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Deutsche Zusammenfassung
In dieser Dissertation wird ein Ansatz zur Trajektorienschätzung von Straßenfahrzeugen
(PKW, Lieferwagen, Motorräder,...) anhand von Stereo-Bildfolgen vorgestellt. Bewegte
Objekte werden in Echtzeit aus einem fahrenden Auto heraus automatisch detektiert,
vermessen und deren Bewegungszustand relativ zum eigenen Fahrzeug zuverlässig be-
stimmt. Die gewonnenen Informationen liefern einen entscheidenden Grundstein für
zukünftige Fahrerassistenz- und Sicherheitssysteme im Automobilbereich, beispielswei-
se zur Kollisionsprädiktion.

Während der Großteil der existierenden Literatur das Detektieren und Verfolgen
vorausfahrender Fahrzeuge in Autobahnszenarien adressiert, setzt diese Arbeit einen
Schwerpunkt auf den Gegenverkehr, speziell an städtischen Kreuzungen. Der Ansatz ist
jedoch grundsätzlich generisch und skalierbar für eine Vielzahl an Verkehrssituationen
(Innenstadt, Landstraße, Autobahn).

Die zu schätzenden Parameter beinhalten die räumliche Lage des anderen Fahrzeugs
relativ zum eigenen Fahrzeug, die Objekt-Geschwindigkeit und -Längsbeschleunigung,
sowie die Rotationsgeschwindigkeit (Gierrate) des beobachteten Objektes. Zusätzlich
werden die Objektabmaße sowie die Objektform rekonstruiert.

Die Grundidee ist es, diese Parameter anhand der Transformation von beobachteten
3D Punkten, welche eine ortsfeste Position auf der Objektoberfläche besitzen, mittels
eines rekursiven Schätzers (Kalman Filter) zu bestimmen. Ein wesentlicher Beitrag
dieser Arbeit liegt in der Kombination des Starrkörpermodells der Punktewolke mit
einem Fahrzeugbewegungsmodell.

An Kreuzungen können sehr unterschiedliche Dynamiken auftreten, von einer Ge-
radeausfahrt mit konstanter Geschwindigkeit bis hin zum raschen Abbiegen. Um eine
manuelle Parameteradaption abhängig von der jeweiligen Szene zu vermeiden, werden
drei verschiedene Ansätze zur automatisierten Anpassung der Filterparameter an die
vorliegende Situation vorgestellt und verglichen. Dies stellt den zweiten Hauptbeitrag
der Arbeit dar.

Weitere wichtige Beiträge sind zwei alternative Initialisierungsmethoden, eine robuste
Ausreißerbehandlung, ein probabilistischer Ansatz zur Zuordnung neuer Objektpunkte,
sowie die Fusion des bildbasierten Verfahrens mit einem Radar-Sensor.

Das Gesamtsystem wird im Rahmen dieser Arbeit systematisch anhand von simu-
lierten und realen Straßenverkehrsszenen evaluiert. Die Ergebnisse zeigen, dass das
vorgestellte Verfahren in der Lage ist, die unbekannten Objektparameter auch unter
schwierigen Umgebungsbedingungen, beispielsweise bei Nacht, schnellen Abbiegemanö-
vern oder unter Teilverdeckungen, sehr präzise zu schätzen. Die Grenzen des Systems
werden ebenfalls sorgfältig untersucht.
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Abstract
In this dissertation, a novel approach for estimating trajectories of road vehicles such as
cars, vans, or motorbikes, based on stereo image sequences is presented. Moving objects
are detected and reliably tracked in real-time from within a moving car. The resulting
information on the pose and motion state of other moving objects with respect to the
own vehicle is an essential basis for future driver assistance and safety systems, e.g., for
collision prediction.

The focus of this contribution is on oncoming traffic, while most existing work in the lit-
erature addresses tracking the lead vehicle. The overall approach is generic and scalable
to a variety of traffic scenes including inner city, country road, and highway scenarios.
A considerable part of this thesis addresses oncoming traffic at urban intersections.

The parameters to be estimated include the 3D position and orientation of an object
relative to the ego-vehicle, as well as the object’s shape, dimension, velocity, acceleration
and the rotational velocity (yaw rate).

The key idea is to derive these parameters from a set of tracked 3D points on the
object’s surface, which are registered to a time-consistent object coordinate system, by
means of an extended Kalman filter. Combining the rigid 3D point cloud model with
the dynamic model of a vehicle is one main contribution of this thesis.

Vehicle tracking at intersections requires covering a wide range of different object dy-
namics, since vehicles can turn quickly. Three different approaches for tracking objects
during highly dynamic turn maneuvers up to extreme maneuvers such as skidding are
presented and compared. These approaches allow for an online adaptation of the filter
parameter values, overcoming manual parameter tuning depending on the dynamics of
the tracked object in the scene. This is the second main contribution.

Further issues include the introduction of two initialization methods, a robust outlier
handling, a probabilistic approach for assigning new points to a tracked object, as well
as mid-level fusion of the vision-based approach with a radar sensor.

The overall system is systematically evaluated both on simulated and real-world data.
The experimental results show the proposed system is able to accurately estimate the
object pose and motion parameters in a variety of challenging situations, including night
scenes, quick turn maneuvers, and partial occlusions. The limits of the system are also
carefully investigated.
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aq centripetal acceleration
A Kalman filter system matrix
b stereo base line
C center of mass
C covariance matrix
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Cvv Kalman filter measurement noise matrix
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P ( a
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P 3D point in camera coordinate system

e
P 3D point in ego-vehicle coordinate system

o
P 3D point in object coordinate system

v
P 3D point in vehicle coordinate system
r residual between measurements and prediction
R radius

xiii



Contents

R(prot) rotation matrix with parameter vector prot
Ry(ψ) rotation matrix around Y -axis about Euler angle ψ

s arc length
Sa coordinate system with name a
t continuous time

∆t discrete time interval between two images
T threshold
T translation vector T = [ X, Y , Z]T

T homogeneous translation vector T = [ X, Y , Z, 1]T
b
T a translation vector from Oa to Ob

u horizontal pixel coordinate
v vertical pixel coordinate
w additive Gaussian system noise vector

bWa homogeneous coordinate transformation from frame Sa to frame Sb at
one time step k

bW−1
a homogeneous coordinate transformation from frame Sb to frame Sa at

one time step k, i.e., bW−1
a = aWb

x Kalman filter state vector
xfull Kalman filter state vector including object point coordinates
xred reduced Kalman filter state vector (pose and motion parameters only)

x̃ true value of x

�x estimated value of x

�x+ a posteriori state estimate
�x− a priori state estimate
z measurement vector
�z predicted measurement vector
ρ distance from object rear to rear axle
β angle between vehicle and object system
ψ yaw angle (rotation about height axis)
φ pitch angle (rotation about lateral axis)
θ roll angle (rotation about longitudinal axis)
ψ̇ yaw rate
ψ̈ yaw acceleration
v velocity in longitudinal direction
v̇ acceleration in longitudinal direction
χ moving direction
δs steering angle
� wheel specific coefficient

πimg image plane

xiv



1. Introduction
Making cars perceive and understand their environment is a challenging task that has
been investigated by many researchers in the past two decades. The idea of intelligent
vehicles, though, is no longer a vision as there are many commercial driver assistance
systems available these days, allowing for autonomous parking, adaptive cruise control,
lane departure warning, traffic sign recognition, or obstacle detection.

Future driver assistance and safety systems aim to support the driver in more and
more complex driving situations, allowing for safe and stress-free driving. Fast and reli-
able knowledge of moving objects’ location as well as their movement patterns relative
to the ego-vehicle, which is the main contribution of this thesis, will be an essential
basis for such systems.

1.1. Motivation
The number of traffic deaths in Germany has been significantly decreased by about two
third since 1997 [Statistisches Bundesamt Wiesbaden 2009], which is related to
improvements in the infrastructure, more restrictive laws, e.g. drink-drive-limit, and an
increase in active and passive safety of todays vehicles. However, the total number of
traffic accidents remains approximately constant. In 2008, 15.7% of all road accidents
in Germany with damage to persons happened at intersections and during turning
maneuvers. Intersections are accident hot spots and, thus, of special interest for future
driver assistance systems.

Following a study on left turn across path crashes of the U.S. department for trans-
portation from 1994, at 49% of all accidents of left turning vehicles at intersections, the
drivers were unaware of the oncoming vehicle, and 30% were caused by drivers who saw
but misjudged the velocity or gap of the oncoming vehicle [Chovan et al. 1994]. Most
accidents occur at daylight conditions (74%). At more than 80% of all occurrences, the
pavement has been dry and there were no adverse weather conditions.

Driver assistance systems, that can help the driver to prevent such collisions, have
to be able to answer the question, where are other traffic participants and how do
they move? There are two main strategies to answer this question: Telematics and
environment perception by sensing.

In telematics, vehicles and infrastructure units send and receive information on
their position, motion state (e.g., velocity), or status (braking, break-down, red traffic
light,...), which is referred to as car-to-car or car-to-infrastructure communication. The
advantage of such systems is that instances (cars, traffic lights,...) typically know their
own state quite accurately and can communicate the information without requiring in-
tervisibility. The drawback is that objects not equipped with communication hardware
such as pedestrians, obstacles on the road, or old cars, are not visible for such systems.
Another issue is data integrity and communication security.

1



1. Introduction

The alternative are vehicles that are equipped with sensors, e.g., video cameras, radar
sensors, or laser scanners, to perceive the surrounding environment. Such vehicles are
not restricted to perceive what other objects are broadcasting. However, extracting the
same information reliably and accurate from a complex environment is a challenging
task. These systems have to deal with a limited field of view, (partial) occlusions, and
sensor specific problems, e.g., at bad weather conditions such as heavy rain or fog.

This thesis addresses the detection and tracking of other traffic participants, using a
stereo vision sensor, with a special focus on oncoming traffic at intersections.

1.2. State Of The Art
Vehicle detection and tracking will play a key role in future driver assistance and active
safety systems. The following sections give a comprehensive overview on the state of the
art in driver assistance systems as well as on published approaches for vehicle tracking
that are to some amount related to the present work.

1.2.1. Driver Assistance Systems
Driver assistance systems support the driver in a wide range of situations. They can
be categorized into safety systems and comfort systems.

One of the earliest safety systems that have established are the anti-lock braking
system (ABS) and the Electronic Stability Program (ESP) system, offering improved
vehicle control at critical situations such as heavy braking [Dietsche and Jäger 2003].
These systems are based on inertial sensors.

Lane departure assistance systems are an example of systems that require environ-
ment perception, e.g., by sensors such as video cameras. There are different strategies
to react to detected lane departure, such as warning the driver acoustically or hapti-
cally, or to perform an autonomous intervention that steers the vehicle back into the
lane (e.g. Toyota, Honda).

Collision avoidance systems, such as the Mercedes-Benz brake assist, are systems
that monitor the environment around the ego-vehicle and predict potential collisions
with obstacles in the driving corridor. This includes blind spot monitoring systems
that assist the driver at lane changes. If a potential collision is detected, the system
warns the driver, or provides support at braking. There exist even systems that perform
fully autonomous braking (e.g. Volvo City Safety). Collision avoidance systems have
high demands on the environment perception, since traffic situations can be extremely
complex [Gehrig and Stein 2007; Polychronopoulos et al. 2007; Kaempchen
et al. 2009]. In case of autonomous interaction, any false interpretations may lead to
accidents that would not have happened without the system.

Drowsiness detection systems, as proposed in 2009 for the Mercedes-Benz E-class, are
able to assess the behavior of the driver and can, for example, suggest a coffee break if
the behavior indicates the driver is getting tired.

Comfort systems, such as GPS-based navigation systems, have established as stan-
dard equipment in many cars. Such systems incorporate, for example, up-to-date traffic
information to suggest alternative routes in case of traffic jams.

2



1.2. State Of The Art

One common example for comfort systems requiring active sensing of the environment
is the Adaptive Cruise Control (ACC) system. It allows for automated adaptation of
the vehicle speed to the lead vehicle, or a preset velocity if there is no lead vehicle in
the current traffic situation [Dietsche and Jäger 2003]. These systems have to be
able to detect and track the lead vehicle reliable, as well as to handle cut-in traffic.

Other comfort systems that require environment perception include traffic sign recog-
nition/ speed warning, intelligent head lights, parking assistance, or night vision. A
comprehensive overview on driver assistance system is given, e.g., in [Färber 2004].

While all the driver assistance systems above help the driver at a particular task, the
peak of such driver assistance systems is an autonomous (intelligent) vehicle. A lot of
pioneer work in the field of autonomous driving has been done from 1986 to 1995 in
the PROMETHEUS project (“PROgraMme for a European Traffic of Highest Efficiency
and Unprecedented Safety”), an outstanding colaboration of automotive companies and
universities in Europe. The promising results have influenced the research and develop-
ment of the past 15 years. One important contribution was the usage of video cameras
and machine vision for lane and obstacle detection tasks. The DARPA Grand Chal-
lenges in 2004 and 2005 and the Urban Challenge in 2007 have been an incentive to
continue the development of autonomous vehicles that are able to perform, for example,
lane following, obstacle avoidance, precedence evaluation amongst other cars at inter-
sections, or parking [Team MIT 2007; Kammel et al. 2007] without a human driver
in the car.

1.2.2. Vehicle Tracking Using Computer Vision

Detecting and tracking vehicles has been explored by many researchers in the com-
puter vision and Intelligent Transportation Systems (ITS) community over the past
two decades. This section gives an overview on different approaches that are to some
amount related to the presented vehicle tracking approach.

One can distinguish between the general tasks of object detection, object classification,
and object tracking. Object detection is related to identifying where a particular object
of interest is with respect to a given reference system. Object classification corresponds
to recognizing what has been detected, and object tracking considers observing a de-
tected object over time, e.g., to extract how an object moves. The latter corresponds to
the main issue of this thesis. In practice, the boundaries between these categories are
not strict. Most applications proposed in the literature use combinations of the three
categories above, thus, a different categorization is chosen to structure this section.

It is distinguished between approaches with a stationary sensor platform and systems
with the sensors mounted to a moving platform. Although the focus of this thesis will
be on the latter, some techniques and concepts used with stationary cameras are also
applicable to the non-stationary case. Among the moving platform approaches it will be
further distinguished between monocular and stereoscopic ones, as well as approaches
fusing vision with active sensors. Finally, this literature review focuses on different
tracking methods used in the field of vision-based vehicle tracking.

3



1. Introduction

Vehicle Tracking From Stationary Cameras

Many vision-based vehicle tracking systems with application to traffic surveillance have
been proposed in the literature. In such system, stationary cameras are usually placed
at elevated positions, monitoring for example highway sections or intersections [Koller
et al. 1993; Koller et al. 1994; Beymer et al. 1997; Kim and Malik 2003; Atev et
al. 2005; Jianguang et al. 2005; Jiang et al. 2005; Kanhere and Birchfield 2008;
Morris and Trivedi 2008; Ottlik and Nagel 2008].

In this field, object detection often involves segmenting moving objects from a static
[Ebbecke et al. 1997; Kamijo et al. 2000] or adaptive [Karmann and Brandt 1990;
Stauffer and Grimson 1999] background model using background subtraction.

Deviations from the background model are often thresholded, yielding a binary image
where each pixel represents either foreground or background. Connected foreground
pixels are then grouped and further analyzed [Chen et al. 2001; Veeraraghavan
and Papanikolopoulos 2004; Jiang et al. 2005; Choi et al. 2006; Xie et al. 2006;
Zhi-fang and Zhisheng 2007; Mosabbeb et al. 2007].

In [Koller et al. 1993], moving objects are discriminated from the background on
the basis of image flow. In a motion segmentation step, clusters of image positions
showing mainly translational displacements between consecutive frames, are assumed
to belong to single vehicles. For each cluster, the enclosing rectangle gives a subimage
likely to contain the detected vehicle. Then, a parametrized 3D vehicle shape model is
projected onto the image plane, and aligned to edges in this subimage for estimation of a
vehicle’s pose. Finally, detected vehicles are tracked by means of an extended Kalman
filter using a 3D vehicle motion model. The state parameters include the pose, i.e.,
position and orientation, as well as the translational and rotational velocity. Similar
approaches can be found, for example, in [Kim and Malik 2003; Jianguang et al.
2005; Buch et al. 2009]

Beymer et al. [Beymer et al. 1997] introduced a model free object representation
based on groups of corner features to yield more stable tracking results in dense traffic
situations. In this approach, objects are detected based on the Law of Common Fate
concept of Gestalt psychologists [Goldstein 2001]. The idea is that a group of points
moving rigidly together is assumed to belong to the same vehicle. Obviously, this
property requires additional processing at dense traffic scenes if more than one object
is moving with equal velocity in the same direction side-by-side or bumper-to-bumper.
This work has been extended by Kanhere and Birchfield [Kanhere and Birchfield
2008] for applications with low camera angles.

Leotta and Mundy [Leotta and Mundy 2007] track a set of contour segments instead
of corner features, to estimate the 3D translational motion of vehicles, also from low
camera angle. However, this approach does not work for rotational movements.

Vehicle Tracking From Moving Platforms

If the camera is mounted in a car, many a priori constraints introduced in terms of
static camera setups do not hold as the ego-vehicle is driving through an unknown
area. Depending on the ground level and driving maneuver, camera movements cover
all six degrees of freedom. Thus, image-based methods for compensating the ego-motion
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have been proposed, e.g., [H. Badino 2004; Klappstein 2008], to distinguish static
from independently moving points in the scene. Additional robustness is achieved if
information on the vehicle speed and yaw rate is provided by inertial sensors.

Monocular Systems: From the early publications to the present, most of the research
on vision based vehicle detection and tracking from a moving platform addresses track-
ing leading vehicles on highways. These approaches consider, for example, image statis-
tics such as edges [Dellaert and Thorpe 1997; Ferryman et al. 2000; Zeng and Ma
2002], grey level or color histograms [She et al. 2004; Liu et al. 2007b], or symmetry
[Brauckmann et al. 1994; Toulminet et al. 2006; Liu et al. 2007a]. Others utilize
optical flow [Smith and Brady 1995], contours [Dahlkamp et al. 2004], template
matching [Richter et al. 2008], classification techniques [Fu et al. 2006; Maehlisch
et al. 2007], and combinations of the former [Chen et al. 2007] to detect and track vehi-
cles in an image. A good survey on different vehicle detection methods from a moving
platform using optical sensors is given, for example, in [Sun et al. 2004]. Many of these
methods, e.g., the symmetry of a vehicle rear side or characteristic shadow edges be-
tween the vehicle and the road, are designed for highway scenarios only and can hardly
be transferred to a generic solution for vehicle tracking in arbitrary scenarios.

Leibe et al. have proposed an outstanding monocular vehicle detection and tracking
approach, which is based on the combination of depth from structure from motion
and appearance [Leibe et al. 2007]. Local classifiers are trained to detect characteristic
objects parts (vehicles and pedestrians) in the 2D image. Each part votes for a given
object center position. This method is far from real-time by now.

All these methods above are realized with a single camera. In this case, the distance
to an object is often estimated based on the structure from motion principle or by
detecting an object’s base point on the planar ground plane, which is assumed to be
known from camera calibration.

Stereoscopic Systems: Alternatively, stereo vision is used for depth estimation. Van
der Mark and Gavrila [Mark and Gavrila 2006] provide a good overview on stereo
vision in the intelligent vehicle domain, including an extensive evaluation of different
real-time stereo implementations.

In many stereo vision based object detection approaches, objects are modeled as
upright planes on a ground plane. Such planes can be identified, for example, based
on an accumulation of equal distances (or disparities) within an image region as in
[Franke and Kutzbach 1996]. The ground plane (road) does not necesseraly have to
be flat. A solution for dealing with non-flat roads using so called v-disparity images has
been proposed in [Labayrade et al. 2002]. Toulminet et al. [Toulminet et al. 2006]
present a method combining stereoscopic and monocular cues for vehicle detection.

Given 3D point cloud data from stereo vision, several approaches fit geometrical
models to this data that approximate the vehicle shape, e.g., a cuboid [Danescu et al.
2007; Barrois et al. 2009]. Such approaches perform well as long as the model is a
sufficient approximation of the real object, and the data is reliable.

In [Hahn et al. 2010], an approach for object tracking and motion estimation based
on stereo vision, optical flow, and mean shift clustering techniques has been proposed.
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In this work, promising results for estimating the position of oncoming and crossing
traffic participants in a roundabout scenario are presented. Further details on this
work can be found in [Einhaus 2010].

A stereo sensor cannot distinguish between static obstacles and moving objects with-
out linking the information between consecutive time steps. Furthermore, nearby
objects are likely to be merged. Thus, methods fusing the depth information from
stereo with motion have been proposed, for example in [Franke and Heinrich 2002;
Dang et al. 2002]. Bachmann [Bachmann 2009] has proposed a recursive expectation-
maximization (EM) framework that tracks and segments rigidly moving objects based
on a 3D motion field.

Sensor Fusion: Beside the approaches using vision sensors for vehicle detection and
tracking, there exist many other approaches based on active sensors such as radar
(radio detection and ranging) or lidar (light detection and ranging) sensors. A detailed
description of these approaches is outside the scope of this thesis. However, recently a
lot of work concentrates on sensor fusion of vision-based methods with active sensors.

Radar and vision is fused, for example, in the following publications [Möbus and
Kolbe 2004; Haselhoff et al. 2007; Liu et al. 2008], while [Maehlisch et al. 2006;
Kaempchen 2007; Wender 2008; Effertz 2008; Schneider et al. 2010] combine
lidar and vision information. An example that fuses all three sensors, i.e., radar, lidar
and vision has been proposed in [Weiss et al. 2004].

The objective of sensor fusion is to combine the advantages of multiple sensors in a
way that the shortcomings are reduced to a minimum. One can distinguish between
low-level fusion and high-level fusion [Wender 2008].

Low-level fusion means fusing the (raw) data of the sensors at a very early pro-
cessing step. At this stage, the system has access to the complete sensor information,
thus, allowing for extremely specialized detection and tracking algorithms.

High-level fusion, on the other hand, combines information that has been processed
and reduced at lower levels before. An example is the fusion of object tracks computed
from different sensors. The advantage of high-level fusion is a good scalability. As long
as a specified interface is served by a sensor, it can be easily replaced by another version
or different manufacturer. Furthermore, with respect to product safety, taking a risky
decision, such as autonomous braking, becomes more reliable if more than one sensor
has detected the same critical object independently.

In this thesis, radar information is optionally fused with stereo vision data, as will
be presented in Sec. 3.5.5 and 3.8.2. Since raw vision data is combined with high-level
radar objects, this can be seen in between both types of sensor fusion.

Tracking Strategies

In many approaches, tracking is related to rediscovering an image region labeled as
vehicle in the next frame such as in [Rajagopalan and Chellappa 2000; Bertozzi
et al. 2000; Li et al. 2004]. Other approaches predict the object position in the image
plane based on the optical flow [Liu et al. 2007c].

However, if one wants to be able to predict other traffic participant’s trajectories
in 3D space, one has to estimate the motion state of an observed object based on a
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corresponding 3D motion model. There are two main classes of tracking methods that
are able to incorporate such motion models: Kalman filter based methods and particle
filter based methods.

The Kalman filter, [Kalman 1960], is the most popular tracking technique in this
field. It consists of a prediction and an update step. The former incorporates the
motion model, while the latter considers the actual measurements (see Sec. 2.6 for
details). There exist several variants and extensions, including the non-linear (extended)
Kalman filter, the unscented Kalman filter, or multi-filter approaches. Kalman filters
are used, for example, in combination with a linear motion model in [Dang et al.
2002], or with particular vehicle motion models incorporating specific properties of
vehicle movements [Dellaert and Thorpe 1997; Zhao and Thorpe 1998; Leibe
et al. 2007]. The different motion models used in the context of vehicle tracking will be
addressed in detail in Sec. 2.5.

Throughout this thesis, the term vehicle tracking is used synonymously for
estimating the motion state of a given vehicle in 3D space.

Other than the Kalman filter, the particle filter does not assume a Gaussian probabil-
ity distribution of the estimated parameters [Thrun et al. 2005]. Instead, the posterior
probability density function of a state estimate is represented by a set of (random)
sample state vectors drawn from this distribution (particles). This allows for model-
ing more complex distributions than Gaussians as well as nonlinear transformations of
random variables. The evolution of the particle set can be steered via a proper motion
model. A particle filter is used for tracking the 3D pose of vehicles, for example, with
a linear motion model in [Petrovskaya and Thrun 2009; Danescu et al. 2009] or
with constant turn models [Catalin and Nedevschi 2008; Hahn et al. 2010].

Although one can observe an increase in publications that utilize a particle filter, the
drawback of this filter is that it is non-deterministic and, depending on the problem,
computationally much more complex than the Kalman filter, even if capabilities for
parallel computing are exploited. In the case of a linear Gaussian system, the particle
filter can never yield a better result than the Kalman filter. However, even the sub-
optimal extended Kalman filter, which will play a key role in this thesis, yields very
promising results in many practical situations at much lower computational costs.

As a conclusion of this review on vehicle tracking systems, to the knowledge of the
author, there is no literature, beside the own publications, explicitly addressing motion
state estimation of oncoming traffic, including the yaw rate, from a moving platform
with a stereo vision sensor yet. Most approaches are designed to work in highly con-
trolled environments, e.g., on highways, and cannot be transferred without larger adap-
tation to other scenarios. However, with respect to driver assistance and safety systems
the knowledge of where an oncoming vehicle will be the next second is highly advanta-
geous, e.g., for collision avoidance in particular on country roads and at intersections.
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1.3. Thesis Contributions

In this thesis, a novel real-time approach for estimating trajectories of road vehicles such
as cars, vans, or motorbikes, from a moving platform based on stereo image sequences
is presented. A trajectory consists of a sequence of object pose and motion states. The
focus of this contribution will be on oncoming traffic, while most existing work in the
literature addresses tracking the lead vehicle.

The overall approach is generic and scalable to a variety of traffic scenes including
inner city, country road, and highway scenarios. A considerable part of this thesis
addresses oncoming traffic at urban intersections.

The estimated parameters include the 3D position and orientation of an object, rela-
tive to the ego-vehicle, as well as the object’s shape, boundaries (dimension), velocity,
acceleration and yaw rate, e.g., rotational velocity.

The present work combines the advantages of a feature-based object representation
and a geometric 3D model. Dense stereo depth maps are efficiently integrated, allowing
for more accurate reconstruction of the object boundaries. With respect to real-time
demands, the problem of estimating the objects shape and size is separated from esti-
mating the pose and motion parameters.

The first main contribution of this dissertation includes the derivation of the object
model, motion model, and measurement model of this tracking approach, which enables
estimating the yaw rate of other traffic participants reliably from a moving platform
using a vision sensor.

The second main contribution addresses vehicle tracking a highly dynamic turn ma-
neuvers. Different methods for dealing with the large dynamic range at intersections
are proposed and compared, including a multi-filter setup.

Further contributions are two alternative initialization methods, robust outlier han-
dling strategies, a probabilistic approach for assigning new points to a tracked object,
or an object verification method.

Author publications: The contents of this thesis have been partly published in the
following articles and conference proceedings:

A. Barth, J. Siegemund, A. Meissner, U. Franke, and W. Förstner [2010].
“Probabilistic Multi-Class Scene Flow Segmentation for Traffic Scenes”. In: DAGM
Symposium on Pattern Recognition. LNCS 6376, pp. 513–522

A. Barth and U. Franke [2010]. “Tracking Oncoming and Turning Vehicles at Inter-
sections”. In: Intelligent Transportation Systems, IEEE Conference on. Madeira Island,
Portugal, pp. 861–868

A. Barth, D. Pfeiffer, and U. Franke [Nov. 2009b]. “Vehicle Tracking at Urban
Intersections Using Dense Stereo”. In: 3rd Workshop on Behaviour Monitoring and
Interpretation, BMI. Ghent, Belgium, pp. 47–58
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D. Pfeiffer, A. Barth, and U. Franke [2009]. “Robust and Precise 3D-Modeling of
Traffic Scenes based on Dense Stereo Vision”. In: 6th Workshop Fahrerassistenzsysteme.
Löwenstein/ Hößlinsülz, Germany, pp. 11–20

A. Barth, J. Siegemund, U. Franke, and W. Förstner [2009a]. “Simultaneous
Estimation of Pose and Motion at Highly Dynamic Turn Maneuvers”. In: DAGM Sym-
posium on Pattern Recognition, pp. 262–271

A. Barth and U. Franke [2009]. “Estimating the Driving State of Oncoming Vehicles
From a Moving Platform Using Stereo Vision”. In: Intelligent Transportation Systems,
IEEE Transactions on 10.4, pp. 560–571. issn: 1524-9050

C. Hermes, A. Barth, C. Wöhler, and F. Kummert [2009b]. “Object Motion
Analysis and Prediction in Stereo Image Sequences”. In: Proc. Oldenburger 3D-Tage,
pp. 172–182

A. Barth and U. Franke [2008]. “Where Will the Oncoming Vehicle be the Next
Second?” In: Intelligent Vehicles Symposium, IEEE, pp. 1068–1073

U. Franke, C. Rabe, S. Gehrig, H. Badino, and A. Barth [2008]. “Dynamic stereo
vision for intersection assistance”. In: FISITA World Automotive Congress, VDI-FVT

Patent Application:
Inventors: Alexander Barth, Dr. Uwe Franke
Patent-No.: DE 10 2008 025 773 A1
Filing Date: 29.05.2008, Publication Date: 08.01.2009
Title: Method for Estimation of the Pose and Motion State of an Observed Object
(German title: Verfahren zur Schätzung eines Orts- und Bewegungszustands eines beo-
bachteten Objekts)

1.4. Problem Statement

This section gives a formal description on the problem at hand to be investigated
throughout this thesis. It proposes a general model that will be successively concretized
in later sections.

The objective is to derive relevant properties of a rigid object O, moving within a
three-dimensional unknown environment, from a sequence of stereo images and other
sensor inputs. Each rigid object has specific, time-invariant properties (e.g. size, shape,
color, weight,...) as well as time-dependent properties, such as the relative position and
orientation to another object, a particular configuration of the wheels in case of vehicles,
or a given velocity. Among all possible object properties, the motion parameters as
well as the object boundaries are of particular interest with respect to driver assistance
systems.
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Figure 1.1.: The object pose Ω with respect to a reference system Sa is given by the
rotation and translation of a tripod, corresponding to a local object coordi-
nate system. The rotation is described, e.g., by the three Euler angles, i.e.,
pitch angle φ, yaw angle ψ, and roll angle θ. The translation corresponds
to the coordinates of the object origin in the reference frame.

There are properties that are directly observable by the available sensors, others are
hidden and have to be derived based on proper functional models. For example, the
object movements, following a certain physical model, are continuous in time. However,
they are observed at discrete time steps and have to be reconstructed accordingly from
the given snapshots. This requires a proper mathematical model, approximating the
complex object dynamics.

There exist multiple representations for a given property, e.g., a surrounding cuboid
can be described by the coordinates of its corners, or by definition of a local coordinate
system at one reference corner in combination with the specification of the length of the
cuboid sides. The concrete representation must not influence the general computational
theory of the problem at hand. The same holds for the algorithmic realization estimat-
ing the unknown object properties. This organization into computational theory and
algorithmic realization is motivated by Marr [Marr 1982]. According to this definition
one can distinguish between a general model specifying what is the problem and why,
and a particular approach, that solves a given problem in a specific way (how).

Formalization

A generic rigid object description at discrete time k1 is given by a number of pose
parameters Ω, a motion model f with parameters Φ, and a set of object specific, time-
invariant parameters Θ as

O(k) |= { a
Ω(k), Φ(k), Θ} . (1.1)

Pose Parameters: The object pose parameters define the position and orientation of
a local orthonormal object coordinate system, relative to a given reference system Sa,
e.g., the camera coordinate system or an arbitrary static world system (see Fig. 1.1).

The position is given by a 3D translation vector, a
T o = [ aXo, aYo, aZo]T, between

the two coordinate system origins, and a 3 × 3 rotation matrix, a
Ro(prot) with rotation

1
Throughout this thesis k is used for discrete time steps while t indicates continuous time.
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parameters prot. At this point it does not matter, what concrete rotation representation
is chosen, for example, Euler angles, a rotation around one arbitrary axis, or quaternions
(see, e.g., [McGlone 2004]). The notation Oo( a

T o) expresses that the object origin,
with name Oo, is represented by the translation vector a

T o. The pose parameters at
time k can thus be summarized to

a
Ω(k) = [ aXo(k), aYo(k), aZo(k), prot(k)]T . (1.2)

The object pose parameters define a coordinate transformation of object coordinates to
the given reference system. Let o

P = [ oX, oY , oZ]T denote the 3D position of a given
point with name P in the object system So, i.e., P ( o

P ), and o
P = [ oX, oY , oZ, 1]T the

same point in homogeneous representation. Then, the 4 × 4 matrix aWo(k) transforms
this point o

P from object coordinates to the reference frame Sa at one discrete time
step k, i.e., a

P(k) = aWo(k) o
P(k), with

aWo(k) =
�

a
Ro(prot(k)) a

T o(k)
0

T
3 1

�

. (1.3)

It is assumed that there exists a functional model h that relates the pose parameters
a
Ω(k) to a number of observations, summarized in vector z(k), with

z(k) = h( a
Ω(k), Θ). (1.4)

Depending on the actual model, the time-independent parameters Θ can also contribute
to this so called measurement model. In this contribution, the measurements mainly
consist of 3D points obtained from a stereo vision system.
Motion Parameters: It is assumed that there exists a functional model f that fully
describes the continuous motion of a given object. For real object movements, this model
is typically unknown and has to be approximated, e.g., by a set of differential equations
and parameters. Examples for different motion models will be given in Sec. 2.5.

In a time-discrete system, the model f relates the pose and motion parameters be-
tween two consecutive time steps k − 1 and k as

[ a
Ω(k), Φ(k)]T = f ( a

Ω(k − 1), Φ(k − 1)) . (1.5)

The resulting object pose aWo(k) is related to the previous pose aWo(k−1) by a motion
matrix aM(k − 1 → k) as

aWo(k) = aM(k − 1 → k) aWo(k − 1). (1.6)

with

aM(k − 1 → k) =
�

a
R(qrot(k − 1 → k)) a

T (k − 1 → k)
0

T
3 1

�

. (1.7)

The rotational parameters qrot and the translation vector a
T depend on the motion

model f , the motion parameters Φ(k), for example, the object velocity or acceleration
in a certain direction, and the discrete time interval ∆t between time step k − 1 and k.
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Throughout this thesis, coordinate transformations at one time step k will
be denoted as bWa(k), indicating a transformation from Sa to Sb in homogeneous
coordinates. The inverse transformation from Sb to Sa is defined as bW−1

a (k) =
aWb(k).

Motions, i.e., point transformations within one reference frame Sa from one
time step k − 1 to the next discrete time step k are denoted as aM(k − 1 → k).
Equivalently, the abbreviation aM(k) is used.

Time-invariant parameters: The parameter vector Θ contains a number of time-
invariant parameters, that mainly depend on the given application. The object di-
mension or the coordinates of object points within the object coordinate system are
examples for time-invariant parameters.

Objective: Based on the definitions above, the following objective can be summarized:

Given a sequence of, to some amount uncertain, observations z(1), . . . , z(K),
estimate the unknown parameters Ω(k), Φ(k), and Θ, which are constrained
by the measurement model h and the object motion model f in (1.4) and
(1.5) respectively.

For this particular task one has to define a proper motion model f , that well-describes
the transformation of the observed object poses. In addition, an algorithmic approach
for estimating the unknown parameters based on a number of uncertain observations,
that are related to the unknown parameters through a mathematical model h is required.
Then, different state estimation techniques can be applied to solve for the unknown
parameters, such as maximum likelihood estimation or Kalman filtering, which will be
presented in Sec. 2.6.

1.5. Organization of the Thesis
The remainder of this thesis will be organized as follows. Chapter 2 gives a comprehen-
sive introduction to the technical background that is required for the proposed vehicle
tracking approach. This includes a brief introduction on the used sensor inputs, as well
as the fundamental concepts of image formation, stereo vision, and motion estimation
from image sequences. The chapter further proposes different motion models used for
vehicle tracking, and introduces the theory and notation of state estimation techniques
to be applied in later sections.

The actual vehicle tracking approach is presented in Chapter 3. It contains details
on the used object model, the measurement model, and the stochastical model, as well
as practical issues such as initialization, outlier detection, and object verification. In
addition, three extensions of the basic approach are presented, allowing for tracking of
vehicles at highly dynamic turn maneuvers.

The proposed system is systematically evaluated in Chapter 4 both on simulated
and real world data. An outlook on future research as well as the conclusions of this
contribution are given in Chapter 5.
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The proposed vehicle tracking approach requires accurate knowledge both about depth
and motion in the scene. This chapter first briefly introduces the different sensors
used in the remainder, and then focuses on how depth and motion information can
be derived from stereo image sequences. This includes a comprehensive overview on
existing methods in the literature.

The second objective of this chapter is to introduce the notation, parameters and
concepts of the image formation process, different object motion models, as well as
state estimation techniques, that will be applied in later sections.

Since back references are provided, this background chapter might be skipped at first
reading.

2.1. Sensors and Sensor Data
There are a variety of different sensors providing information on the ego-vehicle and the
environment. For a good overview on these sensors see, for example, [Färber 2004].
Here, only the sensors used in this thesis are briefly introduced, namely a stereo vision
sensor, a far-range radar sensor, as well as inertial sensors. These sensors are assumed
to have the following properties:

The stereo vision sensor consists of two cameras, mounted behind the windshield of
the ego-vehicle, that capture synchronized sequences of intensity images. It is assumed
that the sensor further provides stereo disparity maps, from which distance information
can be derived (see Sec. 2.3 for details).

The radar sensor provides a target list, where each target is represented by a 2D
point (lateral and longitudinal position with respect to the ego-vehicle) as well as the
relative velocity of that point target in direction of the radar beam.

Inertial sensors provide information on the current driving state that can be used,
for example, to predict the motion of the ego-vehicle (ego-motion). In this thesis, the
following information is utilized:

• ego-vehicle speed

• ego-vehicle yaw rate

• ego-vehicle GPS-position

The GPS (global positioning system)-position allows to reference the current position
of the ego-vehicle within a global coordinate system.

Details on the vision and radar sensor, including the advantages and drawbacks, are
summarized below.
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Stereo Camera Radar Sensor
Output stereoscopic intensity im-

age sequence, dense stereo
disparity maps

point target list + relative
velocities

Further processing motion estimation/ fea-
ture tracking (see Sec. 2.4)

-

Max. distance ≈ 50 m 200 m
Field of View (FOV) 42◦ 17◦

Advantages large FOV, good angular
resolution (pixel/degree),
enables reconstruction of
3D motion field

velocity accuracy, dis-
tance range, all weather-
capable

Drawbacks stereo uncertainty in-
creases quadratically with
distance, sensitive to
illumination and weather
conditions (heavy rain,
fog)

narrow FOV, poor lateral
resolution

As can be seen, both sensors show almost orthogonal advantages and drawbacks,
which makes them well-suited for sensor fusion. The stereo vision sensor provides a very
accurate angular resolution in contrast to the radar sensor, which, on the opposite, yields
very precise range measurements even at large distances, whereas the range uncertainty
of the vision sensor increases quadratically with distance.

Note that the actual maximum distance or field of view may vary between different
sensors. The given values are taken from the actual demonstrator car configuration
used for the experimental results (cf. Sec. 4.4.1).

2.2. Geometric Image Formation and Camera Models
Cameras project the three-dimensional world onto a two-dimensional image plane. This
section introduces the fundamental geometric relationships and equations of the image
formation process to be used in later chapters. More detailed information can be
found in many books or textbooks on Computer Vision, for example [Faugeras 1993;
Trucco and Verri 1998; Forsyth and Ponce 2003; Hartley and Zisserman 2003].

2.2.1. Finite Perspective Camera
The finite perspective camera model is a specialization of the ideal perspective camera
or pinhole camera model [Hartley and Zisserman 2003]. It is based on the fact that
the image plane of real cameras is finite and, for digital cameras, consists of a discrete
sensor grid.

Throughout this thesis, the pixel coordinate system Sp is defined as a right-handed
system at the bottom-left corner of the image, with x corresponding to the horizontal
axis, pointing from left to right, and y the vertical axis, pointing from bottom to top (cf.
Fig. 2.1). Instead of referring to pixel coordinates as ( px, py) based on the common
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Figure 2.1.: Ideal perspective camera model for a finite discrete image plane. The pixel
coordinate system is located at the bottom-left corner of the image.

notation, the short form (u, v) will be used for a pixel coordinate in the following.
Alternatively, the vector notation p = [u, v]T is used. The term image coordinate
system will be used synonymously for the pixel coordinate system, if not other stated.

The pixel coordinates (u, v) of the 3D point c
P = [ cX, cY , cZ]T in camera coordi-

nates can be computed as

u = x/z (2.1)
v = y/z (2.2)

with



x
y
z



 =




fx fsα x0 0
0 fy y0 0
0 0 1 0









cX
cY
cZ
1



 (2.3)

where (x0, y0) denotes pixel position of the principal point, i.e., the intersection of
the optical axis with the image plane, and fx = f/sx and fy = f/sy denote the
principal distance f , scaled by the effective pixels size sx in horizontal and sy in vertical
direction, respectively. The skewness parameter sα = tan α allows for shearing the pixel
coordinate system to compensate for manufacturing inaccuracies of the sensor grid. A
shear angle α �= 0 corresponds to non perpendicular coordinate axis. However, with
modern cameras, the skewness parameter typically can be neglected, i.e., sα = 0.

2.2.2. General Projective Camera
So far an ideal pinhole or ideal thin lens camera model has been assumed. In practice,
more sophisticated models for the optical system have to be applied, to allow for a
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realistic modeling of the image formation process.
The thin lens model does not consider several aberrations that come with real lenses.

This includes lens distortions, defocussing of rays that are neither parallel nor go
through the focus (spherical aberration), different refraction based on the wavelength
or color of light rays entering the lens (chromatic aberration), or focusing of objects at
different depths.

Ideally, a 3D point c
P , the corresponding image point p and the optical center

Oc are collinear, and straight world lines are imaged as straight lines [Hartley and
Zisserman 2003]. For real cameras this model does not hold. Especially at the image
boundaries, straight lines appear curved (radially distorted).

To compensate for projection errors, additional intrinsic parameters, for example lens
distortion coefficients, have to be introduced. This leads to a general non-projective
mapping [McGlone 2004]. If the parameters of the image distortions are known (for
example from camera calibration), it is possible to compensate for this errors, yielding
a line-preserving perspective image representation of the world. This step is referred to
as rectification in the literature.

2.2.3. Camera Calibration
Calibrating monocular cameras mainly involves the estimation of the intrinsic camera
parameters. In addition, it is possible to compute the extrinsic parameters with respect
to a given reference frame.

Throughout this thesis, calibrated cameras are assumed, i.e., the intrinsic
and extrinsic camera parameters are known, independent of the actual calibration
method. All input images are rectified to straight-line-preserving images based on
the intrinsic parameters in a way that the ideal perspective camera model can be
applied to these images.

There exist a large number of camera calibration techniques. Many of these originate
from the field of photogrammetry and have been proposed in the 60s and 70s. Based
on the collinearity constraint of an ideal perspective camera and a set of control points
on a known calibration object, the unknown intrinsic camera parameters are derived.
A minimum number of five control points is required to solve for the principal point
and the principal distance [McGlone 2004].

A common and often cited computer vision approach for camera calibration has been
proposed by Tsai [Tsai 1986; Tsai 1987]. This model includes the intrinsic parameters
principal distance, principal point, pixel size ratio, radial distortion coefficients and
center, as well as the extrinsic parameters. It can be seen as the base model which
has been extended and modified by many authors, for example [Heikkila and Silven
1997; Zhang 2000].

A well-known tool for camera calibration (an implementation of the Zhang method
[Zhang 2000]) has been proposed by Jean-Yves Bouguet [Bouguet 2007]. Here, a
planar calibration rig in form of a chessboard is used. This toolbox can also be used
for stereo calibration.
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Other than the extrinsic parameters, the intrinsic parameters ideally are camera spe-
cific constants that can be estimated once and could be provided, for example, by the
camera manufacturer. However, in practice, the intrinsic parameters are sensitive to
changes in temperature and other external influences. Long term studies and exper-
iments show a drift of the intrinsic camera parameters. Especially in the automotive
sector, where cars (and cameras) are exposed to varying climatic conditions and temper-
atures, reaching from −50◦C to 50◦C, online calibration techniques become important.
A survey on camera self-calibration can be found, for example, in [Hemayed 2003].

2.3. Stereo Vision

Stereoscopic vision or short stereo vision refers to the ability of inferring information
on the 3D structure of a scene from two or more images taken from different viewpoints
[Trucco and Verri 1998]. Humans perceive depth based on this principle. Scene
irradiance reaches the retina of the left and right eye from different angles, leading to
two slightly different images. The human brain is able to find correspondences between
both images and interprets the disparities, i.e., the displacement of corresponding image
points on the retina, as a measure of scene distance [Goldstein 2001].

It is possible to transfer the idea of human stereo vision to the field of computer vision.
The fundamental geometric concepts and ideas for an ideal stereo system are briefly
summarized in the following sections. A detailed introduction as well as an overview on
the general so called epipolar geometry can be found, for example, in [Hartley and
Zisserman 2003].

2.3.1. Ideal Stereo Configuration

An ideal stereo configuration is shown in Fig. 2.2(a). The image planes of both cam-
eras are parallel and displaced only by a translational component in a single direction,
typically the X-axis. As a result, corresponding points can be found within the same
image row.

The displacement vector of the image coordinate in the left and right image reduces
to a scalar, the disparity d, which indicates the displacement of the horizontal image
coordinate ul and ur, with

d = ul − ur. (2.4)

If the cameras are displaced both by a known translation and rotation, it is possible
to compute an ideal stereo configuration by warping both images. This procedure is
called stereo rectification. An example can be found in Fig. 2.2(b).

The disparity is a nonlinear function of distance:

d = fx b
cZ

. (2.5)

This equation will be required in later sections for definition of the measurement model.
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Figure 2.2.: (a) Ideal stereo configuration. The image planes are aligned in a way that
they are transformed by a translation in a single direction only. (b) Ex-
ample of rectified image pair, in which the epipolar lines correspond to the
image rows.

2.3.2. Stereo Calibration

Stereo calibration mainly involves estimating the transformation between both cameras,
i.e., the extrinsic parameters of the stereo system. The intrinsic camera parameters
can be determined independently for both cameras (cf. Sec. 2.2.3) or within one step
together with the extrinsic parameters. The former is related to estimating the essential
matrix, while the latter corresponds to an estimation of the fundamental matrix.

(a) (b) (c)

Figure 2.3.: Example images used for calibrating the intrinsic and extrinsic parameters
of the stereo system. The checkerboard is captured at several poses and
distances all over the viewing field of the cameras.

We use a stereo calibration algorithm that is similar to the one proposed by Bouguet
[Bouguet 2007]. It requires a chessboard calibration rig of known size to be captured at
different positions and poses within the field of view of the camera. Example calibration
images are shown in Fig. 2.3.
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(a) (b)

Figure 2.4.: Example disparity map computed by (a) block matching (ZSSD) and (b)
SGM. The color encodes the disparity (red=large, green=small).

2.3.3. Review on Stereo Algorithms
Stereo vision algorithms have to solve the correspondence problem between points in
the left and right image, originated by the same physical point in space. This problem
is not trivial in general, since correspondences can be ambiguous or not observable.
There are several surveys on stereo vision algorithms, for example [Lane and Thacker
1996; Brown et al. 2003]. A very comprehensive one up to the year 2003 is given
by Brown et al [Brown et al. 2003]. Following this article, stereo algorithms can be
categorized into local and global methods.

Local methods include block or feature matching, i.e., local image statistics are
matched along the epipolar lines based on a similarity or distance measure. Common
measures are, for example, cross-correlation, (zero-mean) sum of squared differences,
(Z)SSD, (zero-mean) sum of absolute distances, (Z)SAD, or signature-based distance
metrics such as census transform [Zinner et al. 2008]. Such algorithms typically work
on rectified images, to reduce image lookup calls and cash misses while traversing the
epipolar line. Local matching algorithms result in sparse, but quite robust disparity
maps. Sparse data is obtained, since no minimum can be found on, e.g., texture-less
areas. Hence, all local methods either work only on data with sufficient structure or
perform post-processing steps. Fig. 2.4(a) shows an example disparity map computed
with a local block matching algorithm (ZSSD). The color encodes the disparity: Red
corresponds to larger disparities originated from near objects, while dark green corre-
sponds to small disparities indicating points at far distance. This color encoding will
be used throughout this thesis.

Global methods aim to compute dense disparity maps, assuming a pixel-wise
smooth 3D world. These algorithms take into consideration not only local statistics,
but also constraints defined over larger regions or the whole image. Such constraints
are, for example, smoothness or ordering constraints. The common task is to opti-
mize a global cost function using techniques such as dynamic programming [Ohta and
Kanade 1985], graph cuts [Hong and Chen 2004], belief propagation [Yu et al. 2007],
or nonlinear diffusion [Scharstein and Szeliski 1998].

The optimality comes at a price of a significant increase in computation time and
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memory requirements, compared to local methods. Van der Mark and Gavrila [Mark
and Gavrila 2006] provide a survey on different stereo algorithms with focus on au-
tomotive applications. Due to limited computational capacities and memory resources,
early automotive stereo systems have been restricted to quite sparse disparity maps.
Block matching methods have been used, for example, in [Gennery 197; Saneyoshi
1994; Franke and Joos 2000]. Franke and Kutzbach present a signature-based real-
time stereo algorithm in [Franke and Kutzbach 1996].

In 2005, Hirschmüller [Hirschmüller 2005] proposed a stereo matching algorithm
denoted as Semi-Global Matching (SGM) approach, utilizing global constraints only
along a finite set of scanlines, yielding dense disparity maps at a significant speed up in
computation time. Further details can be found in [Hirschmüller 2008]. Recently, this
approach has been extended by different matching cost functions, for example, using
the census transform [Hirschmüller and Gehrig 2009], to improve the robustness of
the algorithm with respect to errors in the camera calibration.

An example of a disparity map computed by the SGM algorithm is shown in Fig. 2.4(b).
The SGM algorithm can be ported to dedicated hardware such as field-programmable
gate arrays (FPGA). A real-time FPGA-based solution, as proposed in [Gehrig et al.
2009], is available in the demonstrator car. Although the algorithms proposed in later
sections of this thesis are designed to work with arbitrary disparity maps, the SGM
algorithms has been the practical basis for all experiments if not otherwise stated.

Since 2002, Scharstein and Szeliski [Scharstein and Szeliski 2002] provide a world-
wide platform for evaluation of stereo algorithms at their website1. The test set has been
continuously extended during this time. The group of Klette at Auckland University,
New Zealand, has set up a testbed2 for evaluation of stereo algorithms in automotive
environments, i.e., traffic scenes, in cooperation with Daimler AG. Several articles on
stereo evaluation based on this data base have been published, for example, [Vaudrey
et al. 2008; Morales and Klette 2009].

2.3.4. Stixel World
Real-time implementations of dense stereo algorithms provide significantly more in-
formation on the 3D environment compared to sparse stereo methods. The gain in
information and precision allows for improved scene reconstruction and object model-
ing. However, more information means there is also more data to process.

The Stixel World, as proposed in [Badino et al. 2009], is a much more comprehensive
representation of the dense stereo data, containing both information on freespace and
obstacles over ground. Instead of evaluating a large number of stereo disparities, only
a few stixels have to be considered, that locally integrate the stereo information. Each
stixel, standing vertically on the ground plane, represents the limit of the drivable
freespace at a certain viewing angle from the perspective of the camera. It further
contains information on the distance and height of the obstacle that limits the freespace
at this position. See Fig. 2.5 for an example.

In Sec. 3.5.4, the stixel representation will be utilized to derive measurements for the
object pose and dimension.

1
http://vision.middlebury.edu/stereo/

2
http://www.mi.auckland.ac.nz/EISATS

20



2.4. Vision-based Motion Estimation

(a) Dense disparity image (b) Free space (c) Stixel representation

Figure 2.5.: Stixel World example. (a) Input SGM disparity map (red=close,
green=far). Note that SGM yields measurements even for most pixels on
the road. (b) Drivable freespace based on the disparity map. (c) Resulting
Stixel World representation comprising the information of (a) and (b).

2.4. Vision-based Motion Estimation
Motion is one of the most dominant monocular visual cues humans and many animals
use to perceive the environment. Motion triggers attention and groups information.
According to the Gestalt psychologists law of common fate, stimulus elements are likely
to be perceived as a unit if they move together [Goldstein 2001]. These properties are
also of interest in computer vision.

Estimating object motion from image sequences is directly related to estimating mo-
tion in the image plane between consecutive frames. This section summarizes the main
principles of vision-based motion estimation and tracking.

2.4.1. Optical Flow
The optical flow is the projection of a three-dimensional motion field onto the image
plane, originating both by camera movements and independent movements of other
objects in the scene (see Fig. 2.6). Analog to the correspondence problem of stereo
vision (cf. Sec. 2.3), the optical flow is related to finding corresponding points in
two images captured at different time steps. For introductory texts on optical flow it
is referred to standard books and textbooks on computer vision, e.g. [Jähne 1995;
Trucco and Verri 1998; Forsyth and Ponce 2003].

Algorithms for optical flow computation rely on the principle of brightness constancy,
i.e., the assumption that the image intensity of a particular point at one time step does
not change between two consecutive images. Formally, this can be stated as

I(u, v, t) = I(u + du, v + dv, t + ∆t) (2.6)

where I(u, v, t) denotes the image intensity at pixel position (u, v) at time t, and
[du, dv]T the unknown image displacement vector on the image plane. This is the
fundamental optical flow constraint. In practice, the brightness constancy assumption
is often violated, e.g., due to illumination changes in the scene. However, it provides a
valuable basis for a large number of optical flow algorithms. As a practical consequence,
the time interval ∆t between the two images has to be relatively short.
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(a) (b)

Figure 2.6.: (a) Example of the (noisy) optical flow resulting from the camera motion
through a mainly stationary environment. All points in the scene beside
the focus of expansion (FOE) are moving on the image plane. (b) Selected
image features to be tracked over time to approximate the optical flow.

There is no unique solution to the optical flow problem, since there are two unknowns
and only one constraint. Thus, additional constraints have to be introduced to solve
the optical flow problem. Examples will be presented below. It is possible to categorize
optical flow algorithms into sparse and dense reconstruction methods.

Sparse Optical Flow

Sparse methods approximate the optical flow constraint locally at a finite number of
selected features. The same algorithms used for sparse stereo vision can also be applied
to solve for image displacements between two consecutive frames in time, for example
block matching techniques.

Classical approaches to feature selection include gray value corners, e.g. [Förstner
and Gülch 1987; Harris and Stephens 1988], or small patches with high spatial
frequency to overcome the well-known aperture problem. The idea of such interest
operators is to select only image features that are likely to be retrieved in the next
image. Shi and Tomasi [Shi and Tomasi 1994] have published an often cited article
on good features to track, i.e., features selected based on optimal characteristics for the
tracking algorithm used. An example of good features to track is shown in Fig. 2.6(b).
The selected features are marked by a surrounding box.

The feature tracking algorithm used in [Shi and Tomasi 1994] has been developed by
Tomasi and Kanade [Tomasi and Kanade 1991] and goes back to early work of Lucas
and Kanade [Lucas and Kanade 1981]. The implementation is commonly known as
KLT tracker and has become a standard method for feature tracking. However, the
maximum feature displacement between two frames is limited due to processing time
and reliability constraints.

If the camera is mounted in a vehicle, image displacements quickly increase as the ve-
hicle is driving faster. Multi-resolution approaches or predictive elements, e.g. Kalman
filtering, help to increase the maximum displacement in practice. Alternatively, signa-
ture based optical flow algorithms have been proposed, for example by Stein [Stein
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2004]. Such methods find correspondences very efficiently using table based indexing
mechanisms instead of block matching and can deal with, theoretically, arbitrary dis-
placements on the image plane.

In the remainder of this thesis, the term feature tracking will be used, when
a feature will be retrieved over multiple frames, while optical flow or image dis-

placement refers to the motion between a pair of images. Thus, features tracking
involves reassigning image displacements of a single feature instance over multiple
frames.

Dense Optical Flow

Dense optical flow methods aim to compute a displacement vector at every position
on the image plane (pixel-wise or continuously). This requires integrating some sort of
smoothing or regularization to overcome the under-determined equation system.

Horn and Schunck [Horn and Schunck 1981] tackled to solve for (2.6) using the
calculus of variation, with an additional smoothness constraint on the resulting vector
field. Several extensions of this approach have been published, being less sensitive to
outliers in the data, e.g., [Mémin and Pérez 1998], or yielding improved results at
discontinuities in the flow field [Brox et al. 2004; Zach et al. 2007].

(a) (b)

Figure 2.7.: Examples of dense optical flow estimates. (a) Moving camera through a
mainly stationary environment (scene as in Fig. 2.6). (a) Stationary camera
with a vehicle moving from left to right. The color hue encodes the motion
direction, while the saturation represents the length of a motion vector
(white means stationary).

Zach et al. [Zach et al. 2007] have shown how to efficiently apply numerical energy
minimization techniques for an optical energy function that contains L1-norm terms,
opposed to L2-norm terms as widely used in other approaches. This approach runs in
real-time (30 fps) on graphics card hardware for 320 × 240 images and is more robust
compared to L2-norm formulations of the energy functional.

Wedel et al. [Wedel et al. 2009a] have extended this approach by an adaptive regu-
larization term, depending on rigid body motion and the 3D structure in the scene. At
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Figure 2.8.: Example scene flow result. The color encodes the absolute velocity of a
given point in the world. By courtesy of A. Wedel.

the time of publication, the results of this approach have been outperforming all other
methods on public test sets (Middlebury benchmark).

Dense optical flow fields provide valuable information for environment perception.
However, in the field of driver assistance systems, all currently existing methods still
have problems with really large image displacements as occurring if the camera is
mounted in a fast driving car (e.g. highway scenario).

Due to this fact, the vehicle tracking approach proposed in later sections will be based
on sparse methods.

2.4.2. Scene Flow
While optical flow refers to the two-dimensional motion field in the image plane, scene
flow represents the corresponding three-dimensional motion field. Depth information
from stereo system helps to solve for ambiguities in the flow field that cannot be recon-
structed from monocular vision, for example, the rate of change in depth. Instead of
analyzing pairs of images, i.e., two consecutive frames of the same camera, the scene
flow is computed over four images (two stereo images at two consecutive time steps).
Thus, the scene flow is additionally constrained.

The resulting 3D motion field represents the fundamental input to the vehicle tracking
approach in this thesis and will be further the basis for object detection. As for the
optical flow there exist dense and sparse scene flow variants.

Dense Scene Flow

The four-image configuration allows for a joint estimation of motion and disparity at
sparse image positions [Patras et al. 1997] or for almost all visible points in the scene
using variational methods as in [Vedula et al. 2005; Min and Sohn 2006; Huguet
and Devernay 2007].

A real-time version of the scene flow has been proposed by Wedel et al. [Wedel et
al. 2008b]. This approach first decouples the estimation of depth and motion, and then
solves for the globally optimal scene flow (including dense optical flow and disparity
rate) by minimization of an energy function that combines depth and motion constraints
in a variational framework. The resulting reconstruction of the scene flow is reported
to be about 500 times faster compared to other existing techniques, while the accuracy
on test sequences, including the Middlebury benchmark, is comparable with the most
accurate methods. An example result of this approach is shown in Fig. 2.8. More details
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(a) stereo (b) optical flow (c) 6D-Vision

Figure 2.9.: Stereo and motion alone are not sufficient in many situations to separate an
object from the background. However, fusing the information over multiple
time steps, as in the 6D-Vision method, enables fast and reliable object
detection.

on this approach and the background on scene flow can be found in [Wedel 2009]. A
GPU scene flow implementation is described, for example, in [Rannacher 2009].

Although a significant speed up has been achieved, the dense scene flow computa-
tion is still computationally demanding, e.g., the whole available computation power
is required for this task leaving not much capacities for further processing steps such
as object tracking. In addition, the current dense scene flow implementations have the
same difficulties with large displacements as dense optical flow methods. Thus, sparse
scene flow approximations as proposed below are used in this approach to estimate ve-
hicle motions. The integration of dense scene flow data into the vehicle tracking system
is part of future work.

Sparse Scene Flow/ 6D-Vision

In the following, a sparse real-time scene flow variant, denoted as 6D-Vision, is sketched.
It has been proposed in [Franke et al. 2005] and will be used in Sec. 3.8.1 for initializing
new object tracks.

In this approach, the 3D motion field is reconstructed for a finite set of tracked
points in the scene (see Fig. 2.9). The points are tracked on the image plane using
a feature tracker. At each time step, the corresponding 3D position follows from the
stereo system. This results in a sequence of 3D point positions. A Kalman filter is used
to estimate a 3D velocity vector based on the measured 3D points. Accordingly the
scene flow estimate is stabilized by integrating the measured point positions over time.

For each tracked point, a state vector of the form

x =



X, Y, Z� �� �
position

, vx, vy, vz� �� �
velocity





T

(2.7)

is estimated. Following from the dimensionality of the state vector, the method is
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referred to as 6D-Vision. Each point is observed in terms of a measured image position
(u, v) and stereo disparity d at the current time step. The nonlinear measurement
model, relating these measurements to the unknown state parameters, is based on the
perspective camera model (cf. Sec. 2.2).

Temporal fusion of depth and motion cues overcomes several problems of purely stereo
or flow based object detection methods. For example, the pedestrian behind the parking
car in Fig. 2.9 can be hardly detected in a stereo disparity map, since the measured 3D
points on the pedestrian show almost the same disparity as points on the car. However,
depth information helps to eliminate ambiguities in the flow field. The small feature
displacements on the pedestrian, superimposed in Fig. 2.9(b), cannot be distinguished
from displacements of far distant points (the color encodes the amount of displacement
from green=small to red=large optical flow). The combination of depth, optical flow,
and ego-motion information indicates that the points on the pedestrian are actually
moving, while the car and the background are stationary. Filtering helps to stabilize
the motion estimate over time. Detecting the pedestrian based on the 6D-Vision result
becomes much more easy compared to the original data.

It is possible to track up to 10, 000 6D-Vision vectors in real-time (25 fps) on GPU
architectures. Given dense disparity maps and dense optical flow, it is even possible to
estimate the position and velocity at almost every pixel in the image plane [Rabe et al.
2010].

While the stationary points provide useful information to reconstruct the ego-motion
of the vehicle [Rabe et al. 2007], moving points are a strong indicator for objects in the
scene. With the 6D-Vision approach it is possible to track the motion of objects before
an object is actually being detected or further segmented.

As will be seen later, the 6D-Vision principle is closely related to the proposed vehicle
tracking approach. The main difference is that the latter does not consider points
independently. Instead the information of many points that follow the same rigid body
motion is grouped. The advantage of this approach is that not only translational, but
also rotational movements can be reconstructed.

2.5. Motion Models
A motion model represents a mathematical description of movements within a particular
environment (cf. Sec. 1.4). It will be required in later sections to predict an object state
a particular time interval ahead. As these movements can be very complex and highly
non-linear, sufficient approximations have to be found in practice.

It can be distinguished between kinematics and kinetics. Kinematics describe object
motion in a geometrical way without considering the actual cause of the motion, while
kinetics relate movements to their physical origin in terms of forces and masses [Martin
1907]. Both kinematics and kinetics are branches of classical mechanics.

It can be further distinguished between rigid body and non-rigid body motion. An
example for the latter is the movement of a human, where different body parts show
different motion patterns. However, the focus of this section will be on rigid objects.

Table 2.1 gives one possible categorization of different motion models used for vehicle
tracking in the literature. A first basic separation can be done with respect to the
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Domain Category Examples
Image Affine transformation translation only [Ra-

jagopalan and Chellappa
2000; Zeng and Ma 2002; Li
et al. 2004; Narayana and
Haverkamp 2007; Zhi-fang
and Zhisheng 2007], transla-
tion and scale [Koller et al.
1994], translation, rotation,
and scale [Chateau and
Lapreste 2004]

3D Generic rigid body mo-
tion

linear motion/constant ve-
locity [Danescu et al. 2007;
Franke et al. 2005], linear
motion/constant acceleration
[Kaempchen et al. 2004],
3D rotation and 3D trans-
lation [Siegemund 2008;
Bachmann 2009]

Vehicle motion (vari-
ants of the bicycle
model)

constant velocity/ constant
orientation [Maybank et al.
1996], constant velocity/
constant yaw rate [Koller
et al. 1993; Dellaert and
Thorpe 1997; Leibe et al.
2007], constantly accelerated
velocity/ constant yaw rate
[Zhao and Thorpe 1998;
Kaempchen et al. 2004],
constant velocity/ constant
steering angle [Dahlkamp
et al. 2004]

Table 2.1.: Categorization of different motion models used in the field of vehicle
tracking.
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domain in which the motion is modeled. There are several approaches that model object
motion in the image plane (2D). Others describe movements in the three-dimensional
Euclidean space, which can be further separated into generic rigid body movements
(rotation and translation) and into vehicle specific motion models.

The following sections present the basic ideas of each motion model class.

2.5.1. Affine Motion Models

Most tracking approaches that work in the image domain rely on the idea that the
displacement of an object will be small if the time interval between two consecutive
images is short. They try to retrieve the translation of an image region, including a
detected object, within a local neighborhood of the previous location. Examples for
such search based approaches are [Rajagopalan and Chellappa 2000; Zeng and
Ma 2002; Li et al. 2004; Narayana and Haverkamp 2007; Zhi-fang and Zhisheng
2007]. There are only a few approaches that explicitly model the translation and scaling
of an object on the image plane, e.g., [Koller et al. 1994; Chateau and Lapreste
2004], or translation, scaling, and rotation [Chateau and Lapreste 2004]. All these
approaches consider tracking of a leading vehicle with relative little changes between
two images. Affine motion models are commonly used in the field of MPEG encoding
of image sequences [Gahlot et al. 2003].

It can be benefical to track an object directly in the domain of the measurements,
since the uncertainties of the sensor are usually known very accurately. Nonlinear
transformations of the measurements into a different domain also affect the distribution
of the measurement noise. A drawback of such approaches is that constant velocities
in the image plane do not correspond to constant velocities in 3D space in general due
to the nonlinear projection.

2.5.2. Generic Rigid Body Motion

The simplest rigid body motion model assumes linear motion of constant velocity
[Danescu et al. 2007; Franke et al. 2005; Petrovskaya and Thrun 2009] or constant
acceleration [Singer 1970; Kaempchen et al. 2004]. In most approaches, the object
movements are constrained to movements on a planar ground, ignoring the height com-
ponent of the movement. This is typically referred to as ground plane assumption or
planar world assumption.

There are other approaches that also incorporate rotational movements, e.g., [Siege-
mund 2008]. A constant translational and rotational velocity model is used in [H.
Badino 2008] for representing the movements of the ego-vehicle in 3D space.

Mehrotra and Mahapatra [Mehrotra and Mahapatra 1997] have proposed a sys-
tem modeling higher order terms such as the jerk (change of acceleration) in the field
of tracking maneuvering targets, e.g., manned aircrafts.

The generic motion models are not restricted to movements in a given direction, i.e.,
vehicles could also move sidewards with such models.
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Figure 2.10.: Left: Ackermann steering geometry with four wheels. Right: The left and
right wheel at one axle are merged in the bicycle model.

2.5.3. Vehicle Motion Models
In the following, motion models considering specific properties of road vehicles with
four wheels and two axles are presented.

Ackermann Steering Geometry

A typical car has four wheels, where only the two wheels on the front axle can be
steered (see Fig. 2.10). The configuration with two independently steerable wheels on
the front axle goes back to the German wagon-maker Georg Lankensperger in 1816.
It is usually denoted as A-Steering or Ackermann Steering Geometry, named after
the British Rudolph Ackermann, who filed a patent for the new steering geometry in
England on behalf of Lankensperger. The A-steering geometry replaced the center
pivot plate steering, where the whole front axle is turned in curves while the wheels are
fixated to that axle.

One important characteristic of this geometry is that the rays perpendicular to each
wheel’s moving direction intersect in a single point, the turning center of a circle. Thus,
each wheel moves on a circle with different radius, but with the same center of rotation.

Two-lane models include all four wheels and allow for sophisticated consideration of
kinetic parameters at circular path motion. For example, centrifugal forces and wheel
loads that impact the wheels differently on the inner and outer lane throughout a curve.

Single-lane models represent a significant simplification of the two-lane model. They
are commonly used to approximate the fundamental driving characteristics under nor-
mal conditions. If a car is moving on a planar dry surface (no pitch or roll movements)
and the center of mass is lying on the ground, the different wheel loads or centrifugal
forces between inner and outer lane can be neglected [Zomotor 1987], and the left and
right wheel on each axle can be merged at the axle’s center (see Fig. 2.11). The result-
ing two wheel model corresponds to the steering geometry of a motorbike or bicycle. It
is thus usually referred to as bicycle model in the literature.

Bicycle Model

From a kinematic perspective, the radius Rr of the rear wheel’s circular path is com-
pletely defined by the steering angle of the front wheel δs and the distance L between
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Figure 2.11.: Simple bicycle model for low velocities

the front and the rear wheel:
Rr = L

tan δs

. (2.8)

For small steering angles one yields Rr = L/δs. Accordingly, for δs = 0, the rear
wheel moves on a circle with infinite radius, i.e., on a straight line. The radius of the
front wheel also follows directly from the Ackermann geometry, i.e.

Rf =
�

R2
r + L2 (2.9)

The radius RC at the center of mass C is defined as

RC = Lr

tan βC

(2.10)

where Lr indicates the distance between rear wheel and center of mass, and βC denotes
the side slip angle, i.e., the angle between the longitudinal axis of the vehicle and the
velocity vector at C, tangential to the curvature of the circle. At small curvatures,
i.e., Rr � L, the influence of the distance between front and rear wheels becomes
neglectable, thus

Rf ≈ RC ≈ Rr = R. (2.11)
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The moving direction χ with respect to a global world coordinate system is composed
of the yaw angle ψ and the side slip angle βC as

χ = ψ + βC . (2.12)

For small angles and very low velocities, the side slip angle can be approximated by
βC = Lr/RC . In general, βC depends on the velocity and the object’s mass. One can
show that the following relationship holds [Zomotor 1987]:

βC = Lr

R
− mg

�
· Lf

L
· v2

R
(2.13)

where mg represents the object’s mass, Lf the distance between C and the front wheel,
v the tangential velocity, and � a linearized rear wheel specific coefficient. Thus, the
side slip angle is a function of the centripetal acceleration aq = v2/R.

Furthermore one can express the curvature 1/R of the driving path in terms of the
change in orientation of the moving direction as

1
R

= dχ

ds
= d(ψ + βC)

ds
(2.14)

where s represents the arc length. This term can be transformed as follows:

d(ψ + βC)
ds

= d(ψ + βC)
dt

· dt

ds
= ψ̇ + β̇C

v
(2.15)

with velocity v = ds

dt
. Accordingly, the centripetal acceleration aq of the circle can be

expressed in terms of the yaw rate ψ̇, side slip rate β̇C , and velocity v as

aq = v2

R
= v(ψ̇ + β̇C). (2.16)

A stationary movement on a circular path is reached, if v̇ = β̇C = 0. The in-plane
translation of the center of mass with respect to a static world coordinate system results
from the following observations

dXC

ds
= sin(ψ + βC)

dZC

ds
= cos(ψ + βC) (2.17)

and

dXC

ds
= dXC

dt
· dt

ds
= ẊC

v
dZC

ds
= dZC

dt
· dt

ds
= ŻC

v
(2.18)

follows

ẊC = v sin(ψ + βC)
ŻC = v cos(ψ + βC). (2.19)
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The explicit integration of the side slip angle incorporates vehicle specific properties
as derived from the A-steering geometry. At normal conditions, the side slip angle
becomes negligible at the center of the rear wheel. Thus, the center rear axle is the
most stable point at circular path motion. Due to (2.11) it is possible to define the
driving path based on the center rear axle instead of the center of gravity. This reduces
the influence of a side slip angle to a minimum and (2.19) becomes

Ẋr = v sin(ψ)
Żr = v cos(ψ). (2.20)

Only the special case of stationary movements on a circular path with constant veloc-
ity has been considered above. Many other parameters such as acceleration, suspension,
camber change, roll effects, nonlinear tire behavior, aerodynamics, etc. have been ig-
nored. Such complex models are beyond the scope of this thesis, since most of the
parameters require sophisticated knowledge about the characteristics of a particular
vehicle and can hardly be estimated for an unknown vehicle just by looking at it with
a vision sensor. A more detailed introduction into vehicle dynamics can be found,
for example, in [Zomotor 1987; Alexander and Maddocks 1988; Mitschke 1990;
Gillespie 1992].

Variants of the Bicycle Model

The bicycle model has been developed to describe the motion characteristics of a vehicle,
for which several parameters, such as the distance between the front and rear axis or
the vehicle mass, have to be known in advance, others must be provided by inertial
sensors, e.g., the current steering angle of the front wheels. Since these parameters can
hardly be estimated for another vehicle, further simplified variants of the bicycle model
are commonly used in the literature for vehicle tracking.

The basis for these models are a set of differential equations, including (2.20) as well
as the derivatives of the velocity and orientation. They differ in the level of complexity,
i.e., the order up to which the derivatives are non-zero. Common used motion models
are given in Table 2.2. Non-modeled higher-order terms are typically represented as
zero-mean white Gaussian noise processes.

Further details on the different models can be found, for example, in the PhD thesis
of Cramer [Cramer 2004], or in the papers of Bühren and Yang [Bühren and Yang
2007b] and Schubert et al. [Schubert et al. 2008] on vehicle motion models.

The common constant yaw rate model has the problem that it does not incorporate
the correlation between velocity and yaw rate, i.e., in place rotations become possible
(non-zero yaw rate even if the object has zero velocity). A solution is to replace the
constant yaw rate model by a constant steering angle assumption. This is addressed, for
example, in [Dahlkamp et al. 2004]. However, deriving the yaw rate from the steering
angle and the velocity requires knowledge on the distance between the axles.

2.6. State Estimation
This sections introduces the basic concepts of state estimation and presents different
state estimation techniques that will be used in later sections for estimating the un-
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Model Differential Equations

Constant velocity, constant orien-
tation (CVCO)

v̇ = 0
ψ̇ = 0

Constant velocity, constant yaw
rate (CVCY)

v̇ = 0
ψ̇ = const
ψ̈ = 0

Accelerated velocity, constant yaw
rate (AVCY)

v̇ = const
ψ̇ = const
v̈ = 0
ψ̈ = 0

Accelerated velocity, accelerated
yaw rate (AVAY)

v̇ = const
ψ̈ = const
v̈ = 0...
ψ = 0

Table 2.2.: Variants of the bicycle model. All higher order derivatives not listed in the
table are zero.

known object parameters, such as pose and motion. The most essential technique in this
context is the Kalman filter, which goes back to Rudolf E. Kalman in 1960 [Kalman
1960]. It has been established as standard method for a large variety of tracking ap-
plications. There exist a large number of variants and extensions, however, only those
required in later sections are briefly presented below. For more details on estima-
tion theory it is referred to the literature, e.g. [Maybeck 1979; McGlone 2004]. A
very good tutorial-like introduction on Kalman filtering is given by Welch and Bishop
[Welch and Bishop 2006]. The main references providing the basis for this section
include the comprehensive book on optimal state estimation by Simon [Simon 2006]
and the book on probabilistic robotics by Thrun et al. [Thrun et al. 2005]. The theory
on multi-filter approaches is mainly originated from [Bar-Shalom et al. 2001].

2.6.1. Least Squares Estimation

The objective is to estimate a number of unknown parameters x ∈ IRN based on a set
of (noisy) observations z ∈ IRM, with z = z̃ + �z, i.e., the ideal (true) observations
z̃ are assumed to be disturbed by white, zero-mean, uncorrelated Gaussian noise �z

with known covariance matrix Czz. These observations are related to the unknown
parameters by a functional model (also referred to as measurement model). In case of
a linear system, the functional model is given by the matrix H, with

z = Hx + v. (2.21)

It is further assumed, that the additive noise term v originates only from errors in
the measurements, i.e., v = �z ∼ N (0, Czz). This is also referred to as the stochastical
model.

In general, one can formulate the relationship between measurements and estimated
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state parameters as
z = h(x, v) (2.22)

with h : IRN × IRN → IRM an arbitrary (nonlinear) function with E(z) = h(x, 0). The
unknown parameters are also modeled as random variables following a normal distri-
bution, i.e., the state estimate is given by the mean and covariance of the parameters.

There exist a variety of approaches to solve this problem in a statistically optimal
sense. The most common approach is to alter x by least-squares minimization of the
residual r between the actual measurements z and the predicted measurements �z = H �x,
i.e.

r
T

r = (z − �z)T (z − �z) → min. (2.23)

The uncertainties of the measurements are integrated into the state estimation by
minimizing the following equation:

r
T

C
−1
zz r → min. (2.24)

One can show that, for the linear case, the following equation yields a maximum likeli-
hood estimate of the unknown parameters, assuming the measurement and stochastical
model to be correct [McGlone 2004]:

�x =
�
H

T
C

−1
zz H

�−1

� �� �
C�x�x

H
T

C
−1
zz z (2.25)

with C�x�x corresponding to the covariance matrix of the maximum likelihood estimate �x.
This equation requires the covariance matrix of the residuals to be nonsingular, i.e., the
residuals must be corrupted by at least some noise [Simon 2006], which is acceptable in
practical applications. If the measurement model is nonlinear, h has to be linearized at
an expectation value for x, e.g., by Taylor expansion. Then, a correction vector for the
parameters is computed. This procedure is typically iterated a few times to converge
to a local minimum.

2.6.2. Recursive State Estimation

The state estimation procedure presented above does assume that all measurements are
available at one time to compute the maximum likelihood estimate for the unknown
parameters. In many practical applications, however, the measurements are obtained
sequentially over time, and it is desirable to compute a state estimate at runtime at
short time intervals.

The task is to integrate new measurements recursively into the state estimation pro-
cess, without recomputing the state estimate every time step based on the current
measurements and all previous measurements. The idea is to define the estimation
process as first order hidden Markov model [Rabiner 1989], where the current discrete
state estimate �x(k) depends only on the previous state estimate �x(k − 1), i.e.,

�x(k) = �x(k − 1) + K (k) (z(k) − H(k)�x(k − 1)) . (2.26)
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The gain matrix K steers the amount of how much the new measurements are incorpo-
rated into the current state estimate. All previous measurements z(0), z(1), . . . , z(k−1)
are included into the estimated parameter vector at discrete time step k − 1. With the
right choice of K , the result is still a maximum likelihood estimate (see, e.g., [Simon
2006]):

K (k) = C�x�x(k − 1)H(k)T
�
H(k)C�x�x(k − 1)H(k)T + Czz(k)

�−1
(2.27)

where C�x�x(k − 1) denotes the covariance matrix of the estimated state vector at time
step k − 1. It is also recursively updated as follows:

C�x�x(k) = [I − K (k)H(k)] C�x�x(k − 1) [I − K (k)H(k)]T

+K (k)Czz(k)K (k)T. (2.28)

The recursive formulation provides also a significant speed up in computation time,
since less measurements have to be processed at one time step. An example of a
recursive state estimator is the Kalman filter.

2.6.3. The Linear Kalman Filter
In many systems, the unknown state parameters are not time-invariant, but can be
described in terms of a linear discrete-time system:

x(k) = Ax(k − 1) + Bu(k) + w(k), (2.29)

i.e., the state at time k can be predicted based on the system matrix A and the previous
discrete-time state. The (optional) control input vector u is assumed to be known and
is used to incorporate additional information into the state estimation process that is
independent from the previous state. The matrix B is denoted as control matrix, and w

represents Gaussian zero-mean white noise with covariance Cww(k). The measurement
model is defined as in (2.21).

The Kalman filter is a recursive estimator that consists of a prediction and a correc-
tion (update) step. First, the state estimate and state covariance are predicted into the
current time step using the (linear) system model. The prediction is then corrected by
incorporating the current measurements based on the given measurement model.

Prediction: The expectation value of (2.29) yields an a priori estimate for the current
state:

�x−(k) = A�x+(k − 1) + Bu(k) (2.30)
= E [x(k)|z(1), . . . , z(k − 1)] (2.31)

This equation depends on the previous state and the control input only. The term
�x+(k) = E [x(k)|z(1), . . . , z(k)] denotes the a posteriori state estimate, i.e., the state
estimate after incorporating the measurements up to time k.

The state covariance matrix C�x�x is also propagated through the linear system as

C
−
�x�x(k) = AC

+
�x�x(k − 1)AT + Cww(k) (2.32)

where C
+
�x�x(k−1) denotes the a posteriori state covariance matrix at previous time step.

35



2. Technical Background

Correction: In (2.26), the recursive update of a state estimate based on the mea-
surements z(k) is given. This equation is the basis for the Kalman filter correction
step:

�x+(k) = �x−(k) + K (k)
�
z(k) − H(k)�x−(k)

�
(2.33)

The state estimate of the previous discrete time step is replaced by the a priori state
estimate at current time step. Accordingly, the Kalman gain matrix is computed as
follows:

K (k) = C
−
�x�x(k)H(k)T

�
H(k)C−

�x�x(k)H(k)T + Czz(k)
�−1

(2.34)

The Kalman gain controls the influence of the system model and the measurements.
Finally, the a posteriori state covariance is computed as

C
+
�x�x(k) = [I − K (k)H(k)] C

−
�x�x(k). (2.35)

If the system noise v and the measurement noise w are Gaussian, zero-mean, uncor-
related, and white, then the Kalman filter is the best linear estimator minimizing the
squared residual error [Simon 2006].

2.6.4. The Extended Kalman Filter
There exist several modifications of the linear Kalman filter to deal also with nonlinear
system or measurement models. Most real systems are (highly) nonlinear in practice.
The idea is to linearize the nonlinear model at a given prior, assuming the model is
sufficient linear at the linearization point. The most common approach to adapt the
Kalman filter framework to nonlinear systems by linearization is known as extended
Kalman filter (EKF). It is assumed, that the following model holds:

x(k) = f (x(k − 1), u(k), w(k)) system model (2.36)
z(k) = h (x(k), v(k)) measurement model (2.37)

with w ∼ N (0, Cww), and v ∼ N (0, Cvv) Gaussian noise terms. The a priori state
estimate is obtained by applying the nonlinear system model f to the a posteriori state
estimate of previous discrete time step:

�x−(k) = f
�

�x+(k − 1), u(k), 0

�
. (2.38)

The corresponding a priori covariance matrix is computed as follows

C
−
�x�x(k) = A(k − 1)C+

�x�x(k − 1)A(k − 1)T (2.39)
+ W (k − 1)Cww(k)W (k − 1)T

where A and W denote the Jacobian matrices of f with respect to x and w, respectively,
i.e.,

A(k) = ∂f

∂x

����
x=�x+(k−1)

(2.40)

W (k) = ∂f

∂w

����
x=�x+(k−1)

. (2.41)
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The correction step requires linearization of the measurement model at the currently
best available prior for the unknown parameters. In this case that is �x−. In the
following, an iterative version of the extended Kalman filter correction step is given. The
idea is as follows. After incorporating the measurement vectors, the a posteriori state
estimate should give a better estimate of the unknown parameters. This information
can be used to relinearize the measurement model at the updated state estimate to
get an even better estimate. One can repeat the correction step multiple times until
convergence. Without additional iterations the iterated extended Kalman filter (IEKF)
equals the standard EKF.

The a posteriori estimate at iteration ι + 1 is computed recursively as

�x+
ι+1(k) = �x−(k) + K ι(k)

�
z(k) − h(�x+

ι (k))

−Hι(k)
�

�x−(k) − �x+
ι (k)

��
(2.42)

with �x+
0 (k) = �x−(k) and

K ι(k) = C
−
�x�x(k)Hι(k)T

C
−1
rr,ι(k) (2.43)

C rr,ι(k) = Hι(k)C−
�x�x(k)Hι(k)T + V ι(k)Cvv(k)V ι(k)T (2.44)

Hι(k) = ∂h

∂x

����
x=�x+

ι (k)
(2.45)

V ι(k) = ∂h

∂v

����
x=�x+

ι (k)
. (2.46)

Accordingly, the covariance matrix is adapted as follows

C
+
xx,ι+1(k) = [I − K ι(k)Hι(k)] C

−
�x�x(k).

The matrix C rr denotes the residual covariance matrix or the covariance of the
Kalman filter innovation, i.e., r = z − h(x).

One common measure to evaluate the quality or confidence of the current state esti-
mate is the normalized innovation squared (NIS), defined as

NIS(k) =
�
z(k) − h(�x−(k))

�T
C

−1
rr (k)

�
z(k) − h(�x−(k))

�
. (2.47)

This measure expresses the squared Mahalanobis distance, [Mahalanobis 1936], of
the residual or innovation between predicted and actual measurements. A small NIS
indicates that the measurement model and the current state estimate, including the
state covariance matrix, fit the current observations well, while larger NIS values reveal
a significant violation of the model.

2.6.5. The Unscented Kalman Filter
The extended Kalman filter propagates the state covariances, i.e., the probability den-
sity function of the estimated state parameters, by linearization of the nonlinear system
and measurement model. This assures that the resulting probability distributions re-
main Gaussian. However, the computed covariance matrices can significantly differ
from the result obtained when applying the exact nonlinear transform.
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Thus, an alternative formulation of the Kalman filter for highly nonlinear systems
has been proposed by Julier and Uhlman in [Julier and Uhlmann 1997], that includes
a different strategy to propagate the mean and covariance matrices of the parameters.
The idea is to resample the probability density function from a number of individual
points in state space for which the nonlinear system is directly evaluated. A minimum
set of 2N + 1 deterministic samples is required, where N is the dimension of the state
vector. The samples, also referred to as sigma points, are derived from the currently
best state estimate and covariance matrix. The so called unscented Kalman filter (UKF)
is summarized in Appendix A.1.

In Sec. 4.2, the tracking performance of the UKF is compared to EKF variants with
respect to the proposed vehicle tracking approach.

2.6.6. Maneuvering Targets
The system model of the Kalman filter allows for modeling a particular expected dy-
namic behavior of a tracked instance. This model is typically only an approximation
of the complex dynamics an object can have. However, deviations from that model are
assumed to be represented sufficiently well by Gaussian noise.

A particular problem often addressed in the literature, are maneuvering targets. A
maneuver is defined as highly dynamic process in this context, opposed to stationary
processes, e.g., straight-line motion of an object with constant velocity. A system model
designed for mainly stationary processes may be too slow to follow a maneuvering target.
Thus, several extensions have been proposed including input estimation [Chan et al.
1979], adaptive system noise control [Maybank et al. 1996], and multi-filter approaches
[Bar-Shalom et al. 1989].

Input Estimation

Larger deviations from the system models can be incorporated via the control input
vector u, cf. (2.29) and (2.36).

Chan et al. [Chan et al. 1979] introduced an input estimation scheme that com-
putes the maximum likelihood (constant) acceleration of a moving target over a sliding
window of observations, using least squares estimation techniques. The estimated accel-
eration is used to update the constant velocity model. The drawback of this approach
is that the control vector has a direct influence on the state estimate. Thus, errors in
the input data directly affect the state estimate.

To overcome this problem, the Kalman filter is typically run twice. Once without
control input (non-maneuvering mode), once with the estimated control input (maneu-
vering mode). The state estimate with control input is only selected if the estimated
input is statistically significant, i.e., large enough compared to its standard deviation
[Bar-Shalom et al. 2001].

Adaptive System Noise

The characteristics of the system model in a Kalman filter are mainly determined by
the system noise, i.e., the covariance matrix Cww. The lower the system noise level, the
more the filter sticks to the system model. The idea is to adapt the system noise in a
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way that it is increased at maneuvers, so that the filter is more sensitive to the measure-
ments. On the other hand, the system noise is lowered at mainly stationary processes
to yield smooth estimates. An example for a continuous noise level adjustment based
on the NIS measure is given in [Bar-Shalom et al. 2001], i.e., the difference between
prediction and measurements weighted by its covariance, is selected as maneuver de-
tector, cf. (2.47). It is assumed that larger deviations indicate a maneuver. To be less
sensitive to outliers in the measurements, a sliding window approach can be applied,
i.e., the average normalized error over a couple of previous time steps is considered.
Maybank et al. [Maybank et al. 1996] have proposed a noise control mechanism with
respect to vehicle tracking, that incorporates knowledge on the correlation between ve-
locity and turn rate to be able to track turning vehicles. This idea will be addressed in
more detail in Sec. 3.11.

Multi Filter Approaches

Instead of trying to cover all possible dynamics by a single system model, multi-filter
approaches combine multiple system models by running different Kalman filters, e.g.,
with different system models, in parallel. The resulting state estimates are rated with
respect to how likely a given model is at a given time step. The output state can be
either the currently most probable state or a (weighted) combination of all estimates.
There are several variants of multi-filter setups published (see [Bar-Shalom et al. 2001]
for an overview). At this point, only the most common technique, known as Interacting
Multiple Models (IMM), is presented, which will be required in later sections again.

A set of I filters builds the basis of the IMM framework. Each filter represents a
certain mode, e.g. non-maneuvering or maneuvering. One IMM filter cycle consists
of three main parts: First, the I a posteriori state estimates and covariance matrices
of the previous discrete time step are mixed using a weighted sum (interaction step).
Then, the filters are updated based on a common measurement vector (filtering step).
Finally, a mode probability is computed for each filter (mode probability update step).
The normalized residual, i.e., the deviation between prediction and measurements in
terms of standard deviations, is used as indicator for mode likelihood. Furthermore,
a priori mode transition probabilities must be provided. The weighting coefficients in
the mixing step are derived from the mode likelihood and mode transition probability.

To prevent a combinatorial explosion (there are Ik possible filter configurations if all
I filters are run with all filter outputs of the previous time step each new discrete time
step), the output states of previous time step are probabilistically mixed, guaranteeing
a constant number of I filter updates to perform each time step. The I a posteriori
filter states �x+

j
at time k − 1 are combined into a single input state vector �x∗

j and
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x� k � ,C� k � x� k � , C� k �

x� k � , C� k � x� k � , C� k �

x� k , C� k , x� k , C� k ,λ � k λ � k

z k

µ k �

µ k

Figure 2.12.: IMM framework for two filter setup. The two filters can have different sys-
tem models, e.g. stationary or maneuvering, and are updated in parallel
given the same measurements. The resulting a posteriori state estimates
and covariance matrices are combined in the interaction step based on the
mode probabilities µ, before the next filter cycle to prevent a combinato-
rial explosion.

covariance matrix C
∗
xx,j for each filter using a weighted average:

�x∗
j (k − 1) =

I�

i=1
�x+

i
(k − 1)µi|j(k − 1|k − 1) (2.48)

C
∗
xx,j(k − 1) =

I�

i=1
µi|j(k − 1|k − 1)

�
C

+
xx,i

(k − 1)+ (2.49)

[�x+
i

(k − 1) − �x∗
j (k − 1)][�x+

i
(k − 1) − �x∗

j (k − 1)]T
�

.

The weighting coefficients µi|j(k − 1|k − 1) indicate the conditional probability that
mode i has been in effect at time k − 1, if mode j is in effect at the current time step.
It is computed as follows:

µi|j(k − 1|k − 1) = pijµi(k − 1|k − 1)
�µj(k|k − 1) (2.50)

with pij the transition probability from mode i to mode j, and �µj(k|k−1) the predicted
probability that mode j is in effect at time k, given the mode probabilities of time k−1:

�µj(k|k − 1) =
I�

i=1
pijµi(k − 1|k − 1). (2.51)
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The mode probability for mode j at current time step k is defined as

µj(k|k) =
�µj(k|k − 1)λj(k)

�
I

i=1 �µi(k|k − 1)λi(k)
(2.52)

where λj(k) indicates the mode likelihood based on the normalized residual error
squared:

λj(k) =
exp

�
−1

2r
T
j

C
−1
rr rj

�

|2πC rr|
1

2

. (2.53)

2.6.7. Robust Estimation
State estimation methods, as proposed above, assume mathematical models to hold
true, e.g., the measured data is assumed to be disturbed by Gaussian noise only. Any
deviations from that model influence the estimation result. In practice, an estimator
has to be able to deal with gross errors in the data, that can occur as clear outliers or
hidden contamination which usually cannot even be detected [Hampel 1973].

The term robustness in this context refers to the property of an estimator to produce
accurate and precise results even under the presence of outliers in the data, or smaller
deviations from the model assumptions. As will be seen in later chapters, this is a
very important requirement in the design of the vision-based vehicle tracking system,
intended to run in real world scenarios.

There exist several classes of robust estimators that are able to deal with outliers
in the data, including Hough transformation [Jähne 1995], random sample consensus
(RANSAC) [M. A. Fischler 1981], least median of squares [Rousseeuw 1987], or
M-Estimators. The latter will be used in this approach due to the convenient way to
integrate it efficiently into the Kalman filter, as will be summarized below.

M-Estimator

Least-squares approaches, such as the Kalman filter, minimize the squared error of the
residuals r = z − �z between the actual and the predicted measurements, normalized
by the measurement covariance matrix Cvv. If the M measurements are uncorrelated,
i.e., Cvv = Diag(σ2

1, . . . , σ2
M

), the (scaled) objective function in (2.23) becomes

1
2

�

m

�
rm

σm

�2
→ min . (2.54)

The rapid growth of the quadratic function has the effect that distant outliers have
a strong influence, and can draw the cost minimum well away from the desired value
[Hartley and Zisserman 2003]. Thus, alternative cost functions with similar prop-
erties, i.e., positive definite, symmetric functions with a unique minimum, are applied.
Such functions, if chosen properly, yield a maximum-likelihood-type estimate that is
close to the maximum-likelihood result, but reduce the influence of outliers significantly.

In general, (2.54), can be written as
�

m

ρ(r∗
m) → min (2.55)
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Figure 2.13.: (a) The Huber cost function combines the L2 and L1 norm to a continuous
function. (b) Corresponding weight function. Opposed to least-squares,
measurements more distant from the expectation do not gain more influ-
ence on the estimation result.

with the special case ρ(x) = 1
2x2 for the least-squares method, and r∗

m = rm
σm

.
In [Zhang et al. 1997], it is shown, for example, how an arbitrary cost function

can be used with only a marginal modification of the standard least-squares methods,
making this approach highly applicable in practice. The quadratic form in (2.54) can
be retained, if scaling (or weighting) the residuals by w(x), i.e.,

�

m

w(r∗
m)r∗

m

2 → min (2.56)

with
w(x) = ρ�(x)

x
. (2.57)

A variety of maximum-likelihood-type cost functions have been proposed (see [Hart-
ley and Zisserman 2003] for an overview). They can be categorized into non-convex
and convex functions, where the latter are preferable due to a single, global minimum.
This has the advantage of being able to descend to that minimum of the cost function
independent of the initialization.

At this point, only an example is presented, which is used in later chapters. It is
going back to the work of Huber [Huber 1964] on robust estimation. The so called
Huber function is a hybrid between the L2 (least-squares) and the L1 (absolute values)
cost function (see Fig. 2.13(a)). It is defined by

ρHuber(x) =
�

1
2x2 , |x| < CHuber
CHuber(|x| − CHuber

2 ) , otherwise . (2.58)

where CHuber is a tuning constant indicating the threshold between quadratic and linear
weighting. In [Zhang et al. 1997], a value of CHuber = 1.345 is suggested, corresponding
to a 95% asymptotic efficiency, i.e., the expected precision of the estimator is 5% below
the theoretic minimum precision given by the Cramer-Rao inequality (see, for example,
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2.6. State Estimation

[Kay 1993]). The first derivative of this function is

ρ�
Huber(x) =

�
x , |x| < CHuber
CHuber sign(x) , otherwise (2.59)

and, thus, the weighting coefficient is wHuber(x) = 1 for residuals below CHuber, and
wHuber(x) = CHuber/|x| otherwise. Since the Huber function is not bounded by defini-
tion, it is common to cut off measurements that are too far away from the expectation
in practice by manually setting the weighting coefficient to 0 if the residual exceeds
a user-defined threshold. This is equivalent to a n-σ-test based on the Mahalanobis
distance [Zhang and Faugeras 1992], i.e., the normalized residuals are rejected as
outliers, if differing more than n standard deviations from the expectation (for example
n = 3, corresponding to the 99.7 percentile of the normal distribution).

The reweighing of measurements is easily integrated into the Kalman filter framework
by scaling each row of the measurement covariance matrix by the inverse of the weighting
factor of the corresponding residual, i.e.,

C
∗
vv = QCvvQ

T (2.60)

with Q = Diag(w(r∗
1)−1, w(r∗

2)−1, . . . , w(r∗
M

)−1) 1

2 and Cvv denoting the original mea-
surement covariance. The resulting matrix C

∗
vv then replaces Cvv in the Kalman filter

equations. This yields a robust version of the Kalman filter that is less sensitive to
outliers.

The techniques and models presented in this chapter are the basis for developing the ve-
hicle tracking approach proposed in this thesis, which will be introduced in the following
chapter.
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In Sec. 1.4 a generic problem description for tracking moving objects in a 3D environ-
ment has been introduced. Now, a specific realization for tracking of road vehicles from
a moving platform based on stereo image sequences is presented. The different elements
of this approach such as the object model, motion model, and measurement model are
successively concretized in the following sections.

First, a compact overview on the system is given, including the given inputs, the key
idea, and the requirements to make the system practicable for real world application.
The overview section further motivates the organization of the remainder of this chapter.

3.1. Overview
Fig. 3.1 gives an overview on the overall vehicle tracking approach.

Inputs: The main input data consists of motion and depth information extracted from
stereo image sequences. Based on this information it is possible to track 3D points over
time. Inertial sensors provide information on the motion of the ego-vehicle (velocity and
yaw rate) and, thus, information on the camera motion. A radar sensor additionally
provides information on the velocity of other vehicles in front of the ego-vehicle.

Objective: The objective is to estimate the pose, shape, and motion parameters of an
observed vehicle in 3D over time based on these sensor inputs, including its velocity,
acceleration, and yaw rate.

The main requirements of this approach are generality, robustness, and real-time
computation time. Opposed to many existing approaches, which are restricted to a
particular task such as tracking the lead vehicle at highways, this approach should be
generic in a sense that it is neither limited to a particular moving direction nor to the
vehicle type and shape. All typical real world driving situations, including inner city
traffic, intersection turn maneuvers, country road traffic, and high way traffic should be
covered, with no requirement for situation dependent parameter tuning. The system
must be explicitly able to deal with oncoming vehicles, which is in particular challenging
due to large relative velocities and the increasing uncertainty of the stereo measurements
with distance.

Key idea: The key idea of this approach originates from the fact that observed 3D
points on an object’s surface do not move randomly and independently of others. In-
stead they underlie one common rigid body motion.

As the vehicle moves, all points on the object surface move with respect to a fixed
reference system, e.g., the world system, while the relative position of a given point
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3. Vehicle Tracking Approach

Figure 3.1.: Overview on the tracking system. Depth and motion information from
stereo vision is fused with a 3D object model and a vehicle motion model
within an extended Kalman filter approach to estimate the pose and motion
parameters of road vehicles. The framework can be easily extended by other
sensor inputs, for example, radar velocity measurements.
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3.1. Overview

Figure 3.2.: 3D motion of tracked object points. The colors encode the lateral velocity
(red fast, green slow). Points at the front of vehicle no. 1 show larger
lateral velocities compared to points at the rear as the vehicle is turning;
demonstrating the data contains valuable information on the rotational
velocity.

with respect to a local object coordinate system does not change over time. The point
movements in the world can be observed in terms of image displacements and depth
changes in a sequence of stereo images.

Now the task is to solve for the inverse problem. Given a number of image dis-
placements and distance measurements of tracked object points (=sparse scene flow,
cf. Sec. 2.4.2), find the corresponding object movement in 3D that best matches these
observations. For this purpose, an extended Kalman filter is utilized.

The advantage of considering a group of points is that not only translational, but
also rotational movements become observable. This is illustrated in Fig. 3.2. Here, the
measured lateral velocity of points at the vehicle’s front is larger compared to points
at the rear, correctly indicating a rotation of the turning vehicle. A 3D point cloud is
further a very generic representation of an object, and thus can be used to represent
the shape of arbitrary vehicle types, even if partly occluded.

Robustness is mainly obtained by two properties. First, the more 3D points are
contributing (redundancy), the less influence get random measurement errors on the
estimation result implicitly. In a data association step, new points are successively
added to an existing object model at runtime to ensure that there are always sufficient
points, since in practice feature tracks might be lost.

Secondly, movements of the point cloud are restricted by a vehicle motion model.
The motion model incorporates a prediction on the expected, physically possible ve-
hicle movement. Measured 3D point displacements that differ significantly from the
expectation are detected and sorted out from the model. The influence of the remain-
ing points on the estimation result is controlled using the robust Kalman filter approach
as proposed in Sec. 2.6.7.

The radar sensor is optional in the system design, i.e., the tracking approach yields
also very good results if only the data from the stereo vision sensor is available.
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3. Vehicle Tracking Approach

Requirements and Practical Issues: There are several requirements to make the core
system, which is based on 3D points displacements only, applicable in practice. First,
the 3D points belonging to a given object have to be segmented from the remaining
points.

Secondly, a time-consistent coordinate system has to be attached to each object.
The transformation between this object coordinate system and the camera coordinate
system must be known for one step in time, as well as the position of each point in the
object system, up to random errors with known covariance matrix.

The vehicle motion model further assumes that the rotational center is physically
located at the center rear axle of the corresponding vehicle. As will be seen later, this
position is essential for a reliable prediction of rotational movements and for estimating
the yaw rate correctly. However, this position is only weakly observable from the 3D
point cloud motion. Additional measurements based on dense stereo data enable to
stabilize the rotation point geometrically and to reconstruct the object dimension.

The vehicle tracking approach will be successively introduced in the following sections.
First, the coordinate system definitions are summarized in Sec. 3.2. Then, the object

representation and the unknown parameters to be estimated are presented in Sec. 3.3,
following the structure of Sec. 1.4.

In the consecutive sections, the different components required for defining the Kalman
filter are presented, i.e., the system model in Sec. 3.4, the measurement model in Sec. 3.5,
and the stochastic model in Sec. 3.6.

The detection of error-prone measurements that significantly differ from the stochas-
tic model is addressed in Sec. 3.7. Then, two different object detection and state
initialization methods are proposed in Sec. 3.8. The probabilistic data association of
new points to an existing model is presented in Sec. 3.9. Once an object track has
been initialized, there must also be a way to terminate it, for example, if an object
leaves the visual field of the camera or the estimated parameters are implausible. This
is addressed in Sec. 3.10. Strategies for tracking maneuvering vehicles, e.g., at urban
intersections, are given in Sec. 3.11. The chapter concludes with a brief summary in
Sec. 3.12.

3.2. Coordinate Systems
In this approach, four different 3D coordinate systems are used, including camera sys-
tem, ego-vehicle system, object system, and an object-vehicle system, respectively. Each
coordinate system corresponds to an orthogonal reference frame, or tripod. All systems
are right-handed. The Y -axis corresponds to the upwards pointing height axis for all
systems. An overview on the different coordinate systems and transformations is given
in Fig. 3.3. In addition, the two-dimensional image coordinate system of the left camera
is used, following the definition in Sec. 2.2.1.

Ego-Vehicle System Se Coordinate system attached to the ego-vehicle. The origin Oe

is located at the center rear axle on the ground. The eZ-axis is aligned to the
longitudinal axis of the vehicle and points towards the scene in positive direction.
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Figure 3.3.: Overview on different coordinate systems and transformations.

The eY -axis corresponds to the ground surface normal at the origin. The ego-
vehicle system, or short ego-system, is attached to a moving platform, thus, it
can change its position relative to a static world system over time. Points in the
ego-vehicle system are denoted as e

P .

Camera System Sc Located at the left camera with the axis defined according to
Sec. 2.2.1. Its translation and rotation with respect to the ego-system is assumed
to be known a priori from a calibration step. Points in the camera system are
denoted as c

P .

Object System So Coordinate system attached to a given observed rigid object. The
origin Oo is located at theoretically arbitrary position on the object, e.g., the
centroid of the object point cloud. The orientation of the oY -axis is defined as
the ground surface normal at the origin. Points in the object system are denoted
as o

P .

Object-Vehicle System Sv Vehicle specific object coordinate system defined analog to
the ego-vehicle system with the origin Ov located at the center rear axle of a given
object on the ground. The vZ-axis points in the moving direction of the observed
vehicle, the vY -axis corresponds to the ground surface normal. This definition
of the object-vehicle system, which is simply referred to as vehicle system in the
following, is required, since movements of the rigid body are related to the motion
of the center rear axle (cf. Sec. 2.5.3). The pose of the vehicle system with respect
to the ego-vehicle system is of particular interest, as it directly represents the pose
of the given vehicle to the ego-vehicle.
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3. Vehicle Tracking Approach

The definition of two coordinate systems for each observed object is benefical for
the following reason. The pose of the vehicle system with respect to the ego-system,
which is important for correctly predicting the object motion, is typically not known at
the beginning of a new object track and has to be estimated from the observed object
motion or/and geometrical properties of the measured 3D points. At this, the object
system provides a time and gauge consistent reference frame to which both the 3D
points building the object shape model and the vehicle system will be referred to.

3D points can be transformed from one to another coordinate system based on the
coordinate transformation matrices c

W e, e
W o, and o

W v, respectively. With these
transformation and the inverse transformations it is possible to perform the following
coordinate transformation chain for a given point:

c
P ↔ e

P ↔ o
P ↔ v

P (3.1)

These coordinate transformation matrices will be specified in more detail throughout
this chapter. Based on the stereo projection equations and the intrinsic and extrinsic
parameters of the stereo system, it is further possible to transform a point c

P in camera
coordinates into a pixel position (u, v) and stereo disparity d and vice versa.

3.3. Object Model
In Sec. 1.4, a generic rigid body object model has been defined including pose and motion
parameters as well as time-invariant object properties. In the following, a concrete
realization of this model for road vehicles is proposed and the different parameters of
this model are described.

3.3.1. Pose Parameters
In this approach, the position and orientation of an object is defined with respect to
the ego-vehicle system as illustrated in Fig. 3.4. It is fully defined by six parameters.
However, since the pitch and roll angle depend mainly on the road surface, these param-
eters are not included in the vehicle model used throughout this thesis. Only rotations
around the height axis by angle eψo are modeled, as this is the only rotational param-
eter that can be controlled by the driver using the steering wheel. In the following,
the angle eψo will be referred to as yaw angle ψ for simplicity, as it always describes
the rotation of a point from the object to the ego-system. This yields the reduced pose
parameter vector

e
Ω |= [ eXo, eYo, eZo, ψ]T (3.2)

where e
T o = [ eXo, eYo, eZo]T defines the translation vector from the object to the ego

origin. Alternatively stated, it corresponds to the object origin in ego-coordinates e
Oo.

By definition, the object origin is assumed to lie on the ground. Thus, the relative
height eYo in ego-coordinates depends only on the given road geometry and does not
contain additional information on the object. Several methods exist that estimate a
vertical road model based on stereo vision, e.g. [Wedel et al. 2008a; Loose and
Franke 2010; Siegemund et al. 2010]. With such methods it is possible to derive
eYo as a function of eXo and eZo. Alternatively, the road is often approximated as
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3.3. Object Model

Figure 3.4.: Object model and pose parameters. The object system So is defined relative
to the ego-system Se based on a rotation about the height axis by angle ψ
as well as translation e

T o = e
Oo. The vehicle system Sv is defined relative

to the object system by rotation β and translation o
T v = o

Ov.

planar ground, yielding eYo = 0 independent of the position on the plane. This is an
acceptable assumption at many road scenes and is used in the further derivation of the
object tracking procedure for simplicity.

The parameter vector of the rotation, as introduced in (1.2), has only one element,
i.e., prot = ψ. As long as rotations are restricted to rotations about the height axis, and
since the expected rotations between consecutive images are small, the rotational repre-
sentation by Euler angles is a sufficient and efficient representation, which is commonly
used in the automotive field.

Finally, the transformation from object coordinates into ego-coordinates for a 3D
point o

P is given by
e
P = eWo

o
P

=
�

Ry(ψ) e
T o

0
T
3 1

�
o
P (3.3)

in homogeneous representation. The 3 × 3 matrix Ry(ψ) represents a counter-clockwise
rotation by ψ around the height axis with

Ry(ψ) =




cos(ψ) 0 sin(ψ)

0 1 0
− sin(ψ) 0 cos(ψ)



 . (3.4)

3.3.2. Motion Parameters
Object movements are modeled by the vehicle motion model, as proposed in Sec. 2.5.3.
The motion parameters include the velocity v in moving direction, the longitudinal
acceleration v̇ and the yaw rate ψ̇, as well as the pose parameters of the vehicle system
to which all motion parameters are related. The coordinate system will thus be skipped
in the notation of v, v̇, and ψ̇.
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The total parameter vector of the motion model is

o
Φ |=

�
v, v̇, ψ̇, oXv, oZv, β

�T
(3.5)

where o
T v = [ oXv, 0, oZv]T defines the origin of the vehicle system in object coordi-

nates. It is geometrically located at the position of the center rear axle of the observed
vehicle, also denoted as rotation point. The rotation of a point from vehicle coordinates
to object coordinates about the height axis is given by the angle oβv. This angle will
be also referred to as β for simplicity in the following. The moving direction of the
vehicle in ego coordinates is χ = ψ + β. If the object oZ-axis is ideally aligned with
the longitudinal axis of the vehicle, β equals the side slip angle.

The transformation of a 3D point v
P in vehicle coordinates into object coordinates

is given by

o
P = oWv

v
P

=
�

Ry(β) o
T v

0 1

�
v
P. (3.6)

3.3.3. Shape Parameters
In this approach, the time-invariant parameters define the object shape and dimen-
sion. The shape parameters correspond to the actual point positions within the object
coordinate system as well as the parameters of the surrounding cuboid.

The advantage of the point cloud representation is that a wide range of vehicles,
e.g. cars, vans, motorbikes, etc., can be described sufficiently well without any a priori
knowledge on the actual shape. The point cloud does not have to cover all parts of a
vehicle to be able to estimate the motion parameters. This makes it very flexible and
allows for dealing with partial occlusions.

(a) Perspective View (b) Bird’s Eye View

Figure 3.5.: Geometric box model with the rotation point at the center rear axis located
at a constant distance ρ from the vehicle’s rear. The object corners as well
as the side centers have a fixed position with respect to the rotation point
describable in terms of w, h, l, and ρ.
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The cuboid allows for describing the object dimension and boundaries independently
of the currently observed point cloud, which does not have to cover the whole object.
This will be addressed in more detail in Sec. 3.5.4.

Now, the shape parameters are summarized as

o
Θ |=

�
o
Θ

T
points,

o
Θ

T
cube

�T

=




oX1, oY1, oZ1, . . . , oXM , oYM , oZM� �� �

oΘT
points

, w, l, h, ρ� �� �
oΘT

cube





T

. (3.7)

Each object point, named P m, has a time-invariant position o
P m = [ oXm, oYm, oZm]T

within the object coordinate system (1 ≤ m ≤ M), i.e., P m( o
P m). The cuboid dimen-

sion is given by width w, length l, and height h, respectively. The object dimension
of the cuboid is also assumed to be constant over time. The axis of the cuboid are
aligned with the vehicle coordinate system (see Fig. 3.5). The corners of the cuboid
have a semantical meaning, e.g., front bottom left or center bottom right, and can be
fully described in terms of the vehicle dimension and a constant offset ρ in vZ-direction
between the center rear axle and the vehicle’s rear side.

3.3.4. Filter State Representation

In this section, the object model proposed above is mapped into a Kalman filter state
representation. Not all parameters are included in the state vector. There are also
parameters that are estimated outside the filter as will be motivated below. Two basic
models have been investigated. A full model for estimating pose, motion, and shape
parameters simultaneously within a single Kalman filter state vector, and a reduced
state vector that contains only the pose and motion parameters while the shape model
is updated outside the filter for real-time applicability.

Full Model

The following Kalman filter state vector defines the full model:

xfull =




eXo, eZo, ψ� �� �

pose

, v, v̇, ψ̇, oXv, oZv, β� �� �
motion

, o
Θ

T
points� �� �

shape





T

(3.8)

where the vector o
Θpoints contains the object point coordinates as proposed in (3.7).

The dimensional parameters of the cuboid, o
Θcube, are not part of the state vector

and have to be estimated separately. If the object point cloud represents the object
completely, the cuboid is derived from the point cloud’s bounding box. In practice, the
point cloud usually covers only the visible parts of an object. Thus, other methods have
to be applied as will be proposed in Sec. 3.5.4..
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External Point Update Model

The full model estimates the point cloud model representing the object’s shape simul-
taneously with the pose and motion parameters in an optimal sense. However, with
an expected number of 50-300 points for one object, the filter state becomes extremely
large.

The large filter state significantly increases the overall computation time and leads to
numerical problems if the number of points gets too large. In addition, a varying number
of points leads to a changing state vector size, which also alters the covariance matrix
size. Accordingly, a dynamic memory handling is required, producing a significant
overhead compared to constant size Kalman filter implementations.

For real-time applicability, the problem of shape reconstruction is decoupled from
the problem of pose and motion estimation. Soatto et al. [Soatto et al. 1994] have
motivated this, in the context of estimating the motion of the camera from a number
of image feature correspondences between consecutive time steps, by the fact that the
dynamics of the (static) points are significantly lower compared to the camera motion.

The points in the object model have a fixed position due to the rigid body assumption,
i.e., no dynamics at all, while the object pose with respect to the ego-vehicle can change
dynamically.

The reduced filter state is given by

xred =



 eXo, eZo, ψ� �� �
pose

, v, v̇, ψ̇, oXv, oZv, β� �� �
motion





T

. (3.9)

This formulation assumes that the object point cloud model is perfectly known, i.e.,
the 3D position of each point in the object model is a constant in the measurement
model. In practice the object shape is unknown and has to be obtained from the (noisy)
observations. The point update mechanism outside the Kalman filter is introduced in
Sec. 3.5.3.

In the following the additional state vector descriptors full and red will be skipped if
it is clear which model is used or if the context applies to both models.

3.4. System Model

The system model describes an expectation on the temporal development of the object
state entries and is used for state prediction. It consists of two parts. First, the
movement of the tracked object which is modeled as circular path motion based on
the simplified bicycle model as proposed in Sec. 2.5.3. This is also referred to as the
dynamic model of the observed object. Secondly, since the ego-vehicle can also move,
the absolute ego-motion has to be considered at state prediction as well. Finally, both
absolute motions have to be combined to a relative motion.

As proposed in Sec. 2.6.4, the system model is a mathematical description of the
transformation of the time-discrete state x(k − 1) to x(k). Let t denote the continuous
time at discrete step k − 1, then the continuous time at step k is equivalent to t + ∆t,
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for a given time interval ∆t. This yields an alternative formulation of (2.36) as

x(t + ∆t) = f(x(t), u(t + ∆t), w(t + ∆t)) (3.10)

or, in short form, by indicating the time parameters t with a prime and t + ∆t with a
double prime:

x
�� = f(x�, u

��, w
��). (3.11)

with u a known control input including information on the ego-motion, and w a noise
term. The system model is used in the Kalman filter prediction step, i.e., �x��− =
f(�x�+, u

��, 0). It is successively derived in the following.

3.4.1. Motion of Observed Vehicle
Assuming a stationary ego-vehicle system, the object dynamics are modeled by the
following nonlinear differential equations:

eẊv = v sin(ψ + β) (3.12)
eŻv = v cos(ψ + β) (3.13)

ψ̇ = ψ̇ (3.14)
v̇ = v̇ (3.15)
ψ̈ = 0 (3.16)
v̈ = 0 (3.17)

oẊv = 0 (3.18)
oŻv = 0 (3.19)

β̇ = 0 (3.20)
oẊ1 = 0 (3.21)
oẎ1 = 0 (3.22)
oŻ1 = 0 (3.23)

...
oẊM = 0 (3.24)
oẎM = 0 (3.25)
oŻM = 0 (3.26)

State variables are underlined above to distinguish the Newton notation for time deriva-
tives of the differential equation system, ẋ(t) ≡ d

dt
x(t), from parameters of the Kalman

filter state, which are considered as constants in these equations. This corresponds to
the (constantly) accelerated velocity, constant yaw rate (AVCY) model as proposed in
Sec. 2.5.3.

Note that equations (3.12) and (3.13) do not contain the object origin in ego-coordinates,
as defined in the state vector, but the vehicle origin in ego-coordinates. Thus, only for
the special case that Oo = Ov, these equations can be applied to predict the correspond-
ing state vector entries. In general, the object origin, with Oo �= Ov, has a different
motion than the rotation point.
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Thus, instead of formulating the vehicle motion in the ego-system, the following
transformation sequence is applied. First, the translation and rotation of an arbitrary
point within the vehicle coordinate system is computed based on the motion parameters
v, v̇, and ψ̇. This gives a predicted position of this point in the vehicle coordinate system
Sv. Then, the predicted point position is transformed into object coordinates, using
oXv, oZv, and β, and finally into ego-coordinates based on eXo, eZo, and ψ.

The translative motion v
T (∆t) of a given point in vehicles coordinates, within a

discrete time interval ∆t, is given by

v
T (∆t) =





� ∆t

0 (v + v̇τ) sin(ψ̇τ)dτ
0� ∆t

0 (v + v̇τ) cos(ψ̇τ)dτ



 . (3.27)

If v, v̇, and ψ̇ are constant (which is a proper assumption for a small time interval ∆t),
the integrals can be solved to

v
T (∆t) =





1
ψ̇2

�
v̇ sin(ψ̇∆t) − (v̇ψ̇∆t + vψ̇) cos(ψ̇∆t)

�
+ v

ψ̇

0
1

ψ̇2

�
(v̇ψ̇∆t + vψ̇) sin(ψ̇∆t) + v̇ cos(ψ̇∆t) − v̇

�



 . (3.28)

Following L’Hospital’s Rule, for lim ψ̇ → 0 the translation vector reduces to

v
T (∆t) =




0
0

v∆t + 1
2 v̇∆t2



 (3.29)

which corresponds to a translation in the vZ-direction only. By definition, the vehicle
vZ-axis corresponds to the longitudinal axis of the car, i.e., the car is driving straight.
The reduced translation vector depends on the velocity and acceleration only.

In practice, for small ψ̇, the nonlinear functions fx(τ) = (v + v̇τ) sin(ψ̇τ) and fz(τ) =
(v + v̇τ) cos(ψ̇τ) are linearized via Taylor expansion (see Ap. A.2), yielding:

v
T (∆t) ≈





1
2vψ̇∆t2 + 1

3 v̇ψ̇∆t3 − 1
24vψ̇3∆t4

0
v∆t + 1

2 v̇∆t2 − 1
6vψ̇2∆t3 − 1

8 v̇ψ̇2∆t4



 . (3.30)

The rotational motion around the vehicle origin in time interval ∆t integrates to ψ̇∆t,
thus

v
R(ψ̇∆t) =




cos(ψ̇∆t) 0 sin(ψ̇∆t)

0 1 0
− sin(ψ̇∆t) 0 cos(ψ̇∆t)



 . (3.31)

The total movement in vehicle coordinates can be expressed in homogeneous coordinates
as

v
P

�� =
�

v
R

�(ψ̇∆t) v
T

�(∆t)
0

T
3 1

�
v
P

� (3.32)

= vM v
P

�. (3.33)
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3.4. System Model

Accordingly, the translation vector of a point in ego-coordinates is computed by first
transforming the point into vehicle coordinates, applying the motion matrix, and then
re-transforming the point into the ego-coordinate system as follows:

e
P

�� = eWo
oWv

vM vWo
oWe� �� �

eM

e
P

� (3.34)

Applying eM to e
Oo, represented by e

T o = [ eXo, 0, eZo]T, yields the predicted object
origin in ego-coordinates. Since oWe

e
To = o

T o = [0 0 0]T, (3.34) can be further
simplified, i.e.

e
T

��
o = eWo

oWv
vM

�
(−R

�
y(β) o

T
�
v)T 1

�T
. (3.35)

3.4.2. Motion of Ego-vehicle
In the general case where the ego-vehicle is not stationary, the ego-motion matrix
e��We� (u(k)), transforming a given point in the ego-coordinate system at one discrete
time step into the next one, has to be considered. The control vector u, containing the
rotational and translational parameters of the ego-motion, and the time index k will be
skipped in the following for ease of readability. The ego-motion compensated predicted
position of the reference point is then given by

e��
T

��
o = e��We� e�

T
��
o . (3.36)

Then,

∆ e
T o = e��

T
��
o − e�

T
�
o =





eẊo

eẎo

eŻo



 ∆t (3.37)

is the time discrete update of eXo and eZo and thus a generic alternative formulation
of (3.12) and (3.13) that does not longer require the reference point to be identical to
the rotation point.

The method proposed by Badino [H. Badino 2004] is used for computation of the
ego-motion matrix e��We� . This method estimates all six degrees of freedom of the
camera motion from a sequence of stereo images based on correspondeces of static
points in the scene. Ego-motion information from inertial sensors is also incorporated
in this method. Any other approach for estimating the camera motion between two
consecutive frames could be used alternatively.
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3. Vehicle Tracking Approach

3.4.3. Combined Relative Motion
The state updates for a non-stationary ego-coordinate system are, in time discrete form,

∆x =





∆ eXo

∆ eZo

∆ψ
∆v
∆ψ̇
∆v̇
∆ oXv

∆ oZv

∆β
∆ oX1
∆ oY1
∆ oZ1
...
∆ oXM

∆ oYM

∆ oZM





=





e��
X ��

o − e�
X �

o

e��
Z ��

o − e�
Z �

o

ψ̇∆t + ψ̇ego∆t

v̇∆t
0
0
0
0
0
0
0
0
...
0
0
0





(3.38)

where ψ̇ego indicates the yaw rate of the ego-vehicle. Again, underlined variables cor-
respond to parameters and should not be confused with the operator of the continuous
differential equations. The system equations above are given for the full object state.
The updates for the reduced model are straight forward. One simply has to skip the
object point update equations. ∆x can be seen as a function of x, u, and ∆t.

Finally, the nonlinear functional model f(x�, u
��, w

��) is defined as

x
�� = f(x�, u

��, w
��) = x

� + ∆x + w
�� (3.39)

with w ∼ N (0, Cww) an additive zero-mean, white, Gaussian noise term.
Following the extended Kalman filter approach (cf. Sec. 2.6.4), f has to be linearized

at �x� for propagation of the state covariance matrix. Then, the matrix A, with

A = ∂f

∂x

����
x=�x�

(3.40)

defines the linearized system matrix. Fig. 3.6 shows the distribution of the non-zero
elements of A for the reduced parameter vector. All elements on the main diagonal
are one. In practice, only the non-zero entries of the upper left submatrix have to
be recomputed each time step. The analytical computation of this Jacobian is quite
lengthy and, thus, approximated numerically in practice.

If the full model is used, the matrix A is easily extended, since for each point the
additional entries are 1 at the diagonal and zero otherwise.

The system model presented here is a good approximation of the normal vehicle dy-
namics in many traffic scenes, including many urban scenarios. However, there are also
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X_o Z_o psi v yawr a X_v Z_v beta

X_o

Z_o

psi

v

yawr

a

X_v

Z_v

beta

#non−zero = 25

Figure 3.6.: There are 25 non-zero elements in the linearized system matrix for the
reduced state vector (without point coordinates). Since the diagonal entries
are 1, only 16 values have to be computed each time step.

limits and drawbacks. For example, this model does not incorporate the correlation
between velocity and yaw rate, i.e., it is possible that the object orientation can change
(non-zero yaw rate), although the vehicle is not moving at all (velocity zero). This un-
realistic condition must be suppressed in practice. The motion model has further been
derived for cars, vans, or motorbikes, driving on a path of low curvature at relative slow
velocity. Any physical effects occurring at higher dynamics, e.g., a dynamic side slip
angle, are ignored in that model. The model is also not suited for representing turn
maneuvers of long trucks or (articulated) buses, which are excluded from the scope of
this thesis.

In Sec. 3.11 an extension of this motion model, which also incorporates the yaw
acceleration to yield a better approximation of the vehicle dynamics at intersection
turn maneuvers, is given.

With the presented system model it is possible to predict the object state. In the
following section it will be described, how the measurements can be predicted based on
this predicted state.

3.5. Measurement Model
The measurement model relates the unknown state parameters to the observations.
First, a brief overview on the total measurement model is given, which is composed of
different components. Then, these components will be introduced in the consecutive
sections in detail.

3.5.1. Total Measurement Model
The total measurement model combines the following components,

• point cloud measurements, with z
(p) = h(p)(x); cf. Sec. 3.5.2 and 3.5.3
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3. Vehicle Tracking Approach

• rotation point measurements, with z
(rot) = h(rot)(x); cf. Sec. 3.5.4

• radar velocity measurements, with z
(v) = h(v)(x); cf. Sec. 3.5.5 (optional)

where each component consists of a measurement vector z
(.) and a functional model

h(.) relating the state parameters to the measurements, as introduced in Sec. 2.6.4.
The point cloud component is the main part of the total measurement model. The

measured 3D point coordinates contain information on the object pose and motion
state. In addition, geometrical rotation point measurements are derived from dense
stereo data, while radar measurements improve the velocity estimate. The details will
be presented in the corresponding sections below.

The different measurement components are summarized by concatenation to the total
measurement model h, yielding

z =




z

(p)

z
(rot)

z
(v)



 =




h(p)(x)

h(rot)(x)
h(v)(x)



 = h(x). (3.41)

This measurement model is then applied, following the standard extended Kalman filter
approach.

The velocity measurement is optional, i.e., the system also performs very well if no
radar information is available. It is straight forward to add additional measurement
modules accordingly. In the following sections, z will always refer to the total measure-
ment vector, and h to the corresponding nonlinear measurement model, if not stated
otherwise.

The measurements of the different modules are assumed to be uncorrelated, which
will be concretized in Sec. 3.6.2.

3.5.2. Point Cloud Measurements
The 3D point cloud representing the object’s shape is directly observable by the stereo
vision sensor. Since each point has a fixed position within the object coordinate system,
it also has an influence on the object pose parameters.

Let M(k) denote the number of points at discrete time step k. A measurement of
point P m, 1 ≤ m ≤ M(k), in the image consists of a sub-pixel accurate image position
(um, vm) and stereo disparity dm at this position. This information is summarized in the
vector zm(k) = [um(k), vm(k), dm(k)]T. In the following, the time indices are skipped for
better readability, when all variables refer to the same time instance. If the association
between an object point and an image position is known at one point in time, it is
possible to reassign it by tracking the image position over time using a feature tracker
such as the KLT tracker [Tomasi and Kanade 1991]. All M measurements build the
point measurement vector z

(p) with

z
(p) =

�
z

T
1 , z

T
2 , ..., z

T
M

�T
. (3.42)

The nonlinear measurement model z
(p) = h(p)(x) results from the perspective camera

model as proposed in (2.3) and (2.5). With this measurement model it is possible
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X_o Z_o psi v yawr a X_v Z_v beta X1 Y1 Z1 X2 Y2 Z2

h_X1

h_Y1

h_Z1

h_X2

h_Y2

h_Z2

#non−zero = Mx3x6

Figure 3.7.: Example measurement matrix for M = 2 measurements and the full state
vector. For each measurement, there are 3 × 6 non-zero elements of the
linearized measurement matrix to be computed. In the reduced state model,
the point-wise 3 × 3 blocks at the right-hand side are omitted.

to predict the measurements �zm = [�um, �vm, �dm]T based on the current a priori state
estimate �x−, i.e., �zm = h(p)

m (�x−). The function h(p) is defined element-wise as

h(p)
m (x) =

�
fx

cXm

cZm

+ x0, fy

cYm

cZm

+ y0, fx

b
cZm

�T
(3.43)

where fx and fy represent the scaled principal distance of the camera for horizontal and
vertical direction, respectively, (x0, y0) the principal point, and b the base line of the
stereo system. c

P m = [ cXm, cYm, cZm]T is the point o
P m in the camera system Sc.

The total transformation is composed of an object to ego transformation (parameterized
by the state variables ψ, eXo, and eZo), and the constant transformation cWe between
ego and camera system:

c
Pm = cWe

eWo
o
Pm (3.44)

with cWe including the rotation and translation of the camera with respect to the ego-
system. The equations above assume rectified image pairs, i.e., image distortions have
been compensated before.

Following the extended Kalman filter approach, h(p) has to be linearized at the current
estimated state �x− for computation of the Kalman gain and propagation of the state
covariance matrix, yielding:

H
(p) =





∂h
(p)

1

∂x

∂h
(p)

2

∂x...
∂h

(p)

M
∂x





������������
x=�x−

. (3.45)

The non-zero elements of the measurement matrix are shown in Fig. 3.7.
As will be seen later, the tracking performance increases with the number of con-

tributing points. A varying number of M points due to loss or addition of newly tracked
points can be easily handled, since each point simply adds another three measurements
to the filter.
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Figure 3.8.: Bird’s eye view of the 3D point model of an oncoming vehicle at different
time steps is shown from (a) to (c). The initial noisy point cloud is refined
over time and the shape of a vehicle becomes visible in (d) from side view.
All points are given in object coordinates.
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3.5.3. External Shape Model Update
Since the exact position of a given object point is typically not known at initialization,
it has to be estimated from the noisy measurements. An example for an initial noisy
object point cloud and the same point cloud refined over several time steps is given in
Fig. 3.8. As can be seen, the initial object model can be quite noisy, incomplete and
will usually contain outliers.

In the full model, the object point positions are estimated and updated by the Kalman
filter. However, if the problem of motion estimation is separated from the problem of
shape reconstruction for real-time applicability, the point positions have to be refined
outside the Kalman filter. Without updating the existing object points, the noisy
positions lead to systematic errors in the prediction step.

The external point update is performed in two steps. First, each point is updated
independently of all other points based on its measured position, yielding an estimate
o �P

∗
m(k). Then, all updated point positions are corrected by a common rigid transfor-

mation to the posterior estimated position o �P m(k), ensuring that the centroid and the
principal axis of the point cloud are not changed by the individual updates as will be
motivated in more detail below.

Step 1: For each object point P m, observed at the current time step k and K previous
discrete time steps k−1, . . . , k−K, K ≥ 1, a maximum likelihood estimation, assuming
uncorrelated measurements and zero-mean Gaussian measurement noise, is given by

o �P
∗
m(k|k, k −1, . . . , k −K) =




k�

κ=k−K

�
o
C

(m)
P P

(κ)
�−1




−1

k�

κ=k−K

�
o
C

(m)
P P

(κ)
�−1

o
P m (κ)

(3.46)
where o

C
(m)
P P

(κ) denotes the 3 × 3 covariance matrix of o
P m(κ) with respect to the

object coordinate system. This equation can be efficiently computed in a time-recursive
formulation:

o �P
∗
m(k) =

�
C

(m)
Σ (k − 1) + o

C
(m)
P P

(k)
�−1

(3.47)
�
C

(m)
Σ (k − 1) o �P m(k − 1) +

�
o
C

(m)
P P

(k)
�−1

o
P m(k)

�

C
(m)
Σ (k) = C

(m)
Σ (k − 1) + o

C
(m)
P P

(k) (3.48)

where C
(m)
Σ (k) corresponds to the sum of all covariance matrices o

C
(m)
P P

for a given point
up to time step k.

Step 2: Let Q denote an index set of points that have been observed at two consecutive
time steps and not detected as outlier, with Q ⊆ {1 . . . M}. Then, each updated point
o �P

∗
q(k) is corrected as follows:

o �P q(k) =R
−1
y (∆θ)

�
o �P

∗
q(k) − o

P̄ (k)
�

+ o
P̄ (k − 1), ∀q ∈ Q. (3.49)
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Figure 3.9.: Object points from bird’s eye view at four time steps. (a) If all object points
are updated independently by weighted averaging (step 1 only), they drift in
the moving direction as the vehicle accelerates. (b) The gauge consistency
correction (step 2) successfully prevents a point drift.

with o
P̄ (k) = 1

|Q|
�

q∈Q
o �P

∗
q(k) the mean of the points in Q at time step k and Ry(∆θ) ∈

IR3×3 a rotation about the height axis by angle ∆θ. This angle is defined as the difference
between the orientation of the main principal component of the points in Q at time
k and k − 1. At this step it is assumed that the rotation between both point clouds
does not change more than π/2 rad. This global correction ensures that the sum of all
point updates is zero (centroid consistency) and that the orientation of the principal
component of the adapted point cloud is equal to the orientation of the previous point
cloud in object coordinates (principal component consistency). It prevents that points
can systematically drift within the object coordinate system in situations where the
predicted object pose differs considerably from the actual pose, without changing the
pose and motion parameters.

The effect is demonstrated in Fig. 3.9. In this example, the tracked vehicle is ac-
celerating. As can be seen in (a), updating the point positions within the local object
coordinate system by weighted averaging (step 1 only), leads to a drift in the movement
direction. This indicates that the estimated velocity is too low. The gauge correction in
(3.49) prevents the drift, i.e., errors between the predicted and measured point positions
must be mainly compensated by altering the motion parameters in the filter, instead of
changing a point’s relative position with respect to the local object coordinate system.

3.5.4. Rotation Point Measurements
The origin of the vehicle system, Ov, has to be close to the actual vehicle’s center rear
axle to be able to correctly predict the object pose at turn maneuvers. Since the vehicle
origin defines the rotational center, larger errors in its position lead to a significant
prediction error at rotational movements, which directly impacts the resulting motion
parameter estimates.

Initially, the translation o
T v between the (arbitrary) object system and the center

rear axle is typically unknown and has to be estimated over time. The noisy point cloud
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3.5. Measurement Model

measurements alone are not sufficient to constrain the position of Ov, since it becomes
only weakly observable at turn maneuvers. At straight motion or as the tracked vehicle
is not moving, the rotational center cannot be observed at all.

The idea is to constrain the position of the rotation point geometrically to the object
center in lateral direction by additional measurements. In longitudinal direction, the
exact location of the center rear axis is not that easy to define and varies between
vehicles. However, as introduced before, the location can be approximated to be at a
constant distance ρ from the object’s rear.

The cuboid model provides a basic semantical meaning on vehicle sides (front, rear,
left, right) or characteristic points, e.g., front left corner or center of the right side. If
the dimension of the object is known, it is straight forward to describe the rotation point
relative to a given object side or corner. This means, all corners or sides, observable by
a sensor, can be used to constrain the position of the rotation point.

In the following, it will be first introduced how the rotation point measurement model
is defined. Then, the effect of the rotation point measurements is illustrated based on
a short experiment. Finally, two examples are presented that compute the geometric
location of the center rear axle of a vehicle based on dense stereo data. These examples
may be skipped at first reading.

Rotation Point Measurement Model

The rotation point measurements are integrated as direct observations of the state
entries, i.e., the measurement model is defined by

z
(rot) = h(rot)(x) = H

(rot)
x, (3.50)

with

H
(rot) =

�
0 0 0 0 0 0 1 0 0 . . . 0
0 0 0 0 0 0 0 1 0 . . . 0

�

, (3.51)

and
z

(rot) = [ oXv
∗, oZv

∗]T . (3.52)

The measurements oXv
∗ and oZv

∗ are computed from external modules, correspond-
ing to the measured lateral and longitudinal position of the rotation point in object
coordinates.

The corresponding stochastical model incorporating the uncertainties of the rotation
point measurements is addressed in Sec. 3.6.2.

Effect of Rotation Point Measurements

The following experiment should demonstrate the importance of the rotation point
measurements.

In a simulation, a rigid 3D point cloud, representing a virtual vehicle, is moved
along a predefined trajectory (the simulation environment will be presented in detail
in Sec. 4.2). The trajectory has been generated by the proposed vehicle motion model.
The ground truth vehicle state, including the rotation point position, is known for all
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(a) Experiment 1
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(c) Experiment 3

Figure 3.10.: Estimation error of rotation point and yaw rate (left column) and the
corresponding uncertainties (right column) over time. The rotation point
position can only be observed during rotational movements (top row).
Here, a turn maneuver starts at frame 20. If the filter cannot adapt the
yaw rate quickly enough, the error is compensated by wrongly altering the
rotation point position (middle row). Additional measurements for the
rotation point position significantly reduce the estimation error (bottom
row).
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time steps. The maneuver consists of a straight-line motion phase (ψ̇ = 0), followed by
a turning maneuver (ψ̇ > 0).

The question is now, how well does the Kalman filter (as proposed so far) reconstruct
the true position of the rotation point if the estimate is initialized about 0.8 m away
from the ground truth?

Three approaches will be compared:

• Experiment 1: filter with point cloud measurements, larger changes of the yaw
rate are allowed via the system noise configuration.

• Experiment 2: filter with point cloud measurements, only small changes of the
yaw rate are allowed via the system noise configuration.

• Experiment 3: equal to Exp. 2, with additional rotation point measurements
(true position + Gaussian noise).

The expectation is that all filters reduce the absolute error between the true position
and the estimated position, as the maneuvers starts. It is not observable before. Beside
the rotation point error, the absolute error of the yaw rate estimate is considered. The
results of this experiment are illustrated in Fig. 3.10.

At Exp. 1, the filter behaves as expected. During the first 20 frames (straight-line
motion), the rotation point is not significantly changed, nor is the uncertainty decreased.
During the maneuvering phase, the rotation point error is significantly reduced, as is
the uncertainty of the oZv coordinate. Only for a few time steps the filter wrongly alters
the rotation point to compensate for the sudden increase of the yaw rate, indicating the
correlation between these two parameters. At Exp. 2, the filter is not able to adapt
the yaw rate fast enough, since only small changes are allowed in this configuration.
Instead, the Kalman filter moves the rotation point away from the true position to
minimize the measurement/prediction error. The estimated uncertainty of the rotation
point position decreases slower compared to the first row.

When additional measurements for the rotation point center are provided as in
Exp. 3, the initial error is quickly decreased even before the maneuver starts. The
same holds for the uncertainties. The good estimate on the rotational center helps
to decrease the error of the yaw rate during the maneuvering phase much faster com-
pared to the second row, although the filter parameterization has not changed. Due
to the small uncertainties of the rotation point, the filter has to compensate for the
measurement/ prediction error by correctly adapting the yaw rate.

This experiment emphasizes the importance of rotation point measurements, as the
accuracy of the rotation point estimate has a direct influence on the rotational veloc-
ity, which is of particular interest in this contribution. Here, the measurements have
been derived from the true position, corrupted by some additional Gaussian noise. In
practice, one has to compute such measurements from the available sensor data. Two
examples will be given in the following.

Example 1: Stereo Profile Histograms

The distribution of the object point cloud contains valuable information on the ob-
ject dimension and boundaries, as long as there are sufficient points in the model and
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3. Vehicle Tracking Approach

the point cloud covers all parts of the object. However, not only the tracked feature
points on the object surface provide information on the object’s size. With dense stereo
disparity maps, there is much more information available. The idea is to analyze the
distribution of all 3D points within a local neighborhood of the tracked object.

The approach can be sketched as follows:

1. transform all 3D points within a region of interest (ROI) around the predicted
object position into vehicle coordinates

2. quantize the resulting vX-coordinates into a finite number of histogram bins
(lateral profile)

3. quantize the resulting vZ-coordinates into a finite number of histogram bins (lon-
gitudinal profile)

4. compute the lateral and longitudinal object boundaries based on these two 1D
histograms

5. compute the rotation point position [ oXv
∗, oZv

∗]T from the object boundaries
based on the cuboid model (cf. Fig. 3.5 in Sec. 3.3.3).

The reliable computation of the object boundaries from the 1D histograms is the
most challenging task as will be concretized below. First, an example should illustrate
the procedure in Fig. 3.11.

Here, an oncoming vehicle at about 30 m distance is considered. The input image
is shown in (a) with the disparity map and region of interest superimposed. In this
region, all points within an expected distance and height range, are visualized in red
in (b). The corresponding bird’s eye view on the selected points in vehicle coordinates
(projected onto the ground plane) is shown in (e). Tracked points that are currently
part of the object model are visualized in blue. The resulting quantized lateral and
longitudinal stereo profiles are shown in (c) and (d) respectively. The length of the
black bars is proportional to the number of points in a given bin. The detected object
boundaries are superimposed by the orange lines. The maximum precision of the object
boundaries is restricted to the histogram bin size.

Object Boundary Computation: As long as the object is isolated, very simple and fast
algorithms can be applied to correctly estimate the object boundaries from the stereo
profile histograms. For example by detecting the two most outer significant histogram
entries, where significance is related to the number of points in the given bin. To be
robust to outliers in the data, a pruning of the histogram is performed, i.e., a small
constant percentage of extreme values are removed first.

In practice, this simple method fails in situations where the predicted object ROI,
in which all points are assumed to belong to the given object, also includes other
objects. For example, other moving cars in dense traffic scenarios or parking cars at the
roadside. Thus, all potential object boundaries, i.e., positions in the histogram showing
a significant increase or decrease of histogram entries within a small local neighborhood
yield object boundary candidates. A prior on the expected object dimension (width and
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(a) source image (SGM+ROI) (b) object points

(c) lateral profile (d) longitudinal profile

(e) bird’s eye view

Figure 3.11.: Dense stereo data within the image ROI around a detected object is an-
alyzed based on lateral and longitudinal stereo profile histograms. The
detected object boundaries (orange lines) are used to derive geometric
measurements for the rotation point and to update the object dimensions.
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3. Vehicle Tracking Approach

length) is used to sort out all object boundary configurations based on the candidates
which deviate from the expectation. If more than one possible configuration survives
this criteria, the solution which is closest to the predicted object state is selected.

As an optional extension, individual likelihoods are computed for each point in the
ROI, indicating how likely does a given point belong to the tracked object or the static
background. This includes motion information, which is very discriminative, for exam-
ple, in separating the tracked object from close-by stationary obstacles. The likelihood
computation is analog to the method which will be proposed in Sec. 3.9 with respect
to assigning new points to an existing object. So far it is assumed, that there exists
such an object likelihood. Accordingly, the points are not added with equal weight to
the histogram, e.g., by incrementing a counter by one, but with a weight proportional
to their object likelihood.

Another problem at estimating the object boundaries is visibility. Depending on the
object orientation, some boundaries are hidden to the cameras, e.g., the rear side of
an oncoming vehicle. Thus, in some situations only the visible side is reconstructed
from the histograms. The opposite side is then assumed to be located at the expected
distance, i.e., based on the dimension prior.

More sophisticated methods for detecting the object boundaries could be used al-
ternatively, however, the sketched approach yields very promising and fast results in
practice.

One drawback of the stereo profile histograms is that many point transformations
from the image domain to the vehicle system have to be computed before the histograms
can be further analyzed quite efficiently. Furthermore, the presented stereo profile
approach is not capable of estimating the object orientation from the stereo data, i.e.,
a very good prior on the orientation of the vehicle’s axis is required.

Example 2: Stixel Silhouettes

The second example for estimating the rotation point geometrically is based on the
Stixel World representation as introduced in Sec. 2.3.4. Each stixel contains information
on the distance and height of the obstacle that limits the freespace at this position.
Clusters of neighboring stixels that can be assigned to a tracked object, provide a good
estimate on the object’s silhouette in the image. An example of such silhouette is given
in Fig. 3.12(a).

The idea is to estimate the pose and dimension parameters of a cuboid in a maximum
likelihood sense based on measurements derived from a cluster of stixels. The projection
of the resulting cuboid should be consistent with the corresponding stixel silhouette in
the image (see Fig. 3.12(b) and (c)). Since the stixel representation reduces the amount
of data to process significantly, the solution can be computed quite efficiently.

In the following, first a brief overview on the approach is given. Then, the parameters
to be estimated as well as the input measurements are concretized.

For a given object prior (cuboid pose and dimension) and a list of candidate stixel
clusters, the method can be sketched as follows:

1. project the cuboid onto the image plane

2. find a cluster of stixels that overlaps significantly with the cuboid projection
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3.5. Measurement Model

(a) (b) (c)

Figure 3.12.: The stixel silhouette in (a) is used to refine the initial pose (white bounding
box) in (b). The orange box indicates the consistent pose. The refinement
result is shown from bird’s eye view in (c), together with the predicted
rotation point position.

3. derive several measurements from that cluster that constrain the object pose,
e.g., the horizontal image coordinate and disparity of the most outer stixels in the
cluster.

4. refine the prior cuboid pose and dimension based on these measurements using
iterative least-squares estimation

5. compute the rotation point position [ oXv
∗, oZv

∗]T from the refined cuboid based
on the cuboid model (cf. Fig. 3.5 in Sec. 3.3.3).

The unknown parameters to be estimated are

y = [ oXv
∗, oZv

∗, β∗, ξ∗(�x)]T , (3.53)

corresponding to the pose parameters of the vehicle system with respect to the object
system as well as the size ξ∗(�x) of the side that is presumingly covered by more stixels
based on the pose prior �x. Thus, only one dimension, width or length, is estimated
at one time. With an increasing stereo uncertainty at larger distances (> 40 m), the
parameter vector is reduced to contain only the rotation point position, since reliable
orientation and size measurements cannot be obtained.

Six measurements are derived from the given stixel cluster and summarized to the
stixel measurement vector zs as

zs = [ul, ur, dl, dr, ds1, ds2]T . (3.54)

The image columns of the left and right stixel of the corresponding stixel cluster, de-
noted as ul and ur respectively, define the viewing range and constrain the expected
vehicle position in lateral direction (see Fig. 3.13). At the same time, the disparity
values dl and dr of the boundary stixels introduce constraints on distance.

Depending on the given object hypothesis �O, the left and right most stixel are di-
rectly linked to corresponding object corners. The inner stixels cannot be assigned to a
concrete point at the visible object sides that easy, although they also provide valuable
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Figure 3.13.: Six measurements on the depth and lateral position are derived from a
stixel cluster and assigned to four characteristic object points, that depend
on visibility properties of the pose prior. The pose hypothesis is iteratively
refined by a maximum likelihood estimation.

information on depth. Due to perspective, one or two vehicle sides are visible in the
image at one time. Thus, the stixels are divided based on an expectation on the number
of image columns to be covered by a visible side. The median disparity dsi over all stix-
els assigned to a given object side si, i ∈ {1, 2}, is taken as additional depth constraint
on the center of that side. Since the median is more robust to outliers compared to the
mean, inaccuracies in assigning the inner stixels to object sides are acceptable.

Let h(s) denote the functional model between the measurements zs and the param-
eters y, i.e., zs = h(s)(y). It transforms the two most outer visible corners and the
visible side centers from vehicle coordinates into image coordinates and stereo dispar-
ities. All required parameters that are not included in y, e.g., the pose parameters of
object system w.r.t. the ego-system, are taken from the current object hypothesis �O
and assumed to be constant.

Now, the unknown parameters are estimated via the least-squares method (cf. Sec. 2.6.1).
Since h(s) is nonlinear, it has to be linearized at y0 derived from the pose prior. The
updates ∆y, with h(s)(y) ≈ h(s)(y0 + ∆y), are computed as

∆y =
�
G

T
C

−1
ss G

�−1
G

T
C

−1
ss

�
cs − h(s) (y0)

�
, (3.55)

where the matrix G indicates the Jacobian ∂h(s)

∂y

���
y=y

0

, and Css the covariance matrix of
the stixel measurements. This estimation procedure is iterated a few times (typically
three iterations are sufficient).

One advantage of the stixel-based approach, compared to the stereo profile histogram
method, is, that the pose and dimension parameters are estimated jointly and not inde-
pendently for the lateral and longitudinal direction. Furthermore, the prior orientation
is also refined at this procedure.
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Figure 3.14.: (a) The measured radar velocity has to be transformed into the object
velocity, defined along the longitudinal vehicle axis, using a nonlinear
transformation function, based on the estimated object orientation. (b)
Theoretical absolute velocity error, when orientation difference is ignored.

The stixel silhouette method presented above requires objects to be isolated. Any
violations of the requirement that the most outer stixels of the selected stixel cluster
correspond to the actual boundaries may lead to significant errors in the estimation
result.

3.5.5. Radar Velocity Measurements

Radar sensors provide very accurate estimates on relative velocities. As the speed of
the ego-vehicle is known from inertial sensors, the absolute velocity of objects gets
observable. In the following, vradar will thus refer to the ego-motion compensated radar
velocity measurement of an object. This velocity measurement corresponds to the
velocity in direction ψradar of the radar beam (see Fig. 3.14(a)). It is related to the
longitudinal velocity of the vehicle, v, by the following nonlinear measurement model,
that depends both on the state vector parameter ψ and the measurements vradar and
ψradar:

v = vradar/cos(ψ − ψradar) (3.56)

It is possible to reformulate this relationship by an implicit function h(v)(x, zradar), with
zradar = [vradar, ψradar]T and

0 = h(v)(x, zradar) (3.57)
= v − vradar/cos(ψ − ψradar) (3.58)
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In an implicit Kalman filter formulation, h(v)(x, zradar) is used as pseudo-innovation
[Soatto et al. 1994] in the state update equation

�x+ = �x− + K h(v)(�x−, zradar) (3.59)

If the expected angle between the object orientation and the radar beam is small, it
is possible to replace the nonlinear, implicit measurement function by a direct measure-
ment, vradar = h(v)(x), with

h(v)(x) = H
(v)

x = v (3.60)

and H
(v) =

�
0 0 0 1 0 0 0 0 0 . . . 0

�
. This simplification is acceptable, for

example, if only leading vehicles are tracked that have approximately the same orien-
tation as the ego-vehicle, i.e., ψ ≈ ψradar in (3.56). The theoretical error in the radar
velocity for a given error in orientation is shown in Fig. 3.14(b). For an angular differ-
ence of 5 degree, the velocity error is below 0.4%, and for 10 degree angular difference
it is still below 1.6%. In practice, the linear version of the radar measurements is used
for angular distances up to 10 degree, and it is skipped for larger angular deviations.

3.6. Stochastic Model
In the proposed vehicle tracking approach, both the system and measurement model
are nonlinear and only approximations of the unknown real models. Any errors in
the system model must be incorporated into the stochastic model. The same holds
for errors in the measurement model, as well as the uncertainties of the sensors that
provide the measurements. In the following, the basic stochastic assumptions for the
present vehicle tracking approach are summarized.

3.6.1. System Noise Model

Errors in state prediction using the system model, as proposed in Sec. 3.4, originated
from two main components. First, the dynamic model is nonlinear and only a highly
simplified approximation of the complex real vehicle dynamics. Linearization of this
model reduces accuracy in many situations. Secondly, prediction errors are induced by
errors in reconstruction of the movement of the ego-vehicle. Both errors are modeled
as zero-mean, white Gaussian noise processes, since in the absence of any higher order
statistics, there is no better form to assume than Gaussian density [Maybeck 1979].

In this approach, errors in the system model are modeled as additive system noise,
i.e.,

x
�� = f(x�, u, w)

= f(x�, u, 0) + w (3.61)

with w ∼ (0, Cww). In the common formulation of the extended Kalman filter, as
introduced in Sec. 2.6.4, the control input vector u is assumed to be error-free or the
uncertainties are incorporated into the system noise matrix Cww.
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Given the covariance matrix of the control vector Cuu, the state covariance matrix
update equation in (2.39) extends to

C
��−
xx = AC

�+
xxA

T + UCuuU
T + Cww (3.62)

where A and U are the Jacobian matrices of f w.r.t. x and u respectively.
The system noise matrix Cww then only contains the uncertainties induced by the

dynamic model used for state prediction. In practice, Cww is unknown and has to be
chosen appropriately as design parameter. Its parameterization controls the influence
of the system model compared to the measurements. Small variances in Cww enforce
the system model, while larger variances leave more influence to the measurements.

Furthermore, the covariance matrix Cxx(t0) for the initial state at time t0 estimate
must be provided. This is an additional design parameter. The exact choice of the
parameter values depends on the application.

3.6.2. Measurement Noise Model
The stochastic measurement model assumes that all measurements are corrupted by at
least some amount of additive zero-mean, white Gaussian noise (cf. (2.21) and (2.22)
in Sec. 2.6):

z = h(x̃, v) = h(x̃, 0) + v (3.63)

with the true state x̃ to which the true measurements z̃ are related via the measurement
model h, i.e., z̃ = h(x̃, 0), and v ∼ (0, Cvv) . The nonsingular measurement noise
matrix Cvv contains all variances and covariances of the measurements. It is assumed
that the individual point measurements, geometric measurements, e.g., for the rotation
point, or radar velocity measurements, as proposed in Sec. 3.5, are uncorrelated, and
thus

Cvv =





C
(1 )
vv . . . 0 0 0
... . . . 0 0 0
0 0 C

(M)
vv 0 0

0 0 0 C
(rot)
vv 0

0 0 0 0 C
(v)
vv





. (3.64)

The individual covariance matrices are concretized in the following.

Point Measurements

For each (um, vm, dm)-measurement of a point P m, the 3 × 3 covariance matrix C
(m)
vv is

assumed to be a constant measurement covariance matrix C
(P)
vv , with

C
(P)
vv = Diag(σ2

u, σ2
v , σ2

d) (3.65)

where σ2
u and σ2

v are the variances of a given feature position, indicating the precision
of the used feature tracker, and σ2

d
the variance of the corresponding stereo disparity

measurement.
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Theoretically, the uncertainties of the measurements are correlated. The amount
of correlation depends on the actual feature tracking approach and stereo algorithm.
However, in the absence of a reliable quantity of the covariances, these correlations are
also neglected in practice. Thus, any correlations between image position and stereo
disparity are not considered in the used noise model, and σ2

u, σ2
v , and σ2

d
are manually

selected as system specific design parameters. Instead of assuming uniform variances
over the whole image, it is possible to derive individual variances for each pixel position
as shown in [Wedel et al. 2009b] for scene flow data. Integration of these values into
the noise model is straight forward.

Rotation Point Measurements

The covariance matrix for the rotation point measurements C
(rot)
vv depends on the ap-

proach how the measurements are generated.

Stereo Profile Histograms: The histogram analysis does not directly result in an
uncertainty of the estimated rotation point. However, it is inverse proportional to the
number of points in the histogram, and proportional to the individual uncertainties of
these points in vehicle coordinates, as well as the histogram bin size. An exact error
propagation is not straight forward due to strong nonlinearities at the histogram analysis
(quantization, different weighing of point entries, etc.). In practice, the covariance
matrix of a fictive point at the object center in the vehicle system, rotated to the
ego-system, gives a fast and sufficient approximation of the covariance matrix of the
estimation results.

Stixel Silhouettes: The measurement uncertainty of the rotation point measurement
based on stixels follows from the pose estimation procedure and the resulting covariance
matrix of the parameter updates (see (3.55))

C
(rot)
vv = C∆y∆y =

�
G

T
C

−1
ss G

�−1
. (3.66)

The choice of Css is based on the expected variances of the stixel data in lateral direction
and disparity. The latter is lower compared to the expected variance of a single disparity
measurement, due to the averaging of disparities within a stixel column, while the
uncertainty in lateral direction depends on the stixel width.

Velocity Measurements

The velocity measurements depend on the accuracy of the radar sensor. If the outer
variance σ2

vradar
of the radar velocity is known, it can be directly used as measurement

noise, i.e., C
(vel)
vv = σ2

vradar
. Alternatively it is empirically determined in terms of the

inner precision �σ2
vradar

, i.e., the variance over a number of velocity measurements of an
object moving with constant velocity. For example, the radar sensor used in this thesis
has an inner precision of 0.16 m/s (= 0.4 m/s standard deviation).
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In the next section it is shown how the measurement noise matrices are further
adapted, to increase the robustness of the estimator with respect to outliers in the
input data.

3.7. Robust Outlier Detection
In a real system, the measurements used for updating the Kalman filter state contain
errors that do not follow a Gaussian random noise process, as assumed in the stochastic
model. Such errors can affect the estimation result significantly, if used for updating
the filter state. Typical error sources are error-prone feature tracks or disparity mea-
surements, e.g., due to wrong correspondences, or points that are wrongly assigned to
a given object, although belonging to the background or another object.

To be able to deal with such outliers in the measurements, a two step method is ap-
plied. First, gross errors that deviate significantly from the expectation are sorted out.
The remaining measurements are added based on the robust Kalman filter extension,
as proposed in Sec. 2.6.7, i.e., the measurement covariance matrix is reweighed based
on the residual between a measurement and its predicted value.

In the following, the outlier handling is proposed for the point measurements z
(p)

only. However, the same concepts are applied accordingly to the other measurements
such as radar or rotation point measurements.

3.7.1. Gross errors
The following test statistic is used to detect gross errors in the data:

δm = r
T
mC

(m)
rr

−1
rm ∼ χ2

|rm| (3.67)

where rm = zm − �zm denotes the measurement/prediction residual of the m-th point
measurement (cf. Sec. 3.5.2), and C

(m)
rr represents the corresponding covariance matrix,

including both the propagated state covariance matrix Cxx and the measurement noise
matrix Cvv

(m), with
C

(m)
rr = HmCxxH

T
m + C

(m)
vv . (3.68)

This matrix is typically fully occupied. The test statistic is computed for each point
individually, as the stochastical model assumes statistical independence. If δm > Tmax,
the point is assumed as gross error. Any point detected as gross error is ignored at the
filter update step and removed from the object model. There are two different ways to
define the threshold Tmax:

Constant Gating In this variant, the threshold Tmax follows from the cumulative dis-
tribution function (cdf) of the χ2

|rm|-distribution with |rm| degrees of freedom, where
|rm| is the cardinality of rm, i.e., 3 for the point measurements. Let α denote the
probability of a valid measurement being erroneously detected as outlier by the outlier
test, then Tmax = icdfχ2

3

(1 − α) follows from the inverse cdf. For example, for α = 0.01,
one yields a threshold of Tmax = 11.3.

This variant of the threshold selection is also referred to as constant confidence in-
terval gating in the remainder of this thesis.
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Adaptive Gating At sudden maneuvers, the state prediction by the system model,
assuming stationary movement patterns, leads to large deviations between the predicted
and the actual measurements. If the filter has matched the previous (stationary) object
motion well, the values of the state covariance matrix become quite small and are
dominated by the additive system noise matrix. This also influences the covariance
matrix of the residual C rr. Accordingly, the resulting normalized residuals become
much larger at maneuvering phases.

To prevent that all measurements are considered as outliers as the maneuver starts,
an adaptive threshold is introduced. It is designed in a way that at least 50% of all
measurements are guaranteed to survive the outlier test, assuming there are no more
than 50% outliers among the measurements. The maximum residual Tmax is then
replaced by T �

max, defined as

T �
max = max (Tmax, median(δ1, . . . , δm, δM )) (3.69)

This requires that all normalized residuals in (3.68) are computed in advance.

3.7.2. Reweighing of Measurement Noise
All measurements that pass the gross error test are used to update the filter state.
However, there still might be outliers in the data that cannot be separated from the
valid measurements by the first step.

Thus, the influence of a particular measurement is additionally steered based on the
normalized residual by adapting the measurement noise matrix Cvv

(m), which has been
defined as constant for all measurements in Sec. 3.6.2.

For all points with a normalized residual
√

δm > CHuber, the system noise matrix is
adapted as follows

C
(m)
vv

∗ =
√

δm

CHuber
C

(m)
vv (3.70)

where CHuber = 1.345 corresponds to the Huber constant (cf. Sec. 2.6.7). Measurements
with a residual below this constant are added with the original measurement noise. As
a result, points with a larger deviation from the expectation yield less influence on the
estimation results.

As mentioned above, the outlier detection mechanism as well as the adaptive reweighing
of the measurement noise matrix can be applied accordingly to all other uncorrelated
groups of observations. The effect of the different outlier detection methods will be
addressed in the experimental results in Sec. 4.2.5.

3.8. Initialization
Before the tracking can be started, the filter has to be initialized with pose and motion
parameters of an object hypothesis. Two different initialization methods have been
realized: One is based on computer vision, while the other uses radar information.

For each generated object hypothesis, both methods yield a filter state �x(k0), with

�x(k0) = [ eXo(k0), eZo(k0), ψ(k0), v(k0), 0, 0, 0, 0]T , (3.71)
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(a) (b)

Figure 3.15.: 6D-Vision results of a scene with four moving objects: (1) A pedestrian
with a stroller walking to the left, (2) A vehicle turning into the street
from the left, (3) A slow oncoming vehicle, and (4) a vehicle moving from
left to right at a far distance. The arrows indicate the predicted linear
point motion for the next half a second. Clustering of neighboring 6D
vectors with common motion yields object candidates.

defining the initial transformation between the object system and ego-system and the
initial object velocity at discrete initialization time step k0. The remaining parameters
are initialized with zeros.

3.8.1. Image-based Initialization
In this approach, the 6D-Vision motion field is used as input for generating object
hypothesis (cf. Sec. 2.4.2).

Fig. 3.15 shows an example 6D-Vision result, taken from a sequence of images with
four moving objects. The arrows point to the position where a given point (projected
onto the image plane) will be in half a second based on the current filter state. The white
dots superimposed indicate stationary points in the scene. Given this data, humans
easily group the arrows belonging to the pedestrian with the stroller (1) and the car
turning into the street from the right (2). Having a closer look, even the oncoming car
(3), approaching slowly, can be detected as well as a vehicle moving from left to right
at an intersection ahead (4).

A group of 6D vectors within a local neighborhood with compatible motion indicates
an object candidate. Now the task is to automate the object detection by clustering
techniques. In this approach a fast histogram based clustering is used, where compati-
bility is defined in terms of the Mahalanobis distance. This is sketched as follows:

1. project all tracked 3D points (in Se) onto the ground plane and quantize these
points to a finite number of grid cells.

2. search for grid cells with significant accumulation of 3D points and select these
cells as seeds.
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3. for each seed
a) compute the average velocity vector in that cell (seed velocity)
b) recursively search for points in neighboring cells, which are compatible in mo-

tion to the seed velocity, and add these points to a candidate list (candidate
points e

P 1, . . . , e
P M )

c) if the number of candidate points M is above a threshold, create a new object
hypothesis and initialize the state vector based on the candidate points

The parameters of the state vector x(k0), as proposed in (3.71), are derived from the
candidate point list by the following equations:

eXo(k0) = 1
M

M�

m=1

eXm(k0) (3.72)

eZo(k0) = 1
M

M�

m=1

eZm(k0) (3.73)

ψ(k0) = arccos
�

ev̄z� e
v̄�−1

�
(3.74)

v(k0) = � e
v̄� (3.75)

where e
v̄ = [ ev̄x, ev̄y, ev̄z]T corresponds to the average velocity vector over all candidate

points, i.e., it is assumed that the average moving direction of all vectors indicates the
object orientation.

The candidate points further provide the initial point cloud for the object shape
model. Each measured point is transformed into the object coordinate system defined
by the initial state vector. The vehicle coordinate system parameters oXv(ko), oZv(ko),
and β(ko) are initialized with 0.

If the full model is used (see Sec. 3.3.4), the state vector in (3.71) is extended by
the object point coordinates. The state covariance matrix, Cxx, is initialized as block
diagonal matrix with constant variances for the pose and motion matrices and 3 × 3
covariance matrices for the point positions in object coordinates:

Cxx(t0) = blkdiag



σ2
eXo

, σ2
eZo

, σ2
ψ, σ2

v , σ2
v̇ , . . . , o

C
(1 )
P P

, . . . , o
C

(M)
P P� �� �

only in full model



 . (3.76)

The covariance matrix o
C

(m)
P P

of the m-th points in object coordinates follows from error
propagation of the uncertainties of the corresponding image coordinate and disparity.

It is possible to restrict the initialization method to objects exceeding a certain veloc-
ity threshold, motion direction, or dimensional constraint. The initial object dimension
is optionally computed from the bounding box of the initial point cloud or set to a
constant expectation on a typical vehicle size.

One drawback of the image-based initialization method described above is a delay
between initialization of 6D vectors and generating an object hypothesis. It takes a few
time steps until the Kalman filtered point tracks are reliable for clustering, especially
at large distances due to the stereo uncertainty which increases quadratically with
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(a) (b)

Figure 3.16.: Radar reflectance model of Bühren [Bühren and Yang 2006]. (a) The
radar reflection point can originate from different locations of the vehi-
cle (front, corner, wheel house, etc) depending on the object pose. (b)
An estimate on the object center is achieved by consideration of 8 point
reflection centers, 4 plane reflectors, and a prior on the object pose and
dimension.

distance. Depending on the relative velocity and cycle time, an oncoming vehicle can
approach up to 10 − 30 m in this time period. Since the Kalman filter estimating the
object’s motion state also requires a couple of cycles to converge, the objective should
be to initialize object tracking as early as possible.

3.8.2. Radar-based Initialization

The far-range radar sensor, providing a list of detected objects, is used for the alternative
initialization method. The actual object detection is done within the sensor and cannot
be controlled from outside. The output is a point position and the relative velocity
between this point and the radar sensor, which can be transformed into an absolute
velocity, given the known ego-motion.

To be able to initialize the pose of a cuboid, a geometric radar reflectance model, pro-
posed by [Bühren and Yang 2006], is utilized. The objective is to predict from which
part of the vehicle the radar position originates. The model incorporates eight potential
point reflection centers and four plane reflectors (see Fig. 3.16). It is parameterized by
the expected object width and length and requires a prior guess on the object pose. The
outcome is an estimate of the object center position, e

P radar = [ eXradar, 0, eZradar]T,
at which the object origin is initialized.
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The radar is used to initialize the filter state parameters as follows:
eXo(k0) = eXradar (3.77)
eZo(k0) = eZradar (3.78)

ψ(k0) = ψradar (3.79)
v(k0) = vradar (3.80)

where vradar represents the absolute radar velocity. The object orientation ψradar can
be derived from a number of previous radar positions using linear regression [Bühren
and Yang 2007a]. Initializing the tracker with ψradar = π, i.e., the reversed heading
direction of the ego-vehicle, is a fast alternative in practice if only oncoming vehicles
are considered.

The radar-based initialization method does not add 3D points to the object shape
model, i.e., the object is initialized with an empty point cloud. At runtime, new 3D
points that are compatible in position and motion are detected and added to the shape
model based on a data association strategy. This mechanism is an essential part of the
tracking framework ensuring that the system is able to deal with lost point tracks and
changing visibility of object parts. It will be introduced in Sec. 3.9.

The state vector covariance matrix Cxx(t0) is initialized as proposed in (3.76) (ex-
cluding the point positions), however, the actual variances can differ. For example, the
initial velocity estimate obtained by the radar is much more precise, i.e., the correspond-
ing variance for the velocity component can be chosen significantly smaller compared
to the vision based approach.

3.9. Data Association
The more object points are contributing to the measurement model, the more robust
is the state estimation. However, feature tracks get lost at runtime due to varying
conditions in the scene, for example illumination changes, or (partly) occlusions by
other objects. There are also self occlusions, e.g., at turn maneuvers with changing
visibility of object sides as can be exemplarily seen in Fig. 3.17. If a given feature
cannot be reassigned in the next frame, the corresponding 3D point in the shape model
does not have a valid measurement and, thus, cannot be considered to update the
Kalman filter state. Since lost feature tracks are compensated by new feature tracks
that are permanently initialized all over the image plane until a maximum number of
tracks is reached, the objective is to assign these new tracks to existing objects.

The decision whether an feature belongs to an existing object or to the (static)
background is formulated in a probabilistic hypotheses testing approach instead of
applying a threshold based if-then-else reasoning.

The problem can be formalized as follows. Let LO = {O0, O1, . . . , OJ , OJ+1} denote
the finite set of candidate objects, where the objects with index 1 to J correspond
to tracked objects and O0 represents the static background hypothesis. To be able
to also deal with non-static background points, or points corresponding to indepen-
dently moving objects that are currently not tracked, the additional hypothesis OJ+1
is introduced.
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3.9. Data Association

(a) (b) (c)

Figure 3.17.: As the vehicle turns, some parts get occluded while others become vis-
ible. Accordingly, feature tracks get lost or are initialized at runtime.
The dot color encodes the track length (green=VALID for ≥ 15 frames,
blue=VALID for ≤ 5 frames, white=LOST). The tracking system must
be able to deal with a varying number of features on the object.

For each candidate feature, currently not assigned to any object, the conditional
probability p(O = Oj |yi) is computed, i.e., the probability that the i-th feature cor-
responds to the j-th object in LO given the data vector yi. The i-th feature is then
assigned to the object with index ι, which is computed as

ι = arg max
j

p(O = Oj |yi) , 0 ≤ j ≤ J + 1. (3.81)

This means the feature is assigned to the object to which it belongs most probably.
If ι ∈ [1, J ], the feature is actually added to the shape model of Oι. In practice it
is possible to restrict the number of points contributing to the shape model, i.e., new
points are only added if the maximum number of points is not exceeded yet.

Since p(O = Oj |yi) is actually unknown, the Bayesian rule is applied, yielding

p(O = Oj |yi) = p(yi|O = Oj)p(O = Oj)
p(yi)

. (3.82)

Here, p(yi) =
�

J+1
j=0 p(yi|O = Oj)p(O = Oj) is a constant for all objects that follows

from the total probability theorem [Bishop 2006] and, thus, does not influence the result
in (3.81). Assuming the data vector contains N mutually independent subvectors yi,n,
one can write the likelihood p(yi|O = Oj) as

p(yi|O = Oj) = p(yi,1, . . . , yi,N |O = Oj) =
N�

n=1
p(yi,n|O = Oj). (3.83)

Let l(n)
i,j

abbreviate the individual likelihood terms, i.e., l(n)
i,j

= p(yi,n|O = Oj). Then,
the conditional probability p(O = Oj |yi) is proportional to p(O = Oj)

�
N

n=1 l(n)
i,j

.
The result in (3.81) is equal to

ι = arg max
j

�

ln p(O = Oj) +
N�

n=1
ln(l(n)

i,j
)
�

(3.84)
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Figure 3.18.: Base functions used for defining the potentials.

where the product has further been replaced by the sum of log-likelihoods. The class
prior p(O = Oj) can also be ignored, if it is constant for all classes.

The actual likelihood functions l(n)
i,j

are still unknown, however, this formulation allows
for learning these functions from training data, or an intuitive manual modeling, which
will be pursued in this approach.

In the following sections, concrete manually designed realizations of the likelihood
functions are given for N = 4 data inputs yi,n, including the point position with respect
to a given object pose prior (region of interest likelihood, distance likelihood), its height
over ground (height likelihood), as well as its compatibility in motion with respect to
the expected motion of a given object hypothesis (motion likelihood).

These likelihood functions are defined based on three base functions which will be
briefly introduced first.

3.9.1. Likelihood Base Functions
The single likelihood functions l(n)

i,j
are defined based on different parametrization of

three basic functions scaled to the range κ = [κmin, κmax] (see Fig. 3.18).
Gaussian: A bell-shaped, zero-mean, multi-dimensional Gaussian function g with
covariance matrix Cx, defined as

g(x, Cx, κmin, κmax) = (κmax − κmin) exp
�
−1/2 x

T
C

−1
x x

�
+ κmin (3.85)

The function is scaled in a way that its maximum is κmax and it converges towards
a minimum value of κmin. For κmax = |2πCx|−1/2 and κmin = 0 it corresponds to a
normal distribution.
Sigmoidal: A one-dimensional sigmoidal function s with width λ and turning point
at x = 0, scaled to the range κ with

s(x, λ, κmin, κmax) = (κmax − κmin)/(1 + exp (−x/λ)) + κmin. (3.86)

Π-shaped: A gating function Π that is composed of two opposite sigmoidal functions
with slope λ

Π(x, xmin, xmax, λ, κmin, κmax) =(κmax − κmin) (s(x − xmin, λ, 0, 1)
−s(x − xmax, λ, 0, 1)) + κmin (3.87)
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Figure 3.19.: ROI likelihood. The bounding boxes and scaled ROIs of the two detected
cars are superimposed in (a), the corresponding ROI likelihood function
is shown in (b). Features that lie outside the ROI are very unlikely to
belong to the given object.

It has its maximum value κmax within xmin and xmax, respectively, and converges to-
wards κmin outside this range.

To limit the number of parameters, κmin and κmax will be assigned to one of three
basic likelihood levels κVL, κUL, and κDK for very likely, unlikely, and don’t know. Each
level can be increased by the constant offset κSP to be able to slightly prefer a given
class (notation: κ+

XX = κXX + κSP).
The actual choice of the likelihood levels is a design parameter. Throughout this

thesis these parameters are chosen as follows: κVL = 0.9, κUL = 0.1, κDK = 0.5, and
κSP = 0.1.

3.9.2. Region of Interest Likelihood

A feature is likely to belong to an object, if its current image position (ui(k), vi(k))
is near the expected position of the object and it is very unlikely if it is outside the
expectation.

For each object Oj in LO, the function ROI(Oj) computes an image region of interest
likely to include the given object. It is parametrized by the minimum and maximum
image corner umin,j , umax,j , vmin,j , and vmax,j respectively.

For all tracked objects, i.e., j ∈ [1, J ], the ROI is computed by projecting the cuboid
model onto the image plane and determining the surrounding rectangle (aligned with
the image coordinate axis). The cuboid pose is determined by the predicted object state,
i.e., after applying the filter system model, but before incorporating the measurement
update. This allows for adding new points before the update. In practice the resulting
ROI is additionally scaled by a certain amount to ensure the object is really included
in the ROI to compensate for uncertainties in the object dimension and pose. The ROI
of the background models O0 and OJ+1 is defined over the full image.

The likelihood function for l(ROI )
i,j

= p(y(ROI )
i,1 |O = Oj) for a given measurement
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y
(ROI )
i,1 = [ui, vi]T is modeled as follows

l(ROI )
i,j

=(κVL − κUL)
Π(ui, umin,j , umax,j , λ(ROI ), 0, 1)
Π(vi, vmin,j , vmax,j , λ(ROI ), 0, 1) + κUL (3.88)

where λ(ROI )
1 steers the steepness of the transition at the ROI boundaries. A fast

approximation of this function in practice is given below:

l(ROI )
i,j

≈
�

κVL , (ui, vi) ∈ ROI(Oj)
κUL , otherwise (3.89)

Fig. 3.19(a) shows an example scene with an oncoming and a leading car. The object
hypotheses are superimposed by the gray bounding boxes, the scaled ROIs are visualized
by the dashed rectangles. The corresponding ROI likelihood function for the oncoming
vehicle is shown in Figure 3.19(b).

The design of this function is not very precise in terms of indicating that a given
pixel belongs to an object. However, it gives a strong evidence that a feature does not
correspond to an object and, thus, can be used to exclude features quite early to safe
computation time.

3.9.3. Disparity Likelihood
The predicted object pose also provides an expectation on the minimum and maximum
distance an object point might have. The expected distance range for Oj is transformed
into a corresponding disparity range [dmin,j , dmax,j ]. Stereo disparities within this range
are much more likely to belong to the given object than points outside this range. For
all object hypothesis Oj , j ∈ [1, J ], the disparity likelihood l(disp)

i,j
= p(y(disp)

i,2 |O = Oj)
for a given measurement y

(disp)
i,2 = di is defined as

l(disp)
i,j

= Π(di, dmin,j , dmax,j , λ(disp), κUL, κVL), j ∈ [1, J ] (3.90)

with λ(disp) = 0.1 in the default parametrization.
For the background hypothesis O0, a different likelihood function is used. Theoret-

ically, all disparities are equally likely to correspond to background. However, small
disparities of only a few pixels, corresponding to really far points in the scene, are very
uncertain and, thus, should not be assigned to an object with the same likelihood than
closer points in practice. Therefore, it is assumed that all points below a minimum dis-
parity value dmin,0 are more likely to be background. This is expressed by the following
equation:

l(disp)
i,0 = s(di − dmin,0, λ(disp)

0 , κDK, κVL) (3.91)

with λ(disp)
0 = −1, and dmin,0 = 3 in the default parameterization. This configuration

means that disparities below 3 pixels (> 80 m) are very likely to belong to the back-
ground while larger disparities do not contain information on whether they belong to
the background or foreground, i.e., they are equally likely.
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Figure 3.20.: Disparity likelihood. In (a) the features within both ROIs are superim-
posed. The color encodes the maximum likelihood hypothesis based on
disparity only, i.e., yellow = hypothesis 1 (oncoming car), green = hy-
pothesis 2 (leading car), blue = background. The corresponding disparity
likelihood functions are shown in (b).

There is no expectation on the disparity range for the unknown object hypothesis
OJ+1. It differs from the static background hypothesis only based on the motion. Thus,
l(disp)
i,J+1 = κDK) is assumed, i.e., the disparity does not contribute to the unknown object

hypothesis.
The effect of the disparity likelihood for the two objects in the example scene is

shown in Fig. 3.20. The color encodes the maximum disparity likelihood of l(disp)
i,j

for
all hypotheses j ∈ [0, J + 1]. Blue crosses mark background features, yellow and green
features the oncoming (hypothesis 1) and leading (hypothesis 2) vehicle respectively.
Most points on the objects are classified correctly by the disparity ranges. However,
without any information on height and motion there are also points on the street that
are classified as object pixels, since they have the same disparity. The leading ob-
ject is approximately 40 m away from the ego-vehicle, the oncoming vehicle about 20
m in this example. Thus, the disparity range of object hypothesis 1 is significantly
larger compared to hypothesis 2 due to the nonlinear mapping between distances and
disparities.

3.9.4. Height Likelihood
Road vehicles have a particular height over ground, i.e., very low and very high points
are more likely to belong to the background. In the range of about 0.3 to 2 m height
background objects are not distinguishable from vehicles. This is expressed by the
following likelihood function l(height)

i,j
= p(y(height)

i,3 |O = Oj) for the observed data
y

(height)
i,3 = hi, i.e., the height of the i-th feature:

l(height)
i,j

=
�

Π(hi, hmin,j , hmax,j , −λ(height), κDK − κSP, κVL) , j = 0
Π(hi, hmin,j , hmax,j , λ(height), κUL, κDK + κSP) , j > 0 (3.92)

with λ(height) = 1/20 in the default parameterization.
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Figure 3.21.: Height likelihood. (a) Blue features are very unlikely to belong to an
object, since they are either too low or too high. Yellow and green features
are within the expected height range of 0.3 − 2 m. The corresponding
likelihood functions are shown in (b).

Fig. 3.21(b) visualizes the height likelihood functions with the default parameters.
Blue crosses in Figure 3.21(a) mark features that are outside the expected height range,
yellow and green crosses indicate features that have the expected height and, thus, are
potential object features. For visualization, the object features have been colored in
yellow or green based on the ROI information in this example. The height does not
contain any information on which object the feature belongs to in this context (the
unknown object hypothesis would be equally likely). As can be seen, there are also
many features at far distance that have the expected object height.

3.9.5. Motion Likelihood
A point is compatible in motion with a particular hypothesis if its predicted image
position and disparity, computed from a corresponding motion model, is close to the
measured position and disparity. Let Πj

1 denote the transformation function that,
given the feature position p

�
i

= [u�
i
, v�

i
, d�

i
]T at discrete time step k − 1, predicts the

current feature position p
��
i

= [u��
i
, v��

i
, d��

i
]T based on the object hypothesis Oj (including

the object pose and motion model) and the ego-motion parameters in vector u, i.e.,

�p��
i,j = [�u��

i,j , �v��
i,j , �d��

i,j ]T = Πj(p�
i, Oj , u). (3.93)

For the static background hypothesis, the prediction function Π0 compensates for
the ego-motion only. Each feature at time step k − 1 is first transformed into ego-
coordinates. The resulting 3D position is then transformed using the current ego-motion
matrix analog to (3.36) and back-projected onto the current image plane.

For any object hypothesis Oj , j ∈ [1, J ], Πj first transforms p
�
i

to o
P i in the object

coordinate system, which is defined by the a posteriori object pose parameters Ω
+
j

(k−1)
derived from the Kalman filter state x

+(k − 1). Then, the a priori object pose Ω
−
j

(k)
1
Not to be confused with the gate likelihood function Π.
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πimg

�c

Figure 3.22.: Each feature p
�
i
, measured at time step k − 1, is registered to the object

system, defined by Ω
+
j

(k−1). The closer the measured position p
��
i

at time
k is to the reprojected object point position, Πj(p�

i
, Oj , u) , the more likely

does the point belong to the object.

is predicted using the object motion model fj , the a posteriori motion parameters
Φj(k − 1)+ from x

+(k −1), and the ego-motion information u (see Sec. 3.4 for details).
Finally, the object point o

P i is transformed into ego-coordinates, using the param-
eters of Ω

−
j

(k), and projected onto the image plane. Thus, the function computes
the current image position of a given feature, assuming it has a fixed position on the
(moving) object between the previous and the current time step.

Given the predicted image position, the following data likelihood function for the data
vector y

(motion)
i,4 = [(p�

i
)T (p��

i
)T]T = [u�

i
, v�

i
, d�

i
, u��

i
, v��

i
, d��

i
]T, containing the previous and

current measured feature position, is defined based on a standard normal distribution:

p(y(motion)
i,4 |O = Oj) = g

�
∆pi,j , C

(i,j)
∆∆ , 0, |2πCx|−1/2

�
(3.94)

with ∆pi,j = Πj(p�
i
, Oj , u) − p

��
i
, i.e., the residual vector between the predicted and

the measured feature positions. The 3 × 3 matrix C
(i,j)
∆∆ corresponds to the combined

covariance matrix of the residual:

C
(i,j)
∆∆ = Υj





Cp�
ip

�
i

0 0 0
0 CΩ�+

j Ω�+

j
0 0

0 0 CΩ��−
j Ω��−

j
0

0 0 0 Cuu




ΥT

j + Cp��
i p��

i
(3.95)

where Υj =
�

∂Πj

∂p
�
i

,
∂Πj

∂Ω�+
j

,
∂Πj

∂Ω��−
j

,
∂Πj

∂u

�
corresponds to the Jacobian of Πj with respect

to the input parameters. The 3 × 3 covariance matrices Cp�
ip

�
i

and Cp��
i p��

i
incorporate
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Figure 3.23.: (a) Motion likelihood for the two object hypotheses (yellow and green),
background (blue), and the unknown object class (red). (b) Fictive exam-
ple of the likelihood functions for the horizontal image coordinate u.

the uncertainty of the actual feature measurements. A constant measurement noise is
assumed if not other stated, i.e., Cp�

ip
�
i

= Cp��
i p��

i
= Diag(σ2

u, σ2
v , σ2

d
) analog to (3.65).

The 3 × 3 covariance matrix CΩ�+

j Ω�+

j
follows from the a posteriori covariance matrix

C
+
�x�x(k−1) of the previous time step, including the uncertainties of the entries specifying

the object pose, i.e., eXo, eZo, and ψ. The a priori covariance matrix CΩ��−
j Ω��−

j
covers

the uncertainties of the predicted pose and is extracted from C
−
�x�x(k). The computation

of the latter also incorporates the uncertainties of the motion parameters, as proposed
in (3.62). If the uncertainty of the ego-motion is known, it is represented by Cuu.

If the residual falls outside a given confidence interval, the feature is very likely to
not belong to the given hypothesis. Thus, the likelihood function of the unknown class,
p(y(motion)

i,4 |O = OJ+1), is defined as a (small) constant that corresponds to the value
of the standard normal distribution at the boundaries of the confidence interval. Here,
a 98% confidence interval is considered, i.e., p(y(motion)

i,4 |O = OJ+1) = 0.0267.
In Fig. 3.23(a) the motion likelihood results are shown. The color encodes the max-

imum likelihood hypothesis for a given feature. Blue crosses mark features that yield
the smallest (normalized) residual between predicted and measured position for the
background hypothesis, i.e., the points follow the ego-motion. Yellow crosses indicate
features that are compatible in motion with the oncoming vehicle. Note that there are
also a few yellow crosses at the second oncoming car and on the shadow of this car on the
road at far distance. Features that move according to the leading vehicle are marked
as green, while red crosses correspond to features that fall into the unknown object
class. The effect of the different likelihood functions for a fictive pixel is demonstrated
in Fig. 3.23(b). For simplicity, only the u component is considered here.

The likelihood results are summarized in Fig. 3.24. The combined likelihood according
to (3.84), i.e., the sum of the log likelihoods of the ROI, disparity, height, and motion
likelihood is shown in (d). As can be seen, the different likelihood terms yield partly
orthogonal information. For example, features on the road that have the same disparity
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(a) disparity (b) height

(c) motion (d) total

Figure 3.24.: Summary of the different independent likelihood components (a) - (c).
The combined likelihood, according to (3.84), is shown in (d). All yellow
points are added to the shape model of the oncoming object, all green
points to the leading vehicle, respectively.

than the object, are contradictory to the height likelihood. On the other hand, features
that potentially belong to an object based on the height or motion likelihood, are very
unlikely based on the disparity likelihood. The combination ensures that only features
that are consistent in all likelihood terms are finally added to the object.

In this example, the likelihood terms have been computed for all tracked image fea-
tures within the two object ROIs. In practice, only those points that are currently
not assigned to any object have to be considered. This reduces the computational load
significantly. Points that are wrongly added to the object model by the likelihood-based
data association mechanism, have to be detected and rejected by the outlier detection
mechanism of the measurement model.

3.10. Object Verification
Once an object track has been initialized, there must be also a mechanism to delete it,
e.g., if the object leaves the visual field of the camera, the measurements do not support
the object hypothesis any longer, or the estimated parameters are simply implausible.
Furthermore, large objects, such as trucks or buses, are likely to generate multiple object
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hypotheses in practice, if assuming a typical car dimension of about 4.5 m length and
1.7 m width at initialization. The same problem occurs with single cars if detected at
far distance, where the stereo point cloud spreads over a large range.

This section briefly proposes the concepts of how object tracks are invalidated and
how close-by object hypotheses are merged.

3.10.1. Object Removal
One common confidence measure for Kalman filtering approaches is the normalized in-
novation squared (NIS) measure as proposed in (2.47), indicating how good the current
measurements fit the prediction based on the current state and covariance estimate.
This scalar measure could be directly used for object verification by means of a thresh-
old test. A small NIS proves a good fit of the current state estimate with respect to
the current observations and confirms the object track. As soon as the NIS exceeds a
certain threshold, the object is invalidated.

The threshold is derived from the cumulative distribution function (cdf) of the χ2-
distribution with M degrees of freedom (one-sided test), since assuming that the residu-
als are normal distributed, the sum of squares of the residuals follows a χ2

M
-distribution,

with M the number of valid measurements.
In practice, there are two main drawbacks. First, a few (non-detected) outliers in the

measurements as well as errors in the estimated parameters can have a strong influence
on the resulting NIS measure, e.g., if the variance for a given parameter is significantly
underestimated or the tracked object enters a maneuvering phase. Thus, a large NIS
does not automatically mean the tracking result is bad. Secondly, if many points are
contributing, the computation of the NIS measure becomes computationally expensive.

In this approach, an alternative confidence measure is used. The number of points
in the shape model used to update the Kalman filter, i.e., points that have passed the
outlier test independently, is a strong indicator for the quality of the tracking results.
The more points are contributing, the more likely is the current object existing.

The minimum number of points that are sufficient to confirm an object track depends
on the distance. At large distances, the threshold must be lower compared to close
objects, since there are less features. The actual choice of the threshold function is a
design parameter of the overall system. If not other stated, a linear ramp is used that
requires 5 valid points at 60 m and 30 valid points at 10 m distance.

The lifetime of an object is modeled as a finite state machine as shown in Fig. 3.25.
After initialization, the object gets the status HYPOTHESIS. If there are sufficient mea-

surements supporting the object hypothesis, the object state changes to CONFIRMED. As
long as there are enough valid measurements, the object remains in the state CONFIRMED,
otherwise it changes to the state EXTRAPOLATED. At this state, the object state is based
on the prediction only, i.e., the object movement is extrapolated using the vehicle mo-
tion model. Short periods without measurements occur in practice, for example, if all
feature tracks are lost at once and have to be reinitialized due to strong illumination
changes or partial occlusions. As soon as there are again sufficient measurements sup-
porting the object, the object changes to state CONFIRMED again. Otherwise, a counter
is increased indicating how many frames in a row the object has been extrapolated. As
soon as a maximum number of frames in the extrapolated state is exceeded, the object
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3.10. Object Verification

Figure 3.25.: Finite state machine of object states

is invalidated by changing to state LOST. Lost objects are removed from the internal
object list before the next tracking cycle starts.

Beside the valid point count there are several fast checks testing the plausibility of
the current state estimate to be able to sort out false positive objects quickly. Such
test include, for example, a size check (object dimension within expected range and
ratio?), a motion check (velocity or yaw rate physically possible?), distance check (too
far objects can be rejected), and a height check (extremely flat objects where all points
lie on the ground plane must be incorrect). Each of these criteria is a necessary but not
sufficient condition to confirm the object. If one test fails, the object directly changes
to the state LOST. Fig. 3.26 shows three examples of implausible object states.

(a) (b) (c)

Figure 3.26.: Examples for which the verification failed. (a) The two nearby objects
cannot be separated, leading to one huge object that is wider than long.
(b) Unrealistic in-place turning due to a much too large yaw rate. (c)
Phantom object on empty road, where all points lie on the ground surface.
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3. Vehicle Tracking Approach

3.10.2. Merging
Two objects are merged, if there is a spatial overlap of their bounding boxes and if
the moving direction and velocity is compatible. A three step algorithm is used to test
whether neighboring objects should be merged. This algorithm is sketched as follows:

Spherical Distance First, a fast spherical overlap test is performed. For each object
Oi, a sphere is placed at the cuboid center with the radius equal to the cuboid length.
Let e

Pc,i, e
Pc,j be the center position of object i and j, then object i and j do very

likely not overlap, if

[ e
Pc,i − e

Pc,j ]T [ e
Pc,i − e

Pc,j ] > (li + lj)2 (3.96)

where li and lj indicate the length of object i and j respectively. Only really close
objects pass this test and have to be further processed. This test is reduced to the
X-Z-plane in practice, ignoring the height distance.

Cuboid Overlap Testing the overlap of two cuboids is a common task in the computer
graphics domain. It is typically referred to as collision detection of oriented bounding
boxes in the literature. A fast test based on the separating axis theorem for convex
shapes has been proposed in [Eberly 2001]. In the 2D case (cuboid projected onto
ground plane), four necessary conditions that preclude an overlap are checked succes-
sively. If all tests are passed, the bounding boxes overlap. Only objects whose bounding
boxes overlap to some amount are considered in the final motion compatibility test.

Motion Compatibility Objects with overlapping bounding boxes are finally merged,
if they are also compatible in motion. Here, the object motion is approximated by the
linear velocity vector that points in the moving direction and is scaled by the current
velocity. The Mahalanobis distance of the velocity vectors of two objects is used as
indicator of motion compatibility.

Let V i = [vx, vz]T = [sin(ψi + βi)vi, cos(ψi + βi)vi]T denote the 2D velocity vector,
that is derived from the current a posteriori state estimate of a given object Oi. The
corresponding variances and covariances are extracted from the state covariance matrix
and summarized in the matrix

C
(i) =




σ2

ψi
σψiβi σψivi

σψiβi σ2
βi

σβivi

σψivi σβivi σ2
vi



 . (3.97)

The covariance matrix of V i follows from error propagation, i.e., C
(i)
V V

= F
(i)

C
(i)

F
(i)T,

where F
(i) in this context is the Jacobian of the nonlinear transformation from the state

entries to the velocity vector with respect to the parameters ψ, β, and v. It is defined
as

F
(i) =

�
cos(ψi + βi)vi cos(ψi + βi)vi sin(ψi + βi)

− sin(ψi + βi)vi − sin(ψi + βi)vi cos(ψi + βi)

�

. (3.98)
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(a) (b)

Ego

Real 
Trajectory

Estimated 
Trajectory

(c)

Figure 3.27.: (a) The filter cannot follow a turning vehicle if parametrized for mainly
longitudinal movements. (b) The same filter parametrized for turn ma-
neuvers allows for accurate tracking. (c) Bird’s eye view on the problem
at hand.

The motion compatibility measure is now defined as

δij = [V i − V j ]T
�
C

(i)
V V

+ C
(j)
V V

�−1
[V i − V j ] . (3.99)

If δij < Tmax, for a given threshold Tmax derived from the χ2-distribution with 2
degrees of freedom, the object are assumed to be compatible in motion. In this case,
the two objects Oi and Oj are merged.

The proposed three step method is a very basic merging strategy, that yields promis-
ing results in practice for many situations. More sophisticated methods exist in the
field of object fusion, for example, by matching not only the current pose and motion
parameters, but also trajectories as has been proposed, for example, in [Hermes et al.
2009a].

3.11. Highly Dynamic Turn Maneuvers
In the approach proposed above, higher order derivatives, such as yaw acceleration,
are modeled as zero-mean white Gaussian noise. At highly dynamic turn maneuvers,
however, the yaw acceleration becomes a significant issue. Vehicles quickly develop a
yaw rate if turning left or right at an intersection. A single (Kalman) filter, parametrized
to yield smooth tracking results for mainly longitudinal movements, is often too slow
to follow in such situations (see Fig. 3.27). On the other hand, making the filter more
reactive in general increases the sensitivity to noise and outliers in the measurements.

In Sec. 2.6.6, different strategies to track maneuvering targets have been presented.
Based on this ideas, three solutions to automatically adapt the dynamics of the filter
to the dynamics of the object are proposed in the following sections. These solutions
include an extension of the motion model considering higher order terms, an IMM-based
multi-filter setup, as well as the adaptive parametrization of the filter variances using
an independent maximum likelihood estimator. A comparison of the performance of
the approaches will be given in the experimental results (see Sec. 4.2.7).
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3. Vehicle Tracking Approach

3.11.1. Higher Order Term Motion Model
Mehrotra and Mahapatra [Mehrotra and Mahapatra 1997] have emphasized the
importance of higher order terms at tracking highly maneuvering targets. They have
proposed a jerk model that describes a maneuvering target up to third order terms.

In terms of the vehicle tracking approach proposed in the previous chapter, the
vehicle dynamics are modeled up to second order terms for the position and first order
terms in orientation, i.e., longitudinal acceleration and yaw rate, respectively. At turn
maneuvers, however, the unmodeled yaw acceleration, i.e., the second derivative of the
orientation, becomes crucial.

Thus, an alternative higher order extended Kalman filter approach with constant yaw
acceleration motion model is defined. It is denoted as EKF-YA in the following. The
state vector x, as proposed in (3.8), is augmented by an additional motion parameter
for the yaw acceleration, ψ̈, yielding

xya =



 eXo, eZo, ψ� �� �
pose

, v, v̇, ψ̇, ψ̈, oXv, oZv, β� �� �
motion





T

(3.100)

In case of the full model, the object points Θpoints are appended to this state vector.
In this model, the differential equations of the motion parameters, as introduced in
(3.14) - (3.17), change to

ψ̇ = ψ̇ (3.101)
v̇ = v̇ (3.102)
ψ̈ = ψ̈ (3.103)
v̈ = 0 (3.104)...
ψ = 0 (3.105)

where underlined variables again correspond to the state vector entries and can be seen
as constants in this context. Accordingly, the linearized system matrix A and system
noise matrix Cww have to be adapted and extended, respectively, while the measurement
model remains unchanged.

3.11.2. Interacting Multiple Models
The IMM-framework enables tracking of targets with time-varying dynamics, by run-
ning multiple Kalman filters in parallel. Each filter is designed and parametrized for a
different dynamic mode. The decision which filter matches the current dynamics best
is made automatically at runtime, and the resulting state estimates are combined in a
probabilistic sense. For details on the IMM-framework see Sec. 2.6.6.

Two variants of IMM filter configurations are presented in the following. Each consists
of two modes: A stationary (or non-maneuvering) mode and a dynamic (maneuvering)
mode. The first variant has been extensively tested and evaluated both on simulated
and real-world data. The second variant has resulted from the experiences with the
first model as well as the EKF-YA approach proposed above. It yields improved results
at tracking turning vehicles.
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3.11. Highly Dynamic Turn Maneuvers

Variant 1 (IMM-1): A stationary filter, designed to yield smooth trajectories at
mainly longitudinal movements, is combined with a more reactive filter, that is able
to follow even at highly dynamic turn maneuvers. Both filters use the same object
model, measurement model, and motion model.

The different behavior of the non-maneuvering filter (mode 1) and maneuvering filter
(mode 2) is configured via the system noise matrices only, denoted as C

(stat)
ww and C

(mnv)
ww ,

respectively. It is possible to parametrize the system matrices in a way that the non-
maneuvering filter corresponds to a (constantly) accelerated velocity / constant yaw
rate motion model, while the maneuvering filter allows for larger changes of the yaw
rate and acceleration. A concrete filter parametrization is given in Sec. 4.2.7.

Variant 2 (IMM-2): In this approach, two filters with different motion models are
combined. The object and measurement model remains identically. The first filter
utilizes a (constantly) accelerated velocity / constant yaw rate (AVCY) motion model,
the second filter an accelerated velocity / accelerated yaw rate (AVAY) model.

The AVCY model is parametrized in a way that it covers mainly stationary processes,
while the AVAY model is designed for more dynamic maneuvers, especially turn ma-
neuvers. The latter incorporates also the yaw acceleration as proposed before for the
EKF-YA filter.

To prevent the problem that both filters do not have the same state vector dimension,
the filter state of mode 1 is also augmented by the yaw acceleration. However, it is
ignored by the system model and manually set to 0 after the filter update each time
step. This has the positive side effect that the yaw acceleration, estimated by the second
filter, is always competing with the zero yaw acceleration of the first filter at the IMM
mixing step.

In general, combining filters with different motion models is superior to approaches
where each filter uses the same motion model and the filter behavior is controlled via
the system noise matrices as in variant 1 [Bar-Shalom et al. 2001]. The advantage is
that different models are able to generate more distinctive, competing hypotheses at
the prediction step.

Adaptation of IMM Framework: The linear mixing of states and covariance matrices,
as proposed in (2.48) and (2.49), cannot be applied to our model, since the state vector
contains Euler angles. Thus, an alternative nonlinear formulation is used that handles
the angles separately. Instead of directly averaging the Euler angles, the corresponding
unit vectors, pointing in the direction of the Euler angles, are averaged. The resulting
average vector then defines the averaged angle.

In general, the ι th element of �x∗
j is computed as

�x∗
j,ι =

�
arctan(Λ1/Λ2) ι ∈ {idx(ψ), idx(β)}�

I

i=1 µi|j �x+
i,ι

otherwise (3.106)

with Λ1 =
�

I

i=1 µi|j sin(�x+
i,ι

), Λ2 =
�

I

i=1 µi|j cos(�x+
i,ι

), and the time indices according
to (2.48). The idx(·) function returns the index position at which a given variable is
stored in the state vector. The same idea is also used for computation of the element-
wise difference between state �x+

i
and �x∗

j in (2.49) for mixing of the covariance matrices.
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Figure 3.28.: Adaptive noise function as used in the experiments. The function con-
verges to σmax for λ > η and equals σmin + � for λ = 0 (Here: σmin = 0.05,
σmax = 1, η = 1.5, and � = 0.01).

3.11.3. Adaptive System Noise
The idea of adaptive noise is motivated by manual parameter tuning. In scenes, with
highly dynamic turn maneuvers, a human operator parameterizes the filters with larger
system variances, e.g., for the yaw rate. This reduces the influence of the system
model and enforces the influence of the measurements. On the other hand, at highway
scenes with mainly longitudinal movements, the system model is typically much more
strengthened by lowering the system variances.

The following approach automates this procedure by steering the reactiveness of a
single filter at runtime, depending on the expected dynamics of the tracked object.

Given a set of K measurement vectors z̃ = {z(k), z(k−1), . . . , z(k−(K −1))}, where
k denotes the current discrete time step, we can estimate

y = [Θ, Ω(k), Ω(k − 1), ..., Ω(k − (K − 1)]T , (3.107)

i.e., the shape parameters Θ and a set of object poses, via a maximum likelihood
estimation

�y = arg max
y

(p ( z̃| y)) , (3.108)

with �y denoting the estimated parameters. The idea of this approach is, using the known
camera geometry, we directly obtain ePm(k), . . . , ePm(k − (K −1), i.e., the coordinates
of the observed object points in the ego-coordinate system at the given time steps. From
these point coordinates and the corresponding coordinates in the object system, one
can derive the six parameter similarity transformation (no scale) between the ego and
object system, which gives the object’s pose (see [Horn et al. 1988]). Assuming the
object point cloud to be rigid over time, the object point cloud (shape) and the object
poses are simultaneously estimated in a least squares sense. Since Gaussian noise is
assumed, this is equivalent to a maximum likelihood estimation.

In addition, the motion parameters can be easily derived from the estimated poses
by numerical differentiation. The estimation process outside the Kalman filter will be
referred to as oracle in the following. The oracle is purely data driven and not con-
strained by a motion model. Thus, the oracle approach is able to follow all movements
describable in terms of a 3D rotation and translation.

The yaw rate estimate of the oracle �̇ψOR gives a strong evidence for maneuvers. At
non-maneuvering periods the yaw rate is assumed to be low in typical driving scenarios
and may be constant for a longer time interval. On the other hand, a large yaw rate
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is very likely to change within a short time interval, since vehicles usually do not drive
in a circle for very long. This leads to the idea of steering the system noise level
based on the magnitude of the yaw rate estimate of the oracle. Using the oracle’s yaw
acceleration estimate instead of the yaw rate turned out to be too noisy as reliable
maneuver detector.

The yaw rate entry in the system noise matrix at a given time step k is set to
Λ

��̇ψOR(k)
�
, where Λ is a sigmoidal function that smoothly interpolates between a

minimum and maximum noise level σmin and σmax, respectively, as can be seen in
Fig. 3.28. It is defined as

Λ(λ) = σmax − σmin
1 + exp

�
−2 ln

�
σmax−σmin

�
− 1

�
η−1 �

|λ| − η

2
�� + σmin (3.109)

where the parameter η corresponds to the value at which Λ has the function value
σmax − �. The values of σmin, σmax, and η are design parameters and � a small constant.
A more detailed description on the original approach, that is referred to as oracle in
this thesis, is given in [Siegemund 2008].

3.12. Summary of Approach

This chapter comprises a detailed description of a road vehicle detection and tracking
approach based on stereo image sequences. The overall approach consists of different
components, for example, the object model, measurement model, or object detection
strategy, that are embedded in one common framework. At several sections above, alter-
native solutions or parameterizations have been introduced for a particular component,
allowing for different system configurations.

For example, two different representations have been proposed in Sec. 3.3.4, that map
the proposed object model into a Kalman filter state. The real-time variant separates
the problem of estimating the shape parameters, i.e., the structure of the point cloud,
from estimating the pose and motion parameters.

The non-linear system equations allow for predicting the current object state a given
short time interval ahead. The basic motion model, proposed in Sec. 3.4, assumes
constant acceleration and constant yaw rate. With regard to maneuvering vehicles,
variants of this motion model have been introduced in Sec. 3.11 that also incorporate the
yaw acceleration; either in a single filter implementation or as multi-filter configuration.

The proposed measurement model relates point tracks in the image plane to a fixed
object point coordinate. Combining the information of multiple noisy point measure-
ments, the vehicle pose and motion state can be reconstructed. To overcome ambi-
guities in reconstructing the rotational center, additional geometrical measurements of
the observed vehicle origin have been introduced in Sec. 3.5.4. Two examples on how
to generate these measurements have been given. In addition, the measurement model
allows for fusion with a radar sensor. It has been exemplarily shown, how the velocity
measurement of a radar sensor is integrated in Sec. 3.5.5.
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Objects are either detected by clustering groups of tracked 3D points with common
motion, which is purely image based, or alternatively by the radar sensor as has been
proposed in Sec. 3.8. In both cases, the presented data association mechanism (cf.
Sec. 3.9) assigns new points to an existing object at run-time to ensure that there are
always enough points to contribute to the state update.

Gross errors in the data are detected based on the normalized residuals between
the predicted measurements and the actual measurements. Two different strategies
for selecting the outlier threshold have been introduced in Sec. 3.7, including constant
confidence interval gating and an adaptive threshold that considering the distribution
of the normalized residual of all measurements.

In the following chapter, different system configurations are evaluated both on simulated
and real-world data. Due to the number of possible configurations, only a selection of
all configurations is considered. The experiments will be designed in a way that only
one parameter or method is varied at one time.
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The vehicle tracking approach is evaluated in three steps. First, the tracking per-
formance of the proposed approach is investigated on simulated data with respect to
different filter variants, robustness, and limits in Sec. 4.2. The simulation environment
allows for controlled, ideal conditions that can be systematically disturbed.

In Sec. 4.3, the proposed system is tested under realistic conditions on artificial, i.e.,
rendered, image sequences, where ground truth information on object states is still
available from the rendering process. The focus of the artificial scenes is on vehicle
tracking at intersection turn maneuvers.

Finally, real world results are shown and discussed in Sec. 4.4, including experiments
with robot cars in a controlled testing environment as well as real traffic scenarios. The
evaluation criteria used throughout this chapter are presented in Sec. 4.1.

As mentioned before, not all possible configurations and variants of the proposed ve-
hicle tracking approach can be considered at each experiment. Thus, for each particular
experiment, a well-defined configuration is used as baseline and only one parameter is
varied. The core algorithm is successively extended based on the results of previous
results throughout this chapter.

4.1. Evaluation Criteria

Three main aspects are considered for evaluating the quality of a given estimator:

Accuracy: How close are the estimated parameters to the true values on average?

Precision: How reproducible are the results at multiple stochastic runs?

Consistency: How well do the estimated covariance matrices represent the actual error
distribution, i.e., does the estimated uncertainty be realistic?

Two accuracy measures are defined. The first one addresses the accuracy of the
estimated pose in terms of four corners, which are derived by projecting the object’s
cuboid model onto the ground plane. The second is used to directly compare the
estimated motion parameters (velocity and yaw rate) to the ground truth.

Pose Accuracy and Precision: Considering the cuboid corners overcomes the problem
that different configurations of the object and vehicle system define the same pose,
which prevents a direct comparison of the pose parameters. Furthermore, the four
corners also contain information on the object orientation and the dimension. This
leads to the mean squared corner error (MSCE), defined for a sequence of K state

101



4. Experimental Results

estimates Γ = {�x(1), . . . , �x(K)} as:

MSCE(Γ) = 1
8K

K�

k=1
�corner(k)T

�corner(k) (4.1)

with

�corner(k) =





e �X1(k) − eX1(k)
e �Z1(k) − eZ1(k)
e �X2(k) − eX2(k)
e �Z2(k) − eZ2(k)
e �X3(k) − eX3(k)
e �Z3(k) − eZ3(k)
e �X4(k) − eX4(k)
e �Z4(k) − eZ4(k)





(4.2)

where the object corner coordinates
�

e �Xi(k), e �Zi(k)
�
, i ∈ {1 . . . 4}, are computed from

the current state estimate �x(k) and the object dimension Θcube, and ( eXi(k), eZi(k))
denote the corresponding reference corner coordinates. If the reference corners corre-
spond to the true corners (ground truth), this measure is referred to as pose accuracy or
outer precision MSCEouter, including all error sources, e.g., modeling errors, calibration
errors, or noise.

If an experiment contains stochastic processes, such as measurement noise, and this
experiment is repeated I times (Monte Carlo simulation), the estimation results will
differ between each individual run. However, for an unbiased estimator, the expectation
value of all repetitions at one time step must equal the true value if I gets large. Using
the sample mean over all estimated corners at time step k as reference in the equations
above yields the variance or inner precision MSCEinner(Γ(i)) of the pose estimates, given
the sequence of states Γ(i) of the i-th run. The difference between the outer precision
and the inner precision of one run indicates the squared bias of the estimate, i.e.,

MSCEouter(Γ(i)) = MSCEinner(Γ(i)) + BIAS2(Γ(i)) (4.3)

and thus BIAS(Γ(i)) =
�

MSCEouter(Γ(i)) − MSCEinner(Γ(i)). To yield a single score
for one experiment, the MSCEouter

(i), MSCEinner
(i), and BIAS(i) are averaged over all

runs and time steps:

MSCEouter(Γ∗) = 1
I

I�

i=1
MSCEouter(Γ(i)) (4.4)

MSCEinner(Γ∗) = 1
I

I�

i=1
MSCEinner(Γ(i)) (4.5)

BIAS(Γ∗) = 1
I

I�

i=1
BIAS(Γ(i)) (4.6)

with Γ∗ =
�

Γ(1 ), . . . , Γ(I )
�

containing all I sequences of state estimates.
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Motion Accuracy and Precision: The motion parameters, such as velocity and yaw
rate, are evaluated independently based on the mean squared error (MSE) measure,
defined as

MSEx(Γ�x) = 1
K

K�

k=1
(�x(k) − xref(k))2 (4.7)

for a sequence of K estimates Γ�x = {�x(1), . . . , �x(K)}. In this context, the scalar x is
used as template for the velocity v and the yaw rate ψ̇. Analog to the pose accuracy and
precision, the reference value xref can be either the true value x̃ or the sample mean
x̄ over a number of Monte Carlo runs. Accordingly, the MSEouter and MSEinner are
defined for the motion parameters. Alternatively, the root mean squared error (RMSE)
is used, i.e., the square root of the MSE.

Filter Consistency: An estimator is defined to be consistent, if the estimated covari-
ances are a realistic approximation of the real error distribution. The consistency of an
estimator is tested based on the normalized mean squared error (NMSE) over I Monte
Carlo runs at a given time step k, with

NMSE(Γ�x, k) = 1
I

I�

i=1

�
�x(i)(k) − x̃(k)

�T
C

(i)
�x�x

−1 �
�x(i)(k) − x̃(k)

�
, (4.8)

i.e., the mean squared Mahalanobis distance to the ground truth. Assuming the esti-
mated parameters �x(i)(k) ∈ IRN are normal distributed, with covariance matrix C

(i)
�x�x,

and every of two state estimates are uncorrelated, the NMSE follows a χ2-distribution
with NI degrees of freedom, i.e.,

I · NMSE ∼ χ2
NI . (4.9)

The hypothesis that a given estimator is consistent is rejected with significance level α,
if the NMSE lies outside the confidence interval:

[icdfχ2

NI
(α/2)/I, icdfχ2

NI
(1 − α/2)/I], (4.10)

where icdfχ2

NI
represents the inverse cumulative density function of the χ2

NI
distribution.

If the NMSE is larger than the upper bound, the filter is too optimistic, i.e., the variances
are underestimated. On the other hand, if the NMSE is below the lower bound, the
filter is too pessimistic, i.e., the estimated variances are too large.

To overcome the problem of the ambiguous definition of the object coordinate system,
a reduced state vector x

� ∈ IR6 is considered:

x
� =

�
eXv, eZv, χ, v, ψ̇, v̇

�T
(4.11)

with [ eXv, 0 eZv, 1]T = eWo
oWv[0, 0, 0, 1]T representing the vehicle origin Ov in ego-

coordinates, and χ = eχv = ψ + β the rotation between vehicle and ego-system. This
means, the vehicle system is defined as object system. Accordingly, the covariance
matrix entries for eXv, eZv, and χ have to be computed via error propagation. The
point positions are excluded from the consistency evaluation.
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4.2. Simulation Results
The simulation experiments are organized as follows. First, the simulation environment
and the considered trajectory test bed is introduced. Then, the results of five different
experiments using this simulation environment are presented that should answer the
following questions:

1. How accurate are the pose estimates of different filter approaches at increasing
random measurement noise?

2. How consistent are these filters?

3. How do the proposed outlier handling strategies perform for different amounts of
gross errors in the measurements?

4. What effect have the number of object points and the point update strategy on
the estimation accuracy?

5. How accurate are the estimated motion parameters at highly dynamic turn ma-
neuvers?

At the end of this section, a summary of the simulation results is given.

4.2.1. Simulation Setup
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Figure 4.1.: (a) Simulated object with 40 true point positions in vehicle coordinate
system. (b) Bird’s eye view on this object in camera coordinates, observed
at 10 m and 40 m distance, respectively. Both the ground truth position
of the points and the noisy measurements are shown.

In the simulation environment, objects are represented as rigid point clouds that are
moved along virtual trajectories. The ground truth point positions in vehicle coordi-
nates are known as well as the pose and motion parameters of the virtual vehicle for
each time step. The point clouds are observed by a virtual stereo system with known
intrinsic and extrinsic camera parameters. The correspondence between a given object
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point o
P m and the corresponding image position (um, vm) in the left and right camera

is assumed to be known. The stereo disparity dm is computed as the difference of the
u-coordinate in both images following (2.4).

To model real-world errors in the data, the ground truth image coordinates in horizon-
tal direction are disturbed by zero-mean, white Gaussian noise with standard deviation
σu in both images. The error of the horizontal image coordinates propagates to the re-
sulting disparity values. This leads to a realistic error distribution of the reconstructed
3D object point clouds, i.e., the error increases quadratically with distance. Beside
adding Gaussian noise it is possible to incorporate also gross errors, corresponding to
outliers in the data.

Fig. 4.1(a) shows an example of a 2.0 × 4.0 × 1.5 m (W×L×H) object, represented
by 40 points in vehicle coordinates. This object has been placed once at 10 m, once
at 40 m distance, respectively, in Fig. 4.1(b). The corresponding noisy measurements
(crosses) in camera coordinates as well as the ground truth point positions (circles) are
visualized. As expected, the object point measurements are spread much more at 40 m
compared to points at about 10 m distance. In this example, the standard deviation of
the image noise is σu = 0.5 pixels. The parameters of the virtual stereo camera system
are summarized in Table 4.1.

Parameter Value

principal distance 840 pix
principal point (u0, v0) (320, 240)
camera height 1.26 m
stereo baseline 0.3 m
camera pitch angle 0.0 rad
camera yaw angle 0.0 rad
camera roll angle 0.0 rad

Table 4.1.: Intrinsic and extrinsic parameters of virtual stereo camera system.

Object trajectories are generated based on the dynamic model as proposed in Section
3.4, or extracted from real-world recordings of trajectories based on inertial sensors.
Thus, it is possible to move a virtual object along the trajectory of a real vehicle to
yield maximum realistic maneuvers. In both cases, ground truth information on the
motion parameters to be estimated is available at any time.

A common test bed is defined, covering seven typical scenarios, including straight
motion and turn maneuvers at different distances and directions (oncoming, intersect-
ing, leading) as visualized in Fig. 4.2. Each trajectory consists of 100 discrete time
steps.

In the following experiments with simulated data, only the raw point measurement
model is investigated, i.e., there are no rotation point or radar velocity measurements
as proposed in Sec. 3.5.4 and 3.5.5 respectively.
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Figure 4.2.: Trajectory test set covering different scenarios such as oncoming, turning,
crossing, or leaving vehicles, in the field of view of the camera.

4.2.2. Filter Configuration
In the simulation experiments, the following filter approaches are considered:

• Standard extended Kalman filter (EKF)

• Iterated extended Kalman filter with 3 iterations (IEKF3)

• Unscented Kalman filter (UKF)

• EKF with yaw acceleration (EKF+YA)

• EKF with oracle-based adaptive system noise (EKF+OR)

• Interacting Multiple Models filter (IMM)

The values of the system noise matrices are summarized in Table 4.2. If not stated
otherwise below, the object points are part of the state vector and no outlier test is
performed.

Throughout the simulation experiments only the IMM variant, introduced as IMM-
1 in Sec. 3.11.2, is considered, which models the different filter behavior by different
parametrization of the system noise matrices C

(stat)
ww and C

(mnv)
ww , respectively. The

state vector entries as well as the underlying motion model are equal to the remaining
approaches considered in this experiment for fair comparison, i.e., the yaw acceleration
is not incorporated here. The mode transition probability matrix P

(IMM) for the IMM
filter has been chosen as

P
(IMM) =

�
0.98 0.02
0.02 0.98

�

(4.12)
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σX σZ σψ, σβ σv σ
ψ̇

σv̇ σ
ψ̈

[m] [m] [rad] [m/s] [rad/s] [m/s2] [rad/s2]
EKF/IEKF3 0.01 0.01 0.001 0.001 0.05 1.0 -

UKF 0.01 0.01 0.001 0.001 0.05 1.0 -
EKF+YA 0.01 0.01 0.001 0.001 0.0001 1.0 1.0
EKF+OR 0.01 0.01 0.001 0.001 Λ(| �̇ψOR|) 1.0 -

IMM (stat) 0.01 0.01 0.001 0.001 0.0001 0.0001 -
(mnv) 0.01 0.01 0.001 0.001 1.0 1.0 -

Table 4.2.: System noise matrix parametrization for different filter approaches used
throughout the simulation experiments.

where the value at the i-th row and j-th column indicates the a priori probability pij

that the filter switches from mode i to mode j, i, j ∈ {1, 2}, i.e., it is much more likely
that the filter remains in the same mode. Diagonal entries close to 1 prevent frequent
mode switching and result in more distinct mode probabilities.

The adaptive noise function Λ(.) for the EKF-OR approach has been parametrized
with σmin = 0.05 rad/s, σmax = 1.0 rad/s, and η = 1.5 (cf. Sec. 3.11.3). This means,
for small �̇ψOR the EKF-OR filter is configured as the standard EKF filter and for
| �̇ψOR| > 1.5, the filter corresponds to the maneuvering mode of the IMM filter. A
window size of k = 5 has been used for the oracle.

A constant measurement noise C
(p)
vv for each point is assumed throughout all experi-

ments, with C
(P)
vv = Diag(σ2

u, σ2
v , σ2

d
) = Diag(0.52, 0.52, 0.52) for all filters (see Sec. 3.6.2).

4.2.3. Filter Precision at Increasing Noise
In this experiment, the tracking precision of different Kalman filter approaches on the
test bed, with respect to an increasing amount of measurement noise, is compared,
including the EKF, IEKF3, UKF, and IMM approach.
Setup: An object, modeled by M = 40 points as shown in Fig. 4.1(a), is moved along
the test bed trajectories (cf. 4.2.1). The measurements are disturbed by eleven discrete
image noise levels in the range of σu ∈ [0, 1].

The tracking is initialized with the object coordinate system placed at the centroid
of the initial noisy point cloud. All filters are initialized with the same state vector.
Orientation and velocity are initialized with the ground truth. The initial shape model is
derived from the initial point cloud and has to be refined over time. The remaining state
parameters, such as yaw rate or acceleration, are initialized with zero. Each individual
experiment has been repeated I = 20 times with random measurement noise. The full
object state including the object point positions is estimated each run.
Evaluation Criteria: The MSCE, as defined in (4.1), is used as evaluation criteria.
Both the average outer and inner precision, MSCEouter and MSCEinner respectively, are
computed based on this measure, from which the average estimation bias BIAS can be
derived. To reduce the influence of initialization errors, for each sequence the first 20
frames out of 100 have been excluded from the evaluation.
Observations: The results are summarized in Fig. 4.3. The root of the mean squared
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Figure 4.3.: Filter precision as a function of the measurement noise level. The bars in-
dicate the average object pose error (inner and outer precision) and average
estimation bias over all trajectories and iterations with respect to the given
image noise level. The IMM filter performs best in this experiment.
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corner error increases approximately quadratically with the amount of image noise at all
four filter approaches. This indicates there are significant nonlinearities in the system,
since for a linear system one would expect a linear increase of the error.

The IMM approach yields the most accurate results in this experiment at all noise
levels, while the precision is comparable to the other approaches. The IEKF3 (three
iterations) outperforms the standard EKF especially at larger noise levels and is the
best single filter approach in this experiment. It turned out that more than three
iterations do not further improve the precision. The UKF performs similar to the EKF
approach at noise levels close to the expectation (σu ≈ 0.5), but results in significantly
larger errors at low noise levels.

The MSCEouter shows that the accuracy of all filter approaches is below 0.25 m
for noise levels <= 0.4, i.e., the average distance between an estimated object corner
and the real position is below 25 cm. Since the test bed includes trajectories at large
distance, the error is acceptable small. At σu = 0.1, the accuracy is below 4 cm for the
IMM filter and about 6 cm for the IEKF3.

In all experiments there is at least a small bias in the estimate, which also increases
quadratically with the image noise. There are two main origins for the bias: Restrictions
of the system model and systematic errors in the depth estimate.

At maneuvers, e.g., sudden yaw acceleration, the filter can follow the object only
with a delay. As the maneuver starts, it takes a few time steps until the filter estimates
the real yaw rate accurately. In the meantime, the estimated object pose deviates
systematically from the real value.

Furthermore, for noise levels σu > 0, the observed 3D point positions are biased
in depth. A normal distribution in 3D space is assumed, although normal distributed
image noise spreads out asymmetrically in 3D space around the actual 3D point position
due to the nonlinear inverse projection. In general, the estimated point positions are
further away then the real value. This effect influences the state estimation at far
distances and vanishes in the near range. Since the object position is initialized from
the centroid of the initial (noisy) point cloud, the initial object pose is also biased.

In further experiments, not detailed here, it has been verified, that the pose error
increases linearly with the system noise for a stationary object at near distance (10 m).
Conclusions: From this experiment it is concluded that the IMM approach is best
suited to yield accurate and precise tracking results at a variety of different scenarios.
The iterated extended Kalman filter yields the best results among the single filter
approaches. Only these two filters will be further investigated in the following.

4.2.4. Filter Consistency
In this experiment, the filter consistency of the IEKF3 and IMM approach is evaluated.

Setup & Evaluation Criteria: The same test bed as in Experiment 1 is considered.
For each sequence the NMSE, as defined in (4.8), is computed for each time step k
for the transformed state vector x

∗ (see (4.11)) over I = 20 monte carlo runs. This
yields a total number of I = 20 normalized squared residuals per time step. The sum of
these residuals is χ2

120 distributed (120 = 20 × 6 degrees of freedom), if the normalized
residuals are standard normal distributed. According to (4.10), the hypothesis that the
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latter is true is rejected with 5% significance level if the actual NMSE is outside the
confidence interval [icdfχ2

120

(0.025)/I, icdfχ2

120

(0.975)/I] = [4.5786, 7.6106]. The image
noise level has been σu = 0.5 in all runs.

Observations: The development of the NMSE over time for the different trajectories
in the data set as well as the average NMSE over all trajectories is shown in Fig. 4.4. For
better visualization of the results, the log10 of the NMSE is displayed. The consistency
varies between different scenarios and filter approaches.

The IEKF3 filter yields much larger NMSE values compared to the IMM approach,
especially at scenarios with turn maneuvers such as trajectory 3, 4, 5, and 6. These
scenarios lead to significant inconsistencies during the maneuvering phase. The filters
are too optimistic in this case, i.e., the covariances are underestimated, while the actual
error is significantly larger. The IMM filter converges much faster to a consistent state
than the single filter approach.

In those scenarios in which the object has been initialized at close distance (e.g.,
scenario 1 or 5), the filters are too pessimistic most of the time, i.e., the actual estimate
is more precise than the filter covariance matrices indicate.

Conclusions: At many time steps, the system noise matrix is either too small or
too large in these experiments, indicating the compromise that is made at the filter
configuration. There is a trade-off between reactiveness of the filter and smoothness,
i.e., insensitivity to errors in the measurements by a strong system model. The IMM
filter outperforms the IEKF3 approach in consistency in the given experiments, due to
its ability to switch between two system models at runtime.
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Figure 4.4.: Consistency over time, computed over 20 monte carlo runs per time step, for
(a) IEKF3 and (b) IMM. The filter is consistent if the NMSE lies within the
confidence interval indicated by the dashed-line (here: logarithmic scale).
A NMSE below or above the confidence interval indicates the estimated
variances are either too pessimistic or too optimistic, respectively.
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4.2.5. Sensitivity to Outliers

The previous two experiments have been based on zero-mean white Gaussian measure-
ment noise. There have not been any gross errors in the data, deviating from the
assumed stochastic model. In this experiment it is investigated how the filter precision
is influenced by significant outliers in the data. Therefore, the same trajectory test bed
is considered, but this time with an increasing percentage of outliers in the data.
Setup & Evaluation Criteria: At each time step, a number of object points is selected
randomly based on the given outlier level. Instead of adding a normal distributed noise
term to these samples, the noise term is derived from a uniform distribution in the
range [3σu, 10σu]. The resulting noise terms are biased and outside the 3-σ confidence
interval of the normal distribution from which the remaining non-outlier noise terms
are sampled from (see Fig. 4.5).
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Figure 4.5.: Generated noise statistics with different percentages of real outliers. The
vertical lines indicate the 3−σ interval of the expected normal distribution
N (0, σu), shown as dashed line, with σu = 0.5.

The following percentages of gross errors are investigated: 5%, 10%, 20%, 30%, and
40%. The basic image noise level is σu = 0.5 in this experiment.

Two outlier handling strategies, as proposed in Sec. 3.7, are compared to the standard
approach without outlier detection:

• Robust reweighing of residuals with constant gating (3-σ confidence interval)

• Robust reweighing of residuals with adaptive gating

The results are compared based on the average corner error as in previous experiments.
Observations: Fig. 4.6 shows the resulting outer and inner accuracy as well as the bias
of the four corner error measure. As can be seen, the outer error and bias increases
approximately linearly with the percentage of outliers for the approach without outlier
handling (IEKF3). Both robust filter variants yield significantly lower errors. The
constant gating approach reduces the outer precision by about 1/4, by excluding all
measurements that differ too much from the expectation. The adaptive gating approach
guarantees that at least 50% of all measurements contribute to the filter update. Since
there are no more than 40% of outliers in the data, the adaptive gating approach reduces
the error even up to about 1/6 compared to the standard IEKF3 approach.
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Figure 4.6.: Simulation results for an increasing percentage of gross errors in the data
for the iterated Kalman filter without outlier test and two robust versions.
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Conclusions: Both robust filter variants outperform the original approach without
outlier removal. The adaptive gating approach yields the best results in this experiment
and, thus, qualifies as default outlier handling strategy for following experiments with
artificial and real-world scenes.

4.2.6. Point Update Strategy
Two different filter representations have been introduced in Sec. 3.3.4: A full model that
includes the point positions in the filter state and a reduced model, which updates the
point positions outside the filter. In this experiment it is investigated how the different
models perform on the simulation test bed for a varying number of object points.
Setup & Evaluation Criteria: The following approaches are compared:

• IEKF3 with full model (INTERN)

• IEKF3 with reduced model + external point update by ML-estimation (EXTERN-
WEIGHTED)

• IEKF3 with reduced model + external point update by averaging (EXTERN-
AVG)

The first variant of the reduced model follows the approach as proposed in Sec. 3.5.3.
Here, the point positions are updated under consideration of the point covariance matri-
ces in a maximum likelihood manner, assuming uncorrelated measurement groups. The
second variant ignores the uncertainties of a point, i.e., the point update corresponds
to averaging over all previous positions. This is equivalent to setting Cm(k) = I3 in
(3.46) for each point o

P m and time step.
Each scenario in the test bed is repeated 20 times for 24, 48, 80, 120, and 168 object

points, respectively. Random zero-mean white Gaussian image noise with σu = 0.5 has
been added to the measurements. For evaluation, the measures MSCEouter, MSCEinner,
and BIAS are considered.
Observations: The results are summarized in Fig. 4.7. In all approaches, the outer and
inner precision decreases with an increasing number of points, while the bias remains
approximately constant. As can be seen, the full model outperforms the reduced model
approaches significantly in accuracy and precision. Compared to the full model, the
root of the MSCEouter is about 1.6 times larger for the external point update with
covariance weighting and about 1.8 time larger for the fast alternative of point averaging
at 24 points. This ratio slowly decreases with the number of points to about 1.4 for
EXTERN-WEIGHTED and remains approximately constant for the EXTERN-AVG
approach.
Conclusions: The more points are contributing, the more accurate are the results. The
full model outperforms both approaches that estimate the point positions separately.
One significant drawback of the full model is the computation time. Since the filter
state increases by three elements for each point in the model, one can easily end up
with filter states of more than 300 − 900 entries in practice. Thus, the reduced model
yields a good compromise between estimation accuracy and computation time.
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Figure 4.7.: The number of points as well as the update strategy influence the estimation
accuracy and precision. Updating the point positions simultaneously with
the pose and motion parameters within one large filter state outperforms
the much faster approaches that refine the point position independently
outside the filter.
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4.2.7. Highly Dynamic Turn Maneuvers

In this experiment, the different approaches for tracking highly maneuvering vehicles, as
proposed in Sec. 3.11, are compared. While previous experiments have mainly consid-
ered the pose estimation error, in the following the focus is on the motion parameters.
The evaluation is divided into two parts. First, the different filter behavior to a sudden
synthetic yaw acceleration is exemplarily demonstrated. Then, the filters are evaluated
based on 57 real vehicle trajectories recorded from in-car sensors at different urban
intersections.

Sudden Yaw Acceleration

The first scenario contains a turn maneuver that cannot be followed well by the single
EKF approach if parametrized for typical longitudinal or slow turn movements.
Setup & Evaluation Criteria: The simulated vehicle, represented by 60 object points,
starts approaching at 50 m distance with constant velocity of 10 m/s and a small yaw
acceleration of 0.05 rad/s2. After 50 time steps, a sudden constant yaw acceleration of
ψ̈ = 2 rad/s2 is generated for 10 time steps (0.4 s). The simulation has been repeated
40 times. The measurements are disturbed by adding Gaussian noise with standard
deviation σu = 0.1 pixel to the horizontal image coordinate in both images. This lower
noise level is chosen to emphasize error sources induced by the motion model.

The following filter approaches, configured as proposed in Sec. 4.2.2, are evaluated:
EKF, EKF+YA, EKF+OR, and IMM. The considered evaluation criteria is the root
mean squared yaw rate error (RMSE

ψ̇
).

Obervations: The mean estimated yaw rate for each filter is shown in Fig. 4.8(a),
together with the 1-σ error band. As can be seen, the single EKF approach with
constant yaw rate assumption cannot follow the fast yaw rate increase (RMSE

ψ̇
=

0.1492), while the proposed extended versions approximate the ground truth much
better. Differences are in the delay of the yaw rate increase, i.e., how fast does a given
filter react to the yaw acceleration, and in overshooting.

The EKF-YA filter quickly follows the yaw rate increase by estimating the yaw ac-
celeration (RMSE

ψ̇
= 0.0443). Fig. 4.8(b) shows the response to the rectangular yaw

acceleration input. The resulting overshooting of the estimated yaw rate is about twice
as large compared to the IMM approach, which is able to follow the yaw rate increase
even faster by switching from non-maneuvering mode to maneuvering mode at frame 51
(see Fig. 4.8(c)). As the yaw acceleration maneuver ends at frame 60, the probability
of the maneuvering mode starts to decrease. The root mean squared error in the yaw
rate estimate is RMSE

ψ̇
= 0.0230 for the IMM filter.

The oracle detects the yaw rate increase without delay and shows no overshooting
at all. Since the oracle is model-free and unconstrained, the results yield a larger
standard deviation compared to the filtered estimates. The resulting trajectories are
quite unsteady. However, combining the oracle with a Kalman filter in the EKF-OR
approach, yields both a very accurate yaw rate estimate and smooth trajectories with
almost no overshooting (RMSE

ψ̇
= 0.0392). The delay until the yaw rate starts to

increase depends on the design of the adaptive noise control function (see Fig. 3.28).
Conclusions: The adaptive system noise approach EKF+OR yields the best results in
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Figure 4.8.: (a) Error bands of yaw rate estimates based on mean and standard deviation
over 40 monte carlo runs. All filter extensions approximate the ground
truth much better than the original single EKF approach. (b) Estimated
yaw acceleration of EKF-YA filter compared to ground truth. (c) IMM
mode probabilities.
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Figure 4.9.: Distribution of RMSE between estimated state and ground truth for yaw
rate (top row), velocity (middle row), and position (bottom row). The
boxes indicate the 25th and 75th percentile as well as the median.

this experiment, followed by the IMM and the EKF+YA. The standard EKF is not
able to track the vehicle accurately during the maneuvering phase as expected.

Real World Ground Truth

In the following experiment, the virtual point cloud object is moved along real trajec-
tories, recorded from the ego-vehicle at different urban intersections. This means, the
simulation environment is augmented by trajectories that have been driven in reality.
Setup & Evaluation Criteria: Analog to the synthetic trajectories, the virtual point
cloud object is moved along the real trajectories, including 18 left turn maneuvers, 19
right turn maneuvers, and 20 straight crossing scenarios. These trajectories correspond
to the ground truth in this experiment.

For each trajectory, the root mean squared error for the yaw rate, RMSE
ψ̇

, and
velocity RMSEv, as well as the RMSCE, indicating the outer pose error, are computed.
Observations: Fig. 4.9 shows the distribution of the resulting 57 error measures for the
different filters in terms of the median and the 25th and 75th percentile (boxes). The
whiskers indicate the first and (clipped) 99th percentile. As can be seen, the median
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RMSE
ψ̇

over all runs is significantly reduced by all proposed extensions compared to the
original EKF approach (Fig. 4.9(a)). The IMM and EKF+OR approach yield almost
similar results and perform slightly better than the EKF+YA.

The RMSEv of the velocity estimates is statistically slightly reduced by the IMM
and EKF+OR approach, especially at the turn maneuvers. The median RMSEv of the
EKF+YA filter is also reduced for the turn maneuver sequences, while it is slightly
increased for the straight-line trajectories.

The improvements in the estimated motion parameters directly affect the pose error,
which is also decreased for all extensions (Fig. 4.9(g)). Especially if only the subset
of trajectories including a turn maneuver is considered for evaluation (second column).
On the other hand, even for the straight motion trajectories (third column), improve-
ments are achieved. The parametrization with much lower system variances at the
non-maneuvering mode of the IMM filter is beneficial at low dynamic scenes as can be
seen at Fig. 4.9(i). The EKF-OR filter equals the configuration of the EKF filter at
straight motion, thus, the results do not differ much. Modeling of the yaw acceleration
in the EKF-YA leads to larger deviations of the error at non dynamic scenes. The filter
has to compensate for small errors in the orientation estimate by adapting the yaw
acceleration, which typically leads to oscillation effects that increase the RMSE

ψ̇
.

Conclusions: The good performance of the EKF+OR filter on the synthetic data is
approved on the real-world trajectories and does not show a degradation at straight line
motion. The same applies for the IMM filter, which yields almost equal performance in
this experiment at significantly less computation time.

4.2.8. Filter Behavior at Extreme Maneuvers
So far only maneuvers that typically occur at urban intersections have been considered.
In extreme situations, such as skidding on black ice, the assumption that the vehicle’s
orientation is aligned with the moving direction is violated. Although these extreme
situations are out of scope of this thesis, the following experiment should demonstrate
the limits of the proposed approaches and give an outlook on a promising solution for
dealing with unexpected maneuvers.

A skidding trajectory is simulated by introducing an external force in terms of a lateral
velocity component of 6 m/s, pushing the oncoming vehicle toward the observer while
turning left with a constant yaw acceleration of 6 rad/s2. As can be seen in Fig. 4.10(a),
all filters discussed above fail to estimate the unexpected trajectory correctly since it
does not agree with a circular path motion model.

However, the model-free oracle is able to follow the side-slipping vehicle very accu-
rately. This leads to the idea of using the oracle not only to control the system noise
of the yaw rate, but also for the position (EKF+ORX filter). The deviation between
actual moving direction and object orientation, estimated by the oracle, is used as skid-
ding detector (see Fig. 4.10(b)). Larger deviations indicate a violation of the circular
path motion model. In this case, the system variances for position are increased using
the same mechanism as introduced for the yaw rate. With large system variances for
position, the vehicle is able to shift in arbitrary direction independent of the current
orientation. The resulting final pose estimated by the EKF+ORX approach almost
perfectly fits the ground truth, demonstrating the potential of this approach.
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Figure 4.10.: (a) Estimation results of skidding trajectory. The EKF-ORX approach
perfectly reconstructs the ground truth trajectory and final pose, while all
other approaches considered so far fail. (b) Absolute difference between
object orientation and moving direction used for adaptation of the system
noise.
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4.2.9. Summary of Simulation Results

The experiments have shown that the considered multi-filter approach outperforms all
single filter approaches in accuracy, precision, and consistency. Among the single
filters, the unscented Kalman filter does not reach the same tracking performance as
the standard extended Kalman filter. A few iterations of the EKF further improve the
tracking results at the considered scenarios.

The robust Kalman filter with adaptive gating and linear reweighing of measure-
ments as proposed in Sec. 3.7 yields the best tracking performance if there are gross

outliers in the measurements. In general, the outer accuracy increases with the num-
ber of contributing points. The pose estimation bias is smallest if the point positions
are estimated simultaneously with the pose and motion parameters within one state
vector. However, refining the points outside the filter by weighted averaging yields also
acceptable results and is significantly faster compared to the simultaneous estimation.

All of the proposed extensions for tracking of maneuvering vehicles have improved the
results at typical turn maneuvers without loosing performance at straight-line mo-
tion and without manual parameter tuning. The error in the estimate of yaw rate and
position could be significantly reduced compared to the original single EKF approach.
The IMM approach yields the best compromise between tracking accuracy and com-
putational complexity. Since the IMM filters can be run in parallel on multi-processor
architectures, the additional load reduces to the mode mixing and probability update.

A general problem of the filter design is that in most situations the filter is either
too optimistic or too pessimistic, as indicated by the consistency tests. The system
noise parameterization tries to handle the trade-off between smooth estimates and quick
reaction times to maneuvers. Maneuvers can start suddenly, i.e., the system variances
must not be too small. On the other hand, one does not want to be too sensitive to
noisy measurements by strengthening the system model, i.e., the system variances must
not be too large as well.

The best solution to overcome this problem is an adaptive system noise model, which
is controlled depending on the current scene, as exemplarily demonstrated by the oracle

approach. The computation of the oracle is more costly compared to the Kalman
filter, even if the sparseness in the involved matrices is exploited, and depends on the
considered window size. However, the skidding experiment has shown the potential of
the oracle approach not only to improve the tracking at standard turn maneuvers, but
also to detect extreme situations that are of special interest with respect to collision
avoidance systems.

The EKF-YA filter is an alternative if computation time is critical and only a
single core processor is available. The additional computation time compared to the
original EKF approach is negligible, while the results show a significant improvement
at turn maneuvers.

In the next section, the EKF-YA filter will be combined with a constant yaw rate
filter via the IMM framework to the IMM-2 variant as proposed in Sec. 3.11.2. This
variant combines the advantages of a fast maneuver detector with the smoothness and
stability of the lower order model.
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4.3. Artificial Sequences
In the previous section, the simulation environment was based on 3D point clouds
that have been projected onto a virtual image plane. The point correspondences have
been known for all time steps, i.e., there have not been any (self-)occlusions or wrong
correspondences. Furthermore, the measurement noise has been controlled and known
for each point.

In this section, a more realistic simulation environment is used that generates artificial
stereo image sequences of a virtual 3D road scene using ray-tracing techniques (POV-
Ray1). The cars in the scene are moved based on a realistic physics engine, incorporating
information on the object’s mass, wheel properties, steering angle, gas pedal, etc. The
object pose and motion state (velocity, yaw rate, acceleration,...) is known for each
time step. In addition, ground truth depth and motion information for each point in
the images is available. However, this information can also be extracted from the image
sequences with the same methods as used in the real world system, e.g, using SGM

stereo and a KLT feature tracker. The advantage of the latter is that one yields
realistic reconstruction errors.

In the artificial scenes the points contributing to the object point model are assigned
to an object at runtime using the approach proposed in Sec. 3.9, i.e., the system has
to deal with a varying number of points and outliers in the data. Outliers are detected
and rejected based on the adaptive gating (see Sec. 3.7). Object tracks are initialized
using the image-based initialization method as introduced in Sec. 3.8.1.

The remainder of this section is organized as follows. First, the filter configuration
considered for the artificial scenes is introduced. Then, two experiments including
an intersection left turn and a right turn maneuver are presented. The results are
summarized at the end of this section.

4.3.1. Filter Configuration
Two variants of the IMM filter as proposed in Sec. 3.11.2 are compared in the following
experiments. The configuration of the system noise matrices is given in Table 4.3.

The IMM-1 filter (one motion model, different variances) is configured only slightly
different from the setup in Sec. 4.2.7. Here, the variances of the motion parameters
for the stationary mode are increased to prevent a frequent switching of the modes at
the artificial sequences. Otherwise almost any changes of the motion parameters are
realized via the dynamic mode. This effect has not been observed in the simulation
environment.

The IMM-2 filter combines two motion models (AVCY and AVAY, cf. Sec. 2.5.3).
The AVCY model is parametrized in a way that it covers mainly stationary processes,
while the AVAY model is designed for more dynamic maneuvers, especially turn ma-
neuvers. At this, the AVCY model assumes a constant yaw acceleration of zero, while
the AVAY filter enables directed changes of the yaw rate via the yaw acceleration. The
parametrization of the system noise matrix of the AVCY model, C

(stat)
ww , allows for slow

changes in acceleration (σv̇ = 0.1 m/s2) and minor changes of the yaw rate (σ
ψ̇

= 0.01
rad/s).

1http://www.povray.org/
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σX σZ σψ, σβ σv σ
ψ̇

σv̇ σ
ψ̈

[m] [m] [rad] [m/s] [rad/s] [m/s2] [rad/s2]
IMM-1: (stat) 0.01 0.01 0.01 0.01 0.01 0.1 -

(mnv) 0.01 0.01 0.01 0.1 1 2 -
IMM-2: (stat) 0.01 0.01 0.01 0.01 0.01 0.1 -

(mnv) 0.01 0.01 0.01 0.1 0.1 2 0.5

IEKF: 0.01 0.01 0.01 0.01 0.1 1 -

Table 4.3.: System noise matrix configurations used in the following experiments. Dif-
ferences between the different configurations are highlighted.

Upon starting, vehicles accelerate with approximately 1.5 to 3 m/s2, and stop with
−1.5 to −5 m/s2. We thus allow changes of the acceleration by 2 m/s2 via the AVAY
system noise matrix C

(mnv)
ww . This is a compromise between the maximum expected ac-

celeration and the objective to yield smooth velocity estimates (constant acceleration).
The allowed changes of the yaw rate are increased to 0.1 rad/s in the dynamic model.
In addition, the yaw rate depends on the estimated yaw acceleration, which is able to
change by 0.5 rad/s2 in this configuration.

The single filter baseline (IEKF with 3 iterations) has been manually optimized
for the considered scenes to yield a good compromise in tracking performance and
smoothness in the state estimate.

All filters are additionally provided with rotation point measurements in the following
experiments (stereo-profile method, cf. Sec. 3.5.4). As in the simulation results, a con-
stant measurement noise of C

(P)
vv = Diag(σ2

u, σ2
v , σ2

d
) = Diag(0.52, 0.52, 0.52) is assumed

for all points. This choice is motivated from error statistics comparing the computed
feature tracks and stereo disparities on artificial scenes with ground truth available.

4.3.2. Intersection Left Turn

In the first experiment, the IMM filter tracking performance is evaluated based on an
artificial scene containing a fast left turn maneuver. Depth and motion information
is extracted from the image sequences with the same algorithms as in the real-world
system (SGM stereo + KLT feature tracker).

Scenario: An oncoming vehicle is approaching from 60 m distance and quickly turning
to the left at approximately 15 m distance in front of the stationary ego-vehicle. The
velocity (≈ 10 m/s) is slightly decreased during the turn maneuver.

Fig. 4.11 shows selected frames of the sequence with exemplary estimation results
(IMM-2) superimposed. The estimated object pose and dimension is indicated by the
bounding box, the motion parameters are encoded in the predicted driving path for the
next second, visualized as a carpet on the ground. The tracked feature points, building
the object shape model, are visualized by yellow crosses (red crosses=outliers).

The object is detected at about 40 m distance at frame 29 using the image-based
method. The maneuver starts at frame 50. The predicted driving path already starts to
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(a) frame 40 (b) frame 50 (c) frame 60
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Figure 4.11.: Tracking results of a synthetic left-turn intersection scene (here with IMM-
2 approach). The estimated motion state allows for accurate prediction of
the object’s driving path for the next second. The estimated trajectory of
the cuboid center position (red solid line) precisely fits the ground truth
(dashed black line) as shown from bird’s eye view on the bottom right.

bend at this time step, although the vehicle has not significantly changed its orientation.
Ten frames ahead, the predicted driving path clearly indicates the vehicle is turning to
the left. Its destination is accurately predicted at frame 70 as shown in frame 90.

Evaluation Criteria: Analog to the simulation experiments, the tracking accuracy is
evaluated based on the RMSCE, i.e., the distance of the four corners of the estimated
object bounding box compared to the ground truth corner positions in ego- coordinates.
The estimation accuracy of the motion parameters velocity and yaw rate is evaluated
in terms of the RMSE

ψ̇
and RMSEv, respectively (cf. Sec. 4.1).

Observations: The evolution of the estimated and true motion parameters over time
as well as the mean RMSE over two time intervals are shown in Fig. 4.12(a)-(b). The
RMSCE as a function of time is shown in (c). The mode probabilities of the two
compared IMM approaches are given in (d) and (e).

As can be seen, the estimated motion parameters of the IMM approaches approximate
the ground truth very well. During the straight motion phase the single filter with
AVCY motion model performs equally well as the IMM filters, however, it cannot
follow the sudden increase of the yaw rate as the maneuver starts. The RMSE

ψ̇
of the

yaw rate compared to the ground truth (outer precision) is 0.048 for the IMM-1, 0.044
for the IMM-2, and 0.107 for the single filter approach. The RMSEv in velocity is 1.219
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Figure 4.12.: Estimation results and RMSE of IMM filter variants for (a) yaw rate and
(b) velocity compared to ground truth (dashed black lines) and a single
filter approach (dotted blue line). The pose accuracy is evaluated based
on the root mean squared corner error in (c). The IMM approaches clearly
outperform the single filter approach. The mode probabilities are shown
in (d) and (e).
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(0.445) for the IMM-1, 1.072 (0.399) for the IMM-2 and 1.127 (0.58) for the single EKF
respectively. The values in brackets indicate the RMSE if the first 10 frames are ignored,
reducing the influence of the significantly underestimated velocity at initialization.

The RMSCE decreases over time to below 0.08 (average 0.47 m) for the IMM-1 and
below 0.15 m (average 0.49 m) for the IMM-2. The single filter approach results in a
significantly larger error during the whole turn maneuver (average 0.72 m).

The IMM mode probabilities in Fig. 4.12(d) and (e) indicate the interaction of the
two modes. The IMM-1 filter directly switches to dynamic mode at frame 40 (maneuver
start) to be able to quickly adapt the yaw rate. Then, the filter toggles a few times
between the two modes, indicating that there are phases of constant yaw rate (stationary
mode). At the end of the sequence, the IMM-1 filter shows some overshooting and the
filter remains in dynamic mode until the car leaves the visual field of the camera.

The mode probabilities of the IMM-2 approach are not that discriminating for the
first 10 frames. As a result, the filter switches slightly later to the dynamic mode.
However, the error of the yaw rate can be quickly compensated by estimating the yaw
acceleration. To prevent an overshooting, the filter switches back to stationary mode
(yaw acceleration zero). Climbing the ramp in a few stairs, induced by short phases
of yaw acceleration followed by a constant yaw rate, is much faster compared to the
single filter approach assuming a constant yaw rate for all frames. The advantage of
the IMM-2 approach is that is shows almost no overshooting in the yaw rate estimate.
However, the results are significantly less smooth compared to the IMM-1 approach.

Conclusions: From this experiment one can conclude that the good performance of the
IMM approach in the simulation can be confirmed for the artificial sequences. In this
sequence, there is only a minor difference between the two IMM variants. The IMM-2
yields a slightly improvement in the estimated motion parameters, while the IMM-1
approach yields more smooth results and a smaller average error in the estimate pose.
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Figure 4.13.: Tracking results of synthetic right-turn intersection scene (here with IMM-
1 approach and ground truth stereo measurements, see text).

4.3.3. Intersection Right Turn

The second artificial scene addresses a fast right-turn maneuver. The filter configuration
and the evaluation criteria are analog to the previous experiment (see Table 4.3), i.e.,
a single filter approach is compared to the two IMM variants.

Scenario: An oncoming car is driving straight in the opposite lane towards the inter-
section for about 1.5 s (36 frames), and then turns quickly to its right (to the left from
perspective of the camera). Fig. 4.13 shows selected images and a bird’s eye view on the
ground truth trajectory of this scene with exemplary estimation results superimposed.
The velocity increases from 8.4 to 12.5 m/s until the beginning of the turn maneuver.
While turning, the car slightly decelerates. The yaw rate quickly decreases in terms of
an approximately linear ramp (constant yaw acceleration). At frame 55, the car starts
leaving the visual field of the stereo system. The ego vehicle does not move in this
scenario.
Observations: The object is detected at frame 16 in this experiment. The estimation
results are visualized in Fig. 4.14 analog to the plots for the left-turn maneuver. During
the straight line motion, the zero yaw rate is estimated well by all filters. The IMM-2
filter shows some minor overshooting. At the beginning of the turn maneuver at frame
36, the IEKF filter is too slow to follow the sudden yaw acceleration. The IMM filters
differ only slightly in the response to the fast decrease of the yaw rate, but follow the
ground truth (black dashed line) quickly for approximately half of the maneuvering
phase. Then, all filters stagnate and the difference between estimate and ground truth
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Figure 4.14.: Estimation results and IMM mode probabilities for the right-turn ma-
neuver analog to Fig. 4.12. Here, SGM stereo disparities are used as
measurements.
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increases until the car leaves the visible field. The RMSE
ψ̇

of the yaw rate estimate over
the whole sequence is lowest for the IMM-2 approach in this experiment, but differs
only marginally if only the time steps between frame 30 and 55 are considered.

The velocity is again initialized too low. The acceleration required to compensate
for the error in velocity leads to an overshooting, which coincides with the beginning
of the maneuver. Other than for the left-turn maneuver, the estimated velocity does
not converge toward the real value in this experiment for any filter. The RMSEv is
approximately equal for the two IMM variants, while the RMSEv of IEKF is slightly
larger.

The inaccuracies of the motion parameters affect the estimated poses only of little
account, indicated by the RMSCE, as long as the car is completely within the visible
field of the camera. One explanation for that is that the pose depends on the object
orientation (moving direction) and the position of the rotation point (center rear axle),
which is geometrically constrained by additional measurements. As has been shown in
Sec. 3.5.4, there are two ways to minimize the residual between prediction and mea-
surements, i.e., altering the pose via the motion parameters or changing the rotation
point position.

The IMM mode probabilities of the IMM-1 filter indicate that the stationary mode
is more probable at the beginning, although the dynamic mode, allowing for a larger
acceleration, has still a certain influence on the result. This is also the reason why the
filter switches to the dynamic mode before the turn maneuver starts. It then remains
in the dynamic mode, except for a short interruption, until the car leaves the visual
field of the camera. The IMM-2 filter remains in the stationary mode until the onset
of the turn maneuver. Switching to the dynamic mode at this time step allows for
incorporating the yaw acceleration. As the filter returns to stationary mode about half
of the maneuver, the constant yaw rate assumption leads to the stagnation from which
the filter cannot recover.

Repetition with ground truth stereo: To investigate the source of these problems,
the experiment is repeated with ground truth depth measurements, i.e., the measured
distances correspond to the actual distances. The point tracks are still computed from
the image sequences by feature tracking based on the KLT method. The assumed
measurement noise for the disparity is not changed compared to the previous run, i.e.,
it is still assumed that the standard deviation of the disparity is 0.5 pixels. The results
of the second run are summarized in Fig. 4.15.

As can be seen, the estimated parameters differ from the run with SGM disparity
measurements. During the straight-line movement, the zero yaw rate is reconstructed
even more accurately and the yaw rate RMSE

ψ̇
is decreased by almost 50 %, although

there is a certain delay in the yaw rate estimate of the IMM-2 filter, which switches to
dynamic mode a few frames later (see mode probabilities). The error in the velocity
estimate is also significantly reduced. This time, the estimates tend toward the ground
truth (at least for the IMM-variants), reducing the RMSE to about 1 m/s if only frames
30 to 55 are considered. The RMSCE decreases continuously until the car leaves the
visual field of the camera.

However, both the IMM-1 and the IMM-2 still show a certain stagnation at the middle
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Figure 4.15.: The estimation results are significantly improved if the depth measure-
ments are replaced by ground truth stereo information.
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Figure 4.16.: Development of the average point age over time as well as the total
number of points contributing to the state update, (a) for the run with
ground truth stereo disparities and (b) for the run with computed stereo
disparities.

of the turn maneuver. This effect has also been observed in the previous run with real
stereo measurements and is not fully understood by now. One possible explanation for
that effect can be derived from the number of points contributing to the object model.
Fig. 4.16 depicts the average point age for a given time step, i.e., the average over
all points that have contributed to update the current filter state, as well as the total
number of these points.

The plot shows that until about frame 42, the average point age (number of consecu-
tive time steps this point has been part of the model) increases linearly with time, while
the total number of points decreases slightly. This means there are a few outliers in the
point data, but most points are observed and confirmed over the whole time interval.
After this point in time, the average feature age decreases significantly, indicating that
there have been several new points added to the shape model. These points are added
during the turn maneuver. This is not critical as long as the estimated object pose is
correct. Any deviations lead to the effect that points are registered to a wrong position
within the object model. This is still not a big problem, as long as these points have a
certain uncertainty. However, if many points get lost at one time step that have been
observed for a longer time period, and these points are then replaced by new, uncer-
tain points, these points get a non negligible influence on the estimation result. This
problem is enforced in case of real (noisy) 3D point measurements as has be seen at the
results with SGM stereo.

Conclusions: Loosing many points at the same time during a maneuvering phase is
critical and leads to larger errors in the state estimate. Both the IMM-1 and the IMM-
2 approach have this problem. However, the multi-filter approaches still outperform
the single filter approach significantly at this experiment.
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4.3.4. Summary of Artificial Scene Results

The experiments with artificial scenes have shown that the proposed system is able to
reliably estimate the pose and motion parameters of a given object under realistic condi-
tions. This includes depth and motion information extracted from the image sequences
with more realistic error distributions, outliers, and a varying number of object points.
The object hypothesis have been generated in an automated fashion, which leads to
larger deviations of the initial object state compared the ground truth, especially in
the velocity estimate. This is a significant difference to the starting conditions of the
simulation experiments in Sec. 4.2.

The two IMM variants outperform the single filter approach as in the simulation at
the considered scenarios. The IMM-2 approach, incorporating also the yaw acceleration
in the dynamic mode, yields slightly better results compared to the IMM-1 approach,
in which the different modes differ only in the variances of the yaw rate. However, the
IMM-1 filter results in more smooth changes of the mode probabilities, which directly
transfers to the estimated parameters which are also more smooth.

The problems arising in the right-turn scene are acceptable in practice, since the
car is tracked very accurately as it is approaching the intersection and the estimated
yaw rate clearly indicates that the car is turning to the right. This is a very useful
information for predicting the driving path of the oncoming car. Furthermore, the pose
error is quite small as long as the car is in the visible field, i.e., the object boundaries
are reconstructed very well under consideration that the given turn maneuver is in fact
racy.

4.4. Real World Results
This section presents results from real world stereo sequences. The following questions
should be answered:

• How accurate are the resulting pose and motion estimates at controlled real-world
scenes? Are these results comparable to the artificial scenes?

• How does the system perform in real traffic scenes?

• What influence has the initialization method on the tracking result?

• What are the limits of the approach?

• What are the computation times of the real-world system?

The section is divided into three parts:
First, the system is tested based on three maneuvers that have been recorded in a

controlled test drive environment. The advantage of these scenes is that both
the object vehicle as well as the ego-vehicle are driven by a robot and, thus, there is
ground truth information on the objects pose and motion state available allowing for a
quantitative evaluation as in the previous sections.
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(a) (b)

Figure 4.17.: (b) Mercedes-Benz demonstrator car used for testing of the proposed
methods. (b) The stereo-system is mounted behind the windshield.

In the second part, exemplary tracking results at real traffic scenes (urban inter-
sections, country road, high way,...) are shown and evaluated in a qualitative sense due
to the absence of ground truth information.

Finally, a critical discussion on the challenges and limits of the current system is
given, including examples of scenes were the system failed to perform correctly, as well
as an analysis of the computation time.

Opposed to previous experiments, in this section the ego-vehicle is also moving in
several scenes. All results presented below are achieved in real-time, i.e., the state
estimates can be computed on-line in a demonstrator car. The configuration of this
test vehicle is briefly introduced in the following.

4.4.1. Demonstrator Car
A Mercedes-Benz S-class car (see Fig. 4.17(a)) has been the platform for developing
and testing of the proposed methods. This research car is a demonstrator vehicle for
innovative driver assistance and safety systems.

It is equipped with a 0.3 m baseline stereo system behind the windshield that has a
viewing range of approximately 42 degrees with 6 mm focal length lenses. The CMOS
imagers have a resolution of 640×480 (VGA) and provide 12 bit gray-scale images. The
stereo sensor is the main sensor used in the present work. In addition, a far range radar
sensor and several near range radar sensors are available. Information of inertial sensors,
such as wheel speed or the yaw rate, is available over a CAN interface. Furthermore, a
differential GPS (DGPS) sensor allows for precise localization of the ego-vehicle.

The main processing unit is a recent high-end off-the-shelf Quad Core PC with a
programmable graphics card. The stereo computation is done on a separate FPGA and
does not require processing time on the CPU. See Sec. 2.3 for details.

4.4.2. Robot Experiments
In a controlled testing environment, the ego-vehicle (demonstrator car), as well as one
object vehicle (Mercedes E-class) are driven by a robot along predefined trajectories.
The actual motion state (velocity, acceleration, yaw rate), orientation, and the position
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Figure 4.18.: Scenario 1: Slow turning vehicle in front of the stationary ego-vehicle.
(a) Trajectory from bird’s eye view. (b) Satellite view on the original
intersection.

of a reference point of both cars is recorded during the maneuvers. The positions are
obtained from a differential GPS (DGPS) system, i.e., a ground-based reference station
broadcasts the difference between the less accurate satellite position and a fixed local
reference system on the ground to yield a much more precise position. This ground
truth data is available at 100 Hz and is synchronized between both cars. This setup
enables testing of driver assistance systems reliably and reproducible, without risking
human health in critical scenarios.

For evaluation of the proposed vehicle tracking system, three maneuvers have been
defined. These maneuvers correspond to real intersection scenarios, i.e., the cars are
moved on virtual roads and intersections that exist in reality. The particular road
geometry has been acquired based on data available from the local land-registry. The
first scenario is similar to the left-turn maneuver of the artificial scenes. In the second
scenario, both the ego-vehicle and the oncoming object vehicle pass straight at a relative
velocity of 80 km/h. In the third scene, the ego-vehicle is quickly turning to the left in
front of the oncoming car which is stopping shortly before the ego-vehicle.

In all robot experiments, the IMM-1 filter configuration as proposed before is used
for evaluation. A measurement noise of σu = 1, σv = 3, and σd = 1 is assumed. The
slightly larger uncertainties are required to make the system less sensitive to errors in the
ego-motion, e.g. non-compensated camera pitch movements lead to larger prediction
errors of the vertical image coordinate.

Scenario 1: Left-Turning Object

In the first scenario, the oncoming object is driving as slow as possible (about 12 km/h)
and turns to the left in front of the stationary ego-vehicle. It starts leaving the visual
field of the stereo system at frame 350. Fig. 4.18(a) depicts the object trajectory and
the ego-vehicle position with respect to the stationary local robot coordinate system.
The original intersection, which has been the model for this scenario, is shown in (b).

Fig. 4.19 shows selected frames of this sequence with the tracking results superim-
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posed. As can be seen, the estimated bounding box matches the actual object almost
perfectly. The predicted driving path is slightly bend, indicating the vehicle is driving
on a circular path. The estimated pose and motion parameters are compared to the
ground truth analog to previous experiments in Fig. 4.20. The RMSE

ψ̇
of the yaw rate

estimate is 0.03 rad/s. Some problems occur as the object leaves the visible field, i.e.,
many points are lost at once. This effect has already been observed in the artificial
scenes. The velocity estimate shows some overshooting. However, the slight decelera-
tion at the beginning of the turn maneuver as well as the acceleration after reaching
the maximum curvature point, is clearly visible in the velocity estimate. The velocity
RMSEv is 0.39 m/s. The initial pose error quickly decreases at the beginning of the
scene due to the geometric measurements of the rotation point position. It is slightly
larger compared to previous experiments, which can be explained by the estimated box
size. In this scene, the estimated object length is slightly too small, since parts of
the heck are not completely included in the bounding box, which directly affects the
RMSCE.
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(a) frame 200 (b) frame 270

(c) frame 290 (d) frame 310

(e) frame 330 (f) frame 350

Figure 4.19.: Scenario 1 from the perspective of the ego-vehicle. The tracking results
are superimposed. The bounding box indicates that the system is able to
reconstruct the object pose very precisely during the maneuver.
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Figure 4.20.: Estimated motion and pose parameters for Scenario 1 compared to ground
truth. The RMSCE shows that the pose estimate is systematically im-
proved over time until the oncoming car starts leaving the visual field of
the camera.
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Figure 4.21.: Scenario 2: The ego-vehicle turns to the left at the intersection after

the object has passed (straight-line passing). (a) Recorded ground truth
trajectories in fixed local coordinate system. (b) Satellite view on the
original intersection simulated in this experiment.

Scenario 2: Straight-line Passing

This experiment addresses a typical real-world scenario in which the oncoming vehicle
passes the ego-vehicle while both vehicles move straight in their (virtual) lanes. The
complete trajectories within the fixed local robot system as well as the original inter-
section are shown in Fig. 4.21. The relevant parts of the trajectories to be evaluated
are marked in bold. In this scenario, the ego-vehicle is turning to the left after the
oncoming vehicle has passed, i.e., the ego-vehicle turns to the left behind the oncoming
vehicle.

Fig. 4.22 shows selected frames of the captured image sequence with the tracking
results superimposed. The ground truth shows that the yaw rate of the oncoming
vehicle is slightly larger than zero, i.e., the car is not exactly driving on a straight line.
The filter also estimates a positive yaw rate. Between frame 250 and 262 the filter
slightly overestimates the yaw rate. The RMSE

ψ̇
is 0.01 rad/s. The initial velocity

estimate is slightly too large and converges toward the ground truth after eight frames.
Shortly before passing, the filter starts to underestimate the velocity, which cannot be
corrected anymore, since the vehicle leaves the visible field. The RMSEv for the whole
sequence is 0.9 m/s. The pose error is systematically decreased while the oncoming car
is fully visible to below 0.15 m.
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(a) frame 240 (b) frame 250

(c) frame 260 (d) frame 270

Figure 4.22.: Scenario 2 from the perspective of the ego-vehicle. The tracking results
are superimposed. The bounding box indicates that the system is able to
reconstruct the object boundaries precisely in this experiment.
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Figure 4.23.: Estimated motion and pose parameters for Scenario 2 compared to ground
truth for scenario 2. The RMSCE shows that the pose estimate is sys-
tematically improved over time until the oncoming car starts leaving the
visual field of the camera at frame 267.
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Figure 4.24.: Scenario 3: The ego-vehicle is turning to the left in front of the oncoming
vehicle, which stops at the (virtual) intersection. (a) Recorded ground
truth trajectories in fixed local coordinate system. (b) Satellite view on
the original intersection simulated in this experiment.

Scenario 3: Left-Turning Ego-Vehicle

The third scenario contains a quick turn maneuver of the ego-vehicle in front of a stop-
ping oncoming vehicle. The oncoming car approaches straight and decreases its velocity
from 50 km/h to 0 km/h in about two seconds (mean acceleration of −5.2 m/s2). The
ego-vehicle has an average velocity of 20 km/h during the maneuver. The maximum
yaw rate is 0.5 rad/s. Example frames of this sequence with the tracking results su-
perimposed are shown in Fig. 4.25. The length of the predicted driving path clearly
indicates that the vehicle is stopping. At frame 270, all feature tracks but one are lost
due to the large displacements induced by the camera motion. Accordingly, the object
pose at frame 270 is only updated based on the geometric measurements for the rotation
point.

The ground truth yaw rate of the oncoming car in Fig. 4.26 is less smooth than the
filtered yaw rate estimate. As in scenario 2, the slightly positive yaw rate indicates that
the original road is slightly bend at this section, i.e., the car is not driving on an exact
straight line. The RMSE

ψ̇
is 0.02 rad/s over the whole sequence, although this scenario

is highly dynamic. The velocity is initialized close to the ground truth. Between frames
210 and 230, the velocity is slightly underestimated, but follows the sudden deceleration
very accurately. The total RMSEv is 0.89 m/s in this sequence. The error in the velocity
also affects the pose error as indicated by the RMSCE. However, after frame 220, the
RMSCE is systematically decreased to below 0.3 m. Since both the ego-vehicle and the
oncoming car are highly dynamic in this scenario, this accuracy is substantial.

Conclusions of Robot Experiments The experiments have shown the real-world sys-
tem reaches a comparable performance as on the artificial scenes. The resulting error
measures are in the same order of magnitude.
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(a) frame 220 (b) frame 240

(c) frame 260 (d) frame 270

Figure 4.25.: Scenario 3 from the perspective of the ego-vehicle. The ego-vehicle is
quickly turning in front of the stopping oncoming car. The tracking results
are superimposed. The shortening driving path indicates that the object
decelerates.
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Figure 4.26.: Estimated motion and pose parameters for Scenario 3 compared to ground
truth. The RMSCE shows that the pose estimate is systematically im-
proved over time.
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(a) frame 75 (b) frame 100 (c) frame 115

(d) frame 125 (e) frame 130
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Figure 4.27.: Tracking result of a left turning oncoming vehicle at an urban intersection.
The crosses superimposed mark the feature positions used in building the
object model. The resulting trajectories of the ego-vehicle and the object
are shown in (f).

4.4.3. Oncoming Traffic at Intersections

Intersection scenarios can be arbitrary complex and challenging. In this section it will
be focused on two representative scenes with turn maneuvers. Only scenarios with
isolated object are considered here. The difficulties arising at dense traffic scenes will
be addressed in Sec. 4.4.6.

American Left Turn Maneuver

Fig. 4.27 shows selected frame of a scene where both the ego-vehicle and the oncoming
vehicle turn left at the same time (American left turn rule). Similar to the previous
results, the image overlay shows the filtered object state in terms of pose (bounding
box), object model (marked features on the object surface), and motion state (carped
on the ground indicating the predicted driving path for the next second). The resulting
object trajectories are shown in Fig. 4.27(f). As can be seen, both the driving path as
well as the object pose and boundaries are reconstructed extremely well.

Assuming the driver in the ego-vehicle wants to drive straight ahead in the example
scene above, a free-space analysis based on static occupancy grids, for example [Badino
et al. 2008], would result in an obstacle-free driving corridor for the ego-vehicle up to
frame 125 (see Fig. 4.27(a)-(d)). Obviously, ignoring there is another vehicle at the
intersection that will be crossing the ego-vehicle’s path can lead to potentially critical
situations. Thus, the proposed system provides valuable information for predicting
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(a) frame 40 (b) frame 80 (c) frame 105

(d) frame 130 (e) frame 160
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Figure 4.28.: Tracking results of a vehicle turning through a small radius after stopping.

collisions.

Left Turn After Stopping

The next scene contains an oncoming vehicle stopping at the intersection before it turns
to the left. This scene is particularly challenging, since the vehicle turns through a small
radius and there is both an acceleration in the longitudinal direction as well as a sudden
increase of the yaw rate. As in the simulation, there are also self occlusions during the
turn maneuver. The tracking results (IMM-2 filter) are shown in Fig. 4.28.

As can be seen, the system is able to accurately track the object during the whole
maneuver. The estimated pose parameters are shown by the bounding boxes, the
estimated motion parameters are shown in Fig. 4.29.

At the beginning, the filter is in stationary mode (constant negative acceleration)
and toggles to maneuvering mode only shortly at frame 60 to reduce the acceleration
as the vehicle stops. At the onset of the turn maneuver, the filter switches again to
maneuvering mode at about frame 75 to be able to quickly develop an acceleration in
the longitudinal direction as well as with the yaw rate. At about frame 105, the constant
yaw rate model outperforms the constant yaw acceleration model, leading to another
mode change. This is typically the point where the driver shifts up into the next gear,
interrupting the acceleration for a short period (about one second). The stationary filter
only allows for slow changes in acceleration, thus, the velocity is slightly underestimated
for a couple of frames. At frame 160, the probability for maneuvering mode increases
again, on the one hand to increase the velocity by increasing the acceleration, on the
other hand to reduce the yaw rate to zero as the vehicle is going back to straight motion
while it leaves the viewing field of the camera.
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Figure 4.29.: Estimated motion parameters and IMM mode probabilities of the scene
shown in Fig. 4.28. (a) yaw rate, (b) velocity, (c) IMM mode probabilities.

4.4.4. Oncoming Traffic at Country Roads

This experiment focuses on the different initialization methods (image-based and radar-
based) proposed in Sec. 3.8 and the ability of the system to quickly yield reasonable
estimates of the motion parameters.

Estimating the driving path of oncoming vehicles on country roads is extremely chal-
lenging due to relative velocities of 100-240 km/h, narrow curved roads as well as limited
range of sight. In everyday situations approaching vehicles pass very closely, making
it difficult to identify real critical situations. In country road curves, an estimate of
the yaw rate of other traffic participants is essential as can be seen in Fig. 4.30. Us-
ing a common linear motion model, a collision between an oncoming vehicle and the
ego-vehicle would be predicted. Only when the yaw rate of the oncoming vehicle is
estimated, in fact, the situation can be correctly interpreted as uncritical.

Fig. 4.31 shows selected frames of a sequence with an oncoming vehicle, a Mercedes-
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Figure 4.30.: Linear prediction of the driving path of an oncoming vehicle leads to false
alarms in curves or turning maneuvers. Using an estimate of the other
vehicle’s yaw rate, it is possible to predict its real driving path accurately,
and to prevent such false alarms.

Benz B-class without any preparations, on a curved country road. It illustrates how the
Kalman filter sequentially corrects the inaccurate initialization within the first 500 ms
of tracking. In this experiment, a single filter IEKF with 3 iterations has been used.
The overlaid carpets represent the predicted driving corridor of the ego-vehicle based
on inertial sensors and the estimated driving path of the oncoming vehicle respectively.

Image-Based Initialization: At frame 188, the oncoming vehicle is detected at about
38 m distance using the purely image-based method as introduced in Sec. 3.8.1. The
relative velocity vrel is about 30 m/s.

Tracking the object over a few frames indicates that the object is not driving straight
ahead (critical), but rather on a curved path (uncritical). With the assumed motion
model, the motion of all observed points on the object can be best explained as a vehicle
with a negative yaw rate. The estimated yaw rate of the oncoming vehicle is plotted
in Fig. 4.31(e). It can be seen that the absolute value of the estimated yaw rate of
the oncoming vehicle is slightly larger than that of the ego-vehicle, since the oncoming
vehicle is driving on the inner lane of the curve on a smaller radius. It is important to
state the system does not include any lane recognition component. The estimated yaw
rate depends purely on the point motion and the underlying motion model.

Critically reflecting the results, it can be observed that there is not much more than
a second left between object detection and passing. The filter requires 10-15 cycles
(0.4-0.6 s) until the driving path is estimated well. In this experiment, both vehicles
are driving at approximately 50-60 km/h. The speed limit on this road is 70 km/h. In
practice, especially in potentially critical situations, one can expect even higher relative
velocities.

Since the Kalman filter always requires a couple of cycles until convergence, initial-
izing the filter as early as possible becomes even more important.
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Figure 4.31.: (a) - (d) Selected frames of a real world scene with one oncoming vehicle
captured in a left curve (vrel ≈ 30 m/s) are shown. The driving corridor
of the ego-vehicle based on inertial sensors is visualized in all images. It
can be observed how the filter successively corrects the erroneous initial
assumption of the oncoming object’s driving path. (e) The filtered yaw
rate indicates the oncoming vehicle is steering to the right, while the yaw
rate of the ego-vehicle is consistent with a slight left turn.
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Radar-Based Initialization: We have repeated the country road curve experiment
above with a relative velocity of 44 m/s, i.e., each vehicle is driving at approximately
80 km/h. This time the radar-based initialization method as proposed in Sec. 3.8.2 is
used and compared to the image-based method. In addition, radar velocity measure-
ments are provided at runtime.

With the image-based method, this time the object is detected at 36-m distance. Due
to the relative velocity only 13 cycles remain until the vehicle leaves the field of view
of the cameras. The radar detects the object at a 52 m distance, which is detected
16 m earlier compared to the image-based method, corresponding to 7 additional image
pairs to evaluate. In this scene the object is not in the field of view of the radar earlier
due to the curve. On straight roads one can expect oncoming objects to be detected at
significantly larger distance by the radar.

The estimated yaw rates are shown in Fig. 4.32(a). Both runs have been initialized
with ψ̇ = 0.0 rad/s and converge toward approximately −0.1 rad/s. However, the yaw
rate of the filter initialized by radar clearly indicates that the object is driving on a
circular path while the filter initialized using the image-based method is still indicating
linear motion. Fig. 4.33 visualizes the estimated motion state at frame 151, i.e. shortly
after the object has been detected by the image-based method.

Besides starting the tracking earlier, initializing the object’s motion state with the
radar velocity also improves the result as can be seen in Fig. 4.32(b). Using the image-
based initialization method, the initial velocity is underestimated. It takes about 5
cycles until the real object velocity is estimated accurately by the filter. A good estimate
of the object’s velocity also provides a strong cue for separating points on the object’s
surface from static scene points.
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Figure 4.32.: Effect of different initialization methods on (a) yaw rate and (b) velocity
estimate for country road curve scenario, with vrel ≈ 44 m/s, is shown.
Initializing the object’s motion state with the radar velocity significantly
improves the velocity estimate.
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(a) Initialized from image (b) Initialized from radar

Figure 4.33.: Frame 151 of the country road scene with the predicted driving path
superimposed is shown. Due to earlier object detection, the yaw rate
estimate of the filter initialized by radar already indicates a curved path
as the image-only filter still assumes linear motion. The velocity in (a) is
also underestimated.

4.4.5. Leading Vehicles and Cross Traffic
Tracking leading vehicles is not the focus of this thesis, since a lot of work has been
done in this field before. However, the proposed method can be used to track vehicles
driving in any arbitrary direction. In many cases tracking leading vehicles is even less
difficult compared to oncoming traffic due to lower relative velocities. Thus, there is
more time for filtering. Furthermore, leading vehicles are usually detected at closer
distances, i.e., the 3D position of points can be extracted more precise due to lower
stereo uncertainty, which directly improves the initial object model.

At this point, only a few examples are presented in Fig. 4.34 to give an idea how the
system performs in tracking the vehicles that are driving in the same direction as the
ego-vehicle or entering the scene from the side. The scenarios include a right turning
car, a leading car in a traffic circle, cross traffic from the left, and a highway scene with
four vehicles tracked at the same time.
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(a) right turning

(b) traffic circle

(c) cross traffic

(d) high way

Figure 4.34.: The proposed method is not limited to oncoming traffic and single object
tracking. The examples show different tracking results of leading vehicles
and cross traffic. The curvature of the predicted driving paths, based only
on the movement of the 3D point cloud, fits the lane markings or road
course very well.
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4.4.6. Challenges and Limits

In the following some classes of challenging scenes that generate potential problems are
presented and discussed. At some challenging situations, the current system performs
already very well, while other scenarios and scene conditions depict the current limits
of the proposed approach.

Partial Occlusions: Modeling an object as 3D point cloud is beneficial if partly oc-
clusions occur as can be seen in Fig. 4.35(a). In this example the pedestrian with the
stroller is crossing the street in front of the ego-vehicle, while a vehicle turns into the
street behind the pedestrian from the left (this scene has already been addressed in
Fig. 3.15). Due to a minimum velocity threshold, an object hypothesis is only created
for object (2).

The object has been detected before the partial occlusion. If sufficient traceable
points on the object’s surface are present, the object motion state can be estimated
accurately, independent of partly occlusions. In this example, the incompatible motion
and distance of feature points found on the pedestrian prevents wrongly adding these
points to the object model. Model knowledge of the object’s dimension from earlier time
steps without occlusion helps in finding new points on the car’s front even though they
are separated from the majority of points at the car’s rear, and prevents the object’s
model from being split into two parts. Without this prior knowledge or the pedestrian
moving in the other direction, it would be extremely difficult to yield the same accurate
tracking results in this scene.

Nearby Moving Objects: If two nearby cars are moving in the same direction with
approximately the same velocity, these cars are likely to become merged to one single
object, as can be seen in Fig. 4.35(b). In this example, the point clouds as well as the
stixel silhouette of both cars are merged. Without any further model knowledge on
the object dimension or appearance, this problem cannot be solved with the present
approach. However, as long as the objects are close and move in the same direction, the
merged large object is one potentially dangerous obstacle that should not collide with
the ego-vehicle anyway and could be integrated into a situation analysis accordingly.
Tracking such object becomes critical at highly dynamic turn maneuvers, since the
rotational center of the two cars may lie to some amount away from our geometric
expectation. Any larger deviations from the expectation, however, lead to a invalidation
at the verification step and the object tracking is reinitialized.

Night Scenes: At night scenes, typically the contrast is very poor and only illuminated
parts of the scene become visible. On the other hand, glaring and specular reflections
occur that violate several assumptions at stereo disparity computation and feature
tracking. Fig. 4.35(c) shows an oncoming vehicle detected and tracked in a rainy night.
The vehicle moves toward the ego-vehicle and suddenly turns left to drive around the
obstacle. Only the headlights and the number plate illuminated by the ego-vehicle are
visible. The grouped information of the few tracked feature points, however, is sufficient
to predict the driving path of the vehicle very well, providing the capabilities of the
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(a) partial occlusions

(b) nearby objects

(c) night

(d) bad weather and illumination conditions

Figure 4.35.: (a) Partly occlusions do not disturb the tracking as long as enough points
are contributing to the object model. (b) Nearby objects moving in the
same direction cannot be separated by the proposed method without in-
corporating model knowledge on the expected object dimension. (c) Al-
though only points on the headlights can be tracked, the driving path is
estimated very well. (d) The tracking approach reaches its limits if reli-
able feature tracking is not possible anymore, e.g., due to heavy rain or
extreme backlight.
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proposed method. This shows the advantage of the constraining motion model as well
as the feature based approach which does not require completeness of the point cloud.

Bad Weather and Illumination Even at daylight conditions outer influences such as
heavy rain, fog, or extreme sun light can make a reliable object tracking impossible.
In Fig. 4.35(d) at the left, the lead vehicle is still tracked although there are extreme
reflections on the object. However, a few frames after this screen-shot, the track is lost
since the system fails to find sufficient features to track on the moving object. The
image in the middle shows an object that has been detected a few frames earlier in this
heavy rain scene. Due to the considerable accumulation of water on the windshield, the
images get blurred and the contrast is very poor. In such scenes the image brightness
constancy assumption, used for feature tracking, usually does not hold. The obtained
few flow vectors (ego-motion compensated), as shown superimposed in the image, are
error-prone and do not contain any valuable information for object tracking. At the
right hand side, the contrast on the object’s surface as well as between the object and
the surrounding background is very poor due to the extreme backlight. The system
again fails to find sufficient traceable features that would support the object track. In
addition, strong reflections with different influence on the left and right image impair
the depth computation ability from stereo. However, in most situations that the system
fails, humans also have difficulties accurately interpreting the scene.

4.4.7. Computation Time Analysis
The computation time of the real-world system on a Intel Core 2 Extreme CPU (3
GHz) with 4 GB RAM is exemplarily analyzed for a test sequence (scenario 3 of the
robot experiments, see Sec. 4.4.2). The object shape model is limited to 100 points.
The rotation point measurements are derived from the stereo profiles. The images are
acquired and processed at a constant cycle time of 40 ms. The average processing time
over 55 frames of the complete system, including stereo and motion computation, is
36.65 ms in this experiment. However, the main interest is on the ratio of the different
system components.

As can be seen in Fig. 4.36(a), the motion component is currently the bottleneck of the
system (49 %). Here, 2000 feature points are tracked and filtered using the 6D-Vision
method. The stereo computation is mainly done on an FPGA, however, transferring
the data requires about 10.6 ms (28.9 %). The third largest part of the processing time
(14.1 %), denoted as other in this chart, includes several basic functionalities such as
camera pitch angle estimation, ego-motion estimation, or reading in radar information.
The actual object tracking covers only 8 % of the total processing time (< 3 ms) for a
single object.

The object tracking is further partitioned into the different stages of processing in
Fig. 4.36(b), including a data preprocessing step (14.5 %), the image-based identifica-
tion of new objects (10.5 %), the data association (5.4 %), or object verification (< 1 %).
Analyzing the stereo profiles, as proposed in Sec. 3.5.4, is the computationally most ex-
pensive part of the object tracking approach (35.9 %), as it contains the transformation
of many hundreds of points from the image domain into vehicle coordinates. The ac-
tual Kalman filter update step requires 27.1 %, including the state and measurement
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flow + 6D−Vision

object tracking

Σ = 36.65 ms

other

stereo

(a) total

stereo profiles

filter update

Σ = 2.97 ms

other

verificationdata association

pre−processing

identification

(b) object tracking

Figure 4.36.: Average processing time over 55 frames for a single oncoming object with
100 points. (a) Total system. (b) Different object tracking steps.

prediction, linearization of the corresponding system and measurement matrix, as well
as the robust outlier detection method. The remaining about 5.8 % of the processing
time originate from post-processing steps.

All parts beside the preprocessing and the identification component have to be com-
puted for each object individually, i.e., the total processing time for object tracking
scales approximately linearly with the number of objects in the scene.

If the stixel silhouettes are used to derive the rotation point measurements, the overall
processing time increases to about 80 ms, since the stixel computation and analysis
takes currently about 40 ms. This means, only every second frame can be processed. In
practice, this is still acceptable if the relative velocity between ego-vehicle and object
is not too fast.

4.4.8. Summary of Real World Results
The robot experiments have indicated that the proposed approach is able to accurately
estimate the pose and motion state of oncoming vehicles during straight-line motion
with constant velocity, turn maneuvers as well as strong deceleration, while the ego-
vehicle is turning quickly. Due to the available ground truth data, these findings could
be proven in a quantitative sense. The resulting accuracy measures for the real-world
scenes are comparable to the simulation results.

Experiments in real traffic have addressed different scenarios, including intersection
turn maneuvers, oncoming traffic at country roads, and tracking the lead vehicle in
inner cities or at highways. This emphasizes the generality of the approach and
the huge field of applications. In all scenarios, both the object pose and dimension
have been extracted very well as indicated exemplarily by the object bounding boxes.
Furthermore, the quality of the estimated motion parameters has been demonstrated
based on the predicted driving paths, superimposed in the images, which are computed
based on the estimated motion state. All real-world experiments have been achieved
with the real-time variant of the approach, i.e., the points have been updated outside
the filter.

Both the image-based and the radar-based initialization method have been suc-
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cessfully applied to detect objects. The radar initialization is beneficial especially at
country roads, due to the large relative velocity between object and ego-vehicle. It
has significantly improved the estimation results, since objects are detected at larger
distance and the initial velocity is much more accurate than the image-based velocity.
As a result, the estimated object yaw rate indicates much earlier that the oncoming
vehicle is driving on a curved trajectory.

The point cloud representation is robust to error-prone point tracks, partial occlu-
sions, or self-occlusions as long as there are enough reliable point tracks supporting
the object. The data association mechanism successfully compensates for lost feature
tracks at run-time by adding new points to the model. Promising results at challeng-
ing scenes have been achieved with this approach, for example, at the night scene,
where the grouped information of all available points on the object, in combination
with the vehicle motion model, allows for correctly estimating the rotational velocity
of the object.

The system reaches its limits if reliable feature tracking or stereo computation is
not possible anymore due to bad illumination or weather conditions. Furthermore, the
current approach cannot separate two nearby objects moving in the same direction with
the same velocity.
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In this document, a new approach for real-time vehicle tracking from a moving platform
using dense stereo vision has been proposed and discussed. This approach allows for
simultaneous estimation of pose, motion, and shape parameters of a given object by
means of an extended Kalman filter. The proposed system is able to accurately track
both oncoming and leading vehicles as well as cross traffic, which have been shown
both on synthetic and real-world data in a quantitative and qualitative sense. The
applicability of this method to various driving situations separates the proposed method
from many other existing vehicle tracking approaches.

Objects are modeled by a rigid 3D point cloud, representing the object’s shape, and
a surrounding cuboid approximating the object dimensions. It has been shown that
decoupling the object dimension from the point cloud is especially beneficial at inter-
sections, since the observable object point cloud might be incomplete, due to factors
such as visibility constraints or partial occlusions; this decoupling further enables op-
portunities for sensor fusion of extended objects.

The movements of an object have been restricted to circular path motion using a
variant of the well-known bicycle motion model, parametrized by velocity, acceleration,
and yaw rate. A reliable estimate of the yaw rate of other traffic participants, con-
taining valuable information for trajectory prediction, is the main contribution of this
thesis document. To the knowledge of the author, there is currently no other system
running in real-time in a demonstrator car that yields the same performance.

Real-time computation time is reached by separating the shape model update from
estimating the pose and motion parameters. It has been concluded that the resulting
loss in accuracy, compared to a combined estimate model, is acceptable and small in
practice.

Besides real-time applicability, two main challenges had to be resolved. First, the
system must be robust enough to handle noisy and error-prone data. This includes
outlier detection as well as an online assignment of new point tracks to an existing
object. Secondly, the wide range of possible vehicle dynamics, reaching from straight-
line motion with constant velocity to sudden turn maneuvers at intersections, requires
special consideration at the filtering approach.

An iterative robust reweighing of point measurements in combination with an adap-
tive outlier threshold allows for dealing with, theoretically, up to 50% of outliers in
the data. This has been proven both on simulation data and on challenging real world
scenes, for example, a rainy night scene. However, limits are reached if reliable feature
tracking or stereo computation is not possible anymore, i.e., if there are more outliers
than feasible feature tracks in the scene.

A probabilistic data association mechanism allows for assigning new tracked feature
points to an existing object track at runtime based on depth and motion compatibility
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measures. New points are registered to the object shape model and compensate for
point tracks that have been lost or detected as outlier. This mechanism is essential for
tracking turning vehicles, since during turn maneuvers some parts of the object become
occluded while others become visible.

Highly dynamic turn maneuvers require the filter to be flexible enough to follow
objects changing their current states quickly. However, the filter should only be reactive
if required, and restricting otherwise, to yield smooth trajectories and to be less sensitive
to noisy data; which is a significant trade-off. Three different approaches have been
proposed to improve the tracking of highly dynamic turn maneuvers. Among these
approaches, a multi-filter solution based on the IMM-framework has turned out to be
the best compromise between computation time and tracking performance. The slightly
better performance of a single filter approach with adaptive system noise, which is
controlled via a model-free oracle, is computationally much more expensive but has the
advantage of being able to also detect unmodeled driving situations such as skidding.

Tracking oncoming vehicles means little reaction times between detection and passing,
especially at country roads due to the large relative velocities. Accordingly, a good
initialization is essential. Two different initialization methods have been proposed. An
image-based method based on 6D-Vision as well as a radar-based initialization strategy
that increases the distance range of the system and yields much more accurate initial
velocity estimates. In country road scenarios, the radar-based initialization method has
outperformed the image-based method due to faster object detection.

Dense stereo data is used to stabilize the rotation point, located at the center rear
axle of the vehicle in a geometrical sense. The rotation point position is essential to
correctly predict the point positions at rotational movements. However, its position
can hardly be reconstructed based on the point movements only. Thus, two methods
for deriving additional geometric measurements for the rotation point position have
been proposed. One is based on stereo profile histograms and the other based on stixel
silhouettes. The additional measurements prevent the rotation point from drifting, for
example, outside the vehicle’s bounding box.

Throughout this thesis, mainly isolated objects have been considered. The current
approach cannot distinguish between two nearby objects moving in the direction, if
the corresponding point clouds overlap. In this case, it is very likely that the two
objects get merged. Separating two overlapping point clouds requires more specific
model knowledge on the object dimensions as well as utilization of appearance features
such as gray value, edge, or texture information, which have been completely excluded
in the current approach.

Outlook

Dense Scene Flow: Recent advances in dense scene flow computation enable the
reconstruction of dense 3D motion fields from stereo image sequences in real-time
(cf. Sec. 2.4.2). With such methods, depth and motion information is available at
almost every pixel in the image, providing new opportunities for object detection and
scene segmentation.

The point cloud model allows for predicting the scene flow, induced by a tracked
object, at a number of tracked feature points. To be able to predict a dense scene flow
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Figure 5.1.: Scene flow segmentation results for different traffic scenes. Knowledge on
tracked objects, derived from the presented vehicle tracking approach, is in-
corporated. Left: Manual ground truth labeling. Middle: Result if the data
is evaluated for each pixel independently. The colors encode the maximum
class potentials at a given pixel (blue=static background, green=ground
surface, red=tracked object, black=unknown moving object). Right: Re-
sult if local smoothness and global ordering constraints are incorporated
via local neighborhood inference (result after 40 iterations of loopy belief
propagation).
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for a given object, the object shape model has to be extended to a continuous surface
description, e.g., composed of higher order 3D surfaces that represent the actual object
shape much more accurately than the flat cuboid sides. Such models are also benefical
in predicting partial occlusions.

Scene Labeling: Knowledge on the pose and motion state of tracked objects in the
scene can be directly integrated into a globally consistent scene segmentation and un-
derstanding scheme, that also incorporates other classes besides moving objects such as
the ground surface or static obstacles. We have proposed a probabilistic approach for
multi-class traffic scene segmentation based on dense scene flow data in [Barth et al.
2010]. The segmentation problem is formulated as a conditional random field (CRF)
[Bishop 2006]. The per-pixel potentials are derived purely based on the available depth
and motion information from the scene flow, the corresponding uncertainties, as well as
prior knowledge on tracked objects in the scene. The basic concepts are similar to the
probabilistic data assignment as proposed in Sec. 3.9. The approach differs in a way
that an additional class for the ground surface is integrated and that the used scene flow
data is available at almost every pixel in the scene. Furthermore, local smoothness as
well as global ordering constraints are locally integrated by consideration of neighbor-
ing pixels in the CRF. The inference is solved via loopy belief propagation [MacKay
2003]. The first segmentation results are very promising, as can be seen exemplarily in
Fig. 5.1. Note that these results do not incorporate any appearance features.

The segmented scene flow data can be used to further improve the object pose and
motion estimation. Such feedback loops, e.g., in an expectation maximization sense,
will be part of future work.

Long Term Trajectory Prediction: The estimated motion parameters allow for pre-
diction of the driving path for about the next second. For long-term prediction, i.e.,
2 − 3 s ahead, the current motion state alone is not sufficient enough to reliably predict
the object trajectory. For example, an intersection turn maneuver consists of different
phases of acceleration, deceleration, yaw acceleration, or constant yaw rate. In many
driving situations, the chronology of such phases is similar and becomes predictable, if
a subsequence of object states is known from previous time steps.

In [Hermes et al. 2009b] we have presented a particle filter based framework for long-
term trajectory prediction. In a training step a variety of intersection trajectories, which
have been computed based on the proposed vehicle tracking approach, are processed to
setup a reference trajectory database. At run-time, a sequence of previously estimated
pose and motion states defines a trajectory segment. Given such segment, we want to
predict the object’s pose and motion state in a future given time step, based on the
similarity of this segment to trajectories in the reference database. The uncertainty
of the prediction is represented by the population of particles, where each particle
corresponds to a certain trajectory hypothesis. The results have shown that this method
is able to improve the prediction accuracy at intersection turn maneuvers.

This work has been extended by Hermes et al. in [Hermes et al. 2009a], which is
the basis, e.g., for recognition of different motion classes at intersections [Käfer et al.
2010] and other future work in the field of situation analysis.
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Artificial systems aim at measuring the (absolute) motion of other traffic participants
based on local features; which the human brain measures very poorly. Instead, humans
bring observations about object motion into a wider context of the traffic scene. For
example, intersections are characterized by a finite number of possible exit points, i.e.,
positions at which a vehicle is able to leave the intersection from (see Figure 5.2). In
other words, for a simple intersection scenario it is very likely that a vehicle will cross
the intersection straight, turn to one’s left or right in a quite deterministic way, or
perform a U-turn. The latter may have a lower probability than other options. It is
very unlikely that a vehicle is steering into the oncoming traffic

The human brain combines a large number of environmental cues such as street
topology (e.g. intersection, T-junction,...), street markings, traffic lanes, traffic signs, or
static obstacles (curbs, refuges,...) with knowledge about traffic rules and the observed
behavior of other moving traffic participants. A blinking turn signal also provides strong
evidence for a turn maneuver. All these cues, containing prior information about a
potential maneuver, can be extracted even if the oncoming vehicle is stationary.

Furthermore, drivers usually do not drive at high speed if turning at an urban in-
tersection. There are physical limits restricting the number of possible driving paths
a vehicle can take if trying to reach a certain destination. Besides the physical limits
there are more or less likely motion patterns, i.e., those allowing for a comfortable and
safe reaching of a destination are usually more likely than those exhausting what is
physically possible.

Summarized, we have two main types of a priori information humans use for motion
prediction: The destination an object is trying to reach (intention) and an expecta-
tion about the motion pattern required to reach that destination. Integrating such
expectations into the state estimation is a challenging task in future studies.
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Figure 5.2.: Intersections have a finite number of exit points. In this example there are
4 exit points (yellow circle). The arrows show potential driving paths of the
oncoming vehicle, while the thickness of an arrow indicates the fictitious
a priori probability of the corresponding driving path. The trajectories
indicated by the thin arrows (light blue) are less probable compared to the
remaining trajectories.
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A. Appendix

A.1. The Unscented Kalman Filter

The unscented Kalman filter, proposed by Julier and Uhlman in [Julier and Uhlmann
1997], contains a different strategy to propagate the mean and covariance matrix of the
parameters compared to the EKF (see Sec. 2.6.5).

Prediction: The 2N + 1 sigma points are chosen as follows:

�x(n)(k − 1) =






�x+(k − 1) +
��

(N + λ)C+
�x�x(k − 1)

�T

n
, n = 1 . . . N

�x+(k − 1) −
��

(N + λ)C+
�x�x(k − 1)

�T

n
, n = (N + 1) . . . 2N

(A.1)

and �x(0)(k − 1) = �x+(k − 1). The parameter λ = α2(N + κ) controls the sampling
interval, with α and κ user-defined values depending on the expected distribution, e.g.,
α = 1.0 and κ = 3 − N for a normal distribution. The a priori state estimate is then
computed as the weighted sum over all sigma points, propagated through the nonlinear
system model f :

�x−(k) =
2N�

n=0
wn �x(n)(k) (A.2)

with
�x(n)(k) = f

�
�x(n)(k − 1), u(k)

�
(A.3)

and wn a weighting factor defined as

w0 = λ

N + λ
+ (1 − α2 + β) (for covariance computation) (A.4)

w0 = λ

N + λ
(otherwise) (A.5)

wn = 1
2(N + λ) 1 ≤ n ≤ 2N. (A.6)

The parameter β, with β > 0, ensures the positive semi-definiteness of the resulting
covariance matrices in case of a negative λ. Accordingly, the a priori state covariance
matrix is predicted from the transformed sigma points:

C
−
�x�x(k) =

2N�

n=0
wn

�
�x(n)(k) − �x−(k)

� �
�x(n)(k) − �x−(k)

�T
+ Cww. (A.7)
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Correction: Before incorporating the measurements, the sigma points are resampled
based on the a priori state estimate by replacing �x+(k −1) by �x−(k) and C

+
�x�x(k −1) by

C
−
�x�x(k) in (A.1). Based on the new sigma points, �x�(n)(k), the nonlinear measurement

model is applied to yield a set of samples in measurement space:

�z(n) = h
�

�x�(n)(k)
�

(A.8)

The final predicted measurement vector is computed by averaging over all transformed
sigma points:

�z(k) =
2N�

n=0
wn �z(n)(k). (A.9)

The corresponding covariance matrix C�z�z is given by

C�z�z =
2N�

n=0
wn

�
�z(n)(k) − �z(k)

� �
�z(n)(k) − �z(k)

�T
+ Czz (A.10)

where Czz is an additive measurement noise term as introduced for the EKF. The
Kalman gain is then obtained as

K (k) = C�x�zC
−1
�z�z (A.11)

with the cross-covariance matrix

C�x�z =
2N�

n=0
wn

�
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�T
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Finally, the a posteriori state and covariance are calculated as

�x+(k) = �x−(k) + K (k) (z(k) − �z(k)) (A.13)
C

+
�x�x(k) = C

−
�x�x(k) − K (k)C�z�zK

T(k). (A.14)

A.2. Approximation of the Object Translation
As proposed in Sec. 3.4, the in plane translation of the vehicle’s reference point is defined
as:

v
T (∆t) =





� ∆t

0 (v + v̇τ) sin(ψ̇τ)dτ
0� ∆t

0 (v + v̇τ) cos(ψ̇τ)dτ



 (A.15)

The translation of the X- and Z-coordinate can be described in terms of the nonlinear
functions fx(τ) and fz(τ), respectively, with fx(τ) = (v + v̇τ) sin(ψ̇τ) and fz(τ) =
(v + v̇τ) cos(ψ̇τ).
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Assuming a constant velocity, acceleration, and yaw rate for the time interval ∆t,
the integrals solve to

� ∆t

0
fx(τ)dτ = v̇ sin(ψ̇∆t) − (v̇ψ̇∆t + vψ̇) cos(ψ̇∆t)

ψ̇2 + v

ψ̇
(A.16)

� ∆t

0
fz(τ)dτ = (v̇ψ̇∆t + vψ̇) sin(ψ̇∆t) + v̇ cos(ψ̇∆t) − v̇

ψ̇2 (A.17)

For lim ψ̇ → 0, the equations are indetermined. To overcome this problem, the
nonlinear functions fx and fz are approximated via a Taylor series expansion (Maclaurin
series) up to third order terms as follows:

f̃x(τ) = fx(0) + f �
x(0)∆t + 1

2!f
��
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3!f
���
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f̃z(τ) = fz(0) + f �
z(0)∆t + 1

2!f
��
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3!f
���
z (0)∆t3 (A.19)

where f �, f ��, and f ��� correspond to the first, second, and third derivative of f in this
context with

f �
x(τ) = v̇ sin(ψ̇τ) + (v + v̇τ) cos(ψ̇τ)ψ̇ (A.20)

f ��
x (τ) = 2v̇ cos(ψ̇τ)ψ̇ − (v + v̇τ) sin(ψ̇τ)ψ̇2 (A.21)
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and
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This yields
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and

f̃z(τ) =(v + v̇ · 0) cos(ψ̇ · 0)
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Now the integral of the approximated functions solve to
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for fx, where d

dτ
F̃x(τ) = fx(τ), and for fz as
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For lim ψ̇ → 0 the translation vector reduces to

v
T (∆t) =




0
0

v∆t + 1
2 v̇∆t2



 , (A.37)

i.e., the object moves on a straight line in the moving direction which is equal to the
Z-direction in the vehicle coordinate system. The amount of motion depends only on
the current velocity and acceleration.
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Acronyms

2D . . . . . . . . . . . . . two-dimensional
3D . . . . . . . . . . . . . three-dimensional
6D . . . . . . . . . . . . . six-dimensional (3D position + 3D velocity)
ABS . . . . . . . . . . . anti-lock braking system
ACC . . . . . . . . . . . adaptive cruise control
AVAY . . . . . . . . . . accelerated velocity, accelerated yaw rate motion model
AVCY . . . . . . . . . accelerated velocity, constant yaw rate motion model
CAN . . . . . . . . . . . controller area network
CMOS . . . . . . . . . complementary metal oxide semiconductor
CPU . . . . . . . . . . . central processing unit
CRF . . . . . . . . . . . conditional random field
CVCO . . . . . . . . . constant velocity, constant orientation motion model
CVCY . . . . . . . . . constant velocity, constant yaw rate motion model
DGPS . . . . . . . . . . differential global positioning system
DOF . . . . . . . . . . . degrees of freedom
EKF . . . . . . . . . . . extended kalman filter
ESP . . . . . . . . . . . . electronic stability program
FOE . . . . . . . . . . . focus of expansion
FPGA . . . . . . . . . field-programmable gate array
GPS . . . . . . . . . . . global positioning system
GPU . . . . . . . . . . . graphics processing unit
IEKF . . . . . . . . . . iterated extended kalman filter
IMM . . . . . . . . . . . interacting multiple models
ITS . . . . . . . . . . . . intelligent transportation systems
KLT . . . . . . . . . . . Kanada-Lucas-Tomasi feature tracker
MPEG . . . . . . . . . moving pictures expert group
MSCE . . . . . . . . . mean squared corner error
MSE . . . . . . . . . . . mean squared error
NEES . . . . . . . . . . normalized estimation error squared
NIS . . . . . . . . . . . . normalized innovation squared
RANSAC . . . . . . random sample consensus
RMSCE . . . . . . . . root mean squared corner error
RMSE . . . . . . . . . root mean squared error
ROI . . . . . . . . . . . . region of interest
SAD . . . . . . . . . . . sum of absolute differences
SGM . . . . . . . . . . . semi-global matching
SLAM . . . . . . . . . self localization and mapping
SSD . . . . . . . . . . . . sum of squared differences
UKF . . . . . . . . . . . unscented kalman filter
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