
Estimation of groundwater recharge in the context of future climate 

change in the White Volta River Basin, West Africa  

 

 

 

 

Dissertation 

zur 

Erlangung des Doktorgrades (Dr. rer. nat) 

der 

Mathematisch-Naturwissenschaftlichen Fakultät 

der 

Rheinischen Friedrich-Wilhelms-Universität Bonn 

 

 

 

 

 

vorgelegt von 

EMMANUEL OBUOBIE 

aus 

GHANA 

 

Bonn 2008 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. Referent: Prof Dr. B. Diekkrüger 
 
2. Referent: Prof. Dr. B. Reichert 
 
Tag der Promotion: 21.11.2008 
 
Erscheinungsjahr: 2008 
 
Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn 
http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert 



 

ABSTRACT 

 
 

The White Volta River Basin is one of the major sub-basins of the Volta River Basin of 
West Africa. It covers about 106,000 km2, and the major riparian countries are Burkina 
Faso and Ghana. The basin has enough water resources to meet current demands but 
there are many challenges including high spatial and temporal variability in rainfall, 
global climate change, deforestation, land degradation, and high population growth rate. 
These challenges put immense pressure on the water resources. The basin experiences a 
prolonged dry season when many rivers and streams dry up. As a result, surface water 
supplies are unreliable and insufficient to meet the water demands for socio-economic 
development in many places in the basin, thereby making groundwater sources the 
preferred and most cost-effective means of supplying water to the largely rural and 
dispersed population in the basin. A key prerequisite for efficient and sustainable 
management of the groundwater resource is the understanding and quantification of the 
groundwater recharge.  

This study estimates the total amount and spatial distribution of the 
groundwater recharge at different scales in the White Volta Basin using the chloride 
mass balance, water table fluctuation, and hydrological modeling with the Soil and 
Water Assessment Tool (SWAT). In addition, the study evaluates the impact of future 
climate change on the shallow groundwater recharge.  

The chloride mass balance method was applied in the northeastern part Ghana 
(Upper East Region of Ghana), within the basin, to estimate the long-term recharge. 
Based on the variation of chloride concentrations measured in groundwater samples 
taken from 11 wells in 2006, the estimated long-term annual groundwater recharge in 
the region ranged from 34.0 to 182.0 mm, with an area-weighted mean of 82.0 mm. The 
mean annual recharge represents 8 % of the long-term mean annual rainfall of 990 mm.  

The water table fluctuation method was used in the south of the basin 
(commonly called the White Volta Basin of Ghana) to evaluate the seasonal and annual 
variations in water level rise and to estimate the groundwater recharge. The results show 
that annual water level rise ranged from 1238 to 5000 mm in 2006 and from 1594 to 
6800 mm in 2007. Based on standard values of specific yield and the measured water 
level rise, the estimated annual recharge ranged from 28.0 to 150.0 mm in 2006 and 
from 32.0 to 204.0 mm in 2007. The area-weighted mean recharge was 70.0 mm in 
2006, representing 8 % of the annual rainfall (870 mm), and 92.0 mm in 2007, 
representing 7 % of the annual rainfall (1294 mm).  

The SWAT model was calibrated (1986-1999) and validated (1992-1999) at 
Nawuni for the whole White Volta River Basin. The simulated mean recharge to the 
shallow groundwater was 59.0 mm, about 7 % of the mean annual rainfall (824 mm). 
Using SWAT-simulated water balance for the present time period (1991-2000) as the 
basis for comparison, the simulated future (2030-2039) water balance in the White 
Volta Basin shows important increases in the mean annual discharge, surface runoff and 
shallow groundwater recharge as a result of future climate change in the basin. The 
shallow groundwater recharge is expected to increase by about 29 %. 

 
 
 



 

KURZFASSUNG 
 
 

Grundwassererneuerung vor dem Hintergrund des zukünftigen 
Klimawandels im Becken des Weißen Voltas, Westafrika  

 
 

Das Weiße Voltabecken ist eines der wichtigsten Unterbecken des Voltabeckens in 
Westafrika. Die Fläche beträgt ca. 106,000 km2, und die wichtigsten Anrainerstaaten 
sind Burkina Faso und Ghana. Die Wasserressourcen können den gegenwärtigen Bedarf 
decken, aber die hohe räumliche und zeitliche Niederschlagsvariabilität, der globale 
Klimawandel, Abholzung, Bodendegradation sowie starkes Bevölkerungswachstum 
führen zu einem enormen Druck auf die Wasserressourcen. Im Becken gibt es eine 
lange Trockenzeit wo viele Flüsse und Bäche austrocknen. Dadurch ist die Versorgung 
mit Oberflächenwasser unzuverlässig und reicht nicht, um den Wasserbedarf für die 
soziale und wirtschaftliche Entwicklung in vielen Gegenden des Beckens zu erfüllen. 
Das Grundwasser ist daher die bevorzugte und am kosteneffektivste Möglichkeit, die 
größtenteils ländliche und verteilte Bevölkerung im Becken mit Wasser zu versorgen. 
Am wichtigsten für ein effizientes und nachhaltiges Management der 
Grundwasserressourcen sind Kenntnisse über die Grundwasserneubildung sowie deren 
Quantifizierung.  

Diese Studie untersucht die gesamte Höhe und räumliche Verteilung der 
Grundwasserneubildung im Weißen Voltabecken in unterschiedlichen Maßstäben mit 
den Methoden Chloridmassenbilanz, Grundwasserspiegel-Fluktuation, sowie 
hydrologische Modellierung mit dem Soil and Water Assessment Tool (SWAT). 
Außerdem bewertet die Studie die Auswirkungen des erwarteten Klimawandels auf die 
Neubildung von oberflächennahem Grundwasser.  

Die Chloridmassenbilanz-Methode wurde im nordöstlichen Teil von Ghana 
(Upper East Region of Ghana) angewandt, um die langfristige Grundwasserneubildung 
zu ermitteln. Auf der Grundlage der Variation der Chloridkonzentrationen in 
Grundwasserproben aus 1100 Brunnen in 2006 lag die langfristige jährliche 
Grundwasserneubildung in der Region zwischen 34.0 und 182.0 mm, mit einem area-
weighted Mittel von 82.0 mm. Die mittlere jährliche Neubildung stellt 8 % des 
langjährigen mittleren jährlichen Niederschlags von 990 mm dar.  

Die Grundwasserspiegel-Fluktuationsmethode wurde im Süden des Beckens 
eingesetzt (genannt Weißes Voltabecken von Ghana), um die saisonalen und jährlichen 
Variationen bei Grundwasseranstieg und Grundwasserneubildung zu ermitteln. Die 
Ergebnisse zeigen, dass der jährliche Anstieg des Grundwasserspiegels zwischen 1238 
und 5000 mm in 2006 und zwischen 1594 und 6800 mm in 2007 lag. Auf der Grundlage 
der Standardwerte des spezifischen Ertrags und der gemessene Anstieg des 
Grundwassers betrug die jährliche Grundwasserneubildung zwischen 28.0 und 150.0 
mm in 2006 und zwischen 32.0 und 204.0 mm in 2007. Die area-weighted mittlere 
Neubildung war 70.0 mm in 2006, und damit 8 % des jährlichen Niederschlags (870 
mm), und 92.0 mm in 2007, die 7 % (1294 mm) darstellen.  

Das SWAT-Modell wurde kalibriert (1986-1999) und validiert (1992-1999) in 
Nawuni für das ganze Weiße Voltabecken. Die simulierte mittlere 
Grundwasserneubildung im oberflächennahen Grundwasser betrug 59.0 mm, das sind 
ca. 7 % des mittleren jährlichen Niederschlags (824 mm). Mit der SWAT-simulierten 



 

Wasserbilanz für den Zeitraum (1991-2000) als Vergleichsgrundlage zeigt die 
simulierte zukünftige (2030-2039) Wasserbilanz eine bedeutende Zunahme des 
durchschnittlichen jährlichen Niederschlags, Abflusses, Oberflächenabflusses und der 
Neubildung von oberflächennahem Grundwasser als Folge des zukünftigen 
Klimawandels im Becken. Es wird erwartet, dass die oberflächennahe 
Grundwasserneubildung um ca. 29 % zunehmen wird. 
 



 

TABLE OF CONTENTS 

1 INTRODUCTION……………………………………………..………………...1 

1.1 Overview of freshwater resources …………………………………………1 
1.2 Background of the study …………………………………………………...3 
1.3 Study objectives ……………………………………………………………6 
1.4 Structure of the thesis ……………………………………………………...7 

2 LITERATURE REVIEW.................………………………………………….....8 

2.1 Groundwater recharge ……………………………………………………..8 
2.2 Definition and concepts of groundwater recharge …………………………8 
2.3 Recharge estimation methods …………………………………………….10 
2.4 Limitations and errors in estimating groundwater recharge ...……………14 
2.5 Recharge methods commonly used in semi-arid regions ...………………15 
2.6 Recharge estimates in the Volta Basin and other semi-arid areas in 

Africa ……………………………………………………………………..18 

3 THE STUDY AREA…………………………………………………………...21 

3.1 Introduction ………………………………………………………………21 
3.2 Location …………………………………………………………………..21 
3.3 Topography ……………………………………………………………….22 
3.4 Climate …………………………………………………………………...23 

3.4.1 Rainfall.. .................................................................................................. 25 
3.4.2 Temperature ............................................................................................ 25 
3.4.3 Evapotranspiration .................................................................................. 26 

3.5 River runoff ………………………………………………………………26 
3.6 Geology …………………………………………………………………..28 
3.7 Soils ………………………………………………………………………30 
3.8 Land-cover and -use ……………………………………………………...32 
3.9 Hydrogeology …………………………………………………………….34 
3.10 Demography ……………………………………………………………...35 
3.11 Groundwater resource utilization and problems ………………………….36 

4 WATER TABLE FLUCTUATION METHOD FOR ESTIMATING 

GROUNDWATER RECHARGE……………………………………………...41 

4.1 Overview …………………………………………………………………41 
4.2 Method ……………………………………………………………………42 

4.2.1 Description of study area ........................................................................ 42 
4.2.2 Water level measurement ........................................................................ 44 
4.2.3 Estimation of water level rise (∆h) ......................................................... 45 
4.2.4 Specific yield .......................................................................................... 47 

4.3 Results and discussions …………………………………………………..49 
4.3.1 Water level rise ....................................................................................... 49 
4.3.2 Recharge estimates .................................................................................. 53 



 

5 THE CHLORIDE MASS BALANCE METHOD FOR ESTIMATING 

GROUNWATER RECHARGE....……………………………………………..56 

5.1 Introduction ………………………………………………………………56 
5.2 Study area ………………………………………………………………...57 
5.3 Data ……………………………………………………………………….58 

5.3.1 Water sampling and chloride analysis .................................................... 59 
5.3.2 Rainfall measurements ............................................................................ 59 

5.4 Results and discussions …………………………………………………..59 
5.4.1 Chloride concentrations in rainfall .......................................................... 59 
5.4.2 Chloride concentrations in groundwater ................................................. 61 
5.4.3 Recharge estimates .................................................................................. 63 

6 RECHARGE ESTIMATION USING THE SOIL AND WATER 

ASSESSMENT TOOL (SWAT)……………………………………………….67 

6.1 Introduction ………………………………………………………………67 
6.2 SWAT hydrology ………………………………………………………...68 

6.2.1 Precipitation ............................................................................................ 69 
6.2.2 Surface runoff ......................................................................................... 71 
6.2.3 Peak runoff rate ....................................................................................... 73 
6.2.4 Surface runoff lag ................................................................................... 74 
6.2.5 Transmission losses ................................................................................ 75 
6.2.6 Evapotranspiration .................................................................................. 75 
6.2.7 Soil water ................................................................................................ 76 
6.2.8 Groundwater ........................................................................................... 80 
6.2.9 Reservoir ................................................................................................. 85 
6.2.10 Flow routing ............................................................................................ 86 

6.3 Sensitivity analysis ……………………………………………………….86 
6.4 Model calibration and performance evaluation …………………………..88 
6.5 Baseflow separation ………………………………………………………92 
6.6 SWAT input data preparation …………………………………………….92 

6.6.1 Digital elevation model (DEM) .............................................................. 92 
6.6.2 Land-use/ -cover data .............................................................................. 93 
6.6.3 Soil data  .................................................................................................. 95 
6.6.4 Climate data ............................................................................................ 98 
6.6.5 River discharge data .............................................................................. 100 
6.6.6 Reservoir data ....................................................................................... 102 
6.6.7 Other data .............................................................................................. 103 

6.7 Results and discussion …………………………………………………..103 
6.7.1 White Volta Basin SWAT setup and sensitivity analysis ..................... 103 
6.7.2 Effects of the number of rainfall stations and landuse on model 

output……………………………………………………………….. .. 105 
6.7.3 Model calibration .................................................................................. 106 
6.7.4 Model validation ................................................................................... 111 
6.7.5 Annual water balance ............................................................................ 115 
6.7.6 Distribution of surface runoff and baseflow ..….. ................................ 118 
6.7.7 SWAT recharge estimates ..................................................................... 118 



 

7 IMPACTS OF FUTURE CLIMATE CHANGE ON WATER RESOURCES.120 

7.1 Introduction ……………………………………………………………..120 
7.2 Climate change scenarios of MM5/ECHAM4 ………………………….121 
7.3 Frequency statistics of MM5 and measured rainfall series ……………..123 
7.4 Impacts of measured and generated climate series on water balance …..126 
7.5 Impacts of future climate change scenario on water resources …………128 
7.6 Comparison of study results with previous studies ……………………..133 

8 CONCLUSIONS AND RECOMMENDATIONS……………………………136 

8.1 Introduction ……………………………………………………………..136 
8.2 Chloride mass balance method for estimating groundwater recharge …..136 
8.3 Water table fluctuation method for estimating groundwater recharge ….137 
8.4 Hydrological modeling and recharge estimation with SWAT  …………137 
8.5 Impacts of future climate change on water resources …………………..138 
8.6 Final conclusions ………………………………………………………..139 
8.7 Recommendations ………………………………………………………139 

9 REFERENCE……………………………………………………………........141  



 

LIST OF ACRONYMS AND ABBREVIATIONS 

 

AET  Actual Evapotranspiration 

AGCM Atmospheric Global Climate Models 

AI  Agreement Index 

AOGCM Atmosphere-Ocean Global Climate Models 

CMB  Chloride Mass Balance 

CI  Continental Interclaire 

CRU  Climate Research Unit (East Anglia) 

CT  Complex Terminal 

CV  Coefficient of Variation 

DANIDA Danish International Development Agency 

DGH  Direction Génerale des l’Hydraulique 

ECHAM European Centre Hamburg Model 

FAO  Food and Agriculture Organization 

GCM  Global Climate Model 

GFDL  Geophysical Fluid Dynamics Laboratory (NOAA US) 

GMSD  Ghana Meteorological Services Department 

HADCM Hadley Center Model 

HAP  Hydrological Assessment Project of the Northern Regions of Ghana 

HRU  Hydraulic Response Unit 

IPCC  Intergovernmental Panel on Climate Change 

LARS-WG Long Ashton Research Station Weather Generator 

LPIU  Livestock Planning and Information Unit (Ghana) 

MOFA  Ministry of Food and Agriculture (Ghana) 

MM5  Mesoscale Model 

MRC  Master Recession Curve 

MWH  Ministry of Works and Housing (Ghana) 

NASA  United States National Aeronautics and Space Administration  

NGA  National Geospatial-Intelligence Agency 

NSE  Nash-Sutcliff model Efficiency 

OGCM Oceanic Global Climate Models 



 

PET  Potential Evapotranspiration 

PRECIS Providing REgional Climates for Impacts Studies 

R2  Coefficient of determination 

REMO  Regional MOdel 

RCM  Regional Climate Model  

SAGA  System for Automated Geo-Scientific Analysis 

SRTM  Shuttle Radar Topography Mission 

SWAT  Soil and Water Assessment Tool 

UNEP  United Nations Environmental Programme 

UNESCO United Nations Educational, Scientific and Cultural Organization  

USGS  United States Geological Survey 

WASIM WAter flow and balance SImulation Model 

WEAP  Water Evaluation And Planning System 

WRI  Water Research Institute (Ghana) 

WTF  Water Table Fluctuation 

ZEF  Center for Development Research (Germany) 

 



Introduction 

 1

1 INTRODUCTION 
 

1.1 Overview of freshwater resources 

The importance of water, particularly freshwater, has been recognized since the 

beginning of man. In every human society anywhere on the planet earth, water is said to 

be life because all aspects of life depend on it. Freshwater constitutes less than 3 % of 

the world’s water resources but it is one of the world’s most important natural resources 

and an indispensable part of all terrestrial ecosystems. It is a necessary input for many 

sectors of the global economy. In many world regions, particularly in developing 

regions like Africa, availability and access to freshwater largely determines patterns of 

economic growth and social development (Odada, 2006). Freshwater resources are 

pivotal to key economic and social activities such as water supply and sanitation, 

agriculture, industry, urban development, hydropower generation, inland fisheries, 

transportation and recreation among others. These activities provide employment and 

generate revenue that sustains many economies of the world. Besides its economic 

value, freshwater plays an important role in addressing issues of health, poverty and 

hunger and has been rightly recognized in the formulation of the United Nations’ 

millennium development goals.       

The importance of freshwater is increasing very rapidly due to the fast growth 

in the world’s population, which has resulted in increased demand for the resource 

world-wide. Notwithstanding the increasing demand, the amount of freshwater available 

on the earth is limited. Its distribution is quite varied; many locations have plenty of it 

while others have very little. A UNEP (2002) study reveals that about one third of the 

world’s population lives in countries with moderate to high water stress with 

disproportionately high impacts on the poor. The same study observes that, with the 

current projected human population growth, industrial development and expansion of 

irrigated agriculture in the next two decades, water demand will rise to levels that will 

make the task of providing water for human sustenance more difficult. Africa in general 

and West Africa in particular will be among the regions that are most likely to be 

affected. 

Africa as a continent has an immense supply of rainfall, with an average 

annual of 744 mm, and relatively low withdrawals of water for its three major water 

sectors, namely agriculture, community water supply and industry (FAO, 2003). 
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However, natural phenomena such as rainfall variability and global climate change, and 

human factors such as over-exploitation and pollution, create a serious threat to the 

sustainability of Africa’s freshwater resources, and hence the livelihood of the many 

poor that inhabit the continent.  

Rainfall intensities and amount in Africa, particularly in western and central 

Africa, have high spatial and temporal variability within and between countries and 

river basins (UN-Water/Africa, 2006) with frequent events of drought and flood. Such 

natural variability has resulted in uneven distribution of surface and groundwater 

resources across the continent. While places like Comoros, Mauritius, Madagascar, 

Seychelles and the southern to the tropic belt of mid Africa have abundant freshwater 

resources, places like northern Africa, Sub-Saharan Africa including the Sahara and 

Kalahari deserts with severe aridity have very limited freshwater resources (Odada, 

2006).  

Global climate change puts further constraint on the already limited and 

unevenly distributed freshwater resources in Africa. In equatorial Africa, the climate is 

expected to become warmer with an average temperature increase of 1.4°C by 2050 

(IPCC, 2001). Predicted hydrological changes associated with the expected increase in 

temperature include (1) an increase in precipitation of 5 to 30% from December to 

February and 5 to 10 % from June to August and (2) greater runoff (Joubert and 

Hewitson, 1997; Arnell, 1999; Nelson, 2005). In West Africa, Kunstmann and Jung 

(2003) among others, have predicted changes in rainfall patterns with a general increase 

in rainfall amount and an increase in the mean temperature of about 1.2oC in 2030-2039. 

Despite this, statistical analysis of long-term (1951-1991) observed rainfall and river 

discharge data in the Volta Basin of West Africa show significant reductions in both 

rainfall and river discharge in most areas of the basin (Opoku-Ankomah and Amisigo, 

1996; Opoku-Ankomah, 2000; Gyau-Boakye and Tumbulto, 2006). Similar statistical 

analysis of observed rainfall from the 1960s and 1970s in other areas in West Africa 

found significant reductions in rainfall amounts and river discharges (Servat et al., 1997, 

Lebarbé and Lebel, 1997; Amani, 2001). Observations made on major rivers in the West 

African region since the early 1970s show a mean decline of 40-60 % in discharge 

(Niasse et al., 2004). Recharge to groundwater aquifers in the region have also 
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decreased noticeably. This is attributed to the decline in rainfall and runoff (Niasse et 

al., 2004).  

Based on the above discussions, it is clear that wise management measures are 

required to address the many challenges that confront the sustainability of freshwater 

resources in West Africa in order to guarantee present and future provision of water for 

human sustenance. 

 

1.2 Background of the study 

The Volta River Basin is one of the 80 internationally shared lake and river basins in 

Africa. It is located in West Africa and shared by six riparian countries. The basin’s 

water resource has been a very important input for the economic growth and 

development in the riparian countries. With the basin’s population currently growing at 

an annual rate of 2.5 % (Andah et al., 2003), the demand for water will continue to 

increase significantly and will put immense pressure on the limited available water 

resources, which are concentrated in streams and rivers and groundwater aquifers. 

The Volta Basin is fairly well watered with a mean annual rainfall ranging 

from 1600 mm in the humid southern parts to 600 mm in the extreme northern areas 

(VBRP, 2002). However, the rainfall is highly variable between the wet and dry seasons 

as well as from one place to another. The basin experiences a prolonged dry season of 

about 7 months in most areas, and as a result many of the rivers and streams are 

ephemeral in nature. Surface water supplies are unreliable, subject to high evaporative 

losses and insufficient to meet the water demand for socio-economic development 

everywhere in the basin. Besides, many of the surface water sources, particularly those 

used by small towns and rural communities have serious health risks with regard to 

water-related diseases such as bilharzias, cholera and guinea worm (MWH, 1998). 

Groundwater sources have become the preferred and cost-effective means of supplying 

water to meet the growing demand of the largely rural and dispersed population in the 

basin. Generally, the chemical and microbiological quality of groundwater is better than 

that of surface water. Additionally, groundwater sources respond more slowly to 

changes in rainfall, which makes it less vulnerable to drought compared to surface 

water. 
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Groundwater resources are used mainly for domestic and municipal water supply, as 

well as for watering of livestock and dry season irrigation of vegetables in many places 

in the basin. Over the past three decades, the exploitation of groundwater in the Volta 

Basin has increased substantially, particularly in the middle to north-eastern parts 

(Figure 1.1), which encompass large cities like Ouahigouya, Ouagadougou, and 

Bolgatanga (all within the White Volta sub-basin). Abstraction of groundwater in the 

basin is done mainly using boreholes fitted with hand pumps and mechanised boreholes 

connected to piping systems (Figure 1.2). An estimate made by Martin and van de 

Giesen (2005) reveals that about 44 % of the basin’s total population depends on 

groundwater supply from both mechanised and hand-pump-equipped boreholes as well 

as from modern hand-dug wells. This figure is expected to increase as the population 

grows and water demand increases, leading to further exploitation of the groundwater 

resource. This could result in problems should the groundwater exploitation not be well 

managed.   

Already, there are cases of groundwater depletion in some areas of the basin 

within Ghana. Gyau-Boakye and Tumbulto (2000) mentioned increased abstraction as 

the cause of the depletion. Over-abstraction of groundwater is said to be the reason for 

the diminishing yields of boreholes within a relatively short time and depletion of rivers 

in close proximity to areas of high borehole concentration (Water Research Institute-

WRI, 2002). Open wells and some deeper boreholes in the basin are frequently 

experiencing reduced yields, sometimes drying up completely in the dry season 

(WRI/DANIDA, 1993; Martin and van de Giesen, 2005). During the drought of the 

1980s, observation of groundwater levels showed pronounced drops (Wardrop 

Engineering, 1987 and Thierry, 1990), which is an indication of the impact of climate 

change on the groundwater resources in the basin.  

Therefore, the development of groundwater resources in the Volta Basin must 

be well managed particularly in areas where the sustainability of the resources could be 

threatened by over-exploitation and contamination, as well as by climate change. A 

basic prerequisite for efficient and sustainable management of groundwater resource is 

the groundwater recharge (Lerner et al., 1990; Scanlon and Cook, 2002, Chand et al., 

2005). Quantification of the recharge is needed, for example, to estimate the sustainable 



Introduction 

 5

yield of the groundwater aquifers (Sanford, 2002; Sophocleous and Schloss, 2000) and 

for rational and sustainable exploitation of the resource.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.1 Location of hand-pump-equipped boreholes in the Volta River Basin of 

West Africa (Source: Martins, 2005)  
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Figure 1.2 Groundwater-based Town water supply systems in the Volta River Basin 
of West Africa (Source: Martins, 2005) 

 

1.3 Study objectives 

This study seeks to contribute to the sustainable management of water resources in the 

Volta Basin by investigating the recharge to groundwater and the impact of future 

climate change on the hydrology and water resources in the White Volta sub-basin of 

the Volta Basin. 

The specific objectives are to: 
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1. Estimate the total amount and spatial distribution of groundwater recharge in the 

White Volta Basin;  

2. Evaluate the ability of a regional scale hydrological model, i.e., the Soil and Water 

Assessment Tool (SWAT), to reproduce the hydrological variables in the White 

Volta Basin; 

3. Evaluate the impact of future (2030-2039) climate change on the water resources in 

the White Volta Basin. 

 

1.4 Structure of the thesis 

The first of the eight chapters of this thesis gives a general introduction and defines the 

context within which the study was done. It also outlines the objectives that guided the 

study. Chapter 2 presents a review of relevant literature on the mechanisms of 

groundwater recharge, of methods for estimating recharge and examples of recharge 

estimates from previous studies in arid and semi-arid areas. Chapter 3 provides a 

detailed description of the Volta River basin of which the study area, i.e., the White 

Volta Basin, is a major sub-basin. Chapter 4 discusses groundwater recharge estimation 

in the downstream part of the study area, using the water table fluctuation (WTF) 

method. Strengths and weaknesses of the WTF method are outlined. Besides the WTF 

method, the chloride mass balance (CMB) method for estimating groundwater recharge 

was applied to a smaller area within the downstream part of the study area. Chapter 5 

elaborates on the CMB method and compares recharge estimates from the WTF and 

CMB methods. 

Chapter 6 deals with modeling of watershed hydrology and groundwater 

recharge using the Soil and Water Assessment Tool (SWAT) model. The results of 

model calibration and validation, sensitivity analysis and model performance evaluation 

are discussed. Impacts of future climate change, mainly changes in rainfall and 

temperature, on the water resources in the study area are examined in Chapter 7. In the 

final Chapter, 8, the major conclusions of the study are discussed and recommendations 

for further studies given. 
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2 LITERATURE REVIEW 
 

2.1 Groundwater recharge 

Groundwater use is of fundamental importance and often the key to economic and social 

development in many areas world-wide, particularly in arid and semiarid areas where 

surface water supplies are unreliable and poorly distributed. The evaluation of the 

groundwater resources involves several factors of which the groundwater recharge is a 

key. An understanding of the recharge processes and the quantification of natural 

recharge rate are basic prerequisites for efficient and sustainable management of the 

groundwater resources (Foster, 1988; Scanlon and Cook, 2002, Chand et al., 2005). 

Quantification of the recharge is needed to estimate the sustainable yield of groundwater 

aquifers. Knowledge of aquifer sustainable yield is important for rational and 

sustainable exploitation of the groundwater resources (Sanford, 2002; Sophocleous and 

Schloss, 2000; Gonfiantini, et al, 1998; Scanlon, et al., 2002).  

 

2.2 Definition and concepts of groundwater recharge 

In a broader sense, groundwater recharge is defined by Lerner (1997) as water that 

reaches an aquifer from any direction, i.e., down, up, or laterally. In arid- and semi-arid- 

regions of the world, which include the White Volta Basin, recharge by downward flow 

of water through the unsaturated zone is generally the most important mode of recharge 

(Xu and Beekman, 2003). Therefore, groundwater recharge as used in this study refers 

to the downward flow of water reaching the water table from the unsaturated zone 

(Freeze and Cherry, 1979; Lerner et al., 1990). Recharge may occur naturally from 

precipitation, rivers, canals and lakes, and man-induced through activities of irrigation 

and urbanization (Lerner et al., 1990). This study is focused on recharge from 

precipitation, since it is the most important category of recharge in the White Volta 

Basin (Martin, 2005; Kortatsi, 1994). The recharge to groundwater is controlled by 

factors such as the rate and duration of precipitation or irrigation, the antecedent 

moisture condition of the soil profile, geology, soil properties, the depth to water table 

and aquifer properties, vegetation and land use, topography and landform.  

The basic mechanisms of groundwater recharge in arid- and semi-arid- areas 

are reasonably well known. However, estimation of the various processes of the 

hydrological cycle in order to quantify the recharge is a difficult task (Lerner et al., 
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1990). The two major flow mechanisms in arid- and semi-arid- areas are piston or 

uniform flow, and preferential flow. Often, in many locations both types of flow 

mechanisms occur simultaneously, though one may dominate (Figure 2.1). When water 

is supplied to the soil surface, some of the arriving water penetrates the surface and is 

absorbed into the soil, while some may fail to penetrate and instead accrues or flows 

over the surface. The water that does penetrate is itself later partitioned into the amount 

that returns to the atmosphere by evapotranspiration and that which seeps downward, 

with some of the latter re-emerging as stream flow while the remainder recharges the 

groundwater reservoir. The water that recharges the groundwater reservoir may later on 

re-emerge as stream flow.  

Recharge can be expressed as a percentage of the annual precipitation or as an 

average rate of water in millimeters per year. The volume of recharge, expressed as 

cubic meters per year, can be obtained by multiplying the recharge rate by the land area 

under consideration.  

 

 

  
Figure 2.1 Mechanisms of infiltration and moisture transport that are likely to occur in 

arid- and semi-arid- areas (Beekman et al., 1996) 
 

Recharge to groundwater can be classified as (i) direct or indirect on the basis 

of the origin of the recharging water, (ii) piston or preferential flow on the basis of the 

flow process through the unsaturated zone, (iii) point, line or areal recharge on the basis 

of the area on which it acts, and (iv) present-day, short-term or long-term recharge on 
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the basis of the time scale during which it occurs (Table 2.1) (Beekman et al., 1999; 

Lerner et al., 1999; Lerner et al., 1990). Again, recharge can be classified as actual, 

which refers to water that has infiltrated and reaches the water table, or potential, which 

refers to infiltrated water that may or may not reach the water table because of the 

unsaturated zone processes or the ability of the saturated zone to accept recharge 

(Rushton, 1997). In many locations, a combination of the recharge categories occurs.  

 

Table 2.1: Definitions of categories of groundwater recharge 
Category of recharge Definition 

On the basis of origin of water: 

Direct  Water added to the groundwater in excess of soil moisture 
deficits and evaporation  by direct vertical percolation of 
precipitation through the unsaturated zone  

Indirect  Percolation to water table following runoff and localization in 
joints, as ponding in low lying areas and lakes, or through the 
beds of surface watercourses 

On the basis of flow mechanism through the unsaturated zone: 

Pistol flow  precipitation stored in the unsaturated zone is displaced 
downwards by the next infiltration/percolation event without 
disturbance of the moisture distribution  

Preferential flow Flow via preferred pathways/macro-pores, which are sites 
(e.g., abandoned root channels, burrows, fissures) or zones 
(e.g., stream beds) in the unsaturated zone with a relatively 
high infiltration and/or percolation capacity 

On the basis of area on which it acts: 

Point recharge Recharge at a site, with no areal extent 

Line recharge Recharge from a line source e.g., drainage feature or river 

Area recharge Recharge over an area 

On the basis of time scale during which recharge occurs: 

Present-day recharge Recharge occurring within a time frame of days/months 

Short-term recharge Recharge covering a short period in the past or predicted for 
the near future within a time frame of months/years 

 
Long-term recharge 

Recharge over a longer period in the past (palaeo-recharge) 
or predicted for the future (accounting for climate change) 
within a time frame of tens up to thousands of years 

 

2.3 Recharge estimation methods 

Estimating groundwater recharge in arid- and semi-arid- regions can be difficult, since 

in such areas the recharge is generally low compared to the average annual rainfall or 
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evapotranspiration, and thus difficult to determine precisely (Scanlon et al., 2002; 

Beekman, 1999). Recharge processes vary from one place to another, and there is no 

guarantee that a method developed and used for one locality will give reliable results 

when used in another. Therefore, it is necessary to identify the probable flow 

mechanisms and the important features influencing the recharge in a locality before 

deciding on the recharge method to use (Lerner et al., 1990). The recharge to a 

groundwater aquifer cannot be easily measured directly, and usually estimated by 

indirect means (Lerner, 1990). The accuracy of the indirect estimates is usually difficult 

to determine, and therefore it is recommended that recharge should be estimated using 

multiple methods to obtain more reliable values (USGS, 2008; Scanlon et al., 2002; 

Lerner, 1990). A wide variety of methods exists for estimating groundwater recharge, 

which have been designed to represent the actual physical processes of the recharge.  

Recharge estimation methods can be classified according to (i) hydro-

geological provinces (Lerner et al., 1990), (ii) hydrologic zones (Scanlon et al., 2002; 

Beekman et al., 1999; Bredenkamp et al., 1995), (iii) physical, numeric modeling, and 

(iv) tracer techniques (Scanlon et al., 2002; Lerner et al., 1990; Kinzelbach et al., 2002). 

Scanlon et al. (2002) classified recharge methods on the basis of three hydrologic zones 

of studies namely surface water, unsaturated zone and saturated zone. Each of these 

zones provides a different set of data that can be used to estimate the groundwater 

recharge. Within each of the hydrologic zones, the recharge techniques were further 

classified into physical techniques, tracers and numerical modeling.  

Recharge estimation methods based on surface water studies include physical 

methods e.g., channel-water budget, seepage meters and baseflow discharge; tracer 

methods e.g., stable isotopes of oxygen and hydrogen; numerical modeling methods 

e.g., deep percolation model, SWAT model and water budget equation. Methods based 

on the unsaturated zone studies include physical methods e.g., lysimeters, Darcy’s law 

and zero-flux plane; tracer techniques e.g., bromide, 3H, and visible dyes, 36Cl, and Cl; 

numerical modeling methods e.g., soil water storage routing, quasi-analytical 

approaches and numerical solutions to the Richards equation. Recharge estimation 

methods based on the saturated zone studies are physical methods e.g., water table 

fluctuation and Darcy’s law; groundwater dating using traces such as CFC, 3H/3He, and 
14C; and groundwater flow modeling. A detailed description of each of the above-
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mentioned techniques can be found in Scanlon et al. (2002), Scanlon et al. (2003) and 

Lerner (1990).  

Based on several literatures, Scanlon et al. (2002) observed that recharge 

methods differ in terms of the typical quantity measured, the range of recharge values 

that can be expected, and the spatial and temporal scales that the recharge represents. 

Generally, techniques based on surface-water and unsaturated-zone studies provide 

recharge rates that are only potential, because the estimated recharge flux has not yet 

reached the water table and there may be losses during the flow process through the 

unsaturated zone. As such, the recharge rates estimated are sometimes less reliable 

compared to the estimates based on techniques of the saturated zone studies, which are 

actual recharge rates because the recharge flux reaches the water table. Techniques like 

historic tracers (e.g. 3H/3He) applied in the unsaturated zone require a minimum 

recharge rate to transport the tracer through the unsaturated zone. Again, if the same 

tracer is applied in the saturated zone, it requires a yearly minimum of about 30 mm to 

confine the 3He (Scanlon et al., 2002). Such techniques do not give reliable estimates 

when used in localities where the expected recharge rate is smaller. Environmental 

tracers like chloride, on the other hand, are often used to reliably estimate small 

recharge rates (e.g., Sami and Hughes, 1996; Wood and Sanford, 1995).  

The spatial and temporal scale represented by recharge rates varies with the 

different methods. Unsaturated-zone methods often provide point or local-scale 

estimates of the recharge, whereas methods based on saturated-zone studies provide 

recharge estimates from local- to regional- scale. Additionally, tracer and physical 

methods usually provide point to local estimates with numerical modeling methods 

giving local to regional estimates. Large-scale integrated recharge estimates are often 

very useful in water-resource assessments, whereas detailed point to local-scale studies 

are useful for understanding aquifer vulnerability to potential contaminations. Surface 

water techniques such as seepage meters and streamflow gain/loss measurements, and  

unsaturated zone methods such as lysimeters, zero-flux plane, and applied tracers, and 

saturated-zone techniques, such as water-table fluctuations, give recharge estimates that 

represent a short time span, from instantaneous to any time period over which data are 

monitored (Scanlon et al., 2002). Modeling techniques such as watershed models and 
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deep percolation models can be used to estimate recharge over a long time scale, 

ranging from hours to years.  

The use of modeling techniques has the added advantage that it can be used for 

the purpose of forecasting recharge. Forecasting groundwater recharge has become 

important because of the impact of envisaged climate change and increased demand for 

groundwater resources in the future (Kirchner, 2003). Recharge techniques that have 

great potential to forecast recharge are those that have established relationships between 

rainfall, abstraction and water levels (Xu and Beekman, 2003); models mostly have 

such established relationships.   

Recharge methods differ also in terms of the ease of use, data needs and the 

associated cost (Table 2.2) (USGS, 2008).  

 

Table 2.2 Comparison of selected recharge estimation methods (USGS, 2008) 
Method Temporal scale Ease of use Data needs Relative cost 

Chloride Years Easy Moderate Moderate 

Chlorofluorocarbons Month to Years Difficult Moderate High 

Deep percolation model Day to Years Moderate Moderate Moderate 

Groundwater modelling  Month to Years Moderate  High High 

Seepage meters Event to Months Moderate Low Low 

Stream baseflow Years Easy Low Low 

Tritium  Month to Years Moderate Moderate High 

Watershed models Days to Years Moderate  High High 

Water table fluctuation Day to Years Easy Low Low 

Zero-flux plain Day to Years Difficult High High 

Zero-tension lysimeters Day to Years Difficult Low High 

Streamflow 
measurements Instantaneous Easy Low Low 

 

On the basis of the differences among the recharge estimation methods as 

discussed above, the choice of appropriate methods for a recharge study requires the 

considerations of several factors such as the goal of the recharge study, the required 

accuracy and reliability, space and time scale, the range of the expected recharge 

estimates, the time to be spent on the study, and the financial resources available. These 

factors have been discussed in detail in Lerner et al. (1990), and Scanlon et al. (2002).  
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According to Lerner et al. (1990), a ‘good’ recharge estimation method should have five 

essential characteristics. First, the method should explicitly account for the water that 

does not become recharge in order to reduce the possibility of over-estimating the 

recharge. Second, with the exception of few methods that do not rely on knowledge of 

the recharge mechanism, a good method should reveal whether the conceptual model 

underlying it is incorrect. Third, it should be insensitive to parameters that are difficult 

to estimate accurately in other to provide estimates with low error. Fourth, the method 

should be easy to use and not require unusual or expensive data. Finally, the method 

should be able to use readily available data to extrapolate recharge over a long time 

scale.  

 

2.4 Limitations and errors in estimating groundwater recharge 

Estimating the recharge to groundwater is often achieved using indirect methods, 

because it is difficult to measure directly. The use of indirect methods is associated with 

various limitations, which make the recharge rates prone to large uncertainties and 

errors. For instance, unsaturated-zone methods are mostly founded on the principle of 

mass balance. An important underlying assumption of such recharge methods is that 

recharge occurs through a diffuse process or piston flow of water and, therefore, 

recharge flux through preferred pathways is often not accounted for. Meanwhile, in 

many arid- and semi-arid- areas, particularly in Sub-Saharan Africa, recharge flux via 

preferred pathways is the rule rather than the exception and, therefore, recharge 

estimates from unsaturated-zone methods can be questionable (Xu and Beekman, 2003; 

Tonder and Bean, 2003).  

Lerner (1990) identified four types of errors associated with indirect 

estimation of the recharge. They are (i) incorrect conceptual model, (ii) neglect of 

spatial and temporal variability, (iii) measurement errors, and (iv) calculation errors. 

Incorrect conceptual model is the most serious and most common error type and arises 

when the recharge process is over-simplified or not properly understood. For instance, 

estimating recharge in semiarid areas using a water budget technique with monthly data 

can result in a zero recharge rate, which signifies no recharge, whereas occasional wet 

conditions can overcome soil moisture deficit and result in some recharge.  
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Most recharge processes have a non-linear relationship with time and space due to the 

variability of precipitation and evapotranspiration as well as soil and aquifer properties. 

For instance, an amount of rainfall over a period of time may result in no recharge due 

to high rate of evapotranspiration, but the same amount of rainfall spread over a shorter 

time period could be sufficient to saturate the soil and cause some recharge. Therefore, 

errors are likely to occur when the temporal and spatial variability in factors that control 

the recharge is neglected. Measurement errors are associated with equipment used to 

make measurements and are usually considered. Calculation errors, for instance, can 

result from the use of wrong units of the input parameters.  

 

2.5 Recharge methods commonly used in semi-arid regions 

Basically, the hydrological processes in arid- and semi-arid- climatic regions are not 

different from those in any other climatic region in the world. According to Lloyd 

(1986) cited in Lerners (1990), the only difference is that in some situations, the 

interrelationships between the different processes of the hydrological cycle are more 

emphasized under arid conditions. For instance, rainfall, a key hydrological process, is 

highly variable both spatially and temporally in arid- and semi-arid- areas, making the 

recharge rates also highly variable. Rainfall events in semi-arid areas usually have short 

duration and occur as intensive rainstorms. These influence the infiltration process by 

reducing the amount of direct recharge while increasing the amount of indirect recharge 

through pools of accumulated runoff, intermittent streams and preferential pathways 

(Lerner et al., 1990; HAPS, 2006).  

Evapotranspiration, another key hydrological process, dominates the water 

budget in arid- and semi-arid- areas contrary to the situation in humid areas, where 

precipitation dominates. Therefore, many simplifying assumptions inherent in some of 

the recharge methods may not be valid for arid and semiarid areas. The water balance 

method, for instance, is widely used in all climatic regions, because it is simple to use 

and the required data are easily obtainable. However, the use of such technique is not 

always appropriate under arid conditions, because recharge in such areas constitutes a 

smaller proportion of the water budget, and the recharge term accumulates the errors in 

all the other terms of the equation (Gee and Hillel, 1988; Lerners, 1990; HAP, 2006).  
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Unsaturated-zone techniques such as lysimeters, zero-flux plane, historical tracers (e.g., 
36Cl and 3H), environmental tracers (e.g., Cl) and numerical modeling are the most 

widely used methods for estimating groundwater recharge in arid- and semi-arid regions 

(Scanlon et al., 2002). Saturated-zone techniques such as Darcy’s law and water table 

fluctuation have also been used widely in semi-arid areas, where the groundwater table 

is shallow.  

Xu and Beekman (2003) reviewed literatures on recharge estimation methods 

used in a number of southern African countries (Botswana, Zimbabwe, Namibia and 

South Africa) and came up with a list of commonly used methods (Table 2.3). The list 

indicates that the chloride mass balance, cumulative rainfall departure, extended model 

for aquifer recharge and moisture transport through unsaturated hard rock, water table 

fluctuation, groundwater dating and modeling, historical tracers (e.g., 3H) and the zero 

flux plane have often been used with high accuracy in the Southern African countries.  
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Table 2.3:  Recharge estimation methods applied in arid- and semi-arid- Southern Africa 
(Beekman and Xu, 2003) 
Zone Method Principle References 

S
ur

fa
ce

 w
at

er
 

Hydrograph 
separation  
 

Stream hydrograph separation: outflow, 
evapotranspiration and abstraction 
balances recharge 

10 

Channel water budget Recharge derived from difference in flow 
upstream and downstream accounting for 
evapotranspiration, in- and outflow and 
channel storage change 

4 
 

Watershed modeling Numerical rainfall-runoff modeling; 
recharge estimated as a residual term 

5 
 

U
ns

at
ur

at
ed

 

Lysimeter Drainage proportional to moisture flux / 
recharge  

2 

Unsaturated flow 
modeling 

Unsaturated flow simulation e.g. by using 
numerical solutions to Richards equation  

2, 4 

Zero-flux plane Soil moisture storage changes below zero 
flux plane (zero vertical hydraulic gradient) 
proportional to moisture flux/recharge 

2, 3, 6 

Chloride mass 
balance 

Chloride Mass Balance Profiling: drainage 
inversely proportional to Cl in pore water  

1, 2, 3, 6 

Historical tracers Vertical distribution of tracer as a result of 
activities in the past (3H)  

1, 2, 3, 6 

U
ns

at
ur

at
ed

 - 
sa

tu
ra

te
d 

Cumulative rainfall 
departure 

Water level response from recharge 
proportional to cumulative rainfall 
departure 

2, 9 
 

Extended model for 
aquifer recharge and 
moisture 
transport through 
unsaturated hard rock 

Lumped distributed model simulating water 
level fluctuations by coupling climatic, soil 
moisture and groundwater level data 

3, 7 
 

Water table fluctuation Water level response proportional to 
recharge / discharge  

2 

Chloride mass 
balance 

Amount of Cl into the system balanced by 
amount of Cl out of the system for 
negligible surface runoff/run on  

1, 2, 3, 6 

S
at

ur
at

ed
 

Groundwater 
modeling 
 

Recharge inversely derived from numerical 
modeling groundwater flow and calibrating 
on hydraulic heads /groundwater ages 

2, 3 
 

Saturated volume 
fluctuation 

Water balance over time based on 
averaged groundwater levels from 
monitoring boreholes 

2 

Equal volume-spring 
flow 

Water balance at catchment scale 2 

Groundwater dating 
 

Age gradient derived from tracers, 
inversely proportional to recharge; 
Recharge unconfined aquifer based on 
vertical age gradient (3H, CFCs, 3H/3He); 
Recharge confined aquifer based on 
horizontal age gradient (14C) 

1, 6, 8 
 

1Beekman et al. (1996); 2Bredenkamp et al. (1995); 3Gieske (1992); 4Lerner et al. (1990); 5 Sami and Hughes (1996); 
6Selaolo (1998); 7van der Lee and Gehrels (1997); 8Weaver and Talma (1999); 9Xu and Van Tonder (2001); 10Xu et 
al. (2002) 
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2.6 Recharge estimates in the Volta Basin and other semi-arid areas in Africa  

Recharge estimates from specific areas in the Volta Basin and its major riparian 

countries are reviewed in this section. In addition, recharge values from other areas in 

Africa with climatic condition and geology similar to what exists in the Volta Basin, 

were reviewed. These estimates have been obtained mostly as part of water balance and 

groundwater resource evaluation studies in research projects.  

Gischler (1976), cited in Lerner et al. (1990) carried out a study on the aquifers 

of the Continental Interclaire (C.I.) and the Complex Terminal (C.T.) underlying the 

western areas of the Sahara desert. The C.I. aquifer extends over 600,000 km2 with an 

average thickness of 250-600 m, transmissivity of 0.001-0.050 m2/s, and effective 

porosity of 20 %. Annual recharge to the C.I aquifers is mainly by infiltration of runoff 

water and amounts to about 2.7 x 108 m3 (0.45 mm). The C.T. aquifer covers an area of 

350,000 km2 with an average thickness of 100-400 m. The annual recharge was 

estimated to be 5.8 x 108 m3, which is equivalent to 16.7 mm. Margat (1982) cited in 

Lerner et al. (1990) studied the multi-layer aquifer of the sedimentary basin underlying 

Mali, Niger and Nigeria. The aquifer consists of sand, sandstone and argillaceous sand 

with an average thickness of 240-300 m in Nigeria and 500 m in Niger. The basin has 

an average annual rainfall of 0-50 mm. The annual groundwater recharge in the basin 

was estimated to be 8.5 x 108 m3.  

Houston (1982) estimated the recharge to the Precambrian dolomitic limestone 

aquifer in a semiarid climate at Kabwe in Zambia using a modified version of the 

groundwater recharge model developed by Penman for temperate regions. The mean 

annual precipitation in the Kabwe area varies between 640 and 1470 mm. The aquifer 

has a high specific yield of about 14 % and an average transmissivity of about 1000 

m2/d. The model was run for the period 1965-80 and under different conditions of 

vegetative cover. The annual recharge ranged from 26 to 771 mm under bare-soil 

vegetative cover, and from 0 to 534 mm under open forest.  

In Zimbabwe, Huston (1988) studied the recharge to the groundwater aquifer 

in the Victoria Province as part of a programme on drought relief, commissioned by the 

Government of Zimbabwe and the European Economic Community. The area studied 

covers 22,000 km2 and is underlain by basement granite and gneisses. The major aquifer 

in the area is a composite of weathered regolith of low permeability and high storage, 
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and the overlying fissured bedrock of high permeability and low storage. Three different 

recharge estimation techniques were applied in the study, and they all estimated a 

recharge of 2-5 % of the annual rainfall.  

In Ethiopia, the annual groundwater recharge in the entire country is about 

28,000 Mm3 (24.8 mm), while annual production is in the order of 18 Mm3 (0.02 mm) 

(Ketema and Tadesse, 2003). The natural recharge to groundwater in 14 major river 

basins in Ethiopia has also been estimated. This was done via baseflow separation using 

river discharge records from 17 selected river gagging stations (Ayenew et al., 2006). 

The estimated recharge ranges from 10 mm in the Mereb, Barka, Red sea, Gulf of Aden, 

Ogaden, and Danakil basins to 120 mm in the Baro-Akobo basin. 

An FAO (1995) study in Burkina Faso shows that the annual recharge to the 

water table is about 5 mm in the northern part of the country, and 50 mm in the south. 

The same study estimated the total groundwater recharge for the whole of Burkina Faso 

to be 9.5 billion m3 (34.6 mm). Thierry (1988), cited in Lerners (1990) used a lumped 

parameter hydrological model to examine the recharge to the fractured granites near 

Ouagadougou, the capital of Burkina Faso. The area has an average annual rainfall of 

690 mm (1978-1985). The model was calibrated using water level data obtained from 

the monitoring of a well (20 m depth) drilled in the study area. The estimated annual 

recharge was between 23 and 45 mm (3.3 - 6.5 % of the annual rainfall).  

At a smaller scale in south-eastern Burkina Faso, Sandwidi (2007) investigated 

the recharge to groundwater in the Kompienga Dam Basin, which has a semi-arid 

climate with mean annual rainfall of 830 mm (1959-2005). The basin is underlain by 

crystalline rocks of granite and amphibolites that have poor water storage capacity. 

Recharge to the groundwater is mostly by piston flow of the rainfall though preferential 

flow is dominant in a few places. Using the water balance, chloride mass balance and 

the water table fluctuation techniques, the recharge to the basin was estimated to be 

about 44 mm, representing 5.3 % of the basin’s long-term mean annual rainfall. 

As part of an investigation to design well fields in parts of Ghana, Bannerman 

and Ayibotele (1984) monitored water level in the Upper East and Upper West Regions 

of Ghana, all in the Volta Basin. Fluctuations of 0.3-5.4 m were observed between the 

dry and wet seasons for the period 1976 - 1979, and a recharge rate of 2.5 % of the 

mean annual rainfall (1075 mm) was used for designing the well field in the Upper West 
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Regional capital (Wa). In the Upper East Region, the groundwater recharge to the well 

field in Bawku was estimated to be 3-4 % of the mean annual rainfall (1000 mm) 

(Apambire, 1996).  

Martin (2005) conducted a detailed recharge study in the Atankwidi basin in 

the semi-arid Sudan-Savanna climate zone of Ghana. The basin covers 275 km2 and has 

a mean annual rainfall of 990 mm. The principal aquifer in the basin is the regolith 

aquifer that is found in the weathered mantle. Three methods, namely, water table 

fluctuation, isotope analysis and the chloride mass balance were used to estimate the 

recharge to groundwater in the basin. The results show considerable variation in 

recharge, not only between wet and dry years but also from one location to another. The 

recharge ranged from 2 to 13 % of the mean annual rainfall; the long-term mean was 

obtained to be 6 %.  

In the Volta Basin, Friesen et al. (2005) investigated the water balance and the 

recharge to groundwater in the entire basin. The basin has a mean annual rainfall of 

1002 mm. The net recharge was taken to be equal to the discharge of groundwater 

across the basin boundary i.e., baseflow. Recharge to the basin was estimated to be 5 % 

of the mean annual rainfall.  
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3 THE STUDY AREA 
 

3.1 Introduction 

This study was conducted within the White Volta Basin, which is a sub-basin of the 

Volta River Basin (Figure 3.1 and 3.2). However, a general description of the entire 

Volta Basin is provided in this chapter because data available in most literature is for the 

whole of the Volta Basin and not specifically for the White Volta Basin. Besides, data 

on most parameters in the White Volta Basin are not expected to show different patterns 

to those in the entire Volta Basin. Where data on the White Volta are available, these 

are provided.  

 
3.2 Location 

The Volta River Basin is located in the semi-arid and sub-humid zones of West Africa 

(Figure 3.1). It lies between 5o 30N -14o
 30N and 2o 00E - 5o 30W and occupies about 

28 % of the total West Coast (FAO, 1997). The basin is shared by six riparian nations 

with larger areas (82 %) falling within Burkina Faso and Ghana and smaller areas in 

Togo, Benin, Mali, and Côte d’Ivoire, in a decreasing order (Table 3.1) (Rodgers et al., 

2007). The basin has a total surface area of about 400,000 km2. The main channel of the 

Volta River stretches over a distance of about 140,000 km (Andah et al., 2005). 

 

Table 3.1:  Spatial distribution of Volta Basin between riparian nations (Andah and 
Gichuki, 2003)  

Country Area of Volta Basin  
(km2) 

Fraction of basin in 
country (%) 

Fraction of country in 
basin (%) 

Burkina Faso 178,000 42.65 63.00 

Ghana 167,692 40.18 70.00 

Togo 26,700 6.40 47.30 

Benin 17,098 4.10 15.20 

Mali 15,392 3.69 1.20 

Côte d’Ivoire 12,500 2.99 3.90 

 

The Volta River basin is drained by three main tributaries. They are the Black 

Volta River, White Volta and Oti River (Figure 3.1). The Black and White Volta Rivers 

join in northern Ghana to form the Lower Volta River, which is fed by the Oti River 
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further downstream in the southeast of Ghana. The tributaries drain various portions of 

the basin in Mali, Burkina Faso, Ghana, Côte d’Ivoire, Togo and Benin (Table 3.2). A 

feature of hydrological importance in the Volta basin worth mentioning is the Volta 

Lake (Figure 3.1), which is one of the largest man-made lakes in the world. 

Construction of the Lake started in 1961 and was completed in 1964. With a surface 

area of 8,500 km2, the Volta lake covers about 4 % of the total land area of Ghana and 

has a storage capacity of 148 km3 (FAO, 1997). The lake is used mainly for generating 

electric power with a total of about 1,060 MW of hydropower generated at two sites 

(Akosombo and Kpong). About 95 % of the generated power in Ghana comes from 

plants at these two sites. 

 

 
Figure 3.1 Map of the Volta Basin (van de Giesen et al., 2001) 

 

Table 3.2:  Main tributaries of the Volta River basin and characteristics (modified from 
Rodgers et al., 2007) 

Main tributaries of 
the Volta River 

Source of River 
 

Drainage coverage Drainage 
area (km2) 

Black Volta Mali western Burkina Faso and small 
areas in Mali and Côte d’Ivoire 

147, 000 

White Volta Burkina Faso northern and central Burkina 
Faso and Ghana 

106, 000 

Oti Burkina Faso North-western  Benin and Togo, 
south-eastern Burkina Faso and 
Ghana 

72, 000 

Lower Volta Ghana Middle to southern parts of 
Ghana 

73, 000 
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3.3 Topography 

Generally, the Volta Basin has a predominantly flat topography with a mean elevation 

of 257 m. More than half of the basin lies in the elevation range of 200-300 m. The 

lowest point is in the Lower Volta Basin at about 1 m and the highest is in the Oti Basin 

at about 920 m (Barry et al., 2005). In the White Volta Basin, the maximum and mean 

elevations are 600 m (Andah et al., 2003) and 270 m (Barry et al., 2005), respectively.    

 

3.4 Climate 

The climate of the Volta Basin is controlled by the movement of the Inter-tropical 

Convergence Zone (ITCZ) that dominates the climate of the entire West African region.  

The ITCZ is the inter-phase of the hot, dry and dusty northeast trade wind that blows 

from the Sahara in the north of the region and the cool and moist southwest trade wind 

that blows over the sea from the south Atlantic. The ITCZ moves across the Volta Basin 

in a complex manner resulting in a mono-modal rainfall pattern in areas that it crosses 

once and a bi-modal rainfall pattern in areas that it crosses twice. The movement of the 

ITCZ is associated with vigorous frontal activities, which influence the amount and 

duration of rainfall over the basin (Amisigo, 2005; Andah et al., 2003).  

At least two major climatic zones can be identified in the Volta Basin: the 

humid south with two distinct seasons of rainfall that peaks in June and September 

(Figure 3.2), and the tropic north with one rainfall season that peaks in 

August/September (Figure 3.3). Most areas of the basin fall within the tropic north zone. 

The rainfall in the tropic north zone is poorly distributed and very much skewed towards 

the month of June to September during which over 70 % of the total annual rainfall 

occurs (Amisigo, 2005). In the humid south zone, rainfall is evenly distributed over the 

year. Average monthly temperatures in both zones are always above 25 oC.  
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Figure 3.2 Mean monthly rainfall and temperature at Ejura, Ghana (representing the 

humid south climatic zone) (Data source: Ghana Meteorological Services 
Department) 
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Figure 3.3 Mean monthly rainfall and temperature at Navrongo, Ghana (representing 

the tropic north climatic zone) (Data source: Ghana Meteorological 
Services Department)  
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3.4.1 Rainfall 

Annual mean rainfall in the Volta Basin ranges from 600 mm in the extreme north in 

Mali and Burkina Faso to about 1,600 mm in the humid south in Ghana (VBRP, 2002). 

The annual mean rainfall in the White Volta Basin varies from 1,200 mm in the south to 

600 mm in the north (VBRP, 2002). Similar to other areas in the West African region, 

rainfall in the Volta Basin is characterized by high spatial and temporal variability. 

However, compared to runoff, the annual mean rainfall over the entire basin suggests a 

fairly even temporal distribution with lower coefficient of variation (Figure 3.4) 

(Andreini et al., 2000). The low temporal variability at the basin scale is attributed 

mainly to integration over space and time (van de Giesen et al., 2001).  

The periods of the rainfall seasons in the Volta Basin are pretty well known, 

but the onset of the rainy season is unpredictable, making rainfed agriculture a highly 

risky source of livelihood. 

 

 
Figure 3.4 Annual rainfall and runoff in the Volta Basin (Andreini et al., 2000) 

 

3.4.2 Temperature 

Temperatures increase in a south-north direction in the Volta Basin, although the 

variation is not high. Mean monthly temperatures vary from 36 oC in March to 27 oC in 

August in the northern parts of the basin, and from 30 oC in March to 24 oC in August in 
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the south (Oguntunde, 2004). Daily maximum temperatures vary from 32 to 44 oC, 

usually recorded in March to April; while daily minimum temperatures are recorded in 

December to February and can be as low as about 14 oC in January (FAO, 1997).  

 

3.4.3 Evapotranspiration 

Evapotranspiration is the most significant component of the water balance in the Volta 

Basin. The annual mean potential evapotranspiration varies from 2500 mm in the north 

to 1800 mm in the coastal zone (Amisigo, 2005). Potential evapotranspiration exceeds 

rainfall for most part of the year, usually from 6 to 9 months (Figure 3.7). 

Andreini et al. (2000) and Martin (2005) estimated the actual 

evapotranspiration rates, as percentage of the total rainfall, for the Volta basin and the 

Atankwidi catchments within the White Volta basin to be 91 % and 70-87 %, 

respectively. 
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Figure 3.5 Mean monthly rainfall and potential evapotranspiration at Nawuni in the 

White Volta Basin in Ghana. PET is based on the Penman-Montheith 
method (Data source: Ghana Meteorological Services Department) 

 

3.5 River runoff 

A water balance developed by Andreini et al. (2000) for the Volta Basin shows that 

about 9 % of the rain falling in the basin ends up in the Volta Lake as total runoff. The 
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temporal variability of the annual runoff is higher than that of the rainfall in the basin as 

a whole (Figure 3.4) as well as in each of the sub-basins (Table 3.3). This has been 

attributed to a non-linear response of runoff to rainfall and to threshold effects in the 

basin (Andreini, et al., 2000; Amisigo, 2005). 

 

Table 3.3:  Rainfall and runoff of the Volta sub-basins (Andreini et al., 2000) 
Sub-basin Black Volta White Volta Oti 

Period of management 1955-1975 1954-1980 1960-1973 

Mean annual rainfall (mm) 952.4 952.8 1166.7 

Coefficient of variation, rainfall 0.09 0.07 0.07 

Mean annual runoff (mm) 47.6 66.0 152.8 

Coefficient of variation 0.52 0.33 0.38 

Runoff as % of rainfall in sub-basin 5 7 13 

 

Notwithstanding the relatively high temporal variability of annual runoff in the 

Volta Basin, Andreini et al. (2000) found a strong correlation between the annual 

rainfall (P) and runoff (Q) (Equation 3.1), with a regression coefficient of 0.89. 

Equation 3.1 implies that runoff can occur only after a threshold of 343 km3 of annual 

rainfall is exceeded in the basin, when about half of the additional rainfall becomes 

available as runoff in river channels. van de Giesen et al. (2001) noted that runoff in the 

Volta Basin is very sensitive to variations in rainfall and to changes in land use and 

cover.  

 

( )343529.0 −= PQ   ( )13 −yearkm      (3.1) 

 

The annual stream hydrograph at Nawuni on the White Volta basin, between 

1984 and 2000, shows no clear pattern regarding periods of dry and wet years as there 

are nearly equal number of dry and wet years (Figure 3.6). The monthly stream 

discharge in the basin has a mono-modal pattern with the peak occurring in September 

(Figure 3. 7). 
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Figure 3.6 Annual stream hydrograph for Nawuni on the White Volta River (Data 

source: Ghana Hydrological Services Department) 
 

0

100

200

300

400

500

600

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

S
tre

am
 d

is
ch

ar
ge

 (m
m

)

 
Figure 3.7 Mean monthly stream discharge for Nawuni on the White Volta River 

(1984-2001) (Data source: Ghana Hydrological Services Department)  
 

3.6 Geology 

The geology of the Volta Basin is dominated by basement crystalline rocks associated 

with the West African Craton. These rocks are of Precambrian age and consist of 
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granite-gneiss-greenstone rocks, strongly deformed metamorphic rocks, and anorogenic 

intrusions (Key, 1992). The Precambrian formation is commonly categorized into the 

Birimian super group (with associated granitoid intrusion), Tarkwan group, Dahomeyan 

formation, Togo formation and the Buem formation (Figure 3.8). 

The dominant geological formation in the southern part of the basin is the 

Palaeozoic consolidated sedimentary formation, which was formed in a depression of 

the West African Craton. This formation is commonly called the Voltaian system and 

consists mainly of sandstones, shales, arkose, mudstones, sandy and pebbly beds, and 

limestones (MWH, 1998). On the basis of lithology and field relationships, the Voltaian 

system can be grouped into the upper, middle and lower Voltaian. The upper Voltaian 

consists of massive and thin-bedded quartzite sandstones, which are interbeded with 

shale and mudstones in some areas. The middle Voltain (Obusum and Oti Beds) mostly 

consists of shales, sandstones, arkose, mudstones, and siltstones. The lower Voltaian 

consists of massive quartzite sandstone and grit (MWH, 1998). Geological formations 

in the northwestern part of the basin consist of thick layers of sandstones, schist and 

carbonates of the zone de Sédimentaire and sandstones of the tertiary continental 

terminal (Martin, 2005).  

The White Volta sub-basin is mostly underlain by the Birimian system of the 

Precambrian age with the associated granitic intrusives and isolated patches of the 

Tarkwaian formation, and the Voltain sedimentary system. The Birimian system 

consists of gneiss, phyllite, schist, migmatite, granite-gneiss and quartzite (Gyau-

Boakye and Tumbulto, 2006). 

Most geological formations in the basin are overlain by the so-called regolith, 

which is a weathered layer that varies in thickness and lithology (Martin, 2005; HAP, 

2006). Regolith thickness in the Precambrian formation varies widely with an average 

ranging form 10 to 40 m (can be up to 140 m) in the southern part of the basin 

(Smedley, 1996), and ranging from 15 to 40 m (can be up to 100 m) in the north 

(Palacky et al., 1981; Groen et al., 1988). In the Voltain system, the regolith thickness is 

less than the Precambrian formation and generally ranges from 4 to 20 m (Acheampong, 

1996).   
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Figure 3.8 Geology of the Volta River Basin (Source: GLOWA Volta Project) 

 

3.7 Soils 

Soils in the Volta Basin have been formed from weathered parent materials of the mid 

Palaeozoic age or older (Andah et al., 2005) and have been leached over a long period 

(Benneh et al., 1990). The parent materials consist of sandstone, shale, igneous and 

granite among others. Based on the FAO-UNESCO (1974) soil classifications legend, 

12 major soil types can be identified in the Volta basin (Figure 3.9).  By far, Luvisols 

are the dominant soil type in the basin and occur everywhere in the basin except for the 

areas in the extreme north where Regosols and Arenosols dominate. Luvisols are soils 

which have an argic B horizon that has a cation exchange capacity equal to or more than 

24 cmol (+) kg-1 clay and a base saturation of 50 % or more throughout the B horizon 

to a depth of 125 cm (FAO-UNESCO, 1994). The Luvisols found in the basin 

particularly those in the north have low nutrient content and unstable soil structure, 

thereby making them prone to slaking and erosion on sloping land.   
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Besides the Luvisols, Regosols and Arenosols are the other dominant soils found in the 

north of the basin. Regosols are soils from unconsolidated materials that are coarse-

texture. They are sensitive to erosion due to low coherence of the soil matrix material 

(Mando, 2001). Regosols in the basin have high permeability and low water holding 

capacity which makes them sensitive to drought. Arenosols are found in the upland 

areas and have high clay activity. They have low fertility and low water holding 

capacity which limits their ability to produce high yields of crops.
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Figure 3.9 Soil map of the Volta River Basin (FAO, 1995) 

In the southern parts of the basin in Ghana, Lithosols are the most important 

soils after Luvisols. These soils are mostly well to moderately well drained, gravely 

with a light-textured matrix which in some areas in northern Ghana overlies an iron pan 

developed in situ at shallow depth. Generally, Lithosols found in the north of Ghana 

have low cation exchange capacity, low aggregate stability, low organic content and 

fertility compared with those found in more humid climatic conditions in the southeast 
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which are rich in organic matter and have high fertility. Additionally, the Lithosols in 

the north of Ghana have root-zone limitation due to surface layers of plinthite, 

ferruginous concretion or ironpan, and surface sealing under the effect of rains resulting 

in increased runoff.  

In the study area, the White Volta basin, the dominant soil types are Luvisols, 

Regosols found mostly in the extreme north and Lithosols found mostly in the south-

eastern parts. Other soils in the study area include Vertisols, Planosols, Cambisols, 

Gleysols and Arenosols. 

3.8 Land-cover and -use 

The predominant land cover type in the Volta Basin is savannah (Figure 3.10). The 

savannah consists of grassland interspersed with shrubs and trees. Together with 

grassland and shrubs, the savannah covers about 86 % of the entire basin. Other land 

cover types include croplands and natural vegetation (10.4 %), wetland (4.6 %), forest 

cover (0.7 %) and urban/industrial coverage (0.5 %) (WRI, 2003). 

The density of trees and the vigorousness of grassland associated with the 

savannah in the Volta Basin decreases in a south-north direction. This follows a pattern 

similar to that of rainfall. Two distinct types of savannah can be found in the basin: 

woodland savannah and grassy savannah. Woodland savannah is densely wooded with 

tall to medium tall grasses such as Andropogon and Pennisetum spp. It is found mostly 

in the southern parts of the basin. Main tree species associated with woodland savannah 

include Adansonia digitata, Vitera paradoxa, Daniella oliveri, Mitragyna inermis,

Butryrospermum parkii, Khaya senegalensis, Parkia biglobosa, Tamarindus indica, 

Terminalia macroptera and Faidherbia albida (FAO, 2000; Siaw, 2001).

Grass savannah is found mostly in the northern areas of the basin and is 

mainly grassland interspersed with trees and shrub in some areas. Tree species found in 

this type of savannah include Acacia spp, Balanites aegytiaca, Leptadenia pyrotecnia, 

Aristida spp, Schoenfeldia gracillis, Cenchurus biflorus and Anogeissus leicarpus. The

basin has a small forest cover located mainly in the south-western fringes. The 

vegetation in this area is green all year round, although some species do shed their 

leaves in the dry season (FAO, 2000). Common trees associated the forest are 

Cynometra ananta, lophira alata, Tarrietia utilis, Antiaris Africana and Chlorophora 

excelsa. 
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Figure 3.10 Land cover distribution in the Volta River Basin (USGS-GLCC, 2007)

The dominant land use in the basin is agriculture, which includes the 

cultivation of annual crops, tree crops, bush fallow and unimproved pasture (FAO, 

2000). Agriculture in the basin is largely rain fed and essentially manual with the use of 

very few external inputs like tractors and fertilizers. Major crops cultivated include 

cereals (millet, maize, and sorghum), root crops, pulses, nuts and vegetables (FAO, 

2000). A large part of the land in the basin is degraded and less suitable for crop 

production.

Landmann et al. (2007) analyzed land cover change within the Volta Basin, 

between 1990 and 2000/2001, using 26 Landsat tiles each for 1990 and 2000/2001 and 

augmented with daily and well corrected 250-meter MODIS time-series observations 

for the year 2000 onwards. The resulting land cover map indicates that 37 % of the total 

land cover were transformed (change from one class to another) from woodland with 

additional shrubs to managed herbaceous vegetation; 6 % were modified (change in tree 

cover density) from closed woodland (40-95 % tree cover density, TC) to open woody 
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vegetation (15-40 % TC); and 3 % were transformed from closed woodland (40-95 % 

TC) to herbaceous vegetation (Figure 3.11). Pressure from increasing population was 

one of the important factors explaining the expansion of cropland areas and thinning of 

the tree cover.

Figure 3.11 LCCS coded land cover for 1990 (left) and 2000/2001 (right). The black 

solid line depicts the border of the Volta basin. A 1-km SPOT composite 

image is used as a back drop. The green colors represent woody including

shrubs, yellow is herbaceous vegetation, red is wetland areas and blue 

represents water bodies. The grey colored areas are managed herbaceous 

vegetation (Landmann et al, 2007) 

3.9 Hydrogeology

The geological formations that underlie most parts of the Volta Basin (Birimian rocks 

and Voltaian formation) have little or no primary porosity. The occurrence of 

groundwater in these formations is as a result of the development of secondary porosity 

from weathering, fracturing, jointing and shearing (MWH, 1998). Two main aquifer 

systems have been identified in the basin, namely the weathered zone and the fractured 

zone aquifer systems. The weathered zone is usually located at the base of the 

weathered mantle of the Birimian system. It has a low permeability and high porosity 

due to high clay content. The fractured zone has developed in fractured bedrock, 

particularly in the sedimentary formations.  The bedrock has high permeability and low 

porosity.

Groundwater is abstracted from all the geological formations within the basin. 

Aquifer yields vary from one geological formation to another and across the basin, but 

yields are generally low. In Ghana, the mean yield of boreholes rarely exceeds 6 m
3
/h
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and ranges from 2.1 m
3
/h in the White Volta Basin to 5.7 m

3
/h in the Lower Volta Basin 

(MWH, 1998). In Burkina Faso, the mean yield is 0.2 - 2 m
3
/h (Larsson, 1984). A 

summary of some characteristics of the aquifer systems located in the Precambrian 

basement rocks in the basin’s riparian Nations is presented in Table 3.4 and a summary 

of average values of some characteristics of aquifer systems in the basin in Ghana is 

presented in Table 3.5. 

Table 3.4:  Characteristics of aquifer systems in Precambrian basement rocks in the 

Volta Basin 

Country Borehole 
depth (m) 

Water table 
depth (m) 

Borehole
yield (m

3
/h)

Transmisivity
(m

2
/d)

Storability

Burkina Faso - 5 - 15 up to 20 0.5 - 25 (0.9) 0.00001-0.001 

Ghana 34 - 0.4 - 24 7.5 - 30 0.003 - 0.008 

Côte d’Ivoire 10 - 15 - 2 - 5 - - 

Togo up to 20 - 0.2 - 175 - - 

Source: HAP (2006), obtained from many sources    

Table 3.5:  Characteristics of aquifer systems in the Volta Basin of Ghana 

Volta
Sub-basin 

Borehole Yield 
(m

3
/h)

Specific capacity 
(m

3
/h/m)

Depth to 
aquifer (m) 

Depth of Borehole 
(m)

White Volta 0.03-24.0 (2.1) 0.01-21.1 3.7-51.5 (18.4) 7.4-123.4 (24.7) 

Black Volta 0.1-36.0 (2.2) 0.02-5.28 4.3-82.5 (20.6) - 

Oti 0.6-36.0 (5.2) 0.06-20.45 6.0-39.0 (20.6) 25.0-82.0 (32.9) 

Lower Volta  0.02-36.0 (5.7) 0.05-2.99 3.0-55.0 (22.7) 21.0-129.0 (44.5) 

Source: (MWH, 1998); Figures in bracket are mean values  

3.10 Demography

The Volta basin is densely populated by African standards, with Ghana having a 

population density of 90 persons km
2
, which is about three times that of sub-Saharan 

Africa (Rodgers et al., 2006). The basin population was estimated to be at 18.6 million 

inhabitants in 2000 with an annual growth rate of 2.54 % (CPWF, 2007). Based on this 

growth rate, the population is expected to grow to about 35 million inhabitants by 2025, 

which is an increase of nearly 90 % over a period of 25 years. Burkina Faso and Ghana 

have the greater share of the basin’s population (Table 3.6).

Settlement in the basin is largely rural, with 64-88 % of the total population 

living in scattered homesteads in the rural areas. Agriculture is by far the most important 
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economic activity in the area, and the people often exploit the natural resources for their 

livelihoods. Between 70 and 90 % of the population in the basin depends on subsistence 

farming (Rodgers et al., 2006). There are only a few cities in the basin and few have 

more than a thousand inhabitants. Such cities include Ouagadougou in the White Volta 

basin and Tamale in the Lower Volta basin.  

Population density in the basin varies from 104 persons per km
2
 in the White 

Volta Basin in Ghana to 8 persons per km
2
 in the Black Volta Basin in Côte d’Ivoire. 

The mean population density is estimated to be 42 persons per km
2
 (WRI 2003). 

Table 3.6:  Demographic characteristics of the Volta Basin (Barry et al., 2005)

Basin
country

Basin population in country Growth 
rate (%) 
(2000) 

Pop. density 
(pers./km

2
)

(2000) 

Rural
(%)

1990 2000 2025 

Burkina Faso 7,014,156 887,4148 1,599,7351 2.4 41.53 77.4 

Ghana 5,198,000 667,4376 1,169,6054 2.5 26-104 84.0 

Togo 1,189,900 1,594,446 3,385,266 2.8 66 70.0 

Mali 380,000 625,000 1,260,000 2. 8 45-75 87.8 

Benin 382,328 476,775 820,000 2.3 43.4 64.0 

Côte d’Ivoire no data 397,853 717,672 2.5 8-22 77.0 

3.11 Groundwater resource utilization and problems  

Various sources of water in the Volta Basin are used for the domestic water supply as 

well as for agriculture and livestock watering. These sources include streams and rivers, 

lakes, ponds, dug-outs, impoundment reservoirs, springs, rainwater harvesting, 

boreholes and hand-dug wells. However, groundwater sources are very important for the 

domestic water supply in both urban and rural areas within the basin’s riparian 

countries. Many smaller cities and rural areas depend solely on groundwater, 

particularly in the dry season when most streams and rivers dry up.

In Burkina Faso, groundwater abstracted via boreholes and wells accounts for 

about 60 % of the total drinking water supply in rural areas (DGH, 2001). A similar 

situation exists in Ghana where, in 1998, about 52 % of the rural population depended 

on groundwater abstracted by boreholes and wells with or without hand pumps (Gyau-

Boakye, 2001). Martin and van de Giesen (2205) reported that 19 of the 23 towns on the 

Burkinabe side of the basin and 11 of the 20 towns on the Ghanaian side, each with 



The study area 

37

population of over 10,000 inhabitants, depend exclusively on groundwater for domestic 

water supply. The importance of groundwater for domestic water supply is not limited 

to small towns and rural areas. Major basin cities like Ouagadougou in Burkina Faso 

and Tamale in Ghana also depend on groundwater sources for significant portions of 

their domestic water supply (HAP, 2006). Based on available data and reasonable 

assumptions, Martin and van de Giesen (2005) estimated that about 44 % of the total 

population in the Volta basin depends on groundwater for their water needs (Table 3.7). 

This reiterates the importance of groundwater in the basin. 

Table 3.7:  Population coverage by modern groundwater supply in 2001(Martin and van 

de Giesen, 2005) 

 Burkina Faso  Ghana Total 

Population (Million) 9.96 6.91 15.97 

Percent of population served by piped systems 
using groundwater  9.50 9.10 9.3

Percent of population served by boreholes with 
hand pumps and modern hand dug wells 38.90 28.50 37.6 

Percentage of population supplied with 
groundwater 48.40 37.60 43.7 

Two main types of groundwater abstracting structures can be identified in the 

Volta basin. They are boreholes and hand-dug wells, totaling 10,390 in 2001 (Martin 

and van de Giesen, 2005). Fifty nine of the boreholes have been mechanized to supply 

tap water to homes in small towns and urban areas, but the large majority of them 

(18,676) are equipped with hand pumps of the Afridev, Ghana-modified India mark II 

and Nira type and counted for over two-thirds of groundwater produced in the Volta 

basin in 2001 (Table 3.8). The rest of the abstracting structures are modern hand-dug 

wells, with a total number of 10,390 and accounting for 13 % of the groundwater 

produced in the basin. The estimated volume of groundwater produced in the Volta 

basin in 2001 was 88.3 MCM/year.
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Table 3.8:  Groundwater production in 2001 in the Volta basin in Ghana and Burkina 

Faso (Martin and van de Giesen, 2005) 

Source Ghana 
(MCM/y)

a

Burkina Faso 
(MCM/y) 

Total
production 
(MCM/y) 

Share of source 
in production 

(%)

Borehole with hand pump 21.5 39.7 61.2 (1.5) 69 

Modern hand-dug well
b
 5.0 6.7 1.7 (-) 13 

Piped system 2.9 12.5 15.4 (0.6) 18 

Total 29.4 58.9 88.3 (2.1) 100 

Share of country in 
production (%) 33 67 100 

NB: Figures in brackets are estimates for 1971; 
a
Million cubic meters per year; 

b
Well with improved 

design and constructed with support from NGO. 

In addition to the domestic water supply, groundwater sources are relied on for 

dry season irrigation of vegetables as well as for watering of cattle and other livestock in 

the basin particularly on the Ghanaian side. Groundwater-based irrigation is a prominent 

practice in many areas in the upper east and west regions of Ghana (located in the 

middle of the basin), where hand-dug wells are used to extract groundwater from 

alluvial channels along the courses of ephemeral streams for irrigation of vegetables 

(cabbage, onions, carrots, tomatoes, okra, and pepper) during the dry season. Most of 

the groundwater irrigators are small-scale farmers who produce for the market as well as 

for home consumption. The farmers use watering cans and buckets tied with ropes to 

collect water form dug wells to irrigate between 0.04 and 0.1 hectare vegetable farms 

(Kortatsi, 1994).

Watering of livestock with groundwater is commonly done in the upper east, 

upper west and northern regions of Ghana. In these regions, animals are not restricted 

but are allowed to range in search of food and water. Nearly all the boreholes equipped 

with hand pumps have troughs constructed between 5 and 10 m from the boreholes to 

provide water for the animals. Spillways are constructed from the drainage aprons of the 

boreholes to the watering troughs so that spilled water from the boreholes collects in 

these troughs for use by livestock, mainly goats, sheep, cattle and pigs. About 70 % of 

Ghana’s 1.34 Million Heads (MH) cattle (2003 estimated figure) and 40 % of other 

livestock/poultry (sheep-3.02 MH; goats-3.56 MH; pigs-3.03 MH; and poultry-2.64 

MH) are produced in these three basin regions and are watered exclusively using 

groundwater (Obuobie and Barry, 2004; LPIU-MOFA, 2004; Kortatsi, 1994).
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Analyses of water samples in several studies (e.g., Amuzu, 1975; Andah, 1993; 

Kortatsi, 1994; Ministry of Works and Housing, 1998; Darko et al., 2003) indicate that 

the chemical and biological quality of the groundwater in the basin is generally good for 

multi-purpose use (Table 3.9) except for waters with low pH (3.5-6.0), high level of 

iron, manganese, nitrate and fluoride in certain localities. Boreholes or wells in the 

affected localities have either been abandoned by the inhabitants of the localities or have 

been capped by authorities.

Beside the problems of poor quality groundwater in some localities, there are 

signs that groundwater reserves in a significant number of localities in the basin are 

being over exploited as mentioned already in Chapter 1. Signs of over exploitation 

reported include diminishing yields from boreholes within a relatively short time, 

lowering of the water table and depletion of rivers in catchments of high borehole 

concentration. A typical case is the savannah areas of northern Ghana where inadequate 

recharge resulting from inappropriate land use, deforestation and scanty rainfall has 

compounded the problem of over-exploitation of groundwater (Water Research 

Institute, 2002). Other groundwater problems identified in the basin include the 

degradation of groundwater resources as a result of high population density, 

deforestation, inadequate sanitation facilities, deficient water management practices and 

global changes (HAP, 2006; Amisigo, 2005).  

The extent of groundwater use in the Volta basin is rapidly increasing and will 

continue to do so, particularly in small cities and rural areas, as long as the governments 

of the riparian nations view groundwater sources as the most cost-effective option for 

expanding water supply coverage. However, the development of groundwater in the 

basin should be done in a manner that ensures sustainable use of the resource. 



The study area 

40

Table 3.9:  Chemical analysis of water samples in the geologic formations of Ghana (all 

values are in mg/l, except the pH) (Kortatsi, 1994) 

Chemical 
parameter 

Gneiss Granite Phyllites Sandstone Mudstone 
Sand
and
shale 

Limestone 
and
gravel 

Quartzite 

pH 7.5 7.0 6.8 7.0 7.6 7.5 7.7 6.4 

Total 
dissolved 
salts

4888 387.4 211.2 533.5 424.7 632.0 932.0 398.3 

Calcium 595 49.4 32.1 25.1 26.1 68.7 58.1 42.1 

Magnesium 207 19.1 15.7 7.6 9.1 33.5 36.1 23.4 

Sodium 720 48.0 11.7 262.6 125.4 134.5 296.8 24.5 

Chloride 1790 73.5 9.9 70.4 42.0 173.6 196.9 103.6 

Sulphate 1800 10.6 7.2 65.2 11.2 101.2 77.3 60.1 

Bicarbonate 34 81.2 104.1 97.5 189.3 154.6 149.7 67.1 

Total iron 0.1 1.0 2.2 2.0 0.6 1.8 0.5 2.9 

Manganese 0.05 0.4 0.4 0.2 0.1 0.2 0.2 0.5 

Fluoride 0.25 0.3 0.3 0.8 0.6 0.6 1.8 0.2 

Nitrate 0.5 1.6 0.6 0.8 0.1 2.2 1.8 2.3 

Total 
hardness 

2340 172.5 123.7 70.8 222.8 239.4 229.9 179.6 
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4 WATER TABLE FLUCTUATION METHOD FOR ESTIMATING 

GROUNDWATER RECHARGE  

4.1 Overview

The water table fluctuation method (WTF) is one of the most widely used techniques for 

estimating groundwater recharge over a wide variety of climatic conditions (Scanlon et 

al., 2002; Hall and Risser, 1993; Healy and Cook, 2002). The use of the method requires 

knowledge of specific yield and changes in water levels over time. Healy and Cook 

(2002) have suggested that the wide use of this method could be attributed to the 

abundance of available water level data and the simplicity of estimating recharge rates 

from temporal fluctuations or spatial patterns of water levels. The WTF is best suited for 

estimating recharge rates over short time periods in areas with shallow unconfined 

aquifers that display sharp rise and fall in water levels (Scanlon et al., 2002). There are 

no assumptions underlying this method regarding movement of water through the 

unsaturated zone and, therefore, the presence of preferential flow paths in an area does 

not restrict its use. The WTF method can be used in studies covering a few square 

meters as well as in those covering hundreds or thousands of square meters. The 

recharge estimate given by this method is actual recharge, which is more reliable 

compared to the potential recharge given by other methods. 

The WTF method is based on the assertion that rises in water levels in 

unconfined aquifers are due to recharge water arriving at the water table, and that all 

other components of the groundwater budget, including lateral flow, are zero during the 

recharge period (Scanlon et al., 2002; Healy and Cook, 2002). The groundwater 

recharge rate can be estimated as the product of the water level rise and the specific 

yield of the groundwater aquifer material. The recharge can be expressed as: 

thSdtdhSR yy ∆∆==       (4.1) 

where: R is groundwater recharge (mm/time); Sy is specific yield (dimensionless); ∆h is 

peak rise in water level attributed to the recharge period (mm); and ∆t is the time 

of the recharge period. 
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Three main assumptions are inherent in the WTF technique: (i) rise and 

decline in levels of the water table in shallow unconfined aquifers are solely due to 

recharge and discharge of groundwater; (ii) the specific yield of aquifer is known and 

constant over the time period of the water table fluctuation; and (iii) the pre-recharge 

water level recession can be extrapolated to determine water level rise (Healy and Cook, 

2007). These inherent assumptions are not always the case and could be drawbacks of 

this method in some situations. Changes in water table level may not always be as a 

result of recharge or discharge. It could be caused by other factors such as 

evapotranspiration, changes in atmospheric pressure, presence of entrapped air and earth 

tides, or as a response to changes in stream stage in the case where the well is close 

enough to a stream (Delin et al., 2007). Studies have shown that obtaining a specific 

yield that is representative of a large area can be difficult, and besides, specific yield 

varies with time (Delin et al., 2007; Loheide II et al., 2005; Sophocleous, 1985) and 

depth to the water table as opposed to the assumption of a known and constant specific 

yield.

There are no strict limits as to the range of recharge that can be estimated with 

the WTF method. Scanlon et al. (2002) gives annual recharge rates estimated using the 

WTF technique as ranging from 5 mm in the Tabalah Basin of Saudi Arabia to 247 mm 

in a small basin in eastern United States. Martin (2005) and Sandwidi (2007) used the 

WTF method to estimate the annual groundwater recharge to the Atankwidi and 

Kompienga dam basins in West Africa. The recharge ranged from 13-143 mm for the 

Atankwidi basin and 44 - 244 mm for the Kompienga dam basin.  

4.2 Method

4.2.1 Description of study area 

The water table fluctuation method was applied in the south of the White Volta Basin 

(Figure 4.1). In many studies, this part of the basin is referred to as the White Volta 

Basin of Ghana because it lies solely within Ghana. The White Volta basin of Ghana 

covers an area of about 45,804 km
2
 (UNESCO, 2007) and had a population of about 1.6 

million inhabitants in 2000 with an annual growth rate of 1.5 % (Codjoe, 2004). The 

topography is generally flat to gently rolling with few undulating hills. The dominant 

soils types based on the FAO-UNESCO (1974) soil classification legends are Luvisols 
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and Lithosols, which together constitute more than 85 % of the soil resources in the 

area. Other soils are Acrisols, Vertisols, Gleysols and Cambisols (section 3.6). The 

vegetation of the area is predominantly Savannah which is made up of grasses, shrubs 

and trees (section 3.7). 

The annual mean rainfall across the area ranges from 800 mm in the north to 

1140 mm in the south (Shahin, 2002; Gyau-Boakye and Tumbulto, 2006). The mean 

monthly temperature is about 27 
o
C; mean relative humidity varies from 80 % at the 

peak of the rainy season in September to about 20 % in January (peak of the harmattan 

period). The water table depth varies from ground level in the rainy season to about 15 

m in the dry season. Previous monitoring of water levels in the study area revealed a 

sharp rise and decline in the water table during the wet and dry seasons, respectively 

(Martin, 2005).
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Figure 4.1 Map of the Lower White Volta basin showing the location of selected 

monitoring wells  
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4.2.2 Water level measurement  

Groundwater levels were monitored in 19 observation wells equipped with automatic 

water level recorders (data-logger divers) spread across the study area (Figure 4.1; Table 

4.1). Six of the 19 wells were installed and monitored specifically for this study; the 

other 13 were installed and monitored by the Water Research Institute of Ghana (WRI). 

The monitoring of the 13 boreholes is part of a Danish government-funded water 

resource information services project being undertaken by the WRI in the White Volta 

Basin of Ghana. The project aims at providing decision support for integrated water 

resources management in the White Volta Basin. For purposes of identification, wells 

monitored by the WRI are labeled WVB1-WRI to WVB13-WRI; and those monitored 

as part of this study are labeled WVB14-GVP to WVB19-GVP.  

Table 4.1: Characteristics of wells monitored in the Lower White Volta Basin 

(Agyekum et al, 2006; CWSAa database) 
Well location  Well ID Elevation 

(m) 
Geology Well Depth   

(m) 
Well yield 
(m3/hr)

Wa Danko WVB1-WRI 308 Granite 104.0 1.2 

Wa Northeast WVB2-WRI 313 Granite 37.5 2.4 

Tumu WVB3-WRI 312 Granite 105.0 30.0 

Navrongo WVB4-WRI 179 Granite 72.0 10.2 

Gowrie-Tingre WVB5-WRI 181 Granite 90.0 12.0 

Bongo WVB6-WRI 224 Granite 35.0 2.7 

Datuku WVB7-WRI 194 Birimian 90.0 1.2 

Bawku WVB8-WRI 224 Granite 100.0 18.0 

Ducie Camp WVB9-WRI 276 Basal sandstone 78.0 0.7 

Yagbum WVB10-WRI 242 Mainly sandstone 100.0 27.0 

Bugya-Pali WVB11-WRI 143 Mudstone & shale 56.0 0.5 

Tinguri WVB12-WRI 185 Mudstone & shale 51.0 7.2 

Galiwei WVB13-WRI 211 Mudstone & shale 100.0 0.3 

Yorougu WVB14-GVP 179 Granite 60.0 4.7 

Tongo WVB15-GVP 280 Granite 60.0 1.5 

Kalijiisa WVB16-GVP 198 Birimian 54.0 1.7 

Sumbrungu WVB17-GVP 194 Granite 60.0 1.2 

Sokabiisi WVB18-GVP 124 Granite 43.0 1.0 

Kpasenkpe WVB19-GVP 130 Shale & sandstone 56.0 5.4 

a
 Community Water and Sanitation Agency (CWSA) 
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Three of the wells monitored by the WRI (Wa Danko, Wa Northeast and Tumu-WVB3-

WRI) are located within a distance of about 300 m from existing mechanized boreholes, 

and an additional 2 (Navrongo, Gowrie) are within 500 m downstream of irrigation 

dams (Agyekum et al., 2005). The groundwater hydrographs of these 5 wells may be 

influenced by the mechanized wells and dams. 

Installation of the divers and the monitoring of water levels in 7 of the 13 

WRI- wells started in 2005. The monitoring of the remaining WRI-wells and the study-

wells started in 2006. The installed data loggers were programmed to record and store 

water level data at daily and sub-daily intervals. Data recorded were retrieved in 3 

month intervals. In addition to monitoring water levels, atmospheric pressure was 

monitored in 7 of the 13 WRI-wells using barometric data logger (baro diver). The 

atmospheric pressure data were used for correcting the water level data. A well with no 

baro diver had the water level data corrected with pressure data from the nearest well 

with baro diver.

4.2.3 Estimation of water level rise (∆h)

The water level rise (∆h) in the observed wells was estimated using the recorded water 

level data. The water level rise is generally computed as the difference between the peak 

of a water level rise and the value of the extrapolated antecedent recession curve at the 

time of the peak. The recession curve is the trace that the well hydrograph would have 

followed had there not been any recharge (Delin et al., 2007). There are various 

approaches for estimating the water level rise. They include the master recession curve 

(MRC) and the graphical extrapolation approach.

The MRC is an automated or semi-automated technique for estimating the 

water level rise at a site. The MRC for a given site is a characteristic water table 

recession hydrograph, which represents the average behavior for a declining water table 

for the site and can be used to predict what the water table decline should be in the 

absence of recharge (Christopher et al., 2005). Once the master recession curve is 

determined, the water level rise is calculated as the difference between the predicted and 

the measured elevations. The MRC approach provides a mean for overcoming the 

difficulty associated with accurately determining the water level rise due to the transient 

state of decline of water levels between recharge events. Different MRC approaches 
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have been developed in separate studies and used along side the water table fluctuation 

method, to estimate the recharge (Delin et al., 2007; Crosbie et al., 2005; Heppner and 

Nimmo, 2005). The MRC approach can be time consuming and though it has less 

subjectivity, there is the possibility of mistakenly including water level rises that did not 

happen as a result of recharge.  In practice, the MRC is applied to every data point in the 

water level record, which can be difficult to do if a computer code is not used. 

Figure 4.2 Recharge estimated using the master recession curve (MRC) approach to 

the WTF method (Delin et al., 2007) 

The graphical extrapolation method is the simplest of the available methods 

and less time consuming. This approach was used in this study to estimate the 

groundwater level rise in each of the observed wells. This was done by visually 

examining the entire water level data for each well and manually extrapolating the 

antecedent recession curves. The rise in water level during the recharge period was 

obtained as the difference between the peak of the rise and the low point of the 

extrapolated antecedent recession curve at the time of the peak (Figure 4.2). The 

graphical interpolation approach has more subjectivity compared to the MRC, since 

different persons could obtain slightly different recession curves and subsequently 

different values for the water level rise.
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Figure 4.3 Recharge estimated using the graphical approach to the WTF method, 

illustrated with hypothetical data (Delin et al., 2007) 

4.2.4 Specific yield 

The specific yield of a rock or soil is defined as the ratio of the volume of water, which 

after being saturated, will yield by gravity to its own volume (Meinzer, 1923 cited in 

Healy and Cook, 2002). In simple terms, the specific yield is a fraction of the porosity 

of an aquifer that can be drained by gravity. The value depends on the grain size, shape 

and distribution of pores and compaction of the strata (Gupta and Gupta, 1999). The 

specific yield value can be calculated form the porosity and specific retention as below 

(Healy and Cook, 2002):

ry SS −= φ        (4.2) 

where: Ø is porosity and Sr is specific retention (the volume of water retained by the 

rock per unit volume of rock). 

In theory, specific yield is treated as a storage term that does not depend on 

time, accounting for instantaneous release of water from storage. In practice, however, 

the release of water is often not instantaneous but time dependent (Healy and Cook, 

2002; Lerner, 1990; Nachabe, 2002). This is more evident in situations of relatively fast 
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lowering of the water table, in which case the drainage from the unsaturated zone may 

lag behind depending on the soil properties (Storm, 1988). Specific yield is affected by 

lithology, temperature (Meizer, 1923 cited in Healy and cook, 2002) and depth to water 

table. Determination of the specific yield value is complicated by two major issues. 

First, there is always some water remaining in the aquifer material even after drainage, 

clinging to the sand and clay particles in the aquifer material. Secondly, due to the 

complications of unsaturated flows, the specific yield value may not be fully realized 

until after a long time (Johnson, 1967; Morris and Johnson, 1967).  

Several methods exist for estimating the specific yield value. They include 

laboratory- and field- methods such as aquifer pumping test, volume-balance methods, 

water-budget methods, geophysical methods, and field capacity tests (Healy and Cook, 

2002; Lerner, 1990). The complexity of determining the specific yield value has 

resulted in a wide range of values for the same textural class as reported in various 

literature (Tables 4.2; 4.3). Such variation has been attributed to natural heterogeneity in 

geologic material, differences in determination methods and largely to the amount of 

time spent in determining the value (Prill et al., 1965 cited in Healy and Cook, 2002). 

Lerner (1990) suggested the use of specific yield values determined from laboratory 

measurement of drainable porosity over a reasonable sample size instead of values 

determined from pumping tests which are often very different because they are derived 

for short times.  In situations where laboratory measurements of specific yield values 

are not available, Lerner (1990) recommended the use of standard values in literature.

In this study, the exact specific yield values for the aquifer material in the 

study area were not determined. Specific yield values were selected from literature, 

based on the values used in India (Table 4.3) and the range of specific yield value (0.01-

0.05) reported in Shahin, (2002), for the weathered zone material in neighboring 

Burkina Faso. Burkina Faso and the study area in Ghana, largely, share the same 

geology.
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Table 4.2:  Statistics on specific yield (Sy) from 17 studies (Johnson, 1967 cited in Healy 

and Cook, 2002) 
Texture Sy Coefficient of 

variation (%) 
Minimum

specific yield 
Maximum

specific yield 
Number of 

determinations 

Clay 0.02 59 0.00 0.05 15 

Silt 0.08 60 0.03 0.19 16 

Sandy clay 0.07 44 0.03 0.12 12 

Fine sand 0.21 32 0.10 0.28 17 

Medium sand 0.26 18 0.15 0.32 17 

Coarse sand 0.27 18 0.20 0.35 17 

Gravelly sand 0.25 21 0.20 0.35 15 

Fine gravel 0.25 18 0.21 0.35 17 

Medium gravel 0.23 14 0.13 0.26 14 

Coarse gravel 0.22 20 0.12 0.26 13 

NB: The values were determined with different methods 

Table 4.3:  Values of specific yield as used in recharge calculations in India (Sinha and 

Sharma, 1988; cited in Lerner, 1990) 
Material Range of specific yield 

Sandy alluvium 0.12-0.18 

Valley fills 0.10-0.14 

Silt/clay rich alluvium 0.05-0.12 

Sandstone 0.01-0.08 

Limestone 0.03 

Highly karstified limestone 0.07 

Granite 0.02-0.04 

Basalt 0.01-0.03 

Laterite 0.02-0.04 

Weathered phyllites, shales, Schits and associated rocks 0.01-0.03 

4.3 Results and discussions 

4.3.1 Water level rise 

The highest monthly rainfall for the study area in 2006 and 2007 were measured in 

August and water levels were highest in September/October (Figures 4.4a to 4.4d). 

Although the rainfall season in the study area starts in April/May, water level in all 

wells started to rise in June/July when about 40 % of the annual rainfall had occurred. 
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The 2- to 4- month lag between the start of the rainfall season and water level rise can 

be described as a period of refilling of the soil due to moisture deficit inherited from the 

past dry season. The lag suggests that there are threshold effects and a non-linear 

relationship between rainfall and recharge in the study area. Additionally, the lag 

suggests that most wells in the study area recharge slowly. Similar observations were 

made in the Kompienga dam basin (Sandwidi, 2006) and the Atankwidi catchment 

(Martin, 2005), both in the Volta River Basin. 

Critical examination of the groundwater hydrographs and water level data of 

the observed wells for the two study years suggests that recharge to groundwater in the 

study area is almost entirely from the seasonal rainfall, since water level rise occurred 

mostly in the rainfall period. Though there was some accumulation of recharge in the 

dry season possibly due to regional flow of groundwater, this is very small. Therefore, it 

can be reasonably concluded that, the contributions from aquifers outside the study area 

to groundwater recharge in the White Volta basin of Ghana is insignificant.

The annual and spatial variations in water level were quite high as depicted in 

the groundwater hydrographs. The estimated annual water level rise ranged from 1240 

to 5000 mm for a mean annual rainfall of  870 mm in 2006 and from 1600 to 6800 mm 

for a mean annual rainfall of 1294 mm in 2007 (Table 4.4). The highest and lowest 

water level rises in 2006 were recorded at Tumu and Bongo respectively (Figure 4.4a; 

4.4d). In 2007, the highest water level rise was recorded in Bongo and the lowest at 

Bugya-Pali. The water level rise measured at Kpasenkpe (Table 4.4) was rather high and 

may have been influenced by lateral flow due to its close proximity (within 100 m) to 

the main channel of the White Volta River. The overall mean annual water level rise 

and coefficient of variation were 2652 mm and 0.42 for 2006, and 3577 mm and 0.39 

for 2007.

A comparison of the mean annual water level rise shows an increase of 35 % 

in 2007 over that of 2006. The mean annual rainfall in 2007 shows an increase of 50 % 

over that of 2006. In most of the observed wells, there were no short-term water level 

fluctuations in response to daily rainfall events. This is most likely due to attenuation of 

water table fluctuation as a result of the large storage capacity of the observed wells. 
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Figure 4.4a Groundwater hydrograph and bar graphs of daily rainfall at Tumu in the 

White Volta Basin of Ghana 
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Figure 4.4b Groundwater hydrograph and bar graphs of daily rainfall at Sumbrungu in 

the White Volta Basin of Ghana  
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Figure 4.4c Groundwater hydrograph and bar graphs of daily rainfall at Navrongo in 

the White Volta Basin of Ghana  
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Figure 4.4d Groundwater hydrograph and bar graphs of daily rainfall at Bongo in the 

White Volta Basin of Ghana 
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4.3.2 Recharge estimates 

The groundwater recharge for each of the observed wells was calculated by multiplying 

the water level rise with the specific yield values of the aquifer material in which the 

wells are situated. The calculated mean recharge for the study area ranged from 28.0 to 

150.0 mm in 2006, representing 3.5 to 16.5 % of the mean annual rainfall, and from 

32.0 to 204.0 mm in 2007, representing 2.5 to 16.0 % of the mean annual rainfall (Table 

4.4). Spatial interpolation of the recharge for 2006 and 2007 shows that with the 

exception of a few areas like Bongo, Datuku, Tongo, Kpasenkpe, Yorogou and 

Sokabiisi, groundwater recharge in the study area ranged from 28 to 88 mm (Figure 4.5 

and 4.6). The highest and lowest recharge values in 2006 were estimated at Bongo and 

Galiwei, respectively. In 2007, the highest recharge was estimated at Bongo and the 

lowest at Bugya-Pali. 

The overall recharge to the study area was estimated using the area weights of 

the observed wells determined with the Thiessen polygon method. The overall mean 

groundwater recharge in the White Volta basin of Ghana was estimated to be 70.0 mm 

in 2006, representing 8.0 % of the mean annual rainfall for that year and 92.0 mm in 

2007, representing 7.0 % of the mean annual rainfall. The difference in the recharge 

values for the two study years could be attributed to differences in the annual rainfall 

distribution and intensity.

The recharge estimate obtained in this study is similar to estimates from 

groundwater studies done elsewhere in the Volta Basin and in West Africa, using the 

water table fluctuation method. Sandwidi (2007) applied this method to the Kompienga 

Dam Basin, Burkuna Faso, in 2005 and estimated the recharge to be from 5.3 to 29.4 % 

of the annual rainfall. Similarly, Martin (2005) applied the method in the Atankwidi 

catchment and estimated the recharge to vary from 1.8 to 12.5 % of the annual rainfall 

in 2003 and from 1.4 to 10.3 % of the annual rainfall in 2004. van der Sommen and 

Geirnaert (1988), used multiple recharge estimation methods, including the WTF to 

estimate the recharge to the groundwater in the West African region to be between 2.0 

and 16.0 % of the annual rainfall.
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Table 4.4:  Recharge values estimated in the White Volta Basin of Ghana, in 2006/2007  

Well 
Aquifer material 
(topsoil texture) 

Specific
yield 

Year 
∆h

(mm)

Recharge 
(mm)

% of Rainfall 

WVB7-WRI Birimian  

(sandy clay loam) 

0.020-0.050 2006 4200 84-210 (147) 10-24 (17.0) 

WVB13-WRI Mudstone & shale 

(Clay sandy loam) 

0.010-0.030 2006 1380 14-41 (28) 2-5 (3.5) 

WVB3-WRI Granite 

(Sandy loam) 

0.020-0.040 2006 

2007 

1240 

3199 

25-50 (38) 

64-128 (96) 

3-6 (4.5) 

5-10 (7.5) 

WVB4-WRI Granite 

(Sandy clay loam) 

0.020-0.040 2006 

2007 

2606 

3533 

52-104 (78) 

71-141 (106) 

6-12 (9.0) 

5-11 (8.0) 

WVB5-WRI Granite 

(Sandy loam) 

0.020-0.040 2006 

2007 

2320 

2310 

46-93 (70) 

46-92 (69) 

5-11 (8.0) 

4-7 (5.5) 

WVB6-WRI Granite  

(Sandy loam) 

0.020-0.040 2006 

2007 

5000 

6800 

100-200 (150) 

136-272 (204) 

11-22 (16.5) 

11-21 (16.0) 

WVB9-WRI Basal sandstone 

(Clay sand loam) 

0.010-0.050 2006 2800 28-140 (84) 3-16 (9.5) 

WVB11-WRI Mudstone & shale 

(Sandy clay loam) 

0.010-0.030 2006 

2007 

2109 

1600 

21-63 (42) 

16-48 (32) 

2-7 (4.5) 

1-4 (2.5) 

WVB14-GVP Granite  

(Sandy loam) 

0.020-0.040 2006 

2007 

2691 

3522 

54-108 (81) 

70-141 (106) 

6-12 (9.0) 

5-11 (8.0) 

WVB10-WRI Sandstone  

(Sandy clay loam) 

0.010-0.050 2006 

2007 

2181 

3500 

22-109 (66) 

35-175 (105) 

3-13 (8.0) 

3-14 (8.5) 

WVB1-WRI Granite 

(Sandy loam) 

0.020-0.040 2007 2920 58-117 (88) 4-9 (6.5) 

WVB8-WRI Granite  

(Sandy clay loam) 

0.020-0.040 2007 2875 58-115 (87) 4-9 (6.5) 

WVB2-WRI Granite  

(Sandy clay loam) 

0.020-0.040 2007 2080 42-83 (63) 3-6 (4.5) 

WVB12-WRI Mudstone & shale 

(Clay sand loam) 

0.010-0.030 2007 3778 38-113 (76) 3-9 (6.0) 

WVB15-GVP Granite 

(Sandy loam) 

0.020-0.040 2007 4148 83-166 (125) 6-13 (8.5) 

WVB16-GVP Birimian  

(Sandy clay loam) 

0.020-0.050 2007 2268 45-91 (68) 3-7 (5.0) 

WVB17-GVP Granite  

(Sandy clay loam) 

0.020-0.040 2007 3435 69-137 (103) 5-11 (8.0) 

WVB18-GVP Granite  

(Sandy clay loam) 

0.020-0.040 2007 4605 92-184 (138) 7-14 (10.5) 

WVB19-GVP Shale & sandstone 

(Sandy clay loam) 

0.010-0.050 2007 6659 67-333 (200) 5-26 (16) 

  NB: Figures in brackets are approximate mean values of the range 
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Figure 4.5 Spatially interpolated groundwater recharge in the White Volta basin of 

Ghana, in 2006 

Figure 4.6 Spatially interpolated groundwater recharge in the White Volta basin of 

Ghana, in 2006
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5 THE CHLORIDE MASS BALANCE METHOD FOR ESTIMATING 

GROUNWATER RECHARGE 

5.1 Introduction 

The chloride mass balance (CMB) method has been used extensively for estimating 

groundwater recharge in arid and semi-arid areas worldwide (Gee et al., 2004; Scanlon 

et al., 2002; Tindall and Kunkel, 1999). The method originates from Eriksson and 

Khunakasem (1969), who applied it in the saturated zone to estimate the groundwater 

recharge on the coastal plain of Israel (Scanlon et al., 2002).

In the Volta Basin, the CMB method was used by Martin (2005) and Sandwidi 

(2007) to estimate the groundwater recharge in the Atankwidi river Basin (275 km
2
) in 

Ghana and the Kompienga Dam Basin (5911 km
2
) in Burkina Faso, respectively. The 

CMB method provides long-term mean recharge estimates that integrate large areas. 

The method can be used to estimate groundwater recharge over wide time and spatial 

scales. The time scale ranges from a year to thousands of years and the spatial scale 

ranges from few meters to several kilometers.   

Recharge estimation using the CMB method is based on the premise that a

known fraction of chloride in precipitation and dry-atmospheric deposition is transported to the 

water table by the downward flow of water (Sumioka and Bauer, 2004). Recharge estimates 

are obtained from measurement of the concentration of chloride directly associated with 

the recharging waters. The CMB method has several assumptions including (i) no 

storage of chloride in the unsaturated zone; (ii) precipitation and dry atmospheric 

deposition are the only sources of chloride in groundwater and in surface runoff; (iii) 

measured chloride concentrations are at depths high enough such that, seasonal variations in 

concentration are small; and (iv) the concentration of chloride in surface runoff is the same as 

that in precipitation (McNamara, 2005; Sumioka and Bauer, 2004). A detailed description 

of the chloride mass balance method is found in Sumioka and Bauer (2004), Stone 

(1992), and Johnston (1987).

Assuming a steady-state condition with advection strongly dominating 

diffusion; and neglecting the mass of chloride from dry atmospheric deposition, a mass 

balance of chloride in precipitation, surface runoff and groundwater is obtained. The 

balance can be represented mathematically as (McNamara, 2005; Sumioka and Bauer, 

2004):
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rgwp QCRCPC +=       (5.1) 

where: P is annual precipitation (mm); Cp is concentration of chloride in precipitation 

(mg/l); R is annual groundwater recharge (mm); Cgw is concentration of chloride 

in groundwater (mg/l); Q is annual surface runoff (mm); and Cr is concentration 

of chloride in surface runoff (mg/l). 

Neglecting surface runoff due to the lack of data for the area studied, the terms in 

equation 5.1 can be re-arranged to calculate the groundwater recharge as: 

gw

p

C

PC
R =       (5.2) 

However, neglecting surface runoff in the recharge estimation leads to an 

overestimation of the recharge rates. Martin (2005) reported that, neglecting surface 

runoff in the estimation of groundwater recharge in the Atankwidi catchment resulted in 

an overestimation of the recharge by less than 10 %, since surface runoff as in equation 

5.1 accounted for about 7 % of the annual rainfall in 2003. 

5.2 Study area 

The CMB was applied to the northeastern part of Ghana within the White Volta Basin 

(mainly the Upper East Region of Ghana) (Figure 4.1), to estimate the long-term 

groundwater recharge in the region. With a population density of 104 persons per km
2
,

the Upper East Region is one of the most densely populated areas in the White Volta 

Basin. It has a population of about 920,000 people with an annual growth rate of 3 % 

(Ghana Statistical Service, 2002). The region has a total land area of about 8,842 km
2

and a slope of less than 2 %. The climate is semi-arid with a long-term mean annual 

rainfall of 990 mm (Ghana Meteorological Services Department). The economy of the 

region depends heavily on groundwater.

Over 80 % of the urban population in the Region is served with tapwater from 

groundwater sources (Martin and van de Giesen, 2005). In 1994, the Upper East Region 

had about 1680 boreholes that provided potable water for small towns and rural 
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communities (Kortatsi, 1994). Small-scale farmers in the region depend mostly on 

groundwater abstracted from alluvial channels along the courses of ephemeral streams 

for irrigation of vegetables during the dry season. This is a major source of income for 

such farmers. Cattle and livestock in the region are mostly watered from groundwater 

sources, particularly in the dry season. 
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Figure 5.1 Location of the Upper East Region, Ghana, and water sampling sites 

5.3 Data

The use of the CMB method for estimating groundwater recharge requires data of 

chloride concentrations in rainfall and groundwater as well as data on rainfall amount. 

To obtain a long-term mean recharge for the study area, long-term values of the terms in 

equation 5.2 are required. The values of chloride concentrations measured in 

groundwater can be said to be long-term because of mixing and generally multi-year 

residence time of water in most aquifers (Sumioka and Bauer, 2004). Long-term rainfall 
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series data were available for determining the long-term mean annual rainfall. The long-

term mean concentrations of chloride in rainfall could not be determined because such 

data does not exist. The data used were mean values for the year 2006.  

5.3.1 Water sampling and chloride analysis 

Samples of rainfall and groundwater were collected from selected locations and wells in 

the study area (Figure 5.1) in 2006 and taken to the laboratory for the analysis of 

chloride content. Rainwater samplers (two-liter container equipped with a large funnel) 

were mounted on wooded structures erected at few centimeters above ground level to 

collect composite samples of rainwater at two-week intervals at 8 locations spread 

across the region, from May to October, 2006.  

Groundwater samples were taken from 7 wells that are equipped with hand 

pumps in March, June, August and December of 2006. In addition to the 7 wells, 

chloride concentration data from 4 other groundwater wells (Gowrie, Bawku, Datuku 

and Bongo) studied by the Water Research Institute (WRI), Ghana, in 2006 were 

obtained and used in this study.

All water samples were collected according to standard procedures and were 

transported in appropriate containers, and under conditions specified by the chemistry 

laboratory of the Ghana Atomic Energy Commission, where analyses of chloride 

concentrations were done. 

5.3.2 Rainfall measurements 

Long-term rainfall data for the study area, including rainfall for 2006, were obtained 

from the Ghana Meteorological Services Department (GMSD), Accra. As part of this 

study, 6 automatic rain gages (HOBO event data loggers) were installed at 6 of the 8 

sites where the rainwater samplers were mounted, to improve the rainfall data collection 

coverage in the study area (Figure 5.1) 

5.4 Results and discussions 

5.4.1 Chloride concentrations in rainfall 

Chloride concentrations in rainwater in the study area in 2006 ranged from 0.2 to 6.8 

mg/l (Tables 5.1). Chloride concentration measured at Doninga in September was 
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exceptionally high (6.8 mg/l). This was taken to be an outlier and was not considered in 

the estimation of the overall recharge. Eliminating the outlier, chloride concentration in 

rainfall ranged from 0.2 to 2.1 mg/l, with area-weighted mean and standard deviation of 

0.8 mg/l and 0.43 mg/l, respectively.  

Table 5.1:  Chloride concentrations in rainwater samples collected in the Upper East 

Region, Ghana, in 2006 
Sampling site   Site coordinates Monthly chloride concentrations (mg/l) 

Easting     Northing May  Jun   Jul    Aug  Sept    Oct 

Manga 798780 1219124 0.9 0.7 0.7 0.2 0.5 1.1 

Pwalugu 735581 1171153 1.2 0.5 0.6 0.4 0.6 0.9 

Naga 715778 1172466 1.9 0.7 0.6 0.4 0.7 1.8 

Binaba 775263 1190695 1.3 0.8 0.4 0.5 0.9 2.3 

Bongo 739369 1207109 1.2 0.9 0.7 0.4 0.5 2.1 

Bolgatanga 733256 1195202 0.8 1.0 0.8 0.3 0.8 1.5 

Navrongo 709506 1203188 1.4 0.9 0.6 0.4 0.5 1.1 

Doninga 672294 1174830 0.9 0.4 0.3 0.2 0.7 6.8
 a

NB:
a
 treated as outlier and not used in the estimation of the recharge. 

High chloride concentrations were measured in May and October, which were 

respectively, the beginning and end of the rainfall season. At all the rainwater sampling 

locations, the lowest concentrations were measured in August. Generally, monthly 

chloride concentrations in rainfall decreased with increasing rainfall amounts (Figure 

5.2). This gives credence to the inverse relationship between rainfall amount and 

chloride concentration in rainfall as depicted in equation 5.2. With the exception of the 

month of August, significant spatial variations were observed throughout the rainfall 

season.

Compared to measurements obtained in areas with similar climate, chloride 

depositions in the study area are reasonable and acceptable. In the Atankwidi catchment, 

Martin (2005) obtained chloride deposition between 0.1 and 3.7 mg/l for 2004, with a 

mean of 0.2 mg/l. Similarly, Sandwidi (2007) measured chloride deposition of 0.87 and 

0.88 mg/l, for 2005 and 2006, respectively, in the Kompienga Dam Basin. In other 

places in Africa, Nkotagu (1996) reported chloride deposition of 2.0-2.8 mg/l for 

Tanzania; Larsen et al. (2001) and Edmunds et al. (2002) used the values 0.5 and 0.65 
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mg/l, respectively, to estimate the recharge to groundwater in western Zimbabwe and 

Maiduguri in Nigeria.
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Figure 5.2 Monthly rainfall amount and chloride concentration in rainwater in the 

Upper East Region, in 2006 

5.4.2 Chloride concentrations in groundwater 

Monthly chloride concentrations measured in groundwater for the 12 selected wells 

used in this study ranged from 4.0 to 39.7 mg/l (Table 5.2). Concentrations at Bongo 

were found to be too high and were therefore treated as outliers. Excluding the Bongo 

well, monthly chloride concentrations lie in the range 4.0-23.8 mg/l. The mean chloride 

concentration for the study area was 13.2 mg/l and the standard deviation 9.0 mg/l. 

There seem to be no correlation between chloride concentration and location of well. 

Compared to other areas in West Africa with similar geology and climatic condition 

(Table 5.3), the chloride concentrations measured in the groundwater in the study area 

are reliable.

The lowest chloride concentrations were measured in water samples taken 

from wells located at Datuku, Doninga, Gowrie and Kpasenkpe with Datuku having the 

lowest values. This suggests that the highest rates of recharge to groundwater in the 

study area in 2006 occurred at these four locations, as depicted in the inverse 
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relationship of recharge rate and chloride concentration in groundwater in equation 5.2.  

The low chloride concentrations and potentially high recharge rates at Datuku, Doninga, 

Gowrie and Kpasenkpe can be explained by the soil texture. The soil textures in the four 

locations are Sandy clay loam (Datuku), Loamy sand (Doninga), Sandy loam (Gowrie) 

and Loam (Kpasenkpe). These soils have high hydraulic conductivity, which allows 

relatively easy infiltration of the rainfall through the soil to the groundwater table.

Soil texture alone was not sufficient to explain the variation in chloride content 

in some locations in the study area. The value measured at Bongo was the highest 

obtained in this study. This was not expected, since the soils in the Bongo area are 

sandy loam, which has a very high hydraulic conductivity compared to the soils at most 

of the other locations in the study area. Martin (2005) obtained similarly high value 

from a well in a neighbouring area with the same geological formation and concluded, 

based on a hydrochemical analysis, that the high chloride concentrations measured were 

a result of mineral dissolution. This could also be the reason for the high chloride 

concentrations measured in the groundwater at Bongo and not the low recharge from 

rainfall. This is very well supported by records of groundwater level and recharge 

estimated with the water table fluctuation method (chapter 4). The recharge estimate at 

Bongo was the highest obtained for the White Volta Basin of Ghana in 2006 and 2007 

(Table 4.1).
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Table 5.2:  Summary of chloride concentrations in groundwater samples taken from 

selected wells in the Upper East Region, Ghana, in 2006 

Well location 
UTM Coordinates 

Altitude of 
land

surface
(m)

Monthly chloride concentration 

        (mg/l) 

 Northing      Easting Mar Jun Aug Dec 

Kpasenkpe 712994 1155700 122 6.3 6.8 7.0 6.7 

Sumbrungu 726544 1199243 114 11.2     10.9     10.9     11.0 

Yorougu 734764 1196872 191 10.1     9.8      10.3     9.6 

Zongoire 782889 1180367 230 18.5     18.0     18.6     18.6 

Pwalugu 735237 1172564 221 22.1     23.8     23.7     23.5 

Doninga 674960 1177106 164 5.9      5.7      5.8      6.2 

Naga 717775 1172774 159 11.4     11.0     10.9     12.1 

Navrongo 704408 1202456 179 13.9 - 12.9 12.9 

Gowrie 734709 1201218 181 6.0      - 6.0      7.0 

Bawku 799594 1223879 224 9.9      - 11.9     11.9 

Datuku 757915 1184680 194 4.0 - 4.0 5.0 

Bongo 739687 1207007 224 39.7     - 28.8     39.7 

Table 5.3:  Chloride concentrations (Clgw) measured in groundwater and CMB recharge 

from previous studies in (semi-)arid West Africa 

Author(s)                            Country                Clgw                          Recharge  

                                                                      (mg/l)                 (mm)             (% rainfall)  

Sandwidi (2007)                 Burkina Faso     (16.5)                 (43.9)              (5.3)  

Martin (2005)                      Ghana               0.8-39 (6.2)        30-61              3.0-6.2 (5.9) 

Bromley et al. (1987)          Niger                 5-150 (36.4)       10-19              1.8-3.4 

Houston (1988)                  Zimbabwe                                                            2.0-5.0  

Nyagwambo                       Zimbabwe          4.3-25.5 (9.2)     62-117 (90)     4.0-25.0 (12) 

NB: Figures in brackets are mean values 

5.4.3 Recharge estimates  

The overall groundwater recharge for the study area was calculated based on the 

recharge values of the individual wells and the area weight of the wells. The recharge 

value of each of the 11 wells sampled for chloride analysis was estimated using the 

area-weighted mean chloride concentration in rainwater (0.80 mg/l), the long-term mean 

annual rainfall in the study area (990 mm) and the mean chloride concentrations in 
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groundwater (Table 5.4). The recharge rate for Bongo was excluded from the 

calculation of the overall recharge due to reasons already discussed in section 5.4.2.

The results show that the groundwater recharge in the Upper East Region 

ranged from 34.0 to 182.8 mm, representing 3.4 to 18.5 % of the mean annual rainfall. 

The overall mean groundwater recharge was estimated to be 82.0 mm, representing 8.3 

% of the long-term mean annual rainfall. The highest and lowest values were obtained at 

Datuku and Pwalugu, respectively (Table 5.4). Figure 5.3 is a plot of the spatial 

interpolation of recharge in the study area, based on the CMB recharge estimates. High 

recharge areas are mostly located in the middle parts of the study area, around Datuku, 

Bongo, Gowrie and Yorogou.

The recharge values obtained for the Upper East Region are reliable compared 

to recharge values estimated with the CMB method in other parts of the Volta basin and 

West Africa (Table 5.3). The reliability of the values can be improved if long-term data 

on chloride deposition are used instead of the one-year mean values used in this study. 

This is because chloride deposition is influenced by the amount and distribution of 

rainfall, so that in a year where rainfall amount and distribution are very different from 

the long-term mean, chloride deposition may vary much from the long-term mean and 

therefore will not represent the average situation. Data on long-term mean chloride 

deposition in the study area do not exist. The mean annual rainfall in 2006 (870 mm) 

when chloride deposition measurements were taken for recharge estimates was about 12 

% below the long-term mean (990 mm), and therefore the mean chloride deposition was 

not expected to change that much. 

The recharge value calculated for the Upper East Region with the CMB 

method is very much close to what was obtained with the water table fluctuation method 

for the White Volta Basin of Ghana (chapter 4). A comparison of spatial interpolated 

recharge obtained with the CMB and the WTF methods for the Upper East Region, 

show that the two methods are generally in agreement regarding potentially high and 

low recharge areas (Figures 5.3 and 5.4) although there are disagreements regarding the 

recharge values for some locations, particularly Navrongo, Bawku, Zongoire and 

Pwalugu. The spatially interpolated recharge could be used as first hand information on 

the groundwater recharge for water resources planning. Detail studies may be required 

for a more reliable recharge values in places that are far from any of the wells sampled. 
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Table 5.4:  Mean chloride concentrations in groundwater in selected wells and long-

term recharge estimated in the Upper East Region, Ghana, in 2006  

Well location Mean chloride 
concentration (mg/l) 

Recharge (mm) Recharge (%) 

Kpasenkpe 6.7 117.8 11.90 

Sumbrungu 11.0 72.0 7.30 

Yorougu 10.0 79.6 8.00 

Zongoire 18.4 43.0 4.30 

Pwalugu 23.3 34.0 3.40 

Doninga 5.9 134.2 13.60 

Naga 11.4 69.8 7.00 

Navrongo 13.2 59.9 6.00 

Gowrie 6.3 125.1 12.60 

Bawku 11.2 70.5 7.10 

Datuku 4.3 182.8 18.50 

Bongo
 a

 36.1 22.0 2.20 

NB:
a
 excluded from overall recharge estimation  

Figure 5.3 Spatially interpolated long-term recharge estimated with the chloride mass 

balance method in the Upper East Region, Ghana, in 2006 
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Figure 5.4 Spatially interpolated recharge estimated with the water table fluctuation 

method in the Upper East Region, Ghana, in 2006 



Recharge estimation using the Soil and Water Assessment Tool (SWAT) 

67

6 RECHARGE ESTIMATION USING THE SOIL AND WATER 

ASSESSMENT TOOL (SWAT) 

6.1 Introduction 

The Soil and Water Assessment Tool (SWAT) model is a medium- to large-scale river 

basin model that was developed to predict the impact of land management practices 

such as land-use and -cover changes, reservoir management, groundwater withdrawals, 

and water transfers on sediment, water, and agricultural chemical yields in complex 

watersheds with varying soils, landuse and management conditions over long periods of 

time (Neitsch et al., 2005). SWAT is a physically based, spatially semi-distributed and 

computationally efficient model that can be used to simulate a single basin or a system 

of multiple basins that are hydrologically connected (Luzio et al., 2002). It is a 

continuous time series model with a GIS interface and that uses readily available input 

data.

SWAT has proven to be an effective model for river basin studies under 

different environmental and climatic conditions. It has been used extensively to assess 

the impact of various land management practices and potential climate change on water 

quantities and sediment yields in many river basins in the United States (Arnold and 

Allen, 1996; Srinivasan and Arnold, 1994; Rosenthal et al., 1995; Arnold et al., 1999; 

Saleh et al., 2000; Arnold et al., 2000; Afinowicz et al., 2005; Arabi et al., 2006; Jha, et 

al., 2006; Santhi et al., 2001). The model has been adapted by major institutions 

including the United States Environmental Protection Agency for research that aids 

policy implementation. Outside of the United States, the SWAT model has been used in 

basin studies in many countries worldwide, including previous studies in Europe e.g., 

Lenhardt et al., 2002; El-Nasr et al., 2005; Grizetti et al., 2005; Bouraoui et al., 2004; 

Conan et al., 2003; Gikas et al., 2005; Asia e.g., Hao et al., 2004; Gosian et al., 2005; 

Kang et al., 2006; Huisman et al., 2004; Tripathi et al., 2003; and Africa e.g., Bouraoui 

et al., 2005; Lijalem, 2006; Chekol, 2006; Schuol and Abbaspour, 2006; Sintondji, 

2005; Busche et al, 2005; Hiepe and Diekkrueger, 2007; Govender and Everson, 2005; 

Ndomba et al., 2005; and Githui, 2007.  

The main components of the SWAT model are weather, hydrology, plant 

growth, nutrients, pesticides, bacteria and pathogens, and land management. Basic input 

information required for modeling a river basin in SWAT include a digital elevation 
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model, soil, landuse and climate data. SWAT uses the topographic data to divide a river 

basin into multiple sub-basins, which are further subdivided into hydrologic response 

units (HRUs) that consist of homogeneous landuse, management, and soil 

characteristics (Gassman et al., 2007). Through the subdivision of a basin, the model 

can reflect the differences in evapotranspiration for different crops and soils. Further 

subdivision of sub-basins into HRUs makes it possible to account for the impact of very 

different landuse types, soil properties and management practices on the hydrology of a 

basin.

Much of the SWAT input data are provided at the sub-basin level and grouped 

into climate, HRUs, ponds/wetlands, groundwater, and the main channel draining the 

sub-basin, among others. Input climate variables required by SWAT are precipitation, 

maximum and minimum air temperature, solar radiation, wind speed and relative 

humidity.  

6.2 SWAT hydrology 

Similar to most river basin models, SWAT is driven by the water balance of a river 

basin. The simulation of a basin’s hydrology can be separated into (i) the land phase of 

the hydrologic cycle that controls the amount of water, sediment, nutrient and pesticide 

loadings to the main channel in each sub-basin, and (ii) the routing phase of the 

hydrologic cycle, which is the movement of water, sediments, etc., through the channel 

network of the basin to the outlet (Neitsch et al., 2005). Irrespective of the problem 

studied in a river basin, predictions made with SWAT can only be accurate if the model 

is able to mimic the hydrologic cycle in the basin. The hydrologic cycle that takes place 

in a basin is explained by the water balance in the basin.

The water balance equation that represents the hydrologic cycle simulated in 

SWAT (Figure 4.6) can be expressed mathematically as (Neitsch et al., 2005): 

( )
=

−−−−+=
t

i

gwseepasurfdayt QWEQRSWSW
1

0    (6.1) 

where: SWt is the soil water content at time t (mm); SW0 is the initial soil water content 

on day i (mm); t is time (days); Rday is the amount of precipitation on day i (mm); 
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Qsurf is the amount of surface runoff on day i (mm); Ea is the amount of 

evapotranspiration on day i (mm); Wseep is the amount of water entering the 

vadose zone from the soil profile on day i (mm); and Qgw is the amount of return 

flow on day i (mm).  

Figure 6.1 Schematic representation of the hydrologic cycle (EERC-University of 

North Dakota, 2008, modified from Neitsch et al., 2005) 

In SWAT, most of the hydrologic processes take place at the HRU level, and 

the water balance is simulated at this level before runoff is routed to the reaches of sub-

basins and then to the basin channel. The major hydrologic components modeled in 

SWAT as depicted in the water balance equation are precipitation, surface runoff, 

evapotranspiration, infiltration, groundwater flow and soil water content.

6.2.1  Precipitation 

Precipitation controls the water balance in a basin because it is the mechanism by which 

water enters the land phase of the hydrologic cycle (Neitsch et al., 2005). In SWAT, 

precipitation is one of the very important and basic input data types required for 

modeling a basin’s hydrology. Precipitation is obtained from records of observed data 

or generated by SWAT during the simulation. Neitsch et al. (2005) recommend the use 

of observed precipitation data any time such data are available, as the ability of SWAT 
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to reproduce observed stream hydrographs is very much improved by the use of 

observed precipitation data. The time frequency of precipitation data required for use 

with SWAT can be daily or sub-daily. For various reasons, sufficient observed 

precipitation data are not available in many areas of the world, particularly in 

developing countries. Even in areas where long-term precipitation data is available, 

there may be missing gaps that need filling. SWAT uses a precipitation generator to 

either generate daily precipitation for simulations in areas where observed data are not 

available or to fill in gaps in areas where records are available but with missing data. 

The SWAT precipitation generator uses a first-order Markov-chain model to 

define a day as wet or dry by comparing a random number (0.0-1.0) generated by the 

model to monthly wet-dry probabilities input by the model user. If a day is classified as 

wet, SWAT uses either a skewed distribution model proposed by Nick (1974) or an 

exponential model proposed by Williams (1995) to generate the precipitation amount 

(Neitsch et al., 2005). The equation used for computing the amount of precipitation on a 

wet day with the skewed distribution model is given as (Neitsch et al., 2005): 

−+−
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monthmonthday
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..2

3

σµ    (6.2) 

where: Rday is the amount of precipitation on a given day (mm); µmonth is the mean daily 

precipitation (mm) for the month; month is the standard deviation of daily 

precipitation (mm) for the month; SNDday is the standard normal deviate 

calculated for the day; and gmonth is the skew coefficient for daily precipitation in 

the month.  

The standard normal deviate for the day is calculated as: 

( ) ( )12 ln2..283.6cos rndrndSNDday −=    (6.3) 

where: rnd1 and rnd2 are random numbers between 0.0 and 1.0. 
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The exponential distribution requires fewer inputs and is often used in areas where data 

on precipitation events are limited. With this distribution, daily precipitation is 

calculated using the equation (Neitsch et al., 2005): 

 

( )( ) exp
1ln. r

monthday rndR −= µ     (6.4) 

 

where: Rday is the amount of precipitation on a given day (mm); µmonth is the mean daily 

precipitation (mm) for the month; rnd1 is a random number between 0.0 and 1.0; 

and rexp is an exponent that should be set between 1.0 and 2.0. 

 

 In this study, daily observed precipitation data were available for the 

simulation. However, records from some measuring stations had missing data that were 

filled by the SWAT precipitation generator using the option of skewed distribution for 

calculating the amount of precipitation on a wet day.   

 

6.2.2 Surface runoff 

Surface runoff occurs when the rate of water falling on the ground exceeds the 

infiltration rate of the soil and all surface depressions are filled to capacity. It can be 

defined as the water leaving an area of drainage and flowing across the land surface to 

points of lower elevation. 

There are two methods available for estimating the surface runoff in SWAT: a 

modification of the SCS curve number procedure (SCS, 1972) and the Green and Ampt 

infiltration method (1911). The CSC curve number is a function of landuse, soil 

permeability and antecedent soil water conditions (Neitsch et al., 2005). Curve numbers 

decrease as soil moisture approaches wilting point and increases to near 100 as soil 

moisture approaches saturation. The Green Ampt method calculates infiltration as a 

function of the welting front matrix potential and effective hydraulic conductivity, and 

water that does not infiltrate becomes surface runoff (Neitsch et al., 2005). The Green 

Ampt method is data intensive; it requires sub-daily precipitation data that is not 

available in the study area. Therefore, the SCS curve number option was used for 

estimating the runoff in this study.  
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The SCS curve number method uses an empirical model with an established relationship 

between rainfall and runoff that provides a consistent basis for estimating the amount of 

runoff under varying landuse and soil types. The equation underlying the SCS curve 

number is mathematically expressed as (SCS, 1972): 

 

( )
( )SIR

IR
Qsurf

aday

aday

+−
−

=
2

     (6.5) 

where: Qsurf is the accumulated runoff or rainfall excess (mm); Rday is the amount of 

precipitation on a given day (mm); Ia is the initial abstractions which includes 

surface storage, interception and infiltration prior to runoff (mm); and S is the 

retention parameter (mm).  

 

The retention parameter (S) varies spatially due to changes in soils, landuse, 

management and slope and temporally due to changes in soil water content. In SWAT, 

the retention parameter relates to the curve number for the day (CN) and is defined as 

(Neitsch et al., 2005): 
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⎛ −= 1010004.25
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S       (6.6) 

 

The initial abstraction, Ia, in (6.5) is commonly approximated as 0.2S and 

equation (6.6) becomes (all parameters defined as in 6.5): 
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It can be deduced from (6.7) that runoff will only occur when Rday > Ia. Tables of typical 

curve numbers for various soil types and land covers that are appropriate for a land 

slope of 5 % can be obtain from the SCS Engineering Division (1986). 
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In SWAT, the runoff is calculated separately for the individual HRUs and 

routed to obtain the total runoff for each sub-basin. The sub-basin runoff is then routed 

to obtain the total runoff for the entire basin.  

 

6.2.3 Peak runoff rate 

The peak runoff rate is the maximum runoff flow rate that occurs with a given rainfall 

event. The peak runoff rate is an indicator of the erosive power of a storm and is used to 

predict sediment loss. SWAT calculates the peak runoff rate with a modified rational 

method (Neitsch et al., 2005).  

The rational method is based on the assumption that if a rainfall of intensity i 

begins at time t = 0 and continues infinitely, the rate of runoff will increase until the 

time of concentration, t = tconc, when the entire sub-basin area is contributing to flow at 

the outlet. The modified rational formula is (Neitsch et al., 2005): 

 

 
conc

surftc
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AQ
q

⋅
⋅⋅

=
6.3

α
      (6.8) 

 
where: qpeak is the peak runoff rate (m3 s-1); Qsurf  is the surface runoff (mm); A is the 

sub-basin area (km²); tconc is the time of concentration for a sub-basin (h); αtc is 

the fraction of daily rainfall that occurs during the time of concentration; and 3.6 

is a unit conversion factor.  

 

The time of concentration (tconc) in equation 6.8 is a summation of overland 

flow time and channel flow time. Overland flow time is defined as the time it takes for 

water to travel from the furthest point in the sub-basin to reach the stream channel, and 

channel flow time is the time it takes for flow in the upstream channel to reach the 

outlet. The overland and channel flow time are calculated using Manning’s formula. 

 

chovconc ttt +=       (6.9) 

 

where: tconc is the time of concentration; tov is the overland flow time; and tch is the 

channel flow time. The overland flow time is:  
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where: Lslp is the average sub-basin slope length (m); Slp is the average sub-basin slope 

(m/m); and n is the Manning’s roughness coefficient.  

 

The channel flow time is: 

 

375.0125.0

75.062.0

ch
ch slpArea

nLt
⋅
⋅⋅=       (6.11) 

 
where: tch is the time of concentration for channel flow (hr); L is the channel length from 

the most distant point to the sub-basin outlet (km); n is the Manning’s roughness 

coefficient for the channel; Area is the sub-basin area (km2); and slpch is the 

channel slope (m m-1).  

 

6.2.4 Surface runoff lag  

In large sub-basins with a time of concentration greater than 1 day, only a portion of the 

surface runoff will reach the main channel on the day it is generated. SWAT 

incorporates a surface runoff storage feature to lag a portion of the surface runoff 

release to the main channel (Neitsch et al., 2005). After surface runoff is computed, the 

amount released to the main channel is (Neitsch et al., 2005): 
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where: Qsurf is the amount of surface runoff discharged to the main channel on a given 

day (mm); Q′surf is the amount of surface runoff generated in the sub-basin on a 

given day (mm); Qstor,i-1 is the surface runoff stored or lagged from the previous 

day (mm); Surlag is the surface runoff lag coefficient; and tconc is the time of 

concentration for the sub-basin (hrs). 
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It can be deduced from (6.12) that, for a given time of concentration, more water is held 

in storage as the surface runoff lag coefficient decreases. A delay in the release of 

surface runoff smoothes the streamflow hydrograph simulated in the channel (Neitsch et 

al., 2005) 

 

6.2.5 Transmission losses 

In many arid- and semi-arid-basins, rivers are ephemeral in nature and flow only in 

response to specific heavy rainfall events. Since recharge from rainfall to the 

groundwater aquifer in arid- and semi-arid-areas is low, groundwater heads are usually 

low and river beds are above the aquifer saturated zone except downstream or at the 

aquifer boundary, or at specific sites where aquifer thickness is reduced. As a result, 

streams in arid- and semi-arid-areas loose water recharging the aquifers. Water losses 

along ephemeral rivers are commonly known as transmission losses.  

Generally, transmission losses in a river channel include two important 

processes, namely, seepage or aquifer recharge and evapotranspiration. The rate of 

seepage depends on factors such as the type and hydraulic properties of the channel 

material, channel geometry, wetted perimeter, and depth of groundwater. Evaporation 

losses depend on meteorological conditions and the rate of transpiration of vegetation. 

Transmission losses reduce runoff volume as the flood wave travels downstream. In 

SWAT, transmission losses from runoff are assumed to percolate to the shallow aquifer. 

The model uses a procedure described by Lane (1983) to estimate the transmission 

losses of ephemeral rivers. 

 

6.2.6 Evapotranspiration 

Evapotranspiration is a term used to describe the sum of evaporation and plant 

transpiration from the earth's land surface to the atmosphere. Evaporation accounts for 

the movement of water to the atmosphere from sources such as the soil, canopy 

interception, and water bodies. Transpiration accounts for the movement of water within 

a plant and the subsequent loss of water as vapour through stomata in its leaves. 

Evapotranspiration is an important part of the water cycle and the primary mechanism 

by which water is removed from a basin. In SWAT, evaporation from soils is computed 

separately from transpiration from plants (Neitsch et al., 2005). Potential soil water 
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evaporation is estimated as a function of potential evapotranspiration and leaf area 

index, and the actual soil water evaporation is estimated using exponential functions of 

soil depth and water content. Plant transpiration is estimated as a linear function of 

potential evapotranspiration and leaf area index. Evapotranspiration can be categorized 

into potential and actual evapotranspiration.  

Potential evapotranspiration (PET) is defined as the rate at which 

evapotranspiration would occur from a large area completely and uniformly covered 

with growing vegetation, which has access to an unlimited supply of soil water (Neitsch 

et al., 2005). PET is usually measured indirectly from other climatic factors. SWAT 

provides three options for estimating the PET, namely, the Hargreaves method 

(Hargreaves et al., 1985), Priestly-Taylor method (Priestly and Taylor, 1972) and the 

Penman-Monteith method (Monteith, 1965; Allen et al., 1989). The Hargreaves method 

requires only air temperature as input data, the Priestly-Taylor method requires solar 

radiation, air temperature and relative humidity, and the Penman-Monteith method 

requires solar radiation, air temperature, relative humidity and wind speed. SWAT 

provides an additional option for the user to input data of PET that has been determined 

outside of SWAT. The Penman-Monteith method was chosen for estimating the PET in 

the study area.  

The actual evapotranspiration (AET) is the amount of water that is actually 

removed from a surface through the processes of evaporation and transpiration. The 

AET is equal to the PET when there is enough water. SWAT calculates the AET once 

the total PET is determined. SWAT first evaporates any rainfall intercepted by plant 

canopies and then calculates the maximum amount of transpiration and sublimation or 

soil evaporation using an approach similar to that of Richtie (1972). If snow is present 

in the HRU, sublimation will occur. It is only when no snow is present that evaporation 

from the soil takes place. 

 

6.2.7 Soil water 

When water enters the soil, it may move in any of the three major pathways. It can be 

removed from the soil through the process of evapotranspiration or percolate through 

the bottom of the soil profile and ultimately becomes groundwater recharge, or may 

move laterally in the soil profile and contribute to streamflow (Neitsch et al., 2005).  
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Percolation is simply the movement of water downward through the subsurface to the 

zone of saturation. In SWAT, percolation is calculated for each soil layer in the profile. 

Water is allowed to percolate only if the water content exceeds the field-capacity water 

content for that layer, and if the layer below is not saturated. When the soil is frozen, no 

water flow out of the layer is calculated. SWAT uses a storage routing methodology to 

compute the amount of water that moves from one layer to the underlying layer. The 

equation used to calculate the amount of water that percolates to the next layer is 

(Neitsch et al., 2005): 
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Where: wperc,ly is the amount of water percolating to the underlying soil layer on a given 

day (mm of water); SWly,excess is the drainable volume of water in the soil layer 

on a given day (mm of water); ∆t is the length of the time step (hrs); and TTperc is 

the travel time for percolation (hrs).  

 

If the HRU has a seasonal high water table, percolation is not allowed when:   

 

 

( )1111 5.0 ++++ −⋅+≤ lylylyly FCSATFCSW     (6.14) 

 

where: SWly+1 is the water content of the underlying soil layer (mm); FCly+1 is the water 

content of the underlying soil layer at field capacity (mm); and SATly+1 is the 

amount of water in the underlying soil layer when completely saturated (mm). 

The water will instead stay ponded in the upper layer. 

 

The travel time for percolation TTperc in (6.13) is unique for each layer and it is 

calculated using the equation:  
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where: TTperc is the travel time for percolation (hr); SATly is the amount of water in the 

soil layer when completely saturated (mm); FCly is the water content of the soil 

at field-capacity (mm); and Ksat is the saturated hydraulic conductivity for the 

layer (mmh-1). 

 

Lateral flow of water in the soil refers to the lateral movement of water in the 

soil profile. When rainfall is received in an area that has soils with high hydraulic 

conductivities in the surface layers and an impermeable or semi-permeable layer at a 

shallow depth, the water percolates vertically until it reaches the impermeable layer and 

cannot percolate any further. The water then pond above the impermeable layer forming 

a saturated zone of water that leads to lateral subsurface flow (Neitsch et al., 2005). In 

SWAT, a kinematic storage model developed by Sloan et al. (1983) is used for 

simulating the subsurface flow in a two-dimensional cross section along a flow path 

down a steep hillslope.  

The kinematic storage model is based on the mass continuity equation, with 

the entire hill slope segment used as the control volume (Figure 6.2). The kinematic 

storage model calculates the lateral flow as (Neitsch et al., 2005): 
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where: Qlat is lateral flow (mmd-1); SWly,excess is the drainable volume of soil water 

(mm); Ksat is the saturated hydraulic conductivity (mmh-1); slp is slope (m/m); φd 

is the drainable porosity (mm/mm); and Lhill is the hillslope length (m). 
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Figure 6.2 Behavior of the water table as assumed in the kinematic storage model 

(Neitsch et al., 2005). 

 

In large sub-basins with a time of concentration greater than 1 day, only a 

portion of the lateral flow will reach the main channel on the day it is generated. A 

lateral flow storage feature has been built into the SWAT model to lag a portion of 

lateral flow released to the main channel. The amount of lateral flow released to the 

main channel is calculated as (Neitsche et al., 2005): 
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where: Qlat is the amount of lateral flow discharged to the main channel on a given day 
(mm); Q′lat is the amount of lateral flow generated in the sub-basin on a given 
day (mm); Qlatstor,i-1 is the lateral flow stored or lagged from the previous day 
(mm); and TTlag is the lateral flow travel time (days). 

 

The lateral flow travel time can be calculated by the SWAT model or defined 

by the model user. Neitsche et al. (2005) recommend that the user allows SWAT to 

calculate the travel time. If drainage tiles are present in the HRU, lateral flow travel time 

is calculated as: 
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24
lag

lag

tile
TT =       (6.18) 

 

where: TTlag is the lateral flow travel time (days); and tilelag is the drain tile lag time 

(hr). In HRUs without drainage tiles, lateral flow travel time is calculated as: 
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where: TTlag is the lateral flow travel time (days); Lhill is the hillslope length (m), and 

Ksat,mx is the highest layer saturated hydraulic conductivity in the soil profile 

(mmhr-1). 

 

6.2.8 Groundwater 

Two types of groundwater aquifers are simulated in each sub-basin in the SWAT model. 

They are the shallow unconfined aquifer that contributes to flow in the main channel or 

reach of the sub-basin and the deep confined aquifer that is assumed to contribute to 

streamflow outside of the basin (Arnold et al., 1993). In a groundwater storage system, 

water enters primarily by infiltration and percolation and possibly by seepage from 

water bodies. Water leaves the groundwater storage system by discharge into rivers or 

lakes and possibly by capillary rise. In SWAT, recharge to unconfined aquifers occurs 

by percolation to the water table from a significant area of the land surface. In contrast, 

recharge to the confined aquifers by percolation from the surface occurs only at the 

upstream end of the confined aquifer, where the geologic formation containing the 

aquifer is exposed at the earth’s surface, flow is not confined, and a water table is 

present (Neitsch et al., 2005).  
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The water balance of the shallow aquifer as simulated in SWAT is:  

 

shpumprevapgwshrchrgishish wwQwaqaq ,,1,, −−−+= −    (6.20) 
 

where: aqsh,i is the amount of water stored in the shallow aquifer on day i (mm); aqsh,i-1 

is the amount of water stored in the shallow aquifer on day i-1 (mm); wrchrg,sh is 

the amount of recharge entering the shallow aquifer on day i (mm); Qgw is the 

groundwater flow, or baseflow, into the main channel on day i (mm); wrevap is 

the amount of water moving into the soil zone in response to water deficiencies 

on day i (mm ); and wpump,sh is the amount of water removed from the shallow 

aquifer by pumping on day i (mm). 

 

The water balance for the deep aquifer is: 

 

dppumpgwdeepidpidp wQwaqaq ,1,, −−+= −     (6.21) 
 

where: aqdp,i is the amount of water stored in the deep aquifer on day i (mm); aqdp,i-1 is 

the amount of water stored in the deep aquifer on day i-1 (mm); wdeep is the 

amount of recharge percolating from the shallow aquifer into the deep aquifer on 

day i (mm); Qgw is the groundwater flow, or baseflow, into the main channel on 

day i (mm); and wpump,dp is the amount of water removed from the deep aquifer 

by pumping on day i (mm). 

 

Recharge to the groundwater aquifers 

Recharge to the shallow and deep aquifers occurs via percolation and bypass flow of 

water from the soil surface through the vadose zone. The time taken for water to exit the 

soil profile and enter the shallow aquifer as recharge depends on the hydraulic 

properties of the geologic materials in the vadose and the groundwater zones, and the 

depth to the water table. SWAT uses an exponential decay weighting function used by 

Sangrey et al. (1984) to account for the time delay in aquifer recharge once the water 

exits the soil profile (Neitsch et al., 2005). Recharge to both the shallow and deep 

aquifers is calculated in SWAT to be: 
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[ ]( ) [ ] 1,, /1exp/1exp1 −⋅−+⋅−−= irchrggwseepgwirchrg www δδ    (6.22) 
 

where: wrchrg,i is the amount of recharge entering the aquifer on day i (mm); δgw is the 

delay time or drainage time of the overlying geologic formations (days); wseep is 

the total amount of water exiting the bottom of the soil profile on day i (mm); 

and wrchrg,i-1 is the amount of recharge entering the aquifer on day i-1 (mm).  

 

The total amount of water exiting the bottom of the soil profile on day i is 

calculated as: 

 

btmcrknlypercseep www ,, += =      (6.23) 
 

where: wseep is the total amount of water exiting the bottom of the soil profile on day i 

(mm); wperc,ly=n is the amount of water percolating out of the lowest layer; n in 

the soil profile on day i (mm); and wcrk,btm is the amount of water flow past the 

lower boundary of the soil profile due to bypass flow on day i (mm). 

 

The delay time, δgw, cannot be directly measured. It can be estimated by 

simulating aquifer recharge using different values for δgw and comparing the simulated 

variations in water table level with observed values. 

Once the total daily recharge is calculated, SWAT partitions this between the 

shallow and deep aquifer. The amount of water diverted from the shallow aquifer to the 

deep aquifer via percolation on a given day is: 

 

 

 

 
rchrgdeepdeep ww ⋅= β      (6.24) 

 

where: wdeep is the amount of water moving into the deep aquifer on day i (mm); βdeep is 

the aquifer percolation coefficient; and wrchrg is the amount of recharge entering 

both aquifer on day i (mm).  
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The amount of recharge to the shallow aquifer is: 

 

  deeprchrgshrchrg www −=,      (6.25) 
 

where: wrchrg,sh is the amount of recharge entering the shallow aquifer on day i (mm). 

 

 

Groundwater/baseflow 

In the SWAT model, stream baseflow is sustained mostly by recharge entering the 

shallow aquifer. SWAT simulates the shallow aquifer contribution to the main stream 

channel or to the reach within the sub-basin. Baseflow is allowed to enter the channel 

only if the amount of water stored in the shallow aquifer exceeds a threshold value 

specified by the user. The baseflow into the main channel on a given day as simulated in 

SWAT is (Neitsch et al., 2005): 

 

[ ] [ ]( )twtQQ gwrchrggwigwigw ∆⋅−−⋅+∆⋅−⋅= − αα exp1exp1,,     (6.26)  
     if qshthrsh aqaq ,>  
 

0, =igwQ     if qshthrsh aqaq ,≤    (6.27) 
 

where: Qgw,i is the groundwater or baseflow into the main channel on day i (mm); Qgw,i-1 

is the groundwater flow into the main channel on day i-1 (mm); αgw  is the 

baseflow recession constant; ∆t is the time step (1 day) wrchrg,sh is the amount of 

recharge entering the shallow aquifer on day i (mm); aqsh is the amount of water 

stored in the shallow aquifer at the beginning of day i (mm) and aqshthr,q is the 

threshold water level in the shallow aquifer for groundwater contribution to the 

main channel to occur (mm).  

 

The baseflow values vary from 0.1-0.3 for land with slow response to recharge to 0.9-

1.0 for land with a rapid response.  

The baseflow recession constant may be calculated but the best estimates are 

obtained by analyzing measured streamflow during periods of no recharge in the 
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watershed (Neitsch et al., 2005). The baseflow constant is estimated as a function of the 

number of baseflow days: 

 

BFDgw
3.2=α       (6.28) 

 

where: αgw is the baseflow recession constant and BFD is the number of baseflow days 

for the watershed. The number of baseflow days is the number of days for 

baseflow recession to decline through one log cycle.  

 

“Revap” 

“Revap” is a term used to describe the combined processes of evaporation of water from 

the shallow aquifer storage through the overlying unsaturated zone and direct water 

uptake from the shallow aquifer storage by deep-rooted plants. SWAT allows for the 

movement of water from the shallow aquifer via capillary rise to the overlying 

unsaturated zone to help meet evapotranspirative demands when the soil profile is dry. 

Revap is important in basins where the saturated zone is not very far below the soil 

surface or where deep-rooted plants are growing. Revap is simulated separately from 

soil evaporation and transpiration. SWAT allows revap to occur only if the amount of 

water stored in the shallow aquifer exceeds a threshold value specified by the modeler. 

The amount of revap that will occur on a given day is calculated to be (Neitsch et al., 

2005): 

 

 owrevap =                     if  rvpshthrsh aqaq ,≤      (6.29) 

 

 rvpshthrmxrevaprevap aqww ,, −=        if  ( )mxrevaprvpshthrshrvpshthr waqaqaq ,,, +<<    (6.30) 

  

 mxrevaprevap ww ,=         if  ( )mxrevaprvpshthrsh waqaq ,, +≥    (6.31) 

 

where: wrevap, is the actual amount of water moving into the soil zone in response to 

water deficiencies (mm); wrevap,mx is the maximum amount of water moving into 

the soil zone in response to water deficiencies (mm); aqsh is the amount of water 
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stored in the shallow aquifer at the beginning of day i (mm); and aqshthr,rvp is the 

threshold water level in the shallow aquifer for revap or percolation to deep 

aquifer to occur (mm).  

 

The maximum amount of water that will be removed from the aquifer through 

revap on a given day is: 

  

orevmxrevap Ew ⋅= β,      (6.32) 

where: wrevap,mx is the maximum amount of water moving into the soil zone in response 

to water deficiencies (mm); βrev is the revap coefficient; and Eo is the potential 

evapotranspiration for the day (mm).  

 

6.2.9 Reservoir  

SWAT provides the opportunity to incorporate water ponding structures such as 

reservoirs, ponds and wetlands in the basin being modeled. SWAT makes no distinction 

between natural and man-made impoundments and defines a reservoir to be an 

impoundment situated in the main channel network of a basin. The water balance of a 

reservoir in SWAT is (Neitsch et al., 2005): 

 

seepevappcpflowoutflowinstored VVVVVVV −−+−+=    (6.33) 

 

where: V is the volume of water in the impoundment at the end of the day (m3); Vstored is 

the volume of water stored in the water body at the beginning of the day (m3); 

Vflowin is the volume of water entering the water body during the day (m3); Vflowout 

is the volume of water flowing out of the water body during the day (m3); Vpcp is 

the volume of precipitation falling on the water body during the day (m3); Vevap 

is the volume of water removed from the water body by evaporation during the 

day (m3); and Vseep is the volume of water lost from the water body by seepage 

(m3). 
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6.2.10 Flow routing 

SWAT uses a command structure similar to that of HYMO (Williams and Hann, 1973) 

to route the loadings of water, sediment, nutrients and pesticides to the main channel. 

The user is offered two options for routing streamflow: the variable storage routing 

method developed by Williams (1969) and the Muskingum River routing method. In 

this study, the Muskingum method was selected. 

 

6.3 Sensitivity analysis  

Sensitivity analysis is commonly done on a model to determine how sensitive the output 

of the model is to changes in the input parameter values in order to understand the 

behavior of the model. If a small change in an input parameter results in relatively large 

changes in the output, then the outputs are said to be sensitive to that parameter. The 

implication is that the particular parameter concerned has to be determined more 

accurately. Models have several parameters, and the user has to calibrate the model by 

assigning values to each one of them and adjusting the values based on certain criteria to 

obtain best fit between the model output and measured data. Knowing the input 

parameters that are sensitive to the model output and focusing attention on those 

parameters during the calibration process saves much time and leads to reduction in 

parameter uncertainty. Sensitivity analysis helps the modeler to determine, in order of 

priority, the parameters that show the highest contribution to the output variability 

(Lenhart et al., 2002). 

SWAT uses the Latin Hypercube One-factor-At-a-Time (LH-OAT) method 

proposed by Morris (1991) to perform the sensitivity analysis. The LH-OAT method is 

a combination of the Latin Hypercube (LH) sampling (global sensitivity analysis 

method) and the One-factor-at-a-Time (OAT) design (local sensitivity analysis method), 

and uses the LH samples as initial points for an OAT design (van Griensven and 

Meixner, 2006).   

The LH is a sophisticated random sampling technique with a concept based on 

the Monte Carlo Simulation. However, it uses a stratified sampling approach, which 

ensures that the full range of all input parameters has been sampled. In the LH 

procedure, the distribution of each parameter is first subdivided into m ranges, each with 

a probability of occurrence of 1/m. Following, random values of the parameters are 
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produced ensuring that each range is sampled only once (Figure 6.3). The model is then 

run m times with the random combinations of the parameters (Griensven et al., 2005). 

The output of the model is analyzed with multivariate linear regression. The main 

shortcomings of the LH sensitivity analysis are: (i) the assumption of linearity in the 

multivariate regression analysis and (ii) the changes in the output variables cannot 

always be unambiguously attributed to a change in a specific input parameter because 

all parameters are changing simultaneously (Christiaens and Feyen, 2002, cited in van 

Griensven et al., 2002).  

 

 

         P2 
Figure 6.3 Illustration of the LH-OAT sampling for a 2 parameter case. X represents 

the initial parameters of the Latin Hypercube sampling and ● represents 
the two one-factor-at-a-time points (van Griensven et al., 2002)  

 

In the OAT design, each input parameter is changed in a sequence starting 

from an initial parameter vector of n, (X1 …, Xn) (Griensven et al., 2002). This provides 

the assurance that the changes in the output in each run of the model can be 

unambiguously attributed to variations in a particular input parameter. The main 

limitation is that the method is only a local measure of sensitivity because the sensitivity 

of the model towards X1 may depend on the values chosen for the other model 

P1 
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parameters (Griensven et al., 2005). This limitation is overcome in the LH-OAT 

combination, which results in a robust analysis requiring only few runs while allowing 

efficient estimation of the output statistics (Saltelli et al., 2000; Holvoet et al., 2005). 

 

6.4 Model calibration and performance evaluation 

Generally, a hydrological model needs some form of calibration before it can be used in 

an area other than where it was originally made. This becomes more important if the 

model is to be used for forecasting or predicting future scenarios. Model calibration 

involves modifying values of sensitive input parameters, within an acceptable range, in 

an attempt to match model output to measured data based on a predefined objective 

function. In SWAT, the user has the option to calibrate the model manually or 

automatically.  

Manual calibration in SWAT is based on trial and error analysis, and consists 

of changing one parameter at a time and re-running the model to obtain output that is 

similar to the measured data. With automatic calibration, SWAT uses a method known 

as PARASOL (Parameter Solutions method) developed by van Griensven et al. (2002). 

This method is based on the Shuffled Complex Evolution algorithm developed at the 

University of Arizona (SCE-UA). The SCE-UA is a global search algorithm that 

minimizes a single objective function for up to 16 model parameters (Duan et al., 1992 

cited in van Griensven et al., 2002). SCE-UA has been widely used in watershed model 

calibration and other areas of hydrology, and was generally found to be robust  

PARASOL uses two predefined objective functions to achieve calibration, 

namely, the sum of the squares of the residuals (SSQ)  and the sum of the squares of the 

difference of the measured and simulated values after ranking (SSQR) (van Griensven 

et al., 2002): 
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where: n is the number of pairs of measured (Xmeasured) and simulated (Xsimulated) 

variables; and j represents the rank 

 

Santhi et al. (2001) proposed a procedure for manually calibrating SWAT for 

river discharge and sediment yield. They recommended that the results of SWAT 

calibration are acceptable if: (i) the simulated mean flow (monthly or daily) differs from 

the mean measured flow by a value that is within ±  15 %; (ii) the coefficient of 

determination is  (R2) greater than 0.60; and (iii) the Nash-Sutcliffe model efficiency 

(NSE) is greater than 0.50. A modified form of the proposed procedure (Figure 6.4) was 

used for calibrating streamflow in this study. 

The R2 and NSE are statistics that have been used in many studies for 

evaluating the predictive performance SWAT (Wu and Xu, 2006; Sintondji, 2005; 

Chekol, 2006; Abraham, 2007). The R2 provides information about the goodness of fit 

of the model output to the measured data, and can range from 1 (perfect fit) to 0. The 

NSE was proposed by Nash and Sutcliffe (1970). It is commonly used by 

hydrogeologists as a model perfomance evaluation criterion (Moussa, 2008). NSE can 

range from 1 to -∞. NSE of 1 corresponds to a perfect match of modeled output to 

measured data; NSE of 0 indicates that the model predictions are as accurate as the 

mean of the measured data; and NSE less than zero indicates that the measured mean is 

a better predictor than the model. The R2 and NSE can be calculates as: 
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where: Oi is the measured data; Pi is the simulated data; O  is the mean of the measured 

data; P is the mean of the simulated data; and N is the number of compared 

values. 

 

Other studies have used the Index of Agreement (IA) as an additional statistic 

to evaluate the performance of the SWAT model (Sintondji, 2005; Chekol, 2006; Hiepe 

and Diekkrüger, 2007). The IA is used to assess the quality of the temporal reproduction 

of the measured data by the model. Where all the terms are as defined above, the IA is 

computed to be (Willmott, 1981): 
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All the three statistics defined above were used in this study to evaluate the 

predictive performance of the SWAT model that was built for the study area. 
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Figure 6.4 Manual calibration procedure for discharge, surface runoff and baseflow in 
SWAT (modified after Santhi et al., 2001)  

Calibration complete 

Check if average simulated 
SR is still ± 15 % of 
average measured SR and 
NSE ≥ 0.5, R2 ≥ 0.6 

  No   Yes 

  No

  No

Separate surface runoff (SR) and baseflow (BF) for 
measured daily flow

Run 

If average of simulated BF 
is ± 15% of average 
measured BF and NSE ≥ 
0.5, R2 ≥ 0.6 

Adjust CN 

Adjust REVAPC, 
ESCO, EPCO 

Run SWAT 

If mean simulated SR is ± 
15 % of mean measured SR 
and NSE ≥ 0.5, R2 ≥ 0.6 

 

   Yes 

   Yes 
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6.5 Baseflow separation 

The SWAT calibration procedure recommended by Santhi et al. (2001) requires the 

separation of streamflow into the surface runoff and baseflow components. The process 

of separating the baseflow from the streamflow is referred to as baseflow separation. 

The separation can be achieved through graphical methods (e.g., constant discharge 

method, constant slope method and concave method) and the filtering method (e.g., 

smooth minima, fixed-interval, sliding-interval and recursive digital filters). In this 

study, an automated recursive digital filter program developed by Arnolds et al. (1999) 

was used to separate the streamflow into baseflow and surface runoff. The digital filter 

generated additional information on the baseflow such as the baseflow recession 

constant and the baseflow days.  

 

6.6 SWAT input data preparation  

Data used for setting up the SWAT model for the White Volta basin included a digital 

elevation model (DEM), soil and land-use maps, data on soil properties, plant growth, 

climate, reservoir, and management. Streamflow data were used for calibrating and 

validating the model. 

 

6.6.1 Digital elevation model (DEM)  

Digital elevation models are digital data files that contain terrain elevations over a 

specified area, usually at regularly spaced horizontal fixed grid intervals, over the earth 

surface. The intervals between each of the grid points are always referenced to a 

common datum. The DEM is often a common source of information for developing 

other models that are dependent on topography. Therefore, the quality of a DEM 

determines to a large extent the quality of the dependent model. Most DEMs have errors 

that develop when they are being created. These errors need to be detected and corrected 

before the DEM is used. Several techniques and software are available for correcting 

errors in DEM. 

The SRTM (Shuttle Radar Topography Mission) 90 m resolution DEM was 

used in this study (Figure 6.5). SRTM is an international project spearheaded by the 

United States National Aeronautics and Space Administration (NASA) and the National 

Geospatial-Intelligence Agency (NGA). The data are made freely available by the 
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United States Geological Survey (USGS) in agreement with the NASA and can be 

downloaded from the server of NASA (ftp://e0srp01u.ecs.nasa.gov).The SRTM data are 

already processed to correct the errors with the exception of the error of ‘voids’. These 

voids were filled, as part of this study, using an open source software SAGA (System 

for Automated Geo-Scientific Analysis) (Cimmery, 2007). 

 

 
Figure 6.5 Processed SRTM DEM of the White Volta Basin (Source: U.S. NASA 

server - ftp://e0srp01u.ecs.nasa.gov) 
 

6.6.2 Land-use/ -cover data 

Together with the soil data, SWAT uses the land-use data to determine the area and the 

hydrologic parameters of each land-use and soil category simulated within each sub-

basin (Di Luzio et al., 2002). The land-use/-cover map used in this study has a 

resolution of 250 m and was obtained from the GLOWA Volta project of the Center for 

Development Research (ZEF), Germany. The map was originally made from 30-m 

Landsat ETM+ data from 1990 that were EarthSAT ortho-rectified to achieve geodetic 

accuracy and calibrated to surface reflectance using the atmospheric correction tool 
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ATCOR2 (Landmann et al., 2007). The legend of the map is based on the Food and 

Agriculture Organization (FAO) Land Cover Classification System (LCCSS) legend. 

Some modification of the original legend was necessary for using the map for modeling 

in SWAT. 

 Based on the modified legends, 10 land-use/-cover classes can be identified in 

the study area (Figure 6.6), but three are dominant. These are cropland/woodland, 

savannah, and mixed forest in a decreasing order of dominance (Table 6.1). The sharp 

boundaries in the land-use/-cover classes in Figure 6.6 are due to the use of Landsat 

images from different years to fill in patches (mainly from cloud cover and bush fires) 

in the 1990 Landsat images, and difficulty in differentiating certain land-use categories 

as a result of mixed cropping. 

 

Table 6.1:  Distribution of land-use/-cover types in the White Volta Basin 
No Land-use/-cover type Code Area covered 

(km2) 
% coverage in 

the basin 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Savannah  

Cropland/Woodland  

Grassland  

Barren/Sparsely vegetated 

Evergreen broadleaf forest 

Mixed forest 

Herbaceous wetland 

Wooded wetland 

Urban medium density 

Water body 

SAVA 

CRWO 

GRAS 

BSVG 

FOEB 

FOMI 

WEHB 

WEWO 

URMD 

WATB 

23,278 

37,513 

3,180 

6,275 

10,314 

17,903 

5,183 

1,897 

297 

159 

21.96 

35.39 

3.00 

5.92 

9.73 

16.89 

4.89 

1.79 

0.28 

0.15 
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Figure 6.6 Land-use/-cover types in the White Volta Basin (Landmann et al., 2007) 
 

6.6.3 Soil data 

The soil map for the study area was obtained from the FAO digital soil map of the 

world and derived soil properties (FAO, 1995). The soil map has a spatial resolution of 

10 km and almost 5000 soil types can be differentiated with some soil properties for two 

layers (0-30 cm and 30-100 cm depth) (Schuol et al., 2008). Seven different soil textures 

can be identified in the study area; the dominant once are clay loam, sandy clay loam 

and loam (Table 6.2; and Figure 6.7). 

 

Table 6.2:  Soil textures in the White Volta Basin  
Soil texture Area covered (km2) % coverage in the  basin 
Clay loam 
Sandy clay loam 
Loam 
Sandy loam 
Loamy sand 
Clay 
Silt loam 

31,100 
26,595 
23,935 
15,868 
5,258 
2,820 
424 

29.34 
25.09 
22.58 
14.97 
4.96 
2.66 
0.40 
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Figure 6.7 Texture of soils in the White Volta Basin (Schuol et al., 2008, modified 

after FAO, 1995) 
 

In addition to a digital soil map, SWAT requires information on some physical 

properties of soils (Table 6.3) for each layer of the soil modeled. These data were 

obtained from different sources including the FAO-derived soil properties, Ghana soil 

data obtained from the Soil Research Institute (SRI), Ghana, and field research soil 

analysis carried out as part of this study. The soil analysis was done mainly to 

complement the data from FAO and SRI.  

During field research in 2006/2007, 70 soil samples were taken from 6 major 

soil groups in the study area and were analyzed for texture, bulk density, saturated 

hydraulic conductivity (SHC), organic carbon content, and available water content 

(AWC) (Table 6.4 and 6.5). The samples were taken from 5 layers within the soil 

profile. Each layer had a profile depth of 20 cm. The maximum soil sampling depth was 

fixed at 100 cm, which was assumed to be the average maximum rooting depth in the 

study area. Analyses of the soil properties were done at the SRI soil laboratory. 
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Table 6.3:  Soil physical properties required for modeling in SWAT (modified from 
Neitsch et al., 2002) 

Soil parameter Description Unit 

NLAYERS 

HYDGRP 

SOL_ZMX 

ANION_EXCL 

SOL_CRK 

TEXTURE 

SOL_Z 

SOL_BD 

SOL_AWC 

SOL_K 

SOL_CBN 

CLAY 

SILT 

SAND 

ROCK 

SOL_ALB 

USLE_K 

Number of layers in the soil (min 1, max 10) 

Soil hydrologic group (A, B, C, D) 

Maximum rooting depth of soil profile 

Fraction of porosity from which anions are excluded 

Crack volume potential of soil [optional] 

Texture of soil layer [optional] 

Depth from soil surface to bottom of layer 

Moist bulk density 

Available water capacity of the soil layer 

Saturated hydraulic conductivity 

Organic carbon content 

Clay content 

Silt content 

Sand content 

Rock fragment content  

Moist soil albedo 

Soil erodability factor 

- 

- 

mm 

- 

- 

- 

mm 

g/ cm3 

mm/mm 

mm/hr 

% by weight 

% 

% 

% 

- 

- 

- 

 

Table 6.4:  Statistics of soil properties in the topsoil and subsoil at selected locations in 
the White Volta Basin in Ghana 

Soil property Soil layer Minimum Maximum Mean Standard 
deviation 

Sand (%) 
 
Clay (%) 
 
Silt (%) 
 
Bulk density (g/cm3) 
 
SHC (mm/hr) 
 
Organic carbon (%) 
 
AWC (mm/mm) 
 

Topsoil 
Subsoil 
Topsoil 
Subsoil 
Topsoil 
Subsoil 
Topsoil 
Subsoil 
Topsoil 
Subsoil 
Topsoil 
Subsoil 
Topsoil 
Subsoil 

28.30 
22.58 
4.29 
6.02 
12.25 
13.19 
1.42 
0.68 
9.00 
5.10 
0.09 
0.01 
0.06 
0.07 

81.64 
78.68 
26.13 
34.15 
50.74 
48.81 
1.81 
2.11 
101.00 
81.10 
0.64 
0.43 
0.16 
0.16 

61.03 
50.68 
10.03 
18.93 
28.97 
30.40 
1.62 
1.76 
54.10 
24.60 
0.32 
0.16 
0.11 
0.12 

13.83 
13.33 
5.34 
7.58 
11.62 
9.40 
0.09 
0.23 
23.20 
21.00 
0.14 
0.08 
0.03 
0.02 

SHC: Saturated hydraulic conductivity; AWC: Available Water Capacity of Soil 
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Table 6.5:  Mean values of soil properties in the topsoil and subsoil at selected locations 
in the White Volta Basin in Ghana. 

Soil texture Soil layer Bulk density 

(g/ cm3) 
SHC 

(mm/h) 

Organic carbon 

(%) 

AWC 

(mm/mm) 

Sandy loam  

 

Sandy clay loam 

 

Clay loam  

 

Loam 

 

Silt loam 

 

Loamy sand 

Topsoil 

Subsoil 

Topsoil 

Subsoil 

Topsoil 

Subsoil 

Topsoil 

Subsoil 

Topsoil 

Subsoil 

Topsoil 

Subsoil 

1.59 (17) 

1.80 (12) 

1.70 (1) 

1.66 (10) 

- 

1.84 (3) 

1.71 (5) 

1.76 (13) 

1.64 (2) 

- 

1.66 (3) 

2.11 (1) 

58.70 

48.60 

11.80 

11.80 

- 

5.60 

26.20 

18.30 

46.50 

- 

93.20 

73.50 

0.30 

0.16 

0.48 

0.17 

- 

0.17 

0.36 

0.15 

0.26 

- 

0.36 

0.12 

0.10 

0.10 

0.12 

0.11 

- 

0.15 

0.15 

0.14 

0.15 

- 

0.07 

0.07 

 

6.6.4 Climate data 

Daily climate data from 26 weather stations spread within and around the White Volta 

Basin were used as the climate input to the SWAT model (Figure 6.8). The data were 

obtained from the Ghana Meteorological Services Department and the Direction de la 

Météorologie Nationale, Burkina Faso. The data covered the period 1980-1999 and 

included rainfall, minimum and maximum air temperature, relative humidity, wind run 

(converted to wind speed), and sunshine hours (converted to solar radiation) (Table 6.6). 

Six of the weather stations are synoptic (Ouagadougou, Ouahigouya, Po, Navrongo, 

Tamale and Yendi), 15 are agro-meteorological stations and the rest are rainfall 

measuring points. 

Some of the weather stations have missing data in their records, which were 

filled using the WXGEN weather generator model offered in SWAT. The WXGEN 

model requires long-term statistics of rainfall, minimum and maximum temperature, 

relative humidity, solar radiation and wind speed to be able to fill in missing data. Long-

term climate statistics (30 years) from the 6 synoptic stations were used for generating 

missing data in all the climate records.  
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Table 6.6:  Weather station and climate data used for SWAT modeling in the White 
Volta basin    

 

Ida 

Station 

location 

Lat. Long Period of data obtained 

  
Rainfall Temp. Relative 

humidity 

Wind run Sunshine 

hours 

1 Ouagadougou 12.35 -1.52 1980-1999 1980-1999 1980-1999 1980-1999 1980-1999 

2 Gaoua 10.33 -3.18  1980-1999 1980-1999 1980-1999 1980-1999 

3 
Fada 

N’gourma 
12.07 0.35  1980-1999 1980-1999 1980-1999 1980-1999 

4 Dori 14.03 -0.03  1980-1999 1980-1999 1980-1999 1980-1999 

5 Dedougou 12.47 -3.48  1980-1999 1982-1999 1984-1999 1980-1999 

6 Boromo 11.73 -2.92  1980-1999 1980-1999 1980-1999 1980-1999 

7 Bousse 12.67 -1.88 1980-1999     

8 Kaya 13.10 -1.08 1980-1999     

9 Kombissiri 12.07 -1.33 1980-1997     

10 Koupela 12.18 -0.35 1980-1997     

11 Niaogho 11.77 -0.77 1980-1999     

12 Ouahigouya 13.58 -2.43 1980-1999 1980-1999 1980-1999 1980-1999 1980-1999 

13 Tenkodogo 11.77 -0.38 1980-1999     

14 Zabre 11.17 -0.60 1980-1999     

15 Sandema 10.73 -1.28 1980-1998     

16 Bole 9.03 -0.25 1980-1999  1980-1999 1980-1999 1980-1999 

17 Binduri 10.97 -0.32 1980-1999 1980-1999    

18 Zuarungu 10.78 -0.80 1980-1999 1980-1999    

19 Tamale 9.40 -0.85 1980-1999 1980-1999 1980-1999 1980-1999 1980-1999 

20 Walewale 10.33 -0.80 1980-1999     

21 Yendi 9.45 -0.02 1980-1999 1980-1999 1980-1999 1980-1999 1980-1999 

22 Bogande 12.98 -0.13  1980-1994 1988-1999 1988-1999  

23 Garu 10.85 -0.18  1980-1999    

24 Navrongo 10.90 -1.10 1980-1999 1980-1999 1987-1999 1980-1999 1980-1999 

25 Sapouy 11.55 -1.77 1980-1997     

26 Po 11.17 -1.15 1980-1999 1980-1999 1983-1999 1982-1999 1980-1999 
aId is the weather station identification 
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Figure 6.8 Location of weather stations in the White Volta Basin  
 

6.6.5 River discharge data 

Daily, monthly and annual discharge data from the streamflow gage at Nawuni on the 

main course of the White Volta River (Figure 6.9) were used for calibrating and 

validating the SWAT model. Though Lankatere is the outlet gage on the White Volta 

River, Nawuni was used as the outlet for the modelling because it has the longest 

discharge period data in the basin. Nawuni has a drainage area of 90,856 km2. The 

discharge data were obtained from the Ghana Hydrological Services Department and the 

Water Research Institute (WRI) of Ghana  

The White Volta Basin has over 25 discharge measuring gages. However, the 

accuracy and quality of the discharge data are generally poor. Taylor et al. (2006) 

assessed the accuracy and quality of discharge data in the Volta basin by considering 

discharge data from 59 streamflow gages over an average data period of 20 years. The 

discharge data used were obtained from two sources: the WRI and the L’Institut de 

Recherche pour le Développement (ORSTOM). The study found that, between the two 

data sources, 20 % of the discharge data over the Volta basin is missing, and for many 
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of the gages as much as 50 % of their data is missing. For the White Volta basin, the 

same study obtained over 15 % missing data for most gages, and a few of them, 

including Wiasi and Nasia, had more than 50 % of their data missing. The difference 

between the two data sources and the high percentage of missing data suggests data 

inaccuracy.  

Taylor et al. (2006) evaluated the accuracy of discharge data by using a linear 

regression of the annual rainfall and runoff, and an arbitrary criterion of coefficient of 

determination (R2) of 0.50, below which gages were deemed highly inaccurate. The 

results show that discharge data from only half of the streamflow gages in the Volta 

Basin could be used for any watershed management practices since only half of the 

gages met the criterion. In the White Volta Basin, only 6 of the 24 gages evaluated met 

the criterion (Table 6.7). The 6 gages are Nawuni, Lankatere, Nasia, Yagaba, Wiasi and 

Nangodi. 

 

 
Figure 6.9 Location of stream gages and the Bagre dam in the White Volta Basin 
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Table 6.7:  Results of quality assessment of river discharge data from 24 gages in the 
White Volta Basin (modified after Taylor et al., 2006) 

Gage 
ID 

Gage location Lat. Long. Data period  Regression 
equation 

R2 

1 Rambo a 13.60 2.07 9183-1987 0.1*(P-270) 0.80 

2 Yilou 13.00 1.55 1973-1983 0.02*(P-30) 0.06 

3 Bissiga 12.75 1.15 1974-1983 - 0.00 

4 Wayen 12.38 1.08 1965-1987 0.01*(P+4) - 

5 Sakoinse 12.20 2.02 1979-1985 0.02*(P-400) 0.29 

6 Dakaye 11.78 1.60 1975-1986 -0.01*(P-1956) 0.03 

7 Niagho 11.77 0.75 1951-1984 0.24*(P-223) 0.15 

8 Bagre (Tcherbo) 11.69 1.47 1978-1986 - 0.005 

9 Nobere 11.43 1.18 1958-1975 1.13*(P+690) 0.38 

10 Yakala 11.35 0.52 1956-1984 0.08*(P-380) 0.28 

11 Bagre (Nakambe) 11.20 0.43 1974-1990 0.09*(P-370) 0.16 

12 Bittou 11.18 0.28 1974-1985 0.10*(P-430) 0.06 

13 Nebbou 11.28 1.93 1974-1985 -0.04(P-1258) 0.15 

14 Yarugu 10.98 0.40 1962-1977 0.30*(P-600) 0.29 

15 Garu 10.90 0.39 1966-1970 0.04*(P-500) 0.012 

16 Nangodi 10.87 0.62 1963-1973 0.25*(P-690) 0.31 

17 Pwalugu 10.58 0.85 1952-1973 0.14*(P-320) 0.10 

18 Nakpandur 10.65 0.23 1958-1963 0.02*(P-2500) 0.03 

19 Wiasi 10.34 1.33 1962-1990 0.31*(P-780) 0.50 

20 Yagaba 10.26 1.29 1958-1979 0.52*(P-800) 0.51 

21 Nasia 10.15 0.77 1963-1989 0.95*(P-956) 0.67 

22 Nabogo 9.77 0.88 1962-1988 0.43*(P-780) 0.35 

23 Nawuni 9.70 1.08 1953-1990 0.19*(P-526) 0.50 

24 Lankatere 9.29 1.25 1971-1977 1.10*(P-915) 0.54 
a The quality of discharge data from Rambo was rejected for other reasons 

 

6.6.6 Reservoir data 

The only reservoir located in the main course of the White Volta River is the Bagre dam 

(Figure 6.6). This dam was included as reservoir in the SWAT model developed for the 

basin. Data required for reservoir water balance modeling in SWAT include the year 

and month in which the reservoir became operational, the surface area and volume of 

the reservoir when filled to principal and emergency spillways, the initial reservoir 

volume (Table 6.8), the hydraulic conductivity of the reservoir bottom, minimum and 
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maximum daily outflow for the month, and monthly reservoir outflow. These data were 

obtained for the Bagre reservoir from the Société Nationale d’Électricité du Burkina 

(SONABEL). The Bagre reservoir became operational in February 1995. The data 

obtained covered the period: 1995-1999.  

 
Table 6.8:  Characteristics of the Bagre dam in the White Volta Basin 

 

6.6.7 Other data 

Other data used for building the SWAT model for the study area included leaf area 

index, potential heat unit, plant-cover and landuse factor, tillage practices, fertilizer 

types and application rates. These data were obtained from literature, agricultural 

research institutions and interviews with farmers and experts.  

 

6.7 Results and discussion 

6.7.1 White Volta Basin SWAT setup and sensitivity analysis 

The SWAT model was set up for the White Volta basin via the AVSWATX and 

following the step by step procedure outlined in the SWAT user guide (Luzio et al., 

2002). The AVSWATX is an Arc View extension and a graphical user interface for the 

SWAT-2005 model. The basin was divided into 90 sub-basins based on the DEM and 

stream network of the study area. The minimum and maximum sizes of the sub-basins 

were 62 km2 and 4484 km2, respectively. The sub-basin delineation was followed by 

automatic parameterization of streams and subdivision of the sub-basins into 484 

hydrologic response units (HRUs) based on soil and landuse data and a predefined 

threshold of 10 % soil and 10 % landuse. The maximum HUR size was 2690 km2 and 

the minimum was 1.4 km2. The model was simulated for the period: 1980-1999. The 

Parameter Description Value Unit 
MORES Month the reservoir became operational February - 

IYRES 
Year of the simulation the reservoir became 
operational 1995 - 

RES_ESA 
Reservoir surface area when the reservoir is 
filled to the emergency spillway 43900 ha 

RES_EVOL 
Volume of water needed to fill the reservoir to 
the emergency spillway 336300*10E4 m3 

RES_PSA 
Reservoir surface area when the reservoir is 
filled to the principal spillway 25200 ha 

RES_PVOL 
Volume of water needed to fill the reservoir to 
the principal spillway 168900*10E4 m3 

RES_VOL Initial reservoir volume 168900*10E4 m3 
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first six years (1980-1985) were used for warming the model. The period: 1986-1991 

was used for calibration, and 1992-1999 was used as the validation period.  

The sensitivity of SWAT-simulated discharge to model input parameters was 

analyzed using the automatic sensitivity analysis tool provided in AVSWATX. Twenty 

selected SWAT hydrology input parameters were analyzed. The purpose of the 

sensitivity analysis was to determine the most sensitive model parameters that needed to 

be given high priority during model calibration. Two cases of sensitivity analysis were 

done. The first analysis (SENSE 1) did not utilize measured streamflow data. The 

second (SENSE 2) utilized measured streamflow data at Nawuni. The results show that 

the 10 most sensitive parameters and their ranking were the same for the two cases of 

sensitivity analysis (Table 6.9).  The initial SCS runoff curve number (CN2), soil 

evaporative compensation factor (ESCO), and the threshold water depth in the shallow 

aquifer for revap (GWQMN) were the three most sensitive model parameters for the 

White Volta basin (Table 6.8). The CN2 determines the amount of precipitation that 

becomes runoff and the amount which infiltrates. The ESCO is used for modifying the 

depth distribution for meeting soil evaporative demand to account mainly for the effect 

of capillary action, and the GWQMN is used for regulating the return flow.      

 

Table 6.9:  SWAT-sensitivity analysis of the White Volta Basin 
Parameter Description Sensitivity ranking 

SENSE 1 SENSE 2 

CN2 

ESCO 

SOL_Z 

GWQMN  

 

SOL_AWC 

SOL_ALB 

RECHRG_DP 

SOL_K 

GW _REVAP 

SURLAG 

SCS runoff curve number 

Soil evaporation compensation factor 

Soil depth 

Threshold water depth in the shallow aquifer 

for ‘revap’  

Available water capacity of the soil layer  

Moist soil albedo 

Deep aquifer percolation fraction 

Saturated hydraulic conductivity 

Groundwater ‘revap’ coefficient 

Surface runoff lag time 

1 

2 

3 

 

4 

5 

6 

7 

8 

9 

10 

1 

2 

3 

 

4 

5 

6 

7 

8 

9 

10 
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6.7.2 Effects of the number of rainfall stations and land-use on model output 

In SWAT, the first level of sub-division is the sub-basin. The number of sub-basins 

obtained in a watershed is determined by the minimum threshold input value for 

defining a drainage area. The number of sub-basins modeled in SWAT influences the 

number of climate stations (more importantly, the number of rainfall stations) that are 

utilized in the modeling of the output. Since rainfall is the major input to the 

hydrological system, the modeled output can be affected. Generally, the higher the 

number of sub-basins modeled in a watershed, the higher the number of rainfall stations 

utilized by the model. Consequently, the model output is more accurate.  

The HRU is the lowest sub-division in SWAT, and the number of them 

modeled is determined by the landuse and soil threshold defined by the user. Increasing 

the number of HRUs in a watershed with diverse plant cover increases the accuracy in 

the prediction of loadings from sub-basins, which in turn results in a more accurate 

output (Neitsche et al., 2005).  

Prior to the calibration of the White Volta basin SWAT, the effects of the 

number of rainfall stations and landuse on the model output  were assessed through 6 

scenarios which were developed from 3 sub-basin thresholds and 2 landuse/soil 

thresholds within each of the sub-basin thresholds (Table 6.10).  

 

Table 6.10:  Scenarios of sub-basin and HRUs discretization and model performance for 
the White Volta River basin at Nawuni for the period 1980-1999 

Scenario 
Sub-basin 
threshold 
(ha) 

Number 
of  
sub-
basin  

Number of 
rain gage 
used in 
simulation 

Landuse/ 
soil 
threshold 

Number 
of HRU 
simulated 

Mean 
annual 
rainfall  
(mm) 

Mean 
annual 
discharge 
(mm) 

1A 150,000 26 12 15/10 148 806.90 161.27 

1B 150,000 26 12 10/10 180 806.90 156.96 

2A 80,000 52 14 15/10 237 824.05 165.35 

2B 80,000 52 14 10/10 296 824.05 165.08 

3A 60,000 90 14 15/10 364 824.05 165.77 

3B 60,000 90 14 10/10 484 824.05 165.42 

 

The results show that increasing the number of sub-basins from 26 in scenarios 

1A and B to 52 in scenarios 2A and B led to an increase in the  number of rain gages 

used in the simulation from 12 to 14 (Table 6.9). This in turn resulted in the increase in 
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the annual rainfall from 806.90 mm to 824.05 mm and subsequently an increase in the 

annual discharge. Increasing the number of sub-basins from 52 to 90 resulted in no 

change in the number of rain gages used in the simulation. This suggests that there is a 

limit to which an increase in the number of sub-basins can influence the number of rain 

gages used by the model and for that matter the accuracy of the output.  

The results also show that there is a limitation to which an increase in the 

number of landuse can have on the discharge. Increasing the number of HRUs from 140 

in scenario 1A to 180 in scenario 1B led to an increase in the number of landuse types 

from 6 to 7. This resulted in a decrease in discharge from 161.27 mm to 156. 96 mm. 

An increase in the number of HRUs from 364 in scenario 3A to 484 in scenario 3B led 

to an increase in the number of landuse types from 7 to 8. However, the resulting 

discharge showed no significant change. This was because the additional landuse type 

modeled in scenario 3B covers less than 0.2 % of the study area.  

 

6.7.3 Model calibration  

The White Volta SWAT model was calibrated at Nawuni (90,856 km2) for the period 

1986-1991. The period 1980-1985 was used for warming the model. The calibration 

was done manually, using measured daily stream discharge data for Nawuni and 

following the procedure outlined in Figure 6.2 and the SWAT user manual (Neitsch et 

al., 2002). Calibrations were done for discharge, surface runoff and baseflow. The 

calibration for discharge was done at annual, monthly and daily time scales while 

annual and monthly calibrations were done for the surface runoff and baseflow. 

The first step in the calibration process was the calibration for water balance 

and discharge for mean annual conditions in the calibration period (1986-1991). This 

was followed by monthly and daily calibrations. The calibration process focused on 

adjusting model-sensitive input parameters determined from the sensitivity analysis 

(section 6.7) (Table 6.11 and 6.12) to obtain best fit between simulated and observed 

data. 
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Table 6.11:  Initial and final ranges of SWAT model parameters used in calibration 
Parameter Definition Initial 

parameter  
Final 
parameter  

ESCO  

SURLAG  

GWQMN  

 

SOL_AWC_SCL 

 

SOL_AWC_SL 

 

SOL_AWC_LS 

 

SOL_AWC_CL 

 

SOL_AWC_L 

 

SOL_AWC_C 

 

RECHRG_DP 

GW _REVAP 

GW_DELAY 

ALPHA _BF 

Soil evaporation compensation factor  

Surface runoff lag time [days] 

Threshold water depth in the shallow 

aquifer for flow [mm] 

Soil available water capacity  for sand-

loam-clay [mm/mm] 

Soil available water capacity  for sand-

loam [mm/mm] 

Soil available water capacity  for loamy-

sand [mm/mm] 

Soil available water capacity  for  

clay-loamy [mm/mm] 

Soil available water capacity  for Loam 

[mm/mm] 

Soil available water capacity  for Clay 

[mm/mm] 

Deep Aquifer percolation fraction [-] 

Groundwater "revap" coefficient [-] 

Groundwater delay [days] 

Baseflow alpha factor [days] 

0-1(a) 

0-10 (*) 

 

0.00-5000 (a) 

 

-50-50 (b) 

 

-50-50 (b) 

 

-50-50 (b) 

 

-50-50 (b) 

 

-50-50 (b) 

 

-50-50 (b) 

0-1 (a) 

0.02-0.20 (a)  

0-500 (a) 

0-1 (a) 

0.100 

1.00 

 

35-90 

 

0.08-0.17 

 

0.07-0.17 

 

0.08-0.12 

 

0.13-0.16 

 

0.02-0.17 

 

0.13-0.17 

0.20 

0.15 

35.0-90.0 

0.042-0.100 

Method of changing parameter value: a for changing by value and b by percentage 

 

Table 6.12:  Final values of CSC curve numbers (CN2) used for each landuse type  
Land-use code Name CN2 value  

SAVA  Savannah 64.00 

BSVG Barren/Sparsely vegetated 62.50 

GRAS Grassland 65.50 

FOEB Evergreen broadleaf forest 53.50 

CRWO Cropland/Woodland 56.50 

FOMI Mixed forest 55.0 

WEHB Herbaceous wetland 61.0 

WEWO Wooded Wetland 76.0 

 

In order to calibrate the surface runoff and the baseflow, the streamflow for 

Nawuni was separated into the baseflow and surface runoff components using an 
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automated baseflow separation filter (section 6.5). The results indicate that baseflow 

constitutes about 64 % of the streamflow in the White Volta Basin. 

The calibration results show good agreement between simulated and observed 

annual discharge, surface runoff and baseflow (Figures 6.10, 6.11 and 6.12), with 

coefficient of determination (R2) higher than 0.80, Nash-Sutcliffe model efficiency 

(NSE) greater than 0.80 and index of agreement (IA) higher than 0.90. The difference 

between the observed- and simulated-mean annual discharge, surface runoff and 

baseflow are all under 7 % (discharge-3.2 %; surface runoff-6.8 %; and baseflow-2.6 

%). In four of the 6 year calibration period, SWAT slightly overestimated the annual 

discharge, surface runoff and baseflow. 

The monthly calibration show significant improvement in the goodness-of-fit 

measures compared to the annual calibration (Figure 6.12). A better correlation between 

simulated and observed discharge was obtained for the monthly calibration compared to 

the annual (annual-R2: 0.85; monthly-R2: 0.93; annual-NSE: 0.83; monthly- NSE: 0.92). 

The difference between the simulated and observed mean monthly discharge was 3.1 %, 

which is similar to the value obtained for the annual discharge. Generally, SWAT 

overestimated the high flows (5 out of 6 years) and underestimated the low flows (4 out 

of 6 years). Compared to the annual and monthly calibrations, the daily calibration had 

the lowest correlation between simulated and observed discharge (Figure 6.13), with R2 

of 0.77, NSE of 0.68, and IA of 0.93. However, the model goodness measures meet the 

recommended minimum values (R2 = 0.60 and NSE = 0.50) for the calibration to be 

acceptable. Again, SWAT overestimated the high flows and underestimated the low 

flows, frequently with zero daily flow during part of the dry season (January, February 

and March). 
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Figure 6.10 Observed and simulated annual discharge and statistics at Nawuni  

(90,856 km2) 
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 Figure 6.11  Observed and simulated annual surface runoff and statistics at Nawuni 

(90,856 km2) 
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Figure 6.12 Observed and simulated total annual baseflow and statistics at Nawuni 

(90,856 km2) 
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Figure 6.13 Observed and simulated total monthly discharge and statistics at Nawuni 

(90,856 km2) 
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Figure 6.14 Observed and simulated daily discharge and statistics at Nawuni  

(90,856 km2) 
 

6.7.4 Model validation 

The calibrated White Volta SWAT model was validated by using it to predict the 

hydrological quantities in the study area for a period other than the calibration period 

and without any further change in the model input parameters. The model was validated 

for the period 1992-1999.  

As shown by the goodness-of-fit measures, the simulated and observed annual 

discharge, surface runoff and baseflow were in good agreement (Figures 6.15, 6.16, and 

6.17), with R2, NSE and IA higher than 0.90, 0.70, and 0.90, respectively.  However, the 

differences in the mean values of the flows are rather high (discharge-15.8 %; surface 

runoff-18 %; and baseflow-13 %). This is due to the fact that the model was unable to 

simulate the low flows well enough. It constantly underestimated the annual discharge, 

surface runoff and baseflow in the entire validation period except for the annual 

baseflow in 1999, which was overestimated. The underestimation of the low flows 
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could be due to more than one aquifer contributing to baseflow in the basin, a situation 

not handled in SWAT at present. 

Similar to the monthly calibration, the monthly validation results show a better 

correlation between the simulated and observed monthly discharge (Figure 6.18). The 

model goodness-of-fit measures were all higher than 0.90. However, the model mainly 

underestimated both the high and low flows resulting in about 15 % differences between 

the simulated and observed mean monthly discharge. The daily validation shows a good 

agreement between the simulated and observed daily discharge (Figure 6.19), although 

the model goodness-of-fit measures were lower compared to those obtained in the 

annual and monthly validations. 

 

0

20

40

60

80

100

120

140

160

180

1992 1993 1994 1995 1996 1997 1998 1999

Year

D
is

ch
ar

ge
 (m

m
)

Observed Simulated

 
Mean (mm) Standard deviation Goodness-of-fit measures 

Observed Simulated Observed Simulated R2 NSE IA 

96.75 81.45 41.00 43.64 0.94 0.80 0.91 

Figure 6.15 Observed and simulated total annual discharge and statistics at Nawuni 
(90,856 km2) 

 



Recharge estimation using the Soil and Water Assessment Tool (SWAT) 

 113

0

20

40

60

80

1992 1993 1994 1995 1996 1997 1998 1999

Year

Su
rfa

ce
 ru

no
ff 

(m
m

)
Observed Simulated

 
Mean (mm) Standard deviation Goodness-of-fit measures 

Observed Simulated Observed Simulated R2 NSE IA 

34.18 27.91 13.90 13.45 0.91 0.71 0.93 

Figure 6.16 Observed and simulated total annual surface runoff and statistics at 
Nawuni (90,856 km2) 
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Figure 6.17 Observed and simulated annual baseflow and statistics at Nawuni 
(90,856 km2) 
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Figure 6.18 Observed and simulated monthly discharge and statistics at Nawuni 
(90,856 km2) 
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Figure 6.19 Observed and simulated daily discharge and statistics at Nawuni 
(90,856 km2) 
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Clearly, the calibration and validation results show that the SWAT model performed 

very well in simulating the annual, monthly and daily discharge as well as the annual 

surface runoff and baseflow in both the calibration and validation periods. This indicates 

that the final values of the model-sensitive parameters selected at calibration represent 

those parameters in the study area. It can therefore be concluded that the SWAT model 

built for the White Volta Basin realistically reproduces the hydrological flows in the 

basin and can, therefore, be used for future impact studies. 

 

6.7.5 Annual water balance  

The mean annual water balance in the study area was estimated with the SWAT model 

for the calibration and validation periods. There were slight differences in the values of 

the mean annual water balance for the two periods (Table 6.13).  

 

Table 6.13:  Mean annual values of the water balance of the White Volta Basin at      
calibration (1986-1991) and validation (1992-1999) 

Parameter Mean values at 
calibration  (mm) 

Mean values at 
validation  (mm) 

Precipitation 

Surface runoff 

Groundwater flow (Baseflow) 

Lateral flow 

Shallow aquifer recharge 

Deep aquifer recharge 

Actual evapotranspiration (AET)   

Change in soil water storage  

842.50 

33.26 

62.23 

0.65 

154.55 

38.64 

598.60 

-45.43 

805.40 

25.81 

54.67 

0.65 

139.34 

34.83 

606.80 

-56.70 

 

For the calibration period, about 73 % of the mean annual precipitation that 

occurs in the study area evapotranspires. This value is slightly higher (75 %) for the 

validation period. The annual discharge for the calibration period was estimated to be 11 

% of the annual precipitation and consisted of 4 % surface runoff and 7 % baseflow. For 

the validation period, the simulated discharge was 10 % of the annual rainfall, and the 

surface runoff and baseflow components were respectively 3 % and 7 % of the annual 

rainfall. Similar discharge, surface runoff and baseflow values have been obtained in 
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previous studies in other parts of the Volta basin and in neighboring basins in Ghana 

(Table 6.14). 

Statistics of the water balance show that for both the calibration and validation 

periods, the baseflow had the highest annual variability (Table 6.15). This was closely 

followed by the surface runoff. The annual variations in rainfall and actual 

evapotranspiration were relatively very low. Friesen et al. (2005) obtained similar 

values for the entire Volta basin.   
 

Table 6.14:  The water balance in the Volta Basin in West Africa and neighboring 
basins in Ghana (HAPS, 2006) 

Study area and 
country 

Rainfall Actual 
evapotrans-
piration 

Runoff coefficients 
(% of rainfall) 

Source 

Total 
runoff 

Surface 
runoff 

Baseflow 

Atankwidi catchment 
(Ghana) 910-1138 789-798 10-17 - - 1 

Southern Voltaian 
Sedimentary Basin 
(Ghana) 

1400 1027 13 - - 2 

Volta River Basin 
(West Africa) 

1002 893 11 6 5 3 
1200 - 10 - - 4 
1009 918 8 - - 5 

Pra River Basin 
(Ghana) 1170-1490 1170-1490 6-9 0.6-1 3.4-4.5 6 

(1): Martin, 2005; (2): Acheampong, 1996; (3): Friesen et al., 2005; (4) Shahin, 2002; Andreini et al., 2000; 
(6): Darko and Krasny 
 

Table 6.15:  Statistics of the water balance in the White Volta Basin 
 Rainfall AET Baseflow Surface 

runoff 
Discharge 

Calibration Mean 842.50 598.60 62.23 33.26 94.98 
CV 0.07 0.04 0.35 0.33 0.33 

Validation Mean 805.40 606.80 54.67 25.81 79.73 
CV 0.09 0.06 0.43 0.36 0.39 

 

The temporal dynamics of the mean annual precipitation and potential 

evapotranspiration of the study area as simulated in SWAT are consistent with the 

general trend in that part of the Volta basin. Precipitation in the study area has a mono-

modal pattern and peaks in August (Figure 6.20). The mean annual rainfall amount 

generally increases across the basin, from the north to the south (Figure 6.21). The 

potential evapotranspiration (PET) is high throughout the year with maximum values 
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recorded in March, April and May. The mean monthly PET exceeds the mean monthly 

rainfall in 9 of the 12 months. 
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Figure 6.20 Temporal dynamics of mean rainfall and potential evapotranspiration 

(PET) in the White Volta Basin (from SWAT model: 1980-2001) 
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Figure 6.21 SWAT modeled distribution of mean annual rainfall in the White Volta 

Basin (1980-1999) 
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6.7.6 Distribution of surface runoff and baseflow  

The spatial distribution of the 20 year (1980-1999) mean annual surface runoff and 

baseflow (shallow groundwater recharge) was simulated for the study area using the 

calibrated SWAT model. Most of the surface runoff and baseflow in the study area are 

generated in the south of the basin (Figures 6.22 and 6.23). This could be attributed to 

the trend in rainfall and potential evapotranspiration among other factors. Precipitation 

in the basin increases from north to south, while potential evapotranspiration decreases. 

The combined effects of the variation in the two climate parameters between the north 

and south of the basin strongly influences the spatial distribution of the baseflow and 

surface runoff, with more flows generated in the south than in the north.  

 
6.7.7 SWAT recharge estimates  

In SWAT, the baseflow is the shallow groundwater contribution to the river discharge 

(section 6.2.8) and can reasonably be taken to be the groundwater recharge to the 

shallow aquifer. Therefore, the mean annual recharge to the shallow groundwater in the 

White Volta Basin as simulated in SWAT is 7 % of the mean annual rainfall (section 

6.7.5). This recharge value is similar to those obtained with the chloride mass balance 

(8.3 %) and the water table fluctuation (7-8 %) methods in parts of the White Volta 

basin (chapters 4 and 5). This recharge value is also similar to the 5 % recharge value 

estimated for the whole Volta basin by Friesen et al. (2005) using a rainfall-runoff 

model based on the Thornthwaite-Mather storage model. The authors estimated the 

recharge from the baseflow component of the discharge, which they defined as runoff 

from the groundwater reservoirs or aquifers that, in turn, are filled by groundwater 

recharge from the root zone.  

Comparing spatial distribution of groundwater recharge in the north-eastern 

part of Ghana (Upper East Region) in the White Volta Basin, based on the SWAT 

model, chloride mass balance, and water table fluctuation methods, there appear to be 

much agreement regarding areas of high groundwater recharge. These areas are 

essentially the middle part of the Region, around Gowrie, Bongo, Tongo, and Datuku. 

There is also a general agreement that the western part of the Region receives more 

recharge than the east. 
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Figure 6.22 SWAT modeled distribution of mean annual surface runoff in the White 

Volta River Basin (1980-1999) 
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Figure 6.23 SWAT modeled distribution of mean annual baseflow (shallow 

groundwater recharge) in the White Volta River Basin (1980-1999)
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7 IMPACTS OF FUTURE CLIMATE CHANGE ON WATER 
RESOURCES 
  

7.1 Introduction 

The impacts of future climate change on water resources can be studied using a 

hydrological model that is driven with the output from general circulation models (also 

known as global climate models when used for climate projections) (GCMs). GCMs are 

a class of computer-driven models that are based on the integration of a variety of fluid 

dynamical, chemical, and sometimes biological equations. They are used for weather 

forecasting, understanding climate and projecting climate change (Thorpe, 2005). Three 

types of GCMs can be distinguished: atmospheric global climate models (AGCMs), 

oceanic global climate models (OGCMs) and the atmosphere-ocean coupled GCMs 

(AOGCMs), which are the most complex models. The AOGCMs consist of AGCM, 

coupled with OGCM. Several AOGCMs exist for simulating the present and projecting 

the future climate series. Examples of AOGCMs are, HADCM, GFDL, CM2.X, and 

ECHAM).  

The spatial resolution of GCMs (typically 250 km) is often too coarse for 

direct application in hydrological modeling at local or regional scale. This is because 

regional scale climate is greatly influenced by atmospheric processes, topography and 

land-sea distribution, which are not well represented in global models because of their 

coarse resolution (Storch et al., 1993). In simulating the hydrology of a basin, a good 

representation of the climate, more particularly rainfall, is of utmost importance, since 

misrepresentation can greatly affect the values of the hydrological variables. GCMs 

exhibit a much larger spatial scale (grid-point area) than is usually needed for impact 

studies in hydrology. This can result in inconsistencies in the frequency statistics, such 

as the exceedance of a threshold for heavy rainfall (Busche et al., 2005, Sintondji, 2005; 

Osborn and Hulme, 1997). 

To overcome the coarse resolution of GCMs, two major techniques have been 

developed to downscale the output of GCMs to meso- or regional-scale. These are 

dynamical downscaling and statistical downscaling. Dynamical downscaling uses 

regional climate models (RCMs) to simulate higher resolution (typically 50 km) 

physical processes that are consistent with large scale climate projection from a GCM 

(Mearns et al., 2004). RCMs take their boundary and sea-surface conditions from 
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GCMs. The high resolution of RCMs make them more appropriate for resolving small-

scale features of topography and land use, which have a major influence on climate 

parameters such as rainfall in climate models. Also, the high resolution of RCMs is 

ideal to capture the variability of regional rainfall. Examples of RCMs include REMO, 

PRECIS and MM5.  

Statistical downscaling uses statistical relationships between the regional 

climate and selected large-scale parameters (Goodess et al., 2005, cited in Schmidli et 

al., 2005). These relationships are empirical and are applied using the predictor fields 

from GCM in order to construct scenarios (Schmidli et al., 2005). Examples of 

statistical downscaling methods are weather generators (Wilby et al., 2004). The 

dynamical and statistical downscaling techniques are both based on certain assumptions 

that are very difficult to verify and are, therefore, associated with some uncertainty 

(Schmidli et al., 2005). 

 

7.2 Climate change scenarios of MM5/ECHAM4   

In this study, climate series (present and future) simulated with the GCM ECHAM4 and 

downscaled using the regional climate model MM5 (Mesoscale Model) were used to 

evaluate the impacts of climate change on water resources in the White Volta river 

basin. The ECHAM4/MM5 climate series were obtained from the GLOWA-Volta 

project of the Center for Development Research (ZEF), Germany. The MM5 is a 

community mesoscale model that was developed in cooperation with the Pennsylvania 

State University (PSU) and the National Center for Atmospheric Research (NCAR), 

USA. It is a non-hydrostatic or hydrostatic (Version 2 only), terrain-following sigma-

coordinate model designed to simulate or predict mesoscale and regional-scale 

atmospheric circulation (Grell et al., 1995). Like all regional models, MM5 requires 

initial and lateral boundary conditions to run.  

In the case of the GLOWA-Volta project runs of MM5, the initial and lateral 

boundary conditions were derived from ECHAM4, which was run from 1860 to 2100 

based on the IS92a future climate scenario, and was calibrated using the 0.5o x 0.5o 

gridded monthly observational dataset from the East Anglia Climate Research Unit 

(CRU), UK. The effects of sulphate aerosols were not considered, as they are known to 

be the largest sources of error within the IS92a scenario. The IS92a has an underlying 
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assumption of an annual increase in CO2 of 1 %, resulting in a doubling of CO2 in 90 

years (May and Rockner, 2001; cited in Jung, 2006). Compared to the new SRES 

scenarios, with regard to CO2 emissions, the IS92a scenario could be considered as 

intermediate (Jung, 2006). Two time slices of 10 years each (1991-2000 and 2030-2039) 

simulated with ECHAM4 for the West African region were downscaled with the MM5 

for the Volta Basin. The climate series of the time slice 1991-2000 were taken to be the 

present (baseline) climate condition, while those of the 2030-2039 time slice were used 

as future climate series. The MM5 was calibrated with long-term observed mean climate 

data. Details of the ECHAM4 and MM5 setup and simulations can be obtained in Jung 

(2006) and Kunstmann and Jung (2003). 

Results of the GLOWA-Volta climate studies show good agreement in mean 

annual, monthly and seasonal temperatures between ECHAM4-simulated climate and 

the CRU dataset for the period 1961-1990. There was, however, a slight overestimation 

of temperature by ECHAM4 for the Saharan region in the wet season and for southern 

West Africa in the dry season. For the same period, ECHAM4 rainfall amounts are 

comparable to the CRU data, but the maximum values are generally low (Jung, 2006). 

A perfect agreement was obtained between the MM5 simulated mean monthly 

temperatures and the observed. However, the model underestimated temperatures in the 

dry season nearly everywhere in the Volta Basin. The correlation obtained between 

MM5 simulated mean monthly rainfall and the observed was much weaker compared to 

the temperature. There was a strong underestimation of rainfall (up to 80 %) along the 

coast and an overestimation in the Sahel zone (10-30 %) (Jung, 2006). However, the 

MM5-simulated rainfall shows a temporal trend consistent with the annual observed 

rainfall cycle (Figure 7.1).  

A comparison of MM5- and ECHAM4-simulated temperature and rainfall 

revealed a pronounced positive deviation in the MM5 temperature values from those of 

ECHAM4, but the change in temperature between the present and future time slices 

were found to be nearly the same for both models (Jung, 2006). The rainfall amounts 

simulated in MM5 were lower compared to those of ECHAM4 but showed 

improvement in spatial representation. Over the Volta Basin, the MM5 gave an overall 

increase of 44.7 mm (5.1 %) in the mean annual rainfall between the two time slices and 

a mean temperature increase of 1.2oC (Jung, 2006).  
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Figure 7.1 MM5-simulated mean monthly rainfall versus long-term observed mean 

monthly rainfall in the Volta River Basin (after Jung, 2006) 
 

7.3 Frequency statistics of MM5 and observed rainfall series 

Rainfall is a very important input parameter for any hydrological modeling because it is 

the main source of moisture input to the hydrological cycle. Therefore, before using any 

rainfall data for impact studies in hydrology, it is important not only to ensure that the 

data represent the study site by way of the annual amounts and temporal distribution, 

but also to ensure that the frequency statistics of the data, such as the exceedance of a 

threshold for heavy rainfall, are consistent with the long-term mean observed rainfall. 

To assess the reliability of the MM5 future climate scenario for the evaluation 

of the impacts of climate change on water resources in the White Volta basin, the MM5-

simulated mean rainfall for the present time slice (1991-2000) obtained for the basin 

weather stations are compared to the 30 year (1971-2000) mean observed rainfall for the 

stations.  The results of the comparison for the Ouahigouya weather station, for 

example, show a good correlation between the observed and MM5-simulated monthly 

rainfall, with a coefficient of determination of 0.83. However, the MM5 strongly 

overestimated the rainfall from April to July and underestimated it from August to 

November, though to a lesser extent (Figure 7.2). The results also show that the MM5 

simulated rainfall pattern is slightly shifted towards the start of the rainfall season, with 
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the highest rainfall amount occurring in July instead of August, as is the case with the 

observed rainfall. In addition, much of the rainfall occurs in the first half of the rainfall 

season for the MM5 climate series, which is a deviation from the observed. The mean 

annual value of the MM5-simulated rainfall (834.5 mm) is considerably higher than that 

of the observed (681.8 mm). 
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Figure 7.2 MM5-simulated (mean over 10 years) compared to the observed (mean 

over 30 years) monthly rainfall at Ouahigouya weather station in the White 
Volta Basin. Data source (Direction de la Météorologie Nationale, Burkina 
Faso, and Jung, 2006) 

 
A comparison of the observed and MM5-simulated daily rainfall events was 

also done for the Ouahigouya station. The results demonstrate that the MM5 

overestimated the high daily rainfall events (50 mm or more) and generally 

underestimated the low rainfall events, except for those in the range of 1-5 mm and less 

than 1 mm (Figure 7.3). A major reason for the deviation of the MM5-simulated rainfall 

from the observed is that the MM5 data assigned to the weather station are the mean of 

gridded (9-km resolution) rainfall and not site specific as obtained with the observed 

data and required for modeling in SWAT. Similar deviations of MM5-simulated daily 

rainfall intensity from the observed were found for most of the other weather stations 
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used for the SWAT modeling in the White Volta Basin. Therefore, the MM5 daily 

rainfall data were not suitable for direct use in SWAT.  
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Figure 7.3 MM5-simulated (mean over 10 years) and LARS-WG-generated (mean 

over 95 years after 5 realizations) compared to observed (mean over 30 
years including standard deviation) rainfall at Ouahigouya weather station 
in the White Volta Basin  

 

To obtain station-specific data for use in SWAT, the Long Ashton Research 

Station Weather Generator (LARS-WG) was used to generate daily climate series with 

similar statistics as the observed data. LARS-WG is a stochastic weather generator 

which was first developed in Budapest in 1990 (Racsko et al., 1991). It can be used for 

simulation of daily climate data at a single site under current and future climate 

conditions (Semenov et al., 1998). Three distinct steps described in detail by (Semenov 

and Barrow, 2002) were followed in generating station-specific climate series with the 

LARS-WG for the weather stations in the White Volta Basin. First, LARS-WG was 

calibrated with 30 years observed climate data (Rainfall and temperature) to determine 

their statistical characteristics. Second, LARS was validated by generating 100 years of 

synthetic weather data and comparing their statistical characteristics to that of the 

observed data to find out if there were any significant differences. Third, LARS-WG 

was used to generate 95 years synthetic climate data that have the same statistical 
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characteristics as the observed data but differing on day to day basis. Five realizations of 

generated climate series were obtained based on different random seeds. The resulting 

LARS-WG data are the mean of the 5 realizations.   

 Compared to the MM5-simulated, the LARS-WG-generated rainfall series 

better represent the daily rainfall events within the 30-year observed period (Figure 7.3). 

A higher correlation (R2 = 0.95) is obtained between the observed monthly rainfall and 

the generated compared to the simulated. Similarly, there is high agreement in daily 

rainfall events and monthly correlations between the observed and the generated climate 

series for the other weather stations in the basin.  

 

7.4 Water balance based on observed and generated climate series 

The water balance of the White Volta Basin was simulated with the calibrated SWAT 

model based on the observed and the LARS-WG-generated climate series and the 

results compared. This was done to quantify the deviations of the generated climate 

series from the observed by way of the impact on the water balance. Quantifying 

deviations in the water balance resulting from the LARS-WG-generated present climate 

series can provide a means for checking the reliability of the generated future climate 

series for impact analysis. Two SWAT simulations of the water balance were run based 

on 15 years of observed climate series and 95 years of generated climate series. The 

results of the 2 simulations were then compared. 

The pattern of distribution of monthly rainfall in the White Volta Basin is 

maintained by the generated series, with the highest monthly rainfall recorded in 

August, which is consistent with the observed (Figure 7.4). However, the generated 

series underestimated the monthly rainfall from January to June and overestimated it 

from July to December. The mean annual rainfall of the generated series is slightly 

higher than that of the observed by about 3 % (Table 7.1). The monthly actual 

evapotranspiration (AET) follows the same trend as the rainfall, but the mean annual 

value was found to be 6 % lower than the observed. Except for the months of June, July 

and September, the mean monthly discharge of the generated series had very good 

agreement with the observed, with just about 3 % difference in the mean annual values 

as a result of a small overestimation by the generated series. The biggest deviation was 

obtained with the mean annual surface runoff, which was overestimated with the 
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generated climate series. Except for the AET, the water balance simulated with the 

generated climate series shows less variability in the mean annual values than the 

observed (Table 7.2). 
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Figure 7.4 SWAT-simulated mean monthly water balance of the White Volta Basin 

based on observed (15 years) and LARS-WG-generated (95 years) climate 
series. (RF-rainfall; Q-discharge; and AET-actual evapotranspiration) 

 

On the whole, the water balance of the White Volta Basin as simulated with 

the generated climate series is consistent with the observed, except for a few over- and 

under-estimations. The pattern of monthly distribution of the water balance variables is 

in high agreement with the observed; the mean annual values of the water balance 

simulated with the two climate series show only a slight variation, which is largely 

within the standard of deviation. The frequency statistic of the daily event given by the 

generated series is identical with the observed (Table 7.2). Based on the above results, 

the LARS-WG-generated future climate series was assumed to be reliable for evaluating 

the impact of future climate change in the White Volta Basin.  
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Table 7.1:  Comparison of mean annual water balances simulated in SWAT based on 
observed (mean over 15 years) and LARS-WG-generated (mean over 95 
years) climate series 

Scenario Simulation 
period 
(Years) 

Rainfall 
(mm) 

AET a 
(mm) 

Discharge 
(mm) 

Surface 
runoff 
(mm) 

Baseflow 
(mm) 

Observed series 15 825 611 86 29 57 

Generated series 95 851 576 89 35 55 

Percent change  3 -6 3 15 -4 
a Actual evepotranspiration 

 

Table 7.2:  Coefficients of variation of the annual water balance simulated in SWAT 
based on observed (mean over 15 years) and LARS-WG-generated (mean 
over 95 years) climate series 

Scenario Rainfall AET Discharge Surface runoff Baseflow

Observed series 0.09 0.06 0.41 0.36 0.45 

Generated series 0.08 0.06 0.27 0.31 0.25 

 

7.5 Impacts of future climate change scenario on water resources 

To evaluate the impact of future climate change on the water resources (discharge, 

surface runoff and baseflow), a baseline or present scenario was needed to form the 

basis of comparison of the future simulated water resources. Since the results of the 

simulated water balance based on the LARS-WG-generated climate series had a very 

good correlation with that of the observed series, the simulated water balance based on 

the generated climate series was taken to be the baseline. The mean annual and monthly 

future water balance were then simulated in SWAT using station-specific future climate 

series (mean over 95 years at 3 realizations) generated with LARS-WG and reflecting 

the MM5-simulated monthly changes between the present (1991-2000) and future 

(2030-2039) climate conditions. 

The results of the simulated future water balance show important increases in 

the mean annual rainfall, discharge, surface runoff and baseflow (Table 7.3; Figures 7.5, 

7.6 and 7.7). The rainfall had the lowest increase in the mean annual value from the 

present (1991-2000) 851 mm to the future (2030-2039) 904 mm, representing an 

increase of about 6 % in a 40-year period. The future mean annual discharge shows a far 

higher mean annual increase of 33 % in response to the relatively small increase in the 

annual rainfall. This could be attributed to the non-linear response of the discharge to 
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rainfall in the basin. The surface runoff had the highest future increase (37 %). The 

baseflow show a slightly lower increase (29 %) in the future annual value compared to 

the surface runoff. However, this increase is very important for the development and 

management of the shallow groundwater resource in the basin. The future annual 

rainfall, discharge, surface runoff and baseflow, all show increases in the coefficient of 

variation, with the future rainfall exhibiting an annual variability twice that of the 

present (Table 7.4).  

 

Table 7.3:  SWAT-simulated mean annual water resources for the present and future 
(both, mean over 95 years) climate scenarios in the White Volta River Basin 
(90, 856 km2) 

Scenario Simulation 
period 

Rainfall 
(mm) 

Discharge 
(mm) 

Surface 
runoff (mm) 

Baseflow 
(mm) 

Present (baseline) 1991-2000 851 89 35 55 

Future (Sce_2030-2039)  2030-2039 904 118 48 71 

Percent change   6 33 37 29 

 

Table 7.4:  Coefficients of variation of the simulated mean annual present and future 
(both, mean over 95 years) water resources in the White Volta River Basin 
(90, 856 km2)  

Scenario Rainfall Discharge Surface runoff Baseflow 

Present (baseline) 0.08 0.27 0.31 0.25 

Future (Sce_2030-2039) 0.14 0.41 0.46 0.40 
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Figure 7.5 SWAT-simulated mean annual discharge under present and future climate 

conditions (mean over 95 years in both cases) in the White Volta River 
Basin 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 7.6 SWAT-simulated mean annual surface runoff under present and future 

climate conditions (mean over 95 years in both cases) in the White Volta 
River Basin 
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Figure 7.7 SWAT-simulated mean annual baseflow (shallow groundwater recharge) 

under present and future climate conditions (mean over 95 years in both 
cases) in the White Volta River Basin  

 

The pattern of monthly distribution of the rainfall and discharge in the basin 

for the future scenario is largely identical to that of the present scenario, except for 

increases in the monthly quantities and a slight shift in the rainfall pattern of the future 

scenario (Figure 7.8). Generally, there is a reduction in the monthly rainfall amount in 

the first half of the rainfall season up to July, which is compensated for by increases in 

the second half of the season from August to December. Except for the months of 

September and October, the future monthly surface runoff does not differ significantly 

in pattern and amount from that of the present. However, there is a shift of the peak 

monthly rainfall from August to September (Figure 7.9). The future baseflow shows 

increases for all months of the year.  

 

Present (1991-2000) Future (2030-2039) 
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Figure 7.8 SWAT-simulated present (1991-2000) and future (2030-2039) mean 

monthly rainfall and discharge in the White Volta river basin. 
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Figure 7.9 SWAT-simulated present (1986-1999) and future (2030-2039) mean 

monthly surface runoff and baseflow in the White Volta river basin.            
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7.6 Comparison of study results with previous studies 

The marked increase in the future simulated annual discharge obtained in this study for 

the White Volta Basin is similar to what has been obtained for the entire Volta Basin in 

the ADAPT project (Andah et al., 2003 ). The ADAPT project investigated the impact 

of climate change on the hydrology of the Volta basin using the Water Evaluation And 

Planning System (WEAP) to simulate future water resources based on the A2 and B2 

SRE forcing scenarios. The A2 and B2 scenarios were developed for two future time 

slices, i.e., 2020-2039 and 2070-2099, using the GCM HADCM3 and were statistically 

downscaled to have the same statistics as the historic (1961-1990) climate series in the 

basin. Climate data (precipitation and temperature) for the period 1961-1990 were 

obtained from the East Anglia Climate Research Unit (CRU) and were used for 

calibrating the HADCM3. 

Results of the HADCM3 projected future climate series for the Volta basin 

suggest increases in both precipitation and temperature in the two time slices under the 

two SRE scenarios (Table 7.5). Slightly higher increases in precipitation, 8 and 10 % for 

the scenarios A2 and B2, respectively, are projected for the time slice 2020-2039, 

compared to the 6 and 9 % increases for the 2070-2099 time slice. In the case of the 

temperature, the reverse is true.  

 

Table 7.5:  Climate change projections of HADCM3 and statistics, based on the SRE 
A2 and B2 scenarios (Modified from Andah et al., 2003) 

Scenario Period Rainfall (mm) Temperature (oC) 

Mean Standard 
deviation

Coefficient 
of variation 

Mean Standard 
deviation 

Coefficient 
of variation

SRE A2 1961-1990 1079 115 0.11 27.3 0.5 0.02 

2020-2039 1161 105 0.09 28.5 0.5 0.02 

2070-2099 1147 123 0.11 31.8 0.8 0.03 

SRE B2 1961-1990 1079 117 0.11 27.3 0.5 0.02 

2020-2039 1181 144 0.12 28.4 0.5 0.02 

2070-2099 1173 118 0.10 30.4 0.5 0.02 

 

The results of the ADAPT project show an important increase in the discharge 

for all the future climate change scenarios simulated with the WEAP (Table 7.6). The 

A2 and B2 scenarios of the time slice 2020-2039 are of particular interest because of the 
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similarity they have with this study by way of their time slice and the magnitude of 

increase in the future discharges. The ADAPT project obtained increases of 27 and 34 

% in the mean annual discharge for the A2 and B2 scenarios, respectively, for 2020-

2039 as a result of the relatively lower increases in rainfall. This was attributed to the 

non-linear relationship between the discharge and rainfall in the Volta basin (Andah et 

al., 2003).   

 

Table 7.6: Mean annual inflow into Lake Volta (taken to be the outlet of the Volta  
Basin) together with standard deviation and coefficient of variation of the 
respective simulation periods for Hadley A2 and B2 (Modified from Andah 
et al., 2003)  

Scenario Time slice Mean discharge 

(km3) 
Percent 

change (%) 

Standard 

deviation 

Coefficient 

of variation 

Historical 1961-1990 32.8 (82) - 17.1 0.52 

HA2 2020-2039 41.6 (104) 27 14.0 0.34 

HB2 2020-2039 43.8 (110) 34 15.4 0.35 

HA2 2070-2099 37.2 (93) 13 19.9 0.54 

HB2 2070-2099 44.0 (110) 34 17.6 0.40 

NB: Figures in brackets are discharge in mm; the Volta Basin covers 400,000 km2 

 

Another study of interest for comparison purposes is the climate change 

impact studies done by Jung (2006) in the Volta Basin. Jung used future climate series 

of the IS92a climate change scenario simulated in ECHAM4 and downscaled with 

MM5. The same scenario was used for the White Volta basin in this study. The point of 

departure, however, is that Jung used the MM5 future climate series (2030-2039) 

directly in the hydrological model (WaSiM) for the impact simulation, whereas in this 

study the MM5 data were used to drive a stochastic weather generator to produce station 

specific data with identical statistics as that of the observed. 

For the future simulated discharge, Jung (2006) obtained an increase of nearly 

5 % over that of the baseline (1991-2000) for the entire Volta Basin. This increase is 

much smaller compared to the 27 and 34 % increases for the SRE A2 and B2 scenarios 

obtained by Andah et al. (2003) for the same Volta Basin. Obviously, the two studies 

differ greatly in terms of the GCM and the climate scenarios selected as well as the 

downscaling method used and may be responsible for the differences in the results.  
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Similar to the findings of this study, the results of Jung (2006) for Nawuni in the White 

Volta Basin show increases in all the water resources (rainfall, discharge, surface runoff, 

and baseflow) (Table 7.7). The surface runoff has the highest increases as found in this 

study, although much higher increase was obtained in the study by Jung. The increase in 

the annual discharge obtained in this study is twice the value obtained by Jung. The 

baseflow is also twice. Possible reasons for the deviation in the two study results could 

be due to differences in (i) the way the future climate series were processed before used, 

(ii) hydrological models used and (iii) model calibration periods.  
 

Table 7.7:  Comparison of the mean annual increases (%) of selected water balance 
variables, between the baseline simulation (1991-2000) and the future (2030-
2039) simulation, at Nawuni in the White Volta Basin  

Source Rainfall Discharge Surface runoff Baseflow 

Study 6 33 37 29 

Jung, 2006 5 15 57 13 
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8 CONCLUSIONS AND RECOMMENDATIONS 
 

8.1 Introduction 

The White Volta Basin is one of the major sub-basins of the Volta River Basin of West 

Africa. On the whole, the basin has enough water resources to meet current demands. 

However, there are many challenges including high spatial and intra-annual variability 

in rainfall, global climate change, deforestation, land degradation, and high population 

growth rate. These challenges put immense pressure on the water resources. The basin 

experiences a prolonged dry season of 7 months when many rivers and streams dry up. 

As a result, surface water supplies are unreliable and insufficient to meet the water 

demands for socio-economic development in many places in the basin, thereby making 

groundwater sources the preferred and most cost-effective means of supplying water to 

the largely rural and dispersed population in the basin. 

Exploitation of groundwater in the White Volta Basin has increased 

substantially in recent times and can lead to depletion and degradation if not properly 

managed, particularly in areas where the resource could be affected by over-

exploitation, contamination and climate change. A basic prerequisite for efficient and 

sustainable management of groundwater is the understanding of the recharge process. 

This study estimates the amount and spatial distribution of groundwater recharge at 

different spatial scales in the White Volta Basin using the chloride mass balance, water 

table fluctuation, and hydrological modeling techniques. In addition, the study evaluates 

the impact of future climate change on the shallow groundwater recharge. The 

conclusions and recommendations of this study are summarized below.  

 

8.2 Chloride mass balance method for estimating groundwater recharge  

The chloride mass balance (CMB) method is widely used for estimating recharge in arid 

and semi-arid regions. In this study, the method was applied in the north-eastern part of 

Ghana (Upper East Region of Ghana)  within the White Volta Basin in 2006. The 

results show that recharge to the groundwater in the Upper East Region ranged from 3 

to 19 % of the long-term mean annual rainfall and averaged 8 %. Weaknesses of the 

CMB method as applied in this study include the non-existence of data on dry 

atmospheric deposition of chloride and direct runoff, as well as long-term data on total 

chloride deposition.  
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8.3 Water table fluctuation method for estimating groundwater recharge  

The water table fluctuation (WTF) method requires data of specific yield and changes in 

the water table over time. It is best suited for areas with distinct periods of recharge. The 

use of the method is not restricted by the presence of preferential flow paths at a study 

site. The WTF method was applied in the south of the White Volta Basin (White Volta 

Basin of Ghana) in 2006 and 2007 to quantify groundwater recharge and to analyze the 

fluctuations in the water table. Findings from water table monitoring show high annual 

and spatial variations in the water table rise, with a range of 1240-5000 mm in 2006, 

and 1600-6800 mm in 2007. For a mean increase of 50 % in rainfall between 2006 and 

2007, a mean increase of 35 % was obtained for the water table rise. Findings from the 

recharge estimation for the two study years show that the mean groundwater recharge in 

the White Volta Basin is 8 % and 7 % of the mean annual rainfall for 2006 and 2007, 

respectively.    

The main limitation of this method is the difficulty in obtaining specific yield 

values that are representative of the aquifer materials in the study area. Besides the 

specific yield limitation, there are only a few wells for monitoring water table data, 

which affects the reliability of the recharge estimates.  

 

8.4 Hydrological modeling and recharge estimation with SWAT  

The Soil and Water Assessment Tool (SWAT) model has been calibrated (1986-1991) 

and validated (1992-1999) for the White Volta Basin at Nawuni. A pre-calibration 

impact analysis of the number of sub-basin and hydrologic response units (HRUs) on 

discharge, generally shows that the higher the number of sub-basins and HRUs, the 

higher the number of rain gages and land-use classes used by the model for simulating 

the discharge. Consequently, the simulated discharge is more accurate, however, the 

effect an increased number of sub-basins and HRUs has upon the accuracy of the 

discharge is limited. In a basin like the White Volta, due to a limited amount of diversity 

in landuse types, the potential for improved accuracy due to an increase in the number 

of HRUs is not significant. 

The calibration and validation results show that the SWAT model performed 

very well in reproducing the annual, monthly and daily discharge, and the annual 

surface runoff and baseflow. The monthly calibration shows the best agreement between 
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simulated and observed discharge with coefficient of determination (R2) of 0.93 

(annual-R2=0.85; daily-R2=0.77), and Nash-Sutcliffe model efficiency (NSE) of 0.93 

(annual-NSE=0.83; daily-NSE=0.68). Also, there is a very good correlation between the 

simulated and observed annual surface runoff (R2=0.84; NSE=0.82) and baseflow 

(R2=0.88 and NSE=0.83). The validation results show equally good agreement between 

the simulated and observed discharge (R2>0.80; NSE>0.78), annual surface runoff 

(R2=0.91; NSE=0.71), and annual baseflow (R2=0.90; NSE=0.77). Generally, SWAT 

overestimated the high flows and underestimated the low flows. The underestimation of 

the low flows could be due to more than one aquifer contributing to baseflow in the 

basin, a situation not handled in SWAT at present.  

The simulated water balance in SWAT shows that about 11 % of the annual 

precipitation in the White Volta Basin becomes discharge, which consists of 4 % 

surface runoff and 7 % baseflow. In SWAT, the baseflow is the shallow groundwater 

recharge, which is 7 % of the annual rainfall. Compared to rainfall, actual 

evapotranspiration, and surface runoff, the shallow groundwater recharge experiences 

the highest annual variability.  

 

8.5 Impacts of future climate change on water resources 

The climate series of the regional climate model MM5, which is downscaled from 

ECHAM4 simulation of the IS92a scenario, is found to be unsuitable for direct use with 

SWAT for evaluating climate change impacts on the water resources in the study area. 

Using Ouahiagouya weather station as an example, it is shown that the MM5 

overestimated the mean annual precipitation by about 22 %; the highest monthly rainfall 

shifted from August to July; the frequency statistics of the daily rainfall are not 

consistent with the observed; and the MM5 rainfall series are the mean of gridded 

rainfall, and not station-specific as required by the SWAT model. The weather generator 

LARS-WG was, therefore, used to generate station-specific mean daily climate series 

with the same statistics as for the observed data and reflected the MM5 forecasted 

changes in the monthly rainfall. 

Comparison of the SWAT-simulated water balance using the recent time 

(1991-2000) LARS-WG-generated climate series and the observed reveals a high 

correlation between the two, except for a few over- and underestimations. The 
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frequency statistic of the daily rainfall events and the pattern of monthly distribution of 

the water balance variables (rainfall, actual evapotranspiration, discharge, surface runoff 

and baseflow) are consistent with the observed, with only a slight variation in the mean 

annual values. Using the simulated water balance based on the generated climate series 

in the recent time period as the basis for comparison, the results of the simulated future 

(2030-2039) water balance show important increases in the rainfall, discharge, surface 

runoff, and the baseflow. 

 

8.6 Final conclusions 

The chloride mass balance, water table fluctuation and the hydrological model SWAT 

were used in this study to estimate the amount and spatial distribution of the 

groundwater recharge at 3 different spatial scales in the White Volta Basin. Findings 

from the three methods show that annual recharge to the groundwater in the basin is 

about 7 % of the annual rainfall. This figure is expected to increase by about 33 % in the 

future (2030-2039) as a result of future climate change in the basin.  

 

8.7 Recommendations 

Accurate estimation of the groundwater recharge is very important for sustainable 

planning of the groundwater resource. The accuracy of the groundwater recharge 

estimation in the White Volta Basin could be improved through further research. 

The chloride mass balance is a relatively easy method for estimating the 

groundwater recharge and provides long-term recharge information. However, the 

method requires long-term data of wet and dry atmospheric deposition, rainfall, surface 

runoff and chloride concentration in groundwater. At present, data on dry atmospheric 

deposition and long-term data on wet deposition are non-existent in the study area. A 

continuous monitoring of chloride deposition is needed to provide long-term data for a 

more reliable estimation of the long-term recharge. Also, the number of wells from 

which groundwater samples were taken and analyzed for use with the CMB method can 

greatly influence the recharge estimate. It is, therefore, recommended to sample a more 

representative number of wells for chloride analysis in order to have recharge estimates 

that are more representative and reliable. 
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To a large extent, recharge estimates from the water table fluctuation method depend on 

the specific yield values used in calculating them. Currently, there are no data on the 

exact specific yield of the aquifer materials in the study area. Available data on well-

pumping tests are not useful for determining specific yield values, because the test 

periods are too short. Selecting specific yield values from literature can result in wide 

ranges of estimated recharge, which may not be good for sustainable planning of the 

groundwater resource. Further research is needed to determine the exact specific yield 

values of aquifer materials in the entire Volta Basin. Another way of dealing with this 

issue is to make the specific yield one of the mandatory aquifer parameters to be 

estimated during pumping tests on wells constructed in the basin. 

Similar to any other hydrological model, the quality of the output of the 

SWAT model is as good as the quality of the input climate data, e.g., rainfall and 

temperature, and the quality of the discharge data used for the calibration and validation 

of the model. Climate records from some of the weather stations in the White Volta 

Basin have missing data, which were filled by the weather generator in SWAT. 

Although there are many river gages in the basin, discharge records of most of the 

stations are unreliable and data is frequently missing. A few sub-basins of interest for 

studying water resources on a small scale should be selected and monitored 

continuously to provide high-quality hydrological data such as discharge for large-scale 

hydrological studies that support decision making on water resources in the basin. Due 

to the uncertainties associated with climate forecast and downscaling, it is 

recommended to use climate model ensembles and multiple future climate scenarios, 

e.g., best- and worst-case scenarios, in hydrological impact studies in order to 

understand the range of impacts that can be expected. 
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