2001). Real-
time fur over arbitrary surfaces. Pages 227-232 of: Proceedings of the 2001
symposium on Interactive 3D graphics. ACM Press. 220, 224

LENGYEL, J. E. (1999). Compression of time-dependent geometry. Pages 89-95
of: Proceedings of the 1999 symposium on Interactive 3D graphics. ACM
Press. 137, 140

LENSCH, H. P. A., GOESELE, M., CHUANG, Y.-Y., ITIM HAWKINS, MARSCH-
NER, S., MATUSIK, W. AND MUELLER, G. (2005). Realistic Materials in
Computer Graphics. In: Siggraph 2005 Course Notes 10. ACM Siggraph.
108

LENScH, H. P., KAuTz, J., GOESELE, M., HEIDRICH, W. AND SEIDEL, H.-
P. (2001). Image-Based Reconstruction of Spatially Varying Materials. In:
Proceedings of Eurographics Rendering Workshop 01. 22, 196

LEvVOY, M. AND HANRAHAN, P. (1996). Light Field Rendering. Computer
Graphics, 30(Annual Conference Series), 31-42. 17, 18, 196

LIGHTPROBES 2005. http://www.debevec.org/Probes/.
Light Probe Image Gallery. 48, 185

269

References

LIN, M. C. AND CANNY, J. F. (1992). Efficient collision detection for animation.
In: In Eurographics Workshop on Simulation and Animation. 106

Liu, X., YU, Y. AND SHUM, H.-Y. (2001). Synthesizing bidirectional texture
functions for real-world surfaces. Pages 97-106 of: SIGGRAPH ’01: Procee-
dings of the 28th annual conference on Computer graphics and interactive
techniques. 198

Liu, X., Hu, Y., ZHANG, J., TONG, X., GUO, B. AND SHUM, H.-Y. (2004).
Synthesis and Rendering of Bidirectional Texture Functions on Arbitrary

Surfaces. [EEE Transactions on Visualization and Computer Graphics,
10(3), 278-289. 36, 47, 54

LLOYD, S. P. (1982). Least square quantization in PCM. IEEE Transactions on
Information Theory, 28(2), 129-137. 136

Loxkovic, T. AND VEACH, E. (2000). Deep shadow maps. Pages 385-392 of:
SIGGRAPH ’00: Proceedings of the 27th annual conference on Computer
graphics and interactive techniques. ACM Press/Addison-Wesley Publishing
Co. 82

Loop, C. T. (1987). Smooth subdivision surfaces based on triangles. M.Phil.
thesis, Univ. of Utah, Dept. of Mathematics. 63

LOTR. (2003). Lord of the rings trilogy.
New Line Cinema. 93, 119

LUEBKE, D. (2001). A Developers Survey of Polygonal Simplification Algo-
rithms. Pages 24-35 of: Computer Graphics & Applications, vol. 23. 63

MACQUEEN, J. B. (1967). Some Methods for classification and Analysis of Mul-
tivariate Observations. Pages 281-297 of: Proceedings of 5-th Berkeley Sym-
posium on Mathematical Statistics and Probability. University of California
Press. 114

MADISON, C., THOMPSON, W. B., KERSTEN, D. J., SHIRLEY, P. AND SMITS,
B. S. (2001). Use of Interreflection and Shadow for Surface Contact. In.
Perception and Psychophysics, vol. 63. 156

MAGNENAT-THALMANN, N., CORDIER, F., KECKEISEN, M., KIMMERLE, S.,
KLEIN, R. AND MESETH, J. (2004). Simulation of Clothes for Real-time
Applications. In: MAGNENAT-THALMANN, N., VOLINO, P., THOMAS-
ZEWSKI, B. AND WACKER, M. (eds), Eurographics 2004 Tutorial Notes
T1. The Eurographics Association. 100

270

References

MAGNENAT-THALMANN, N., VOLINO, P., THOMASZEWSKI, B. AND
WACKER, M. (2005). Key techniques for interactive virtual garment simula-
tion. In: MAGNENAT-THALMANN, N., VOLINO, P., THOMASZEWSKI, B.
AND WACKER, M. (eds), Eurographics 2005 Tutorial Notes T4. The Euro-
graphics Association. 100

MALZBENDER, T., GELB, D. AND WOLTERS, H. (2001). Polynomial texture
maps. Pages 519-528 of: SIGGRAPH ’01: Proceedings of the 28th annual
conference on Computer graphics and interactive techniques. 19,27, 33, 196

MARKOSIAN, L., KOWALSKI, M. A., GOLDSTEIN, D., TRYCHIN, S. J.,
HUGHES, J. F. AND BOURDEYV, L. D. (1997). Real-time nonphotorealistic
rendering. Pages 415-420 of: Proceedings of the 24th annual conference on
Computer graphics and interactive techniques. ACM Press/Addison-Wesley
Publishing Co. 66, 156, 221

MARSCHNER, S. R., WESTIN, S. H., LAFORTUNE, E. P. F., TORRANCE, K. E.
AND GREENBERG, D. P. (1999). Image-based BRDF Measurement Inclu-
ding Human Skin. Pages 139-152 of: Proceedings of EGRW ’99. 17

MASSELUS, V., PEERS, P., DUTRE;, P. AND WILLEMS, Y. D. (2003). Religh-
ting with 4D incident light fields. ACM Trans. Graph., 22(3), 613-620. 19

MATRIX. (2003). The Matrix trilogy.
Warner Bros. 99, 119

MATROX 2006. http://www.matrox.com.
Matrox. 21

MATUSIK, W., PFISTER, H., NGAN, A., BEARDSLEY, P., ZIEGLER, R. AND
MCMILLAN, L. (2002). Image-based 3D photography using opacity hulls.
Pages 427437 of: Proceedings of the 29th annual conference on Computer
graphics and interactive techniques. ACM Press. 19, 34, 137

MATUSIK, W., PFISTER, H., BRAND, M. AND MCMILLAN, L. (2003). A data-
driven reflectance model. ACM Trans. Graph., 22(3), 759-769. 17, 34

MAYA 2006. http://www.autodesk.com/alias.
AliasWavefront Maya. 100

MCALLISTER, D., LASTRA, A. AND HEIDRICH, W. (2002). Efficient Rendering
of Spatial Bi-directional Reflectance Distribution Functions. In: Graphics
Hardware 2002, Eurographics / SIGGRAPH Workshop Proceedings. 23, 31,
33, 44, 49, 54, 185, 194, 197, 221

271

References

McCooL, M. D., ANG, J. AND AHMAD, A. (2001). Homomorphic factoriza-
tion of BRDFs for high-performance rendering. In: Proceedings of the 28th

annual conference on Computer graphics and interactive techniques. ACM
Press. 35, 45, 197

MCGUIRE, M. AND HUGHES, J. F. (2004). Hardware-determined feature edges.
Pages 35-147 of: Proceedings of the 3rd international symposium on Non-
photorealistic animation and rendering. ACM Press. 66

MESETH, J., MULLER, G., SATTLER, M., SARLETTE, R., ARTUSI, A., WIL-
KIE, A., ZOTTI, G., KLEIN, R. AND PURGATHOFER, W. (2004a)(June).
High Quality Rendering of Reflectance Data. In: Proceedings of Computer
Graphics International 2004 (CGI 2004): Tutorial. 58

MESETH, J., MULLER, G. AND KLEIN, R. (2004b). Reflectance Field based
real-time, high-quality Rendering of Bidirectional Texture Functions. Com-
puters and Graphics, 28(1), 103—112. 32, 33, 38, 45, 50, 54

MEZGER, J., KIMMERLE, S. AND ETZMUSS, O. (2003). Hierarchical techniques
in collision detection for cloth animation. Journal of WSCG, 11(2), 322-329.
247

MILLER, G. (1994). Efficient Algorithms for Local and Global Accessibility
Shading. In: SIGGRAPH ’94. 88

MILLER, G. S. P., RUBIN, S. M. AND PONCELEON, D. (1998). Lazy Decom-
pression of Surface Light Fields for Precomputed Global Illumination. Pages
281-292 of: Proceedings of the 9th Eurographics Workshop on Rendering.
18

MILLER, G. S. AND HOFFMAN, C. R. (1984). Illumination and Reflection Maps:
Simulated Objects in Simulated and Real Environments. In: SIGGRAPH ’84
Advanced Computer Graphics Animation seminar notes. 48, 60, 185, 197

MIRTICH, B. (1998). V-Clip: fast and robust polyhedral collision detection. ACM
Trans. Graph., 17(3), 177-208. 106

MULLER, G., MESETH, J. AND KLEIN, R. (2003). Compression and Real-Time
Rendering of Measured BTFs Using Local PCA. Pages 271-280 of: ERTL,
T., GIROD, B., GREINER, G., NIEMANN, H., SEIDEL, H.-P., STEINBACH,
E. AND WESTERMANN, R. (eds), Vision, Modeling and Visualisation 2003.
Akademische Verlagsgesellschaft Aka GmbH, Berlin. 39, 54

272

References

MULLER, G., MESETH, J., SATTLER, M., SARLETTE, R. AND KLEIN, R.
(2004a)(September). Acquisition, Synthesis and Rendering of Bidirectional
Texture Functions. Pages 69-94 of: SCHLICK, C. AND PURGATHOFER, W.
(eds), Proceedings of Eurographics 2004: State of the Art Reports. INRIA
and Eurographics Association. 27

MULLER, G., MESETH, J. AND KLEIN, R. (2004b). Fast Environmental Lighting
for Local-PCA Encoded BTFs. In: Computer Graphics International 2004
(CGI2004). IEEE Computer Society Press. 53

MULLER, G., MESETH, J., SATTLER, M., SARLETTE, R. AND KLEIN, R.
(2005a). Acquisition, Synthesis and Rendering of Bidirectional Texture
Functions. Computer Graphics Forum, 24(1), 83—109. 5

MULLER, G., BENDELS, G. H. AND KLEIN, R. (2005b). Rapid Synchronous
Acquisition of Geometry and BTF for Cultural Heritage Artefacts. Pages 13—
20 of: The 6th International Symposium on Virtual Reality, Archaeology and
Cultural Heritage (VAST)Eurographics Association, for Eurographics Asso-
ciation. 27

MW 2006. http://mathworld.wolfram.com/K-MeansClusteringAlgorithm.html.
MathWorld, Wolfram Research. 114

MWD 2005. http://www.merriam-webster.com.
Merriam-Webster Online Dictionary. 92, 117, 153, 191

NAVARRETE, P. AND DEL SOLAR, J. R. (2001). Eigenspace-Based Recognition
of Faces: Comparisons and a New Approach. In: Proceedings of the 11th
International Conference on Image Analysis and Processing. 141

NEIDER, J., DAvVIS, T. AND W00, M. (1997). OpenGL Programming Guide,
Second Edition. Addison-Wesley. 67, 71

NEMO. (2003). Finding Nemo.
Disney, Pixar. 119

NEULANDER, I. (2003). Image-Based Diffuse Lighting Using Visibility Maps.
In: Siggraph Sketch 2003. 90, 179

NEWMAT 2006. http://www.robertnz.net/nm_intro.htm.
newmat. 109

NG, R., RAMAMOORTHI, R. AND HANRAHAN, P. (2003). All-Frequency Sha-

dows using Non-Linear Wavelet Lighting Approximation. ACM Transacti-
ons on Graphics, 22(3), 376-381. 43

273

References

NicoDEMUS, F. E., RICHMOND, J. C., HSIA, J. J., GINSBERG, . W. AND
LiMPERIS, T. (1970). Reflectance nomenclature and directional reflectance
and emissivity. Applied Optics, 9, 1474-1475. 196

NicoDEMUS, F. E., RICHMOND, J. C., HSIA, J. J., GINSBERG, . W. AND
LIMPERIS, T. (1977)(October). Geometrical Considerations and Nomen-
clature for Reflectance. U.S. Department of Commerce, National Bureau of
Standards. 15, 17

NISHINO, K., SATO, Y. AND IKEUCHI, K. (2001). Eigen-Texture Method: Ap-
pearance Compression and Synthesis Based on a 3D Model. [EEE Trans.
Pattern Anal. Mach. Intell., 23, 1257-1265. 34, 137, 203

NV 2005. http://developer.nvidia.com/page/home.
NVIDIA Developer Homepage. 100

NVD 2006. http://developer.nvidia.com/page/home.
NVIDIA Developer Homepage. 79

OPENEXR 2006. http://www.openexr.con/.
OpenEXR, Industrial Light & Magic. 58

OPENGL 2005. http://www.opengl.org.
OpenGL. 67

OSS 2005. http://oss.sgi.com/projects/ogl-sample/registry/.
OpenGL®) Extension Registry. 73, 74, 81, 145, 180, 207

PAJAROLA, R. AND ROSSIGNAC, J. (2000). Compressed Progressive Meshes.
IEEE Transactions on Visualization and Computer Graphics, 6(1), 79-93.

137

PARENT, R. (2002). Computer Animation - Algorithms and Techniques. Morgan
Kaufmann. 92, 94, 95, 96

PERLIN, K. AND GOLDBERG, A. (1995). Real time responsive animation with

personality. In: IEEE Transactions on Visualization and Computer Graphics
1. 120

PERLIN, K. AND GOLDBERG, A. (1996). Improv: A system for scripting inter-
activeactors in virtual worlds. In: Proceedings of Siggraph 96. 120

PHARR, M. (2004). Ambient Occlusion. In: GDC 2004. 90, 179

274

References

PHONG, B. T. (1975). Illumination for computer generated pictures. Communi-
cations of the ACM, 18(6), 311-317. 31

PIXAR 2005. http://www.pixar.com.
PIXAR. 21,99

PRESS, W., TEUKOLSKY, S., VETTERLING, W. AND FLANNERY, B. (1992).

Numerical recipes in C - The art of scientific computation. 2nd edn. Cam-
bridge University Press. 31, 34, 109, 121, 203

PuUPPO, E. AND SCOPIGNO, R. (1997). Simplification, lod and multiresolution -
principles and applications. In: Eurographics 1997 Tutorial Notes. Eurogra-
phics Association. 63

PURCELL, T., BUCK, 1., MARK, W. AND HANRAHAN, P. (2002). Ray Tracing

on Programmable Graphics Hardware. ACM Transactions on Graphics, 21,
703-712. 91, 178

RADLOFF, J. (2004). Obtaining the Bidirectional Texture Reflectance of Real-
World Surfaces by means of a Kaleidoscope. Tech. rept. Department of Com-
puter Science, Rhodes University. 27

RAMAMOORTHI, R. AND HANRAHAN, P. (2002). Frequency space environment
map rendering. Pages 517-526 of: Proceedings of the 29th annual confe-
rence on Computer graphics and interactive techniques. ACM Press. 36,

197, 203

RANDIMA, F. (ed). (2004). GPU Gems: Programming Techniques, Tips, and
Tricks for Real-Time Graphics. Addison-Wesley Professional. 90, 179

REALREFLECT 2006. http://www.realreflect.org.
RealReflect, EU Projekt. 236

REEVES, W. T., SALESIN, D. H. AND C0OOK, R. L. (1987). Rendering antialia-
sed shadows with depth maps. Pages 283-291 of: SIGGRAPH ’87: Procee-
dings of the 14th annual conference on Computer graphics and interactive
techniques. ACM Press. 82, 83

REGE, A. (2002). Occlusion (HP and NV Extensions) Occlusion. In: Game
Developers Conference 2002. 74

ROSSIGNAC, J. (1999). Edgebreaker: Connectivity Compression for Triangle

Meshes. IEEE Transactions on Visualization and Computer Graphics, 5(1),
47-61. 137, 148

275

References

ROSSIGNAC, J. (2004). Surface simplification and 3D geometry compression,
Chapter 54 in Handbook of Discrete and Computational Geometry. 2nd edn.
Editors: J. E. Goodman and J. O’Rourke. 143

RosT, R. J. (2004). OpenGL(R) Shading Language. Addison Wesley Longman
Publishing Co., Inc. 73

SAFF, E. AND KUIDLAARS, A. (1997). Distributing many points on a sphere.
Mathematical Intelligencer, 19, 5-11. 183

SANDER, P. V., HOPPE, H., SNYDER, J. AND GORTLER, S. J. (2001). Dis-

continuity Edge Overdraw. In: ACM Symposium on Interactive 3D Graphics
2000. 221

SANDER, P. V., GU, X., GORTLER, S. J., HOPPE, H. AND SNYDER, J. (2000).
Silhouette Clipping. In: Proceedings of SIGGRAPH 2000. Computer Gra-
phics Proceedings, Annual Conference Series. ACM SIGGRAPH. 221

SATTLER, M., SARLETTE, R. AND KLEIN, R. (2003). Efficient and realistic
visualization of cloth. Pages 167-177 of: EGRW ’03: Proceedings of the

14th Eurographics workshop on Rendering. Eurographics Association. 5,
38, 46, 51, 54, 90, 179, 221, 222, 223, 226, 227

SATTLER, M., SARLETTE, R., ZACHMANN, G. AND KLEIN, R. (2004a).
Hardware-accelerated ambient occlusion computation. Pages 331-338 of:
GIROD, B., MAGNOR, M. AND SEIDEL, H.-P. (eds), Proceedings of Visi-
on, Modeling, and Visualization 2004. Akademische Verlagsgesellschaft Aka
GmbH, Berlin. 5, 74, 177

SATTLER, M., SARLETTE, R. AND KLEIN, R. (2004b)(June). Probabilistic Mo-
tion Sequence Generation. Pages 514-517 of: Proceedings of Computer Gra-
phics International 2004 (CGI 2004). IEEE Computer Society. 5, 85,90, 119

SATTLER, M., SARLETTE, R., MUCKEN, T. AND KLEIN, R. (2005a). Exploita-
tion of human shadow perception for fast shadow rendering. Pages 131—134
of: APGV 2005: Proceedings of the ACM SIGGRAPH Symposium on Applied
Perception in Graphics and Visualization. ACM. 5, 156

SATTLER, M., SARLETTE, R. AND KLEIN, R. (2005b). Simple and efficient
compression of animation sequences. Pages 209-217 of: SCA ’05: Procee-
dings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer
animation. ACM Press. 5, 136

276

References

SCHNEIDER, M. (2004). Real-Time BTF Rendering. In: Proceedings of CESCG
2004. 47

SCHODL, A., SZELISKI, R., SALESIN, D. H. AND EssA, 1. (2000). Video
Textures. Pages 489-498 of: AKELEY, K. (ed), Siggraph 2000, Computer
Graphics Proceedings. ACM Press / ACM SIGGRAPH / Addison Wesley
Longman. 119, 120, 121, 122

SEETZEN, H., HEIDRICH, W., STUERZLINGER, W., WARD, G., WHITEHEAD,
L., TRENTACOSTE, M., GHOSH, A. AND VOROZCOVS, A. (2004). High
dynamic range display systems. ACM Trans. Graph., 23(3), 760-768. 57

SEGAL, M., KOROBKIN, C., VAN WIDENFELT, R., FORAN, J. AND HAEBERLI,
P. (1992). Fast shadows and lighting effects using texture mapping. SI/G-
GRAPH Comput. Graph., 26(2), 249-252. 81

SHIRLEY, P. (2000). Realistic Ray Tracing. A K Peters. 162

SHLAFMAN, S., TAL, A. AND KATZ, S. (2002). Metamorphosis of polyhedral
surfaces using decomposition. Computer Graphics Forum, 21(3), 219-228.
138

SLOAN, P.-P., KAUTZ, J. AND SNYDER, J. (2002). Precomputed radiance trans-
fer for real-time rendering in dynamic, low-frequency lighting environments.
Pages 527-536 of: Proceedings of the 29th annual conference on Computer
graphics and interactive techniques. ACM Press. 43, 50, 177, 179, 197

SLOAN, P.-P., L1U, X., SHUM, H.-Y. AND SNYDER, J. (2003a). Bi-Scale Ra-
diance Transfer. ACM Transactions on Graphics, 22(3), 370-375. 50, 53,
137

SLOAN, P.-P., HALL, J., HART, J. AND SNYDER, J. (2003b). Clustered Princi-
pal Components for Precomputed Radiance Transfer. ACM Transactions on
Graphics, 22(3), 382-391. 53

SOLER, C. AND SILLION, F. X. (1998). Fast Calculation of Soft Shadow Textu-
res Using Convolution. Computer Graphics, 32(Annual Conference Series),
321-332. 83

STAMMINGER, M. AND DRETTAKIS, G. (2002). Perspective shadow maps. In:
Proceedings of the 29th annual conference on Computer graphics and inter-

active techniques. ACM Press. 81, 207

277

References

STANEKER, D., BARTZ, D. AND MEISSNER, M. (2003). Improving Occlusion
Query Efficiency with Occupancy Maps. Pages 111-118 of: Proc. of Sympo-
sium on Parallel and Large Data Visualization and Graphics. T4

STANEKER, D. (2003). An Occlusion Culling Toolkit for OpenSG PLUS. In:
Proc. of OpenSG 2003 Symposium. 74

STAR. (1982). Star Trek: The Wrath of Khan.
Paramount. 93, 243

STEWART, A. J. (1999). Computing Visibility from Folded Surfaces. Computers
& Graphics, 23(5), 693-702. 89, 162, 179

STEWART, A.J. AND LANGER, M. S. (1997). Towards Accurate Recovery of
Shape from Shading under Diffuse Lighting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(9), 1020-1025. 162, 163, 176

SUTHERLAND, I. E. (1963). Sketchpad: A man-machine graphical communica-
tion system. In: Summer Joint Computer Conference. Spartan Book. 67

SUYKENS, F., VOM BERGE, K., LAGAE, A. AND DUTRE, P. (2003)(September).
Interactive Rendering of Bidirectional Texture Functions. Pages 463472 of:
Eurographics 2003. 35, 40, 45, 54

TADAMURA, K., QIN, X., JTAO, G. AND NAKAMAE, E. (2001). Rendering op-
timal solar shadows with plural sunlight depth buffers. The Visual Computer,
17(2), 76 — 90. 82

TAUBIN, G. AND ROSSIGNAC, J. (1999). 3D Geometry Compression. In: Sig-
graph Course Notes. 137

TAUBIN, G. AND ROSSIGNAC, J. (1998). Geometric compression through topo-
logical surgery. ACM Transactions on Graphics, 17(2), 84-115. 137

TERZOPOULOS, D. AND FLEISCHER, K. (1988). Modeling inelastic deformati-
on: viscolelasticity, plasticity, fracture. Pages 269-278 of: SIGGRAPH ’88:
Proceedings of the 15th annual conference on Computer graphics and inter-
active techniques. New York, NY, USA: ACM Press. 100, 103

TERZOPOULOS, D., PLATT, J., BARR, A. AND FLEISCHER, K. (1987). Elasti-
cally Deformable Models. 21(4), 205-214. 100

278

References

TESCHNER, M., KIMMERLE, S., HEIDELBERGER, B., ZACHMANN, G.,
RAGHUPATHI, L., FUHRMANN, A., CANI, M.-P., FAURE, F., MAGNENAT-
THALMANN, N., STRASSER, W. AND VOLINO, P. (2004). Collision Detec-
tion for Deformable Objects. In: Eurographics 2004 STAR 5. The Eurogra-
phics Association. 107

TESCHNER, M., MANOCHA, D., HEIDELBERGER, B., GOVINDARAJU, N.,
ZACHMANN, G., MEZGER, J. AND FUHRMANN, A. (2005). Collision hand-
ling in dynamic simulation environments. In: Eurographics 2005 Tutorial
Notes T2. The Eurographics Association. 107

TESCHNER, M., CANI, M.-P., FEDKIW, R., REDON, S., VOLINO, P. AND
ZACHMANN, G. (2006). Collision Handling and its Applications. In: Euro-
graphics 2006 Tutorial Notes. The Eurographics Association. 107

TOBIAS ISENBERG, BERT FREUDENBERG, N. H. S. S. T. S. (2003). A Devel-
oper’s Guide to Silhouette Algorithms for Polygonal Models. IEEE Compu-
ter Graphics and Applications, 23(4), 28-37. 66

TONG, X., ZHANG, J., L1U, L., WANG, X., GUO, B. AND SHUM, H.-Y. (2002).
Synthesis of bidirectional texture functions on arbitrary surfaces. Pages 665—
672 of: Proceedings of the 29th annual conference on Computer graphics
and interactive techniques. ACM Press. 50, 199

TouMA, C. AND GOTSMAN, C. (1998)(June). Triangle Mesh Compression. Pa-
ges 2634 of: Graphics Interface. 137

TOY. (1995). Toy Story.
PIXAR Studios. 93

TURK, G. AND LEvVOY, M. (1994). Zippered Polygon Meshes from Range
Images. In: Siggraph 1994, Computer Graphics Proceedings. 248

UNR 2006. http://www.unrealtechnology.com.
Unreal 3, Epic Games. 78

VAN GELDER, A. AND WILHELMS, J. (1997). An Interactive Fur Modeling
Technique. Pages 181-188 of: DAVIS, W. A., MANTEI, M. AND KLASSEN,
R. V. (eds), Graphics Interface *97. Canadian Human-Computer Communi-
cations Society. 220

VASILESCU, M. A. O. AND TERZOPOULOS, D. (2004). TensorTextures: multi-
linear image-based rendering. ACM Trans. Graph., 23(3), 336-342. 37

279

References

VOLINO, P. AND MAGNENAT-THALMANN, N. (2000). Virtual Clothing - Theory
and Practice. Springer-Verlag, Berlin. 100

VOLINO, P., COURCHESNE, M. AND THALMANN, N. M. (1995). Versatile and
efficient techniques for simulating cloth and other deformable objects. Pages
137-144 of: SIGGRAPH ’95: Proceedings of the 22nd annual conference on
Computer graphics and interactive techniques. New York, NY, USA: ACM
Press. 100

VOLINO, P., THALMANN, N. M., JIANHUA, S. AND THALMANN, D. (1996).
An Evolving System for Simulating Clothes on Virtual Actors. IEEE Com-
put. Graph. Appl., 16(5), 42-51. 100

VTO 2005. http://www.virtualtryon.de/.
Virtual Try-On, BMBF Projekt. 5, 230, 247, 248

WACKER, M., KECKEISEN, M., KIMMERLE, S., STRASSER, W., LUCKAS, V.,
GRoOSS, C., FUHRMANN, A., SATTLER, M., SARLETTE, R. AND KLEIN,
R. (2004). Virtual Try-On. Informatik Spektrum, 27(6), 504-511. 5, 235

WACKER, M., KECKEISEN, M., KIMMERLE, S., STRASSER, W., LUCKAS, V.,
GROSS, C., FUHRMANN, A., SATTLER, M., SARLETTE, R. AND KLEIN,
R. (2005). Simulation and Visualisation of Virtual Textiles for Virtual Try-
On. Special Issue of Research Journal of Textile and Apparel: Virtual Clo-
thing Technology and Applications, 9(1), 37-47. 235

WACKER, M., STRASSER, W., MAGNENAT-THALMANN, N., VOLINO, P. AND
THOMASZEWSKI, B. (2006). High Performance - Virtual Garment Simula-
tion. In: Eurographics 2006 Tutorial Notes. The Eurographics Association.
100

WALD, 1., BENTHIN, C. AND SLUSALLEK, P. (2003a). Interactive Global Illu-
mination in Complex and Highly Occluded Environments. Pages 74-81 of:
Proceedings of the 14th Eurographics Symposium on Rendering. Eurogra-
phics Association. 91, 178

WALD, I., PURCELL, T. J., SCHMITTLER, J., BENTHIN, C. AND SLUSALLEK,
P. (2003b). Realtime Ray-Tracing and its use for Interactive Global [llumi-
nation. In: Eurographics 2003: State of the Art Reports. 42, 44,91, 178

WANGER, L. (1992). The effect of shadow quality on the perception of spatial
relationships in computer generated imagery. Pages 39-42 of: SI3D ’92:
Proceedings of the 1992 symposium on Interactive 3D graphics. New York,
NY, USA: ACM Press. 156

280

References

WANGER, L. C., FERWERDA, J. A. AND GREENBERG, D. P. (1992). Perceiving
Spatial Relationships in Computer-Generated Images. IEEE Comput. Graph.
Appl., 12(3), 44-51, 54-58. 156

WATT, A. AND WATT, M. (1991). Advanced animation and rendering techniques.
New York, NY, USA: ACM Press. 92

WEBER, E. H. (1834). De Pulsu, Resorptione, Auditu et Tactu - Annotationes
Anatomicae Et Physiologicae. Koehler. 158

WEIL, J. (1986). The synthesis of cloth objects. Pages 49-54 of: SIGGRAPH
'86: Proceedings of the 13th annual conference on Computer graphics and
interactive techniques. ACM Press. 100, 101, 102

WHYTE, L. L. (1952). Unique Arrangement of Points on a Sphere. Amer. Math.
Monthly 59, 59, 606-611. 183

WILLIAMS, L. (1978). Casting curved shadows on curved surfaces. Pages 270—
274 of: SIGGRAPH ’78: Proceedings of the 5th annual conference on Com-
puter graphics and interactive techniques. ACM Press. 79, 156, 178, 187,
207

WIMMER, M., SCHERZER, D. AND PURGATHOFER, W. (2004). Light Space
Perspective Shadow Maps. Pages 143—-151 of: KELLER, A. AND JENSEN,
H. W. (eds), Rendering Techniques 2004 (Proceedings of the Eurographics
Symposium on Rendering 2004)Eurographics Association, for Eurographics.
81

WoONG, T.-T., HENG, P.-A., OR, S.-H. AND NG, W.-Y. (1997). Image-based
Rendering with Controllable Illumination. Pages 13-22 of: Proceedings of
EGRW °97. Springer-Verlag. 29

WoobD, D. N., AzuMA, D. 1., ALDINGER, K., CURLESS, B., DUCHAMP, T.,
SALESIN, D. H. AND STUETZLE, W. (2000). Surface Light Fields for 3D
Photography. Pages 287-296 of: AKELEY, K. (ed), Siggraph 2000, Compu-
ter Graphics Proceedings. ACM Press /| ACM SIGGRAPH / Addison Wesley
Longman. 18

WOOTEN, W. L. AND HODGINS, J. K. (1996). Animation of human diving.
Computer Graphics Forum, 1(15), 3—13. 120

WYMAN, C. AND HANSEN, C. (2003). Penumbra Maps: Approximate Soft Sha-
dows in Real Time. Pages 202207 of: Proceedings of the 2003 Eurographics
Symposium on Rendering. Eurographics Association. 84, 156

281

References

XU, Y.-Q., CHEN, Y., LIN, S., ZHONG, H., WU, E., GUO, B. AND SHUM, H.-
Y. (2001). Photorealistic rendering of knitwear using the lumislice. Pages
391-398 of: SIGGRAPH ’01: Proceedings of the 28th annual conference on
Computer graphics and interactive techniques. ACM Press. 195, 221

YING, Z., TANG, M. AND DONG, J. (2002). Soft Shadow Maps for Area Light
by Area Approximation. Page 442 of: PG ’02: Proceedings of the 10th Pa-
cific Conference on Computer Graphics and Applications. Washington, DC,
USA: IEEE Computer Society. 84

ZHANG, Z. (2000). A Flexible New Technique for Camera Calibration. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 22(11), 1330—
1334. 25

ZHUKOV, S., IONES, A. AND KRONIN, G. (1998). Ambient Light Illumination
Model. In: Proc. Eurographics Rendering Workshop *98. 88, 179

282

Publication List

The work presented in this thesis is mainly based on the following publications of
the author of this thesis:

GANSTER, B., KLEIN, R., SATTLER, M. AND SARLETTE, R. (2002).
Realtime Shading of Folded Surfaces. Pages 465480 of: VINCE,
J., & EARNSHAW, R. (eds), Advances in Modelling, Animation and
Rendering. Springer Verlag.

HAUTH, M., ETzmMUSS, O., EBERHARDT, B., KLEIN, R., SARLETTE,
R., SATTLER, M., DAUBERT, K. AND KAUTZ, J. (eds) (2002). Cloth
Animation and Rendering — Eurographics 2002 Tutorial Notes. Vol.
T3. The Eurographics Association.

SATTLER, M., SARLETTE, R. AND KLEIN, R. (2003). Efficient and rea-
listic visualization of cloth. Pages 167-177 of: EGRW ’03: Procee-
dings of the 14th Eurographics workshop on Rendering. Eurographics
Association.

MESETH, J., MULLER, G., SATTLER, M. AND KLEIN, R. (2003) (No-
vember). BTF Rendering for Virtual Environments. Pages 356—363
of: Proceedings of Virtual Concepts 2003.

KAUTZ, J., SATTLER, M., SARLETTE, R., KLEIN, R. AND SEIDEL, H.-
P. (2004). Decoupling BRDFs from Surface Mesostructures. Pages
177-182 of: GI °04: Proceedings of the 2004 conference on Graphics
interface. Canadian Human-Computer Communications Society.

MESETH, J., MULLER, G., SATTLER, M., SARLETTE, R., ARTUSI, A.,
WILKIE, A., ZOTTI, G., KLEIN, R. AND PURGATHOFER, W. (2004)(Ju-
ne). High Quality Rendering of Reflectance Data. In: Proceedings of
Computer Graphics International 2004 (CGI 2004): Tutorial.

SATTLER, M., SARLETTE, R. AND KLEIN, R. (2004b)(June). Probabili-
stic Motion Sequence Generation. Pages 514-517 of: Proceedings of
Computer Graphics International 2004 (CGI 2004). IEEE Computer
Society.

284

SATTLER, M., SARLETTE, R., ZACHMANN, G. AND KLEIN, R. (2004a).
Hardware-accelerated ambient occlusion computation. Pages 331—
338 of: GIROD, B., MAGNOR, M., & SEIDEL, H.-P. (eds), Procee-
dings of Vision, Modeling, and Visualization 2004. Akademische Ver-
lagsgesellschaft Aka GmbH, Berlin.

MULLER, G., MESETH, J., SATTLER, M., SARLETTE, R. AND KLEIN,
R. (2004) (September). Acquisition, Synthesis and Rendering of Bi-
directional Texture Functions. Pages 69—94 of: SCHLICK, CHRISTO-
PHE, & PURGATHOFER, WERNER (eds), Proceedings of Eurogra-
phics 2004: State of the Art Reports. INRIA and Eurographics Asso-
clation.

WACKER, M., KECKEISEN, M., KIMMERLE, S.,
STRASSER, W., LUCKAS, V., GROSS, C., FUHRMANN, A., SATT-
LER, M., SARLETTE, R. AND KLEIN, R.. (2004). Virtual Try-On.
Informatik Spektrum, 27(6), 504-511.

MULLER, G., MESETH, J., SATTLER, M., SARLETTE, R. AND KLEIN,
R. (2005). Acquisition, Synthesis and Rendering of Bidirectional
Texture Functions. Computer Graphics Forum, 24(1).

SATTLER, M., SARLETTE, R. AND KLEIN, R. (2005b). Simple and ef-
ficient compression of animation sequences. Pages 209-217 of: SCA
'05: Proceedings of the 2005 ACM SIGGRAPH/ Eurographics sym-
posium on Computer animation. ACM Press.

WACKER, M., KECKEISEN, M., KIMMERLE, S.,
STRASSER, W., LUCKAS, V., GROSS, C., FUHRMANN, A., SATT-
LER, M., SARLETTE, R. AND KLEIN, R. (2005). Simulation and
Visualisation of Virtual Textiles for Virtual Try-On. Special Issue of
Research Journal of Textile and Apparel: Virtual Clothing Technology
and Applications, 9(1).

SATTLER, M., SARLETTE, R., MUCKEN, T. AND KLEIN, R. (2005a).
Exploitation of human shadow perception for fast shadow rendering.

Pages 131-134 of: APGV 2005: Proceedings of the ACM SIGGRAPH

Symposium on Applied Perception in Graphics and Visualization. ACM.

285

	Abstract
	Zusammenfassung
	Contents
	Preface
	Motivation
	Main Contributions
	Thesis Overview

	Background
	Rendering Techniques
	Radiometry
	Colorimetry & Photometry
	Shape
	Material
	8D: BSSRDF
	6D: BTF
	4D: BRDF / LF / RF
	2D: Texture, Bump & Displacement maps
	Data Acquisition
	Compression
	Fitting Analytical BRDF-Models
	Linear Basis Decomposition
	Rendering
	Solving the Rendering Equation
	BTF-Rendering using Real-Time Raytracing
	BTF-Rendering using Graphics Hardware
	Interactive Rendering of BTFs with Point Lights
	Interactive Rendering of BTFs with Distant Illumination
	Hierarchy
	Radiance Data
	Illumination

	Geometry Processing Techniques
	Mesh Simplification
	Level of Detail
	Silhouette Edge Detection

	Graphics Hardware
	Overview
	Architecture
	Shader Programming
	Occlusion Queries

	Shadows
	Shadow Volumes
	Shadow Maps
	Hard versus Soft Shadows
	Ambient Occlusion & Self-Shadowing

	Animation
	Historical Overview
	Animation Terminology
	Animation Data Generation

	Cloth Visualization
	Historical Overview
	Geometry Simulation
	Rendering of Cloth

	Data Analysis Techniques
	Introduction
	Data Fitting and Reduction
	Multivariate Analysis
	Clustering

	Animation
	Introduction
	Sequence Generation
	Introduction
	Data Analysis
	Results

	Sequence Compression
	Introduction
	Algorithm Overview
	Results

	Shadows
	Introduction
	Perception
	Introduction
	Related Work
	Experimental setup
	Experimental procedure
	Results
	Conclusions

	Self-Shadowing: Static Case
	Introduction
	Related Work
	Algorithm Outline
	Preprocessing
	Comparison of Rendering Methods
	Realtime Rendering
	Results
	Conclusions

	Self-Shadowing: Dynamic Case
	Introduction
	Related Work
	Ambient Occlusion Calculation
	Optimizations
	Image Based Illumination
	Dynamic Geometry and Animations
	Results

	Material Reflection Properties
	Introduction
	Related Work & Introduction
	Modeling Mesostructure
	Measuring reflection properties

	Acquisition
	Measuring and synthesizing BTF data
	Setup and Data Acquisition
	Postprocessing

	Compression
	Visualization
	Shadow Enhancements
	Image-based illumination

	Visualization Results
	Silhouette Enhancements
	Previous Work
	Acquisition & Postprocessing
	Rendering
	Results & Conclusions

	Applications
	Introduction
	Virtual Try-On
	Project Description

	Real Reflect
	Project Description

	Conclusions & Future Work
	Conclusions
	Future Work

	Miscellaneous
	Videos
	Data Sources
	List of Figures
	List of Tables

	References

