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Abstract

We study the minimization of a quadratic functional subject to constraints given by
a linear or semilinear elliptic partial differential equation with distributed control.
Further, pointwise inequality constraints on the control are accounted for.

In the linear-quadratic case, the discretized optimality conditions yield a large,
sparse, and indefinite system with saddle point structure. One main contribution of
this thesis consists in devising a coupled multigrid solver which avoids full constraint
elimination. To this end, we define a smoothing iteration incorporating elements from
constraint preconditioning. A local mode analysis shows that for discrete optimality
systems, we can expect smoothing rates close to those obtained with respect to the
underlying constraint PDE.

Our numerical experiments include problems with constraints where standard point-
wise smoothing is known to fail for the underlying PDE. In particular, we consider
anisotropic diffusion and convection-diffusion problems. The framework of our method
allows to include line smoothers or ILU-factorizations, which are suitable for such prob-
lems. In all cases, numerical experiments show that convergence rates do not depend
on the mesh size of the finest level and discrete optimality systems can be solved with
a small multiple of the computational cost which is required to solve the underlying
constraint PDE. Employing the full multigrid approach, the computational cost is
proportional to the number of unknowns on the finest grid level.

We discuss the role of the regularization parameter in the cost functional and show
that the convergence rates are robust with respect to both the fine grid mesh size and
the regularization parameter under a mild restriction on the next to coarsest mesh
size. Incorporating spectral filtering for the reduced Hessian in the control smoothing
step allows us to weaken the mesh size restriction. As a result, problems with near-
vanishing regularization parameter can be treated efficiently with a negligible amount
of additional computational work. For fine discretizations, robust convergence is ob-
tained with rates which are independent of the regularization parameter, the coarsest
mesh size, and the number of levels.

In order to treat linear-quadratic problems with pointwise inequality constraints on
the control, the multigrid approach is modified to solve subproblems generated by a
primal-dual active set strategy (PDAS). Numerical experiments demonstrate the high
efficiency of this approach due to mesh-independent convergence of both the outer
PDAS method and the inner multigrid solver.

The PDAS-multigrid method is incorporated in the sequential quadratic program-
ming (SQP) framework. Inexact Newton techniques further enhance the computa-
tional efficiency. Globalization is implemented with a line search based on the aug-
mented Lagrangian merit function. Numerical experiments highlight the efficiency of
the resulting SQP-multigrid approach. In all cases, locally superlinear convergence of
the SQP method is observed. In combination with the mesh-independent convergence
rate of the inner solver, a solution method with optimal efficiency is obtained.





Contents

1 Introduction 1

2 Optimal Control of Elliptic Boundary Value Problems 13
2.1 Existence of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Characterization of Solutions and Optimality Systems . . . . . . . . . . 16
2.3 Finite Dimensional Approximation . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Optimize-Then-Discretize vs. Discretize-Then-Optimize . . . . . 20
2.3.2 Discretization of the State Equation . . . . . . . . . . . . . . . . 22
2.3.3 The Discrete Optimality System . . . . . . . . . . . . . . . . . . 26
2.3.4 Some Properties of Saddle Point Matrices . . . . . . . . . . . . 30

3 A One-Level Method for the Numerical Solution of Saddle Point Systems
Arising in PDE-Constrained Optimization 35
3.1 Numerical Methods for the Solution of Saddle Point Systems . . . . . . 35

3.1.1 Segregated Methods . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Coupled Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.3 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 A Block-Triangular Constraint Preconditioner Based on a Reduced Hes-
sian Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 A Multigrid Method for the Solution of Linear-Quadratic Optimal Control
Problems 55
4.1 Multigrid for Scalar Elliptic Equations . . . . . . . . . . . . . . . . . . 56
4.2 Multigrid Methods in Optimal Control and Optimization . . . . . . . . 64
4.3 A Smoothing Iteration for Discrete Optimality Systems . . . . . . . . . 67

4.3.1 Local Fourier Smoothing Analysis . . . . . . . . . . . . . . . . . 72
4.4 A Multigrid Method for Discrete Optimality Systems . . . . . . . . . . 76
4.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5.1 A Model Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5.2 Example: General Diffusion Equation with Full Tensor . . . . . 83
4.5.3 Example: Anisotropic Diffusion Equation on Non-Uniform Grids 89
4.5.4 Example: Convection-Diffusion with Circular Wind . . . . . . . 95
4.5.5 Robustness and the Role of Regularization . . . . . . . . . . . . 101

4.6 Robustness Enhancement by Spectral Filtering . . . . . . . . . . . . . . 107



ii Contents

4.7 Numerical Results: Robustness Enhancement . . . . . . . . . . . . . . 115

5 A Primal-Dual Active-Set Multigrid Method for Control-Constrained Op-
timal Control Problems 119
5.1 Finite Dimensional Approximation . . . . . . . . . . . . . . . . . . . . 119
5.2 Multigrid Methods for Variational Inequalities . . . . . . . . . . . . . . 120
5.3 The Primal-Dual Active Set Method . . . . . . . . . . . . . . . . . . . 122
5.4 A PDAS Multigrid Method for the Solution of Control-Constrained

Optimal Control Problems . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.5.1 A Model Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.5.2 Example: A Bang-Bang Control Problem . . . . . . . . . . . . . 134

6 A SQP Multigrid Method for Semilinear PDE Constrained Optimization 137
6.1 Existence and Characterization of Solutions . . . . . . . . . . . . . . . 138
6.2 The Discrete Optimality System . . . . . . . . . . . . . . . . . . . . . . 141
6.3 Lagrange-Newton Methods and Sequential Quadratic Programming . . 142

6.3.1 Inexact Newton Methods . . . . . . . . . . . . . . . . . . . . . . 143
6.3.2 Globalization and Merit Functions . . . . . . . . . . . . . . . . 145
6.3.3 A Full SQP-Multigrid Method . . . . . . . . . . . . . . . . . . . 146

6.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.4.1 A Model Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.4.2 Optimal Control of a Steady-State Solid Fuel Ignition Model . . 150
6.4.3 Optimal Control of a Semilinear Equation Associated with a

Scalar Ginzburg-Landau Model . . . . . . . . . . . . . . . . . . 154

7 Conclusions 159

A Appendix 161
A.1 Saddle Point Systems in Hilbert Spaces . . . . . . . . . . . . . . . . . . 161

Bibliography 165



1 Introduction

In that Empire, the craft of Cartography attained such
Perfection that the Map of a Single province covered the space of
an entire City, and the Map of the Empire itself an entire
Province. In the course of Time, these Extensive maps were
found somehow wanting, and so the College of Cartographers
evolved a Map of the Empire that was of the same Scale as the
Empire and that coincided with it point for point.

(On Rigor In Science, Jorge Luis Borges)

Constrained optimization is an ubiquitous task in numerous areas of science, engi-
neering, and economics: network routing problems involve maximizing bandwidth
utilization while sustaining a designated throughput, portfolio optimization includes
the task of maximizing expected return at a given level of risk exposure, and engi-
neers seek the optimal shape of an aircraft wing or automobile with the objective of
minimizing fuel consumption while maintaining speed and stability. In many other
applications we find ourselves searching the optimal state of a given system subject to
additional constraints.

For many processes in the natural sciences or economics the appropriate mathe-
matical model is given by a partial differential equation (PDE) or systems thereof. A
prominent example which appears in an abundance of different applications is given
by Poisson’s equation on a domain Ω ⊂ Rd

−∆y = u in Ω, y = 0 on ∂Ω. (1.1)

A classical problem is to obtain the electrostatic potential y from a given source
u = ρ/ε0 with the charge density ρ and the vacuum permittivity ε0. A different
point of view is as follows: the source function u is at our disposal to control the
solution y, and conforming with optimal control parlance, we call u the control and
the corresponding output y of (1.1) the state. Using the control u in order to reach
some desired objective can formally be written as

minimize J (y, u) (1.2a)

subject to C(y, u) = 0. (1.2b)

Here, J (y, u) is the objective functional which typically measures quantities like energy
or cost which depend on y or u. The abstract operator equation (1.2b) embodies the
PDE which now acts as a constraint. Problem (1.2) is the abstract formulation of
a PDE constrained optimization problem, which in turn is a particular instance of
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an equality-constrained optimization problem. Note that the PDE-based structure
imposes a natural partitioning of the optimization variables x = (y, u).

A concrete example for (1.2) can be found in optimal design of semiconductor de-
vices. Here, one specific task is to determine an optimal doping profile, which enters
the source term of (1.1) in a coupled drift-diffusion model [44, 97]. Another exam-
ple is given by optimization processes arising in the context of tumor treatment by
regional hyperthermia [106]. One objective is to noninvasively generate an optimal
heat distribution in tissue by microwave or radio frequency energy with the aim of
making a tumor more susceptible to accompanying treatments. The control u repre-
sents the distributed heat source and controls the temperature distribution in tissue
according to the bioheat equation, which is a diffusion equation with an additional
nonlinear Helmholtz term. An abundance of problems exist which can be cast in the
abstract form (1.2) and we can give only a few pointers to the available literature.
We refer to [26] for examples in inverse problems, to [27, 28] for applications from
optimal control, to [88, 122] for optimal design and shape optimization and to [79] for
optimization problems with a special emphasis on flow control.

If the control u appears in (1.2b) as the source term, we speak of distributed control.
However, although we focus on distributed control problems in this thesis, other cases
are possible and common. In several applications, u enters the boundary conditions
of (1.2b). To give an example, a long-time objective in flow control is reducing vorticity
in a flow field by injection or suction on parts of the boundary. In the field of optimal
shape design, u often represents a certain set of parameters defining (part of) the
boundary of the domain on which (1.2b) is defined.

In many applications, additional inequality constraints with respect to (a subset
of) the optimization variables have to be satisfied. In this thesis, we will consider
pointwise inequality constraints on u. To this end, the optimization problem (1.2) is
extended by the additional requirement that

u ∈ Uad, (1.3)

where Uad is a given set of admissible controls.

In this thesis, we consider distributed control problems of the form (1.2), (1.3),
where J is a quadratic functional and the constraints (1.2b) are given by a linear or
semilinear elliptic boundary value problem. The first class of problems is referred to
as the linear-quadratic case and has been addressed systematically for the first time in
the seminal work of Lions [111]. Existence and uniqueness of solutions to (1.2), (1.3)
follow from the well-posedness of the constraints and convexity conditions for J and
Uad. In the non-convex and singular cases, the theory is far from being mature. Here,
semilinear elliptic constraints are the most accessible class of problems and cover
many important applications such as a simplified scalar Ginzburg-Landau model in
superconductivity [80]. Important theoretical contributions are due to Lions [112],
Casas and Tröltzsch [6] and Ito and Kunisch [100].
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In almost all practical cases, neither for the constraints (1.2b) nor for the complete
problem (1.2), (1.3) is a closed-form solution available. Therefore, one has to resort to
numerical simulation. To this end, the infinite-dimensional problem (1.2), (1.3) has to
be discretized, which is usually done with finite element or finite difference methods [6,
64, 94, 121]. If h denotes a discretization parameter related to the mesh width,
discretizing (1.2b) yields a linear or nonlinear system of equations with ny = O(h−d)
unknowns in d dimensions. When treating the optimization problem (1.2), the controls
u are treated as unknowns as well, and naturally the number nu of discrete control
unknowns is of particular interest. In the case of optimal shape design often a priori u is
a discrete quantity with nu = O(1) and a small constant < 100. On the other hand, if
uh arises from the discretization process for (1.2b) as well, we obtain nu = O(h−(d−1))
for boundary control problems and nu = O(h−d) for distributed control problems.
Thus, for fine discretizations not only ny but also nu will be large. In any case, a large
system of linear or nonlinear equations arises from the discretization, and solving these
systems in optimal complexity O(n), where n is the total number of unknowns, is a
nontrivial task.

The objective of this work consists in devising a fast and efficient algorithm for the
solution of discretized PDE constrained optimization problems. In particular, we aim
at computing a discrete solution with an accuracy proportional to the discretization
error and a cost which is at most O(n log n). For problems arising from discretized
second-order elliptic PDEs a solver with this (near-optimal) efficiency is the multigrid
method, and in combination with nested iteration the optimal complexity O(n) is
obtained. As it will turn out, the multigrid method can be adapted to solve problems
of the type (1.2) with the same asymptotic complexity. One possible way to picture
the multigrid method is as follows: solutions obtained on coarser grids are utilized to
remove smooth components from the error, whereas a smoothing iteration on each level
reduces the oscillatory error components on that level. A major task we are concerned
with is to develop a smoothing iteration which is suitable to be applied in the context
of PDE constrained optimization. For more details on the multigrid method we refer
to [40, 41, 85, 154] as well as [147] and the numerous references therein.

Incorporating multigrid ideas in optimization algorithms can be carried out in a
number of different ways. In order to reach our desired objective, we have to consider
the following question: how does the computational effort needed for the solution
of (1.2) scale in relation to the cost for the solution of (1.2b)? In other words, if we
desire to reduce the discretization error and, say, halve the mesh size h, which impact
will this have on the computational cost for the solution of the overall optimization
problem? Subsequently we will discuss this and other important issues and outline
our own approach in more detail. To this end, we proceed by giving some necessary
details on the inner workings of optimization techniques appropriate for the solution
of (1.2), (1.3).

A key issue for any fast optimization algorithm is to exploit gradient and curvature
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information. Due to the PDE-based nature of the optimization problems considered,
under suitable assumptions, (Fréchet–) derivatives up to second-order exist. Newton’s
method proves to be particularly attractive here due to the following properties: first,
the speed of convergence is locally superlinear or quadratic, and second, Newton’s
method for discretized operator equations often exhibits a mesh-independence prin-
ciple [3]. In combination with an optimal solver for the Newton systems an overall
mesh-independent solution method results. However, we do not hesitate to mention a
well-known drawback of Newton’s method: convergence can be guaranteed only in a
neighborhood of a local minimizer. Thus, an initial iterate which is sufficiently close to
a solution is required, and in practice globalization by line search, filter or trust-region
techniques as well as hybridization with a globally convergent gradient-scheme should
be considered. We stress the point that the objective of these globalization measures
is to assure convergence from remote starting points only, and not to find a globally
optimal solution.

Let us briefly digress here to comment on the relation to the vast field of global
optimization. Here, common strategies are based on a reduction of the search space
by heuristics or random sampling, thus giving a leverage to trade in the accuracy of
the approximately globally optimal solution for a reduced computational effort. An
example for a probabilistic search method is simulated annealing. In contrast, branch-
and-bound algorithms are an example for deterministic meta-strategies. They follow
the divide-and-conquer principle, building up a tree of the search space with branching
steps and removing subtrees using a bounding criterion. In continuous optimization
however, which is the focus of this thesis, local gradient-descent and Newton-type
methods are the principal tools. However, these methods may be of use for the solution
of subproblems which arise in global optimization. In [110], a mixed integer nonlinear
programming problem has been solved with a branch-and-bound search which uses
a Newton-based algorithm to solve nonlinear programming problems arising at the
nodes.

Let us now look at Newton-like methods in optimization in some more detail. We
ignore the side constraints (1.3) for the moment, as they will be considered explicitly at
a later stage. A first approach, related to the generalized reduced gradient method [69],
is to eliminate y = y(u) (tacitly assuming local invertibility of C(y, u)) and apply
Newton’s method to minimize the reduced functional

Ĵ (u) = J (y(u), u). (1.4)

Due to the elimination of the constraints, every iterate naturally satisfies the con-
straints. Methods with this property are called feasible. Furthermore, the dimension
of the problem is reduced to that of the control space. Therefore, this approach is also
termed a reduced Newton method. Such methods might be attractive if the dimension
of the control space is small or if it is of high priority to reuse an existing implementa-
tion for the elimination of the constraints. Some optimization codes build around this
concept, using PDE solvers as a black-box within an outer optimization loop [28].
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Several drawbacks are associated with the reduced Newton approach. In each New-
ton iteration, a full nonlinear solve of the constraint PDE is required for the gradient
computation. Furthermore, the solution of the Newton system requires inverting the
Hessian D2

uuĴ (u). In PDE constrained optimization, the operator D2
uuĴ (u) involves

the solution operators of the linearized constraints and would be represented by a
dense matrix. For large-scale problems it is therefore not possible to explicitly assem-
ble D2

uuĴ (u) and solve the related system with direct factorization. Instead, iterative
methods such as conjugate gradient are applied. Computing the matrix-vector prod-
uct with D2

uuĴ (u) requires computing two inversions of the linearized constraints.
Unacceptably large computational costs are the consequence, since the number of the
conjugate gradient iterations in general depends on Nu and furthermore, D2

uuĴ (u)
can be quite ill-conditioned. Devising preconditioners for the non-assembled reduced
Hessian is a largely unanswered question (but see [125] for an exception).

A first attempt to overcome this difficulty with the help of multigrid is due to Hack-
busch [83]. He observed that, in the context of a linear-quadratic problem constrained
by (1.1), the reduced Hessian D2

uuĴ (u) is an operator of Fredholm type and a suitable
multigrid method [84] could be applied, where the smoothing iteration is given by a
fixed point iteration. Although the scaling behavior with respect to nu is improved, the
computational cost is still quite large since the smoothing step requires the evaluation
of D2

uuĴ (u).

A further disadvantage of the reduced Newton method, which has been reported
in [27] in the context of flow control (see also [96]), is an adverse effect on the outer
Newton iteration. Due to the nonlinear elimination in fact more Newton steps might
be required, compared to other second-order methods.

Quasi-Newton methods eliminate the need to compute D2
uuĴ (ul) by maintaining an

approximation W l based on low-rank updates in each Newton iteration l. The conver-
gence speed reduces to superlinear at most, but a substantial amount of computational
cost can be saved. However, in large-scale applications the W l tend to become dense,
unless one resorts to limited-memory variants, which come at the expense of a further
reduction in convergence speed. A delicate issue for ill-conditioned problems is how
to choose the initial approximation W 0. On the other hand, a distinct advantage of
most quasi-Newton methods is that by construction the matrices W l are guaranteed
to be positive definite. Quasi-Newton methods have been the methods of choice if
second-order information is not available or expensive to compute, however in these
cases automatic differentiation often provides a viable alternative. Further details and
references can be found for instance in [127]. Here instead, we focus on methods which
employ “true” second-order information.

A substantial gain in performance may be obtained when the feasibility requirement
is dropped. For many purposes, it is sufficient if the final iterate of an optimization
algorithm is feasible1 within the desired accuracy. This idea leads to infeasible algo-

1There are exceptions, e.g. in singular control problems, a constraint violation might prevent ob-
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rithms such as Lagrange-Newton and SQP methods [4], which are derived by applying
Newton’s method to the necessary first-order optimality condition for the Lagrangian

L(y, u, p) = J (y, u) + pTC(y, u), (1.5)

with Lagrange multipliers p. This yields a sequence of linear systems(
D2
xxL(xl, pl) (DxC(xl))T
DxC(xl) 0

)(
δxl

δpl

)
= −

(
DxJ (xl) + (DxC(xl))Tpl

C(xl)
)
. (1.6)

Now the key in deriving SQP is noting that, provided D2
xxL(xl, pl) is positive definite

on kerDxC(xl), the Newton increments δxl, δpl defined by (1.6) solve the first-order
optimality system of the linear-quadratic optimization problem

minimize
1

2
δxTD2

xxL(xl, pl)δx+ (DxL(xl, pl))T δx (1.7a)

subject to DxC(xl)δx = −C(xl). (1.7b)

Thus, a solution of the nonlinearly constrained problem (1.2) can be obtained by
solving a sequence of linear-quadratic problems (1.7). Under suitable assumptions, the
fast local convergence and the mesh-independence of Newton’s method are inherited
by the SQP method. Furthermore, the inequality constraints (1.3), which are difficult
to handle with Newton’s method due to a lack of differentiability2 can be enforced by
explicitly adding them to (1.7).

The basic algorithm outlined so far corresponds to a local SQP method. Devising a
robust and efficient SQP method involves several additional issues such as globaliza-
tion, the choice of a suitable merit function to control the progress of the iteration3,
and inexactness issues derived from inexact Newton methods [55]. Further variants
result if the Hessian D2

xxL(xl, pl) in (1.7) is approximated by quasi-Newton methods or
is chosen as the Hessian of an augmented Lagrangian. We refer to [32] for a survey on
SQP methods and to [127] for further details on practical issues and related techniques
such as augmented Lagrangian and quasi-Newton-SQP methods.

The outlined SQP algorithm gives rise to a number of variants, depending on the
solution method for (1.6). The system (1.6) has saddle point structure and as such
is an indefinite system which has nx = ny + nu positive and np negative eigenvalues.
Saddle point systems and their efficient solution present a large and active area of
research, and since the advent of the prominent Uzawa iteration, numerous algorithms
have been proposed [22]. Examples for applications leading to saddle point systems

taining a solution of intermediate subproblems.
2It is possible to consider inequality constraints using the concept of semismooth Newton meth-

ods [91, 95], however the resulting algorithm in finite dimension will again be of SQP-type.
3In constrained optimization, a merit function is needed to balance the objectives of minimizing J

and satisfying the constraints.
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are discretizations using mixed finite element methods and fluid flow equations, e.g.
the Stokes- and Navier-Stokes-equations. A substantial part of research is directed
towards these problems. Despite the common structure in an abstract setting, the
characteristics of these saddle point systems are in general quite different. For instance,
in steady state Stokes flow, applying a certain block elimination to the saddle point
matrix yields a Schur complement which is spectrally equivalent to an L2 identity. In
contrast, the Schur complement arising from an analogous elimination strategy applied
in the context of optimal control is precisely D2

uuĴ (ul). This shows that there is little
hope to obtain a generic solver for saddle point systems in a “black-box” sense (with
the exception of direct factorizations).

Three approaches are predominant in the context of optimization problems: direct
factorization, iterative solution and reduced SQP methods. Arguably the most preva-
lent SQP variant in PDE constrained optimization (but not limited to such problems)
are reduced SQP-methods, which are obtained by employing a reduction to the con-
trol space, much like in the reduced Newton method, only here applied for the linear-
quadratic control problem at each SQP step. Essentially, the reduced SQP methods
differ from the reduced Newton method in that they employ linearized PDE operators
only, leading to a reduction in computational cost, since the nonlinear constraint is
solved only once during the course of the optimization process. Reduced SQP methods
have been applied in PDE constrained optimization for example in [29, 71, 96, 108],
and many more examples can be found in the references given at the beginning of
this introduction. Until recent, most multigrid-related efforts in PDE constrained op-
timization also fell into this category. In fact, most published methods are closely
related to Hackbusch’s approach, following that strategy in each SQP iteration. We
mention [71] for a parabolic boundary control problem and [58] for an optimal shape
design problem. A reduced quasi-Newton method using BFGS updates and incor-
porating a two-grid method has been applied in [155] to a parameter identification
problem in groundwater flow.

Due to the large similarities of the reduced Newton and SQP methods, most of the
sketched drawbacks apply to the latter as well. Therefore, recently there has been
an increasing interest in all-at-once or coupled approaches for the solution of (1.6).
For a better distinction, such methods are sometimes called full SQP, in contrast
to the reduced variants. Sparse factorization techniques for indefinite matrices have
reached a high degree of sophistication [59] and enjoy a considerable popularity in the
optimization community, largely due their robustness and their black-box character.
However, they are not well suited in the situation of PDE constrained optimization
due to their high demand on computational resources.

Iterative methods such as Krylov subspace iterations can be applied rather straight-
forwardly, since only matrix-vector products with the saddle point matrix are needed.
However, convergence of Krylov methods for indefinite problems is slow, making ef-
fective preconditioning a prerequisite. Full SQP variants employing inexact block
factorizations as preconditioner for Krylov methods have been developed in an ab-
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stract optimization context [48, 68], for parameter estimation [82] and for optimal
control problems [20, 66, 67, 140].

Our approach is best described as a full SQP method with a coupled multigrid
method for the solution of (1.6). Before we point out the key features and contributions
of our work, let us briefly summarize existing multigrid approaches which make use of
coupled approaches in some sense.

In [9], which is the earliest reference for a fully coupled multigrid method in the
optimization context, the term “One-Shot” approach has been coined. There, a si-
multaneous multigrid solution of a boundary control problem with constraints given
by (1.1) has been proposed, employing a variant of a gradient descent scheme as the
smoothing iteration. In [58], an inexact null-space iteration has been employed as a
smoothing iteration within a full space multigrid method. Formally, the method is
presented as an SQP approach, however it is applied to a linear programming problem
from topology optimization, where only the Hessian changes due to the log-barrier
terms of an interior point method. The PDE constraints are linear and do not change.

Several publications due to Borzi [33–35] address the multigrid solution of linear
and semilinear elliptic control problems. The method uses the full approximation
storage (FAS) variant of multigrid, which is applied directly to the nonlinear system
of the first-order optimality conditions. Hence, the linearization, as well as an optional
projection step in the presence of inequality constraints, are performed locally in the
smoothing iteration. As smoother a collective Gauss-Seidel iteration is chosen. The
same approach has been applied to a parameter identification problem for the diffusion
equation in [14].

A more general framework which is closer related to the “One-Shot” approach is
proposed in [124]. Here, the multigrid method plays the role of an outer iteration,
similar to the FAS approach, while on each grid level the smoothing iteration may be
implemented by any optimization method. This methodology offers flexibility accom-
panied by a satisfying convergence theory, but until now has not been on par with the
more classical multigrid approach, performance-wise [33].

Our own contributions in this context are as follows:

• In a preliminary step, we devise a preconditioned GMRES iteration for the
solution of linear-quadratic equality-constrained problems. Our preconditioner
is a block triangular variant of a constraint preconditioner [102]. Numerical
experiments are given and the robustness of the approach is discussed.

• In a second step, a coupled multigrid method for linear-quadratic problems is
developed. The smoothing effect of the smoothing iteration, which incorporates
elements from constraint preconditioning, is described in detail. This approach
is related to [58] but differs in the approximation of the inexact reduced Hes-
sian. For a particular variant, a quantitative local Fourier analysis is given which
shows that for a wide range of parameters, the smoothing rate of the coupled ap-
proach is close to the smoothing rate governed by the underlying PDE constraint.
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These findings are affirmed in detailed numerical experiments. The implemen-
tation is extended to the full multigrid method and numerical results are given
which demonstrate that indeed the PDE constrained optimization problem can
be solved with optimal complexity O(n). So far most results obtained with
coupled multigrid approaches found in the literature are restricted to the model
problem. Here, we give detailed additional numerical experiments for more com-
plex PDE constraints. In particular, we consider constraints which can not be
treated with the standard pointwise smoothers employed in the scalar case. We
consider the full diffusion equation, the anisotropic diffusion equation on non-
uniform meshes, and the convection-diffusion equation with circular wind. The
results indicate that our approach can be adapted to constraints which require
non-standard smoothing techniques. We believe that this is a benefit not found
in other multigrid approaches so far.

• We provide a detailed discussion of the robustness properties with respect to
the regularization parameter in the standard L2-regularized functional. Based
on concepts related to regularized Fredholm operators of the first kind, a mod-
ification leading to increased robustness in the presence of near-vanishing regu-
larization parameter is proposed.

• We extend our approach for the linear-quadratic case in order to handle the
inequality constraints (1.3). To this end, we apply the primal-dual active set
(PDAS) strategy [23, 24, 91]. The PDAS generates a sequence of equality con-
strained problems which can be solved efficiently with a modified variant of
our multigrid method. This approach is novel in the sense that we solve the
full primal-dual system generated by the PDAS iteration with the multigrid
method. Previously, the inner systems have been solved with reduced space
methods only. We remark that combinations of active set strategies and multi-
grid methods exist in the context of variational inequalities resulting from ob-
stacle problems [42, 87, 98].

• Finally we employ the PDAS-multigrid method as solver for the linear-quadratic,
inequality constrained systems generated by the SQP iteration. We improve the
efficiency by allowing for inexactness of the SQP substeps in the sense of inexact
Newton methods [55]. This avoids “oversolving” in the case where Newton
directions yield too little progress. At the same time, the superlinear convergence
of the SQP iteration is preserved. The efficiency of the method is demonstrated
on several numerical examples. To our knowledge, no full SQP-multigrid method
has been applied to nonlinear problems before. The only other coupled multigrid
approach known to us which treats semilinear constrained problems is the FAS
method [35].



10 1 Introduction

Thesis Outline The remainder of this thesis is organized as follows. In Chapter 2
we present the theoretical foundation for the numerical solution of linear-quadratic
PDE-constrained optimization problems. The discretization of the first-order condi-
tions then yields a large indefinite and symmetric system of equations and we con-
clude the chapter by stating some properties important for the iterative solution of
such saddle point systems. In Chapter 3 we present an iterative one-level method
based on the concept of constraint preconditioning. Detailed numerical results serve
to demonstrate the potential as well as the shortcomings of the single-level approach.
In Chapter 4 we devise a multigrid method for the fast and efficient solution of dis-
cretized linear-quadratic optimization problems. The smoothing iteration smoothing,
which incorporates elements from constraint preconditioning is described in detail. An
extensive discussion of detailed numerical experiments accounts for the efficiency and
flexibility of the proposed method. In Chapter 5 the multigrid method will be adapted
to handle the equality-constrained problems generated by a PDAS strategy. Several
numerical experiments show that the combined PDAS-multigrid strategy yields an ef-
ficient solver for control-constrained optimal control problems. In Chapter 6 we bring
together the previous results in a full SQP approach including inequality constraints.
Numerical experiments for several semilinearly constrained optimization problems are
given to demonstrate the efficiency of the SQP-multigrid approach. In Chapter 7
we will summarize our findings and provide an outlook on further development and
promising extensions of our proposed method.
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2 Optimal Control of Elliptic Boundary Value
Problems

This chapter covers the theoretical background as well as the finite-dimensional ap-
proximation for the linear-quadratic case of PDE constrained optimization problems
given in the abstract formulation

minimize J (z(y), u) (OP)

subject to C(y, u) = 0.

The functional J : Z×U → R, which we seek to minimize, is the objective functional,
which in general involves suitable norms of u and y. The operator C : Y × U → W
specifying the constraints represents a partial differential equation (PDE). We call the
solution y of the PDE the state variable. The control variable u is at our disposal to
influence the system C. The variable z(y) is denoted the observation of the state and
is given by z(y) = Ey with a linear and continuous observation operator E : Y → Z.
A concrete choice of appropriate spaces will be given below. Most choices are in fact
dictated by the cost functional and the variational formulation of the constraints.
The notion “linear-quadratic” refers to the class of problems where J is a quadratic
functional and the constraints C are linear. The case of nonlinear C will be discussed
in the first section of Chapter 6.

In many applications additional constraints on the control variable are modeled by
requiring that u ∈ Uad holds, where Uad ⊂ U , the set of admissible controls, is a proper
closed and convex subset of the control space U . We stress the fact that, even in
the case of linear C, if Uad is a proper subset of U , the optimization problem itself
is nonlinear, which requires special numerical techniques. Therefore, the numerical
treatment of the case Uad ⊂ U is deferred to Chapter 5. The theoretical setting in the
case of linear constraints however includes the case of Uad ⊂ U . Imposing analogous
constraints on the state y leads to Lagrange multipliers with low regularity (measures,
in general). We do not discuss this case here and instead refer to e.g. [49].

After substantiating the setting and stating the relevant results on existence and
uniqueness of solutions to (OP) we continue with deriving the necessary first-order
conditions. In the convex case, these are also sufficient and thus completely charac-
terize the unique solution. The first-order conditions constitute a system of coupled
PDEs termed the optimality system and provide one possible way to derive a finite-
dimensional approximation of the continuous optimal control problem. The linear
system resulting after discretization is of saddle point type, the matrix representing
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the linear operator is commonly denoted the KKT (Karush-Kuhn-Tucker) matrix. The
chapter concludes with some important properties of these KKT matrices and their
impact on the numerical solution. Efficient numerical methods for the linear-quadratic
case are the topic of Chapters 3 and 4.

Let us now give a concrete instance of (OP), which frequently serves as a model
problem for theoretical and numerical investigations.

Example 2.1 (Optimal Control of the Poisson equation (The Linear-Quadratic Model
Problem (LQMP))). Here and throughout we assume that Ω ⊂ Rd, d = 2, 3 is a convex
polygonal domain or a domain with boundary of class C1,1. Let ȳ ∈ L2(Ω) be a given
function, the so-called target state and define the tracking type functional

J (y, u) =
1

2
‖Ey − ȳ‖2

Z +
σ

2
‖u‖2

U , (2.1)

with σ > 0 a regularization parameter. The constraints C are given by the Poisson
equation with homogeneous Dirichlet boundary conditions,

−∆y = f + u in Ω

u = 0 on Γ
(2.2)

with a given source term f ∈ L2(Ω). In this case we have Uad = U = L2(Ω), Z =
L2(Ω), Y = H1

0 (Ω) and W = L2(Ω) (or H−1(Ω)). The observation operator E is the
continuous injection H1

0 (Ω) ↪→ L2(Ω). The aim of minimizing (2.1) subject to (2.2) is
to find a control function u such that the solution y of Poissons’s problem minimizes
the L2-distance to the target state ȳ. Functionals similar to (2.1) are frequently
encountered in parameter identification and inverse problems. In this context, (2.1)
corresponds to a Tikhonov-regularized output least-squares functional.

Remark 2.2. The LQMP Example 2.1 is an example of a distributed control problem,
due to the appearance of u on the right hand-side of (2.2). Another type of control aris-
ing in practical applications is given by boundary control, that is, the control u enters
the constraints through the boundary conditions. Also various other generalizations
to Example 2.1 are possible. For instance, the output state y can be observed in a
subdomain of Ω only (partial observation), or on the boundary (boundary observation).

A comprehensive exposition of the theory for the case of linear constraints was given
for the first time in the seminal work of Lions [111]. In our presentation we will adopt
this approach and focus on constraints which are given by well-posed boundary value
problems (BVP). Different approaches, which are suitable for the control of singular
systems are discussed in e.g. [65, 112]. The results given in Section 2.1 can be found
in the monographs [111], [65] and [145].
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2.1 Existence of Solutions

In order to substantiate the framework for the abstract minimization problem (OP)
we need to introduce some notation. For further details on the functional analytic
setting we refer to e.g. [2, 157] and Appendix A.

Let Y be a real Hilbert space with its dual Y ′ and let a(·, ·) be a continuous and
coercive bilinear form on Y . We denote by A : Y → Y ′ the linear and continuous
operator which is defined by

〈Ay, v〉Y ′,Y = a(y, v) for y, v ∈ Y. (2.3)

Due to the Lax-Milgram theorem, A is bijective and has a continuous inverse A−1 :
Y ′ → Y . We introduce a linear and continuous operator B : U → Y ′, which describes
the action of the control (in Example 2.1, B is the continuous injection L2(Ω) ↪→
H−1(Ω)). For a given source f ∈ Y ′, the linear constraints are then given by

Ay = f +Bu in Y ′, (2.4)

and for each control u we denote the corresponding state by y(u). We introduce the
reduced functional

Ĵ (u) = J (Ey(u), u). (2.5)

Remark 2.3. Several numerical solution procedures are based on the reduced functional
Ĵ , these approaches are grouped into the category of the reduced space and feasible
methods. In contrast to this, there is a family of algorithms called full space methods.
We will return to this issue in Chapters 3 and 4 where we discuss the numerical solution
in detail.

The abstract optimization problem (OP) can now be equivalently stated as

min
u∈Uad

Ĵ (u), (2.6)

where the solution of (2.6) is the optimal control, denoted with u∗. Existence of a
solution is stated in (cf. [111, Ch. II], or [65])

Theorem 2.4. Let Uad be closed and convex and Ĵ (u) : Uad → R be weakly lower
semicontinuous over Uad. Then an optimal solution of (2.6) exists, if either Uad is
bounded or Ĵ is radially unbounded, i.e. Ĵ → ∞ for ‖u‖ → ∞.

Remark 2.5. The lower semicontinuity is obtained in particular if Ĵ is Gâteaux-
differentiable and convex. From now on we assume these properties to hold. Fur-
thermore, if Ĵ is strictly convex, the optimal control is unique.

A useful property is established by
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Proposition 2.6. Let Ĵ be twice Gateaux-differentiable on a convex subset X1 of a
linear normed space X. If for any x ∈ X1 we have that Ĵ ′′(x)(v, v) ≥ 0 for all v ∈ X,
then Ĵ is a convex functional. If furthermore for a constant α > 0 independent of v
the condition Ĵ ′′(x)(v, v) ≥ α‖v‖ holds for all v ∈ X, then Ĵ is strictly convex.

From this we immediately conclude that if X is a Hilbert space with norm ‖.‖ and
x̄ ∈ X, then the functional J (x) = ‖x − x̄‖2 is strictly convex. All assumptions are
satisfied by the tracking type functional (2.1).

Remark 2.7 (The Case of σ = 0 in (2.1)). Under certain conditions, the existence of
solutions can be established also in the case of a vanishing regularization term in the
objective functional (2.1). For unbounded Uad, the coercivity of J can be restored by
measuring the tracking error in a stronger norm, e.g. the H1-norm would be suitable in
the case of Example 2.1, cf. [65, 111]. Evidently this also requires a higher regularity of
the target state ȳ. Note however, that only for σ > 0 higher regularity than u∗ ∈ L2(Ω)
can be expected. For σ = 0 one usually obtains a so-called bang-bang control, that is,
u∗ attains almost everywhere values which are on the boundary of Uad, cf. [111, Ch.II,
Remark 2.3].

2.2 Characterization of Solutions and Optimality
Systems

We will now derive a convenient characterization of solutions in terms of the gradient
of Ĵ , following the classical text [111]. In the abstract setting we obtain variational
inequalities which transform to the necessary first-order conditions constituting the
optimality system. In the case of a strictly convex functional and linear constraints,
e.g. the setting of Example 2.1, the optimality system also provides the sufficient
condition for the solution of the optimization problem. For Uad = U , the variational
inequality reduces to an equality. In the general case, Lagrange multiplier or Karush-
Kuhn-Tucker theory transforms the variational inequalities into a system of equations
with additional complementarity conditions that is at the heart of many numerical
optimization methods for the solution of (OP), including active-set strategies, which
are discussed in Chapter 5.

The central result is

Theorem 2.8. Let f : Uad → R be a Gâteaux-differentiable functional on the closed
and convex set Uad. Then if u∗ is a solution of

f(u∗) = inf
u∈Uad

f(u) (2.7)

the variational inequality

f ′(u∗)(v − u∗) ≥ 0 for v ∈ Uad (2.8)

holds. If f is convex and u∗ satisfies (2.8) then u∗ is a solution of (2.7).
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Remark 2.9. If Uad = U , we can set v = u∗ ± ϕ for ϕ ∈ U and (2.8) reduces to

f ′(u∗) = 0. (2.9)

Furthermore, if f is strictly convex, (2.8) or (2.9) are necessary and sufficient conditions
for u∗ to be a solution of (2.7).

We will now apply Theorem 2.8 to the reduced version Ĵ of the tracking func-
tional (2.1) in order to deduce concrete optimality systems. From (2.4) we obtain

Ey(u)− ȳ = EA−1f + EA−1Bu− ȳ (2.10)

and the Gâteaux-derivative with respect to u is then given by

DG(Ey(u)− ȳ)v = EA−1Bv for v ∈ U. (2.11)

Using (2.11) and (2.1), we obtain

DGĴ (u)v = (Ey(u)− ȳ, EA−1Bv)Z + σ(u, v)U , v ∈ Uad. (2.12)

Implicitly using the Riesz map Λ : Z → Z ′ yields

(Ey(u)− ȳ, EA−1Bv)Z = 〈Ey(u)− ȳ, EA−1Bv〉Z′,Z
= 〈E ′(Ey(u)− ȳ), A−1Bv〉Y ′,Y ,

(2.13)

where E ′ : Z ′ → Y ′ is the dual operator of E. We define the dual operator A′ : Y → Y ′

using the relation
(A′v, y) = (Ay, v) = a(y, v), y, v ∈ Y, (2.14)

and identify Y with its bidual space (Y ′)′ in the canonical way. Using that A′ is an
isomorphism1, for u ∈ U we introduce the adjoint variable p = p(u) ∈ Y as the unique
solution of

A′p = E ′(ȳ − Ey(u)). (2.15)

Substituting (2.15) into (2.13) and using relation (2.14) for the dual operator, we
obtain

DGĴ (u)v = σ(u, v)U − (A′p,A−1Bv)Y

= σ(u, v)U − (p,Bv)Y

= σ(u, v)U − (B′p, v)U ,

(2.16)

where B′ : Y → U ′ is the dual of the control action operator B. We would like to
point out that the previous computation shows in particular that the gradient of Ĵ can
be identified with σu − B′p ∈ U ′. Evaluating the reduced gradient defined by (2.16)
requires evaluation of the solution operators of the adjoint equation (2.15) and the

1A′ is defined by the adjoint of the bilinear form a(y, v).



18 2 Optimal Control of Elliptic Boundary Value Problems

state equation (2.4), i.e. the solution of two PDEs. Computing (2.16) is a crucial step
of reduced space methods and accounts for the larger part of the computational work.

Let us now assume that Uad = U . Collecting the previous computations and us-
ing (2.8), we obtain the optimality system

Ay(u∗) = f +Bu∗,

A′p(u∗) = E ′(ȳ − Ey(u∗)),

σu∗−B′p(u∗) = 0.

(OS)

The first equation in (OS) is the state equation, the second equation is called the
adjoint equation and the last equation is the optimality condition. In the case that
Uad ⊂ U is a proper subset, the last equality has to be replaced by

(σu∗ −B′p(u∗), v − u∗) ≥ 0, v ∈ Uad. (2.17)

Example 2.10 (Optimality System for Distributed Control of the Poisson Equation).
The concrete instance of (OS) for Example 2.1 is given by

−∆y = f + u in Ω

y = 0 on Γ,
(2.18a)

−∆p = ȳ − y in Ω

p = 0 on Γ,
(2.18b)

σu− p = 0. (2.18c)

Again, if Uad ⊂ U , instead of (2.18c) we obtain

(σu− p, v − u) ≥ 0, v ∈ Uad. (2.19)

For the remainder of this chapter and throughout Chapters 3 and 4 we assume that
Uad = U . The inequality constrained case will be treated in Chapter 5.

Remark 2.11 (Regularity of the Optimal Control). For the case of Uad = U and dis-
tributed control with homogeneous Dirichlet boundary conditions, u∗ ∈ H2(Ω) follows.

In view of the numerical examples, we remark that analogous results are obtained
for

Example 2.12 (General Second-Order Elliptic Operator). In Example 2.1, the Laplace
operator can be replaced by the general second-order elliptic operator

Ly = −
d∑

i,j=1

Di(aijDjy) + cy (2.20)
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where c, aij ∈ C1,1, c ≥ 0, aij = aji, and for the coefficients the uniform strong
ellipticity

d∑
i,j=1

aijxixj ≥ α|x|2 (2.21)

holds for all x ∈ Rd with a constant α > 0 independent of x.

Further results including Neumann boundary control and boundary observation as
well as constraints given by systems of equations can be found in the given references.
Inhomogeneous Dirichlet control on the boundary is complicated both theoretically
and computationally by the appearance of fractional order Sobolev norms, e.g. the
H1/2-norm appearing in the classical variational formulation of the BVP. In [111]
the inhomogeneous Dirichlet problem is treated theoretically with the transposition
method. Also in [111], the concept of very weak solutions is introduced, which allows to
employ L2-norms and ensures u ∈ L2 (whereas in the general case, u is only a measure).
See [81] for a flow control problem in a finite element setting using fractional norms.
For a wavelet-based approach to the numerical solution involving approximations of
fractional order Sobolev norms we refer to [45, 46].

We note that when deriving the system (OS), we have in fact derived a concrete
application of the Lagrange multiplier rule. Here, we explicitly defined the adjoint
variable p through (2.15) and exploited the well-posedness of the dual problem. For
details on Lagrange multiplier theory in Banach spaces and application to optimal
control we refer to [65, 119], see also Section 6.1. Here, without elaborating on the
technical details, we remark that optimality systems can be conveniently derived uti-
lizing the Lagrange functional

L(y, u, λ) = J (y, u) + (λ,Ay − f −Bu)(Y ′)′,Y ′ , (2.22)

with Lagrange multipliers λ ∈ (Y ′)′. Under suitable assumptions, (in particular a con-
straint qualification), the Lagrange theory in Banach spaces guarantees the existence
of a Lagrange multiplier λ∗, for which

D(y,u,λ)L(y∗, u∗, λ∗) = 0 (2.23)

holds, where (y∗, u∗) is the minimum solution of J , cf. [119]. Using reflexivity of
Y , the multipliers λ∗ can be identified with the adjoint variable p ∈ Y . The opti-
mality system (OS) follows from (2.23), differentiating with respect to λ recovers the
state equation, DyL(y∗, u∗, λ∗) = 0 corresponds to the adjoint equation and setting
DuL(y∗, u∗, λ∗) = 0 gives the optimality condition.

We conclude this section with the remark that the derivation of the optimality
system (OS) is a crucial step for the numerical approximation of the optimization
problem (OP). In the case that J is strictly convex and the constraints C are linear,
i.e. a unique solution exists, we conclude from Theorems 2.4 and 2.8 that, in order
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to obtain the solution of (OP), in fact we can solve the corresponding optimality sys-
tem given by (OS). The linear-quadratic, equality-constrained case also provides the
basis for nonlinear problems and inequality-constrained problems, since linearization
processes yield a sequence of linear systems of the type (OS).

2.3 Finite Dimensional Approximation

In the previous exposition we have formulated optimization problems and first-order
characterizations of solutions in function spaces. The next stage in the development
of a numerical solution method is the construction of a finite dimensional approxima-
tion of the optimization problem. Besides the choice of the particular discretization
technique, another issue arises in the field of PDE constrained optimization, namely
that of the order of discretization and optimization.

2.3.1 Optimize-Then-Discretize vs. Discretize-Then-Optimize

At this point, a natural way to proceed is to discretize the optimality system, i.e.
to discretize all three coupled equations in (OS). This approach is referred to as
optimize-then-discretize (OTD), where “optimize” means the derivation of the first-
order conditions. However, the order of discretization and derivation of the necessary
first-order conditions is by no means given a priori. It is also a perfectly viable ap-
proach to first discretize the optimization problem (OP), i.e. derive approximations
Jh, Ch as well as y,uh and only then formulate the first-order conditions for the fi-
nite dimensional optimization problem, see Figure 2.1 for a schematic representation.
The second approach is termed discretize-then-optimize (DTO). For both the OTD
and the DTO approach we obtain a finite dimensional system of equations. For the
OTD approach, this system is given by the discretized state equation, the discretized
adjoint equation and the discretized optimality condition, see Figure 2.1 bottom left.
The system for the DTO approach consists of the discretized state equation, the dis-
crete adjoint equation and the discrete optimality condition, Figure 2.1 bottom right.
In the DTO approach one approximates the continuous optimization problem with a
sequence of finite-dimensional ones for a discretization parameter h > 0. In contrast,
the sequence of finite-dimensional systems generated by the OTD approach does not
necessarily permit their interpretation as optimality systems of a finite-dimensional
optimization problem. For a pure Ritz-Galerkin approach the discretized and the
discrete optimality system coincide, however this need not be the case in general.
We refer to [53] for a detailed discussion in the context of optimal control problems
constrained by a linear convection-diffusion equation. There, a streamline upwind
Petrov-Galerkin (SUPG) method is employed for the discretization of the state equa-
tion. For the DTO approach, the SUPG-related terms in the discretized state equation
induce corresponding terms in the discrete adjoint equation and discrete optimality
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Optimization Problem

min J (y, u)
s.t. C(y, u) = 0

Continuous Optimality System

y + A′p = ȳ
σu−B′p = 0
Ay −Bu = f

Discretized Optimization Problem

min Jh(yh, uh)
s.t. Ch(yh, uh) = 0

Discretized Optimality System

yh + A′
hph = ȳh

σuh − (B′p)h = 0
Ahyh − (Bu)h = fh

Discrete Optimality System

yh + LT
hph = ȳh

σuh − ph = 0
Lhyh − uh = fh

Figure 2.1: Schematic view on the issue of Optimize-Then-Discretize as opposed to
Discretize-Then-Optimize.

condition. Thus, the discrete adjoint equation is not a consistent approximation of
the continuous adjoint equation in (OS).

On the other hand, the OTD approach yields inconsistent gradients in the sense that
the discretized adjoint equation is not the adjoint of the discretized state equation.
Thus, the discretized optimality system derived with the OTD approach is not sym-
metric and can not be the optimality system for some finite dimensional optimization
problem. Using the notation in Figure 2.1, under the generally valid assumption that
Ah = Lh, this means that A′h 6= LTh .

No authoritative answer can be given to the question which approach should be
favored and some minor issues are regarded by some authors to be of a more philo-
sophical nature, see [79] to which we refer for an in-depth discussion. For now, let us
just point out the most important issues. An advantage of the OTD approach is that a
suitable discretization method can be chosen independently for each of the three equa-
tions in (OS). Consequently, in some cases the approximation quality with respect to
the adjoint p is better for the OTD approach [53]. An often cited argument in favor
of the DTO approach is the deployment of automatic differentiation tools [77, 122].
Furthermore, the discrete gradients are always consistent and the discrete optimal-
ity system is always symmetric, which might enlarge the pool of suitable numerical
solution methods.

Being meticulous, one should clearly distinguish between the finite-dimensional ap-
proximation of the optimality system derived by the OTD approach and the discrete
optimality system derived by the DTO approach. In most numerical examples we
consider, both approaches lead to the same discrete system, therefore for reasons of
simplicity, we do not distinguish between the discretized and the discrete optimality
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system. In the cases where the resulting systems do not coincide, we point this out
and employ the DTO approach, obtaining always a symmetric system.

2.3.2 Discretization of the State Equation

Example 2.12 will provide the basis for several of our numerical experiments. There-
fore, the first step for the finite-dimensional approximation of the corresponding opti-
mality system is the discretization of the state equation, regardless whether the DTO
or the OTD approach are employed. The constraints C are given by the diffusion
equation

−∇ · (D∇y) = f + u in Ω (2.24)

y = 0 on ∂Ω,

where we assume that the domain Ω ∈ Rd, d = 2, 3 either is a convex polygon or has
a boundary of class C1,1. The d × d - tensor D is assumed to be symmetric with
coefficient functions dij ∈ L∞(Ω) satisfying the uniform strong ellipticity condition

d∑
i,j=1

dijxixj ≥ α|x|2 ∀x ∈ Rd a.e. in Ω (2.25)

with a constant α > 0 independent of x.
The diffusion equation (2.24) arises for a wide range of interesting applications. It

is extensively applied in geophysics, in particular in groundwater flow and reservoir
simulations. Here, the tensor D represents the conductivity (permeability divided by
fluid viscosity) and the state y is the piezometric pressure head.2 In these and other
applications, local conservation of mass is of utmost importance. An abundance of
discretization methods is applicable to (2.24). However, some of them achieve only
global mass conservation, like the classical Galerkin discretization. Yet a range of
discretization methods strives for local mass conservation. We mention the classical
finite volume method, the support-operator method [142, 143] and the related mimetic
finite differences [114], and the multipoint flux approximation [1, 105], to name but a
few. We employ the enhanced cell-centered finite differences derived in [7, 8], which
can be considered a particular instance of a mixed finite-element method [43], using
the lowest order Raviart-Thomas (RT0) spaces [43, 131] on a general quadrilateral
grid. Approximating integrals with trapezoid-midpoint quadrature reduces the mixed
finite element method to a cell-centered finite-difference method with a 9-point stencil
in two and a 19-point stencil in three dimensions, respectively. In the following we
will sketch the basic procedure for d = 2. For further details we refer to [7].

2Note that for reasons of consistency with the notation of the optimization problem, we deviate
from the common notation in the literature, where the pressure would be denoted by p, the flux
by u and so on.
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The starting point is an expanded mixed formulation of (2.24). By introducing the
“adjusted gradient” ṽ = −G−1∇y, with G a positive definite and symmetric tensor,
one obtains in variational form the system

(∇ · v, q) = (f + u, q), q ∈ L2(Ω), (2.26a)

(Gṽ, w) = (y,∇ · w), w ∈ H(div), (2.26b)

(Gv, w̃) = (GDGṽ, w̃), w̃ ∈ (L2(Ω))d, (2.26c)

with H(div) = {w ∈ (L2(Ω))d : ∇ · w ∈ L2(Ω)}. The tensor G will later be based on
the local geometry. Note that for G = D−1 we obtain ṽ = v and the standard mixed
formulation results.

φ

Ω̂ Ω

x̂
x

Figure 2.2: Mapping φ from rectangular computational domain Ω̂ to physical domain Ω.

The discretization is carried out in two steps. First, we define the RT0 spaces on a
rectangular computational grid. Then, a mapping technique is employed to define the
approximation spaces on the curvilinear grid, see Figure 2.2.

We denote the computational domain and the corresponding rectangular grid by Ω̂
and T̂h, respectively. Each element in T̂h is a unit square reference element which we
denote by T̂i, i = 1, . . . , N . Furthermore, let Th be a shape regular partition of the
physical domain Ω into convex quadrilaterals Ti, i = 1, . . . , N . The standard pressure
and velocity spaces on the reference element are given by

V̂h(T̂i) = {ŵh = (α1x1 + β2, α1x2 + β2, α3x3 + β3)T : αj, βj ∈ R, j = 1, 2, 3} (2.27a)

and

Ŵh(T̂i) = {α : α ∈ R}, (2.27b)

respectively. The RT0 spaces on the rectangular grid T̂h are then defined by

V̂h = {ŵh : ŵh ∈ V̂h(T̂i), T̂i ∈ T̂h, ŵh · ν continuous} (2.28a)

and

Ŵh = {q̂h : q̂h ∈ Ŵ (T̂i), T̂i ∈ T̂h}. (2.28b)
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Now let φ : T̂i → Rd be a diffeomorphism of a reference element onto an actual ele-
ment Ti = φ(T̂i). We denote its Jacobian matrix by Dφ and the Jacobian determinant
by Jφ. For a scalar function ŝ(x̂), we have

s(x) = ŝ ◦ φ−1(x) ≡ Φ(ŝ). (2.29)

For functions ŵ ∈ V̂h(T̂i) we employ the Piola transform

w(x) =
1

Jφ
Dφŵ ◦ φ−1(x) ≡ Pφ(ŵ), (2.30)

since this preserves the normal components of vector-valued functions across element
boundaries. With (2.29) and (2.30), the definition of the RT0 spaces on Th is now
straightforward: the local pressure and velocity spaces are given by

Vh(Ti) = {wh : wh = Pφ(ŵh), ŵh ∈ V̂h}, (2.31a)

Wh(Ti) = {qh : qh = Φ(q̂h), q̂h ∈ Ŵh}, (2.31b)

and from (2.31) we obtain Vh,Wh analogously to (2.28). Now we define the tensor G
as

G(φ(x̂)) = (Jφ(Dφ−1)TDφ−1)(x̂). (2.32)

With this definition follows

Gwh · w̃h = (Jφ(Dφ−1)TDφ−1)Pφ(ŵh) · Pφ( ˆ̃wh) =
1

Jφ
ŵj · ˆ̃wh (2.33)

for wh, w̃h ∈ Vh. Approximating the expanded mixed form (2.26) in the spaces Vh,Wh

and employing the transformations (2.29), (2.30) and (2.33), we obtain the following
finite dimensional problem: find v̂h, ˆ̃vh ∈ V̂h and ŷh ∈ Ŵh such that

(∇̂ · v̂h, q̂h) = (J(f̂h + ûh), q̂h), q̂h ∈ Ŵh, (2.34a)

(ˆ̃vh, ŵh) = (ŷh, ∇̂ · ŵh), ŵh ∈ V̂h, (2.34b)

(v̂h, ˆ̃wh) = (Dˆ̃vh, ˆ̃wh), ˆ̃wh ∈ V̂h, (2.34c)

where the tensor D = JφDφ−1DDφ−T is the diffusion tensor D modified by the second
Piola transform. Note that the transformed diffusion tensor D is always full on general
grids, regardless of the structure of the original diffusion tensor D, since it embodies
the diffusion coefficients as well as the local geometry.

Without further modification, the linear system associated with (2.34) is an indef-
inite saddle-point system. Solution methods for such systems will be discussed to
some extent in Section 3.1. Here, without further ado, we derive the Schur com-
plement system for the pressure by eliminating (2.34b) and (2.34c) in (2.34a). The
integrals appearing on the left side in (2.34b) and (2.34c) are approximated with the
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trapezoidal-midpoint rule.3 This approach, which is related to a lumped mass approx-
imation, yields a diagonal matrix A1 and thus avoids intricate inner-outer iterations
for the solution of 2.34. Instead, a single positive definite system for the pressure
unknowns is obtained.4 The integrals on the right side in (2.34c) are approximated
with the trapezoidal rule. Denoting the discrete gradient and divergence by A2 and
AT2 , respectively, the pressure Schur complement system reads

Mh(fh + uh) = (AT2A
−1
1 DA−1

1 A2)yh (2.35)

= Lhyh.

Here, uh are the discrete control unknowns which are computed during the solution
of the optimal control problem, whereas fh is the vector of cell-center evaluations of
the given function f , thus Mhfh corresponds to a lumped mass approximation of the
right hand side.

We briefly state the relevant error estimates for the scalar pressure unknown. For
the detailed convergence analysis including estimates for the flux and the divergence
we refer to [7]. We assume that problem (2.24) admits the full H2-regularity (this
would be ensured e.g. by requiring dij ∈ C0,1(Ω̄), [78, 113]). Furthermore, we require
the triangulation Th to be h2-uniform, [63]. This condition states that the elements in
Th are h2-perturbations of parallelograms and therefore is also termed h2-parallelogram
in [12]. We denote the L2-projection onto Wh with Πh, i.e. for q ∈ L2(Ω) the projection
Πhq is defined by

(q − Πhq, q̃) = 0, ∀q̃ ∈ Wh. (2.36)

For Πh and q ∈ H1
0 (Ω), the well-known estimate

‖q − Πhq‖ ≤ Ch‖q‖1 (2.37)

holds [51]. In view of (2.37), for the discrete pressure solution yh of (2.34) one can
show the optimal L2-estimate

‖y − yh‖ ≤ Ch, (2.38)

where y is the pressure solution of (2.26) and the constant C in (2.38) is independent
of the mesh parameter h, but depends on p, y and φ. In addition, a superconvergence
result is obtained with respect to the discrete L2-norm

‖q‖2
L2,h =

∑
Tj∈Th

|Tj|q(xj)2, (2.39)

3To be precise, for the integration of the i-th component of a vector in the i-th direction the
trapezoidal rule is employed, integrals in the other directions are evaluated with the midpoint
rule, cf. [8].

4In order to recover the flux, (2.34b) and (2.34c) have to be solved for vh and ṽh after the solution
of the pressure system.
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where xj denotes the center of the element Tj. The following estimate holds:

‖y − yh‖L2,h ≤ Ch2. (2.40)

Finally we remark that in [7] an enhancement with respect to implementation of
boundary conditions is proposed that yields improved approximation results for the
flux unknowns, but at the same time renders the finite dimensional system nonsym-
metric. In view of the discussion in Section 2.3.1, we employ the DTO approach in
case the boundary conditions lead to a nonsymmetric system.

2.3.3 The Discrete Optimality System

In order to complete the derivation of a finite-dimensional optimality system, it re-
mains to obtain a discrete adjoint equation and a discrete optimality condition.

Optimize-Then-Discretize For the discretization of the adjoint equation in (OS) we
again employ the MFE method, following the procedure in Section 2.3.2. This yields

Lhph = Mhȳh −Mhyh, (2.41)

where ȳh is the vector of cell-center values of the target state ȳ, analogously to the
right hand side discretization in (2.35). The optimality condition in (OS) is discretized
as follows. We employ midpoint quadrature for the discretization of the L2-scalar
product, which leads to

σMhuh −Mhph = 0. (2.42)

Putting it all together, we obtain the discretized optimality system

K̃hxh = bh, (2.43)

where K̃h is the saddle point matrix

K̃h =

Mh 0 Lh
0 σMh −Mh

Lh −Mh 0

 , (2.44)

and
xh = (yh, uh, ph)

T , bh = (Mhȳh, 0,Mhfh)
T (2.45)

are the vector of unknowns and the right hand side vector, respectively. Regarding
the discussion in Section 2.3.1, note that the matrix K̃h is only symmetric if the
discretization of the state equation leads to a symmetric Lh.

We remark that we do not distinguish between a discrete operator and its matrix
representation. From now on we assume that the ordering of the optimization variables
is given by (2.45), and each of the unknowns yh, uh and ph is ordered lexicographically.
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Discretize-Then-Optimize In the DTO approach the state equation is discretized
as before with the MFE method of Section 2.3.2. It remains to discretize J . To
this end, the target state is discretized in the same way as above, yielding ȳh, and
the integrals appearing in the norms in J are discretized consistent with the state
equation, yielding the the discretized objective functional

Jh(yh, uh) =
1

2
‖yh − ȳh‖2 +

σ

2
(2.46)

=
1

2
yThMhyh − yThMhȳh + ȳThMhȳh +

σ

2
uThMhuh. (2.47)

The finite dimensional optimization problem now reads

minimize Jh(yh, uh) (2.48)

subject to Ch(yh, uh) = 0,

where the discretized constraints Ch are given by (2.35). The optimality conditions
for (2.48) can be easily derived using the discrete Lagrangian

Lh(yh, uh, ph) = Jh(yh, uh) + pThCh(yh, uh) (2.49)

=
1

2
yThMhyh − yThMhȳh + ȳThMhȳh +

σ

2
uThMhuh

+ pTh (Lhyh −Mhuh −Mhfh),

where ph are the Lagrange multipliers, see e.g. [127, Chap. 12]. The first-order condi-
tions for (2.48) are given by

0 = ∇yhLh(yh, uh, ph) = ∇yhJh(yh, uh) + pTh∇yhCh(yh, uh) (2.50a)

= Mhyh −Mhȳh + LThph (2.50b)

0 = ∇uhLh(yh, uh, ph) = ∇uhJh(yh, uh) + pTh∇uhCh(yh, uh) (2.50c)

= σMhuh −Mhph (2.50d)

0 = ∇phLh(yh, uh, ph) = Ch(yh, uh) (2.50e)

= Lhyh −Mhfh −Mhuh. (2.50f)

Here, ∇yh denotes the gradient with respect to the unknowns yh only, and likewise
for the remaining unknowns uh and ph. Writing (2.50) in matrix form yields again a
saddle point system

Khxh = bh, (2.51)

with the unknown vector and the right hand side given by (2.45). Here, the saddle
point matrix is given by

Kh =

Mh 0 LTh
0 σMh −Mh

Lh −Mh 0

 . (2.52)
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Note that in contrast to K̃h in (2.43), the matrix Kh derived by the DTO approach is
always symmetric. From now on we will not distinguish anymore between Kh and K̃h

but instead we assume that either the discretized system was derived employing the
DTO approach or the discretization following the OTD approach yields a symmetric
saddle point matrix.

Finally we remark that in the context of quadratic programming, a matrix of the
type (2.52) is called a Karush-Kuhn-Tucker (KKT) matrix, in reference to the Karush-
Kuhn-Tucker conditions of first-order optimality, cf. [127]. The name “saddle point
system” originates from the property that a solution (y∗h, u

∗
h, p
∗
h) of (2.51) is a saddle

point for the Lagrangian (2.49), i.e.

Lh(y∗h, u∗h, ph) ≤ Lh(y∗h, u∗h, p∗h) ≤ Lh(yh, uh, p∗h), yh, uh, ph ∈ RN . (2.53)

Frequently, it will be useful to consider the generic 2× 2 saddle point matrix(
H CT

C 0

)(
x
p

)
=

(
bx
bp

)
, (2.54)

which is obtained if we collect the optimization variables y ∈ RN and u ∈ RN in the
single vector of unknowns x ∈ R2N , and the square submatrix H ∈ R2N×2N and the
rectangular submatrix C ∈ RN×2N are defined by

H =

[
Mh

σMh

]
, C =

[
Lh −Mh

]
. (2.55)

The letter H indicates that the upper left block in (2.54) originates from the Hessian
of the discrete Lagrangian (2.49), the letter C stands for the discrete constraints. As
before, we denote the saddle point matrix by K. The form (2.54) naturally appears
when stating the optimality conditions as a saddle point problem in Hilbert spaces,
cf. Appendix A.1. Many algorithms from numerical optimization apply to the generic
formulation (2.54) and no particular structure of the unknown vector x is assumed.
In the present case it is crucial to exploit the knowledge of the additional structure
imposed on x due to the PDE-based partitioning.

The Linear-Quadratic Model Problem

Let us consider a special case of (2.51) which will frequently serve as example. To
this end, let the optimization problem given by Example 2.1 where the constraints
are discretized on a uniform grid. Then Lh corresponds to a standard five-point
discretization of −∆ and Mh = h2I (the MFE discretization of Section 2.3.2 on a
uniform grid and D = I reduces to the standard 5-point stencil). Although this is a
very basic example for an optimization problem, it exhibits several typical properties



2.3 Finite Dimensional Approximation 29

and already foreshadows some difficulties which can arise in more complex applications.
For future reference we define the discrete optimality system

h2yh −∆hph = h2ȳh

σh2uh − h2ph = 0 (LQPh)

−∆hyh − h2uh = h2fh

where −∆h denotes the five-point stencil.

Stability and Convergence

A matrix Kh given by (2.52) is nonsingular if C in (2.55) has full row rank and H
in (2.55) is regular on kerC. However, to obtain a stable numerical method we need
that K−1

h is uniformly bounded as h → 0. If the OTD approach is applicable (i.e.
in the symmetric and unconstrained case Uad = U), by exploiting the connection
between the minimization problem (OP) and the saddle point problem defined by the
first-order conditions, stability results are obtained within the approximation theory
of saddle point problems [43], see [31] and Appendix A.1. Results on the convergence
order then follow from (A.10).

With respect to the DTO approach, and including the case Uad ⊂ U , first estimates
for the errors ‖y∗ − y∗h‖, ‖u∗ − u∗h‖ in the case of distributed control have been given
in [64]. In particular, for a piecewise constant approximation uh the optimal order
estimate

‖u∗ − u∗h‖L2(Ω) = O(h) (2.56)

has been proved. Similar results have been published recently in [50]. Corresponding
results in a finite difference setting have been proved in [36], employing the notion of
discrete Hm-regularity of Lh [86]. In [94], a so-called variational concept is proposed
where u is not explicitly discretized but is obtained by a projection step u∗h = ΠUad

p∗h,
thus essentially inheriting the approximation order of ph (which is, e.g., O(h2) if H2-
regularity holds for the adjoint equation and piecewise linear finite elements are em-
ployed). In [121], a post-processing step is included which increases the order for u∗h.
Adaptive finite element discretizations have been considered in [21].

In any case, due to our choice of discretization for state and adjoint, we obtain
overallO(h)-convergence in L2. Furthermore, for yh and ph, h

2-order superconvergence
with respect to cell-center values holds. In [121], a supercloseness result yielding
second-order superconvergence at the center of elements is shown to hold for piecewise
constant uh. The superconvergence in a discrete L2-norm is also observed in our
numerical experiments, cf. Section 4.5.
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2.3.4 Some Properties of Saddle Point Matrices

Recall that each block in the 3×3 saddle point matrix Kh is a matrix of dimension N ,
where N is the cardinality of the triangulation Th, see Section 2.3.2.5 This is due to
several facts: first, we consider the case of distributed control which implies that the
number of uh is of the same order as that of yH , and second, we use the same finite
dimensional space for the approximation of all three unknowns. As was discussed
in Section 2.3.1, at least for the OTD approach a different discretization e.g. for the
adjoints could lead to a different dimensionality of the discrete equation.

An important characteristic of K is given by its inertia

inertia(K) = (2N,N, 0), (2.57)

i.e. K has 2N positive and N negative eigenvalues. Since the number of negative
eigenvalues is of the same order of magnitude as those with positive signs, we say that
K is strongly indefinite. This has an adverse effect on the convergence properties of
many solution methods. For instance, Krylov solvers are known to converge rather
slow for problems with indefinite coefficient matrices and effective preconditioning is
mandatory, cf. Section 3.1.2. We remark that, employing least-squares finite element
techniques, one can derive a positive definite and symmetric coefficient matrix for the
saddle point problem [31]. However, this can imply a squaring of certain operators
and essentially a corresponding increase of the associated condition numbers. Further
difficulties might arise due to the need to compute discrete negative index Sobolev
norms, and, employing first-order least-squares formulations for the constraints implies
a significant increase in the number of unknowns. Therefore it is unclear whether a
numerical solution method can effectively benefit from the theoretical advantage of an
SPD coefficient matrix. To our knowledge, no practical implementation of a solution
method for PDE constrained optimization based on least-squares techniques has been
published.

The following Theorem gives further insight in the spectral properties of K [137]

Theorem 2.13. Assume the Hessian block H in (2.54) is positive definite symmetric
and denote its eigenvalues with 0 < µ1 ≤ µ2 ≤ . . . ≤ µ2N . Furthermore, since C has
full row rank N it has N singular values which we denote by 0 < σ1 ≤ σ2 ≤ . . . ≤ σN .
Denoting the spectrum of K by Λ(K) we have

Λ(K) ⊂ I− ∪ I+ (2.58)

with

I− =
(1

2
(µ1 −

√
µ2

1 + 4σ2
N),

1

2
(µ2N −

√
µ2

2N + 4σ2
1)
)

(2.59)

5For a uniform grid, we have N = h−2, with h the mesh size.
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Figure 2.3: Left: Eigenvalues ηi, i = 1, . . . , 3072 of K for the linear-quadratic model problem

with h = 1/32 and regularization parameter σ = 1.0. Right: Eigenvalues ηi ∈
I+, i = 1025, . . . , 2048 for σ = 1.0, σ = 1.0−2, σ = 1.0−4,
σ = 1.0−6 and σ = 1.0−8.

and

I+ =
(
µ1,

1

2
(µ2N +

√
µ2

2N + 4σ2
N)
)
. (2.60)

For (LQPh) we have µ1 = . . . = µN = σh2, µN+1 = . . . = µ2N = h2 and σi =√
λ2
i + h4, where λi is the i-th eigenvalue of the negative discrete Laplacian. Figure 2.3

(left) shows the eigenvalue distribution of K for (LQPh) and the mesh size h = 1/32,
i.e. the dimension of K is n = 3h−2 = 3072. The regularization parameter is chosen
as σ = 1.0. In Figure 2.3 (right) we plot the lower half of the eigenvalues in I+ for
different values of σ. We see that for larger values of σ the lower half of the eigenvalues
in I+ is strongly clustered around the minimal absolute eigenvalue µ1 = σh2, however
for fairly small values the eigenvalues decay rapidly to zero and are not clustered
anymore. This will have an additional adverse effect on iterative solvers, unless suitable
preconditioners are developed. A further difficulty is given by potentially large values
of the condition number of K, which is given by

κ(K) =
max|η|
min|η| , η ∈ Λ(K). (2.61)

From (2.59) and (2.60) we gather that asymptotically for h→ 0

κ(K) ∼ λmax

σh2
, (2.62)

where λmax ≈ 8 is the largest eigenvalue of the discrete negative Laplacian Lh. We
see that for any fixed value of σ the condition number κ(K) asymptotically grows like
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Table 2.1: Condition numbers κ(K) for different values of the regularization parameter σ
and different mesh sizes h−J .

J

σ 3 4 5 6 7 8 9 10

1.00 4.9302 2.0293 8.1733 3.2754 1.3115 5.2435 2.0976 8.3896

1.0−2 4.9304 2.0295 8.1735 3.2756 1.3117 5.2437 2.0978 8.3898

1.0−4 4.9306 2.0297 8.1737 3.2758 1.3119 5.2439 2.09710 8.38910

1.0−6 4.9308 2.0299 8.1739 3.27510 1.31111 5.24311 2.09712 8.38912

1.0−8 4.93010 2.02911 8.17311 3.27512 1.31113 5.24313 2.09714 8.38914

1.0−10 4.93012 2.02913 8.17313 3.27514 1.31115 5.24315 2.09716 8.38916

O(h−2), i.e. the asymptotic behavior of the discretized second-order PDE operator
is dominant. On the other hand, for any fixed mesh size h, we see that κ(K) ∼
O(1/σ). For σ → 0 the strong growth of κ(K) can lead to severe difficulties of iterative
solvers and, for example, the maximum attainable accuracy of Krylov methods can be
adversely affected, cf. Section 3.2. In Table 2.1 we report the condition numbers of K
according to (2.59) and (2.60) for different values of σ and mesh sizes h = 2−J , J =
3, 4, . . . , 10. The large condition numbers arising for combinations of small h and σ
make it clear that a reduction of κ(Kh) is compulsory should any iterative method
achieve reliable results and satisfying convergence rates. The results of this section
show that we have to deal with two possible sources of ill-conditioning when devising
an efficient solution method for discretized PDE constrained optimization problems:
the mesh size h as well as the regularization parameter σ. We remark that in most
publications, concerning optimal control, the values of σ are moderate and usually
fixed a priori. The problem-dependent determination of σ is a complex subtopic in
inverse problems [153].

Summary

The contents of this chapter serve as the foundation for the further development of
efficient algorithms for the numerical solution of discretized PDE constrained optimiza-
tion problems. We discussed the relevant results concerning existence and uniqueness
of solutions in the continuous setting. Optimal solutions have been characterized
by necessary and sufficient first-order conditions which constitute a coupled system
of partial differential equations termed the optimality system. Discretization of the
PDE constrained optimization problems has been carried out by discretizing the cor-
responding optimality system, which is the optimize-then-discretize approach, and
by discretizing the optimization problem, which corresponds to the discretize-then-
optimize approach. For the particular instance of the constraints given by the diffu-
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sion equation, we carried out the discretization on general quadrilateral grids with the
lowest-order Raviart-Thomas mixed method which, using quadrature, yields a cell-
centered finite difference stencil. We discussed the stability of the discrete optimality
system and concluded the chapter with the discussion of some properties of the arising
saddle point matrices.
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3 A One-Level Method for the Numerical
Solution of Saddle Point Systems Arising in
PDE-Constrained Optimization

A major objective of this thesis is to develop a solution method that allows to solve
discretized PDE constrained optimization problems with optimal complexity, i.e. with
computational cost proportional to the number of discrete unknowns. As a prelimi-
nary step, in the present chapter we devise a one-level method building on constraint
preconditioning. In the first section, we provide an overview of solution methods
for symmetric saddle point systems (2.54) and we will describe a specific constraint
preconditioner in detail.

3.1 Numerical Methods for the Solution of Saddle
Point Systems

Saddle point systems do appear not only in the context of quadratic programming, but
they arise from an abundance of different applications, such as computational fluid dy-
namics, discretizations of mixed variational formulations, interior point methods and
many more. Arguably the most prominent example is given by the Stokes equation
which describes the laminar flow of a strongly viscous fluid. There, the matrix H is
a discretized (vector-)Laplacian and the constraints C result from the mass conserva-
tion or incompressibility condition. Thus, C is the discretized divergence and CT is a
discrete (negative) gradient. Similar systems arise at each substep for a linearization
process of the Navier-Stokes equations. For instance, the Picard linearization of the
Navier-Stokes equation leads to the Oseen equations. There, the matrix H represents a
convection-diffusion operator, the constraints are again given by the incompressibility
condition. An example for a saddle point system originating from a mixed variational
formulation has been encountered in Section 2.3.2. There, the discretization technique
using a particular mixed finite element method led to the saddle point system (2.34).
However, as was described briefly in Section 2.3.2, an elimination approach in conjunc-
tion with carefully chosen quadrature reduced the saddle point system to a positive
definite system in the pressure unknowns alone.

Due to the ubiquity of saddle point systems in computational science, a large variety
of solution methods has emerged over the years and naturally we can only briefly sketch
the most important approaches. For a survey on numerical methods for saddle point
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systems we refer to [22], methods specific to the field of quadratic programming and
optimization can be found in [69, 127]. In the following discussion we limit ourselves
to those methods that are most widely used in quadratic programming and have the
potential to serve as building blocks for other algorithms such as multigrid methods.

According to [22], numerical methods for the solution of saddle point systems can be
classified into two broad categories: segregated and coupled or “all at once” methods.
In segregated methods, the system (2.54) is decoupled into smaller subsystems for
the unknowns x and p. These reduced systems are then solved separately, usually
coupled together in an outer iterative scheme. In contrast, coupled methods solve
simultaneously for all components of the unknown vector x. To this end, either direct
factorizations of the coefficient matrix K or iterative algorithms like Krylov methods
are employed. We defer the discussion of multigrid methods until Section 4.2.

3.1.1 Segregated Methods

The popularity of segregated methods is based on the fact that the decoupling strat-
egy allows to build on well-studied solution methods available for equations arising
from the decoupling or elimination. Two frequently employed instances of segregated
solution methods are the range space and the null space method.

Range Space Methods The range space method is essentially the reduction of the
system (2.54) to a system for the Schur complement. For this method it is required that
H is invertible. The reduction can easily be derived considering the block factorization

K =

(
H CT

C 0

)
=

(
I

CH−1 I

)(
H CT

S

)
, (3.1)

where S = −CH−1CT is the Schur complement. From (3.1) follows that K is regular
if and only if the Schur complement is. Multiplying the system (2.54) with the inverse
of the left factor in (3.1), we obtain(

H CT

S

)(
x
p

)
=

(
fx

fp − CH−1fx

)
. (3.2)

The solution of the original system (2.54) is then computed by blockwise backsub-
stitution in (3.2). In general, the largest part of the computational effort has to be
expended for the solution of the system involving S, given by the second block row
in (3.2). A major advantage of reduction method such as the range space approach is
that the subsystems to be solved are of smaller dimension than the original problem,
in our case of dimension N instead of 3N .1 However, a potential drawback is that

1This advantage is more pronounced when the dimension of the control space is considerably smaller
than that of the state space.
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the Schur complement S might be a dense matrix, even if H and C are sparse. Dense
Schur complements occur for example in the aforementioned application to the Stokes
and Oseen equations. An example for a sparse Schur complement in the context of
groundwater flow is given in [117], and not least we again mention the derivation of
the discrete system for the state equation, see Section 2.3.2.

In order to avoid the explicit construction of S, the Schur complement system could
be solved iteratively. Provided that systems with H can be solved efficiently (e.g. by
multigrid methods), the matrix-vector product with S can be computed at reasonable
cost. Difficulties with this approach are deriving reliable stopping criteria for the
nested inner-outer scheme and preconditioning of S, since individual entries of S can
not be accessed explicitly.

The Uzawa Iteration Closely related to the range space approach is the Uzawa
method [13], which can also be interpreted as an iterative method for the solution of
the Schur complement system. The Uzawa iteration is one of the earliest methods
developed for the iterative solution of saddle point systems and in particular inexact
variants find wide-spread use in computational fluid dynamics. The classical Uzawa
iteration for the system (2.54) is given by

xk+1 = H−1(fx − CTpk) (3.3a)

pk+1 = pk + α(Cxk+1 − fp), (3.3b)

with a relaxation parameter α > 0. At each step, the solution of a system with
coefficient matrix H is required. The connection to the range space method becomes
apparent if we eliminate xk+1 from the update step (3.3b) for pk+1. This yields

pk+1 = pk + α(CH−1fx − fp − CH−1CTpk), (3.4)

which is precisely a step of the stationary Richardson iteration for the Schur com-
plement system in (3.2). Without suitable preconditioning convergence of the Uzawa
iteration is rather slow, a notable exception being the steady-state Stokes equation.
In that case, the Schur complement is spectrally equivalent to the identity matrix
and the Uzawa iteration converges at a rate which is independent of the discretization
parameter h. A further difficulty is to determine the optimal relaxation parameter α,
which at least in principle requires estimates for the extremal eigenvalues of the Schur
complement matrix.

Important modifications of Uzawa’s method for practical problems are given by
inexact variants [39, 61]. Here, the system involving the coefficient matrix H is not
solved exactly but only approximately, for instance using an iterative method or multi-
grid [152].

Null Space Methods A frequently employed approach in optimization is the null
space method. From an abstract viewpoint there is a close connection to the range
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space method, since in fact the null space method can be derived by applying the
range space method to a suitable permutation of the matrix K. However, in contrast
to the range space approach, the null space method does not require H to be regular.
Instead, it is sufficient for H to be invertible on the null space of the constraints, i.e.
the condition ker(H) ∩ ker(C) = {0} has to hold. In contrast to the full regularity
of H, this condition is often satisfied for constrained minimization problems, cf. the
well-known inf-sup condition. For a practical algorithm using the null space method, a
representation of a basis for the null space of C is needed. For now let us assume that
such a basis is given by the columns of Z ∈ R2N×N , i.e. CZ = 0. To determine such a
Z is a crucial step in the null space method and will be discussed after the description
of the algorithm has been completed. Let Y ∈ R2N×N be any regular matrix such that
the 2N × 2N matrix [Y Z] is regular. In particular, this implies that Y is a basis for
the range space of CT . Using Y and Z, we partition a vector x as

x = Y xY + ZxZ , (3.5)

with the range space component xY ∈ RN and the null space component xZ ∈ RN .
Substituting (3.5) into the second block row of (2.54) yields

CY xY = fp. (3.6)

Note that CY is a regular N × N matrix and thus the range space component is
well-defined as the solution of (3.6). By substituting the decomposition (3.5) into the
first block row of (2.54) we obtain

HY xY +HZxZ + CTp = fx, (3.7)

and multiplying this expression from the left with ZT yields

ZTHZxz = ZTfx − ZTHY xY , (3.8)

where again we used CZ = 0. After solving (3.8) for xZ , x is obtained from (3.5).
The adjoint unknown p then is computed from

(CY )Tp = Y Tfx − Y THx, (3.9)

which is derived from the first row of (2.54) by multiplication with Y T .
The N ×N matrix ZTHZ, which we denote by HZ , is called the reduced Hessian.

The major computational effort of the null space method consists in computing a
suitable null space basis Z and in solving (3.8). Due to assumptions, HZ is positive
definite and furthermore symmetric, (3.8) can be solved iteratively with the conjugate
gradient (CG) method. Indeed, this is a popular choice since it avoids the need
to explicitly form HZ and uses only matrix-vector products with the factors Z,H
and ZT . However, here the same difficulty as in the range space method, namely



3.1 Numerical Methods for the Solution of Saddle Point Systems 39

preconditioning a non-assembled matrix, arises. The popularity of the null space
method in optimization is related to the fact that in nonlinear problems, frequently
approximations of HZ are maintained with cheap low-rank updates from the Broyden
family, such as BFGS.

Computing Z may easily be the most demanding step in the application of the
null space method. Further, the condition number of HZ and hence the efficiency of
the null space method depend strongly on the particular choice of Z. If the problem
size permits the use of direct methods, in general a null space basis is computed by
sparse elimination techniques applied to the constraint matrix C, preferably in such
a way that the columns of Z are orthonormal. In the context of PDE constrained
optimization, a suitable null space basis can be expressed in terms of solutions with
the state operator. For C as in (2.55), we define

Z =

[
L−1
h Mh

I

]
. (3.10)

It remains to define Y . From an algorithmic viewpoint, the choice

Y =

[
I
0

]
(3.11)

best suits our needs. Other possible choices for Y are discussed in [127]. The choice of
a range space basis Y has a much smaller impact on the algorithm, compared to Z. In
fact, some variations of the null space method are motivated by this observation and
neglect the cross-term ZTHY on the right hand side of (3.8). With (3.10) and (3.11),
the reduced Hessian for our model problem is given by

HZ = MT
h L
−T
h MhL

−1
h Mh + σMh. (3.12)

The null space method and numerous variants are of particular interest in nonlinear
problems, where they appear as reduced Hessian, reduced Newton or reduced sequen-
tial quadratic programming (SQP) methods [29, 66, 67, 127]. These methods may be
derived by applying Newton’s method to the reduced functional Ĵh(uh). Finally let
us remark that the null space method is closely connected to the family of constraint
preconditioning techniques which will be discussed in Section 3.1.3.

3.1.2 Coupled Methods

In contrast to the introduced segregated methods are the coupled or “all at once”
solution approaches with the objective to solve simultaneously for all components of
the unknown vector of the KKT system (2.54). This can be done either with direct
methods or in an iterative fashion. The interest in coupled approaches arises due to the
high computational cost induced by the iterative solution of the Schur complement
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systems in the reduced methods. In particular note that the number of iterations
required to invert, say, HZ , can not be reduced by a higher efficiency of the inner
solver related to Z. The all-at-once approaches aim at reducing the cost by solving
for C,CT only once during the course of the iterations.

Direct Factorization Methods In direct methods, first a triangular factorization of
the KKT matrix K is computed and the solution of the KKT system is then achieved
by forward elimination and backward substitution. The Cholesky factorization can not
be used, since K is indefinite. Instead, variants of the LU decomposition, accounting
for a given sparsity pattern to reduce fill-in, are commonly employed. The factorization
process consists of several phases: the first phase is an ordering phase that exploits the
sparsity pattern in order to reduce fill-in, the second phase is an analyzing or symbolic
phase in which a pivot sequence and necessary data structures are determined and the
last phase is a numerical phase in which the actual factorization is computed.

Over the years, many fine-tuned algorithms based on the methods proposed in [59]
have been developed. Implementations which find wide-spread use in the optimization
community are the MA27 and MA47 algorithms of the HSL library [99]. Algorithm
MA47 is especially well adapted to the solution of saddle point systems since it takes
into account that no pivots can be chosen from the (2, 2) zero block in K.

Direct methods enjoy a considerable popularity in the optimization community,
which in part is owed to the robustness properties and to the ability to serve as a
black-box method, since in many cases the constraint Jacobian might be dense or
no special structure can be assumed, different to the PDE constrained setting. On
the other hand, regardless of the high level of sophistication direct methods have
reached over time, the problem size which can be treated by these approaches is
limited both by memory and computational workload constraints, in particular in the
PDE constrained context. Since we focus here on PDE related problems, we refer
to [59] and the numerous references given in [22].

Krylov Methods Iterative methods provide an alternative to direct factorizations
that is less demanding on computational resources. Only matrix-vector products with
the system matrix K are needed during the course of the iterations. Thus, only K
and a few work vectors have to be stored. We remark though that this low demand on
computational effort has to be put into perspective as soon as preconditioning issues
enter the solution method.2 Iterative techniques can be divided into the groups of
stationary and nonstationary methods. In stationary methods, iteration matrices and
other used information are independent on the current iteration index. In contrast,
nonstationary methods depend on the available information at a given iteration. Sta-
tionary methods are not very effective by themselves and are rarely used as stand-alone

2Preconditioners usually require access to individual matrix elements and can utilize techniques that
require a significant amount of computational cost.
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solvers. They will be briefly touched upon in the context of smoothing iterations for
multigrid method, cf. Section 4.1. In the following we will restrict ourselves to the
presentation of Krylov subspace iterations for indefinite problems. Arguably the best-
known representative of Krylov iterations is the conjugate gradient method, however
it can not be applied to solve the KKT system (2.54) since it is applicable only to
positive definite symmetric systems (but see the remark in Section 3.1.3 for an excep-
tion to this rule).3 Since Krylov methods also play an important role in the multigrid
context – they are frequently used as smoothing iteration as well as accelerator on the
fine grid – we will provide some further details.

Given an initial guess x0 and corresponding residual r0 = b−Kx0, a Krylov method
generates a sequence of iterates xk in the space x0+Kk(K, r0) with the Krylov subspace

Kk(K, r0) = span(r0, Kr0, . . . , Kk−1r0). (3.13)

Uniqueness of the iterate xk is enforced by requiring that the corresponding residual rk

is orthogonal (with respect to the Euclidean inner product) to a k-dimensional space.
Different choices for this spaces and ways of enforcing or approximating the orthogo-
nality gives rise to a variety of Krylov methods. For indefinite problems, widely used
algorithms include the minimal residual variants MINRES [130] and GMRES [139].
Here, orthogonality is achieved by minimizing the Euclidean norm of rk over the affine
subspace

r0 +KKk(K, r0). (3.14)

The MINRES method is applicable to symmetric systems and requires a positive
definite preconditioner, the GMRES algorithm is a further generalization applicable
also to non-symmetric systems and can use an indefinite preconditioner.

The Krylov methods outlined above belong to the class of optimal methods, to be
understood in the sense that full orthogonality of residuals is guaranteed. Full orthog-
onality and short-term recurrence for vector updates such as in cg type iterations can
in general not be achieved at the same time. The optimal GMRES method for instance
requires k vector operations in iteration k. Consequently, the Krylov subspace grows
in each iteration and may become unacceptably large. Therefore, several methods
have been developed that compromise on the full orthogonality in favor of affordable
cost per iteration step. To this class of non-optimal Krylov methods belong the short-
term recurrence based Quasi Minimal Residual (QMR) and BiCG-type variants as
well as restarted and truncated versions of optimal methods. For a further discussion
on different variants of Krylov methods we refer to [19] and references therein.

It is well-known that the convergence of cg-like methods is determined by the min-
imal polynomial on the set of eigenvalues of K, i.e. for the k-th residual one has

‖rk‖ ≤ min
π∈Pk,π(0)=1

max
λ∈σ(K)

‖π(λ)‖‖r0‖, (3.15)

3Furthermore, in general it should be avoided to apply the cg method to the normal equations with
system matrix KTK, since this effectively squares the condition number.
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where Pk denotes the space of polynomials with degree k and σ(K) denotes the spec-
trum of K. Fast convergence is achieved if the eigenvalues are sufficiently clustered
away from the origin. In the case of the cg method, the analogous estimate for the er-
ror with respect to the energy norm is further estimated using Chebyshev polynomials
of the first kind to obtain

‖ek‖K ≤ 2

(√
κ(K)− 1√
κ(K) + 1

)k

‖e0‖K , κ(K) =
λmax(K)

λmin(K)
. (3.16)

In the indefinite case, explicit solutions to the min-max problem on the right hand
side of (3.15) are not easily derived. However, in [22] an example for a special case
is given which illustrates the challenge an indefinite problem may pose to a Krylov
solver. To this end, let us assume that the eigenvalues of K are given by λmin ≤ . . . ≤
λi < 0 < λi+1 ≤ . . . ≤ λmax, and furthermore that |λmin| = λmax = 1 and |λi| = λi+1.
Then, following the argument in [22], one obtains

min
π∈Pk,π(0)=1

max
λ∈σ(K)

‖π(λ)‖ ≤ 2

(
λ−1
i+1 − 1

λ−1
i+1 − 1

)[k/2]

. (3.17)

Now it is interesting to note that the right hand side of (3.17) corresponds to the
estimate (3.16) in step [k/2] for a positive definite matrix K with σ(K) ⊂ (λ2

i+1, 1),
i.e. a condition number of λ−2

i+1. Noting that the indefinite matrix by assumption had
a condition number of λ−1

i+1, we see that the derived bound implies twice as many steps
for an indefinite matrix with condition number κ as would be required for a positive
definite symmetric matrix with a condition number of only

√
κ. This shows the large

increase in computational effort needed to solve indefinite systems and furthermore
emphasizes the need for preconditioning.

3.1.3 Preconditioning

The aim of (left4) preconditioning is to find a matrix (or a linear process) B, the
so-called preconditioner, such that the transformed system

B−1Kx = B−1b (3.18)

has more favorable spectral properties than the original system, e.g. a lower condition
number or a stronger clustering of eigenvalues. The convergence estimate for Krylov
methods (3.15) equally applies to the preconditioned system (3.18) and thus the con-
vergence depends on σ(B−1K) instead of σ(K). Finding a suitable preconditioner B
involves the in general conflicting objectives

4We confine our presentation to left preconditioning and refer to e.g. [19] for the alternative ap-
proaches of right or symmetric preconditioning.
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• B−1 is a close approximation to K−1, and

• the application of B−1 to a vector can be computed efficiently.

Most preconditioners for saddle point systems build on techniques related to the so-
lution methods discussed in Sections 3.1.1 and 3.1.2. For example, direct methods
can give rise to preconditioners in the form of inexact factorizations. In addition,
different block factorizations of the KKT matrix, for instance (3.1), are utilized to
derive e.g. certain block triangular matrices to be used as preconditioners. The segre-
gated methods also give rise to block preconditioners. The performance of such block
preconditioners chiefly depends on the availability of efficient solution methods for
the individual blocks. While efficient methods for the constraint-related blocks are
most likely available from a large body of PDE solvers, this is different for the Schur
complement and the reduced Hessian. Since both are virtually never are available ex-
plicitly in matrix form, suitable approximations have to be constructed. This can lead
to elaborate schemes of inner-outer iteration techniques. In the following, we focus
on constraint preconditioning and refer to [22] for pointers to other preconditioning
approaches.

Constraint Preconditioning Consider the system (2.54) and a preconditioner

BCP =

[
Ĥ CT

C 0

]
, (3.19)

where Ĥ is a symmetric matrix in R2N×2N . The matrix BCP can be interpreted as the
saddle point system resulting from a minimization problem with a different quadratic
energy but the same constraints, which explains the expression constraint precondi-
tioner [102, 116]. Since BCP again is an indefinite matrix, we note that (3.19) can not
be used with all iterative methods, for instance MINRES requires a positive definite
preconditioner. Also, at first sight it is not evident why solving systems with BCP

should be more efficient than solving (2.54). However, there a few desirable properties
which make it worthwhile to have a closer look at constraint preconditioning. Using
an orthogonal factorization of CT involving a null space basis Z and a subsequent
similarity transformation in [102] it is shown that the preconditioned matrix B−1

CPK is
similar to

B̃−1
CP K̃ =

I? (ZT ĤZ)−1HZ

? ? I

 . (3.20)

Here, I is the N × N identity, the symbol ? denotes nonzero N × N blocks whose
specific structure is of no importance for the analysis and the matrix Z ∈ R2N×N is a
basis for the null space of the constraints. Furthermore, recall from Section 3.1.1 that
HZ ∈ RN×N is the reduced Hessian. From (3.20) we conclude
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Theorem 3.1 (Eigenvalues of B−1
CPK). Let K be a saddle point matrix as given

in (2.54), let BCP be a constraint preconditioner as specified in (3.19) and let Z ∈
R2N×N be a basis for the null space of the constraints C. Then the preconditioned
matrix B−1

CPK has

i) an eigenvalue 1 with multiplicity 2N , and

ii) N eigenvalues λ defined by the generalized eigenvalue problem

HZw = λZT ĤZw. (3.21)

A further consequence for the iteration behavior of Krylov methods is given by

Theorem 3.2 (Krylov subspace dimension for B−1
CPK). In addition to the above as-

sumptions, let Ĥ be such that ZT ĤZ is positive definite symmetric and assume that
(ZT ĤZ)−1HZ has k distinct eigenvalues λi, 1 ≤ i ≤ k, 1 ≤ k ≤ N . Then the
dimension of the Krylov subspace K(B−1

CPK, b) is at most k + 2.

Proofs for both Theorems can be found in [102]. The important consequence of
these assertions is the fact that an optimal Krylov method such as GMRES applied to
the preconditioned system will terminate after at most k + 2 steps. Fast convergence
can be expected if the approximation ZT ĤZ to the reduced Hessian HZ leads to
a good clustering of the eigenvalues of (ZT ĤZ)−1HZ . In the extremal case that
ZT ĤZ = HZ , convergence occurs within three iterations. Motivated by the desirable
properties, several different implementations have surfaced recently, see e.g. [15, 136].
A concrete example and numerical results will be given in Section 3.2 and 3.3.

Remark 3.3. The close relation between constraint preconditioning and the null space
method has been exploited in [52, 74, 136]. In [74] it was shown that the solution
of (2.54) with the preconditioned CG method, where the preconditioner is of the
form (3.19), generates iterates within the null space of the constraints, provided the
initial guess is feasible. Thus, the resulting iterative process is closely related to the
solution of (3.8) within the null space method by conjugate gradient. This provides an
explanation for the surprising fact that the cg method can be applied directly to the
indefinite system (2.54). We emphasize that this is a special property of a constraint
preconditioner. Furthermore, all subsystem solutions have to be computed with high
accuracy, quickly rendering this approach costly.

At the end of this section, let us remark that in many practical situations, the line
between segregated and all-at-once approaches tends to be blurred: inexact variants
of the segregated methods might be employed as preconditioners in an all-at-once ap-
proach [66, 67]. Partial elimination has been applied in [34] to the linear-quadratic
model problem. The resulting system then resembles a system for the biharmonic
equation, and algebraic multigrid was employed. A symmetric indefinite precondi-
tioner was proposed recently in [140] for the model problem (LQPh). The method
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appears to be robust and converges mesh independent, however, as it uses special
problem-dependent inner products it is not obvious how to generalize the approach to
different problems.

3.2 A Block-Triangular Constraint Preconditioner
Based on a Reduced Hessian Approximation

In this section we present an implementation of a specific constraint preconditioner (3.19)
along with numerical results. The general principle discussed in this section will serve
as a building block for a smoothing iteration within a multigrid method for KKT
systems, cf. Section 4.3.

We use (3.10) to define Z. We set

Ĥ =

[
0 0

0 ĤZ

]
, (3.22)

which yields

BCP =

 LTh
ĤZ −Mh

Lh −Mh

 . (3.23)

Since ZT ĤZ = ĤZ and due to (3.21), we conclude that ĤZ should be some approxi-
mation to the reduced Hessian HZ . Due to Theorems 3.2 and 3.1, the convergence of
a Krylov method preconditioned with BCP defined by (3.23) depends on ĤZ . Useful
expressions for ĤZ will be given below.

A single application of B−1
CP to a vector xh = (xyh, x

u
h, x

p
h) is obtained by solving

BCP x̃h = xh. Due to the lower block-triangular structure, BCP can be inverted in
three steps by blockwise forward substitution, see Algorithm 1. For steps 1 and 3 of

x̃h = B−1
CPxh

1: x̃ph ← LTh x̃
p
h = xyh

2: x̃uh ← ĤZ x̃
u
h = xuh +Mhx̃

p
h (RHE)

3: x̃yh ← Lhx̃
y
h = xph +Mhx̃

u
h

Algorithm 1: One application of the constraint preconditioner B−1
CP defined by (3.23)

to a vector xh = (xyh, x
u
h, x

p
h).

Algorithm 1 we assume that efficient solution methods for the subsystems with Lh and
LTh are available. Recall that Lh and LTh represent discretized differential operators and
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in principle any method appropriate for the solution of the state and adjoint equation
could be employed here.

The crucial issue in Algorithm 1 is the second step, labeled with (RHE), which
comprises the solution of a system with the coefficient matrix given by the reduced
Hessian approximation ĤZ . Due to (3.12), obviously it is not possible to explicitly
assemble the N × N matrix HZ and define ĤZ based on, e.g. an incomplete factor-
ization. We opt for the iterative approach and to this end define the matrix-vector
product (MatVec) with HZ according to (3.12). The necessary steps which implement

x̌uh = HZx
u
h = (MhL

−T
h MhL

−1
h Mh + σMh)x

u
h

1: vh ← Lhvh = Mhx
u
h

2: wh ← LThwh = Mhvh
3: x̌uh ←Mhwh + σMhx

u
h

Algorithm 2: Definition of MatVec HZx
u
h given by (3.12). MatVec is employed within

an iterative solution method in step 2 of Algorithm 1.

the MatVec are stated in Algorithm 2. Steps 1 and 2 in Algorithm 2 again require
the solution of the forward and adjoint problems with coefficient matrices Lh and LTh ,
respectively. Here it is natural to employ the solver which is already used in steps 1
and 3 of Algorithm 1.

Since HZ is positive definite, we employ the CG method. The approximation ac-
curacy of ĤZ to HZ is then determined by the accuracy of the cg method, i.e. the
stopping criterion which is chosen to control the iterations. In the extremal case that
the cg method is driven to full convergence, we expect to approximate HZ proportional
to the numerical round-off error. From Theorem 3.2 we then conclude that a Krylov
method such as GMRES preconditioned with BCP (in exact arithmetic) converges in
three steps.

3.3 Numerical Results

In this section we present numerical results which have been obtained with our im-
plementation of the preconditioner (3.23) using algorithms 1 and 2 applied within a
GMRES method. The implementation uses the PETSc (Portable, Extensible Toolkit
for Scientific Computation) framework [16–18], which in particular provides the nec-
essary linear algebra data structures such as vectors and matrices, as well as a library
of Krylov methods. The inner BLAS (Basic Linear Algebra Subroutines) kernel is
provided by the GOTO BLAS library [72] which is an architecture-optimized imple-
mentation of BLAS.
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We consider the linear-quadratic model problem (LQPh) as test problem. Due to
linearity, it is sufficient to consider a zero right hand side and a suitably general initial
guess x0

h. To be precise, we provide the initial guess x0
h as a vector with random

components xi ∈ [−1, 1]. The exact solution x∗h of (LQPh) is identically zero and,
denoting the iteration counter of the outer GMRES method with m, the error is
given by the current iterate xmh . In order to compare errors for different discretization
parameters h, we introduce the discrete L2-norm and define

emuh = ‖umh − u∗h‖L2,h = h
(∑
Ti∈Th
|umh,i − u∗h(zi)|2

)1/2

, (3.24)

as the discrete L2-error with respect to the control component uh. In (3.24), zi denotes
the center of the grid cell Ti. In the same manner we define the error with respect to
the state and adjoint components yh and ph which correspondingly is denoted by emyh
and emyh , respectively. We define the total discrete error in the m-th iteration by

emh = ((emyh)2 + (emuh)2 + (emph)2)1/2. (3.25)

For the following experiments, the solution of linear systems with coefficient matrix
Lh or LTh is obtained using a direct factorization method. Here we use the PETSc
built-in Cholesky decomposition since Lh is symmetric positive definite. Let us point
out that for large-scale problems, one of the sparse factorization methods discussed in
Section 3.1.2 or an iterative method should be employed. Since our main objective is
to develop a multigrid method, we do not pursue these issues. In our experiments, the
factorization is performed once in the initialization phase, and the solutions are com-
puted using the corresponding backsubstitutions with the triangular factors. These
are required in steps 1 and 3 of Algorithm 1. The inversion of ĤZ , i.e. the solution of
the reduced Hessian equation (RHE) required in step 2 of Algorithm 1, is computed
with the CG method using (3.12) and MatVec given by Algorithm 2. The approxima-
tion quality of ĤZ to HZ is governed by two stages: the accuracy of the MatVec for
HZ and the accuracy of the CG solution. For the following experiments we assume
that the accuracy of MatVec is of the order of round-off error, in particular, the same
triangular backsubstitutions as in steps 1 and 3 of Algorithm 1 are used for solves
with Lh, L

T
h in Algorithm 2. Let k denote the iteration count of the inner CG method.

The first experiment is conducted such that ĤZ ≈ HZ as accurate as possible. To this
end, we stop the CG iterations if the inner residual

rkcg = bmh − ĤZx
um,k
h (3.26)

with respect to the right hand side bu,mcg = xu
m

h +Mhx
p̃m

h in (RHE) satisfies

‖rkcg‖2 ≤ εmach. (3.27)
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Figure 3.1: Convergence of BCP -GMRES with ĤZ ≈ HZ and Lh, L
T
h inverted by direct

factorization. Varying mesh size h = 2−J , J = 7, 8, 9, 10, fixed regularization
parameter σ = 1.0 (left) and fixed mesh size h = 2−8, varying regularization
parameter σ (right).

Here, εmach ∼ 1.1−16 is the relative precision (the machine epsilon) for double precision
floating point arithmetic. The outer GMRES iteration is stopped based on the outer
residual

rm = bh −Khx
m
h , (3.28)

according to

‖rm‖2 ≤ max(εmach, εmach‖bh‖2). (3.29)

Let us remark that the tight tolerance in (3.29) is chosen exclusively for testing pur-
poses. A sensible stopping criterion in PDE-related applications should take into
account the order of the discretization error, O(h2) in the present case.

Figure 3.1 shows the reduction of eh vs. the number of outer GMRES iterations. In
agreement with Theorem 3.2 we see that convergence is achieved within 3 iterations.
The number of GMRES iterations is independent of the mesh size h as well as of
the regularization parameter σ (but see further comments below), which is apparent
from Figure 3.1 left and right, respectively. Figure 3.2 shows the error reduction with
respect to the individual error components eyh, e

u
h and eph. Here, the fixed mesh size

h = 2−8 is chosen, the regularization parameter is σ = 1.0−8. Hence, the plot on
the left in Figure 3.2 shows the errors eyh, e

u
h and eph corresponding to the case on

the right side of Figure 3.1. Recall that the initial guess x0
h was chosen as a random

vector and thus is infeasible with respect to the constraints C. In contrast, for the
results shown on the right of Figure 3.2 a feasible x0

h was chosen, i.e. Lhx
y,0
h = Mhx

u,0
h

holds. As we see, convergence occurs in one iteration less for the case of a feasible
x0
h as compared to an infeasible x0

h. The convergence behavior shown in Figure 3.2
reflects the fact that the solution of the HZ-equation yields a descent direction with
respect to the reduced functional Ĵ under the condition that x0

h is feasible. This
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Figure 3.2: Error reduction with respect to the individual components eyh, e
u
h, e

p
h. Fixed mesh

size h = 2−8, initial guess infeasible with respect to C (left) and feasible (right).

issue is fundamental for the convergence of reduced space methods, feasible methods
in general require a feasible initial guess and a preliminary step is required to obtain
x0
h. This is not the case if a reduced space method is only used as preconditioner.

However, in that case, the solution of (RHE) is not necessarily a descent direction and
thus an increase of euh can occur. Since due to the projection onto the null space of
C all later iterates are feasible, here this happens only in the first iteration. Both the
magnitude of the increase in euh as well as the size of the initial error euh in the case of
a feasible x0

h depend on the value of σ. This is due to the optimality condition (2.42)
which enforces a different scaling of magnitude O(σ) between uh and ph. This scaling
is clearly not respected by an arbitrary initial guess. Note that for practical problems
a useful initial guess for the control uh might be available. The construction of a
feasible x0

h then requires the solution of the constraint PDE prior to the solution of
the optimization problem. Note further that for all experiments in this section we plot
the actual error and not the residual norm. Although GMRES exhibits a monotonic
decrease of the residual norm, for ill-conditioned systems the corresponding error can
nevertheless increase, as happens here for σ � 1. Error-minimizing Krylov methods
do exist but are seldom used in practice due to relatively high computational costs. R.Weiss,

SISC,srcAlthough the number of outer GMRES iterations does not depend on the mesh
size h or the regularization parameter σ, the complete approach is far from having
these properties. For each application of BCP , two systems of size N × N need to
be solved, one each with the coefficient matrix Lh and LTh . Furthermore, the same
amount of work is required for each inner iteration of the CG method. Thus, the total
cost CBCP -GMRES for the BCP -GMRES method can roughly be given as

CBCP -GMRES =
m̄∑
m=1

(2 + k̄m)CN , (3.30)
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Table 3.1: Iteration numbers k̄m for the inner CG method at outer GMRES iteration m.
The mesh size is fixed as h = 2−8, the regularization parameter σ varies.

σ

m 1.0 1−1 1−2 1−3 1−4 1−5 1−6 1−7 1−8

1 6 7 9 13 22 43 100 267 772
2 6 7 9 13 22 44 101 269 765
3 6 8 11 15 26 52 119 309 873∑

18 22 29 41 70 139 320 845 2410

where CN denotes the cost for solves with Lh, L
T
h , m̄ denotes the number of outer

GMRES iterations required to satisfy (3.29) and k̄m denotes the number of iterations
the CG iteration requires to satisfy (3.27). In order to obtain a robust and mesh
independent solution method with optimal complexity O(n) based on BCP−GMRES

the following requirements need to be satisfied:

• the number of outer GMRES iterations m̄ is mesh-independent and robust w.r.t.
σ,

• the number of inner CG iterations k̄m is mesh-independent and robust w.r.t. σ
for all m and,

• the cost CN is O(N).

The first requirement is satisfied according to Theorem 3.2 if the eigenvalues of (3.21)
are independent of h, e.g. by ĤZ ≈ HZ to numerical round-off. The last requirement
can be satisfied by using an optimal solver such as full multigrid for the constraint sub-
problems. Satisfying the second requirement poses the main challenge. Note that the
iteration count k̄m is not affected by the specific solution method for the constraints.
Indeed, this is one major drawback for reduced space methods, as was discussed in
Section 3.1.1. For the model problem (LQPh), it turns out that k̄m almost exclusively
depends on the value of σ. Table 3.1 shows the value k̄m for m = 1, 2, 3 and differ-
ent values of σ. The mesh size is chosen as h = 2−8. The large iteration numbers
demonstrate that BCP -GMRES as it stands is not a very competitive method. The
iteration numbers indicate that the condition numbers of Kh with respect to σ as given
in Table 2.1 are mirrored by HZ (for a detailed discussion of the spectral properties
of HZ we refer to Section 4.6). Note that even for moderate values the constant of
proportionality with respect to CN can become fairly large. For σ = 1.0−4 the cost
CBCP -GMRES for the solution of the optimal control problem is 146 times the cost CN
which is required for the solution of the underlying PDE.

The presented results make it clear that preconditioning HZ would be desirable in
order to reduce the large number of inner iterations. Unfortunately, preconditioning
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an unassembled operator is not easily done. Few publications exist which specifically
address this issue. A notable exception is [125], where preconditioning strategies for
HZ in unassembled form are suggested. In particular, a preconditioner BH with

B−1
HZ

= W T H̃−1W (3.31)

is proposed, where H̃ ≈ H and W TZ = I, i.e. W T is a left inverse for the null space
basis Z. In the case of the LQMP it is possible to chose H̃ = H which then obviously
is the best choice. For elimination of variables via a null space basis, the left inverse
W = [0 I] is advocated in [125]. However, in this case preconditioning just amounts
to a diagonal scaling B−1

HZ
= 1

σ
M−1

h with little or no5 effect on the CG iteration.
More elaborate preconditioners are based on power series expansions to approximate
H−1
Z , however, the involved computations quickly become expensive. In any case, most

publications focus on alleviating ill-conditioning which results from a particular choice
of Z. In the present situation, where Z is built from a solver of a forward problem,
it is justified to assume that techniques to bound κ(Z) independent of h are readily
available, such as multigrid preconditioners. Here, the main source of ill-conditioning
originates from H for σ → 0.

Instead of preconditioning, we follow a different approach by using an approxima-
tion ĤZ which is cheaper to evaluate. We study two cases: first, we obtain ĤZ by
relaxing (3.27), now instead we stop the iterations as soon as

‖rkcg‖2 ≤ max(εmach, ε‖bu,mcg ‖), (3.32)

with ε = 0.5. The resulting preconditioner is denoted by BCP1 . In the second case, we
simply replace HZ with the preconditioner BHZ from (3.31) and denote the resulting
variant by BCP2 . Note that for the discretization of Section 2.3.2 Mh is diagonal
and therefore the evaluation of B−1

HZ
is cheap. In the general case that Mh is not

diagonal, e.g. for finite element discretizations, two strategies are possible: the first
is to approximate Mh by its lumped version, the second is to employ a few steps of
the CG method. Since Mh should be positive definite and well-conditioned, the CG
method converges rapidly. Figures 3.4 and 3.3 show the convergence histories for
the outer GMRES iteration preconditioned with BCP1 and BCP2 , respectively. In both
Figures, on the left the fixed regularization parameter σ = 1.0−6 was chosen and the
mesh size h = 2−J varies, with J = 7, 8, 9, 10. On the right side in both Figures, results
for a fixed mesh size h = 2−8 and varying regularization parameter σ are shown. First,
we see that robustness with respect to σ is lost in both cases, as could be expected
when going from HZ to ĤZ . However, this loss is considerably more sever for the
case of ĤZ = BHZ , i.e. BCP2 . In particular, note the different scaling of the x-axis
in both Figures, which gives the number of outer GMRES iterations. For moderate
values of σ, e.g. down to σ = 1.0−4, both methods perform nearly equal. This is

5For the model problem (LQPh) we have Mh = h2 and thus BHZ
is constant.
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Figure 3.3: Error reduction of BCP1-preconditioned GMRES, i.e. ĤZ = HZ with the relaxed
stopping criterion (3.32). Different mesh sizes h = 2−J and fixed regularization
parameter σ = 1.0−6 (left), fixed mesh size h = 2−8 and varying regularization
parameter (right).

explained by recalling expression (3.12), from which we gather that HZ can be seen
as a perturbation of a (scaled) identity for large enough σ.6 For σ → 0 the behavior
changes in favor of the second approach, i.e. the perturbation terms gain influence
and should not be omitted anymore. Recalling that, as before, solutions of systems
with Lh, L

T
h still are obtained by a direct method, it comes as no surprise that mesh

independence is retained to a large extent for both approaches, more so for the first
approach, since BHZ is conditioned independently of h and to a lesser extent for the

second approach, where ĤZ introduces a mild dependence on h.

For the second test case, the outer GMRES method has to be a flexible variant [138]
since the inner CG iterations do not constitute a stationary linear process. Further-
more, since the number of outer iterations has increased significantly, in order to
reduce computational costs a restarted version of GMRES is employed. Here, we use
a restart value of 10, i.e. the dimension of the Krylov subspace is limited to 10. Note
that the restarted version of GMRES can not retain the monotonic decrease even in
the residuals. In particular, eigenvalues close to the origin pose potential trouble for
restarted versions. Interestingly enough, numerical experiments showed that larger
restart values could lead to worse convergence behavior and very quickly the residual
norm would stagnate until the next restart occurred. A similar behavior has also been
observed in the context of discretized convection-diffusion problems [62].

With respect to the preconditioner BCP1 , the total number of the inner conjugate
gradient iterations,

∑m̄
m=1 k̄

m, is a quantity of interest in order to estimate the compu-
tational cost. This quantity is given in Table 3.2 for fixed h = 2−8, i.e. corresponding
to the results shown on the right of Figure 3.3. As expected, the total iteration count

6A more detailed analysis of HZ will be given in Sections 4.3 and 4.5.5



3.3 Numerical Results 53

0 50 100 150 200 250

10−12

10−7

10−2

103

GMRES iteration

D
is

cr
et

e
L

2
-e

rr
o
r

J = 7

J = 8

J = 9

J = 10

0 100 200 300
10−17

10−10

10−3

104

GMRES iteration

D
is

cr
et

e
L

2
-e

rr
o
r

σ = 1.0
σ = 1.0−2

σ = 1.0−4

σ = 1.0−6

σ = 1.0−8

Figure 3.4: Error reduction of BCP2-preconditioned GMRES(10), i.e. ĤZ = BHZ . Different
mesh sizes h = 2−J and fixed regularization parameter σ = 1.0−6 (left), fixed
mesh size h = 2−8 and varying regularization parameter (right).

Table 3.2: Total number of inner iterations k̄m for the relaxed CG method within BCP1 . The
mesh size is fixed as h = 2−8, the regularization parameter σ varies.

σ 1 1−1 1−2 1−3 1−4 1−5 1−6 1−7 1−8∑m̄
m=1 k̄

m 11 13 15 24 49 129 254 482 1370

is lower than in the first experiment, however again for σ → 0 unacceptably large
iteration numbers result, in particular in view of the fact that forward problems are
still solved exactly at each outer GMRES and within each inner CG iteration. Thus,
both approaches are still far from being a method which exhibits optimal complexity.

A sizable part of publications concerned with the analysis of nested Krylov methods
is based on the assumption of exact arithmetic. Although it is well-known that nu-
merical round-off error due to finite precision arithmetic can slow down convergence
and also limit the final attainable accuracy (which is proportional to εmachκ(HZ)),
cf. [76, 120] for the positive definite and [144] for the indefinite case, for many appli-
cations these facts are not a serious limitation. Reasonable stopping criteria related
to the discretization accuracy stop the iterations before the attainable accuracy is
reached, and many ways of accelerating convergence are available. However, in the
context of nested Krylov iterations, these effects appear in a new light as outer iter-
ations might be sensitive to these issues [10, 101]. Often it is advised to take special
measures in order to limit the influence of numerical round off, see e.g. [74], where
iterative refinement and a particular residual update strategy are proposed within a
null-space projected gradient method.

Our preliminary implementation does not incorporate any special measures regard-
ing numerical round-off and thus some effects can be clearly observed in the results



54 3 A One-Level Method for the Solution of Saddle Point Systems

presented in this section, in particular in Figure 3.1, right, but also in all other cases
where σ → 0. Keep in mind that the stopping criterion (3.29) for the outer GM-
RES iteration prescribed the same tolerance for all experiments in this section. A
particular problematic issue is to employ a reliable stopping criterion for the inner
iteration when κ(HZ) is large. Proposed bounds on the forward error ekcg which are
more reliable than (3.32), cf. [11], inevitably require some estimate of ‖HZ‖−1, since
ekcg = H−1

Z rcg. An estimate of λmin = 1/‖H−1
Z ‖2 can be obtained at the cost of a few

matrix-vector products utilizing the Lanczos algorithm, however keep in mind that in
the present case a matrix-vector product is expensive as it involves repeated solutions
of the forward problem.

Summary

In this chapter we discussed the most widely used numerical algorithms suitable for
the solution of saddle point systems arising in PDE constrained optimization. For a
particular instance of a constraint preconditioner we presented an implementation and
numerical results.

Although the outer GMRES iteration exhibited the favorable properties of robust
and mesh-independent convergence, which could be expected based on Theorems 3.1
and 3.2, we associated the following potential drawbacks with this approach: repeated
exact solutions of the constraint equations are required at each outer and within each
inner iteration, inner iterations for HZ are not robust with respect to σ, efficient single-
level preconditioning of a non-assembled HZ is still an open topic, and adjusting and
implementing reliable stopping criteria for nested inner-outer Krylov iterations is a
non-trivial task.



4 A Multigrid Method for the Solution of
Linear-Quadratic Optimal Control Problems

The main part of this chapter is devoted to the development and presentation of a
coupled multigrid method for the solution of saddle point systems (2.51) arising from
the discretization of PDE constrained optimization problems. In subsequent chapters,
the devised method will be adapted to handle inequality constraints on the control,
and it will be employed for the solution of the systems, which are generated when
applying Newton-type methods to optimization problems with nonlinear constraints.

The multigrid method is one of the most efficient solution methods for linear systems
arising from discretized second-order elliptic boundary value problems. The algebraic
error usually satisfies an estimate of the form

‖wm+1
h − wh‖ ≤ %‖wmh − wh‖ (4.1)

with a constant % ∈ (0, 1) which is bounded uniformly in h. Here, % is called the
asymptotic convergence rate if it is related to the spectral radius of the multigrid
iteration matrix GMG, or the contraction number if % results from an estimate of
‖GMG‖.

For practical applications, it is crucial that % � 1 holds (often % < 0.25 which
denotes the so-called “textbook efficiency” of multigrid methods). However, even if this
can not be achieved, multigrid methods often prove to be very good preconditioners,
resulting in rapid convergence if accelerated by a Krylov method. Reducing the relative
algebraic error to a tolerance ε can be achieved in m ≥ log ε/ log % iterations. In PDE-
related applications, it is reasonable to relate the tolerance ε to the discretization
accuracy, i.e. ε = O(hκ) with κ being the consistency order of the discretization.
Thus, m = O(|log h|) iterations and, assuming a cost of O(h−d) per iteration, a total
complexity of O(h−d|log h|) is obtained when computing a solution with an algebraic
error of the same order as the discretization error. Even more efficient is the full
multigrid method which, by a combination of multigrid cycles with nested iteration,
yields a solver with the optimal complexity O(h−d).

First applications of the two- and multigrid idea to Poisson’s equation have been
carried out as early as 1961 by Fedorenko and Bachvalov. It was the pioneering work
of Brandt [40] and independently Hackbusch [85] that later sparked the success which
multigrid methods enjoy today. For details on the multigrid method we refer to the
classical monographs [41, 85, 147], among others.

In contrast to other fast solution methods for Poisson’s equation (see [47] for a
discussion of cyclic reduction, the fast Fourier transform and the Buneman algorithm),
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the multigrid method is much more versatile. In fact, the multigrid idea should be seen
more as a framework which allows to devise fast solvers for a wide range of problems
by adapting the main components to the problem at hand. This flexibility is the key
property which motivates us to employ the multigrid paradigm for the construction
of an efficient solution algorithm for discrete optimality systems.

Before we introduce our proposed method we will give an overview of state-of-the-
art of solution methods for optimization and optimal control problems which employ
multigrid ideas in some way. First though let us convey the necessary details of the
general multigrid idea using the well-understood case of the Poisson equation as an
illustrative example. Furthermore we establish the required notation as well as certain
concepts such as the grid hierarchy and the generic algorithm on which we will build
our subsequent developments.

4.1 Multigrid for Scalar Elliptic Equations

Following the exposition in Section 2.3.2 with the diffusion tensor D = I we obtain a
linear system

Lhwh = bh, wh ∈ Wh. (4.2)

To simplify the notation, we omit the -̂symbol, which in Section 2.3.2 was used to
denote quantities defined with respect to the rectangular computational grid. Here,
we denote the computational domain by Ω and the space of grid functions on the
rectangular grid Th by Wh. Furthermore, we do not distinguish between a function
wh ∈ Wh and its representation as a vector.

The basic observation which led to the development of multigrid methods is that
classical stationary iterative processes such as the Jacobi or Gauss-Seidel iteration
exhibit a smoothing property when employed to solve (4.2). The high frequency com-
ponents of the error are quickly reduced, however as soon as the error becomes smooth
in a sense to be made precise below, further reduction occurs only at a slower rate of
1−O(h2) in case of Jacobi- and Gauss-Seidel iterations, which means that the solution
process effectively stagnates. Let w̃mh denote the current iterate after a few steps of
a smoothing iteration applied to (4.2) and let eh = w∗h − w̃mh denote the error to the
exact solution w∗h of (4.2). Due to linearity, eh satisfies the residual equation

Lheh = rh, (4.3)

where rh = bh − Lhw̃mh is the current residual. Since the error eh is smooth, it can be
accurately approximated by a function eH on a coarser mesh with a mesh size H > h.
The crucial multigrid idea is to solve the residual equation on this coarser mesh,
which is possible with substantially lower computational cost,1 and use the result as

1For standard coarsening, i.e. halving the grid size in each direction, in two dimensions the number
of unknowns on the next coarser grid is reduced by a factor of four.
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a correction to the fine grid iterate, i.e. compute wm+1
h = w̃mh + eH . This process is

called the coarse grid correction and we have essentially described a two-grid method.
Recursive application of the coarse grid correction with intermediate smoothing steps
on each grid level yields the multigrid method. In order to define a multigrid method,
we need to specify

• a hierarchy of grids together with suitable interpolation operators between the
different grid levels,

• a smoothing iteration to be applied on each grid level,

• a definition for the residual equation, and in particular the differential operator,
on each level,

• and a coarse grid solver which is to be employed when recursion ends on the
coarsest mesh.

Smoothing Iterations

Classical smoothing iterations for multigrid methods are given by stationary iterative
methods such as the Jacobi- or the Gauss-Seidel iteration. A unified framework is
provided by the formulation as a preconditioned Richardson iteration. Let BLh denote
a preconditioner for Lh. Then the BLh-preconditioned Richardson iteration applied
to (4.2) reads

wk+1
h = wkh +B−1

Lh
(bh − Lhwkh)

= (I −B−1
Lh
Lh)w

k
h +B−1

Lh
bh (4.4)

= Gwkh +B−1
Lh
bh.

The operator G is called the iteration matrix. Subtracting the exact solution w∗h on
both sides of (4.4) we obtain

ek+1
h = Gekh, (4.5)

i.e. G is also the error propagation matrix. A solution of (4.2) is a fixed point of
the iteration (4.4). The classical Richardson iteration is obtained for BLh = αI with
a relaxation parameter α > 0. The Jacobi- and the Gauss-Seidel iteration can be
obtained by defining BLh based on a splitting of Lh. Let Lh = D − E − F where
D denotes the diagonal part of K and E,F denote the parts below and above the
diagonal, respectively. Then the Jacobi iteration is given by (4.4) with BLh = D and
the Gauss-Seidel iteration is obtained for BLh = D − E.

In the following it will be convenient to denote a general smoothing iteration of the
form (4.4) by

w̃h = Sνh(wh, bh), (4.6)
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where ν is the number of smoothing steps applied to wh and bh denotes the right
hand side. The effectiveness of an iteration (4.6) as a smoother is measured by the
smoothing factor µ(Sh). Several different definitions of µ(Sh) exist, depending on the
context. For now, we refer to Section 4.3, where we will apply local Fourier analysis
(LFA) to assess the smoothing property of a smoothing iteration for optimal control
problems. In general, µ(Sh) measures how fast the high frequency components of the
error are reduced. For the classical theory in [85], the smoothing rate is measured by
estimates of the form

‖LhSνh‖ ≤ %(ν)h−α, %(ν)→ 0 for ν →∞, (4.7)

where Sh is the iteration matrix of the smoother (4.6).
Here we remark that the classical Jacobi iteration does not yield acceptable smooth-

ing rates unless underrelaxation is employed, i.e. BLh = 1
ω
D for some relaxation pa-

rameter 0 < ω < 1. In particular the smoothing is h-dependent and of the same
order as the convergence rate, i.e. 1 − O(h2), if ω = 1. The optimal h-independent
smoothing rate µ(ω− JAC) = 3/5 is obtained for ω = 4/5. On the contrary, although
it is well-known that overrelaxation with the optimal ω improves the Gauss-Seidel
convergence rate from 1−O(h2) to 1−O(h), the optimal smoothing rate is obtained
for a relaxation parameter close to unity. Therefore, almost always the Gauss-Seidel
method without relaxation is employed. In any case, both the convergence and the
smoothing rate depend on the ordering of the grid points. For node-based discretiza-
tions, red-black Gauss-Seidel (GS-RB) has a better smoothing rate, however for cell-
centered discretizations this is not the case anymore [123]. The lexicographical Gauss-
Seidel (GS-LEX), which will be used as smoother unless noted otherwise, exhibits the
smoothing rate µ(GS-LEX) = 0.5. Further details on the smoothing properties of
classical iterative methods can be found in any multigrid textbook and will not be
given here.

Grid Hierarchy and Interpolation Operators

So far we have considered the linear system (4.2) obtained by discretizing the model
problem on a fixed grid with mesh size h. Let us now introduce a hierarchy of grids. We
denote the different grid levels by the parameter j, j = 0, . . . , J , where j = 0 stands
for the coarsest mesh. The mesh for each level is denoted by Tj and the associated
mesh size is given by hj = 2−jhc with h0 = hc denoting the coarsest mesh size. For
notational simplicity, in the following we will refer to level-dependent quantities by
using the level index j as a subscript instead of the mesh size hj.

The standard coarsening process for cell-centered discretizations in two space di-
mensions is depicted in Figure 4.1. A coarse grid cell Ti ∈ Tj−1 is obtained by merging
the four corresponding fine grid cells which we denote with T si , s = 1, 2, 3, 4. Clearly
the spaces Wj, j = 0, . . . , J defined on each triangulation Tj are nested,

W0 ⊂ W1 ⊂ . . . ⊂ WJ = Wh. (4.8)
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Figure 4.1: Standard coarsening for cell-centered discretizations. A coarse grid cell Ti ∈ Tj−1

is the union of four fine grid cells in Tj .

For each Wj we define the corresponding discrete L2-inner product by

(w, v)Wj
= h2

j

∑
Ti∈Tj

wivi, w, v ∈ Wj. (4.9)

The coarse grid correction process requires to transfer residuals from a finer level to the
next coarser one, and to transfer error functions from a coarser level to the next finer
one. This will be achieved by interpolation operators. For second-order differential
equations, a suitable interpolation or prolongation is given by bilinear interpolation.
For cell-centered discretizations, the bilinear prolongation P j

j−1,BL : Wj−1 → Wj is, in
the usual stencil notation [147, 154], given by

P j
j−1,BL =

1

16


1 3 3 1
3 9 9 3
3 9 9 3
1 3 3 1

 , (4.10)

where the notation ] · [ indicates that (4.10) is to be understood in the distributive
sense [147]. A natural way to define a restriction operator is by way of the adjoint.
Let Rj−1

j,BL : Wj → Wj−1 be defined by Rj−1
j,BL = (P j

j−1,BL)∗, i.e.

(P j
j−1,BLwj−1, vj)Wj

= (wj−1, R
j−1
j,BLvj)Wj−1

, vj ∈ Wj, wj−1 ∈ Wj−1. (4.11)

Then, in matrix notation we have Rj−1
j,BL = 1

4
(P j

j−1,BL)T . From a practical point of
view, also other restriction operators might prove to be beneficial. One particular
choice frequently employed for cell-centered discretizations is the four point average
restriction, defined by the stencil

Rj−1
j,FPA =

1

4

 1 1
·

1 1

 . (4.12)
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Figure 4.2: Error reduction for a V1,1-cycle with GS-LEX smoothing applied to Poisson’s
equation for J = 10 and hc = 1

2 , comparing four point average and bilinear
restriction.

By way of Local Fourier Analysis it has been shown [123] that the pair P j
j−1,BL, R

j−1
j,FPA

exhibits smaller reduction factors than the canonical pair P j
j−1,BL, R

j−1
j,BL. This is con-

firmed by numerical experiments, see Figure 4.2. We show the error reduction for a
standard V1,1-cycle with lexicographical Gauss-Seidel (GS-LEX) smoothing applied to
the model problem and J = 10, hc = 1

2
. Clearly, employing Rj−1

j,FPA as restriction oper-
ator results in better reduction rates. Furthermore, it should be noted that due to the
smaller stencil, the computational cost for one application of Rj−1

j,FPA is considerably

lower than that for Rj−1
j,BL and no modifications at domain boundaries are needed. This

implies a very welcome benefit in parallel computations due to additional savings on
communication costs (tacitly assuming that domain boundaries are properly aligned
within the coarsening process).

With respect to a second-order differential operator, both combinations of P j
j−1,BL

with either Rj−1
j,FPA or Rj−1

j,BL satisfy the well-known heuristic [85, 154]

mP +mR > 2m. (4.13)

Here, 2m is the order of the differential operator, mP denotes the polynomial order
of the interpolation P j

j−1, i.e. polynomials of degree mP − 1 are interpolated exactly,

and mR denotes the order of the restriction Rj−1
j which is defined as the order of

the corresponding adjoint interpolation. The need for condition (4.13) has not only
theoretical reasons (in particular it is needed to prove consistency of the coarse grid
approximation [85, §6.3.2]) but also has a practical impact which was demonstrated in
numerical experiments [90]. The theory in [38] guarantees h-independent contraction
factors only for the W - and the variable V -cycle whereas the convergence factor of
the V -cycle is not uniformly bounded. Presumably this is related to the fact that the
natural injection in the cell-centered finite differences case employed in the framework
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of [38] violates (4.13). On a final note let us mention that the sparsity pattern of
Galerkin coarse grid matrices can only be maintained by specific combinations of
restriction and prolongation operators and most canonical pairs satisfying (4.13) lead
to an increased stencil size of coarse grid matrices. Further insight in the proper choice
of interpolation operators is given for instance in [41, 90].

Coarse Grid Correction and Coarse Grid Operator

The coarse grid correction step on a given level j involves solving the residual equa-
tion (4.3) for the error on the next coarser grid j − 1, i.e. to solve

Lj−1ej−1 = rj−1 = Rj−1
j rj. (4.14)

To this end, we need to define the operator Lj−1 on a coarser grid level j − 1. There
are two different and widely used approaches. The first is to define the coarse grid
operator in terms of the fine grid operator via the Galerkin product

Lj−1 = Rj−1
j LjP

j
j−1. (4.15)

This is the standard way in algebraic multigrid methods and most useful if classical
geometric coarsening approaches fail. However, both precomputing the coarse grid
matrices or applying them in terms of matrix-vector products entails a relatively high
computational cost. The approach predominant in geometric multigrid is to use direct
discretization, where the operators Lj, j = 0, . . . , J−1 are obtained by employing the
same discretization method as on the finest level J . This second approach is employed
in the following.

After solving (4.14), its solution is used to correct the current fine grid iterate w̃j
via the correction step

˜̃wj = w̃j + P j
j−1ej−1. (4.16)

In compact form, the whole process of coarse grid correction can be written as

˜̃wj = w̃j + P j
j−1L

−1
j−1R

j−1
j rj (4.17)

= (I − P j
j−1L

−1
j−1R

j−1
j Lj)w̃j + P j

j−1L
−1
j−1R

j−1
j bj.

Note that, although formally the coarse grid correction (4.17) looks like an iteration
of the form (4.4), it can never be a convergent iteration, since the restriction has a
non-trivial kernel. Thus, components of the error lying in the kernel of the restriction
will not be annihilated by the iteration (4.17). In our situation, however, the null
space of the restriction is approximately spanned by the high frequency components
of the error which can be effectively removed by the smoothing iteration. In fact, this
so-called complementarity of the smoothing iteration and the coarse grid correction is
a property essential to the fast convergence of multigrid methods.
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It remains to define how to solve the coarse grid equation. To this end, the idea of
smoothing and coarse grid correction is applied recursively to (4.14) until the coarsest
level j = 0 is reached. There, equation L0e0 = r0 is solved either by a direct method
or with a convergent iterative method. Both approaches are common and depend on
the specific problem at hand. In both cases, the crucial idea holds that exact solution
of the coarse grid problem is easily affordable since h0 will be relatively large.

The Multigrid Algorithm

The algorithm described until now consists of presmoothing and subsequent coarse
grid corrections. In practice, it is beneficial to introduce additional postsmoothing
steps after the coarse grid correction. We denote the number of pre- and postmooth-

xm+1
j ←MGγ(j, bj, x

m
j )

1: if j = 0 then
2: x0 ← K0x0 = b0 /∗ exact solve on coarsest grid ∗/
3: else
4: x̃j = (Sj)ν1(xmj , bj) /∗ ν1 presmoothing steps ∗/
5: bj−1 = Rj−1

j (bj −Kjx̃j) /∗ restrict residual ∗/
6: vj−1 = MGγ(j − 1, bj−1, 0) /∗ grid recursion ∗/
7: ˜̃xj = x̃j + Pjj−1vj−1 /∗ correction step ∗/
8: xm+1

j = (Sj)ν2(˜̃xj, bj) /∗ ν2 postsmoothing steps ∗/

Algorithm 3: The multigrid cycle MGγ(j, bj, x
m
j ) for the solution of Ljxj = bj.

ing iterations by ν1 and ν2, respectively and collect the individual steps in Algorithm 3.
Here we have introduced small notational changes such that Algorithm 3 applies to
a system Khxh = bh instead of (4.2), i.e. we have set Kh = Lh and xh = wh. Fur-
thermore, we have set Rj−1

j = Rj−1
j,FPA for the restriction operator and Pjj−1 = P j

j−1,BL

for the prolongation. These changes will allow us to apply Algorithm 3 directly to a
saddle point system (2.54). All that remains is to specify the interpolation operators
Rj−1
j , Pjj−1, the smoothing iteration Sνj , the coarse grid solver and the representation

of Kh on different grid levels.
The additional parameter γ is the cycle index which gives rise to different types of

multigrid cycles. The algorithm described so far is obtained by setting γ = 1 and
amounts to the standard V -cycle, whereas for γ = 2 we obtain the W -cycle. The W -
cycle is much more robust but also computationally more expensive than the V -cycle.
Thus it is in particular well suited for difficult problems. Also convergence theory
for the W -cycle often is more mature than for V -cycles. Often for practical problems
the unorthodox F -cycle offers a good compromise between cost and robustness. It is
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defined recursively by an F -cycle followed by a V -cycle on the same grid level, [41].
The number of smoothing steps ν1, ν2 are usually chosen as small constants. A level-
dependent number of smoothing steps which increases with decreasing j leads to the
variable V -cycle.

The multigrid iteration defined by Algorithm 3 can be written in the compact form
of (4.4). For the two-grid method, the iteration matrix is

GMG = Sν2h (I − Pjj−1L
−1
H Rj−1

j Lh)S
ν1
h . (4.18)

This is the basis for the classical two-grid convergence theory [85], where a norm
estimate for (4.18), which does not depend on hJ , results from the smoothing prop-
erty (4.7) and the approximation property

‖L−1
h − Pjj−1L

−1
H Rj−1

j ‖ ≤ Chα. (4.19)

Full Multigrid

As was briefly mentioned before, with the multigrid algorithm 3 one can compute a
solution of the discrete problem with an accuracy up to the order of discretization error
with a cost ofO(h−d|log h|). The combination of nested iteration with multigrid cycles,
also called the full multigrid (FMG) method, reduces the computational complexity
for the same task to the optimal order O(h−d). The idea of nested iteration is to
compute initial values for fine grid computations on coarse meshes. To this end, an
additional prolongation operator P̃jj−1 is introduced. Then, the exactly computed
solution of the coarse grid equation is prolongated to the next finer level and used
as initial value for a small number of multigrid cycles on that level. This is applied
recursively until the finest level is reached. The whole process is given in Algorithm 4.
The number of multigrid cycles mj which are employed on each level usually is taken

FMG

1: x̃0 ← K0x0 = b0 /∗ exact solve on coarsest grid ∗/
2: for j = 1 to J do
3: x0

j ← P̃jj−1x̃j−1 /∗ interpolate initial guess ∗/
4: for m = 0 to mj − 1 do
5: xm+1

j ←MGγ(j, bj, x
m
j ) /∗ perform mj multigrid cycles ∗/

6: x̃j = x
mj
j

Algorithm 4: The full multigrid algorithm given as the combination of nested iteration
and multigrid cycles MGγ(j, bj, x

m
j ).

as 1 if the basic multigrid cycle is fast converging, e.g. with a rate % < 1
4
. From an
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implementation viewpoint one would like to chose the FMG prolongation P̃jj−1 = Pjj−1.
For well-behaved problems such as second-order elliptic problems this is indeed a
suitable choice. For difficult problems, in particular if FMG is employed within a
nonlinear iteration such as Newton’s method, it might be required to use a higher
order interpolation for P̃jj−1. Further details on the FMG method can be found in the
references given at the beginning of this section.

4.2 Multigrid Methods in Optimal Control and
Optimization

A natural way to exploit the efficiency of multigrid methods when solving optimal
control and optimization problems is to employ multigrid solvers for the solution of
the various subproblems arising in the segregated solution approaches discussed in
Section 3.1.1. The first realization of this idea to our knowledge was done in [83].
Here, the reduced form (2.6) of the optimal control model problem with equality
constraints given by the Poisson equation was considered. The reduced form leads to

uh + Chuh = fh, (4.20)

with a compact operator Ch. Note that the left hand side corresponds to the reduced
Hessian HZ , the regularization parameter σ is absorbed by Ch. Since (4.20) can
be considered a Fredholm equation of the second kind, the multigrid method of [84]
was applied to (4.20). This algorithm uses only matrix-vector products to construct
the discretization Ch, however, each evaluation of Chuh involves the solution of two
elliptic problems. These have been obtained with a standard multigrid method for
elliptic equations. The smoothing step for the outer multigrid iteration is given by
one step of Picard’s iteration

ũh = Chuh + fh. (4.21)

The crucial observation here is that the compact part of the reduced Hessian features a
smoothing property which is inherited by the discretization Ch (see also the discussion
in Section 4.6), therefore the operator Ch itself can be used as a smoother. The
Picard iteration converges for ρ(Ch) < 1, which essentially yields a condition on the
ratio of the regularization parameter σ and the coarsest mesh size h0, cf. Section 4.3.
Violation of that condition leads to amplification of smooth modes and thus ultimately
the multigrid method will diverge.

A related approach is presented in [58], where a reduced SQP algorithm is applied
to a shape optimization problem. As was detailed in Section 3.1.1, this involves
projections on the null space of the constraints using a null space basis Z. In [58] the
fundamental basis (3.10) is employed and the application of L−1

h is performed with a
standard multigrid method.
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As was outlined in Section 3.1.1, a common property of reduced space methods based
on a null space projection is the feasibility of all intermediate iterates with respect to
the constraints, and it is precisely the feasibility which induces an often unnecessary
amount of computational work. Thus, a large potential gain in efficiency is to be
expected from coupled methods which solve the constraints only once simultaneous
with the solution of the optimization problem.

The construction of a coupled multigrid method is a significant challenge and a
major task here is to devise an efficient smoothing strategy for the KKT system. In
the last two decades several coupled multigrid approaches for saddle point systems have
appeared in the literature, with the bulk of the methods applying to mixed problems
or Stokes and Navier-Stokes equations. We mention the Braess-Sarazin smoother [37]
as well as collective smoothing strategies such as Box- or Vanka smoothers [41, 151].

Coupled multigrid methods specifically adapted to solve optimization problems are
relatively scarce in the literature and have been developed only recently. First ideas
have been pitched in [9] under the name of one-shot methods. There, a simple gradient-
descent scheme is employed as a smoothing iteration. In [58], in addition to the above-
mentioned RSQP approach, a transforming smoother2 yielding an inexact null space
iteration was employed for the solution of a topology optimization problem. The same
method was applied to a parameter identification problem in groundwater flow [141].
The essential notion resulting in an improved efficiency was to use approximate so-
lutions to the subproblems only instead of the full solutions in [83]. Our presented
approach is most closely related to these approaches and differs mainly in the way the
reduced Hessian is included. However, no detailed numerical experiments have been
performed, our smoothing analysis is novel and the robustness question has not been
discussed.

The most comprehensive study of coupled multigrid methods for optimal control to
date has bee conducted by Borzi, [33–35]. Following the idea of box-smoothing, the
smoothing iteration was chosen as a collective Gauss-Seidel method (CGSM) which
amounts to the successive solution of local 3×3 saddle point problems. The collective
smoothing approach was also employed in [14]. For standard elliptic constraints, the
method is shown to possess good efficiency and robustness with respect to the regular-
ization parameter. However, the extension to different constraint PDEs is not always
obvious. For example, anisotropic operators as constraints might require stronger cou-
pled smoothing procedures such as line smoothers or ILU-smoothing. Both cases are
not straightforwardly incorporated into the CGSM smoothing. For standard opera-
tors, line smoothing yields tridiagonal systems which can be solved efficiently, e.g. by
the Thomas algorithm or even parallel variants. However, the combination of collec-
tive and line-smoothing would yield systems of considerable bandwidth which have to
be solved exactly at each smoothing iteration. It is unclear how to extend the idea of
ILU-smoothing to the CGSM approach. This method is the only coupled multigrid

2Transforming smoothers have been developed in [155] for the multigrid solution of flow problems.
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method to our knowledge that has been extended to handle additional inequality con-
straints. Additional inequality constraints with respect to the control are the topic of
Chapter 5.

The same author has also developed the first and to date only algebraic multigrid
method for optimal control problems [34]. We remark however, that AMG was applied
to the partially reduced system with eliminated control, which essentially amounts to
a coupled system of two elliptic equations. In this sense, the AMG approach falls
in between the segregated and full-space methods. The more general case of AMG
solvers for the full optimality system has not been addressed so far.

A different methodology combining optimization and multigrid labeled MG/Opt
has been developed in [109, 124]. The key idea is to apply the multigrid concept as
an outer method. To this end, a hierarchy

minJj(yj, uj) s.t. Cj(yj, uj) = 0, j = 0, . . . , J (4.22)

of minimization problems is constructed. On each level j, a standard optimization
method such as truncated Newton is employed to approximately solve (4.22). These
solutions are embedded in a standard multigrid cycle, where, similar to the Full Ap-
proximation Storage (FAS), the solutions are transferred in contrast to residuals and
corrections in linear defect correction methods. This concept has been picked up
in [75], where a special instance of MG/Opt with a trust-region Newton method as
optimizer on each level is presented. Although the optimization method employed for
each j is commonly denoted as the smoother within MG/OPT, it should be made
clear that in general there are no high- or low frequency spaces associated with the
solutions. Rather the MG/Opt method should be understood in the sense of adopt-
ing and extending the nested iteration concept of computing improved initial guesses.
Furthermore, in [150] it is made clear that, at least for grid-based problems, with re-
spect to computational efficiency the MG/Opt-related approaches are not on par with
the aforementioned CSGM or other defect-correction approaches. The strength of the
MG/Opt method lies in the flexible framework which is complemented by a satisfac-
tory convergence theory and thus might prove beneficial for more general optimization
problems where classical grid-based approaches might not be applicable.

Last not least let us mention that in [45, 46] a multiscale approach based on wavelet
discretizations and employing a nested conjugate gradient scheme was applied to el-
liptic optimal control problems.

We return now to the issue of constructing a multigrid method for the solution of
saddle point systems (2.51). According to Algorithm 3 we need to define the transfer
operators, the coarse grid solver, the representation of (2.51) on the grid levels j and
the smoothing iteration. We will begin with the last item.
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4.3 A Smoothing Iteration for Discrete Optimality
Systems

Analogously to the scalar case we define the smoothing iteration on grid level j in
terms of a preconditioned Richardson iteration

wk+1
j = wkj +B−1

Kj
(bj −Kjw

k
j ). (4.23)

The preconditioner BKj will be based on a block-triangular constraint preconditioner
BCP (3.23). Since the major part of the computational work required to evaluate B−1

CP ,

besides the evaluation or inversion of ĤZ , originates from the full solution of the state
and adjoint subproblems, we replace these by approximate solutions. To this end, we
set

BKj =

 L̂Tj
ĤZj −Mj

L̂j −Mj

 , (4.24)

where the blocks L̂j and L̂Tj are suitable approximations to the differential operators
Lj and LTj , respectively. We stress the fact that these approximations will not be
constructed explicitly but rather are given implicitly by the definition of the actions
of L̂−1

j and (L̂Tj )−1 on a given vector. The precise form of these approximations will
be given below. Note that the (2,3) and (3,2) blocks −Mj in (4.24) are inherited
without modification from (3.23), since no inversion of Mj is required when evaluating
B−1
Kj

. Note that due to these approximations, BKj is not a constraint preconditioner

anymore. One step of the smoothing iteration defined by (4.23) with preconditioner
BKj (4.24) is given by Algorithm 5. Again, different possible approximations ĤZ can

w̃j = S1
j (wj, bj)

1: vj = bj −Kjwj /∗ compute local residuala ∗/
2: w̃pj ← L̂Tj w

p
j = vyj /∗ apply B−1

Kj
∗/

3: w̃uj ← ĤZw
u
j = vuj +Mjw̃

p
j (RHA)

4: w̃yj ← L̂hw
y
j = vpj +Mjw̃

u
j

5: w̃j = w̃j + wj /∗ add correction ∗/
aNot to be confused with the restricted residual, i.e. the right hand side bj of the error

equation.

Algorithm 5: One smoothing step defined by iteration (4.23) with preconditioner BKj

given by (4.24).
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be made. The most simple choice is

ĤZ = σMj. (4.25)

As remarked in Section 3.2, no approximation to Mj is needed since Mj is diagonal
for the employed discretization scheme, cf. Section 2.3.2. But also the general case of
non-diagonal Mj is not problematic, since Mj in general is s.p.d. and well-conditioned.

A second choice we make is to define ĤZ analogously to Section 3.2 by a matrix-
vector product and approximately solve (RHA) by a few steps of a suitable iterative
method. The expression (3.12) suggests to define

ĤZ = MT
j L̂
−T
j MjL̂

−1
j Mj + σMj, (4.26)

where the same approximations L̂j, L̂
T
j as in (4.24) are used. The evaluation of (4.26)

within an iterative method proceeds analogously to Algorithm 2 and is stated in
Algorithm 6. Also here, no approximation of Mj is needed. In the extremal case

x̃uj = ĤZx
u
j = (MjL̂

−T
j MjL̂

−1
j Mj + σMj)x

u
j

1: vj ← L̂jvj = Mjx
u
j

2: wj ← L̂Tj wj = Mjvj
3: x̃uj ←Mjwj + σMjx

u
j

Algorithm 6: Definition of approximate MatVec ĤZx
u
j given by (4.26). MatVec is

employed within an iterative method for the approximate solution of (RHA), cf. line
3 in Algorithm 5.

L̂j = Lj, the operator ĤZ defined by (4.26) is positive definite, cf. Section 3.2.
Therefore, we employ a few steps of the conjugate gradient method for the approximate
solution of (RHA). In our numerical experiments often just one iteration turned out
to be sufficient.

It remains to define the approximations L̂j and L̂Tj . To this end, we employ a few
steps (often just one) of an iterative method of the form (4.4) whenever the inverses
L̂−1
j and L̂−Tj need to be evaluated, either in Algorithm 5 or 6. The preconditioners

BLj and BLTj
needed in (4.4) usually result from a splitting of the matrices L̂j and

L̂Tj , respectively. The specific form is problem dependent. For Lj being the discrete
Laplacian we employ GS-LEX, cf. Section 4.1. Other, more complicated operators
might require sophisticated schemes such as incomplete LU-factorizations (ILU) or al-
ternating line Gauss-Seidel methods (ALGS). In general, any smoothing iteration that
results in a robust multigrid solver for LTj w

p
j = vyj or Ljw

y
j = vpj +Mjw̃

u
j , respectively,

is a good candidate for (4.4) and its corresponding preconditioner Bj. This statement
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Figure 4.3: Smoothing effect of the iteration (4.27) with α = β = 1 illustrated by color
plots of euh after ν = 0, 1, 2, 4, 6, 8 smoothing steps. The constraint smoother is
GS-LEX, the mesh width is h = 2−6 and the regularization parameter is σ = 1−4.

will be further corroborated by a smoothing analysis, see below. In the following we
will often use the term constraint smoother to denote the smoothing iteration employed
for the subsystems with coefficient matrices Lj, L

T
j .

Putting it all together, we denote the smoothing iteration on grid level j by

w̃j = Sνj,α,β(wj, bj), (4.27)

meaning that w̃j is obtained from applying ν smoothing steps of the form (4.23) to

wj. Here, α denotes the number of iterations for solves with L̂j and L̂Tj and β denotes
the number of conjugate gradient steps applied to approximately solve (RHA). The
smoothing iteration which results if we define ĤZ by (4.25) is denoted with Sνj,α.

Figure 4.3 gives an indication of the smoothing effect of the iteration (4.27) with
α = β = 1 and GS-LEX employed as constraint smoother. The Figure shows color
plots of the error with respect to the control component, euh = uh−u∗h after ν smoothing
iterations with ν = 0, 1, 2, 4, 6 and 8. The mesh width is h = 2−6 and the regularization
parameter is σ = 1−4.

The different levels of inexactness and approximations as well as the nested iterations
severely complicate a rigorous analysis of the convergence and smoothing properties
of the just defined iterative method. In general, iteration (4.27) is a slowly or not at
all converging method. However, it will turn out to be an efficient smoother when
employed within the multigrid algorithms 3 or 4. Nevertheless we will to some extent
investigate the behavior of the iteration (4.27) when applied to the linear-quadratic
model problem (LQPh). To this end, let us briefly consider the extremal case that
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L̂j = Lj and L̂Tj = LTj . A similarity transformation, cf. (3.20), implies that the

iteration matrix G = I −B−1
Kj
Kj is similar to

G̃ =

0

? I − Ĥ−1
Z HZ

? ? 0

 . (4.28)

Recall from Section 3.2 that, if additionally ĤZ = HZ , i.e. BKj = BCP (cf. defini-
tion (3.23)), preconditioned GMRES converges in three steps. First we remark that
the same assertion holds for the BKj -preconditioned Richardson iteration, since in that

case it is easy to see that G̃ is nilpotent of order three, i.e. G̃3 = 0, which yields the
assertion.

A first step at reducing the required computational effort was made by employing
the cheap approximation (4.25), cf. Section 3.2, where the preconditioner resulting
from (3.23) was denoted by BCP2 . Setting BKj = BCP2 in (4.23) is closely related
to Hackbusch’s method [83] which was briefly discussed in Section 4.2. In fact, both
approaches yield the same smoothing step with respect to the control component wuj .
The smoothing step of (4.23) with respect to wuj reads

w̃uj = (I − Ĥ−1
Z HZ)wuj + q, (4.29)

where q is a vector whose precise expression is irrelevant for the following arguments,
it suffices to say that q depends on the state component wyj (due to the nonzero block

in (4.28) denoted by the symbol ?) and on B−1
Kj
bj. Using (4.25) in (4.29), we see

that (4.29) is precisely of the form (4.21) with Ch given by (using the subscript j
instead of h)

Cj = − 1

σ
M−1

j MT
j L
−T
j MjL

−1
j Mj. (4.30)

The results in Section 3.2 clearly showed that the approximation ĤZ introduced a
dependence on the regularization parameter σ with deteriorating convergence for σ →
0. In fact, for small values of σ, the method converges only due to the outer GMRES
iteration. The employed preconditioner, i.e. the Richardson iteration (4.23), is not a
convergent iteration by itself if σ is too small. In the case of (LQPh) we can infer a
condition on σ which ensures convergence from the requirement that %(Cj) < 1 holds,
where %(Cj) is the spectral radius of Cj. To this end, let λ denote an eigenvalue of Lj.
From (4.30) then follows the condition

σ >
1

λ2
h4
j , (4.31)

which is most restrictive for λ = λmin the smallest eigenvalue. For Lj being the discrete
Laplacian we have the estimate (see, e.g. [86])

‖L−1
j ‖2 =

1

λmin

≤ 1

8 sin2(πhj/2)
=

1

2π2h2
j +O(h4

j)
, (4.32)
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Figure 4.4: Left: Convergence of BKj -Richardson, ĤZ = BHZ , Lh, LTh inverted by direct
factorization, fixed mesh size h = 2−8 and regularization parameters σ between
1.0 and 2.6−3 ∼ σcrit. Right: Eigenvalues of the iteration matrix G for σ =
2.6−3, 1.0−2, 1.0−1, h = 2−4.

and together with (4.31) we obtain

σ >
1

4π4
= σcrit. (4.33)

Apart from minor technical details concerning the discretization of Lj, this corre-
sponds to a similar condition given in [84] and investigated in numerical experiments.
Furthermore, the same condition has been derived in the context of reduced space
methods, where Picard linearization is applied and the resulting HZ is inverted with
CG iterations. We stress the fact that (4.33) exclusively depends on the extremal
eigenvalues of Lh or rather ‖L−1

j ‖2, which in the case of an elliptic operator does not
depend on the mesh size h. Thus, for several single-mesh algorithms which use (4.25)
as a simple approximation ĤZ , convergence can not be established if σ violates (4.33).
For multigrid methods, the situation is slightly different, as will be explained below.

Figure 4.4 on the left shows the convergence history of the Richardson iteration
preconditioned with BCP1 for the mesh size h = 2−8 and values of the regularization
parameter σ ranging between 1.0 and 2.6−3, which is close to the value of σcrit. In the
same Figure on the right we depict the eigenvalue distribution of the iteration matrix
G for σ = 2.6−3, 1.0−2 and 1.0−1 and h = 2−4. For large to moderate σ the convergence
is fast, e.g. occurring in less than ten iterations for σ = 1.0, thus matching the results
for preconditioned GMRES presented in Section 3.3. All eigenvalues of G are real
(up to numerical round-off error) and the majority of eigenvalues is clustered tightly
around zero, which is attributed to the direct factorizations of Lj and LTj . However,

for smaller values of σ, the reduced approximation quality of ĤZ generates eigenval-
ues approaching −1, which eventually become much smaller if σ < σcrit, leading to
divergence.
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In the context of a multigrid method, focusing on the convergence properties of (4.23)
might be too pessimistic, in fact, in the numerical results in Section 4.5 we will see
that the parameter limit for the multigrid convergence is not as strict as (4.33) sug-
gests. This is owing to the fact that the smoothing property of (4.23) is crucial for the
success of a multigrid method, not its convergence properties.3 Nevertheless, the pre-
vious considerations let us expect that the approximation quality of (4.27) will depend
on the quality of the constraint smoother and that the relation of the regularization
parameter σ to the mesh size h will further impact the convergence and smoothing
properties.

4.3.1 Local Fourier Smoothing Analysis

The aim of the local Fourier analysis (LFA), or local mode analysis as it is termed
by Brandt, is to give quantitative estimates of the smoothing and convergence factors
for a practical multigrid method. In this respect it differs from classical convergence
proofs which mostly provide qualitative results. The LFA is seen as an essential tool
for the design of an efficient multigrid method for general problems. Here we focus on
the smoothing analysis based on LFA, i.e. the aim of this section is to determine (an
estimate of) the smoothing factor µ(Sj,α,β) for smoothing iterations of the type (4.27).
For a detailed introduction into the topic of LFA we refer to [147].

The LFA considers the effect of all appearing operators in the multigrid method
when applied to the frequency functions

φ(θ, x) = eiθ·x/h = eiθ1x1/heiθ2x2/h (4.34)

on the infinite grid4

Gh = {x = hk = (hk1, hk2)|k ∈ Z2}. (4.35)

Thus the LFA neglects the boundary treatment within the multigrid algorithm and in
this sense predicts rates which can be obtained provided a proper boundary treatment
is conducted. Due to the periodicity of (4.34) it is sufficient to consider the frequencies

θ = (θ1, θ2) ∈ [−π, π)2. (4.36)

With Gh we associate the infinite coarse grid GH , which is defined analogously to (4.35)
for the coarse mesh size H = 2h. Due to aliasing, on GH only those frequencies with

θ ∈ [−π
2
, π

2

)2
can be distinguished, which leads to the definition that

φ(θ, x) is a low frequency component if θ ∈
[
−π

2
,
π

2

)2

(4.37)

φ(θ, x) is a high frequency component if θ ∈
[
−π, π

)2

\
[
−π

2
,
π

2

)2

. (4.38)

3Naturally, the smoothing iteration has to be a convergent process if it is to be used as coarse grid
solver, which is often the case in practice.

4For notational simplicity we confine ourselves to the case of a uniform mesh size h in both coordinate
directions.
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For θ ∈ [−π, π)2
all functions φ(θ, x) are the formal eigenfunctions of any discrete

operator represented by a difference stencil, i.e. the relation

Lhφ(θ, x) = L̃h(θ)φ(θ, x) (4.39)

holds with
L̃h(θ) =

∑
j

sje
iθ·j, (4.40)

where j ∈ Z2 and sj are the stencil elements of Lh. Due to (4.39) we call L̃h(θ) the
formal eigenvalue or symbol of the operator Lh. For the standard 5-point stencil of the
discrete Laplacian, for example, one obtains

L̃h(θ) =
1

h2

(
4− (eiθ1 + eiθ2 + e−iθ1 + e−iθ2

))
=

2

h2
(2− cos θ1 − cos θ2). (4.41)

In order to apply the LFA based smoothing analysis we have to assume that the
smoothing iteration can be given by a local splitting, i.e. a splitting based on the
stencil notation,

L+
h w̃h + L−hwh = fh, (4.42)

where, as before, w̃h denotes the smoothed approximation of wh. This is a natural
assumption for many classical methods such as ω-JAC and GS-LEX, however it is not
satisfied for coloring-based Gauss-Seidel methods. For the necessary modifications to
treat e.g. red-black Gauss-Seidel within the LFA framework we refer to [147]. Note
that the use of the conjugate gradient iteration for (RHA) in Algorithm 5 prevents to
define (4.27) by a splitting of a system corresponding to (4.42), however we can apply
the LFA to the iteration Sj,1, since in this case a splitting is obtained easily.

From (4.42) we obtain the symbol of the corresponding smoothing operator SLh as

S̃Lh(θ) = − L̃
−
h (θ)

L̃+
h (θ)

, (4.43)

where L̃+
h (θ) and L̃−h (θ) are the symbols of L+

h and L−h , respectively. The smoothing
rate µLFA(SLh) is then defined as the largest possible amplification factor with respect
to the high frequency components,

µLFA(SLh) = sup

{
|S̃Lh(θ)| : θ ∈

[
−π, π

)2

\
[
−π

2
,
π

2

)2
}
. (4.44)

In order to perform the LFA smoothing analysis for (4.27) we need the extension of
the definitions (4.39) and (4.44) to systems of equations. To this end, we introduce
the frequency functions

Φ(θ, x) = (1, . . . , 1)Tφ(θ, x). (4.45)
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Then we obtain
KhΦ(θ, x) = K̃h(θ)Φ(θ, x) (4.46)

with the symbol

K̃h(θ) =

K̃
1,1
h (θ) . . . K̃1,Q

h (θ)
...

...

K̃Q,1
h (θ) . . . K̃Q,Q

h (θ)

 , (4.47)

where K̃ l,q
h (θ), 1 ≤ l, q ≤ Q are the symbols of the scalar discrete operators K l,q

h of the
Q × Q-system given by Kh. Corresponding to the splitting (4.42) in the scalar case
we assume that (4.27) can be given by a splitting

K+
h w̃h +K−h wh = fh, (4.48)

with the associated symbols K̃+
h (θ), K̃−h (θ). The smoothing factor for a system of

equations now is defined by

µLFA(Sh) = sup

{
ρ
((
K̃+
h (θ)

)−1
K̃−h (θ)

)
: θ ∈

[
−π, π

)2

\
[
−π

2
,
π

2

)2
}
, (4.49)

with ρ denoting the spectral radius. As mentioned before, Sj,1 is amenable to a
splitting of the form (4.48), which is given by

K+
h =

 LT,+h

ĤZ −Mh

L+
h −Mh

 , K−h =

Mh LT,−h

L−h

 , (4.50)

with L+
h , L

−
h and LT,+h , LT,−h resulting from a splitting (4.42) of the state and adjoint

operators Lh and LTh , respectively. For notational simplicity in the following we assume
that Lh = LTh . The symbols corresponding to (4.50) then are given by

K̃+
h (θ) =

 L̃+
h (θ)

˜̂
HZ(θ) −M̃h(θ)

L̃+
h (θ) −M̃h(θ)

 , K̃−h (θ) =

M̃h(θ) L̃−h (θ)

L̃−h (θ)

 . (4.51)

With

(
K̃+
h (θ)

)−1

=

Ãh(θ)H̃h(θ)(L̃
+
h (θ))−1 Ãh(θ) (L̃+

h (θ))−1

H̃h(θ)(L̃
+
h (θ))−1 (

˜̂
HZ(θ))−1 0

(L̃+
h (θ))−1 0 0

 (4.52)

we obtain

S̃h(θ) =

Ãh(θ)H̃h(θ)Ãh(θ) + S̃Lh(θ) 0 Ãh(θ)H̃h(θ)S̃Lh(θ)

H̃h(θ)Ãh(θ) 0 H̃h(θ)S̃Lh(θ)

Ãh(θ) 0 S̃Lh(θ)

 (4.53)



4.3 A Smoothing Iteration for Discrete Optimality Systems 75

as the symbol of the smoothing operator corresponding to the iteration Sj,1. Both
in (4.52) and (4.53) we have introduced the abbreviations

Ãh(θ) = (L̃+
h (θ))−1M̃h(θ) and H̃h(θ) = (

˜̂
HZ(θ))−1M̃h(θ). (4.54)

Furthermore, note that S̃Lh(θ) is the symbol of the smoothing iteration employed for
the constraints Lh, i.e it is based on a splitting of Lh and given by (4.43). According
to (4.49), the smoothing factor µFLA(Sh) is given by the largest absolute eigenvalue
of (4.53), which we determine by computing the roots of the polynomial

det
(
S̃h(θ)− λ

)
= λ

((
Ãh(θ)

2H̃h(θ) + S̃Lh(θ)− λ)(λ− S̃Lh(θ)
)

+ Ãh(θ)
2H̃h(θ)S̃Lh(θ)

)
(4.55)

The two roots save λ = 0 are given by

λ1,2 = S̃Lh(θ) +
Ãh(θ)

2H̃h(θ)

2
±
√
Ãh(θ)2H̃h(θ)

2

(
2S̃Lh(θ) +

Ãh(θ)2H̃h(θ)

2

)
(4.56)

This expression already conveys that µLFA(Sh) can be considered as a perturbation of
the constraint smoothing factor, depending on S̃Lh(θ), with terms depending on the
smoothing with respect to the control component, governed by H̃h(θ). More insight
can be obtained if we consider the model problem (LQPh), i.e. Lh is the discrete
Laplacian. Furthermore, we eliminate the explicit dependence of ρ

(
S̃h(θ)

)
on θ by

considering ω-JAC as constraint smoother. Under these assumptions, and choosing
the optimal ω = 4/5, we have S̃Lh(θ) = 3/5. Furthermore, H̃h(θ) = 1/σ and since

for ω-JAC one obtains
(
L̃+
h (θ)

)−1
= ω/4 we have Ãh(θ) = 1

5
h2. Substituting these

quantities in (4.56) we obtain

µLFA(Sj) =
3

5
+

h4
j

50σ
+

√
h4
j

50σ

(6

5
+

h4
j

50σ

)
(4.57)

as the smoothing factor for the iteration Sj,1 with ω-JAC, ω = 4/5, as constraint
smoother when applied to the linear-quadratic model problem (LQPh). Note that
µLFA(Sj), in contrast to µLFA in the scalar case, explicitly depends on the mesh size hj.
This is usually the case when deriving smoothing factors for systems, due to differential
operators of different order appearing in Kj. In Figure 4.5 we plot the smoothing factor
µLFA(Sj) in (4.57) as a function of the mesh size hj and the regularization parameter σ
for the range (σ, hj) ∈

[
1.0, 1.0−6

]× [2−2, 2−12
]
. The large area which is colored dark

blue indicates that for these combinations of σ and hj the smoothing factor µLFA(Sj)
is close to that of µLFA(SLh) for the constraint smoother. On the other hand, dark
red coloring indicates that µLFA(Sj) > 1, which is obtained for combinations of small
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Figure 4.5: The smoothing factor µLFA(Sj) (4.57) for the smoothing iteration Sj,1 with ω-
JAC as constraint smoother, plotted as a function of the regularization parameter
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]
and the mesh size hj ∈

[
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]
.

σ and large hj. A smoothing factor µLFA(Sj) > 1 is an indication for degradation
of convergence or even divergence of the multigrid process. For (4.57) holds that
µLFA(Sj) = 1 for σ = h4

j/4 and thus we obtain the condition

µLFA(Sj) < 1 if σ >
h4
j

4
. (4.58)

In Section 4.5 we will further elaborate on (4.58) with numerical experiments and an
ensuing discussion of the consequences of (4.58) for the robustness of our multigrid
solver. A modification of the control-smoothing component which avoids (4.58) will
be developed in Section 4.5.5.

4.4 A Multigrid Method for Discrete Optimality
Systems

Grid Hierarchy and Interpolation Operators

Naturally, the grid hierarchy for the optimality system is the one which is implied by
the hierarchy of the underlying discretized PDEs and was already given in Section 4.1.
For a system of equations, the rule of thumb (4.13) translates to

mRα +mPβ > mαβ, α, β = 1, 2, 3 (4.59)

where mαβ is the order of the differential operator corresponding to the β-th unknown
in equation α, Rα is the restriction operator for the residual of equation α and Pβ is
the interpolation employed for the β-th unknown. Consequently we employ the same
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interpolation operators as in the scalar case, namely the prolongation P j
j−1,BL (4.10)

and the restriction Rj−1
j,FPA (4.12), and apply them in a blockwise fashion. To this end,

we define the block-diagonal matrices

Rj−1
j =

Rj−1
j,FPA

Rj−1
j,FPA

Rj−1
j,FPA

 , Pjj−1 =

P j
j−1,BL

P j
j−1,BL

P j
j−1,BL

 . (4.60)

Keep in mind that for the chosen discretization scheme and grid hierarchy, all un-
knowns are located at the cell centers and therefore (4.60) best suits our needs, al-
though the general approach offers more flexibility in that different interpolation oper-
ators could be employed in each block-row. This might be of special interest when the
OTD approach and different discretization schemes for state and adjoint unknowns
are employed, possibly resulting in different grid locations for the different unknowns.

The Coarse Grid Solver

It remains to define the coarse grid solver component, i.e. the solution method for the
error equation on the coarsest level j = 0,

K0x0 = b0. (4.61)

Here we have three options, we can

• employ the smoothing iteration (4.6) and iterate until convergence,

• employ three steps of the PCP -GMRES method,

• assemble K0 and employ a direct factorization.

Numerical experiments showed no difference between these approaches. Since the
first option can only be employed if the iteration is a convergent process, cf. the
discussion in Section 4.3, we avoid this choice. Also with respect to computational
efficiency, authoritative measurements are difficult due to the smallness of N for j =
0. Unless noted otherwise, in the sequel we employ the PCP -GMRES method for
implementational reasons since the same data structures can be used on all levels
including the coarsest one.

4.5 Numerical Results

In this section we present numerical results obtained with the devised multigrid
method. The first aim is to assess the convergence properties and efficiency of the
multigrid method, to this end we consider the model problem (LQPh). Then we con-
sider constraint equations which present greater difficulties. In particular, we test
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our method on problems where the constraint equation is given by the diffusion and
convection-diffusion equation and in settings for which pointwise smoothing is known
to fail for the scalar problem. The section is closed with a discussion and experiments
regarding the robustness of the present method with respect to the regularization
parameter σ.

Our measure for the convergence speed of the multigrid iteration is based on the
reduction factor

%m =
‖vmJ ‖
‖vm−1

J ‖ , (4.62)

where the superscript m denotes the multigrid iteration index and vmJ is some suitable
fine grid quantity available at each iteration. In general, measurements can only be
based on the fine grid residual rmJ = bJ −KJx

m
J and in this case ‖·‖ denotes the Eu-

clidean norm. However, in particular for ill-conditioned problems, convergence speed
estimates with respect to rJ can significantly deviate from those with respect to the
actual error. Therefore, in situations permitting we construct an analytically known
exact solution and base the measurement on the error norms defined in Section 3.3. In
particular, recall definition (3.24) of emuh , denoting the discrete L2-error with respect to
the control component, and definition (3.25) for the total discrete L2-error emh . Natu-
rally, both error definitions are to be understood here with respect to the fine grid, i.e.
h = hJ . An estimate for the asymptotic convergence factor of the multigrid iteration
can then be given either by %m or as the geometric mean

%mavg = m−m0

√√√√ m∏
i=m0

%i =
m−m0

√
‖vmh ‖
‖vm0

h ‖
, (4.63)

with a small positive number m0. In both cases, the number m of iterations has to
be suitably large. Since the first few iterations usually do not reflect the asymptotic
convergence behavior very well, it is common to begin the measurements only after m0

iterations have been performed. In this respect, recall the discussion in Section 3.3 with
respect to feasible vs. infeasible initial guesses x0

J . Therefore, in all our experiments, we
set m0 = 1 in order to avoid the influence of a particular initial guess x0

J on the initial
residual r0

J or error e0
J . The default smoothing iteration is Sνj,1,1 and lexicographical

pointwise Gauss-Seidel as constraint smoother. Other parameters for α, β and different
choices for constraint smoothing will be discussed in Sections 4.5.2 and 4.5.3. A
comparative study of Sνj,1,1 and Sνj,1 will be given in Section 4.5.5.

4.5.1 A Model Problem

We begin with the discussion of the linear-quadratic model problem (LQPh) as defined
in Section 2.3.3. The regularization parameter is chosen as σ = 1.0−2. The target
state ȳJ as well as the right-hand side fJ are set to zero, such that the exact solution
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Table 4.1: Reduction factors %20 and %20
avg with respect to the discrete L2-error eh for the

linear-quadratic model problem (LQPh) and different types of multigrid cycles.

J

5 6 7 8 9 10

V1,1 %20 1.13−1 1.14−1 1.14−1 1.14−1 1.15−1 1.15−1

%20
avg 1.05−1 1.06−1 1.08−1 1.08−1 1.09−1 1.09−1

V2,1 %20 7.07−2 7.21−2 7.30−2 7.31−2 7.31−2 7.31−2

%20
avg 6.57−2 6.79−2 6.84−2 6.89−2 6.93−1 6.93−1

V2,2 %20 5.15−2 5.26−2 5.34−2 5.35−2 5.35−2 5.35−2

%20
avg 4.70−2 4.92−2 4.99−2 5.04−2 5.07−2 5.07−2

F1,1 %20 8.18−2 8.20−2 8.20−2 8.20−2 8.21−2 8.21−2

%20
avg 7.81−2 7.82−2 7.88−2 7.86−2 7.87−2 7.87−2

W1,1 %20 8.18−2 8.20−2 8.20−2 8.20−2 8.21−2 8.21−2

%20
avg 7.80−2 7.82−2 7.88−2 7.86−2 7.87−2 7.87−2

of (LQPh) is u∗J = 0. The initial guess x0
J is set to a normalized random vector. Due

to linearity, this is a sufficiently general test setting under the justified assumption
that the random vector x0

J is general enough, i.e. contains components with respect to
all eigenvalues of KJ . The primary reason as to why we prefer this setting over other
common test settings is that a large number of multigrid iterations can be performed
before the machine accuracy affects the results. Thus we can choose a suitably large
m in order to estimate the asymptotic convergence rate by %m or %mavg. As smoother
we employ the iteration Sνj,α,β defined by (4.42) with α = β = 1 and we use the
lexicographical point Gauss-Seidel iteration as constraint smoother.

In Table 4.1 we present the reduction factors %20 and %20
avg with respect to eh defined

in (3.25) for different types of multigrid cycles. The size of the coarsest mesh is
hc = 1/4, the mesh size of the finest grid is then hJ = 2−(J+2). From Table 4.1 we
clearly observe that the reduction rates are independent of the resolution on the finest
mesh. Furthermore, the reduction rates are of the same order as the reduction rates
which one obtains when solving the scalar Poisson model problem for cell-centered
discretizations with a multigrid method which employs the same smoothing iteration
that is employed as the constraint smoother within Sνj,α,β. In particular, for the pair

P j
j−1,BL, Rj−1

j,FPA a convergence factor %20 = 0.114 was obtained for the V1,1-cycle with
GS-LEX smoothing applied to the scalar model problem, cf. Figure 4.2. Here, the
V1,1-cycle with Sνj,1,1 and GS-LEX as constraint smoother yields the reduction factor
%20 = 0.115. Thus we find that the smoothing factor of the constraint smoother
dominates the iteration. For the chosen value of σ = 1−2 this is consistent with (4.57).
Although (4.57) was derived specifically for Sνj,1, it was already pointed out that we
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Figure 4.6: Reduction of discrete L2-error emJ vs. number of multigrid iterations m (left) and
wall-clock time measured in seconds (right). The fine grid mesh size is hJ = 2−10

and the regularization parameter is σ = 1−2.

expect the difference between the smoothing iterations Sνj,α and Sνj,α,β to manifest itself
more clearly for smaller values of σ. This will be further discussed in Section 4.5.5.

Clearly we can expect stronger smoothing to result in better reduction rates. That
this is indeed the case can also be gathered from Table 4.1. For the V -cycle we immedi-
ately see that a doubled amount of smoothing approximately leads to a proportionally
reduced convergence factor. Since the cost for the V2,2-cycle is double the cost for the
V1,1-cycle, we expect both approaches to have approximately the same efficiency. We
also see that the F1,1-cycle is more efficient than the W1,1-cycle since it achieves the
same convergence speed at a lower cost per iteration. This is also in accordance with
observations for the scalar model problem.

Figure 4.6 shows the iteration histories of the different tested multigrid cycles for the
fixed level J = 8. First we notice that the reduction factors %m are essentially constant
for each iteration. Furthermore, from the right part of Figure 4.6 we deduce that a
smaller reduction factor per iteration does not always pay off in terms of computational
efficiency, which is measured here by the wall-clock time. The reason is the higher cost
per iteration due to more smoothing iterations or visits to the coarser grids in F - and
W -cycles. Here, the most efficient cycle is the V2,2-cycle, however the performance for
all tested V -cycles is roughly the same, i.e. our preliminary considerations regarding
the efficiency are affirmed here. For this model problem, the gain in convergence
speed can not justify the higher cost for an F - or W -cycle. These findings are also in
agreement with results for the scalar Poisson model problem.

In Figure 4.7 we show the convergence histories for the V1,1- and the W1,1-cycle with
respect to the individual error components ey,mJ , eu,mJ and ep,mJ . The error reduction
exhibits the same rate for all three components. For this problem ey,mJ and ep,mJ are
visually not distinguishable. The convergence histories shown to the left of Figure 4.7
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Figure 4.7: Discrete L2-errors vs. number of multigrid iterations m for feasible (left) vs.
infeasible (right) initial guess x0

J . The symbols denote the error norms ey,mJ ,
eu,mJ and ep,mJ . The colors indicate the V1,1-cycle and the W1,1-cycle.

The fine grid mesh size is hJ = 2−10 and the regularization parameter is σ = 1−2.

are those corresponding to the previously shown results in Figure 4.6. Note the increase
of eu,1J which affects also e1

J as seen in Figure 4.6. Neither the residual norm (not
depicted) nor the error components eyJ and epJ exhibit this behavior but instead decrease
monotonically. As was discussed in Section 3.3 the probable cause is the infeasibility
and the wrong scaling of x0

J . This is further corroborated by the results shown on the
right. There, x0

J is constructed such that LJy
0
J = MJu

0
J holds. The feasibility of x0

J

results in monotone convergence for all error components including eu,mJ .

Full Multigrid as Optimal Solver

For practical problems it does not make sense to reduce the algebraic error to the level
of machine accuracy as we have done in the above experiments. Instead the multigrid
iterations should be stopped when the algebraic error and the discretization error are
balanced, i.e. when the algebraic error reaches the order O(hκJ), where κ depends on
the consistency order of the discretization. The computational cost to achieve this
goal is of order O(h−dJ log hJ) for pure multigrid iterations, cf. the discussion at the
beginning of this chapter. The full multigrid algorithm yields a solution with an error
of order O(hκJ) at the optimal cost of O(h−dJ ). We now solve the model problem using
the full multigrid approach in order to show that we achieve the solution of the KKT
system in O(h−dJ ) cost. In order to measure the discretization error, we can not use the
homogeneous problem as before. Instead, we set the right hand side bJ = (MJ ȳJ , 0, 0),
where ȳJ is the discretization of a target state ȳ such that an exact solution y∗, u∗, p∗

is known. In particular, we set y∗ = sin(3πx1) sin(4πx2), u∗ = −∆y∗, p∗ = σu∗ and
ȳ = y∗ − ∆p∗. On each level in FMG one multigrid iteration with a V1,1-cycle is
employed. This is sufficient here since the error reduction rate of the V1,1-cycle is
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Table 4.2: Discrete L2-error eh and wall-clock time in seconds for one FMG cycle. On each
level, one multigrid iteration with a V1,1-cycle is used.

J hJ n Time[s] ratio eh ratio

5 1/128 49152 0.1680 — 6.06389−5 —
6 1/256 196608 0.7578 4.511 1.59350−5 0.263
7 1/512 786432 3.6797 4.856 4.06443−6 0.255
8 1/1024 3145728 16.4102 4.459 1.02422−6 0.252
9 1/2048 12582912 68.3516 4.165 2.56857−7 0.251

10 1/4096 50331648 276.5470 4.045 6.42940−8 0.250
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Figure 4.8: Ratio of wall-clock time in seconds for FMG/Opt and FMG/PDE.

small enough. For difficult problems it could be required to employ more iterations
or a different cycle in order to ensure the convergence of FMG.5 Table 4.2 shows the
wall-clock time and the discrete L2-error eh after one cycle of the FMG iteration. The
discretization parameter hJ is the mesh width on the finest level J , the total number
of fine grid unknowns n of the optimality system thus is given by n = 3h−2

J . Since the
number of unknowns quadruples from one level to the next, we expect a corresponding
fourfold increase in computational time. This is clearly observed from the presented
data, thus showing that the total cost for one FMG iteration is indeed O(n). The
employed discretization is superconvergent with second order in the discrete L2-norm.
Therefore, we should expect a decrease of the error with a factor of 4, if the mesh
resolution of the finest level is doubled. In the last two columns of Table 4.2 we indeed
see that this is the case. After one FMG iteration, the error is of the order O(h2

J).
All in all, we conclude that the FMG solves the discrete optimal control problem up
to discretization error accuracy with optimal complexity O(n).

5The convergence proof for FMG relies on assumptions on the reduction factor of the underlying
multigrid iteration, cf. [85, 147].
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In order to give a rough estimate of the computational cost needed to solve the
optimality system compared to the cost needed to solve the constraint PDE only,
let us now consider the cost for one application of our smoothing method in more
detail. To this end, recall that N = h−2

J is the number of each of the three unknowns
yJ , uJ , pJ appearing in the discretized optimal control problem. The cost CN for the
relaxation of the state and adjoint equation by (4.4) is O(N). Note that this is also
the cost order for the smoothing iteration when solving the constraint PDE with a
multigrid method. A rough (lower bound) estimate of the overall solution cost of
the optimality system is as follows: From the definition of the smoother (4.27) it
follows that a cost of at least 2CN operations incurs by the matrix-vector product
with KJ . Here, we have neglected all operations not involving the discretized PDE
operator LJ , such as multiplications with the mass matrices MJ . The application
of the preconditioner BKJ again contributes a cost of 2CN for the constraint blocks

given by LJ and LTJ . Finally, the conjugate gradient iteration with ĤZ adds a cost
of 2CN for the first iteration and again a cost of 2CN for the initialization of the
cg method. Thus we obtain a cost count of 8CN as a lower bound estimate for the
total cost for one application of the smoother, counting only the operations which
involve the constraint blocks LJ and LTJ . Figure 4.8 shows the ratio of the wall-
clock times needed for the FMG solution of the optimal control problem versus the
solution time of the underlying PDE problem, again using FMG. Here we see values
between 8 and 10. We conclude that these values which were achieved with our
implementation are more than reasonable since we have to bear in mind that the cost
estimate neglects several operations such as operations involving Mj, inner products
and the higher cost of the grid transfer operators P j

j−1,BL, Rj−1
j,FPA relative to their

scalar counterparts. The constant of proportionality appears particularly attractive
compared to the computational cost of the preconditioned GMRES method, cf. (3.30).
In summary, we have seen that the discretized optimal control problem can be solved
with optimal complexity at a small multiple of the cost which is required for the
solution of the underlying PDE alone.

4.5.2 Example: General Diffusion Equation with Full Tensor

In this section we consider an optimal control problem where the equality constraints
are given by the general diffusion equation

−∇ ·D∇y = u, (4.64)

completed with homogeneous Dirichlet boundary conditions. We minimize again the
tracking type functional (2.1), all other parameters stay the same as before unless
noted otherwise. First, we consider the diffusion tensor

D =

[
11 9
9 13

]
. (4.65)
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Figure 4.9: Darcy velocity vh (left) and right hand side fh (right) for the diffusion problem
with the conductivity tensor D given by (4.65).

Note that this choice of D introduces a strong diagonal component of the flux, i.e.
there are large tangential fluxes across element boundaries. In Figure 4.9 on the left
we show the Darcy velocity vh which is obtained when solving the diffusion equation
with the right hand side fh, which is also displayed in Figure 4.9. Here, fh is the
discretization of the continuous right hand side f which was chosen such that the
exact pressure is given by y∗ = (x1 − x2

1)(x2 − x2
2). The stencil resulting from the

discretization of (4.64) with (4.65) is a 9-point stencil in 2 dimensions. We remark that
the resulting matrix Lh is not symmetric due to the implementation of the boundary
conditions, cf. Section 2.3.2, however the nonsymmetry is restricted to a region close to
the boundary. Furthermore, as discussed in Section 2.3.1, by following the discretize-
then-optimize approach we nevertheless obtain a symmetric KKT matrix Kh.

It is well known that the convergence rates of multigrid methods with standard
coarsening and pointwise smoothing can deteriorate when solving problems with mixed
derivatives. This occurs both for seven- and nine-point discretizations. Basically two
strategies can be pursued in order to improve the convergence rates: either different
coarsening strategies, such as semi-coarsening or algebraic multigrid are employed, in
which case a cheap pointwise smoother can be applied, or the standard coarsening
approach with a more robust smoothing iteration has to be employed. Here, we
follow the latter approach. Smoothers which are particularly well-suited for problems
with mixed derivatives include those based on incomplete LU-factorizations, since they
reduce also some lower frequency error components which are not captured well by the
coarse grid correction. Here, we use the ILU(0) method with zero fill-in as constraint
smoother, i.e. as the preconditioner in the iteration (4.4). ILU-based smoothers have
been successfully applied as robust smoothers for anisotropic problems, in particular
in fluid flow applications. For their derivation and further details we refer to [154].

For the optimal control test problem we set the right hand side b = (ȳ, 0, f) such that
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Figure 4.10: Computed optimal control uh (left) and discretized target state ȳh (right) for
the optimal control problem with constraints given by (4.64) and (4.65), shown
for a finest mesh with h = 2−8.

the exact solution y∗ of the state equation is the same as above for the scalar problem.
To this end, we set f = −∇ ·D∇y∗ − u∗ with u∗ =

(−∇ ·D∇y∗)(sin(πx1) sin(πx2)
)
.

From the optimality condition follows p∗ = σu∗ and we define the target state ȳ =
y∗ − ∇ · D∇p∗. Figure 4.10 shows color plots of the computed approximation uJ to
the optimal control u∗ (on the left) and the discretization of ȳ (on the right). Both
approximations are computed on a grid with mesh size hJ = 2−8.

For the multigrid solution of the optimal control problem we employ (4.27) with
α = β = 1 and test the V1,1- as well as the W1,1-cycle, both with GS-LEX and
ILU(0) as constraint smoother. For comparison, we solved the underlying PDE prob-
lem (4.64), (4.65) with multigrid, again using the V1,1- and the W1,1-cycle both with
GS-LEX and ILU(0) smoothing. The multigrid iteration was stopped as soon as
‖rJ‖ ≤ 10−12. In some cases the stopping criterion could not be satisfied within
the maximum number of 50 iterations, instead the residual norm stagnated with
‖rmJ ‖ ∼ O(1−12). This happened shortly after the algebraic error had reached the
level of discretization accuracy and a further decrease of the error would be smaller
than the relative precision εmach ∼ 1.1−16 of the double precision floating point calcu-
lations, rendering the error constant. In Table 4.3 we give the reduction factors %m for
levels J = 5, . . . , 10. As before, we set hc = 1/4 such that hJ = 2−J+2. Since the itera-
tions with ILU smoothing satisfied the stopping criterion in considerably less iterations
than with GS-LEX smoothing, in this case we state %10. For GS-LEX smoothing, we
give %20 as before. The results obtained for the optimal control problem are denoted
by “KKT”, the reference results of the constraint PDE are denoted by “PDE”. We ob-
serve that, similar to the case of the model problem, we obtain reduction factors when
solving the KKT system which are in very good agreement with those for the multi-
grid solution of the underlying PDE. This holds regardless of the employed smoothing
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Table 4.3: Reduction factors %10 (ILU(0)) and %20 (GS-LEX) of the residual norm for
the scalar PDE-only problem and the optimal control problem with con-
straints (4.64), (4.65).

J

5 6 7 8 9 10

V1,1 GS-LEX PDE 4.24−1 4.32−1 4.36−1 4.35−1 4.38−1 4.38−1

KKT 4.32−1 4.34−1 4.42−1 4.37−1 4.39−1 4.40−1

W1,1 GS-LEX PDE 3.22−1 3.26−1 3.27−1 3.28−1 3.28−1 3.29−1

KKT 3.17−1 3.28−1 3.29−1 3.29−1 3.29−1 3.29−1

V1,1 ILU PDE 3.99−2 5.15−2 5.65−2 5.81−2 5.92−2 5.96−2

KKT 4.40−2 5.65−2 5.84−2 6.01−2 6.14−2 6.23−2

W1,1 ILU PDE 3.66−2 4.32−2 4.31−2 4.37−2 4.40−2 4.39−2

KKT 4.01−2 4.18−2 4.43−2 4.48−2 4.54−2 4.58−2

iteration for the constraint PDE and demonstrates once more that a robust smoother
for the constraint PDE is the optimal candidate for the constraint smoothing step
within Sνj,α,β. For both the KKT and the PDE problem, the reduction factors %10

obtained with ILU-smoothing are better by almost an order of magnitude, compared
to %20 obtained with GS-LEX smoothing. Note that the gain in convergence speed of
the W1,1-cycle over the V1,1-cycle is minute and even more so when ILU-smoothing is
employed. Figure 4.11 shows the convergence histories for the optimal control prob-
lem computed on level J = 10 with respect to different quantities. Starting from top
left, in clockwise direction we show the reduction of the 2-norm of the residual ‖rmJ ‖
and the discrete L2-errors with respect to the solution of the state equation ey,mJ , the
adjoint unknown ep,mJ and the control unknown eu,mJ . We note that switching from
GS-LEX smoothing to ILU(0) reduces the number of iterations required to reach the
discretization accuracy roughly by a factor of 2.5. For example for the W1,1-cycle,
the error ey,mJ reaches the level of discretization accuracy for m = 6 in the case of
ILU(0)-smoothing and for m = 15 when using GS-LEX smoothing. The results with
respect to the other errors are similar. In agreement with the data from Table 4.3 the
improvement is somewhat larger for the V1,1-cycle, where we have m = 7 vs. m = 21.
Due to the very good smoothing properties of the ILU(0)-method for this problem the
convergence rate of the V1,1-cycle is already close to the two-grid convergence factor
and thus can not be improved much by the W1,1-cycle. For this problem clearly the
cheaper V1,1-cycle is more efficient than the W1,1-cycle. This can also be seen in Fig-
ure 4.12 on the left. There, for the tested cycles the residual reduction is plotted over
the execution time measured in seconds. In both cases, the slightly higher cost per
iteration for the ILU(0)-smoothing compared to the cheaper GS-LEX smoothing pays
off due to the large reduction of the convergence factor.
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Figure 4.11: Clockwise from top left: reduction of the residual norm ‖rmJ ‖, the state error
ey,mJ , the adjoint error ep,mJ and the control error eu,mJ , J = 10. Shown are
results for V1,1- and W1,1-cycles with GS-LEX as constraint smoother,

V1,1- and W1,1-cycles with ILU(0) as constraint smoother. For reference,
we also show results for multigrid applied to (4.64), (4.65) with V1,1- and

W1,1-cycles with GS-LEX smoothing and V1,1- and W1,1-cycles with
ILU(0)-smoothing.

In Figure 4.12 to the right we show the reduction of the total discrete L2-error emJ
computed with the V1,1-cycle and ILU(0) constraint smoothing for different fine grid
mesh sizes hJ . We observe that the rate of convergence is independent of the number
of levels J and thus hJ . The final attained error em̄J equals the discretization error,
which we expect to decrease quadratically with respect to hJ . This is confirmed in
Figure 4.13. There, we show the error em̄J for the final multigrid iteration m̄ plotted over
the total number of unknowns which is given by nJ = 3NJ . Since in two dimensions
NJ = h−2

J , a slope of -1 corresponds to the expected second order convergence in the
discrete L2-norm.

Let us briefly consider another example, namely the homogeneous optimal control
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Figure 4.12: Left: Wall clock times for different multigrid cycles and choices of constraint
smoothing, level J = 10. Right: Discrete L2-error emJ obtained with the V1,1-
cycle and ILU(0) for constraint smoothing, levels J = 5, . . . , 10.

Table 4.4: Reduction factors %10 (ILU(0)) and %20 (GS-LEX) of the residual norm for
the scalar PDE-only problem and the optimal control problem with con-
straints (4.64), (4.66).

J

5 6 7 8 9 10

GS-LEX PDE 3.98−1 4.26−1 4.30−1 4.38−1 4.43−1 4.43−1

GS-LEX KKT 4.07−1 4.27−1 4.35−1 4.42−1 4.49−1 4.50−1

ILU(0) PDE 6.46−2 6.81−2 7.83−2 7.66−2 7.99−2 8.12−2

ILU(0) KKT 6.60−2 6.73−2 7.79−2 7.65−2 7.99−2 8.13−2

problem with (4.64) as constraints, but this time with the varying diffusion coefficient

D =

[
(x1 + 2)2 + y2 sin(x1x2)

sin(x1x2) 1

]
. (4.66)

Due to the results obtained for the previous example concerning the efficiency of V -
and W -cycles, here we only employ the V1,1-cycle, both with GS-LEX and ILU(0) as
constraint smoothing. Again we computed the scalar PDE-only problem for compar-
ison. The reduction factors %10, %20 with respect to ‖rJ‖ are given in Table 4.4. Also
for this problem we see a good agreement of the reduction factors for the optimal con-
trol problem and the underlying PDE problem. The reduction factors for multigrid
iterations with GS-LEX smoothing are similar to those of the previous example. As
before, the robust ILU(0)-smoothing yields a considerable improvement and overall
excellent reduction factors are obtained. In Figure 4.14 we show a surface plot of the
control error uJ as computed after 15 iterations (in which the V1,1-ILU cycle satis-
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Figure 4.13: Final discrete L2-error em̄J obtained with the V1,1-cycle and ILU(0) for constraint
smoothing plotted over the number of degrees of freedom nJ = 3h−2

J for levels
J = 5, . . . , 10.

fied the stopping criterion), on the left for GS-LEX smoothing and on the right with
ILU(0) smoothing. In both cases, the error exhibits the characteristic features of the
error for anisotropic diffusion problems, namely slowly varying in one space direction
and more oscillatory in the other one. The effect is much more pronounced though in
the GS-LEX case since the Gauss-Seidel iteration is not effective in reducing the error
along its slowly varying directions. Noting in addition the magnitude of both errors,
the superior smoothing property of the ILU(0)-smoother is obvious.

Finally we point out that this test problem highlights the versatility offered by our
approach. As we have seen in the case of the model problem, the multigrid solution of
the KKT system is achieved with the same convergence speed as that for the underlying
constraint-PDE allows. The results presented here show that this is also the case if
the underlying PDE requires more robust smoothing iterations in order to obtain
optimal reduction factors. Simply by employing the appropriate smoothing iteration
as constraint smoother we can obtain the optimal convergence speed. As far as we
know, no other published full space multigrid method for optimal control problems
exhibits the same feature. In particular, is is not obvious how ILU-smoothing could
be included in the collective smoothing approach CGSM presented in [33, 35].

4.5.3 Example: Anisotropic Diffusion Equation on Non-Uniform
Grids

In this section we consider optimal control problems where the constraints (4.64)
are discretized on non-uniform meshes. This is another example for a situation in
which standard multigrid with pointwise smoothing fails already for the solution of
the constraint PDE.
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Figure 4.14: Error of the control component uJ for J = 6 after 15 iterations of the V1,1-cycle
with GS-LEX as constraint smoother (left) and ILU(0) (right).

The discretization of the diffusion equation based on the method of Section 2.3.2
on non-uniform grids results in a transformation D of the diffusion tensor D which is
full, regardless whether D is diagonal or not. Furthermore, the transformed tensor D
introduces strong anisotropies into the discrete operator6 which are solely due to the
mapping φ : Ω̂→ Ω, therefore for our purpose here it is sufficient to consider D = I.
Again, similar to the setting in the previous section, two possibilities exist in order
to establish linear multigrid convergence: semi-coarsening or algebraic coarsening in
conjunction with pointwise smoothing or standard coarsening in combination with a
smoothing method that introduces a stronger coupling of the unknowns. In addition
to the ILU(0)-smoothing we will consider line-relaxation as constraint smoother. In
particular, we employ the alternating line Gauss-Seidel (ALGS) method. The ALGS
relaxation can be considered as a specific block Gauss-Seidel method. For the lexico-
graphical unknown ordering, one block consists of a single line of unknowns in either
horizontal or vertical direction. The block Gauss-Seidel iterates sequentially over the
blocks, solving for all unknowns within a block simultaneously. Here, for each block of
unknowns a tridiagonal system has to be solved. This can be done efficiently with the
Thomas algorithm. The ALGS performs horizontal and vertical sweeps in an alternat-
ing fashion. A similar comment concerning ILU-constraint smoothing and the CGSM
is in order here. Although one can think of extending the collective smoothing to a
line-relaxation, one has to consider that the resulting systems are not tridiagonal any-
more but can have considerable bandwidth. Thus, a cheap method such as Thomas’
algorithm can not be used. Instead, probably one has to resort to one-dimensional

6For example, a standard discretization of −∆ on a mesh with spacing εh, ε� 1 in one coordinate
direction and h in the other direction yields the same discrete operator as discretizing −∇ ·D∇
on a uniform mesh with D =

(
1 0
0 ε

)
.
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Figure 4.15: Mesh Gδ with indentation parameter δ = 0.25, h = 2−5.

multigrid methods in order to solve the subsystems with optimal complexity. All in
all, the smoothing step is likely to require a significant computational effort.

As a first example we consider the homogeneous optimal control problem discretized
on a deformation of the unit square with a contraction in horizontal direction. The
deviation from the unit square boundary on each side is given by a parameter δ.
The resulting mesh Gδ for δ = 0.25 is shown in Figure 4.15. We consider three
different cases: δ = 0.05, 0.15 and 0.25. The test cases considered so far have been
well-behaved in the sense that the smoothing step with respect to uj has not been a
limiting factor for the convergence speed and thus essentially for the KKT problem
the same reduction factors were obtained as for the PDE-only problem. In other
words, the reduction with respect to yj and pj dominated the iteration. This behavior
changes depending on the value of the contraction δ. In Figure 4.16 on the left we
show the reduction of the total discrete L2-error emJ obtained for J = 10. Different
values α, β for the smoothing iteration Sνj,α,β have been employed. We observe that for
α = β = 1 the convergence speed for the KKT system is significantly lower than for
the corresponding PDE-only problem, which is indicated by ). The W -cycle does
not improve the rate of convergence. However increasing the value of β to 2 restores
the optimal rate and increasing α yields additional improvement. The reason for this
becomes apparent when looking at the right part of Figure 4.16. There, we show the
reduction of the individual error components emyJ , e

m
uJ

and empJ corresponding to the
V -cycle with α = β = 1 and α = 1, β = 2. In particular in the case of δ = 0.25 it is
noticeable that for β = 1 in the first few iterations emyJ and empJ decrease faster than emuJ
but eventually are limited in convergence and pick up the lower rate of emuJ . Increasing
β to 2 improves the smoothing effect for (RHA), cf. Algorithm 5, and restores the near
optimal convergence speed close to that of the underlying PDE problem. In Table 4.5
we give the average reduction factors %avg with respect to ‖rJ‖ for levels J = 5, . . . , 10.
For all cases we employed the V1,1-cycle. The different values of α, β are noted in the
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Figure 4.16: Reduction of discrete L2-errors for the optimal control problem discretized on
Gδ with δ = 0.15, 0.25 and smoothing iteration Sνj,α,β. Left: reduction of total
error emJ , is the PDE-only reference, α, β ∈ {1, 2}. Right: error components
emyJ , e

m
uJ

and empJ , α = 1, β = 1, 2.

second column. As expected, for increasing δ, the convergence speed degrades, both
for the scalar PDE-only problem and the KKT problem. Still, the reduction factors
are more than acceptable. We remark that a different type of cycle does not yield
significant better results, e.g. for the PDE-only problem for δ = 0.25 the W1,1-cycle
drops the average reduction factor on level J = 10 from 0.186 to 0.136 and the higher
cost compared to the V1,1-cycle does not pay off. For the easiest case δ = 0.05, the
reduction factors are very good when employing ALGS as constraint smoother and do
not deviate too much from the reference case δ = 0 when employing just the pointwise
GS-LEX. In all cases %avg is bounded independent of J . A further increase of α, β
would yield even better reduction rates but already for α = 1, β = 2, the optimal rates
of the PDE-only reference are obtained for the most difficult case δ = 0.25. We point
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Table 4.5: Reduction factors %avg obtained for the mesh deformations δ = 0.05, 0.15 and
0.25. In all cases a V1,1-cycle with the smoother Sj,α,β was used. For comparison
also the rates of the PDE-only problem are given.

J

δ α, β 5 6 7 8 9 10

1,1a 9.84−2 1.01−1 1.02−1 1.02−1 1.04−1 1.04−1

0.05 1,1b 5.06−2 5.22−2 5.19−2 5.16−2 5.18−2 5.33−2

—c 4.86−2 5.03−2 5.21−2 5.25−2 5.41−2 5.44−2

1,1a 6.73−1 5.03−2 5.21−2 5.25−2 5.41−2 5.44−2

0.15 1,2b 7.24−2 8.34−2 9.21−2 9.21−2 9.68−2 9.88−2

—c 7.17−2 8.20−2 9.22−2 9.49−2 9.83−2 1.02−1

1,1a 6.73−1 6.73−1 6.77−1 6.75−1 6.72−1 6.49−1

0.25 1,2b 1.93−1 1.78−1 1.71−1 1.67−1 1.76−1 1.82−1

—c 1.12−1 1.41−1 1.62−1 1.71−1 1.79−1 1.86−1

aConstraint smoothing with pointwise GS-LEX
bConstraint smoothing with ILU(0)
cReference computation of PDE-only problem

out again that just the cheap V1,1-cycle was used in all cases.

Let us now consider two more mappings φ : Ω̂→ Ω which generate deformations in
both coordinate directions. The first deformation is given by(

x1

y1

)
= φ1

(
x̂1

x̂2

)
=

(
x̂1 + 0.1 sin(2πx̂1) sin(2πx̂2)
x̂2 + 0.1 sin(2πx̂1) sin(2πx̂2)

)
, (4.67)

the second one by (
x1

x2

)
= φ2

(
x̂1

x̂2

)
=

(
x̂1 + 0.1 cos(3x̂2)
x̂2 + 0.1 sin(6x̂1)

)
. (4.68)

The grids generated by φ1 and φ2 for h = 1/32 are shown in Figure 4.17. The more
difficult problem is presented by φ1 due to larger variations of the local grid size. The
ratio max|Ti| /min|Ti| is about 4.4, whereas for φ2 we obtain a value of roughly 1.44.
This manifests itself in the convergence rates, which are given in Table 4.6. Due to
the findings for the first problem in this section we set α = 1, β = 2 and employed the
V1,1-cycle. For φ1 we tested both ILU(0) and ALGS as constraint smoother, for φ2

only the results for ILU(0) are given. In both cases, the rates for ILU(0) are excellent
and again the rates for the KKT problem are close to those of the PDE problem. The
reduction factors are considerably worse for ALGS smoothing in both cases, but still
match very good.
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Figure 4.17: Grids generated by mappings φ1 (left) and φ2 (right) for h = 1/32.

Table 4.6: Reduction factors %avg obtained for the meshes generated by the mappings φ1 and
φ2. In all cases a V1,1-cycle with the smoother Sj,1,2 was used.

J

5 6 7 8 9 10

φ1 ALGS KKT 2.53−1 3.29−1 3.86−1 4.22−1 4.44−1 4.51−1

PDE 2.44−1 3.25−1 3.89−1 3.93−1 4.11−1 4.17−1

ILU(0) KKT 1.91−1 1.61−1 1.51−1 1.30−1 1.18−1 1.07−1

PDE 8.81−2 9.30−2 1.01−1 1.03−1 1.04−1 1.05−1

φ2 ILU(0) KKT 3.43−2 4.02−2 5.18−2 6.04−2 6.12−2 6.83−2

PDE 2.99−2 3.89−2 5.24−2 6.15−2 6.26−2 6.99−2

The results of this section show that our overall method easily allows to exploit
the knowledge of sophisticated multigrid solution methods for the constraint PDE
by adapting the smoothing iteration for the inner linear systems in a suitable way.
In this sense, again the result of the smoothing analysis performed in Section 4.3 is
corroborated by the numerical results. Furthermore, the same comment as at the end
of the previous section applies: although it is in principle possible to extend the CGSM
approach to include line-smoothing methods, the resulting systems are considerably
more expensive to solve, in particular they are not tridiagonal anymore. Thus, a
cheap O(N) method like the Thomas algorithm is not available but multigrid itself
should be applied. We remark that to our knowledge in previous publications the full
space multigrid approach has been applied only to the model problem. Additional
difficulties such as non-uniform meshes and the resulting anisotropies have not been
considered before. For more difficult problems such as discontinuous coefficients or
nonsmooth mappings φ, we can not expect acceptable convergence rates with the
presented approaches, due to the difficulties of standard multigrid for the PDE-only
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Figure 4.18: The circular convective velocity field wh on a mesh with h = 2−5.

problem. For these cases, techniques such as operator-dependent interpolations or
operator-dependent coarsening (viz. algebraic multigrid) are required. We expect
that employing the appropriate techniques for the underlying PDE problem within our
approach would yield again satisfactory convergence rates for the multigrid solution of
the KKT problem, although this has not been confirmed yet by numerical experiments
and applying algebraic multigrid to KKT systems is still an open question.

4.5.4 Example: Convection-Diffusion with Circular Wind

In this section we study optimal control of the steady-state convection-diffusion equa-
tion

− ε∆y + w · ∇y = u (4.69)

with homogeneous Dirichlet boundary conditions and a given convection velocity or
“wind” w. Here we consider the circular wind

w1(x1, x2) = 8(x2 − 0.5)(0.25− (x1 − 0.5)2) (4.70)

w2(x1, x2) = −8(x1 − 0.5)(0.25− (x2 − 0.5)2), (4.71)

see Figure 4.18. It is well-known (see e.g. [134]) that discretization of the convective
term in the singular perturbed equation (4.69) with central finite differences or stan-
dard finite elements yields unstable approximations on coarse meshes. In particular,
the matrix representing the discrete operator looses the M -matrix property if

h

ε
max

Ωh
‖w‖∞ > 2, (4.72)

where the left side in (4.72) is the mesh-Péclet number Pe. Many practical problems
are dominated by convection, i.e. ε � 1, and consequently it is difficult to satisfy



96 4 A Multigrid Method for Linear-Quadratic Optimal Control

Pe < 2 on coarse meshes. For multigrid solvers, unacceptably high resolutions for
the coarse meshes would be required in order to avoid instabilities due to the coarse
grid correction or smoothing on coarse meshes. Therefore, upwind difference schemes
or stabilized upwind Galerkin/streamline diffusion elements are the methods of choice
for the discretization of (4.69). Here, we apply a simple first-order upwind scheme and
just remark that for practical problems the implied reduction to first-order accuracy
O(h) due to the large numerical viscosity might not be appropriate to obtain accurate
solutions. In these cases, higher order upwind schemes have to be employed [134]. In
any case, the upwind discretization results in a nonsymmetric matrix and we remind
the reader of Section 2.3.1. Here, we employ the discretize-then-optimize scheme,
which means that the discrete adjoint operator is given by LTh and thus depends on
the upwind scheme leading to Lh. However, the resulting KKT matrix is symmetric
and discrete gradients are consistent.

Before we embark on the optimal control problem, some comments on the multi-
grid solution of the convection-diffusion equation are in order. Convection-dominated
problems are in general classified as “difficult” problems to solve and as such require
specifically tailored multigrid components in order to achieve acceptable convergence
rates. This impacts all components of the multigrid solver. The first issue is the choice
of the smoothing iteration. For a constant wind in the horizontal direction and for
ε→ 0, the lexicographical Gauss-Seidel iteration degenerates to an exact solver due to
the fact that the upwind operator becomes essentially tridiagonal. ILU-decompositions
behave in a similar way. This observation spurred the idea of downstream node or-
dering, such that pointwise Gauss-Seidel smoothers are close to an exact solver along
the characteristics of the flow. For a general wind with possibly closed character-
istics downwind ordering is a complex problem and it is more common to employ
four-direction point Gauss-Seidel, line smoothers or alternating modified ILU. Here,
we chose the alternating line Gauss-Seidel method as constraint smoother of which we
remark that it is not completely robust in h and ε for circular convection.

A further problem which is not so obvious is the coarse grid correction. In fact, a
two-grid local mode analysis shows that for first-order upwind discretization and stan-
dard coarsening, the two-grid convergence factor is limited by 0.5 for ε→ 0, regardless
of the number of smoothing steps.7 Consequently, even worse multigrid convergence
factors have to be expected for the standard approach. Although this can be con-
sidered as a worst-case scenario which is not observed in all practical applications, it
is indeed observed for convection-dominated recirculating flows. A variety of modifi-
cations, none of which works equally well for all problems, has been proposed in the
literature: Galerkin coarse grid operators constructed with operator-dependent trans-
fer [56] or upwind-interpolation operators [54], acceleration by Krylov methods [128]

7Due to a grid-dependent amount of artificial viscosity, smooth modes which are constant along the
characteristics are approximated only with zero relative order by the coarse grid operator [147,
156].
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Table 4.7: Average residual reduction factors %avg obtained for the optimal control of circular
convection. The smoothing iteration is Sj,1,β. For ε = 1−4, 1−5 a W1,1-cycle is
used as preconditioner for flexible GMRES(20), whereas for ε = 1−1, 1−2 and 1−3

the multigrid cycle is employed as solver.

J

ε β 5 6 7 8

1−1 2 3.76−2 3.65−2 3.61−2 3.58−2

1−2 6.48−2 5.43−2 4.22−2 4.06−2

1−3 1.50−1 1.53−1 1.20−1 1.05−1

1−4 4 3.21−1 2.98−1 2.77−1 3.13−1

1−5 5 5.58−1 3.87−1 3.27−1 3.64−1

and employing W -cycles is common. A uniformly convergent method without restric-
tions on h0 has been proposed in [103]. There, a monotone discretization is employed
within a multigrid preconditioner for the standard second-order Galerkin finite ele-
ment discretization. The first-order scheme is solved with a multigrid method using
crosswind reordering and the whole scheme is employed as preconditioner for GMRES.
Further it is shown that all components are required in order to obtain uniform con-
vergence without any constraints on the coarse grid size. Here, we consider a W -cycle
as preconditioner for GMRES, since this is easily accessible in our framework.

Let us now return to the optimal control problem. To this end, we consider the
tracking problem with the Gaussian target state

ȳ(x1, x2) = 2.5 exp(−(400(x− 0.3)2 + 250(y − 0.7)2)) (4.73)

and with a decreasing sequence of parameters ε. The regularization parameter is fixed
at σ = 1−2. In Figure 4.19 we show the computed optimal controls uh and associated
optimal states yh for ε = 1−l, l = 1, . . . , 4 on a mesh with h = 2−8. The tracking
“works against” convection and diffusion and we clearly observe the stronger influence
of the convection term on uh and yh for decreasing ε, while at the same time the
diffusive effects are less pronounced. Results for ε = 1−5 are visually indistinguishable
from those for ε = 1−4 and thus are not shown.

For our computations, we use the coarsest mesh size h0 = 1/16, thus the finest mesh
for level J has a mesh size of hJ = 2−J+4. We give the results for J = 4, . . . , 7. Note
that for ε = 1−4, 1−5 the Péclet condition (4.72) is violated on all meshes including the
finest level J = 8. For those two cases, we employ the multigrid cycle as preconditioner
for a (flexible) GMRES(20) iteration, whereas for ε = 1−1, 1−2, 1−3 we use the multigrid
cycle as solver. The control smoothing step, i.e. the approximate solution of (RHA),
is done here with the FGMRES method instead of the conjugate gradient iteration
to prevent possible instabilities due to nonsymmetry of L̂j. In Table 4.7 we give
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(a) ε = 1−1.
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(b) ε = 1−2.
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(c) ε = 1−3.

Figure 4.19: Computed optimal states yh (on the left) and associated optimal controls uh
(to the right) for the tracking problem with the target state ȳ given by (4.73).
Visualizations of yh and uh are shown for the finest grid with a mesh size
hJ = 2−8 and varying convection parameter ε.
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(d) ε = 1−4.

Figure 4.19: Computed optimal states yh (on the left) and associated optimal controls uh
(to the right) for the tracking problem with the target state ȳ given by (4.73).
Visualizations of yh and uh are shown for the finest grid with a mesh size
hJ = 2−8 and varying convection parameter ε.

the average convergence rates. In all cases the reduction factors are more or less
independent of the fine grid level J , however note that for ε = 1−4 we use β = 4 and
for ε = 1−5 we use β = 5. Furthermore, in these cases the multigrid cycle is accelerated
by GMRES(20) on the finest mesh. Still, a noticeable decrease in convergence speed
is observed. This is in agreement with the literature on multigrid for convection-
diffusion problems, where one speaks of strongly convection dominated for problems
with ε < 1−4, which goes hand in hand with a visible change in the flow regime. Still,
the rates are acceptable, albeit they come at larger computational cost. Clearly the
(approximated) reduced Hessian depends now also on ε and the shifting character from
elliptic to hyperbolic for the state operator for ε → 0 has an even stronger impact
on HZ and consequently ĤZ . Thus, the smoothing step (RHA) requires considerably
more effort, necessitating the increase of β. Note however that in all cases we still
use just one constraint smoothing step, i.e. α = 1. We remark that for ε = 1−4

acceleration with a Krylov method is not required for convergence, however without
Krylov acceleration we observe the aforementioned limiting rate of 0.5. For ε =
1−5 multigrid as solver was not convergent for all levels and Krylov acceleration is
necessary.

Looking closely at the average rates one observes that in some cases the convergence
for finest levels J = 4, 5 is actually slower than for J = 6, 7. A possible explanation
might be that the deficiency of the coarse grid correction, which is more pronounced
for smaller ε, is to some extent corrected by the smoothing iteration. In particular,
the Krylov iterations on (RHA) operate on the whole spectrum of ĤZ and thus also
reduce those smooth modes which are not corrected by the coarse grid correction. In
this case, adding more levels has a similar effect as increasing β for a fixed level, since
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Figure 4.20: Convergence histories for ε = 1−1, . . . 1−5 and J = 6, i.e. hJ = 2−10 (left), and
ε = 1−4 and J = 5, 6, 7, 8 (right). For ε = 1−4, 1−5, a W1,1-cycle is employed
as preconditioner for a GMRES(20) iteration, whereas for ε = 1−3, 1−4, 1−5 the
multigrid cycle is used as solver.

the affected smooth modes are treated on every level j = 1, . . . , J . Of course this
increase in speed is limited by the underlying multigrid convergence for the constraint
PDE and therefore the reduction factor does not further improve from J = 6 to J = 7
(in fact, from multigrid experience for convection-diffusion problems we would expect
an increase again for finer levels, which should be mild however due to employing
W -cycles and Krylov acceleration). Another fact influencing the measurements of
the average reduction factor is the presence of stagnation plateaus, which are often
observed due to the outer Krylov iteration. Such a plateau is visible e.g. for J = 8 in
Figure 4.20 right. There, we show the convergence history of the W1,1-preconditioned
GMRES(20) iteration for ε = 1−4 and J = 5, . . . , 8. We observe that for a fixed
ε the convergence speed is nearly independent of J , with a mild sensitivity due to
the aforementioned plateaus of the outer iteration and the correction behavior of the
smoother with respect to smooth error components. On the left side in Figure 4.20 we
show the residual reduction for fixed hJ = 2−10 and ε = 1−1, . . . , 1−5. Clearly the rate
of convergence is not robust with respect to ε, nevertheless almost linear convergence
is observed and even for the difficult cases ε = 1−4, 1−5 acceptable convergence rates
are obtained.

All in all, we point out that the current implementation of our multigrid solver is
not optimally adapted to treat strongly convection-dominated problems. Still, keeping
in mind the shortcomings with respect to proper treatment of the constraint PDE, the
obtained results are very promising. We have shown that even for fairly difficult con-
straint PDEs, where the development of a robust multigrid solver for the constraints
alone is far from trivial, we obtain acceptable rates of convergence for the associated
optimal control problem.
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Figure 4.21: Approximation ȳh of the target state ȳ given by (4.75) on a mesh with h = 2−8.

4.5.5 Robustness and the Role of Regularization

We will now discuss the effect of the regularization parameter σ on the solution of the
optimal control problem and the convergence behavior of our multigrid method. For
the L2-tracking functional (2.1), the value of σ puts a weight on the cost of the control
required to expend in order to minimize the (discrete) tracking error

eh,tr = ‖yh − ȳh‖2
L2,h. (4.74)

Figure 4.21 depicts the discrete approximation ȳh of a target state ȳ which is given by
a localized peak

ȳ = 2.5 exp
(
−
√

350(x− 0.7)2 + 200(y − 0.62)
)
, (4.75)

on a uniform mesh with h = 2−8. Figure 4.22 gives a visual impression of the impact
which σ has on the solution of (LQPh). The figure shows the computed optimal states
yh on the left and the associated optimal controls uh on the right for the finest grid level
with mesh size hJ = 2−8. From top to bottom, the regularization parameter σ takes
on the values 1−3, 1−5, 1−7 and 1−9. Clearly, the smaller σ, the better is the tracking of
the desired target state. However, at the same time, the optimal control degenerates
to an unbounded point source. Recall from Chapter 2 that the tracking problem in
the L2-setting does not possess a bounded solution for σ = 0. For unbounded Uad, the
existence of a solution to the optimal control problem in the case of vanishing σ could
only be established in a stronger norm, which in turn required a higher regularity of
the target state ȳ, cf. Remark 2.7. In the control-constrained case, which is discussed
in Chapter 5, for σ → 0 one obtains a so-called bang-bang control, that is, a control
function that takes on its admissible bounds almost everywhere.

In Figure 4.23, for the same problem we show the tracking error (4.74) as well as
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(a) σ = 1−3.

(b) σ = 1−5.

(c) σ = 1−7.

Figure 4.22: Computed optimal states yh (on the left) and associated optimal controls uh
(to the right) for the tracking problem with the target state ȳ given by (4.75).
Visualizations of yh and uh are shown for the finest grid with a mesh size
hJ = 2−8 and varying regularization parameter σ.
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(d) σ = 1−9.

Figure 4.22: (cont’d) Computed optimal states yh (on the left) and associated optimal con-
trols uh (to the right) for the tracking problem with the target state ȳ given
by (4.75). Visualizations of yh and uh are shown for the finest grid with a mesh
size hJ = 2−8 and varying regularization parameter σ.

the value of the discrete approximation to the objective functional (2.1),

Jh(yh, uh) =
1

2
eh,tr +

σ

2
‖u‖2

L2,h. (4.76)

Furthermore, the true cost ‖u‖2
L2,h as well as the σ-weighted cost σ

2
‖u‖2

L2,h of the control
are shown. The value of Jh is dominated by the tracking error and decreases at the
same rate as eh,tr for σ → 0. At the same time, the true cost increases monotonically,
while the weighted cost has a peak for σ ∼ 1−4.

These results show that it might be necessary to compute solutions for quite small σ
if a small tracking error etr is the aim. On the other hand, in many practical settings,
the target state ȳ is the result of measurements which are perturbed by noisy data.
Therefore, in order to obtain meaningful results, the regularization parameter has to
be linked to the uncertainty level in the given data. Several strategies such as the L-
Curve method, the discrepancy principle or generalized cross-validation exist to tackle
this task. We refer to [153] for further discussion of these and other methods, since
the topic is too complex to justify even a brief survey in this thesis. Nevertheless, the
mathematical question of robustness in the limit case of σ → 0 is interesting in itself
and we will discuss it later in this and the next section.

The method developed so far converges with rates independently of σ for large to
moderate values of σ. Here, the precise meaning of “large to moderate” depends on
the condition (4.58) in case of the smoothing iteration Sα. For Sα,β, the range of
convergence with respect to σ is somewhat larger.

In general we would expect the multigrid iteration to converge if all smoothing
factors on all levels are strictly less than unity, i.e. relation (4.58) holds for all mesh
sizes. Thus, since σ > h4

1/4 obviously implies (4.58) for all levels j > 1, we expect
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Figure 4.23: Tracking error eh,tr, value of discrete objective functional Jh(yh, uh), weighted
cost σ

2 ‖uh‖2L2,h and true cost ‖uh‖2L2,h for different values of σ → 0 and h =
hJ = 2−8.

it to be a sufficient condition for convergence. Note that (4.58) does not need to be
satisfied on the coarsest level j = 0 where we solve directly. However, rather than a
sharp switching from convergence to divergence, we find in numerical experiments that
a gradual deterioration of the convergence rate occurs, mainly due to the following
two reasons: first, the LFA neglects the influence of the boundary conditions, which
can be strong on coarser levels with few interior points, and second, in practice a
loss of the smoothing property on coarser levels is compensated by a better coarse
grid correction due to more frequent visits to coarse grids and to some extent by
(additional) smoothing on finer levels, in particular when employing F- or W-cycles.
In any case, based on the findings in Section 3.3 we expect Sα,β to exhibit stronger
convergence properties for smaller values of σ than Sα due to the better approximation
property with respect to HZ . These preliminary considerations are confirmed by the
following numerical experiments.

We consider the model problem (LQPh) with zero right hand side and random initial
guess. The mesh width on the coarsest level is h0 = 1/2. Then, according to (4.58),
the critical value of σ such that the smoothing factor ρj stays bounded from above by
unity on all levels 1 ≤ j ≤ J is given by

σcrit ∼ 1

4

(1

4

)4 ∼ 9.765−4. (4.77)

In Figure 4.24 on the left we show the convergence history of a multigrid V1,1-cycle with
smoothing iteration Sα for different values of σ and a mesh size of hJ = 2−10. To the
right, the eigenvalues of the corresponding multigrid iteration matrix MG for hJ = 2−5

are shown. We see that for σ → 0 an isolated negative eigenvalue with largest absolute
value dominates the iteration, in this respect the multigrid iteration behaves similar
to the Richardson iteration Sα, cf. Figure 4.4. Furthermore, recall from Section 4.3
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Figure 4.24: Convergence of the V1,1-cycle with smoothing iteration Sj,1 with h = 2−10 (left)
and eigenvalues of the corresponding multigrid iteration matrix MG with h =
2−5 (right). The different values of σ are σ = σcrit, σ = 2.75−4 and as
reference with optimal rate σ = 1.0.

that the absolute value of this isolated eigenvalue quickly grows unbounded and cor-
respondingly for the smoothing factor (4.57) one obtains ρLFA � 1. This explains the
rapid onset of divergence for σ < 2.75−4 (for σ = 2.5−4 (not shown in the figure),
the iteration is divergent). The large smoothing factor indicates that Sα is strongly
diverging and explains why the onset of divergence is not prevented when using an
F - or W -cycle. A slight improvement can be achieved with acceleration by an outer
Krylov iteration, see Figure 4.25. For the same reasons as discussed in Section 3.3
a flexible variant of GMRES was chosen as outer iteration. Furthermore, we set the
restart value to 15. Here, the phenomen discussed in Section 3.3 arises again, namely
that a relatively small restart value yields faster convergence.8 However, finding the
optimal restart value is an open question. For moderate values of σ the acceleration
yields a significant improvement, however already for σ = 5−5, no satisfactory conver-
gence is achieved. Also shown in Figure 4.25 is the unaccelerated V1,1-cycle, but this
time with an increased resolution of the coarsest mesh, h0 = 1/4. Note that perfect
linear and robust convergence is regained due to the increase of h0.

For the numerical examples in Sections 4.5.1 to 4.5.3 we have used the smoothing
iteration Sα,β, which we expect to converge for smaller values of σ than Sα. This
is confirmed by the results presented in Figure 4.26. We clearly see that the V1,1-
cycle with the smoothing iteration Sj,1,1 produces almost acceptable convergence rates
for σ = 2.75−4, whereas Sj,1 was close to divergence in this case, cf. Figure 4.24.
Furthermore, regarding the eigenvalue distribution of the iteration matrix, we gather

8In this context we remark that Krylov acceleration for multigrid is closely related to the method
of iterant recombinations, see [147]. There it is noted that a smaller number of iterates in the
recombination process often produces better results.
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Figure 4.25: FGMRES(15) preconditioned with a V1,1-cycle. On the left, the smoothing
iteration is Sj,1 for σ = 2.75−4, σ = 1−4 and σ = 5−5. Also shown
for comparison is the convergence of unaccelerated multigrid for σ = 2.75−4

and σ = 2.75−4 with a coarsest mesh size h0 = 1/4. To the right, the
smoothing iteration is Sj,1,1 and same colors indicate same values of σ.

from Figure 4.26 (right) that the negative outliers due to small values of σ are not as
dominant as for Sj,1. Instead, the eigenvalues are grouped more closely around the
origin although the imaginary part of some eigenvalues has increased. This eigenvalue
distribution proves to be beneficial for the convergence of preconditioned GMRES,
see Figure 4.25 on the right. For instance, for σ = 5−5, the smoothing iteration
Sj,1,1 results in a very good preconditioner for FGMRES, whereas Sj,1 did not yield
acceptable error reduction.

Also in contrast to the smoother Sj,1, for Sj,1,1 a cycle with better smoothing prop-
erties proves to be beneficial and the onset of divergence is delayed. In Figure 4.27
we show the convergence histories for the W1,1- and W2,2-cycle. Robust convergence
is achieved for values down to σ ∼ 2−5. For smaller values of σ, soon also the W -cycle
becomes divergent. Acceleration by a Krylov method does not improve the situation.
This is due to the fact that the reduction rates for the convergent W -cycle are already
very good and can not be reduced further by much. When the W -cycle diverges, ac-
celeration by an outer Krylov method does not restore the convergence. On the right
side of Figure 4.27 we plot the eigenvalues of the multigrid iteration matrix for a W1,1-
cycle and a value of σ = 5−5. Note the different scaling of the axis when comparing
with the V1,1-cycle, cf. Figure 4.26, or the smoothing iteration Sj,1,, cf. Figure 4.24.
The eigenvalues for the W -cycle are grouped more evenly around the origin and the
extension of the spectrum along the real axis is smaller than in both other cases. In
particular, the negative outliers are even less dominant than before.

Throughout this section we considered the coarsest level h0 = hc = 1/2 and a finest
level with mesh width hJ = 2−10. We point out that, although the value of the critical
σ for which robust convergence can be achieved depends on the relation of σ to the
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Figure 4.26: Convergence of the V1,1-cycle with smoothing iteration Sj,1,1 with h = 2−10

(left) and eigenvalues of the corresponding multigrid iteration matrix MG with
h = 2−5 (right). The different values of σ are σ = σcrit, σ = 2.75−4

σ = 1−4 and as reference with optimal rate σ = 1.0.

next to coarsest mesh size h1, the robustness results do neither depend on the number
of levels, J , nor on the fine grid mesh size hJ . To demonstrate this, we consider a
sequence of increasing coarsest mesh sizes hc and decreasing values of σ such that (4.58)
remains satisfied. We define j0 = − log2 hc and consider coarse mesh sizes given by
j0 = 2, . . . , 6. For j0 = 2 we set σj0 = 5−4 and for each increase of the coarsest mesh
size, we reduce σj0 by a factor of 1/16, i.e. σj0 is given by σj0 = 5−4 · 2−4(j0−2). The
smallest value obtained is σ6 ∼ 7.63−9. We distinguish two test cases. For the first test
case, we fix the fine grid mesh size hJ = 2−11. Thus, with increasing j0, we obtain a
decreasing number of levels in the multigrid hierarchy, i.e. J = 11− j0. For the second
test case, we fix J = 5 and thus obtain a sequence of decreasing fine grid mesh sizes
hJ = 2−(j0+5). The corresponding convergence histories are shown in Figure 4.28 left
and right, respectively. In all cases we used a V1,1-cycle and the smoothing iteration
Sνj,1,1. All in all we conclude that asymptotically for hJ → 0 the reduction rates are
independent of σ, J and hJ as long as (4.58) is satisfied.

Last we remark that the qualitative behavior does not change when solving the
problems from Sections 4.5.2 or 4.5.3. Provided that appropriate values for α, β are
chosen and ILU(0) or ALGS are employed as constraint smoother, then also for prob-
lems involving anisotropic constraints the robustness with respect to σ is similar to
the model problem case and analogous results are obtained.

4.6 Robustness Enhancement by Spectral Filtering

In this section we discuss the underlying reasons for the lack of robustness in the case of
σ � 1. This issue is rarely discussed in the optimization and optimal control literature,
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Figure 4.27: Left: Convergence of W -cycles with smoothing iteration Sj,1,1. W1,1-cycle with
σ = σcrit, σ = 5−5 and σ = 2−5. W2,2-cycle with σ = 2−5 and
σ = 1−5. On the right we show the eigenvalues of the multigrid iteration

matrix MG for a W1,1-cycle and σ = 5−5.

in most cases the penalty parameter is a priori set to some value which is assumed to
be appropriate for the problem at hand. Common values of σ range between 1−2 and
1−6 [53], a range for which iteration numbers of most algorithms are still acceptable.
To the contrary, the question of finding the optimal regularization parameter is an
important subtopic in the inverse problems community. From the “inverse problem
point of view”, it is natural to expect a connection between σ and h = hJ , since σ is
connected to the noise level in the data and less noise or higher fidelity of the data
allows for finer features of the solution to be resolved, which in turn requires a finer
mesh. However, as discussed in the previous section, our current implementation of
the multigrid solution imposes a restriction on the next to coarsest mesh size h1, which
is introduced by insufficient smoothing with respect to uh. Limitations on h1 are quite
common for multigrid algorithms when applied to difficult problems such as Fredholm
equations of the second kind [84, 85] or convection-diffusion problems [103]. It is the
aim of the discussion in this section to eliminate the condition (4.58) on h1. As it
will turn out, robust convergence results under a condition on the fine grid mesh size
h = hJ only. In fact, we believe that this is not a restriction at all, as one could argue
that computing the solution to a regularized ill-posed problem for σ � 1 on a coarse
mesh annihilates the effect of small σ, since the discretization itself can be interpreted
as a regularization, see [126] and related publications on “self-regularization”. In this
respect, a small parameter σ is only meaningful if it is accompanied by a suitable fine
grid size h = hJ . We focus on the model problem, however all considerations also
apply when the constraints are given by the general elliptic second-order BVP (2.20).

As can be gathered from the numerical experiments conducted in Section 3.3 and
the smoothing analysis in Section 4.3, the critical component of the multigrid itera-
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Figure 4.28: Convergence histories for j0 = 2, . . . , 6. Left: constant mesh size of finest level
is hJ = 2−11, the number of levels J = 11 − j0 decreases with increasing j0.
Right: fixed number of levels J = 5, the fine grid mesh size hJ = 2−(j0+5)

decreases with increasing j0. In both cases the regularization parameter is
given by σj0 = 5−4 · 2−4(j0−2).

tion which can lead to divergence for small σ is the smoothing step with respect to
the control component uh, i.e. the smoothing step (RHA) (cf. step 3 in Algorithm 5,
page 67). A careful look at the continuous formulation of (RHA) foreshadows difficul-
ties for solvers of the corresponding discrete system. Recall from Chapter 2 that the
continuous reduced Hessian H is obtained by computing the gradient of the reduced
objective functional Ĵ (2.5) and is given by

Hu = σu+ S∗Su, (4.78)

where S : L2(Ω)→ H1
0 (Ω) is the control-to-state mapping or solution operator of the

constraint PDE and S∗ denotes its adjoint. Since the embedding H1
0 (Ω) ↪→ L2(Ω) is

compact, it follows that S : L2(Ω) → L2(Ω) and consequently also its adjoint S∗ as
well as S∗S are compact. For sufficiently large σ, the operator H can be interpreted
as a compact perturbation of the identity. The continuous analogon to (RHA) states
a Fredholm equation of the second kind and in the unregularized case, i.e. for σ = 0,
one obtains a Fredholm equation of the first kind. Such problems often arise in inverse
problems, where the operator S corresponds to an integral operator with a smooth
kernel on a compact domain. For instance in image deblurring, under the assumption
of translation invariance, the operator S corresponds to the convolution with a point
spread function. The connection to ill-posed integral equations also is evident when
expressing S as an integral operator via Green’s function.

Solving Fredholm equations of the first kind is well-known to be ill-posed in the
sense of Hadamard, since the solution does not depend continuously on the right
hand side data. In order to overcome this difficulty, regularization is introduced and
in this respect the objective functional (2.1) corresponds to an output least-squares
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Figure 4.29: Eigenvalues µi, i = 1, . . . , 1024 of Hσ for the linear-quadratic model problem
with h = 1/32 and σ = 0.0, i.e. unregularized, σ = 1.0−1, σ = 1.0−3,

σ = 1.0−5 and σ = 1.0−7.

or data-discrepancy functional with an additional L2-Tikhonov regularization term.
From the spectral theory for compact operators we deduce that the countably many
isolated eigenvalues of the compact part of H converge to zero. We expect the discrete
representation to reflect this property. The discrete approximation to H is given by
(cf. (3.12))

Hσ = σMh +MT
h L
−T
h MhL

−1
h Mh, (4.79)

i.e. the mass matrix Mh has the role of the identity on L2(Ω) and the discrete control-
to-state mapping is given by Sh = L−1

h Mh. Figure 4.29 shows the eigenvalues µi of Hσ

for different values of σ, including the unregularized case H0, for a mesh with h = 1/32.
The rapid decay of µi for small σ is obvious. Correspondingly, the condition number
κ(Hσ) grows for σ → 0, in fact

κ(Hσ) ≤ µmax(σMh) + ‖SThMhSh‖
µmin(σMh)

= O(1/σ). (4.80)

From (4.80) follows the worst-case estimate O(1/
√
α) for the number of iterations

the cg method requires to solve (RHA). We would like to point out here that, al-
though (4.80) holds independent of h and consequently the number of cg iterations
does not depend on h, the actual number of required iterations can be too large for
practical problems, in particular if a single iteration is expensive (cf. the discussion in
Section 3.3 and the results presented in Table 3.1).

As part of a smoothing step for (RHA) however, we are not interested in the asymp-
totic convergence behavior of the cg method, but instead it is of primary interest how
the cg iteration acts with respect to the high frequency components of the error. The
eigenvalues of Lj discretized on a uniform grid are given by [86]

λk,l = 4h−2(sin2(kπh/2) + sin2(lπh/2)), (4.81)
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and the corresponding discrete eigenfunctions are

φk,l = sin(kπx) sin(lπy), (4.82)

with 1 ≤ k, l ≤ N and x, y range over the coordinates of the N2 cell centers. Thus,
high frequencies belong to large eigenvalues, which is the reason why classical iterative
methods possess the smoothing property with respect to the model problem. This
situation is completely different for Hσ, since its eigenvalues are given by

µk,l = σh2 +
h6

λ2
k,l

. (4.83)

However, the same eigenvector φk,l belongs to µk,l and λk,l. Thus, for decreasing
eigenvalues µk,l the associated eigenfunctions become increasingly oscillatory which
accounts for the failure of standard multigrid methods when employed to solve systems
with coefficient matrix H0 or Hσ for σ � 1. Consequently, also the (RHA)-step within
Sνj,α,β does not provide sufficient smoothing with respect to uh.

In order to address the smoothing behavior of the cg method applied to (RHA),
we recall the estimate (3.15). Denoting the minimal polynomial in the m-th iteration
by πm, the value πm(µk,l) gives the reduction (or growth) of the error component in
the direction of the eigenfrequency φk,l in the m-th cg iteration. The normalizing
condition πm(0) = 1 already indicates that the value of πm will be close to unity for
small eigenvalues µk,l and small iteration numbers m, and thus the reduction of the
high frequencies9 φk,l, N/2 < k, l ≤ N of the error will be minuscule. The precise
reduction can be inferred from the Chebyshev polynomials of the first kind. The
polynomial of degree m is given by

Tm(ω) =
1

2

[(
ω +
√
ω2 − 1

)m
+
(
ω −
√
ω2 − 1

)m]
. (4.84)

The polynomial which minimizes (3.15) is then

πm(λ) =
Tm

(
λmax+λmin−2λ
λmax−λmin

)
Tm

(
λmax+λmin

λmax−λmin

) , (4.85)

where λmax, λmin are the extremal eigenvalues of the matrix in question. Figure 4.30
shows the minimal polynomials of degree 1, 2 and 5, i.e. the polynomials which cor-
respond to the cg iterations 1,2 and 5, over the interval [0, λmax]. Furthermore, the
symbols mark the value of πm on the eigenvalues µk,l of Hσ. The figure shows
the situation for three different values of σ, namely σ = 1−3 (top right), 1−5(bottom

9Recall from Section 4.1 that grid functions are high frequencies with respect to a given fine grid if
they show up as spurious smooth modes on the next coarser grid due to aliasing.
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Figure 4.30: Values π(µi), i = 1, . . . , 1024 of the minimal polynomial at the eigenvalues
µi, i = 1, . . . , 1024 of Hσ for the linear-quadratic model problem with h = 1/32
and σ = 1−3(top right), σ = 1−5 (bottom left) and σ = 1−7(bottom right). For
comparison, π(µi) is shown for the eigenvalues of Lh (top left). Shown are the
polynomials π1, π2 and π5.

left) and 1−7(bottom right). All cases use a mesh size of h = 1/32. For comparison,
the situation for the eigenvalues λk,l of Lj is shown in the top left. For a relatively
large value of σ such as 1−3, the operator Hσ can be seen as a small perturbation of a
scaled identity and thus the cg method converges rapidly. For smaller σ however, the
strong clustering of the µk,l close to zero poses a severe difficulty and even a higher
order polynomial (degree 5 in the case of σ = 1−5, 1−7) does not generate significant
reduction with respect to small µk,l. Thus we expect that increasing β in Sνj,α,β, i.e. an
increase in the number of cg iterations applied to (RHA), by a small amount only will
not significantly ameliorate the smoothing behavior (on the other hand, a σ-dependent
increase of β will destroy the O(N) cost per iteration). Even to the contrary, the error
reduction with respect to most of the larger eigenvalues or smooth error components,
is stronger than the reduction of the high frequencies. Thus, when applied to Hσ for
σ � 1, the cg method acts as a rougher instead as a smoother. The consequence for
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the multigrid iteration is that the complementarity between the smoothing iteration
and the coarse grid correction does not hold anymore, leading at best to a decrease of
convergence speed or worse to divergence of the whole multigrid process.

In order to restore the complementarity between smoothing and the coarse grid cor-
rection we construct a high-pass filter which removes the low frequency components
from the control error and thus forces the cg iteration to act exclusively on the high
frequency part of the spectrum. In a very general context considering a linear system
Ax = b with positive definite A, the family of “partial spectral factorization” algo-
rithms [70] pursues a similar idea. There, a near-invariant subspace associated with
the smallest eigenvalues of A is removed from the iteration by orthogonal projections,
resulting in so-called “deflated” Krylov iterations. Furthermore, several algorithms
aimed specifically at solving Fredholm equations of the first and second kind involve
some splitting of the approximation space into subspaces related to smooth and oscil-
latory components. Probably the first publications in this direction is [104], where a
multilevel method for a Tikhonov-regularized first kind Fredholm integral equation is
proposed. Later works building on these results include two- and multilevel precondi-
tioners [57, 153] and wavelet-based approaches [133]. Analytical as well as numerical
results in [57, 104, 133] indicate that the convergence factors do not depend on hJ , but
on J and thus implicitly on hc. In this sense, the results are similar to our results as
presented in Section 4.5.5. In our setting however, the idea of frequency filtering proves
beneficial and yields a further improvement of our approach in the sense that it frees
us from the constraint on the coarse grid size, which is in contrast to [57, 104, 133].

For all but the coarsest level we denote by

W LF
j ⊂ Wj, j = 1, . . . , J (4.86)

a subspace of low frequency or smooth functions and by WHF
j the orthogonal comple-

ment consisting of the oscillatory functions in Wj. Let ΠLF
j : Wj → W LF

j be the orthog-
onal projection onto the low frequency subspace and ΠHF

j : Wj → WHF
j ,ΠHF

j = Ij−ΠLF
j

the projection onto the high frequency subspace. Consistent with multigrid theory we
envisage W LF

j as the embedding of the coarse space Wj−1 ↪→ Wj and consequently we
will approximate ΠLF

j by standard interpolation operators.
Using Ij = ΠLF

j + ΠHF
j , we write Hσ

j as

Hσ
j = ΠLF

j Hσ
j ΠLF

j + ΠHF
j Hσ

j ΠHF
j + ΠLF

j Hσ
j ΠHF

j + ΠHF
j Hσ

j ΠLF
j . (4.87)

The last two terms in (4.87) vanish identically for exact projections in the case of the
model problem. To avoid solution of Gramian systems, we approximate the projection
instead by standard interpolation operators, computing

ΠLF
j ≈ P j

j−1R
j−1
j . (4.88)

Note that here, in contrast to the original multigrid algorithm, we need the unscaled
restriction, i.e. the weights have to add up to 1 since we apply ΠLF

j to a (discrete)
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function instead of a residual vector. When using (4.88) the last two terms in (4.87)
do not vanish but are still negligible, in particular since we do not intend to solve
(RHA) but to reduce the high frequencies. To this end, we consider the low and
high frequency order of the interpolation operators (condition (4.13) depends on the
polynomial orders), which are defined as follows [41, 90]:

Definition 4.1. For a restriction operator Rj−1
j the low frequency order mLF

R and the
high frequency order mHF

R are defined as the largest numbers which satisfy

R̂j−1
j (θ) = 1 +O(h

mLF
R

j ), θ ∈
[
−π

2
,
π

2

)2

(4.89)

R̂j−1
j (θ) = O(h

mHF
R

j ), θ ∈
[
−π, π

)2

\
[
−π

2
,
π

2

)2

(4.90)

for fixed θ and hj → 0, where R̂j−1
j (θ) is the symbol of Rj−1

j (cf. Section 4.3.1).

A large mLF
R means that smooth components are transferred to coarse grids with only

small pollution by spurious high frequency components. A large mHF
R means that high

frequency components are filtered out well by Rj−1
j , i.e. they show up on the coarse grid

as spurious smooth components with very small amplitude. The corresponding orders
for a prolongation operator P j

j−1 are defined as those of Rj−1
j = (P j

j−1)∗. Therefore,

a large mHF
P indicates that spurious high frequencies generated by P j

j−1 on the fine
grid have very small amplitude, whereas a large mLF

P implies that the amplitude of a
prolongated smooth mode is not changed by much. For both Rj−1

j,FPA and Rj−1
j,BL holds

mLF
R = 2. For Rj−1

j,FPA, mHF
R = 1, whereas for Rj−1

j,BL holds mHF
R = 3.

Using (4.87), the system (RHA) decomposes into

ΠLF
j Hσ

j w
u,LF
j = ΠLF

j gj, (4.91)

ΠHF
j Hσ

j w
u,HF
j = ΠHF

j gj (4.92)

where gj = vuj +Mjw̃
p
j is the right hand side of (RHA) and wuj = wu,LF

j + wu,HF
j . The

crucial idea now is to treat only (4.92) inside the smoothing iteration. On each level j,
we iterate on (4.92) instead of on (RHA) and defer the solution of (4.91) to the next
coarser level, until wu,LF

0 will be obtained by the coarse grid correction. For j = 0 we do
not employ the splitting (4.91), (4.92), but solve the original system (RHA). Since ΠHF

j

has a non-trivial kernel, the system (4.92) is singular. In principle it is known that the
conjugate gradient method can solve singular systems as long as the right hand side
is consistent. However here, in order to avoid additional convergence difficulties due
to non-symmetry and non-definiteness, we employ the more robust FGMRES method
instead. This yields a stable algorithm in all our numerical experiments.

To summarize we note that the necessary modifications to Sνj,α,β are confined to step
3 in Algorithm 5, 67, where (RHA) is replaced by (4.92). In particular, the projection
ΠHF
j is applied to the right hand side and in the course of the iterative process within

the matrix-vector product for Ĥσ, cf. Algorithm 6. Due to the approximation ΠLF
j ≈

P j
j−1R

j−1
j the required projections involve only a small computational overhead.
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Figure 4.31: Error reduction for σ = 1−10 and J = 10 for the cases ΠLF
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4.7 Numerical Results: Robustness Enhancement

All results presented in this section have been obtained with ΠLF
j ≈ P j

j−1,BLR
j−1
j,BL.

However, the effect of the larger mHF
R for Rj,BL compared to Rj,FPA is only marginally,

see Figure 4.31. There, we show the discrete L2-error emh of the computed solution of
the model problem (LQPh) on a grid with hJ = 2−10 and σ = 1−10. The projection
ΠLF
j is approximated by P j

j−1,BLR
j−1
j and we compare the two cases Rj−1

j = Rj−1
j,BL and

Rj−1
j = Rj−1

j,FPA. Recall that the low frequency order equals 2 for both restrictions.

with ΠHF
h = P j

j−1,BLR
j−1
j,BL.

Figure 4.32 shows the spectrum of the multigrid iteration matrix for a W1,1-cycle
on a finest mesh width h5 = 1/32 and a regularization parameter σ = 1−5. On
the left, we see the eigenvalues for the unmodified method, which for this value of σ
is divergent. This is reflected by an eigenvalue µ with |µ| > 1. Furthermore, several
eigenvalues are located relatively far from the origin. Figure 4.32 on the right shows the
eigenvalues for the improved method, symbolized with , as well as those eigenvalues
of the unmodified method which are located inside the shaded area of the left plot,
again denoted by the symbol . The tilted V-formation of the eigenvalues is left nearly
unchanged by the frequency filtering, as these are the eigenvalues corresponding to the
state and adjoint variables. However, the eigenvalues located along the axes most likely
correspond to the control component, cf. Figure 4.4 on the right, where the spectrum of
the smoothing iteration Sj,1 was shown with direct factorization of state and adjoint
unknowns. Thus, the filtering process essentially removes large eigenvalues, which
correspond to high frequencies in the control unknowns, from the spectrum of the
iteration matrix and leaves the rest of the spectrum nearly unchanged.

Table 4.8 lists the average error reduction factor %30
avg with respect to the discrete

L2-error emh obtained with the improved method. The test case is the homogeneous
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Figure 4.32: Eigenvalues of the W1,1-cycle multigrid iteration matrix for σ = 1−5, unfiltered
and with frequency-filtering. The area shown on the left contains the complete
spectrum of the unfiltered multigrid operator. The area shown on the right
contains the complete spectrum of the multigrid operator employing the filtering
step and corresponds to the shaded rectangle in the left figure.

linear-quadratic model problem (LQPh) and solutions for different values of σ → 0 are
computed. In all cases, the coarsest mesh size is h0 = hc = 1/2. Thus, the finest mesh
size is h = hJ = 2−J+1 and including the coarsest level we employ J + 1 levels. Note
that for all values of σ tested here the unmodified method diverges if the coarsest mesh
width is hc = 1/2. We tested both the W1,1- and the W2,2-cycle. V -cycle convergence
is not satisfactory and for some combinations of small σ and large hJ , divergence is
observed. Both W -cycles achieve very good average convergence rates even for very
small σ down to 1−10. We see that %avg does neither depend on J nor σ for J large
enough. Roughly the condition σ > ch4

J for a constant c < 1 seems to hold. Recall the
condition (4.58). For the improved version this condition has to hold for J only and
the reason is as follows: due to the inexact splitting (4.91), (4.92) the complementarity
between smoothing and coarse grid correction is not perfect. Thus some modes are
still not reduced quickly enough on intermediate grid levels j < J and eventually
have to be damped on the finest level J . The results suggest that these modes are
ultimately responsible for the fact that the rates given in Table 4.8 are lower than
the optimal rates obtained for the underlying PDE solution. Thus, similar to the case
of the anisotropic problems, a further improvement can be achieved by increasing β.
The corresponding results are shown in Figure 4.33, left. Here, for example the W2,2-
cycle with β = 3 or β = 2 yields the excellent rates ρ30

avg = 7.83−2 and ρ30
avg = 1.03−1,

respectively.

We have also performed numerical experiments with the improved method applied
to optimal control problems with anisotropic constraints as discussed in Sections 4.5.2,
and 4.5.3. Exemplary we give the results for the model problem discretized on the
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Table 4.8: Reduction factor %30
avg with respect to the discrete L2-error emh obtained with the

improved method for (LQPh) and σ → 0.

J

σ 5 6 7 8 9 10 11

1−10 W1,1 8.82−1 7.13−1 4.27−1 2.61−1 2.52−1 2.52−1 2.52−1

W2,2 7.83−1 6.18−1 4.47−1 1.96−1 1.77−1 1.77−1 1.75−1

1−9 W1,1 7.73−1 5.14−1 2.68−1 2.52−1 2.52−1 2.52−1 2.52−1

W2,2 6.11−1 4.51−1 2.23−1 1.80−1 1.77−1 1.77−1 1.75−1

1−8 W1,1 5.90−1 2.77−1 2.53−1 2.52−1 2.52−1 2.52−1 2.52−1

W2,2 4.87−1 2.21−1 1.81−1 1.80−1 1.78−1 1.77−1 1.75−1

1−7 W1,1 2.89−1 2.54−1 2.52−1 2.52−1 2.52−1 2.52−1 2.52−1

W2,2 2.47−1 1.83−1 1.81−1 1.81−1 1.78−1 1.77−1 1.75−1

1−6 W1,1 2.53−1 2.52−1 2.52−1 2.52−1 2.52−1 2.52−1 2.52−1

W2,2 1.84−1 1.78−1 1.80−1 1.81−1 1.78−1 1.77−1 1.76−1

deformed unit square Gδ with δ = 0.25 (see Figure 4.15) and σ = 1−8. The coarsest
mesh is again hc = 1/2. We employed Sνj,1,2 with ALGS as constraint smoother.
Furthermore, we used the W1,1-cycle as preconditioner for a GMRES(15) iteration.
The iteration history with respect to emh is shown in Figure 4.33 on the right and the
mesh-independent convergence speed is readily observed. For comparison, we show the
convergence of the W1,1-cycle when used as a solver for the case J = 10. The Krylov
acceleration yields a notable improvement compared to the unaccelerated version. The
average reduction rates of the unaccelerated and the accelerated method are 2.68−1

and 1.41−1, respectively. These results show that in principle, the improved method
is suitable also for the anisotropic problems discussed earlier. However we note that
optimal rates without Krylov acceleration can only be expected if the anisotropies are
reflected in (4.87) by e.g. employing operator-dependent interpolation operators.

Last but not least we remark that the results displayed in Figure 4.22 have been
computed with the improved method employing the frequency filtering.

Summary

We have developed a multigrid method which, using the full multigrid framework,
solves discretized PDE constrained optimization problems with optimal cost O(n),
where n = 3h−2

J is the total number of unknowns of the corresponding KKT system
on the finest grid level J . The smoothing iteration is defined as an inexact variant of
a constraint preconditioner, building on the results discussed in Section 3.2. A local
mode analysis has shown that for discrete optimality systems smoothing rates can be
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Figure 4.33: Left: Error reduction for (LQPh) with J = 10, σ = 1−10 and β = 1,
β = 2, β = 3 with the W1,1-cycle and the W2,2-cycle. Right: Error
reduction for test problem with Gδ, δ = 0.25, σ = 1−8 and the W1,1-cycle as
preconditioner for GMRES(15). For comparison, for J = 10 the W1,1-cycle is
used as solver (marked with ∗).

expected that are close to those of the underlying constraint PDE, at least for moder-
ate values of the regularization parameter σ. These findings have been corroborated
with detailed numerical experiments including anisotropic diffusion and convection-
diffusion with a strong convection term as constraint, all of which require smoothing
iterations more elaborate than pointwise Gauss-Seidel at the constraint level. Thus
the flexibility of our approach, allowing to exploit properties of the constraint PDE,
has been demonstrated. In all cases it has been clearly shown that discrete optimality
systems can be solved with a small multiple of the computational cost required to
solve the underlying constraint PDE. In the full multigrid framework the constant of
proportionality has been found to range between 8 and 10.

Furthermore, the role of the regularization parameter σ has been discussed in some
detail. It has been shown that independent of J and σ, but with a restriction on h1,
robust convergence rates are obtained. By a close inspection of the smoothing iteration
with respect to the control unknown uh, an improvement based on spectral filtering of
the reduced Hessian Hσ

j = σMj+S∗jMjSj could be achieved. With minimal additional
computational work, the (RHA)-step in Algorithm 5 is restricted to the high frequency
components of the error, thus restoring complementarity of the smoothing step and
the coarse grid correction. As a result, the restriction on the mesh size h1 is removed.
Numerical experiments show that for small enough hJ , robust convergence rates are
obtained, which do not depend on the regularization parameter σ, the coarsest mesh
size h0 and the number of levels J .

In the two subsequent chapters the method presented here will be employed at the
core of multigrid-based solution methods for control-constrained problems as well as
semilinear-constrained problems.



5 A Primal-Dual Active-Set Multigrid
Method for Control-Constrained Optimal
Control Problems

In this chapter we consider optimal control problems with additional inequality con-
straints imposed on the control unknown u and for their efficient solution we combine
a primal-dual active-set strategy with the multigrid method developed in the previous
chapter. Control-constraints are specified by the condition u ∈ Uad, where the set of
admissible controls Uad ⊂ L2(Ω) is a proper subset of L2(Ω) and is assumed to be
closed and convex. In particular, we consider the problem

minimize J (y, u) (CC)

subject to C(y, u) = 0

and u ∈ Uad,

where J and C are as in Example 2.12, i.e. J is the tracking-type functional (2.1)
and the constraints C are given by the second-order linear elliptic partial differential
equation (2.24). The set Uad is defined by so-called box-constraints

u ∈ Uad = {u ∈ L2(Ω) | uα ≤ u ≤ uβ a.e. in Ω}, (5.1)

with given functions uα, uβ ∈ L∞(Ω), uα ≤ uβ a.e. in Ω. Obviously the set Uad defined
by (5.1) is closed and convex. Existence and uniqueness of a solution then follows from
Theorem 2.4. Theorem 2.8 yields the first-order conditions with the corresponding
optimality system (OS), where the optimality condition is given by (2.17).

Remark 5.1 (Regularity of the Optimal Control). For Uad = {u ∈ L2(Ω) | u ≥
0 a.e. in Ω} one obtains u ∈ H1

0 (Ω). In the case of the box-constraints (5.1) one
obtains u ∈ H1(Ω) if the bounding functions uα, uβ are sufficiently regular, in partic-
ular uα, uβ ∈ L∞(Ω) ∩ H1(Ω). Without additional assumptions on the regularity of
uα, uβ however, we can only expect u ∈ L2(Ω), cf. [111, Ch. II, Remark 2.3].

5.1 Finite Dimensional Approximation

The approach most common for the finite dimensional approximation of control-con-
strained optimal control problems is the discretize-then-optimize methodology. To
this end, the objective functional J , the constraints C and the admissible set Uad
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viz. the bounding functions uα, uβ are approximated by discrete versions. Existence
and uniqueness of a solution y∗h, u

∗
h to the optimization problem in finite dimension

immediately follows. We remark that several algorithms can be formulated in an
appropriate function space setting and can be applied directly to (OS). A resulting
sequence of infinite-dimensional systems then has to be discretized. Convergence can
be proved using the interpretation as a semismooth Newton method, we refer to [91,
148] and to [92] for a mesh-independence result. In the present setting however,
where we focus on devising an efficient algorithm, a discrete version of (OS) is the
appropriate starting point and will be derived now. Discretizing C as in Section 2.3.2,
we obtain the discretized state equation (2.50f) and the corresponding discrete adjoint
equation (2.50b). It remains to discretize (5.1) and (2.17), which in the concrete
setting is stated in (2.19). To this end, we discretize the bounding functions uα, uβ

by piecewise constants and obtain the discrete approximation to the set of admissible
controls Uad,

Uad,h =
{
vh ∈ Uh | uαh ≤ vh ≤ uβh

}
. (5.2)

The L2-inner products appearing in the variational inequality are discretized employ-
ing midpoint quadrature, resulting in the same mass matrix Mh as in (2.50f), (2.50b).
We then obtain (

σMhuh −Mhph
)T

(vh − uh) ≥ 0, vh ∈ Uad,h (5.3)

as discrete optimality condition. The complete discrete optimality system correspond-
ing to (OS), (2.17) is given by (2.50b), (2.50f) and (5.3). Error estimates have been
given in Section 2.3.3.

5.2 Multigrid Methods for Variational Inequalities

The two most prominent methods to treat optimization problems with inequality con-
straints are interior-point methods and active set strategies. Both approaches yield a
sequence of equality-constrained quadratic programming problems (QP) and therefore
rely on an efficient solution method for such QPs. Currently the state-of-the-art meth-
ods discussed in Chapter 3 are frequently employed for their solution and the bulk of
numerical methods is made up by their combination with interior-point or active-set
methods. Only a few publications consider the application of multigrid within the
context of inequality-constrained PDE constrained optimization problems.

The interior-point approach aims at maintaining the complementarity condition at
all intermediate steps and introduces (logarithmic) barrier functions. As a result,
the QPs can become increasingly ill-conditioned when the interior-point algorithm
approaches the solution. The goal of active set methods is to enforce the feasibility
of intermediate iterates with respect to the constraints. To this end, at each step the
constraints are partitioned into sets of active and inactive constraints with respect to
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the current iterate, hence the name of the method. A particular class of active-set
methods is the primal-dual active-set (PDAS) strategy [24, 91]. The PDAS method
is closely related to the projected Newton method of [25], and can be formulated as
a semismooth Newton method in infinite dimension. As such, the PDAS approach
shares important properties with Newton methods, namely superlinear or quadratic
local convergence and a mesh-independence principle [92]. Therefore, we expect an
inner-outer iterative method, defined by the combination of our multigrid method
for the solution of the QPs and the semismooth Newton method to generate the
QPs, to be an efficient and mesh-independent solution method for PDE constrained
optimization problems with inequality constraints on the control. Furthermore, for
control-constrained optimal control problems, in [23] the PDAS approach is shown to
be more efficient than interior-point methods. For the combination of multigrid and
interior-point methods, albeit not in the context of optimal control, we refer to [149].
Combinations of active-set strategies with multigrid have been proposed in [87] and
later in [98] for minimal surface and other obstacle problems. In case the active and
inactive sets generated by the PDAS method and the approach in [98], both outer
iterations yield the same inner linear system. However, in contrast to [98], which is a
primal method only, in [91] dual information is used to predict the active set.

In contrast to inner-outer iterative schemes one can define a variant of a multigrid
method which treats the inequality constraints within the smoothing iteration. In the
context of a semismooth Newton method, this amounts to a local linearization pro-
cess in the smoother instead of a global one in an outer iteration. Thus, this multigrid
approach is related to the Full Storage Approximation (FAS) scheme [40], which was
mainly developed to treat nonlinear problems. In [42], the projected FAS (PFAS)
has been developed and applied to complementarity formulations of free-boundary
problems. In [33, 35], the collective Gauss-Seidel smoother of the CGSM multigrid
approach (cf. Section 4.2) has been augmented by a local projection step uh = Πloc

Uad
ũh

to allow for inequality constraints on uh. To our knowledge, this is the only published
application of a PFAS-like method in the context of PDE constrained optimization.
Related approaches such as the monotone multigrid method [107], which also em-
ploy projected Gauss-Seidel smoothing, are applied mostly to variational inequalities
derived from obstacle- and contact-problems in elasticity and mechanics.

A major advantage of treating the inequality constraints in an outer iteration is as
follows: The resulting inner subsystem and in particular the smoother of a multigrid
method applied there does not need to take the constraints into account. Thus, the
inner systems to be solved are strictly linear and equality-constrained and the multigrid
method of Chapter 4 can be applied as QP subsolver with only minor modifications.
The connection to semismooth Newton methods lets us expect superlinear convergence
and thus a fast detection of the active sets within the outer iteration.1 In contrast, the

1In this respect the PDAS method differs significantly from primal active-set methods like the
Simplex algorithm since many constraints per iteration can be identified.
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next-neighbor related identification of active nodes within a projected Gauss-Seidel
smoother can lead to slower identification of the active set.

5.3 The Primal-Dual Active Set Method

In this section we briefly describe the primal-dual active set strategy that will be used
as outer iteration to handle the control-constraints [23, 24, 91]. To this end, we note
that for the discrete variational inequality (5.3), an equivalent formulation is given by

σMhuh −Mhph + λ = 0,

λ = max(λ+ c(uh − uβh), 0) + min(λ+ c(uh − uαh), 0), c > 0.
(5.4)

Here, the unknowns λ are the Lagrange multipliers associated with the inequality
constraints. They satisfy the Karush-Kuhn-Tucker conditions

λ ≤ 0 on Th,A∗− = {Ti ∈ Th | i ∈ A∗−}, A∗− = {i | u∗h = uαh on Ti}, (5.5)

λ ≥ 0 on Th,A∗+ = {Ti ∈ Th | i ∈ A∗+}, A∗+ = {i | u∗h = uβh on Ti},
λ = 0 on Th,I∗ = {Ti ∈ Th | i ∈ A∗−}, I∗ = {i | uαh < u∗h < uβh on Ti}.

Here, A∗− and A∗+ are the active sets and I∗ is the inactive set at the (discrete) optimal
solution u∗h. To unburden the notation, active and inactive sets are not designated
with the discretization index h, however, they always refer to the discrete unknowns.

The primal-dual active set strategy is an iterative algorithm that makes use of (5.4)
to predict the active and inactive sets and treats an associated equality constrained
optimization problem at each step. This leads to Algorithm 7. Note that for the
case without control constraints, we have A− = A+ = ∅ and the overall algorithm
reduces to just the solution of (EQP), which in turn reduces to the saddle point
system (2.51). This concludes the description of the PDAS method. For details
and convergence properties we refer to [24]. In particular, it is proved there that, if
Algorithm 7 stops due to the criterion in line 4, the solution of (EQP) is the solution
of the original optimality system. No additional stopping criterion was required in our
implementation, in our numerical experiments Algorithm 7 always stopped due to the
rule in line 4.

The main computational effort in this algorithm has to be spent for the solution
of (EQP). In most publications this is done by solving the associated reduced system
for the control unknowns ukh by a conjugate gradient method, i.e. the methods dis-
cussed in Chapter 3 are applied to (EQP). In our context it is natural to employ the
multigrid method developed in the preceding chapter for the solution of (EQP). To
this end, we modify the system (EQP) in such a way that it can be formulated as a
KKT system (2.51). We proceed as follows: First, we partition the control unknowns

according to ukh = [uI
k

h u
Ak−
h u

Ak+
h ]. The same partitioning applies to the Lagrange mul-

tipliers λk = [λI
k
λA

k
− λA

k
+ ]. Note that this partitioning induces corresponding 3 × 3
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The Outer PDAS Iteration

1: Choose initial values y0
h, u

0
h, p

0
h, λ

0 and set k = 1
2: while not converged do
3: predict Ak−,Ak+, Ik as follows:

Ak− = {i | uk−1
h +

λk−1

σ
< uαh on Ti} (5.6a)

Ak+ = {i | uk−1
h +

λk−1

σ
> uβh on Ti} (5.6b)

Ik = {i | i 6∈ Ak− ∪ Ak+} (5.6c)

4: if k ≥ 2 and Ak− = Ak−1
− ,Ak+ = Ak−1

+ , Ik = Ik−1 then
5: converged = true
6: else
7: solve the equality-constrained problem

Mhy
k
h + LThp

k
h = Mhȳh

σMhu
k
h −MT

h p
k
h + λk = 0

Lhy
k
h −Mhu

k
h = Mhfh (EQP)

λk = 0 on Th,Ik
ukh = uαh on Th,Ak−
ukh = uβh on Th,Ak+

8: k = k + 1

Algorithm 7: The Primal-Dual Active-Set Strategy as outer iteration.

block, 3× 1 column and 1× 3 row block partitions of the mass matrix Mh. Then, the
system given by the first three lines in (EQP) can be written as

Mh LTh

σMIk,Ik
h σM

Ik,Ak−
h σM

Ik,Ak+
h −MIk,∗

h

σM
Ak−,Ik
h σM

Ak−,Ak−
h σM

Ak−,Ak+
h −MAk−,∗

h

σM
Ak+,Ik
h σM

Ak+,Ak−
h σM

Ak+,Ak+
h −MAk+,∗

h

Lh −M∗,Ik
h −M∗,Ak−

h −M∗,Ak+
h




ykh
uI

k

h

u
Ak−
h

u
Ak+
h

pkh

 =


Mhȳh
−λIk
−λAk−
−λAk+
Mhfh

 . (5.7)

Now we utilize the last three equations in (EQP) to reduce (5.7) to a system for



124 5 A PDAS Multigrid Method for Constrained Optimal Control

ykh, u
Ik
h , p

k
h, i.e. we eliminate u

Ak−
h , u

Ak+
h and we consider the controls ukh only on the

inactive set Ik. The solution of (EQP) then proceeds in two steps: First, the saddle
point system

KI
k

h xI
k

h = rI
k

h (5.8)

has to be solved, where

KI
k

h =

Mh LTh
σMIk,Ik

h −MIk,∗
h

Lh −M∗,Ik
h

 , rI
k

h =

 Mhȳh

−σMIk,Ak−
h uαh − σM

Ik,Ak+
h uβh

Mhfh +M
∗,Ak−
h uαh +M

∗,Ak+
h uβh

 , (5.9)

and the vector of unknowns is given by xI
k

h = [ykh u
Ik
h pkh]. Note that the KKT operator

KI
k

h and the right hand side vector rI
k

h depend on the index k of the outer iteration.
In the second step, the Lagrange multipliers λk are computed by

λA
k
− = M

Ak−,∗
h pkh − σMAk−,Ik

h uI
k

h − σMAk−,Ak−
h uαh − σMAk−,Ak+

h uβh, (5.10)

λA
k
+ = M

Ak+,∗
h pkh − σMAk+,Ik

h uI
k

h − σMAk+,Ak−
h uαh − σMAk+,Ak+

h uβh,

compare the lines 3 and 4 in (5.7). On the inactive set, we just set λI
k

= 0. Note
again that, for the case without control constraints, the system (5.8) reduces to (2.51),
i.e. we just have KI

k

h = Kh, r
Ik
h = bh and xI

k

h = xh. Finally, we remark that in the
context of a projected Newton method the operator KIh corresponds to the projected2

Hessian [25].

5.4 A PDAS Multigrid Method for the Solution of
Control-Constrained Optimal Control Problems

It remains to obtain the solution of (5.8) in a fast and efficient fashion. To this end,
we proceed by modifying the multigrid method of Chapter 4. For a fixed index k we
set I = Ik and define the smoothing iteration by the modification

wI,r+1
j = wI,rj + (BIKj)

−1(bIj −KIj wI,rj ). (5.11)

of iteration (4.23). The inexact constraint preconditioner (4.24) now takes the form

BIKj =

 L̂Tj
ĤIZj −MI,∗

j

L̂j −M∗,I
j

 , (5.12)

2In the literature, the name reduced Hessian is often used and in this context is meant in the sense
of reducing to inactive constraints, not to be confused with the reduced Hessian HZ in the sense
of Chapters 3 and 4.
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with the modified reduced Hessian given by

ĤIZj = MI,∗
j L̂−Tj MjL̂

−1
j M∗,I

j + σMI,I
j (5.13)

instead of (4.26). Using (5.11)–(5.13), the smoothing step then follows from Algo-
rithms 5 and 6 and is denoted in compact form as

w̃Ij = (SIj,α,β)ν(wIj , b
I
j ) (5.14)

with the same parameters ν, α, β as for (4.27).
From the two-step solution of (EQP) it follows that the Lagrange multipliers λ as

well as the bounding functions uα and uβ need to be discretized on the finest grid level
only. However, for the discretization of xIhj , b

I
hj

and the operator KIhj in (5.8) on a grid
level j < J , it is evident that we have to approximate the inactive set I on that grid
level. This has to be done in each PDAS iteration, after the inactive and active set on
the finest level J have been detected by the algorithm and before the solution of the
system (5.8). In the context of node-based discretizations for obstacle problems, two
different strategies have been previously used. In [87], the inactive set shrinks when
reduced to coarser grids and [98] later followed the same strategy. In [42], the size
of the inactive set increases with reduced level index. The difficulty of representing
I for levels j < J has been circumvented altogether in [30] by employing cascadic
multigrid. Here, the iteration starts on the coarsest level j = 0, and never returns
to the coarser grids. On each grid level, the active and inactive sets are determined
based on the current approximation. This leads to a fast detection of I due to the
nested iteration approach, however the convergence speed of cascadic multigrid suffers
from the non-existent coarse grid correction. A further strategy is the modification of
coarse grid basis functions which is employed within monotone multigrid.

Consistent with the cell-centered discretization, here we proceed as follows: The
third step of the PDAS algorithm yields index sets I, A− and A+ on the finest level J
and we denote the set of grid cells corresponding to I with TIJ . Now, for given TIj we
define TIj−1

as the set of all coarser grid cells for which at least one fine-grid subcell
is contained in TIj , i.e.

TIj−1
=
{
Ti ∈ Tj−1 | T si ∈ TIj for s ∈ {1, 2, 3, 4}}, j = J, . . . , 1. (5.15)

In our numerical experiments, this “outer” approximation of I on coarser levels has
shown to yield faster convergence than the alternative “inner” approximation. Most
likely the difference is due to the coarse grid correction: when I shrinks with decreasing
j, no coarse grid correction occurs for the current iterate on Ij\Ij−1, and the error on
Ij\Ij−1 has to be improved exclusively by the smoothing iteration.

In any case, the coarsest grid has to be fine enough to avoid A−,0 = A+,0 = ∅,
since otherwise the bounds uα, uβ would be completely removed from the coarse grid
correction process which necessarily leads to degradation of convergence. Note that
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no representation of the active sets A− and A+ is needed on coarser levels. From
the sequence of meshes given by (5.15) we then obtain a sequence of operators KIj as
before by direct discretization.

The intergrid transfer operators follow from (4.60) with minor modifications with
respect to the control component uIj . They are given by

Rj−1
j =

 Rj−1
j

Rj−1,I
j

Rj−1
j

 , Pjj−1 =

 P j
j−1

P j,I
j−1

P j
j−1

 . (5.16)

In (5.16), the symbol Rj−1,I
j denotes the four-point average operator (4.12) giving

values only for grid cells Ti ∈ TIj−1
. When applying Rj−1,I

j to obtain a coarse grid
value of the uIj−1-component, fine grid values on the active set Tj\TIj could be needed.
However, on A− and A+ the solution is fixed to the constraints uα, uβ, respectively
and the corresponding residuals vanish. Thus, active nodes should provide no contri-
bution here and consistently the corresponding stencil entries are set to zero. Similar
considerations apply to the prolongation P j,I

j−1. Here, coarse grid values on the active
set Tj−1\TIj−1

could enter the prolongation stencil when computing the correction for
a fine grid value of uIj . However again the corrections due to active nodes should be
zero and the corresponding stencil entries are set to zero. With these modifications,
the multigrid Algorithm 3 can be applied for the solution of (5.8), which concludes
the description of the PDAS-multigrid method.

Some additional remarks are in order when using the full multigrid Algorithm 4 for
the solution of (5.8). First we note that now the bounds uα, uβ need to be discretized
on all levels 0 ≤ j ≤ J for two reasons: first the right hand side vector rIJ (5.9) needs to
be constructed on all levels j < J , and second, the FMG prolongation P̃jj−1 transfers
the solution uIj which requires that the actual values of uj on A− and A+ need to
be taken into account. For these reasons, additionally the active sets A−,A+ need to
be represented on each grid level. To this end, instead of proceeding as in (5.15), we
restrict A− and A+ according to

TA±,j−1
=
{
Ti ∈ Tj−1 | ∪ T si ∈ TA±,j for s ∈ {1, 2, 3, 4}}, j = J, . . . , 1, (5.17)

where A± stands for A− or A+. After the restriction step (5.17) we set

Aj−1 = A−,j−1 ∪ A+,j−1 and TIj−1
= Tj−1\TAj−1

. (5.18)

Recall that for the conventional multigrid cycle only the sequence TIj , j = J, . . . , 0 was
needed.

We note that this strategy differs from other nested iteration approaches to obstacle
problems in the following sense: Here, we employ the full multigrid with the purpose of
solving (5.8) for fixed sets IJ and A−,J ,A+,J , as provided by the outer PDAS iteration
on level J . From results presented in Section 4.5.1 we can expect that this is achieved
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with optimal complexity. We do not employ the nested iteration strategy to change
the current predictions of IJ and A−,J ,A+,J . The latter strategy would be natural
when using an FAS-based method.

5.5 Numerical Results

In this section we conduct several numerical experiments to test the convergence and
efficiency of the proposed PDAS-multigrid method. We consider the model prob-
lem (LQPh) with different lower and upper bounds uαJ , u

β
J . The convergence factor

of the inner multigrid iteration is measured analogously to Section 4.5.1. Here, %m is

based on the fine grid residual resI
k,m
J of the EQP (5.8) which is defined as

resI
k,m
J = rI

k

J −KI
k

J xI
k,m
J (5.19)

for each index k of the outer PDAS iteration. As before, the superscript m is the
index of the multigrid iteration. With respect to the PDAS iteration, we use the fact
that the optimal control u∗ satisfies the projection formula

u∗ = ΠUad
(
1

σ
p∗) (5.20)

to construct an exact solution u∗ and measure the error ekuJ in the discrete L2-norm,
cf. (3.24). Additionally we consider the violation of the bounds

eu
k

α = max
T∈TJ

(
uαJ − ukJ

)
, eu

k

β = max
T∈TJ

(
ukJ − uβJ

)
. (5.21)

For the multigrid solution of (5.8) we employ the smoothing iteration Sνj,1,1 and
use GS-LEX as constraint smoother. Unless noted otherwise, the inner iterations are

stopped as soon as resI
k,m
J ≤ max

(
1−16res

Ik,0
J , 1−12

)
or m = 20. Furthermore, the

coarse grid size is set to h0 = 1/8.

In [23] different strategies are discussed for the initialization of the PDAS algorithm.
It was noted that the algorithm is rather insensitive to the initial value x0

J . A special
initialization proposed requires the solution of the state and adjoint equation for a
given feasible initial control u0

J . The second strategy consists of solving the uncon-
strained problem and we will adopt this approach. To this end, we use a general initial
value x0

J (cf. Section 4.5.1) and set

TIJ = TJ , A0 = ∅, λ ≡ 0. (5.22)

With these choices, the first PDAS iteration yields the solution of the unconstrained
problem since (5.8) reduces to (2.51).
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Figure 5.1: Computed optimal control u∗J (left) and corresponding active set A∗+ (shaded re-
gion, right) on a mesh with hJ = 2−8 for (LQPh) with control-constraints (5.23).
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Figure 5.2: Discrete L2-error of the control uJ (left) and error eβu (right) for the outer PDAS
iteration and different number of levels J with hJ = 2−(J+3).

5.5.1 A Model Problem

First we consider the unilaterally constrained problem with

u ≤ uβ = 0. (5.23)

The computed optimal control u∗J and the corresponding active set A∗ are depicted
in Figure 5.1 on a mesh with hJ = 2−8. Figure 5.2 shows the iteration history of
the outer PDAS iteration for different levels J with a mesh size of the fine grid given
by hJ = 2−(J+3). On the left, we plot the discrete L2-error of the control uJ and on
the right we show the error eβu. Note that for k = 4 the computed solution satisfies
eβu = 0. Further recall that in the first iteration, the unconstrained problem is solved.
Thus, I∗ and A∗ are detected in 3 iterations, independent of the level number J
(disregarding that one less iteration is needed for J = 4, i.e. the lowest resolution of
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Figure 5.3: Reduction of the norm of the PDAS-residual resI
k,m
J in each PDAS iteration k.

The mark indicates the respective initial residual resI
k,0
J .

Table 5.1: Average convergence rate of the V1,1-multigrid cycle for the solution of (5.8) at
each step k of the PDAS iteration.

J 1 2 3 4

8 8.99−2 1.08−1 1.06−1 1.09−1

7 8.86−2 1.08−1 1.04−1 9.48−2

6 8.93−2 1.10−1 1.05−1 9.36−2

5 9.17−2 1.10−1 1.07−1 9.49−2

4 9.51−2 1.09−1 1.01−1 —

the fine mesh). The PDAS convergences at a superlinear rate, furthermore, for the
final error obtained in iteration k = 4 we have euJ ∼ O(h2

J) (this will be confirmed

shortly below). In Figure 5.3 the reduction of ‖resIk,mJ ‖ is shown for each k = 1, 2, 3, 4.
The symbol denotes the begin of each PDAS step k. The corresponding average
convergence rates for different J and in each PDAS iteration are given in Table 5.1.
We observe that the convergence of the inner multigrid iteration is independent of the
outer iteration and for each system (5.8) corresponds to the rates which have been
obtained for the unconstrained model problem in Section 4.5.1. The rather minuscule
variations in %avg are due the changing I, which affects smoothing and more so the
coarse grid correction. In Table 5.2 we present the discrete L2-error euJ obtained in the
final PDAS step. In the second and third column, we give the errors and associated
ratios which have been obtained by solving (5.8) with the standard multigrid solver,
i.e. iterations with the V1,1-cycle have been performed until the stopping criterion
applied. Clearly second-order convergence is observed. In the fourth and fifth column
we give the same data which has been computed by using just one iteration of the full
multigrid for each PDAS step. Within the FMG, the same V1,1-cycle has been used.
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Table 5.2: Discrete L2-error of the control u∗J for (LQPh) with control-constraints (5.23).
Shown is the error for different levels J which is obtained in the final step of
the PDAS iteration with fully converged V1,1-cycles, FMG and FMG plus one
additional V1,1-cycle.

J V1,1 FMG FMG + V1,1

e4
uJ

Ratio e4
uJ

Ratio e4
uJ

Ratio

3 2.9225−5 — 3.1906−4 — 4.8750−5 —
4 7.3051−6 2.49−1 8.3699−5 2.62−1 1.2529−5 2.57−1

5 1.8262−6 2.50−1 2.1282−5 2.54−1 3.1626−6 2.52−1

6 4.5655−7 2.50−1 5.3510−6 2.51−1 7.9325−7 2.50−1

7 1.1414−7 2.50−1 1.3403−6 2.50−1 1.9854−7 2.50−1

8 2.8534−8 2.50−1 3.3527−7 2.50−1 4.9656−8 2.50−1

The absolute error is roughly one order of magnitude larger than for the fully converged
multigrid solution, but it still reduces at the same rate. In the last two columns, we
again present the same data, however this time the FMG has been followed by one
additional V1,1-cycle. This reduces the error to the same order of magnitude as that of
the conventional multigrid solver. These results reflect the situation for scalar elliptic
problems. Under the assumption that the convergence rate of the employed multigrid
cycle is smaller than 1/6, one FMG iteration yields an approximate solution with an
error of (5/2)ch2

J and one additional multigrid cycle reduces that error below (1/2)ch2
J .

Here, c is the constant from the error estimate ‖u∗J − u∗‖ ≤ ch2. Comparison of the
relative performance in terms of wall-clock time will be given below for a different
example.

As the second test case let us consider the bilaterally constrained problem with

uα =

{ −0.75 for y ≤ 0.5
−0.9 for y > 0.5

and uβ = y3 − 0.5. (5.24)

The computed optimal control u∗J and A∗ = A∗− ∪ A∗+ are depicted in Figure 5.4 left
and right, respectively, computed on a mesh with hJ = 2−8. In Figure 5.5 we show the
discrete inactive and active set on levels J = 0, 1, 2, 3 as generated by the coarsening
process (5.15). In Figure 5.6 the iteration history of the outer PDAS iteration is
shown. The inner systems are solved with the FMG followed by an additional multigrid
cycle. On the left, we show the error eu

k

J , on the right, we show eu
k

β . The error eu
k

α

vanishes already in the second iteration and is not displayed here. Again, superlinear
convergence of the outer iteration is clearly visible. The final error obtained for k = 4
again is second-order convergent with respect to hJ . The corresponding data is given
in Table 5.2, where we also list the computing time in seconds. The numbers confirm
the optimal complexity O(3h−2

J ) of the FMG solver.
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Figure 5.4: Computed optimal control u∗J (left) and corresponding active set A∗ = A∗+ ∪
A∗− (shaded region, right) on a mesh with hJ = 2−8 for (LQPh) with control-
constraints (5.24).

1 4 8

1

4

8

1 8 16
1

8

16

1 16 32
1

16

32

1 32 64
1

32

64
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levels J = 0, 1, 2, 3 for (LQPh) with control-constraints (5.24).
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Figure 5.6: PDAS iteration history for (LQPh) and constraints (5.24). The inner system (5.8)
was solved with FMG followed by one V1,1-cycle. Shown are the discrete L2-error
of the control (left) and the violation of the upper bound (right).

Table 5.3: Discrete L2-error of the control u∗J for (LQPh) with control-constraints (5.23) and
wall-clock time for the solution with FMG plus one additional V1,1-cycle.

J e4
uJ

Ratio time [s] Ratio

5 3.4246−6 — 1.2723+1 —
6 8.5909−7 2.51−1 5.9187+1 4.65
7 2.1570−7 2.51−1 2.6605+2 4.49
8 5.4015−8 2.50−1 1.1127+3 4.18
9 1.3530−8 2.50−1 4.5630+3 4.10

In the context of Newton-like methods, a different strategy is commonly employed
to optimize the efficiency with respect to computing time. In inexact Newton methods
(cf. Section 6.3.1), the accuracy requirement for the solution of the inner systems is
coupled to the progress of the outer iteration. Here, we test how a fixed number
of multigrid iterations, e.g. just one or two cycles per outer PDAS step, performs.
This is a specific truncated (semismooth) Newton method. Naturally, we expect an
increase in the number of PDAS iterations and at least for m = 1, we can only
expect linear convergence. This is confirmed in Figure 5.7, where the error eu

k

J is
plotted against the wall-clock time measured in seconds. Marks indicate a new PDAS
step. However, measured in total units of multigrid cycles both truncated approaches
are very competitive and the overall performance equals that of the full multigrid
approach.

For fixed σ, the convergence of the outer PDAS iteration does not depend on hJ .
Let us now consider the dependence on the regularization parameter σ. To this end,
we consider the first test case with the unilateral bound (5.23) and vary σ between
1−2 and 1−5. Figure 5.8 shows the discrete L2-error eu

k

J on the left, and the bound
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Figure 5.8: Convergence of the outer PDAS iterations for different values of the regularization
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violation measured with eu
k

β on the right. We observe a slight increase in the number
of iterations for decreasing σ. This is in accordance with results reported in [24]
and is therefore not related to method used to solve (EQP). The given heuristic
explanation is that for smaller σ, the constraints can act stronger and A∗ is larger
for smaller σ. Depending on the initial guess, more iterations are required until A∗
is fully resolved. The size of the active set and the growth in each PDAS iteration is
reported in Table 5.4 for σ = 1−2, 1−5 and J = 6, 7, 8. The k-th column contains the
data for the k-th PDAS iteration. In the first column, we give the size of A1, each
following column contains the growth, i.e. the increase in cell numbers, from Ak+ to

Ak+1
+ . Furthermore, we report the error eu

k

β .
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Table 5.4: Size of the active setAk+ and error eu
k

β for J = 6, 7, 8 and regularization parameters
σ = 1.0e-2 and σ = 1.0e-5.

σ J 1 2 3 4 5

6 124952 +6096 +24 — —
6.843−2 4.149−4 0.0 — —

1−2 7 499670 +24474 +144 — —
6.848−2 4.800−4 0.0 — —

8 1998192 +98254 +706 — —
6.856−2 4.820−4 0.0 — —

6 101450 +20528 +7744 +1330 +20
2.338−1 9.117−2 8.090−3 3.379−4 0.0

1−5 7 405590 +82330 +30916 +5342 +110
2.326−1 8.836−2 9.050−3 3.848−4 0.0

8 1622360 +329360 +123534 +21352 +546
2.331−1 9.109−2 1.055−2 3.960−4 0.0

Table 5.5: Number of cells in the final inactive set I∗ (fraction of total cell number in paren-
theses) for different values of σ.

σ 1.0 1−1 1−2 1−3 1−4

|I∗| 100288 (3.83−1) 15616 (5.96−2) 1152 (4.4−3) 64 (2.44−4) 0

5.5.2 Example: A Bang-Bang Control Problem

This test case is an example for a so-called bang-bang control. Such controls are almost
everywhere equal to the bounding functions uα, uβ. We prescribe the target state

ȳ = 128π2 sin(4πx1) sin(4πx2), (5.25)

the lower and upper bounds are given by

uα = −1, and uβ = 1, (5.26)

respectively. In Figure 5.9 we show the computed optimal state y∗h for σ = 1−4 on
a mesh with h = 2−9. Figure 5.10 shows the computed optimal controls u∗h on the
same mesh for a decreasing sequence of values for σ. For σ = 1−4, u∗h everywhere
attains the values of the bounds uαh , u

β
h. Correspondingly, the size of the inactive set,

|I∗|, is zero and the bound constraints are active in every cell. In Table 5.5 we list
the number of cells and the fraction of the total number of cells (in parentheses) in
|I∗| for the different values of σ. The given values confirm that the size of I∗ shrinks
with decreasing σ. The active set for this example was always detected in two PDAS
iterations.
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Figure 5.9: Computed optimal state y∗h for the example problem with an optimal control u∗h
of bang-bang type and σ = 1−4 on the finest mesh with hJ = 2−9.
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(a) σ = 1.0 (left) and σ = 1−1 (right).
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Figure 5.10: Computed optimal controls u∗h for the finest grid with a mesh size hJ = 2−9

and different regularization parameters σ.
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Summary

We considered the numerical solution of linear-quadratic PDE constrained optimiza-
tion problems with additional pointwise inequality constraints imposed on the con-
trol function. The control constraints are treated in an outer iteration, which here
is given by an implementation of the primal-dual active-set strategy (PDAS). The
PDAS method generates a sequence of equality constrained problems. In order to solve
these problems efficiently, we extended the multigrid approach devised for equality-
constrained problems (cf. Chapter 4). The required modifications have been described
in detail. We also adapted the full multigrid method in order to solve the PDAS
subproblems with optimal complexity.

Several numerical examples have been discussed, including constant and non con-
stant upper and lower bounds. It has been demonstrated that the PDAS-multigrid
method yields an efficient solver for discrete optimality systems with pointwise in-
equality constraints on the control. For both the outer PDAS iteration and the inner
multigrid method the convergence does not depend on the mesh size hJ of the finest
discretization level. It also has been demonstrated that the solution of the subproblems
is achieved with optimal complexity, employing the full multigrid method. Overall,
the resulting PDAS-multigrid method is a fast solver for linear-quadratic program-
ming problems. A natural application for such methods is as solver for the quadratic
subproblems which arise within a sequential quadratic programming (SQP) algorithm.
This will be the topic of the next chapter.



6 A SQP Multigrid Method for Semilinear
PDE Constrained Optimization

In this chapter we consider the numerical solution of optimization problems in the
form

minimize J (y, u)

subject to C(y, u) = 0 (NP)

and u ∈ Uad.

In particular, we consider problems (NP) where J : Y × U → R is given by the
tracking-type functional (2.1), the closed and convex set Uad ⊂ U is defined by the
box-constraints (5.1) and the equality constraints C(y, u) : Y × U → W represent a
semilinear elliptic boundary value problem

−∆y + g(x, y) = u in Ω, y = 0 on ∂Ω. (6.1)

We note that throughout the Laplacian in (6.1) could be replaced by the the general
second-order operator (2.20). The term g(x, y), which defines a nonlinear function in
the space variable x and the state y, is called a superposition or Nemytzkij-operator [5].
To unburden the notation, we will omit the space variable x when referring to g. Due
to the nonlinearity, the problem (NP) is not convex and may admit multiple criti-
cal points and solutions. Necessary first-order and sufficient second-order conditions
characterizing a local minimizer of (NP) will be given in Section 6.1.

The discretization of (NP) yields a large-scale nonlinear programming problem
(NLP). Our numerical approach for the solution of this NLP is based on the sequential
quadratic programming (SQP) method which is an iterative method that requires the
solution of a quadratic programming problem (QP) at each iteration. The QPs are
essentially obtained from a quadratic approximation of the Lagrangian and a linear
approximation of the constraints. For the unconstrained problem Uad = L2(Ω), the
discretized QP is a KKT system of the form (2.51). In this case, the SQP approach is
equivalent to the Lagrange-Newton method in the sense that the solutions of the QPs
generate the same iterates as those which are obtained by a step of Newton’s method
applied to the nonlinear first-order conditions. Thus, under suitable conditions, the
SQP method inherits the fast, i.e. superlinear or quadratic, local convergence of New-
ton’s method. Furthermore, Newton’s method often satisfies a mesh-independence
principle [3] which carries over to the SQP approach as well. Thus, when combined



138 6 A SQP Multigrid Method

with a mesh-independent inner iteration for the solution of the QPs, such as our
multigrid method from Chapter 4, the overall approach should result in an efficient
and mesh-independent solution method.

In the control-constrained case with Uad given by (5.1), we extend the above algo-
rithm by adding the control-constraints to the QP subproblems. In this case, each
subproblem is a quadratic complementarity problem corresponding to (CC) and can
be solved by the PDAS-multigrid method as discussed in Chapter 5. Again, mesh-
independence of inner and outer iteration are expected to yield an efficient solution
method for the discretization of (NP).

Several further issues, such as globalization by line search or trust-region strategies,
inexactness, different inner solvers, and differences in the specific formulation of the QP
respective the Newton updates give rise to a number of variants of the SQP approach.
Often the Lagrange-Newton method is denoted the SQP method, in particular in the
PDE-constrained optimization context [66, 67, 89], whereas in the general nonlinear
optimization context, the terminology SQP always is understood to include inequality
constraints. For an interpretation as a semi-smooth Newton method in function space
see [95] in the context of optimal control of the Navier-Stokes equations, and [146] for
an application to control of Burgers’ equation. For a survey of SQP methods we refer
to [32].

6.1 Existence and Characterization of Solutions

In this section we discuss the necessary first-order and sufficient second-order condi-
tions to characterize a solution of (NP). Different approaches exist in the literature
to prove existence of a solution to (NP), we refer to [6, 112, 145] for optimal con-
trol problems, to [115, 157] for Lagrange multiplier theory and optimization in vector
spaces and to [127] for the finite dimensional case. Here we state the relevant results.

Due to the nonlinearity of C, the problem (NP) is not convex and uniqueness of
a minimizer can not be expected. A point (y, u) is called feasible or admissible, if
u ∈ Uad and C(y, u) = 0. A feasible point (y∗, u∗) ∈ Y × Uad is a locally optimal
solution of (NP), if there exists a neighborhood Nε(y∗, u∗) ⊂ Y × Uad such that

J (y∗, u∗) ≤ J (y, u) for (y, u) ∈ Nε(y∗, u∗). (6.2)

If strict inequality in (6.2) holds, (y∗, u∗) is called a strict locally optimal solution.

Definition 6.1. Let (y∗, u∗) be a local solution of (NP). Then p∗ ∈ W ′ is denoted
the associated Lagrange multiplier, provided

D(y,u)L(y∗, u∗, p∗)(y − y∗, u− u∗) ≥ 0 for (y, u) ∈ Y × Uad (6.3)

holds.
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Here, D(y,u)L denotes the first Fréchet-derivative of the Lagrangian (2.22) with
respect to y and u, which is assumed to exist. We remark that the usual complemen-
tarity condition does not apply here since the second equation in (NP) is an equality
constraint. The existence of such an optimal multiplier p∗ requires a constraint quali-
fication to hold. In the special case considered here the constraint qualification reads

D(y,u)C(y∗, u∗)C(y∗, u∗) = W, (6.4)

where C(y∗, u∗) =
{
λ(y − y∗, u − u∗) | λ ≥ 0, (y, u) ∈ Y × Uad

}
denotes the conical

hull of Y × Uad in (y∗, u∗). Then existence of p∗ follows from

Theorem 6.2. Let (y∗, u∗) denote a local minimizer of (NP), let J and C be contin-
uously Fréchet-differentiable in Nε(y∗, u∗). If the constraint qualification (6.4) holds,
then there exists an optimal multiplier p∗ ∈ W ′.

Using the notation of Section 2.2, the first-order conditions (6.3) together with the
constraints C(y∗, u∗) = 0 yield the nonlinear optimality system

Ay∗ +Bg(y∗)−Bu∗ = 0,

A′p∗ +B′
(
Dyg(y∗)

)′
p∗ = E ′(ȳ − Ey∗), (NOS)

(σu∗ −B′p∗, u− u∗) ≥ 0, u ∈ Uad.

consisting of the state equation, the adjoint equation and the optimality condition,
cf. (OS). The variational inequality turns out to be the same as in the linear case
since C(y, u) is linear with respect to u. In order to prove that a point (y∗, u∗) which
satisfies (6.3) is actually a minimizer, we need a second-order condition. To this end,
we require that J and C are two times continuously Fréchet-differentiable.

Theorem 6.3. If a critical point (y∗, u∗) and its associated multiplier p∗ satisfy

D2
(y,u)L(y∗, u∗, p∗)(y, u)(y, u) ≥ α(‖y‖2

Y + ‖u‖2
U), (y, u) ∈ kerD(y,u)C(y∗, u∗) (6.5)

for some α > 0, then (y∗, u∗) is a locally optimal solution of (NP).

For the concrete problem at hand, the second Fréchet-derivative of the Lagrangian
is

D2
(y,u)L(y∗, u∗, p∗)(y1, u1)(y2, u2) = (y1, y2) + σ(u1, u2) + 〈p∗, BD2

yg(y∗)y1y2〉, (6.6)

and thus (6.5) reads

‖y‖2
L2(Ω) + σ‖u‖2

L2(Ω) +
(
p∗, BD2

yg(y∗)y2
) ≥ α

(‖y‖2
H1

0 (Ω) + ‖u‖2
L2(Ω)

)
(6.7)

for all (y, u) satisfying the adjoint equation.
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In order to justify above computations and results for concrete applications, we
need to verify the corresponding differentiability properties in Y = H1

0 (Ω), U = L2(Ω)
and W = Y ′. Furthermore, due to reflexivity, Y ′′ is identified with Y , i.e. p∗ ∈ Y .
The tracking-type functional (2.1) satisfies the differentiability requirements. We refer
to [6] for suitable conditions in the case of a more general J . The required Fréchet-
differentiability of C implies the corresponding differentiability of the superposition
operator g(y) in Y . Appropriate growth conditions of the form

|g(y)| ≤ α + β|y|(p/q), α ∈ Lq(Ω), β ∈ L∞(Ω), 1 ≤ q ≤ p <∞, (6.8)

ensure continuity and differentiability of g(y) for appropriate indices p, q. Using
Sobolev embeddings, one obtains that in the setting of Chapter 2, i.e. Y = H1

0 (Ω),
differentiability is obtained for example for g(y) = yk, k ≤ 5, cf. [5, 145]. Stronger
nonlinearities such as g(y) = exp(y) require additional Lipschitz and boundedness
conditions as stated in

Assumption 6.4. Let g : Ω × R → R be a Carathéodory function of class C2.
Furthermore, we assume that for all M > 0 there exists a constant CM > 0 such that

|Dyg(x, y)|+ |Dyyg(x, y)| ≤ CM for a.e. x ∈ Ω and |y| ≤M (6.9)

|Dyyg(x, y1)−Dyyg(x, y2)| ≤ CM |y1 − y2| for x ∈ Ω and |y1|, |y2| ≤M. (6.10)

and

Dyg(x, y) ≥ 0 (6.11)

In this case, one applies formally the Lagrange principle and has to prove that the
Lagrange multiplier is obtained as a solution of the adjoint equation (cf. also Sec-
tion 2.2). The condition (6.11) in particular ensures that 0 is not an eigenvalue of
D(y,u)C(y∗, u∗), thus allowing to establish surjectivity and existence of optimal mul-
tipliers. At this point we remark that not all numerical examples considered below
satisfy (6.9)–(6.11). For further details we refer to [6], where it is shown that under
above assumptions, the state equation has a unique solution y ∈ H1

0 (Ω)∩W 2,p(Ω) for
any 1 ≤ p <∞ and a Lagrange multiplier is obtained as the unique weak solution of
the adjoint equation, satisfying (6.3).

Verifying the second-order conditions a priori, e.g. based on (6.7), in general is not
possible, since it requires knowledge of the exact solution. Still, second-order sufficient
conditions play an essential role as they are needed to prove error estimates [6] as well
as local convergence of Lagrange-Newton or SQP methods formulated in function
space [95, 96]. We refer the interested reader to [135], where it is proposed to check
a certain discretized second-order condition numerically. Frequently, the second-order
conditions require a certain controllability of the state, i.e. a smallness assumption of
the tracking error ‖y∗ − ȳ‖ ≤ ε, [95].



6.2 The Discrete Optimality System 141

6.2 The Discrete Optimality System

Discretizing (NP) yields a nonlinear programming problem NLP

minimize Jh(yh, uh)
subject to Ch(yh, uh) = 0 (NLP)

and uh ∈ Uad,h.

The necessary first-order conditions of (NLP), which correspond to (NOS), are given
by the Karush-Kuhn-Tucker conditions. Hence, the discrete optimality system can be
derived in a similar fashion as in the linear case, cf. Section 2.3.3. We consider first
the case Uad = U , the box-constraints (5.1) will be incorporated by the SQP method
as defined in the next section. Discretizing the state equation yields the nonlinear
equation

Ch(yh, uh) = Lhyh +Mhgh(yh)−Mhuh −Mhfh = 0, (6.12)

which differs from (2.35) by the additional nonlinear term Mhgh(yh). The discrete
Lagrangian is given by

Lh(yh, uh, ph) = Jh(yh, uh) + pThCh(yh, uh), (6.13)

and following the discretize-then-optimize approach, we obtain the adjoint equation

DyhLh(yh, uh, ph) = Mhyh +
(
LTh +Mhgy,h(yh)

)
ph −Mhȳh, (6.14)

where LTh + Mhgy,h(yh) is the discrete version of the adjoint of the linearized state
operator and gy,h denotes the derivative of gh with respect to y. The discrete optimality
condition follows as

DuhLh(yh, uh, ph) = σMhuh −Mhph. (6.15)

Noting that (6.12) corresponds to DphLh(yh, uh, ph) and ordering the equations ac-
cording to (6.14), (6.15), (6.12), we obtain the nonlinear system

DyhLh(yh, uh, ph) = 0

DuhLh(yh, uh, ph) = 0 (NOSh)

DphLh(yh, uh, ph) = 0,

which is the discrete version of (NOS). Discretizations of (NP) have been considered
for example in [6, 118]. In [6] it is shown that under Assumptions 6.4 and if (6.7) holds,
a piecewise constant discrete control uh exists which solves (NLP), and furthermore,
the optimal L2 order of convergence

‖u− uh‖L2(Ω) ≤ Ch (6.16)

holds.
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6.3 Lagrange-Newton Methods and Sequential
Quadratic Programming

As we have outlined in the introductory section, for the solution of (NOSh) we devise
a Newton-based algorithm, which employs the multigrid method of Chapter 4 for
the solution of the arising linear Newton systems. A prominent alternative to treat
nonlinear problems with multigrid is the Full Approximation Storage (FAS) approach,
proposed in [40] for the solution of nonlinear elliptic PDEs. The FAS multigrid defers
the linearization process to the smoothing iteration. Since in the nonlinear case the
equivalence of the residual equation Ae = r to the original problem Ax = b does
not, the FAS multigrid computes solution updates instead of error corrections. The
FAS approach has been applied to optimal control problems in [33, 35]. There, a
collective Gauss-Seidel smoother (cf. Section 4.2) is applied to the optimal control
of the Bratu problem. To our knowledge, this is the only approach which treats
nonlinearly constrained optimal control problems with a multigrid-related full-space
approach.

Both FAS and Newton-multigrid approaches can be extremely efficient solvers for
nonlinear equations, and a final answer to the question, which approach is more ef-
ficient or robust, can not be given. Further details can be found in the standard
multigrid references, e.g. [85, 147].

In the following, let Fh(wh) with wh = (yh, uh, ph) denote the nonlinear operator
defined by (NOSh). Solving (NOSh) then amounts to finding the root of

Fh(wh) = 0, (6.17)

which is done by Newton’s method. As Newton’s method is only locally convergent,
some measure for globalization is required to increase robustness when converging from
remote starting points. To this end, two strategies are commonly employed: line search
and trust-region methods. In the context of a full SQP method, applying a line-search
method to the primal-dual iterate seems more natural than a trust-region strategy.1

For an introduction to both variants we refer to [127]. The basic Newton-line search
algorithm reads

i) compute the Newton step δwlh by solving

DFh(w
l
h)δw

l
h = −Fh(wlh), (6.18)

ii) use a line search algorithm to compute a step length αl,

1Trust-region strategies are based on positive definite modifications of the Hessian. In the full space
one has to deal with the indefinite KKT matrix, therefore trust-region methods are mostly applied
to reduced space approaches.
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iii) perform the Newton update

wl+1
h = wlh + αlδw

l
h. (6.19)

The line search algorithm in step ii) intentionally is left unspecified, since some details
specific for constrained optimization problems will have to be considered, which we
will do below. The original, undamped Newton method results if only unity steps are
taken. As we will see, in order to obtain the full Newton efficiency it is important
that the line search strategy eventually admits αl = 1 when the iterates approach the
solution. Still, exact solves of (6.18) are not required for all l, in particular in the
initial phase the accuracy can be considerably relaxed, leading to a further gain of
efficiency. These details will be discussed in Section 6.3.1 and 6.3.2.

The gradient of the nonlinear function Fh(wh) is given by the Hessian of the La-
grangian,

DFh(wh) = D2Lh(xh, ph). (6.20)

In iteration l, the system (6.18) is defined by a linear operator of KKT form

DFh(w
l
h) =

 D2
yyLh(wlh) D2

yuLh(wlh) (DyCh(xlh))T
D2
uyLh(wlh) D2

uuLh(wlh) (DuCh(xlh)T
DyCh(xlh) DuCh(xlh) 0

 (6.21)

and the right hand side is given by the nonlinear residual

− Fh(wlh) =

 DyLh(wlh)
DuLh(wlh)
Ch(xlh)

 . (6.22)

For problem (NP) with (6.1) we obtain (cf. Section 6.2)

DFh(w
l
h) =

 Mh + gyy,h(y
l
h)p

l
h 0 LTh + gy,h(y

l
h)

0 σMh −Mh

Lh + gy,h(y
l
h) −Mh 0

 , (6.23)

and (6.22) given by (NOSh). If Assumptions 6.4 and the second-order sufficient con-
dition (6.7) are satisfied, the operator DFh(w

l
h) will be uniformly bounded in a neigh-

borhood of a minimizer. The Newton step (6.18) with (6.23) and (6.22) is then well
defined and local convergence of Newton’s method follows [129].

6.3.1 Inexact Newton Methods

In practice, the Newton system (6.18) can be solved only iteratively to a certain accu-
racy. This leads to so-called truncated Newton methods. Related to this are inexact
Newton methods. Here, the accuracy of the Newton step δwlh is deliberately reduced
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in order to improve the efficiency. The underlying idea is that, far from a solution,
the quality of the Newton step might be disputable, and thus solving with high ac-
curacy is commonly referred to as “oversolving”, a potential waste of computational
resources. In fact, far from the solution an accurately computed δwlh might even yield
less progress towards the solution than a less accurate solution of (6.18). Close to
the solution however it is important to compute accurate steps δwlh, such that the
line search method can accept unity step lengths and the fast local convergence of
Newton’s method is preserved. The precise relationship between the outer iteration
and the inner linear process has been analyzed in [55]. We define the inner, linear
residual for the outer Newton step l as

rml = DFh(w
l
h)δw

l,m
h + Fh(w

l
h), (6.24)

where m is the iteration index of the inner linear process employed for the solution
of (6.18). The outer, nonlinear residual is given by Fh(w

l
h). Inexact Newton methods

arise, if the Newton system (6.18) is solved such that

‖rml ‖ ≤ ηl‖Fh(wlh)‖ (6.25)

holds with a nonnegative forcing sequence {ηl}. Choosing ηl = 0 yields Newton’s
method. In [55] it is proved2 that the iterates generated by Newton’s method which
satisfy (6.25)

• converge to w∗h provided ηl ≤ η < 1,

• converge to w∗h with a superlinear rate provided ηl → 0,

• and converge to w∗h with a quadratic rate if ηl = O(‖Fh(wlh)‖).

Practical choices for ηl are discussed in [60], in our implementation we use

ηl = γ
( ‖Fh(wlh)‖
‖Fh(wl−1

h )‖
)α
, (6.26)

with the common choices α = 2 and γ = 1.0 or 0.9. Furthermore, we apply the
safeguard

ηl ← min
(
ηl, ηmax

)
(6.27)

with ηmax = 0.5.

2Assuming the usual conditions ensuring local convergence of Newton’s method, i.e. nonsingularity
and Lipschitz continuity of DFh(w∗h) and a starting point sufficiently close to w∗h
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6.3.2 Globalization and Merit Functions

It remains to define the line search procedure required in step ii) of Newton’s method.
To this end, a scalar function φ(wh) which measures the progress of the algorithm is
required. In unconstrained optimization, the obvious choice is the objective functional
itself. Suitable choices for constrained minimization will be given below. Assuming
that the computed step δwlh is not degenerate, i.e. it is a descent direction of sufficient
length, a line search method determines a step length αl such that a sufficient decrease
condition

φ(wlh + αlδw
l
h) ≤ φ(wlh) + αlc1∇φ(wlh)

T δwlh (6.28)

is satisfied. The constant c1 ∈ (0, 1) is typically chosen as c1 = 1−4 and (6.28) is known
as the Armijo-condition. In practical implementations, αl is evaluated by backtracking,
in our implementation we chose the largest α ∈ (αmin, 1] such that (6.28) is satisfied,
always testing the full Newton step αl = 1 first, and reducing αl by a factor of 0.5 if
the trial step fails (6.28).

The choice of merit function corresponding to unconstrained minimization would be
φ(wh) = 1

2
‖Fh(wh)‖2

2. However, in constrained optimization, φ(wh) needs to balance
the objectives of decreasing Jh(yh, uh) and satisfying Ch(yh, uh) = 0. Two common
choices for φ(wh) are the l1-penalty function

φ(wh) = Jh(yh, wh) + ρ‖Ch(yh, uh)‖1 (6.29)

and the augmented Lagrangian merit function

φ(wh) = Lh,%(yh, uh, ph) = Lh(yh, uh, ph) + ρ‖Cc‖2
2, (6.30)

where Lh(yh, uh, ph) was defined in (6.13). In both cases, ρ ≥ 0 is a penalty parameter
to be determined in the course of the iteration. Both merit functions are exact in
the sense that any minimizer of (NLP) is also a local minimizer of φ(wh), provided
the penalty parameter ρ is sufficiently large. The l1-merit function can be evaluated
comparatively cheap, but has the distinct drawback that sometimes unit step lengths
close to a solution are rejected, preventing the fast local convergence of Newton’s
method. The augmented Lagrangian merit function does not have this effect, how-
ever it requires accurate estimates of the Lagrange multipliers and is more costly to
evaluate. In many publications, in particular those concerned with reduced methods,
the l1 function is preferred and second-order corrections are applied to overcome the
slow-down of convergence speed. Here, since we pursue the full space approach, we
compute at every iteration estimates for the Lagrange multipliers. Hence, we opt
for (6.30) as merit function. In particular, we treat ph as independent variable, and
the computed step length explicitly applies to ph as well.

For the Armijo-test (6.28) we need to evaluate the directional derivative

∇φ(wlh)
T δwlh = Fh(w

l
h)
T δwlh + ρCh(yh, uh)TDCh(yh, uh)δxlh = Fh(w

l
h)
T δwlh

+ ρ
(
Lhy

l
h +Mhgh(y

l
h)−Mhu

l
h

)T (
(LTh +Mhgy,h(y

l
h))δy

l
h −Mhδu

l
h

)
(6.31)
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The penalty parameter ρ is determined such that ∇φ(wlh)
T δwlh + c̄ = 0 for c̄ > 0, i.e.

δwlh is a descent direction for φ(wh). This yields

ρ =
Fh(w

l
h)
T δwlh + c̄

−Ch(yh, uh)TDCh(yh, uh)δxlh
(6.32)

Note that for Ch(yh, uh) = 0, any choice of ρ satisfies the descent property since then
φ(wh) = Jh(xh).

The Lagrange-Newton or SQP approach outlined is sometimes called a full-space
SQP method, in contrast to the widely-used reduced space methods. These result
from applying one of the Schur complement reduction techniques, in particular the
null space method, discussed in Chapter 3 for solving (6.18). Reduced SQP methods
have been used e.g. in [71, 95, 96, 146]. They are of particular interest, if the dimension
of the control space is small, or if for certain reasons a quasi-Newton approximation
to the reduced Hessian has to be maintained.

Further measures could be taken to improve robustness and performance of Newton’s
method. This includes heuristics such as the watchdog strategy, which can temporarily
accept steps violating (6.28) to allow for hill-climbing. Further techniques include hy-
bridization with a globally convergent first-order descent method: in case the Newton
step due to (6.18) is not well-defined, e.g. far from a minimizer where the second-order
condition does not hold, one reverts to the gradient step. Also in principle it would
be possible to incorporate a Lanczos process in order to verify numerically that the
second-order condition at a computed KKT point holds. We have not included such
steps in our implementation and refer to [73, 127] for further details.

6.3.3 A Full SQP-Multigrid Method

It remains to incorporate the inequality constraint (5.1) in the solution algorithm.
To this end, we exploit the Lagrange-Newton SQP equivalence, which states that
(assuming the Newton step is well defined) the solution of (6.18) can be obtained
equivalently as the solution of the minimization problem

minimize
1

2
δxThD

2
xxLh(xlh, plh)δxh + (DxLh(xlh, plh))T δxh (6.33a)

subject to DxCh(xlh)δxh = −Ch(xlh). (6.33b)

Hence, the system (6.18) can be interpreted as the first-order optimality condition
of a linear-quadratic optimization problem, which is convex and thus has a unique
solution. We now add the constraints (5.1) to (6.33) and solve (NLP) by solving the
sequence of problems (6.33), (5.1).

We proceed analogously to Chapter 5. The optimality system corresponding to (6.33)
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is augmented by the complementarity condition (cf. equation (5.4))

σMhδu
l
h −Mhδp

l
h + λl = 0,

λl = max(λl + c(δulh − (uβh − ulh), 0) + min(λl + c(δulh − (uαh − ulh), 0), c > 0.

(6.34)

Here, λl are the Lagrange multipliers associated with the constraints

ξα,lh ≤ δulh ≤ ξβ,lh , ξα,lh = uαh − ulh, ξβ,lh = uβh − ulh. (6.35)

For the solution of (6.33), (6.34) we apply the PDAS-multigrid method Algorithm 7.
For completeness, we state the equality-constrained QP which has to be solved in each
iteration of the PDAS algorithm:(

Mh +Mhgyy,h(y
l
h)p

l
h

)
δyl,kh +

(
LTh +Mhgy,h(y

l
h)
)
δpl,kh = −Fh,1(wlh)

σMhδu
l,k
h −MT

h δp
l,k
h + λk = −Fh,2(wlh)(

Lh +Mhgh(y
l
h)
)
δyl,kh −Mhδu

l,k
h = −Fh,3(wlh) (SQPEP)

λl,k = 0 on Th,Il,k
δul,kh = ξα,lh on Th,Al,k−
δul,kh = ξβ,lh on Th,Al,k+

.

Here, l is the index of the SQP step, k is the iteration index of the PDAS method
and Fh,i, i = 1, 2, 3 are the component functions of the nonlinear residual Fh(wh) with

respect to yh, uh, ph. Note that the sets I l,k,Al,k− and Al,k+ are defined analogously
to (5.6) (step 3 in Algorithm 7), but now with respect to the Newton increment δulh
and the bounds ξα,lh , ξβ,lh of (6.35). The system (SQPEP) is solved with the multigrid

method, where again the partitioning with respect to I l,k,Al,k− ,Al,k+ is exploited. We

set λl+1,0 = λl,k̄, where k̄ is the index of the final PDAS iteration in step l. This
initialization for λl,0 corresponds to the so-called “warm-start” feature of active set
strategies in conjunction with an SQP approach: close to a solution, λl provides a good
estimate of A∗−,A∗+ and I∗ and only a few PDAS iterations are required. Naturally,

δwl,0h = 0 provides a reasonable initial value for the Newton increments.
Enforcing (6.35) implies that the new iterate wl+1

h is feasible with respect to (5.1)

on the current estimate of Al,k̄− ,Al,k̄+ , I l,k̄. The line search and the merit function of the
unconstrained case can be used here, and the line search is performed with respect to
δwl,Ih = (δylh, δu

l,I
h , δp

l
h).

The convergence of the SQP method is stated in

Theorem 6.5 ([127]). Let x∗h = (y∗h, u
∗
h) denote a local solution of (NLP). Assume

that (6.33) in iteration l is well-defined, i.e. the constraint Jacobian DxCh(xlh) has full
row rank and D2

xxLh(xlh, plh) is positive definite on kerDxCh(xlh). Assume furthermore
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that strict complementarity3 holds at the solution and let A∗ denote the active set of
u∗h. Then, if (xlh, p

l
h) is close enough to (x∗h, p

∗
h), there exists a solution of (6.33), (6.35)

such that Al,k̄ = A∗.
This completes the description of the SQP-multigrid method, which is summarized

in Algorithm 8.

Sequential Quadratic Programming

1: Set initial values y0
h, u

0
h, p

0
h, λ

0, set l = 0
2: while ‖Fh(wlh)‖ > ε do
3: Compute ξα,lh , ξβ,lh according to (6.35)
4: Compute δwlh, λ as solution to (6.33), (6.35) with Algorithm 7
5: Compute step length αl according to (6.28)
6: Compute Newton update wl+1

h ← wlh + αlδw
l
h

7: Set λl+1 = λl,k̄

8: l← l + 1

Algorithm 8: The SQP algorithm.

6.4 Numerical Results

In this section we present numerical results obtained with our implementation of Al-
gorithm 8. In all experiments, the outer iterations were stopped as soon as

‖Fh(wlh)‖2 ≤ 1−12. (6.36)

Here we chose a stringent termination criterion since the primary interest is to as-
sess the performance of the SQP-multigrid, in practical settings, (6.36) might not be
reasonable. The stopping criterion for the inner iterations has been chosen as

‖rml ‖2 ≤ 1−12, (6.37)

if “exact” solution of the Newton system (6.18) was desired. For the inexact Newton
strategy as given in Section 6.3.1, we stop the inner iterations based on (6.25), (6.26)
with α = 2, γ = 1.0. Unless noted otherwise, we set the regularization parameter
to σ = 1−3 and the initial value to y0

J = 1, u0
J = min

(
max(1, uαj ), uβJ

)
, p0

J = 0. Note
that u0

J is feasible with respect to the inequality constraints. The coarsest mesh size
is always h0 = 1/8, i.e. hJ = 2−(J+3). The QP subproblems are solved with the V1,1-
cycle, employing the smoothing iteration Sj,1,1 and pointwise GS-LEX as constraint
smoother.

3I.e., the inequalities in (5.5) are strict.
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Figure 6.1: Convergence histories for test case 1 for J = 5, 6, 7, 8. On the left, we show the
nonlinear residual F (wlJ), on the right, the linear residual rml for all multigrid
steps is shown..

6.4.1 A Model Problem

In the first section, we consider test problems with nonlinear terms which satisfy
Assumptions 6.4. We consider an equality constrained problem, i.e. Uad = L2(Ω), and
a control-constrained problem.

The Equality Constrained Case For this problem, the nonlinear term is given by
g(y) = y3 in (6.1) on Ω = (0, 1)2. The target state is

ȳ = 8 sin(πx) sin(πy)− 4, (6.38)

which is not attainable due to the boundary conditions. The results are presented in
Figure 6.1. The left part shows the iteration history of the nonlinear residual ‖F (wlJ)‖.
We observe superlinear convergence, which furthermore does not depend on J . To the
right, we show the corresponding iteration histories of the inner, linear residual (6.24).
The convergence independent of J is confirmed, and in this case, for all Newton steps
the reduction factors are the same.

The Inequality Constrained Case We consider the nonlinear function g(y) = y+y3,
the additional box-constraint

−4 ≤ u ≤ 0

and
ȳ = sin(2πx) sin(2πy) exp 2x/6. (6.39)

All other parameters stay the same. This example has been considered in [92]. The
computed optimal control u∗J , the active and inactive sets A∗, I∗ and the optimal
state y∗J are depicted in Figure 6.2. In Figure 6.3, we display results with respect
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Figure 6.2: Computed optimal control u∗J (left), associated inactive set I∗ and active set A∗
(shaded region, middle) and optimal state y∗J for the control-constrained model
problem on a mesh with hJ = 2−8.

2 4 6 8

10−4

10−2

100

102

PDAS iteration

euβ
euα

1 2 3 4 5
10−15

10−9

10−3

103

Newton iteration l

‖C
J
(y

l J
,u

l J
)‖

J = 5

J = 6

J = 7

J = 8

Figure 6.3: Iteration history of euα, e
u
β for all QP substeps (left) and feasibility with respect

to CJ(ylJ , u
l
J) for all Newton steps (right).

to the feasibility of the intermediate iterates. On the left, we show the errors euα, e
u
β

corresponding to the inequality constraints for all intermediate QP steps k. Note that
this error vanishes if an iterate is feasible. The error history is shown exemplary for
the case J = 8, the results are visually indistinguishable for other values of J . On the
right, we plot ‖CJ(ylJ , u

l
J)‖, i.e. the feasibility with respect to the equality constraint,

for all Newton iterations l and levels J = 5, 6, 7, 8. Superlinear convergence occurs in
the final iteration, and the results do not depend on J .

6.4.2 Optimal Control of a Steady-State Solid Fuel Ignition Model

In this section we study the optimal control of the steady-state solid fuel ignition or
Bratu problem. The constraint C(y, u) is defined as

∆y + δey = u in Ω (6.40)
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with homogeneous Dirichlet boundary conditions and δ ∈ (0, δ∗]. The Bratu prob-
lem appears in the theory of thermal self-ignition of an enclosed chemically reactive
mixture. The solution y represents temperature differences between the interior of Ω
and ∂Ω. For Ω = [0, 1]2, equation (6.40) has at most two solutions. For δ = δ∗, the
so-called turning point, (6.40) has exactly one solution. The value of δ∗ has been esti-
mated numerically and in several publications is reported as approximately 6.81. We
remark that the difficulty of the Bratu problem consists in finding the second solution
for δ close to δ∗. Optimal control of the Bratu problem has been studied numerically
in [35], where it has been reported that in the optimal control case even δ > δ∗ yields
a solution (to the controlled problem).

The remaining data for the test case is as follows. We consider the target state

ȳ =
45

π2
sin(πx) sin(πy). (6.41)

As initial values we set y0
J = u0

J = ȳJ and p0
J ≡ 0. The regularization parameter is

σ = 8.25−5, and δ = 3.0. The results are reported in Table 6.1. We have computed
solutions for J = 5, 6, 7, 8, where hJ = 2−J+3. For every computation, the outer
Newton iteration converged in 8 iterations. For each J and each l = 0, . . . , 8, we
report data as follows. In the first row, we give the nonlinear residual ‖F (wlJ)‖, in the
second row we report sl = − log2 αl, which is the number of backtracking trial steps
in the line search, and sl = 0 corresponds to acceptance of the full Newton step with
αl = 1. In the third row the number of linear iterations, i.e. multigrid cycles, required
to satisfy the stopping criterion ‖rml ‖ ≤ 1−12, is given. In the fourth and fifth row,
the current values of the objective functional JJ(ylJ , u

l
J) and of the constraint residual

‖CJ(ylJ , u
l
J)‖ of (6.40) are given, respectively.

Due to the non-optimal choice of the initial value, in the initial phase of the iteration,
full Newton steps are rejected by the merit function. Naturally, the iteration number
of the inner solver differs for each l, depending on the operator in (6.18), which might
be ill-conditioned. Correspondingly, the final number m̄ of linear iterations necessary
to obtain the desired decrease of rml is large and for some l the maximum prescribed
number of 20 is reached. Nevertheless, m̄l does not depend on J , again showing the
mesh-independent convergence of the inner multigrid solver. Note that in the final
phase, full Newton steps are accepted by the line search and the convergence is rapid.
Furthermore, in the neighborhood of the minimizer, the condition number of the
operator in (6.18) seems to improve and the required number of multigrid iterations
decreases. We remark that ‖F (wlJ)‖ increases in the first iteration, however JJ(ylJ , u

l
J)

decreases monotonically.
For comparison, in Table 6.2 we present the analogous results which have been

obtained with the inexact Newton strategy according to Section 6.3.1. From the given
data we observe that the line search method does not interfere with the inexactness of
inner solves and again, once full Newton steps are accepted, rapid convergence occurs.
Furthermore, also in the inexact case, neither the number of Newton steps nor the
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Table 6.1: Results for the test problem with the constraints (6.40). Reported are the nonlinear residual ‖F (wlJ)‖, the number
of trial steps sl in the backtracking line search, the number of multigrid cycles m̄l in order to converge (6.18) to a
tolerance of ‖rml ‖ ≤ 1−12, the value of the objective functional JJ(yJ , uJ), and the constraint residual ‖CJ(yJ , uJ)‖.

J 0 1 2 3 4 5 6 7 8

5 ‖F (wlJ)‖ 2.944−2 4.985−1 4.683−1 4.112−1 2.100−1 1.222−3 1.187−4 2.893−9 1.643−13

sl — 0 4 3 1 0 0 0 0
m̄l — 12 20 20 20 19 17 12 6

JJ(ylJ , u
l
J) 2.599 5.150−2 4.802−2 4.017−2 2.392−2 4.398−2 4.410−2 4.412−2 4.412−2

‖CJ(yJ , uJ)‖ 2.344−2 4.985−1 4.683−1 4.112−1 2.100−1 1.211−3 1.187−4 2.893−9 1.643−13

6 ‖F (wlJ)‖ 1.472−2 2.493−1 2.342−1 2.056−1 1.050−1 6.104−4 5.924−5 1.441−9 1.556−13

sl — 0 4 3 1 0 0 0 0
m̄l — 11 20 20 20 18 16 12 6

JJ(ylJ , u
l
J) 2.599 5.150−2 4.803−2 4.017−2 2.393−2 4.398−2 4.410−2 4.413−2 4.413−2

‖CJ(yJ , uJ)‖ 1.172−2 2.493−1 2.342−1 2.056−1 1.050−1 6.049−4 5.924−5 1.441−9 1.574−13

7 ‖F (wlJ)‖ 7.359−3 1.246−1 1.171−1 1.028−1 5.249−2 3.052−4 2.961−5 7.198−10 2.755−13

sl — 0 4 3 1 0 0 0 0
m̄l — 11 20 20 20 18 16 12 6

JJ(ylJ , u
l
J) 2.599 5.150−2 4.803−2 4.017−2 2.393−2 4.398−2 4.410−2 4.413−2 4.413−2

‖CJ(yJ , uJ)‖ 5.859−3 1.246−1 1.171−1 1.028−1 5.249−2 3.024−4 2.961−5 7.197−10 2.805−13

8 ‖F (wlJ)‖ 1.840−3 3.116−2 2.927−2 2.570−2 1.312−2 7.629−5 7.401−6 1.799−10 1.095−12

sl — 0 4 3 1 0 0 0 0
m̄l — 20 20 20 20 17 15 12 5

JJ(ylJ , u
l
J) 2.599 5.150−2 4.803−2 4.017−2 2.393−2 4.398−2 4.410−2 4.413−2 4.413−2

‖CJ(yJ , uJ)‖ 1.465−3 3.116−2 2.927−2 2.570−2 1.312−2 7.559−5 7.401−6 1.799−10 1.112−12
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Table 6.2: Results for the test problem with the constraints (6.40). The same data as in Table 6.1 is reported. Here, the inexact
Newton strategy has been employed to drive the accuracy of inner system solves.

J 0 1 2 3 4 5 6 7 8

5 ‖F (wlJ)‖ 1.472−2 2.494−1 2.367−1 1.912−1 1.914−2 7.478−5 7.641−7 4.532−12 1.377−13

sl — 0 4 2 0 0 0 0 0
m̄l — 3 3 2 2 5 11 7 17

JJ(ylJ , u
l
J) 2.599 5.153−2 4.777−2 3.254−2 3.490−2 4.409−2 4.413−2 4.413−2 4.413−2

‖CJ(yJ , uJ)‖ 1.172−2 2.494−1 2.367−1 1.912−1 1.914−2 7.424−5 7.641−7 4.530−12 1.400−13

6 ‖F (wlJ)‖ 7.359−3 1.247−1 1.183−1 9.561−2 9.587−3 3.742−5 3.827−7 2.248−12 2.730−13

sl — 0 4 2 0 0 0 0 0
m̄l — 3 3 2 2 5 10 7 17

JJ(ylJ , u
l
J) 2.599 5.153−2 4.777−2 3.254−2 3.488−2 4.409−2 4.413−2 4.413−2 4.413−2

‖CJ(yJ , uJ)‖ 5.859−3 1.247−1 1.183−1 9.560−2 9.587−3 3.715−5 3.827−7 2.247−12 2.769−13

7 ‖F (wlJ)‖ 3.680−3 6.234−2 5.917−2 4.781−2 4.796−3 1.871−5 1.914−7 1.239−12 5.474−13

sl — 0 4 2 0 0 0 0 0
m̄l — 3 3 2 2 5 10 7 17

JJ(ylJ , u
l
J) 2.599 5.153−2 4.777−2 3.254−2 3.488−2 4.409−2 4.413−2 4.413−2 4.413−2

‖CJ(yJ , uJ)‖ 2.930−3 6.234−2 5.917−2 4.780−2 4.796−3 1.858−5 1.914−7 1.243−12 5.556−13

8 ‖F (wlJ)‖ 1.840−3 3.117−2 2.959−2 2.390−2 2.398−3 9.357−6 9.573−8 1.227−12 1.093−12

sl — 0 4 2 0 0 0 0 0
m̄l — 3 3 2 2 5 10 7 16

JJ(ylJ , u
l
J) 2.599 5.153−2 4.777−2 3.254−2 3.488−2 4.409−2 4.413−2 4.413−2 4.413−2

‖CJ(yJ , uJ)‖ 1.465−3 3.117−2 2.958−2 2.390−2 2.398−3 9.290−6 9.573−8 1.242−12 1.110−12
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Figure 6.4: Computed optimal state y∗J (left) and optimal control u∗J (right) for (6.42) on a
mesh with hJ = 2−8.

number of multigrid iterations per Newton step depends on J . The total number of
multigrid cycles,

∑
l m̄l, however, is drastically reduced, e.g. from 139 to 48 for J = 8.

6.4.3 Optimal Control of a Semilinear Equation Associated with a
Scalar Ginzburg-Landau Model

As a final example we consider the optimal control of

−∆y − y + y3 = u in Ω = (0, 1)2 (6.42)

with homogeneous Dirichlet boundary conditions. This equation appears within a
a simplified Ginzburg-Landau model for superconductivity [80], and y is the wave-
function in the absence of internal magnetic fields. Note that (6.11) does not hold
for (6.42), however the surjectivity of Dy,uC and well-posedness of the optimal control
problem have been proved in [80]. This model has also been considered in [100].

The unconstrained case Uad = L2(Ω) Figure 6.4 pictures the computed optimal
state y∗J on the left and the computed optimal control u∗J on the right on a mesh with
hJ = 2−8. In Figure 6.5, we show iteration histories of the corresponding computation.
On the left, the linear residual rlJ is shown for each multigrid iteration m. On the
right, the norm of the nonlinear residual, ‖F (wlJ)‖, is plotted for all Newton steps
l. The results in the top row have been computed with the fixed tolerance for the
inner system solves, whereas in the bottom row, the inexact Newton strategy has
been employed. We observe in both cases that the nonlinear residual converges at a
superlinear rate and independent of J . However, the inexact strategy requires only a
total of 15 multigrid cycles, in contrast to the double computational work for the fixed
tolerance method. In both cases, also the reduction factor of the multigrid method
does not depend on J .
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Figure 6.5: Iteration histories for the unconstrained example (6.42). On the left, the norm
of the linear residual rml is plotted for all multigrid iterations m, on the right the
nonlinear residual norm ‖F (wlJ)‖ is plotted for all Newton steps l. In the top
row, the fixed stopping tolerance for the multigrid solution has been enforced,
whereas the results in the bottom row are computed with the inexact Newton
strategy.

The constrained case In this section we consider the control of problem (6.42) with
the additional inequality constraints

uα = 1.5 and uβ = 4.0. (6.43)

In Figure 6.6 we depict the computed optimal control u∗J and the corresponding inac-
tive and active set I∗, A∗ on a mesh with hJ = 2−8. Figure 6.7 shows the development
of feasibility of the iterates for the computation with J = 8. On the left, the errors
euα, e

u
β are shown for every PDAS step k, on the right, the residual of the equality

constraint CJ(ylJ , u
l
J) is plotted for every SQP step l. Compared are the results for

the fixed tolerance method and the inexact Newton strategy. The number of SQP
steps is the same for both methods and the data matches closely. However, the in-
exact Newton method achieves these results with far fewer multigrid iterations. The
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Figure 6.6: Computed optimal control u∗J (left) and associated inactive set I∗ and active set
A∗ (shaded region, right) for (6.42) with bounds (6.43) on a mesh with hJ = 2−8.
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Figure 6.7: Left: error with respect to inequality constraints. Right: Norm of state equation
residual, ‖CJ(ylJ , u
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detailed data is given in Table 6.3. The inexact method for J = 8 (marked with ∗),
required one additional SQP with 1 QP step and 11 multigrid cycles in order to reach
‖Fh(w6

h)‖ ∼ 6.513−14.

Finally, Figure 6.8 shows the optimal control u∗J on the left and the associated active
set A∗ (the shaded region, right) which has been obtained with σ = 1−4. The control
is almost of bang-bang-type and correspondingly the inactive set degenerates to the
so-called switching region.

Summary

We presented a full SQP-multigrid method for the solution of semilinear constrained
optimization problems. To this end, the multigrid method of Chapter 4 has been
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Table 6.3: Results for the simplified Ginzburg-Landau model with control-constraints. For
each SQP step l, we report the norm of the nonlinear residual, ‖F (wlJ)‖, the
number of PDAS steps k̄ and the number of multigrid iterations m̄ per PDAS
step.

J 0 1 2 3 4 5

6 ‖F (wl,IJ )‖ 1.2822 9.194−3 7.732−3 2.132−3 3.005−12 2.092−14

k̄ — 5 4 4 2 1
m̄ — 13,20,20,20,13 16,10,11,8 12,18,10,6 9,4 9

6, IN ‖F (wl,IJ )‖ 1.2822 9.284−3 7.716−3 2.198−3 3.509−9 1.629−14

k̄ — 5 5 5 2 1
m̄ — 13,20,20,20,15 16,10,11,8 12,17,10,6 9,4 8

7 ‖F (wl,IJ )‖ 1.8122 4.597−3 3.866−3 1.066−3 1.505−12 5.721−14

k̄ — 5 4 4 2 1
m̄ — 13,20,20,20,14 15,10,11,7,3 11,17,10,6 8,4 8

7, IN ‖F (wl,IJ )‖ 1.8122 4.642−3 3.858−3 1.100−3 1.144−9 3.258−14

k̄ — 5 5 5 2 1
m̄ — 2,2,2,2,2 9,5,4,2,2 2,2,2,2,2 2,2 11

8 ‖F (wl,IJ )‖ 2.5612 2.299−3 1.933−3 5.330−4 1.012−6 6.654−14

k̄ — 5 5 4 2 1
m̄ — 2,2,2,2,2 9,5,5,2,2 2,2,2,2 2,2 11

8, IN∗ ‖F (wl,IJ )‖ 2.5612 2.321−3 1.929−3 5.502−4 1.012−6 2.366−11

k̄ — 5 5 5 3 1 (+1)
m̄ — 2,2,2,2,2 10,6,5,3,2 2,2,2,2,2 2,2,2 5 (+11)
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Figure 6.8: Computed optimal control u∗J (left) and corresponding active and inactive set
A∗, I∗ (right) for (6.42) with bound constraints (6.43) and σ = 1−4 on a mesh
with hJ = 2−8.
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employed as linear solver for the Newton system arising at each step in the Lagrange-
Newton method, and analogously the PDAS-multigrid method of Chapter 5 has been
employed as QP solver within a full SQP method. Inexactness of inner system solves
and globalization with the augmented Lagrangian merit function has been discussed.
Numerical experiments have shown that the resulting SQP-multigrid method converges
mesh-independent and at a locally superlinear rate. In particular, the inexact Newton
strategy could significantly reduce the number of required multigrid cycles, without
compromising on the fast convergence of the SQP iteration.



7 Conclusions

We have considered the efficient numerical solution of discretized PDE constrained
optimization problems. In particular, we have studied the minimization of a quadratic
functional subject to constraints by a linear or semilinear elliptic PDE with distributed
control. Further, pointwise inequality constraints on the control unknown have been
accounted for.

One main contribution consists in devising a coupled multigrid solver for the so-
lution of linear-quadratic optimization problems. Deviating from the standard con-
straint elimination techniques, we have defined a smoothing iteration which eventually
led to a simultaneous treatment of the optimization and adjoint variables in the multi-
grid process. A local mode analysis has shown that for discrete optimality systems,
smoothing rates close to those of the underlying constraint PDE can be obtained.
These findings have been corroborated with detailed numerical results. In particular,
employing the full multigrid approach, our experiments clearly demonstrated that dis-
cretized PDE constrained optimization problems are solved with optimal cost O(n),
where n = 3h−2

J is the total number of unknowns of the KKT system on the finest
grid level J . Furthermore, the constant of proportionality with respect to the work
which has to be expended for the solution of the constraint PDE, has been found to
range between 8 and 10. This underlines the superiority of our approach over common
elimination strategies.

We have included numerical experiments of problems with constraints where sim-
ple pointwise smoothing is known to fail already for the underlying PDE. Specifi-
cally, we have considered the anisotropic diffusion equation and convection-diffusion.
The framework of our method allows to include powerful line smoothers or ILU-
factorizations, such that these more challenging problems could be solved efficiently.
In all cases, it has been shown that convergence rates do not depend on hJ and dis-
crete optimality systems can be solved with a small multiple of the computational cost
required to solve the underlying constraint PDE.

Furthermore, the role of the regularization parameter σ has been discussed in some
detail. It has been shown that the convergence rate is robust with respect to both J
and σ under a mild restriction on the next to coarsest mesh size h1. A close inspection
of the smoothing iteration with respect to the control unknown uh revealed a way for a
possible improvement based on spectral filtering of the reduced Hessian Hσ

j = σMj +
S∗jMjSj. This allowed us to weaken the mesh size restriction, and with a negligible
amount of additional computational work, problems with near-vanishing σ could be
treated efficiently. Numerical experiments have shown that for fine discretizations hJ ,
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robust convergence is obtained with rates which are independent of the regularization
parameter σ, the coarsest mesh size h0, and the number of levels J .

In order to treat linear-quadratic problems with pointwise inequality constraints on
the control, the multigrid approach has been modified to solve subproblems generated
by a primal-dual active set strategy (PDAS). Numerical experiments demonstrated
that such problems can be solved with a high efficiency due to mesh-independent
convergence of both the outer PDAS method and the inner multigrid solver.

In a final step, the PDAS-multigrid method has been incorporated in the sequential
quadratic programming (SQP) framework. Inexact Newton techniques have been im-
plemented to further enhance computational efficiency, and globalization of the SQP
method has been accounted for with a line search based on the augmented Lagrangian
merit function. Numerical experiments highlight the efficiency of the resulting full
SQP-multigrid approach. In all cases, locally superlinear convergence of the outer
SQP iteration has been observed. In combination with the mesh-independent conver-
gence of the inner solver, a solution method with optimal cost has been obtained.

It is indisputable that several issues have to be dealt with in order to tackle large-
scale problems stemming from industrial applications. Naturally, extension to three
space dimensions, possibly in conjunction with parallelization, is important for real-
world applications. Due to the modular structure of our approach, strategies based
on the parallelization of the constraint PDE, such as domain decomposition methods,
should be readily extensible to our approach. Still, some issues such as agglomeration
of coarse grids, which may be required to obtain a satisfactory parallel efficiency, have
to be considered, but we expect them to carry over analogously to the scalar case.

Extensions are obvious to related problem classes such as boundary control. A field
with numerous applications is flow control [79]. There, the constraint PDE itself,
e.g. the Navier-Stokes equations, exhibits saddle point structure (2.54). Consequently,
suitable smoothing iterations, such as the Vanka- or the Braess-Sarazin-smoother [37,
151], are required at the constraint level.

A further class of problems with many interesting applications is given by time-
dependent problems. Here, the cost functional typically involves integrals over a time
interval, and additional difficulties arise, which are mostly due to the backwards-
in-time nature of the adjoint equation. Ideally, at every discrete instant in time,
the solution of the state and the adjoint equation should be available, however this
is computationally infeasible and has given rise to a number of techniques such as
reduced order modeling [132] and checkpointing [77]. We see a possible application of
our method in the frame of instantaneous control or suboptimal feedback [93]. There,
at each time step a problem resembling (2.51) is obtained. In general, the development
of a coupled space-time multigrid approach still poses a significant challenge.

In conclusion, the promising results obtained with the presented multigrid method
provide a strong incentive to further advance the application of coupled multigrid
methods for problems arising in the large and active area of PDE constrained opti-
mization.



A Appendix

A.1 Saddle Point Systems in Hilbert Spaces

In this section we briefly review how the model problem (2.18) fits into the standard
approximation theory for saddle point problems [43]. To this end, consider the problem
of minimizing the quadratic functional

J(x) =
1

2
a(x, x)− 〈f, x〉 (A.1)

subject to the linear constraints

b(x, q) = 〈g, q〉 for all q ∈ Λ. (A.2)

Here, a(· , ·) is a symmetric bilinear form on W ×W , b(· , ·) is a bilinear form on W ×Λ
and f, g are continuous linear functionals in W ′ and Λ′, respectively. The spaces W
and Λ are Hilbert spaces and W ′ and Λ′ are their dual spaces. We define the subspace

Z = {x ∈ W : b(x, q) = 0 ∀q ∈ Λ}. (A.3)

and furthermore require that a(· , ·) and b(· , ·) satisfy the following conditions:

a(x, v) ≤ Ca‖x‖‖v‖, ∀x, v ∈ W, (A.4)

a(x, x) ≥ 0, ∀x ∈ W, (A.5)

a(x, x) ≥ ca‖x‖2, ∀x ∈ Z, (A.6)

b(x, q) ≤ Cb‖x‖‖q‖, ∀x ∈ W, q ∈ Λ, (A.7)

sup
x∈W,x6=0

b(x, q)

‖x‖ ≥ cb‖q‖, ∀q ∈ Λ, (A.8)

with positive constants Ca, ca, Cb, cb. Then there exists a unique solution (x, p) ∈ W×Λ
of the saddle point problem

a(x, v) + b(v, p) = 〈f, v〉, ∀v ∈ W, (SP)

b(x, q) = 〈g, q〉 ∀q ∈ Λ.

Furthermore, the solution satisfies

‖x‖+ ‖p‖ ≤ C(‖f‖+ ‖g‖) (A.9)
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and x is a minimizer of (A.1) satisfying (A.2). The symmetry of a(· , ·) as well as (A.5)
are required only to link the minimization problem (A.1), (A.2) to the saddle point
problem (SP), they are not required in order to prove existence and uniqueness of a
solution to (SP).

A conforming Galerkin approximation to (SP) is obtained by restricting (SP) to
suitable finite dimensional subspaces Wh ⊂ W and Λh ⊂ Λ. Existence and uniqueness
of a solution for the finite dimensional problem follows if assumptions (A.4) – (A.8)
hold also on the corresponding subspaces. It is well-known that (A.6) and (A.8)
have to be proved for the specific choice of Wh and Λh since in general Zh 6⊂ Z. If
all corresponding assumptions hold, the discrete saddle point system has a unique
solution (xh, ph) ∈ Wh × Λh and

‖x− xh‖+ ‖p− ph‖ ≤ C( inf
vh∈Wh

‖x− vh‖+ inf
qh∈Λh

‖p− qh‖) (A.10)

holds. By choosing appropriate bases in Wh and Λh one obtains a symmetric indefinite
system of the form (2.54).

Now we define the quadratic functional

J(y, u) =
1

2
a1(y − ȳ, y − ȳ) +

1

2
a2(u, u), y ∈ Y, u ∈ U, (A.11)

with the symmetric bilinear forms a1(· , ·) on Y × Y and a2(· , ·) on U ×U . The linear
constraints in variational form are given in terms of additional bilinear forms b1(· , ·)
on Y × Λ and b2(· , ·) on U × Λ through

b1(y, q) + b2(u, q) = 〈g, q〉, q ∈ Λ. (A.12)

The optimization problem is given by the minimization of (A.11) such that (A.12)
is satisfied. With the identifications W = Y × U , w = (y, u), a(x, x) = a1(y, y) +
a2(u, u) and b(x, q) = b1(y, q) + b2(u, q) this problem can be written as (A.1), (A.2).
Furthermore, if all bilinear forms appearing in (A.11) and (A.12) are continuous and
in addition the assumptions

a1(y, y) ≥ 0 ∀y ∈ Y, (A.13)

a2(u, u) ≥ ka‖u‖2 ∀u ∈ U, (A.14)

sup
q∈Λ,q 6=0

b1(y, q)

‖q‖ ≥ kb‖y‖, ∀y ∈ Y, (A.15)

sup
u∈U,u6=0

b1(y, q)

‖u‖ > 0, ∀q ∈ Λ, (A.16)

hold, then the optimal control problem satisfies the conditions (A.4) – (A.8) with

ca = 1
2
ka min

{
1,

k2
b

C2
b1

}
and cb = kb, where Cb1 is the continuity constant of the form
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b1(· , ·), see [31]. The significance of this assertion is that in particular the stability
conditions (A.15),(A.16) of the constraints (A.12) imply the inf-sup condition (A.8)
and as such are crucial for the uniform stability of the optimal control problem. On the
other hand, the conditions (A.15),(A.16) appear naturally when employing Galerkin
approximations for the discretization of (A.12). We conclude that stability of the op-
timization problem follows from the stability of the constraint equation and coercivity
of the functional.

For (2.18), the appropriate choices for Y, U and Λ have been given in in Chapter 2,
i.e. Y = Λ = H1

0 (Ω) and U = L2(Ω). The bilinear forms are defined by

a1(y, z) =

∫
Ω

yz dΩ, (A.17)

a2(u, q) = σ

∫
Ω

uq dΩ, (A.18)

b1(y, z) =

∫
Ω

∇y · ∇z dΩ, (A.19)

b2(u, z) = −
∫

Ω

uz dΩ, (A.20)

and the functionals are given by

〈f, x〉 =

∫
Ω

ȳydΩ, (A.21)

〈g, q〉 = 0. (A.22)

Note that ka = σ, and the regularization parameter enters the stability condition of the
optimal control problem. The discrete approximation follows by choosing appropriate
subspaces, as has been discussed in Section 2.3.2. The inf-sup condition for the specific
choice of Yh, Uh, i.e. the lowest-order Raviart-Thomas spaces RT0, has been proved
in [43] for the rectangular case and in [12] for the general quadrilateral case.
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