
Multi Robot Intruder Search

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Mark Moors

aus

Oberhausen

Bonn (September) 2008

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn.

1. Referent: Prof. Dr. Armin B. Cremers

2. Referent: Prof. Dr. Joachim Hertzberg

Tag der Promotion: 22.12.2008

Erscheinungsjahr 2009

Diese Dissertation ist auf dem Hochschulschriftenserver

der ULB Bonn unter http://hss.ulb.uni-bonn.de/diss online

elektronisch publiziert.

For my mother

Acknowledgments

When a work takes a long time, there are often many people who gave support

and helped in one way or the other.

First of all, I want to thank my Advisor Armin B. Cremers for his guidance,

his encouragements and especially his patience with me and this work. I wish

to thank Dirk Schulz for his support in years of this work and his help with

finishing this manuscript. I also would like to thank Joachim Hertzberg for

his willingness to be co-referent.

Several other people contributed to this thesis as well. I have to thank Frank

E. Schneider, who supported this work from the very beginning and made

it possible to put the theoretical concepts in practice. Along with him, I

have to thank the Research Establishment for Applied Science (FGAN), who

supported this work financially and in terms of logistic. Another thanks

must go to Timo Röhling for his profound support in developing the search

planner. One has to go to Volker Steinhage, who never gave up pushing me

forward.

During the years, there have been many people, who gave me inspiration

and help: Thanks to Wolfram Burgard, Cyrill Stachniss, Bernd Brügemann,

Michael Klein, Thorsten Belker and Jürgen Schumacher.

Last but not least, I must add a deep thanks to my partner Alexandra Bäcker,

who constantly kept my spirit up, even in the final phase of the work.

Summary

The aim of this work is the development and analysis of methods and al-

gorithms to allow a multi robot system to cooperatively search a closed,

2-dimensional environment for a human intruder. The underlying problem

corresponds to the game-theoretic concept of a classical pursuit evasion game,

whereas the focus is set to the generation of plans for the group of pursuers.

While the main aspect of of this work lies in the field of probabilistic robotics,

concepts and ideas are incorporated from differential game theory, algorith-

mic geometry and graph theory. The probabilistic basis allows the integration

of sensor error as well as nondeterministic robot motion.

The main contributions of this work can be divided into three major parts:

• The first part deals with the development and implementation of prob-

abilistic human models. Depending on the specific behavior of an in-

truder, ranging from uncooperative to unaware, different classes of in-

truders are identified. Models are proposed for two of these classes.

For the case of a clever and uncooperative intruder who actively evades

detection, we propose a model based on the concept of contamination.

The second class corresponds to a person who is unaware of the pur-

suit. We show that simple Markov models, which are often proposed

in literature, are not suited for modeling realistic human motion and

develop advanced Markov models, which conform to random waypoint

motion models.

• The second part, which is also the most extensive part of this work,

deals with the problem of finding an uncooperative and clever intruder.

A solution is presented, which projects the problem on a graph struc-

v

vi

ture, which is then searched by a highly optimized A* planner. The

solution for the corresponding graph problem is afterwards projected

back to the original search space and can be executed by the robotic

pursuers. By means of the models proposed in the first part, the perfor-

mance and correctness of the method is shown. We present experiments

in simulation as on real robots to show the practicability and efficiency

of the method.

• The third part deals with the problem of finding an intruder who is

unaware of the search. Based on the advanced Markov model previously

discussed, a greedy algorithm is proposed, which aims at maximizing

the probability to find the intruder in the near future. Experimental

results for this method are shown and comparisons to simpler methods

are given.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Definition . 2

1.3 Used terms . 2

1.3.1 Grid Maps . 3

1.3.2 Sensors . 4

1.3.3 Kinematic Constraints 5

1.4 Area of research and contribution 6

1.5 Structure . 7

2 Fundamentals 11

2.1 Related Work . 11

2.1.1 Overview . 11

2.1.2 Graph Theory . 11

2.1.3 Algorithmic Geometry 12

2.1.4 Probabilistic Robotics 13

2.1.5 Game Theory . 14

2.2 Multi Robot Exploration . 16

2.2.1 Single Robot Exploration 16

2.2.2 Collaborative Exploration 19

3 Human & Sensor Models 33

3.1 Modeling Intruders . 33

3.1.1 Intruders without awareness 34

3.1.2 Intruders with awareness 41

viii CONTENTS

3.1.3 Intruders with perfect knowledge 42

3.2 Sensors . 45

3.2.1 Sensor Models . 45

3.2.2 Sensor Integration . 47

3.2.3 Real World Sensors . 50

4 Metrics and Simple Search Methods 57

4.1 Metrics . 57

4.1.1 Probability of catching the intruder 57

4.1.2 Contamination . 59

4.1.3 Entropy . 59

4.2 Experimental Setup . 59

4.2.1 Maps . 59

4.3 Simple Search Methods . 60

4.3.1 Static Observers . 60

4.3.2 Random Walking Observers 62

4.3.3 Fixed Walkarounds 64

5 Contamination Based Searching 71

5.1 Space Decomposition . 71

5.1.1 General outline . 72

5.1.2 Computing the vertices 72

5.1.3 Computing the edges 74

5.1.4 Final Graph . 74

5.2 Graph Decomposition . 75

5.3 A* Planning . 78

5.3.1 Recontamination . 79

5.3.2 Heuristics . 79

5.3.3 State Hashing . 80

5.4 Merging of plans . 81

5.5 The complete contamination based planner 81

5.6 Complexity and Scalability . 82

5.6.1 Planning Complexity 82

5.7 Alternative Planning Space 83

5.8 Implementation Details . 85

CONTENTS ix

5.8.1 Nondeterministic Movement 85

5.8.2 Time Delays . 87

5.8.3 Choosing the starting nodes 88

5.9 Experiments . 89

5.9.1 Time based planning 89

5.9.2 Time Based Planning II 92

5.9.3 Wavefront Expansion 96

5.10 Advanced Problems . 96

5.11 Additional Robots . 107

5.12 Critic & Directions of research 108

6 Greedy Methods 111

6.1 Greedy methods . 111

6.2 Problem Formulation . 111

6.3 General outline . 114

6.3.1 Costs . 114

6.3.2 Utility . 114

6.3.3 Coordination . 115

6.4 The Algorithm . 115

6.5 Example . 116

6.5.1 Target point selection 116

6.5.2 Multi Robot Searching Algorithm 117

6.6 Evaluation and Comparison 121

6.7 Critic & Directions of research 123

7 Perspectives 125

7.1 Conclusions . 125

7.2 Future Work . 126

8 Appendix 129

x CONTENTS

Chapter 1

Introduction

1.1 Motivation

Security is one of the most important demands in modern societies. Conse-

quently, public and private spending on security issues is often only excelled

by spending on social security and education. In Germany alone public

spending on security in form of the police force is more than 11 billion euros

per year [Bun00], resulting in more than 260.000 policemen. Almost the same

amount, approx. 10 billion euros, is additionally spent on private security

[Gmb06], adding an additional quarter of a million private security workers.

One task in this context is the observation and monitoring of a certain

closed area or building, which is often carried out by a combination of static

sensors and patrolling watchmen. Due to the high demand of human labor

in such a system and the resulting costs, such systems can only be found in

areas and applications, where the demand for security is especially high, for

example in museums or military compounds. One way to reduce the costs of

such systems and increase their reliability as well as their capabilities is the

use of mobile robots. Mobile robots offer a long list of possible advantages,

from which we just mention a few: Robots are becoming cheaper every year

and will someday be cheaper in comparison to human watchmen, they do

not get bored or loose concentration, they can carry lots of different sensors

and sense possible dangers much faster than humans, they cannot get hurt

or injured, they can work in the dark and they can be perfectly coordinated

2 CHAPTER 1. INTRODUCTION

if working in a group.

But even if the future possibilities are promising, commercial marketing

of robots, especially autonomous robots, is still in its infancy. Most of todays

commercial and applied robotic security systems possess only a very limited

degree of autonomy, due to safety demands as well as the complexity of

their tasks. Very often, a human operator is required to analyze some sensor

inputs, as well as monitor the system for safety. Accordingly such semi-

autonomous systems are at the moment quite expensive and their scalability

is limited, which is one cause of their limited distribution. Two examples

Compliments of MobileRobots Inc (c) Robowatch Technologies GmbH

Figure 1.1: PatrolBot / MosRo1

of such systems are the Patrol Bot (Figure 1.1, left), sold by ActivMedia, as

well as the Mosro1(Figure 1.1, right) sold by Robowatch Technologies.

1.2 Problem Definition

The task of monitoring or searching a given area by a group of robots is

naturally a very complex one and can (and should) be divided into a number

of subtasks, which all have to be solved to generate a system which can

autonomously perform the desired function. While discussing and giving

solutions to most of the robotic tasks, the main aspect of this work is on

searching, planning and coordination of a group of autonomous robots in

search for an intruder.

1.3. USED TERMS 3

1.3 Used terms

We will use a number of terms through the rest of this manuscript, which can

easily be misunderstood, so we will define them at this point for clarification.

• We define the area to be searched as a closed, 2-dimensional structure,

for example one floor of an office building or one level of a parking

garage.

• The team of robots, also called searchers or pursuers is a team of

multiple homogenous or heterogenous robots, which have at least one

omnidirectional sensor, which can detect persons at a short distance

and can also move through the area. One can think of a RWI-B21 robot

or ActivMedia Pioneer 3 robot with two SICK-Laser-Range-Scanners

as an example.

• We define an intruder as a human, who is not allowed to be in the

area and who can or cannot actively avoid detection by the robot team.

His speed is limited by human standards (so it cannot exceed 10 m/s)

and he can be detected by the robots’ sensors.

• We will also sometimes use the term contamination. Contamination

is a binary attribute which can be added to a point in space, a small

area (cell) or a node in a graph. The state can either be contaminated

or free. Contaminated in this context means that an intruder could

possibly be at the place, while free means that no intruder could be

there. Since our work is mostly probabilistic, at some point we will

slightly loosen this definition, so that free does no longer mean an

absolute value of 0, but a very, very low probability.

• To avoid confusion, we will use the term contamination level, when

the term is not used as a binary concept. A contamination level of a

place means the probability that an intruder could still be at this point

in space.

4 CHAPTER 1. INTRODUCTION

Figure 1.2: Two examples of grid maps. Left side shows a level of the the
Wean Hall at CMU Pittsburgh. Right side is a floor at the Institute for
applied Informatics at the University of Bonn.

1.3.1 Grid Maps

To generate plans for robots enabling them to do better than just reacting

to their latest sensor inputs, a planning space in form of a world model is

needed. While there are lots of different possibilities to choose from, grid

maps [Mor88] have proven to be a good choice in many robotic applications

[BBC+95][BCF+98][TBB+99]. Grid maps discretize a 2-dimensional world

into equal sized, quadratic cells (grid-cells). An example would be to split

up an area of 100x100 meters into 1 million grid cells, where each has the

size of 10x10 cm. Every such cell gets a value assigned, which represents the

probability of an obstacle in the cell. One can think of such a representation

as a floor plan, which also offers the advantage of being easy to understand

by a human operator. Examples of such grid maps can be seen in figure 1.2,

black cells represent an occupancy value of 1, while white cells represent 0

and values between 0 and 1 are shown in grey.

Because of the fine discretization in the maps, the occupancy values are

mostly binary, only in regions where the grid cells are only partly covered

by obstacles, values between 0 and 1 can be found. In later chapters we will

also derive smaller planning spaces from grid cells, but the world model itself

1.3. USED TERMS 5

is always given as a grid map.

1.3.2 Sensors

Figure 1.3: Left side shows a SICK-LMS 200 Laser-Scanner. Right Side
shows a typical scan of two scanners mounted back to back on a B21 platform.

As stated before, the robot pursuers need at least one sensor to detect an

intruder in its surrounding. Unless dealing with deterministic robots, such a

pursuer also needs at least sensors for localization. A good choice for both

requirements is the use of SICK-Laser Scanners [AG] , which can be mounted

back to back on many robotic platforms (including B21 and Pioneer 2/3/AT

robots). Since one SICK scanner has a field of view of 180 degrees, two scan-

ners offer almost (under the negligence of a small blanking interval) complete

visibility of the surrounding area, if not blocked by an obstacle. This design

has proven to offer robust localization in single [TFBF01] [BFGK98] as well

as in multi robot [FBKT00] scenarios. It can also be used to robustly detect

and track people over time [SBFC01] [SBFC03] and can also be used for safe

navigation. We will discuss the sensors application to intruder detection in

chapter 3 in more details.

6 CHAPTER 1. INTRODUCTION

1.3.3 Kinematic Constraints

As defined before, the basis of our work are on one hand the group of pursuers

and the intruder on the other. With the idea of catching even the most smart

and agile evaders in mind, it is easy to see that constraints imposed on an

intruder model should be as few as possible. Consequently, in several other

approaches (see next chapter) intruder motion is completely unrestricted,

allowing even physically impossible speed. Since we would like to work with

realistic sensor models (therefore allowing sensor error and limited sensor

speed), unlimited speed would allow an intruder to ”tunnel” from one place

to another, without the possibility to be seen on the way. This would allow

an intruder to stay hidden for an arbitrary time span, as long as the pursuers

are unable to oversee the complete environment at one time. However, we are

not interested in searching for entities with superhuman speeds or abilities,

so it makes sense to restrict the intruder model to human standards. We

will therefore assume the intruder’s kinematic as holonomic with an upper

speed limit of 10 m/s, which we think to be an adequate upper bound for

human motion. The constraints of the pursuers on the other hand should be

chosen with respect to the used robots. Since we are mostly working with

B21, Pioneer 2/3, and Magellan robots, we usually assume nonholonomic

robots, which can turn on a spot and do not exceed a speed of 50 cm/s.

1.4 Area of research and contribution

While we will discuss related work in details in chapter 2, we would like at

this point to give the reader a general overview of the context of this work.

A rough scheme is shown in figure 1.4, the central, white area is the field of

this work.

The aim of this work is the design and evaluation of practical algorithms

and techniques for coordinating a group of pursuers to locate an evader or

intruder in a closed, 2-dimensional environment. As one can see in figure

1.4, this problem can be seen from many different aspects and viewpoints.

Solution for pure graph-based problems exist, as well as work, which is purely

based on Game Theory and Robotics. Our solutions are based upon the

1.4. AREA OF RESEARCH AND CONTRIBUTION 7

Figure 1.4: Research Context of this work. Area of main contribution is
drawn in white.

integration of all four fields of research to a complete system, which not only

generates plans for the pursuers, but also provides an evaluation system to

measure performance.

Publications

Parts of this work have already been published on international conferences.

• Multi robot exploration, which we consider a fundament for the task

of multi robot intruder searching, has lead to a number of publica-

tions on conferences [BMF+00][SAB+00][BMS02] and a journal article

[BMSS05].

• The first algorithm for contamination based searching, along with the

8 CHAPTER 1. INTRODUCTION

necessary human models has been published on the IROS 2005 confer-

ence [MRS05].

• The greedy search method, along with the necessary human models has

been published on the IROS 2006 conference [MS06].

1.5 Structure

The remainder of this work is structured in 6 chapters.

Fundamentals

In chapter 2 we will start with the discussion of related work. We will set

this work in the context to other approaches and discuss the basic fields of

research, which are needed to understand later chapters. While single-robot

exploration and multi-robot exploration are not the primary focus of this

work, both are vital (and fundamental) for a multi-robot-security system, we

will therefore add them also to the chapter on fundamentals.

Human & Sensor Models

In this chapter, our main focus is on human models as well as sensor models.

Since a multi-robot-system has to plan trajectories for the robots, the planner

needs not only a model of the world, but also a model, how a human intruder

behaves and where he can be found. We will define three different models

of the intruder, depending on his level of knowledge and discuss different

implementation techniques for them. We will also need a model for the used

sensors and describe the sensors effect on the intruder models.

Metrics and Simple Search Methods

Before presenting the algorithms to solve the problem, we will first state some

metrics to allow the evaluation of the different methods. Since the algorithms

presented will be very different in nature, there cannot be one metric to

compare them all. Following that, we will present some experiments based

on the simple search methods, which we use in later chapters for comparison.

1.5. STRUCTURE 9

Contamination Based Searching

As stated above, the main goal of this work is finding methods and algorithms

for coordinated searching. In this chapter, we will present one method based

on a worst-case intruder model, which allows a group of pursuers to catch

an intruder, regardless of his behavior. The method is based on a map

decomposition technique, which allows the reduction of the general problem

to a graph based problem, as well as an A* implementation for solving the

resulting problem on graphs. Besides analyzing the complexity, strengths and

weaknesses of the method, we will also discuss a variation of the planning

component. Following that, we will show experiments to prove the results of

the method and show its superiority compared to simple methods.

Greedy Methods

In this chapter, we will discuss the case, in which the group of pursuers is too

small to guarantee catching a very smart intruder. In this scenario worst-case

estimations become of limited use. We will therefore present a technique for

catching a more ”average” intruder, especially one, who doesn’t know of the

pursuit. The method is based on the priorily discussed human models and

uses a greedy approach to maximize the probability of catching an intruder

in the near future. Again, we will give experimental proof of the outcome

and compare the results with less sophisticated methods.

Perspectives

In the final chapter, we will conclude our results. We will discuss strengths

and weaknesses of the techniques and give some ideas for future research.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Fundamentals

2.1 Related Work

2.1.1 Overview

Searching for an unknown target in a closed environment, also often referred

as a pursuit-evasion-game, has already been studied in a large number of

contexts. While it is mostly impossible to sort a specific work into exactly

one field of research, the problem is often discussed and examined based

on one or two of the four topics: Graph-Theory, Algorithmic Geometry,

Probabilistic Robotics and Game Theory.

2.1.2 Graph Theory

The first discussion of the problem in the field of graph-searching was done

by Breitsch [Bre67] in 1967 in the context of speleology. He proposed a man

lost in a dark cave, who is wandering unpredictably and a group of searchers

who are send to find him. The main question was how many men are needed,

given a certain cave, to find the lost man, regardless of his behavior. Parsons

[Par76] [Par78] did some early work on this question and formulated the

problem on graphs. He introduced the terms search number s(G) of a graph

, which is the minimum number of searchers needed to find the lost man (see

figure: 2.1), and contamination, which is a binary state of a given edge or

12 CHAPTER 2. FUNDAMENTALS

Figure 2.1: Example graph with s(G) = 2 / Example graph with s(G) = 4

vertex. He also showed that the continuous problem, where a searcher moves

along an edge in continuous time is equivalent to the same formulation with

discrete time. While showing that some special problems (i.e. fully connected

graphs or trees) can be solved in polynomial time, it remained for a long time

unclear how difficult the general problem is. Megiddo [MHG+88] showed 1988

that determining the search number of a general graph is at least NP-hard.

Parallel to that, LaPaugh [LaP93] showed that recontamination of a graph

does not help searching it (implicating that if a graph can be successfully

searched by a specific number of searchers, it is always possible to find a plan

for the same number of searchers to successfully search the graph without the

need to recontaminate an already cleared vertex or edge), and based on the

NP-hardness shown before proved the general problem to be NP-complete.

Since finding a concrete solution to search a graph given a specific number

of robots is at least as difficult as computing the search number (under the

neglect of a linear factor), the problem of finding such a solution is also at

least NP-hard.

2.1.3 Algorithmic Geometry

A similar problem to the above was introduced by Suzuki and Yamashita

[SY92] in the context of Algorithmic Geometry. Given a closed polynomial

environment they define a pursuer as a freely moving point in free space,

which can cast a beam (also called a ”flashlight”) in any direction. An

evader is considered caught if he is directly hit by the beam. The authors

2.1. RELATED WORK 13

(a) (b) (c) (d)

Figure 2.2: (a) 1-searcher (b) 3-searcher (c) ∞-searcher (d) φ-searcher

introduced a number of k-searchers, where k is the number of beams, which

a pursuer can emit (see figure 2.2 (a) and (b) for examples). The beams are

not range limited (but are blocked by obstacles) and do not take any errors or

range limitations into account. A special case is the ∞-searcher whose vision

is only blocked by obstacles and can see in every direction at once (see figure

2.2 (c)). Guibas et al. [GLL+99] proved in 1999 that establishing the number

of ∞-searchers for a given environment is NP-hard. A recent definition, the

φ-searcher, was added by Gerkey, Thrun and Gordon [GTG04]. It is strongly

inspired by the sensor geometry of many modern robots and limits the field

of view as an arc (see figure 2.2 (d)). The robot can detect any object inside

the arc, regardless of range but cannot detect anything outside of his field of

view. Computing the number of φ-searchers to clear a given environment is

also proven to be NP-hard [GTG04].

2.1.4 Probabilistic Robotics

Hespanha et al [HKS99][HPS00] suggested a probabilistic framework to ad-

dress the problem of searching a closed space with a group of robots. In this

framework, the complete system is described as a combination of a number

or random variables, representing the states of the environment as the state

of the intruder as well as the state of the pursuers. The framework allows

sensor error and is also able to map the environment while searching for

the intruder. For the sake of simplicity the problem of localization error is

excluded. The strategy for the pursuing groups is called a policy and the au-

thors give a greedy policy which is also shown in experiments to successfully

14 CHAPTER 2. FUNDAMENTALS

catch an intruder in short time. The authors also prove, that under some

assumptions about the problem, the probability of finding an intruder can

be raised to any value 1− ε in a limited time frame(ε > 0).

While we agree with most of the assumptions, we disagree with the de-

mand, that the probability of an evader being in a cell should not decay more

than a certain amount unless a pursuer reaches this cell. This assumption is

incompatible with all but the simplest Markovian motion models and would

especially exclude intelligent evasion. Accordingly, the authors use a a simple

Markovian motion model for the evader with equal transition probabilities

to all adjacent cells. We will discuss in chapter 3 in more details, why we

think that these models are unsuitable for realistic human motion.

An expansion to this work was done by Vidal et al [VSK+02], who also

describe an actual system, based on unmanned aerial and ground vehicles.

The idea is to use the aerial vehicles (in this case small helicopters) for a fast

coverage of the environment and to lead the ground vehicles to the searched

target. Their framework is almost the same as the one described above

and two greedy policies are discussed for catching the intruder. The idea of

intelligent evasion is shortly raised but not discussed in detail, experiments

are based on a simple Markovian model, as described above.

Bourgould et al [BFDW03][BFDW04] devised a similar model, which

mainly focuses on the probability density function of a lost target. The

target in mind is considered as drifting on the open sea and is therefore a

non evading target with no own intentions and no reactions to the search it-

self. The emphasis of the work is how the probability density function evolves

over time and how this density function can be efficiently manipulated and

stored. With the idea of a floating target in mind, the density function is

basically a convolution operation, but the authors identify a number of ex-

ternal constraints (such as obstacles and currents) which leads to realistic

density distributions. Similar to the last discussed system, they design a

greedy algorithm, which distributes a group of searchers (in their case small

airplanes) over the search space, which maximizes the chance of finding the

target in the next time step of the planning system.

2.1. RELATED WORK 15

2.1.5 Game Theory

Figure 2.3: Example of a Homicidal Chauffeur Game. Evader starts at E0,
Pursuer at P0. A naive pursuer would turn right and therefore allow the
evader to enter the minimal curvature radius and evade capture. The ideal
strategy for both parties is shown with thick lines, the pursuer has to reach
some distance before turning toward the evader.

The term pursuit-evasion game is also often found in the context of clas-

sical game theory [Isa65][Haj75][BO99]. In this context pursuit-evasion is

considered as a differential game between two players, where the interests of

both players are diametrically opposed. A typical example of such a game is

the Homicidal Chauffeur Problem (see figure 2.3), which was first introduced

by Isaacs [Isa65]. In this game one player (the chauffeur), who is able to

move fast but is limited in maneuverability, tries to overrun the other player

(the runner) who is slower but has a higher maneuverability. The game can

16 CHAPTER 2. FUNDAMENTALS

be described by a small number of nonholonomic constraints, which limit

turning radius and speed. Naturally, the question arises what strategies for

the players lead to an inevitable collision. Since an important direction of

Isaacs’ Book was on the application of differential games in military strat-

egy, the canonical application was found in algorithms for the interception

of missiles. Other applications of pursuit-evasion were studied in the context

of air traffic control [BO99] and tracking [Haj75].

There are two main differences between this field of research and our

work. First, the field usually deals mostly with problems formulated in free

space, geometric constraints are usually not considered. Second, most of

these games are formulated as games with complete (sometimes even perfect)

information. Roughly speaking, one can say, that game theory usually tries

to solve the problem, how to move to catch an evader, of whom one exactly

knows the position, while this work is about the question, how to move to

catch an evader whose position is unknown.

2.2 Multi Robot Exploration

Exploring an unknown environment is a fundamental problem of modern

robotics in general and also in the discussed problem of intruder searching. In

order to generate plans for robots and to estimate a yet undetected intruder’s

position, one usually needs a model of the environment. When no ad-hoc

model is given, which is often the case, the robots have to aquire the model

on their own, prior to the task of intruder searching. Some authors [HKS99]

suggest to do both tasks simultaneously, but we think this to be vulnerable to

local optima as well as unnecessary, since the time spent to do the exploration

is often insignificant to the time spent searching afterwards. We will first

briefly discuss the issue of single robot exploration and then introduce the

extension to multi-robot exploration.

Parts of this work have already been published on international confer-

ences and journals, for reference see [BMF+00][SAB+00][BMS02][BMSS05].

2.2. MULTI ROBOT EXPLORATION 17

2.2.1 Single Robot Exploration

Due to the fundamental nature of the problem, single robot exploration has

been the focus of intensive research in the past [DJMW91][Thr93][EvP94][YSA99].

The key question in exploration is, which path a robot should move to min-

imize the time to completely explore the environment. Unfortunately, this

problem is already NP-hard for the case of known, graph-like environments,

since it can be directly mapped to the well known Traveling Salesperson

Problem (TSP). But even if an efficient solution for the TSP Problem would

exist, there would still be the problem of generating paths for an, at the time

of planning, still unknown environment.

Frontier Based Exploration

Figure 2.4: Example of a frontier. Frontier cells are drawn hatched.

A simple, but nonetheless efficient solution for this problem is a technique

known as Frontier Based Exploration. In this case, the robot marks, depend-

ing on the used environment model, the areas between known and unknown

space. In case of grid maps, all empty cells with a neighboring unexplored

18 CHAPTER 2. FUNDAMENTALS

cells are marked as frontier cells 1 (figure 2.4). The idea is that the robot can

always generate a plan to reach a specific frontier cell and would, once he

reaches the frontier, allow its sensors to expand the known space. It is easy

to see, that if the environment is closed, this strategy leads to a complete

exploration. While completeness is surely the main goal, the strategy also

has to be efficient. Naturally, the sequence of frontier cells to explore greatly

affect the total time needed for the exploration. After every expansion of the

known space, the robot has to decide which frontier to explore next. A good

solution for the decision problem was found by defining costs and utilities for

all cells and choose the cell with the best tradeoff to be the next target. Util-

ity is defined as the expected information gain at a cell, in this case frontier

cells get an utility assignment of 1 and all non-frontier cells get 0 as assigned

value. Costs can be calculated by a simple MDP planner. Value iteration,

a well known dynamic programming algorithm, is usually used to solve this

problem.

Utility and cost iteration

For the special case of single robot exploration, there is a simple technique to

save calculation time and make the whole implementation simpler. Instead

of calculating the cost of every cell and then calculate the tradeoff, one can

also extend the definition of utility to already include the costs. Therefore

the definition of utility has to be slighty extended. While the frontier cells

still represent the information gain and are set to 1, the non-frontier cells

represent the tradeoff between the utility of the next frontier and the costs for

reaching it. The first technique (cost calculation) resembles the single-source-

shortest-path problem. The alternative is calculating a ”multiple-target-

shortest-path” problem. In case of single robot exploration, the calculation

time is almost the same, while the solution based on the iteration of utility

can better cope with nondeterministic robot movement. An example of both

1It shall be noted that the definition of a frontier is often seen in two different forms.
One possibility is to define a frontier cell as a known, reachable cell with a neighboring
unknown cell. The second possibility is to define frontier cell as any known cell with a
neighboring unknown cell, skipping the test for reachability. In practice, both definitions
lead to the same results, since an unreachable frontier cell has always higher costs than a
reachable one.

2.2. MULTI ROBOT EXPLORATION 19

Figure 2.5: Costs and utility in a single robot exploration situation. Left:
Cost map, white color denotes low costs, darker color stands for higher costs.
Right: Utility map, white denotes high utility, darker color stands for lower
utility.

techniques with the same starting situation can be seen in figure 2.5. In the

left part, one can see the robot in the map and the calculated costs. The

solution is naturally the frontier cell with the lowest costs and a path can

be calculated by steepest ascent from this cell to the robots position. This

path is suitable as long, as the robot does not leave this path. In the right

part, one can see the same situation based on iteration of utility. In this

case, the best solution is still the same, but the calculation of an explicit

path is not needed, since every cell has a policy (move to the neighboring

cell with the highest utility). This offers the advantage, that even if the robot

deviates from a planned movement, the best solution where to go from the

new position is already calculated, a recalculation of utility is only needed

once a frontier has been reached. For the case of single robot exploration,

the utility iteration is, due to the nondeterministic nature of robot motion,

the better choice.

2.2.2 Collaborative Exploration

The speed of Single Robot Exploration is naturally bounded by the abilities

of the used robot, for example the sensor range and the physical limits of

its drive. Even if the exploration path is almost optimal, exploring a large

environment can be a very slow process. One way to increase the speed of

the exploration process is the use of multiple robots. Since the main goal of

20 CHAPTER 2. FUNDAMENTALS

this work is a multi-robot-security system, the use of multiple robots is self-

evident in this context. When multiple robots have to accomplish a common

task, one question of central importance is how the group should be coordi-

nated. This raises the question to what extent the performance of a system

is improved by applying coordination and if the application of a coordina-

tion scheme is justified, given that it also produces some overhead in terms

of calculation time and hardware. While many coordination schemes are

imaginable, we would like to base the system upon the already proven Single

Robot Exploration algorithm, which also gives fair comparison between an

uncoordinated and a coordinated system.

Implicit Coordination

When developing an algorithm for coordinated multi-robot exploration, it

is reasonable to evaluate a multi-robot exploration system without applying

coordination or at least without applying an explicit coordination scheme.

Before doing so, we have to clarify what we mean, when we speak of an

uncoordinated system. A totally uncoordinated multi-robot system would

be one, in which no information is shared at all. Since the robots have no

means to know what part of the map has already been explored by others,

the use of multiple robots for the task is completely superfluous, since the

chances of outperforming a Single Robot System are minimal, especially since

the presence of the other robots can usually only deteriorate the outcome.

Therefore we allow the robots to exchange their position and map informa-

tion per broadcast, so that this information is always common knowledge for

the whole group. Apart from this, no communication takes place between the

robots. Robots therefore maximize their own utility by going to the nearest

frontier, but will not go after frontiers already explored earlier by any robot.

We call this form of coordination either implicit coordination, since some co-

ordination takes place through the exchange of map information, or simply

uncoordinated. Such a system for multi-robot exploration was first proposed

by Yamauchi [Yam98]. We conducted some experiments with such a sys-

tem, with different group sizes, ranging from 2 to 20. An example of such

an experiment, in this case with a group of 2 robots, can be seen in figure

2.6. Judging from these experiments, two observations of the performance

2.2. MULTI ROBOT EXPLORATION 21

Figure 2.6: Example Experiment of implicit coordination.

can be made: Firstly, the time needed for exploration is indeed decreasing

with the number of used robots. For the case of 2 robots, the group can do

the task in almost half of the time that a single robot needed. Secondly, the

speedup itself is decreasing with the number of robots. We also observed a

certain behavior, which is (as we will see later) specific to implicit coordina-

tion. The robots sometimes tend to walk in a single file. This behavior is

strongly increasing towards the end of the exploration and in the case when

larger groups are used.

It is easy to see, that this behavior leads to suboptimal behavior, since the

robot who goes first does the actual exploration of the frontier, while the

other robots in the line just follow him and contribute almost nothing to the

task. Because this behavior is seen more often in larger groups, the speedup

naturally decreases.

22 CHAPTER 2. FUNDAMENTALS

Explicit Coordination

One way to overcome the above mentioned limitations is the implementa-

tion of an explicit coordination scheme. Instead of letting each robot choose

its own target, a central coordinator is introduced, which collects the same

information as the robots and assigns all robots specific, individual targets.

Effects like single file walking can be avoided. Instead of maximizing the

utility/cost ratio for a single robot, the coordinator tries to maximize the

utility/cost ratio for the whole group. To accomplish this goal, we have to

redefine the utility of exploring a frontier. As we have seen in the last sub-

section, reaching a frontier, that another robot has reached before does not

provide any utility at all. In contrast to the single robot case, the utility of

a frontier cell is not constant until it is reached, it depends on the assign-

ment of the other robots to the frontiers. Roughly speaking, this leads to

a bipartite matching problem, where every assignment reduces the value of

other assignments.

Let ai be the coordinates of the assignment for the i.th robot and let U(ai)

be the a priori utility of the assigned coordinates. Also let Ci(ai) be the

calculated costs for the i.th robot to reach these coordinates. To estimate

these reductions of utility, we introduce a suitable discount function f , which

is an estimation of the range in which new information is gained at a goal

point. This function is an estimator, how likely it is that a certain location

is visible from a goal point. Given this function, we can define the overall

utility of an assignment as: 2

Uoverall(a
1, ..., a|R|) =

∑
r∈{1...R}

U(ar) ·
∏

s∈{1...R}\{r}

(1− f(||ar, as||2)

− α · Cr(ar)

(2.1)

Maximizing this function over the goal-assignments a1,, a|R| would lead to

an optimal assignment for the next time step. Unfortunately, this assignment

is very difficult to compute. In contrast to the well understood bipartite max-

imum weight matching problem (which can be solved in polynomial time), a

single assignment can change the gained utility of every other priorily made

2For an explanation if the parameter α, see subsection 2.2.2

2.2. MULTI ROBOT EXPLORATION 23

assignment, which makes the problem far more difficult. At this point it is

unknown if an optimal solution can be found in polynomial time.

To solve this problem, we developed a greedy algorithm, which proves to be

working fine in practice.

The idea is to greedily find assignments for robots one at a time and then

de-counting the utility of a region after such an assignment is made, so that

future decisions depend on already made assignments. This idea leads to the

question which robot should be assigned first. The first approach of assign-

ing the robots in a fixed order (robot #1 before robot #2 before robot#3....)

proved to be unsuitable, since it produced some bad side effects, such as

robots from farther away but with a lower number ”stealing” away good tar-

gets of other robots. The second approach was to assign the robots in the

order of the best match in terms of utility and costs. The score of such a

match is the difference between the utility and costs of reaching a certain

frontier cell.

This leads to the complete coordination algorithm:

1. Determine the set of frontier cells G.

2. Compute for each robot i the costs (Ci(g)) for reaching every cell g ∈
G.

3. Set the utility U(g) of every frontier cell g to 1.

4. While there is one robot without a target point:

(a) Determine a robot i and a frontier cell g, which satisfy:

< i, g >= argmax<i′,g′>U(g′)− α · Ci′(g′)

(b) Add < i, g > to the assignment.

(c) Reduce the utility of every frontier cell g’ according to:

U(g′) = U(g′) ∗ (1− f(||g, g′||2))

Target point Selection Algorithm

24 CHAPTER 2. FUNDAMENTALS

The parameter α

Both, the algorithm, as formula (2.1) use the parameter α, which is used to

adapt the unit space of the costs (which is usually given in terms of time or

distance) to the space of utility (which is usually without any unit). Giving

a concrete value for α is difficult and naturally depends on the unit of the

costs. In our implementation, using a robot, which can travel the distance of

its own sensor range in roughly ten seconds, an alpha value of 0.1 proved to

be suitable. Lager values give more weight to finding frontiers close to the

robots, while smaller values put more weight on the distribution.

Example Situation

(a) (b)

(c) (d)

Figure 2.7: Example Situation at the beginning of an exploration experiment:
(a) The situation seen from the simulator. Laser Beams are shown in cyan.
(b) The map part acquired at the beginning. (c) The same map clipped and
convolved. (d) The extracted frontier.

Let us give an example situation, which illustrates the different behavior.

The situation is shown in figure 2.7(a) and shows a typical situation at the

2.2. MULTI ROBOT EXPLORATION 25

beginning of an exploration. Three robots have taken initial scans and fused

their data to build the map as shown in figure 2.7(b). The map is clipped

and convolved to cope with nondeterministic robot movement, resulting in

the map in figure 2.7(c). The initial frontiers are extracted as shown in figure

2.7(d). The next step is to calculate the costs for all three robots to reach

(a) (b) (c)

Figure 2.8: Cost functions for the three robots

any target. This is shown in figure 2.8. Until now, there is no difference

between implicit and explicit coordination. Implicit coordination would now

choose independently for every robot the cell with the best utility/cost ratio

and make for every robot its best assignment. In this case this leads for

every robot to the same assignment (figure 2.10(a)). In case of explicit coor-

dination, the algorithm chooses the robot with the best overall utility/cost

ratio. In this case, the robot on the lower left is chosen and its target point

is assigned. Contrarily to implicit coordination, the utility for the frontier

cells is changed. This can be seen in figure 2.9. In part (a), the basic utility

for all frontier cells is the same. In part (b), the utility of the area around

the target of the first robot gets reduced. Based on this new utility values,

the algorithm chooses the robot with the highest utility/cost tradeoff.

This leads to the assignment of the lower right robot to a target on the

other side of the area (see figure 2.10(b)). The utility around the target is

reduced again and the last robot can be assigned to its target. For the sake

of completeness, the final utility map is shown in figure 2.9(d), but is no

longer needed for any assignment. The result of the algorithm can be seen

in 2.10(b).

This example shows that the algorithm is able to divide the robots over the

frontiers. The result of a complete experiment is shown in figure 2.11. By

comparing the experiment shown in figure 2.6 with the one in figure 2.11,

26 CHAPTER 2. FUNDAMENTALS

(a) (b)

(c) (d)

Figure 2.9: Changes of utility during the coordination algorithm: (a) Initial
utility, where every frontier cell gets a high utility value (painted in black)
assigned. (b) Utility after the assignment of the first robot. (c) Utility after
the assignment of the second robot. (d) Utility after the assignment of the
third robot.

Figure 2.10: Robots and targets at the beginning of an exploration experi-
ment: (a) Uncoordinated Behavior. (b) Coordinated Behavior.

one can easily see the superiority of explicit coordination.

2.2. MULTI ROBOT EXPLORATION 27

Figure 2.11: Example Experiment of explicit coordination.

Adaptive Behavior

In the next to last subsection we introduced a suitable function f to reduce

the utility around a robot’s target. This function is an approximation of

the probability that the sensor measures at least the given distance, which is

the cumulative distribution function of the sensor measurements during an

experiment.

This function is strongly dependent on the environment to explore, for ex-

ample in an environment consisting of many small passages and small rooms,

the probability for measuring at least 5m at a random location is very small,

while in an environment consisting of large hallways the same probability at

a random location would be much higher. See figure 2.12 for some functions

of different environments.

Since the environment is unknown before the exploration, it has to be ac-

quired during the experiment, so that the robots adapt their exploration to

the environment. Fortunately, the statistically learned function usually con-

28 CHAPTER 2. FUNDAMENTALS

(a) (b) (c) (d)

Figure 2.12: Expected Distance functions for different environments.

verges at an early stage of the exploration to the correct function. The left

part of figure 2.13 shows the laser statistic during a typical exploration run,

while the right part shows a probability function based on this data as well

as the function calculated on the full environment. As one can see, both

functions are already very similar.

Goalpoint Exchange

As stated before, the coordination scheme is based upon a greedy strategy,

since the optimal solution for equation 2.1 is difficult to compute. In some

rare cases, this can lead to a situation, that the decision of one robot forces

a very bad decision for another. In these seldom cases, the utility for the

system can be increased if both robots exchange their goal points after the

target selection algorithm is complete.

Complexity

The complexity of the algorithm consists of three parts. Let us define n as

the number of cells and the number of robots as r.

• The determination of the frontier cells can be done by applying a 3x3

kernel over the map, which identifies a frontier cell if a cell has the

state ”UNEXPLORED” and has an already explored neighbor. The

complexity is therefore 9 · n, which can be stated as O(n).

2.2. MULTI ROBOT EXPLORATION 29

(a) (b)

Figure 2.13: (a) Statistics over Laser-Range-Data acquired during an explo-
ration experiment. (b) Probability function of measuring at least the given
range. The thin, green line represents the function for the complete map,
the fat, red line shows the function derived from the statistics shown in (a).

• Calculating the costs to reach a cell has to be done for all robots r.

Since we use a deterministic version of an MDP, the planning can be

done by an implementation of Dijkstra’s algorithm. Because the edge

structure of the map is sparse, the complexity is within O(n · log(n))

for every execution of Dijkstra’s algorithm. Therefore the calculation

of all costs is within O(r · n · log(n)).

• Calculating the robot and cell with the best utility/cost ratio can be

done by simply checking every combination, which takes r · n compar-

isons. After the assignment, the utility map has to be changed accord-

ingly. In the worst case, depending on the sensor range, this takes n

calculations. Since r robots have to be assigned this way, the complex-

ity for the complete assignment is therefore within O(r · ((r · n) + n))

= O(r2 · n).

The whole complexity of the planning algorithm is therefore within

O(r · n · log(n) + r2n).

30 CHAPTER 2. FUNDAMENTALS

Speedup

After introducing the idea of multi robot exploration, we were interested in

the question: How much performance can be gained by applying an explicit

coordination scheme ? This also includes an answer to the question: How

much speedup can generally be gained by the use of multiple robots ? This

question can not be answered for the general case, since the environment

to be explored can be suited or unsuited for parallelism. For example an

x-shaped environment with the robots starting in the middle is ideally suited

for parallel exploration by 4 robots, while a long and narrow corridor with the

starting point at one side of the corridor is completely unsuited for any kind

of parallel exploration. While exact derivation is impossible, we did a number

of experiments with different maps, which we consider typical indoor envi-

ronments. Each experiment was a complete exploration of the environment

and the total time needed was measured for comparison. Starting points

were chosen at random, but for the case of multiple robot exploration, the

group started at a joint location.

Results of these experiments are shown in figures 2.14,2.15 and 2.16 for

three example environments. On the left side of the figures, the used map is

shown, while on the right side, the results are plotted. The results themselves

show the average time needed until the exploration is completed, given a

group size and a coordination scheme.

From these experiments, one can make a number of observations:

• In all three tested environments, the time needed for exploration can

be strongly reduced by the use of multiple robots.

• The use of an explicit coordination scheme always leads to a system

which significantly outperforms an implicit coordinated system of the

same size.

• The increase in performance itself is reduced with every additional

robot. Depending on coordination scheme and map, a saturation point

is reached with a certain team size, where additional robots only offer

minimal increases in the system’s performance.

2.2. MULTI ROBOT EXPLORATION 31

Figure 2.14: Exploration times using different group sizes and techniques.
Blue: Theoretical system using perfect parallelism (comparison purpose).
Pink: Explicit coordination scheme with goal point exchange. Red: Explicit
coordination scheme without goal point exchange. Green: Implicit coordi-
nation.

While the first two observations justify the use of an explicit coordination

scheme for multi robot exploration, the third observation is especially inter-

esting in regard to later chapters in this work. We found that for almost

all environments we used during this work, the number of robots at the sat-

uration point is strongly correlated with the number of robots needed, if a

complete sweep of the environment is required. We will come back to this

observation at the end of chapter 5.

32 CHAPTER 2. FUNDAMENTALS

Figure 2.15: Exploration times using different group sizes and techniques.
Blue: Theoretical system using perfect parallelism (comparison purpose).
Pink: Explicit coordination scheme with goal point exchange. Red: Explicit
coordination scheme without goal point exchange. Green: Implicit coordi-
nation. different group sizes and techniques.

2.2. MULTI ROBOT EXPLORATION 33

Figure 2.16: Exploration times using different group sizes and techniques.
Blue: Theoretical system using perfect parallelism (comparison purpose).
Pink: Explicit coordination scheme with goal point exchange. Red: Explicit
coordination scheme without goal point exchange. Green: Implicit coordi-
nation. different group sizes and techniques.

34 CHAPTER 2. FUNDAMENTALS

Chapter 3

Human & Sensor Models

3.1 Modeling Intruders

When building a probabilistic system to look for intruders, one often has to

build a model of the intruder itself. This model has to satisfy a number of

constraints:

• It should model a real human intruder adequately.

• It should be simple enough to allow an on-line simulation.

• It should be complex enough, that it is able to cope for uncommon

behavior of intruders.

One way to deal with these three points is to model the intruder using Hid-

den Markov Models (HMM), which allows us to simulate intruders in time,

even without new sensor input. The most common methods for computing

such models are grids on the one hand and particle based filters on the other.

The interaction between the intruder and the pursuers can be broken down

to two main aspects. The first is an intruder entering the field of view of a

searching robot. Naturally there is a chance for the intruder to be detected.

When no detection occurs, the probability for the intruder being at that

point is reduced. This aspect will be discussed in details in section 3.2. The

second aspect is an intruder noticing a searching robot and actively starting

36 CHAPTER 3. HUMAN & SENSOR MODELS

to evade him, which is described in Section 3.1.2.

While there are many possibilities to build models of human intruders,

we can classify the models in three classes, corresponding to their knowledge

of the pursuers.

3.1.1 Intruders without awareness

The first class, which is often found in the literature [HKS99], leads to models

of intruders not even aware of the fact, that they are pursued. These models

have the advantage, that they lack a reactive component and are independent

of the pursuers’ motions.

(a) (b) (c)

Figure 3.1: Distribution of an intruder starting in a known point using Brow-
nian Motion: (a) After 100 Time Steps. (b) After 1000 Time Steps. (c) After
10.000 Time Steps. Lighter Colors show higher probability values.

Brownian Motion

Perhaps the most simple model is Brownian Motion, which is also often re-

ferred as a Wiener Process. Brownian Motion can be computed with grid cells

as well as with particle filters archieving similar results. The naive approach

would use grid cells, divide the whole configuration space of the intruder into

even-sized grid-cells and assign to every grid-cell a variable containing the

probability of an intruder being in this cell. If we know the intruder’s initial

3.1. MODELING INTRUDERS 37

(a) (b)

(c)

Figure 3.2: Distribution of an intruder starting in a known point using Brow-
nian Motion as a 3D Plot: (a) After 100 Time Steps. (b) After 1000 Time
Steps. (c) After 10.000 Time Steps.

position, the grid cell containing this position would start with a probability

of 1. After one move of the intruder, the distribution would be an Gaussian

distribution around the first cell. But since the cells don’t contain any infor-

mation where the intruder came from, the second move would also compute

a high probability for the intruder going back to the initial cell. While being

easy to compute, the approach is too simple to provide a realistic human

motion model. In fact the probability of an intruder moving down a floor of

100 cells in 100 time steps would be absolutely insignificant compared to the

probability of an intruder still being at the initial position. The so modeled

intruder would be a person who changes his mind where to walk several times

a second. A simulation of such a behavior can be seen in figures 3.1 and 3.2,

38 CHAPTER 3. HUMAN & SENSOR MODELS

where the distribution is plotted for 100, 1000 and 10.000 time steps.

As one can see, the distribution is far from realistic, in fact the distribution

is a slowly flattening Gaussian distribution with its peak at the starting point.

Figure 3.3: Distribution of an intruder starting in a known point using simple
random walk in an open hallway. Left: Intruder distribution after 1000 time
steps. Right: Intruder distribution after 2500 time steps.

Figure 3.4: Distribution of an intruder starting in a known point using simple
random walk in a map with small doors. Left: Intruder distribution after
1000 time steps. Right: Intruder distribution after 2500 time steps.

Brownian motion with a drift

An extension of the simple Brownian Motion is the incorporation of a drift.

This is often referred as simple random walk. A person or intruder walks

3.1. MODELING INTRUDERS 39

at a fixed speed, until he reaches a wall, where he changes his direction to

a random new direction. This technique is best implemented with particle

filters. While this leads to quite realistic distributions in maps with large

halls and wide passage ways (see figure 3.3 for an example), it becomes

unreasonable when a map contains small bottlenecks, such as small doors. A

simulation example can be seen in figure 3.4. As one can see, even after 2500

time steps the main part of the distribution is still in the room, where the

intruder started, which would be highly unlikely for a person (when directly

comparing the figures, please take into account that the hallway is about 4

times the size of the office floor).

Improved random walks with intentions

A logical extension to cope with this problem is to give a person not only a

travel direction, but also an intention of reaching a certain point in space.

This could be done by enlarging the state-space by multiplying it with in-

tentions, so that every cell would not only contain the probability of the

intruder being in it, but also a distribution over the intruder’s intentions.

Unfortunately, calculating the complete state space from time step to time

step is intractable for real time simulation.

Particle filters[IB96][GSS93] on the other hand can adopt to human inten-

tions in a straightforward and efficient way, also they adjust to the available

computing power. A particle in this context is a hypothesis about the posi-

tion of an intruder as well as the intention of reaching a certain target. In

our work, we use particle filters with up to 10.000 samples. The particles

are simulated over time, traveling through the configuration space of the in-

truder and are also able to react to the searching robots (what we will discuss

in the next section). When a particle reaches its target (a certain point in

space), it chooses a new one and starts over. Together all particles represent

a distribution of the modeled intruder over the state space. So each particle

gets a probability variable assigned, which is basically 1 divided through the

total number of particles (1
n
). An example of such a filter can be seen in

figure 3.5. All samples start at the same point (a) and start to distribute

over the space. After a short time interval, the system reaches a stable state

(e). While the particles shown in this point can give a fairly good idea of

40 CHAPTER 3. HUMAN & SENSOR MODELS

(a) (b)

(c) (d)

(e)

Figure 3.5: Distribution of Intruder with a particle filter

the underlying probability distribution in terms of quality, the order of mag-

nitude in different regions is often difficult to see. We therefore projected

the particles with a smoothing filter on a grid to get a better image of the

probability density function, which can be seen in figure 3.6. As one can see,

the resulting distribution is far more realistic than the ones acquired with

Brownian motion/random walk.

3.1. MODELING INTRUDERS 41

Figure 3.6: Probability Density Function of an intruder with intentions.

Improved Markov Models

While the model from the last section leads to quite realistic distributions

in the absence of pursuers, things become more difficult when pursuers are

incorporated which change the distribution through the use of sensors. Es-

pecially when the number of pursuers is relatively high in proportion to the

size of the configuration space of the intruder, the pursuers’ sensor measure-

ments lead to large shifts in the distribution. As a result, the distribution

becomes more and more unrealistic which results from the strong reduction

of the effective sample population. This will be discussed in more details in

section 3.2. As a result the number of samples would have to be raised to

a much larger amount, rendering the problem intractable to be calculated

online. Therefore we introduce another Markov Model, which is based on a

finite number of states and requires a constant calculation time per time step.

We divide the space into a grid of equal-sizes cells and divide each cell further

into 9 possible movement directions (consisting of 8 basic directions and one

which represents no movement). At first hand this looks like a contradiction

to the next-to-last section, where we showed, that a model based on Brow-

nian Motion with a drift does not lead to realistic distributions. This came

from the fact, that in that context, the model was too simple in its transition

function, which was only dependent on local geometry. In the new model

42 CHAPTER 3. HUMAN & SENSOR MODELS

introduced here, we will use a transition function, which is derived from the

full space configuration. For example, consider the map on the left part of

(a) (b)

Figure 3.7: (a) Example world geometry. (b) Simple Markov Model.

figure 3.7. Now consider the grey cells, which are labeled with the letter A

and B. In the simple Brownian Motion model, the cells from A and B use

roughly the same transition function, which is mainly a random distribution

to all neighboring cells (see right part of figure 3.7). A human on the other

hand would, when standing in one of the cells of Block A, move with a high

probability to the right (in direction of the door) and only with a very low

probability to the left (given no ad hoc knowledge of the prior direction).

A human standing in Block B would prefer to go to the left and would just

in very unlikely cases walk to the right. This is due to the fact, that the

human’s motion intentions as modeled before is highly dependent on global

geometry instead of local geometry. This can also be seen easily when one

imagines the door between A and B closed, which would strongly reduce the

desire in Block A to go to the right.

Resulting from these observations we conclude that the transition functions

of different cells have also to be different from each other. The remaining

question is how to find transition functions which leads to a plausible human

3.1. MODELING INTRUDERS 43

model. A simple solution would be to learn such transitions from obser-

vations. Unfortunately this would require more data, than can usually be

acquired. Another solution is to use an already working model for learning

the transitions. In the last section we used a sample based model, which

lead to realistic distributions if the number of samples was sufficient. We can

use this model to learn the needed transition model. Therefore, we simulate

one sample about a very long time (letting it travel to more than 10 million

random targets) and generate for every sub cell a statistic. An example for

such a learned statistic can be seen in figure 3.8.

Please note that the here proposed model is deterministic, meaning a human

Figure 3.8: Transitions of the Improved Markov Model: Stronger lines mean
a larger transition probability

with the intention of moving to the neighboring cell will always be in this cell

after one time step. He might change his direction there, so every one of the

9 sub cells in the new cell can be his target. In a nondeterministic approach

the statistic must also incorporate nondeterministic motions, resulting in 83

successors instead of 9.

Figure 3.9 shows simulation results of the so learned model. In this example

44 CHAPTER 3. HUMAN & SENSOR MODELS

the discretization is set to cells of 1m x 1m, which corresponds to roughly

8000 cells. The current implementation allows in this scenario the simulation

of up to 500 Time Steps in one second on a modern PC (Intel Pentium IV/3

GHz), therefore calculation time is almost negligible. As one can see, the

results strongly resemble the distributions generated by the particle based

model, in fact if we increase the number of particles, the resemblance gets

stronger.

(a)

(b)

(c) (d)

Figure 3.9: Improved Markov Model over time. (a) After 10 Timesteps (b)
After 25 Timesteps (c) After 50 Timesteps (d) After 100 Timesteps

The so proposed model offers two advantages: It doesn’t suffer from the effect

of effective sample size depletion as the one from the last section and it can

be calculated online in a limited and constant time frame.

3.1.2 Intruders with awareness

The second class of motion models proposes an intruder with limited knowl-

edge of the pursuers’ position and tries, according to the pursuit evasion

paradigm, to avoid detection. The model has to balance between the in-

truder’s behavior to reach its goal (again a certain position in space) and the

3.1. MODELING INTRUDERS 45

behavior to evade the pursuers. Therefore, the intruder reacts to the pur-

suers’ position, when it enters a certain range to the pursuer. Normally, this

range should be bigger than the sensor range of the robot (One can think of

an intruder which can hear a robot in a certain distance and starts running

in the opposite direction to avoid detection). While the implementation us-

ing particle filters can be done in a straightforward fashion, the complexity

of such a behavior is beyond the capabilities of the simple and improved

Markov Models. This is taken from the fact that even the improved Markov

Model presumes intruders with a very limited memory (in fact the memory

is reduced to the direction of travel). An intruder who evades a pursuer

and after that re-adopts its old target must at least know its target before

the evasive maneuver. The particle filter implementation can do this by re-

membering its target, evading the pursuer and, after leaving the area of the

pursuer re-planning its path to the target. An example of the particle filter

implementation can be seen in figure 3.10. As can be seen, the intruders

avoid the robots in a way, that a single robot could block the whole corridor,

so that no intruder could reach the empty part of the space, which is realistic

for an intruder who is actively avoiding detection.

3.1.3 Intruders with perfect knowledge

The last class proposes an intruder, which not only knows the position of the
pursuers, but also knows the pursuers’ trajectories in the future. While this
sounds unrealistic at first, it leads to worst case estimations of the pursuers’
performance.
Pursuer algorithms based on the first and second model can lead to good
performance on the average, but can fail when an intruder is smart enough
to estimate the pursuers’ behavior. Suppose a situation like in figure 3.11.
A pursuer drives in circles around the pillar in the middle. We assume that
intruder and pursuer have the same maximum speed. An intruder without
or with limited awareness would be caught by the robot eventually, while an
intruder with knowledge of the pursuer’s behavior could outmaneuver him
forever. A model based on this should lead to the result, that one robot could
never catch the intruder in the scenario and that two robots are needed to
achieve the goal.

46 CHAPTER 3. HUMAN & SENSOR MODELS

(a) (b)

(c)

Figure 3.10: (a): Distribution of the intruder in presence of one robot and
with awareness. (b): Distribution of the intruder in presence of two robots
without awareness. (c): Distribution of the intruder in presence of two robots
with awareness.

To achieve this, we change the modeling principle from scratch. In the pre-
vious section we modeled a distribution of one intruder over the full config-
uration space. Now we will model the probability of a grid cell, that a yet
undetected intruder could be in it or not. While in the previous model the
probability of an intruder being at a certain point in space always depended
on the probability of all other cells, in this approach the probability values
are mostly independent. For example, if the probability of one cell, that a
yet undetected intruder could be in it, is reduced, this reduction does not af-
fect the neighboring cell, at least not directly. The only dependency between
two adjacent cells is that if the distributions are propagated over time, the
probability value of a cell at time t depends on the values of the neighboring
cells at time t−1. Therefore time is discretized in (short) time steps and the

3.1. MODELING INTRUDERS 47

Figure 3.11: Example Situation

probability values can be updated by this formula:

P (Ct
cellx) = max

{
P (Ct−1

celly
) : dist(cellx, celly) ≤ c

}
(3.1)

Here, c is the maximum distance the intruder can move within one time step.

It is important to note that we assume a closed world in this formula.

The only explanation for an intruder being in a cell is, that he has either been

in this cell before or has been in one of the neighboring cells at the last time

step. A simulation of the model can be seen in figure 3.12. At time step 0

(start), we know for every cell that the probability of an undetected intruder

being in this cell is very low (drawn in dark grey / green) with the exception

of one cell, (in the second room on the lower side), where the probability is

set to a high value (drawn in light gray / pink). c is set to 1, so an intruder

can cross exactly one cell per time step. After 6 time steps, the area, where

an undetected intruder could be, has increased, after 15 time steps, the area

already covers part of the main corridor. After 100 time steps, the intruder

could be anywhere. This form of expanding behavior is sometimes referred as

a contamination model. It should be noted that contamination is normally

discussed as a binary attribute, however in this context contamination can

48 CHAPTER 3. HUMAN & SENSOR MODELS

be any value between 0 and 1, so following the definition of chapter 1, the

correct term has to be contamination level model.

(a) (b) (c)

(d) (d)

Figure 3.12: Contamination Model over time. (a) Start (b) After 6 Timesteps
(c) After 15 Timesteps (d) After 50 Timesteps (e) After 100 Timesteps

3.2 Sensors

3.2.1 Sensor Models

To update the probability of the intruder models, a sensor model is needed

to update the distributions. In our work, we will limit our research to the

case of radial sensors with a full field of view, which are often referred as

∞−Searchers in the literature [SY92] [GLL+99]. However, the proposed

models would also work with sensors with a limited field of view, as long

as they are able to detect humans, but this would complicate the already

difficult planning further and possibly beyond real-time-solutions.

The probability of detection of an intruder by such a sensor depends on a

number of constraints such as local geometry, distance between the sensor

and the intruder, the shape of the intruder as well as the underlying physical

3.2. SENSORS 49

(a) (b) (c) (d) (e)

Figure 3.13: Changes through negative sensor readings in a contamination
based model. (a) Without any sensor input. (b) After one negative sensor
reading. (c) After two negative sensor readings. (d) After three negative
sensor readings. (e) After four negative sensor readings.

principle the sensor is based on, since a real sensor is always only an approx-

imation to a ∞-Searcher. Given an exact localization 1 in a given map, all

these constraints can be combined in one suitable function f , which is mono-

tonically decreasing from 1 with growing distance until a certain maximum

range, where its value reaches 0. Depending on the actual sensor2, different

functions can be used for f , examples can be seen in figure 3.14. Depending

on the scan rate (scans per time), all plotted functions lead to roughly the

same results. So while all these functions can be used, we used the linear

function (the red line in the middle) for our experiments.

Taken together, we assume that each robot is equipped with a sensor that,

given a clear line of sight, detects the intruder with a probability that only

depends on the distance between robot and intruder. Let F denote the free

space of the environment and O the space occupied by obstacles. We define

the mutual visibility of two points l1 ∈ F and l2 ∈ F as a function

1Exact localization is necessary to reduce the constraint for the local geometry. Con-
sider an intruder standing at a wall. With exact localization, the probability to detect him
is only dependent on the distance between sensor and intruder. If the detection algorithm
has to incorporate a flawed localization, it would be much more difficult to find such an
intruder, because of the difficulty to distinguish the wall from the intruder. In such a case,
the sensor model would become far more complex and difficult to compute.

2For example, a sensor could be very reliable on short distances and then deteriorate
fast, while another sensor would loose its reliability much more slowly.

50 CHAPTER 3. HUMAN & SENSOR MODELS

Figure 3.14: Different functions for the detection probability of a sensor
dependent on range to the target

v(l1, l2) =

1 if @l3 ∈ O :

||l1 − l2||2 = ||l1 − l3||2 + ||l2 − l3||2
0 else.

.

Given the suitable probability function f which describes how the detection

probability decreases based on the distance between a robot’s position lr
and the intruder’s position li, we express the probability that a single sensor

measurement detects the intruder by

P (Detect|li, lr) = v(li, lr) · f(||li − lr||2), (3.2)

3.2.2 Sensor Integration

In the last section we have developed different models for humans, which can

be classified in two main groups. In the first group, discussed in subsections

3.1.1 to 3.1.2, we discussed a global model, where we calculated one distri-

3.2. SENSORS 51

bution over the full space. We will call these models global human models,

since they calculate one global model.

In subsection 3.1.3, we discussed a model, where every cell in space is a prob-

ability variable itself. We will call these models local human models, since

the dependence between the variables is mainly local.

Sensor integration in local human models

In order to evaluate the different search algorithms, we need to calculate

the probability that a yet undetected intruder is located on a location in

the environment, given the complete sequence of measurements taken by the

searchers. We will use the standard grid based space decomposition as before.

Given the sequence of sensor measurements L1:T = {L1, . . . , LT} observed up

to time T , the probability can be written as P (CT
xy | L1:T). All measurements

are negative detections in our context. To calculate the term, we start by

setting up the fraction between the term and its opposite event, which is often

referred as the odds of an event. The odds approach yields the advantage

that by applying Bayes rule to both the numerator and the denominator, the

standardizing term, which is very difficult to calculate, cancels out. The use

of Bayes Rule with the Background evidence of L1:T−1 leads to:

P (CT
xy | L1:T)

P (¬CT
xy | L1:T)

=
P (LT | CT

xy, L1:T−1) · P (CT
xy | L1:T−1)

P (LT | ¬CT
xy, L1:T−1) · P (¬CT

xy | L1:T−1)

The probability of a measurement, given the probability of an intruder being

in the cell, is conditionally independent of the older measurements. There-

fore, we can simplify the terms to:

P (CT
xy | L1:T)

P (¬CT
xy | L1:T)

=
P (LT | CT

xy) · P (CT
xy | L1:T−1)

P (LT | ¬CT
xy) · P (¬CT

xy | L1:T−1)
(3.3)

Further derivation leads to:

P (CT
xy | L1:T)

1 − P (CT
xy | L1:T)

=
P (LT | CT

xy) · P (CT
xy | L1:T−1)

P (LT | ¬CT
xy) · P (¬CT

xy | L1:T−1)

P (C
T
xy | L1:T) =

P (LT | CT
xy) · P (CT

xy | L1:T−1)

P (LT | ¬CT
xy) · P (¬CT

xy | L1:T−1)
· (1 − P (C

T
xy | L1:T))

52 CHAPTER 3. HUMAN & SENSOR MODELS

P (C
T
xy | L1:T) =

P (LT | CT
xy) · P (CT

xy | L1:T−1)

P (LT | ¬CT
xy) · P (¬CT

xy | L1:T−1)
− P (C

T
xy | L1:T) ·

P (LT | CT
xy) · P (CT

xy | L1:T−1)

P (LT | ¬CT
xy) · P (¬CT

xy | L1:T−1)

P (C
T
xy | L1:T) + P (C

T
xy | L1:T) ·

P (LT | CT
xy) · P (CT

xy | L1:T−1)

P (LT | ¬CT
xy) · P (¬CT

xy | L1:T−1)
=

P (LT | CT
xy) · P (CT

xy | L1:T−1)

P (LT | ¬CT
xy) · P (¬CT

xy | L1:T−1)

P (C
T
xy | L1:T) ·

1 +

P (LT | CT
xy) · P (CT

xy | L1:T−1)

P (LT | ¬CT
xy) · P (¬CT

xy | L1:T−1)

!
=

P (LT | CT
xy) · P (CT

xy | L1:T−1)

P (LT | ¬CT
xy) · P (¬CT

xy | L1:T−1)

P (C
T
xy | L1:T) =

P (LT |CT
xy)·P (CT

xy|L1:T−1)

P (LT |¬CT
xy)·P (¬CT

xy|L1:T−1)
1 +

P (LT |CT
xy)·P (CT

xy|L1:T−1)

P (LT |¬CT
xy)·P (¬CT

xy|L1:T−1)

!

P (C
T
xy | L1:T) =

P (LT |CT
xy)·P (CT

xy|L1:T−1)

P (LT |¬CT
xy)·P (¬CT

xy|L1:T−1)

P (LT |¬CT
xy)·P (¬CT

xy|L1:T−1)+P (LT |CT
xy)·P (CT

xy|L1:T−1)

P (LT |¬CT
xy)·P (¬CT

xy|L1:T−1)

P (C
T
xy | L1:T) =

P (LT | CT
xy) · P (CT

xy | L1:T−1) · P (LT | ¬CT
xy) · P (¬CT

xy | L1:T−1)“
P (LT | ¬CT

xy) · P (¬CT
xy | L1:T−1) + P (LT | CT

xy) · P (CT
xy | L1:T−1)

”
· P (LT | ¬CT

xy) · P (¬CT
xy | L1:T−1)

P (C
T
xy | L1:T) =

P (LT | CT
xy) · P (CT

xy | L1:T−1)“
P (LT | ¬CT

xy) · P (¬CT
xy | L1:T−1) + P (LT | CT

xy) · P (CT
xy | L1:T−1)

”

To simplify things further, we assume that there are no false positive detec-

tions and set P (LT | ¬CT
xy) to 1, leading to:

P (CT
xy | L1:T) =

P (LT | CT
xy) · P (CT

xy | L1:T−1)

1− P (CT
xy | L1:T−1) + P (LT | CT

xy) · P (CT
xy | L1:T−1)

P (CT
xy | L1:T) =

P (LT | CT
xy) · P (CT

xy | L1:T−1)

1− P (CT
xy | L1:T−1) · (P (LT | CT

xy)− 1)
(3.4)

This formula can be used to update the belief state for each cell after each

measurement based on the belief state before. Naturally, the first measure-

ment requires a prior. This prior can be any value between 0 and 1, but

3.2. SENSORS 53

must never be 1, since this would lead to infinite odds and render the mea-

surements useless, since we would surely know of an intruder in that cell. A

prior of 0 is possible, meaning a cell, where we surely know that no intruder

could be in it.

In a normal setting, where we do not know anything about an intruder in

an area, we would initialize all cells with a prior of 0.99. While this formula

is accurate, it is often desired to quickly calculate this probability update at

the cost of accepting a small error. A possible solution to this is the use of

the formula:

P ∗(CT
xy | L1:T) = P (LT | CT

xy) · P ∗(CT
xy | L1:T−1) (3.5)

The differences (and therefore the error of P ∗) of both functions can be

seen in figure 3.15 3 . One can see that the difference between both formulas

is quite small, in fact the influence of the sensor model is much higher than

the choice between (3.4) and (3.5).

Sensor integration in global human models

The integration in global human models can directly be derived from the

previous section with relative ease. Before doing so, one has to understand

the modelling difference between both approaches. In the local model, every

cell had an independent probability value for an undetected intruder being

there. No statement is made about the number of intruders, there could be

none, one or any number of intruders in the area. In the global model, there

is exactly one intruder in the area, he never leaves it and is at every time

step in a specific cell. In the local model, the probability values of a given

cell only depend on measurements of the cell, hence the only explanation

for a change is either a measurement of the cell itself or a movement. In the

global model, the values can change, if another cell is measured. For example,

consider a world consisting of two cells with an equal distribution between

those two, i.e. the probability of both cells is 0.5. Now consider a (negative)

measurement of the first cell. Since we know for sure that an intruder is in

3Please note that the functions themselves are discrete, they are only drawn with lines
to make them more comprehensive.

54 CHAPTER 3. HUMAN & SENSOR MODELS

Figure 3.15: Example of the Probability update of a cell, which is consecu-
tively scanned with a constant sensor model of P (LT |CT

x,y) = 0.7.

the area, the probability of the second cell has to increase. Therefore, the

distribution has to be normalized after each sensor integration. This can be

done by redefining the formulas from the last section:

Pg(C
T
xy | L1:T) = α ·

Pg(LT | CT
xy) · Pg(C

T
xy | L1:T−1)

1− Pg(CT
xy | L1:T−1) · (Pg(LT | CT

xy)− 1)

=

Pg(LT |CT
xy)·Pg(CT

xy |L1:T−1)

1−Pg(CT
xy |L1:T−1)·(Pg(LT |CT

xy)−1)∑
rs

Pg(LT |CT
rs)·Pg(CT

rs|L1:T−1)

1−Pg(CT
rs|L1:T−1)·(Pg(LT |CT

rs)−1)

(3.6)

This is the formula to exactly determine the global probability values. Sim-

ilar to our approach in the last section, we also give a faster, approximate

3.2. SENSORS 55

formulation:

P ∗
g (CT

xy | L1:T) = α · Pg(LT | CT
xy) · P ∗

g (CT
xy | L1:T−1)

=
Pg(LT | CT

xy) · P ∗
g (CT

xy | L1:T−1)∑
rs

Pg(LT | CT
rs) · P ∗

g (CT
rs | L1:T−1)

(3.7)

The Normalizer

The normalizer from the last section can also serve to calculate an estimate

of the probability to catch an intruder at a given time step. We will come

back to this in the discussion of evaluation techniques (section 4.1.1).

3.2.3 Real World Sensors

The sensor model used in the previous sections has been abstract. This offers

the advantage that the discussed algorithms later in this work can be used

with different sensors, as long as they fit the abstract description. For an

actual implementation we have to specify a real sensor.

Laser Scanners

Since the searchers have to actively move through their surroundings, sen-

sors for navigation and localization are needed, independent of the question

which sensor to use for the detection of intruders. As stated in the introduc-

tion (1.3.2) our sensor of choice is the SICK-LMS Laser-Scanner, which is a

reliable and precise sensor found on many robotic platforms. To meet the

requirement of an ∞-searcher, we have to mount 2 scanners back-to-back on

one platform under the neglecting of the blanking gap between the scanners.

In the before-last section, we defined a general suitable function f , which

gives the probability of detecting an intruder at a given range, which natu-

rally depends on the sensor. While detecting and tracking persons in laser

scans is not in the scope of this paper (see [SBFC03][SBFC01] for more de-

tails on the issue), we have to briefly discuss the idea how to detect a person

in a scan.

56 CHAPTER 3. HUMAN & SENSOR MODELS

(a) (b)

Figure 3.16: Example of a laser scan. The left part shows the laser scan
in cartesian representation with 2 persons labeled A and B, the right part
shows the same scan as pure data.

A standard SICK Scanner (PLS or LMS) uses an angular resolution be-

tween 0.5◦ and 1◦ per beam and is in many robotic systems mounted at a

height of about 35 cm from the ground to allow collision free navigation. At

this height, only the legs and knees of an intruder are seen by the sensor. So

to successfully detect a person in the scan, one has to decide if the reflection

of a laser beam was caused by the environment or the legs or knees of a

person.

The basic idea is to search the laser scan for specific features, which are

caused by human legs. Depending on the distance to the sensor, a leg causes

a small group of neighboring beams to be roughly the same range, whereas

the derivatives at the edges of this group are usually high. To better cope for

false positives (also called false alarms), one can also take the background

map into account and exclude all features, which are in the direct vicinity of

an obstacle. Human legs have a diameter of roughly 15 cm. If we need at least

three laser beam hits to define an alarm, the intruder has to be no more than

4.3 m from the sensor to always raise an alarm, given the SICK resolution is

set to 1◦. If we use a resolution of 0.5◦, the intruder has to be in the range of

8.6 m to be successfully detected. Based on this observations we decided to

take 5 m as the maximum range for the function f . An example can be seen

3.2. SENSORS 57

in figure 3.16. The scan contains two persons, which are labeled in the left

part as A and B. Person A can easily be detected, since the features show

a small group of scan-end-points with similar range and a high derivative at

the endpoints. Person B cannot be successfully detected, due to the range

between robot and person, only one beam is reflected from each leg. Since a

single reflection could also be a sensor error, no alarm can be raised.

While the sensor proves to be a good choice for navigation, it has some

limitations in the case of detecting intruders, which can become a problem

if an intruder knows about the specific weaknesses of the sensor.

• The sensor can be fooled by black fabric, since the reflected light be-

comes too weak to be detected. We found this effect very rarely with

black trousers.

• The intruder could evade the laser beam by stepping on an object, for

example a table.

• The intruder could press himself against a wall, which makes it very

difficult to discriminate him from sensor error.

IR Cameras

Figure 3.17: Example of a thermographic picture. The left part shows the
actual IR-picture, the right part shows the same scene taken by a webcam.5

58 CHAPTER 3. HUMAN & SENSOR MODELS

An alternative to the Laser Scanner is the use of infrared sensitive cam-

eras, also often referred as thermographic cameras. IR-cameras offer the

advantage to detect humans in direct line of the sensor quite easily, as long

as the environment is colder than the human itself (which is usually the case

since human body temperature is normally around 37◦ Celsius.). An example

picture of such a camera can be seen in figure 3.17 4 5. As one can see, the

three human shapes can be easily subtracted from the background, making

the detection of humans a simple task in comparison with a laserscanner or

a normal camera.

a b c

d e f

Figure 3.18: More thermographic examples: (a)-(c): Example situations
shown by a camera. (d)-(f) The same situations taken from a thermocam.5

The weaknesses of the laser scanner, which were discussed in the last

subsection, also do not apply for the thermographic camera. The upper three

pictures in figure 3.18 present typical situations, where the Laserscanner fails

to detect a human. In the first example, the human is partly hidden behind

4While this picture is not omnidirectional, omnidirectional cameras are not that difficult
to build.

5 Pictures by courtesy of Bernd Brügemann, FGAN

3.2. SENSORS 59

an obstacle, in the second the human pressed himself against a wall, making

it very difficult to find him and in the last example, the human shoved part of

the environment to make himself indistinguishable from the obstacle behind

him. In situation (a) and (c), the laser scanner is naturally unable to find the

human, while in the second situation, it is at least very difficult. The lower

part of figure 3.18 shows the thermographic images of the same situations.

In all three pictures, the human is easily to be found.

While it is also possible to actively avoid detection by a thermographic

camera, it is a lot more difficult as in the case of the laser scanner. The dis-

advantage of these cameras is their high price and high energy consumption,

due to the necessity of active cooling. They are also not suited for naviga-

tional purposes, since they are unable to detect the geometry of objects of

the same temperature (see figure 3.17).

60 CHAPTER 3. HUMAN & SENSOR MODELS

Chapter 4

Metrics and Simple Search

Methods

In this chapter we will discuss metrics to analyze and compare different

algorithms for intruder searching, which we will use in later chapters for

the evaluation of the proposed methods. We will also give a number of

structurally different maps to show the generality of our approaches.

After giving the metrics, we will also propose some simple search methods

to allow a better understanding of the problem and the metrics themselves.

This data will also allow us to compare the more sophisticated solutions,

which we will present in later chapters, with simple and naive methods.

For the sake of completeness we have included the metric entropy as well

as the search method of simple random movement, which both turned out

to be unsuitable, as metric or search method respectively.

4.1 Metrics

4.1.1 Probability of catching the intruder

One important metric in the context of security systems is to look for the

average time the system needs to ”catch” an intruder, given one is there.

Based on the models from chapter 3, this can be calculated in a straight-

forward manner. At each sensor-scan of the system, the probability of an in-

62 CHAPTER 4. METRICS AND SIMPLE SEARCH METHODS

truder (who is correctly represented by the human model) being seen within

the sensor can be derived. The opposite event is the probability of an in-

truder not being seen, which can be joined over time, leading to the formula:

P (t) = 1−

(∏
i≤t

(1− pi)

)
(4.1)

where pi is the probability of the intruder being seen by the i-th sensor

scan. In the probabilistic context one has to set a limit, when an intruder is

considered ”catched”. This leads to the following term for the time needed:

b(t) =

{
0 if P (t) ≥ c

1 else
(4.2)

Q = argmin
t

(b(t) + P (t)) (4.3)

An Example for this metric can be seen in Figure 4.1. In this example

Figure 4.1: Example for ”Catch” Probability

c is set to 0.99, leading to a Q of 933 seconds, which means that in this

setting the system needs about 15.5 minutes to ”catch” an intruder with a

4.2. EXPERIMENTAL SETUP 63

probability of 99 percent.

4.1.2 Contamination

The most common metric found in the context of pursuit evasion games is

contamination. Contamination is a binary concept of a place or area, which

can either be contaminated or free. Since our work is of probabilistic nature,

the term needs clarification. We would like to define a place or area as free,

if the possibility that a yet unseen intruder could still be in the place or area

is less than c 1. If the probability is c or higher, we define the place or area

to be contaminated. The probability of a yet undetected intruder being in a

cell is called the contamination level of the cell and has already been briefly

discussed in section 1.3.

One can think of two evaluation metrics based upon this concept. The first

is the size of the contaminated area in proportion to the complete area to

be searched. The second is the time that a system needs to reduce the

contaminated area to 0.

4.1.3 Entropy

Another metric one might think of is the entropy of the intruder distribution.

Naturally, this metric only makes sense for the case of global intruder models,

since in local human models, the level of entropy is equivalent to the number

of uncontaminated cells. But even in the case of a global model, the metric

is only of very limited use, as long as the goal is to see the intruder and not

to restrict his presence in a small space.

4.2 Experimental Setup

4.2.1 Maps

To analyze the proposed algorithms under different boundary conditions, six

different maps were used for the experiments, ranging from rather simple

1The value can be chosen almost arbitrarily, as long as the value is between 0 and 1.

64 CHAPTER 4. METRICS AND SIMPLE SEARCH METHODS

surroundings to complex scenarios taken from real world maps.

Figure 4.2: Simple Corridor / Empty Hall

Figure 4.3: Hall with pillar / Cluttered Map

These maps are shown in figure 4.2, 4.3 and 4.4. While the first four

are pure simulation maps, the the latter ones are derived from an existing

building.

4.3. SIMPLE SEARCH METHODS 65

Figure 4.4: University Building Bonn - Ground floor / First Floor

4.3 Simple Search Methods

4.3.1 Static Observers

Figure 4.5: Probability density distribution during an experiment with three
static observers. Left: Distribution calculated with a particle filter. Right:
Distribution calculated with a histogram based filter.

The most simple strategy for the pursuers is to just stay in fixed positions

and wait for the intruders to enter their field of view. Many of today’s security

systems (for example cameras, motion detectors) are based on this scheme.

Since there is no movement, there is no need for planning, coordination or

control, except for the direction of the sensor in terms of sensors with a

triangular field of view, which are beyond the scope of this manuscript. One

advantage of this approach is the segmentation of the space for the intruder,

which cannot reach certain points in space without entering the sensor range

66 CHAPTER 4. METRICS AND SIMPLE SEARCH METHODS

of a pursuer. The disadvantage is that since there is no active searching an

intruder can stay undetected for an arbitrary amount of time. If he is already

located in the same segment as his goal location, he can reach it without

any danger of being detected. Finding optimal positions for observers is a

very difficult problem in itself and its details are beyond the scope of this

manuscript. We used a greedy strategy based upon the particle density

taken from the model of section 3.1.1, which causes the group to be placed

on ”choke points” with a high probability of catching unaware intruders. An

example of such a group of positions can be seen in figure 4.5, where a group

of three robots are set up to guard the map. Evaluating the method for

intruders with awareness (limited or perfect) is only of limited use, since no

intruder with awareness would enter the FOV of one of the observers and the

observers have no means of moving on their own. In this case, the probability

to catch an intruder is always zero. The contamination also doesn’t change

over time and becomes constant after the first time step. So, we limit the

evaluation of static observers to the case of unaware intruders. We did a

number of experiments with different group sizes and maps and found the

systems behavior to always be almost the same, regardless of the used map

or proposed intruder speeds. After a short startup phase the system enters a

loop with a constant probability of catching an intruder. An example of such

an experiment can be seen in figure 4.5. In the left part, we used a particle

based model, while the right shows the same positions for a Markov model.

Both produce the same results.

4.3.2 Random Walking Observers

Given a large area where static sensors are unable to watch the whole area

at once, there are always blind spots, in which an intruder could stay for

an unlimited amount of time. So, the observers have to move themselves to

expand their fields of view and to catch stationary or moving intruders. The

easiest strategy for this is to move the observers in a random pattern through

the area, so that every point in free space is, at some point in time, in the

observers’ fields of view. The main advantage of this strategy compared to

the static observers is the constraint on the intruder to move, if he wants

4.3. SIMPLE SEARCH METHODS 67

to stay undetected. The main disadvantage is the lack of the above men-

tioned segmentation, giving the intruder the possibility to reach almost any

point in space undetected, given the observers take a disadvantageous route

at random. Coordination is, as in the case of static observers, very limited

and reduced to the necessity of collision avoidance.

Analogous to the discussion in section 3.1.1 the term of random move-

ment needs further specification. In principle, a random strategy could be

any (even the most sophisticated) strategy for moving the searchers, which

includes some (even insignificant) random element. This is obviously not

suitable for any form of comparison and would render the specific term ran-

dom strategy almost useless. Therefore, we limit our focus at this point to

the case of simple random strategies, specifically the strategies already dis-

cussed in section 3.1.1 (Brownian motion, simple random walk and random

way point). We did a number of tests with different parameter settings and

team sizes and evaluated these using the prior discussed metrics.

In case of the contamination metric, results proved all three methods to

be unsuitable for cleaning the area. Even a group size of more than twice

the minimum necessary number of searchers (see next chapter) was unable

to clean out all contamination from the area in our tests, regardless of the

chosen random method. However, we have to add that this is naturally

not the case for unlimited time, since under unlimited time conditions, the

robots’ plans would include a perfect decontamination plan just by coinci-

dence. However, in limited time (our simulation experiments usually last 2-3

hours of simulation time), we never found even a very large group to clean

out the area.

For the catch-probability the situation is different, since even disadvan-

tageous routes have a probability to catch an intruder. Again, we did a

number of experiments with all three methods and compared the resulting

catch-probabilities over time. Typical results can be seen in figure 4.6. For

this experiment we used the groundfloor map (figure 4.4/Left) with a sensor

range of 5 meters. As one can see, due to the random nature of the meth-

ods, the performance over time (even when strongly smoothed) shows a great

variance. While the overall performance, if measured and averaged over more

68 CHAPTER 4. METRICS AND SIMPLE SEARCH METHODS

Figure 4.6: Results of different methods for three random walking pursuers.
Red line shows the performance of pursuers moving through a random way-
point model, green represents simple random walk and light blue represents
pursuers doing Brownian motion. Performance is measured in 1-pi, so lower
values are better. Straight lines represent the average for the method. Shown
time frame is one hour.

than one hour, shows the random way point method outperforming Brown-

ian Motion and Simple Random Walk, all three methods show long phases of

poor performance. Compared to static methods, only the random way point

method was able to perform slightly better and only if measured over a long

time.

Following these results, we decided to exclude the random search methods

from further examination and comparison. The main reason for this was

the limited usability of the methods in a real scenario. We think that one

of the prospects of a multi robot security system should be a good average

4.3. SIMPLE SEARCH METHODS 69

performance. While we cannot rule out the possibility, that a random system

can possibly outperform even a far more sophisticated system, we think the

possibility of the system to fail over longer time periods is unacceptable.

4.3.3 Fixed Walkarounds

The last method, which concludes the simple search techniques, is the fol-

lowing of a fixed roundtrip. This technique is often found in normal human

security applications, where a watchman is sent on an a priori determined

path, for an example through a museum. The route of the watchman is often

the closest roundtrip, which visits a set of important points. The advantage

is that each possible intruder location is checked in a fixed time interval, so

fixed intruders or intruders which stay on one location for a long time, are

detected. The disadvantage is, that if the tour is known by the intruder

(see section 3.1.3), it can be used to avoid detection completely (see fig-

ure 3.11 for an example). An instance of the problem, based upon polygonal

2-dimensional maps with a ∞-searcher (a watchman whose omnidirectional

vision is only blocked by obstacles) is known as the optimal-watchman-route

(OWR) problem. This problem is proven to be NP-hard for general polygons

[CN86].

In our case, the searcher’s abilities are additionally reduced through a

range limitation, which extends the original OWR problem. The resulting

problem is called the d-sweeper problem [Nta92] and is naturally also NP-

hard. One approximative solution to the problem is superimposing a regular

grid of points over the free space of the map and solving a TSP problem using

these points. While this solution works and produces a usable roundtrip, the

solution is often unnecessarily long and complex to calculate. Results can

be improved by using a grid, which is better customized for the underlying

map structure than a regular grid. Such a grid can be calculated by the use

of a decomposition algorithm, which we will present in details in the next

chapter. At this point it shall suffice to explain that the algorithm tries to

find a minimal vertex-covering of the area with the constraint that no point of

space is more than a constant distance from a vertex. The resulting amount

of points is (depending on the map structure) a lot smaller than the amount

70 CHAPTER 4. METRICS AND SIMPLE SEARCH METHODS

Figure 4.7: Example of a roundtrip experiment with 6 robots. Flow is line
by line, every row represents 20 time steps of the simulation system.

4.3. SIMPLE SEARCH METHODS 71

Figure 4.8: Example of a roundtrip experiment with 6 robots. Flow is line
by line, every row represents 20 time steps of the simulation system.

72 CHAPTER 4. METRICS AND SIMPLE SEARCH METHODS

Figure 4.9: 2 Examples for Roundtrips. Left: Ground floor University Build-
ing / Right: Empty Map

of a regular grid. While TSP is also NP-hard (even in the strong sense), we

used a practical heuristic for solving the problem, which is known to generate

almost perfect solutions for small amounts of vertices. [HEL00]. The results

for two example maps can be seen in figure 4.9.

Multiple Robots

While the roundtrip is the usual solution in normal security applications, it

only covers the case of one searcher. To extend the solution to a group of

robots, two strategies are possible, which result in similar system behavior,

but have different levels of complexity. The first is to split the free space

(or the grid) prior to solving the TSP in equally sized bins (one bin for each

pursuer) and solve the TSP for each bin. In this case each pursuer searches

his private area for intruders. The disadvantage of this method is, that the

selection of the bins is a very complex problem of its own. The alternative

is using the path of the whole space and dividing the searching robots on

this path. Since both systems behave similar and the latter is much easier to

implement and test, we choose it for the following experiments. As before,

we did a number of experiments for different group sizes and different relative

speeds of pursuers and intruder.

4.3. SIMPLE SEARCH METHODS 73

Evaluation

Again, we start by applying the contamination metric. An example of such

an experiment can be seen in figures 4.7 and 4.8. At the start of the ex-

periment, the 6 robots are divided among the roundtrip path. After that a

planning module steers the robots on the roundtrip, while keeping the dis-

tance between the robots in a certain interval, to keep the robots seperated

on the roundtrip. The regions painted in dark blue represent cleared area,

while the regions painted in pink are considered contaminated. As one can

see, the contaminated regions are small compared to the cleared space, but

at no point in time the whole area becomes clear. A clever intruder could

evade capture at all times. Testing different relations between the speed of

the robots and the intruder, we found that even a speed ratio of 4 to 1 be-

tween pursuers and intruder would not suffice to reduce the contamination

to 0. We had to increase this ratio to 16 to 1 to achieve that goal. Simply

speaking, to guarantee an intruder in this scenario to be found with only

6 robots, we would have to build robots, which could move 16 times faster

than humans and still offer reliable navigation.

To evaluate the technique with the probability to catch metric, we also did

a number of experiments with several team sizes and different ratios between

intruder and pursuers’ speed. In contrast to the randomized methods the

variance of the values is very low, so the values are much better suited for

comparison with other techniques. As one would expect, the size of the team

turned out to be directly proportional to the probability to catch an intruder

(at least for reasonable small team sizes), so in case of intruder searching

by applying a roundtrip, the catch probability can be doubled by doubling

the number of pursuers. Examining different speed ratios lead to more

interesting (and at firsthand unexpected) results, which are plotted in figure

4.10. In this case, we did a roundtrip with three robots traveling about

30-40 cm/s, which is a realistic speed for navigation with a B21 robot. We

examined catch-probabilities for intruders traveling slower than the robots,

intruders with the same speed and intruders moving faster than the robots.

We expected the probability to catch to be lowest with the slow moving

intruders and to be highest with the fast moving intruders (analogously to the

static pursuers). Interestingly, the lowest probability to catch was calculated

74 CHAPTER 4. METRICS AND SIMPLE SEARCH METHODS

Figure 4.10: Performance of three pursuers on a roundtrip with different
speed settings for the intruder. Red line shows a fast intruder (100 cm/s),
green a moderate (50 cm/s), blue a slow (25 cm/s), violett a very slow (12
cm/s) and tourquoise an almost standing intruder (3 cm/s). Performance
is measured in 1-pi, so lower values are better. The system performance is
worst, if the intruder speed is almost the same as the system speed.

for the intruders moving at the same speed as the robots, while slower and

faster intruders have a higher probability to be caught. While this seems to

be unexpected at first, the explanation is straightforward: In this case, the

pursuers show the same ”flow” as the probability distribution of the intruder.

If a pursuer moves faster than the intruder, every move of the pursuer shifts

some part of the distribution in its sensor radius, if the intruder is faster than

the pursuer, every move of the intruder moves some part of the distribution

in the sensor radius of the robot from the backside. In case of similar speeds,

both effects are at a minimum and the sensor lies almost all time in a gap

4.3. SIMPLE SEARCH METHODS 75

of the distribution. From this observation one can conclude, that in case of

an intruder unaware of pursuit, a system should avoid choosing the speed of

the intruder for its pursuers.

Apart from this observation, the results for speeds faster than the pursuers

(in our case, the more realistic speeds for real human behavior) show an

increase in the catch probability with increased intruder speed, however, it

should be noted, that the speedup is sub-linear.

76 CHAPTER 4. METRICS AND SIMPLE SEARCH METHODS

Chapter 5

Contamination Based Searching

In the last chapter, geometric information was used to calculate the short-

est round trip. This path does not take any sensor model or human model

into account, especially not the possibility of the intruder to move. In this

chapter, we want to use these models and generate plans and actions based

on them. We especially want to generate plans, which ”guarantee” 1 the

intruder to be found after plan execution. Parts of this work have already

been published, for reference see [MRS05].

5.1 Space Decomposition

To formulate planning problems, one has to specify the planning space. The

canonical planning space in the context of grid maps is to restrict the allowed

positions for pursuers to grid cells, therefore avoiding the problem of dealing

with continuous and infinite planning spaces. To account for the intruder,

the state space is the Cartesian product from these positions and the possible

distributions of the intruder. So, the state space for a planning problem with

n pursuers and one intruder would be:

1Guarantee is here not meant in its exact verbatim meaning, since in a probabilis-
tic context the probability of 1 is never reached. Instead we simply mean a very high
probability to catch the intruder like 0.99 for example.

78 CHAPTER 5. CONTAMINATION BASED SEARCHING

Statet = (P1t × P2t × ...× Pnt)×Bel(DIt).

An action in this space would be a movement of a pursuer to a neighboring

cell (Prt+1 = Prt + δrt) . This state space is far too big even for very short

time intervals and small maps, rendering planning based on this intractable.

Therefore, we have to reduce the planning space significantly, which we will

do by reducing it to a graph and generating plans for pursuers moving on

this graph.

5.1.1 General outline

The basic idea is to project the problem from a general 2-dimensional search

problem to a graph search problem, which itself is solved by an A* planner.

Therefore, we construct a set of vertices, so that each point of free space

(every point where an intruder could be) is in sensor range of at least one

vertex. The vertices themselves are taken from the configuration space of

the pursuers. In other words, the whole space would be covered by sensors if

we could place a pursuer on every vertex. Such a set can always be found as

long as there are no points in the intruder’s configuration space which cannot

be seen from the pursuers’ configuration space.

After adding edges between the vertices (section 5.1.3) we have constructed

a connected, undirected graph, which is a subset of the original problem but

with a much smaller complexity. While still being difficult to solve, searching

this subset can successfully be done by a smart A* planner, as long as the

original problem was already solvable. It is important to note that this would

also be a solution for the general 2-dimensional problem.

5.1.2 Computing the vertices

We first have to determine a set of vertices, which satisfy the constraint that

every point of the free space F of the environment is in the field of view of at

least one vertex. Naturally, we want to cover the complete free space with a

small number of vertices. Already for the special case of infinite sensor range,

minimizing this quantity is an instance of the well known art gallery problem,

5.1. SPACE DECOMPOSITION 79

which is known to be NP-Complete [O’R87]. Instead of computing an optimal

solution, we employ a randomized optimization algorithm, which starts with

an empty vertex set and expands this set with vertices, which overlook space

not yet covered by the vertices of the current set. Due to the nature of

this randomized approach this often leads to unnecessary big vertex sets,

with unnecessary redundancy. To cope with this problem we implemented a

number of optimizations, which lead to good results in practice:

• We prefer to select vertices which overlook greater parts of the envi-

ronment. This can be done by randomly selecting a large number of

candidates and selecting the vertex which overlooks the largest part.

• After the whole environment can be seen from the vertices, all unnec-

essary (redundant) vertices are removed.

• During the selection all vertices are joggled to improve their distribution

over the environment (hill climbing).

• The whole process is completely restarted with an empty set, as long

as no set with a sufficiently small number of vertices is found at the

end.

Figure 5.1: Example Vertex Sets

Two examples of such vertex sets are depicted in Figure 5.1. Each point in

space that can be seen from at least one vertex is associated with the nearest

visible vertex based on euclidian distance. The space associated to a vertex

80 CHAPTER 5. CONTAMINATION BASED SEARCHING

Figure 5.2: Example decomposition

is called the region of the vertex. An example for such a decomposition can

bee seen in figure 5.2. It should be noted that the regions are not solely

generated based on euclidian distance but can also depend on visibility. For

example look at the hatched region in figure 5.3, which belongs to the region

of vertex A, even if the euclidian distance to vertex c is smaller.

5.1.3 Computing the edges

Now we have to build a graph based on the vertex set. For this purpose, we

connect two vertices by an edge, if their regions are adjacent to each other

(see figure 5.3). Sometimes borders between two regions are interrupted by

occlusion. In this case, we add one edge for each continuous part of the

border, so that the corresponding vertices are connected by multiple edges

(This is illustrated in figure 5.3 with the dashed line in the lower part of the

drawing. The vertices A and B are connected by two edges.). The resulting

graph itself is undirected and connected. Later we will also need a cost

function for the edges, so we define the costs as the time that one of the

robots would need to traverse the edge from one vertex to the other. These

costs are calculated by a MDP planner [TBB+98] based on the geometric

map of the environment. The paths computed this way are also used for

navigation. Note that two edges connecting the same two vertices can have

different costs, because the path of the robot has to cross the part of the

border corresponding to the edge.

5.1. SPACE DECOMPOSITION 81

Figure 5.3: Three vertices and the corresponding edges. Obstacles are black.

5.1.4 Final Graph

The result of adding the edges is the travel graph, an example can be seen in

figure 5.4. In the left part one can see the projected paths the robots have to

take when traveling from one node to the next. The right part of the figure

shows the resulting final graph.

Figure 5.4: Graph with resulting edges / Final Graph

82 CHAPTER 5. CONTAMINATION BASED SEARCHING

5.2 Graph Decomposition

Figure 5.5: Example Split

Although this procedure reduces the complexity of the search space sig-

nificantly, large or complex areas still lead to graphs with many vertices, so

planning in such a graph may still be computationally infeasible in practice.

For example, consider a search graph of 30 vertices and a group of three

robots. Let this graph be simple, so that no node has a degree of more than

two. Even if we assume an almost optimal level of parallelism, the naive

search tree will have at least a depth of 10 and a branching factor of 8 (every

robot has in any step the choice of between his two neighbors), resulting in

a size of almost 810 nodes. Finding solutions for maps with 100 or even 200

vertices would be inacceptible.

However, large real-world environments usually consist of multiple subdi-

visions whose interconnections are relatively simple and easy to guard, e.g.

rooms in a building connected by a few doors and hallways. A reasonable

attempt to solve such a planning problem would be to search all rooms inde-

pendently and consecutively, and place guards to prevent an intruder from

reentering already cleared areas.

Based on this we solve large problem instances by a divide and conquer

approach, that splits the graph into subgraphs. These subgraphs can be

5.2. GRAPH DECOMPOSITION 83

searched independently, sacrificing a few robots to guard the borders between

cleared and contaminated areas and gaining a huge reduction of search com-

plexity in turn. An example of such a split can be seen in figure 5.5. (Note

that this approach works even if the above mentioned intuitive assumption

above about the topology of the environment does not hold. Then, in order

to find the intruder, the robots have to form some sort of sweep line that

sweeps across the search space.) Thus, a split through the graph can be con-

sidered as an intermediary search state dividing the graph into a cleared and

a contaminated part with a sweep line in between, and independent planning

is equivalent to pruning the search tree upon reaching the split state. The

Figure 5.6: Complexity reduction through the determination of an interme-
diate state: Left figure shows the normal search tree. Blue nodes represent
search nodes, red nodes represent solutions, green is an intermediate state.
Right tree shows the reduced search tree, which results from first search-
ing from the start to the intermediate state and then searching from the
intermediate state to a solution.

principle is shown in figure 5.6. If we can identify an intermediate state/split,

we can avoid doing an expensive, complete search (shown left), but instead

conduct two cheaper searches (shown right).

Naturally, the number of possible splits in a given search problem is quite

large. However, we found two attributes of splits, which strongly affect their

84 CHAPTER 5. CONTAMINATION BASED SEARCHING

usefulness. Firstly, the best speedup for the search can be achieved by a

split, which lies exactly in the middle between the start and the solution.

Therefore, a split should divide the graph in roughly two parts of the same

size. Secondly, a split should be as general as possible, meaning that a

split with less nodes is better than a split with more nodes. Since both

requirements can oppose each other, a useful split has to balance between

both requirements.

The algorithm used to create such a split works as follows: First, all

possible border lines in the graph are generated and the resulting connected

components (or subgraphs) are calculated. Then, these split candidates S =

{S1, . . . , Sn} are rated using the heuristic function

f(S) = c · l +
k∑

i=1

∣∣∣∣ni −
N

2

∣∣∣∣,
where l denotes the length of the border, i.e. the number of vertices which

interconnect the subgraphs, k the number of subgraphs, ni the sizes of the

subgraphs and N the size of the complete graph. The balance between the

requirement of a minimal sized split and a split which lies at most in the

middle between start and solution is done by the parameter c. We found

that setting the parameter to 5
2

lead to the best results in the typical graphs

we used. The best candidate is determined by

Sbest = argmin
S∈S

[f(S)] .

Splits that evaluate above the threshold 3
2
N are ignored to prevent degener-

ation phenomena like single vertices being cut off the rest of the graph.

Even if no separation points exist, the splitting still improves search per-

formance as it allows to discard portions of the search tree upon reaching a

split line as an intermediary goal. Thus it allows to solve larger problems.

5.3. A* PLANNING 85

5.3 A* Planning

The planning process itself is carried out using the A* algorithm. The state

of a planning node consists of the vector of robots positions (a robot can be

on a node or an edge), the contamination state of all vertices, and time. 2

So the planning space is:

Statet = (P1t × P2t × ...× Pnt)×Bel(DIt)× Tt.

The starting node of the planner uses a vector of initial robot positions,

which can be chosen arbitrarily, and the goal state is a vector of desired robot

positions and a completely cleared graph. An action is either

• Choosing a new target for a robot that stands on a vertex

• Choosing for a robot to wait for a few seconds

Whenever an action is assigned to every robot (moving or waiting), time is

forwarded until a new decision is necessary. During each of these phases,

the contamination is calculated. A vertex is contaminated, if there is no

robot standing on it and there is an edge with no robot on it leading to a

contaminated vertex. It is important to note that vertices which are cut off

by splits can also contaminate vertices in the local planning space, if they

are not already cleared. Remember that we needed to add additional edges

between two vertices, if the border between their regions is not continuous

(due to occlusion). If one robot travels from one vertex to another one, the

other edge could still contaminate the starting vertex, if the target vertex was

already contaminated. In such a situation a second robot is always necessary

to guard the starting point.

In the next subsections, we describe three optimizations to speed up the

whole process.

5.3.1 Recontamination

Lapaugh showed in [LaP93] that in graph searching, recontamination is not

necessary to find a solution. This result is based on a slightly different model,

2We will discuss alternative planning spaces later.

86 CHAPTER 5. CONTAMINATION BASED SEARCHING

whose goal is set to clearing edges instead of nodes and which also allows a

pursuer to jump from one node to another, non adjacent node.

The result cannot be directly transferred to our formulation of the prob-

lem, since we can construct graphs, where a jump from one node to a non

adjacent node is necessary to keep the number of searchers minimal (see

section 5.8.3 for an example). However, we found that the assumption of

recontamination being unnecessary does hold for almost all practical cases.

Almost always when we were able to find a complete decontamination plan

for a number of robots, we also found a decontamination plan for the same

number of robots, which does not incorporate any recontamination. So we

usually skip all plans, in which vertices are recontaminated. This leads to a

tremendous speed up in searching bigger graphs.

5.3.2 Heuristics

The optimality of A* requires a heuristic function to be admissible, which

requires the function to never overestimate the costs for reaching the goal.

While it is not difficult to find heuristics, which are trivially admissible (the

0 function for example), we were not able to come up with a heuristic which

allowed efficient searching, while still being admissible. However, we came up

with a solution, which was mostly admissible, but allowed efficient and goal-

directed searching. It shall be noted, that using a non-admissible heuristic

causes the A* algorithm to lose its optimality but not its completeness.

Our search is directed by a combination of graph clearance achieved and

the distance to the next uncleared node. The heuristic function for a given

search state s is

h(s) =
R∑

i=1

min
n∈C

[d(n, pi)] +
|C|
R

min
n6=n′∈N

[d(n, n′)] ,

where R is the number of robots, N the set of graph nodes, d(·, ·) the dis-

tance measure, pi the current position of the robot i, and C ⊂ N the set of

nodes that are currently contaminated. This function prefers search states,

in which the robots are moving towards the border line between cleared and

contaminated nodes and which subsequently expands the cleared area. Both

5.4. MERGING OF PLANS 87

behaviors are essential for fast graph clearance and keep the search state

expansion overhead low, especially in combination with the recontamination

assumption and the hashing of expanded states, that is explained next.

5.3.3 State Hashing

Another optimization, which is necessary especially in the context of multi-

robot planning is the detection of states, which are equal up to a permutation

of the robots. For example consider a planning node, in which robot 1 decided

to move to point A and robot 2 decided to move to point B. When expanding

the starting node, the planner would also produce a planning node with robot

1 moving to point B and robot 2 moving to point A. Since we assume that all

robots have equal capabilities, both of these planning nodes refer to exactly

the same state. If a solution for the problem exists, it can be found either

way, so one node can be omitted. To do so, we use a hash function, which

takes the contamination and robot state into account. If the hash value of a

just expanded planning node collides with an older one, it is only expanded

further if both states are really different.

5.4 Merging of plans

The last part of the algorithm is merging the plans for the subgraphs (which

were formed by splits) to a full plan. Since a plan of a subgraph always

ends with robots placed on all vertices of a split, the rest of the robots can

move freely. The next subset always starts with all robots on the split, so a

small intermediate ”plan” has to be generated, which moves the free robots

to the starting position of the plan for the next subgraph. Because the robots

already on the split are not moving, no recontamination can happen making

these small plans very easy to generate.

88 CHAPTER 5. CONTAMINATION BASED SEARCHING

5.5 The complete contamination based plan-

ner

To summarize, the whole coordination process is carried in the following 6

steps:

1. Generate a set of vertices V , so that every point in free space

is visible from at least one vertex.

2. Add edges to the graph, so that every distinct border between

two adjacent regions corresponds to one edge.

3. Divide the graph into subsets, until the size of the subsets is

below a threshold.

4. Define for every subset a starting state and a finishing state.

5. Use the A* planner to find a solution for clearing each subset,

beginning with the starting and ending with the finishing state.

6. Merge all subset plans to one full plan.

5.6 Complexity and Scalability

5.6.1 Planning Complexity

Determining the complexity of an A* implementation is often very difficult.

While it can be proven, that A* is optimally efficient in the absence of other

information than the given heuristic, the complexity is still dependent on the

underlying problem and the heuristic itself. For example, A* can be used to

find a solution for the traveling salesperson problem (TSP) and since TSP

is known to be NP-complete and the question if P=NP is still not solved

yet, it is at this moment impossible to give precise complexity bounds for

such an implementation of A* (at least without solving the P=NP problem

5.6. COMPLEXITY AND SCALABILITY 89

(a) (b) (c)

Figure 5.7: Decomposition of a floor map with different scan ranges: (a)
Scan Range 1000cm (b) Scan Range 500 cm (c) Scan Range 150 cm

simultaneously). As stated in section 2.1.2 the problem of determining the

number of searchers to search a given graph is also NP-complete [MHG+88,

LaP93] and it is easy to see, that the problem of finding a concrete plan to

search a graph is at least as difficult as determining the necessary number of

searchers.

However, even if we cannot prove a precise upper bound, we can still

provide worst-case estimates of the algorithm. We assume therefore that in

the worst of cases the heuristic does not help the search at all, therefore

degenerating the A* search to simple Uniform-cost search (UCS) . The time

and space complexity of UCS is known to be O(b1+bC∗/εc), where b is the

effective branching factor, C∗ is the depth of a solution and ε is the lowest

possible cost between two actions [RN95]. When assuming that no action

takes less than one second and that C* is much larger than 1, this can be

roughly simplified to O(bC∗)

The branching factor itself depends on possible actions in a given situa-

tion. Therefore it is the product between the number of robots R and the

possible actions of each robot. The number of possible actions is the average

branching factor of the underlying graph. This is also a worst case estimate

since the product of n numbers with a fixed average of x is always maxi-

mum if all numbers are set to x (see Appendix / Theorem 1 for a detailed

explanation).

b = R · bG

90 CHAPTER 5. CONTAMINATION BASED SEARCHING

Based on this we can give our complexity estimate as:

f ∈ O((R · bG)C∗+1) (5.1)

Unfortunately this result has more theoretical than practical value. In a

realistic scenario, one often deals with 5-6 robots, a graph branching factor

of 2-3 and costs of around 1000 seconds. This would lead to a worst case

planning estimation of at least 101000 planning steps. However, in practice

the algorithm often found a solution with between 10,000 - 1.000,000 search

nodes with the use of the above mentioned heuristics.

5.7 Alternative Planning Space

Based upon the observations made in the last section and also from some

test runs with the algorithm, we got to the idea for a smaller planning space

with similar behavior. Our idea was based on three observations:

• The planning space is often unnecessarily complicated by the number

of robots. Since the number of robots directly influences the branch-

ing factor of the search algorithm, a high number makes the search

unnecessary difficult.

• In every step of the algorithm, the graph is always partitioned into two

sections, a contaminated section and a free one 3 . Both are separated

by robots standing on a node or traveling an edge. The algorithm ex-

pands some sort of wave front over the contaminated nodes (see section

5.9.1 for examples).

• When we move a single robot at a time, we can omit the concept of

travel time for an edge. If a complete plan exists that clears the graph

with parallel movement of the pursuers, there also exists one which

cleans the graph, where only one robot moves at a time.

So, instead of planning movements for actual robots, we would like to plan

a wave front to cross the graph. A wave front is a vector of graph-nodes,

3The sections don’t have to be necessarily connected.

5.7. ALTERNATIVE PLANNING SPACE 91

which separate the cleared space from the contaminated (for initialization

the starting node is considered a wave front node at the beginning and is

itself considered cleared). An action is either the movement of one such wave

front node to a new (contaminated) node without the opening of a rift in

the front, the emerging of a new wave front node from an old one (therefore

expanding the width of the front) or the deletion of an old and obsolete node

(contracting the front).

We also use an A* implementation to do the search but with different func-

tions for the path cost function g and the heuristic function h. We set g as

the width of the wave front, which assures that solutions, which require a

smaller front are evaluated first. The calculation of a good heuristic function

h is easy, since we know fairly precisely the number of movements to the goal

(since 2 of 3 possible actions clear exactly one contaminated node). To com-

bine both function, we also have to make g ”outweigh” h, so that regardless

of the distance to the goal, solutions with smaller fronts are preferred. This

can be done by dividing h by the number of nodes. So, we calculate f as:

f = Front Width︸ ︷︷ ︸
g

+
Goal Distance

|G|︸ ︷︷ ︸
h

(5.2)

This approach offers two advantages: First, this approach gives an optimal

solution in respect to the number of robots needed. While the first approach

could either give a plan for a given number of robots or fail, this approach

always leads to a solution and in the process determines the minimal number

of robots necessary. Second, the worst case complexity is much lower than

that of the first approach. The planning depth is no longer a function of

seconds (please note that the following C2∗ is different from the C∗ above),

but of planning steps and the branching factor of the plan is determined by

the minimum number of robots. Thus,

f ∈ O((Rmin · bG)C2∗+1). (5.3)

However, while this approach is minimal in the number of robots, it is also

fixed on this minimum, it cannot make use of any extra robots to speed

92 CHAPTER 5. CONTAMINATION BASED SEARCHING

up the search. Another disadvantage is that while a successful run of the

planning algorithm guarantees a solution, the concrete solution in form of a

plan for actual robots still has to be determined. While this is not difficult,

it adds another necessary step to the system. Finally, the biggest strength of

the second planning space, that it optimizes planning steps instead of time,

is also its biggest weakness, since it does not take actual travel times into

account and can therefore generate plans, which take unnecessarily long to

execute. It depends on the map as well as the size of the group to determine

which planning space one should use. Roughly speaking, one should always

try for the first planning space, which generates better and faster plans and

should reserve the latter for very complex cases, where the first one fails.

5.8 Implementation Details

5.8.1 Nondeterministic Movement

One of the major problems in the field of robot motion planning is imprecision

of physical hardware. Also, the localization of a robot during the execution

of the plan is always only an estimate of the real position. Therefore, one

cannot expect a robot to follow a given plan from cell to cell as planned. In

the above discussed algorithm the property of letting no intruder ”slip” past

the searching robots (and therefore for its correctness) is dependent on two

factors:

• A robot standing on a vertex in the graph can see the full region of the

vertex.

• A robot traveling on an edge from one vertex to another, can always

maintain visibility of the full frontier it crosses.

The problem of these claims can be seen in figure 5.8. In the left part one

can see a (deterministic) plan for cleaning the hallway. If the robot could

travel exactly as planned, no intruder can cross the hallway in the opposite

direction without entering the field of view of the robot. In a real robot

system a robot would more likely travel the trajectory of the right part of

figure 5.8. We can expect the system to roughly follow the plan but not

5.8. IMPLEMENTATION DETAILS 93

Figure 5.8: Robot moving in a floor from right to left. (a) Deterministic
Motion: No Intruder can pass the robot. (b) Nondeterministic Motion: An
Intruder could pass the robot without being detected (by sneaking along the
upper wall).

precisely as planned. The planner has therefore to take this nondeterminism

into account. This can be done by subtracting the maximal possible devia-

tion, which depends on the implementation of the collision avoidance or low

level planner and the actual robot, from the effective scanning radius. This

deviation has to be estimated in advance.

Figure 5.9: Robot(s) moving in a floor from right to left. (a) A robot with
a larger scan radius prevents any intruder from passing the robot without
being detected. (b) Two robots with each a smaller scanning radius also
prevent any intruder from passing the robots.

In the example of figure 5.8 the deviation of the robot’s path to the

planned path is about 10 percent of the scanning range. The solution can be

to improve the effective scanning range of the robot to compensate for the

motion (see left part of figure 5.9) or to use a smaller effective scanning range

94 CHAPTER 5. CONTAMINATION BASED SEARCHING

0 sec 30 sec 60 sec 90 sec 120 sec

Robot 1 A B C D E
Robot 2 F G H I J

Table 5.1: Example Plan

for the planner, resulting in a plan, in which two robots have to cross the

floor, to prevent an intruder from passing through (see right part of figure

5.9).

5.8.2 Time Delays

Another common problem, while using nondeterministic robots, is that the

time a robot needs to cross an edge is only a rough estimate. A robot may

be faster or slower than planned. The first case is easy to handle, if a robot

arrives early at a node, it can simply wait for its next command, the plan is

still correct. The latter case is far more difficult, since a delayed arrival can

open gaps in the wave front. An example of such a situation can be seen in

figure 5.10, whereas the corresponding plan is seen in table 5.1. Robot 1 has

the plan to start at vertex A, crossing B, C, D and finally reaching point E.

Robot 2 starts at F and wants to go to J, while traversing G,H and I in the

process. Each edge is planned to take 30 seconds.

Figure 5.10: Example Situation for a two robot sweep with one robot delayed

In a deterministic scenario the graph would be cleared after the run. But

if robot 2 gets delayed for some reason (for example through a wrong sensor

echo, forcing him to brake in an effort to avoid a collision) and robot 1 leaves

5.8. IMPLEMENTATION DETAILS 95

point D before robot 2 has reached H, a gap is opened, allowing an intruder

to slip through. The plan is no longer correct. (In our early experiments,

we found this problem to occur in almost every instance, especially in large

graphs with more than 300 nodes.)

We found two solutions for the problem: The first one is to overestimate

the costs of traversing an edge in such a way, that the problem doesn’t occur

at all. While this works and shows correct behavior, the running time of

the experiment becomes unnecessary large. In our current system, we found

situations, where a robot needs about three times the normal time to traverse

an edge if everything goes wrong. So, to still guarantee a correct plan, the

time for the experiment would also be tripled, most of the time, the system

would stand still. This is clearly not acceptable. A better solution is to stop

the system only if necessary. So, the execution layer of the system has to

check if a robot gets delayed and forces the other rotos to wait, until the robot

has made up its delay. This works quite well and although delays happen

in almost every experiment, they are still a rare occurrence compared to the

un-delayed tours. In practice the additional time needed to cope with delays

is less than 2 percent of the planned time.

5.8.3 Choosing the starting nodes

Figure 5.11: Example search graph

In subsection 5.3.1 we assumed that the theoretical result from Lapaugh [LaP93],

that recontamination is not necessary to search a graph, does also hold for

96 CHAPTER 5. CONTAMINATION BASED SEARCHING

our formulation of the problem. This idea leads to a tremendous speedup of

the search, larger problems (>50 vertices) are often intractable without this

assumption.

Consider the graph in figure 5.11. The search number of this graph is

2, one possible solution is to start with robot #1 at Node A and robot #2

at Node E, and let robot #1 move from A to D, while robot #2 moves

from E to H. After three moves of each robot the graph is cleared. So there

exists a plan for two robots which clears the graph without recontamination.

However, there is no plan without recontamination, that lets both robots

start at the same location and does not incorporate the jumping of a robot

to a non adjacent note. So this graph is an example, where the assumption

does not hold. Based on this, there are three alternatives to cope with the

problem:

• We could drop the prohibition of recontamination. As we have stated

before, the prohibition is needed to terminate the search in reasonable

time. So, while still remaining correct and complete, the search would

become impractical.

• We could allow the robots to jump to non adjacent nodes. This would

greatly increase the branching factor of the search and make the method

completely impractical for any non-trivial search space.

• We could guess a good startup configuration with a high probability

that a plan without recontamination exists from this startup configura-

tion. We would therefore sacrifice the optimality of the resulting plan

in terms of minimal number of robots needed.

From these three alternatives, only the third proves to be practical. From our

experiments, we learned that a good startup configuration is often placing all

robots on one node at the outer boundary of the graph. In the above example,

this leads to a plan with three pursuers, which is clearly suboptimal, since a

plan with only two robots was shown to exist. In practice, we found that this

problem becomes more and more negligible with larger robot groups, however

choosing a better startup configuration can, dependent on the structure of

the graph, sometimes save one or two robots.

5.9. EXPERIMENTS 97

5.9 Experiments

5.9.1 Time based planning

We conducted numerous experiments with the described system using differ-

ent maps, group sizes and parameter settings like intruder or pursuer speed.

To make things comparable, we used the same simulation system as described

in section 4.2. While naturally showing map-specific variations, all experi-

ments lead to very similar results, so we would like to confine the discussion

to two representative examples.

For the first example, we used our common ground floor map (figure 4.4),

since we believe it to be a good example for real applications. We have

already shown an example graph resulting from the decomposition of the

map (see figure 5.4). We choose the middle of the map as the starting point

and choose a group size of five pursuers.

The resulting experiment can be seen in figures 5.12 and 5.13. The figures

show the experiment line by line, starting from the starting situation in the

upper left to the end situation in the lower right. As one can see, the robots

start decontaminating the right part first, while a single robot is set to guard

the corridor in the middle. After the right part is cleared the robots return to

the middle and go for the left part, while still guarding the corridor leading to

the already cleared right part. In the whole experiment, the only observable

recontamination is due to the discretization of the movement.

For the second example, we choose a slightly more artificial but more

challenging map, which is an empty, quadratic hall of 50 × 50 meters (see

figure 4.2). The decomposition of this map leads to the graph in figure 5.14.

While the decomposition is comparably easy, the resulting graph is one of the

most difficult to plan on, because of its high connectivity. We use a team of 8

robots and let them all start in the lower right corner. The experiment can

be seen in figure 5.15. As one can see, the robots immediately form a sweep

line which walks over the space, always separating contaminated from free

areas. It should be noted at this point, that this behavior is directly emerging

from the planner and the assumed restriction of forbidden recontamination.

Apart from the maps we also tried different parameter settings, for exam-

ple different intruder speeds, different sensor ranges and slower robots. While

98 CHAPTER 5. CONTAMINATION BASED SEARCHING

Figure 5.12: Example of an experiment with 5 robots. Flow is line by line,
every row represents 150 time steps of the simulation system.

robot speed does not affect the quality of the outcome (only the time needed

to travel the map), changing the speed of the intruder to an extreme value

can lead to failure. This originates from the fact that a very fast intruder

5.9. EXPERIMENTS 99

Figure 5.13: Example of an experiment with 5 robots. Flow is line by line,
every row represents 150 time steps of the simulation system.

can simply cross the field of view of a pursuer between two scans. However,

while finding this problem during simulation runs, we don’t consider it to be

a realistic problem. If we assume a scanning frequency of 10Hz (which is a

100 CHAPTER 5. CONTAMINATION BASED SEARCHING

Figure 5.14: Decomposition of the Empty Map

rather low value for modern sensors) , an intruder had to have a speed of

more than 10 m/s to cross the outer limits of the field between two scans.

Since an LMS SICK scanner generates up to 75 scans per second, we think

this problem to be negligible. Changing the sensor range also does not lead

to different results in quality, especially since this can simply be seen as a

different map.

5.9.2 Time Based Planning II

We also conducted some experiments with real robots. Real robot exper-

iments, especially experiments with groups of robots, come with a number

of problems, which usually do not arise in a simulation system. Especially

the tendency to system failure grows exponentially with the number of used

robots. Therefore, we will use these experiments as a proof of concept and

5.9. EXPERIMENTS 101

Figure 5.15: Example of an experiment with 8 robots. Flow is line by line,
every row represents 150 time steps of the simulation system.

102 CHAPTER 5. CONTAMINATION BASED SEARCHING

(a)

(b)

(c)

Figure 5.16: Robot proving ground and robots (a) Proving ground (b) Robots
Bluecher and Clausewitz (B21 chassis) (c) Robot Moltke (Magellan chassis)

leave the comparisons between different methods and parameter settings to

the simulation experiments.

We did the experiments in the robot proving ground of the Research

Establishment for Applied Science (FGAN) in Bonn. The proving ground

is an empty, rectangular hall of roughly 18x14 meters, with cameras at the

ceiling which ease experiment documentation. Wooden Wallparts of different

sizes can be used to generate different scenarios. Figure 5.16 (a) shows a

photo taken inside the proving ground.

For the first experiment, we set up the scenario shown in figure 5.17 (a).

After doing an exploration of the environment, the map shown in figure 5.17

(b) was created. Figure 5.17 (c) shows the resulting search graph. Our

algorithm determined that this graph can be searched with two robots, if

both robots start in the room with the three nodes. So we choose a group of

two B21 robots, which are shown in figure 5.16 (b). Both use typical SICK

laser scanners mounted in a back-to-back manner, which allows an (almost)

5.9. EXPERIMENTS 103

(a)

(b)

(c)

Figure 5.17: First Experiment in Time Based Planning. (a) Situation
Overview (b) Localization / Robot Map (c) Resulting Search Graph

360 degree field of view. We did a small number of experiments, which all

showed roughly the same results. We show one of them in figure 5.18. The

flow is largely self-explanatory, the robots clear the right part before the left

part.

For the second experiment, we set up a more difficult scenario, shown in

figure 5.19 (a). As before, the robot map and the resulting graph is shown in

5.19 (b) and (c). The complexity of the environment demands a third robot

in the team. In lack of a third B21 platform, we used a smaller Magellan

robot (see figure 5.16 (c)) with a slightly different laser range scanner. Apart

from the fact, that the navigation of the Magellan system is slightly worse

than that of the B21s, we did not notice any difference in handling. The

experiment itself is shown in figure 5.20. The flow is again largely self-

explanatory, one should notice the typical sentinel behavior of the Magellan

robot (snapshots 4-9), which guards the middle part of the map, while the

other two robots clear the right part.

Unfortunately, the experiment failed in the last 20 seconds. The naviga-

104 CHAPTER 5. CONTAMINATION BASED SEARCHING

Figure 5.18: Example experiment for two robots. Shown are 12 snapshots
during the experiments, flow is line by line. Every snapshot shows the situ-
ation as seen by the camera, as well as the contamination state calculated.

tion system failed to reach the last node and stopped roughly 80 cm before

the given target. This leads to a very small area left contaminated at the

5.9. EXPERIMENTS 105

(a)

(b)

(c)

Figure 5.19: Second Experiment in Time Based Planning. (a) Situation
Overview (b) Localization / Robot Map (c) Resulting Search Graph

end (see last snapshot).

106 CHAPTER 5. CONTAMINATION BASED SEARCHING

Figure 5.20: Example experiment for three robots. Shown are 12 snapshots
during the experiments, flow is line by line. Every snapshot shows the situ-
ation as seen by the camera, as well as the contamination state calculated.

5.9.3 Wavefront Expansion

We also did some experiments using the wavefront expansion technique. For

the purpose of comparison, we used the same settings as in the experiments

5.9. EXPERIMENTS 107

Figure 5.21: Example run for the wavefront expansion technique. Flow is
line by line. At the beginning all vertices, except the starting vertex are
considered contaminated (green). Every planning step expands the wavefront
to decontaminate one vertex. Wavefront is shown as red vertices.

108 CHAPTER 5. CONTAMINATION BASED SEARCHING

Figure 5.22: Example run for the wavefront expansion technique. Flow is
line by line. At the beginning all vertices, except the starting vertex are
considered contaminated (green). Every planning step expands the wavefront
to decontaminate one vertex. Wavefront is shown as red vertices.

5.10. ADVANCED PROBLEMS 109

presented before. Interestingly, the experiments lead to almost the same

solutions as the time based A* planner, which is somewhat surprising, given

that the planning spaces are completely different. An example can be seen

in figures 5.21 and 5.22.4 As before, the robots start in the middle of the

map, clear the right part while guarding the middle and finally clear the rest

of the graph.

This observation held for almost all maps we tested, the solutions differed

only in minor aspects.

5.10 Advanced Problems

To examine the strengths and weaknesses of the graph decomposition method

and especially the planning component, we have generated a number of more

difficult problems in terms of size and complexity. We generated a collection

of five huge artificial maps, each sized of 100 × 100 meters, each with a

completely different setting of obstacle structure. These maps can be seen in

figure 5.23. Adding to this, we introduce a floor plan of an existing hospital

building which is roughly 100×60 meters in dimensions and consists of almost

100 distinguishable rooms.

Artificial Map One - Spiral Office

The first map to test can be seen in figure 5.23 (a). The structure is an

artificial office building, which houses about 60 rooms around a spiral floor.

The structure is an exaggeration of an ordinary office building with the idea

in mind of creating a very ”deep” problem in terms of the necessary search

tree. The so created building contains free space of 801153 cells, translating

to roughly 8000 m2, where an intruder could hide. To generate the graph

we assumed an effective scanning range of 5 meters for the pursuers. In

this case the space decomposition lead to graphs of around 300 vertices to

cover the full space, depending on optimization time and number of restarts.

An example of a so generated graph can be seen in figure 5.25. We tested

4Since we have already shown in the last section how the execution of a plan looks like
for the intruders distribution, this time we would like to present the underlying graph.

110 CHAPTER 5. CONTAMINATION BASED SEARCHING

(a) (b)

(c) (d)

(e)

Figure 5.23: Advanced Test Maps.

5.10. ADVANCED PROBLEMS 111

Figure 5.24: Floor plan Hospital Building

the normal A* planner as well as the wave front technique with the shown

graph. We tested different team sizes as well as different starting locations.

The results are the following:

The normal A* planner finds no solution for less than four robots. The

planner usually gives up after 10-15 seconds. With four robots a solution can

be found if the robots start in the middle of the map. Outside the middle

five robots are necessary for a complete plan. The planner usually takes

10-40 seconds for a full plan (with the expansion of 5.000-15.000 planning

nodes) and the plan itself is usually around 26000 robot cell-movements,

which translates to a search time of 108 minutes under the assumption of a

robot speed of 40 cm/s.

Contrary to the normal A* planner, the wave front technique does not

only give up on three robots, it also proves through exhaustive search that

no solution for three robots exists. This can be done in less than two seconds

per starting point. So the search number of the graph is four. With starting

points in the middle, a solution for four robots is usually found in less than

five seconds (with the expansion of 70.000 (wave front) planning nodes). For

some points outside the middle it can also be proven by exhaustive search

that no solution for four robots exist, if all robots have to start at this point

and recontamination is forbidden (see section 5.8.3 for discussion on this

anomaly).

112 CHAPTER 5. CONTAMINATION BASED SEARCHING

Figure 5.25: Graph decompostion of the spiral office map

Judging those results, both planners do not have any problems with the

depth of the problem. While the A* planner generates better solutions, the

wave front planner can prove for some starting instances that a solution with

less than 5 robots does not exist.

Artificial Map Two - Divided Hall

The second map to test can be seen in figure 5.23 (b). The map shows a

large hall divided by two walls into three sections. The sections are connected

through small openings in the dividing walls. The map is huge and consists

of 859664 empty cells, which corresponds to nearly 8600 m2. But even if

the map is bigger in size than the first, the decomposition is able to find

a complete covering with 180 vertices due to the open nature of the free

space. Again, we tested both techniques with different starting locations.

5.10. ADVANCED PROBLEMS 113

The normal A* planner was able to generate plans with 6 robots in less than

5 seconds, plans with 5 robots could not be successfully generated. The plans

had a length of approximately 6500 robot movements, which means a search

time of 27 minutes. The wave front technique shows similar results and can

also prove through exhaustive search that no solution with less than 6 robots

exists.

Artificial Map Three - Stack of hallways

The third map to test can be seen in figure 5.23 (c). The size is 829466

empty cells (≈ 8300m2) and the decomposition leads to 250 vertices. The

idea of this map was to generate a problem, which can either be solved by a

small group in a long time or with a large group in short time, something we

also would like to discuss in the following section about the use of additional

robots. The time based planner generates a plan with four robots in less

than five seconds. In this case the robots would need around 14.000 moves,

which corresponds to roughly one hour. The wave front technique behaves

in the same way, but also proves that a solution with less than four robots

doesn’t exist.

Artificial Maps Four and Five - Star Shapes

The last two maps can be seen in figure 5.23 (d) & (e). While being very

small in size (1900 m2/2520 m2), the complexity, especially of the second

map, is comparable to the other discussed maps. The search number of

the generated graphs is 3 and 5 respectively and both planning mechanisms

found a solution in less than 10 seconds.

114 CHAPTER 5. CONTAMINATION BASED SEARCHING

Results

Map (a) (b) (c) (d) (e)

Description Circular Divided Stack Star Star 2

Size 8000 m2 8600 m2 8300 m2 1900 m2 2520 m2

Sense Range 5 m 5 m 5 m 5 m 5 m

#Vertices 300 180 250 50 75

Search Number 4 6 4 3 5

Calc Time A* <20 s <5 s <10 s < 5 s < 10 s

Calc Time WF <10 s <10 <10 s < 5 s < 10 s

Proven Bound 4 6 4 3 5

Plan Time 108 min 27 min 60 min 63 min 78 min

Results Hospital Map

Map Hospital Hospital

Size 10,000 m2 10,000 m2

Sense Range 5 m 3 m

#Vertices 450 800

Search Number 6 7

Calc Time A* 10 min Fail

Calc Time WF 10 s 30 s

Proven Bound - -

Plan Time 150 min -

5.11. ADDITIONAL ROBOTS 115

Hospital Map

The last map to test is a floor plan of an exiting hospital building. The floor

consists of almost 1 million free cells, which corresponds to almost 10.000 m2

(= 1 hectare) of free space. Due to the complex nature and all the small walls

and rooms, the decomposition leads to graphs of no less than 450 vertices,

which is therefore the most complex structure we analyzed. The complexity

took both planners to their limit. The A* based planner is able to find a

solution for a team of six robots, but needs more than 1,2 million planning

nodes to find it, which takes around 10 minutes of computation time on a

modern computer (P4/3GHz). While this time is still small compared to the

plans execution time (2,5 hours), the increase in calculation time compared

to the other examples is tremendous. It should also be added that this result

can only be achieved by choosing a good starting node, for many nodes no

plan with 6 robots can be found at all. On the other hand, if the number of

robots is increased, for example to 8, a solution can be found much faster,

mostly in less than 20 seconds. The wave front technique however, is able to

find a solution for 6 robots within seconds (from almost every border node),

but is unable to prove that 6 is the lower limit of the map, since the search

space for 5 robots is already too big to be searched exhaustively. The map

clearly shows the advantages of the wave front technique in graphs of high

complexity. To finally characterize the limits of the planner, we extended the

last experiment by changing the range parameter of the pursuing robots. We

changed the maximal detection range of the robots from 5m to 3m, which

lead to a graph of 800 vertices. The wave front technique was able to find a

solution in 30 seconds which uses 7 robots. The normal time based planner

was unable to find a solution within acceptable time.

5.11 Additional Robots

In the context of the previously discussed graph decomposition techniques,

perhaps the most central question was, how many robots or pursuers are

needed to guarantee an intruder to be found in limited time. Naturally, if

the number of available robots is lower than this limit, an intruder could hide

116 CHAPTER 5. CONTAMINATION BASED SEARCHING

forever, at least if he knows the search pattern of the pursuers in advance.

Contrary to this, the question arises, how the use of additional robots,

which are not necessarily needed, affect the outcome of the system. For the

case of the wave front expansion technique, this question is only partly rea-

sonable, since this technique does not generate actual plans and is therefore

not able to make use of additional robots. Therefore we restrict the question

to the time based A* planner.

We did a number of experiments for three representative maps (artifi-

cial maps (a) and (c) as well as the hospital map) with different team sizes

(ranging from 4 to 50 pursuers). The results can be seen in figure 5.26.

Figure 5.26: Time to clear a given map with different group sizes

For all three maps, a speedup can be achieved by using a larger team. This

effect is especially strong for a small number of additional robots (mostly up

to three) and gets weaker for larger numbers. At a certain point (depending

on the map, from 5-15 additional robots) the search time reaches its minimum

5.12. CRITIC & DIRECTIONS OF RESEARCH 117

and increasing the team size does not provide any further speedup. When one

looks at the used maps, the results can easily be explained. In the minimal

team size of 4, the artificial map (a) requires one robot to stay in the floor,

while the other three check the rooms for intruders. The system has always

to wait for the rooms to be cleared and therefore the first robot has often to

wait. If additional robots can be used, there is no need to wait, so the main

limit is its time to reach from one end of the floor to the other. Artificial

Map (c) shows similar results, but from its structure reaches its limit at a

team size of approximately 10 robots (4 robots minium size plus 6 additional

robots). Finally, the hospital map shows the best results for increasing the

team size. If the team size is increased from 6 to 20, the whole space can be

searched in almost 40% of the original time.

To summarize this, it can be stated, that the use of a small number of

additional robots can speedup the search process to a certain extent, however

the speedup itself is strongly dependent on the structure of the map.

5.12 Critic & Directions of research

We have already discussed some minor weaknesses of the described method,

for example the still open question of how to generate optimal decomposi-

tions of the search space or the non-admissible heuristic function. We also

sacrificed the optimality in the number of robots needed with the exclusion

of plans, which require recontamination. While these problems exist, they

are usually not an issue and can be coped with application of more com-

puting time. However, the underlying model assumption still has a major

weakness, which cannot be coped with so easily. To cover the worst case

scenario, we assumed an intruder with perfect knowledge, who does not only

know the current positions of all the pursuers, but also their position in the

future. Such an intruder is realistic in case of deterministic pursuers, where

an intruder could compute the paths of the pursuers in advance. However,

the assumption gets weak in case of nondeterministic agents. To clarify this,

we will give an example, which can be seen in figure 5.27. In this situation,

the pursuer starts in the middle and has to clear the full space. If we as-

sume an intruder with perfect knowledge (and at least the same speed as the

118 CHAPTER 5. CONTAMINATION BASED SEARCHING

Figure 5.27: Example Game

pursuer), even of the future, one robot is not enough to clear the map. This

is simple to see: Whenever the robot returns to the junction in the middle,

the intruder knows which corridor the robot will take next and hides in the

other. In differential game theory, a Nash-Equilibrium [Nas50] is a concept

in which both players would not change their own strategy, given that they

know the strategy of the opponent. Note, that there is no Nash-Equilibrium

in the game just described.

In the real world, normal intruders can be smart, but usually cannot

determine the future. In this case, the pursuer can catch the evader by using

a simple trick: Whenever he returns to the junction from one corridor, he

simply chooses randomly one of the two remaining corridors and searches it

completely. When he doesn’t find the intruder, he returns to the junction

and chooses again. The chances of finding an intruder is 50 percent for every

5.12. CRITIC & DIRECTIONS OF RESEARCH 119

choice, so by repeating this procedure long enough, the probability to catch

the intruder can be raised to any desired value. Naturally, this is not inside

the scope of deterministic game theory and leads to Bayes-games, which is

beyond the scope of this work. It will not be proven at this point, but

interestingly enough, these two strategies form a Nash-Equilibrium.

This example illustrates, that a realistic intruder, regardless how clever,

cannot outwit a random decision. Summing up the above, we can say, that

the assumed model of perfect knowledge leads to reliable and good strategies

for nondeterministic robots with deterministic decisions, but there could be

strategies involving nondeterministic decisions, which need less pursuers to

fulfill the task.

A future direction of research should be the modeling of smart evaders

without knowledge of future decisions the pursuers are going to make.

As stated before, the heuristic function used in the time based A* planner

is not admissible at this time. This can lead to suboptimal solutions but offers

tremendous speedups in terms of calculation time. Another improvement of

the method would be to find a better, possible admissible heuristic function,

with similar behavior as the non-admissible function.

120 CHAPTER 5. CONTAMINATION BASED SEARCHING

Chapter 6

Greedy Methods

6.1 Greedy methods

In the last section, we discussed planning techniques which always ”guaran-

tee” an intruder to be found in limited time, regardless of his behavior. This

was implicitly achieved in the construction of a sweep line, which traverses

the state space of the intruder. Naturally, these techniques fail, if the number

of robots is too small for the required sweep line. In such situations, it is im-

possible to catch an intruder with perfect knowledge, since he always knows

where to hide from the pursuers. So the questions arises, what a security

system should do, if the number of robots is very small and the area to be

searched is very complex. As stated before, there is no way of catching an

intruder with perfect knowledge. The canonical answer is, that such a system

should try to find the intruder with maximum likelihood. But we will see,

that even defining what this goal exactly means is not as clear as it looks

firsthand. Parts of this work have already been published, for reference see

[MS06].

6.2 Problem Formulation

In section 3.1.1 we discussed human models with limited knowledge of pur-

suit in detail. The simulated probability distribution allowed us to calculate

the probability of catching such an intruder in the current time step, if we

122 CHAPTER 6. GREEDY METHODS

know the location of every robot.

Let Rt =< rt
1,, r

t
n > be the vector of robot positions at a timestep t and

H t be a simulated distribution of human intruders in the map at timestep t.

Also define R̃t =< R0, ..., Rt > as the vector of robot position vectors 1up to

time t.

The probability to catch an intruder at a certain timestep will be named as

P t
Catch and depends on the intruder distribution as well as the robot posi-

tions, as well as the sensor. We therefore define

P t
Catch = f(Rt, H t) (6.1)

for a suitable sensor function f . With this function, we have a means to

calculate the performance of a set of robot positions up to time t:

U t = 1−

(
t∏

i=0

(1− P i
Catch)

)
(6.2)

With the performance equation, we can derive the solution for the best plan

Q̃t and its performance qt:

Q̃t = argmax
R̃t

(U t) (6.3)

qt = max
R̃t

(U t) (6.4)

The equation shows the prior mentioned ambiguity of the question what the

robots should do, since it can only be answered for a fixed time horizon.

To clarify the argument we give a small example, which can be seen in

figure 6.1. Let the probability distribution for this example be as in the

following table:

A B C

H 0.1 0.3 0.6

The time needed for the robot to travel from its starting location to location

1The set of robot positions can be associated to a plan from the start to timestep t

6.2. PROBLEM FORMULATION 123

Figure 6.1: Example Decision Situation

A takes 1 timestep, to location B takes 2 timesteps and to location C takes

4 timesteps. To simplify things, we will assume, that the intruder doesn’t

move and the distribution is also not normalized after sensor integration 2. It

is easy to see that the best plan for the robot changes with the time horizon.

If t is set to 1, the best plan is to move to location A. If t is set to 2, the best

plan is to move to B and if t is set to 4, the best plan is to go to location C.

For values greater than 2, the plans even lose their uniqueness, since one can

find different plans with the same performance. The solutions are shown in

this table:

Time horizon Q̃t qt

1 < S >, < A > 0.1

2 < S >, < S ⇒ B >,< B > 0.3

3 < S >, < S ⇒ B >,< B >< B > 0.3

< S >, < S ⇒ B >,< B >< B ⇒ S > 0.3

4 < S >, < S ⇒ C >,< S ⇒ C >,< S ⇒ C >,< C > 0.6

2Both assumptions are made to keep the numbers simple, dropping both assumptions
does not change anything about the general conclusions.

124 CHAPTER 6. GREEDY METHODS

As this example shows, the best solution highly depends on the chosen time

horizon. A time (or planning) horizon of 4 steps can lead to completely

different results than a time horizon of 3 steps.

One might argue at this point, that a larger time horizon is always supe-

rior to a smaller one, but even this is not necessarily true. In the example

shown before, the best solution for 4 timesteps was to directly start moving

from S to C. If the chosen time horizon is 6, the best solution would be to

first move from S to A and then go to C. The solution is completely different

from the one for 4 timesteps. This problem is very well known in game theory

and a general solution is not known today.

6.3 General outline

If planning the solution of a problem becomes too complex, it is often sug-

gested to generate good but suboptimal solutions with greedy methods. As

in the case of solving the exploration problem, we would like to use an utility-

based approach, since both problems have very similar internal constraints

and can be solved by the same algorithms. In fact, intruder searching can be

seen as an exploration problem with a shifting and decaying map.

6.3.1 Costs

The costs for reaching a target from a starting location can be directly taken

from the exploration algorithm. A detailed description was already given in

section 2.2.1.

6.3.2 Utility

In the exploration process, the utility of a target location was the expected

information gain at that point. Naturally, the points with the highest infor-

mation gain have been the frontier cells and so only frontier cells had to be

evaluated as possible targets. In case of the pursuit-evasion-problem frontier

cells do not exist. In this case all reachable cells have to be tested for their

utility. Following the exploration approach, the utility of a cell shall be the

6.3. GENERAL OUTLINE 125

expected information gain, which is exactly the probability of catching an

intruder, when doing one sensor scan at the specific location. While this

utility can directly be derived from the simulated human model, it is a very

expensive function in terms of calculation time, especially when taking a re-

alistic sensor model into account. The problem is shown in the left part of

Figure 6.2: Utility calculation problem.

figure 6.2. If we want to calculate the utility of the cell we have to consider

all cells, which are in range of a robot, standing on this cell and which are

not blocked by obstacles. This region is shown in red. This region is mostly

unique and it depends on local map geometry. Even if we consider the region

of a cell to be calculated in advance, the online calculation of utility is very

expensive. We developed two strategies to cope with this problem. The first

one is to reduce the sensor model to a binary function, which only depends on

range. In this case, the probability of catching an intruder, which is visible

from a pursuer’s sensor, is independent of the exact range, as long as it is

within the maximal range of the sensor. In this case, we can take advantage

of the local dependency of two neighboring cells. This is shown in the middle

of figure 6.2. If we consider the cell marked with the red dot and the cell

directly below, we can see that both regions have the area marked with an

A in common, the only difference are the comparably small areas B and C.

If the utility for the upper position has been calculated, the calculation of

the lower can be done by subtracting the possibility to sense an intruder in

region B and adding the possibility of sensing one in region C. The effect of

this speedup increases with the level of discretization.

126 CHAPTER 6. GREEDY METHODS

If we do not want to drop the sensor model (right part of figure 6.2, there is

no advantage in local neighborhood, the only solution in this case is to use

a smaller discretization.

6.3.3 Coordination

Even the coordination scheme can be taken from multi-robot-exploration.

When one pursuer is set to a specific location, the information gain of all

neighboring cells is decreased, depending on the sensors range.

6.4 The Algorithm

The algorithm is similar to the multi-robot exploration algorithm and is also

divided in an outer and an inner part:

1. Initialize human distribution.

2. Execute Target Point Selection Algorithm 2.

3. Generate Plans for all assignments.

4. For ∆-Timesteps do:

• Execute robot plans.

• Integrate robots sensors.

• Integrate human motion.

5. GOTO 2

Multi Robot Searching Algorithm

6.5. EXAMPLE 127

1. Determine the set of all cells G.

2. Compute for each robot i the costs (Ci(g)) for reaching every cell g ∈
G.

3. Compute for each cell g in G the probability to catch an intruder at

the current time step and set U(g) to it.

4. While there is one robot without a target point:

(a) Determine a robot i and a cell g, which satisfy:

< i, g >= argmax<i′,g′>U(g′)− α · Ci′(g′)

(b) Add < i, g > to the assignment.

(c) Reduce the utility of every cell g’ according to:

U(g′) = U(g′) · (1− f(||g, g′||2))

Target Point Selection Algorithm 2

6.5 Example

6.5.1 Target point selection

Figures 6.3 and 6.4 show an example of the Target Point Selection Algorithm.

In the left part of figure 6.3, one can see the calculated costs for a robot in

the left part of the map. As before, costs are calculated by a standard MDP

planner. In the right one can see the calculated utility, based upon the human

distribution 3. Figure 6.4 shows the tradeoff between costs and utility. This

tradeoff naturally depends on the chosen α.

6.5.2 Multi Robot Searching Algorithm

We also want to show a typical experiment. As in other chapters, we use the

ground floor map. In this example, the team of pursuers consists of three

robots, which, as we have seen before, is a small team for this map. All

3In this case, the base for the utility was the distribution shown in figure 3.9(d)

128 CHAPTER 6. GREEDY METHODS

Figure 6.3: Costs and utility in the greedy search technique. Left: Costs for
reaching any target from a robot standing in the left part of the map. Right:
Utility of reaching a cell, based upon the human distribution.

three robots start in the middle of the map and have a maximum scanning

range of 5 meters. The experiment is shown in figures 6.6 and 6.7, robots are

painted as red circles. Depending on the probability of an intruder being in

the cell, the cells are painted in a color range from white (low probability)

to red (high probability). In very seldom cases, when the probability is very,

very low a cell is sometimes painted in light grey, which means a value that

can be treated as almost zero. The scale is logarithmic.

To give a better understanding of the course of action, we have also drawn

the assignment computed by the Target Point Selection Algorithm in every

situation. The targets are marked as green spots.

As one can see, the robots divide and start searching the area, while

the distribution shifts in reaction to these movements. Based upon these

observations it is difficult to evaluate the technique, apart from the almost

trivial fact that the searchers are divided over the space, which can be seen,

by looking at the trajectory of a similar experiment (figure 6.5).

6.6 Evaluation and Comparison

Contrary to the exploration problem, the evaluation of pursuit-evasion is far

more difficult. While in the case of exploration, an experiment is always

finished in limited time, the absolute time needed to do an exploration run

can be compared. Pursuit evasion games, where an intruder is not guaranteed

6.6. EVALUATION AND COMPARISON 129

Figure 6.4: Tradeoff between utility and costs within the greedy search tech-
nique. Darker values represent cells with a better tradeoff.

Figure 6.5: Robot Paths in a greedy search experiment. (a) Robot paths
after ≈ 6 minutes. (b) Robot paths after ≈ 1 hour.

to be found, usually never end. If we apply the contamination metrics from

section 4.1.2 and choose a robot group which is smaller than the search-

number of the map, it is easy to see that the algorithm can never reach zero

contamination. So we have to restrict us to the alternative metric, which is

130 CHAPTER 6. GREEDY METHODS

Figure 6.6: Greedy search experiment. Flow is line by line. Colors white to
red show the probability of an intruder being at the cell. Red circles mark
the robots, green circles mark the robots target assignments.

6.6. EVALUATION AND COMPARISON 131

Figure 6.7: Greedy search experiment. Flow is line by line. Colors white to
red show the probability of an intruder being at the cell. Red circles mark
the robots, green circles mark the robots target assignments.

132 CHAPTER 6. GREEDY METHODS

based upon the probability of catching an intruder with imperfect knowledge

(see section 4.1.1). Unfortunately, this metric is rather weak in itself, since it

requires a model, which may model a given intruder very accurately or not.

In this case, the best evaluation is the probability of catching an intruder,

who behaves as expected from the model, in a given time.

Another problem is the fact that the greedy algorithm is based upon ex-

actly the same model as the evaluation, which undesirably links the evalua-

tion method to the search method. This can not be prevented, since when we

change the evaluation model to a better intruder model, the search method

becomes unfairly handicapped unless we also change its model to the better

one. It is easy to see, that there is no sense in using different models for the

search and the evaluation.

Figure 6.8: Performance of three different methods of intruder searching with
three pursuers. Performance is strongly smoothed for better comparision.

The probability of catching an intruder at a given time can be directly

6.7. CRITIC & DIRECTIONS OF RESEARCH 133

taken from the global human model simulator, since it is the counterpart of

the model’s normalizer (see subsection 3.2.2).

Figure 6.8 shows these probabilities for the above described example ex-

periment. The green line represents the values for the described method. As

one can see, the probability to catch is comparatively high at the beginning

of the experiment (since the pursuers are dropped at the starting point ther-

fore ”catching” many intruders). After a short drop phase, the probability

reaches a stable value of 0.007, which translates to a probability of 0.7 per-

cent to catch an intruder at a given time step, which is the performance of

the technique as a whole. This performance metric allows a direct compari-

son with simpler methods. In the same figure the performance of two other

methods is also shown. The most simple method of placing static observers

is shown in red, while the divided round-trip of three robots is shown in blue.

As one can see, the performance of the greedy method is significantly better

than the performance of the simple methods. In section 4.3 we have already

discussed that the performance of a technique is strongly dependent on the

ratio between intruder speed and pursuers’ speed. In the setting of the just

discussed experiments, the intruder speed was set comparatively high, which

is the same as setting a slow speed for the pursuers, which results in an

advantage for the group of static observers. If we increase the speed of the

pursuers, we would expect this advantage to decrease. This is exactly what

happens and can be seen in figure 6.9. In the right part, one can see the

results just discussed. In the left part, the intruder speed was much slower

(one sixth of the original speed), therefore the performance of the static sys-

tem is strongly reduced. The ranking of the simple methods is inverted (see

discussion in 4.3.3). More important is the fact that the greedy system out-

performs the simpler methods regardless of the speed ratio, as long as the

ratio is in realistic bounds.

6.7 Critic & Directions of research

As stated in the last section, one problem of the presented technique is the

correlation between the evaluation function and the direction of the greedy

search. Simply speaking, if the underlying movement model turns out to

134 CHAPTER 6. GREEDY METHODS

Figure 6.9: Results of different methods for searching an unaware intruder.
Left part shows the probabilities for three different methods to catch a slow
moving intruder in one timestep. Right part shows the probabilities for a
faster intruder.

be weak or unrealistic, this would not be reflected in the performance mea-

surement used for the method. The correctness or quality of the underlying

movement model can not be measured by the evaluation function presented

here.

As the reader will have noticed, the greedy search algorithm is strongly

correlated to the multirobot exploration algorithm presented in chapter 2. In

fact, the algorithm can be seen as a form of multirobot exploration algorithm

with an increasing information gain for places, which are not in the robot’s

sensor range. As we have proved, this approach leads to good results and

allows a stable and adequate solution for the problem. However, there is

6.7. CRITIC & DIRECTIONS OF RESEARCH 135

a fundamental difference between multi robot exploration and multi robot

intruder searching: In case of the multi robot exploration, the planning has

to be online, since the information collected by the sensors is an integral part

of the next planning step. In our formulation of the multi robot intruder

searching problem, the situation was different, we expect all measurement to

be negative 4, since a positive measurement would terminate the search. This

was also reflected in the formulae presented in section 6.2. We argumented

the greedy one-step solution, since an optimal solution for the problem is

almost intractable. An interesting idea might be to increase the planning

horizon to more steps and to compare the performance of different levels,

therefore trading calculation time for system performance. It would also

be important to know a possible limit for the increase in calculation time,

since the nondeterministic robot movement would only allow a limited time

horizon to be adequately planned.

4Meaning that no intruder was found in the measurement

136 CHAPTER 6. GREEDY METHODS

Chapter 7

Perspectives

7.1 Conclusions

In this manuscript, we have shown methods and techniques for searching a

human intruder in a closed, 2-dimensional area with a group of robots.

The first step in our solution was to transfer the problem from searching

an unknown environment to the task of searching a known environment. This

can be done by carrying out a complete exploration prior to the search task

itself. Since our work deals with groups of robots, we presented a coordination

scheme to speedup the process.

To allow the construction of complex search methods, we developed hu-

man motion models with different levels of awareness and cooperation. Our

main focus was set on two different models: The first model corresponded to

a person unaware of pursuit and therefore without reaction to the searching

robots. The effective implementation of this model required the development

of advanced Markov Models, which allowed the estimation of a probability

distribution of the intruder’s location in the environment. The second model

corresponded to a person with the intention of hiding from the pursuers and

which had perfect intelligence of the pursuers’ future motions.

Based upon these models, we proposed metrics to evaluate and compare

different search techniques. As a basis for comparison, we shortly discussed

some simple search techniques and their performances.

To catch a perfect intelligent intruder with the intention of hiding, we

138 CHAPTER 7. PERSPECTIVES

presented a technique to project the problem on a graph structure, which

was then searched by a highly optimized A* Planner. The evaluation of

the technique was done through simulation as with real world experiments

and showed it to be practical as well as having an excellent performance.

To complete the aspect of perfect intelligent intruders, we also discussed an

alternative planning space for the A* Planner, which permitted the effective

planning in very large environments.

To catch an unaware intruder, we presented a greedy technique, which

was based on the intruder models developed before. We suggested an ap-

proach based on the calculation of utility and costs and included a simple

coordination scheme to generate an efficient search pattern. In experimental

comparison the method has shown better results than simpler search mech-

anisms.

Summing up the above, we build a framework to construct a complete

searching system, starting from exploration of the environment to the gener-

ation of search plans and the estimation of the intruder’s whereabouts. The

framework is suitable as a step by step manual how to build such a system

and what results can be obtained in a specific environment, given an assumed

type of intruder.

7.2 Future Work

The main focus of this work has been planning and coordination of a group

of pursuing robots to locate an intruder. While we think that our solution

is stable and delivers fast and usable results for the case of perfectly smart

intruders, the question how smart real intruders (humans) behave is still

open. In scenarios with a small number of searching robots compared to the

complexity of the environment, the whole system depends on the quality of

the human model. A smart intruder with knowledge about the used model

could also use this knowledge to develop strategies to improve evasion. It

is therefore necessary to come up with better human models and to include

mechanism that incorporate and counter active evasion.

While being practical in almost all cases tested, the A* planner discussed

in chapter 5 required two optimizations, which sacrificed the optimality of

7.2. FUTURE WORK 139

the generated plan. An important step to improve the system should be the

development of an admissible heuristic which is still efficient enough to let

the search terminate in reasonable time. For the second optimization, we

have shown that the exclusion of recontamination does not always hold for

our formulation of the problem, as long as we forbid the jumping of a robot

from one node to non adjacent node. An interesting question would be, how

much recontamination is needed for our case to regain its optimality and how

this can be included in the planner.

Another important step for the development for a real (and perhaps com-

mercial) system is the availability of cheap sensors and robots. In our exper-

iments we used commercial off-the-shelf robots with a price around 3000e
per robot. The sensor used was mainly the commonly found SICK-LMS-200

Laser Scanner, which price is usually around 4000 e per piece. Since every

robot needs two of them, a moderate sized team would alone cost almost

100.000 e . At the beginning of the manuscript, we motivated the use of au-

tonomous security robots among other things with the argument of a cheap

price compared to human labor. This is clearly not the case at this time.

While we think that commercial laser scanners and robot platforms will be-

come much cheaper in the future, it is difficult to tell when this will happen.

However, cheaper sensors with different characteristics are available, for ex-

ample cameras. While we did our experiments with laser range finders, the

methods and algorithm are not based on specific characteristics of a laser, our

only assumption was a sensor with omnidirectional view. With the argument

of price in mind, an omnidirectional camera or a cluster of cheap cameras

with an omnidirectional field of view, could provide a cheap alternative to

the laser.

Another interesting direction of research could be the use of flying robots,

which offer the advantage of high speed and maneuverability. This is espe-

cially interesting, since flying robots, for example quadcopters, can move sig-

nificantly faster than a human intruder. Naturally, this calls for an outdoor

scenario and flying robots with fast collision free navigation are still at the

start of their development. While the planning problem can still be treated

as a 2-dimensional problem, the sensor has to be 3-dimensional, therefore

requiring an alternative to the 2-dimensional lasers.

140 CHAPTER 7. PERSPECTIVES

Chapter 8

Appendix

Theorem 1. Consider a set of n positive numbers (p1, ..., pn), which add up

to a given number X(X =
n∑

j=0

pj). The product of all pj gets maximum if all

numbers are set to X
n
.

Proof. We prove by contradiction. Let us assume we have found a set, which

holds the above restrictions but has at least one pj 6= X
n
. Following from

that, that there is at least one pair ph > pl.

Then we set ε = ph−pl

2
. Since we knew ph > pl, we can also assume that

ε > 0. We set the product

Qmax =

(
n∏

j\{h,l}
pj

)
· ph · pl

Now assume a second set where ph is substituted by ph − e and pl by pl + e.

The sum of the set is still X. But the product is:

142 CHAPTER 8. APPENDIX

Qnew =
n∏

j\{h,l}
pj · (ph − ε) · (pl + ε)

=
n∏

j\{h,l}
pj · (ph · pl − ε · pl + ε · ph − ε2)

=
n∏

j\{h,l}
pj · (ph · pl + ε · (−pl + ph − ε))

=
n∏

j\{h,l}
pj · (ph · pl + ε · (ph − pl − ph−pl

2
))

=
n∏

j\{h,l}
pj · (ph · pl + ε · (ph−pl

2
))

=
n∏

j\{h,l}
pj · (ph · pl + ε · (ε))

=
n∏

j\{h,l}
pj · (ph · pl + ε2)

We assumed that Qmax should be maximal:

Qmax −Qnew ≥ 0
n∏

j\{h,l}
pj · ph · pl −

n∏
j\{h,l}

pj · (ph · pl + ε2) ≥ 0

n∏
j\{h,l}

pj · ph · pl −
n∏

j\{h,l}
pj · ph · pl −

n∏
j\{h,l}

pjε
2 ≥ 0

−
n∏

j\{h,l}
pjε

2 ≥ 0

n∏
j\{h,l}

pjε
2 ≤ 0

Since we knew all pj > 0 and ε > 0:

0 <
n∏

j\{h,l}
pjε

2 ≤ 0

0 < 0
Which is clearly wrong. Therefore the theorem is true.

Bibliography

[AG] SICK AG. LMS200 Laser Meßsystem, Indoor Version, Technische

Beschreibung. Technical Manual. www.sick.de.

[BBC+95] Joachim Buhmann, Wolfram Burgard, Armin B. Cremers, Di-

eter Fox, Thomas Hofmann, Frank Schneider, Jiannis Strikos,

and Sebastian Thrun. The mobile robot RHINO. AI Magazine,

16(2):31–38, Summer 1995.

[BCF+98] W. Burgard, Armin B. Cremers, D. Fox, D. Hähnel, G. Lake-

meyer, D. Schulz, W. Steiner, and S. Thrun. The interactive

museum tour-guide robot. In Proc. of the National Conference

on Artificial Intelligence (AAAI), 1998.

[BFDW03] F. Bourgault, T. Furukawa, and H.F. Durrant-Whyte. Coordi-

nated decentralized search for a lost target in a bayesian world. In

Proc. of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), volume 1, pages 48–53, 2003.

[BFDW04] F. Bourgault, T. Furukawa, and H.F. Durrant-Whyte. Pro-

cess model, constraints, and the coordinated search strategy. In

Proc. of the IEEE International Conference on Robotics & Au-

tomation (ICRA), 2004.

[BFGK98] Wolfram Burgard, Dieter Fox, Jens-Steffen Gutmann, and Kurt

Konolige. An experimental comparison of localization methods.

In Proc. of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 1998.

144 BIBLIOGRAPHY

[BMF+00] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun.

Collaborative multi-robot exploration. In Proc. of the IEEE In-

ternational Conference on Robotics & Automation (ICRA), 2000.

[BMS02] W. Burgard, M. Moors, and F. Schneider. Collaborative explo-

ration of unknown environments with teams of mobile robots. In

M. Beetz, J. Hertzberg, M. Ghallab, and M.E. Pollack, editors,

Plan-Based Control of Robotic Agents, volume 2466 of Lecture

Notes in Computer Science. Springer Verlag, 2002.

[BMSS05] W. Burgard, M. Moors, C. Stachniss, and F. Schneider. Coordi-

nated multi-robot exploration. IEEE Transactions on Robotics,

21(3):376–378, 2005.

[BO99] T. Başar and G. J. Olsder. Dynamic Noncooperative Game The-

ory. SIAM, 1999.

[Bre67] R. Breisch. An intuitive approach to speleotopology. In South-

western Cavers, volume VI.5, pages 72–78. Southwestern Region

of the National Speleological society, 1967.

[Bun00] Statistisches Bundesamt. Statistisches Jahrbuch 2000 für die

Bundesrepublik Deutschland. Metzler-Poeschel Verlag, 2000.

[CN86] W Chin and S Ntafos. Optimum watchman routes. In SCG ’86:

Proceedings of the second annual symposium on Computational

geometry, pages 24–33, New York, NY, USA, 1986. ACM.

[DJMW91] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Robotic ex-

ploration as graph construction. IEEE Transactions on Robotics

and Automation, 7(6):859–865, 1991.

[EvP94] T. Edlinger and E. von Puttkamer. Exploration of an indoor-

environment by an autonomous mobile robot. In Proc. of the

IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 1994.

BIBLIOGRAPHY 145

[FBKT00] D. Fox, W. Burgard, H. Kruppa, and S. Thrun. A probabilistic

approach to collaborative multi-robot localization. Autonomous

Robots, 2000.

[GLL+99] L.J. Guibas, J.C. Latombe, S.M. LaValle, D. Lin, and R. Mot-

wani. A visibility-based pursuit-evasion problem. International

Journal of Computational Geometry and Applications, 9(5):471–

493, 1999.

[Gmb06] Messe Essen GmbH. Security journal 2006. Fair-Publication,

August 2006.

[GSS93] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. A novel

approach to nonlinear/non-Gaussian Bayesian state estimation.

IEE Proceedings F, 140(2), 1993.

[GTG04] B. Gerkey, S. Thrun, and G. Gordon. Clear the building: Pursuit-

evasion with teams of robots. In Proceedings of the AAAI Na-

tional Conference on Artificial Intelligence, San Jose, CA, 2004.

AAAI.

[Haj75] O. Hajek. Pursuit Games: An Introduction to the Theory and

Applications of Differential Games of Pursuit and Evasion, vol-

ume 120 of Mathematics in Science and Engineering. Academic

Press, 1975.

[HEL00] K. HELSGAUN. An effective implementation of the Lin-

Kernighan traveling salesman heuristic. European J. Oper. Res.,

126(1):106–130, 2000.

[HKS99] J. Hespanha, H. Kim, and S. Sastry. Multiple-agent probabilistic

pursuit-evasion games, 1999.

[HPS00] J. Hespanha, M. Prandini, and S. Sastry. Probabilistic pursuit-

evasion games: A onestep nash approach, 2000.

[IB96] M. Isard and A. Blake. Contour tracking by stochastic propaga-

tion of conditional density. In ”Proc. of European Conference on

Computer Vision (ECCV)”, pages 343–356, 1996.

146 BIBLIOGRAPHY

[Isa65] R. Isaacs. Differential Games: A Mathematical Theory with Ap-

plications to Warfare and Pursuit, Control and Optimization.

John Wiley & Sons, New York, 1965.

[LaP93] Andrea S. LaPaugh. Recontamination does not help to search a

graph. J. ACM, 40(2):224–245, 1993.

[MHG+88] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H.

Papadimitriou. The complexity of searching a graph. J. ACM,

35(1):18–44, 1988.

[Mor88] H. P. Moravec. Sensor fusion in certainty grids for mobile robots.

AI Magazine, pages 61–74, Summer 1988.

[MRS05] M. Moors, T. Röhling, and D. Schulz. A probabilistic approach

to coordinated multi-robot indoor surveillance. In Proc. of the

IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2005.

[MS06] M. Moors and D. Schulz. Improved markov models for indoor

surveillance. In Proc. of the IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), pages 4072–4077,

2006.

[Nas50] John Nash. Non-cooperative Games. PhD thesis, Princeton Uni-

versity, 1950.

[Nta92] Simeon Ntafos. Watchman routes under limited visibility. Com-

put. Geom. Theory Appl., 1(3):149–170, 1992.

[O’R87] Joseph O’Rourke. Art gallery theorems and algorithms. Oxford

University Press, Inc., 1987.

[Par76] T.D. Parsons. Pursuit-evasion in a graph. In Y. Alavi and

D.Lick, editors, Theory and Applications of Graphs. Springer Ver-

lag, 1976.

BIBLIOGRAPHY 147

[Par78] T.D. Parsons. The search number of a connected graph. In Pro-

ceedings of the 9th Southeastern Conference on Combinatorics,

Graph Theory and Computing, pages 549–554. Utilitas Mathe-

matica Publishing, 1978.

[RN95] Stuart Russell and Peter Norvig. Artificial Intelligence: A Mod-

ern Approach. Prentice-Hall, Englewood Cliffs, NJ, 1995.

[SAB+00] R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors,

S. Thrun, and H. Younes. Coordination for multi-robot explo-

ration and mapping. In Proc. of the National Conference on

Artificial Intelligence (AAAI), 2000.

[SBFC01] D. Schulz, W. Burgard, D. Fox, and A.B. Cremers. Tracking mul-

tiple moving objects with a mobile robot. In Proc. of the IEEE

Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR), 2001.

[SBFC03] D. Schulz, W. Burgard, D. Fox, and A. Cremens. People tracking

with mobile robots using sample-based joint probabilistic data

association filters, 2003.

[SY92] I. Suzuki and M. Yamashita. Searching for a mobile intruder in a

polygonal region. SIAM Journal on Computing, 21(5):863–888,

1992.

[TBB+98] S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Fröhlinghaus,

D. Hennig, T. Hofmann, M. Krell, and T. Schimdt. Map learning

and high-speed navigation in RHINO. In D. Kortenkamp, R.P.

Bonasso, and R. Murphy, editors, AI-based Mobile Robots: Case

studies of successful robot systems. MIT Press, Cambridge, MA,

1998.

[TBB+99] S. Thrun, M. Bennewitz, W. Burgard, A.B. Cremers, F. Del-

laert, D. Fox, D. Hähnel, C. Rosenberg, N. Roy, J. Schulte, and

D. Schulz. MINERVA: A second generation mobile tour-guide

robot. In Proc. of the IEEE International Conference on Robotics

& Automation (ICRA), 1999.

148 BIBLIOGRAPHY

[TFBF01] S. Thrun, D. Fox, W. Burgard, and Dellaert. F. Robust monte

carlo localization for mobile robots. Artificial Intelligence, 128(1-

2), 2001.

[Thr93] Sebastian Thrun. Exploration and model building in mobile

robot domains. In Proceedings of the ICNN-93, pages 175–180,

San Francisco, CA, March 1993. IEEE Neural Network Council.

[VSK+02] R. Vidal, O. Shakernia, J. Kim, D. Shim, and S. Sastry. Prob-

abilistic pursuit-evasion games: Theory, implementation and ex-

perimental evaluation. IEEE Transactions on Robotics and Au-

tomation, Special Issue on Multi-Robot Systems, 2002.

[Yam98] Brian Yamauchi. Frontier-based exploration using multiple

robots. In Proceedings of the Second International Conference

on Autonomous Agents, pages 47–53, Navy Research Laboratory,

Washington, DC 20375-5337, May 1998. Navy Center for Applied

Research in Artificial Intelligence.

[YSA99] B. Yamauchi, A. Schultz, and W. Adams. Integrating exploration

and localization for mobile robots. Adaptive Systems, 7(2), 1999.

