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“The most exciting phrase to hear in science, the one that heralds new
discoveries, is not ‘Eureka!’ (I’ve found it!), but ‘That’s funny...’”

Isaac Asimov





Summary

Social behavior can be found on almost every level of life, ranging from microorganisms
to human societies. However, explaining the evolutionary emergence of cooperation,
communication, or competition still challenges modern biology. The most common
approaches to this problem are based on game-theoretic models. The problem is that
these models often assume fixed and limited rules and actions that individual agents can
choose from, which excludes the dynamical nature of the mechanisms that underlie the
behavior of living systems. So far, there exists a lack of convincing modeling approaches
to investigate the emergence of social behavior from a mechanistic and evolutionary
perspective.

Instead of studying animals, the methodology employed in this thesis combines
several aspects from alternative approaches to study behavior in a rather novel way.
Robotic models are considered as individual agents which are controlled by recurrent
neural networks representing non-linear dynamical system. The topology and parame-
ters of these networks are evolved following an open-ended evolution approach, that is,
individuals are not evaluated on high-level goals or optimized for specific functions. In-
stead, agents compete for limited resources to enhance their chance of survival. Further,
there is no restriction with respect to how individuals interact with their environment
or with each other.

As its main objective, this thesis aims at a complementary approach for studying
not only the evolution, but also the mechanisms of basic forms of communication. For
this purpose it can be shown that a robot does not necessarily have to be as complex as
a human, not even as complex as a bacterium. The strength of this approach is that it
deals with rather simple, yet complete and situated systems, facing similar real world
problems as animals do, such as sensory noise or dynamically changing environments.

The experimental part of this thesis is substantiated in a five-part examination.
First, self-organized aggregation patterns are discussed. Second, the advantages of
evolving decentralized control with respect to behavioral robustness and flexibility is
demonstrated. Third, it is shown that only minimalistic local acoustic communication
is required to coordinate the behavior of large groups. This is followed by investiga-
tions of the evolutionary emergence of communication. Finally, it is shown how already
evolved communicative behavior changes during further evolution when a population is
confronted with competition about limited environmental resources. All presented ex-
periments entail thorough analysis of the dynamical mechanisms that underlie evolved
communication systems, which has not been done so far in the context of cooperative
behavior. This framework leads to a better understanding of the relation between
intrinsic neurodynamics and observable agent-environment interactions.

The results discussed here provide a new perspective on the evolution of cooperation

5



6

because they deal with aspects largely neglected in traditional approaches, aspects such
as embodiment, situatedness, and the dynamical nature of the mechanisms that un-
derlie behavior. For the first time, it can be demonstrated how noise influences specific
signaling strategies and that versatile dynamics of very small-scale neural networks
embedded in sensory-motor feedback loops give rise to sophisticated forms of com-
munication such as signal coordination, cooperative intraspecific communication, and,
most intriguingly, aggressive interspecific signaling. Further, the results demonstrate
the development of counteractive niche construction based on a modification of com-
munication strategies which generates an evolutionary feedback resulting in an active
reduction of selection pressure, which has not been shown so far. Thus, the novel find-
ings presented here strongly support the complementary nature of robotic experiments
to study the evolution and mechanisms of communication and cooperation.

Parts of this thesis have been published in (Wischmann et al., 2005, 2006; Wischmann
and Pasemann, 2006; Wischmann et al., 2007b; Hülse et al., 2004, 2007a).
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“Every decade or so, a grandiose theory comes along, bearing similar aspi-
rations and often brandishing an ominous-sounding C-name. In the 1960
it was cybernetics. In the ’70s it was catastrophe theory. Then came chaos
theory in the ’80s and complexity theory in the ’90s.

[. . . ] reductionism may not be powerful enough to solve all the great mys-
teries we’re facing: cancer, consciousness, the origin of life, the resilience
of the ecosystem [. . . ] What makes all these unsolved problems so vexing
is their decentralized, dynamic character, in which enormous numbers of
components keep changing their state from moment to moment, looping
back to one another in ways that can’t be studied by examining any one
part in isolation [. . . ]

Chaos theory revealed that simple nonlinear systems behave in extremely
complex ways, and showed us how to understand them with pictures in-
stead of equations. Complexity theory taught us that many simple units
interacting according to simple rules could generate unexpected order. But
where complexity theory has largely failed is in explaining where the or-
der comes from, in a deep mathematical sense, and in tying theory to real
phenomena in a convincing way.”

Steven H. Strogatz (2003, p. 285-286)





Chapter 1

Introduction

Social behaviors, such as cooperation, competition, and communication, pervade the
animal kingdom. They can be found among higher organisms, from human to insect
societies, and even among unicellular individuals. One of the best studied example
is the slime mold Dictyostelium discoideum (Bonner, 1967; Goldbeter, 1996; Marée
and Hogeweg, 2001). It is remarkably representative for how complex global behavior
patterns can emerge from local interactions between rather simple individuals. If food
supply is sufficient, each amoeba acts by its own, independently from other members of
its species. If food sources become rare, the developmental phase toward a multicellular
organism begins. It starts with aggregation patterns of many individuals resulting in
concentric cycles and spiral structures. Then a transition occurs, 10, 000 to 100, 000
individuals form a motile, slug like, multicellular organism. In the final stage, initially
identical cells differentiate into different types of cells. Some individuals form a stalk
and others a fruiting body, which contains the spores, on top of that stalk. Eventually,
the spores are released and the development of new unicellular amoebas starts again,
completing the life cycle.

A considerable amount of research has been done to understand the mechanisms
that underlie this fascinating pattern formation process (for an overview see Camazine
et al., 2001). Principles were found which are fundamental for explaining collective
behavior of natural societies as self-organized processes. Global complex structures
emerge from the interactions among lower-level components. There is no global knowl-
edge, each individual can access only limited local information, that is, with just a
few sensor modalities it can sense changes in its immediate vicinity only. Most im-
portant for the aggregation process of D. discoideum is the detection of cyclic adeno-
sine monophosphate (cAMP) concentrations within an individual’s surrounding. The
molecule cAMP is enzymatically synthesized from ATP and used by most organisms
for intracellular signal transduction. For D. discoideum it additionally serves as a
medium for extracellular communication. Each individual reacts to specific spatial
and temporal patterns of cAMP by segregating additional cAMP and by moving to-
ward a cAMP gradient in the environment. This positive feedback mechanism gives
rise to the fascinating pattern formation process, an excellent example for a further
principle of self-organized collective behavior: Each individual obeys a limited set of
rather simple behavioral rules. The global structure, that emerges from these rules,
accomplishes some function. That is, it allows a group to solve particular problems
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which are impossible to handle for a single individual; in our example, maintaining
reproductive success of a slime mold population when food supplies become depleted.
Such group behavior is flexible in a way that it is adaptive to novel environmental
conditions. And it is robust, that is, the global structure remains stable even when
several individuals fail or miss perform.

Natural evolution has developed a vast diversity of similar collective phenomena in
animals based on those fundamental principles of biological self-organization (Camazine
et al., 2001). For instance, the astonishing behavior of fireflies during mating where
thousands upon thousands of individuals flash in synchronized unison (for an overview
see Buck, 1988). Fish schools seem to act as a super organism, where millions of
individuals move cohesively, while the group can execute rapid and effective responses
to predators (Partridge, 1982). Ants and termites are able to collectively build huge
nest architectures with highly sophisticated and complex internal structures which
serve for storing, and even growing food, breeding, and defending predators (Wilson,
1971; Gordon, 2000). In all those examples the actual individual mechanisms which
give rise to the global structure are clearly different, but the system as a whole can in
general be characterized by the aforementioned principles of self-organized collective
and social behaviors.

Explaining the evolutionary origins and mechanisms of cooperation still persists as a
grand challenge for evolutionary biology (Levin, 2006). Influenced by game theory, first
proposed by John von Neumann (1928, see also von Neumann and Morgenstern, 1944),
John Maynard Smith (1982, see also Maynard Smith and Price, 1973) laid the ground
for most modern research in evolutionary biology with respect to the development of
social behaviors (e.g., Maynard Smith and Szathmáry, 1995; Axelrod, 1997; Nowak,
2006). Although research in this direction has provided fruitful insights, for instance,
into the evolutionary development of cooperation and communication, the used formal
models focus on ultimate explanations, that is, on clarifying the evolutionary causes,
which include several important aspects such as genetic relatedness (Hamilton, 1964)
or the cost of signals (Maynard Smith and Harper, 2003). As a drawback of this formal
modeling, individuals are mostly treated as rather abstract and idealized agents, often
with a limited set of predefined basic behaviors and interaction rules. Consequently,
they are limited in giving proximate explanations, that is, explaining the underlying
mechanisms of behavior, may it at a genetic, molecular, or neural level. Only very
recently, microorganisms draws the attention of researchers to study the evolution of
social behaviors from an evolutionary and a mechanistic perspective (e.g., West et al.,
2006b; Keller and Surette, 2006), a complementary approach already demanded by
Niko Tinbergen (1963) or Ernst Mayr (1961).

Leaving the evolutionary perspective aside for a second and asking questions about
possible general mechanisms which determine the behavior of an individual, whether
it is a single cellular bacteria, an insect, or even a human, we find a growing field
of research which claims that behavior emerges from, mostly non-linear, dynamical
processes intrinsic to an individual and from reciprocal dynamical interactions with
environmental entities. The vast diversity and intriguing complexity of processes ob-
served in biological organisms poses the problem of generalization. Using the language
of dynamical systems theory as a qualitative description of macroscopic changes in
complex organizations promises to provide useful analogies between seemingly differ-
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ent systems (for an overview see Tschacher and Dauwalder, 1999, 2003).

Considering dynamical systems to describe behavior is one constituent part of what
we want to propose here as a unified methodology for studying the evolution and in-
dividual mechanisms of social behaviors; a methodology very different from the tradi-
tional game-theoretic approaches in evolutionary biology. We will make a great leap
from biological organisms to artificial agents, that is, robotic models. The idea of using
robots as simplified models to study adaptive behavior goes back to the era of cyber-
netics, and in particular to the pioneering work of Grey Walter (1953) and Valentino
Braitenberg (1984). Nowadays this idea is further pursued in fields as behavior based
robotics (e.g., Brooks, 1999), biorobotics (e.g., Webb, 2001), or evolutionary robotics
(e.g., Harvey et al., 2005; Nolfi and Floreano, 2000). Research in those fields draw
the attention to situatedness and embodiment (e.g., Pfeifer and Bongard, 2006) as
fundamental principles of the mechanisms that underlie behavior, principles already
proposed by Maturana and Varela (1980, 1987) to be essential for living beings as well.

Being situated means that intelligent and adaptive behavior emerges from agent-
environment interactions, and the nature of these interactions is determined by the
embodiment of an agent. In other words, the whole body of an agent with its sensors
and actuators, and not only its nervous system, embedded in a dynamic environment
is fundamental for its behavior. Situatedness and embodiment are largely neglected in
game-theoretic approaches toward understanding the evolution of social behavior.

This thesis “Neural dynamics of collective behavior” follows a combined evolu-
tionary and mechanistic perspective to study cooperation, communication, and com-
petition among situated agents. It aims at the development of distributed and de-
centralized autonomous artificial systems, in particular, robotic systems controlled by
artificial neural networks, which are based on the aforementioned fundamental prin-
ciples: Self-organized collective behavior of situated agents whose behavior emerges
from the dynamical processes intrinsic to their control structures and from dynamic
agent-environment interactions. Behavior emerges as an outcome of dynamical sys-
tems, and here in particular from the dynamics of recurrent neural network models.
These dynamical systems are parameterized through the sensors of an agent. They are
driven by the sensory experience of an agent which is reciprocally coupled with the
environment through the action of that agent and, therefore, changes dynamically.

Such dynamical systems are developed by artificial evolution where the reduction
of our preconceptions, which may constrain the behavioral outcome, plays a crucial
role. Artificial evolution as a synthetic methodology with minimized bias is used to
circumvent the frame-of-reference problem (Clancey, 1989), especially the perspective
issue, which is undeniably problematic in mathematical models of animal behavior:
Many aspects are unavoidably preconceived which the modeler thinks are important
for the artifact of investigation. In this thesis, we artificially evolve behaviors, phe-
nomenological similar to animal behaviors, where the underlying mechanisms matter
indeed only to the evolving agents instead to us as an observer. This is not as trivial as
it may intuitively seem. We have to abandon the perspective that evolution optimizes
particular functions. Natural selection solely acts on the survivability and reproduc-
tive success of biological organisms. The challenge is to develop such general selection
criteria for artificial systems.

The novelty of the methodological approach presented in this thesis is that it unifies
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and strictly obeys the following constituent parts:

• Completeness always demands complete brain-body-environment systems.

• Complexity out of local simplicity follows the principles of biological self-organized
collective behavior.

• Dynamical systems presuppose that coordinated behavior is a global outcome of
local, mostly non-linear, dynamical processes.

• Reduction of preconceptions demands minimizing predefined constraints and our
assumptions about the evolution of particular behavioral aspects.

• Comprehensibility demands that every developed system is analytically feasible
at every level of detail.

Especially the last aspect, comprehensibility, is highly important throughout the
whole thesis. The common denominator of complex systems is the difficulty to under-
stand them in every detail. In 1999 renowned scientists from different research fields,
such as biological signaling, nervous systems, chemistry, physics, and economy, con-
tributed their viewpoint on complex systems to a special issue of the journal Science
(vol. 284:5411, p. 79-109, 1999). What they all have in common is the absence of a
general definition which declares a system as complex or not. For instance, Weng et al.
(1999) describe a complex system in a general sense as “a system or component that
by design or function or both is difficult to understand and verify.”

In general, a complex system is characterized by two main properties: emergence
and self-organization. Emergence points to the appearance of global behavior patterns
that can not be anticipated from the knowledge about the system’s components alone.
In this sense, a car would be also a complex systems, it is not enough to know everything
about every single component, it is also necessary to know how those parts interact
with each other. However, the second property, self-organization, disqualifies a car as a
complex system. A self-organizing systems exhibits a global behavior pattern without
any reference to this pattern, that is, it emerges solely from the interactions between
the parts of a system, and the rules which specify those interactions are based on local
information only and are not given by any external controller or planner (Haken, 2004;
Nicolis and Prigogine, 1989; Camazine et al., 2001). That’s why an ant colony is a
self-organizing system, and a car is not.

Here, we start with simple systems and gradually increase their intricacy while
maintaining full comprehensibility. Thus, we approach complex systems bottom-up by
systems which successively get more complicated, that is, by sophistication without
loosing analytical feasibility. However, this inevitably entails necessary simplifications
at all levels. The used robotic models are far away from the complexity of even the
simplest biological organisms, as well as the neural network model, the environments
robots are acting in, and the evolutionary algorithm. Thus, the work presented here
is limited in that it cannot explain details of the actual mechanisms that underlie
specific animal behaviors or their evolutionary development. Nevertheless, by following
our methodological aspects we are forced to avoid idealization, and we study –at a
somewhat abstract level– systems which face similar real-world problems as animals.
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Thus, simplification, not idealization, is the important key to our contribution to the
understanding of social behaviors.

Understanding demands comprehensibility of the whole system, that is, understand-
ing every single part and how these parts fit together. This thesis with its concrete
examples offers an incremental approach of increasing individual and environmental
complexity and at the same time we can reduce our preconceptions about social be-
haviors, and we can demonstrate that the resulting systems exhibit phenomenological
similarities to biological systems.

The development and analysis of such systems may help us:

• to understand better the link between control dynamics, individual behavior, and
social behaviors,

• to clarify the role of the sensory-motor loop,

• to identify important structural changes during the evolutionary development of
communication where cooperative behavior may be based on,

• and to pinpoint in how far coordinated behavior is a reflection of environmental
complexity rather than of complexity at the individual level.

Ultimately, the present study aims at achieving truly open-ended and creative evo-
lutionary scenarios (Taylor, 2001; Bianco and Nolfi, 2004) where significantly novel
behaviors and behavioral mechanisms can be expected. For that aim two aspects are
required. First, individuals are not evaluated on certain higher level goals and are,
therefore, not optimized for specific functions. Instead, evolving individuals compete
for limited resources to increase their own viability. Second, individuals are not re-
stricted in how they interact with their environment or with each other. And they are
not restricted in using specific sensory or motor capabilities in predefined ways.

The thesis discusses the advantages and drawbacks of such a modeling approach
toward the evolutionary development of cooperative and collective behavior in artificial
societies. Several experiments will approach questions about the evolutionary origins
of novelty, the way how local dynamical processes lead to global coordinated behavior
among interacting situated agents, and the role of different forms of communication as
the basis of cooperative behavior.

The aim of this thesis is not to prove that the proposed method constitutes a
better approach compared to traditional methods of evolutionary biology. It rather
attempts to provide a new and, hopefully, complementary perspective on the evolution
of communication and cooperation.

1.1 Original contributions

There already exists a considerable amount of research employing artificial agents to
study the emergence of social behaviors (for overviews see Wagner et al., 2003; Can-
gelosi and Parisi, 2002; Steels, 2003). We will refer to particular related studies when
discussing our experiments. However, only a part of related research considers situated
and embodied agents, as for instance robotic systems. Even less involves dynamical
systems, as for instance recurrent neural networks, to control the behavior of single
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agents. And to our knowledge, the experiments presented here are the first which en-
tail thorough analysis of the properties of dynamical systems that underlie collective
behavior to clarify the relation between intrinsic neurodynamics and observable agent-
environment interactions. So far this was only done by a few studies considering the
behavior of single agents (e.g., Beer, 2003b; Hülse, 2007).

Thus, here we are able to clarify which behavioral aspects of socially interacting
agents can be accounted to internal neural mechanisms and which to sensory-motor in-
teractions between an agent and entities of its environment. Both are, as we will show,
heavily intertwined which supports theories arising from modern embodied cognitive
science (for overviews see Clark, 1996; Hendriks-Jansen, 1996; Sharkey and Ziemke,
2000; Riegler, 2002; Pfeifer and Scheier, 1999).

Simplicity of neural control. What we can show is a remarkable simplicity of neu-
ral control when interactions with the environment are taken into account. Generally,
evolution heavily exploits the dynamics of agent-environment and agent-agent interac-
tion and, therefore, minimizes the complexity at the individual level (here, complexity
of neurodynamics). Concrete findings include the emergence of sophisticated spatial
aggregation patterns determined by rather simple individual behaviors, cooperation
without explicit communication by means of environmental changes induced by single
individuals, and the important, otherwise usually neglected, role of sensory noise for
specific signaling strategies. A further novel finding is the repeated evolution of syn-
chronization mechanisms to coordinate signaling among many interacting individuals,
reducing the interference of too many simultaneously emitted signals.

Multimodality of neurodynamics. Intriguingly, throughout all experiments we
repeatedly discover a notable multimodality of very small neural structures. That
is, small subnetworks possess rich dynamical properties in form of different attrac-
tor domains, which allow versatile behaviors through the sensory-motor coupling of
an agent. This could be shown before only in a few cases and only for behavior of
single agent (e.g., Beer, 2003b; Hülse, 2007). However, demonstrating this in multi-
agent systems has not been achieved so far. Here, especially the example given in
Chapter 7 has to be emphasized. A two-neuron subnetwork enables individuals to
show several sophisticated communication strategies, such as signal coordination, co-
operative intraspecific communication, and, most intriguingly, aggressive interspecific
signaling. It can be shown that the reciprocal coupling of an agent with its environment
via its sensory-motor system realizes transitions between these different sub-behaviors
through switching between different domains of periodic and quasi-periodic attractors
within the neural system.

The role of evolutionary diversity. Only a very few related studies show open-
ended evolution characteristics (e.g., Bianco and Nolfi, 2004). Especially the experi-
ments presented in Chapter 6 demonstrate that evolution with minimized preconcep-
tions results in a diversity of solutions to the same problem. By thoroughly analyzing
representative solutions with respect to their neural mechanisms, we discover funda-
mentally different principles.
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To our knowledge, for the first time we can show that some solutions show an intrin-
sic robustness to specific environmental changes, which did not occur during the evolu-
tionary development. By knowing the exact mechanisms, we are even able to explain
the mechanistic reasons for this robustness. Interestingly, communication strategies
which rely on rather indirect mechanisms outperform other solutions when confronted
with novel environmental conditions. Indirect communication is characterized by indi-
viduals who communicate through their actions within a shared environment, which are
not identifiable as communication as such because they mainly serve other behavioral
purposes. In contrast, direct communication occurs when only dedicated channels, that
is, sensors and motors explicitly designed for communication, are used. Both forms are
investigated and their influence on the robustness and flexibility of a group is tested
with the result that, in general, indirect forms of communication significantly increase
flexibility and robustness, thus, the adaptability of interacting agents.

Counteractive niche construction. By investigating how communication strate-
gies and neural systems do evolutionary change when a population is confronted with
competition for the same limited resources, the results presented in Chapter 7 are,
to our knowledge, the first in the literature which demonstrate counteractive niche
construction (Odling-Smee et al., 2003) based on an evolutionary change of communi-
cation. Individuals evolved in form of punctuated equilibrium (Eldredge and Gould,
1972) where long periods of stasis were followed by rather short periods of sudden
changes. We observed two major behavioral transitions. First, evolving individuals
discovered, as expected, a new environmental niche. Surprisingly, evolving individuals
then changed their behavior in a second transition by displaying aggressive signaling
against competitors and, consequently, excluding them from their original niche. Thus,
evolving individuals created an evolutionary feedback where they actively changed their
selection pressure through a behavioral change.

1.2 Thesis outline and related publications

Chapter 2 introduces the historical background of the different methodological as-
pects employed in this thesis. We briefly review the fields of cybernetics, biorobotics,
behavior based robotics, embodied cognitive science, dynamical systems theory, and
evolutionary robotics, and relate them to our study. This is followed by five chapters
discussing concrete examples of evolved collective behaviors in multi-robotic systems.

The work described in Chapter 3 investigates the evolution and mechanisms of coop-
eration without dedicated communication channels, that is, the emergence of indirect
communication. We also show the difference between centralized and decentralized
control approaches. Partial results of this chapter are published in (Wischmann et al.,
2005; Hülse et al., 2004).

The unpublished results of Chapter 4 demonstrate how complicated spatial ag-
gregation patterns emerge from simple local behavioral rules, such as repulsion and
attraction. It also shows how these rules are implemented in surprisingly small neu-
ral structures. The basic neural control elements were inspired by results which are
published in (Hülse et al., 2004, 2005).
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The work presented in Chapter 5 originated from strong collaborative efforts with
Martin Hülse, who, inspired by the work of Arthur Winfree, proposed to develop exper-
iments which involve internal neural rhythms distributed among many individuals. In
Chapter 5 we show how such individual neural rhythms become locally synchronized
among interacting individuals through simple acoustic signals giving rise to coordi-
nated and functional group behavior. The implemented mechanism is highly robust
and scalable with respect to the spatial range of interactions and the number of inter-
acting agents. Most of the work in Chapter 5 is published in (Wischmann et al., 2006;
Hülse et al., 2007a) and the ideas of internal rhythms were further pursued by Martin
Hülse and are published in (Hülse et al., 2007b).

The experiments discussed in Chapter 6 realize open-ended evolution characteristics
and concern the emergence of communication from an unconstrained evolutionary pro-
cess. Interestingly, similar signal coordination mechanisms evolved as we purposefully
set up in the experiments of Chapter 5, but this time signal synchronization evolved
without biasing it. Furthermore, we show how open-ended evolution gives rise to sig-
nificantly different solutions to the same problem. It is the first time that sensory noise
is identified to be highly relevant for communication. We also discuss the relevance of
indirect and direct communication mechanisms with respect to robustness to novel en-
vironmental conditions. Most of this work is published in (Wischmann and Pasemann,
2006, 2007; Wischmann et al., 2007b).

The work described in Chapter 7 naturally follows from the experiments discussed
in Chapter 6 by introducing competition between two populations for the same limited
food sources. To investigate how communication changes under competition, one of
the populations was allowed to evolve. For the first time we show counteractive niche
construction by the development of aggressive communication strategies. The evolving
population does not only adapt its communication to exploit a new environmental
niche, but it also actively changes its selection pressure through aggressive signaling
against a competing population. Part of this work is published in (Wischmann et al.,
2007a,b). Based on the ideas of open-ended evolution presented in Chapter 6 and 7,
first experimental results with an asynchronous and distributed evolutionary algorithm
are published in (Wischmann et al., 2007c).

Chapter 8 reviews the main contributions of this thesis and concludes with a dis-
cussion about their biological relevance for our understanding of the evolution of co-
operation and communication.



Chapter 2

A unified approach to study
cooperative behavior

In the following we are going to motivate our research from biological studies of coop-
eration and communication, and give arguments for the unified methodology employed
here to investigate the evolution and the mechanisms of cooperation and communica-
tion in artificial societies.

2.1 Behavior of interest: Cooperation and commu-

nication

Cooperation as one aspect of social behavior can be found at almost every level of
complexity within biological organisms. The extraordinary introductory example of
the slime mold (see p. 19) showed that cooperation among unicellular organisms can
significantly increase their survival success. Indeed, social behavior is a widespread
phenomena among microorganisms (for reviews see Keller and Surette, 2006; Wingreen
and Levin, 2006; West et al., 2006b) and it is even proposed to be at work among cancer
cells (Axelrod et al., 2006). Cooperation is also considered as one possible driving force
toward the evolutionary transition from unicellular to multicellular organism (Pfeiffer
and Bonhoeffer, 2003).

The most studied species which exhibit cooperation are social insects. Here we
cannot give a comprehensive overview of this large field of research. We therefore
refer the interested reader to the textbooks of Wilson (1971, 1975), Gordon (2000),
and Camazine et al. (2001). Among the many fascinating behaviors of social insects,
probably one of the most intriguing principles first discovered in ants, is the concept of
stigmergy (Grassè, 1959; Theraulaz and Bonabeau, 1999). Stigmergic behavior refers to
indirect communication mechanisms in self-organizing emergent systems. Individuals
communicate not directly with each other, as it is the case, for instance, in honey bees
(von Frisch, 1967) or food and alarm calls among vertebrates (Maynard Smith and
Harper, 2003), instead they communicate indirectly via local modifications of their
environment. An example is the pheromone trail laying of ants or termites. With
these mechanisms ants and termites do not only forage efficiently, they are also able to
build highly complex nest structures composed of pillars, arches, and a sophisticated
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network of tunnels and chambers.

However, cooperation does not only occur among members of one species. En-
dosymbiotic relationships (Wernegreen, 2004), the mutual benefits between plants and
pollinators (Cook and Rasplus, 2003), fungus farming ants (Aanen and Boomsma,
2006), or the highly complex social interactions among fish species (Bshary et al.,
2002) are just a few examples of interspecific cooperation.

Explaining the evolution of cooperation (Hamilton, 1964) and competition (Gause,
1934) is still a great challenge for evolutionary biology (Trivers, 1985; Wilson, 1975).
A lot of research has already been done to explain it in terms of fitness benefits for
socially interacting individuals (for overviews see Sachs et al., 2004; Lehmann and
Keller, 2006; West et al., 2007). Analytical models and agent-based simulations in the
realm of game theory are the most common tools to approach this challenge, and they
successfully predicted necessary preconditions and different strategies for the evolution
of cooperation (see, for instance, Nowak, 2006; Axelrod, 1997). However, one draw-
back of game-theoretic approaches is that they often assume fixed and limited rules
and actions that agents can choose from. Here, we propose a combined evolutionary
simulation modeling approach (Belew and Mitchell, 1996; Burtsev and Turchin, 2006)
based on robotic systems (Harvey et al., 2005; Nolfi and Floreano, 2000) controlled
by recurrent neural networks with complex dynamics (Pasemann, 2002) to investigate
how small robotic societies develop cooperative behavior based on implicit and explicit
communication, and how they adapt their behavior under varying environmental con-
ditions such as interspecific competition. Apart from the evolutionary perspective, we
are especially interested in the dynamical processes required at the individual control
level to exhibit cooperative behavior and communication among situated agents.

2.1.1 Definitions

Social behavior can be categorized as shown in Table 2.1. Does the behavior of the focal
individual, the actor, benefits only itself and has negative effects on another individual,
the recipient, it is called selfish (Hamilton, 1970). If it is only beneficial to the recipient,
it is referred to as altruism (for an overview see West et al., 2006a). Spiteful behavior
has negative effects on both, the actor and the recipient (for an overview see Gardner
and West, 2006). The behavior is mutually beneficial if it has positive effects on both
(Connor, 1995).

Cooperation is then defined as a behavior which must be beneficial for the recipient
(if exclusively, than it is altruism), but it could also be beneficial for the actor (i.e.,

Table 2.1: Categories of social behavior depending on positive (+) and negative (−)
fitness consequences for the actor and recipient (Hamilton, 1964, 1970; Sachs et al.,
2004; West et al., 2007). Cooperation includes mutual beneficial and altruistic behavior.

mutual benefit altruism selfishness spite
effect on actor + − + −
effect on recipient + + − −
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mutually beneficial). However, West et al. (2007) emphasize that this definition of
cooperative behavior might be too general. They give the vivid example of an elephant
producing dung which is beneficial for a dung beetle. It is obviously not useful to
declare behaviors like this cooperative. To narrow the definition, behavior is seen as
cooperative if it is selected for because of its beneficial effects (Connor, 1995; Sachs
et al., 2004). What we will focus on in this thesis is the evolution of mutually beneficial
cooperative behaviors.

A further distinction of social behavior based on selection forces in the context of
communication is made by Maynard Smith and Harper (2003), they distinguish signals
from cues. A signal is defined as “any act or structure which alters the behavior of other
organisms, which evolved for this effect, and which is effective because the receiver’s
response has also evolved”. A cue is “a feature of the world, animate or inanimate,
that can be used by an animal as a guide to future action”. From this perspective
also the stigmergic behavior of ants relies on signals (i.e., pheromones) even though
they communicate rather indirectly by modifying their environment, whereas the smell
of the elephant’s dung is a cue for the dung beetle. Therefore, the elephant-beetle
relationship cannot be classified as social behavior.

Important for this thesis is the definition of cooperation as behavior that evolved
for its beneficial effects. This includes signals, which convey information either directly
or indirectly.

2.1.2 Mechanistic and evolutionary approaches

In their review about social evolution theory for microorganisms, West et al. point to
the complementary nature of research in microbiology and evolutionary biology:

“Evolutionary biologists and microbiologists typically study behaviours or
traits from different perspectives. Evolutionary biologists are primarily con-
cerned with the fitness consequences or survival value of a behaviour, which
are called ultimate explanations: why has this behaviour been selected for
by natural selection? Microbiologists are primarily concerned with prox-
imate explanations: what molecular and genetic mechanisms govern the
particular trait or behaviour? The crucial point here is that these methods
are complementary and not alternatives.”

West et al. (2006b, p. 599)

Later, the authors emphasize the need for a complementary approach by referring
to a highly influential paper of Tinbergen (1963). Tinbergen discussed the synergistic
benefits of studying behavior from different perspectives with the example of black-
headed gulls that remove eggshells from their nest. From a mechanistic, i.e. proximate,
perspective this behavior can be explained by the fact that individuals react with an
instinctive behavior of removing light weighted white colored objects which have frilly
edges. From an evolutionary, i.e. ultimate, perspective this behavior is reasonable
because it prevents aerial predators from easily finding the gull’s brood. Both expla-
nations are complementary and show what Dobzhansky (1973) phrased as “nothing in
biology makes sense except in the light of evolution”. The strong interrelation between
proximate and ultimate explanations was also discussed by Mayr (1961).
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In the context of cooperation and communication this kind of complementary re-
search started to grow only very recently. To our knowledge the most promising efforts
are currently spent at the level of microorganisms (West et al., 2006b; Keller and
Surette, 2006; Wingreen and Levin, 2006). There are two reasons: First, a lot of
microbiological research already revealed in detail the physiological processes of intra-
cellular as well as extra-cellular signaling (see, for instance, Waters and Bassler, 2005);
second, microorganisms offer exceptional opportunities to test evolutionary hypothesis
because of their generation span and the ease of experimenting under controlled lab-
oratory conditions. For instance, very recently researchers in the field of biophysics
started to develop silicon chips as microhabitat patches for bacteria populations as E.
coli (Keymer et al., 2006). Such an amazing new technology may offer experimental
setups, inspired by the theoretical findings of evolutionary biology, to study evolution-
ary dynamics while, for instance, fitness landscapes may be arbitrarily changed by the
experimentalists. Thus, it may become possible to test evolutionary models and hy-
pothesis in vivo where everything is indeed more complex than in vitro, yet especially
this complexity entails what we are most interested in.

However, despite of the tremendous progress which has been achieved so far in
understanding the molecular mechanisms of bacterial signaling, describing the complete
mechanisms of even a single cell, whose physiological responses to internal or external
signals are governed by complex dynamical networks of interacting genes and proteins,
is still a major challenge (see Tyson et al., 2003; Andrews and Arkin, 2006; Tyson,
2007, and references therein).

Organs are composed of myriads of interacting cells, individuals of interacting or-
gans, societies of interacting individuals, and ecosystem of interacting species. Thus,
an exact proximate explanation of cooperation or communication is unfeasible.

Here, a ‘slightly’ different approach is taken to investigate cooperation and com-
munication from various perspectives, we use artificial societies composed of robots.
The experiments presented in this thesis are full of abstractions and simplifications
concerning biological behavior and evolution. However, we try to unify several dif-
ferent perspectives into one methodological approach under the premise to reduce the
mechanistic complexity of cooperative behavior to a level at which it is still analytically
feasible in every detail. The perspectives we want to bring together are:

• The cybernetic perspective. We will use robots as complete physical models
to study basic animal-like behaviors, persistently taking into account the impor-
tant role of sensory-motor feedback loops for individual behavior.

• The dynamical systems perspective. We stress that behavior in general
arises from mostly non-linear dynamical processes at the individual control level
as well as at the interaction level between an individual and its environment and
other individuals.

• The evolutionary perspective. Non-trivial behavior, such as cooperation,
communication, or competition, can emerge from an open-ended evolutionary
process where individuals are evolved, but not for achieving high-level goals.

In particular, the proceeding chapters are dedicated to the following questions:
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• How can cooperation evolve in agents which lack the ability to communicate
explicitly? (Chapter 3)

• What are the minimal requirements to achieve basic coherent collective behavior?
(Chapter 4)

• How can we coordinate functional behavior among many agents relying on simple
local communication? (Chapter 5)

• Which forms of communication emerge in an unconstrained evolutionary process?
(Chapter 6)

• How does communication in a species change when confronted with niche com-
petition? (Chapter 7)

In the remainder of this chapter we will give a historical and technical introduction
of the different methodological aspects relevant for this thesis and arguments why this
complementary approach is reasonable to study adaptive behavior in the context of
cooperation and communication.

2.2 What robots can tell us

2.2.1 Biologically inspired robotics

Biologically inspired robotics, also called biorobotics, becomes an ever growing research
discipline. It is motivated by the assumption that animals and robots have in common
general properties of adaptive behavior. Both have a sensory-motor and an autonomous
control system to carry out various behaviors and tasks in complex and dynamic en-
vironments, which is the reason why robots are suggested as simulators or physical
models of animals to address specific biological questions (Webb, 2001; Beer et al.,
1998; Ijspeert et al., 2007). Therefore, biorobotic research promises to understand
“natural systems by building a robot that mimics some aspects of their sensory and
nervous system and their behavior” (Lambrinos et al., 1997).

Although we can not give an comprehensive overview on this topic (for reviews
see Dean, 1998; Meyer, 1997; Beer et al., 1998; Bekey, 1996; Webb, 2001), at least
we want to mention one highly successful study recently published by Franceschini
et al. (2007) to illustrate the potential of this approach. They built a micro-helicopter
navigating with a minimal optic-flow sensor that is similar to insects. This machine is
controlled by a visual feedback loop as hypothesized from biological studies of insect
flight. The experiments helped to understand previously unexplained findings of visual
guided performances in insects, such as how honeybees land with a constant slope,
descend in a headwind, or drown while flying over water. Other examples of robots
serving as physical models of particular behavioral aspects include investigations of the
chemotaxis of nematodes (Morse et al., 1998) or the phonotactic behavior of crickets
(Reeve and Webb, 2003).

As for any kind of modeling, biorobotics has the problem of underdetermination:
“the performance of similar behavior is never sufficient to prove the similarity of mech-
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anisms [which leads to] inevitable difficulties in drawing strong conclusions about bio-
logical systems from the results of robot models” (Webb, 2001). Thus, the biorobotics
approach is still highly debated (see commentaries on Barbara Webb’s (2001) target
article in Behavioral and Brain Sciences, vol. 24(6):1050-1087). However, since robots
and animals often have to solve similar problems, for instance walking or flight navi-
gation, biorobotic experiments already demonstrated that surprisingly simple control
mechanisms can suffice (see for instance Collins et al., 2005; Franceschini et al., 2007).
Obviously, robots are much simpler in their organization and structure than biological
systems. However, because biorobotics takes an abstract rather than an analytical
approach, it enables us to discover simpler solutions to problems in biology which is
suggested to be a key advantage (Meyer, 1997). By simple we mean less complex than
biological solutions and, therefore, easier to grasp and easier to understand. Thus, a
major principle in biorobotics is simplification, i.e. abstraction, instead of idealization,
which is claimed to distinguish it from pure simulations because abstraction. . .

“[. . . ] usually occurs by leaving out details, by substitution, or by simpli-
fying the representation, rather than by idealising the objects or functions
to be performed. Thus, even two-wheeled motor control has to cope with
friction, bumps, gravity, and so on; whereas a six-legged computer sim-
ulation may restrict itself to representing only the kinematic problems of
limb control and ignore the dynamics entirely. Different aspects of the sys-
tems are often abstracted to different degrees in biorobotics. Thus, models
involving quite complex sensors often use very simple two-wheeled motor
control rather than equally complex actuators.”

Webb (2001, p. 1047)

As much as it is an important methodological principle in this thesis, another
important principle of biorobotics is the focus on complete systems:

“Biorobotics researchers are generally more concerned with building a com-
plete, but possibly rough or inaccurate model, than with strict accuracy
per se. That is, the aim is to build a complete system that connects action
and sensing to achieve a task in an environment, even if this limits the
individual accuracy of particular parts of the model because of necessary
substitutions, interpolations, and so on. [. . . ] and we can learn more from
several somewhat inaccurate models than from one incomplete one.”

Webb (2001, p. 1048)

Besides modeling particular aspects of animal behavior to improve our understand-
ing of them, robots attracted also the interest of researchers from an evolutionary
perspective, which promises to generate behaviors a priori unknown or at least unex-
pected. This led to the field of evolutionary robotics. Before we review work of this
still young research discipline, we want to go sixty years back in time to the era of
cybernetics because it is the origin of many principles currently ascribed to the study
of behavior by using robotic systems.
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2.2.2 Back to the roots: Cybernetics

The importance of models, as it is debated in the biorobotics approach, was already
under discussion much earlier, for instance in the 1940s: “The best model of a cat
is another or, preferably, the same cat.” This popular quote is ascribed to Norbert
Wiener who also coined the name cybernetics derived from Greek kybernetes, meaning
steersman or governor. Wiener used this term to describe the study of teleological
mechanisms not only of machines but also of animals (Wiener, 1948). The key to
cybernetic research is the introduction of feedback loops, especially the emphasis on
a tight coupling between sensing and acting was rather controversial to the standard
view at that time, and even today it has not gained the required acceptance in every
research field.

Apart from the work of Wiener (1948), Ashby (1952, 1956), and von Foerster (2002)
probably the two most influential papers at the beginning of the cybernetics era were
written by Rosenblueth et al. (1943) and McCulloch and Pitts (1943).

The work of McCulloch and Pitts (1943) provided the ground for most of artificial
neural network models which exist nowadays. They reduced the characteristics of single
neurons to an all-or-none response depending on stimuli provided by incoming synapses.
In their highly simplified model, neurons are realized as threshold logic units, that is,
their output is either zero or one depending on an excitation threshold. McCulloch and
Pitts showed that any logical proposition can be encoded by an appropriate network,
with or without circles, of their simplified neurons, and that different networks can
have equivalent functions:

“It is shown that many particular choices among possible neurophysiological
assumptions are equivalent, in the sense that for every net behavior under
one assumption, there exists another net which behaves under the other
and gives the same results, although perhaps not in the same time.”

McCulloch and Pitts (1943, p. 99)

McCulloch and Pitts raised an interesting point, that different networks can exhibit
similar behaviors. Recent findings in neurobiology affirm this phenomena. Even within
the same population of a species, one can find different neural networks in different
individuals leading to similar behaviors, and even at the level of single neurons it could
be shown that spatially close neurons within the same cortical areas show similar
behaviors with significantly different ion channel dynamics (for an excellent review on
this topic see Marder and Goaillard, 2006). Throughout the experimental part of this
thesis we encounter not only that different neural networks exhibit similar dynamics
but also that completely different neural dynamics give rise to similar behaviors of our
robotic agents.

On a more philosophical side, Rosenblueth et al. (1943) introduced teleology as
purposeful behavior controlled by feedback. There, purposeful behavior especially pre-
supposes the requirement of negative feedback, that is, (sensor) signals from a specific
goal are used by a system to restrict its outputs not to go beyond that goal. Rosen-
blueth et al. emphasized one major aspect of cybernetic research: the focus on the
effects of inputs on outputs in the sense that the output is desired or predictable by
taking into account the concepts of feedbacks and transformations. Thus, they take a
strong behavioristic perspective:
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Figure 2.1: Grey Walter’s turtles. A: One restored original turtle ( c© University
of the West of England, Bristol) B-E: Original photographs of the turtles’ behavior
( c© Burden Neurological Institute). A candle was fixed on top of a robot and long
exposures were used. Thus, the light streak shows the path of the turtles. B: Elsie
avoids an obstacle and seeks a light. C: Elsie moves into a hutch, that is, a recharging
station. D: Elsie performs a mirror dance. E: Elmer and Elsie are interacting and
dance with each other, but both loose interest when the light in the hutch switches on
(since Elsie always worked better than Elmer, she takes the first place).

“[. . . ] what is meant by the behavioristic method of study omits the specific
structure and the intrinsic organization of the object. This omission is fun-
damental because on it is based the distinction between the behavioristic
and the alternative functional method of study. In a functional analysis, as
opposed to a behavioristic approach, the main goal is the intrinsic organi-
zation of the entity studied, its structure and its properties; the relations
between the object and the surroundings are relatively incidental.”

Rosenblueth et al. (1943, p. 18)

The omission of detailed structural mechanisms leads to a black-box perspective
focusing on the behavior of a system rather than on its detailed structural properties.
That is exactly what we find in the neuron model of McCulloch and Pitts (1943) which
omits the exact biophysical mapping of biological neurons. Thus, we might characterize
cybernetics as the study of behavior where the what matters most and where the exact
how is rather irrelevant.

Interestingly enough, we find many of the concepts developed during cybernetics
in modern research as we have already seen for biorobotics, and as we will see also for
cognitive science and artificial life. Before we come to that, we want to exemplify the
prevailing nature of cybernetics by the work of Grey Walter and Valentino Braitenberg.

Grey Walter’s turtles and Braitenberg’s vehicles

Using robots to understand animal behavior is actually not a modern trend. In fact, the
neurophysiologist Grey Walter conducted pioneering work in this field already about
sixty years ago, and we will see later that his experiments are very similar to the
questions we are dealing with in robotics nowadays.
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Grey Walter, well known for his work on the electroencephalogram, built rather
simple machines (Figure 2.1a). He called them tortoises, which already exhibited
conceivably sophisticated behaviors (Walter, 1950, 1951, 1953; Holland, 1997). The
actuators of these machines consisted of three wheels, two for propulsion and one for
steering, controlled by independent motors. The sensors were a light and a contact
sensor. Energy was supplied by a telephone battery which made the machines truly
autonomous in the sense that they behaved without human intervention and connec-
tions to external devices.

The control system was realized by an analog circuit with two vacuum tubes, which
controlled the motors of the wheels and sensed the direction of sensor stimuli such as
the physical contact with other objects or the direction and intensity of a light source.
With this equipment the robots could actually perform only two behaviors: retreat
when hitting an object and move toward a light source. However, such a robot could
already integrate two conflicting behaviors such as obstacle avoidance and light seeking
(Figure 2.1b) and even reach a charging station marked by a light source (Figure 2.1c)
and, thus, autonomously maintain its energy, which is still a great challenge for modern
robotic applications.

It became even more interesting when a head light was attached on top of a robot
which turned on when a robot was in the “exploratory mode” and turned off when
the light sensor detected a moderate light intensity. The robot could not sense its own
light directly, but indirectly. For instance, confronting the robot with a mirror resulted
in zigzag movements of the robot in front of its own image (Figure 2.1d). From a pure
observational perspective, we might tend to describe this behavior as ‘narcissism’.

Even more interesting behaviors emerged when two robots, Grey Walter called them
Elsie and Elmer, were placed together in the same environment. In the absence of other
light sources, the two robots approached each other and displayed “dancing patterns”,
they even lost interest in each other when an external light switched on which seemed
to be more attractive than the other robot (Figure 2.1e).

All these different behaviors resulted from a very simple control circuit. What
changed was the environment and, therefore, the sensory stimuli, which was also ac-
tively modified by the action of a robot, thus, closing the loop between the environment
and the robot.

What is most intriguing when observing the experiments of Grey Walter is how we
would describe the behavior of these robots without having any knowledge about their
control system’s design. It is intriguing because in biological system we are confronted
with exactly the same problem: Observing behavior without knowing the exact un-
derlying mechanisms. Thus, these experiments, as simple as they are, challenge our
perspective on behavior. Just by observation, would we call the behavior of these
creatures social? Is the creature hungry because it seeks a recharging station? Is it
self-aware because it changes its behavior in front of a mirror? Indeed, we would not
ascribe these attributes to the turtles of Grey Walter because we know that their be-
havior is easily explainable by the wires, lights, and bodies they consist of. However,
these questions are fundamental, because they emphasize the frame of reference prob-
lem: What we might interpret as a complex behavior is actually based on very simple
mechanisms. What we might describe as hunger is a simple phototactic response to
the light in the charging station.
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The main conclusion from these experiments is that complicated behavior patterns
do not necessarily have to be caused by complicated nervous systems and that the in-
teraction with the environment plays a fundamental role. Thus, Grey Walter offered us
a new way of thinking about problems, in particular about the realization of seemingly
complex behaviors. This is well reflected in the following quote of Herbert A. Simon,
a pioneer in the field of artificial intelligence (see also Simon, 1969):

“The way in which problems are represented has much to do with the quality
of the solutions that are found. [. . . ] The representation or ‘framing’ of
problems is even less well understood than agenda setting. Today’s expert
systems make use of problem representations that already exist. But major
advances in human knowledge frequently derive from new ways of thinking
about problems.”

Simon et al. (1986)

Because of his ‘naive’ approach to build an autonomous robot without thinking too
much about how to implement specific behavioral aspects, but rather to observe what
is going to happen, Grey Walter with his simple machines discovered the emergence
of fascinating behavior patterns under different environmental conditions. And these
behaviors were based on very simple control systems. This brought to light the impor-
tance of sensory motor feedback generated through agent-environment interactions as
a key to understand behavior.

Almost forty years later Valentino Braitenberg described which sophisticated be-
haviors can emerge from simple rules. After experimenting on real brains to find out
how the mind is represented in our heads and at the same time reflecting on cybernet-
ics, he wrote a wonderful book about what is nowadays known as Braitenberg-Vehicles
(Braitenberg, 1984). He conducted thought experiments with machines, which, similar
to Grey Walter’s turtles, consisted of simple sensors, motors, and wires between them.

The first vehicle possessed only one sensor connected by one wire to one motor
and could, however, already follow a gradient of heat. Taking this machine as a basis,
Braitenberg equipped proceeding vehicles incrementally with more sensors and more
motors. The wires between them became crossed, and some of them were made in-
hibitory. By connecting two sensors with two motors via two wires in different ways
(crossed, uncrossed, inhibitory, excitatory), these still simple vehicles showed behaviors
which could be interpreted as fear, aggression, love, and affection with an wandering
eye. Later on vehicles were additionally controlled by simple neural networks of con-
nected threshold units (McCulloch-Pitts neurons as described above), and the virtual
engineer who built the machines on his lab table followed simple evolutionary concepts.
He copied vehicles and incidentally made small mistakes in their wiring circuit. The
ones who still managed to stay on the table ‘survived’ while others fell down and ‘died’.
Incrementally the internal wiring became more complicated and the sensors and motors
more sophisticated leading to vehicles which behaved as they would possess sequential
reasoning, free will, foresight, or egoism:

“They move through their world with consistent determination, always
clearly after something that very often we cannot guess at the outset -
something that may not even be there when the vehicle reaches the place
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it wants to get to. But it seems to be a good strategy, this running after a
dream. Most of the time the chain of optimistic predictions that seems to
guide the vehicles’s behaviour proves to be correct, and Vehicle 14 achieves
goals that Vehicle 13 and its predecessors ‘couldn’t even dream of.’ The
point is that while the vehicle goes through its optimistic predictions, the
succession of internal states implies movements and actions of the vehicle
itself. While dreaming and sleepwalking, the vehicle transforms the world
(and its own position in the world) in such a way that ultimately the state
of the world is a more favorable one.”

Braitenberg (1984, p. 83)

The major conclusion which can be drawn from the thought experiments of Brait-
enberg1 is that if we do not know how the vehicles are wired and if we can analyze
them only by observing their behaviors, we might tend to describe their behaviors in
psychological terms as used in the previous paragraph. However, viewed from the in-
side, the behaviors are caused by relatively simple networks. This brings us back to
the frame of reference problem we get by solely observing behaviors. It leaves us often
enough with the tendency to overestimate the complexity of the systems we observe
(Braitenberg, 1984).

2.2.3 The frame of reference problem

The frame of reference problem is probably the most fundamental problem for the study
of adaptive intelligent behavior; for both, research of artificial and animal behavior. It
concerns the relation between the observer, the designer or modeler, the artifact, the
environment, and the observed agent. Simon (1969) explained this problem vividly
with his example of an ant wandering on a beach. The trajectory of an ant from a
starting point to its nest looks, from an observer perspective, rather complicated and
one might wonder how the ant’s brain calculate the path around puddles, pebbles,
and rocks. However, from the perspective of the ant the environment looks completely
different, there are no rocks, pebbles, or puddles. All the ant can sense are obstacles
which it tries to avoid by simple mechanisms similar to Braitenberg’s simplest vehicles.
Whenever the ant detects an obstacle to its right the ant turns left and vice versa.
Because the environment is full of obstacles, the developing trajectory seems to be
rather complicated. That is, the environmental complexity is a perquisite for the ant’s
complex behavior, which also heavily depends on the ant’s embodiment. If the ant
would be one thousand times larger in size, pebbles and puddles would be no obstacles
any more, and the path of the ant would look rather straight, seemingly much simpler,
even though the behavioral mechanisms and the brain of the ant are unchanged.

Clancey (1989) summarized the main aspects of the frame of reference problem as
follows:

• Observer versus agent perspective: Descriptions of the behavior from an
observer’s perspective must not be taken as the internal mechanisms that underlie
the behavior of an agent.

1Note, that his experiments originated from, or at least were inspired by, neurophysiological findings
(see Braitenberg, 1984, p. 95-144)
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• Behavior versus mechanism: Behavior always results from system-environ-
ment interactions and is not explainable by internal mechanisms only.

• Complexity: The observable complexity of a particular behavior does not nec-
essarily reflect the complexity of the underlying mechanisms.

The way how Grey Walter and Valentino Braitenberg designed their experiments
clearly demonstrated those three issues. As we might now agree, robots as physical
models might help us to overcome that problem, at least to a certain extent. Of course,
we have to be careful. For instance, in the biorobotics approach we have to take care
to put not too much of our assumptions about the mechanisms of the behavior of
interest in the control system of the robot. This is an inevitable consequence of starting
with behavioral analysis from the outside, from the external observer point of view; a
warning also articulated by Delcomyn (2001) as a commentary to the article of Webb
(2001):

“A significant difficulty with most other forms of modeling, be they paper
and pencil circuit diagrams or computer simulations of biological processes,
is that they require the modeler to make many assumptions about factors
that may influence the performance of the model but that are not directly
a part of it.”

In this thesis we will use evolutionary techniques to develop control architectures
for robots with as few preconceptions as possible. Before we elaborate on this possible
way to at least minimize our assumptions about adaptive behavior, we want to discuss
briefly the revival of the cybernetic ideas in modern trends of robotic research and
cognitive science.

2.2.4 Behavior based robotics and embodied cognitive science

Considering behavior as the essential key for building intelligent robots revived with
great attention almost forty years after the first experiments of Grey Walter in a
field now known as embodied cognitive science or behavior based robotics (Brooks,
1999; Arkin, 1998; Pfeifer and Scheier, 1999). Behavior based approaches mean “non-
information-processing-based” in contrast to classical “knowledge-based” approaches
of Artificial Intelligence (for an overview of these two fields see, for instance, Pfeifer and
Scheier, 1999). A pioneer of this approach was Rodney Brooks with his subsumption
architecture (Brooks, 1986), which probably is the most important approach in this
field and, therefore, will be discussed in more detail2.

The subsumption architecture shares with the cybernetic approach that it is de-
signed on purpose, that is, certain control aspects are implemented with the expectation
to fulfill a specific type of behavior. As much as the cybernetic approach, it relies on
simple control elements and sensory-motor feedback loops as an integral part of intel-
ligent behavior. The aim is to integrate particular sub-behaviors in one architecture

2Opposed to the competitive method (only one sub-behavior affects the motor action) of Brook’s
subsumption architecture, Arkin (1998) proposed a cooperative method based on behavioral fusion
via vector summation, that is, different sub-behaviors contribute to a motor action with different
strength.
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without centralized control. To do so, one would start with building the lowest layer,
that is, to construct very few connections between sensors and motors (very much like
the ideas of Braitenberg’s vehicles) which realize, for instance, obstacle avoidance be-
havior. On top of the lowest layer you then start building layers for “higher” behaviors,
for instance pushing a chair, or reaching a target. Different layers, or modules, are built
independently of each other, that is, each module is directly coupled to sensors and
motors. Constructed in this way, modules can serve as basic building blocks because
each module realizes a specific sub-behavior which can be executed independently of
other modules. However, to achieve a global coherent behavior, modules are eventu-
ally linked to each other, that is, modules can either suppress the input or inhibit the
output of another module. For instance, the chair pushing behavior must inhibited the
obstacle avoidance behavior. The direction of these links is usually from higher layers
to lower layers. That is why we might say high-level layers subsume low-level layers.
In Brooks’ original subsumption architecture (1986), each layer resembles a finite state
machine, that is, a computation device that changes its state depending on an input
and its current state. States are finite in number and change according to predefined
rules. However, using finite state machines is not essential to the idea of subsumption
architectures as Brooks demonstrated later within the Cog project which focused on a
humanoid robot controlled by layers of neural networks (Brooks and Stein, 1993).

In contrast to the functional decomposition of classical Artificial Intelligence ap-
proaches (for an overview see Pfeifer and Scheier, 1999), behavior based robotics
switches the focus away from a central integration of information processing (the sense-
think-act cycle) to sensory-motor couplings. Thus, it focuses not on brain-like central-
ized architectures but on the interaction with the environment, a principle with which
we are already familiar from our discussion about cybernetics.

Brooks emphasized that intelligent behavior does not necessarily require reasoning
(1991a) or symbolic representations of the world, at least at the level of insect like
intelligence (1991b): “When we examine very simple level intelligence we find that
explicit representations and models of the world simply get in the way. [. . . ] The key
idea here is to be using the world as its own model.”

2.3 Situatedness, embodiment, and structural cou-

pling

The early work of Brooks and others emphasized again two fundamental principles of
adaptive behavior, situatedness and embodiment, principles which are also central to
the current mainstream of embodied cognitive science (for an overview see Clark, 1996;
Hendriks-Jansen, 1996; Sharkey and Ziemke, 2000; Riegler, 2002).

Situatedness emphasizes that an agent always has to be embedded in an environ-
ment, which is dynamically changing, which can be modified by the agent, and which
can be sensed by the agent. Embodiment refers to the interaction between an agent’s
brain and its body. The body with its sensors and actuators is an essential part of an
agent’s behavior. Thus, being situated means that intelligent and adaptive behavior
emerges from agent-environment interactions and the nature of these interactions is
determined by the embodiment of an agent.
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Situatedness and embodiment are also key elements of the autopoietic theory pro-
posed by Maturana and Varela (1980, 1987). Their perspective on cognition is that “all
living systems are cognitive systems, and living as a process is a process of cognition”.

An autopoietic is, for instance, a unicellular organism, like an amoeba, is a network
of molecular components which have their own properties and interactions with other
components forming the metabolism of the cell. Metabolism, as a dynamic process,
produces the constituent components of the network which in turn produces the very
same components and the system’s spatial boundary; it is a circular process where
metabolism and boundary formation happen simultaneously. Thus, autopoiesis is a
self-organizing recursive process where the system (the autopoietic unity) produces its
own elements and boundaries–therefore, auto for self and poiesis for birth, creation, or
production.

Maturana and Varela distinguish between the organization and the structure of an
autopoietic system. Organization describes the totality of all relations between the
components that build a unity, and structure describes a specific network at a specific
time. That means, the structure of a system can change as long as its organization is
maintained. Maturana and Varela (1987) used the example of a toilet to illustrate this
difference. A toilet is organized in a specific way to fulfill its function. However, single
components can be replaced by similar elements (e.g., a plastic by a wooden seat). This
changes the structure but not the organization. Maintaining the organization requires
adaptive behavior of an organism, which can be observed by us as a consequence of
structural changes within the organism.

Autopoiesis is arguably one of the most important concepts in biology to define
living (=cognitive) systems. Important for our discussion is that Maturana and Varela’s
autopoietic systems are structure-determined, That is, the state of a system is always
determined from inside the system, from its structure (i.e., its components and their
interactions). Changes are always made inside the structure. The outside can not
determine the changes, it can only trigger them. In this sense systems have no inputs
or outputs. Inputs are considered as perturbations and the output of a system is the
behavior we can observe as a consequence of compensations made inside the system as
a response to perturbations. These compensations are realized by structural changes,
and perturbations are non-destructive as long as the organization of an organism is
not destroyed. Note that this emphasizes again the perspective problem we have as an
observer who can only see the consequences of the internal mechanisms.

To put that into the context of our discussion about situatedness and embodiment:
An organism, or agent, is structurally coupled to its environment via parts of its body,
its sensors and actuators (see Figure 2.2). Changes of sensory states are perturbations
to the system which might be compensated by the control system (e.g., nervous system,
hormonal system, or metabolism). The consequences of these compensations can be
observed as actions of the system’s actuators, and that is what we refer to as the
behavior of an agent. This behavior can induce structural changes in the environment
as well, which then can consequently again perturb the agent. Thus, the environment
and the agent are structurally coupled. Therefore, the cognitive domain of an agent is
characterized by its internal structure and its coupling with the environment, which is
realized by the body of the agent. In this sense cognitive behavior can not be considered
as a function of a particular part of an agent, such as its brain, it can only be discussed
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Figure 2.2: Autopoiesis and structural coupling. An individual consists of re-
cursively coupled sensors, actuators, and a control system, which are all embedded in
a body, separating the individual from the environment by a well defined boundary.
The cognitive domain of an individual is defined by its body and the environment to
which it is recursively coupled through its sensors and actuators. In the same way
an individual is coupled to other individuals (right panel adapted from Maturana and
Varela, 1987).

in the context an agent lives in. Part of this context includes also other agents. Agents
are also structurally coupled with each other, that means, the compensation effects of
one agent can become the perturbations for another agent and vice versa (Figure 2.2).
This concept can be used to describe communication and social behavior in general
(Maturana and Varela, 1987; Luhmann, 1990).

In this thesis we do not deal with autopoietic systems as defined by Maturana and
Varela (1980). Instead, we are using robots, which entails that the components a robot
exists of are not produced by the robot itself, which makes robots allopoetic systems
(Maturana and Varela, 1980). That means, we design the sensors and actuators of our
machine, and we define its boundary. In classical approaches to robot control and in
the cybernetic and most of the behavior based approaches the rules which determine
specific actions of an agent according to its sensor states are also predefined by us. The
latter constraint will be tackled by the experiments described here, we try do avoid as
many preconceptions as possible for generating adaptive behavior, mainly by the use
of evolutionary techniques without explicit fitness functions. However, the robot and
its body is still designed by us.

Therefore, we deliberately try to avoid the discussion about whether robotic systems
can then ever be cognitive (for deeper discussions on that see, for instance, Keijzer,
2006; Sharkey and Ziemke, 2000; Di Paolo, 2005), which they can not from a strict
autopoietic point of view (autopoietic=living=cognition). Thus, we think robots in
the way they are currently built can not be cognitive. However, first approaches to
realize artificial cell synthesis by self-assembling processes (Rasmussen et al., 2004;
Buchanan et al., 2006) hint to a promising methodological direction toward creating
artificial cognitive systems.

The experiments of this thesis are not aiming at revealing what makes an robotic
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Figure 2.3: Stable attractors of dynamical systems. A: Point attractor. B: Limit
cycle (dashed curve). C: Two frequency quasiperiodic orbit on a torus. (A-C: from
Ott, 1993, c© Cambridge University Press)

agent cognitive or not. We are aiming at the evolutionary emergence of adaptive be-
havior in groups of interacting agents. Therefore, besides the concepts of situatedness
and embodiment, the description of structural coupling as mutual sources of perturba-
tions between an agent and its environment or other agents is what we will use for
the experiments in this thesis to describe and to explain the behavior of an agent. By
explaining we mean we will try to reveal the internal compensation mechanisms which
lead to a particular behavior. Here, these internal mechanisms are based on non-linear
dynamical processes.

2.4 The dynamical systems approach

Dynamical systems became a quite sucessful tool to explain the behavior of complex
biological systems, such as single neurons (e.g., Izhikevich, 2006), neural cuircuits (e.g.,
Rabinovich et al., 2006), the brain (e.g., Kelso, 1995), cognitive behavior (e.g., Port
and van Gelder, 1995), developmental processes (e.g., Thelen and Smith, 1994), or
population dynamics (e.g., Turchin, 2003). An increasing number of researchers suggest
dynamical systems to use as a unifying framework for studying autonomous agents
and embodied cognitive science in general (see for instance Beer, 2000; Steinhage and
Schöner, 1997; Thelen and Smith, 1994; van Gelder, 1998; Pasemann, 1995b; Tschacher
and Dauwalder, 1999, 2003). In the field of autonomous agents, it is mainly used as a
descriptive tool, that is, for describing and analyzing the behavior of an agent as well
as its underlying internal mechanisms.

Here, we can only give a very short introduction to the most important aspects of
dynamical systems as they are used in this thesis. For more comprehensive introduc-
tions see, for instance, (Abraham and Shaw, 1992; Ott, 1993; Strogatz, 1994).

A dynamical system can be formally described as a triple (after Beer, 2000):

< T, S, φt >, (2.1)

where T is a ordered time set, S is the state space, and φt is an evolution operator.
S → S transforms an initial state x0 ∈ S at time t0 ∈ T to another state xt ∈ S at
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time t ∈ T . S may be numerical or symbolic, continuous or discrete, finite or infinite-
dimensional. T may be continuous or discrete. φt may be explicitly given or implicitly
defined. This is a quite general description; finite state machines, cellular automata,
Turing machines, or sets of differential or difference equations can be described in these
terms.

Of major interest is the long-time behavior of a dynamical system. Examples of
such long-time behavior are given in Figure 2.3. State variables move toward a steady
state or point attractor (Figure 2.3a), toward a stable periodic orbit or limit cycle (Fig-
ure 2.3b), or exhibit quasi-periodic motions, in which states never repeat exactly, but
neighboring trajectories remain neighbors, as shown for a torus in Figure 2.3c. We will
mainly discuss these three types of behavior throughout this thesis. However, dynam-
ical systems can also exhibit quite different characteristics, such as chaotic behavior or
unstable limit sets (see, for instance, Ott, 1993).

At this point, we will describe the dynamical characteristics of the neural archi-
tectures used in this thesis. We will use probably one of simplest neuron model of
recurrent neural networks that exists. Simplicity is an advantage because it means
a fewer number of parameters which keeps the systems analytically feasible. These
abstract neural systems, however, offer a rich set of dynamical behavior as we will see
below. More realistic models such as the Hodgkin-Huxley model (Hodgkin and Huxley,
1952), its derivatives (FitzHugh, 1961; McCormick and Huguenard, 1992) or spiking
models (Rieke et al., 1997; Gerstner and Kistler, 2002) may describe the dynamics
of biological neurons better than the neuron model we will use. However, they are
computational expensive and include too many variables which increases not only the
difficulty, to evolve, but also the difficulty to analyze them in a behavioral context.

We are interested in which neurodynamics determine specific behavioral aspects of
an artificial agent rather than the exact biophysical mechanisms of biological nervous
systems. Thus, apart from using robots as physical models to investigate adaptive
behavior, using a simplified neuron model is the second strong abstraction we make in
this thesis.

2.4.1 Keeping it simple: The artificial neuron

Figure 2.4a shows a highly simplified illustration of the main components that consti-
tute a biological neuron3. The dendrites transmit the activation from other neurons
to the cell body. The corresponding synapses can have different strengths and can
be either inhibitory or excitatory. Thus, the activity of connected neurons can have
different influences. The cell body sums up the incoming signals, and at a specific
threshold an action potential is elicited which propagates through the axon to other
neurons. The following ‘crude’ abstractions are made for our artificial neuron model:

• Discrete time dynamics are used.

• Our network is synchronized, that is, the activity of all neurons is updated at the
same time by summing up their inputs.

3Here, we completely omit the biophysical complexity of biological neurons because it exceeds the
scope of this thesis (for comprehensive introductions into neurophysiology see, for instance, Kandel
et al., 2000; Churchland and Sejnowski, 1994).
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Figure 2.4: The standard additive neuron model. A: Illustration of a biological
neuron (from Pfeifer and Scheier, 1999, c©MIT Press). B: The derived abstract artificial
neuron model (modified from Pasemann, 1996). Synapses can have different strengths
and can be excitatory or inhibitory (i.e., positive or negative w). C: Standard sigmoid
transfer-function applied to a neuron’s activity a to calculate its output o = σ(a). D:
Derivatives of the transfer-function.

• Information is only coded in the firing rate which is resembled by the output
value of our artificial neuron.

• There is no time delay accounting for the time a signal needs to travel along the
axon. Signals are transmitted within one time step.

Figure 2.4b illustrates an artificial neuron as it will be used here. The outputs
oj of other neurons are weighted by different strengths wij of the synapses, which
can be either excitatory or inhibitory corresponding to positive or negative values
of wij. The artificial cell body sums the incoming values to the activation ai of the
neuron. The output oi of a neuron is calculated according to a sigmoid transfer function
(Figure 2.4c). Therefore, the output of a neuron has a lower and upper saturation
domain (zero and one for the standard sigmoid), which accounts for the fact that the
firing rate of biological neurons is bounded as well.

Thus, our neuron model4 corresponds to standard additive neurons with discrete
time dynamics, and the activity of a neuron is then defined as:

ai(t + 1) = θi +
n

∑

j=1

wij f(aj(t)) , i = 1, . . . , n , (2.2)

4The neuron model used here is derived from the Naka-Rushton equation which is based on em-
pirical neurophysiological data and describes the relation between stimulus intensity and the resulting
firing rate (see Evans et al., 1993; Wilson, 1999).
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where n is the number of neurons which are connected to neuron i, and θi is its fixed
bias term. The output oi = f(ai) of a unit i is given by a sigmoid transfer function.
Here, this transfer function is either f(a) = tanh(a) (i.e., oi ∈ (−1, 1)) or the standard
sigmoid f(a) = (1 + e−a)

−1
(i.e., oi ∈ (0, 1)).

Figure 2.4d shows the first three derivatives of the standard sigmoid. The root of
the second derivative indicates the linear domain (a = 0) and the roots of the third
derivative indicate the domains of the strongest non-linearity (a ≈ ±1.5). The same
properties are obtained when using tanh as transfer function. Thus, both types of
transfer functions have the same dynamic properties and, in fact, each can be trans-
formed into each other (see Pasemann, 2002).

2.4.2 Everything is possible: Network architectures

Now that we have described the characteristics of a single neuron, the question is how
to connect these neurons, that is, to choose a network topology.

The first and probably simplest type of artificial neural networks (ANNs) are feed-
forward networks (FNNs), also called perceptrons. In FNNs information flows in only
one direction. The simplest case would be a one-neuron network of the McCulloch-
Pitts model (see p. 33). Such a neuron sums up all its inputs and at a given threshold
it changes its output from zero to one. This kind of of single-layer perceptrons can be
trained to learn linearly separable patterns (Minsky and Papert, 1969). By introducing
layers, one can built so called multi-layered perceptrons (MLPs), where each neuron
in one layer has directed connections to subsequent layers (Minsky and Papert, 1969;
Hertz et al., 1991). It could be shown that MLPs with only one hidden layer and a
sigmoid transfer function can approximate arbitrarily close every continuous function
that maps intervals of real numbers to some output interval of real numbers. And that
is exactly what MLPs are mainly used for, function approximation.

FNNs are characterized by a one-directional information flow. In contrast, in recur-
rent neural networks (RNNs) information can flow bi-directional. One of the simplest
RNN model was introduced by Elman (1990). These networks are actually an extended
version of MLPs. They consist of three layers: input, hidden, and output. Neurons in
the hidden layer have connections to some neurons in the input layer, to the so called
context sensitive neurons which maintain a copy of the previous values of the hidden
neurons. These types of networks allow sequence-prediction, and Elman (1990) used
them, for instance, to investigate human speech perception.

Another type of RNNs are Hopfield networks (Hopfield, 1982), which are fully
connected without self-connections. The connections between two neurons are always
symmetric. Hopfield networks guarantee that their dynamics always converge. They
are often combined with Hebbian learning (Hebb, 1949) to realize content-addressable
associative memory systems.

In this thesis we will use no specific type of architecture. That is, we will use RNNs
of general types, ranging from fully-connected networks (including self-connections)
to networks without any recurrent connections (i.e., FNNs). Not restricting network
topologies and their parameters, offers the emergence of almost any kind of dynamical
behavior, even with our simplified neuron model. This is important, since we want to
find out which kind of dynamics are relevant for particular behavioral aspects, which
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can not be known beforehand. As we will see later the topology of our RNNs are also
subject to evolutionary processes. However, first we want to discuss which dynamical
properties we can expect from our networks with arbitrary topologies consisting of
additive standard neurons with discrete time dynamics.

2.4.3 Two neurons are enough: Parameters and complex dy-
namics

The following considerations are derived from (Pasemann, 1995b, 1996). As we have
seen the activity of a neuron in our neuron model (Eq. 2.2, p. 44) is characterized
by the weighted input from other neurons and its bias term. The bias term can
be substituted by an additional neuron with constant activity and a corresponding
synaptic weight. In this case, the state of the neural system at time t is charac-
terized by the activity of all neurons and the strength of all synapses, that is, by
the activity vector a(t) := (a1(t), · · · , ai(t), · · · , an(t)) and the weight matrix w(t) :=
(w11(t), · · · , wij(t), · · · , wnm(t)). Thus, the state space S of the system is described by
S = A×W , where A is the activity space and W the weight space. The behavior of a
system is characterized as the temporal change of neural activity described by the dy-
namics of A. The change of synaptic parameters, which realizes specific functionalities,
is described by the dynamics of W .

As a further abstraction we assume that changes of neural activities occur on a much
faster time scale than changes of synaptic parameters. Synaptic changes are usually
associated with learning, which will not be considered in this thesis. Thus, synaptic
strengths are control parameters of our neural system (Pasemann, 1996), and therefore
belong to φt (Eq. 2.1, p. 42). These parameters will here be subject to an evolutionary
development, as we will see in the next section. Because they do not change during the
life time of an agent (i.e., no learning), we refer to the synaptic strengths as well as to the
topology of an RNN as internal parameters to distinguish them from parameters which
do change during the life time of an agent. These changing, or external, parameters are
the sensor signals of a robot which generally represent the input of our neural systems.

Which kind of dynamics can we expect from our simplified RNN? The most common
dynamics we will find with the experiments presented in this thesis are hysteresis
phenomena and periodic oscillations. Figure 2.5 shows how these two phenomena
can be realized by three very small RNNs with tanh as transfer function. The left
panel shows two networks with similar dynamics. One network is a single neuron with
an excitatory self-connection which receives an external input. In the corresponding
bifurcation diagram we see a domain where two fixed point attractors co-exist (−2.5 <

in > 2.5). If we start with a strong negative input signal (in = −7) and increase it
slowly, we stay in the attractor of low activity until, at a critical value (≈ 2.5), the
system suddenly changes to the attractor with high activity. If we then decrease the
input signal again, the system suddenly changes to the attractor of low activity but at
at a much lower critical value (≈ −2.5). Thus, co-existing attractors in an one-neuron
module realize already a kind of short term memory via a hysteresis effect. Similar
effects can be achieved with a two neuron-ring as shown in the left panel of Figure 2.5,
which indicates already that different networks can exhibit similar dynamics. Hysteresis
effects in small RNNs are formally described in (Pasemann, 1993, 1995b) and their
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Figure 2.5: Hysteresis and oscillations of small neural structures. Left panel:
Bi-stability of one neuron through an excitatory self-connection and in a two-neuron
system through an even loop. Right panel: A switchable oscillator realized by one
neuron with an inhibitory self-connection. Depending on the input signal strength the
system ends either in fixed point domains or in period-2 attractors.

robotic applications to achieve robust obstacle avoidance is shown, for instance, in
(Hülse and Pasemann, 2002; Hülse et al., 2004).

The right panel in Figure 2.5 shows how a single neuron with an inhibitory self-
connection can function as a switchable oscillator. In the corresponding bifurcation
diagram we see that for strong negative input signals the system stays in fixed point
attractors of low activity. If we increase the signal, the system enters a domain of
period-2 attractors at a critical value, the bifurcation point (in ≈ −5.4). We can see
how the amplitude of the oscillations increases very fast while increasing the input
signal, stays in the same period-2 attractor for a large domain, and eventually switches
back to a fixed point attractor with high activity (for in > 5.4). Periodic behaviors of
small RNNs are formally described in (Pasemann, 1993, 1995a, 2002) and we will see
many behavioral applications in this thesis.

Interestingly, already a two-neuron network can offer a rich repertoire of dynamical
properties as we can see in Figure 2.6. Two neurons are coupled via an odd loop and
each neuron has an inhibitory self-connection (such networks are formally described in
Pasemann, 1995b, 1998, 2002). To each neuron an external signal is applied (in1, in2).
For the given weight configuration (see Figure 2.6a), we can now determine the at-
tractors in which the system ends when we vary in1 and in2. The result is shown in
Figure 2.6b. We see that the attractor map is almost symmetrical, which is due to
the almost symmetric weight configuration. We find domains of fixed point attractors
(white regions), attractors with different periodicities (encoded by different colors),
quasi-periodic and even chaotic attractors (black regions).

Figure 2.6c gives the bifurcation diagram for the parameter region marked with a
white dashed line in Figure 2.6b. While in2 is kept constant, we vary in1 and observe
the output dynamics at neuron N1. Now, we can see more vividly the meaning of
the different colors in Figure 2.6b. We start with period-3 oscillations for in1 = −2,
followed by several domains of quasi-periodicity and varying periodicity (−1.6 < in1 <
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Figure 2.6: Complex dynamics in a two-neuron network. A: RNN with two
inputs and one output (transfer function: tanh). B: Colors in the iso-periodic plot
encode attractor domains of different periodicity (white indicate fixed point; black
indicates either domains with periodicity > 9, or quasi-periodic, or chaotic behavior).
C: The bifurcation diagram indicates behavioral changes of the system’s dynamics
depending on one input value (in2 = const; the white dashed line in (B) indicates the
parameter domain).

0.1), reach a large domain of period-2 oscillations (0.1 < in1 < 1.3), get subsequently
over period-doubling to a chaotic domain (2 < in1 < 3.4), and eventually reach,
through period-halving, a period-2 attractor (in1 = 4). That means that even in
very ‘simple’ networks we can discover a variety of dynamical behaviors even in a
very narrow parameter range. However, the question remains whether or not such
complex dynamics are necessary to generate adaptive behavior. We deliberately picked
the example network shown in Figure 2.6a because we will encounter an identical
configuration again in Chapter 7 as part of an RNN which realizes different aspects of
interspecific and intraspecific communication, demonstrating that complex dynamics
of small RNNs can be highly useful for different signaling strategies. These behavioral
strategies strongly depend on the environmental context of an agent, and this context
is represented by the input signals of its neural control system.

To relate this idea to the concept of structural coupling: The RNN represents the
(control) structure of an agent. The agent senses its environment, which changes the
input signals of its control structure (perturbations), which might change the internal
dynamics (consider this as the compensation mechanisms as discussed in Section 2.3,
p. 40). The results of theses compensation mechanisms, or dynamical changes, within
the system can be observed at the output of the system, which corresponds to a par-
ticular action, or behavior, of the agent, and this action might again lead to changes
of the input signals; thus, closing the loop.

So far we have seen that varying parameters of a neural system can either lead
to a smooth transition or drastic change at bifurcation points (see Figure 2.6c). At
this point, we have to emphasize again that we want to focus on the complexity of
dynamical processes in the context of neural information processing instead on the
physical complexity of neural correlates. Therefore, we argue that the simplifications we
make with our neural model are reasonable, especially because we want to analyze the
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correlation between the intrinsic dynamical mechanisms and the observable behavior
of an agent.

2.4.4 RNNs in the sensory-motor loop

We want to use RNNs as control systems for our robotic experiments. That means
we have to connect them somehow to our robot’s sensors and actuators. Sensor values
are represented by the input units of a neural network (gray circles in Figure 2.7).
Even though we will refer to these units as input neurons in the following, they differ
with respect to other neurons. Input neurons realize linear buffers without a transfer
function (i.e., ai = oi) and they have no incoming connections, thus, no feedback from
other neurons. Specific signals from the physical sensors are usually linearly mapped to
the range of the transfer function of the RNN. For instance, a physical infrared sensor
measures distances to objects, a light sensor the illumination, a microphone measures
sound intensities, and so on. Not only do the signals of these sensors vary in their signal
range, they vary also from one robotic platform to another. For instance, a small robot,
such as the KheperaTM robot, usually has very short range infrared sensors whereas a
bigger robot, for instance the KoalaTM robot, has long range infrared sensors. If we
would just give the distance to an object as input to our network, it would be hard to
transfer it from one platform to another without further modifications. If we, however,
map the sensor signals always in the range of the transfer function, nets can be easily
transfered between different robots with different sensor properties.

To give an example, Hülse and Pasemann (2002) developed a small-sized network
which realizes highly robust obstacle avoidance behavior on the KheperaTM, a tiny two-
wheeled robot. The very same network was later used by Manoonpong et al. (2007)
to implement obstacle avoidance on six- and four-legged walking machines. Thus, this
network was implemented in three robots which differ significantly in their sensors and
actuators. However, by keeping the input and output parameters of an RNN in the
same range, it is possible to employ a network with a particular behavioral function
on many different machines.

Except for the input neurons, all other neurons correspond to the neuron model
described in Section 2.4.1 (p. 43). We refer to neurons whose outputs are taken as
signals for the actuators of a robot as output neurons; other neurons are referred to
as hidden neurons. Thus, the structure between hidden and output neurons define the
dynamical properties (i.e., the system’s attractor landscape) of the RNN and the input
neurons provide the input signals of this dynamical system (see Figure 2.7). Such a
system can behave very much like the small systems we discussed in previous section.
The input signal can drive the system through different attractor domains which of
course can change the behavior of output neurons and, therefore, change the actions
an agents make in its environment which, in turn, affects its sensory states (that is
what we refer to as the sensory-motor loop).

Let us take a simple example. Consider the one-neuron network with a bi-stable
attractor domain given in the left panel of Figure 2.5 (p. 47). Suppose the input is the
mapped signal provided by an infrared sensor on the left side of a wheel-driven robot.
High values correspond to no object detection and low values to detection of very
close objects. The output drives the right wheel where high values correspond to high
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Figure 2.7: RNNs embedded in the sensory-motor loop. Grey circles represent
input units which provide input signals to the neural network in form of mapped sensor
values. Black circles represent neurons and from some of them the output is taken as
command signals for the robot’s actuators. Thus, the neural system is embedded in
the body of the agent, which is embedded in the environment.

wheel speed and low values to low speed, respectively. If the robot now approaches an
obstacle on its left side, the input would decrease slowly, but as we can see in Figure 2.5
(leftmost) the output stays high for a while. However, at a critical value it would jump
to low output values, and this would consequently slow down the right wheel which
leads to a right turn of the robot. Thus, the robot turns away from the obstacle, which
consequently increases the activity of the input. However, the system jumps back to
high output values at a much higher input value which assures a turning movement
lasting long enough to move away from the obstacle.

Because of the positive self-connection of the neuron, we get the hysteresis effect,
which realizes a large turning angle for robust avoidance behavior. At the same time,
due to the self-connection, the system filters sensory noise quite efficiently. As we can
see in Figure 2.5 (left), the input signal drives the system in an attractor of either high
or low activity. Small random variations do not influence the output behavior, except
at the critical points, but even there the system would jump from one attractor to the
other once and then would stay there because of the hysteresis effect. Thus, this simple
one-neuron module filters noise and realizes avoidance behavior to obstacles on the left
side quite efficiently. In a similar way we could connect the right infrared sensor to
the left wheel and thereby design a robot which would reliably explore its environment
without bumping into obstacles or getting stuck in narrow corners (see also Hülse and
Pasemann, 2002; Hülse et al., 2004). Considering Figure 2.7, the state of the infrared
sensors represent the input space. Sensor changes drive the system through different
attractors, which changes the output of the system and, thus, the behavior of the robot
leading again to a change of its sensor values.

The control system described above is reminiscent of the simple Braitenberg con-
trollers (see also p. 36), except that we have a bit more than mere input-output rela-
tions. Additionally, we also have internal dynamics, which do not only depend on the
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current sensor state, but also on its history.
Note, to increase the behavioral capabilities of a robot, one needs to add more

sensors and motors, that is increasing the complexity of its sensory-motor coupling.
Consequently, the input and output space of the control system would quickly get high
dimensional in contrast to the small systems discussed above. However, the experi-
ments in this thesis will show that such robots do not require much larger RNNs with
respect to the number of hidden neurons or synaptic connections, as one might intu-
itively think. We will present examples of behaviors which go beyond simple tropisms,
which are, however, determined by still very small RNNs. The main reason why small
RNNs can realize a variety of interesting behavior is the richness of their dynamical
properties, that is, already small modules possess a notable multimodality as we will
see later on (especially in Chapter 6 and 7).

2.5 The evolutionary synthesis of behavior

So far we emphasized several times that we want to circumvent the perspective, or
frame of reference, problem by using evolutionary techniques, that is, transferring the
design of control architectures to a self-organizing process (Nolfi and Floreano, 2000).
A secondary and more pragmatic reason for using artificial evolution lies in the intrinsic
complexity when using RNNs as dynamical systems. As we have seen in the previous
section, even small structures with specific parameter settings can exhibit non-trivial
dynamical behaviors. It is almost impossible to decide which dynamical properties are
of advantage, or required in the first place, especially when considering sophisticated
behaviors, such as cooperation and communication.

Thus, artificial evolution implemented by evolutionary algorithms (EAs) seems to
be a promising technique to develop RNNs for specific behaviors in a rather preconception-
free manner. At the end of this thesis, we even want to go a step further. We will try
to avoid almost any assumptions about what kind of behavior is of advantage for an
robotic agent.

So far we motivated the use of robots as complete systems acting in the sensory-
motor loop and recurrent neural networks as control architectures based on the prin-
ciples of non-linear dynamical systems. In this section we will discuss why using evo-
lutionary techniques to generate these RNNs is a compelling design method. Before
we describe the setup as used in this thesis, we give a brief overview about commonly
used EAs and the rising field of evolutionary robotics.

2.5.1 Evolutionary algorithms

In general, EAs are inspired by natural evolution, which includes the mechanisms of
reproduction, variation via mutation and recombination, natural selection, and sur-
vival of the fittest5. The first scientific milestones in evolutionary biology clearly were
the theory about natural selection and descent with modification proposed by Dar-
win (1859), and the discovery of Mendelian genetics (Mendel, 1866; Morgan et al.,

5“Survival of the fittest” is often associated with Darwin, but it was actually coined by Herbert
Spencer (1864) who drew parallels of his ideas about economics with Darwin’s idea about natural
selection.
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1915). Here we just want to name three further fundamental steps in evolutionary
biology without going into the details (for a comprehensive introduction see, for in-
stance, Maynard Smith and Szathmáry, 1995). The first was made by Hamilton (1964)
with his theory about “selfish genes” and kin selection which favors altruistic behavior
among relatives. Later on Maynard Smith and Price (1973) introduced evolutionary
game theory, which is now vastly used in current evolutionary modeling. The next
fundamental step is the theory about quasi-species proposed by Eigen and Schuster
(1979); it unified Darwian evolution with physical chemistry and information theory.

Returning to EAs: EAs became quite popular with the rise of artificial intelligence,
and especially later on in artificial life research (Dyer, 1994). Evolutionary algorithms
can be divided into five main implementation techniques (Eiben and Smith, 2003):
learning classifier systems, genetic programming, evolutionary programming, genetic
algorithms, and evolutionary strategies. Here, we will only consider the latter two
because they are the most common techniques for the evolution of behavior in robotic
agents. For comprehensive overviews about the entire field of EAs see (Bäck, 1996;
Bäck et al., 1997; Eiben and Smith, 2003).

Genetic algorithms (GAs), are probably the most popular technique, especially
in the field of evolutionary robotics. They became widely recognized by the work of
Holland (1975) who used GAs as an optimization method in his studies of cellular
automata. In general, a GA needs a form of ‘genetic’ representation of the solution
domain to a particular problem. Usually this representation is an array of bits. Specific
parts of these arrays can for instance encode variables of a function which has to be
approximated, or synaptic strengths of a neural network. As a second requirement,
a fitness function has to be defined, which describes a specific target solution. For
instance, for function approximation one would try to minimize the distance of an
approximated function to a real data set. Once an appropriate fitness function is
designed and a genetic representation defined, the procedure is usually as follows:

• Initialize a population of individuals randomly.

• Evaluate each individual with the fitness function.

• Choose the best individuals (P (0)).

• Start with g = 0 and repeat:

1. Variation and reproduction: Create new individuals (O(g)) through muta-
tion and cross over among P (g).

2. Evaluation: Determine fitness of O(g).

3. Selection: Determine best individuals of O(g) and P (g), which from P (g+1).

• until process is stopped.

The process is stopped either at a predefined number of generations g, when the
fitness reaches a plateau or when a minimal solution criteria is reached. It can also be
stopped manually by the observer who decides through manual inspection of the current
solutions. Selection and reproduction operators are usually stochastic (for details see
Eiben and Smith, 2003; Holland, 1975).
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Rechenberg (1973, 1994) and Schwefel (1995) proposed Evolution Strategies (ESs)
as another evolutionary optimization technique (for an overview see also Beyer and
Schwefel, 2002). Similar to GAs, ESs operate in a loop of variation, reproduction,
evaluation, and selection as described above. In contrast to GAs, ESs use real-vectors as
encoding representation and deterministic selection operators. In addition to variations
of the coding representation, so called strategy parameters are optimized during the
evolutionary process. Strategy parameters concern parameters and probabilities of the
variation operators. Thus, evolutionary parameters are evolved in parallel depending
on the fitness development of the individuals. In that sense, it might be beneficial
to have at the beginning rather large variations to generate a great diversity which
explores the fitness landscapes rather quickly. If individuals approach a local optimum
in the fitness landscape, it might be helpful to decrease the variation range to ultimately
reach the peak of that optimum.

2.5.2 What evolutionary robotics can tell us

The term evolutionary robotics (ER) was first mentioned in a publication of Cliff et al.
(1993)6 and is an ever growing research field (for overviews see Harvey et al., 2005; Nolfi
and Floreano, 2000; Walker et al., 2003; Husbands et al., 1997). The major motivation
of ER is to utilize evolutionary computation techniques to automatically design control
architectures in order to realize adaptive behavior in autonomous robots. On the
one side, ER promises to develop solutions for robotic tasks where it is tremendously
complicated to design their control systems manually. Thus, ER can be seen as an
optimization tool for behaviors which are hard to engineer, very similar to the use of
EAs to approximate complicated functions.

However, ER is also proposed as an “ideal framework for studying adaptive be-
havior” (Nolfi and Floreano, 2000) or the emergence of higher level cognition (Parisi,
1997). In some respects we can relate ER to the biorobotics approach discussed ear-
lier. Both methods utilize robots as physical models to study behavior (which they
also have in common with some of the early cybernetic studies). However, researchers
in biorobotics usually use robots to test their hypotheses about specific behavioral
mechanisms in animals, that is, they implement these mechanisms at an abstract level
in their robots. The majority of researchers in ER start at a much lower level. Even
though they still design their robots7, they convey the process of control implementa-
tion to automated methods, which are inspired by biological evolution. This led Nolfi
and Floreano to the claim:

“Evolutionary robotics and biology share an interest in the following ques-

6Harvey et al. (2005) point out that the earliest use of evolutionary robotics actually goes back to
the unpublished work of Cariani (1988) presented at the first Artificial Life workshop.

7Note that also the evolution of morphologies receives increasing interest. There are already im-
pressive experiments, for instance, by Sims (1994), but most of them are limited to virtual worlds. For
real robots, morphological evolution is generally limited to few parameters, such as wheel distances
or sensor orientations (for examples see Pfeifer and Bongard, 2006, chap. 6). It is obvious that an
unconstrained evolution of morphologies for real robots is rather difficult because it is hard to change
the form of sensors, motors, or power supplies like they exist today. Devices for rapid prototyping
comparable to 3D printers are going to change this problem (see Lipson and Pollack, 2000), but they
are still at the beginning.
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tion: what are the key characteristics of natural evolution that make it
so successful in producing the extraordinary variety of highly adapted life
forms present on the planet? Producing better answers to this questions
may significantly increase both our understanding of biological systems and
our ability to design artificial systems.”

Nolfi and Floreano (2000, p. 12-13)

We fully agree with this statement as long as it concerns the design of artificial
systems, or the improvement of machines performance. ER is a powerful tool for
developing solutions to hard problems, especially when it comes to adaptive behavior
of real robots acting in a noisy and often unpredictable environment. However, one has
to be careful since there is still a lot of design effort necessary. Proper fitness functions
have to be designed, which can be quite challenging without knowing what the optimal
behavior would be for a complex task. And because evolution is a time consuming
process relying on many trial-error cycles, simulations of robots are the preferred tool.
These simulations have to be designed in a way that the solutions are still applicable
to real robots, which we will discuss later on in more detail.

We are more critical with the claim that ER methods may help us to understand
better biological systems and their evolution. Even though we believe studying sim-
plified (not idealized!) complete system is clearly a key component for understanding
intelligent and adaptive behavior, we have to be careful that we do not simplify at too
many levels. ER methods entail simplifications at the agent level (robots vs. animals),
at the control level (e.g., artificial vs. biological nervous systems), at the environmen-
tal level (controlled laboratory conditions vs. complex ecosystems), and at the level
of evolution. The problem is, that for many reasons we are far away from having a
complete knowledge at any of these level in their biological counterparts. First of all,
there is the overwhelming complexity of biological organisms which becomes unfeasible
when leaving the reductionists approach, that is, studying the smallest components
into which we can decompose a system, and considering the organism as whole with
its nervous system and metabolism embedded in its body that is itself embedded in
an environmental context. And when it comes to evolution, we have the problem of
time. The generation span of an organism is the limiting factor to study evolution
in vivo. And evolution is usually a very slow process which has to be studied over
myriads of generations. In this sense, ER provides a big advantage. We have complete
systems, robots, which we are usually able to understand in their parts as well as a
whole. And we can run evolution on computers which are getting faster with every
year. However, the danger is, that because of the strong simplifications we make, we
may set up experiments whose results are hard to relate to biological systems because
of the great differences.

Harvey et al. (2005) discussed this problem in the context of cognition which we, as
said already, try to avoid. However, the points they made about the relation between
cognitive science and ER, emphasize much of the motivation that lead us to using ER
to study cooperation and communication.

“These systems, then, will not tell us how real cognitive systems work,
but they will do something very useful nonetheless. They provide us the
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proofs of concept and exploratory studies that can challenge existing views
and unwritten assumptions in a healthy manner. Additionally, these exis-
tence proofs can provide further lessons in that it is possible to manipulate
and understand them in dynamical terms to some extent. The potential
scientific role of such examples should not be underestimated. They can
help us re-organise our conception of a problem (e.g., origin of learning),
bring added importance to factors previously considered of little relevance
(e.g., neural homeostasis), and explore situations too complex even to start
asking the right questions about using traditional tools (e.g., minimal de-
velopmental systems).”

Harvey et al. (2005, p. 95)

We would extend this view from cognitive systems to biological systems in general.
Research in ER entails so many abstractions that it becomes hard to gain any direct
insight into the actual physical mechanisms of biological organisms. Nevertheless, ER
can generate proof of concepts. Hence ER aims to find the minimal conditions which
allow the emergence of phenomena, comparable to those found in nature, it may help
us to show what is required for such a phenomena and what can be refuted. However,
whether or not these findings can then be easily translated into biological studies is
still arguable. The stronger argument is clearly the aim of ER to challenge existing
views on unwritten assumptions. In that sense ER continues where cybernetics started.
Properly designed ER experiments challenge the perspective issue, they can show us
that the mechanisms behind seemingly complex behaviors are often rather trivial. They
can do so, because they have the power of dealing with complete systems which are
still understandable at every level of detail, and as a whole.

To give some examples, the work of Beer and Gallagher (1992) and von Twickel
and Pasemann (2007) has shown that adaptive walking in machines which resemble
gait pattern of stick insects can be realized without any form of neural central pattern
generators (CPGs), solely relying on sensory-motor feedback loops. Especially Beer
(1995) tested the different influence of several control architectures (without CPGs,
with CPGs and sensory-motor feedback, solely CPGs) on the adaptivity of walking.
These are experiments which can hardly be done with real animals. Removing parts
of the neural system in a stick insect or the influence of sensory-motor feedback loops
without damaging other vital parts of the organism is almost impossible, whereas with
robots such tests are rather easy to conduct so that it allows analysis of the whole
system in a behavioral context. Other examples have shown that also for straight two-
legged locomotion no CPGs are required (Wischmann and Pasemann, 2004), and that
through the passive dynamics of the body, bipedal locomotion can be highly efficient
(Collins et al., 2005; Wischmann and Pasemann, 2004). Other examples such as the
simple predator-prey experiments of Floreano and Nolfi (Floreano and Nolfi, 1997; Nolfi
and Floreano, 1998) showed the development of an evolutionary arms race between
co-evolving species of agents where behavioral strategies reoccur in cycles during the
evolution over a time span of hundreds of generations.

Intriguingly, ER allows not only a detailed analysis of the behavioral mechanisms, it
allows to observe the development and change in behavior on an evolutionary time scale
whereas biological studies are often left with relying on fossil records. For instance, the
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impressive work of Ijspeert et al. (2007) demonstrated with a salamander-like robot
that early animals probably did not need to invent completely new neural pathways to
change from aquatic to terrestrial locomotion.

In this realm, we see a major motivation for this thesis: Investigating the minimal
requirements for the evolution of cooperation and communication in situated and au-
tonomous agents. Of particular interest are the minimal requirements at the neural
dynamics level. How complex has an RNN to be to realize efficient communication
strategies not only within a group of cooperating agents but also between competing
groups? To find this out, we have to minimize our preconceptions about these kind of
behaviors and their underlying mechanisms. A first step toward that direction is the
method of structural evolution.

2.5.3 Structural evolution

The evolutionary algorithm we will use in this thesis is called ENS3 (evolution of neu-
ral systems by stochastic synthesis). It was originally developed by Dieckmann (1995).
Later on, Martin Hülse and Keyan Zahedi further extended the algorithm and embed-
ded it in a software package called ISEE (see also Hülse et al., 2006). Through a neural
interface, ISEE allows a rather uncomplicated interaction of the ENS3 algorithm with
either the physical robots or their respective simulation models.

The technical details of the ENS3 algorithm are extensively described in (Dieck-
mann, 1995; Hülse et al., 2004; Hülse, 2007). Here, we only want to mention its salient
features.

The ENS3 algorithm belongs more to the class of ESs than to GAs. However, it
differs from most ESs in the respect that it relies on stochastic selection operators,
that it has no strategy parameters, and that the dimensions of the parameter space
which is to be optimized can vary during the evolutionary process. It brings together
combinatorial with real-value parameter optimization. For this reason, RNNs, which
are here the subject of evolution, are represented as parameterized graphs were nodes
represent neurons and directed edges represent the synapses. The parameters are
bias terms (associated with nodes) and synaptic weights (associated with edges); they
undergo real-value optimization. Nodes and edges can be added and deleted during an
evolutionary process by combinatorial optimization, that is why the dimensions of the
parameter space change permanently.

What has to be defined at the beginning of an evolutionary process are the input
and output neurons. These are the only elements which are protected from evolutionary
deletion. A further restriction is that there are no synapses allowed to project toward
the input neurons because input neurons serve as linear buffers and therefore provide
the input space of our RNNs as dynamical systems (see Section 2.4.4, p. 49).

Table 2.2 shows the general procedure of the ENS3 algorithm. A population is
divided into parents P(g) and offspring P̂(g). The parameter g refers to the genera-
tion of the population. All operators, like selection, reproduction, and variation, are
stochastic (for a detailed description see Hülse et al., 2004; Hülse, 2007).

The evolutionary process is initialized with an arbitrary number of RNNs which are
identical with respect to their input and output neurons and their transfer function.
The transfer function and the input-output structure are defined problem specific,
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according to the task that the neuro-controllers will be evolved for. Initial RNNs can
either be ‘empty’ (i.e., they have no internal structure) or they already possess a specific
structure which can be different among the initial RNNs. However, initial structures
can change during evolution.

Starting with non-empty networks can be useful if one wants to start with individ-
uals which already have a particular behavioral repertoire. This becomes important
when agents are confronted with a rather complex environment or are evolved for non-
trivial behaviors. Thus, it allows incremental evolution which might be necessary for
complex tasks because the probability that some individuals of the first generation can
accomplish, at least partially, the task is inversely proportional to the complexity of
the task itself (Nolfi and Floreano, 2000). Then, chances are high that all individuals
in the first generation get zero fitness and, consequently, the selection process can not
operate. This is often referred to as the bootstrap problem.

At this point, we have to mention another important difference to general ESs. ESs
assume a so called strong causality (Rechenberg, 1994; Sendhoff et al., 1997). That
is, small changes at the ‘genetic’ level should result on average in small changes of
the fitness values (smoothness assumption). In contrast, evolving the topology and
parameters of RNNs entails a weak causality. For instance, in Section 2.4.3 we have
seen that if changes of the input space cross bifurcation points, the dynamics of the
system can change dramatically (see also Figure 2.6c, p. 48). Synaptic weights change
the influence of the input signals and, thus, a change in synaptic weights might also
lead to a dramatic change of the dynamical properties, especially changes close to
bifurcation points where very small variations have great effect. Figure 2.8 illustrates
the weak causality for structural changes. On the left side we see the network from
Figure 2.6 (p. 48) and its corresponding attractor map. The right side shows how the
attractor landscape changes significantly for two instances where we only removed a
single synapse and all other parameters remained unchanged.

Because the dynamical properties of an RNN are closely connected to the behavior

Table 2.2: General procedure of the ENS3 algorithm (modified from Hülse et al.,
2004). Initialization and the reproduction-variation-evaluation-selection cycle (P : par-
ents; P̂: offspring; g: generation)

Begin
P(0) := set of initial structures; 1
t := 0 2
Repeat

P̂(g) := reproduction(P(g)); 3

variation(P̂(g)); 4

evaluate(P(g) ∪ P̂(g)); 5

P(g + 1):= selection(P(g) ∪ P̂(g)); 6
g := g + 1 7

Until stop criterion; 8
End.
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Figure 2.8: The weak causality of structural evolution. Left: RNN discussed in
Figure 2.6 and its attractor map. Right: The removal of a single synapse significantly
changes the attractor landscape.

of an agent, small changes at the neural level can strongly influence their performance.
Therefore, it is important that parents and their offspring are evaluated together and
undergo the selection process because it may happen that all offspring perform signif-
icantly worse than their parents due to the weak causality. However, this also means
that the opposite is possible: Small variations may lead to much improved offspring
which can then be observed as sudden jumps in the fitness development, as we will
see it for instance in Chapter 7 (e.g., Figure 7.12, p. 161). Thus, weak causality may
help to escape from local optima, which is rather complicated when strong causality is
assumed.

To conclude the discussion about structural evolution, in a first step to minimize
our preconceptions about which kind of control architectures and which kind of dy-
namical properties are required for a particular behavior, we include the evolution of
the topologies of RNNs and do not only evolve their parameters, as it is still very com-
mon in the field of evolutionary robotics (for a few exceptions see, for instance, Nolfi
and Parisi, 1995; Harvey et al., 1997). A very pragmatic reason for structural evolu-
tion is that we usually do not know beforehand which structure is most suitable for a
particular task. That means, if we would evolve only the parameters of our networks,
we would be forced to try several configurations. The study of Psujek et al. (2006)
showed how exhaustive this configuration space can be. They tested different neural
architectures for their evolvability in a simple walking task. In their case there were
64, 4096, and 528,284 possible distinct architectures for a three-, four-, and five-neuron
network (without self-connections!), respectively. They could indeed demonstrate that
some types of architectures out of this vast pool of possibilities showed a significant
higher evolvability, that is, they led to a much better performance than others. Now,
it is obvious that oscillatory networks may be required for walking and, therefore, one
could choose architectures which allow for oscillations for this particular task. However,
usually it is rather complicated to anticipate which dynamics and, therefore, what kind
of architectures are needed for certain behaviors. For instance, what is needed for co-
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operative or competitive behavior, or for communication? To investigate this question
with evolutionary methods, an appropriately designed fitness function is required.

2.5.4 Fitness functions

A central problem in ER is the design of fitness functions which determine the perfor-
mance of the evolving individuals and, thus, their selection criteria. Jin and Branke
(2005) identified four major problems which we will put in the context of evolutionary
experiments with autonomous robots (see also Hülse, 2007):

1. Noise: The sensory-motor system of a robot is always subject to noise. This can
lead to different fitness values of several evaluation trials under identical starting
conditions and environments.

2. Robustness: Perturbations of design variables lead to different fitness values.
Such design variable can be varying starting positions of a robot or environmental
parameters like position of obstacles or targets within the environment.

3. Fitness approximation: The use of meta-models influence the fitness value,
like the use of simulations instead of real robots.

4. Dynamic environments: The environment may change during the evaluation
time and, therefore, the fitness function varies in time.

We will now discuss methods to approach those problems as they are used in this
thesis.

Robustness and structural complexity of evolutionary solutions

We have seen that the evolution based on the ENS3 algorithm proceeds in a repeat-
until loop as long as a special stop criterion is not fulfilled. Up to now there is no formal
stop criterion implemented. The user has to decide, when to stop the evolution. This
is not a lack of implementation, we argue it is necessary. The most obvious criterion to
stop an evolutionary process is the development of the fitness values. However, there
are two additional demands, robustness and structural simplicity of evolved solutions.

With robustness we mean, that the behavior of evolved individuals should be suf-
ficiently good despite the noise of their sensory-motor system and despite their initial
conditions. A good example is the classical light seeking task, where a robot should
explore its environment without bumping into obstacles and find a light source as fast
as possible. If we would evolve such a task without varying the initial conditions, such
as the location of the light source, the starting position of the robot, or the locations
of obstacles, it may happen that solutions come up which are specialized for specific
configurations of initial conditions, but would fail in other configurations. We call
such individuals specialists. Our interest is, however, in generalists which show robust
behavior with respect to their sensory-motor noise and varying initial conditions. For
this reason initial conditions are varied from generation to generation while a given
configuration is equal for all individuals within the same generation.
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Figure 2.9: Stop criteria. Important parameters for determining when to stop an
evolutionary process (shown is a smoothened development of parameters from a par-
ticular run during the experiments described in Chapter 6). A: Fitness development of
the best individual and the average of all individuals. B: Average number of survived
generations (age), of synapses, and hidden neurons.

As we said already, parents and offspring form the next generation after a selection
process. Therefore, the number of generations a particular individual survives (i.e., it
is always selected as a parent) indicates its ability to handle various initial conditions.
We call the number of survived generations the ‘age’ of an individual. Thus, a low
age indicates specialists which probably became parents because they could handle a
specific initial configuration sufficiently well. The higher the age of parents becomes,
the more generalists we expect.

The second criterion, structural simplicity, relates to the size of the evolved neural
structures. As we previously emphasized, our main aim is to keep the systems analyz-
able. It is plausible that smaller RNNs, that is, RNNs with a small number of hidden
neurons and synaptic connections, are more feasible from an analytical point of view.
Thus, we as the observer prefer small structures of evolved solutions, which does not
inevitably imply trivial dynamics (cf. Section 2.4.3).

Figure 2.9 shows the development of the parameters crucial for us to determine
when to stop an evolutionary process. The figure illustrates a typical evolutionary
run (data taken from the experiments described in Chapter 6). We see the fitness
development of the best performing individual and the mean of all individuals in each
generation (Figure 2.9a). During the first 250 generations the fitness value develops
toward a plateau. At generation 275 we introduced costs for neural elements (hidden
neurons and synapses). These costs reduce the fitness value of an individual depending
on its number of neural elements. Thus, in the case of similarly well performing indi-
viduals, the individual with the smaller RNN has a higher chance to get selected as a
parent for the next generation. The influence on the size of evolved solutions is shown
in Figure 2.9b. We see how the average number of neurons and synapses decreases
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after the introduction of costs while the average age and the performance of the best
individuals remains at the same level.

Of course, one has to be careful with cost parameters. If they are too high, it
may happen that RNNs without any behavioral functions are favored just because of
their small size. Thus, cost values depend on the current fitness level and the current
average size of the networks. Because fitness level and average size of networks can
vary significantly from task to task, and even from one evolutionary run to another
with the same task, the user has to change these values on-the-fly. That is also the
reason why the user has to stop the evolutionary process when a reasonable fitness is
achieved, the behavior is satisfactory, solutions are robust, and RNNs are structurally
small. These criteria are hard, if not impossible, to formalize especially because they
are highly task-dependent.

To come back to the problem of noise and robustness, we have seen how the number
of generations an individual survives, that is, its age, indicates how robust an individual
is with respect to noise and varying conditions. Because this thesis deals with groups of
cooperating agents, a second method to deal with noise and achieve robust solutions is
to consider the performance of the group as the selection criterion instead the individual
performance.

Group selection In evolutionary biology, group selection (Wynne-Edwards, 1986)
refers to the idea that genes spread in a population because they are beneficial for
a group regardless of the individual fitness. As much as there is severe criticism on
group selection as a major selection mechanisms (Maynard Smith, 1964; Dawkins,
1976; Dennett, 1994), there is also a rising favor for its general idea, especially for
explaining the evolution of altruism. Still insisting on individual selection, Hamilton
(1964) approached this problem with taking into account also genetic relatedness among
individuals of one species. This led him to his famous postulate which tries to explain
altruistic behavior:

rb > c, (2.3)

where c is the cost for the actor, r the genetic relatedness between actor and recipient,
and b is the benefit for the actor. Costs and benefits are measured in reproductive
success. Thus, according to Hamilton’s rule altruistic behaviors become more probable
the closer the actor and the recipient are genetically related (kin selection). Later on,
Wilson (2005) modified Hamilton’s rule to: rbk + be > c, where bk still refers to kin
selection but be is the benefit accruing to the whole social group independent of the
genetic relatedness. Wilson claims that be >> bk in the present state of evidence from
studies of social insects and that, therefore, altruism should be explained more at the
colony level than at the level of kin. For criticism see for instance (Foster et al., 2006;
West et al., 2007). We will leave the debate at this point with the conclusion that it
is still controversial whether group selection is an important factor or whether it can
always be explained by kin selection alone.

In this thesis, we take a rather pragmatic approach to group level selection. Except
of one occasion all experiments deal with homogeneous groups of agents, that is, agents
are identical concerning their morphology as well as their control architectures. During
evolution each generation consists of several different RNNs (parents and offspring).
For evaluation each RNN is copied and distributed to the agents which form a group.
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In this sense all group members are clones, that is, after Equation 2.3 is r = 1. The
success of a group is measured in terms of fitness values (as opposed to reproductive
success in Hamilton’s equation), this can be either the collective performance of a group
(Chapter 3) or the average performance of all individuals in a group (Chapter 4, 6, and
7). Thus, whatever is a beneficial behavior for the group is automatically beneficial for
an individual agent. This simplification enforces the emergence of cooperative behavior,
if possible, in groups of interacting agents, and that is what we are aiming at in this
thesis.

In both cases, collective performance measurement as well as averaging of individual
performances, many individuals contribute to the selection criteria of a single RNN.
And especially in the latter case we automatically reduce the perturbations of the fitness
function caused by noise or varying conditions because we average the performance of
single individuals (which all have different initial conditions) within a group. Thus,
we average the performance of a single RNN in one trial instead of averaging it over
several evaluation trials which makes the fitness value more reliable and saves a lot of
computation time.

Using group level selection with homogeneous agents to facilitate the development
of cooperation and communication is supported by the study of Floreano et al. (2007).
They tested individual versus colony level selection with either homogeneous or hetero-
geneous groups of robots. Their results indicated that the evolution of communication
is more likely in groups of genetically identical individuals selected at the colony level.

Fitness function approximation

The third issue raised by Jin and Branke (2005) is the problem of fitness function
approximation. In the context of ER this becomes relevant when using simulations
of robotic systems. Besides the ease of data collection, simulations are usually the
preferred tool to apply evolution because evolution with real machines is time expensive
and miss-performing solutions may severely damage the physical hardware. On the
other hand, when simulations are used it is often difficult to guarantee that evolved
solutions perform equally well on the target system, the physical robot. And even
if we obtain similar performance, the fitness would always differ between evaluations
in simulation and on real robots. That is why simulations as meta-models can only
approximate the fitness.

One solution to minimize the resulting approximation error would be to simulate
the real system as accurate as possible which entails the risk that simulations loose
their advantage of being much faster than evaluation in hardware. The question is,
how accurate must a simulation be? Brooks doubted that controllers developed in
simulations would be transferable to real robots:

“There is a real danger (in fact, a near certainty) that programs which work
well on simulated robots will completely fail on real robots because of the
differences in real world sensing and actuation. [. . . ] sensors [. . . ] simply
do not return clean accurate readings. At best they deliver a fuzzy ap-
proximation to what they are apparently measuring, and often they return
something completely different.”

Brooks (1992, p. 4-5)
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To address this issue Jakobi et al. (1995) (see also Jakobi, 1997) proposed the use
of minimalistic simulations which include only relevant real world properties, that
is, properties relevant for the target behavior. For instance, for a small wheel driven
robot gravitational forces or inertia of the body are not as relevant as for a legged robot,
whereas friction with the ground is highly relevant for both. Thus, to built a sufficient
simulation a collection of empirical data is required which has to be validated for their
relevance and then implemented into the simulation model. Comparative tests between
the behavior in simulation and the real robot are essential. Special attention should
be paid to the inclusion of sensory-motor noise with an appropriate level comparable
to the noise level of the real sensors and motors.

To give an example, most of the robotic systems discussed in this thesis rely on
infrared sensors to measure the distance to objects. If we would simulate this kind
of sensors similar to their real characteristics, that is, emitting infrared radiation and
measure the intensity of radiation reflected from objects, the simulation would tremen-
dously slow down because one robot relies on several of these sensors and we want to
simulate many robots, up to 150. However, the relevant information is the distance to
an object. Therefore, in simulation we would simple attach a ray to the robot with a
length resembling the range of the real infrared sensor. Whenever this ray intersects
with an object, the depth of this intersection gives us the distance to an object. Fi-
nally we would add noise to this virtual sensor which resembles the noise empirically
measured with the real sensor.

For simple sensory-motor systems the minimalistic simulation approach proved to
be successful when it comes to the test on real robots (see, for instance, Jakobi et al.,
1995; Hülse et al., 2004; Manoonpong et al., 2007). And in this thesis we will use only
robots with simple or, as we prefer to say, minimalistic sensors and actuators. However,
we should note that for more complex systems, such as visual information processing of
cameras, evolution directly on the real systems should be preferred8. First studies with
rather simple robots showed possibilities to overcome the difficulties of evolution in the
real world, such as continuous power supply, fitness calculation, exchange of genetic
material, and so on. This approach is subsumed under the term embodied evolution
(for examples see Watson et al., 2002; Mondada and Floreano, 1995; Nolfi et al., 1994;
Floreano and Mondada, 1996).

2.5.5 Fitness functions for open-ended and creative evolution

As we have seen, one of the most crucial aspects of artificial evolution is the design
of fitness functions which rate the performance of an individual with respect to an
expected behavior. However, often we do not know exactly how a specific behavior is
beneficial for a given problem. In contrast to a pure optimization process, this aspect
is not a problem here. It is even desirable, because using exact a priori descriptions of
behaviors shall be prevented as much as possible.

8An interesting ‘hybrid’ approach to this problem is taken by Floreano et al. (2005). They evolved
neural networks for an outdoor robot which could navigate by camera vision. The synaptic connections
from the visual photo-receptors to hidden neurons could be changed via Hebbian plasticity while the
robot was moving around. In this way solutions evolved in simulation performed very robust on the
real robot in outdoor environments.
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Figure 2.10: Fitness function design. A: Space to describe and design fitness func-
tions (adapted from Nolfi and Floreano, 2000). Ideally, fitness functions should be
located in the top corner (see text for details). B: Rough classification of the exper-
imental studies discussed in this thesis (fitness functions have exclusively behavioral
characteristics).

Nolfi and Floreano (2000)a used three dimensions to describe the fitness space for
ER experiments (Figure 2.10). Functional-behavioral relates to whether specific func-
tional control aspects are rated or whether the behavioral outcome is rated. Take
for instance that task of walking in a multi-legged robot. One can reward specific
oscillatory neural activities which are defined beforehand to be beneficial for walk-
ing (functional) or one can just rate the distance the robot is traveling (behavioral).
Implicit-explicit relates to the number of variables and constraints given by the fitness
function. For instance, for a foraging task, one can define explicit variables that reflect
how well the robot explores the environment, how fast it finds energy sources, etc., or
one can simply set the implicit constraint that the robot ‘dies’ as soon as it runs out of
energy. External-internal relates whether variables and constraints are used which are
also accessible by the agent through its sensors (internal), or whether global variables
are used which are hidden for the agent (external).

In this thesis, we completely exclude functional considerations because our moti-
vation is to find out which mechanisms emerge for a specific behavior. Furthermore,
because we want to minimize our preconceptions about the target behavior itself, we
try to keep our fitness functions as implicit as possible. Considering the frame of refer-
ence problem, only internal variables should be used to translate the perspective from
the observer to the agent. Thus, in the best case our fitness functions would be placed
in top right corner of the fitness space given in Figure 2.10a. Figure 2.10b roughly
indicates the location of the experimental studies described in the following chapters.
Since our fitness functions are never functional, there are only two dimensions left. As
one can see, we try to keep fitness functions as implicit as possible using, if possible,
only internal variables. In this manner, we not only reduce our preconceptions but we
also give ground for truly open-ended and creative evolution.

In the most reduced case, the fitness function defines solely a general survival cri-
terion of individual agents, such as maintaining its energy level. In order to survive,
individuals have to compete for limited resources and are not selected for specific
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high-level goals. Thus, we abandon extrinsically defined fitness functions that select
individuals which are optimized for a specifically given task (Taylor, 2001).

Bianco and Nolfi define open-ended evolution in the context of ER as follows:

“By open-ended evolution we mean an evolutionary process that leads to a
large variety of qualitatively different solutions and to the development of
novelties, that is, new traits that tend to be retained for long evolutionary
periods and to constitute important building blocks for further evolutionary
stages. Examples of major novelties discovered by natural evolution are:
multi-cellular individuals, new cell types (e.g. the neural cells) and new
organs and systems (e.g. the central nervous system).”

Bianco and Nolfi (2004, p. 228)

However, we have to admit that with the current state of the art in evolutionary
robotics the evolutionary development of novel components within a robot itself can
not be realized. This is one reason why we can not expect cognition as defined by
Maturana and Varela (1980) (see discussion in Section 2.3, p. 39). However, even with
the systems we have nowadays, as limited and simple they are compared to natural
organisms, we can expect the emergence of novel, unexpected, and creative behaviors.
Bianco and Nolfi (2004) identified three major factors necessary to promote open-ended
evolution:

• Favorable organization of the evolving individuals. This point refers to
the development of novel phenotypic characteristics not only as a result from the
selection criteria but also from the current organization of evolving individuals.
As we said, the only structural changes we consider here are changes at the
neural level. Thus, we can not expect the emergence of new behaviors which do
not exclusively increase the performance of evolving individuals with respect to
a given selection criterion. However, as we will see especially in Chapter 6 and 7
novel and unexpected neural mechanisms do emerge.

• Changing environmental conditions. This brings us back to the fourth prob-
lem Jin and Branke (2005) defined for the evaluation of fitness functions (see Sec-
tion 2.5.4, p. 59). In the context of open-ended evolution, changing environments
are not a problem, actually they are a prerequisite. This distinguishes open-ended
evolution from a mere optimization process. In an open-ended scenario individ-
uals will never converge to a specific predefined optimum. In the most desirable
case, evolving individuals are part of an ecosystem where their behavior is not
only reciprocally coupled with the environment, but also with other evolving in-
dividuals or species. We can now return to the concept of structural coupling
proposed by Maturana and Varela (1987) (Section 2.3, p. 40). Permanent mu-
tual perturbations between individuals and individuals and their environments
trigger structural changes in all interacting systems. Thus, individuals and envi-
ronments underlie a continuous development which does not converge toward a
specific steady state. The only steady state individuals strive toward is the main-
tenance of their organization which guarantees their survival and reproductive
success.
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In this thesis, environmental conditions do not change as a consequence of struc-
tural coupling. The only way in which environments change is due to us. We
will change the environmental conditions when individuals reach a certain level
of behavioral complexity. For instance, in Chapter 6 we investigate the evolution
of cooperative foraging in a single group of homogeneous agents in an environ-
ment with limited resources. Once individuals are successful in surviving in this
environment, we introduce another group of agents which now compete for the
same limited resource. At the same time we enrich the environment by addi-
tional qualities of energy supply. We then focus on how the behavior changes
when specific aspects of the environment are changed.

• Implicit and general selection criteria. We think that is the most important
factor to promote open-ended and creative evolution. That is why it will be a
focal point of this thesis (see Figure 2.10b). In fact, the more general and the
more implicit fitness functions are designed the more novel and creative behaviors
we can expect to emerge from an evolutionary process as we will see in Chapter 6
and 7.

2.6 Summary

At the beginning of this chapter we motivated the experiments of this thesis by biolog-
ical research on cooperation and communication. We clarified that there is a need for
a complementary approach. The unified methodology proposed here aims at investi-
gating cooperative behavior based on communication from three different perspectives:
the cybernetic perspective, the dynamical systems perspective, and the evolutionary per-
spective. The research presented here deals with abstract models of: simple animal-like
behaviors, recurrent neural networks, and artificial evolution. The motivation for these
abstractions can be summarized as follows:

• Why robots?

– They keep our focus on complete systems which may be simplified, but not
idealized.

– They allow the exploitation of sensory-motor feedback loops.

– They are grounded in the real world.

• Why RNNs as dynamical systems?

– RNNs are composed of simple elements, and the interactions between these
elements embedded in a situated body allow the exploitation of a rich dy-
namical repertoire for adaptive behavior.

– They reject the need for explicit knowledge about the world.

• Why evolution?

– Evolution reduces our preconceptions about particular behavioral aspects
and their underlying mechanisms.
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Figure 2.11: The coupling between an individual, its environment, and other
individuals.

– It allows the emergence of truly novel and creative behavior.

Here, special attention is directed toward the development of open-ended evolution-
ary scenarios which may generate sophisticated cooperative behavior while transferring
the perspective during this developmental process from us, the observer, to groups of
autonomous situated agents.

Once such behaviors have evolved, the simplifications or abstractions we made about
the complexity of an individual, its nervous system, and its environment, should enable
us to investigate the underlying mechanisms and the structural coupling between an
individual and its environment, including other individuals. The different levels of
coupling we are interested in are illustrated in Figure 2.11.

We are interested in the connection between the dynamical processes, internal to
an agent, and the resulting behavior and how this behavior influences the environment
with which the agent is reciprocally coupled through the sensory-motor loop. However,
agents do not only interact with their environment, they also interact with other indi-
viduals, either indirectly through the environment or directly through communication.

At the end of this thesis, we will show how it is possible to generate social behavior,
which include aggressive interspecific and cooperative intraspecific signaling, with an
rather unconstrained evolutionary process. Even though the behaviors by themselves
are still far away from the complexity of natural species, they are, to our knowledge, at
the edge of current artificially generated robotic behaviors. And the main contribution
of this thesis is that we can explain at every level, from individual neuron dynamics to
interactions in robot groups, how and why the social behavior is generated (proximate
and ultimate explanations), thus, turning seemingly complex behaviors into compli-
cated and thereby understandable behaviors.





Chapter 3

Cooperation without explicit
communication channels

“Some people say that point attractors are boring and nonbiological; others
say that the only biological systems that contain point attractors are dead
ones. That is sheer nonsense from a theoretic modeling point of view,
as it ignores the crucial issue of what fixed points refer to. When I talk
about fixed points [. . . ] it will be in the context of collective variable
dynamics of some biological system, not some analogy to mechanical springs
or pendula.”

Scott A. Kelso (1995, p. 53)

3.1 Introduction

Many biological examples, such as ant societies (Wilson, 1971) or schools of fish (Ca-
mazine et al., 2001), exhibit complex collective behavior patterns while the behavioral
capabilities of each individual seem rather simple, compared to the global behavior of
the group. Such societies are highly decentralized and often the rules which determine
the interactions among conspecifics are rather simple and locally limited. Especially
for insect societies it is well known that communication heavily relies on implicit in-
formation sharing: Individuals communicate by modifying their local environment, a
mechanisms known as stigmergy (Grassè, 1959; Theraulaz and Bonabeau, 1999). De-
centralization and locally limited interactions make such societies highly robust and
flexible to disturbances, like predation, individual failures, and environmental changes.

In this chapter we investigate concrete examples which realize a decentralized con-
trol approach in the context of evolutionary robotics experiments while fulfilling our
methodological demands discussed in Chapter 2. We discuss why and how distributed
control facilitates robustness and resilience to individual failures compared to cen-
tralized organizations. We see how evolution develops control systems which heavily
integrate feedback loops with the environment and how this results in a surprising
simplicity at the individual neural control level. Eventually, we discuss how indepen-
dent autonomous agents interact with each other to cooperatively accomplish a global
function even though they lack the ability to directly communicate with each other.

69



70 Chapter 3. Cooperation without explicit communication channels

3.2 A minimalistic robot for the study of coopera-

tive behavior

Originally developed by Julius Popp as an art object, the robot micro.eve will serve
us in the following as a minimalistic physical model to investigate the emergence of
cooperation. The robot, shown in Figure 3.1, is a solid metal ring placed on two
supporting rollers. Five movable arms are connected to this ring. A servo motor is
located in each arm which allows active movements by translating the arm’s center of
mass. To achieve a steady rotation of the ring a coordinated motion of these five arms
is needed.

We might compare this behavior to a mouse jogging in a running wheel. By running
in one direction the mouse dynamically translates the overall center of mass of the
wheel-mouse-system to one side which keeps the wheel spinning. Similarly, we can
consider the ring of the robot as the environment for the five movable arms, our agents
in this case. In contrast to the mouse, our robotic arms are physically connected to
the ring. Imagine five mice roped, equally distributed, to one running wheel. If they
still want to move the wheel in this uncomfortable situation, they have to move their
bodies back and forth because they are not able to run anymore. And they have
to coordinate these movements to achieve a steady rotation of the ring. Most likely
because of the very unnatural experimental setup, you will hardly find such a behavior
of mice occurring naturally. But one might train them to do so by providing positive
rewards for a steady rotation of the wheel. In our robotic system a specifically designed
fitness function will represent such a reward, although, to be correct, we should call it
the selection criteria of an evolutionary process.

Why is this rather simple system of interest? First of all, because it is an au-
tonomous robot and, thus, fulfills our demand for a complete system. Second, it is
simple and we, therefore, expect that only a structurally small control system is neces-
sary which allows a thorough analysis of the overall system. Third, and that is the main
motivation for the following experiments, it is obvious that only a coherent behavior of
the subsystems (i.e., individual arm movements) can achieve a functional global behav-
ior (i.e., a steady rotation of the ring). Therefore, this system allows us to study the
evolutionary development and behavioral mechanisms of three fundamentally different
control approaches.

In the first approach, the rules which determine the interaction between the subsys-
tems emerge from a single RNN, that is, from a centralized control which is responsible
for realizing the global function of the system by correct associations between the sen-
sor and motor units of the robot. Then, to realize a shared responsibility a distributed
control approach is pursued. There, each arm is considered as an autonomous agent
having its own control system which has only access to local sensor information and
which can also act only locally. Such a distributed system is realized in two different
ways. We will discuss a homogeneous system, that is, every agent has an identical con-
troller, and a heterogeneous system, where every agent can have a different controller,
which may result in a division of labor.

High fault-tolerance and robustness is an intrinsic property of biological self-organized
distributed systems (Camazine et al., 2001; Resnick, 1994). In this context, in our ex-
periments we expect better performance of decentralized systems compared to central-
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Figure 3.1: The artbot micro.eve. Left: physical implementation; right: simulated
model. Each arm is connected to the main body by four joints, three are passive and
one is actuated (shown for a single arm). There are five hall sensors, each located
between two consecutive arms (only one is shown), which emit a peak when they pass
the magnet at the bottom of the robot.

ized organizations. But do we also find a significant difference between homogeneous
and heterogeneous distributed systems? And how is cooperation carried out between
autonomous agents in a distributed system? Of special interest is the realization of in-
teraction rules because individual agents in a distributed system can not communicate
with each other via dedicated channels. Do homogeneous agents interact differently
than heterogeneous agents? If so, are there any differences concerning robustness and
resilience?

Thus, even this simple system poses many questions. Their answers will become
relevant for the next chapters and might be of general interest for our understanding
of collective behavior among autonomous agents. Before we try to answer the ques-
tions by concrete examples of evolved control systems, we have to clarify the general
experimental setup first.

3.2.1 Sensory-motor system

The sensory-motor system of the robot consists of five actuators, one motor in each
arm, five potentiometers which measure the actual position of the motors, five hall
sensors, and one gyroscope.

For the following experiments RNNs as described in Section 2.4.1 (p. 43) are
used with the transfer function f(x) = tanh(x). Thus, the output of each neuron is
o ∈ (−1, 1). Therefore, motor and sensor signals of the robot are mapped into this
interval. Note that Ix, Ox, and Hx refer to input, output, and hidden neurons with
index x, respectively; and ix, ox, and hx refer to the corresponding output of these
neurons.
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Motors

The only actuators of the robot are the five arm motors. From its zero position each
motor can rotate about 0.3 radian clockwise and counterclockwise. A clockwise rota-
tion will move the arm closer to the ring periphery (see Figure 3.1). Accordingly, a
counterclockwise rotation moves it closer to the center of the ring. For neural processing
the working range of each motor is linearly mapped to [−1, 1], where −1 corresponds
to a maximal clockwise rotation and +1 to a maximal counterclockwise rotation.

Hall sensors

The sensory system consists of potentiometers in each motor, a gyroscope located
inside the ring, and five hall sensors equally distributed over the ring. Each hall sensor
is located between two arms, respectively. These hall sensors are binary switches
emitting a peak if they pass a magnet placed at the bottom of the ring (see Figure 3.1).
All five hall sensors are merged to one sensory input relative to the arm index, that
is, for each arm the next hall sensor to the right has the index 1. The arm and hall
sensor indices are incremented counterclockwise. The mapping (i, si), where i denotes
the index of the last activated hall sensor and si the according sensor value, is as
follows: (0, 0.0); (1, 1.0); (2, 0.66); (3, 0.33); (4,−1.0); (5,−0.33). Because the output of
the input neuron, which provides the hall sensor information, should be zero if no hall
sensor is activated (i = 0), the use of this discrete mapping was chosen instead of a
monotonic function. Accordingly, within the decentralized control approach each agent
which controls a particular arm has it its own sight on the hall sensory information.

To reduce the amount of input neurons for the centralized control structures the
sight of the first arm is provided as the only hall sensory input.

Potentiometers and gyroscope

The sensor values of the potentiometers, which provide information about the actual
motor position, are linearly mapped to the interval [−1.0, 1.0] according to the mapping
of the motor command signals as described above.

The gyroscope values are transformed to an angular velocity of the ring with a maxi-
mum at 0.5 rounds per second. For the input of the neural network these values are also
mapped to the interval [−1.0, 1.0], where negative values indicate a counterclockwise
and positive values a clockwise rotation.

To both sensor modalities Gaussian noise is added with σ2 = 0.1 (i.e., 5% noise).

3.2.2 Fitness function

All evolutionary developed RNNs are evaluated on the following fitness function:

F = |ω|

(

1 −

∑n

t=0
|ω(t) − ω|

2n

)

with ω ∈ (−1, 1), (3.1)

where n is the number of evaluation time steps and ω the angular velocity of the ring
represented by the mapped gyroscope sensory input of the RNN. Therefore, fitness
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values are always between 0.0 and 1.0. The left term (|ω|) rewards a high mean velocity
and the right term rewards a harmonic rotation.

This is an implicit fitness function based on internal variables (recall Section 2.5.5,
p. 63), that is, no global knowledge is used. Parameters of the fitness function are solely
determined by sensor information that are accessible by the agents. It does define
neither how the arms have to move individually nor how they have to interact with
each other to coordinate their behavior. Thus the rules which define the interactions
between the neural elements at the individual control level and between the arms at
the global behavior level are not predefined but they are expected to emerge from an
evolutionary process.

To avoid a possible dominance of specialists (refer to Section 2.5.4, p. 59) RNNs are
evaluated on 20 trials with different, randomly chosen (uniformly distributed), initial
conditions. These are the ring rotation (varied in the full range of [−π, π]) and the
motor position of each arm actuator (varied within the complete working range). The
resulting fitness value is the mean fitness of these 20 evaluation trials. One evaluation
trial lasts 1, 200 time steps (corresponds to 120 seconds of real time).

3.3 One robot, one controller

The most intuitive way to evolve RNNs for the robot micro.eve is to use all the provided
sensory information and motor control commands as inputs and outputs of a single
RNN, respectively. Before we can discuss the advantages of decentralized solutions
with respect to robustness, we need to clarify the neural mechanisms of an evolved
centralized neural network first (and of decentralized architectures later).

3.3.1 Neural mechanisms

A successfully evolved centralized RNN is shown in Figure 3.2a. Figure 3.2b shows the
motor output signals of each motor neuron controlling a particular arm and the input
neuron signals of the hall and ring velocity sensors. We identify one motor neuron, O5,
exhibiting period-2 oscillations. These oscillations are due to an over-critical negative
self-connection 1 (Figure 3.2a) and persist for all the time (Figure 3.2b).

O2 and O4 are mainly controlled by the hall sensory input. A strong synapse
projects from O4 to O1. Thus, O1 is indirectly driven by the hall sensor, too. O3
gets a strong input from I3 which is directly influenced by the output of O1. O3
is, therefore, also strongly, even though again indirectly, influenced by the hall sensor
activation.

What does this mean for the behavior of the robot? At the beginning the hall
sensor is inactive. Hence, the signal of the according input neuron is zero. Referring
to Figure 3.2b, most of the motor neuron signals (O1-4) stay or fluctuate with small
amplitudes around an output value according to their bias terms and/or the input
of other neurons. Therefore the overall center of mass of the ring is translated once
when these motors move away from their initial positions. Thus, the ring may rotate a

1By over-critical we mean a weight configuration leading to dynamics beyond single fixed point
attractors (for details see Pasemann, 1995a, 2002).
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Figure 3.2: Centralized control. a: Global RNN controlling the robot micro.eve (cf.
Figure 3.1). b: Output activity of selected neurons (see text for details).

little depending on the starting conditions. If the initial motor movements are strong
enough, the resulting ring rotation may suffice to activate a hall sensor if this is near
the magnet (cf. Figure 3.1). If this initial movement is insufficient to trigger one
hall sensor, the rotation would stop because most of the motor signals (O2 and O4
directly, O1 and O3 indirectly) depend on this input and the according arms would
not move anymore (output oscillation with small amplitudes are almost completely
compensated by friction and inertia). In this case, due to the period-2 oscillations with
a high amplitude of motor neuron O5, arm 5 oscillates accordingly, although with a
smaller amplitude (because of friction and inertia, see Figure 3.3). This will move the
ring very slowly, rather in rapid successive small steps, until the hall sensor becomes
activated which changes the output of neurons O1-4. Than the rotation starts and
is maintained as it can be deduced from Figure 3.2b (compare motor neuron outputs
with the development of the ring velocity).

For most of the time, we observe two pairs of output neurons producing opposed
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Figure 3.3: Influence of inertia and friction. Signal from motor neuron O5 (cf.
Figure 3.2) and the actual motor position measured by the according potentiometer.
Because of inertia and friction, the motor oscillates with a much lower amplitude
compared to the according motor neuron output.

signals (O1 & O2 compared to O3 & O4) due to positive and negative feedback from
the hall sensory input. This means that two arms translate their masses to the center
of the ring while, at the same time, two other arms translate their masses to the
ring periphery and vice versa. This action maintains the ring rotation by dynamically
translating the overall center of mass to one side.

3.3.2 Main characteristics

To this point, we should keep in mind two major characteristics. First, the behavior
of each single arm is mainly determined either by intrinsic dynamical properties of
the neural network or by agent-environment interactions. Second, as a consequence of
evolving unconstrained2 centralized control architectures, we find direct couplings, via
synaptic links, between the motor neurons which control the individual arms.

Intrinsic neural dynamics and agent-environment interaction

Two main mechanisms are responsible for two different sub-behaviors, respectively.
First, oscillations are important to initialize the rotation. These oscillations are due
to intrinsic dynamical properties, such as the period-2 oscillations of O5. Second, to
maintain a steady rotation of the ring opposing arm movements are necessary as they
are caused by the activity of O1-4. This behavior results from the interaction with the
environment, in particular from a strong feedback of the hall sensor whose changes are,
in turn, a result of the coordinated arm movements.

Recalling Section 2.3 (p. 39), we can already find two types of structural coupling
in this simple, but complete system: The coupling of an agent with its environment,
and the coupling intrinsic to an agent’s control architecture (i.e., neural coupling).

2By unconstrained we mean here that RNNs are not restricted concerning the evolutionary devel-
opment of their topology, that is, how neurons are connected with each other.
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Figure 3.4: Robustness of centralized control. A breakdown of each arm was
simulated by setting the output of the corresponding motor to zero. X-axes represent
different starting conditions (i.e., initial rotation of the ring). Y-axes represent the cor-
responding performance (see text for details). Basically, black indicates the success of
the robot in handling different starting conditions while a particular arm is deactivated.

Direct coupling via synaptic links

To return to our example at the beginning about mice roped to a running wheel, we
can think about the centralized RNN in our robotic example as a human operator
who controls all muscles of the five mice by observing the reaction of each mouse and
the running wheel. In our case the human operator is represented by the centralized
control system.

If we recall the structure of the discussed RNN (Figure 3.2a), we see that some motor
neurons which control the individual arms are tightly coupled via synaptic links. We
find such couplings, for instance, between O4 and O1 or between O3 and O1 via I3.

Are there any consequences of such a tight coupling with respect to behavioral
robustness?

3.3.3 Robustness

To answer the question at the end of the previous section we conducted lesion experi-
ments to test for behavioral robustness. Robustness means the ability to compensate
the failure of individual parts which constitute the system. In this case, these parts are
the individual arms of the robot. Thus, we lesioned each arm by fixating the output
of the corresponding motor neuron to zero simulating a motor break down. We then
measured the performance of the lesioned system according to Equation 3.1. Note, it
is nearly impossible to reach a maximal fitness value of 1.0 due to the time needed
to initiate a rotation. During this initialization the angular velocity cannot be con-
stant. Therefore, the first ten seconds of an evaluation cycle did not contribute to the
measured performance.

Performance was measured under different starting conditions. The initial rotation
of the ring was varied within [−π, π] in steps of 1◦. In each step 20 trials, each last-
ing 1, 200 time steps, were conducted. In each trial the initial motor positions were
randomly varied within their complete working range (uniformly distributed). The
average performance of these 20 trials is plotted in Figure 3.4 over the initial rotation
of the ring.

If the system is not lesioned, we can see that it performs almost perfectly over
the whole range. Strikingly, the system fails completely when either arm 1 or arm 4
is lesioned. Why is it such a disaster? The answer lies indeed in the tight synaptic
coupling discussed earlier. A lesion of O1, the motor neuron which controls the first
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arm, indirectly also effects O3 because O3 receives its strongest synaptic input from
I3, the motor position sensor of arm 1 (cf. Figure 3.2a). Similarly, a lesion of O4
has a direct effect on O1. In these cases the lesion of one motor neuron also affects
the function of an additional motor neuron. At the behavioral level, the failure of
two arms can not be compensated by the remaining two motor neurons responsible for
maintaining a steady rotation (recall that O5 was important to initialize the rotation,
but not for maintaining it). The functional loss of only one arm, as it is the case for
lesions of motor neuron O2 and O3, can be compensated much better (see Figure 3.4).

With a lesion of O5, the neuron responsible for the initializing movements, about
half of the initial conditions can still be handled. As we said previously (Section 3.3.1,
p. 73), the oscillations of this neuron are important if the initial movements of all arms
are insufficient to activate the hall sensory input. Thus, if a hall sensor is already close
to the magnet at the bottom of the ring (recall Figure 3.1), the oscillations of arm 5
may not be needed to initialize a rotation.

It is important to note that these lesions did not occur during the evolutionary
development. Of course, to improve the robustness of our system we could include
such individual failures in the evolutionary process. However, we have to consider two
things. First, it is almost impossible to foresee every possible failure which can occur in
a robotic system. Second, even when we try to implement as much failures as we may
predict, this will tremendously slow down the evolutionary process because individuals
have to be tested under many different conditions.

To summarize this section about centralized control, the lack of behavioral robust-
ness with the presented centralized RNN is mainly due to a tight synaptic coupling
within the network. Failure of single neurons may propagate through the network with
effects on the function of other neurons. We have seen how small disturbances can
have large effects. Lesion of either neuron O1 or O4 resulted in a total loss of function.
However, the same disturbances applied to the other motor neurons resulted only in a
partial loss of function. The reason is rather obvious. Even though the elements of the
control system, the neurons, are identical, the interactions between distinct neurons
by synaptic links are different. Therefore, different motor neurons do not contribute
evenly to the global behavioral function and that is why the failure of some neurons
causes dramatically more damage than the failure of others.

The use of decentralized, that is, distributed, control architectures omits such a
close coupling. The questions are then:

• How can unconnected autonomous systems solve a cooperative task?

• Are such systems more robust to individual failures than centralized control sys-
tems?

The next two sections will approach these questions by concrete examples of two
different kinds of decentralized control systems which are either homogeneous or het-
erogeneous.
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3.4 Homogeneous decentralized control

As we figured out in the previous section one main characteristic of the centralized
control is the synaptic coupling between motor neurons which control different arms
of the robot. The main purpose of this section is to show how, instead of evolving one
centralized RNN, a distributed homogeneous solution can be developed. Returning
to our thought experiment, there is no human operator anymore. Five identical, for
instance cloned, mice have to rotate the running wheel by its own. They cannot
communicate directly with each other. They even do not have any knowledge that there
exist other mice with whom they have to cooperate to fulfill the task. Consequently,
each individual can only act on its environment, the running wheel, and can sense
changes of this environment which possibly result also from actions of other individuals.

Similar to the cloned mice in our thought experiment, the control systems of the
following experiments are homogeneous. All arms are controlled by identical RNNs.
However, each arm is an autonomous agent. As we already said, such an agent has
only access to local sensor information and no knowledge about the other agents.
Given such a system, will we find similar behavioral mechanisms as for the centralized
control, in particular oscillations to initialize the rotation and opposed arm movements
to maintain the rotation steady? If so, how are they realized even though all five RNNs
are identical and not directly connected to each other? In other words, how can these
two different functions be executed in a homogeneous distributed system?

3.4.1 Experimental differences

The main difference to the centralized system is that one RNN has only three sensory
inputs which are: the current position of the motor it controls, the relative information
about the hall sensor state (as described in Section 3.2.1, p. 71), and the angular
velocity of the ring to which it is connected.

The evaluation was similar as described before. We used the same fitness function
to determine the selection criteria (see Equation 3.1). The only difference was that
we copied one RNN from the evolving population five times to control each arm. The
connection between these RNNs could be realized through the environment solely, that
is, the action caused by one RNN could influence the behavior of the ring which, in
turn, could be sensed locally by other RNNs.

3.4.2 Neural mechanisms

Figure 3.5a shows a successfully evolved solution. Strikingly, only the hall sensor
information is used. Thus, the whole distributed control system relies only on one
sensor modality. Considering the motor output of each module (Figure 3.5c), we indeed
find the same two main behavioral mechanisms as discussed for the centralized system.
At the beginning, when the hall sensor is inactive, we see period-2 oscillations of each
motor output. We find a period-2 attractor in the system which is due to the over-
critical negative self-connection at hidden neuron H1 (see Figure 3.5a). The output
of H1 is inverted by the negative connection from H1 to O1. Note, that in contrast
to the centralized control, where only one arm exhibits these initializing oscillations,
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Figure 3.5: Decentralized homogeneous control. a: The RNN used for a decen-
tralized homogeneous control of micro.eve. b: Bifurcation diagram for o1 while varying
i1. Vertical dashed lines indicate all possible states of i1 during robot-environment in-
teraction. c: Neural output of I1 and O1 when this RNN is applied to each arm (see
text for details).

here each arm oscillates because the RNNs are identical and receive the same sensory
input, at least at the beginning when the hall sensor is still inactive.

As soon as the ring rotates, the hall sensor becomes the main driving force. It
modulates the oscillations through the strong positive connection between I1 and O1.
The bifurcation diagram in Figure 3.5b shows how the hall sensory input influences the
oscillation at O1. The vertical gray lines represent the possible states of i1. Comparing
Figure 3.5b with the actual neural activity in Figure 3.5c we see that the points of the
periodic orbit vary depending on the sensory state of i1 which modulates the amplitude
and the mean of the oscillation. It is important to note that this behavior results from
a reciprocal coupling with the environment : i1 changes as a result of the oscillation
modulation at O1 which, in turn, depends on the state of i1.

Again, we can identify opposed arm movements (Figure 3.5c) although they are not
as clearly distinguishable as in the centralized control. However, we can group arm 1
and 3 together opposed to arm 2, 4, and 5. Here, opposed arm movements result from
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Figure 3.6: Robustness of decentralized homogeneous control. A motor break-
down of each arm was simulated and performance over various initial conditions was
measured (see also Figure 3.4).

the fact that each arm has its own sight on the hall sensory input (refer to Section 3.2.1,
p. 71).

Thus, we identify the same two behavioral mechanisms as in the centralized system:
oscillations to initialize a rotation of the ring (caused by intrinsic dynamical properties)
and opposed arm movements to maintain a steady rotation (caused by the strong
feedback from the hall sensor).

Astonishingly, this very small sized neural network realizes all necessary sub-behaviors
if applied to each arm. In contrast to the tight synaptic coupling of the centralized
RNN, each arm acts autonomously, there are no links between them. Communication
occurs only indirectly as a result of the reciprocal coupling with the environment on
which each single module acts.

Now that we have answered the question about how unconnected autonomous ho-
mogeneous agents can solve a cooperative task, we turn to the question whether such
a decentralized system is more robust to failure of individuals than the discussed cen-
tralized control architecture.

3.4.3 Robustness

To test the system with respect to its behavioral robustness to failure of single individ-
uals, we conducted the same lesion experiments as described for the centralized control
system (refer to Section 3.3.3, p. 76).

The results are shown in Figure 3.6. Without any lesion we can see that in some
situations the system does not perform as well as in others. The drop in performance
is a regular pattern as can be seen from the saw-tooth shaped performance curve. The
problem is the homogeneity of the system. We figured out that at the beginning all
arms are oscillating and that these oscillations are important to initialize the rotation
by activating the hall sensory input. This process can take a long time if an arm is
initially located at the very bottom of the ring, right above the magnet (cf. Figure 3.1).
In this position, the oscillatory movements of the two arms on the left side are canceled
out by the oscillations of the two arms on the right side. That is, during the initial
oscillations, all arms simultaneously move their mass either to the center of the ring
or to its periphery, because the system is homogeneous. If one arm is located at the
bottom, the movements of the right pair and the left pair compensate each other.
Thus, the overall center of mass of the whole system is actually not moved along the
horizontal axis. Only because the arm at the bottom does not move up and down in a
straight line, there is still a little horizontal translation of the overall center of mass and
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the ring moves in very small successive steps until the hall sensor becomes activated.
In this situation the initialization of the rotation takes much longer because the masses
of the arms are equally distributed to the left and right side of the ring and one arm
is located at the bottom of the ring. This is also the case if one arm is at the top of
the ring. However, the latter situation is resolved much faster because it is an unstable
situation comparable to an inverted pendulum. Only small disturbances are required
to move the system away from this unstable equilibrium.

The symmetry in the mass distribution of all arms explains the regular drop of
performance if no lesion is conducted (Figure 3.6). This also explains why the system
performs even better if lesions are conducted. It performs better in every situation
where one arm is at the bottom, because either on the left or on the right side one arm
is not moving due to its lesion. This symmetry breaking facilitates the performance
except of the situation where the lesioned arm is located at the bottom of the ring.
In this narrow range it fails completely because the arm at the bottom does not move
(Figure 3.6). There, the symmetry is even enhanced and the oscillations of the pair of
arms on the right side compensate exactly for the oscillations of the arms on the left
side.

To this end, it is important to emphasize that it does not matter which part of
the homogeneous system is disturbed. Because every part contributes evenly to the
global function, the effect is always the same: a loss of function over a narrow, well
defined, range of initial conditions. This is fundamentally different to the centralized
system, where disturbances applied to different parts effect the overall function quite
differently, as we have seen in Section 3.3.3 (p. 76).

Compared to the centralized control architecture, we obtain two major advantages
in the homogeneous system. First, the neural networks are surprisingly small and at
the same time able to integrate the needed sub-behaviors. Second, the system is much
more robust to individual failure because the active parts are not as tightly coupled
as it is the case in the centralized RNN. Nevertheless, we also figured out one draw-
back. Since all RNNs are identical, they act identical given that they receive the same
sensory information. Because the robot in itself is symmetric, this symmetric behavior
can be disadvantageous for the function of the robot. The next section introduces a
heterogeneous system which breaks the symmetry at the control level and, therefore,
may perform better.

3.5 Heterogeneity and division of labor

So far, we have seen that the two necessary behavioral mechanisms, oscillations and
environmental feedback integration, realized by a centralized control architecture can
also be achieved by a decentralized homogeneous control system. There, each control
unit is autonomous, that is, they act independent of each other. The only interaction
between them can occur through the environment. For the homogeneous system we
saw that each autonomous agent responds similar if each gets the same sensory input.

For the following experiment we used a co-evolutionary strategy to evolve heteroge-
neous control architectures. That is, each of the five modules can evolve independently
and may, therefore, develop a different neural structure or even a different function.
Recalling the findings of the previous two examples, the most intriguing questions are:
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Will division of labor evolve in a heterogeneous group of autonomous agents that have
to cooperate? If so, what are the neural differences between agents which may fulfill
different functions? And what are the advantages of such a system compared to a
centralized system or a decentralized homogeneous system?

3.5.1 Co-evolutionary setup

To be decentralized, each agent (i.e., each arm) is controlled by an autonomous RNN.
Similar to the homogeneous control experiments, the sensory input was reduced to one
relative hall sensor input (as previously described), the ring velocity, and the arm’s
potentiometer. Again, a single controller has one output neuron controlling the motor
signal of a specific arm.

To develop heterogeneous agents, we applied a rather simple co-evolutionary strat-
egy (Wischmann et al., 2005; Hülse et al., 2004). In contrast to the homogeneous
control experiments, where one RNN was copied to each arm, here, every agent was
evolved in a separate population. The evolutionary process for a single population was
the same as for the evolution of the centralized and distributed homogeneous control
structure, that is, every population had its own selection, reproduction, and variation
operators (recall Section 2.5.3, p. 56). For the sake of simplicity (and because it turned
out to be efficient) we used the same parameter values for all populations. However,
RNNs in each population could develop differently due to the stochastic nature of the
evolution operators.

In each population individuals were sorted according to their fitness values, starting
with the highest. The fitness value determined the number of offspring each individual
got. All offspring were appended at the end of the sorted list of parents who got at least
one offspring. For evaluation, one agent of each population was selected and applied to
the arm which corresponded to its population, that is, a group of five agents, each from
a different population, was evaluated together at the same time. The selection of the
group members was rank based, related to the fitness value, that is, agents taking the
first place in each population were evaluated together, then the agents on the second
place and so on. In such a way the evaluation of i populations needs j evaluation
cycles, where j is the number of individuals within the largest population.

The fitness function (Equation 3.1) regarded the performance of a group of agents,
which had to cooperate. Therefore every agent within one group got the same fitness
value, regardless whether it gave the most or even the least contribution to it (see also
Section 2.5.4, p. 61).

3.5.2 Structural diversity

Since five agents are needed to control the robot micro.eve, we needed five co-evolving
populations. Figure 3.7 sketches the fitness development and the structural changes
over 25 generations. The right hand pictures show the structure of the best performing
individuals of each population at generation 25.

The example shown in Figure 3.7 illustrates how different structures arise during
the course of evolution and how the costs for neural elements influence the size of the
resulting networks (see also Section 2.5.4, p. 59). As one can see in Figure 3.7a around
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Figure 3.7: Structural changes within co-evolving populations. Development
of the average fitness (a) and the average number of hidden neurons and synapses of
all individuals in each population (b,c). Vertical dashed lines indicate the generation
where costs for structural elements were applied. d: Structure of the best performing
RNNs from each population at generation 25.

generation ten the maximal fitness level is almost reached by the best performing
group. At this point we introduced costs for neurons and synapses. In Figure 3.7b,c the
development of the average number of hidden neurons and synapses for all individuals
in each population is shown. Compared to Figure 3.7a, we see that a high fitness level
can be maintained, while the networks get smaller. Eventually, we get smaller networks
with the same performance as larger networks which occur at the beginning where we
did not restrict their growth by structural costs. Note, costs were not used right from
the beginning to bootstrap the system (recall Section 2.5.4, p. 59).

The introduction of costs leads to a decrease in number of hidden neurons and
synapses in each population. We can see that this average decrease is less strong in
population 3 compared to the other populations. This trend is also reflected in the
different structures of the RNNs with the highest performance taken from generation
25 (Figure 3.7d).

At the behavioral level we already detect a division of labor among the networks
shown in Figure 3.7d. The networks from population one and three are important to
initialize the rotation of the ring while the other networks maintain a steady rotation.
The next section will discuss in detail the neural mechanisms behind such a division
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Figure 3.8: Decentralized heterogeneous control. a: Group of heterogeneous
RNNs controlling the single arms of micro.eve. b: Outputs of selected neurons (see
text for details).

of labor among even smaller networks.

3.5.3 Neural mechanisms

Figure 3.8a shows a decentralized group of evolved heterogeneous RNNs. If we com-
pare the motor output of each module (Figure 3.8b) with the motor outputs of the
centralized RNN (Figure 3.2b), we find surprising similarities. Here, module 4 exhibits
period-2 oscillations all the time and, similar to the behavior of a single motor neuron
in the centralized RNN (cf. Figure 3.2), this is caused by an over-critical negative
self-connection. We also find opposed arm movements between module 1,2 and module
3,5 (Figure 3.8b) caused by the strong influence of the hall sensory input (see also
Figure 3.8a). As we pointed out for the centralized and decentralized homogeneous
control, these opposed movements are necessary to maintain a steady rotation. And
to initialize the rotation, oscillations with high amplitude are important when the hall
sensory input is still inactive. Here, we observe such oscillations in module 4 and 1.

Thus, we find the same sub-behaviors as discussed for the other two control systems.
However, the different functions are now realized by different networks. That is why
we indeed can call this a division of labor. The function of module 1-3,5 are important
to maintain a steady rotation and the function of module 4 and 1 to initialize this
rotation.
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Figure 3.9: Agent-environment coupling. Module 1 from Figure 3.8 realizes a reflex
oscillator because of the environmental loop and its internal connections (see text for
details).

If we now take a closer look at the output of module 1, we observe high ampli-
tude oscillations when the hall sensor is still inactive (Figure 3.8b). However, these
oscillations are not caused by the dynamics of the network. There are no recurrent
connections which are needed to realize periodic attractors; it is a simple feed forward
network (cf. Figure 3.8a). The next section will discuss the cause of these oscillations
which, as we will see later, are a key for the behavioral robustness of the overall system.

3.5.4 Agent-environment coupling

In the previous section we have seen that the motor neuron of module 1 oscillates even
though there are no internal dynamics which can cause this. Figure 3.9 illustrates the
actual mechanism. Oscillations are a result of the loop through the environment. The
oscillations become only relevant when the hall sensory input is zero (as discussed in
the previous section). In this case, the only sensory input is the potentiometer signal
(i3 in Figure 3.9) of the motor which is controlled by this module. The output of O1 is
sent to the servo motor, and due to the motor’s inertia and friction the desired position
is approached with a certain delay. The current position of the motor is fed back to
the network through I3 which has a strong negative connection to O1. Therefore, O1
produces signals with an opposite sign to the current motor position.

A neuro-module with this property is referred as a neural reflex-oscillator. These
kind of oscillators have also been found to be important for controlling the gait of
walking machines where no central pattern generators were required to support periodic
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Figure 3.10: Agent-agent and agent-environment coupling. Oscillatory outputs
of module 1 and 4 (cf. Figure 3.8) initialize movements of the ring. These movements
soon lead to the activation of the hall sensor input of module 5 (cf. Figure 3.8), which
than changes its motor output and, consequently, supports a steady rotation of the
ring, which will than, in turn, influences the oscillatory behavior of module 1 as shown
in Figure 3.8b.

single leg motions (von Twickel and Pasemann, 2007).
Thus, oscillations in module 1 are caused by the environmental loop. As soon as

the ring starts to rotate, the hall sensor becomes active and due to the much stronger
connection from the according input neuron (I1), oscillations are suppressed depending
on the strength of i1 (see Figure 3.8b). Therefore, this single module is functionally
similar to the homogeneous RNN discussed in Section 3.4.2 (p. 78). Module 1 exhibits
high amplitude oscillation while the hall sensory input, i1, is inactive. As soon as
I1 becomes active the motor output is mainly driven by i1 and the module, therefore,
contributes to the needed opposed arm movements. The difference to the homogeneous
system is that the initializing oscillations are caused by the environmental loop rather
than by intrinsic neural dynamics.

This is indeed a rather simple but even though a very vivid example of how the
motor actions of an agent can change the state of its sensors which then, in turn,
changes its behavior. It is a striking example of an agent reciprocally coupled to its
environment. In the next section we will see that identifying such couplings is also
important to explain coordinated behavior among different agents.

3.5.5 Indirect agent-agent coupling

How do the heterogeneous agents now coordinate their behavior even though there are
no direct links between them? The underlying mechanism is a result of the coupling
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Figure 3.11: Robustness of decentralized heterogeneous control. A motor
breakdown of each arm was simulated and performance over various initial conditions
was measured (cf. Figure 3.4 and 3.6).

between agents through the environment, which we call indirect coupling. Figure 3.10
illustrates how it works.

As we now know, oscillations are important to initialize the rotation of the ring at
the beginning when the hall sensor is still inactive. As we have already discussed, this
is realized by module 1 and 4, as it is shown on the left hand side of Figure 3.10. We
see how module 4 exhibits period-2 oscillations after a short transient period at the
beginning. And the reflex oscillator of module 1 exhibits oscillations of lower frequency.
Both behaviors together move the ring in rapid successive steps until a hall sensor is
triggered which changes the sensory input of module 1-3, and 5. The right hand side of
Figure 3.10 exemplifies how this change of sensor states changes the motor output of
module 5. Due to sensory changes, module 5 starts to contribute to the maintenance
of a steady rotation and to a continuous change of the hall sensory signal which in turn
drives the behavior of all agents, except of module 4 (cf. Figure 3.8b).

Changing the environment, that is, changing the movement of the ring, is induced
by the action of single agents. These environmental changes influence the behavior
of other agents. Thus, agents sense the consequences of other agents’ actions via an
indirect coupling with the environment without having any knowledge about the actual
states of the other agents. That is the fundamental mechanism which coordinates the
behavior among five heterogeneous autonomous agents in our robotic system which do
not have dedicated communication channels.

So far, we have seen three fundamentally different control systems (centralized, and
homogeneous and heterogeneous decentralized architectures). At the behavioral level
we identified similar principles leading to a coordinated behavior of the five different
arms to rotate the ring. Even at the neural level we found similar mechanisms, like the
initializing oscillations and the strong influence of the hall sensor. The major difference
is that in the centralized control some motor units, responsible for the arm movements,
are tightly coupled via synaptic links. Whereas, in the decentralized systems each arm
is controlled by an autonomous agent and agents are only indirectly coupled through
the environment. For the homogeneous case this led to an improvement in robustness
to failures of single individuals. However, we have also seen that homogeneity entails
minor drawbacks because of behavioral symmetry as discussed in Section 3.4.3 (p. 80).
In the heterogeneous system we do not have such a symmetry. Can this facilitate
behavioral robustness?
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3.5.6 Robustness

To answer the question at the end of the previous section we again conducted lesion
experiments as described in Section 3.3.3 (p. 76). Comparing the results shown in
Figure 3.11 with the performance of the centralized system (cf. Figure 3.4) and of the
decentralized homogeneous system (cf. Figure 3.6) we see that, if no lesion is applied,
the heterogeneous systems slightly outperforms the other systems over the whole range
of initial conditions. It also outperforms the other systems when lesions are conducted.
For instance, a lesion of arm 2 does not influence the performance at all. The small
performance gaps observable for lesions of arm 1, and 3-5 are not as straightforward
explainable as the performance gaps observed with the homogeneous system (recall
Section 3.4.3, p. 80). Yet, the basic reason is the same. At certain configurations the
masses of all arms are equally distributed in a way that the whole system is not sensitive
enough to initial disturbances. This prevents the hall sensor from getting activated. As
we said, these disturbances are either the initial movements of all arms away from their
starting positions or oscillatory movements. Compared to the homogeneous systems
(cf. Section 3.4.3), control asymmetry is of minor advantage because different arms
fulfill different functions. Consequently we observe no critical initial conditions in the
non-lesioned case (compare Figure 3.11 with 3.6).

Unlike in the centralized system, the failure of agents who are responsible for the
initializing oscillations has not such a great impact on the performance because here
we have two agents with that property, each compensating the failure of the other.
And as we found it for the homogeneous control system, the autonomy of the agents
is of great advantage. The failure of one agent does not entail a failure of other agents
because agents are only indirectly coupled via the environment on which every agent
acts.

To summarize the issue of robustness, we have to recall that none of the conducted
lesions were part of the evolutionary process. All three control systems perform similar
well under the conditions they were faced with during their evolutionary development.
Most strikingly, when confronted with individual failure the strong robustness of decen-
tralized systems is an intrinsic property because of the autonomy of their constituent
parts and because these parts are only indirectly coupled through the environment.

3.6 Discussion

3.6.1 Environmental feedback loops minimize control com-
plexity

The most striking similarity in all three different control approaches presented in this
chapter is the strong coupling between neural control and the environment. To maintain
a steady rotation all three control types heavily rely on the hall sensory input which
changes according to the action applied to the ring by each arm. This is the only sensor
modality relevant for the sub-behavior of supporting an already initialized rotation.

We also analyzed other, similar efficient, solutions developed by evolution and we
always found the same strong dependence on the hall sensor. Interestingly, from all the
available sensor modalities this is the most reliable one. It is based on binary switches
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which do not have the disadvantage of being noisy like, for instance, the gyroscope
which could also be used to measure the ring rotation. We argue that this may be one
explanation why evolution always selected solutions which utilize this sensory input
the most. Another strong reason is the fact that this sensor actually provides two
different types of information. The rate of change encodes roughly the velocity of the
ring rotation. Additionally, the sensor value also encodes a rough localization, because
the value depends on which of the binary switches was turned on at last.

Thus, the hall sensor information is helpful to decide not only how fast an arm has to
change its position, which depends on the ring velocity, but also in which direction it has
to move, which depends on the current position of the arm within the ring. In contrast,
the gyroscope encodes only information about the velocity of the ring. And because
we enforce evolving neural systems to be as less redundant as possible, it is indeed
reasonable that evolution tends to exploit the most useful sensor information. Because
we will observe this phenomena also in the following chapters, we postpone a discussion
about the reduction of redundancy at the neural level to Chapter 8 (Section 8.2.1,
p. 174), although we should keep in mind that redundancy is abundant in natural
nervous systems. Here, we deliberately enforce such non-redundant neural systems for
the sake of analytical feasibility.

By analyzing the systems at every level we also identified a fundamental property
of recurrent neural networks to be of high behavioral relevance, the property that
they are parameterized dynamical systems (see also Section 2.4.4, p. 49). The RNN
of the homogeneous system vividly demonstrates how the parameters of the control
system, its sensory inputs, modulate the intrinsic dynamics (cf. Figure 3.5 on p. 79).
Oscillations caused by a periodic attractor are modulated by the hall sensory input in
a way that the very same system can exhibit different dynamics. These dynamics are
important for different sub-behaviors, such as high amplitude oscillations to initialize
the rotation of the ring as well as a dynamic amplitude and mean modulation of the
oscillations to maintain a steady rotation. Thus, the neural system is minimalistic in
that it only possesses one kind of periodic attractor which is modulated by the sensory
input. Again, this system is driven by the reciprocal sensory-motor coupling of an agent
with its environment. Thus, this coupling is an integral part of the control system.

Integrating environmental feedback loops in the control system of an agent can
indeed decrease the complexity required at the neural level. A striking example is
module 1 of the heterogeneous control system, discussed in Section 3.5.4 (p. 85). We
observed oscillations in a simple feed forward network which were not deducible from
its intrinsic dynamical properties. They result from the tight sensory-motor coupling
of an agent with its environment. Such phenomena are not an superficial artifact of
our specific robotic system. They were also found in other robotic experiments (for
some examples see Hülse et al., 2007a). In earlier studies we showed how rhythmic
motor signals are produced by the sensory-motor loop to support the walking of an
under-actuated bipedal walking robot (Wischmann and Pasemann, 2004). More de-
tailed investigations of locomotion in walking machines (von Twickel and Pasemann,
2007; Beer, 1995) demonstrated that sensory-motor feedback loops are a fundamental
mechanism to realize rhythmic leg movements. Some studies indeed support the fact
that sensory-motor feedback is not only of utmost importance for locomotion in ani-
mals, especially in insects (Delcomyn, 1999; Ekeberg et al., 2004), but it is also under
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discussion to be important for mental actions (Clower, 1998).

Considering these facts and the findings presented here we may return to and em-
phasize the introductory quote of this chapter taken from Scott Kelso. A control system
which has only fixed point attractors is everything but boring or non-biological. In-
tegrated sensory-motor feedback loops can make the behavior of such systems highly
dynamic and robust. Environmental feedback loops are not only crucial for the be-
havior of an individual but also for the coordination of collective behavior as we will
discuss in the following section.

3.6.2 Cooperation based on indirect communication

In Section 2.1 and at the beginning of this chapter we introduced the concept of stig-
mergy (Grassè, 1959; Theraulaz and Bonabeau, 1999). Stigmergy occurs if the action
of an individual is determined or influenced by environmental consequences of another
individual’s action. It is a form of indirect communication which results in coordi-
nation and regulation of collective activity among many individuals. Specifically in
insect societies many examples are known, where collective behavior results in global
patterns whose realization tremendously exceeds the (cognitive) capabilities of a single
individual. Such examples are, for instance, the construction of highly sophisticated
nest structures in social wasp societies (Theraulaz and Bonabeau, 1995), corps aggre-
gation (Theraulaz et al., 2002) or the optimization of transportation networks in ants
(Buhl et al., 2004). All these examples of self-organized collective behavior have in
common that coherent global patterns emerge from an indirect interaction between
individuals through active modifications of their environment.

In the very same line, we observed that the coordinated behavior of distributed
agents in our robotic system also emerges as a result of indirectly coupled environmental
feedback loops. The action of one arm changes the state of the environment, the ring.
This change is sensed by other individuals who change their behavior too, which then
again changes the state of the environment, and so on. Thus, the environment is the
crucial link between individuals exhibiting cooperative behavior. It is the medium
of communication between the agents. That is why we can consider the coordinated
global behavior as a result of indirect communication, similar to the stigmergic behavior
observed in insect societies.

Therefore, the global behavior, accomplished by our decentralized systems can be
described by the term of indirect emergence. Indirect emergence captures phenomena
which result from the collective activity of either homogeneous or heterogeneous agents
and which require that the interactions between the agents are mediated by active
environmental structures (Clark, 1996). The role of indirect emergence of collective
behavior with respect to flexibility and robustness of an artificial society will be also
discussed in more detail in Chapter 6. Here, we focused on behavioral robustness,
which means the adaptive response to individual failure, which will be the objective of
the following section.
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3.6.3 Intrinsic robustness of decentralized systems

A general characteristic of self-organizing systems is that they are robust and resilient.
An important reason that such systems can efficiently compensate functional failure
of some constituent parts is their redundant and distributed organization (Nicolis and
Prigogine, 1989; Heylighen, 2003).

Non-living self-organizing systems generate fascinating phenomena such as the
spontaneous formation of Bénard convection rolls (e.g., Getling, 1997), the ripple of
sand-dunes (e.g., Nishimori and Ouchi, 1993), or the puzzling patterns in the Belousov-
Zhabotinsky reaction (e.g., Petrov et al., 1993). Compared to these systems or com-
pared to living self-organized systems such as insect societies, fish schools (for a review
see Camazine et al., 2001), or even the human brain (e.g., Kelso, 1995), the robotic
system discussed in this chapter consists of only a very few constituent parts. Never-
theless, we also found an intrinsic robustness of decentralized systems compared to a
centralized organization.

By testing our different control approaches for robustness to individual failure we
figured out that a distributed organization is a key aspect. Both types of decentralized
control systems outperform the centralized one. As the main reason we identified the
tight synaptic coupling between the motor units if control is evolved with a single
RNN. Damage on single motor units entailed damage on other motor units which, in
the worst cases, led to a total loss of function.

As we discussed, the coupling between motor units in the distributed organization
is realized through the environment. Thus, damage of one agent affects the overall
behavior only a little and can be compensated by other agents which act as a response
to changes in their environment not as a response to changes in other agents.

However, we also observed an important difference between homogeneous and het-
erogeneous systems. In the heterogeneous system we saw that a division of labor led
to agents with different functionalities. Hence, some agents contribute more to the
initialization of a ring rotation, whereas other agents contribute more to maintaining
it steady. Even though we recognized that the heterogeneous system performed better
over small ranges of initial conditions than the homogeneous system, the performance
loss of the homogeneous system, if individuals were damaged, was always the same,
whereas it differed in the heterogeneous system. We have also discussed that the ma-
jor problem of the homogeneous system was indeed the spatial symmetry of the robot.
However, because each agent contributes evenly to the global behavior, the conse-
quences of individual damage were minimal and always predictable. This is a property
as it is known for self-organizing processes in non-living as well as in biological systems,
as discussed at the beginning of this section. That is why, in the following chapters, we
will focus on homogeneous decentralized systems. Interestingly, even in such systems
we still can expect behavioral heterogeneity, but in contrast to heterogeneous systems,
more as a result of different environmental contexts individuals are in, rather than as
a result of individual control differences.
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3.7 Summary

The main purpose of the experiments presented in this chapter was to study the emer-
gence of cooperation among autonomous agents without explicit communication chan-
nels on a minimalistic robotic system. We used an unconventional, yet rather simple,
robot. On a first glance, the robotic system may seem to be too simple to be of any
serious interest to study cooperative behavior, especially because of its limited behav-
ioral capabilities. Nevertheless, we demonstrated that for the very reason of being
rather simple, yet still complete, the robotic system allows a comprehensive study of
some fundamental properties of decentralized cooperative behavior.

To conclude this chapter we should summarize the main aspects of our discussion:

• Sensory-motor feedback loops are heavily exploited by the evolutionary develop-
ment and are an integral part of control systems.

• The reciprocal coupling with the environment minimizes the complexity at the
level of required neural dynamics.

• This is, in turn, an important property of RNNs realized as parameterized dy-
namical systems.

• Cooperative behavior and interactions among distributed agents can be effec-
tively realized by using indirect communication with the environment as an active
medium.

• Decentralized systems possess an intrinsic robustness to individual failure and
they do not need to be specifically optimized for that.

Stinkingly, we were able to observe and analyze these principles already in such
a seemingly simple robotic system as presented in this chapter. Although, they are,
each by itself, not a new discovery, we have to emphasize that they were a result of an
evolutionary process where we did not explicitly enforce any of these aspects by specific
predefined constraints. All we deliberately put into this process was the sensory-motor
specification and a fitness function as the selection criteria. Remarkably, this fitness
function did not enforce the optimization of any of the resulting properties except
that the robot should rotate as harmonically as possible. And the emergence (not the
enforcement!) of such fundamental principles of adaptive collective behavior is exactly
what we want to achieve by reducing the design bias as much as possible.

Thus, the experiments and results presented in this chapter already emphasize the
most important methodological principle of this thesis: The rules which determine the
behavior of an individual and the collective behavior resulting from the interaction
among autonomous individuals are predefined neither at the neural control level nor
at the level of the interactions between individual agents.



Chapter 4

Aggregation with minimalistic
control

Three robots (green) evolved to pursue the red robot which continuously emits an
acoustic signal (indicated by the red sphere).

“[. . . ] and the thousands of fishes moved as a huge beast, piercing the
water. They appeared united, inexorably bound to a common fate. How
comes this unity?”

Anonymous, 17th century, quoted in (Camazine et al., 2001, p. 167)

4.1 Introduction

Aggregation is a prevalent pattern found in biological systems. The classical interpre-
tation from an evolutionary perspective is that aggregation gives a group of animals ad-
vantages regarding mate choice, collective information sharing, or increased protection
from predators1. Aggregation can be found on any scale, from unicellular organisms
to whales, from small groups to millions of individuals (Allee, 1931).

Observed from an outside perspective the aggregation behavior of, for instance, a
swarm of fish seems to resemble the behavior of a super-organism moving in unison
while cohesively executing sudden shifts in direction. Probably the most impressive
property is the fast information transfer among the individual parts of such a group
allowing coherent evasive behaviors when predators approach the school (Partridge,
1982). Interestingly, this self-organized group behavior can be explained by a few,
yet simple, local interaction rules which are based on a balance between positive and
negative feedback. Mathematical models showed that these feedbacks are basically
realized by attraction and repulsion whereby each individual obeys the same rules and

1Protection from predators is classically seen as an important selective advantage because it can,
for instance, cause confusion for a predator which is not able to lock on one specific target. However,
aggregation can also attract predators. For instance, some marine mammals are strongly attracted
by a concentrated occurrence of their prey. This leads to the interesting question about whether
aggregation formation of animal groups always serves a specific function or whether it is just a self-
organized pattern which is not necessarily evolutionary advantageous (for a deeper discussion see
Parrish and Edelstein-Keshet, 1999).
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reacts only to the action of its closest neighbors (Aoki, 1982; Huth and Wissel, 1992).
And indeed, for the example of fish schools experimental data revealed that the lateral
line system of a fish is most important to avoid collisions whereas the visual system
is important for maintaining a certain position and angle to neighboring individuals
(Partridge and Pitcher, 1980).

Another interesting example of self-organized group behavior is the coordinated
motion of locusts, which also lack centralized leadership. With experimental data
from field studies Buhl et al. (2006) confirmed the, from theoretical models predicted,
existence of a critical density at which a rapid transitions occurs from disordered to
ordered movement. They also demonstrated a dynamic instability at typical locust
population densities at which the whole group switches direction without external
perturbations. Hence each individual interacts only with a very few individuals in its
immediate vicinity, information must propagate from the large scale (the whole group
up to millions of individuals distributed across tens of kilometers) down to a very small
scale (the interaction range of neighbors of about a few centimeters).

Even though mathematical models and tools for analyzing collective phenomena in
such large scale biological systems can resemble their underlying general self-organizing
properties very well, they are designed from known or presupposed interaction rules
and, therefore, do not extract interaction rules from the observed global behavior
(Grünbaum, 2006). One central aim of this thesis is to tackle this problem by a syn-
thetic bottom-up approach, where interaction rules emerge from the dynamical prop-
erties of individual neural control which in turn result from an evolutionary process
with as less preconceptions as possible.

In the previous chapter we approached that problem with a system of very few
agents physically connected to their environment. There, we already identified some
basic properties of decentralized control, such as robustness to individual failure. And
we demonstrated how cooperative behavior can emerge from an indirect coupling be-
tween a few agents through their environment. However, the rigid physical connection
to the environment, the environmental simplicity, and the small number of interact-
ing agents limits the variety of possible collective behavior patterns. Therefore, in
this chapter we want to introduce a robotic system which is a promising platform for
experiments aiming at the development of collective behavior in large groups of indi-
viduals and which, therefore, will also appear again in the proceeding chapters. Here,
we want to investigate (i) how individual behavior can be evolved which shows similar
attraction and repulsion properties as discussed above for fish schools and (ii) which
collective phenomena can be observed when many individuals interact with each other.
Therefore, this chapter is mainly dedicated to the following questions:

• What are the minimal neural mechanisms required to robustly integrate two
competing goals, such as positive and negative tropisms?

• Once we achieved such a robust and minimal control, how much do we have to
add to achieve a coherent collective behavior among many individuals?

In addition, individual behavior has to be robust because a robot does not act in a
static environment, but has to handle, for instance, moving obstacles as well as targets
which dynamically change their position.
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The experiments presented in this chapter reveal that the integration of two com-
peting behaviors can by realized by a differently weighted influence of different sensor
modalities, that is, by a different impact of the changing parameters of an RNN. In-
terestingly, both behaviors result from the very same neural dynamics on which the
different sensor modalities act on. We will see that the neural mechanisms which enable
the robot to handle difficult environmental conditions are based on hysteresis effects,
caused by bi-stable regions within the control system. We then can use the very same
structurally small control system, actually evolved for an individual behavior, to ac-
complish complicated aggregation patterns, solely based on simple local interactions.
All what is needed is making every robot in a large group a potential target for all
other robots. That is, the robots by themselves realize the link between individual
behaviors (such as avoiding obstacles and approaching a target) and a global coherent
pattern, such as aggregation, without the need of centralized or hierarchical control.
By this direct inter-individual coupling each robot serves as a cue for other robots.

Before we discuss the behavioral mechanisms in detail, we want to introduce the
robotic system and explain the experimental setup first.

4.2 Getting strong in number: The swarm robotics

approach

Research in collective behavior of large scale distributed robotic systems, how it is
pursued for instance in the swarm robotics approach (for an overview see Şahin and
Spears, 2004), is mainly motivated by three aspects: robustness, flexibility, and scala-
bility. In general a swarm robotic system can be characterized by decentralized control
of many simple and (quasi) identical autonomous units leading to a high reliability be-
cause of its intrinsic redundancy which makes the whole system robust to disturbances
and flexible to novel environmental conditions (Beni, 2004). The constituent parts of a
swarm system move and interact dynamically. And while these parts are rather simple
they coordinate their behavior based on self-organizing principles and local interactions
which eventually lead to the emergence of new and complex global patterns. Of course
this field of research is heavily inspired by examples of self-organization in groups of
biological organisms.

In this chapter we want to focus on one particular aspect of swarm systems, namely
patter formation processes by aggregation. For this purpose we conducted basic exper-
iments with the robotic platform Do:Little which will also serve us as a testbed in the
ongoing chapters where we will turn our focus more to the evolutionary development
of communication and cooperation (Chapter 6 and 7).

4.2.1 The Do:Little robot

The Do:Little robot (Figure 4.1) is a prototype still under development which is led
by Manfred Hild, now at the Humboldt University of Berlin. This small-sized robot
(length: 14.5 cm, width: 11.5 cm) satisfies the basic requirements to study collective
behavior in large groups of robots, that is, individual robots should be rather simple by
using basic sensors and actuators. The Do:Little robot has many basic sensor modal-
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Figure 4.1: The Do:Little robot and its simulated model. Characters mark
sensor positions: (a) stereo microphone; (b) speaker; (c) infrared and light sensors (not
shown are two additional infrared sensors at the back of the robot); (d) floor sensors.

ities: infrared sensors to detect obstacles or other robots, light dependent resistors to
measure illumination, floor sensors which can can discriminate gray levels of the ground
beneath the robot, and internal force and traction sensors. Additionally, the ability
to communicate makes this robot especially suitable for experiments as presented in
this and the ongoing chapters. The robots can not only interact with each other via
simple sound signals, they are also able to exchange energy by physically connecting to
each other or to energy sources within the environment (i.e., charging stations). While
the ability to collect energy becomes relevant in the next chapters, for the following
experiments we only used the infrared and sound sensors of the robot.

4.2.2 Sensory-motor setup

For the following experiments we used RNNs (cf. Section 2.4.1, p. 43) with the standard
sigmoid transfer function f := σ. Thus, the output of each neuron is o ∈ (0, 1).
Therefore, motor and sensor signals of the robot were mapped into this interval. Note
that Ix and Ox refer to input and output neurons with index x, respectively; and ix

and ox refer to the corresponding output of these neurons.

The only actuators controlled by an RNN are the wheel motors. The angular
velocity of a wheel is determined by:

ωx = c(2 × ox − 1), (4.1)

where ox is the output of the motor neuron controlling either the left (O1) or the right
wheel (O2) and c is a speed factor. Thus, output values ox ∈ [0, 0.5] correspond to
negative wheel speeds, that is, driving backwards. Accordingly, output values Ox ∈
[0.5, 1] correspond to positive wheel speeds, that is, driving forward.

As sensor modalities we used the infrared sensors (IRs) and the stereo microphone of
the robot (cf. Figure 4.1). IRs measure the distance to obstacles. For our experiments
we used only two of the five IRs. They are oriented 45◦ to the left (I1) and the
right (I2) of the robot’s heading direction (I1 and I2 correspond to c1 and c2 in
Figure 4.1, respectively). The values of the IRs were linearly mapped to the range of
the transfer function [0, 1.0], where zero represents no obstacle detection and 1.0 the
closest measurable distance to an obstacle. Gaussian noise was added with σ2 = 0.1
(i.e., 10% noise).



4.3. Chasing behavior with minimalistic control 97

Signals of the stereo microphone are represented by the input neurons I3 and I4.
There outputs are defined by:

i3 = 0.5 [1 + sin (α)] ,

i4 = 0.5 [1 − sin (α)] , (4.2)

where α is the angle of a detected sound signal to the heading direction of the robot.
Measurements conducted on the real system showed that the stereo microphone of
the robot is able to detect sound signals within a range of approximately 1.5 meters
and that angle detection is rather noisy. Therefore, we limited the sound detection
range of a single robot in simulation to 1.5 meters as well and added Gaussian noise
to the signals of the according input neurons with σ2 = 0.3 (i.e., 30% noise), which is
remarkably high, but we will see that even very small networks can handle such high
noise levels. Note, as a constraint of the hardware a robot can only recognize the angle
of a sound signal, but not its distance, and a robot does not recognize signals emitted
by its own speaker.

Given this minimalistic sensory-motor setup, the next sections will discuss the ro-
bustness of an evolved RNN which enables a robot to follow a moving target and how
the very same control system enables a large group of interacting robots to exhibit
complicated aggregation patterns.

4.3 Chasing behavior with minimalistic control

4.3.1 Evolutionary setup

To evolve a basic chasing behavior we used the MRC (minimal recurrent controller)
as initial RNN (cf. Figure 4.2a). This RNN, adapted from (Hülse et al., 2004) and
originally evolved for the Khepera robot (Hülse and Pasemann, 2002), exhibits a highly
robust obstacle avoidance and exploration behavior. Thus, we equipped one non-
evolving robot with this RNN and let this robot continuously emit a sound signal
making it the moving target for the other evolving robots. The task of these robots
was to minimize the distance between them and the target. For this purpose we used
the following fitness function:

F =
1

n

n
∑

i

(

1 −
ri

1.5

)

, (4.3)

where n is the number of robots which have to follow the target and ri is the distance
between robot i and the target. Hence the maximal detection range for sound signals
is 1.5 meters, ri was thresholded to this value. Thus, if ri is larger than the threshold,
robot i does not contribute to the fitness of the group.

The evolutionary strategy is akin to the experiment described in Section 3.4.1
(p. 78). That is, one RNN from the evolving population was copied six times to con-
trol each of the six robots which are part of the group. Then the average performance
of these six robots was taken to determine the selection criteria for this particular
RNN. Note, that this corresponds to an explicit averaging of the fitness function (cf.
Section 2.5.4, p. 61).
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Figure 4.2: Neural network realizing chasing behavior. The initial (a) and
the resulting evolved RNN (b) which realizes a chasing behavior as indicated in the
right panel (c): The black robot (controlled by the initial RNN) continuously emits
a sound signal and is, therefore, the moving target for the gray robots (controlled by
the evolved RNN). Snapshot 1 shows the starting position of each robot. The interval
between subsequent snapshots is 10 seconds of simulated real time (i.e., 100 time steps
in simulation).

We have to admit, that this fitness function does not rely on internal variables
(cf. Section 2.5.5), because we used global variables which were not accessible by the
agents themselves. However, this was done because the sound sensor is not able to
measure the intensity of a signal and therefore can not determine the distance to a
signal. Nevertheless, the fitness function is still implicit because it does not describe
how to solve the required sub-behaviors, such as avoiding obstacles or other robots,
and how to approach and follow the moving target.

To bootstrap the system the MRC was provided as an initial structure (Figure 4.2a).
Then, we used a so called semi-restrictive method (Hülse et al., 2004; Hülse, 2007), that
is, already existing structural elements are not allowed to be removed (even though their
parameters can change), but new structural elements could be added within the whole
network which has new, initially unconnected, sensory inputs (the sound sensors in
this case).

4.3.2 Neural mechanisms

Figure 4.2b shows a successfully evolved RNN. Compared to the initial structure (Fig-
ure 4.2a) we see only minor changes of the original synaptic weights and only two
new synaptic connections between the sound detecting input neurons and the motor
neurons. This very small module, applied to a group of six robots, realizes a highly
robust chasing behavior (Figure 4.2c) which can be described as the integration of two
tropisms: a negative one to avoid obstacles and other robots, and a positive one to
follow the sound signal.

The most important structural elements of this RNN are the strong positive posi-
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Figure 4.3: Neural mechanisms of the chasing behavior. Shown are bifurcation
diagrams for the motor neurons O1 and O2 while varying all sensory inputs (not varied
inputs were set to zero, except for the inset diagrams in the right panel, where always
one infrared sensor was set to a value different from zero, as indicated).

tive self-connections at O1 and O2 and the even loop between these two neurons. Such
elements can exhibit hysteresis effects as a result of bi-stability (for a profound math-
ematical discussion see Pasemann, 1997, 2002). How such hysteresis effects realize
robust obstacle avoidance behavior is already discussed elsewhere (Hülse and Pase-
mann, 2002; Hülse et al., 2004; Hülse, 2007). However, we want to briefly summarize
the main properties and features because they are fundamental to the behavior in our
case as well.

First, we want to explain the obstacle avoidance behavior with the help of the
bifurcation diagrams given in the left panel of Figure 4.3. When we vary the input of
I1 (the left infrared sensor) we see that o1, which controls the left wheel, stays in the
upper saturation domain of the activation function over the whole input space. Thus,
the left wheel rotates forward with maximum speed. Considering o2, which controls
the speed of the right wheel, we see that that it jumps between the upper and the
lower saturation domain at specific input values. We also see that a jump from the
upper to the lower domain occurs at a higher input value than the jump back from the
lower to the upper domain. Between these two values the system is bi-stable, it ends
in either one of two fixed points depending whether the input values are increasing or
decreasing. That means the behavior of the system does not only depend on its current
state, but also on its history.

To get an impression how this is related to the behavior of a robot, let us suppose
a robot is approaching an obstacle to its left side. The closer the robot comes to the
obstacle the higher gets i1. At a specific value of i1, o2 jumps from 1.0 to 0.0 leading to
a backward rotation of the right wheel which turns the robot away from the obstacle.
That in turn decreases i1, but o2 jumps back from 0.0 to 1.0 at a lower value of i1. The
width of this hysteresis domain is determined by the strength of the self-connection at
O2 and the synaptic strength of the even loop between O1 and O2. The larger the
hysteresis domain the larger is the turning angle of the robot away from an obstacle
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(see Hülse et al., 2004 for a deeper discussion about this correlation). The same can
be found when we change i2, the right infrared sensor value, but this time we find a
bi-stable region for o1, resulting in a turn to the left when an obstacle is detected on
the right side of the robot.

There are two main properties why this mechanism ensures a robust obstacle avoid-
ance behavior (Hülse et al., 2004):

• Noise is filtered efficiently because small and fast changes of the sensory input do
not result in small and fast changes of the output.

• Because the turning still continues although the input value is already lower than
the value which initiated the turning, the robot is able to escape even acute angles
or dead ends in the environment.

The very same mechanism realizes the tropism toward a target, only that this time
the robot is not turning away from the source of sensory changes, but adjusts its
heading direction toward it (compare left and right panel of Figure 4.3). The reason
for this inverse reaction becomes obvious when we consider the connection between
the different sensor modalities (infrared and sound sensors) to the motor neurons (cf.
Figure 4.2b).

Thus, two different behaviors are integrated into one control unit where the very
same dynamical properties are used to realize either a positive or a negative tropism
depending on the coupling between sensory input and motor output.

Which of the competing behaviors becomes apparent is determined by how strong
the different sensor modalities are connected to the control system. When the robot
is confronted with both, that is, it detects an obstacle and a target signal at the same
time and on the same side, the dominant behavior is determined by the strength of
the synaptic weights projecting from the different sensor modalities. As we can see in
Figure 4.2b the synapses from the infrared sensors are stronger than the synapses from
the sound sensors. The insets in the right panel of Figure 4.3 illustrates two occasions
of conflict. For instance, when an obstacle on the left side of a robot is detected (high
i1) and we vary i3 (representing sound signals to the left side of a robot), we see that
the hysteresis domain of o1 is shifted to the right side in a way that o1 actually does
not jump to the lower saturation domain, at least not in the range of values of i3. That
means, an orientation to the left is inhibited when, at a same time, the left infrared
sensor detects close obstacles, as it is also the case for the other side of the robot (see
insets in the right panel of Figure 4.3 for varying i4). This means, obstacle avoidance
is always the dominant behavior and heading toward a sound signal takes only place
when the values of the infrared sensors are below a certain threshold.

Now that we have clarified the neural mechanism of the chasing and obstacle avoid-
ance behavior, the next section will discuss what happens if we add a speaker to all
robots (i.e., each robot becomes a potential target) and increase their number. Thus,
we change a property of the robot, but we do not change anything concerning the
control architecture.
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Figure 4.4: Clustering of 120 robots. The top panel indicates the average number
of neighbors from an individual at specific distances by means of a radial distribution
function (see text for details). Shown is its development over time (a) and a snapshot
at the beginning and after 100 time steps (b). The bottom panel (c) visualizes the
aggregation process. Snapshot 1 shows the initial position of each robot. The interval
between subsequent snapshots is ten seconds of simulated real time (i.e., 100 time steps
in simulation).

4.4 Self-organized clustering

If we take the RNN that enables a robot to robustly follow a moving sound signal while
avoiding obstacles and other robots and apply it to many robots where each individual
emits a sound signal, we can observe self-organizing clustering as it is visualized for a
group of 120 robots in Figure 4.4c. What happens is that each robot most strongly
reacts with a positive tropism toward the sound signal of its closet neighbor, that is,
individuals are attracted by each other because each robot is a potential target for
every nearby robot. At the same time each robot also represents a moving obstacle.
And obstacle avoidance has priority over approaching a target as we have discussed in
the previous section. Thus, the observable clustering is based on local attraction and
repulsion.

To measure the degree of clustering we used a two-dimensional radial distribution
function (RDF):

RDF (r) =
1

n

n
∑

i

Ni(r)

2πr∆r
, (4.4)

where n is the number of all individuals, Ni the number of individuals that are in a
ring with a width of ∆r at distance r of individual i. Thus, this function gives us
an averaged indication of how many neighbors we can expect at a specific distance to
an individual. The development of the RDF with time is drawn in Figure 4.4a. At
the beginning all individuals are more the less equally distributed, which corresponds
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to a situation as shown in the first snapshot of Figure 4.4c. Very soon individuals
aggregate in rather dense clusters (see also the inset of Figure 4.4a). Figure 4.4b gives
the RDF at the beginning and after 100 time steps which corresponds to a situation
as shown in the first and second snapshot of Figure 4.4c, respectively. We can see
that individuals very quickly start to aggregate and we can also see that a distance
of about 0.1 meters is the physical boundary given by the bodies of the robots where
individuals cannot further approach each other. However, the distance in which we
find the most neighbors around an individual is about 0.2 meters, which reflects the
obstacle avoidance response. But robots do not just stay close to each other once they
reached a target (i.e., another robot). Because of the repulsion, which is due to the
obstacle avoidance behavior, a robot drives away from a nearby robot to which at the
same time it is attracted as long as the infrared sensor activation is not too high. When
driving away, a robot may become attracted to another robot which is closer then the
previous target. Because of these two forces, attraction and repulsion, and because
each robot is a potential target for each nearby robot, the size and position of locally
formed clusters change dynamically with time as it is illustrated in Figure 4.4c.

4.5 Discussion

The experiments presented in this chapter differ in two aspects from the experiments
of the previous chapter. First, communication between agents is a direct form of
communication via acoustic channels and, second, agents are no longer physically con-
nected to the environment. However, there is still no knowledge represented in the
individual control about the presence of other agents. Attraction and repulsion, the
two driving forces of the aggregation process, are behavioral responses to environmen-
tal stimuli. Actually, for the behavior of a single agent it does not matter whether
those stimuli come from static objects in the environment or whether their source are
other agents. What realizes the global collective clustering is that other agents are
dynamically changing environmental cues for an individual. Aggregation emerges from
this dynamic interaction among agents. Thus, it is a result of a decentralized self-
organizing homogeneous system. With such a system we can answer the questions
from the beginning of this chapter.

The first question concerned the minimal requirements of neural mechanisms to
robustly integrate two competing behaviors. As we have seen, the robustness to sensor
noise and complicated environmental conditions (such as sharp corners) basically re-
sults from hysteresis effects which occur because of specific bistable regions within the
RNN as a dynamical system. Interestingly, both behaviors operate on the very same
dynamics. The difference is how the different sensor modalities, as parameters of the
dynamical system, influence the dynamics. The different influence results from how the
corresponding input neurons are coupled to the motor neurons. And because the sound
sensor is coupled via weaker synapses than the infrared sensors, the presented small
network is even able to solve a conflict of simultaneously competing sensor stimulation.
In that way a network with very few synapses and no hidden neurons is able to realize
robust obstacle avoidance and target chasing behavior. Note, that such a structurally
very small solution is efficient to realize behavior switching follows from considering
RNNs as parameterized dynamical system, a property we already found in the previous
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chapter where an external input acted on a switchable oscillator (cf. Section 3.4.2,
p. 78 and Figure 3.5, p. 79). In the next chapter (Section 5.4, p. 114) we will discuss
a slightly different mechanism to switch competing behaviors.

The second question concerned the additional requirements to provoke a coherent
collective behavior with this type of neural control. Surprisingly, only a small change
was required to achieve dynamic aggregation patterns: We just attached a speaker to
every robot without changing its neural control in any way. Making every robot in
a large group an environmental cue (i.e., it acts as a moving obstacle and a moving
target) linked the individual behavior to the observable global pattern which is a result
of mutual attraction and repulsion among interacting agents.

There exists many examples in biology where individuals aggregate and cluster
because of local attracting forces, for instance schooling of fish, clustering of penguins
for warmth, feeding aggregation of bark beetles, or the initial aggregation of unicellular
slime mold bacteria when food sources become rare (for an overview see Allee, 1931;
Camazine et al., 2001). Aggregation results not only because individuals respond to
environmental cues, such as when flies gather around light sources, but also from
attracting inter-individual forces, as it can be found for instance in fish schools as
discussed at the beginning of this chapter.

Inspired by such examples of self-organizing biological swarms, a lot of research
has been done to convey their underlying general principles to artificial systems. One
of the most famous examples is the so called stick pulling experiment (Ijspeert et al.,
2001), where only two cooperating robots are able to pull a stick out of the floor. In
another example Theraulaz and Bonabeau (1995) evolved agents that collectively built
nest structures by depositing bricks. Inspired by the work of Robson and Traniello
(1998) who investigated collective transportation of heavy prey items in ants, Kube
and Bonabeau (2000) used robots which can recruit other robots to collectively push
boxes which are too heavy to be moved by single individuals (see also Kube and Zhang,
1993). Holland and Melhuish (1999) investigated the operation of stigmergy and self-
organization in a homogeneous group of physical robots which had to cluster and sort
two different types of discs. Even though agents or robots in these examples rely
only on local information and communication without any centralized control, their
behavior is mainly determined by simple predefined behavioral rules, often represented
as inter-connected functional blocks.

What we are aiming at is the emergence of individual behavioral rules from the
dynamic interaction between simple control elements, such as artificial neurons. Thus
not only the global collective behavior should emerge from local interaction among
lower level components, but also the individual behavior itself. There is some work in-
vestigating the development of collective behavior by utilizing the evolution of artificial
neural networks where no such behavioral rules are defined in advance. In that realm
very interesting collective behaviors could be demonstrate, such as a variety of differ-
ent flocking strategies (Baldassarre et al., 2003), or team role allocation in a group of
robots which have to move together while relying solely on infrared sensor information
(Quinn et al., 2003). However, to our knowledge no work on collective behavior in
group of artificial agents which uses RNNs as dynamical system for behavioral control,
like for instance (Quinn et al., 2003; Marocco and Nolfi, 2006), revealed how the inter-
nal dynamics of the RNNs are actually related to the observable behavior. The focus
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of attention is, up to now, mainly directed toward an analysis of the behavior from an
outside perspective or restricted to analysis of input-output activities of the according
RNNs.

At this point we have to be aware of that the collective behavior presented in this
chapter is indeed less complex than the behaviors in the studies mentioned above.
Nevertheless, by relating the internal dynamics to the individual behavior and then
to the global behavior we can explain what we observe by understanding every level,
from individual to collective, and how these levels are interconnected. One of the
reasons why such a complete analysis is so hard to find in the literature may indeed be
the complexity of the behavior which may already require complex internal dynamics
which is then too difficult to analyze. We argue, that this does not have to be an
inevitable conclusion, as we will see in the following chapters of this thesis, where
more complicated collective behaviors will be investigated. In fact, we claim that
trying to understand the system as a whole, that is, in all of its constituent parts,
as we have done it here for this rather simple behavior, is worth the effort because
it may offer new insights about novelty not only of behavior, but also about novelty
of its underlying mechanisms, which will become more evident in the examples of the
proceeding chapters, especially in Chapter 6 and 7.

Up to this point we should keep in mind that the reason why the mechanisms
which lead to the dynamic spatial aggregation pattern, as discussed here, seem to be
rather simple and trivial is exactly because we are able to minimize the complexity
of individual control, which at the same time allows us to understand the complete
system. However, in this sense the experiments presented here are of course not a
new discovery. We just have to think about the pioneering work of Gray Walter and
Valentino Braitenberg done already almost sixty years ago, which we have discussed in
Section 2.2.2 (p. 33). Their work and what originated from it, such as very much of the
work presented in this thesis, showed that seemingly complex behavior of a system may
be apparently simple because its constituent parts are rather simple, and because we
are able to understand how these parts, whether they are neurons or robots, interact
with each other. And the clustering (as presented here) based on the interplay between
different reflexive behaviors is in fact just the beginning. The next chapters will reveal
that this even holds for more sophisticated levels of communication and cooperation
which will go beyond the dynamic interaction of simple individual reflexes.

4.6 Summary

In this chapter we demonstrated how competing behaviors can be realized by a very
small-sized neural network. We have seen that the same internal dynamics are used
for the two behaviors of avoiding obstacles and chasing a target. The required sensor
modalities, infrared and sound sensors, are differently coupled to the neural network
resulting in a different influence on its internal dynamics. And because the influence
of the infrared sensors is stronger than the influence of the sound sensors, obstacle
avoidance is the dominant behavior resolving the conflict which can occur when a
robot is attracted to a location by sound signals and at the same time repelled from
the location by an obstacle.

By using the very same network, actually evolved for this individual behavior,
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and by making each robot to an environmental cue (attracting and repelling at the
same time) for each other robot, we showed how complicated aggregation patterns (cf.
Figure 4.4), where individuals interact with each other only locally, are achievable with
this structurally very small neural control architecture (cf. Figure 4.2b).

However, even though sub-behaviors like avoiding obstacles and approaching a tar-
get were evolved, and therefore not pre-designed in any way, we have to admit two
major lacks. First, our fitness function rewarding the chasing behavior relied on exter-
nal variables and, therefore, the resulting individual behavior was not very surprising.
Second, for the transition from individual to collective behavior we decided what to
change in the experimental setup, namely making every robot a potential target for
any other robot. Thus, even though these experiments completely fulfill four of our
demands (completeness, complexity out of simplicity, dynamical systems, and compre-
hensibility) they lack the demand for a reduction of preconceptions. However, these
experiments form the ground for the following chapters, where we first want to increase
the behavioral complexity (Chapter 5) and later we will focus more strongly on the
emergence of interaction rules and communication systems from a rather unconstrained
evolutionary process (Chapter 6 and 7). And we will see that this is the key to achieve
not only robustness, but also novelty and flexibility of coordinated behavior in general
and of communication mechanisms as the basis of cooperation in particular.





Chapter 5

Behavior coordination and
synchronized communication

“It is then too that one sees the great belt of light, some ten feet wide,
formed by thousands upon thousands of fireflies whose green phosphores-
cence bridges the shoulder-high grass. The fluorescent band composed of
these tiny organisms lights up and goes out with a precision that is perfectly
synchronized, and one is left wondering what means of communication they
possess which enables them to coordinate their shining as though controlled
by a mechanical device.”

Joy Adamson (1961), quoted in (Strogatz, 2003, p. 12)

5.1 Introduction

In 1938 Buck reviewed a number of travel notes by diverse authors about the aston-
ishing phenomena of synchronized flashing of fireflies in different locations around the
world (even though most observation were made in Southeast Asia). He started his
article with:

“One of the most interesting and complex types of group behavior in an-
imals is that in which several organisms simultaneously repeat the same
activity at regular intervals of time. [. . . ] such behavior [. . . ] involves two
distinct factors, synchronism and rhythm.”

He also reviewed some theories about the underlying mechanisms which existed at this
time. Nowadays, most of them seem rather obscure. They ranged from explaining
that the synchronized flashing is caused by accidents, such as the influence of wind,
and then maintained by the normal flashing rhythm of the individuals to the so called
illusion theory, which holds that the human mind deceives itself into seeing synchrony.
Other approaches reviewed by Buck (1938) assumed that fireflies possess a “sense of
rhythm” similar to humans, or that there is a leader fly emitting flashes to which the
mass of fireflies respond to. However, already at this time Richmond (1930) proposed a
theory, which Buck judged to be the most promising explanation of the phenomena. It
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postulated that all flies flash rhythmically with nearly the same period, by a battery-
like discharge and recovery, and that each insect flashes immediately if a neighboring
insect flashes at a time close to its own next flash (Richmond, 1930).

Exactly fifty years after his first review, Buck (1988) published a second review
where he stated:

“Fifty years ago [. . . ] it was not surprising [. . . ] that hardly anything could
be said about either mechanism or meaning of this remarkable communal
behavior. [. . . ] Today [. . . ] the behavior has graduated from enigma to
general significance in the fields of coordination physiology, group commu-
nication and evolutionary biology. [However,] each step of physiological
elucidation has revealed new black boxes and each behavioral insight has
left major puzzles yet unsolved.”

The early ideas of Richmond (1930) were not that wrong at all. It turned out that
the actual mechanism which enables thousands upon thousands of fireflies to flash in
synchronized unison is based on resettable oscillators which are coupled through the
pulses represented by the flashes of each individual (Buck, 1988). Thus, every individual
emits and receives signals, influencing the rhythm of others and be influenced by them;
a clearly self-organizing process and as Strogatz (2003, p. 13) expressed it:

“Sync occurs through mutual cuing, in the same way that an orchestra can
keep perfect time without a conductor. What’s counterintuitive here is that
the insect don’t need to be intelligent. They have all the ingredients they
need: Each firefly contains an oscillator, a little metronome, whose timing
adjust automatically in response of flashes of others. That’s it.”

Much more could be said not only about synchronized flashing of fireflies, such
synchronization mechanisms are prevalent in nature. They can be found in crickets
which chirp in synchrony (Walker, 1969), neurons which fire together, and even, indeed
more controversially discussed, human female menstrual cycles which get synchronized
through pheromones (Stern and McClintock, 1998). For more on this topic we refer to
the excellent and exciting books by Winfree (2001) and Strogatz (2003).

For the rest of this chapter we will stick to the general properties summarized in the
quote above: Synchronization occurs through mutual cuing of rather simple individuals
which contain a resettable oscillator. We want pursue the following question:

• Given our dynamical (neural) system approach, how can we achieve self-organized
and coordinated (i.e., synchronized) behavior among autonomous robots with
minimized communication efforts?

To do so we discuss an experiment where we increase the behavioral complexity of
a robot as compared to the experiments discussed in Chapter 4. Instead of aggregation
without function, we now want to achieve a group behavior with a specific purpose.
Therefore, we consider a setup where robots have to collect energy (i.e., foraging be-
havior) in their environment and convey that energy to a base (i.e., homing behavior)
where it is stored and constantly consumed. To display one of the both behaviors, either
foraging or homing, robots are equipped with a structurally small neural rhythm gen-
erator, a resettable oscillator inherent in the robot’s neural control which periodically
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nest
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obstacles

robots

Figure 5.1: Environment for a foraging and homing task. Food sources are
represented by three light bulbs which are randomly placed in the left half of the
environment. The direction to the nest area (gray region in the bottom right) is
marked by a acoustic signal continuously emitted from the center of the nest.

inhibits specific sub-behaviors. To coordinate the behavior among many individuals
driven by such an internal rhythm, individuals can communicate with each other via
simple acoustic signals, reminiscent of the flashes used by fireflies. Communication
among the robots links what is internal to them, their rhythm, to what is external to
them, their foraging and homing behavior. In that sense we will go a step further to
what Parisi (2004) proposed as internal robotics. We not only consider the interaction
of an internal drive with environmental stimuli which externally drive an individual,
we also consider how a whole population coordinate the internal drive of each individ-
ual through local direct couplings realized by minimalistic acoustic communication. It
can be shown that synchronizing behaviors among robots based on this rather simple,
yet highly efficient, mechanism is not only scalable but also remarkably robust to the
spatial range within individuals can interact with each other.

5.2 Experimental setup

5.2.1 Environmental setup: The foraging habitat

For the following experiments an environment as shown in Figure 5.1 was used (length:
5 meters, width: 5 meters). The large gray circle in the bottom right corner represents
the nest that emits a strong periodic sound signal which can be detected within the
complete environment. This signal can be used by the robots to find their way home
to the nest.

In the left half of the environment three light sources are randomly distributed,
which represent food sources. A robot can recharge its own energy level by approaching
and finally standing in front of a light source (foraging behavior). The overall task of
a robot group is to transfer collected energy to the nest. A single robot can load a
maximum of one energy unit. If a robot enters the nest area its energy is continuously
transferred to the nest, which has its maximum at 50 energy units. The difficulty for
the group is that the nest also looses energy with time (that is, if you like, a simplified
analogy of stored food in an ant nest used to feed the brood). The energy amount of
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the nest is calculated as:

Enest(t + 1) = Enest(t) − ∆EL + n∆ER, (5.1)

where ∆EL = 10−2 is a constant energy leakage, n the number of robots within the
nest, and ∆ER = 5× 10−3 the amount of energy a single robot conveys to the nest per
time step. Because the time dependent leakage rate of the nest is higher as compared
to a possible energy income from a single robot, its energy level cannot be maintained
by a single foraging robot (note, that the robot also spends at least half of the time
outside the nest to forage). Only the coordinated foraging action of a robot group can
yield a maximization of the nest energy.

5.2.2 Sensory-motor system

As agents we used again the Do:Little robot, as introduced in the previous chapter
(Section 4.2.1, p. 95). Note that Ix, Ox, and Hx refer to input, output, and hidden
neurons with index x, respectively; and ix, ox, and hx refer to the corresponding output
of these neurons.

The mapping from the motor neurons (O1 and O2) to the wheel speed and from
the sound sensors to the according input neurons (I7 and I8) as well as the noise levels
correspond to the setting given in Section 4.2.2 (p. 96). The same was done for the
infrared sensors (IRs), except that we used here not only the left and right IRs (I4 and
I5) but also an IR (I6) located at the back of the robot to increase its spatial sensory
range of detecting objects (see also Figure 4.1, p. 96). Thus, IRs can be utilized to
avoid collisions with other robots and obstacles within the environment. The sound
sensor can detect the signal emitted by the nest to guide the robots to it.

To find food sources, robots are additionally equipped with light density resistors
(LDRs) which measure illumination. As we said, light sources represent food. Thus,
the closer the robot is to a food source the higher the activation of its LDRs. The sensor
values of the LDRs were also linearly mapped into the range of the transfer function,
that is, [0, 1], where 0 represents darkness and 1 maximal illumination which is the
case when the robot stands right in front of a light source. I4, I5, and I6 represent
the left, right, and front LDR sensor, respectively (corresponding to c1, c2, and c3 in
Figure 4.1, p. 96). Gaussian noise was added with σ2 = 0.1 (i.e., 10% noise). A robot
can use food sources to gain energy which then can be transfered to the nest. The
energy of a robot is determined by:

Erobot(t + 1) = Erobot(t) + ∆E, (5.2)

where ∆E = 10−2 if the robot stands in front of a light source (i.e., if i6 > 0.8),
∆E = −5 × 10−3 if the robot is within the nest (this energy is transfered to the nest,
see also Equation 5.1), and else ∆E = −5×10−4 (leakage). Erobot is limited to [0, 1]. For
the sake of simplicity, the energy level of a robot is considered only as ‘carrying’ energy,
that is, the actual amount of energy has no consequences on the robot’s behavior (as
it would be the case if the battery of a real robot gets discharged).

Furthermore robots are able to communicate with each other by primitive sound
signals. One nice feature of the sound processing implementation on the physical
robot is that frequency and amplitude filtering is done on-board. Different signals
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Figure 5.2: Coupled SO(2)-networks realizing an internal rhythm generator.
The right panel shows how an external signal resets the output oscillations at the
hidden neurons (shown only for h3 − 5).

are characterized by different pulse sequences. Hence, the robot can sense and produce
different “chirp” signals. As we said, one signal is utilized to indicate the location of the
nest. A different signal can be used by the robots for inter-individual communication.
To produce a single sound signal the output of the corresponding motor neuron (O3)
has to cross a certain threshold from below. Here, this threshold was set to 0.7. Other
robots can sense the occurrence of this signal, but not its direction, by the activation of
input neuron I9 which is either 1.0 when there is a signal within a specific range of the
robot or 0.0 when there is no signal. In accordance with the hardware the detection
range of a signal emitted by a robot was set to 1.5 meters.

5.2.3 Neural model of a resettable inner rhythm

To realize an internal rhythm generator we used a CPG which is composed of so called
SO(2)-networks. An SO(2)-network, proposed by Pasemann et al. (2003), is a two
neuron network having a weight matrix w which is an element in the special orthogonal
group (that is where the name originates from). The weight matrix is associated with a
rotation in the plane and is represented by functions of the rotation angle ϕ. Due to the
existence of quasi-periodic attractors, these networks can generate almost sine-shaped
waveforms (for details see Pasemann et al., 2003).

Here we used two coupled identical SO(2)-networks (see Figure 5.2a). The coupling
of two networks assures stability of very long wave lengths. The frequency can be
adjusted by only one parameter, ϕ. The weight matrix is given by:

w = α ·









cos(ϕ) sin(ϕ) 0 0
− sin(ϕ) cos(ϕ) ǫ 0

0 0 cos(ϕ) sin(ϕ)
−ǫ 0 − sin(ϕ) cos(ϕ)









, (5.3)
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where α = 1.051 and ϕ ∈ [−π, π]. The strength of the coupling and hence amplitude
size are given by ǫ 6= 0. All bias terms were set to 0.0 and ǫ to 0.008, and the activation
of each neuron was randomly initialized. This weight matrix will work for the activation
function σ(x) = tanh(x), but a transformation to a network with the standard sigmoid
activation function σ(x) = (1 + e−x)−1, as it will be used in the following experiments,
with equivalent dynamics is possible (for details see Pasemann, 2002).

Setting |ϕ| close to zero one can get very long wavelengths, for example using a
ϕ of 10−8 yields stable wavelengths of more than three million time steps. For such
wavelengths the size of the amplitude becomes very small, so it was useful to add
amplifying neurons downstream (H5 and H6 in Figure 5.2a). Connecting them with
a very strong weight to one of the oscillator neurons results in an (inverse) amplified
output within the saturation domains of the activation function (see Figure 5.2b).

By giving input on one of the four neurons (H4 in Figure 5.2a) one can interrupt
the CPG’s oscillations. After the input ceases, the CPG will immediately start its
oscillations again, thereby causing a phase shift. Depending on which neuron receives
this reset signal, the amplified output will be in an “on” or “off” mode while the input
is given. The plot in Figure 5.2b shows the reaction of the oscillators after getting
a long reset signal starting at time step 7, 000 and a short one at time step 12, 000.
Both times the quasi-periodic oscillations will be inhibited at once and the amplified
output switches to “on”. When the input comes to an end, oscillations restart in a
stereotypical way.

5.3 Combining foraging and homing behavior

Three basic behaviors were evolved by a so called restrictive expansion technique (Hülse
et al., 2004; Hülse, 2007). First, we evolved an RNN to realize robust obstacle avoid-
ance behavior (OA-module). Second, while keeping the OA-module’s structure and
its parameters (synaptic weights and bias terms) fixed, a positive photo tropism was
additionally evolved (P-module). In the following this photo tropism is considered as
foraging behavior because it guides robots to light sources within the environment.
Third, in the same way a positive sound tropism was evolved (S-module) that is con-
sidered as homing behavior because it guides robots to the nest in the environment.

Up to that point we can combine the same OA-module with either the P- or S-
module resulting in two different behaviors. As a result of combining these modules
with our pattern generator, as it can be seen in Figure 5.3, an exclusive switching
between the evolved foraging and homing behavior can be carried out. The internal
rhythm of the pattern generator does not influence the OA-module because the robot
should avoid collisions at any time2. The sensor input neurons of the P- and S-module
project feed forward to a corresponding hidden neuron layer. Only these hidden layers
have connections to and from the motor outputs controlling the wheels. The amplifying
neurons (H5, H6) of the pattern generator inhibit the according hidden layer through

1The value of α has to be larger than 1 to assure quasi-periodic oscillations. For details about the
parameters see (Pasemann et al., 2003).

2That is, obstacle avoidance is always the dominant behavior. The neural mechanisms to switch
between obstacle avoidance and either one of the tropisms is similar to the mechanism described in
the previous chapter (Section 4.3.2, p. 98) and is, therefore, not discussed here again.
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Figure 5.3: A modular RNN realizing foraging and homing behaviors de-
pending on an internal rhythm generator. The rhythm is generated by a module
based on the coupled SO(2)-module shown in Figure 5.2a. This module periodically
inhibits either the foraging or the homing module.

synapses with very strong negative weights (cf. Figure 5.3) . As a result of using the
standard sigmoid transfer function for this RNN, the inhibition only proceeds while
the output of an amplifying neuron is 1, that is, in the upper saturation of its transfer
function. As explained earlier the two amplifying neurons produce opposed signals,
that is, whenever the output of one neuron is 1, the output of the other neuron is zero.
In this way the robot displays either foraging or homing behavior.

Additionally, one output neuron (O3) allows the robot to communicate its behav-
ioral state switches via its speaker. Therefore, this output neuron is excited by one
amplifying neuron (H5, see Figure 5.3). By setting an appropriate bias and a negative
self connection, this neuron integrates the signal of H5 and produces the highest peak
when the output of H5 switches from zero to one, that is, when the robot switches from
foraging to homing behavior. This maximal peak is slightly higher than the threshold
of 0.7 and, therefore, triggers a sound signal lasting ten time steps which in turn can
be detected by nearby robots (range = 1.5 meters) through an input neuron (I9, see
Figure 5.3). This represents the reset signal for the oscillator as discussed before (see
also Figure 5.2).

Each individual within a robot population possesses its own oscillator, that is, the
individual inner rhythms vary in their wavelengths. For each experiment the oscillator
of a single individual is randomly (uniformly distributed) chosen, the lower wavelength
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Figure 5.4: Behavior synchronization in a group of 25 robots. a: State synchro-
nization among the robots. b: Development of the nest energy. Robots are allowed
to communicate between time step 25, 000 and 50, 000, which gives rise to behavior
coordination and, therefore, to a periodic increase of energy returned to the nest (see
text for details).

bound was 2250 and the upper bound 2600 time steps, that is, the mean wavelength
within a population is 2425 ± 175 time steps. We deliberately did not choose the same
frequency for each individuals to (a) take into account the imprecision of the physical
hardware (rounding errors, etc.) and to (b) to resemble the behavior of biological
clocks in animals where it is known that the internal rhythms of individual members
of one species can vary significantly (see for instance Winfree, 2001).

5.4 Behavior synchronization through local com-

munication

In Figure 5.4a the behavioral states of 25 robots are drawn with time. From time step 0
to 25, 000, robots were not allowed to communicate (i.e., their speakers were disabled).
We can see that each robot switches its behavior according to its inner rhythm. Each
robot is starting in a different phase because the pattern generator is always randomly
initialized. In this time slot the uncoordinated action of the robots leads to a slight
decrease of the nest energy (Figure 5.4b).

The main reason for this decrease is that the robots enormously interfere with each
other. What generally happens is, that a subgroup of robots are in the foraging state,
that is, they are leaving the nest to search for energy. At the same time another
subgroup of robots is in the homing state, that is, they are returning to the nest. If
the ways of both groups intersect, for instance at a narrow passage (for example in
the center of the environment, see Figure 5.1), they obstruct each other. Over time,
while continuously avoiding each other, this conflict will be solved. But this can take
so much time that probably no robot will accomplish its current task (either foraging
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or homing) before its inner rhythm again switches its behavior.
Between time step 25, 000 and 50, 000 robots could communicate their behavioral

state switching (i.e., speakers were enabled). Now, each individual is signaling its
switch from foraging to homing behavior and hence resets the inner rhythm of all
robots which can detect this signal within a range of 1.5 meters. Because of this locally
limited interaction, individuals most often synchronize their rhythms when they are
gathered around a light source. However, there are three light sources (A,B, and C in
the following) distributed within the environment (see Figure 5.1, p. 109). Individuals
around light source A probably synchronize their behavior at a different time than
individuals around light source B or C. The time when the members of one of these
groups become synchronized is determined by the individual which switches its behavior
first because it elicits a signal which resets the other’s rhythm resulting in the same
behavioral switch. This means members of group A may return to the nest earlier than
members of group B or C. When an individual returned to the nest after a while it
starts to forage again because of its internal rhythm. This behavior is independent of
the other individuals. Thus, members of group A can now gather with member of group
B around the same light source. Because individuals of group A switch their behavior
earlier than members of group B, all individuals in this group become now synchronized
to the rhythm of the individuals in group A. This mechanism is so efficient that the
whole population becomes synchronized rather quickly within about 3, 000 time steps
(cf. Figure 5.4a). Thus, global synchronization is achieved even though only some
individuals of the population collectively entrain each other.

The transition from uncoordinated to coordinated group action is reflected in the
evolution of the nest energy which now periodically increases (Figure 5.4b) because all
robots return to the nest at roughly the same time. This is a characteristic overall
behavior independent of the initial conditions, such as starting positions of the robots,
initialization of the CPGs, or spatial distribution of the food sources (not shown, but
see Wischmann et al., 2006).

From time step 50, 000 on, communication was again inhibited by disabling the
speaker of each robot again. As a consequence each robot falls back in its own rhythm of
foraging and homing (Figure 5.4a). This leads slowly to a more and more uncoordinated
action that in turn provokes a slight decrease of the nest energy (Figure 5.4b).

5.5 Robustness to minimized interaction radius

In order to figure out the limitation of the system with respect to the detection range
of the sound signals, we repeated the aforementioned experiment in simulation with
different ranges. In Figure 5.5 the relative percentage of robots which simultaneously
are in the foraging state is drawn over time. Note, a robot which is not displaying
foraging behavior can only be in the homing state because of the rigorous switching
between these two behaviors. Perfect synchronization is reached when at any time
every robot in the population is in the same behavioral state, that is, every robot
switches its state at the same time (which, for instance, is the case at the end of the
bottom right diagram in Figure 5.5).

If the robots are not able to detect any sound signal (top left diagram in Figure 5.5),
we can see that for most of the time there is no coordination within the population
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Figure 5.5: Effects of different sound sensor ranges on the synchronization
process. Shown is the relative percentage of foraging robots in a group of 25 individ-
uals. Increased detection range increases the radius where an individual can entrain
other robots. Consequently, the time until the group behavior becomes synchronized
decreases.

at all. Roughly half of the population displays foraging and the other half homing
behavior. However, after a certain period seems to be a slight development toward
synchronization (between time step 15, 000 and 30, 000). That is due to the differing
free run periods of the robots’ CPGs. After a while a portion of the internal rhythms
are almost completely overlapping. But for the same reason, the different free run
periods, this effect ceases after a while (between time step 30, 000 and 40, 000).

If we now consider a detection range of 1.5 meters (bottom central diagram in Fig-
ure 5.5) as it was set in the previous experiments, which is approximately the detection
range of the physical robots, we can see that the system very quickly becomes almost
perfectly coordinated (after about 3, 000 time steps). If we now increase the detection
range, e.g. to 2.5 meters, the system synchronizes even faster. A decrease of the detec-
tion range entails increased time the population needs to become synchronized. That
is because a smaller detection range consequently reduces the interaction radius of an
individual and, therefore, limits the number of robots which it can entrain simultane-
ously. Although, for the sake of clarity, Figure 5.5 represents only sample runs, this is
an overall characteristic of the system independent of the initial conditions like spatial
distribution of the robots and food sources, or the initialization of the internal CPGs.
However, there is lower limit of detection range (about 0.3 meters ± 0.1) where no syn-
chronization can be achieved. This limit is approximately the nearest possible distance
between two robots because of their reactive obstacle avoidance behavior. It is simply
impossible for an individual to receive any sound signal from nearby robots because as
soon as a robot detects other robots by its infrared sensors, it always tries to keep a
certain distance to them as it also does for static obstacles within the environment.
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Figure 5.6: Behavioral state synchronization of 150 robots. a: Each robot has
a slightly different inner rhythm. b: All have identical inner rhythms. Robots were
allowed to communicate between time step 25,000 and 50,000.

5.6 Scalability

To demonstrate that the described synchronization process is also stable for larger
robot groups we repeated the previous experiment with 150 robots in an enlarged
environment (length: 10 meters, width: 10 meters). Figure 5.6a shows the development
of the individual behavioral states. Again, individuals were allowed to communicate
between time step 25, 000 and 50, 000. We obtain the same synchronizing effect as for
the smaller sized population. However, the time needed to reach a stable synchronized
state, which in this case is approximately 6, 000 time steps, is about twice as long as
for a group of 25 robots.

Figure 5.6b shows the result of the same experiment, but this time the inner rhythms
of each individual are identical within the whole population (wavelength = 2, 425 time
steps). We see that the population is perfectly synchronized within 25, 000 time steps,
and, as it could be expected, once the behavioral states are synchronized, they re-
main synchronized although the individuals can not communicate any more (from
time step 50, 000 on). The reason is quite obvious. Because there is no mechanism of
de-synchronization, there is no need for persisting synchronizing forces once the sys-
tem is synchronized. However, one can always expect slight differences among (quasi)
identical robots, as one find differences in biological clocks (Winfree, 2001). Synchro-
nizing these clocks from time to time helps to adjust individual behavior to achieve
coordinated patterns.

5.7 Discussion

In Chapter 4 we discussed how a very small-sized neural network is able to integrate
two competing behaviors such as obstacle avoidance and a positive tropism. Here, we
increased the complexity of such combined reflex behaviors. A network was presented
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which combines not only a negative and a positive tropism, namely obstacle avoidance
and finding food sources, but also an additional behavior which is in conflict with
finding food sources, that is, finding a way back to a nest.

By combining these three behaviors with an internal rhythm a robot spend half its
time with the search for food and half of its time with returning the gained energy
to its nest3. However, a single robot was not able to maximize the energy stored in
the nest because the virtual consumption of energy within the nest was much larger
then the amount of energy one robot could bring in. Yet, also the collective foraging
of many (quasi) identical robots, each acting by its own, was not sufficient to succeed
in this task. Only coordinated behavior, that is, when all individuals displayed the
same task more the less simultaneously, it was possible for the group to maximize the
energy of the nest. To sum up, we observed a synergistic effect of behavior coordination
by synchronization: A group of individuals which act independently of each other per-
formed rather weak compared to the same number of individuals which coordinate their
behavior. Coordination was achieved through direct, yet rather simple, local commu-
nication. By signaling behavioral switches to other individuals the internal rhythms
of all individuals participating in this interaction became synchronized. And even
though a synchronization process was always locally limited, over time all individuals
became synchronized because interaction partners dynamically changed. Thus local
communication processes led to a coherent synchronization within the whole group.

We started this chapter with the astonishing example of synchronized flashing
among fireflies, and there are indeed some strong analogies to the behavior discussed
for our robotic experiments. In both cases synchronization is a result of pulse coupled
oscillators with varying frequencies. Individual oscillators have a free run period (fire-
fly: 965 ± 90 ms, Do:Little robot: 2425 ± 175 time steps) which can be influenced by
an external stimuli presented by neighboring individuals leading to a phase reset. This
signal strongly correlates to a certain period the oscillation (firefly: begin of the rising
excitation phase; Do:Little robot: switch from foraging to homing behavior). Strogatz
and Stewart (1993) pointed out that “the behavior of communities of oscillators whose
members have differing frequencies depends on the strength of the coupling among
them.” Future work could investigate the effects of weakening the direct coupling
among the individuals, e.g. by introducing uncertainties during sound detection and
transmission. In the presented experiments the coupling was strong enough to always
achieve synchrony, that is, every detected signal provoked a phase reset.

Because of the great difference in the details of the nervous systems and individual
physiology, our experiments may indeed not help us to understand the actual detailed
physical mechanisms of a specific biological system which exhibit self-organized col-
lective behavior, such as the synchronized flashing of fireflies. However, we have to
consider that these creatures have to struggle with much more than just achieving

3Of course, one could implement a much simpler neural mechanism to realize this kind of behavior
switching. For instance, we could utilize the energy level of a robot as a sensory input. If this input
is low, the homing behavior could be inhibited and, vice versa, if the robot is fully charged foraging
could be suppressed. Using an internal state of a robot, such as its energy level, as a sensory input
(i.e., as a parameter of its neural control) can realize action selection processes by highly interesting
mechanisms. In (Hülse et al., 2007b) such an example is discussed which demonstrates that whether
a robot shows one behavior or another conflicting one, depends on internal attractor switching as well
as on fluctuations caused by the sensory-motor loop.
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synchronized flashing, whereas our experimental bottom-up approach aims at the ar-
tificial generation of comparable self-organizing phenomena which serve as a starting
point for investigating not only the minimal individual requirements necessary to bring
on collective behavior coordination but also to test the behavior of such a system for
stability. In this realm we demonstrated that only very basic communication is re-
quired to coordinate the behavior of a group of up to 150 individuals. The mechanism
of achieving synchronized behavior by locally limited communication is scalable and
does not depend on the number of involved individuals. By testing the system with
respect to its robustness to the spatial range of interaction, we showed that even with
a very small range it is possible to achieve a coherent synchronized state within the
whole group. The range of interaction only influences the time the system needs to
become synchronized.

5.8 Summary

The presented experiments demonstrated that highly minimized communication efforts
are required to achieve coordination of individual behaviors and that the sophisticated
global behavior pattern emerges mainly from the interaction or coupling of simple units
at the individual neural level as well as at the robot-robot level. The coherent behavior
of the overall system is scalable, regarding the number of interacting individuals, and
robust, regarding the range of local interactions.

However, even though we were able to increase the behavioral complexity of sin-
gle individuals as compared to the experiments discussed in the previous chapter, we
still defined the way how individuals communicate. Besides increased behavioral com-
plexity, the main purpose of this chapter was to show how a functional coordinated
behavior (and that is the great difference, or extension if you like, to the previous
chapter because, there, the discussed clustering did not serve a particular function)
can be achieved by minimalistic communication. Nevertheless, this was a global func-
tion determined by our definition of the task, namely maximize the energy level of the
nest. The next two chapters will now tackle the problem of to much design constraints
imposed by us. By doing so, communication does emerge from an evolutionary pro-
cess without any preconceptions about whether individuals have to communicate or if
they do, how they should communicate. Surprisingly we will discover the evolutionary
development of neural mechanisms of communication which are quite similar to the
example discussed in this chapter, even though we will also find completely different
and unexpected, that is, truly novel, solutions.





Chapter 6

Emergent communication and
signal coordination

“Unlike engineers, tinkerers who tackle the same problem are likely to end
up with different solutions. This also applies to evolution, as exemplified
by the variety of eyes found in the living world.”

François Jacob (1977, p. 1164)

6.1 Introduction

The above quote is taken from the fascinating article Evolution and tinkering by
François Jacob (1977). Nowadays considering evolution solely as a tinkering process is
often criticized. Many researchers emphasize the importance of self-organizing princi-
ples as the main driving force for evolution (Kauffman, 1993; Corning, 1995; Hoelzer
et al., 2006). However, Jacob stressed an important aspect of biological evolution, the
variety of solutions developed by nature for similar problems. This chapter will discuss
the role of evolutionary variety concerning different neural mechanisms that underlie
seemingly similar behaviors among cooperating agents. Here, cooperation is based
on simple communication forms which are reminiscent of food or alarm calls among
animals (Maynard Smith and Harper, 2003).

To understand the evolution of animal communication and the origins of language
the simulation of emergent communication and language systems turned out to be a
promising research direction (Wagner et al., 2003; Cangelosi and Parisi, 2002; Steels,
2003). Taking into considerations the limitations of experimental investigations into
natural systems, such simulations are an encouraging method not only for revealing
details of the mechanisms of animal communication, but also for answering questions
about its evolutionary origins and the conditions under which communication systems
emerge.

Former studies of emergent communication covered systems which used either non-
situated or situated agents with a repertoire of either single or a number of unstruc-
tured signals or a structured vocabulary composed of multiple signals (for an overview
see Wagner et al., 2003). The present chapter concentrates on situated agents using
atomic signals. The use of situated agents means that agents also interact in non-
communicative ways with entities of their environment or other agents, and agents

121



122 Chapter 6. Emergent communication and signal coordination

have outputs that affect the environment or other agents which in turn modify their
own inputs and, consequently, internal states of their behavioral mechanisms.

Communication possibly has to be structured in complex environments, whereas
unstructured communication is sufficient for basic tasks such as finding food sources or
avoiding predators. Studies of situated agents using unstructured communication (for
an overview see Wagner et al., 2003; Cangelosi and Parisi, 2002) demonstrated that, for
instance, alarm calls evolve most often when population density is high enough and food
calls when food sources are rich but rare in number (Reggia et al., 2001). Werner and
Dyer (1994) conducted simulations aiming at the evolution of food, alarm, and mating
calls. They demonstrated that sometimes signals are not as useful as they might seem
from our observational perspective. Other studies revealed that communication can be
realized without dedicated communication channels (Quinn, 2001; Wischmann et al.,
2005). We already discussed such examples in Chapter 3 where agents lacked the ability
to communicate explicitly. Thus, it was enforced that evolution discovers solutions
where cooperative behavior among agents relies on implicit information sharing.

As a common principle of the aforementioned studies agents are evaluated on their
performance on non-communicative tasks instead on their communication skills. This
is essential to support communication as an emergent phenomena of an evolutionary
process as it is used in the present chapter to develop cooperative foraging behaviors.

Besides the analysis of emergent communication at the behavioral level, the central
aim of this chapter is again to investigate in detail the individual neural dynamics, that
is, to reveal the link between behavior and the dynamical properties of its underlying
neural control structures. Further questions pursued in this chapter are:

• What are the environmental prerequisites to discover the emergence of coopera-
tion and communication in an unconstrained evolutionary process?

• Will explicit information sharing inevitably emerge when agents are able to make
use of direct communication channels?

• To which degree do we observe evolutionary variety of solutions to the same
problem?

• How important is evolutionary variety for the adaptivity of cooperating agents?

The experiments discussed in this chapter will show that the emergence of coopera-
tive behavior depends heavily on how difficult it is for a single individual to discover a
food source. Surprisingly, the easier it is the more likely cooperation emerges. Further-
more, in this chapter we will discuss several different solutions developed by evolution.
Although we indeed find a great diversity of neural mechanisms, cooperation is always
based on explicit communication, that is, individuals emit food calls when they discover
a food source which guides other individuals to this source. However, at the neural
level we can identify two distinct mechanisms. Direct mechanisms are characterized
by a direct correlation between food source sensation and signaling, whereas indirect
mechanisms are characterized by signaling depending rather on a behavioral context
than on a specific sensor activation.

Thus, even though the evolved behaviors are seemingly similar, evolution develops
a variety of clearly distinct neural mechanisms which realize these behaviors. And this
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diversity of mechanisms is in fact important for the flexibility of groups of agents when
environmental conditions change because some of them possess an intrinsic robustness
to these changes.

6.2 Experimental setup

6.2.1 Individual setup

For the following experiments we used the Do:Little robot as we did in the last two
chapters. For the RNNs, tanh as a transfer function was used (cf. Section 2.4.1, p. 43).
Note that Ix, Ox, and Hx refer to input, output, and hidden neurons with index x,
respectively; and ix, ox, and hx refer to the corresponding output of these neurons.

Robots were equipped with infrared sensors to detect distances to obstacles, a floor
sensor which measures the gray scale of the ground, and two microphones to detect the
direction of sound signals. Sensor values were mapped to the activation of the sensory
input neurons and appropriate noise was added which was determined by experiments
with the real robot. The mapping and noise level of each sensor is given in Table 6.1.
All sensor values are linearly mapped to the range of the activation function, except
sensor values for detecting the direction of sound signals, in the following referred to
as signals of type SA. The angle α of a detected signal to the heading direction of the
robot is represented by:

i5 = 0.5 × (1 + sin(α)),

i6 = 0.5 × (1 − sin(α)). (6.1)

In simulation the range of SA signals was locally limited to 1.5 meters which is in
accordance with the hardware. Note the high noise level of signal detection (Table 6.1).

The output values of the motor neurons determine the speed of the wheels and
when an acoustic signal is triggered by the speaker of the robot. The angular velocities
of the left and right wheel are given by:

ωleft = c × (o1 − o2),

ωright = c × (o3 − o4), (6.2)

Table 6.1: Mapping from physical sensor values to sensory neuron activation.

sensors neuron index mapping [min, max] simulated noise

IR left, right, back I1, I2, I3 -1 : no obstacle 0.05 (≈ 10%)
1 : close obstacle

floor I4 −1 : white 0.05 (≈ 10%)
1 : black

sound signal SA, left I5 0 : 90◦ to the right 0.3 (≈ 30%)
1 : 90◦ to the left

sound signal SA, right I6 0 : 90◦ to the left 0.3 (≈ 30%)
1 : 90◦ to the right



124 Chapter 6. Emergent communication and signal coordination

where c is a speed factor (c = 2.0).
The motor neuron O5 controls the emission of SA sound signals. Important for the

understanding of the communication systems, described later on, is that a robot emits
a single sound signal when o5 values switch sign from negative to positive. This is
demanded by the physical hardware design.

All of the described sensor and actuator mappings were implemented in a way that
RNNs evolved in simulation are easily transferable to the actual hardware without
any need of an additional pre- and post-processing of sensor inputs and motor outputs.
That was done because we wanted to keep the focus on the evolutionary development of
control structures for a given physical body. Although the co-evolution of morphology
and control is an additional important aspect of artificial life research (see for instance
Pfeifer and Scheier, 1999; Taylor and Massey, 2001), it is not within the scope of this
thesis.

6.2.2 Evolutionary setup

To facilitate emergent behavior our evolutionary experiments rely on an implicit fitness
function (see Section 2.5.5, p. 63), where a robot is evaluated on its efficiency of suc-
ceeding in a particular survival criterion instead on explicit descriptions of an expected
behavior. For our study this means that during the final experiments the robot was
evaluated only on its success of exploiting food sources, marked as black spots on the
ground in the environment. Therefore, the fitness of a single robot i was defined as:

F (i) = s
k(i)

T
, (6.3)

where T is the number of evaluation time steps, s a scaling factor (s = 600), and
k(i) ∈ N counts how often the robot is able to find a food patch. Whenever a robot r

finds a food source and stops on it, it recharges its virtual battery, and afterwards it
is again replaced randomly within the environment if its energy level is Er(t) > 0.95.
This energy level is defined as:

Er(t + 1) =

{

Er(t) − Dt + It if i4 > 0.8 and |ωleft|, |ωright| < 0.1,
Er(t) − Dt else.

(6.4)

The first case corresponds to the situation when a robot stops on a food source. Dt

is a constant energy loss (Dt = 0.001) and It is the gained energy (It = 0.006). Er(t)
is bounded by the interval [0.0, 1.0]. Note, for the sake of simplicity an energy value
of Er = 0 has no consequences for a robot. However, with low energy levels the time
needed by a robot to recharge its battery is larger than with high energy levels. Thus,
the faster a robot finds a food source the shorter the time of recharging and, therefore,
the higher the performance, which depends on how often a robot is able to find food
sources in a given evaluation time.

The evaluation of a particular RNN was done with a homogeneous group of robots
(that is, they are identical with respect to their morphology and control). Such selection
based on homogeneous groups means that the average fitness of all robots in a group
was taken to evaluate the performance of a particular neural network (this corresponds
to a fitness averaging as discussed in Section 2.5.4, p. 61). However, a robot was
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not evaluated on how it solves the several subtasks, such as avoiding obstacles and
other individuals, approaching food sources, and, that is particularly important, how
to cooperate and communicate with other agents. Thus, not only cooperative behavior
can be successful, and communication does not have to inevitably emerge. For instance,
even solitary behavior can be efficient if each individual is able to locate food patches
reliably without running into obstacles or other robots. However, whether or not
cooperative behavior emerges depends also on the given environmental constraints, for
instance, on how difficult it is for an individuals to find food sources by random search.

Because agents are evaluated on a non-communicative task, it is ensured that com-
munication is indeed an emergent phenomena of the evolutionary process. Grounded
signals1 can, but they do not have to, emerge during evolution. In our studies only a
single signal is available to the agents. This signal can be used directly when related to
basic needs such as finding food source. However, grounded signals do not necessarily
have to evolve, because there are no initial associations of a signal with particular ac-
tions. An evolutionary algorithm is used to probably establish such associations (see
Section 2.5.3, p. 56). With this method we can demonstrate how structural changes
evoke cooperative behavior among communicating robots and adaptation to changing
environmental conditions.

6.2.3 Incremental evolution

The difficulty of evolving cooperative foraging behaviors is the implicit existence of
several subtasks. In our case the robot has to explore the environment to find food
sources while avoiding obstacles, it has to react appropriately once such a source is
found which means it has to emit useful signals and it has to react reasonably to signals
of other robots. Evolving such a behavior without any bias is nearly impossible (we
tried it, it never worked). Therefore, we applied a so called semi-restrictive incremental
method (Hülse et al., 2004). In the first evolutionary step a single robot had to explore
its environment without running into obstacles. The topology of the neural network was
not determined beforehand, only input and output neurons were defined. Structural
elements, such as synapses and hidden neurons, could freely emerge in between. The
fitness function was still implicit. It demanded only high wheel speeds. For the second
evolutionary step we selected several different RNNs which were successful in solving
the exploration task as initial structures, and robots should now additionally stay
on discovered food patches (fitness function of Eq. 6.3 was used). Already existing
structural elements were not allowed to be removed (whereas their parameters could
be changed), but new structural elements could be added within the whole network
which now also had a floor sensory input to detect food sources. Resulting solutions
realized the basic solitary foraging behavior whose according RNNs again served as
initial structures for the next evolutionary step where robots were able to communicate
(again, fitness function of Eq. 6.3 was used).

Consequently, after the first evolutionary step we always put a certain bias in each
subsequent step. However, this was only done to provide basic behaviors for the evolu-

1Grounded signals are signals that are related to the agent or its environment, and therefore have a
meaning (Harnad, 1990). That is, there is a specific relation between the act of signaling the resulting
action of a receiver.
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Figure 6.1: The basic solitary foraging behavior and its neural mechanisms. a:
RNN of A1 individuals realizing the basic solitary foraging behavior. b-d: Bifurcation
diagrams for o1-4 by separately varying i1, i2, and i4 (not varied inputs were set to
−1.0; gray arrows indicate whether the varied value is increasing or decreasing). e,f:
Path (dashed line) of a single robot during a sample run in two different environments
starting at x with an initial south-east heading direction away from the food source.

tion of more complex behaviors, for which we never defined how a network eventually
should be realized. Therefore, we argue that the emergence of communication during
evolution was neither explicitly forced by a given network structure nor by the fitness
function.

Solitary foraging

In two subsequent evolutionary steps, as described in the previous section, we evolved
the basic foraging behavior which entails three sub-behaviors: exploring the environ-
ment, avoiding obstacles, and stopping on a food source. The environment shown
in Figure 6.1f was used. During evolution each neural network was evaluated on ten
robots in the same environment at the same time (the starting position of each robot
was randomly determined within the complete environment excluding the food source).
This method promotes more reliable fitness values as compared to single robot eval-
uation because we took the average of all ten individual fitness values (cf. Eq. 6.3),
which is equivalent to averaging the fitness of a single individual over ten trials with
different initial conditions, such as the starting position and heading direction (for a
discussion about fitness averaging see also Section 2.5.4, p. 59). Furthermore, it facili-
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tates a robust obstacle avoidance behavior because each robot is also challenged with
moving barriers (that is, other robots). One resulting network is shown in Figure 6.1a.
Individuals equipped with this RNN are in the following called A1 . Such a robot solves
all three subtasks not only in the environment where it was evolved (Figure 6.1f), but
also in differently structured environments (see for instance Figure 6.1e).

The main neural mechanisms that underlie the observable behavior are summarized
in Figure 6.1b-d. Obstacle avoidance is characterized as follows: When the activation of
the left infrared sensor (i1) increases, the system enters periodic attractors (Figure 6.1b)
which leads to an oscillation of o2 and o4. These oscillations are averaged through the
properties of the motors and the robot’s body (inertia, friction). Thus only the mean of
these oscillations lead to the actual velocity of the wheels. For o3 we observe a change of
a fixed point from the upper to the lower saturation domain of the activation function,
resulting in a turn to the right (cf. Eq. 6.2). A different mechanism is activated when
the right infrared sensor input (i2) varies. The motor outputs o1, o2, and o4 change
their fixed point at different values depending on whether i2 increases or decreases
(Figure 6.1c). This hysteresis effect is due to the strong positive self-connection at O1
and the even loop between O2 and O4. For a detailed discussion of these mechanisms,
oscillation averaging and hysteresis effects, see (Hülse et al., 2005). For the purpose of
our study it is sufficient to notice that these mechanisms slow down the corresponding
wheels (cf. Eq. 6.2) when an obstacle is detected, and that this evokes an avoidance
behavior as shown in Figure 6.1e,f.

Figure 6.1d shows the neural mechanisms that underlie the stopping on a food
source. When the robot enters a food source, the activation of the ground sensor (i4)
changes. In our experimental setup the gray value of food sources was randomly chosen
in a range that it always provoked a sensor activation between 0.8 and 1.0 (± sensory
noise). For these values the fixed point, important for o1 and o2, lies in the upper
saturation domain, which means the left wheel stops. The same holds for o3 and o4,
only that the according fixed point is within the lower saturation domain. According
to Eq. 6.2 this forces the robot to stop.

6.3 Emergent communication in small groups

6.3.1 Required environmental conditions

To evolve cooperative behavior based on emergent communication systems we took
RNNs from the previous evolutionary step (including the RNN of A1 ), which performed
well in the solitary foraging task. Our first intuition was that a complex environment,
as shown in Figure 6.1f, would enforce the emergence of cooperation. In this environ-
ment it is rather complicated for a solitary individual to quickly find the single food
patch. Once an individual finds it perchance, it could use its communication system to
guide the others. Thus, cooperating individuals would have a significant higher fitness
than solitary individuals. Using a homogeneous group of ten robots we conducted 30
evolutionary trials, each lasting at least for 1000 generations, and with each generation
having an average population size of 100 individuals. Communication and cooperation
has not evolved in any case. Our explanation is that the performance gap between soli-
tary and cooperative behavior, what we actually thought might facilitate the emergence
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of communication, is too large (compare the performance of communicating and non-
communicating agents in Figure 6.4a). It takes too much time until an individual finds
the food patch. And consequently, even when it than starts to call other robots, this
would not significantly increase the performance compared to robust solitary behavior
because we have to consider that the robots had to learn signaling and the appropriate
responses to other signals at the same time (and the communication range is spatially
limited). And this is very unlikely to happen in a single evolutionary step from one
generation to the next. Therefore, a stepwise refinement of the communication system
during evolutionary development is actually not possible.

We than decreased the environmental complexity by removing obstacles and placing
several food patches in the environment. But even there, no cooperation emerged,
which is more easily to explain. Because food sources were many in numbers, there
was no need to communicate because solitary individuals needed only a very short time
to discover them by chance. Reggia et al. (2001) made more thorough investigations
into the environmental conditions which enable the emergence of communication. Their
experiments, despite that they were done with grid worlds, convincingly demonstrate
that communication most often evolves when food sources are rich but few in number.
We did not test for the richness of food sources, but our experiments confirmed that
they have to be few in number. However, what seems to be counterintuitive is that
only in environments where food sources were easily accessible, cooperative behavior
emerged. Intuitively, one might think that the more difficult it is to discover food
sources the more likely cooperative behavior would evolve. A thorough investigation
of these surprising aspect would be interesting for future research. As discussed above
the most likely explanation for this phenomena in our experiments is the increased
performance gap between solitary and cooperative foraging behavior in environments
where food sources are hard to find.

Finally we used an environment as illustrated in Figure 6.2b where a single food
source is rather easy to find by random search. Evolution with this environment gave
rise to the emergence of cooperation, as it will be discussed in the following section. It
is important to stress that although all RNNs were evolved in this rather simple en-
vironment, the resulting cooperative behavior was robust enough that, in the end, we
could also observe better performance compared to solitary behavior in the more com-
plicated environment (compare Figure 6.1f with Figure 6.2c), without any additional
evolutionary optimization.

6.3.2 Unidirectional broadcasting

The basic foraging behavior (Figure 6.1) is sufficiently good for a solitary individual. If
robots get the ability to communicate, the most intuitive improvement would be that
a robot as soon as it detects a food source releases a signal to call and to guide other
individuals. This is exactly the behavioral strategy realized by the network shown in
Figure 6.2a. This RNN was one result of the evolution with a homogeneous group of ten
robots capable to communicate. Individuals controlled by this type of RNN are called
B1 . When such a robot receives the food call of another individual it follows the signal
and finds the food source very quickly while still avoiding obstacles (Figure 6.2b,c).
The neural mechanisms of obstacle avoidance and staying on a detected food source are
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Figure 6.2: Behavior and neural characteristics of B1 individuals. a: RNN
of B1 individuals resulting from the evolution with a group of ten robots capable to
communicate (H1 is a hidden neuron). b,c: Path of a robot placed at starting position
x (cf. Figure 6.1e-f) while another robot on position o emit food calls. d: Bifurcation
diagrams for the output neurons which control the wheels while varying the left and
the right sound sensor input i5 and i6, respectively (i1 = i2 = i3 = i4 = −1.0; not
varied sound sensor was set to 0.0). e: Signals of O5 (top) with the robot on a food
patch and the bifurcation diagram for o5 (bottom) by varying the floor sensor input
(i1 = i2 = i3 = −1.0; i5 = i6 = 0.0).

qualitatively similar to the mechanisms discussed for the basic foraging behavior (see
Section 6.2.3). Therefore, in the following we will concentrate on the neural principles
of emitting food calls and the behavioral response to such signals.

Figure 6.2d explains the principles of signal following. When a signal on the right
side (i5 increases) is detected, only the output of O2, the neuron to which I5 is con-
nected (see Figure 6.2a), changes in a way that the left wheel is slowed down leading to
a right turn. If a signal on the left side of a robot occurs, i6 increases. This affects only
neuron O4 leading to period-2 oscillations, which are, as mentioned earlier, averaged
by the inertia and friction of the robot’s body. The consequential slow down of the
right wheel causes a turn to the left.

Figure 6.2e (bottom) illustrates the influence of the ground sensor input neuron I4
on the motor neuron O5, which is responsible for the sound generation. By means of an
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odd loop with strong positive and negative weights (for deeper discussions about the
dynamics of two neuron networks see Pasemann, 1995b, 2002), O5 is connected with
the hidden neuron H1 (see Figure 6.2a). This loop operates as a switchable oscillator
(Pasemann, 2002) depending on i4, which is about -1.0 as long as the robot is moving
on white ground. As we can see in the bifurcation diagram (Figure 6.2e bottom) the
oscillation, caused by a period-4 attractor, is switched on by an increased activation of
I4. The bifurcation point is very close to i4 = −1.0, and therefore, it can already be
crossed by the noise of the floor sensor. However, to emit a sound signal there has to
be at least one point of the periodic orbit in the negative domain and one point in the
positive domain because a signal is only elicited if o5 switches its sign from negative
to positive. This only holds for i4 > −0.7 (never reached by sensor noise itself). Since
detected food patches always provoke sensor signals of I4 within [0.8, 1.0] the output
of O5 oscillates as shown in Figure 6.2b (top).

There is a direct correlation between food source sensation and emitting food calls.
These signals are grounded because they are elicited under a specific environmental
stimulation and they provoke a particular action in their receivers. Other robots use
these food indicating signals to enhance their own behavioral performance by directly
moving to the food source. Once they arrived, they also immediately start signaling.
This kind of communication corresponds to unidirectional broad casting because signals
are not send to a specific receiver and the act of signaling changes the behavior of a
receiver, but this induced behavioral change does not influence the behavior of the
signaler.

6.3.3 Communication based on indirect mechanisms

Another evolutionary solution, from now on called B2 individuals, is shown in Fig-
ure 6.3a. The neural principles of obstacle avoidance, resting on a food source, and
following a detected food call are qualitatively similar to those described above. But
the mechanisms responsible for the release of food calls are significantly different. As
we can see in Figure 6.3a, there is no direct connection from the floor sensor input I4 to
the output neuron O5. Thus the sensation of a food source can not explicitly influence
the signaling behavior as it is the case for B1 individuals. All relevant synaptic inputs
to O5 are emphasized in Figure 6.3a. When a single robot stays on a food source, the
motor outputs are o1 = o2 = 1.0 and o4 = −1.0 (the mechanism is qualitatively similar
as shown in Figure 6.1d). And as long as no other robot is in range, the left infrared
sensor is not activated (i.e., i1 = −1.0). Correlating these values with the synaptic
strength of the connections which project from these neurons to O5 would lead to an
output of o5 = −0.1 as can be seen in Figure 6.3c (i4 > 0.8 when the robot is on a
food source). This fixed point is now in the linear domain of the activation function,
and therefore the output of O5 is highly sensitive to the noise of i1. Figure 6.3b shows
how the noise is amplified at O5 due to the strong positive weight of the synapse from
I1. The output of O5 now fluctuates randomly around zero which triggers a food call
whenever it crosses the zero line from the negative to the positive domain. Thus, in
this example fluctuations in form of sensory noise are the driving force of signaling,
which in this example is advantageous as we will see in the next section.

In classical engineering approaches to behavior control of autonomous robots it is
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Figure 6.3: Neural characteristics of B2 individuals. a: RNN of B2 individuals
resulting from the evolution with a group of ten robots capable to communicate. b:
Signals of O5 and I1 when a single robot is on a food patch. c: Bifurcation diagram
for o5 by varying the floor sensor input i4 (i1 = i2 = i3 = −1.0; i5 = i6 = 0.0). c-f:
Bifurcation diagram for o5 by separately varying the distance sensor inputs i1,i2, and
i3 (i4 = 1.0; i5 = i6 = 0.0; not varied distance sensor inputs were set to -1.0; gray
arrows indicate whether the varied value is increasing or decreasing).

usually tried to prevent or eliminate noise as effective as possible. Contrary, for bi-
ological systems it is well known that noise can significantly enhance sensory-motor
patterns, for instance by means of a mechanism known as stochastic resonance (Gam-
maitoni et al., 1998). In our example, utilizing noise is a quite efficient solution to
the problem of signaling. Infrared sensors are always noisy, and we tested different
noise levels in the simulation environment with the result that the behavior does not
qualitatively change if the noise level is varied between 2% and 15% (the noise level of
the physical infrared sensors is ≈ 10%).

6.3.4 Performance when environmental conditions change

The major problem, which actually is a constraint of the given physical body, in our
experimental setup is that too many signaling robots can produce a continuous signal
for a longer time. Then, individuals, still searching for food, are not able to detect
reliably the food calls of other robots (note, only signal peaks can be clearly distin-
guished by the robots). In a group of ten robots such a situation occurs only rarely
for B1 individuals and almost never for B2 individuals because only a few robots are
standing on a food source where they emit food calls. For B1 individuals at least four
agents are needed to produce a continuous signal, and this can happen only if the
oscillations of o5 are in a different phase for each of the four individuals. The chance
that a few individuals produce a continuous signal for a longer time is very low because
fluctuations of o5 for B2 are driven by sensory noise and hence rather random.
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individuals. a: Performance of B1 and B2 individuals depending on group size. For
each group size 25 simulation runs were performed, each lasting 18,000 time steps. The
mean performance of B1 and B2 individuals with deactivated communication systems
(disabled microphone and speaker) is drawn as a reference. Performance was calculated
according to Eq. 6.3. b,c: Black regions indicate the periods where no robot within a
group of 30 individuals emits a sound signal (see text for details). Measurements were
conducted in the environment shown in Figure 6.2b.

And indeed, if we compare the performance of these two RNNs at a group size
of ten individuals, we see that they both perform sufficiently well (Figure 6.4a). If
we increase the group size, the performance of B1 drops rapidly, which is due to the
overlapping period-4 signals of too many robots signaling simultaneously. The more
individuals signal at the same time, the higher the probability that their signals will
sum up to a continuous signal. Remember, already four individuals of B1 can produce
a continuous signal when they are all signaling with different phases2. This problem
becomes even more evident if we look at the signaling behavior in a group of 30 robots.

The black regions in Figure 6.4b indicate the time intervals when no signal is present
from any B1 individual, whereas white regions represent the presence of at least one
signal. At the beginning no robot emits a food call because the food source is not
discovered yet. But as soon as one robot starts to emit food calls, this attracts other
robots which then also start signaling as soon as they arrive at the food patch. This
leads very quickly to a long period of overlapping signals (time steps 100-330) where
no robot, which is still searching for food, can recognize the food calls. For a short
time this conflict is solved (time steps 330-380) because most of the robots on the food
patch have recharged their energy level and are replaced randomly in the environment.

In contrast, B2 individuals perform much better in larger groups (Figure 6.4a).
At the behavioral level this can be explained by the signaling behavior of a group
with 30 individuals as it is illustrated in Figure 6.4c. One reason for the robustness
to increased group size is indeed that signals are released randomly rather than with
short periods which decreases the probability that single signals sum up to a continuous
signal for a longer time. But there is an additional, more subtle, mechanism. The
more robots share an environment the more crowded the food patch becomes and
the closer is the distance between the robots on it. If a robot is so close that it
activates the infrared sensors of another signaling robot, the fixed point of O5 is shifted

2This is not simply an artifact of the simulation. Experiments with physical robots have also shown
that the maximal frequency, where two subsequent signals can be distinguished, is 5Hz. It does not
matter from which direction the sound signal comes.
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away as shown in Figure 6.3d-f. The influence of increased activation at I1 is rather
direct because of the strong synaptic connection to O5 (see Figure 6.3a), whereas the
influence of I2 and I3 is rather indirect. An activation of these sensors triggers an
obstacle avoidance response which is characterized by a change of the activation at
the motor neurons which drive the wheels (O1-4). This change disturbs the balanced
synaptic input of O5, and hence, signaling also ceases (see Figure 6.3e,f). Thus, the
number of signalers does not necessarily increase with the number of robots which are
on the food patch because more robots cause more disturbances which automatically
reduces the number of signalers. In addition to the random emission of signals, this
self-organized regulation of signaling is the second reason for the intrinsic robustness
to increased group size. This means that signaling can not longer be described as
unidirectional. The induced behavioral change in receiving robots can also change the
signaling behavior of a transmitter as soon as the receiver reaches it, which leads to a
coordination of signaling.

What is important to stress is that the signal itself is not relevant for the signal
coordination process. Coordination results from activation of infrared sensors which
measure the distance to obstacles. A robot can not distinguish between static obstacles
in the environment or other robots, both just increase the infrared sensor activation
when they are close by and as a consequence a robot would try to avoid that obstacle.
This change in behavior, caused by a change of the corresponding motor neurons
which control the wheels, causes the signal coordination among many robots trying to
exploit the same food source. And in that sense this coordination relies on implicit
information sharing because there is no need to explicitly coordinate the signaling.
It is implicit because information of how many robots are already signaling is not
transmitted directly.

6.4 Evolutionary adaptations in larger groups

In the next setup of our experiments we wanted to figure out how evolution as an
adaptation process refines solutions which turned out to perform rather weak when
confronted with more complicated environmental conditions such as an increased num-
ber of interacting robots. Thus, we took the RNN of B1 individuals (Figure 6.2a),
which realized communication by a switchable period-4 oscillator, as the initial struc-
ture for the evolution on the same task but we increased the group size to 25 individuals.
Again, we allowed parameter changes of the initial RNN as well as the emergence of
new structural elements.

6.4.1 Synchronized quasi-periodic oscillators

One of the refined solutions is shown in Figure 6.5a. Individuals controlled by this
RNN are called C1 individuals. When we compare the structural elements responsible
for the communication system with the initial RNN of B1 (Figure 6.2a), we notice the
same odd loop between H1 and O5 with over-critical synaptic weights3. In addition, we

3By over-critical we mean here a weight configuration leading to non-trivial dynamics, which are
determined by periodic, quasi-periodic, chaotic, or co-existing attractor domains rather than by single
fixed point attractors. For a deeper and mathematically thorough discussion see (Pasemann, 2002).
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resulting from evolution with a group of 25 robots capable to communicate. b: Signals
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varying i6 (i1 = i2 = i3 = −1.0; i4 = 1.0; i5 = 0.0).

find an over-critical self-connection at H1. With this weight configuration the module
exhibits quasi-periodic oscillations (Figure 6.5b) which are switched on by an increased
activation of the floor sensor I4 (Figure 6.5c). We applied a power spectrum analysis
to the time series in Figure 6.5b and found a mean period length of about 8.7 time
steps. The time between emitting two subsequent sound signals is now almost twice as
long as in B1 . Although this is presumably a coincidence, the correlation is interesting
because the group size used in evolution of C1 is also almost twice as large as it was
used for the evolution of B1 .

Another new structural element is the connection between the left microphone
input I6 and the hidden neuron H1. Whenever a robot is staying on a food patch,
and therefore i4 > 0.8, the described quasi-periodic oscillation (see Fig. 6.5b,c) is
responsible for sound emission. As soon as another nearby robot also starts signaling,
I6 becomes activated (even when the other robot is to the most right side, which is due
to the high noise, approx. 30%, of the sound direction detection). Then, as we can see
in the bifurcation diagram of Fig. 6.5d, the quasi-periodic attractor switches to a fixed
point and, therefore, the oscillation will cease. Because the sound signal of signaling
robots lasts only one time step, these oscillations immediately start again in the next
time step (i6 = 0). This reset mechanism will lead to a synchronization of the signaling
among robots which stay together on the food patch (a mechanism very similar to the
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synchronization of internal neural rhythms described in Chapter 5). That means, if
there are many robots on a food patch, they will not produce a continuous sound signal
as, in contrast, do B1 individuals. This leads to a striking performance improvement
with respect to B1 (see also Figure 6.4a and 6.7a). However, the performance of C1 is
not significantly higher compared to B2 , although B2 was evolved with a population
size of ten. This is due to the intrinsic robustness to environmental changes as discussed
in the previous section.

6.4.2 Synchronized periodic oscillators

Another evolutionary solution is shown in Figure 6.6a. Individuals controlled by this
RNN are called C2 individuals. The communication system (O5−H1 loop) looks very
similar to B1 (compare to Figure 6.2a). And indeed, if we compare Figure 6.6b,c with
Figure 6.2e, we find the same period-4 oscillation which is switched on when the acti-
vation of I4, the floor sensor input, leads the system to cross a bifurcation point (which
is slightly different between these two controllers but this has no significant influence
on the signaling behavior). The striking structural differences are the new connections
from the sound sensor inputs I5 and I6 to the hidden neuron H1. Figure 6.5d shows
how the summed activation of these neurons leads to a switch from the periodic attrac-
tor to a fixed point. Consequently, the oscillation is reset whenever a signaling robot
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Figure 6.7: Performance and signaling behavior comparison for C1 and C2

individuals. a: Performance of C1 and C2 individuals depending on group size. For
each group size 25 simulation runs were performed, each lasting 18,000 time steps. The
mean performance of C1 and C2 individuals with deactivated communication systems
(disabled microphone and speaker) is drawn as a reference. Performance was calculated
according to Eq. 6.3. b,c: Black regions indicate the periods where no robot within a
group of 30 individuals emits a sound signal (see text for details). Measurements were
conducted in the environment shown in Figure 6.2b.

receives sound signals of nearby robots4. This gives rise to signal coordination by a
synchronization mechanism among robots gathered on the same food patch. Such syn-
chronization among pulse coupled oscillators in a group of acoustically communicating
robots is scalable and robust even with very short local interaction ranges. This was
already demonstrated in Chapter 5.

6.4.3 Evolutionary adaptation vs. diversity of solutions

The behavior of signaling in synchrony with a period of 4 time steps outperforms not
only B1 individuals with the initial structure but also B2 individuals with the noise
driven mechanism (compare Figure 6.4a and Figure 6.7a). The reason becomes obvi-
ous when we compare the occurrences of signal pauses and emitted signals of all three
solutions. We see the already discussed long periods of continuous signals for the B1

individuals (Figure 6.4b, p. 132). During this time no robot is able to detect the food
calls of other individuals. Considering the behavior of B2 individuals (Figure 6.4c,
p. 132) we see that there are much more breaks in the signaling behavior which is due
to the described noise driven mechanism and the suppression of signaling when food
spots become crowded. For C2 individuals we see a rapid succession of signal emission
and breaks (Figure 6.7c) since already two signaling individuals synchronize their food
calls. In that sense the alternation of black and white regions in Figure 6.4b,c and
Figure 6.7b,c indicates how often robots, which still search for food, can adjust their
heading direction toward the food source. This explains why C2 individuals outper-
form the other two solutions evolved with a smaller group size. It also explains the
slightly better performance compared to C1 , because C2 individuals can update their
heading direction toward a food call more often than C1 individuals (see Figure 6.7b,c).
A high update rate of the orientation toward food calls is of great advantage, espe-
cially if we consider the high noise of the sound direction detection (≈ 30%) and the

4Note, whenever the robot receives a signal, then i5 + i6 = 1.0 independent of the direction of the
sensed signal (cf. Eq. 6.1). Therefore, sound reception will always lead to a reset of the oscillator.
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increased interference among moving robots in larger groups. The high performance
of C2 individuals is a result of the interconnection between the dynamics at the neural
level (oscillations with a short period) and the interactions among individuals within
a group at the behavioral level (synchronization of signaling behavior).

Thus, we have seen how evolution effectively improves a solution (i.e., B1 ) which
performed rather weak when the number of interacting individuals became larger than
the group size with which it was originally evolved. Intriguingly, B2 , which was evolved
under the very same conditions as B1 , already possessed the ability to cope with
this increased number of interacting individuals, namely the ability to coordinate the
signaling behavior. This leads us to conclude that evolutionary variety provides at
least some solutions with an intrinsic robustness to environmental changes where no
further evolutionary refinement is necessary.

6.5 Discussion

We will now discuss the questions given in the introduction of this chapter. Points of
interest are the environmental constraints which give rise to the emergence of commu-
nication, the role of explicit communication and indirect neural mechanisms, and the
importance of evolutionary variety of developed solutions to the same problem.

6.5.1 Environmental conditions

Even though it was not the central focus of this chapter, our results of evolved emer-
gent communication systems in groups of situated artificial agents confirm and bring
together several findings of related studies. Our experiments confirm the findings of
Reggia et al. (2001) that food calls evolve most often when food sources are few in
number.

Wagner et al. (2003) argue that there is still a need to investigate when commu-
nication will not emerge. The surprising observation in our experiments was that
communication emerged only when the environment was not too difficult. With dif-
ficult we mean how easy it is for a single agent to discover a food source. It seems
counterintuitive, but cooperation emerged only when the chances of finding a food
source by random search were rather high. One might expect that cooperation would
be favored by evolution the more difficult it is to access food without the help of other
individuals. The only explanation we can give at this point is that the performance
gap is simply to large between solitary and cooperative behavior, such that a step-
wise refinement of the initial behavior was not possible. At least it was not possible
during the limited evaluation time in which the performance of a group of robots was
measured.

Two issues are intriguing for future research. First, it would be necessary to con-
duct more extensive studies on the correlation between evaluation time, environmental
complexity, and the emergence of communication to find out under which conditions
communication will not emerge. However, the more important aspect clearly is the
existence of only one niche in the environment. Robots either develop skills to exploit
this niche or not. There is no possibility to survive without this particular niche. Thus,
another aspect for future research would be to consider an environment which offers
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many different niches. Possible niches should provide more profit with increasing diffi-
culty of exploiting them. In that way, individuals are not doomed to develop skills for
one single particular niche.

Providing multiple niches is an important aspect of the next chapter and we will
see that this indeed facilitates transitional evolutionary adaption. That is, individuals
develop more complex behaviors in successive steps when confronted with more than
one possible environmental niche.

6.5.2 Explicit communication and indirect mechanisms

Former studies demonstrated how cooperation among situated agents can evolve with-
out using dedicated communication channels. For instance, Quinn (2001) evolved
agents on a group movement task. By using their infrared sensors individuals were
able to keep a close distance to each other without using direct communication. In
Chapter 3 we discussed different distributed control architectures which cooperatively
solved a task without the ability to communicate explicitly. In both of these examples
there was no other choice than cooperating without communication because (a) coop-
eration was either needed to fulfill the task (Chapter 3) or explicitly encoded in the
fitness function (Quinn, 2001) and (b) agents lacked the physical ability to communi-
cate directly.

In this chapter we wanted to figure out whether agents will always make use of the
provided possibility to communicate directly. In every discussed evolved solution they
did. In principle, cooperative behavior was always based on the same communicative
strategy. Whenever an agent discovered a food source, it emitted food calls which
attracted other agents. On the one hand, we have to admit, that there was no other
way to transmit the information about food sources within a group of agents. Agents
lacked the ability to modify their environment, as for instance ants do when they
establish trails to food sources by segregating pheromones on their way which can be
sensed by other ants (a mechanisms called stigmergy, see also discussion in Section 2.1
on p. 27 and Section 3.6.2 on p. 90).

Thus, it is not surprising that all successful solutions made use of the only way
individuals had to communicate. However, at this point we should distinguish between
communication how it can be observed at the behavioral level and the neural mecha-
nisms of communication. At the behavioral level we always observed the same: food
calls of individuals on the food sources, and a positive tropisms of individuals which
are searching for food toward these signals. At the neural level we identified two clearly
separate mechanisms.

On the one hand, a direct neural mechanisms could be found in B1 , C1 , and C2

individuals. In all three neural structures a switchable oscillator was responsible for
periodic signal emission. Oscillations are either switched on or off depending on whether
the food source sensor was active or not, respectively. Thus, signaling was directly
correlated with sensing the presence of a food source or not.

On the other hand, the neural mechanisms that underlie the signaling behavior of
B2 individuals are rather indirect. As we have seen there is no direct connection from
the food source sensor to the motor neuron responsible for signaling. Signaling rather
results from a behavioral context. Sensing the presence of a food source causes a robot
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to stop on it. This stop is realized by changing the activity of the motor neurons which
control the wheels. In this situation the motor neuron responsible for signal emission
becomes sensitive to the noise of one infrared sensor. These fluctuations in form of
sensory noise are the driving force behind the signaling behavior. The evolution of
such a mechanism is not as rare as one might assume at this point. In the next chap-
ter we will see a further example of how fluctuations are utilized for communication.
It has to be emphasized that even though one may intuitively expect the evolution
of direct signaling, our reduced preconceptions with respect to the design of fitness
functions or the topology of neural networks enabled the emergence of significantly
different mechanisms under the very same conditions, as was exemplified for B1 and
B2 individuals.

We argue, only by analyzing the intrinsic dynamics of evolved RNNs and relating
them to the observable behavior, such fundamental differences of mechanisms behind
seemingly similar behaviors can be identified. So, what? Once such different mecha-
nisms are identified, one is able to explain not only the observable behavior at every
level of description, but one is also able to explain the reason why some of seemingly
identical solutions perform better when environmental conditions change.

One may now argue that signal coordination is an inevitable advantage for our
specific robotic system because the hardware is designed in a way that only signal peaks
can be recognized and no continuous signals. However, just remember the example
of synchronized flashing among male fireflies introduced in Chapter 5; what is more
attractive to females? A single bright flash from the crowd or a clutter of dim individual
flashes? Or, how much do you understand from a heated discussion with many people
where every one speaks at the same time? If our robot would be part of this discussion,
it would just ‘hear’ nothing in this case, but it would be able to ‘understand’ if every
one would ‘speak’ consecutively. In this sense what we, admittedly, have preconceived
through our hardware choice is the selective mechanism of sensing, but what has evolved
is the ability to emit signals in a reasonable manner.

6.5.3 Evolutionary variability as the source of flexibility

Our results of evolved communication systems in small groups of robots demonstrated
that evolutionary strategies do not converge to one optimal solution. Instead, a variety
of different mechanisms can arise which lead to comparable behavioral performance.
By analyzing the link between observable behavior and individual neural dynamics, we
presented two neural networks (B1 and B2 ) in detail with significantly different mech-
anisms of utilizing the ability to communicate for solving a cooperative foraging task.
In both cases signals are grounded because signaling is the consequence of detecting
food sources and receiving agents react specifically to these signals by heading toward
the food source.

However, in the first case (B1 ) signaling is mainly characterized by the intrinsic
dynamical properties of the neural network, namely by a switchable oscillator which is
switched on with increased activity of the sensor which detects food. Thus, signaling
is directly coupled to the discovery of a food source. In the second case (B2 ) signaling
is driven by the noise of the infrared sensors due to a balanced synaptic input from
the motor neurons, responsible for the speed of the wheels, and one infrared sensor.
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There is no direct correlation between the floor sensor input activation and the act of
signaling. It is a consequence of stopping on a food source as soon as it is detected.
We argue that the occurrence of such completely different mechanisms with similar
behavioral performance as a result of evolutionary trials with identical initial condi-
tions and constraints is mainly accounted to the decreased prior assumptions, such as
constraints implied by the fitness function design or limitations given by predefined
network topologies.

Studies of activity pattern in biological neural networks revealed that even within
individuals of the same species there exist a huge variety of different mechanisms leading
to the same performance at the behavioral level (for an excellent review see Marder and
Goaillard, 2006). This variety gives species not only robustness and flexibility in their
behavior but increases also their resistance against mutations and entails the evolution-
ary potential to exploit different solutions when environmental conditions change. Our
results imply that the same holds true for the evolution of artificial situated agents. In
particular, we demonstrated that two solutions (B1 and B2 ) performed well in environ-
mental conditions under which they were evolved (group size of ten). However, faced
with more complicated conditions (increased group size) individuals with the noise
driven communication system outperformed the other solution significantly, although
the individuals were never confronted with these conditions during their evolutionary
development. This adaptation and robustness is an intrinsic property of a particular
neural mechanism realizing communication as the foundation for cooperative behav-
ior. Our results imply that, as it is known from natural evolution, also in artificial life
experiments evolution can bring up a variety of solutions where, concerning behavioral
performance, some of them show only little advantage under the current conditions,
but possess the potential to handle also significant environmental changes. We argue,
to discover such solutions it is necessary to reduce the prior assumptions made about
expected behaviors and their underlying control architectures as much as possible.

Identifying such significantly different mechanisms, which lead to similar observable
behavior, presupposes a thorough analysis and understanding of the dynamics at the
neural level which than has to be linked to the observable behavioral level. Such an ap-
proach becomes unfeasible when our main priority would be to increase the complexity
of experiments with simulated agents toward behaviors which imitate more closely the
actual intricacy of animal behavior. Therefore we argue, it seems reasonable to initially
focus on minimized models of emergent communication systems which are functionally
equivalent to animal communication, and increase their complexity without loosing the
feasibility of understanding not only every detail of such systems, but also the system
as a whole where all the single parts fit together, which is, as we think, the actual
strength of the artificial life approach.

6.5.4 Direct and indirect signal coordination

There are two reasons for the intrinsic robustness of B2 to an increased number of inter-
acting individuals. Compared to B1 , B2 individuals release food calls rather randomly
instead of in fixed short periodic intervals. This decreases the probability of generating
too many interfering signals for a longer time. The second reason is the indirect signal
coordination mechanisms. Again, when we talk about signal coordination we have to
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distinguish between indirect and direct mechanisms.
The neural mechanisms that underlie signal coordination among B2 individuals are

indirect because the signal itself is not relevant for that process. Coordination results
from the activation of infrared sensors which measure the distance to obstacles. A
robot can not distinguish between static obstacles in the environment or other robots,
both just increase the infrared sensor activation when they are close by and as a con-
sequence a robot would try to avoid that obstacle. This change in behavior, caused
by a change of the corresponding motor neurons which control the wheels, causes the
signal coordination among many robots trying to exploit the same food source. The
more individuals gather on a food source, the closer they come together. Hence, some
individuals activate the infrared sensors of other individuals which, in turn, deactivates
their signaling. There is no need to explicitly coordinate the signaling. This coordina-
tion is an emergent property of the interaction among embodied and situated agents
and the neural mechanisms that underlie their communication systems.

In contrast, signal coordination among C1 and C2 individuals is based on direct
neural mechanisms. Evolution as an adaptation process, refined a solution (B1 ) which
did not possess such an implicit and subtle signal coordination mechanism as discussed
for B2 and, therefore, performed rather weak when faced with more complicated envi-
ronmental conditions. Evolution was able to improve the behavioral performance by
small structural changes. A very few additional synapses were sufficient to adapt the
initial communication system efficiently. C1 and C2 individuals still use a switchable
oscillator to signal the discovery of food sources to other individuals. The problem of
producing a continuous signal by too many signalers is solved through a synchroniza-
tion of signaling among food call emitting individuals. And because synchronization is
achieved by the signals themselves, we describe this mechanism as direct, in contrast
to the indirect mechanism found in B2 individuals.

Interestingly, here coordinating communication by pulse coupled oscillators is a
result of an unconstrained evolutionary process. This is interesting in so far as we
explicitly designed it for the experiments discussed in Chapter 5. Such a mechanism
is also known from biological examples, for instance the synchronized flashing of fire-
flies during mating (Strogatz and Stewart, 1993; Camazine et al., 2001). Although the
actual mechanisms are now well understood, the evolutionary reason why thousand of
fireflies synchronize their flashing behavior can only be assumed. One possible expla-
nation is that females are stronger attracted by sudden bright pulses than by a clutter
of single flashes. The mechanisms that underlie behavioral synchronization of signaling
in our robotic experiments are indeed not as complex as in fireflies, but the resulting
behavior can be seen as functionally equivalent, at least in the sense of synchronized
signaling based on pulse coupled oscillators. In our experiments we can not only ex-
plain the environmental reasons of the evolutionary transition from uncoordinated to
coordinated communication, but we are also able to reveal the evolutionary change in
the neural dynamics that underlie the observable behavior patterns.

6.6 Summary

In this chapter we investigated how communication and cooperative behavior emerges
from evolution where we reduced our design constraints as much as possible.
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The experiments and results indicated that an evolutionary transition from solitary
to cooperative behavior in a foraging task depends on how difficult it is for an individual
to find food sources by random search. Surprisingly, cooperation and communication
evolved only in environments where food sources are rather easy to discover.

All resulting cooperative behaviors were based on explicit signaling. That is, food
calls were emitted once individuals found a food source. And other individuals react to
these signals by heading toward them. However, we found a great variety of the neural
mechanisms that underlie this signaling behavior. We distinguished these mechanisms
to be either direct or indirect. In the first case signaling is directly coupled to discovery
of food sources. With indirect neural mechanisms we mean that signaling is coupled
to a behavioral context and heavily depends on fluctuations in form of sensory noise.

Such a variety of mechanisms turned out to be important when agents were con-
fronted with altered environmental conditions such as an increased number of inter-
acting individuals. The results imply that, as it is known from natural evolution
(Kauffman, 1993; Marder and Goaillard, 2006), also in artificial life experiments evo-
lution can bring up a variety of solutions where, concerning behavioral performance,
some of them show only little advantage under the current conditions but exhibit the
potential to handle also further significant environmental changes. Interestingly, espe-
cially individuals which utilized rather indirect mechanisms of signaling turned out to
possess an intrinsic robustness to environmental changes.

However, faced with more challenging environmental conditions evolution was able
to refine solutions which performed rather weak under more complicated conditions.
There, the major behavioral transition, which we observed when we increased the num-
ber of interacting individuals, was the emergence of signal coordination which is based
on synchronizing resettable oscillators. Interestingly, signal coordination was already
realized under less complicated conditions. However, in this case signal coordination
again relied on a rather indirect mechanism where the signal itself plays no role for the
coordination process.

Revealing such a diversity of mechanisms behind seemingly different behaviors pre-
supposes a thorough analysis of the intrinsic neural dynamics and a clarification of how
they are related to the observable behavior.



Chapter 7

Intraspecific cooperation and
interspecific competition

“[. . . ] why, if species have descended from other species by insensibly fine
gradations, do we not everywhere see innumerable transitional forms? Why
is not all nature in confusion instead of the species being, as we see them,
well defined?”

Charles R. Darwin (1859, p. 171)

7.1 Introduction

In his famous book On the origin of species Charles Darwin raised the above questions
to emphasize one of the difficulties with his theory about descent with modification,
the difficulty of missing transitional varieties of species. One of the explanations he
gave was that natural selection and extinction go hand in hand. New forms might
take the same niche as their parents. And if they show profitable modifications, they
will exterminate their less improved parents or other less favored forms (Darwin, 1859,
p. 172).

Darwin also cataloged the diversity of beak sizes of the probably most fascinating
birds for evolutionary biologists, the Galápagos finches. Very recently Grant and Grant
(2006) published an impressive study about competition between two finch species.
Medium ground finches were living on the island rather by themselves and ate whatever
size seeds suited them most until a competitor, the large ground finch, moved in. Its
presence forced the medium ground finch to change its diet and only the individuals who
preferably ate small sized seeds survived. Within only one year their beak adapted to
this new diet by decreasing significantly in size. This competitor driven shift in beak
size is a prior example of what evolutionary biologist call character displacement, a
term coined by Brown and Wilson (1956). This example demonstrates the interplay
between population number and environmental factors. It occurred only because there
were enough competing individuals and large seeds were scarce enough to cause a
problem (Pennisi, 2006).

The work of Grant and Grant (2006) demonstrates how two species which initially
exhibited similar feeding behaviors became distinct enough in their diet and morpho-
logical properties that both survived the initial competition for the same type of food.

143



144 Chapter 7. Intraspecific cooperation and interspecific competition

Scheffer and van Nes (2006) investigated competition of species with a classical Lotka-
Volterra simulation model. The most interesting result of their study is that for many
species there are two ways to survive. Species are either sufficiently different or suffi-
ciently similar. They showed that even in the absence of environmental discontinuities
species self-organize into clumps of species with very similar niches within a clump and
large gaps between clumps. One explanation for these patterns is that if for instance
two species are within two distinct niches and a third species would take a niche in be-
tween, which overlaps with the niche of the other two species, this third species would
compete against two species. If the third species would take a location close to one of
the both initial species, it has to compete only against one other species.

The simulation experiments of Scheffer and van Nes (2006) also revealed that the
coexistence of clumps of species is a transient phenomena, even though they can exist
for thousands of generations. That is, on a long timescale each clump will be thinned
out to one species in one niche. These findings support the explanation given by Darwin
for the sometimes missing transitional varieties of species. The most striking result of
Scheffer and van Nes (2006) clearly is the transient occurrence of clumps of species
instead of a uniform distribution along a niche axis which is then thinned out with
time.

The studies of Grant and Grant (2006), Scheffer and van Nes (2006), and the in-
triguing questions about missing transitional varieties raised by Darwin (1859) inspired
the experiments we will discuss in this chapter. They seamlessly follow the experiments
presented in the previous chapter. In fact, we stick to a very similar experimental setup.
However, we will enrich the environment and the number of populations.

There are two populations whose members are identical at the beginning of an
evolutionary process (all are C2 individuals, discussed in Section 6.4.2, p. 135). Be-
cause they are identical, both populations take the same niche, that is, they forage
for the same type of food sources within a common environment. And because they
are identical all individuals cooperate with conspecifics as well as with members of the
other population. However, placed together in the same environment individuals of
each population gain less energy as they would when there is only one population. To
create an interplay between population number and environmental factors the envi-
ronment offers a new niche, characterized by a different type of food which initially
is unexploited by neither of the two populations. One of the populations undergoes
evolutionary development and might therefore increase its performance by adapting to
the environment and to the behavior of the other non-evolving population. For the
sake of clarity we will refer to the non-evolving population as the parent species and
to the evolving population as the new species.

The questions pursued in this chapter are:

• Will the new species specialize for the new niche?

– If so, how does the communication system change in order to avoid inter-
ference with the parent species?

• Will the new species still benefit from the original cooperative behavior among
all members of both species and thus maintain interspecific cooperation?

– If so, will it then develop additional skills to benefit also from the new niche?
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• Does interspecific competition occur?

– If so, how does the evolution of the new species affect the performance of
the parent species?

• What are the major neural changes during evolution?

The following pages discuss examples of how very small sized neural networks fa-
cilitate robots to display rather sophisticated behaviors. Evolution generates neural
structures which enable robots to forage for different types of food, to coordinate bene-
ficial intraspecific communication and to utilize aggressive interspecific communication.

At the neurodynamics level different aspects of communication are realized either
by switching between several attractor domains of neural submodules or by taking
advantage of fluctuations in form of sensory noise.

At the evolutionary level the new species effectively adapt to a new environmental
niche. Surprisingly, to further increase its performance it also shapes its niche ac-
tively by changing and disturbing the behavior of the parent species. This two-folded
adaption occurs in a transient evolutionary development of different types of beneficial
behavior.

7.2 Experimental setup

The experimental setup is very similar to the experiments described in the previous
chapter (see also Section 6.2, p. 123). However, this time two populations were used.
At the beginning of the evolutionary process members of both populations are identical
and controlled by the C2 RNN discussed in Section 6.4.2 (p. 135). That is, individuals
of both populations cooperate in foraging for black food sources. One population, the
new species, is allowed to evolve, whereas the other population, the parent species, does
not evolve. This is indeed far from biological reality where entities in an ecosystem
of course co-evolve. However, it was done here to eliminate the Red Queen effect
where the fitness landscape of a species permanently changes because of co-evolving
competitors(van Valen, 1973).

7.2.1 Two types of food

In contrast to the experiments of the previous chapter the environment was set up
slightly different (compare environment shown in Figure 6.1e and in Figure 7.1a).
First, we decreased the radius of the black colored food patch from 0.7 meters to 0.3
meters which increased the competition between individuals of both species for this
type of food because it did not provide enough space for all individuals to gain energy
from it (see Figure 7.1b). As a second difference a white colored food source was added
(radius = 0.4 meters) from which individuals could gain the same amount of energy
with time as they can get from black food sources (see Section 6.2.2, p. 124).

Encoding different types of food with a different gray value was chosen because it
is easily reproducible with the real robots. Their floor sensor is able to measure 256
different intensities of gray ranging from white to black. Thus, we took the first 128
intensities to realize a white food sensor and the rest to realize a black food sensor. The
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Figure 7.1: Two populations competing for the same food source. a: Both
populations (indicated by light and dark gray colored robots), equipped with the same
RNN (shown in Figure 6.6A), compete for the same food source (black spot). The
food source is too small to provide all members of both populations enough space to
gain energy from it. However, there is an additional food source (white spot) provided
which can be exploited during evolutionary development by one of the two populations
(see text for details). b: Performance when a single population of ten individuals
is placed in the environment compared to the performance of two populations with
ten individuals each. Given is the average performance and standard deviation of 25
simulation runs. Each run lasted 18,000 time steps (performance of each population
was calculated according to Eq. 6.3, p. 124).

ground of the environment which represents no food sources had a gray color exactly
in the middle between white and black (see Figure 7.1a).

7.2.2 Evolving individuals

Individuals of the parent species could not evolve and were controlled by the C2 RNN
(discussed in Section 6.4.2). For the evolution of the new species the C2 RNN was
taken as initial structure. Individuals of the new species got additional sensors and
motors (see Table 7.1). In addition to the sensors which the parent species possessed,
individuals of the new species got a new sensor to detect white food sources (represented
by I7). The intensity of white food sources, equivalent to black food sources, was
randomly chosen in a range that it provokes sensor values between [0.8, 1.0] ± sensory
noise.

Furthermore, individuals of the new species were able to utilize two sound signals
for communication. Similar to the SA signals they now could also use SB signals. On
the real hardware two distinct signals are differentiated by distinct types of pulses (see
Section 5.2.2, p. 110). In simulation the emission and detection of SB signals were
implemented in a similar way as it was done for SA signals (described in Section 6.2,
p. 123). Input neurons which measure the direction of SB signals are I8 and I9 (see Ta-
ble 7.1), and the output neuron responsible for triggering SB signals is O6 (the mapping
corresponds to the mapping applied for SA signals, see also Section 6.2, p. 123).

Individuals of the new species possessed the C2 RNN with the aforementioned new
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Table 7.1: Mapping from physical sensor values to sensory neuron activation for the
new species (mapping for the parent species: see Table 6.1, p. 6.1).

sensors neuron index mapping [min, max] simulated noise

IR left, right, back I1, I2, I3 -1 : no obstacle 0.05 (≈ 10%)
1 : close obstacle

floor I4 −1 : gray 0.05 (≈ 10%)
(black food) 1 : black

floor I7 −1 : gray 0.05 (≈ 10%)
(white food) 1 : white

signal SA / SB, left I5 / I8 0 : 90◦ to the right 0.3 (≈ 30%)
1 : 90◦ to the left

signal SA / SB, right I6 / I9 0 : 90◦ to the left 0.3 (≈ 30%)
1 : 90◦ to the right

input and output neurons which initially were unconnected to the RNN. For the evo-
lutionary process we neither restricted parameter nor topological changes. That is,
all parameters could change and structural elements (such as synapses and hidden
neurons) could be added or removed without any restrictions.

Nothing else was changed compared to the evolutionary setup of the previous ex-
periments, especially the fitness function was still the same, it rewarded the group for
how often its individual members recharged their virtual battery (see Equation 6.3,
p. 124).

7.3 Structurally small networks and complex be-

havior

The evolutionary solution we are going to discuss in the following is shown in Figure 7.2
and called D1 . At first glance this RNN seems to possess a complicated structure but
it actually does not. There are no hidden neurons and considering the amount of input
and output neurons the network is rather sparsely connected (for instance I5 and I6
are completely unconnected). However, individuals controlled by this small-sized net-
work exhibit a remarkably sophisticated behavior. They exploit two different qualities
of food and utilize communication for intraspecific cooperation and interspecific com-
petition. These behaviors are based on very subtle neural mechanisms. Revealing the
link between neural dynamics and observable behavior is the main subject of the next
two sections. Note that Ix and Ox refer to input and output neurons with index x,
respectively; and ix and ox refer to the corresponding output of these neurons.

7.3.1 Exploiting two qualities of food

Interestingly, D1 individuals maintained the ability to stay on black food patches during
the course of evolution, even though the actual problem was that initially both species
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Figure 7.2: Neural network of D1 individuals. See text for details.

foraged for the same quality of food. In Figure 7.3a we see that the neural mechanisms
that underlie the behavior of exploiting black food sources are similar to the foraging
behavior discussed in Section 6.2.3 (p. 126). When no food source is detected (i4 ≈
−1.0), O1 and O2 generate opposed signals as do O3 and O4 which drives the robot
forward (cf. Equation 6.2, p. 123). Note that o4 is not exactly −1.0, it rather oscillates
with a small amplitude around −0.8. That is, the right wheel drives forward, but not
with maximum speed as the left wheel does. Thus, the robot explores the environment
rather in large circles than in straight lines.

What seems to be interesting from the bifurcation diagrams in Figure 7.3a, the
large quasi-periodic domains around i4 ≈ 0.0, is actually irrelevant for the foraging
behavior because sensor values are either i4 ≈ −1.0 or 0.8 < i4 < 1.0 depending on
whether a black food patch is detected or not.

In addition to the capability of staying on black food patches, D1 individuals are
also able to stay on white food patches which is a newly developed behavioral quality
as compared to the initial RNN. The neural mechanisms, indicated in Figure 7.3b, are
similar to the mechanisms discussed above for staying on black food patches. And



7.3. Structurally small networks and complex behavior 149

i4

o3

o1

i4

o2

o4 o3

o1 o2

o4

i7 i7

a b
1.1

−1.1
1.1

−1.1

1.1

−1.1

1.1

−1.1

Figure 7.3: Neural dynamics of foraging behavior. Dynamics of the RNN shown
in Figure 7.2 (D1 individuals). Given are bifurcation diagrams for the motor neurons
which control the wheels while varying the sensor input which measures the presence
of black (a) and white food patches (b).

indeed, if we consider the structure of the RNN (Figure 7.2), we see that I4 and I7
have a similar strong influence on O3 via a negative synapse which explains the change
of o3 when we vary either i4 or i7 (see Figure 7.3a,b). Via a strong negative connection
from O3 to O2 the change of o2 is indirectly caused by a change of i4 and i7.

Thus, D1 individuals are able to exploit two different qualities of food. This is
a further example how different behaviors are realized by different sensor modalities
acting on the very same neural dynamics. We discussed other examples of such multi-
modality already in Chapter 3 and 4 and will return to this important concept in the
discussion chapter of this thesis. Here, multimodality of specific neural dynamics is
also relevant for the communication system as we will discuss in the next section.

7.3.2 Beneficial and selfish communication

What is most intriguing if we compare D1 (Figure 7.2) with C2 , the RNN from which
D1 originates (Figure 6.6a, p. 135), is that all synaptic connections from the sensory
neurons I5 and I6, which measure the occurrence and direction of SA sound signals,
disappeared. In the first place this means that D1 individuals now ignore the guiding
signals emitted by the parent species. Thus, D1 individuals do not take advantage of
the cooperative behavior of the parent species. However, as we will see shortly, D1

individuals still emit SA signals even though they are of no direct use to them. Before
we start to discuss the direct or indirect utility of the different signals for the fitness of
the D1 population, we want to analyze the signaling behavior itself in more detail.

Signaling depending on the type of detected food

We now focus on the neural mechanisms of signaling when a robot discovers a black food
patch (left panel in Figure 7.4). Figure 7.4a shows the motor neuron outputs o5 and o6
(which control the emission of SA and SB signals, respectively) when i4, representing
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Figure 7.4: Neural mechanisms of signaling of D1 individuals on food patches.
a: Signal changes when a robot enters a black food patch (i.e., i4 increases). b:
Bifurcation diagrams for o5 and o6 while varying i4. c,d: Correspond to a,b. However,
here the robot enters a white food patch (i7 changes).

the black food patch sensor, increases. Regarding o5 we see period-2 oscillations when
i4 is low. That is, the robot emits SA signals every second time step when it is not
on a black food patch. As soon as it enters such a food source, o5 becomes less
regular but is still periodically oscillating around zero (note, a sound signal is triggered
whenever o5 crosses zero from below). What we observe is a transition from periodic
to quasi-periodic oscillations with increasing i4 as indicated in the bifurcation diagram
in Figure 7.4b (top). While the robot is exploring the environment (i4 ≈ −1.0) we find
period-2 oscillation and when the robot stays on a black food patch (0.8 < i4 < 1.0),
we find quasi-periodic oscillations. Thus, the robot is always periodically emitting SA

signals whether it is on a black food patch or not.

A slightly different behavior can be observed for SB signals. When i4 is low, o6 also
oscillates with a period of two but with an amplitude always below zero (Figure 7.4a,
bottom). Thus, no signal is emitted as long as the robot is not on a black food patch.
That changes when it enters such a food source, that is, when i4 increases. Oscillations
of o6 become less regular and oscillate around zero. Again, this is a transition from
period-2 to quasi-periodic oscillations as indicated in Figure 7.4b (bottom). In contrast
to o5 the period-2 oscillations of o6 cross zero only when the robot is on a black food
patch (0.8 < i4 < 1.0). That is, D1 individuals elicit SB signals only when they
discover black food sources and the corresponding sensor value changes accordingly.

Interestingly, we find a very similar signaling behavior when the robot discovers
a white food patch (right panel in Figure 7.4). As long as the robot is not on a
white food patch (i7 ≈ −1.0) the signaling of SA and SB corresponds to the behavior
described above. When the robot enters a white food patch (0.8 < i7 < 1.0) o5 and
o6 switch to period-3 oscillations and trigger a periodic emission of SA and SB signals
(cf. Figure 7.4c,d).

So far, we figured out that a single D1 individual emits SB signals depending on the
discovery of a black or white food patch and SA signals independent of it. However,
robots were evolved in a group of ten individuals which interact (i.e., communicate)
with each other. As it is clear from the structure of the RNN, SA signals do not
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Figure 7.5: Neural mechanisms of signal synchronization among D1 individ-
uals. Given are bifurcation diagrams for o5 and o6 while varying i9 (representing the
right direction sensor for sound signals SB) in three different situations: when the robot
stays on a black food patch (a), when it stays on a white food patch (b), and when it
is not on any food patch, that is, exploring the environment (c).

influence the behavior of D1 individuals because the according sensor neurons I5 and
I6 are not connected to the network (cf. Figure 7.2). However, it is different for SB

signals. In Figure 7.2 we see a very strong negative synapse projecting from I9 to O6
which strongly affects the signaling behavior of interacting D1 individuals as we will
see in the next section.

Signal synchronization

Figure 7.5a shows bifurcation diagrams for o5 and o6 while varying i9 (representing the
right direction sensor for SB signals) when a robot stays on a black food patch. For o5
we see a transition from quasi-periodic oscillations to period-2 oscillations. However,
o5 always oscillates around zero. Thus, SA signals are periodically triggered rather
independent of i9. This is also the case when the robot stays on white food patches or
explores the environment (see Figure 7.5b,c).

For o6 we observe a different behavior. When the robot stays either on a black or
a white food patch o6 does not oscillate around zero when i9 > 0.3 (Figure 7.5a,b)
and, therefore, SB signaling ceases. This means, as soon as another nearby robot also
starts signaling, I9 becomes activated (even when the other robot is to the most left
side, which is due to the high noise, approx. 30%, of the sound direction detection).
The quasi-periodic oscillations immediately start again in the next time step because
sound signals of other robots last only one time step. This reset mechanism will lead
to a synchronization of the SB signaling among robots which stay together on the same
food patch.

Interestingly, this signal coordination mechanism is very similar to the synchroniza-
tion of internal neural rhythms described in Chapter 5 and the signal synchronization
described in Section 6.4 (p. 133). However, all D1 individuals which detect a SB signal
from another individual still continue to emit SA signals, whether they are themselves
on a food patch or not (Figure 7.5). This plays a role for the group performance of
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D1 individuals because it influences the behavior of the parent species in a way that
it dramatically disadvantages them and at the same time profits D1 individuals only a
little. That is why we call this kind of SA signaling interspecific selfish communication.
And we call the SB signaling intraspecific beneficial communication because it mutually
excels the performance of D1 individuals.

Before we elaborate the discussion about the effects on the performance of both
populations, we firstly examine the dynamics of the communication mechanism in more
detail because it is a further, yet highly subtle, example of how different behaviors can
be exhibited by the very same neural dynamics realized by the very same structural
elements of a small sized RNN.

7.3.3 Change in communication via attractor switching

We have seen that communication of D1 is mainly characterized by the existence of
periodic and quasi-periodic attractors. To get a better picture of these attractors we
decoupled the communication module, which is basically the two-neuron ring of O5
and O6 within the RNN (see Figure 7.2). We can now simulate all inputs to these
neurons by varying their bias terms because the activity of a neuron is characterized
by the sum of all its inputs (see Section 2.4.1, p. 43). we let the system evolve with
time for each bias parameter set, and determined in which kind of attractor the system
ends. The resulting map, a so called iso-periodic plot, gives us the attractor landscape
of the system.

The attractor map of our two neuron system is given in Figure 7.6. In the given
parameter space there exist several domains of different periodic (color coded) and
quasi-periodic attractors (indicated by black color). We can now identify the attractors
which are relevant for specific behavioral situation of a robot controlled by D1 . The
corresponding bias values are given in Table 7.2. If we now look up each pair of bias
values in the attractor map of Figure 7.6, we see that the change of the signaling
behavior is in fact due to attractor switching. During exploration behavior we find
period-2 attractors which corresponds to the oscillations of o5 and o6 when no food
source is discovered (i.e., i4, i5 ≈ −1.0, see also Figure 7.4a,b). Increasing i4, that is,
the sensor detecting black food sources, increases the bias term of O6 and decreases
it for O5 because of the positive and negative connection from I4, respectively (see
Figure 7.2). In Figure 7.6 we see how that moves the system away from the domain
of period-2 attractors and eventually reaches a domain of quasi-periodic attractors for
high values of i4. This corresponds to the change of the periodic oscillations observable
for o5 and o6 with increasing i4 (see also Figure 7.4a,b).

On the other hand, when the robot discovers a white food source the bias values of
O5 and O6 increase because of the positive connections from I7 (see Figure 7.2). In
Figure 7.6 we see how that moves the system from the domain of period-2 attractors
to a domain of period-3 attractors which explains the signaling behavior on white food
sources (see also Figure 7.4c,d).

In both cases, signaling on black or white food sources, if the robot detects a SB

signal of another individual, the bias term of O6 decreases drastically because of the
strong negative connection from I9 (see Figure 7.2). This decrease moves the system
now back into the domain of period-2 attractors (see Figure 7.6). But it immediately
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on specific behavioral states (i.e., exploration, discovering black or white food patches,
and detecting SB sound signals, see also Table 7.2).

jumps back to either the quasi-periodic or period-3 attractor in the next step when the
SB signal ceases. This, basically, is the synchronization mechanism as discussed in the
previous section (see also Figure 7.5).

Analysis of the attractor map tell us further that the synchronization of o6 oscil-
lations among many individuals is not achieved by a transition from quasi-periodic to
fixed point attractors as we might conclude from Figure 7.5a,b (p. 151). Instead it
is a transition from a quasi-periodic attractor to a period-2 attractor. However, the

Table 7.2: Output values of relevant neurons in specific behavioral situations and the
resulting bias terms for the two neuron module given in Figure 7.6. Bias terms (ΘO5

and ΘO6) are calculated according to the strength of incoming synapses which connect
relevant neurons to O5 and O6, and the static input to O5 as given in Figure 7.2.

behavioral situation i4 i7 i9 o1 ΘO5 ΘO6

exploration −1.0 −1.0 0.0 1.0 0.6 −5.0
on a black food source 1.0 −1.0 0.0 1.0 −0.6 2.6
on a white food source −1.0 1.0 0.0 1.0 3.0 2.2
on a black food source, perceiving SB 1.0 −1.0 ≈ 0.5 1.0 −0.6 −9.3
on a white food source, perceiving SB −1.0 1.0 ≈ 0.5 1.0 3.0 −9.7
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amplitude of the oscillation caused at high i9 is very small. For instance, when the
robot stays on black food patches the difference between maximum and minimum for
i9 = 1.0 is 5 × 10−15. And in fact, whether the system switches its attractor domain
from quasi-periodic to fixed points or to another periodic attractor does not matter for
the synchronization of SB signals. Important is, on the one hand, that signal emission
is suppressed when another signal is detected, which is the case for period-2 oscillations
with small amplitude in the negative domain. And that, on the other hand, after a
signal is detected the system moves again in the quasi-periodic domain leading to a
restart of the oscillation of o6 which triggers SB signals.

So far we have demonstrated that the communication system mainly relies on at-
tractor switching which is realized by a very small neural sub-module with rich intrinsic
dynamical properties. What does the now explainable signaling behavior mean for the
performance of the competing species?

7.3.4 Performance

To sum up the main communication characteristics so far, we have seen that D1 indi-
viduals emit SA signals all the time independent of detecting a food source, whereas
SB signals are only emitted when a robot stays on a food patch (either black or white),
and signals of many robots become synchronized. Hence other D1 individuals which
detect SB signals react with a positive tropism toward these signals (as described in
Appendix A.1, p. 181). Thus, SB signals function in a similar way as the guiding SA

signal utilized by the parent species (as discussed in Section 6.4.2, p. 135).

There are two advantages D1 individuals possess by using SB signals compared to
the parent species: (a) They cooperatively exploit two qualities of food instead of only
one as the parent species does and (b) using a different signal prevents attracting also
individuals of the parent species which makes the food sources less crowded. The ad-
vantage of always emitting SA signals is rather subtle. By releasing as many SA signals
as possible makes the parent species deaf to its own guiding signals. Individuals of the
parent species are no longer able to detect the signals released by their conspecifics
who discovered a food source. This in turn makes the black food spot less crowded
offering more space for D1 individuals.

How the subtle communication system of D1 affects the performance of both species
is shown in Figure 7.7. We disturbed the communication system of D1 individuals in
several ways, but first we want to discuss the undisturbed case (Figure 7.7a). When no
D1 individual is present, the parent species shows its normal foraging behavior resulting
in a relatively high performance (compare with the performance of a single population
shown in Figure 7.1b). But as soon as one D1 individual is present, the performance
of the parent species drops significantly. The reason is the SA signal emitted by D1 .
Individuals of the parent species are attracted by this signal and consequently follow
D1 which explores the environment rather randomly and finds a food source mere by
chance. This results in a similar performance of both species. Thus, the parent species
heavily relies on the ability of D1 to find food sources. The performance of the parent
species gets even worse when two D1 individuals are present because even when one of
the two finds a food source, some individuals of the parent species still follow the other
D1 individual until it also enters the food source guided by the SB signal of the first
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individual. In this case performance of the parent species drops because its members
follow one of the D1 individuals instead of searching for food by themselves.

The more D1 individuals are present the worse gets the performance of the parent
species (Figure 7.7a). However, the reason for this bad performance is now a different
one. Because many individuals of the D1 population are now emitting SA signals with
a period of two, these signals sum up to a continuous signal which can not be detected
by other individuals anymore1. Most D1 individuals are gathered around food sources
because they guide each other to them via SB signals. This means even though the
range of the sound signals is locally limited, they produce continuous SA signals in
the vicinity of food sources with drastic consequences for the behavior of the parent
species. Its cooperative communication mechanism, which relies on SA signals, fails.
That is, even if one individual of the parent species finds the black food source, it is
unable to attract other conspecifics.

If we suppress the emission of SA signals for all D1 individuals, we see in Figure 7.7b
that the performance of the parent species, whose communication system now works
normally, drops only slightly with an increasing number of D1 individuals. This slight
decrease is due to the competition for the black food source between the two species
which also explains the slightly lower performance of D1 individuals compared to the
normal case. Suppressing SB signals for all D1 individuals leads to a very weak per-
formance of the D1 species because this signal is essential for its cooperative behavior
(see Figure 7.7c). On the other hand this also shows us the significant impact of the
still activated SA signaling on the parent species which now performs as bad as in the

1Note, that individuals can only sense signal peaks and no continuous sound signals. However, we
argue this is only a minor constraint (see discussion in Section 6.5.2 on p. 139)
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case of normal D1 individuals (cf. Figure 7.7c,a).
Thus, considering our discussion about the neural mechanisms and performance of

D1 individuals, the SB signaling mechanism is essential for their cooperative success.
Utilizing SA signals to actually eliminate the cooperative behavior of the parent species
increases the performance of D1 only slightly (i.e., about 0.1 for the case of ten D1

individuals as used for evolution; cf. Figure 7.7a,b).
This behavior is especially intriguing because at the beginning of the evolutionary

process both species were identical. And instead of a refinement of the already estab-
lished mechanism a novel behavior emerged which destroyed the cooperative behavior
of the parent species completely instead of utilizing it.

One can think about a possible refinement mechanism for instance that individuals
of the evolving population maintain their initial behavior, exploiting cooperatively and
together with members of the parent species the black food source, and develop the
additional skill to stay on white food sources and call conspecifics by SB signals. In
that way they would still benefit from the behavior of the parent species, but would also
improve their own performance by using signals not detectable by the parent species.
And indeed, this kind of behavior developed but only as a transient evolutionary state
as we will discuss later in Section 7.5.

Strikingly, the behavior of disturbing the communication system of the parent
species and therefore eliminating its cooperative function resulted from every conducted
evolutionary run (altogether 50 trials were performed, each lasting 1, 000 generations)
and we will discuss another example in the next section which is also of special interest
because fluctuations in the form of sensory noise are again a relevant mechanism as we
discovered already in Section 6.3.3 (p. 130).

7.4 The role of fluctuations, again

The RNN shown in Figure 7.8 is another evolutionary solution (called D2 in the fol-
lowing) with an interesting communication mechanism which relies on sensory noise.
Regarding foraging, individuals with this network behave quite similar to D1 individ-
uals. They conserved the capability of staying on black food patches and possess the
newly developed additional skill of exploiting white food sources, too (for details see
Appendix A.2, p. 181). However the neural mechanisms of communication are different
and, therefore, will be discussed in more detail.

7.4.1 Communication and sensory noise

The signaling behavior of D2 individuals when they discover a black food patch is
illustrated in Figure 7.9. While a robot is exploring the environment it continuously
emits SA signals which ceases with increased i4 (see Figure 7.9a,c). Considering the
structure of the RNN (Figure 7.8), we see that O5 is a switchable oscillator. Because of
its negative self-connection, it exhibits either period-2 oscillations or a constant output
depending on its input. Interestingly, there is no direct connection from I4 to O5
(Figure 7.8). The switch from periodic oscillations to a constant output is caused by
the activity of O3, the motor neuron which controls, together with O4, the left wheel.
When the robot discovers a black food patch it stops its exploration behavior and stays



7.4. The role of fluctuations, again 157

0.
88.7

1.0

−0.5

−9.2
2.2

0.
9

−2.7

9.2−3
.3

−6
.00.9−1
0.

0

0.7

−
4.

4

−8.3

−1.7

5.1

−
0.6

6.2
−1.4

−1
.0

−1.4

−0
.4

3.3

−2.3

4.
6

−
0.4

−2.0

7.4
−0.5 1.4

0.
8

0.6

2.5

9.1

−1.2

−1
.0

−0.4

−2.1

1.7

04

O6       : sound B
O5       : sound A
O3,O4 : right wheel
O1,O2 : left wheelI1,I2,I3 : left,right,back IRs

I8, I9    : left, right sound B

input neurons: motor neurons:
I4,I7     : black, white food spots
I5, I6    : left, right sound A

I2

I8I7 I5 I9

O6

O5

O2

O1

O3

I1

I6

I3

I4
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on the food source. To do so, O3 changes its output from 1.0 to −1.0 (for details see
Appendix A.2, p. 181). Thus, the change in SA signaling depends only indirectly on
the activity of the food sensor. It rather depends on the behavioral context of staying
on black food patches.

Interestingly, SB signals are not utilized when D2 individuals discover black food
patches (see Figure 7.9b). Thus, the discovery of black food sources does not change
the behavior of other D2 individuals since the only change in communication concerns
the emission of SA signals, and the sensory neurons which detects this type of signals
are not connected to the network (see Figure 7.8).

If a D2 individual detects a white food source, it again ceases SA signaling. As we
can see from Figure 7.10a (left), o5 exhibits always period-2 oscillations independent of
i7. However, with increased i7 these oscillations are shifted into the positive domain,
that is, o5 is always larger than zero (see also top diagrams in Figure 7.10b) and,
therefore, no SA signals are triggered on white food patches (0.8 < i7 < 1.0). In
contrast to the behavior on black food patches, this behavior is not only controlled by
the change of o3. Period-2 oscillations of o5 are still present with large i7 because of the
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synaptic connection from O6 (see Figure 7.8), which starts oscillating with increased
i7 as we will see in the following.

Concerning o6, responsible for SB signal emission, we see in Figure 7.10a (bottom)
that for small i7, o6 stays in the lower saturation domain. When i7 > −0.25, o6 enters
a domain of period-2 oscillations. Considering the structure of the RNN (Figure 7.8)
we have here again a switchable oscillator. Oscillations of o6 occur due to the negative
self-connection of O6 and can be switched on or off depending on i7 because of the
strong positive connection from I7 to O6. However, for i7 > 0.8 these oscillations only
occur within the positive domain, which by itself would not lead to SB signal emission
when a robot discovers a white food source (0.8 < i7 < 1.0). In this case, due the
noise of the floor sensor, i7 randomly gets lower than 0.8 which then leads to period-2
oscillations of o6 which cross zero from below leading to signal emissions. As we said,
the gray color intensity of food sources is determined randomly at the beginning of each
experiment and, therefore, provokes sensor values between 0.8 and 1.0. In Figure 7.10b
the signaling behavior on white food sources with different intensities is shown. For
high intensities, SB signals are released less often than for lower intensities. For high i7
higher fluctuations (as caused by the sensory noise) are needed to push the oscillations
of o6 in a domain where it takes positive and negative values and, therefore, to trigger
SB signals.

A further interesting mechanism of SB signaling on white food patches is that
individuals which are close to each other do also coordinate their signaling. In con-
trast to D1 , this is not realized via a synchronization mechanism as described before.
Here, signal coordination is in fact independent of the signal itself. As we can see in
Figure 7.10c, when either the infrared sensor on the left or right side of a robot (rep-
resented by I1 and I2) becomes activated while a robot stays on a white food source
(e.g., i7 ≈ 0.8), oscillations of o6 are shifted again in the positive domain until they
cease completely for high i1 or i2 values. The influence of the infrared sensors on O6
is due to positive connections from I1 and I2 to O6 (see Figure 7.8). We discovered
such a subtle signal coordination mechanism already in Section 6.3.3 (p. 130) for B2

individuals. However, here it is a completely new development because D2 originates
from C2 which coordinates their signaling by synchronization.

From an observer perspective, the behavior of D1 and D2 actually differ only in two
aspects. First, D1 individuals emit SB signals on both types of food sources whereas
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Figure 7.10: Signaling behavior on white food patches. a,b: Bifurcation diagram
for the two motor neurons O5,O6 responsible for signaling. Emission of SA sound
signals (controlled by O5) ceases as soon as the robot detects a white food patch, in
contrast SB sound signals (controlled by O6) are triggered (see text for details). c:
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therefore, SB signaling stops.

D2 only on white food sources. D1 individuals emit SA signals all the time whereas
D2 individuals cease it when entering either one type of food sources. However, by
thoroughly analyzing both control architectures we revealed significant differences of,
from an observer perspective, seemingly identical communication behavior, such as SB

calls to guide conspecifics to discovered food sources, or the coordination of signaling
among population members. Do D2 individuals also perform differently compared to
D1 individuals?

7.4.2 Performance

To test the performance of D2 individuals we conducted the same measurements as
discussed for D1 individuals (see also Figure 7.7). The results are shown in Figure 7.11.
When we do not disturb the communication system, we observe a similar performance
development depending on group size. That is, we observe a drastic performance loss
for the parent species because its communication system is heavily disturbed by the
SA signals of D2 . And the performance of D2 increases with group size because they
guide each other to discovered food sources. Hence, the guiding signal SB is only
elicited on white food patches and the performance with smaller group sizes (around
ten individuals) is a bit lower than for D1 individuals which trigger these signals also
on black food patches (compare Figure 7.7a with Figure 7.11a). However, the larger
the group gets the higher the probability that some individuals always stay on a white
food patch. That is why the performance of D1 and D2 become similar with increased
group size.

If we suppress the SA signaling of D2 individuals (Figure 7.11b), the performance
of the parent species decreases only slightly because of the competition with D2 indi-
viduals for black food sources. For the same reason the performance of D2 individuals
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performance was calculated according to Eq. 6.3, p. 124).

is slightly lower than in the normal case (see Figure 7.11a,b).

Suppressing SB signaling leads to a rather bad performance for both species (Fig-
ure 7.11c) because the communication system of the parent species is disturbed by the
SA signaling of D2 individuals which need the SB signal to cooperate. And if both
signals of D2 individuals are suppressed (Figure 7.11d), we observe, as expected, bad
performance for D2 and good performance for the parent species.

From our performance analysis we can conclude that even though D2 individuals
emit SA signals only when they explore the environment and not, as D1 individuals do,
when they stay on food sources, the impact of SA signals elicited by D2 individuals on
the performance of the parent species is also quite dramatic. The reason is that there
are always some D2 individuals which explore the environment or are on their way to
another calling conspecific. And whether they are enough to generate a continuous SA

signal or not is actually not so important. Members of the parent species get distracted
all the time, either because they can not hear their own signals anymore or because they
blindly follow the SA signal of a single D2 individual which explores the environment.

Thus, even though the mechanisms that underlie the communication system of
D2 are significantly different compared to the communication system of D1 , both
solutions show a comparable performance which always entails a loss of the cooperative
function in the parent species. We also analyzed further evolutionary solutions and,
interestingly, disturbing the communication system of the parent species was always
observed. In no case its behavior of discovering and signaling black food patches was
utilized anymore even though individuals of both species were identical at the beginning
of the evolutionary process. However, there were transients in the change of behavior
during the evolutionary development as we will discuss in the following section.
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7.5 Conservation, curiosity, and aggression: Tran-

sitional niche adaptation

The fitness development of the evolutionary run from which we took the previously
discussed D2 individuals is shown in Figure 7.12. Two main characteristics can be
identified. First, it is not a smooth gradual increase of fitness. Performance increase
occurs rather in sudden jumps within only a few generations. The second intrigu-
ing aspect is the long period at the beginning without any significant change. The
performance remains about the same level for more than 500 generations.

The latter aspect might be explained by the behavior which individuals possessed
already at the beginning of the evolution. Remember that individuals already foraged
for black food sources, generated cooperative signals, and coordinated their signaling
effectively. These behaviors resulted from a network which was already evolved in a
single population world. A refinement of the given behaviors was almost impossible
because they were already very efficient as we have seen in the discussion of Section 6.4.2
(p. 135). Thus, the difficulty was to generate neural variations which realize new
behavioral skill which at the same time had to be more efficient than the already
established capabilities. This is completely different to the case of starting with nothing
where, at the beginning, the performance can get only better by structural changes
but not worse. We discussed such an example in Section 3.5.2 (p. 82) where five
autonomous agents must cooperate to control the robot micro.eve. Here, the initial
behavior was already quite sophisticated and efficient. Thus, the chance, that random
neural variations lead to a performance improvement, was much lower than in the case
of evolving RNNs to control micro.eve where the required behavior was rather trivial
as compared to the scenario which we discussed in this chapter.

The difficulty of generating new behavioral skills by random variations of the neural
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structure without getting worse than the already established sophisticated behavior
might also explain the sudden jumps in the fitness development which we can see in
Figure 7.12 about generation 600 and 900. In fact, the reason of these jumps were two
major behavioral transitions. That is the reason why we will divide the evolutionary
process into three main epochs: the epoch of conversation ranging from the beginning
until about generation 530, the epoch of curiosity between about generation 530 and
850, and the final epoch of aggression.

We analyzed the behavior of the best performing neural networks between genera-
tion 500 and 510 for the epoch of conservation, between generation 600 and 610 for the
epoch of curiosity, and between generation 990 and 1000 for the epoch of aggression
(including the discussed D2 individual).

Conservative individuals showed behaviors almost identical to the parent species,
that is, they foraged for black food sources and used synchronized SA signals. That
means, there was no significant change in behavior for about 500 generations. This
suddenly changed in the following epoch. Curios individuals still foraged for black food
sources and used SA signals to guide other individuals to them. In addition, they also
exploited white food sources to gain energy from them too. However, they did not
emit SA signals while staying on white food patches. Thus, they acquired the new
behavioral skill of resting on white food sources which they discovered by chance, but
the white food source is close to the black one (see Figure 7.1a, p. 146) and, therefore,
the chances of crossing the white food source on the way to the black one are fairly
high. Not using SA signals while staying on a white food source is rather cunning. In
this way individuals of the parent species are not attracted to it and thus it is not as
crowded as the black food source. As a second new behavior we observed for three
of the ten analyzed networks that individuals also periodically emit SB signals while
resting on white food sources, but other individuals of the same population showed no
tropism toward these signals.

All analyzed individuals of the final epoch showed a behavior similar to the behavior
discussed for D2 individuals in the previous section. That is, they exploit white food
sources as well as black sources, but they reacted now to the SB signals emitted by
individuals resting on white food sources. They coordinated their SB signaling, and
what makes them aggressive, they emit SA signals with high frequency all the time
which eliminates the communication mechanisms of the parent species.

Thus, for this evolutionary run we indeed observe a transitional niche adaption.
After a long period of conservation where both species compete for the same envi-
ronmental niche (the black food source), curios individuals developed the ability to
exploit the new environmental niche (the white food source) while still benefiting from
the signaling behavior of the parent species. In the final developmental step, curios
individuals were replaced by aggressive individuals which developed their own benefi-
cial intraspecific communication system, the coordinated SB signaling, to exploit white
food sources better than curios individuals did. In addition, they actively extended
their niche by selfish interspecific communication, the high frequent SA signaling, which
destroyed the cooperative behavior of the parent species with the result that more space
on black food sources was available for their own use.
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7.6 Discussion

The examples of this chapter demonstrated several important aspects. On the one
hand, they further hint us to the ubiquity of multimodality in recurrent neural networks
with respect to the variety of possible behaviors, and they showed again that noise-
driven communication mechanisms are highly efficient for cooperative behavior. On
the other hand, they demonstrated how novel and creative behaviors can emerge from
an unconstrained evolutionary process, and how transitional niche adaptation gives
rise to competitive exclusion between different populations. In the following we discuss
each of these aspects in more detail.

7.6.1 Multimodality of dynamical systems

Through the experiments described in this thesis we repeatedly found multimodality
of neural structures. Remember the switchable oscillators within the control units of
micro.eve (Chapter 3), the hysteresis elements controlling aggregation patterns (Chap-
ter 4), the SO(2)-networks realizing internal neural rhythms which determine different
behaviors and can be synchronized among many individuals (Chapter 5), and the
neural modules responsible for coordinated signaling in a single foraging population
(Chapter 6).

In this chapter, especially the neural structure of D1 individuals hints us further to
the ubiquity of multimodality in evolved RNNs as parameterized dynamical systems. As
discussed in Section 7.3.3 (p. 152), the submodule responsible for the communication
system realizes different aspects of communication by different domains of attractors.
Which attractor domain becomes apparent heavily depends on the sensory experience
of an agent and its interaction with other agents. Attractor domains are switched when
an agent discovers food sources which leads to the emission of SB signals which excels
the performance of other D1 individuals by guiding them to the food source. Once
more than one individual arrived at a food source, the detection of signals emitted by
other individuals switches the attractor domain again which eventually synchronizes
signaling among many individuals. At the same time, attractor switching maintains
the interspecific selfish SA signaling which significantly disadvantages the competing
parent species and, therefore, increases the performance of D1 individuals even further.

Thus, this submodule, which only consists of two reciprocally coupled neurons, en-
ables robots to display a remarkable variety of signaling behaviors. The activation of
each of them depends on the sensory experience which in turn changes as a result of
individual actions. Therefore, the multimodality of RNNs results from a strong inter-
connection between dynamical properties of the control system and the sensory-motor
loop. Pinpointing the relation between these two components presupposes thorough
analysis of the control system as well as the behavior of an individual and its in-
teractions with other components of its environment, a principle which we already
summarized as comprehensibility (see Chapter 1).

Even though a few studies already demonstrated how the interconnection between
neural dynamics and the sensory-motor loop give rise to multimodality of evolved RNNs
of non-communicative agents (e.g., Hülse et al., 2004, 2007b; von Twickel and Pase-
mann, 2007; Wischmann and Pasemann, 2004; Manoonpong et al., 2007; Beer, 2003b)
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to our best knowledge the experiments discussed in this and the preceding chapters are
the first in the literature which demonstrate this principle for communicating agents
which display intraspecific cooperation or interspecific competition.

7.6.2 Fluctuations and indirect mechanisms

The role of fluctuations in form of sensory noise for the collective behavior of a group of
agents first appeared in this thesis in Section 6.3.3 (p. 130) where we showed that the
signaling behavior of an agent resulted from the noise of its infrared sensors. There,
the RNN, as a dynamical system, possessed in this behavioral state only fixed point
attractors which by themselves could not enable the robot to exhibit periodic signals.

A slightly different, but closely related, example appeared again in this chapter: the
mechanisms behind SB signaling of D2 individuals discussed in Section 7.4 (p. 156).
We have seen that a domain of periodic attractors was responsible for periodic signal
emission. However, this domain could only be reached by the noise of the floor sensor
which detects white food sources. Thus, the evolution of such noise driven communica-
tion mechanisms seems to be not as rare as one might expect. The example discussed in
this chapter is especially intriguing because it resulted from a neural structure where
communication initially was fully independent of sensory noise. Even though there
exist many studies about the evolution of communication among situated agents (for
an overview see for instance Wagner et al., 2003; Cangelosi and Parisi, 2002), to our
knowledge the emergence of noise-driven communication systems has not been reported
so far.

A further similarity to the experiments discussed in Section 6.3.3 (p. 130) is the indi-
rect mechanism of signal coordination. In contrast to the examples given in Section 6.4
(p. 133), Chapter 5, and Section 7.3 (p. 147), the signals which become coordinated are
irrelevant for the coordination process. The actual mechanism depends on the infrared
sensor activity which in turn depends on the presence of other individuals. Whenever a
food spot becomes crowded and, thus, signal coordination becomes necessary, the sen-
sory detection of other agents drives the domains of attraction of the control system
into a region which is insensitive to sensory noise (cf. Figure 7.10c, p. 159).

The robot cannot differentiate between other robots or obstacles in the environment.
Therefore, utilizing infrared sensors for signal coordination where the signals themselves
are irrelevant is indeed a rather indirect, yet highly efficient, mechanism.

One of the main challenges for engineers of robotic systems is to extract real changes
in sensory signals and to distinguish them from fluctuations which occur on several
system components. Intriguingly, here, and in the example discussed in Section 6.3.3
(p. 130), fluctuations are the driving force of signaling, a control mechanism which
engineers probably would never implement. However, for biological systems it is known
that fluctuations in form of sensory or neural noise can play an important role, for
instance, to detect weak signals (for an overview see Wiesenfeld and Moss, 1995).
This mechanisms, called stochastic resonance (Gammaitoni et al., 1998), could be
demonstrated to be crucial for the function of the mechanoreceptor cells of crayfish
(Douglass et al., 1993), for neural encoding in the cercal sensory system of crickets
(Levin and Miller, 1996), or for visual perception in humans (Simonotto et al., 1997).
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7.6.3 Niche adaptation and competitive exclusion

At this point we should return to the questions of Darwin, quoted at the beginning
of this chapter, the questions about missing transitional varieties. He explained this
phenomena as follows:

“As natural selection acts solely by the preservation of profitable modifica-
tions, each new form will tend in a fully-stocked country to take the place
of, and finally to exterminate, its own less improved parent or other less-
favoured forms with which it comes into competition. Thus extinction and
natural selection will, as we have seen, go hand in hand. Hence, if we look
at each species as descended from some other unknown form, both the par-
ent and all the transitional varieties will generally have been exterminated
by the very process of formation and perfection of the new form.”

Darwin (1859, p. 172)

This quote perfectly describes what we discussed in Section 7.5 (p. 161) for the
evolution of D2 individuals. While in competition for the same food sources, for a
very long time both species took the same niche, exploiting black food patches, a
behavior we called conservative. Then two major behavioral transitions occurred. As
a result of the first transition D2 individuals started to exploit also white food sources,
but without interfering with the behavior of the parent species, a behavior we called
curious. Thus, both species still took the same niche and D2 gained a bit more profit
by individually taking advantage from another environmental niche. During this first
transition conservative individuals were replaced by curios individuals because of their
increased performance. However, the peaceful coexistence of the parent and D2 species
changed dramatically after the second major transition. D2 did not only develop its
own communication system to excel its own collective foraging for white food sources,
they also developed a mechanism to completely exclude the parent species from the
previously shared environmental niche. Thus, D2 individuals did not only take a new
niche they also actively eliminated the cooperative foraging behavior of the parent
species, a behavior we called aggressive. Thus, we indeed observed a transitional
development, from conservative to curious to aggressive individuals.

Interestingly enough, this transitional niche adaptation is in accordance with the
findings of Scheffer and van Nes (2006). They conducted extensive simulation experi-
ments with a Lotka-Volterra model of many competing species. They found that species
evolve in clumps, where individuals in a clump take very similar niches, and clumps
of species organize in regular patterns with large gaps between the clumps. However,
this was a transient effect, which yet can be very long lasting. With time, clumps
thinned out to a single species taking one particular niche. Even though we considered
only one evolving species, we showed that it took the same niche as the parent species
for several hundreds of generations before it started to exploit a new environmental
niche and finally developed aggressive behavior resulting in a total performance loss
of the parent species. Thus, the new species excluded the parent species by aggressive
competition after a long time of peaceful co-existence.

Already in 1934 Gause confirmed competitive exclusion among protozoa. He did
experiments with two species of Paramecium. Both grew well by themselves, but
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P. aurelia out competed P. caudium when both were grown together (Gause, 1934).
Repeated experiments showed that one species was always entirely replaced by the
other. This is exactly what we observed in every conducted evolutionary trial. The
new species always showed aggressive signaling behavior with fatal consequences for
the parent species as we discussed for two examples in Section 7.3.4 (p. 154) and in
Section 7.4.2 (p. 159).

Scheutz and Schermerhorn (2004) investigated how the level of aggression influ-
ences the benefit of individuals in two populations competing for food sources in an
embedded two-player stopping game. Agents possessed certain predefined actions, such
as ‘fight’ or ‘retreat’. In addition agents were able to discriminate between agents of
their own kind and other agents. Scheutz and Schermerhorn (2004) investigated the
utility of agents with different levels of aggression and depending on whether they
are able to discriminate between ‘own’ and ‘others’. Their results demonstrated that
agents with the highest level of aggression against ‘others’ outperform all other types
of discriminating or non-discriminating agents.

The experiments described in this chapter indicate similar results. As we said, we
always observed the development of aggressive signaling behavior in each conducted
evolutionary trial. Interestingly, here agents do not possess the ability to explicitly
discriminate between ‘own’ and ‘others’. Instead, beneficial intraspecific cooperation
and interspecific aggression resulted from the newly developed communication system.
Showing aggressive signaling behavior affects the parent species because it disrupts
its communication system which is essential for its intraspecific cooperative behavior.
And the neural system of the new species was changed by evolution in a way that these
aggressive signals do not affect its own intraspecific cooperation (remember the total
loss of connections coming from the according sensory neurons). On the other hand,
intraspecific cooperation was facilitated by the development of a new communication
system relying on using a different type of signals which was of not useful for the parent
species.

By evolving aggressive behavior the new species actually removed an initial selection
pressure, the interspecific competition about the same niche. That is, the new species
generated a feedback in their evolution, a phenomena also known as counteractive niche
construction (Odling-Smee et al., 2003).

Investigating transitional niche adaptation and competitive exclusion in form of
niche construction is not within the main scope of this thesis. However, the experiments
presented in this chapter indicate that unconstrained evolution of situated agents might
also be a suitable tool to study this phenomena and, therefore, complement research
in evolutionary biology which focuses more on theoretical models.

7.6.4 Evolutionary creativity and novelty of behavior

Evolutionary creativity, as it is used here, is understood as the emergence of fun-
damentally new, or novel, behavior during an evolutionary process which aims at
open-endedness. Bianco and Nolfi (2004) defined three major factors that promote
open-ended evolution: (a) implicit and general selection criteria; (b) favorable orga-
nization of the evolving individuals; and (c) changing environmental conditions. The
experiments presented in this and the previous chapter fulfill the first criterion quite
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well. Maintaining energy is probably the best implicit selection criterion for the evo-
lution of autonomous robots as long as they are not able to reproduce themselves, at
least not yet.

The second factor, favorable organization of evolving individuals, emphasizes that
new behavioral abilities and solutions which contribute to better individual perfor-
mance may most likely arise from simpler individuals. That is, individuals descended
from their more primitive predecessors might develop new ways of locomotion or ex-
ploit new sources of energy and environmental niches (Bianco and Nolfi, 2004). This
is exactly what we discovered in this chapter. We have seen how the new species de-
veloped more sophisticated forms of communication as compared to their predecessors.
Furthermore, it exploited new food sources, took a new environmental niche, and ac-
tively changed the old niche to its advantage by displaying aggressive behavior toward
individuals of the parent species.

Therefore, the aggressive behavior led also to a change of environmental condi-
tions. Because it exterminated the cooperative behavior among individuals of the
parent species, it resulted in more profitable conditions for the new species. Thus, a
dynamic change of the environment resulted from altered interactions between indi-
viduals of two competing populations. However, we still have to consider that other
environmental aspects did not change during the course of evolution. Such aspects
could be for instance the depletion of food sources or a change in the number of indi-
viduals within the competing populations depending on their success in exploiting food
sources. Despite of the importance of these aspects, they were deliberately excluded in
our experiments for the sake of comprehensibility. However, taking that into account
has to be obviously included in future research.

We might now agree that the experiments presented in this chapter fulfill most of
the factors which are required for an open-ended evolutionary process. Such processes
promise, but do not inevitably lead to, the emergence of fundamentally new behaviors.
It is hard to define precisely what is fundamentally new. A good approximation is
given by Taylor (2001):

“[. . . ] the ability of individuals to interact with their [. . . ] environment
with few restrictions, and to evolve mechanisms for sensing new aspects of
this environment and for interacting with it in new ways. This includes
the ability of individuals to utilise new physical modalities (e.g. sound,
light, electrical conductance) which they previously did not use, to develop
new functional relationships with their environment [. . . ] and also for the
very notion of individuality to change in radical ways (e.g. the evolution
of multicellular organisms from unicellular ones). It is these sorts of evo-
lutionary innovations which I am labelling creative. Creativity is therefore
distinct from open-endedness; a system capable of open-ended evolution is
not necessarily creative.”

Agreeing with this line of argumentation, we first have to admit that here evolving
individuals did not change in the radical ways which Taylor had in mind. This is a
direct consequence of a further simplification we made, namely not allowing morpho-
logical changes of evolving individuals. However, we can ascribe a certain degree of
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creativity to the evolutionary experiments discussed in this chapter. Evolving individ-
uals utilized new sensor and motor modalities to develop a new communication system
for intraspecific cooperative communication while they changed the ‘old’ system to ag-
gressive interspecific communication. And they utilized new sensors to exploit a new
environmental niche. Thus, they changed their functional relationship with respect to
food sources only slightly, but with respect to the individuals of another competing
population they changed their relationship significantly through their newly developed
aggressive behavior.

7.7 Summary

In this chapter we discussed the evolutionary development of a new species which
competed with another non-evolving population, the parent species, for the same food
sources. Initially, individuals of both species were identical in their sensory-motor
system as well as in their neural control. This allowed us to carefully analyze how
evolution induced structural changes into the neural networks, how these changes affect
the dynamical properties, and how that affects the behavior of the new species.

We demonstrated how the new species developed a new way of intraspecific commu-
nication which benefits cooperation among individuals of their own kind. In addition
they changed the initial communication system in a way that it led to aggressive behav-
ior against individuals of the parent species. This resulted in a competitive exclusion
of the parent species from the initially shared environmental niche. Besides a more
proficient communication system, the new species also acquired additional behavioral
skills to exploit a new environmental niche while still taking advantage of the initial
niche. These new behaviors emerged from a rather unconstrained evolutionary pro-
cess. Neither the topology of the networks nor the possible individual behaviors, nor
the way how individuals interact with each other were restricted in any way. Thus, we
further approached an open-ended evolutionary scenario and demonstrated how that
can indeed give rise to evolutionary creativity.

Two evolutionary solutions were thoroughly analyzed with respect to their inter-
nal dynamical properties and how those affect the behavior of situated agents in the
sensory-motor loop. We demonstrated that, for instance, different aspects of commu-
nication such as aggressive interspecific and cooperative intraspecific signaling were
realized by a simple two-neuron loop. Depending on the sensory activation, this neural
submodule showed different domains of attractors. Switching between these different
domains gave rise to different signaling strategies depending on the environmental con-
text of an agent. The second discussed example illustrated again how the interplay
between internal neural dynamics and fluctuations in form of sensory noise realizes
highly efficient communication strategies.

Analyzing in which way RNNs were modified during the evolution of new behaviors
revealed that a sophistication in behavior does not inevitably entails the development
of more complicated network structures. The resulting RNNs were still rather small
sized. Versatile behavior can again be mainly attributed to multimodality of intrinsic
neural dynamical properties.
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Discussion

“When we analyse a system we tend to overestimate its complexity.”

Valentino Braitenberg (1984, p. 20)

Each preceding chapter contained its own extensive discussion. Here, we briefly
review what has been achieved, highlight some general findings emerging from the
experiments presented in the previous chapters, and conclude this thesis.

8.1 Summary of contributions

Chapter 3 – Cooperation without explicit communication channels

Chapter 3 was devoted to the evolution of cooperative behavior without explicit com-
munication in a minimalistic robotic system. The robot was composed of five individual
subsystems. To control these subsystems, we considered three different approaches:
centralized and decentralized control, where the latter was further distinguished in
heterogeneous and homogeneous distributed control architectures.

From an evolutionary perspective, all three approaches performed similarly well
under the conditions they were evolved. However, compared to the centralized sys-
tem, both decentralized architectures showed a much higher robustness to failure of
individual subsystems. Intriguingly, failure of individual components was not included
the process of evolution. Thus, the robustness of the decentralized systems did not
result from evolutionary adaptation, that is, these systems were not selected for this
property. Robustness is an intrinsic property of the distributed organization as it can
be vastly found in self-organizing biological systems as well (Resnick, 1994; Camazine
et al., 2001). Thus, distributed non-hierarchical system should be preferred whenever
possible because they are likely to provide robustness to individual failure for free.

From a mechanistic perspective, decentralization led also to the evolution of very
small individual neural structures, easing the analysis of the relationship between neu-
ral dynamics and observable behavior. Analytical investigations demonstrated that
sensory-motor feedback loops were an integral and utmost important part of the in-
dividual control systems. We have further seen that this led to a reciprocal coupling
of an agent with its environment which minimized the required neural mechanisms.
This was demonstrated by the mechanisms of context-related switching between two
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different behaviors (Section 3.4.2), by the environmentally induced reflex-oscillations
in simple feed-forward structures (Section 3.5.4), and the perpetual influence of one
agent’s action to another agent’s action through local environmental changes (Sec-
tion 3.5.5).

Chapter 3 showed that cooperation is possible without dedicated communication
channels (see also Quinn, 2001; Wischmann et al., 2005). That is, no signals were
required (recall Section 2.1.1) and cooperation, therefore, relied on cues in form of
environmental changes caused by local actions of individual agents.

Chapter 4 – Aggregation with minimalistic control

In Chapter 4 we discussed the minimal required neural mechanisms to achieve coherent
global collective behavior of numerous robotic agents resembling spatial aggregation
patterns found in animals (Allee, 1931; Camazine et al., 2001).

Again, very small-scale RNNs consisting only of two output neurons were evolved
with which individual robots were able to integrate two competing behaviors, namely
obstacle avoidance and chasing a moving target. The moving target was another robot
with an attached speaker continuously emitting an acoustic signal which could be
sensed by other robots within a limited range. With this setup a group of robots suc-
cessfully caught the target as expected from the given fitness function (Section 4.3).
An interesting behavioral transition occurred when a speaker was attached to every
chasing robot. Through this slight morphological change sophisticated dynamic ag-
gregation patterns emerged solely based on local individual attraction and repulsion
behaviors (Section 4.4). Most notably, these two competing behaviors were realized
by the very same internal dynamics, namely the hysteresis behavior of the very same
neurons. At the mechanistic level these two behaviors differed only in the coupling of
the respective sensory stimuli to the dynamical neural system.

The experiments of Chapter 4, as simple as they are, hint us further to two major
aspects:

• Coherent collective behavior can emerge from simple local interactions among
agents with very basic behavioral skills.

• Completely different behaviors can be realized by the versatile dynamical prop-
erties of small-scale neural structures.

The latter finding indicated already that more sophisticated behaviors do not nec-
essarily require more complex neural structures, a principle which became more evident
in the proceeding chapters (especially in Chapter 6 and 7).

Chapter 5 – Behavior coordination through synchronized communication

Although the experiments of Chapter 4 demonstrated the emergence of collective be-
havior from very simple, locally interacting, agents, the achieved global behavior lacked
a particular function. In Chapter 5 we added functionalities to the behavior of single
agents, that is, collecting energy in the environment and transferring it to a common
nest. The question of interest was how to coordinate the foraging and homing behavior
of many individuals with as minimal communication as possible. We took inspiration
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from the synchronized flashing of fireflies (Buck, 1988), where single individuals peri-
odically release flashes determined by the frequency of an internal neural oscillatory
circuit. These internal oscillations are disturbed when flashes of close-by fireflies are
sensed. Thus, thousands of individuals form a net of locally coupled resettable oscil-
lators where individual rhythms become quickly synchronized until the whole group
flashes in unison.

In our experiments, we designed a small neural circuit to realize such internal
rhythms for our robotic agents. Driven by this rhythm individual agents either foraged
for energy or headed toward their nest. However, if each agent acted just according to
its own inner rhythm the foraging of many individuals was not very efficient. Again,
just very small structural changes altered the group behavior tremendously resulting
in an enormous increase of foraging efficiency. We added one output neuron which
triggered an acoustic signal whenever the internal rhythm of an individual fulfilled one
cycle. In addition a sensory neuron reset the rhythm as a response to acoustic signals
of other individuals. Equipped with this new sensor and motor capacity, individuals
quickly synchronized their internal rhythms and showed coherent foraging and homing
behavior, thereby avoiding the ‘chaotic’ interferences and obstructions which occurred
when every individual acted by its own. Interestingly, this coordination mechanism
turned out to be highly robust and scalable. It was robust, because even if individuals
could only sense signals of their closest neighbors, sync occurred even though the time
span until it spread through the whole colony increased with decreasing local interaction
range (Section 5.5). Scalability was demonstrated by increasing colony size from 25 to
150 individuals and still achieving sync in a rather short time span (Section 5.6).

Here, we deliberately set up the mechanism of resettable oscillators, expecting ro-
bust and scalable behavior in groups of robots based on locally coupled simple units.
Strinkingly, we also found these mechanisms for signal coordination in later experiments
emerging from evolutionary processes even though we did not bias their development.
Thus, rhythm synchronization between locally and temporally coupled entities seems
to be an efficient coordination mechanism not only in biological organisms (see Win-
free, 2001; Strogatz, 2003), but also in evolved artificial societies as they are considered
here.

Chapter 6 – Emergent communication and signal coordination

The first realization of an evolutionary process with open-ended characteristics (see
discussion in Section 2.5.5 and 7.6.4) was shown in Chapter 6. The fitness function
rewarded homogeneous groups of robots for how often their individuals were able to
fully recharge their batteries by exploiting environmental energy sources. One can
think of it as how often an agent is able to reproduce, which depends on its energy
level. In this sense, the fitness function was as internal and as implicit as possible (see
Section 2.5.5).

Interesting from an evolutionary perspective was the development of completely
different solutions. Even though these solutions were quite similar regarding the ob-
servable behavior, they differed significantly in the underlying neural mechanisms.
It turned out that specific solutions showed an increase robustness to environmental
changes that did not occur during their evolutionary development, namely an increase
of interacting individuals. This leads us to the conclusion that open-ended evolution
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experiments with artificial societies can give rise to a mechanistic diversity of solutions
to the same problem. This diversity entails the potential that at least some solutions
are robust to unanticipated future changes of the environment. Thus, we could resem-
ble, without biasing it, a phenomenon also found in biological organisms (Marder and
Goaillard, 2006).

From a mechanistic perspective the development of signal coordination revealed
two different underlying mechanisms. First, individuals coordinated their food calls
indirectly (see Section 6.3.3) via their infrared sensors. Indirect communication was
first discussed in Chapter 3 where it was evolutionary enforced because individuals
lacked the ability to communicate directly. In Chapter 6 individuals could communi-
cate directly and they made use of this ability to release food calls and guide other
individuals to energy sources rather efficiently. The elicitation of food calls was driven
by the subtle interplay between intrinsic neural dynamics and sensory noise (see Sec-
tion 6.3.3). The coordination of these food calls was realized by an indirect mechanism,
and this mechanism actually evolved to avoid obstacles. Thus, in this case signal co-
ordination relies on cues not on signals (see definitions in Section 2.1.1). Interestingly,
this behavior evolved under conditions where signal coordination was not necessarily
required to increase the fitness of the group, but it turned out to be of advantage when
environmental conditions changed (see Section 6.3.4).

The second interesting mechanism evolved in a further set of experiments. Solutions
which lacked to ability of signal coordinate were evolved under conditions where this led
to poor performance. In this case we only changed the environmental conditions, that
is, we increased the number of interacting individuals; the fitness function remained the
same. We then observed the development of very small changes in the neural structure
which led to signal coordination by a mechanism very reminiscent of the experiments
presented in Chapter 5. Here, food calls were coordinated by the synchronization of
internal oscillators through locally limited agent-agent interactions (see Section 6.4).
While we designed such a robust and flexible mechanism in Chapter 5 with purpose,
here it emerged from an unconstrained evolutionary process. This indicates that local
synchronization of resettable oscillators is a highly efficient solution to coordinate the
behavior of large groups of interacting individuals, very much as it is known from
biological organisms (see for instance Strogatz, 2003).

Chapter 7 – Intraspecific cooperation and interspecific competition

In Chapter 7 we extended the experiments of the preceding chapter. Starting with the
same setup we added a new quality of food sources to the environment, then we took a
good performing evolutionary solution from the previous experiments and distributed it
into two separate species. Thus, initially both species were in competition for the same
type of food. One of the species was allowed to evolve, being further equipped with
a sensor for the new type of food and the possibility to utilize an additional acoustic
signal for communication, but no new neural structures were added to connect these
new sensors and actuators to the initial control structure. The other species remained
unchanged to circumvent the Red Queen effect, that is, an evolutionary arms race
between the two species.

We showed the evolutionary development of transitional niche adaptation in form
of punctuated equilibrium (Eldredge and Gould, 1972) where long periods of stasis
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were followed by rather rapid changes. In two major transitions the evolving (new)
species first adapted its behavior to exploit the new environmental niche while later it
weakened competition for its original niche by actively suppressing competitors, dis-
rupting their intraspecific communication (see Section 7.5 and 7.6.3). The resulting
change of selection pressure generated a feedback in the evolutionary process and can,
in this context, be interpreted as the first evidence for counteractive niche construc-
tion (Odling-Smee et al., 2003) based on communication. This originated from the
unexpected development of aggressive inter-species signaling and emphasizes the im-
portant role of changing interactions among competing species in the process of niche
construction.

That aggressive behavior evolved in our experiments can mainly be ascribed to
the inclusion of real world characteristics in simulation. We expected that evolved
communication solutions would try to prevent the interference problem of acoustic
communication among too many signalers, as we found it for the intraspecific syn-
chronized cooperative signaling in Chapter 6. However, we never expected that the
new species will make use of this problem for their own good by evolving aggressive
interspecific communication. To our knowledge this is the first time that counteractive
niche construction is observed in evolutionary robotics experiments.

The ability to trace back behavioral changes during the evolution of cooperation and
competition is one major strength of the unified approach utilized here. As we stressed
several times, similar important is the ability to clarify the exact neural causes of
the evolved behavior. Remarkably, we could reveal that sophisticated communication
abilities, such as signal coordination, cooperative intraspecific communication, and
aggressive interspecific signaling was actually realized by the dynamics of a two-neuron
subnetwork (Section 7.3.3). The reciprocal coupling of an agent with its environment
via its sensory-motor system realized transitions between these different sub-behaviors
through switching between different domains of periodic and quasi-periodic attractors
within the neural system that controls the agent. Thus, we showed that quite advanced
forms of communication can emerge from the versatile dynamics of very small-scale
neural networks embedded in sensory-motor feedback loops.

8.2 General findings

To this end we have seen and discussed many experiments with sometimes expected,
but often also surprising, results. However, we already noted that we are still dealing
with robotic agents which are highly simplified compared to biological organisms (see
discussion in Section 2.2 and 2.3). Thus, one might ask: What can experiments as pre-
sented in this thesis tell us about evolutionary and mechanistic processes of cooperative
behavior in general?

Before discussing the possible biological relevance behind this study, we want to
place our findings within the current stream of research with respect to what is called
the synthetic ecology approach of artificial life experiments (MacLennan, 1991).
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8.2.1 Disentangling the mechanisms that underlie evolved so-
cial behavior

From our discussion about early cybernetic research (Section 2.2.2) and behavior-based
robotics (Section 2.2.4) we know already how relatively simple control systems can ex-
hibit sophisticated behavior patterns when taking sensory-motor feedback loops into
account. While cyberneticians, such as Grey Walter, or behavior-based roboticists,
such as Rodney Brooks, deliberately integrated feedback loops in their control archi-
tectures, we showed that evolution exploits them heavily without being biased toward
it (as especially shown in Chapters 3, 6, and 7). Thus, just the mere fact that robots
are embodied and situated leads almost inevitably to the integration of sensory-motor
feedbacks in the control system which may reduce the dynamical complexity of neural
systems.

However, even though we did not enforce these phenomena explicitly, there may by
an implicit bias in our experiments. A major focus of this thesis was to keep evolving
systems analytically tractable which required the development of rather small neural
structures (as discussed in Section 2.5.4). The enforcement of small structures may
facilitate evolution to exploit the sensory-motor loop. A good example is the implicit
signal coordination mechanism discussed in Section 6.3.3. There, signaling among
interacting agents was realized by the neural mechanism actually evolved for obstacle
avoidance making additional structural elements unnecessary. However, we have to
keep in mind that there is no strong causality between structural complexity and the
complexity of internal neurodynamics (see also Section 2.5.3).

That the enforcement of small neural structures does not inevitable entail less in-
trinsic dynamical complexity was conclusively shown in Section 7.3 by a two-neuron
submodule which enabled an agent to show several distinct communication strategies
such as signal coordination and aggressive and cooperative signaling. Clearly, the
sensory-motor interactions of an agent with its environment and other agents was an
important underlying component of its behavior, but only their link to a rich inter-
nal dynamical repertoire by means of several distinct attractor domains gave rise to
the observed sophisticated behavior. In other words, the behavior resulted from the
interplay between subtle internal and external mechanisms.

The fact that sensory-motor feedback loops are heavily exploited by the evolution-
ary development of neural networks for behavior control is supported by an increasing
number of related studies (see, for instance, Nolfi and Floreano, 2000; Harvey et al.,
2005; Pfeifer and Bongard, 2006). However, one major challenge remains: Clarify-
ing which aspects of evolved behavior can be ascribed to internal neural mechanisms
and which to agent-environment interactions. Though this might be relatively easy
to answer when using feed-forward structures with trivial dynamics, it becomes rather
complicated when using recurrent neural networks with complex dynamics. There exist
only a few studies with regard to the latter problem (see, for instance, Beer, 2003b;
Hülse et al., 2007a), but, to our best knowledge, in the context of the evolution of
social behavior this problem is still largely neglected.

For instance, Floreano et al. (2007) presented evolved social behavior of compa-
rable sophistication as presented in Chapter 7. The work of Floreano et al. focused
on the evolutionary perspective and aimed at clarifying the role of different forms of



8.2. General findings 175

kin selection; however, the used control structures were feed-forward networks with
predefined topologies. Thus, even though they demonstrated rather advanced behav-
iors, the emergence of non-trivial neurodynamics could not be investigated within their
experimental framework.

Marocco and Nolfi (2006) evolved the weights of recurrent neural networks with
a predefined architecture for social behaviors comparable to the cooperative foraging
discussed in Chapter 6, but an analysis of the neural dynamical properties and how
they are connected to the sensory-motor interaction of an agent is still missing.

For a group of three robots, Quinn et al. (2003) evolved behaviors which entailed
formation movement and role allocation. The experiments of Quinn et al. are interest-
ing with respect to our studies for two reasons. First, it is one of the few studies that
also consider structural evolution instead of a pure parameter optimization. Second,
the resulting cooperative behaviors are intriguing because they are carried out even
though the robots could not communicate explicitly with each other - very much like
the behaviors discussed in Chapter 3. However, the study of Quinn et al. also misses
an analysis of the detailed neural mechanisms that underlie the described behavior.

The novel contribution of this thesis is the possibility to clarify the connection be-
tween non-trivial intrinsic dynamics and the sensory-motor interactions of an agent
during the evolutionary development of social behaviors. With this method, we dis-
covered at least two mechanisms which, to our knowledge, have not been shown so
far:

• The utilization of sensory noise for efficient communication strategies (Section 6.3.3
and 7.4).

• The repeated emergence of synchronization of internal rhythms based on local
interactions (Section 6.4 and 7.3).

8.2.2 The artificial-reality gap

The intricacy of nature

In the previous section we argued that the possibility of disentangling the intercon-
nection between internal neural mechanisms and the sensory-motor interaction of an
agent is the major strength of the unified methodology pursued in this thesis. And
even though we are still far away from the behavioral and mechanistic complexity of
even the simplest biological creatures, the way of carefully increasing the complexity
of individual agents, their synthetic nervous systems, and the artificial ecosystems in
which they are embedded promises to complement research of behavioral neuroscience.

Understanding the detailed mechanistic nature of high level behaviors is still a huge
challenge for biologists as, for instance, stated by Buzsáki in the context of conscious-
ness:

“One of the greatest challenges left for systems neuroscience is to under-
stand the normal and dysfunctional operations of the cerebral cortex by
relating local and global patterns of activity at timescales relevant for be-
haviour. This will require monitoring methods that can survey a sufficiently
large neuronal space at the resolution of single neurons, and computational
solutions that can make sense of complex interactions.”
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(Buzsáki, 2007, p. 267)

What challenges research of higher cognitive functions, also challenges complemen-
tary research at a much lower behavioral level, as it becomes evident, for instance, in
research of social behavior among microorganisms (West et al., 2006b). The exper-
iments presented in this thesis are in fact closer related to the latter aspect and we
hope we could convincingly show that they resemble to some extend similar aspects,
as, for instance, inter-species competition for limited environmental resources. And
even though they still entail many simplifications which makes a direct comparison
with biological ecosystems rather difficult, especially those simplifications provided us
with the advantage of understanding social systems from an evolutionary perspective
down to the level of individual neurodynamics.

This leaves us with a severe question: Why can we expect to gain new insights
from systems which seem so simple compared to their biological counterparts? Let us
start with reviewing the relations we have drawn from our experiments. We related the
cooperative behavior based on indirect communication (i.e., through the environment)
discussed in Chapter 3 to stigmergic behaviors observed among social insects, such as
ants or termites, the aggregation patterns in Chapter 4 to formation movements in
fish schools, the rhythm synchronization in Chapter 5 to the flashing of fireflies, the
cooperative signaling in Chapter 6 to the evolution of food or alarm calls, and the
niche adaptation in Chapter 7 to competitive exclusion among protozoa. This leads us
to a further question. Is it reasonable to resemble the behavior of animals which are
usually considered as being rather primitive compared to what is thought to be highly
elaborated social species such as primates or humans? We purposely left out almost
every part which is traditionally considered as being essential for high-level intelligent,
adaptive, and cognitive behavior, like language, grammar, sophisticated motor and
sensory skills, or the ability of planning.

Starting with last aspect we want to mention a few studies which already began
to ‘demystify’ the still vastly found anthropocentric view of cognitive and adaptive
behavior. Planning for the future is widely assumed to be one of the cognitive skills
which distinguishes humans, or at least primates, from the rest of the animal kingdom.
However, recent findings contradict this view. For instance, Raby et al. (2007) showed
that even birds, as the western scrub-jay, can plan for the future in a non instinctive
way: they hide food for the next day to prevent starvation when food supplies are scarce
over a longer period. Bshary et al. (2002) reviewed many experimental studies which
show that cognitive skills and traits usually associated with primates can also be found
in fish species, like social learning, social strategies, co-operative hunting, tool use,
cognitive maps, memory, anti-predator behavior, or manipulations of the environment.
Short-term memory can already be found in bacteria moving along chemical gradients
(see, for instance, Staddon, 2001, 2003, and references within). Fruit flies show selective
attention to novel objects when confronted with simultaneously competing stimuli (van
Swinderen, 2007). Even the phenomenon of metacognition, the ability to think about
your own thinking, can no longer be solely ascribed to primates as shown by the rat
experiments of Foote and Crystal (2007).

All these studies, and we most certainly have not considered all, indicate that brain
size or the organizational complexity of a species seem not to be the most crucial
ingredients for cognitive or intelligent behavior. Yet, even the ‘simplest’ organisms,
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such as bacteria, puzzle us with their intricate mechanistic complexity (West et al.,
2006b). They are so difficult to understand because even a single cell constitutes a
web of complex networks involved in physiological responses to external and internal
stimuli, and these networks are constituted by non-linear dynamical processes (for a
review see Tyson et al., 2003). The most common answer to this daunting complexity
is the reductionist approach: studying the smallest possible components of a system
and then trying to draw general conclusions about the whole system by putting the
parts together again.

A major problem with the reductionist approach is the pervasiveness of emergent
properties in biological systems; interacting components behave completely different
as it can be deduced from the behavior of the single parts (Haken, 2004; Kauffman,
1993; Eigen and Schuster, 1979; Prigogine and Stengers, 1984). For instance, the recent
study of Wolfart et al. (2005) showed that thalamocortical neurons embedded in an
active network show only an unimodal firing response, either bursting or spiking. This
contradicted the traditional view, developed from experiments on isolated neurons,
that these neurons switch between the two modes as a response to changes in the
neuro-modulatory environment (McCormick and Huguenard, 1992).

A further problem is the vast diversity and variability of biological organisms. For
instance, knowing the ion channel dynamics of specific cortical neurons in one individual
may not be valid for the very same type of neurons in another individual of the same
species (for a review see Marder and Goaillard, 2006).

The compelling nature of the artificial

From the discussion above it would now be rather convenient to say: Let us create
artificial systems resembling biological behavior and study those, much simpler and,
therefore, more understandable, systems to find some general underlying principles of
adaptive behavior. Of course this is a big step, and it would be rather naive to claim
that systems as presented in this thesis directly improve our understanding of biological
organisms’ behavior.

Major criticism on artificial life research concerns the level of complexity which is
far beneath that of nature. With the current state of the art there clearly exists no
argument against this statement. Gross simplifications are being made at the level of
artificial evolution, individuals, ecosystems, and nervous systems. And as we discussed
in Chapter 2, this thesis is full of such simplifications. However, a major challenge in
this thesis was to deliberately avoid too much complexity with the aim to always keep
the systems tractable. We claim, that based on the presented findings we can now start
to build systems with more sophisticated mechanisms. For instance, in a first study we
started to integrate aspects which were left out here (Wischmann et al., 2007c). These
aspects include asynchronous distributed evolution which is more biological plausible
than the generation based evaluation method employed here. Furthermore, we started
to include life-time learning and the evolution of an individual’s morphology, and we
continued were we stopped in Chapter 7, by considering the co-evolution of different
competing species. We argue, it is highly reasonable to start “with the simplest possible
models and then incrementally complicating them as our understanding improves”
(Beer, 2003a), else we would risk to “replace a world we do not understand by a model of
the world we do not understand” (Maynard Smith, 1992). In other words, climbing up
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the complexity ladder blindly is “not the most practical answer . . . [because]. . . seeking
such complexity blindly, by typically restricting the search to achieving more complex
behaviors, does not accomplish much” (Di Paolo, 2003).

We argue the methodology proposed here gives promising ground to complement
biological research. Despite the comprehensibility, the most important aspects which
have been unified are:

• The cybernetics perspective. As discussed in Section 8.2.1 this perspec-
tive integrates the important aspect of sensory-motor feedback-loops in complete
systems to understand the underlying mechanisms of adaptive behavior, an per-
spective gaining increasing attention also in modern behavioral neuroscience (e.g.,
Cisek, 1999)

• The dynamical systems perspective. As discussed above even the behavior
of a single cell in a biological organism is heavily ruled by non-linear dynamical
processes (see also discussion in Section 2.4). Here, we have discussed the inter-
connection between intrinsic non-linear neural dynamics and the sensory-motor
interaction of situated artificial agents.

• Unconstrained evolution. It is clear that natural evolution does not optimize
biological systems toward specific functions; natural selection solely acts on sur-
vivability and reproducibility. Here, we accounted for that in laying the ground
for open-ended evolutionary scenarios involving artificial species who, ultimately,
were solely selected for their ability to maintain their energy level.

Still, the scenarios discussed here are rather simple, but there are at least two highly
novel findings with respect to the evolution of social behaviors:

• The ubiquity of multimodality. Throughout all experiments we found a
diversity of small but multimodal neural networks. The same structure can realize
completely different behaviors, which is a direct consequence of considering neural
networks as parameterized dynamical systems (Pasemann, 1996). For instance,
to our knowledge, the results of Chapter 7 demonstrated for the first time, how
the rich dynamical properties of very small neural structures can realize different
sophisticated communication strategies.

• Aggressive niche adaptation. Through the complementary nature of our
study we were able to trace back the evolutionary development of a species and
to analyze not only their change in behavior but also their neural changes. With
this method, the results of Chapter 7 are the first “in silico” evidence of niche
construction by developing aggressive communication and, therefore, eliminat-
ing the competition with another species about limited environmental resources.
That is, the behavioral change in the evolving species generated an evolutionary
feedback which decreased its own selection pressure (see also Wischmann et al.,
2007a)

Both aspects are extremely difficult to study in biological systems, the first because
of the discussed complexity and diversity among natural organisms, and the second
because in vivo experiments are limited by the generation span of biological organisms.
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8.3 Concluding remarks

Now that we reached the end of this thesis, we should recall our first main objective.
We tried to turn complex systems into complicated systems, where the latter is more
understandable than the former. The complex subject matter was the evolution of
social behaviors, or, more concrete, the evolution of cooperation and communication.
While traditional methods in evolutionary biology are mostly based on game-theoretic
approaches which often assume a fixed and limited set of rules and actions that agents
can choose of, and consider agents in rather abstract terms, we proposed a completely
different approach. By merging the cybernetic ideas about sensory-motor feedbacks
of complete, situated, and embodied agents with the dynamical systems perspective
on adaptive behavior, we clearly simplified evolutionary scenarios compared to the
daunting complexity of nature. Even though we considered simplified models, we tried
to avoid idealization, which was possible in particular by using open-ended evolution,
a method from Evolutionary Robotics.

The second main objective comes naturally along with such a unified method. It
concerns the complementary perspective on the evolution of cooperation, that is, trying
to explain not only the evolutionary causes, but also identifying the detailed mecha-
nisms that underlie evolved behaviors. In an abstract sense we tried to account for
the notion of Theodosius Dobzhansky (1973) that “nothing in biology makes sense
except in the light of evolution” with the statement of J. Scott Turner (2007) that “no
attribute of life, including its evolution, really makes sense unless we view it through
a physiological lens” (see also Wedekind, 2007).

We started with probably the simplest robotic system to investigate the evolution
of cooperative behavior without communication, followed by experiments with indi-
viduals just possessing a positive and a negative tropism, but developing fascinating
spatial aggregation patterns in groups of many locally interacting individuals. We then
added functionality to the behavior of single individuals and demonstrated how simple
entrainment mechanisms gave rise to a robust and scalable coherent behavior coordi-
nation. Finally, we investigated the evolutionary emergence of communication without
biasing it, and investigated how communication changes when confronted with inter-
species competition. Following this path, we increased the organizational complexity
of individual agents and simultaneously decreased our assumptions and predefined con-
straints about the expected evolutionary development of behaviors and their underlying
neural mechanisms.

Even though the presented experiments are in fact too simple to ground them
directly in evolutionary biology, they revealed novel findings which can hardly be ex-
pected to emerge from traditional approaches. Such findings, include the important
role of sensory-motor feedbacks for the social behavior of interacting individuals and
the ubiquity of small-scale neural networks exhibiting versatile dynamics which, in
interaction with the former aspect, enable individuals to display sophisticated behav-
iors, which include several distinct communication strategies. Furthermore, with the
method employed here it becomes possible to investigate not only the actual neural
mechanisms that underlie behavior, but also its history in form of structural changes
occurring during the course of evolution. That this can be highly useful, became evident
in the case of counteractive niche construction through the development of aggressive
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signaling which has, to our knowledge, not been shown so far.
The results in this thesis should not be seen as a ‘better approach’ to compre-

hend the evolution of cooperation and communication than traditional ones. In fact,
it can not be considered in this way, because we omit several similarly important as-
pects, such as the cost of signals, the role of kin selection, etc. However, experiments
as discussed here may provide a new, and probably more concrete, perspective on the
evolution of cooperation, because they deal with aspects largely neglected in traditional
approaches, aspects such as embodiment and situatedness, or the dynamical nature of
the underlying mechanisms of behavior. Thus, both approaches simplify the real world
at different levels, and seeing them as sources of mutual inspiration and complemen-
tation should further enhance our understanding of the evolution and mechanisms of
social behaviors.



Appendix A

A.1 Signal orientation of D1 individuals

Figure A.1 illustrates the positive sound tropism of D1 individuals toward detected SB

signals. If a signal is detected to the left of the robot’s heading direction, i8 increases,
and if it is detected on the right side, i9 increases (see also Table 7.1, p. 147). If no
signal is detected, i8 and i9 are equal zero. In this situation the robot drives straight
forward since o1 is about its maximal and o2 about its minimal value, resulting in
high forward speed of the left wheel (cf. wheel speed calculation given in Equation 6.2,
p. 123). The same holds for the right wheel, controlled by o3 and o4. If a signal
on the left side of the robot is detected, i8 increases and consequentially o1 and o2
enter domains of periodic and quasi-periodic oscillations (Figure A.1a). The output
of those neurons oscillates always around 0.0. These oscillations are averaged through
the properties of the motors and the robot’s body (inertia, friction). Thus only the
mean of these oscillations lead to the actual velocity of the wheels, in this case zero (cf.
Equation 6.2, p. 123). This results in a turn the left because the left wheel stops while
the right wheel remains at high speed because o3 and o4 do not change significantly
with increased i8 (Figure A.1a). In contrast if a signal to the right is detected, i9
increases. This does not change o1 and o2 and, therefore, the left wheel speed, but
slows down the right wheel because the mean of o4 increases and approaches o3. The
consequence is a turn to the right.

A.2 Collective foraging of D2 individuals

Foraging for black and white food sources

When a D2 individual enters a black food patch the according sensor input value i4 is
always between 0.8 and 1.0 (± sensor noise). For this domain we see in Figure A.2a
that the values of o1 and o2 are equal as well for o3 and o4. According to Equation 6.2
(p. 123) this forces the robot to stop. So far it is a similar behavior as already discussed
for the initial structure (compare to Figure 6.1d, p. 126). The periodic domains of o2
and o3 are not relevant for the behavior because 0.8 < i4 < 1.0 if a black food patch
is detected or i4 ≈ −1.0 if not. Thus the capability to stay on black food patches was
conserved during the course of evolution.

In addition to conserving an already existing behavioral capability, the RNN also
enables the robot to exploit the newly introduced white food patch. As we can see in
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Figure A.1: Sound signal tropism of D1 individuals. Bifurcations diagrams for
o1, 2 and o3, 4, steering the left and right wheel, respectively, while varying i8 and i9,
the left and right sound sensor input for detected SB sound signals (the corresponding
network is given in Figure 7.2, p. 148).

Figure A.2b, the dynamics, we observe by varying i7, the black food sensor, are quite
similar to the dynamics when we vary i4. And indeed both input neurons influence the
dynamics in a similar way. If we consider the structure and parameters of the RNN,
as given in Figure 7.8 (p. 157), we see the neurons I4 and I7 have an equally strong
connection to O3 which explains the similarities in the bifurcation diagrams (compare
o3 in Figure A.2a and A.2b). Both sensory inputs, i4 and i7, also effect o2 similarly
(compare Figure A.2a and A.2b). However, none of these sensory neurons is connected
to O2 directly. That O2 switches to a fixed point in the upper saturation domain
of the transfer function is a result of the coupling with O3 (see Figure 7.8, p. 157).
O3 projects to O2 with a strong negative synapses, and that is why we observe an
inverse reaction of o2 at increased values of i4 and i7. Thus, the acquisition of the new
behavior is actually a result of one single new synapse projecting from I7 to O3. I7,
the sensor for white food patches, influences the dynamics of the RNN now in a similar
way as I4, which was already given by the initial structure.

This is a prior example how new behaviors, which are similar to already existing
behaviors, can be acquired during the course of evolution by very small structural
changes. We discovered another example in Chapter 6, where we have seen how the
addition of a two new synapses changed the communication system from uni-directional
broadcasting to highly efficient synchronized signaling (see Section 6.4, p. 133).

Sound tropism toward SB sound signals

The mechanisms behind the positive sound tropism of D2 individuals toward detected
SB signals are very similar to the mechanism discussed for D1 individuals in Sec-
tion A.1. Figure A.2c illustrates the behavior of o1, 2 and o3, 4, controlling the left
and right wheel, respectively, while varying i8 which increases the more a detected SB

signal is on the left side of the robot. As we can see, only o2 changes significantly, en-
tering a domain of periodic oscillations. Again, these oscillations are averaged through
the properties of the motors and the robot’s body (inertia, friction) and only the mean
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Figure A.2: Neural dynamics of foraging behavior of D2 individuals. Dynamics
of the RNN shown in Figure 7.8 (p. 157). Given are bifurcation diagrams of the
motor neurons o1, 2 and o3, 4 which control the left and right wheel, respectively, while
varying the sensor input for detecting black food patches, i4 (a), for detecting white
food patches i7 (b), and for detecting SB sound signals, i8 and i9, on the left (c) and
right side (d) of the robot’s heading direction, respectively (the corresponding network
is given in Figure 7.8, p. 157).

of these oscillations lead to the actual velocity of the wheel. According to Equation 6.2
(p. 123), this slows down the left wheel while the right wheel remains at high speed,
resulting in a turn to the left. Similarly, if a signal is detected on the right side, i9
increases and only o4 changes significantly (Figure A.2d), slowing down the right wheel
(cf. Equation 6.2, p. 123) and, therefore, leading to a right turn.
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