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Abstract

This thesis presents methods to enrich data modeling and analysis in the
geoscience domain with a particular focus on geomorphological applications.
First, a short overview of the relevant characteristics of the used remote sens-
ing data and basics of its processing and visualization are provided. Then,
two new methods for the visualization of vector-based maps on digital ele-
vation models (DEMs) are presented. The first method uses a texture-based
approach that generates a texture from the input maps at runtime taking
into account the current viewpoint. In contrast to that, the second method
utilizes the stencil buffer to create a mask in image space that is then used
to render the map on top of the DEM. A particular challenge in this context
is posed by the view-dependent level-of-detail representation of the terrain
geometry.

After suitable visualization methods for vector-based maps have been in-
vestigated, two landform mapping tools for the interactive generation of such
maps are presented. The user can carry out the mapping directly on the tex-
tured digital elevation model and thus benefit from the 3D visualization of
the relief. Additionally, semi-automatic image segmentation techniques are
applied in order to reduce the amount of user interaction required and thus
make the mapping process more efficient and convenient. The challenge in
the adaption of the methods lies in the transfer of the algorithms to the
quadtree representation of the data and in the application of out-of-core and
hierarchical methods to ensure interactive performance.

Although high-resolution remote sensing data are often available today,
their effective resolution at steep slopes is rather low due to the oblique ac-
quisition angle. For this reason, remote sensing data are suitable to only a
limited extent for visualization as well as landform mapping purposes. To
provide an easy way to supply additional imagery, an algorithm for register-
ing uncalibrated photos to a textured digital elevation model is presented. A
particular challenge in registering the images is posed by large variations in
the photos concerning resolution, lighting conditions, seasonal changes, etc.

The registered photos can be used to increase the visual quality of the
textured DEM, in particular at steep slopes. To this end, a method is pre-
sented that combines several georegistered photos to textures for the DEM.
The difficulty in this compositing process is to create a consistent appear-
ance and avoid visible seams between the photos. In addition to that, the
photos also provide valuable means to improve landform mapping. To this
end, an extension of the landform mapping methods is presented that allows
the utilization of the registered photos during mapping. This way, a detailed
and exact mapping becomes feasible even at steep slopes.
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Zusammenfassung

In dieser Arbeit werden Methoden zur Verbesserung der Datenmodellierung
und -analyse im Bereich der Geowissenschaften unter besonderer Berück-
sichtigung geomorphologischer Anwendungen vorgestellt. Zu Beginn wird ein
kurzer Überblick über die relevanten Charakteristika der verwendeten Ferner-
kundungsdaten sowie Grundlagen zu deren Verarbeitung und Visualisierung
gegeben.

Anschließend werden zwei neuartige Methoden zur Visualisierung vektor-
basierter Karten auf digitalen Geländemodellen untersucht. Das erste Ver-
fahren verfolgt einen texturbasierten Ansatz bei dem eine Textur anhand der
darzustellenden Karte und unter Berücksichtigung der aktuellen Betrachter-
position zur Laufzeit generiert wird. Im Gegensatz dazu benutzt das zweite
Verfahren den Stencilbuffer um eine Maske im Bildraum zu erzeugen. Diese
wird dann dazu benutzt, die Karte auf dem Geländemodell anzuzeigen. Eine
besondere Herausforderung stellt dabei der blickpunktabhängige Detaillie-
rungsgrad der Geländegeometrie dar.

Nach der Vorstellung geeigneter Visualisierungsmethoden für vektorbasier-
te Karten werden zwei interaktive Kartierungsverfahren zur Erstellung sol-
cher Karten präsentiert. Die Kartierung erfolgt direkt auf dem texturierten
Geländemodell, so dass der Benutzer von der 3D Visualisierung des Reliefs
profitieren kann. Darüberhinaus werden durch die Anwendung halbautoma-
tischer Bildsegmentierungsverfahren die notwendigen Benutzereingaben re-
duziert und der Kartierungsprozess damit effizienter und komfortabler. Die
Herausforderung bei der Anpassung der Verfahren liegt in der Übertragung
der Algorithmen auf die Quadtree-Repräsentation der Daten und der Ver-
wendung von hierarchischen und Out-of-Core Methoden, um Interaktivität
zu gewährleisten.

Obwohl hochaufgelöste Fernerkundungsdaten heutzutage immer häufiger
verfügbar sind, ist ihre tatsächliche Auflösung in Steilhangbereichen aufgrund
des schiefen Aufnahmewinkels deutlich niedriger. Aus diesem Grund sind sol-
che Daten sowohl zum Zwecke der Visualisierung als auch zur Kartierung
von Steilhangbereichen prinzipiell nur bedingt geeignet. Um eine einfache
Möglichkeit zur Integration zusätzlicher Bildinformation zu schaffen, wird
deshalb ein Algorithmus vorgestellt mit dem unkalibrierte Photos gegen das
texturierte Geländemodell registriert werden können. Eine besondere Heraus-
forderung bei der Registrierung stellen dabei die unterschiedlichen Auflösun-
gen, Lichtverhältnisse, Jahreszeiten, etc. der Photos dar.

Die registrierten Bilder können dann zur Verbesserung der visuellen Qua-
lität des texturierten Geländemodells, insbesondere in steilen Hangbereichen,
verwendet werden. Dazu wird ein Verfahren vorgestellt, das es erlaubt, re-
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gistrierte Photos zu Texturen für das Geländemodell zu kombinieren. Die
Schwierigkeit in diesem Compositing-Prozess liegt in Erzeugung eines kon-
sistenten Erscheinungsbildes und der Vermeidung sichtbarer Grenzen zwi-
schen den Bildern. Neben der Verbesserung des visuellen Erscheinungsbildes
können die Photos aber auch für die Kartierung verwendet werden. Dazu
werden die beiden Kartierungsverfahren so erweitert, dass die Kartierung auf
Grundlage der registrierten Photos ausgeführt werden kann. Auf diese Weise
wird eine detailierte und exakte Kartierung sogar in steilen Hangbereichen
möglich.
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CHAPTER 1

Preface

1.1 Motivation

This thesis was written within the Research Training Group (RTG) 437 -
“Landform - a structured and variable boundary layer”1 a multidisciplinary
graduation program funded by the German Research Foundation (DFG)2.
In this program landform, as the boundary surface between different com-
ponents of the earth system, is investigated within a range of disciplines
ranging from geoscience (geomorphology, hydrology, climatology, geodynam-
ics, meteorology, pedology) to biology, mathematics, computer science and
remote sensing. In all these disciplines the use of remote sensing data for
analysis and interpretation has become increasingly important during the
last decades. For Turtmann valley, the alpine cluster of the RTG 437, a High
Resolution Stereo Camera (HRSC) dataset was acquired that provides the
basis for research. Its applications within the RTG are various including ge-
omorphological mapping, geomorphometrical analysis, mapping of surficial
grain-size distribution, rock glacier kinematics analysis, vegetation monitor-
ing and 3D visualization.

One of the most basic tasks in geomorphology is the generation and in-
terpretation of geomorphological maps. With the increasing availability and
quality of remote sensing data, today the creation of geomorphological maps
is typically carried out directly on such data on screen. While modern geoin-

1http://www.giub.uni-bonn.de/grk/
2http://www.dfg.de
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CHAPTER 1. PREFACE

formation systems (GIS) facilitate the compilation, production and distribu-
tion of maps, most of the cartographic features are limited to a 2D represen-
tation of the input data. Although different kinds of relief shading are often
used to compensate for this, a fixed 2D aerial perspective heavily restricts the
perception of landforms. Furthermore, considerable amount of manual inter-
action is usually involved in landform mapping. The user has to define the
object boundary by extensively clicking and dragging with the mouse which
is tedious and time-consuming. Even worse, not only the presentation and
interaction with the data, but also the data itself are often an issue. Since
remote sensing data is acquired from above, steep slopes are only sparsely
sampled while overhangs are not captured at all. In particular in high alpine
environments where the amount of steep slopes is very high, this results not
only in low visual quality but also prohibits a detailed mapping in such areas.

Until now the main contribution of computer graphics to the geoscience
domain has been the generation of digital elevation models (DEMs) along
with their efficient visualization. Although an enhanced visualization of the
data improves the perception of landforms, so far 3D terrain visualization
software has typically been limited to simple data exploration. Considering
this background and motivated by the numerous and manifold applications
in the geoscience domain that become viable - in some cases even for the first
time - using computer graphics methodologies, this thesis presents methods
that address the aforementioned issues.

The methods presented in this thesis extend an existing terrain visual-
ization system allowing an efficient visualization as well as an interactive
generation of geomorphological maps directly on the textured DEM. To ac-
count for the resolution issues at steep slopes, photos can be registered to the
textured DEM. The registered photos can be combined to textures for the
DEM in order to increase visual quality, in particular at steep slopes. Apart
from improving visual quality, the photos can also be utilized for mapping
purposes allowing a detailed mapping even at steep slopes. Figure 1.1 pro-
vides an overview of the different components presented in this thesis.

1.2 Main Contributions

Several aspects of the work presented in this thesis have already been pub-
lished at different conferences and journals [Schneider et al. 2005][Schneider
& Klein 2006][Schneider & Otto 2006][Schneider & Klein 2007b][Schneider
& Klein 2007a][Otto et al. 2007][Schneider & Klein 2008]. The content of
this thesis is based on these publications, explaining the proposed methods
in more detail and providing additional background knowledge. This is com-
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1.3. THESIS OVERVIEW

Visualization of
Vector Data

(Computer Graphics)

Interactive
Segmentation

(Computer Graphics,
Image Processing)

Registration
(Computer Vision)

Compositing
(Computer Graphics,
Image Processing)

Terrain
Visualization

Figure 1.1: Overview. Main aspects covered in this thesis.

pleted with improvements and further results of the presented methods and
algorithms. The main contributions of this thesis can be summarized as
follows

• efficient and exact visualization of vector data on textured DEMs (chap-
ter 3)

• robust registration of photos to textured DEMs (chapter 4)

• high-quality compositing of registered photos on DEMs (chapter 5)

• interactive landform mapping on large textured DEMs (chapter 6).

The methods and algorithms presented in this thesis are motivated and de-
scribed with their applicability in the context of geomorphology offering a
variety of applications and at the same time posing some specific demands.
However, most of the contributions of this thesis are applicable and relevant
to other disciplines as well.

1.3 Thesis Overview

The remainder of this thesis is organized as follows:

3



CHAPTER 1. PREFACE

In chapter 2 background information on data formats used for geospatial
data in general are supplied, followed by a detailed description of the specific
characteristics of the HRSC dataset of Turtmann valley that is used through-
out this thesis. Then, methods to efficiently handle such huge datasets are
presented and the used terrain rendering engine is described.

Chapter 3 covers the visualization of vector data on digital elevation models.
After motivating the topic in section 3.1, related work is reviewed in section
3.2. Then, two novel methods for the visualization of vector data are pre-
sented in sections 3.3 and 3.4. Finally, results are shown and discussed in
section 3.5.

Chapter 4 deals with the registration of photos to textured digital eleva-
tion models. First, the topic is motivated in section 4.1 and related work
is reviewed in section 4.2. Then, a robust algorithm for registering a set of
uncalibrated photos to a given textured digital elevation model is described
in section 4.3. Section 4.4 then concludes this chapter of the thesis by pre-
senting and discussing the obtained results.

Chapter 5 covers the compositing of photos on textured digital elevation
models. After motivating the topic in section 5.1, related work is reviewed in
section 5.2. Then a compositing algorithm that combines registered photos
on the terrain surface is presented in section 5.3. Finally, results are shown
and discussed in section 5.4.

Chapter 6 deals with interactive landform mapping on digital elevation mod-
els. First, the topic is motivated in section 6.1 and related work is reviewed
in section 6.2. Then, two novel interactive landform mapping methods are
presented in section 6.3 and 6.4. After that, a hierarchical approach to accel-
erate both methods is given in section 6.5. In section 6.6 then an extension
to the methods is presented that allows detailed landform mapping at steep
slopes. Finally, section 6.7 concludes this chapter by presenting segmentation
results and a comparison to standard mapping tools.

The thesis is concluded in chapter 7. Appendix A provides basics on registra-
tion complementing chapter 4, followed by basics on mesh parameterization
complementing chapter 5. Finally, appendix C presents image segmentation
basics complementing chapter 6.

4



CHAPTER 2

Background

Since ancient times people have been occupied with representing the earth’s
surface. While paintings are one of the oldest representations offering some
general information, they lack accuracy and thus are inappropriate for sci-
entific or engineering applications. A more effective representation are maps
which are still widely used today. Modern maps employ a well-designed
symbol system and a well-established mathematical basis. They are scien-
tific generalizations and abstractions of the landscape, most importantly they
are a 2D representation of 3D reality. In maps the third dimension is usually
conveyed by means of special cartographic techniques, such as contour lines,
relief shading or special signatures. However, these are rather abstract con-
structions that require training and imagination from the user. Especially in
mountainous regions, characterized by a high proportion of steep slopes, the
traditional map representation reaches its limits.

To overcome these shortcomings, physical relief models made of rubber,
plastic, clay or sand can be used. In contrast to a map, they are real 3D
representations of the earth’s surface and allow the observer to choose his
position freely. Therefore, they convey an immediate and natural impression
of a landscape and are much more intuitive than 2D maps for most people.
However, the building of physical relief models is costly and time-consuming.

With the invention of photography, photos and later aerial images have
been used to represent the terrain. Since the 1970s satellite images have
been used to complement aerial imagery, although the resolution of satel-
lite images is still not comparable. Elevation data of the earth surface, on
the other hand, can either be acquired by digitizing existing maps, derived

5



CHAPTER 2. BACKGROUND

from overlapping aerial imagery using photogrammetric methods, or directly
measured using airborne laser scanning (LIDAR) or satellite based radar
(InSAR). With the advance of computing technology and visualization algo-
rithms, it is nowadays possible to create realistic looking, virtual 3D models
of the earth’s surface based on aerial imagery and corresponding elevation
data.

In the remainder of this chapter, first basics on digital terrain data in
general and characteristics of the Turtmann valley dataset in particular are
presented. Then, methods to efficiently handle large mesh and texture data
are reviewed with a particular focus on terrain visualization. Finally, the ter-
rain rendering engine is introduced that is used as the basis of the algorithms
presented in this thesis.

2.1 Digital Terrain Data

Along with the progression of computing technology, mathematics and com-
puter graphics, various digital terrain representations have been developed.
Even data that is not acquired in digital form initially is often converted
into discrete data using digitizing techniques. The advantage of having the
data available digitally is that it can be efficiently processed, stored and
transferred using computers.

There are two main categories for the digital representation of geospatial
data, namely vector data and raster data. The vector data model represents
space as a series of discrete entity-defined point, line or polygon units, which
are geographically referenced by Cartesian coordinates. Vector data is best
suited to store discrete, well-defined data that can clearly be delimited. Lo-
cation of samples (points), streets (lines) and lakes (areas) are examples of
adequate candidates for a representation as vector data. Raster data, by
contrast, consists of a matrix of cells (pixels) organized in an ordered grid
of rows and columns. Each cell contains a value representing information,
such as elevation. Cell values can either be positive or negative, integer or
floating point but can also contain “no data” values to indicate the absence
of information. Data stored in a raster format typically represents real-world
phenomena, such as thematic and continuous data, or photos.

The most common terrain features acquired are spectral values and ele-
vation. Spectral images of the earth’s surface are naturally represented as
raster data in the form of standard image file formats. On the other hand,
digital elevation models (DEMs), also known widely as digital terrain models
(DTMs), that model the variation of surface elevation over an area, can either
be modeled by raster data or by triangle meshes. The preference for one or

6



2.1. DIGITAL TERRAIN DATA

the other depends on the application. Raster data are the most common form
of discretized elevation data because useful information about landform, such
as slope and curvature, can easily be derived from it. However, the raster
data representation includes large amounts of redundancy in uniform terrain
areas due to its inability to adapt to areas of varying relief complexity. The
use of triangle meshes for digital elevation modeling avoids the redundancies
of raster data. Although triangle meshes provide efficient data storage of
elevation data, they introduce a triangular discretization that may hinder
some kinds of spatial data analysis.

In order to analyze several datasets jointly, they have to be in correct
geographic relation to each other. Therefore, spatial data is usually georef-
erenced, i.e., geometrically registered to a generally accepted and properly
defined coordinate system. Apart from local studies, the common frame of
reference is provided by one of the limited number of geodetic coordinate
systems. The most usual coordinate system is that of plane Cartesian co-
ordinates, oriented north/south (latitude) and east/west (longitude). Since
the earth is not a true sphere but flattened at the poles, geodesists have
devised several ellipsoids for mapping the true curved surface of the earth
to the plane. There are three main ways for projecting locations from an
ellipsoid onto a planar surface, namely cylindrical, azimuthal and conical
projections, where the best projection to use depends on the location. The
most widely used, general projection, and a standard for topographic map-
ping and digital data exchange, is the Universal Transverse Mercator (UTM)
[Yang et al. 2000]. Currently, the WGS84 ellipsoid [Lohmar 1988] is used as
the underlying model of the earth in the UTM coordinate system.

2.1.1 HRSC Dataset of Turtmann Valley

In this section, Turtmann valley, the alpine cluster of RTG 437, and its cor-
responding HRSC dataset are briefly introduced. For further information on
the HRSC dataset and its applications in physical geography the reader is
referred to [Otto et al. 2007].

Turtmann Valley is an alpine catchment located in the southern mountain
range of the Valais Alps between the Matter Valley and the Anniviers Valley
in Switzerland. The Turtmann valley stream is a southern tributary of the
Rhone River and drains a catchment of approximately 110 km2 (139 km2 real
surface) at altitudes between 620 m and 4200 m. The valley is around 20 km
long and up to 7 km wide and the main glacial trough is oriented from south
to north. In addition to small glaciers in some of the hanging valleys, the
Turtmann and Brunegg Glaciers at the valley head cover approximately 14 %
of the valley surface. The hanging valleys are characterized by more than 80

7



CHAPTER 2. BACKGROUND

HRSC-A HRSC-AX150 HRSC-AX047

Focal length [mm] 175 151 47

Number of CCD lines 9 9 5

Number of sensors per line 5184 12000 12000

Sensor size [µm] 7 6.5 6.5

Radiometric resolution [bit] 8 12 12

Multispectral viewing angle [◦]

15.9 (R)
3.3 (G)
-3.3 (B)

-15.9 (nIR)

Stereo viewing angle [◦]
±18.9 ±20.5 ±14.4
±12.8 ±12

0

Field of view [◦] ±11.8 ±29.1 ±79.4

Flight altitude for 20 cm
5000 4700 1500

geometrical resolution

Spectral resolution [nm]
Blue 395-485 450-510 -

Green 485-575 530-570 475-575
Red 730-770 635-685 570-680

Near infrared 925-1015 770-810 -
Nadir (panchromatic) 585-765 520-760 515-750
Stereo (panchromatic) 585-765 520-760 515-750

Photometry (panchromatic) 585-765 520-760 -

Maximum line frequency
450 1640 1640

per band [lines/s]

Platform stabilized Zeiss T-AS-Platform

Data recording SONY high speed data recorder

Weights: camera [kg] ∼32 ∼70 ∼70
adapter [kg] ∼40 ∼40 ∼40

Table 2.1: Technical Data on the HRSC Sensors.
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Figure 2.1: Turtmann Valley Dataset. Digital elevation model (top) and correspond-
ing aerial imagery (bottom).

recent and relict rock glaciers. The inner Alpine location of the Turtmann
valley is characterized by continental climatic conditions.

In September 2001 a flight campaign covering the entire Turtmann val-
ley was carried out using the HRSC-A system. The High Resolution Stereo
Camera (HRSC) was originally developed for the mission “Mars Express” by
the German Aerospace Center (DLR)1. First airborne experiments on earth
with HRSC-A (A - for airborne) showed good results in mapping and pho-
togrammetry. For this reason two additional airborne cameras (HRSC-AX
150, HRSC-AXW 47) were developed in 2000 [Neukum 2001]. The HRSC-A
sensor (see Table 2.1) is a multispectral stereo scanner containing nine bands:
a blue, green and red band (tending to near infrared), a near infrared band,
and five panchromatic bands covering the green and red spectrum. It is a
pushbroom scanner consisting of CCD sensors in nine lines. The sensors scan
line by line (nine lines at a time) along the flight path. Each CCD line scans
another band, each with another viewing angle. The geometrical resolution

1http://www.dlr.de/
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depends on the flying altitude and starts at 10 cm upwards.
For Turtmann valley 13 overlapping parallel tracks from a mean flight alti-

tude of 6000 m (3000 to 4000 m over ground) were acquired. Limited by the
lateral field of view of the sensors, several parallel tracks had to be recorded
and mosaiced for each color and stereo band separately during on-ground
processing. After data processing at DLR, including combined determination
of position and altitude, geometric correction of image data, image match-
ing, DTM generation, orthoimage generation and mosaicing [Hauber et al.
2000][Scholten et al. 2002], a several gigabyte large dataset consisting of
multispectral stereo data as well as a digital terrain model (including vege-
tation) was created (see Figure 2.1). Image and DTM data are referenced to
the standard Swiss map projection CH1903. The image data has a radiomet-
ric resolution of 8 bits, while the terrain model is coded in 16 bits resolving a
height difference of 10 cm. The spatial resolution is 50 cm and 1 m for image
data and DTM, respectively. Multispectral data tend to be slightly blurred
in the flight direction due to their smaller filter bandwidth compared to the
more panchromatic filters of the stereo bands resulting in longer exposure
times. Nevertheless, sharpening can be achieved by using HSI transforma-
tion with the very sharp Nadir band as the intensity component.

2.2 Data Handling

Despite the capabilities of today’s hardware, real-time visualization of large
terrain datasets is not feasible by brute force. Sophisticated data structures
and algorithms are indispensable to achieve real-time performance. In ad-
dition to that, most terrain datasets do not even fit into main memory and
hence out-of-core strategies are required. Thus, to enable efficient rendering
of such models, it is essential to reduce the amount of data that is used for
rendering and kept in main memory as much as possible. Compression tech-
niques can help to reduce the size of the data significantly in advance. During
rendering culling techniques are typically applied in order to determine as
early as possible in the rendering pipeline the subset of the data that actually
contributes to the final image and to restrict further processing to it. Level-
of-detail (LOD) techniques can then be used to adjust the complexity of the
remaining relevant data, for example, based on its projected size in screen
space. By using LOD techniques it is possible to reduce the complexity of
distant objects without sacrificing quality. This leads to drastically increased
rendering speed while at the same time aliasing artifacts are reduced.

In the remainder of this section the aforementioned techniques for handling
large meshes and textures are briefly overviewed. First, compression algo-

10



2.2. DATA HANDLING

rithms for meshes and textures are reviewed, followed by culling techniques.
Then, methods to generate multiresolution representations are presented and
finally, data structures that enable an efficient management of such LOD rep-
resentations are described.

2.2.1 Compression

Compression techniques directly tackle the memory and bandwidth problem
and are therefore vital when dealing with large datasets. There are a variety
of different compression techniques for meshes as well as textures.

Geometry Compression

In geometry compression vertex positions as well as connectivity can both
be compressed. Typically, a vertex consists of three real-valued components
usually represented in a 32 bit floating point format. Such a representa-
tion can distinguish between 232 different values, which is often more than
is needed for a given application and hence the same amount of information
may be represented with fewer bits.

Quantization is the process of approximating a continuous range of values
using a relatively small set of discrete values. The simplest form of quanti-
zation is uniform quantization, where the considered domain is discretized
into a uniformly-spaced multidimensional grid structure. Another popular
approach is vector quantization where the quantized values are chosen such
that the overall quantization error is minimized. After the selection of a set
of quantized values the original vertices are snapped to their closest quan-
tized value and are then coded with accordingly fewer bits.

Another approach for the compression of vertex positions is predictive cod-
ing, which is based on the observation that there exists some correlation
between the position of a vertex and that of its neighbors. Using specific pre-
diction rules it suffices to code just the prediction error, namely the difference
between the actual vertex position and its predicted value. A popular pre-
diction rule is the parallelogram rule [Touma & Gotsman 1998] that predicts
a vertex as the fourth vertex of a parallelogram based on three neighboring
vertices. Significant savings result if the entropy of the prediction errors is
much less than that of the original vertex positions.

In addition to vertex positions, the connectivity of a triangle mesh can be
compressed as well. One popular class of connectivity coding methods grows
a region over the mesh and incrementally encodes mesh elements and their
incidence relation to the growing region. These methods can be categorized
as face-based [Gumhold & Straßer 1998][Rossignac 1999], edge-based [Isen-
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burg & Snoeyink 2000] and vertex-based [Touma & Gotsman 1998] coding
schemes.

Texture Compression

High resolution textures are often even larger than the corresponding ge-
ometry, in particular in terrain visualization, and thus texture compression
is at least as important as geometry compression. Since computer graphics
systems are typically highly pipelined, it is desirable to keep the number of
indirections during texture lookups low. What is more, texture caches are
often used in graphics hardware to speed up texture accesses. Therefore,
texture compression methods should work well with existing caches, which
makes it important to preserve the locality of texture accesses. Overall, a
decompression algorithm should be simple, fast, and easy to implement in
hardware.

One solution that directly attacks the memory and bandwidth problem is
fixed-rate texture compression [Beers et al. 1996]. By letting hardware de-
code compressed textures on-the-fly, textures do not only require less memory
bandwidth when accessed but also consume less texture memory. S3 devel-
oped a scheme called S3TC [Inc. 1998], which was chosen as a standard
in DirectX, called DXTC, and hence is available on all consumer graphics
hardware. It has the advantage of creating a compressed image that is fixed
in size, has independently encoded localized pieces and is simple and fast
to decode. The DXT compression formats are made up of DXT1 through
DXT5 and use a lossy compression that can reduce an image’s size by a ratio
of 4:1, 6:1 or 8:1 depending on the handling of the alpha channel.

Alternatively, one of the various image compression method used in image
file formats, such as JPEG and PNG [Miano 1999], can be used. They offer
the advantage of higher compression ratios but are not implemented on com-
mon graphics hardware. Hence, they reduce bandwidth requirements but
have to be decoded on the CPU before being loaded into graphics memory
and thus occupy their original uncompressed size there.

2.2.2 Culling

Culling techniques aim at reducing the amount of data sent through the ren-
dering pipeline by detecting and removing parts of the scene that are not
visible to the viewer. The three main culling techniques are backface culling,
view frustum culling and occlusion culling (see Figure 2.2). Backface culling
removes all opaque triangles in the scene whose normal points away from the
observer. In this way, backface culling can decreases the load on the raster-
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izer significantly. It can be made even more efficient by testing not every
triangle separately but whole sets of triangles. Such techniques are called
clustered backface culling and often use normal cones [Shirman & Abi-Ezzi
1993].

In view frustum culling geometry located outside the view frustum is de-
termined and not sent through the pipeline at all. To this end, the scene
is typically organized in a spatial data structure, which is then used to per-
form the view frustum culling hierarchically. While view frustum culling
only removes geometry outside the frustum, occlusion culling techniques try
to identify geometry that is inside the frustum but occluded and therefore
does not contribute to the final image. If scenes with high depth complexity
are rendered, removing occluded geometry can significantly increase the ren-
dering performance. On the other hand, if the depth complexity is moderate
or low, the costs for occlusion culling often outweigh its benefits.

A characteristic of hilly terrain models and urban scenes is a high depth
complexity in the horizontal direction. Therefore, whenever the viewer is
close to the ground and looks horizontally, the depth complexity is consid-
erably higher than for other views. As such views tend to be very common
in the aforementioned applications, they can greatly benefit from efficient
occlusion culling. Since exact solutions of the occlusion culling problem
are computationally expensive, they are of limited use for real-time ren-
dering. Therefore, the accuracy of the occlusion culling is typically traded
with its computational complexity. The main operations performed in oc-
clusion culling are visibility tests that are performed many times per frame
and thus have to be efficient. For this reason, the visibility tests are typically
performed with simple approximations of the objects in the scene, such as
bounding boxes, that are conservative over-estimations of the extents of the
considered objects.

Figure 2.2: Culling. Backface culling (left), view frustum culling (middle) and occlusion
culling (right). The green primitives and objects are further processed while
the red ones are removed from further processing in the rendering pipeline.
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2.2.3 LOD Generation

Even after the application of compression and culling techniques, the remain-
ing amount of data is often still too large to be rendered in real-time. Using
LOD techniques, the amount of data that need to be rendered can be fur-
ther reduced significantly. While LOD representations for triangle meshes
are typically obtained by simplification, simplified versions of textures are
usually created by downsampling.

Geometry Simplification

Numerous approaches for the simplification of meshes have been proposed
over the years, which can roughly be divided into iterative and remeshing
approaches. Iterative mesh simplification schemes apply a series of local sim-
plification operations to reduce the complexity of the given mesh, i.e., they
reduce the number of vertices, edges and faces. Among the numerous sim-
plification operations that have been developed the most popular are vertex
clustering [Rossignac & Borrel 1993], vertex removal [Schroeder et al. 1992]
and edge collapse [Hoppe et al. 1993] (see Figure 2.3). The advantage of
these methods are that they are easy to implement and produce good results
in short time. Therefore, iterative methods have become the most widely
used technique for large models, although optimality of the simplified model
can not be guaranteed.

In contrast to iterative simplification techniques, remeshing approaches

Figure 2.3: Simplification Operations. Vertex clustering (left), vertex removal (mid-
dle) and edge collapse (right).
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handle the complete input mesh in a single step. They generate a new mesh
that approximates the original by adaptively sampling the mesh surface [Turk
1992][Alliez et al. 2005] placing more points in regions of high curvature
and less points in almost planar regions. The advantage of remeshing tech-
niques is their global handling of input models, which enables them to create
meshes that present an optimal balance between approximation error and
mesh complexity. Unfortunately, the required processing times are typically
much longer compared to iterative simplification approaches.

Texture Downsampling

In case of textures, different LODs are typically created by successively filter-
ing an input image. Downsampling an image in the spatial domain consists
of two steps: First, the image is filtered by an antialiasing low pass filter.
Then, the filtered result is subsampled by a desired factor in each dimension.
In practice a texture often has to be downsampled to a quarter of its original
area. A naive but often applied approach to achieve this is to compute each
new texel as the average of its four corresponding texels in the original tex-
ture. However, the filter used in such a case is a box filter, which is one of the
worst filters possible and might result in poor quality. Instead a Gaussian,
Lanczos, Kaiser or similar filter should be used.

Error Metrics

Error metrics control the application of simplification operations. In the
case of iterative mesh simplification, they define the order of simplification
operations. Klein et al. [Klein & Liebich 1996] recommended to compute the
simplification error based on the Hausdorff distance. The Hausdorff distance
of two sets of points P1 and P2 is defined as

dH(P1,P2) = max
p1∈P1

{
min
p2∈P2

{d(p1, p2)}
}
,

where d is typically assumed to be a Euclidean distance function for point-
to-point distances. Since dH is not symmetric, usually the symmetric version

dHs = max {dH(P1,P2), dH(P2,P1)}

is used. Unfortunately, efficient computation of dH and especially dHs is dif-
ficult. A method for the efficient computation of dHs that focuses on regions
of potentially highest distance was described by Guthe et al. [Guthe et al.
2005a]. Other work proposed more computationally efficient metrics approx-
imating dHs . Garland and Heckbert [Garland & Heckbert 1997] introduced
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error quadrics as a simplification metric. Compared to error metrics based on
the Hausdorff distance, error quadrics can be computed much faster. How-
ever, a significant problem of this approach is the overestimation of the actual
simplification error when summing error quadrics, which prohibits aggressive
simplification and thus performance-optimal LOD models.

Since many attributes of an object contribute to its visual appearance,
error metrics need to take more criteria into account than just geometric de-
viation. While early error metrics exclusively focused on geometric accuracy,
later work [Garland & Heckbert 1998][Schilling & Klein 1998][Cohen et al.
1998] also considered additional surface attributes, such as color, texture
coordinates or normals.

2.2.4 LOD Data Structures

LOD data structures enable efficient access to LOD representations and thus
allow efficient changes between LODs. Such data structures are extremely
important not only for runtime selection of LODs but additionally enable
efficient offline generation of LODs. LOD data structures can be divided
into static, continuous and hierarchical approaches.

Geometry LOD Data Structures

The concepts of multiresolution meshes have been extensively studied for gen-
eral 3D triangle meshes and have been surveyed in [Cignoni et al. 1998][Gar-
land 1999][Heckbert & Garland 1997][Luebke et al. 2002][Luebke 2001], and
more recently in [Floriani et al. 2004].

The most simple LOD representation are sets of static LODs consisting of
sequences of simplified versions of triangle meshes, where the different ver-
sions have been simplified up to some target simplification errors. Special
care has to be taken to avoid sudden changes of the object’s appearance when
switching the displayed LOD known as popping artifacts. Static LODs are
commonly derived from iterative mesh simplification algorithms, remeshing
techniques, and approaches creating image-based representations. Mixing
various LOD representations is easily possible since separate LODs are han-
dled independently of each other. While static LODs are very simple to
handle and quite efficient in terms of storage, a major disadvantage is that
the resolution is fixed throughout the whole displayed model. As a result, if
some parts of the model need to be displayed at a high resolution, the whole
object has to be rendered at this high resolution. In situations where the
extent of the displayed object is relatively large, as for example in terrain
visualization, this increases the number of displayed triangles significantly.
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To account for this problem, the idea of continuous LODs was introduced.
Such LOD representations enable much finer control over the resolution of
displayed objects, effectively allowing varying resolutions for separate parts
of a simplified mesh. A widely known approach to continuous LODs are
progressive meshes [Hoppe 1996], which are derived by iteratively simplify-
ing an input mesh and storing the sequence of simplification operations and
the simplified mesh in an appropriate data structure [Puppo 1998]. Progres-
sive meshes have been adapted to terrain rendering in [Hoppe 1998]. Even
though they allow fine-scale changes to the mesh to be made from one frame
to the next, these changes, if geometrically large enough, may lead to pop-
ping artifacts. Geomorphing is a common approach to counter such visually
disturbing phenomena by interpolating the geometric transitions between
different levels of detail smoothly over time. However, downside of morphing
is that vertices may have to be introduced earlier than otherwise necessary
to allow a continuous transition while still satisfying an error tolerance.

While the use of static LODs is relatively inflexible compared to continu-
ous LODs, they require much less runtime overhead. At each frame, only the
most suitable LOD version has to be chosen. In contrast, continuous LOD
approaches need to readjust the model complexity each frame, which implies
validity checks for all active vertices. For large models this overhead easily
outweighs the advantages of rendering less triangles. Therefore, Erikson et
al. [Erikson et al. 2001] proposed Hierarchical LODs (HLODs). To create
them, the scene is first subdivided into separate parts in a hierarchical man-
ner. Then, the partitioned geometry parts are simplified separately, typically
using iterative simplification methods. The HLOD concept has three major
advantages: First, they allow for dynamic LOD by choosing separate reso-
lutions for different parts of the geometry. Second, compared to progressive
meshes, selection of LOD levels becomes much more efficient since resolution
is selected for chunks of geometry instead of on a per-vertex basis. Third, hi-
erarchical subdivision of the input model naturally lends itself to out-of-core
handling. However, if parts of the geometry are simplified separately, which
is particularly relevant for out-of-core models, cracks may be introduced into
the simplified model since simplifications in neighboring parts are not taken
into account. To avoid cracks, borders between neighboring parts can ei-
ther be constrained during simplification, which might reduce simplification
rates, or the individual pieces have to be merged afterwards using stitching
operations [Borodin et al. 2003].

To partition a scene into separate parts, spatial data structures are typ-
ically used that arrange data in some n-dimensional space. Spatial data
structures are often organized hierarchically, i.e., their structure is nested
and of recursive nature. Examples of spatial data structures are bounding
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Figure 2.4: Quadtree. An example quadtree (left) and the corresponding graph repre-
sentation (right).

volume hierarchies, BSP trees, quadtrees and octrees. In the field of terrain
visualization quadtrees are often used. A quadtree is a tree data structure in
which each internal node has up to four children and every node in the tree
corresponds to a square in the associated spatial domain. It is constructed
by enclosing the entire scene with a minimal square and recursively subdi-
viding this area into four quadrants until some stopping criterion is fulfilled.
Such a criterion can include that a maximum number of recursion levels has
reached, or that there is fewer than a threshold number of primitives in a
cell, otherwise subdivision is continued. An overview of spatial data struc-
tures for computer graphics and its application can be found in [Zachmann
& Langetepe 2003].

Texture LOD Data Structures

As for meshes, several data structures have been developed to handle LOD
representations of textures (see Figure 2.5). Mipmaps [Williams 1983] are a
pyramidal texture representation comprising several images derived by suc-
cessively downsampling the original texture. Each image in the sequence is
exactly of half the resolution as the previous. A great advantage of mipmaps
is that they are supported by consumer graphics hardware.

Tanner et al. [Tanner et al. 1998] presented clipmaps, directly addressing
the texturing problem in terrain rendering. They observed that when the
terrain texture is represented as a mipmap, only a small part of the finer
levels of the mipmap is actually used for any particular view. Therefore,
instead of holding the entire texture pyramid in texture memory, the finer
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levels are clipped to a fixed size around a center point. Thus, the finest res-
olution texture is used for the smaller part close to the viewer while coarser
textures are used for correspondingly larger parts further away. However, a
difficulty in the clipmap approach is the selection of a good center point so
that the clipmap does not contain large areas outside the view frustum. Even
if the clip center could be optimally chosen, the quadratic clip map would
still not optimally fit the triangular view frustum. Unfortunately, clipmaps
do not allow to take advantage of occlusion culling, as it is not possible to
reduce the amount of loaded texture. In addition to that, clipmaps are not
supported on consumer graphics hardware.

The idea of the mp-grid [Hüttner 1998] is to split the texture into a regu-
lar grid of standard mipmaps. In this approach only textures for visible grid
cells at the necessary LODs, which are precomputed and stored, have to be
loaded. However, a problem is that the regular grid cannot be adapted to
the camera and thus grid cells can become arbitrarily small on the screen.
Besides the problem that it is impractical to load a very large number of
mipmaps in such a case, filtering of the textures when the footprint of a
pixel covers several grid cells is not possible, as the lowest available level is
reached when one texel corresponds to one grid cell.

The texture tile representation [Klein & Schilling 2001] organizes the tex-
ture into a pyramid. Each pyramid level is subdivided into equally sized
blocks or tiles. The tile size is constant on all levels of the texture pyramid.
The model corresponds to a quadtree subdivision where texture tiles from
coarse levels correspond to large areas, those from finer levels to small areas.
In contrast to the clipmap approach, only the needed textures are loaded.
Compared to mp-grid, the size of a single cell on the screen is of constant
order.

Figure 2.5: Texture LOD Data Structures. Mipmap (left), clipmap (middle) and
mp-grid (right).
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Error Metrics

In the same way as simplification is driven by error metrics, LOD selection
is guided by error metrics in order to guarantee a certain screen-space error.
In general, the screen space error depends on all viewing parameters: the eye
position e, the object position p, the viewing direction ni, the field-of-view
φ and the screen resolution r. Since a precise calculation of the screen space
error is quite expensive, an often applied approach is to establish only upper
bounds on the object space error. The screen-space error ε can then be easily
derived at runtime from the precomputed object space error δ. The intercept
theorems state that ε = δ di

d
cos(α), where di = r

2
cot(α) and d = (p− e) · ni

as shown in Figure 2.6.
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Figure 2.6: Screen-space Error. Approximation of screen-space-error by object-space
error.

2.3 Terrain Visualization

Efficient interactive visualization of very large textured DEMs is important
in a number of application domains, such as scientific visualization, GIS,
mapping applications, virtual reality and interactive 3D games. Due to the
ever increasing complexity of textured DEMs, real-time display imposes strict
efficiency constraints on the visualization system, which is forced to dynam-
ically trade rendering quality with usage of limited system resources. To
best exploit the rendering resources, the scene complexity must be reduced
as much as possible without leading to an inferior visual representation.

Although general data structures and algorithms as presented in the pre-
vious section are also applicable to digital terrain models, the most efficient
systems to date rely on variations of these methods specifically tailored to
terrain models, i.e., 2.5D surfaces (no overlap in elevation is possible for a
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particular geographical location). Quadtree-based multiresolution triangula-
tions have shown to be exceptionally efficient for grid digital terrain data. An
overview of quadtree-based terrain triangulation and visualization methods
can be found in [Pajarola 2002], whereas a more general survey dealing with
semi-regular multiresolution models can be found in [Pajarola & Gobbetti
2007].

2.3.1 The Used Terrain Engine

The work presented in this thesis builds upon the terrain rendering engine
presented in [Wahl et al. 2004]. The main idea is to subdivide the geometry
as well as the associated textures into equally sized blocks and organize them
in a quadtree hierarchy (see Figure 2.7). In the remainder of this section this
rendering engine is briefly introduced. First, the preprocessing procedure is
described that transforms the input data, namely a digital elevation model
given as a height map and corresponding aerial imagery, into a representation
well suited for real-time rendering. After that, the rendering algorithm is
presented that uses the preprocessed data for real-time visualization.

Figure 2.7: LOD Scheme. Left: Image pyramid of Turtmann valley together with a
2D camera frustum. In order to display the scene from the depicted camera
position, textures of the visible areas are taken from different levels of the
pyramid depending on their distance to the camera. Right: First person
perspective of the same scene. The bounding boxes of the different quadtree
tiles are color-coded depending on their level in the quadtree hierarchy.

Preprocessing

In the preprocessing step (see Figure 2.8) a hierarchical level-of-detail rep-
resentation of the input data is created. To this end, geometry as well as
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Figure 2.8: Preprocessing Stage.

textures are partitioned into equally sized tiles, which are associated with
the finest level of the hierarchy. Tiles on coarser levels are constructed by
geometry simplification and texture filtering, respectively, partitioning their
parents’ domain into equally sized quarters. Texture tiles are downsampled
by a factor of two so that their resolution remains constant on all levels.
Similar to the texture downsampling process, geometry tiles on higher levels
are built by approximating the input mesh with half the accuracy of their
children. The symmetric Hausdorff distance [Klein & Liebich 1996] between
the two meshes is used to measure the approximation accuracy. Each geome-
try tile is represented by a triangulated irregular network (TIN). The vertices
are placed on a local regular grid, which has constant resolution for all tiles
of the hierarchy. In addition to that, a separate bounding box hierarchy is
extracted during geometry encoding.

Finally, both texture and geometry tiles are discretized and compressed.
Since the geometry tiles are represented as TINs, connectivity is encoded ex-
plicitly using a method that efficiently encodes a given traversal of the mesh.
To compress the textures, standard compression algorithms, such as S3TC or
JPEG, are used. S3TC compressed textures offer the great advantage that
decoding is implemented on most standard graphics hardware, thus releasing
the CPU from decompression. Moreover, S3TC reduces bandwidth and tex-
ture memory requirements, as the textures may reside in graphics memory
in their compressed form. JPEG, however, offers better compression ratios
and therefore can reduce the I/O load even further, but needs to be decoded
on the CPU and resides uncompressed in texture memory. In practice a
combination of JPEG (for the finest levels) and S3TC (for the remaining
levels) has shown good results. In client/server settings, however, textures
are exclusively transferred as JPEGs.

After preprocessing, the whole level-of-detail hierarchy of the Turtmann
valley dataset, which allows viewing from large distance up to close-up views,
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requires only about 1/10 of the original input data size.

Rendering

Rendering is essentially parallelized among two threads (see Figure 2.9). The
rendering thread traverses the hierarchy and selects tiles by considering their
visibility and detail. Tiles that are not visible from the current viewpoint are
not rendered at all, while the LOD of the remaining tiles is chosen based on
the distance to the viewer, i.e., tiles close to the viewer are rendered with an
accordingly higher LOD than tiles further away. During quadtree traversal a
front-to-back ordering is ensured, such that a per-cell occlusion culling can be
performed by conservatively testing tiles against potential occluders. The oc-
clusion test is realized by rendering potential occluders into the depth-buffer
during quadtree traversal. Visibility tests on potentially visible cells are then
carried out by rendering an appropriate bounding volume of their geometry
and testing if any pixels passed the depth test. As noticed by Lloyd [Lloyd
& Egbert 2002], using bounding boxes as bounding volumes give satisfying
results.

The caching thread performs an asynchronous retrieval of associated cell
data (i.e., geometry and texture tiles). While traversal is still running, al-
ready requested tiles are loaded from hard disk in parallel. Once all pending
requests are completed, the rendering thread hands over the cell data to the
graphics hardware to be rendered. In order to avoid bursts of high workload,
the caching thread can also perform a prefetching of tiles that are likely to
be visible in subsequent frames based on the history of requests or a predic-
tion of the camera path. This prefetching takes place while tiles are being
rendered on the GPU.

Using the described rendering algorithm it is possible to visualize very
large textured DEMs at real-time framerates. It is important to note that

Rendering  
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Figure 2.9: Rendering Stage.
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the number of tiles to be rendered is generally constant and therefore perfor-
mance is not limited by the amount of input data, but only depends on the
complexity of the visible data and, of course, on the available hardware.
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Visualization of Vector Data

3.1 Motivation

Besides raster data, vector data are the fundamental information representa-
tion stored and managed in today’s geographic information systems (GIS).
While remote sensing data, such as aerial or satellite imagery, are typically
represented as raster data in GIS, additional information are usually pro-
vided as layers of vector data. Such layers either aim at highlighting objects
contained in the imagery, such as roads and buildings, or provide information
complementing the imagery, such as state and country boundaries. Typically,
vector data are either derived automatically from measurements (e.g., satel-
lite imagery or GPS) or are manually digitized by the user. They represent
geographic entities as a series of discrete point, line or polygon units. These
units are different from raster data in the way that their geographic location
may be independently and very precisely defined, as may be their topologi-
cal relationship. Vector data are a static representation of phenomena that
usually do not contain any temporal or spatial variability.

To store vector data, the Environmental Systems Research Institute (ESRI)
developed the shapefile format [ESRI 1998]. It has become the de facto stan-
dard, especially in the GIS community, and many resources are available in
this format. A shapefile stores a set of spatial features that consist of geome-
try and associated metadata. The geometry is described by a set of geometric
shapes consisting of points, (poly)lines, or polygons. The geometric shapes
are stored in a nontopological data structure (i.e., topological relationships,
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(a) (b) (c) (d)

Figure 3.1: Different Map Representations. Figure (a) depicts a part of a geomor-
phological map of Turtmann valley given as vector data. In (b) the same
map is overlayed on aerial imagery. Figures (c) and (d) show the vector data
draped over a textured DEM from different views. In contrast to the fixed
2D view in (b), the 3D visualization gives the user an enhanced insight into
the structure of the depicted geomorphological objects.

such as connectivity and adjacency, are not stored explicitly). The metadata
are given by a user-defined set of attributes, such as textual descriptions,
map colors, etc.

In practice, layers of vector data are typically overlayed on remote sens-
ing data. To compensate for this 2D representation of the terrain surface,
contour lines and different kinds of relief shading are often used as means to
convey terrain topography. Nevertheless, such a representation is not easy
to interpret, in particular without skills and practice in map reading. In
contrast to that, a 3D visualization of the terrain provides a much more in-
tuitive representation and is easier to understand for most people. Moreover,
the visualization of vector data on a textured digital elevation model (DEM)
provides additional insight into the structure of the considered objects (see
Figure 3.1). In particular, the area of objects is not distorted as in the 2D
case, and height differences are directly apparent. Consequently, there is a
need for efficient methods that overlay vector data on textured DEMs.

While the overlay of vector data is straightforward in the 2D case, it is
much more challenging in 3D. Suppose a 2D vector shape S ⊂ R2 defined by
a set 2D vertices V = {v1, . . . , vn} with vi = (xi, yi), and a DEM

h : A ⊂ R2 → R

h(x, y) 7→ z
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Figure 3.2: Problem Description. In (a) a 2D vector shape is projected on a textured
DEM. Figure (b) shows a schematic example of a mapping of a line segment
(top). If only the two vertices defining the line segment are mapped and
interpolated afterwards, the result does not fit the surface (middle). The
bottom image shows the correct mapping.

are given. The objective is then to map all points p ∈ S to the height given
by the DEM

f : S ⊂ A ⊂ R2 → R3

f(x, y) 7→ (x, y, h(x, y)).

To ensure that the vector shape is consistent with the terrain surface ev-
erywhere, each point p ∈ S has to be mapped with f . Note that it is not
sufficient to map only the vertices vi and interpolate the f(vi) afterwards
(see Figure 3.2).

The remainder of this chapter is organized as follows: After reviewing re-
lated work, two novel methods for the visualization of vector data on textured
DEMs are presented. Finally, results are shown and discussed.

3.2 Related Work

Methods for visualizing vector data on textured terrain models can basically
be divided into overlay-geometry-based, geometry-based and texture-based
approaches.
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3.2.1 Overlay-geometry-based Methods

Overlay-geometry-based methods create 3D geometry from the vector shapes
by adapting it to the terrain surface. The parts of the terrain mesh that are
covered with vector shapes are determined, cut out and copied. To display
the vector shapes, the created 3D geometry is then rendered on top of the
original terrain geometry and colored or textured appropriately. The chal-
lenge for this kind of methods is to keep the created vector data geometry
consistent with the original terrain geometry despite LOD changes. To this
end, the vector geometry either has to be created and adapted to each level
of detail in a preprocessing step or at runtime. Apart from this elaborate
adaption process, the number of resulting primitives directly depends on the
complexity of the terrain geometry. As a consequence, the visualization of
very simple vector shapes on a high-resolution mesh requires significantly
more primitives than the original 2D vector shapes consist of. Furthermore,
the created geometry has to be rendered with an additional offset in order
to avoid z-buffer stitching artifacts.

Wartell et al. [Wartell et al. 2003] presented an algorithm and an associated
data structure that allows the rendering of polylines on multiresolution ter-
rain geometry. Since their system is based upon a continuous level-of-detail
terrain rendering engine, an adaption of the polyline to the current state of
geometry is required at runtime resulting in additional computational costs.
Agrawal et al. [Agrawal et al. 2006] used a similar technique for combining
a textured terrain model with polyline data. They organized the terrain as
a block-based LOD structure derived from a height raster. Based on this
block-based simplification and visualization scheme, height values are picked
up for each line segment from the underlying mesh with the highest reso-
lution. For meshes with lower resolutions, these height values are corrected
accordingly.

3.2.2 Geometry-based Methods

Geometry-based methods triangulate the vector shapes into the terrain mesh
itself. An advantage of this approach compared to the class of overlay-
geometry-based approaches is that the parts of the terrain mesh covered
with vector data do not have to be rendered (and stored) twice. What is
more, z-buffer stitching artifacts are not an issue, as the resulting terrain is
still a single continuous surface but just with integrated areas that represent
the vector shapes. A drawback of this kind of methods is, however, that the
polygon count of the terrain mesh is increased, regardless whether or not
vector data are actually visualized. Weber [Weber & Benner 2001] and Polis

28



3.2. RELATED WORK

[Polis et al. 1995] used a geometry-based approach to integrate roads into a
terrain mesh. They performed this integration offline but did not deal with
level of detail. Schilling et al. [Schilling et al. 2007] integrated polygonal
vector data, such as building blocks, green areas, forests, and roads, into a
custom constrained Delaunay triangulation. Then, triangles lying completely
inside the vector shapes are identified and marked as owned by the respective
vector shape.

3.2.3 Texture-based Methods

Texture-based methods first rasterize vector shapes into a texture and then
project this texture onto the terrain geometry using texture mapping tech-
niques. Due to the nature of texture mapping, geometry intersections or
z-buffer artifacts as in geometry-based approaches are not an issue, and no
additional geometry has to be extracted, stored or rendered. The simplest
approach is to rasterize the vector data into a texture map in a preprocessing
step and ortho-texture the terrain mesh with it. However, the main drawback
of this approach is that in order to achieve reasonable quality, the resolution
of the texture has to be at least as high as that of the aerial imagery. Con-
sequently, memory requirements can become enormous in order to achieve
satisfying quality. What is more, it is not possible to arbitrarily combine
different layers of vector data or to visualize only selected objects of a layer.
Therefore, some texture-based approaches create the texture on-the-fly and
thus are able to arbitrarily combine different layers of vector shapes. How-
ever, texture generation at runtime may be costly, and the quality of the
mapping is still determined by texture resolution.

Kersting et al. [Kersting & Döllner 2002] proposed a texture-based ap-
proach where the textures are generated on-the-fly by rendering the vector
shapes into p-buffers. An on-demand texture pyramid that associates equally
sized textures with each quadtree node is used to improve visual quality when
zooming in. However, many expensive p-buffer switches have to be carried
out. Even with more recent and efficient extensions, for example framebuffer
objects, each switch still requires a complete pipeline flush. Bruneton et
al. [Bruneton & Neyret 2008] presented a method for real-time rendering
and editing of vector data using a GPU-friendly algorithm. They adaptively
refine spline curves on the CPU and rasterize them into textures using tri-
angle strips. In addition to that, they also deal with modifications of the
terrain shape under constraints introduced by the vector shapes.
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3.3 Texture-based Approach

In contrast to a fixed texture created in a preprocessing step, an on-the-fly
generation offers several advantages: First of all, it provides improved visual
quality when zooming in since resolution is not fixed but is optimized with
respect to the current viewpoint. It also allows interactive editing of vector
shapes as well as associated attributes (e.g., color, drawing style). What is
more, different vector layers can be arbitrarily combined, and enabled or dis-
abled as desired. Particularly for large vector maps, memory consumption
is drastically reduced since only the original vector data representation and
the offscreen buffer consume memory at runtime.

Previous texture-based approaches typically use some kind of pyramidal or
tiled texture representation to which the vector data are rendered on-the-fly.
If, however, the number of tiles becomes large, the necessary buffer switches
between the different texture targets become expensive. Additionally, a clip-
ping of vector data at tile borders or repeated rendering of vector data for all
associated tiles is necessary. In contrast, the presented approach rasterizes
the vector data into a single offscreen buffer only, making it very fast. To
achieve good quality despite using a single texture only, it is vital to use the
texture efficiently. To this end, a view-dependent reparameterization is ap-
plied. The main idea behind the reparameterization is to grant vector shapes

place vector data 

in 3D scene

render vector 

data to texture

render terrain 

and apply 

texture

Figure 3.3: Overview of the Texture-based Method. The 2D vector shapes are
placed in the 3D scene at a certain height close to the terrain. Then, based
on the current view configuration a perspective transform is computed under
which the vector shapes are rendered into a texture. Finally, the terrain is
rendered and textured with the created texture map.
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that are close to the viewer more space in the texture than objects that are
further away. The reason behind this is that in the final rendered image
distant objects appear smaller than nearby objects (of the same size) as a
result of the perspective projection. An overview of the approach is given in
Figure 3.3.

In the following, first, the algorithm used for texture generation is de-
scribed, which is in particular able to efficiently handle non-simple polygons
without needing to triangulate them. Then, the perspective reparameteriza-
tion of this texture is presented that aims at reducing aliasing artifacts and
thus improves visual quality compared to standard texture mapping with
nearly no overhead.

3.3.1 Efficient On-the-fly Texture Creation

While the rendering of points and lines is straightforward, the rendering of
polygons given as a set of vertices is not. To render polygonal vector shapes
into the offscreen buffer efficiently, an algorithm similar to that presented by
Guthe et al. [Guthe et al. 2005b] is used. The main advantage of this method
is that it can handle non-convex polygons and polygons containing holes
without needing to triangulate them in advance. The algorithm is inspired
by the standard approach for area calculation of polygons. The main idea is
that when spanning a triangle fan from the first vertex of each polygon ring,
a point inside this ring will be covered an odd number of times as shown in
Figure 3.4. Instead of counting the coverages, it is possible to simply consider
the lowest bit and toggle between black and white. Since there is no need
to take care of the orientation or nesting of the polygon rings, error prone

1

1

2

2

2

2

2

1

Figure 3.4: Polygon Rendering. Left: A concave polygon with a hole. Right: The
polygon is drawn using a triangle fan and texel coverages are counted. Even
numbers indicate outside, odd numbers inside of the polygon.

31



CHAPTER 3. VISUALIZATION OF VECTOR DATA

special case handling is avoided. Toggling of pixels is performed using alpha
blending. Note that with this procedure the entire alpha texture for a vector
layer can be generated in a single rendering pass. If only a single layer is
rendered, the alpha texture can be directly used in a fragment shader. The
color of the layer can be defined by setting an appropriate vertex attribute
which is then multiplied in the shader before blending. If multiple layers are
activated for rendering, they first have to be combined into a single texture.
This is performed by accumulating the layers in a second offscreen buffer
of the same size using standard alpha blending. No specialized shader is
required for accumulation, since the primary color can be used to specify the
color of the current layer. This way, an arbitrary number of possibly semi-
transparent layers can be rendered on the terrain with only two additional
textures.

3.3.2 Texture Reparameterization

In order to improve the visual quality of the mapping of vector shapes, a
perspective reparameterization of the on-the-fly created texture depending
on the current view is proposed. To motivate the application of the reparam-
eterizaton, the aliasing problem arising in the texturing process is described
first (see Figure 3.5). Each texel of size dt of the texture is orthogonally
projected into the scene. If a surface is hit under an angle β, the size of the
projection is

dt
cos β

.

image plane
texture

di

rv ri

d

α
β

dt

Figure 3.5: Aliasing in Texture Mapping.
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Figure 3.6: Texture Generation in Post-perspective Space. If the texture genera-
tion is performed in post-perspective space, texture map pixels projected on
the ground are evenly distributed in the final image.

In the final image the projection area of the texel then has size

d =
dtrv
ri

cosα

cos β
,

where α is the angle between viewing direction and surface normal, ri is
the distance from the camera to the surface and rv is the distance from the
camera to the image plane. Undersampling occurs when d is larger than
the image pixel size di, which can happen if either dtrv

ri
(perspective aliasing)

or cosα
cosβ

(projective aliasing) becomes large. Projective aliasing typically oc-
curs for surfaces almost parallel to the projection direction. Since projection
aliasing heavily depends on the scene’s geometry, a local increase of sampling
density is needed to reduce this kind of aliasing. This requires an expensive
scene analysis at each frame and complex data structures, and can not be
accelerated by current graphics hardware. Perspective aliasing, however, is
caused by the perspective projection of the viewer. It can be reduced by
applying a perspective transformation that change the distribution of texels
in the scene.

Similar aliasing problems arise in shadow mapping [Williams 1978]. In
this context, several papers have addressed the perspective aliasing prob-
lem. The most prominent of them is the perspective shadow map method
by Stamminger and Drettakis [Stamminger & Drettakis 2002]. Perspective
shadow maps attempt to reduce perspective aliasing by performing a per-
spective reparameterization. To this end, texture generation is performed in
post-perspective space (see Figure 3.6), which significantly reduces perspec-
tive aliasing that is caused by the perspective projection of the viewer. Later,
perspective shadow maps were improved by light space perspective shadow
maps [Wimmer et al. 2004]. The first step in this method is to calculate a
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scene 
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Figure 3.7: Texture Reparameterization. The left image shows an example config-
uration with the original view frustum V (blue), the scene bounding box
(black) enclosing the terrain geometry (brown) and a vector shape (green).
From this, the frustum P (red) is computed that defines the perspective
transform. The image on the right shows the same configuration after the
perspective transformation. Note that the projection direction remains un-
changed.

convex body that encloses all relevant parts of the scene including the view
frustum and all objects that can cast shadows on it. Next, this volume is
enclosed with a perspective frustum that has a view vector orthogonal to the
light direction. By varying the length of this frustum the strength of the
warping effect can be controlled. The perspective transformation induced
by the frustum is applied in two places, namely during the creation of the
shadow map and in the computation of texture coordinates during rendering.

In order to improve the visual quality of the mapping of vector shapes,
a perspective reparameterization of the on-the-fly created texture depending
on the current view is applied. It adapts the technique used in light space
perspective shadow mapping to the visualization of vector data. In contrast
to perspective shadow mapping, there is no lighting but a projection direc-
tion in which the vector shapes are mapped onto the terrain (see Figure 3.7).
Because of this a frustum P is chosen with a view vector orthogonal to the
projection direction of the vector shapes. This frustum has to include all
relevant parts of the terrain geometry as well as the 2D vector shapes, which
can theoretically be positioned at an arbitrary height. Although the actual
height of the vector data is not important considering the projective nature
of the approach, they are rendered close to the surface to minimize the size
of the frustum P . Then, the vector shapes are rendered into the offscreen
buffer using the transformation associated with P . Once the texture has
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been created, the offscreen buffer is bound as a texture. Finally, when the
terrain is rendered, appropriate texture coordinates are calculated according
to the perspective projection of P and are used to access the texture. Blend-
ing with the terrain texture is carried out depending on the texture’s alpha
component.

3.4 Stencil-based Approach

The visualization of 2D vector shapes on top of a digital elevation model
basically requires the determination of points in 3D space that lie on the
terrain surface and whose 2D geographic location corresponds to that of the
vector data. However, when transforming a 2D vector shape into 3D space
its position is defined only up to its height. The possible positions of a vertex
in 3D are therefore described by a ray originating at the geocenter with a
direction defined by the 2D geographic coordinate of the vertex. Considering
a polygonal vector shape, this results in a volume as depicted in Figure 3.8
(a). Since the vector shape is also supposed to lie on the terrain surface, the
intersection between the volume and the terrain surface contains all points
that meet both requirements. Consequently, by checking if a point on the
terrain surface is located inside the volume of a given vector shape, it can

vector 
shape

geocenter

terrain 
surface

projection of 
vector shape on 
terrain surface

(a)

near 
plane

terrain 

surface

qn

qf

p

z-pass 

direction
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z-fail 

direction

nadir

(b)

Figure 3.8: Problem Formulation. Figure (a) shows a polygonal vector shape and
the corresponding volume indicating positions in 3D space with equivalent
2D geographic coordinates. The intersection of the volume with the terrain
surface describes the area on the terrain covered with the respective vector
shape. The determination of this intersection can be formulated as a point-
in-polyhedra problem. Figure (b) shows a 2D illustration of the point-in-
polyhedra problem.
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Figure 3.9: Overview of the Stencil-based Method. First, the original vector
shapes are extruded to polyhedra. Then, the polyhedra are used to cre-
ate a mask in the stencil buffer that indicates the areas where the terrain
surface and polyhedra intersect. Finally, the mask is used to overlay the
vector shapes on the current view.

be determined if the point is part of the vector shape or not. This way, the
problem of visualizing 2D vector shapes on textured elevation model can be
formulated as a point-in-polyhedra problem (see Figure 3.8 (b)). Since this
test can be performed efficiently in screen-space using graphics hardware,
it can be used for an accurate visualization of vector data that completely
avoids the aliasing problems of texture-based approaches.

In the remainder of this section, first the point-in-polyhedra problem is
formalized and it is described how graphics hardware can be used to compute
it efficiently. Then, the different steps of the algorithm as shown in Figure
3.9 are explained in detail. In the first step, vector shapes are extruded to
polyhedra, indicating positions in 3D space with equivalent 2D geographic
coordinates. Then, these polyhedra are used to create a mask in the stencil
buffer indicating the position of the vector shape in image space with respect
to the current view. Finally, this mask is used to render the vector data into
the current view.

3.4.1 Point-in-polyhedra Algorithm

A general algorithm for performing a point-in-polyhedra test can be formu-
lated as follows: Assume a point q that is outside all polyhedra is given. For
a point p in question the objective is then to find all intersections of the line
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segment pq and the polyhedra. At each intersection a counter is incremented
if the line enters and decremented if the line exits the polyhedron. After
all intersection tests have been performed, the counter corresponds to the
number of polyhedra containing p. If the counter is zero, then p is outside
all polyhedra. Otherwise, if the counter is non-zero, p is inside at least one
polyhedron.

The problem of shadow determination that can also be expressed as a
point-in-polyhedra problem [Crow 1977]. Crow defined a shadow volume as
a region of space that is in the shadow of a particular occluder given a partic-
ular ideal light source. The shadow test determines if a given point is inside
the shadow volume of any occluder. Heidmann [Heidmann 1991] adapted
Crow’s algorithm to hardware acceleration by exploiting the stencil buffer to
evaluate the per-pixel count for the point-in-polyhedra test.

By rendering the polyhedra’s front- and back-faces to the stencil buffer,
the point-in-polyhedra test can be performed simultaneously for all visible
points of a scene. Each pixel is interpreted as a point p and the ray from the
viewpoint through the pixel is considered. There are two possible choices for
a point q along the ray outside any polyhedron (see Figure 3.8 (b)). The first
possible choice is the intersection qn of the ray with the near clipping plane.
This point is known to be outside all polyhedra if the near clipping plane
does not intersect any polyhedra. The alternative is the point qf at infinity
at the far end of the ray. This point is always outside all polyhedra because
it is infinitely far away from the scene.

Entering intersections correspond to polyhedra front-faces while exiting in-
tersections correspond to polyhedra back-faces. Thus, counting intersections
can be performed by rasterizing the polyhedra faces in the stencil buffer with
the stencil operation configured to increment the stencil value when a front-
face is rasterized and to decrement the count when a back-face is rasterized.
However, intersection counting has to be performed only along pqn or pqf
respectively, but not along the entire ray. Since p is a visible point, these
two kinds of intersections can be discriminated by a depth test. If qn at the
near clipping plane is used, only polyhedra faces passing the depth test are
counted, whereas if qf at infinity is chosen, only the polyhedra faces failing
the depth test are considered. Counting towards the near clipping plane is
thus called the z-pass method, whereas counting towards infinity the z-fail
method [Everitt & Kilgard 2002][McGuire et al. 2003]. Once rendering has
been finished, a stencil value of zero indicates that the same number of front-
and back-faces was rendered and thus the corresponding pixel is outside all
polyhedra. Otherwise the pixel is inside at least one polyhedron.

The z-pass method fails whenever a polyhedron intersects the near clipping
plane, since in this case the assumption that qn is outside all polyhedra does
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not hold true for all pixels. This near clipping problem has led to the devel-
opment of the z-fail technique in the first place, which processes fragments
that fail (instead of pass) the depth test. The the z-fail method moves the
intersection problem from the near to the far clipping plane. This is advan-
tageous because intersections with the far clipping plane can be avoided by
moving the far clipping plane to infinity.

3.4.2 Polyhedra Construction

The first step of the algorithm is to extrude the vector shapes to polyhe-
dra. The construction is started by duplicating each vertex of the vector
shapes. While one vertex of each of the created pairs is translated towards
the geocenter, the other is moved into the opposite direction. The set of
upper and lower vertices constitute the polyhedron’s top and bottom cap.
The amount of translation is chosen such that the top and bottom cap are
located completely above and below the terrain surface, respectively. Apply-
ing the described construction, the resulting polyhedron encloses the part of
the terrain surface that is supposed to contain the vector shape.

In order to minimize the rasterization workload (typically the bottleneck
when using shadow volumes) caused by rendering the polyhedra, their size
is reduced as much as possible. To accomplish this, top and bottom caps
of the polyhedra are created as close as possible to the terrain surface with-
out intersecting it. In the current implementation the bounding boxes of
the quadtree cells containing the terrain geometry are utilized for this. The
bounding boxes encode an upper and lower bound of the enclosed terrain
and therefore provide reasonable upper and lower bounds for the polyhedra
as well.

Vector shapes consisting of polylines or point primitives are assigned a
user-defined fixed width or radius respectively (i.e., they are converted to
polygons before they are extruded to polyhedra). In the case of polylines
height values of corresponding vertices of the top and bottom cap are deter-
mined as the minimum and maximum height values of the bounding boxes
containing the projection of the line segment (see Figure 3.10). In the case
of polygons the minimum and the maximum height value of the bounding
boxes enclosing the projection of the whole polygon is used. After appro-
priate height values have been determined, the constructed polyhedra are
tesselated ensuring a consistent winding order with all face normals pointing
outwards. The resulting geometry of each object is stored in its own vertex
buffer object remaining valid as long as the vector shape is not modified.
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Figure 3.10: Vector Shape Extrusion. Left: Extrusion of points, polyline and poly-
gon. Right: A 2D diagram of the extrusion of a polyline. The original vec-
tor shape points (blue) are duplicated and moved to the upper and lower
bounds of the respective bounding box constituting the top and bottom
caps (red).

3.4.3 Mask Generation

After the polyhedra have been created from the vector shapes, they are ren-
dered into the stencil buffer. An often applied approach when using shadow
volumes to decide on a per frame and volume basis if the z-pass or the z-fail
technique is used. The z-pass method is preferred because it does not need
capping (i.e., top and bottom caps need not to be rendered) and is therefore
generally faster than z-fail. However, since the z-pass technique does not
produce correct results when the near plane intersects a shadow volume, the
robust z-fail technique is applied in such cases. Following this approach, it is
decided conservatively which method is used by checking if the current view-
port is inside the bounding box of the considered polyhedron. In contrast to
the shadow volume algorithm, a top cap is needed for the polyhedra in the
z-pass case. The reason for this is that there is no occluder that casts the
shadow and acts as a top cap when visualizing vector data.

Before the polyhedra are rendered into the stencil buffer, color, depth and
stencil buffer are cleared first and the terrain is rendered initializing the
depth buffer with the required depth values. Next, depth buffer writing is
disabled, while the depth test still remains active, and rendering is restricted
to the stencil buffer only. A polyhedron’s faces are rendered using different
stencil operations depending on whether they face towards or away from the
camera. To this end, face culling is enabled and the polyhedron is rendered
twice, one time with back-face culling enabled, the other time with front-
face culling enabled. If the z-pass method is used because the polyhedron
does not intersect the near clipping plane, the values in the stencil buffer are
modified when the depth test passes. The stencil value is incremented for
fragments belonging to front-facing polygons and decremented for fragments
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belonging to back-facing polygons. If the z-fail technique is applied, values
in the stencil buffer are modified when the depth test fails. The stencil value
is incremented for fragments belonging to back-facing polygons and decre-
mented for fragments belonging to front-facing polygons.

The OpenGL extensions EXT stencil wrap and EXT stencil two side

are used, if supported, which aim at simplifying the mask creation in the sten-
cil buffer. The EXT stencil wrap extension specifies two additional stencil
operations. These new operations are similiar to the existing increment and
decrement operations, but wrap their result instead of saturating it, which
leads to a reduction of the likelihood of incorrect intersection counting due
to limited stencil buffer resolution. The EXT stencil two side extension
provides two-sided stencil testing where the stencil-related state can be con-
figured differently for front- and back-facing polygons. With two-sided stencil
testing front- and back-faces can be rendered in a single pass instead of two
separate passes, which may improve performance.

A simple triangle fan can be used to draw the top and bottom caps, with-
out needing to triangulate them in advance, even if they are non-convex or
contain holes. The fan itself may be convex but the pattern of front- and
back-faces will produce the correct non-convex shape in the stencil buffer.
The process is similar to the rendering of polygons in the texture-based
method. An example is shown in Figure 3.11. This technique has previously
been used for rendering filled silhouettes in the stencil buffer from possible
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Figure 3.11: Triangle Fan Example. The concave polygon on the left is tessellated
into a fan. In the middle decrements caused by front-facing polygons (top)
and increments caused by back-facing polygons (bottom) are shown. Com-
bining increments and decrements results in the original concave polygon
(right).
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silhouette edges for Silhouette Clipping [Sander et al. 2000].
To avoid far plane clipping in the z-fail case, the far plane is moved to in-

finity. This can be realized by using the following OpenGL projection matrix


2n
r−l 0 r+l

r−l 0

0 2n
t−b

t+b
t−b 0

0 0 −1 −2n
0 0 −1 0


to transform from eye-space to clip-space, where n and f are the respec-
tive distances from the viewer to the near and far clipping plane. (l, b,−n)
and (r, t,−n) specify the (x, y, z) coordinates of the lower-left and upper-
right corners of the near clipping plane. Positioning the far plane at infinity
typically reduces the depth buffer precision only slightly. If the OpenGL
NV depth clamp extension is supported and enabled during rendering of the
polyhedra, the conventional projection matrix can be kept.

3.4.4 Mask Application

After the mask has been created in the stencil buffer, it is applied to the scene.
To this end, writing to the color buffer is reactivated and additive blending
is enabled. The stencil test is configured to pass only when the value in the
stencil buffer does not equal zero. Instead of drawing a screen-sized quad to
apply the mask to the scene, the bounding box of the respective polyhedron
is rasterized in order to save rasterization bandwith. This is performed with
depth test enabled and drawing only front-faces in the z-pass case and with
depth test disabled and drawing only back-faces in the z-fail case. In order
to avoid a complete stencil clear per object, the stencil function is configured
such that the value in the stencil buffer is set to zero for each fragment that
passes the stencil test. As a consequence, the entire stencil buffer is zero
again when the rendering of a polyhedron is finished and thus does not need
to be cleared.

The creation of the mask and its application to the scene has to be per-
formed for each object separately. This is necessary because each object is
allowed to have a different color and it is not possible to distinguish between
individual objects once the mask has been created. If there are only objects
with few different colors in the scene, sorting by color and then rendering
each color group at once can help to reduce the required fill rate and state
changes. An overview of the rendering process is given in Figure 3.12.
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Figure 3.12: Overview of the Rendering Process.

3.5 Results and Discussion

The presented approaches are well suited for visualizing large geospatial
maps at real-time framerates. They do not require any elaborate and time-
consuming preprocessing, instead vector data given as shapefiles can be
loaded on-demand and immediately visualized at runtime. Different lay-
ers can be arbitrarily combined and individual objects can be enabled or
disabled by the user. Furthermore, both methods allow interactive editing
of vector shapes. A big advantage of the presented methods compared to
geometry-based method is that they are independent of the terrain complex-
ity, that is, computational costs for vector data visualization do not depend
on the resolution of the underlying DEM but only depend on the number of
primitives in the vector data. Considering the fast evolving acquisition de-
vices resulting in ever higher sampled terrain datasets this fact will become
even more important in the future.

The presented texture-based approach generates a texture from the vector
data on-the-fly. This has the advantage that neither a texture nor a complete
texture pyramid has to be precomputed and loaded into memory. Instead,
only the much more compact polygonal representation of the vector data is
required. Since the texture is generated each frame, the vector shapes can be
interactively changed by the user at runtime. With the utilization of the per-
spective reparameterization, aliasing artifacts are significantly reduced and a
quality superior to standard texture mapping is achieved. Figure 3.13 shows
the quality improvement achieved by the applied reparameterization com-
pared to a uniform parameterization.

Although the presented texture-based approach reduces perspective alias-
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Figure 3.13: Effect of Texture Reparameterization. The top row shows a rendering
of vector data using a uniform parameterization (left) and the correspond-
ing texture (right). The bottom row shows the same but using the presented
reparameterization. The rendering using the reparameterized version shows
superior quality. In the uniform texture representation, vector shapes that
are close to the viewer and those that are farther away have the same size.
In contrast to that, in the reparameterized representation vector shapes
that are further away from the viewer occupy less space than vector shapes
close to the viewer.

ing, projective aliasing problems at steep slopes still remain (see Figure 3.14
(c)). Since the view frustum size is adjusted each frame to provide an optimal
utilization of the available texture memory, the quality of the texture-based
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(a) (b) (c)

Figure 3.14: Limitations. Depending on the extent of the view frustum, the quality
of the texture-based approach varies noticeably if the texture resolution
is not chosen large enough. This effect is demonstrated in columns (a)
and (b), which show the same area of the terrain observed from different
viewpoints (top) and corresponding closeups (bottom). The quality in (b)
is worse since a larger part of the terrain is visible and thus the texture has
to be used for a larger area. The images in column (c) show the projective
aliasing problem, which occurs at steep slopes and is especially noticeable
for narrow features like lines.

method may vary depending on the current view configuration. In particular
when the view frustum is very large, undersampling can occur if the current
texture resolution is not sufficiently high. Even worse, in such cases disturb-
ing “swimming artifacts”, that is, vector shapes seem to frequently change
their shape when the viewpoint changes (see Figure 3.14 (a) and (b)), may
be visible. However, the aforementioned artifacts only occur if the resolu-
tion of the offscreen buffer with respect to screen resolution is chosen too
low. Therefore, it is important to select the texture resolution in such a
way that even in adverse view configurations sufficient quality can be guar-
anteed. In practice good quality is achieved by choosing texture resolution
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shapefile #points w/o texture(1K/2K/4K) stencil

buildings 12628 100 70/69/68 55

geom. map 99140 100 60/60/59 49

soil types 644958 100 45/44/44 38

Table 3.1: Framerates. The size of the used texture has nearly no influence on the
performance of the texture-based approach. Since in the stencil-based ap-
proach more primitives have to be rendered, it is slower compared to the
texture-based approach.

twice as large as screen resolution. Figure 3.15 shows a comparison of the
quality achieved with different texture resolutions. An alternative to improve
the quality of the presented texture-based approach without increasing tex-
ture memory consumption is to apply the idea of parallel-split shadow maps
(PSSMs) [Zhang et al. 2006]. PSSMs split the view frustum into different
parts by using planes parallel to the view plane and then generate multiple
smaller texture maps for the split parts. While this technique increases qual-
ity without demanding more texture memory, the use of multiple texture
maps reduces performance.

The stencil-based method allows high-quality vector data visualization
as provided by geometry-based methods. Yet, it does not suffer from their
shortcomings, namely the elaborate adaption process and the increased prim-
itive count depending on the terrain complexity. Although the stencil-based
method requires rendering a multiple of the amount of primitives contained
in the original vector shapes, it is only a small, constant factor independent
of the underlying terrain geometry.

In comparison to the presented texture-based technique that immediately
renders the vector data into a texture, the stencil-based method requires more
primitives to be rendered and is therefore slightly slower (see Table 3.1). On
the other hand, it does not suffer from aliasing artifacts as the texture-based
approach and hence provides superior quality (see Figure 3.15). However,
the results are hardly distinguishable from the texture-based approach in
most areas if a texture resolution of 2048× 2048 or larger is used (assuming
a moderate screen resolution). However, at steep slopes the stencil-based
approach provides superior quality compared to the texture-based approach
even if high resolution textures are used. Interactive editing and manipula-
tion of vector data is also possible with the stencil-based approach as it only
requires updating the polyhedra accordingly. In the current implementation
vector shape extrusion is performed on the CPU. However, it could also be
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(a) 256×256 (b) 512×512 (c) 1024×1024 (d) 4096×4096

Figure 3.15: Quality Comparison. The top row depicts screenshots of the geomorpho-
logical map of Turtmann valley visualized using the texture-based approach
at different resolutions for the used texture. The bottom row shows closeup
views of the respective images above.

carried out on the GPU, which might come in handy for future applications
such as animated vector data.
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Figure 3.16: Results. Some results obtained with the presented method. The screen-
shots show complex vector data of polygonal and polyline vector data ren-
dered onto a textured DEM.
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CHAPTER 4

Registration

4.1 Motivation

Since their origin in the late 1950s, digital elevation models (DEMs) along
with corresponding aerial imagery have found wide application in various
disciplines, such as mapping, remote sensing, land planning and communica-
tions. During this same time, acquisition and processing of terrain data as
well as corresponding visualization techniques have continuously progressed
so that nowadays a real-time visualization of large, high-resolution terrain
datasets has become feasible. However, a major drawback of aerial imagery
is the irregular sampling of the terrain surface leading to a coarse represen-
tation of steep slopes, while overhangs are not captured at all. In addition to
that, clouds or shadows might obstruct the view to areas of interest. Apart
from poor visual quality, this also severely limits the applicability of the data
in disciplines, such as geomorphology.

Considering the quality and availability of today’s digital cameras, the
use of high resolution photos offers an easy and affordable way to capture
additional information in areas of interest. However, in order to be able to
complement the aerial imagery with photos, the photos have to be georeg-
istered first (see Figure 4.1). Georegistration involves the computation of
accurate information about the camera’s absolute location and orientation
in a georeferenced coordinate frame as well as its intrinsic parameters, such
as focal length. Some of these information can be provided with GPS de-
vices and electronic compasses. Also, many modern digital cameras embed
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(a) (b)

Figure 4.1: Motivation. (a) The top image shows a screenshot of the textured DEM.
Texture quality in the steep areas is very low. The bottom row depicts
some example photos of the same area taken on-site. The goal is to register
the images to the textured DEM. (b) The image shows the frustra of the
estimated cameras associated with the photos.

focal length and other information in EXIF (Exchangeable Image File For-
mat) tags of produced image files. However, the vast majority of existing
photographs lack such information. Furthermore, EXIF tags are sometimes
inaccurate and camera parameters can not be estimated from them alone.

One approach to georegister images is to place marker points in the field
and measure their location, for example via GPS. Then, when a photo of this
area is taken, the marker points are detected in the photo and are used to
estimate the camera parameters. Unfortunately, this approach is elaborate
and time-consuming, in particular in high alpine environments, and thus im-
practicable when many images have to be registered. In such cases, structure
from motion (SfM) techniques that do not rely on the camera or any other
piece of equipment to provide camera parameters become especially attrac-
tive. The goal of SfM is to simultaneously recover the unknown 3D scene
structure and camera parameters from a set of feature correspondences in
the given images. However, for the application at hand the images have to
be aligned to a textured DEM in addition to be registered to each other (i.e.,
not only relative, but absolute camera parameters have to be computed).

To georegister photos, two kinds of approaches have previously been ap-
plied. One approach is to first register the photos to each other using some
structure from motion technique. Then, in a second step the resulting 3D
scene points are fit to the given DEM in order to upgrade the camera pa-
rameters from relative to absolute ones. To this end, the user typically has
to specify correspondences between the reconstructed point cloud and the
DEM (which can be difficult). Moreover, this approach completely ignores
the information contained in the given textured DEM during the SfM opti-
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(a) (b)

Figure 4.2: Problem. (a) A photo is matched to the aerial imagery using the method
of Lowe [Lowe 2004]. Only one (false) match is detected, far too few needed
for a successful registration. (b) By contrast, using a constraint matching
(as presented later in section 4.3.3) between the photo and a screenshot of
the textured DEM, the number of matches can be increased to more than
100.

mization. The other approach is to directly register the photos to the aerial
imagery using image registration techniques. However, due to widely differ-
ent illumination conditions, resolution and especially viewpoint, registration
is very difficult and often fails (see Figure 4.2 (a)).

With this in mind, the presented registration algorithm first lets the user
manually align an initial camera to the textured DEM. Then, an incremental
SfM optimization is carried out similar to Snavely et al. [Snavely et al. 2006].
However, in contrast to them, the optimization is performed in an absolute
coordinate system. This has the advantage that it is possible to relate to the
textured DEM during the optimization. Instead of triangulating 3D points
from image correspondences, they can now obtained from the DEM. As a re-
sult, estimates for correspondences with a small angle of separation are more
robust. In addition to that, photos can be registered to screenshots of the
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textured DEM. By using the information about the (approximate) absolute
camera parameters obtained in the optimization so far, the registration can
be done much more efficiently than registering the photo to aerial imagery
(see Figure 4.3.3 (b)).

The remainder of this chapter is organized as follows: First, related work
is reviewed including structure from motion, image-based modeling and the
registration of images to 3D models. Then, a robust algorithm for registering
a set of uncalibrated images to a textured DEM is presented. Finally, results
are shown and discussed.

4.2 Related Work

The work presented in this chapter aims at registering a set of images to
a textured DEM, and is thus most closely related to methods that register
images to 3D models. However, in addition to that, related work from struc-
ture from motion and image-based modeling, which are also relevant in the
considered context, are reviewed as well.

4.2.1 Structure from Motion

The goal of structure from motion (SfM) techniques is to simultaneously re-
cover the unknown 3D scene structure and camera parameters from a set of
feature correspondences in images. The first effective structure from motion
methods were developed in the 1980s. Longuet-Higgins [Longuet-Higgins
1981] introduced a still widely used two-frame relative orientation technique.
Later, multi-frame structure from motion techniques, including factorization
methods [Tomasi & Kanade 1992] as well as global optimization techniques
[Spetsakis & Aloimonos 1991][Szeliski & Kang 1994][Oliensis 1999], were de-
veloped.

More recently, related techniques from photogrammetry, such as bundle
adjustment [Triggs et al. 2000][Szeliski & Kang 1994], were introduced into
the computer vision community. In situations where the camera calibration
parameters are unknown, self-calibration techniques, which first estimate a
projective reconstruction of the 3D world and then perform a metric upgrade,
have proven to be successful [Pollefeys et al. 1999][Pollefeys & Gool 2002].
An iterative bundle adjustment was presented in [Brown & Lowe 2005], in
which cameras are added to a bundle adjustment one by one. Snavely et
al. [Snavely et al. 2006][Snavely et al. 2008] used a similar approach with
several modifications to improve robustness. Their improvements include the
initialization of new cameras using pose estimation in order to avoid local

52



4.2. RELATED WORK

minima, a heuristic for the selection of the initial images for SfM, and a check
if reconstructed points are well-conditioned before adding them into the opti-
mization. They demonstrated the effectiveness of their approach by applying
it to huge real-world photo sets found on Google and Flickr, including photos
of different cameras, zoom levels, resolutions and illumination.

Schaffalitzky et al. [Schaffalitzky & Zisserman 2002] presented another
related technique for the reconstruction of unordered image sets, focusing
on efficiently matching feature points between images. Vergauwen and Van
Gool proposed a similar approach [Vergauwen & Gool 2006] and are hosting
a web-based reconstruction service addressing cultural heritage applications.
In [Fitzgibbon & Zisserman 1998] and [Nistér 2000] a bottom-up approach is
used instead, in which small subsets of images are matched to each other and
then merged into a complete 3D reconstruction. Martinec et al. [Martinec
& Pajdla 2007][Martinec & Pajdla 2006] reconstruct a scene by first regis-
tering all camera rotations and then translations using them, given pairwise
Euclidean reconstructions for the cameras.

4.2.2 Image-based Modeling

During recent years, computer vision techniques, such as structure from mo-
tion, have been introduced into the computer graphics community under
the name of image-based modeling. Image-based modeling is the process of
creating three-dimensional models from a set of input images. A popular ap-
plication of image-based modeling has been the creation of large scale archi-
tectural models. One of the first approaches was the semi-automatic Façade
system [Debevec et al. 1996]. Given a sparse set of photographs, a basic
geometric model of the architecture is recovered using an interactive pho-
togrammetric modeling system. An automatic architecture reconstruction
systems based on a Bayesian approach was presented in [Dick et al. 2004].
In the MIT City Scanning Project [Teller et al. 2003] thousands of calibrated
images taken from an instrumented rig are used to construct a 3D model of
the MIT campus. In the Stanford CityBlock Project [Roman et al. 2004]
sideways-looking videos are taken from a vehicle driving down the street and
are combined into a single multi-perspective image that summarizes one or
more city blocks. The UrbanScape project [Akbarzadeh et al. 2006] presents
an approach for fully automatic 3D reconstruction of urban scenes from video
data. The videos are captured by an acquisition system consisting of eight
cameras mounted on a vehicle. The 4D Cities project [Schindler et al. 2007]
aims at building time-varying 3D models by temporally sorting a collection
of input photos spanning many years.
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4.2.3 Registration of Images to 3D Models

There has been a number of approaches to automated registering of imagery
with a 3D model for texture mapping purposes. Stomas and Liu [Liu et al.
2006][Stamos & Allen 2002] developed an approach for texture mapping 2D
images onto 3D range data. To identify camera parameters, they match fea-
tures between the LIDAR data and the images using vanishing points and
rectangular parallelepipeds on the building facades. The parameters are fur-
ther refined using correspondences between the LIDAR data and the sparse
point cloud generated from multiview geometry. Recently, Ding et al. [Ding
et al. 2008] presented a fast, automated, camera pose recovery algorithm for
texture mapping oblique aerial imagery onto 3D geometry models obtained
via LIDAR. They take advantage of vanishing points and use a feature match-
ing technique based on 2D corners associated with orthogonal 3D structural
corners.

Hsu et al. [Hsu et al. 2000] presented an approach for video-based tex-
ture mapping. They use tracked features for inter-frame pose prediction,
and refine the pose by aligning projected 3D model lines to those in images.
Neumann et al. [Neumann et al. 2003] follow a similar idea by implementing
an extended Kalman filter to perform interframe camera parameter tracking
using point and line features. Both methods can lose track in situations with
large pose prediction error due to occlusions. Zhao et al. [Zhao et al. 2005]
instead use an iterative closest point algorithm to align a point cloud gener-
ated from video to that obtained from a range sensor.

Lee and Nevatia et al. [Lee et al. 2001] presented a method for integrating
facade textures from ground view images into 3D building models. They use
vanishing points and 3D-2D line matching to find single view camera poses.
Recently, Hu et al. [Hu et al. 2006] presented a system for mapping ground
and aerial-based imagery. Their system requires, however, human interac-
tions in many places such as building contour extraction from aerial images
and manual point correspondence to align aerial images to LIDAR data.

4.3 Registration of Images to a Textured DEM

In the presented algorithm, first an initial camera is manually aligned to the
textured DEM prior to the SfM optimization. This way, it is possible to make
use of the textured DEM during the SfM procedure. The textured DEM is
then exploited in two ways during the optimization: First, instead of com-
puting 3D estimates for corresponding features by triangulation, which can
be unstable for small baselines, 3D estimates are obtained from the DEM.
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Note that the main objective of the presented algorithm is to fit the photos
as best as possible to the given approximate terrain geometry and not to
estimate 3D scene geometry as best as possible. Second, the textured DEM
is used for automatically establishing additional ground control points for
the photos.

In the remainder of this chapter the different steps of the proposed algo-
rithm are presented in detail. First, the feature detection and matching pro-
cedure is described. Then, the incremental bundle adjustment is presented,
followed by a description of the algorithm to create additional ground control
points.

4.3.1 Feature Extraction and Matching

The first step in the registration algorithm is to extract distinct features in
each input image. The SIFT feature detector [Lowe 2004] is used for this since
it has shown good invariance to image transformations. Alternatively, other
feature detectors could be used (see [Mikolajczyk & Schmid 2005] for a com-
parison of various feature detectors). In addition to the location of a feature,
SIFT also provides a local descriptor for each feature as a 128-dimensional
descriptor vector. A typical image contains up to several thousand SIFT
features (see Figure 4.3).

Next, corresponding features between each image pair are determined. To
match features between two images I and J , first, a kd-tree is built from the
feature descriptors in J . Then, for each feature in I the nearest neighbor in J
is determined using the kd-tree. Since kd-tree searches can be slow for high
dimensional spaces, the approximate nearest neighbors (ANN) kd-tree pack-

Figure 4.3: Feature Detection. SIFT features extracted in the two images are shown
as square patches. The squares are scaled and rotated to reflect the scale
and orientation of the detected features.
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Figure 4.4: Epipolar Lines. The fundamental matrix is computed from corresponding
features using the normalized 8-point algorithm inside a RANSAC procedure.
The epipolar line of each detected feature is visualized in the respective other
image.

age of Arya et al. [Arya et al. 1998] is used to further speed up the nearest
neighbor search. Rather than classifying false matches by thresholding the
distance to the nearest neighbor, the closest-to-next-closest matching scheme
proposed by Lowe [Lowe 2004] is applied (see section A.6). In this matching
strategy the ratio of descriptor distances to the nearest and second nearest
neighbor is thresholded (a threshold of 0.6 is used1). If more than one feature
in I matches the same feature in J , all involved matches are removed as some
of them must be invalid.

After corresponding features for an image pair have been determined, the
fundamental matrix for the pair is robustly estimated using RANSAC [Fis-
chler & Bolles 1981]. In each RANSAC iteration, a candidate fundamental
matrix using the normalized 8-point algorithm [Hartley 1997] is computed.
The RANSAC outlier threshold is set to 6 % of max(w(I), h(I)), where w(·)
and h(·) are the width and height of the image, respectively. Matches that are
not compatible with the computed fundamental matrix, i.e., whose distance
to the corresponding epipolar line (see Figure 4.4) exceeds a given threshold,
are removed from the optimization (see Figure 4.5). The obtained fundamen-
tal matrix is then refined by applying the Levenberg-Marquardt algorithm
minimizing errors subject to the found inliers. If the number of remaining
matches is less than 20, all matches are removed from consideration.

Once a set of geometrically consistent correspondences has been deter-
mined between each image pair, they are organized into tracks. A track is a
connected set of corresponding features across multiple images (i.e., all fea-
tures of a track are image projections of the same point in world space, and

1Most thresholds used in the following are set according to [Snavely et al. 2008]
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(a) (b)

Figure 4.5: Outlier Removal. (a) Visualization of the detected correspondences during
feature matching. (b) The computed epipolar geometry is used to remove
outliers (red). Note that not all false matches can usually be detected and
removed.

hence are in pairwise correspondence). Correspondences that were not found
directly during feature matching are added accordingly as shown in Figure
4.6. If a track contains more than one feature from the same image, it is
considered inconsistent and removed from the optimization. The determined
feature tracks are then organized in an image connectivity graph, in which
each image is a node and an edge exists between each pair of images with
matching features. Typically, the graph consists of several connected com-
ponents with one or more large components containing the vast majority of
images and several smaller ones consisting of the remaining images that could
not be matched. The following sections describe how the images of such a
connected component of images can be robustly georegistered. If more than
one connected component should be registered, the whole process has to be
repeated for each of them accordingly.
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Figure 4.6: Feature Tracks. Matching features (green) are organized into tracks (left).
All features in a track are image projections of the same world point and are
thus in pairwise correspondence. Therefore, all feature correspondences that
have not been found during the matching phase (blue) are added to the list
of correspondences (right).

4.3.2 Incremental Bundle Adjustment

The cameras are parameterized using a seven-parameter model. Following
the common assumptions of square pixels, zero skew, and that the center
of projection is fixed and coincident with the image center, the remaining
free parameters are the 3D orientation (three parameters), the camera cen-
ter (three parameters), and the focal length (one parameter). For a detailed
definition of camera models see section A.2.

In order to be able to exploit the textured DEM in the following incremen-
tal structure from motion optimization, first an initial camera is manually
georeferenced. To this end, the user has to specify a few correspondences
between the corresponding photo and the textured DEM (see Figure 4.7).
To represent a good starting point for the optimization, the photo that is
initially estimated should have a large number of correspondences. There-
fore, the photo with the largest number of matches is proposed to the user
to be initially matched (optionally, an arbitrary photo can be chosen by the
user). From the user-specified ground control points the camera parameters
are then estimated using the Gold Standard algorithm for camera estimation
(see section A.3) inside a binned RANSAC procedure (see section A.8). For
the RANSAC step, an outlier threshold of 0.4 % of max(w(I), h(I)) and a
sample of four features taken from four adaptive bins (one feature from each
bin) is used.

Once the initial camera has been estimated, the remaining cameras are
added one by one into the optimization. Among the yet uninitialized cameras
always the one observing the largest number of tracks already in the opti-
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Figure 4.7: Manual Matching. In the manual matching the user has to specify cor-
responding 2D points in a photo (left) and 3D points on the textured DEM
(right). From this correspondences an initial georegistered camera is esti-
mated that is used as starting point for the optimization.

mization is added next. Then, the camera’s 2D feature points are assigned
corresponding 3D points transferred from matching features in other images
that already have a 3D estimate (see Figure 4.8). This is because if two
features correspond, then they originate from the same 3D world point. If
sufficiently enough 2D-3D correspondences (>20) are available for the cam-
era, the Gold Standard algorithm is used again inside a binned RANSAC
procedure to estimate the camera parameters.

Once the camera matrix has been estimated, the yet uninitialized 2D fea-
ture points in the respective image are assigned corresponding 3D world
points taken from the DEM. The 3D points are obtained by rendering the
DEM from the estimated camera position and reading back the respective
depth values from the z-buffer. Note that the 3D world points can only be
obtained from the DEM because the optimization is performed in an absolute
coordinate frame with respect to the DEM.

Next, a global bundle adjustment is performed using a sparse bundle ad-
justment library [Lourakis & Argyros 2004]. The bundle adjustment is con-
figured such that only camera parameters (i.e., motion) are refined while the
3D points (i.e., structure) remain unchanged. The optimization is restricted
to motion only because the main objective is to register the images as best as
possible to the given geometry in the first place and not to improve geometric
accuracy. In addition to that, triangulating a 3D point does not provide a
well-conditioned estimates if there is only a small angle of separation between
the rays. Although it is possible to detect and exclude such tracks from the
optimization, it would prevent a successful registration of many images due
to an insufficient number of remaining matches.

To obtain the 3D estimate for a track from the DEM, the DEM is ren-
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(a) (b) (c) (d)

Figure 4.8: Incremental Bundle Adjustment. (a) Detected SIFT features in an al-
ready estimated camera are assigned corresponding 3D points obtained from
the textured DEM. (b) A new camera is added into the optimization. Match-
ing features in other images that already have a 3D estimate are determined
and transferred. (c) Using the transferred 3D estimates the new camera is
estimated via the Gold Standard algorithm. (d) The yet uninitialized fea-
tures of the new camera are assigned 3D points from the DEM. Finally, a
global bundle adjustment is performed.

dered from all involved camera positions. Then, a local search is performed
around the position of each feature of the considered track in the correspond-
ing depth map. The depth value that minimizes the mean reprojection error
over all features of the track is taken as the new 3D estimate. Since the
camera parameters change during each iteration, the 3D estimates of the
tracks are updated after each run. Additionally, outlier tracks are removed
after each iteration if their reprojection error is above a threshold of 0.8 %
of max(w(I), h(I)). This procedure is repeated, one camera at a time, until
all cameras have been processed or no remaining camera observes enough 3D
points (>20) to be robustly reconstructed.

4.3.3 Adding Ground Control Points

So far, the only direct correspondences established between the photos and
the textured DEM are the ground control points (i.e., 2D-3D correspondences
between the images and the textured DEM) specified by the user during the
manual registration of the first camera. The remaining cameras are only
indirectly constrained by these ground control points through 2D-2D feature
correspondences in the images. Due to imperfect initializations, imprecise
feature locations, and round-off errors during the incremental bundle ad-
justment, errors may accumulate during each iteration and introduce drift.
Especially cameras for that the level of indirections is high with respect to
the initial camera are susceptible to drift. To account for that, additional
ground control points are determined in each iteration for the newly added
photo (see Figure 4.9). To obtain ground control points for a photo, the
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Figure 4.9: Adding Ground Control Points. Left: Only the manually registered im-
age is directly linked to the textured DEM via ground control points (red).
The remaining images are only indirectly connected through image-to-image
correspondences (green) and thus errors might accumulate. Right: If a suffi-
ciently large number of consistent 2D-3D correspondences between a photo
and the textured DEM are found, they are added as ground control points
(red) to avoid error accumulation and drift.

textured DEM is rendered from the estimated camera’s point of view in the
resolution of the photo. Then, SIFT features are extracted from the rendered
screenshot and matched with the features in the corresponding photo that
were detected in the preceding feature extraction stage. Each 2D feature
in the photo, for that a matching feature in the screenshot exists, is then
assigned the 3D point of the corresponding feature in the screenshot derived
from the respective depth map.

However, the screenshot and aerial imagery typically differ drastically
with respect to resolution, lighting conditions, seasonal changes, etc., typi-
cally even more than the photos among each other. Therefore, the matching
strategy that was used to find corresponding features in the photos often
results in too few matches to robustly estimate a camera from them (see Fig-
ure 4.10 (a)). Although lowering the applied matching threshold produces
slightly more matches, the percentage of outliers is at the same time dras-
tically increased. Even with robust estimation methods like RANSAC, the
amount of outliers is then too large to robustly estimate camera parameters.
However, in contrast to the feature matching performed between the input
photos at the beginning, there now is an estimate of the camera parameters
available. Consequently, the photo and the rendered image can be assumed
to be already fairly good aligned. This observation can be used to reduce
the set of potential matching candidates significantly and hence drastically
increase matching performance (see Figure 4.10 (b)).

Given a feature in the photo, it is not compared to all features detected
in the rendered screenshot but only to those features that have a similar
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(a) (b)

Figure 4.10: Comparison of matching strategies. (a) Standard matching results in
16 features only. (b) Applying the presented matching method results in
more than 100 matches.

position p and whose descriptors coincide with respect to scale s and orien-
tation o. Let Fp and Fs be the set of features found in the photo and the
screenshot, respectively. Then, the set of possible matching candidates for a
feature f ∈ Fp is defined as

CFp(f) = {g ∈ Fs | ‖p(f)− p(g)‖ < tp ∧ o(f, g) < to ∧ s(f, g) < ts} ,

where

o(f, g) =
min (o(f), o(g))

max (o(f), o(g))
and s(f, g) =

min (s(f), s(g))

max (s(f), s(g))

measure the difference in orientation and scale of a feature pair (f, g). In
the current implementation the thresholds are tp = 0.05 max (w(I), h(I))
and to = ts = 0.8. Note that the rotation and scale invariance of the SIFT
descriptors is deliberately removed. Of course, other descriptors that are not
invariant under rotation and scaling could be detected in the photo and the
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(a) (b)

Figure 4.11: Outlier Removal. (a) Ground control points detected by matching fea-
tures in the input photo and the rendered screenshot. (b) The remain-
ing features (green) and the outliers (red) after application of the depth
weighted disparity gradient technique and subsequent camera estimation
via RANSAC.

screenshot and then matched. However, since SIFT features have already
been determined in all input images, a repeated feature extraction on all
input images is avoided this way.

From the set of possible matching candidates CFp , then the feature with
the closest descriptor d is taken and thus the resulting set of matches for the
photo is

MFp =

{
(f, g) ∈ Fp × CFp

∣∣∣∣∣ g = arg min
gj∈CFp

‖d(f)− d(gj)‖

}
.

The procedure is repeated for the features in the screenshot to obtain MFs .
The matches obtained in this bidirectional matching are not symmetric. To
enforce symmetry, the two sets are aggregated to

M =MFp ∩MFs ,
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keeping only those matches that are contained in both matching sets (assum-
ing matches to be unordered, i.e., (f, g) = (g, f)).

Finally, outliers in the resulting set of matches M are removed by apply-
ing a novel depth weighted, iterative disparity gradient technique (see Figure
4.11). The idea behind the depth weighting is to use the depth information
available for each feature as an additional indicator to what extent the dis-
parities of two considered feature pairs have to coincide. While feature pairs
with similar depth values should have similar disparities, those with highly
varying depths are allowed to have larger differences in their disparity. The
depth weighted disparity gradient for two pairs of corresponding features m
and m′ is defined as

dgw(m,m′) = w(m,m′)dg(m,m′),

where dg(·) is the standard disparity gradient (see section A.7) and

w(m,m′) = 1− |z(m)− z(m′)|
|zmax − zmin|4

.

z(·) is the depth of a match defined by the depth value of the respective fea-
ture in the screenshot, and zmax and zmin define the maximum and minimum
depth over all matches. Using the depth weighted disparity gradient dgw,
the disparity gradient sum for a match m is defined as

dgsum(m) =

∑
m′ dgw(m,m′)∑
m′ w(m,m′)

, m′ ∈M, m 6= m′.

The disparity gradient sum is calculated for each match inM. Then, the n
matches with the highest dgsum are removed (n is set to 50 % of the currently
valid matches). This process is iterated until the disparity gradient sum of
all remaining matches is below a threshold (0.1 is used here). If a sufficent
large number of matches is remaining (>32), they are used to estimate a
camera matrix using the Gold Standard algorithm inside a binned RANSAC
procedure with 4 adaptive bins. Then, if a sufficiently large number of inliers
is found (>16), they are added as ground control points to the optimization
and the estimated camera matrix is assigned to the current camera.

Although not every image can be registered directly to the terrain in this
manner, the remaining images are at least indirectly constrained by the found
ground control points. As a consequence, potential drift is reduced and ro-
bustness of the optimization is increased. The method for adding ground
control points is outlined in Algorithm 1. The complete registration proce-
dure is summarized in Algorithm 2.
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Algorithm 1 AddGroundControlPoints(C,FI)
Input:

current estimate of camera C
features FI detected in image I

Output:
set of ground control points G
refined estimate for C

S ← render screenshot from camera C
FS ← extract features from screenshot S
MS ← match features of FS to FI
MI ← match features of FI to FS
M← aggregate matches MS ∩MI

M′ ← use depth weighted disparity gradient to remove outliers from M
if |M′| > 32 then
C ′ ← estimate camera matrix from M′
G′ ← remaining inliers after estimation of C ′

if |G′| > 16 then
C ← C ′

G ← G′
end if

end if

4.4 Results and Discussion

The presented registration approach is evaluated using the HRSC dataset
of Turtmann valley. The respective photo set contains more than hundred
images taken by several people with different cameras. The majority of the
photos were acquired in summer 2006 within several weeks. Some of the
photos were taken from the ground others during a helicopter overflight. Al-
though EXIF tags for some of the images were available, they were not used
in the SfM optimization.

The registration algorithm does not require any user-defined marker points
on-site, which is essential in high alpine environments where many places are
difficult to access. Instead, camera parameters are estimated from the pho-
tos and the textured DEM alone using computer vision methods. However,
if additional marker points are available, they can naturally and easily be
included in the registration process.

In general, the registration algorithm is not able to reconstruct all input
photos. The main reason for this is that the input photo sets typically form
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Algorithm 2 Registration

Input:
set of images I = {I1, . . . , In}

Output:
set of camera matrices C = {C1, . . . ,Cn}
set of features F1, . . . ,Fn for each image
set of feature tracks T

for i = 1, . . . , |I| do
Fi ← extract features from Ii

end for

for i = 1, . . . , |I| do
kd(Fi)← build kd-tree from Fi

for j = i+ 1, . . . , |I| do
Mij ← match features kd(Fi) and Fj

Mij → remove outliers using epipolar constraint
end for

end for
T ← find all tracks in Mij , ∀i, j

Iinit ← select initial image
Cinit ← estimate camera from ground control points defined in Iinit
initialize tracks in Cinit

for i = 1, . . . , |I| do
I ′ ← select next image
if |tracks(I ′)| > 20 then
C ′ ← estimate camera from tracks observed in I ′

T ← addGroundControlPoints(C ′,Fi)
C ← perform bundle adjustment
T ← update 3D estimates
T → remove outliers

else
break

end if
end for

separate connected components after feature detection and matching, which
are too weakly connected to be reliably reconstructed. To register all of
them, the connected components have to be processed separately, which re-
quires a manual initialization by the user to provide good initial estimates for
each of them. For instance, the images taken of the Meidhorn (mountain in
Turtmann valley) form two clusters. These clusters correspond to the north
and the south side of the Meidhorn. However, only a few photos were taken
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collection #img. #reg. #reg. gcp #points #gcp runtime error #bundler

debris field 17 17 14 7397 802 401 1.5 15

glacier 79 75 38 22208 1394 4896 1.64 38

valley slope 40 38 37 9684 1036 758 1.53 37

Table 4.1: Results. Collection: the name of the set, #img : the number of images in the
set, #reg.: the number of images registered, #reg. gcp: the number of images
registered via ground control points, #points: the number of points used in the
optimization (including ground control points), #gcp: the number of ground
control points used in the optimization, runtime F+M : the approximate time
for feature detection matching and consistency checks, runtime BA: the ap-
proximate total time for the bundle adjustment, error : the mean reprojection
error in pixels after optimization, #bundler : the number of images registered
with bundler (only relative registration of photos)

from intermediate angles from the east from the opposite side of the valley.
Because of this, too few SIFT features have been detected to connect the
two clusters. More images would be needed to establish enough connections
to bridge the gap between the clusters. In practice, however, there are typ-
ically only very few large connected components after feature detection and
matching containing the majority of the photos.

Figure 4.12 depicts examples of the obtained registration results that
demonstrate the accuracy of the presented algorithm. Each mosaic is cre-
ated from a photo and the corresponding screenshot taken from the estimated
camera position. Despite large differences between the photos and the tex-
tured DEM with respect to illumination, resolution, etc., an accurate regis-
tration for almost all images could be obtained. Figure 4.13 shows examples
from the registered photo sets listed in Table 4.1. The first column shows the
frusta of the estimated cameras obtained in the registration. The images in
the second column show the terrain textured with the photo corresponding
to the camera drawn in red using projective texture mapping. Compared
to the original dataset the enhanced representation has drastically increased
visual quality and information content, particularly at steep slopes.

More information on the registration results of the different connected
components (including the number of input photos, the number of regis-
tered photos, and the average reprojection error) are listed in Table 4.1. The
running times reported in this table refer to the incremental sparse bundle
adjustment only (including the detection of ground control points), which is
the dominating factor in the registration procedure. Typically, more than
50 % of the images can be directly matched to the textured DEM via ground
control points. Overviews (i.e., photos that show large parts of the terrain)
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Figure 4.12: Registration Examples. The images show mosaics created from the pho-
tos and corresponding screenshots which were rendered from the position
of the estimated camera.

can often be matched directly to the textured DEM. The reason for this is
that they are likely to contain at least some regions that are rather flat and
highly textured. Such regions are most promising for matching because flat
regions are quite well captured in the aerial imagery, and highly textured re-
gions produce many distinct features needed for matching. Close-up views,
by contrast, especially of steep slopes, are often difficult to match directly
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Figure 4.13: Registered Image Sets. The images in the left column show the frustra
of the estimated cameras obtained in the registration procedure. In the
images in the right column the terrain is projectively textured with the
photo associated with the camera drawn in red.

to the textured DEM. This is due to large differences in texture resolution
between the photo and the respective screenshot, which prohibits a detec-
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tion of reliable correspondences. Moreover, photos containing large uniform
areas, such as shadows or snow, are also difficult to match.

To assess the presented method, the photo sets were also registered using
the Bundler2 software package by Snavely. However, only relative camera pa-
rameters were estimated while no postprocessing step to register them to the
textured DEM was carried out. For the used photo sets of Turtmann valley,
the presented methods was able to register slightly more images from two of
them while significantly more photos could be registered from the third. The
reason for that is that the latter dataset contains many photos taken from
positions very close to each other. In such situations, the presented method
particularly benefits from its use of the textured DEM and the additional
ground control points during the optimization.

The focus in the presented registration approach has been to align the
photos as best as possible to a given terrain dataset. However, the ability
to compute accurate camera parameters opens the door for techniques that
compute dense surface shape models, such as multi-view stereo [Goesele et al.
2007]. For future work it might be interesting to investigate to what extend
the geometric resolution of a DEM could be improved with such methods.
Another interesting direction for future work would be the acquisition of
time varying phenomena through repeat photography of the same site, with
a time lag between the different images. For example, by taking photos of
the Turtmann glacier at different times and registering them to the dataset,
it would be possible to capture its changes over time without requiring an
elaborate georeferencing of the photos during acquisition.

2http://phototour.cs.washington.edu/bundler/
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Compositing

5.1 Motivation

In the previous chapter an algorithm for registering sets of uncalibrated pho-
tos to a textured digital elevation model (DEM) was presented. One mo-
tivation for this was to use the photos to improve the visual quality of the
textured DEM. However, the registration of the photos presents only the
first step towards this goal. Given a set of registered images, the next step
is to stitch them together on the terrain surface in order to create a visually
pleasing and plausible composite. However, a simple combination of regions
from the images produces visible artificial edges at the transitions between
the individual images due to differences in camera gain, scene illumination or
geometrical misalignments (see Figure 5.10). The main challenge is therefore
to come up with a compositing algorithm that avoids such artifacts.

Typically, compositing involves two main steps: First, a suitable com-
positing surface along with a corresponding parameterization is selected that
defines the domain where the blending takes place and how the blended result
is represented. Second, an appropriate blending algorithm has to be applied
that should avoid visible seams and minimize noticeable blur and ghosting
artifacts.

The choice of a compositing domain is highly influenced by the available
amount of geometry of the scene. In panorama stitching applications, for
example, where no geometry is available at all, the registered images are
typically projected onto some kind of proxy geometry. A simple and often
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Figure 5.1: Motivation. The left image shows photos mapped onto the DEM without
color correction and blending. As a consequence, the terrain surface shows a
mosaic appearance and transitions between the individual images are visible.
The right image shows the same scene but this time using the presented
compositing approach. The terrain surface looks consistent without visible
seams between the images.

applied approach is to select one of the input images as reference and then to
warp the other images into the plane defined by the reference image. This ap-
proach produces reasonable results if only a few images are stitched together
and the field of view is not too large. For wider fields of view, however, a
flat representation introduces large distortions excessively stretching pixels
near the border. Therefore, when compositing large panoramas typically
cylindrical [Szeliski & Kang 1994][Chen 1995] or spherical [Szeliski & Shum
1997] projections are used. In fact, any representation used in environment
mapping, as for example cube maps [Greene 1986][Szeliski & Shum 1997],
can be used.

However, if an exact or approximate surface geometry is given on which
the images are to be combined, such as a DEM, the use of a simple proxy
geometry as a compositing surface has several shortcomings. First, for com-
plex objects the use of a simple proxy geometry does not provide a good
approximation of the object and may introduce significant distortion. Sec-
ond, visibility of all triangles with respect to the proxy can not be guaranteed.
And, third, continuity in the texture domain is not enforced everywhere, i.e.,
neighboring surface elements are not necessarily textured from neighbouring
regions in the texture map (e.g., neighboring triangles may be textured using
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different sides of a cube map), which is important for a good blending.
With this in mind, the presented approach performs a reparameterization

of the terrain surface instead to avoid the aforementioned problems. The
reparameterization enfolds the terrain mesh into a planar domain (texture
space) thereby minimizing the arising distortion with respect to area and
angles of the triangles of the mesh. Furthermore, visibility of each surface
element is guaranteed and continuity in the texture representation is ensured.

Once a suitable compositing domain has been selected, the images have to
be blended in it. The simplest way to blend images is to perform an averaging
of the values at each pixel. Unfortunately, simple averaging is usually not
able to avoid blur and ghosting. However, it can be improved by weighting
pixels near the center of the image more heavily than pixels close to the bor-
der. Similarly, if an image contains cutout regions, pixels close to the cutouts
are down-weighted. For this purpose, weights based on a distance map are
often used. Weighted averaging based on a distance map, often called feath-
ering [Szeliski & Shum 1997][Chen & Klette 1999][Uyttendaele et al. 2001],
produces reasonable results when combining images with different exposure
but blurring and ghosting can still pose problems. In practice, however, it is
difficult to achieve a pleasing balance between smoothing out low-frequency
exposure variations on the one hand and preserving high-frequency details
on the other hand.

To avoid the aforementioned issues, a two step procedure is presented:
First, a color correction is applied that removes large scale color and light-
ness shifts in the images. Since neighboring parts in the images do not have
to correspond to neighboring parts on the terrain surface, the application of
color correction methods that work on whole images can not be applied here.
Instead, corresponding regions (i.e, regions that show the same part of the
terrain surface) in the images have to be detected and matched separately.
However, to achieve a globally optimal solution, the different corresponding
regions are not considered independently. Therefore, a simultaneous match-
ing of their color distribution is carried out.

In the second step, a weighted multi-band blending approach is applied
that produces smooth transitions between the images on the terrain surface
while at the same time high-frequency details in the transition regions of
the images are preserved. The blending is carried out in the texture domain
induced by the reparameterization. Only because of the reparameterization
an effective application of the multi-band blending becomes possible as the
texture space represents a continuous planar representation of the terrain
surface.

The remainder of this section is organized as follows: After a review of
related work in the next chapter, the algorithm for blending a set of geo-
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registered photos on a DEM is presented. Finally, results are shown and
discussed.

5.2 Related Work

As the goal of the presented method is to use photos to texture a given digital
elevation model, it falls into the field of image-based rendering. Image-based
rendering techniques synthesize new views of a scene from a set of images,
which are typically photographs of a static scene. Previous image-based
rendering techniques can be classified by the amount of geometric informa-
tion being used: no geometry, implicit geometry (i.e., correspondences), and
explicit geometry (either with approximate or accurate geometry). The con-
sidered texturing problem clearly falls into the latter category.

In the following, work dealing with texturing a given 3D model with pho-
tos is focused. In addition to that, methods for blending and color correction
that are relevant within the considered context are reviewed as well.

5.2.1 Texture Mapping 3D Models

Ignoring view-dependent effects, texture stitching methods can be used to
create view-independent textures from a set of input images. This has the
advantage that sophisticated image stitching algorithms can be applied in a
preprocessing step. A common approach is to apply triangle-based mosaic-
ing schemes and use feathering to mask seams afterwards. In general these
techniques rely on a regular triangular mesh model and each triangle is as-
signed to the best camera by considering viewing angle and visibility. This
kind of technique is quite effective but the transition width between regions
textured from different images is fixed by the size and shape of the triangles.
Consequently, if the triangles are too small, the seams between regions will
only be slightly blurred and still visible. If, by contrast, the triangles are
large, high-frequency details are blurred away. This can also cause ghosting
due to misregistration of the cameras and inaccuracies in the surface model.

Rocchini et al. [Rocchini et al. 2004] stitch textures on a 3D object by
building a patchwork of image subsections such that all of the object sur-
face is covered and adjacent image subsections join smoothly on the object
surface. They address ghosting by performing a local triangle-based regis-
tration at the region boundaries. However, their approach is limited by a
simple linear model for local registration, which in practice only works for a
small transition zone. Lensch et al. [Lensch et al. 2001] determine for each
triangle the view that provides the best available texture. Then, they blend
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the textures across border triangles of regions assigned to different views. A
disadvantage of their method and that of Rocchini et al. is that exposure and
chromaticity differences in non-overlapping areas are not handled at all.

An alternative to mosaicing schemes is to use per-pixel weighted filtering
over the whole mesh. Smooth weight functions are used to assure continuous
transitions and to avoid visible seams. Bernardini et al. [Bernardini et al.
2001] partition the mesh into a set of patches. The use of calibrated lighting
conditions allows the construction of albedo and normal maps. New textures
are reconstructed by projecting the maps onto the patches and combining
the best data available at each point using weights that reflect the level
of confidence in the data. Baumberg et al. [Baumberg 2002] presented a
multi-band blending approach that preserves high-frequency details in the
transition regions of the surface textures and compensates for not perfectly
aligned textures.

5.2.2 Blending

Burt and Adelson presented multi-band blending [Burt & Adelson 1983a]. In-
stead of a single, fixed transition width, multi-band blending uses a frequency-
adaptive transition width based on image pyramids [Burt & Adelson 1983b].
The input images are decomposed into different frequency bands by building
Laplacian pyramids from them. In addition to the input images, multi-band
blending takes as input a set of corresponding binary images (masks) indi-
cating the valid regions in the images that are used for blending. From each
mask, a Gaussian pyramid is built in order to create appropriate weights
for the different frequency bands. Using the weights from the Gaussian
pyramids, a feathered blending is performed for each level of the Laplacian
pyramids separately, resulting in a composite Laplacian pyramid. The final
blended image is obtained by reconstructing the composite Laplacian pyra-
mid.

An alternative approach to multi-band image blending is to perform the
operations in the gradient domain. Pérez et al. [Pérez et al. 2003] showed
how gradient domain reconstruction can be used to do seamless object inser-
tion in image editing applications. Rather than copying pixels, the gradients
of the new image fragment are copied instead. The actual pixel values for
the copied area are then computed by solving a Poisson equation that lo-
cally matches the gradients while forcing an exact matching at the seam
boundaries. Agarwala et al. [Agarwala et al. 2004] extended this idea to a
multi-source formulation, where each source image contributes its own gra-
dient field.

Copying gradients directly from the source images after seam placement

75



CHAPTER 5. COMPOSITING

is just one approach to gradient domain blending. Levin et al. [Levin et al.
2004] examine several different variants of this approach which they call
gradient-domain image stitching (GIST). The methods they consider include
feathering of the gradients from the source images, as well as using an L1-
norm in performing the reconstruction of the image from the gradient field.
Their preferred technique is the L1-optimization of a feathered cost function
on the original image gradients. To speed up the rather slow L1-optimization
using linear programming, they develop a faster iterative median-based al-
gorithm in a multigrid framework.

5.2.3 Color Correction

Pyramid and gradient domain blending are able to compensate for moderate
amounts of exposure differences between images. However, if exposure differ-
ences become large, additional color correction approaches may be necessary.
Reinhard et al. [Reinhard et al. 2001] presented a method to transfer the
color characteristics from a source to a target image. The transformation is
carried out in lαβ color space [Ruderman et al. 1998]. Color distributions
in the image are modeled by their mean and standard deviation. After the
transformation, the color distribution in the target image matches that of
the source image.

Agathos and Fisher [Agathos & Fisher 2003] introduced a global color
correction method between two images by estimating an RGB color transfor-
mation between overlapping pixels. However, their research only considered
pairwise corrections. Beauchesne and Roy [Beauchesne & Roy 2003] pre-
sented a method to relight overlapping textures of a 3D model. In their
method they take two overlapping textures, relight them and merge them
into one. This procedure is repeated with the other textures until there is
only one left. However, their method can only handle very simple overlap
configurations. It is not able to cope with cyclic image overlaps or when the
intersection of more than two images is not empty.

Bannai et al. [Bannai et al. 2004] extended the method of Agathos and
Fisher [Agathos & Fisher 2003] to multiple overlapping images in arbitrary
configuration. They first apply a pairwise color correction between the im-
ages to obtain good initial estimates. After that, a global optimization based
on minimizing per-pixel differences in the overlapping regions is performed.
However, minimizing per-pixel differences requires a precise registration and
involves high computational costs.

Uyttendaele et al. [Uyttendaele et al. 2001] iteratively estimate a local
correction between each source image and a blended composite. First, a
block-based quadratic transfer function is fit between each source image and
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an initial feathered composite. Next, transfer functions are averaged with
their neighbors to get a smoother mapping, and per-pixel transfer functions
are computed by interpolating between neighboring block values. Once each
source image has been smoothly adjusted, a new feathered composite is com-
puted. This process is repeated several times (typically three times).

5.3 Compositing of Images on a DEM

In this section a novel method for stitching images on a digital elevation
model in order to improve its visual quality is presented. Given a textured
DEM, the method takes as input a set of georegistered photos and combines
them to textures for the terrain. In a preprocessing step the terrain mesh is
reparameterized in order to create a suitable compositing domain. The repa-
rameterization is independent of the given set of input photos and therefore
has to be performed only once. The actual compositing then starts by deter-
mining visibility for each view in order to identify the regions on the terrain
surface valid for texturing with the respective image. With this informa-
tion at hand, the registered photos are then merged in a two-step procedure:
In the first step, a color correction is carried out in order to remove large
scale color and lightness shifts. In the second step, the images are blended
using a weighted pyramid blending approach in texture space induced by
the reparameterization of the terrain geometry. Finally, the obtained result
is inserted into the quadtree data structure of the terrain engine to allow
real-time rendering.

5.3.1 Texture Representation

Typically, ortho-projection is used to parameterize the terrain geometry for
texture mapping. This is appropriate as long as only aerial imagery is used for
texturing. However, if images taken from arbitrary viewpoints are to be used
as textures, a representation as orthotexture introduces too large distortions
at steep slopes. There are two main alternatives for texture representation:
the use of a texture atlas and a reparameterization of terrain geometry. In a
texture atlas approach, texture patches are stored per triangle and used to
texture each triangle separately. This way, there is no distortion introduced
at all. However, when using a texture atlas continuity along triangle bor-
ders is lost. Since the used blending approach requires a continuous texture
patch of considerable size, the texture atlas representation is not suitable for
blending.

In view of this, the terrain surface is reparameterized in a preprocessing
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Figure 5.2: Reparametrization. The two images on the left show a geometry patch
of a steep slope that is textured with a regular checkerboard pattern using
ortho-projection and the corresponding texture space representation of the
geometry. Distortions are clearly visible in the steep parts. The two images
on the right show the same patch but now using texture coordinates obtained
from the reparameterization. Compared to ortho-projection distortions are
significantly reduced. The red square in the rightmost image indicates the
minimum area rectangle of the mesh in texture space.

step (see Figure 5.2), which allows for a continuous texture representation.
By performing the reparameterization for each quadtree tile separately, the
introduced distortion is further reduced compared to a global reparameteri-
zation. In addition to that, a local reparameterization makes it possible to
decide per-patch if a reparameterization is necessary at all. To this end, a
simple thresholding scheme is applied. The area of the tile’s geometry is
computed and divided by the area of its ortho-projection. If this ratio ex-
ceeds a given threshold, too much distortion is introduced when using ortho-
projection for the considered tile and thus a reparameterization is performed
that minimizes the distortion. By using the proposed local and adaptive repa-
rameterization, computational costs as well as memory requirements (needed
to store texture coordinates that are no longer implicit as in ortho-projection)
are significantly reduced compared to a global reparameterization.

Many parameterization algorithms demand the boundary vertices to be
fixed in advance or map to convex polygons, which may be sufficient or even
desirable for some applications. However, such restrictions usually introduce
additional distortion. For this reason, the algorithm presented in [Degener
et al. 2003] is used to reparameterize the geometry tiles, which does not
constrain the boundary. It quantifies angle and global area deformations
simultaneously and lets the user control the relative importance. The impor-
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tance is chosen in order to obtain a parameterization that is optimized for a
uniform sampling of the surface.

The texture space representation of a reparameterized geometry tile has
arbitrarily shaped boundaries and arbitrary orientation (see Figure 5.2). To
minimize memory requirements, its orientation is optimized to fit as best as
possible into a rectangular texture. To this end, the minimum area bound-
ing rectangle in texture space is computed using rotating calipers [Toussaint
1983]. Then, texture coordinates are rotated in such a way that the computed
bounding rectangle becomes axis aligned.

5.3.2 Visibility Computation

To texture the terrain geometry with an image from a certain view, it is
necessary to identify the visible parts of the surface with respect to this
viewpoint and restrict texturing accordingly (see Figure 5.3). This visibility
computation has to be performed for each camera and for each level of the
quadtree hierarchy. The output of the visibility computation for a certain
view consists of a list of indices of the completely visible triangles and a list
of the visible subpolygons of the partially visible triangles.

Given a camera and a level of the quadtree hierarchy, the visibility com-
putation starts by culling the tiles’ bounding boxes at the camera’s view
frustum. Then, each of the remaining triangles is assigned a unique color
and rendered from the camera’s viewpoint into an offscreen buffer. The ren-
dered image is then traversed to identify all rasterized triangles by their color
ID. In addition to that, the number of rendered pixels for each triangle is

(a) (b)

Figure 5.3: Visibility. (a) The terrain is projectively textured with a registered photo.
Without visibility computations the photo is projected through the terrain
geometry onto all geometry it hits. (b) If visibility is considered, the photo
is only projected onto the parts of the terrain surface it hits first.
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counted and its neighboring triangles in image space are determined. In the
next step, it is tested if the gathered triangles are completely visible or only
partially visible. To this end, the triangles in question are rendered again
but this time with the depth test disabled so that they are all completely
rasterized while occlusion queries are used to count the number of rendered
pixels. If the number of rendered pixels of a triangle in the two passes coin-
cides, the triangle is completely visible otherwise it is only partially visible.

Once the partially visible triangles in the scene have been detected, their
visible parts are calculated exactly. Given a partially visible triangle, first all
triangles that occlude it are determined. To find all occluding triangles, the
previously detected image space neighbors are inserted into a queue. Then,
each triangle in the queue is tested for occlusion. If a triangle is an occluder,
it is marked as such, removed from the queue, and all its neighbors are in
turn inserted into the queue Otherwise, if the triangle is not an occluder, it
is simply removed from the queue. The process stops if the queue is empty.
Once all occluding triangles have been detected, the visible area is calcu-
lated analytically in image space. To this end, the triangle is clipped against
the occluding triangles and against the viewport. Finally, the resulting 2D
polygons are unprojected to obtain the visible subpolygons of the triangle in
object space.

Note that even at high framebuffer resolutions it cannot be ruled out that
very small but visible triangles do not result in a rendered pixel due to dis-
cretization. However, such cases were not encountered in practice that would
have made any special case handling necessary.

5.3.3 Color Correction

When texturing a 3D object with photos taken from different viewing angles
and with different camera settings, measured color and intensity values of a
surface element observed in the different photos do usually not agree. The
reasons for this are various and include view-dependent lighting effects, such
as highlights and specularities, as well as variations in the camera gain set-
tings. Combining such images lead to a mosaic appearance on the surface.
To reduce color differences between images, several methods that perform a
pairwise color correction have been proposed. However, applying pairwise
color corrections to multiple overlapping images is difficult considering the
potentially complex topology of overlaps and usually does not result in a
globally optimal solution. To overcome this problem, a simultaneous color
correction of multiple overlapping images based on minimizing differences in
the overlapping regions has to be performed. Using color distributions in-
stead of per-pixel differences allows for a robust handling of mis-registrations
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and helps to reduce computational costs significantly.
The presented algorithm extends the pairwise color matching approach by

Reinhard et al. [Reinhard et al. 2001] to a simultaneous matching of mul-
tiple overlapping images. In the original approach color characteristics are
transferred from a source to a target image in lαβ color space [Ruderman
et al. 1998]. A new color p′t(x) in the target image is computed from the old
color pt(x) as

p′t(x) =
pt(x)− µt

σt
σs + µs,

where µs, µt are the means and σs, σt the standard deviations of the underly-
ing Gaussian distribution in the lαβ color space of the respective source and
target images. Despite its simplicity, this approach produces good results
if the composition of the source and target images are similar. Since corre-
sponding regions in the photos show the same parts of the terrain surface,
this approach is well suited for the considered task.

However, instead of applying color transformations to the whole image,
corresponding areas in the images are detected and the color differences be-
tween them are simultaneously minimized. The output of the optimization
is a set of new means µ′ and standard deviations σ′ for each overlapping area
that are used afterwards to apply the appropriate color corrections.

Let I = {I1, . . . , In} be the set of input images. In the first, step the over-
lapping areas Rij and Rji of each image pair (Ii, Ij) are determined, where
Rij denotes the areas in image Ii that are also visible in image Ij (see Figure
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Figure 5.4: Color Correction. On the left, photos with several overlapping areas are
shown. On the right, the respective configuration of overlaps is modeled
as a graph. Chaining corresponding overlapping regions and defining local
operators on them allows for a simultaneous correction of color differences
in the images.
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5.4). To this end, the information obtained in the previous visibility compu-
tation is used to identify the areas visible in both views. For each region Rij,
its mean µij and standard deviation σij are computed using the associated
color values of the respective image regions. To measure the dissimilarity dR
between the color distributions associated with the regions, the Weighted-
Mean-Variance (WMV) [Manjunath & Ma 1996] is used. With an additional
weighting factor this yields

dR(Rij, Rji) = aij

(∣∣∣∣µij − µjiα(µ)

∣∣∣∣+

∣∣∣∣σij − σjiα(σ)

∣∣∣∣) ,
where α(µ) and α(σ) are the standard deviations of the means and standard
deviations of all regions. The area weight

aij =
|Rij|+ |Rji|
|Ii|+ |Ij|

reflects the size of the respective overlapping regions.
The configuration of overlaps can be interpreted as a graph G(V , E), where

the overlapping regions Rij are the nodes and edges (Rij, Rji) with costs
dR(Rij, Rji) exists between pairs of corresponding overlapping areas (see Fig-
ure 5.4). The sum of all edge costs is then minimized∑

(Rij ,Rji)∈E

dR(Rij, Rji)→ min
µij ,σij

!

using the Levenberg-Marquardt algorithm. The resulting new means µ′ and
standard deviations σ′ imply a color transformation for each region. The
color transformation for a pixel pi(x) in image Ii with respect to a region Rij

is computed as

pij(x) =
pi(x)− µij

σij
σ′ij + µ′ij.

The new color of a pixel p′i(x) in image Ii is then computed as a weighted
average of the transformations induced by all regions pi is located in

p′i(x) =
∑

{Rij | pi∈Rij}

(wij(x)pij(x) + (1− wij(x)) pi(x)) .

To compute the weights wij(x), a color influence map as proposed in [Maslen-
nikova & Vezhnevets 2007] is created that contains for each pixel in the re-
gion a weighting factor cij(x) that describes the influence of the region to this
pixel. It is calculated based on the distance of the pixel’s color to the color
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distribution associated with the region. Using the Mahalanobis distance this
reduces to

dp(pi(x), Rij) =
‖pi(x)− µij‖

σij

since color channels are decorrelated in lαβ color space. From this distance
the entries in the color influence map are computed as

cij(x) = e−3dp(pi(x),Rij)
2

.

To ensure smooth transitions at region borders in the final image, a distance
map is created for each region, which is one in the center of the region and
smoothly decreases towards the borders. These per-pixel distance values
dij(x) are multiplied with the entries in the color influence map yielding the
final per-pixel weights

wij(x) = cij(x)dij(x).

5.3.4 Blending

Since color matching only aims at removing large scale color and lightness
discrepancies, the images still do not agree perfectly on a per-pixel level due
to small mis-registrations and other unmodeled effects. Therefore a good
blending strategy is important. A simple approach to blending images is to
perform a weighted sum of overlapping color values. However, this approach
can cause blurring of high frequency detail if there are small registration er-
rors. To prevent this, multi-band blending was proposed in [Burt & Adelson
1983a]. The basic idea of multi-band blending is to decompose each image
into frequency bands. Then, each frequency band is combined separately
using a weighting function that fits the size of the features in the respective
band. Thus, low frequencies are blended over a large spatial range and high
frequencies over a short range. The resulting composite bands are finally
recombined to obtain the blended image. This technique allows overlapping
images to be blended without introducing visible seams between the images
while at the same time high frequency details are preserved and noticeable
ghosting artifacts are avoided.

To blend the photos, they first have to be projected into a common pla-
nar domain. The texture space representation of the terrain obtained by the
reparameterization is well suited for this because it minimizes the distortion
introduced by the mapping to 2D. The idea is therefore to carry out the
blending in texture space and for each tile separately. Given a geometry
tile, the blending can be summarized as follows: First, all cameras the tile is
visible from are identified. Then, corresponding texture and weight maps are
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created in texture space for each camera. Finally, the textures are blended
using a multi-band blending technique. In order to ensure smooth transitions
across tile borders, blending is performed with slightly overlapping patches.
Smooth transitions between the photos and the aerial imagery are obtained
by considering the aerial imagery just as an image from another camera. In
the following the blending procedure for a given tile is described in more
detail.

Given a geometry tile, the texture Ti with respect to the i-th camera is
created by rendering the tile’s visible texture space representation in an off-
screen buffer textured with the corresponding photo (see Figure 5.5). Due
to occlusions the texture may contain holes that can cause artifacts during
blending if not handled appropriately. Therefore, premultiplied alpha tex-
tures are used where the alpha channel contains visibility information with
respect to the considered view. By using premultiplied alpha textures, the
effects of the occluded areas introduced during blending can be cancelled out
afterwards by dividing the final blended texture by its alpha component.

The corresponding weight map Wi for the i-th camera is created in a
similar fashion as the texture. However, instead of texturing, each pixel is
assigned a weight. The weight

wri (x) = Area (Pi(t))

3DPVT 2008, Atlanta3DPVT 2008, Atlanta

geometry 
tile

photo

reparameterized 
patch

orthotextured patch
aerial 
imagery

orthoprojected patch

textureparameterize

photo-
textured patch

Figure 5.5: Texture Patch. Creation of a texture patch for a geometry tile. Stan-
dard ortho-texturing with aerial imagery is shown in the top row, while the
bottom row shows the texturing process with a registered photo using the
reparameterization.
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Figure 5.6: Domains. Triangle of a geometry tile and its projections in images and
texture domain.

is based on the area of the triangle’s projection Pi(t) in the i-th view (see
Figure 5.6) reflecting camera position as well as image resolution, where t is
the triangle the pixels originate from. In addition to that, pixels close to an
image’s border as well as pixels near occluded areas are down-weighted using
a distance map

di(x) =

∥∥∥∥arg min
x′
{‖x′‖ | Ii(x+ x′) is not visible }

∥∥∥∥ ,
where each pixel is assigned the distance to the closest pixel not visible in the
respective view. The corresponding weights are computed from the distances
as

wdi (x) =

(
di(x)

maxx di(x)

)4

.

The weights are then multiplicated pixelwise

wi(x) = wri (x)wdi (x).

From these weights the final binary weight map Wi is derived by taking the
pixelwise maximum

Wi(x) =

{
1 : if i = arg maxj wj(x)
0 : otherwise,

over all weight maps. The use of these max-weight maps is motivated by
the observation that blending high frequency content from multiple images
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Figure 5.7: Blending Overview. An overview of the patchwise multi-band blending
method in texture space.

produces blurred results. Therefore, the best (max-weight) high frequency
content is taken only from a single image while for the remaining lower fre-
quency bands the content of all images is blended together over an increas-
ingly large domain.

Once texture and weight maps have been created for each camera, each
texture Ti is decomposed into frequency bands by constructing a Laplacian
pyramid Li from it. In contrast, from each binary weight map Wi a Gaussian
pyramid Gi is built containing the blending weights for the different bands.
Then, a composite Laplacian Lc is created from them by a weighted filtering
of the different frequency bands

Lc(x) =

∑
iGi(x)Li(x)∑

Gi(x)
.

The composite Laplacian pyramid Lc is then reconstructed to obtain the
blended texture patch. In the resulting texture patch there may be overflow
and underflow associated with the color and α values c = (r, g, b, α). To
account for that, alpha values have to be clamped to [0, 1] and color values
to [0, α] 

r
g
b
α

 7−→


max(0, r)
max(0, g)
max(0, b)
max(0, α)

 7−→


min(α, r)
min(α, g)
min(α, b)

α

 .

Then, if α > 0, the final color values are determined by dividing by α. Finally,
the resulting texture patch is stored in the corresponding quadtree tile. An
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overview of the blending procedure is depicted in Figure 5.7. Optionally, a
texture atlas can be created from the texture patches. However, this requires
an additional extrusion of the triangles’ borders to ensure correct texture
filtering.

5.4 Results and Discussion

The presented compositing approach ensures smooth transitions between the
images on the terrain surface despite illumination differences while at the
same time high frequency details are preserved. In the first step, a color
correction is applied that removes large scale color and lightness shifts by
simultaneously compensating for differences in the overlapping regions of the

Figure 5.8: Results. The left column shows screenshots of the original ortho-textured
DEM. The right column shows the same view but now with the composited
photos applied.
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images. Then, the resulting images are combined using a multi-band blend-
ing approach in texture space.

Figures 5.8 and 5.9 show some results obtained with the presented com-
positing algorithm. The used photo sets were registered using the registration
algorithm presented in the previous chapter of this thesis. The left column
shows screenshots of the original ortho-textured DEM using aerial imagery
only. In contrast to that, the images in the right column show the same view
but now using the composited photos to texture the DEM. The new textures
drastically increase the visual quality and information content compared to
the aerial imagery in particular in steep slopes.

In Figure 5.10 the presented compositing approach is compared to a use of
only the best available view and a weighted averaging. In the results obtained
with the approach that uses the best available photo only, seams between the
individual photos are clearly visible. Using the weighted averaging, seams

Figure 5.9: Results. Some more results.
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(a) (b) (c)

Figure 5.10: Comparison. Column (a) composites the photos using the best available
view. Transitions between the individual photos are clearly visible. In (b)
a per-pixel weighted blending is used. Seams are less pronounced but still
visible. However, significant blurring is introduced. In (c) the presented
compositing approach is used. The terrain surface looks consistent without
visible seams between the images. In addition, high-frequency features are
preserved.

are reduced but still visible. However, significant blurring is introduced. In
contrast, using the presented compositing approach the terrain surface looks
consistent without visible transitions between the images. In addition, high-
frequency features are preserved.

An issue that was not addressed in this thesis are ghosting artifacts caused
by moving objects. Such artifacts are common in crowded areas where peo-
ple, cars or other objects move by, but are not a big issue in the considered
application, where photos of the isolated high alpine region of Turtmann val-
ley are to be combined. However, the photos contain temporal changes, as
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(a) (b)

Figure 5.11: Limitations. Two examples of limitations of the presented approach. Im-
age (a) shows grass that is incorrectly projected to the other side of the
valley due to a slight misregistration and unmodeled small scale geometry.
Image (b) depicts problems when blending between inconsistent images,
such as images taken at different seasons.

for example snow coverage, size of the glacier, etc. On the one hand, such
differences present a challenge for the compositing algorithms as the blend-
ing of inconsistent images might result in artifacts. On the other hand, they
offer the opportunity to build time-varying 3D models that can serve to pull
together large collections of images pertaining to the appearance, evolution,
and events surrounding one place over time. To this end, the photos need to
be temporally clustered. However, in the used photo set of Turtmann valley
there are far too few photos for such an approach. Therefore, all photos are
blended together to cover as much as possible of the terrain surface, albeit
inconsistent transitions at places where temporally inconsistent images are
blended together may result (see Figure 5.11 (b)). Another issue are artifacts
due to registration inaccuracies or unmodeled terrain geometry (see Figure
5.11 (a)). An extension of the compositing approach by a detection and re-
moval of regions of differences [Herley 2005][Uyttendaele et al. 2001] in the
images prior to blending could potentially reduce these kind of artifacts.
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Digital Landform Mapping

6.1 Motivation

Geomorphological maps are the standard means in geomorphology to perceive
and investigate an area at focus in a complex and holistic way. Such maps
compile knowledge on landforms, surface processes and surface materials, and
have widespread applications in land management practices, natural hazard
assessments or landform evolution studies [Cooke & Doornkamp 1974][Otto
& Dikau 2004][Seijmonsbergen & de Graaff 2006]. Geomorphological map-
ping or landform mapping is the process of decomposing the land surface
into structural patterns, landforms and landform elements. Traditionally,
landform mapping is based on field work supplemented by the interpretation
of aerial photographs and literature research. However, due to the increasing
availability and quality of digital elevation models, satellite and aerial im-
ages, landform mapping is nowadays mainly performed digitally on screen.

Legends and guidelines for geomorphological maps differ from country to
country. A review of different geomorphological mapping systems can be
found in [Rothenbühler 2003], whereas a presentation of recent mapping
concepts is given in [Gustavsson et al. 2006][Seijmonsbergen & de Graaff
2006]. In Germany guidelines for geomorphological mapping at large scales
(1:25,000 and 1:100,000) have been developed by [Kugler 1964] and within
a national geomorphological mapping research program [Stäblein 1980]. At
large scales information is often generalized for cartographic reasons, which
restricts resolution and therefore the ability to discriminate between individ-
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ual landforms. The classification of individual landforms implies different
attributes that do not only describe the individual characteristics, but also
reveal information about patterns of distribution and relationships between
the landforms. Dikau [Dikau 1989] divided these attributes into primary and
secondary attributes. Primary attributes include only geomorphometric pa-
rameters, such as slope, aspect and curvature, that represent derivates of the
elevation data. Secondary attributes refer to the position of the landform
relative to the surrounding environment, shape, material, and the geomor-
phodynamic and geomorphogenetic processes responsible for the landform
evolution.

Some recent approaches in remote sensing and GIS aim at an automatic
recognition of geomorphological objects based on digital terrain data. Au-
tomatic landform recognition can be performed using elevation data only
[Schmidt & Hewitt 2004][van Asselen & Seijmonsbergen 2006], or by com-
bining elevation data and imagery information [Schneevoigt & Schrott 2006].
However, so far automatic recognition suffers from land surface complexity
and its continuous character, represented by diffuse landform boundaries,
overlapping landforms and a great variety of structural properties. Conse-
quently, fully automatic landform recognition is (at least at the moment)
restricted to landform elements or units, while individual landforms cannot
be identified in detail.

A detailed geomorphological map still requires manual landform mapping,
whether transferred from previously acquired field data, or genuinely mapped
from remote sensing data on screen. The accuracy of digital landform map-
ping depends on the resolution of the terrain data, the visual perception of
the virtual land surface morphology, and the diligence and knowledge of the
user. However, a fixed 2D bird’s eye view representation of aeral imagery
and elevation data, as it is common in standard mapping tools, significantly
restricts the perception of landforms. Typically, derivatives of elevation data
are often used to compensate for this by accentuating morphology changes
and break lines in the land surface [Smith & Clark 2005]. For example, relief
shading is commonly used for visualizing digital elevation models although
it is prone to biasing due to the variable azimuth of the light source.

In contrast, a combination of aerial imagery and elevation data in a 3D
visualization is a more natural and intuitive representation of the terrain.
Consequently, such 3D visualizations more and more replace the traditional
2D visualization and interpretation methods. However, so far 3D visualiza-
tion software has usually been restricted to simple data exploration.

In view of this, two semi-automatic landform mapping tools are pre-
sented that enable the mapping of geomorphological objects directly on the
textured DEM (see Figure 6.1). The 3D visualization displays the landform
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Figure 6.1: Motivation. Landform mapping carried out directly on the textured DEM.
During mapping the user can change the viewpoint arbitrarily and thus get
additional insight into the structure of the object at focus.

structure in its natural form similar to the perception in the field. Moreover,
by navigating in the 3D environment landforms can be inspected from ar-
bitrary views including perspectives hardly possible in nature. In addition
to enhanced landform visualization, the proposed landform mapping tools
assist the user in specifying geomorphological objects quickly and accurately
by using semi-automatic image segmentation techniques. This relieves the
user from defining landform borders exactly. Instead, only vague hints that
roughly indicate the location of the boundary have to be provided. The two
presented methods complement one another since depending on the kind of
object that should be mapped, one method or the other may be more effec-
tive.

The remainder of this chapter is organized as follows: First, related work is
reviewed. Then, the two landform mapping methods are presented, followed
by a multilevel banded heuristic to accelerate the segmentation. After that,
an extension of the segmentation algorithms is described that enables a de-
tailed mapping at steep slopes. Finally, results are presented and discussed.

6.2 Related Work

In the following, after a brief overview of general image segmentation strate-
gies, semi-automatic image segmentation methods that are relevant within
the considered context are reviewed.

6.2.1 Image Segmentation

Image segmentation techniques can be classified with respect to the amount
of user interaction necessary into manual, semi-automatic and fully auto-
matic approaches. Manual segmentation, while good at object recognition,
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takes excessive amounts of time and effort for precise boundary capture.
Fully automatic methods, while much more efficient, often result in an inac-
curate segmentation and fail to recognize the object of interest. In contrast
to that, semi-automatic techniques provide both high efficiency and accu-
racy by allowing the user to do the high-level task of object recognition
and letting the computer capture the low-level details of the object’s border.
Thus, semi-automatic image segmentation techniques are of great practical
use for various applications including medical image analysis, digital image
composition, key extraction, etc. Semi-automatic segmentation algorithms
can be further categorized into feature-based, region-based and edge-based
approaches.

In feature-based segmentation algorithms pixels are classified independently
of each other based on their position in feature space without explicitly con-
sidering connectivity among equally labeled pixels. Common features are
intensity, color, gradient magnitude and texture. Grayscale thresholding is
probably the simplest of all segmentation techniques since it relies solely on a
pixel’s intensity. A pixel is classified as belonging to an object if its intensity
is greater than or equal to a given threshold intensity. The threshold can be
set interactively or automatically, globally or adaptively, optimally or ad hoc.
In distance-based classification feature space is divided into a limited num-
ber of classes represented by a feature vector or cluster center. Each pixel
is assigned to the class that minimizes the distance to the pixel’s feature
vector. The minimum distance can be Euclidean, as in the nearest-neighbor
algorithm, or it can be in terms of variance and covariance, as in Bayesian
classification. The cluster centers can be specified manually or they can be
determined automatically via a clustering algorithm. While feature-based
segmentation is typically fast and simple, it is limited to the segmentation
of objects that do not overlap in feature space with the background or other
objects in the image. However, this rarely applies to real-world images.

In contrast to that, region-based methods specifically try to maintain con-
nectivity while grouping pixels with similar features (i.e., region-based meth-
ods extend feature-based segmentation by including connectivity). Region
growing [Zucker 1976] starts with some initial regions and grows them by
adding neighboring pixels based on some homogeneity criterion. Instead of
one or a few regions, region merging [Sonka et al. 2007] begins by considering
each pixel (or many small regions) and then hierarchically merges neighbor-
ing regions with similar properties. In contrast to these bottom-up styles,
region splitting [Sonka et al. 2007] uses a top-down approach to segmenta-
tion. It starts with the entire image as a single region and then recursively
subdivides it until each region satisfies a homogeneity criterion. However,
a typical problem of the aforementioned region-based techniques are leaking
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artifacts due to weak object boundaries. In graph cut based methods [Boykov
& Jolly 2001] the user first marks certain pixels as object or background to
provide hard constraints for segmentation, while additional soft constraints
incorporate both boundary and region information. Then, a graph cut op-
timization is used to find the globally optimal segmentation that gives the
best balance of boundary and region properties among all segmentations sat-
isfying the constraints.

Where region-based methods try to identify connected groups of pixels
that define an object, edge- or boundary-based segmentation approaches at-
tempt to determine the contours enclosing the object. Although edge-based
and region-based approaches have dual object representations, the segmen-
tation results produced by the two approaches usually differ since edge-based
methods typically utilize different image and object criteria than region-based
techniques. One of the simplest boundary-based techniques is contour fol-
lowing [Ballard & Brown 1982] or border tracing [Sonka et al. 2007] that
generates a closed, pixel-based boundary enclosing a region. Local edge fol-
lowing and edge relaxation are examples of local boundary-based algorithms.
However, due to their local nature they are subject to local minima. To find
globally optimal boundaries based on local cost or weighting criteria [Bal-
lard & Sklansky 1973][Cappelletti & Rosenfeld 1989][Chien & Fu 1974][Sonka
et al. 1995][Tan et al. 1992][van der Zwet & Reiber 1992], dynamic program-
ming is often used. Active contours or snakes [Amini et al. 1990][Cohen
1991][Daneels 1993][Geiger et al. 1995][Kass et al. 1988][Williams & Shah
1992] are manually initialized with a rough approximation of the boundary
of interest. The algorithm then iterates over the boundary to determine
the boundary that minimizes an energy functional. The energy functional
is a combination of external energy supplied by the image, such as gradi-
ent magnitude, and internal energy, such as boundary curvature. Intelligent
Scissor [Mortensen & Barrett 1995] allows the user to choose a minimum cost
contour by roughly tracing the object’s boundary with the mouse. As the
mouse moves, the minimum cost path from the cursor position back to the
last seed point is shown. If the computed path deviates from the desired one,
additional user-specified seed points are necessary.

6.2.2 Intelligent Scissors Based Methods

A well-known group of boundary-based techniques are those based on Intelli-
gent Scissors [Mortensen & Barrett 1995][Mortensen & Barrett 1998]. Falcão
et al. presented a slightly different version called Live Wire [Falcao et al.
1998]. While Intelligent Scissors provides highly interactive visual feedback
on small images, the shortest path computation becomes time consuming
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when the image is large. Therefore, several approaches to accelerate Intelli-
gent Scissors have been published in the following years.

Mortensen et al. [Mortensen & Barrett 1999] presented an enhancement of
Intelligent Scissors that over-segments the image using tobogganing and then
imposes a weighted planar graph on top of the resulting region boundaries.
The derived region-based graph is many times smaller than the pixel-based
graph used in the original Intelligent Scissors and thus provides faster graph
searches. Furthermore, the region-based graph provides an efficient frame-
work to compute a 4-parameter edge model that allows subpixel localization
as well as measuring edge blur. Wong et al. [Wong et al. 2000] noticed
that pixels within non-edge regions of the image are seldom involved in the
determination of boundaries. They exploit their observation by generating
a slimmed graph in order to reduce the number of pixels involved in path
computation.

Falcão et al. [Falcao et al. 2000] presented an approach to improve the time
efficiency of their Live Wire method by exploiting the basic properties of Di-
jkstra’s shortest path algorithm. They incrementally expanded the shortest
path map only up to the cumulative cost of the current cursor position. This
way they avoid an unnecessary computation of paths with bigger cumulative
costs, which results in much faster segmentation for large images. However,
the response time tends to get longer as the cursor moves further away from
the seed point since the overall path map gets bigger.

Live Lane [Falcao et al. 1998] restricts the search domain and constructs
the path map only within a local window centered at the current seed point.
As the cursor moves in this window, the corresponding boundary segment
is interactively displayed according to the path map. Whenever the cur-
sor crosses the window, the boundary segment from the seed point to the
crossing point is automatically fixed. The crossing point then automatically
becomes the new seed and a new path map is constructed within a new win-
dow centered at the new seed. Hence, Live Lane requires more seed points
than Live Wire, especially when the window size is small. Moreover, the seed
points may not lie exactly on the target boundary desired by the user, which
degrades the accuracy and repeatability of Live Lane.

Enhanced Lane [Kang & Shin 2002] adopts the idea of the local search
from Live Lane in the respect that it also restricts the boundary segment to
a small window. However, in Enhanced Lane the window is moved together
with the cursor, incrementally extending and updating the path from the cur-
rent seed point to every pixel in each successive window. In contrast to Live
Lane, new seed points are only inserted by the user whereas no additional
seed points are inserted automatically. Assuming that the window sequence
completely contains the target boundary in the right order, it can be proven
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that Enhanced Lane always produces the same result as Live Wire.
Kang et al. [Kang 2005] proposed a new Live Wire algorithm called G-

wire that is based on a generalized multi-dimensional graph formulation. In
addition to external energy, such as gradient magnitude, G-wire is capable
of handling internal energy, such as curvature of the boundary curve. As a
result, the method produces smoother boundaries and shows improved ro-
bustness to noise. However, the consideration of internal energy drastically
increases memory requirements and computational costs.

6.2.3 Graph Cut Based Methods

In their seminal work Boykov and Jolly [Boykov & Jolly 2001] presented a
technique to segment greyscale images into two disjoint regions. For this
purpose, the image is represented as a graph where pixels in the image cor-
respond to nodes in the graph and weighted edges exist between neighboring
pixels. The edge weights consist of two components, namely local boundary
costs computed from pixel gradients and global region costs derived from
intensity histograms. Once the user has marked certain pixels as foreground
or background, a min-cut/max-flow algorithm is used to segment the image
by minimizing the cost function. The user input is used as hard constraints
in the optimization as well as to initialize the intensity histograms.

Li et al. presented an image cutout tool [Li et al. 2004] that uses a similar
graph cut formulation. However, they cluster the colors in the foreground
and background regions using k-means [Duda et al. 2000] into 64 clusters.
The region costs for a pixel are then computed by its distance to the clos-
est cluster. In addition to that, they perform an over-segmentation using
a watershed segmentation prior to the graph cut optimization in order to
accelerate the segmentation. After the optimization the user can optionally
edit the boundary by moving around individual boundary vertices until the
result is satisfactory.

Since the original model depends on parameters which must be set by
hand, Blake et al. [Blake et al. 2004] formulated a generative, probabilistic
model in terms of a Gaussian mixture Markov random field. They used a
pseudolikelihood algorithm to learn color mixture and coherence parameters
for foreground and background regions. A database of images with correctly
segmented results was used to assess their approach.

Rother et al. [Rother et al. 2004] extended the original one-shot algorithm
to an iterative energy minimization. After each minimization step, pixels
are re-labeled and used to update a Gaussian mixture model that is used
to model foreground and background regions. Using the iterative approach
the amount of user editing is reduced. An incomplete labeling (the user only
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has to specify hard constraints for either the background or foreground) is
sufficient to initialize the optimization.

Lombaert et al. [Lombaert et al. 2005] presented a multilevel banded
heuristic for the computation of graph cuts. It is motivated by the well-
known narrow band algorithm in level set computation. While their approach
drastically increases time and memory efficiency, the global optimality of the
result can no longer be guaranteed and is limited to the segmentation of
large, roundish objects. Sinop et al. [Sinop & Grady 2006] addressed this
shortcoming of the banded graph cuts by using information from a Lapla-
cian pyramid to force thin structures to be included into the band. This way,
the computational efficiency of the banded graph cut approach can be re-
tained while at the same time the segmentation of thin features is improved.

Juan et al. [Juan & Boykov 2007] presented a hierarchical approach to
graph representation called capacity scaling. It can improve the theoretical
complexity and practical efficiency of the min-cut/max-flow algorithm. How-
ever, unlike the method by Lombaert et al., capacity scaling preserves the
global optimality of the solution.

6.3 Intelligent Scissors on Textured DEMs

6.3.1 Basic Idea of Intelligent Scissors

The basic idea of Intelligent Scissors [Mortensen & Barrett 1995] is to formu-
late the boundary detection problem in an image as an optimal path search
in a graph. Nodes in the graph represent pixels in the image and weighted
and directed edges are created between nodes that correspond to adjacent
pixels in the image. The corresponding edge costs are defined in such a way
that an optimal path is likely to correspond to an object boundary.

When the user plants a seed point, a path map is constructed that con-
tains the minimum-cost paths from the seed to every pixel in the image. By
interactively moving the cursor near the boundary of an object, the current
path is extended according to the path map forming a boundary segment.
Whenever the path deviates from the true object boundary, the user can
insert an additional seed point. This fixes the current boundary segment
and starts a new one originating from the new seed. If a new seed point is
created, the path map has to be recomputed with regard to the new seed
replacing the previous path map.

Let G(V , E) be an image graph and s, d ∈ V two nodes. Then, a path from
s to d can be defined as an ordered set of nodes

P (s, d) = {s = p0, p1, . . . , pn = d}
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with (pi, pi+1) ∈ E ,∀i = 0, . . . , n− 1. Given non-negative, local costs

l : E → R+

defined between adjacent nodes, the costs c of a path P can be computed as

c (P ) =
n−1∑
i=0

l(pi, pi+1).

An optimal path Popt between two nodes is then defined as the path with the
lowest costs among the set of all paths P connecting the two nodes, thus

Popt = arg min
P∈P

c(P ).

In the remainder of this section, first the local edge costs l are defined. Then,
the algorithm is described that is used to compute the optimal path between
two given nodes.

Local Edge Costs

Local costs between each pair of adjacent pixels are created as a weighted sum
of Laplacian zero-crossing fz, gradient magnitude fg and gradient direction
fd. Given a directed edge from node p to a neighboring node q, local costs
are defined as

l(p, q) = wzfz(q) + wgfg(q) + wdfd(p, q),

where wz, wg and wd are empirically chosen weights of the corresponding
edge features (wz = 0.43, wg = 0.43, and wd = 0.13 are used in the original
implementation).

Laplacian zero-crossing and gradient magnitude are common edge opera-
tors that convolve an image with multi-scale kernels. The different kernels,
each corresponding to a different standard deviation of the underlying 2D
Gaussian distribution, are normalized so that comparisons can be made be-
tween the results of the convolutions at the different scales. Multiple kernel
sizes are used because smaller kernels are more sensitive to fine details, while
larger kernels are better at suppressing noise. Using multiple kernels at dif-
ferent scales allows the gradient magnitude and Laplacian zero-crossing to
adapt to variety of image types and object edges.

Given an image I, gradient magnitude is computed by approximating the
partial derivatives in x- and y-direction using derivatives of a Gaussian ker-
nel. Let

Nσ(x, y) =
1

2πσ2
e
−
(
x2+y2

2σ2

)
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be a radially symmetric 2D normal distribution with standard deviation σ.
Then, the gradient magnitude for a given σ is computed as

Gσ(x, y) = |∇ (Nσ ∗ I)| = |(∇Nσ) ∗ I| , ∀σ ∈ S,

where S =
{

1
3
, 2

3
, 1, 11

3
, 12

3
, 2
}

. From these gradient magnitudes computed
at the different scales, the scale that best approximates the natural spatial
scale of the edge is used to compute the gradient magnitude weight. It is
computed on a per-pixel basis as the maximum gradient magnitude over all
scales

G(x, y) = max
σ∈S

Gσ(x, y).

Since the cost derived from the gradient magnitude needs to be low for strong
edges and high for weak edges, the final cost is computed by subtracting the
gradient magnitude image from its own maximum and then dividing the
result by the maximum gradient. In addition to that, costs are scaled by
Euclidean distance d(p, q) of p and q. Thus,

fg(q) = d(p, q)

(
1− G′(q)

maxq∈I G′(q)

)
,

with G′(q) = G(q)−min(G(q)) and

d(p, q) =

{
1 : p and q are diagonal neighbors

1√
2

: p and q are vertical or horizontal neighbors.

Laplacian zero-crossing is determined by first computing the Laplacian L
of the image as

Lσ(x, y) = ∇2 (Nσ ∗ I) =
(
∇2Nσ

)
∗ I, ∀σ ∈ S.

However, a discrete Laplacian image typically produces very few zero-valued
pixels. Therefore, zero-crossing is instead represented by two neighboring
pixels with opposite sign, where the pixel that is closest to zero is associated
with the zero-crossing. Thus, Laplacian zero-crossing is 0 for Laplacian image
pixels that are either zero or closer to zero than any neighbor with an opposite
sign, otherwise it is 1. Hence,

L′σ(q) =

{
0 : Lσ(q) = 0 ∨ (|Lσ(q)| < |Lσ(p)| ∧ Lσ(p)Lσ(q) < 0)
1 : otherwise.

Finally, the zero-crossing cost is computed as the weighted sum of the binary
zero-crossings at the different scales

fz(q) =
1

|S|
∑
σ∈S

L′σ(q).
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In contrast to gradient magnitude and Laplacian zero-crossing, which aim
at edge localization, gradient direction adds a smoothness constraint to the
boundary by causing high costs for large changes in the boundary direction.
The boundary direction is defined as the unit gradient vector

D(x, y) =
∇ (Nσ′ ∗ I)

|∇ (Nσ′ ∗ I)|
,

where σ′ denotes the scale with maximum gradient magnitude. Let D′(p)
denote the unit vector perpendicular to D(p). Then, the gradient direction
cost is defined as

fd(p, q) =
2

3π
(arccos (dp(p, q)) + arccos (dq(p, q))) ,

where

dp(p, q) = 〈D′(p), L(p, q)〉
dq(p, q) = 〈D′(q), L(p, q)〉

are vector dot products and

L(p, q) =
1

‖p− q‖

{
q − p : 〈D′(p), q − p〉 ≥ 0
p− q : otherwise

is the normalized link between pixels p and q. The main idea of including
the neighborhood link direction is to associate a high cost with an edge
between two neighboring pixels that have similar gradient directions but are
perpendicular to the link between them. By contrast, gradient direction cost
is low when the gradient direction of two neighboring pixels are similar to
each other and the link between them.

When computing local edge costs for color images, each color band is
processed separately. Then, the results are combined by maximizing over
the respective outputs to produce a single-valued cost.

Shortest Path Computation

The minimum-cost path is computed by utilizing an optimal graph search.
It is similar to that presented by Dijkstra [Dijkstra 1959], which was later
extended by Nilsson [Nilsson 1980] by an additional heuristic to prune the
graph search. The formulation of boundary finding as a 2D graph search
allows the extraction of boundaries of arbitrary complexity.
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Whenever the user places a seed point s, a path map is computed that
contains the optimal paths

Popt(s) = {Popt(s, d), ∀d ∈ V}

from the seed to all nodes d in the graph. Note that, if P = {p0, p1 . . . , pn}
is an optimal path, then all sub-paths P ′ = {pi, . . . , pj} with i < j are also
optimal paths. Therefore, instead of storing the complete path for each node,
it is sufficient to store for each node a pointer ptr(pi) = pi−1 to the next node
on the shortest path (see Figure 6.2). Once such a path map has been com-
puted with respect to a given seed point, a desired boundary segment can
be chosen dynamically by moving the free point associated with the current
cursor position. Interactive movement of the free point causes an update
of the current boundary segment by following the optimal path pointers in
the path map from the new free point back to the seed point. Thus, by
selecting seed points and free points to lie near an object’s edge, the user is
able to interactively wrap the boundary around an object of interest. If the
movement of the free point causes the proposed boundary to digress from
the desired object’s edge, a new seed point prior to the point of digression
can be inserted causing a fixation of the current boundary segment and a
recomputation of the path map with respect to the new seed.

The graph search algorithm is initialized by placing the current seed s with
a cost c(s) = 0 in a sorted list L. All other nodes are initialized with infinite
costs. During the algorithm the costs c of a node corresponds to the costs
of the path from the seed to the respective node with lowest costs found so
far. At the end of the algorithm the costs correspond to the costs of the

(a) (b) (c) (d)

Figure 6.2: Path Map. From left to right: (a) A simple example image with a seed
point placed by the user. (b) The corresponding path map with respect to
the seed. (c) When the user moves the cursor, the path pointers are followed
from the free point back to the seed. (d) The optimal path is interactively
displayed.

102



6.3. INTELLIGENT SCISSORS ON TEXTURED DEMS

respective shortest path between the seed and the node. The list L is sorted
based on the costs of the nodes and is updated appropriately if the cost of a
node is decreased.

After initialization the graph search then iteratively generates a minimum
cost spanning tree based on the local cost function l. In each iteration the
node p with the minimum cost is removed from L and “expanded” by com-
puting the cost to each of p’s unexpanded neighbors. For each neighbor q of
p, its costs is computed as the cost of p plus the local cost from p to q, thus

c′(q) = c(p) + l(p, q).

If the newly computed cost of q is less than the current cost, then c(q) is
assigned the new, lower cost c′(q) and its optimal path pointer is set to point
to p. The process is repeated until all nodes have been expanded (i.e., when L
is empty). The described path map computation is summarized in Algorithm
3.

Algorithm 3 ComputePathMap

Input:
l(p, q) // Local edge costs from p to q
e(p) // Boolean function indicating if p has been expanded

c(p) // Costs from seed to p
L // List of active nodes sorted by their cost c

Output:
ptr(p) // Pointers indicating next node on shortest path

while L 6= ∅ do
p← min(L)
e(p) = true
for each neighbor q of p with ¬e(q) do
c′(q) = c(p) + l(p, q)
if q ∈ L and c′(q) < c(q) then
q ← L // remove q from L

end if
if q /∈ L then
c(q) = c′(q)
ptr(q) = p
L→ q // (re-)insert q into L

end if
end for

end while
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6.3.2 Intelligent Scissors on Textured DEMs

Despite the fact that the original Intelligent Scissors technique provides a
powerful segmentation tool for images up to a moderate size, its speed and
memory consumption constrain its feasibility when dealing with large im-
ages. In the case of geospatial data typically very large images, such as high
resolution aerial imagery and digital elevation models, are involved that often
can not even be completely loaded into main memory. For such images, the
direct application of the original Intelligent Scissors approach is not possible
at all.

In order to permit interactive performance on out-of-core datasets and to
ensure interactive performance, an extension to the basic Intelligent Scis-
sors algorithm is presented that works on tiled images. The main idea is to
carry out the segmentation on quadtree representation of the imagery that
is used for real-time rendering by the terrain rendering engine. The quadtree
representation is utilized to drastically improve performance with respect to
memory requirements and computational costs so that interactive response
is achieved even on very large datasets. The quadtree data structure is ex-
ploited in two ways: First, the search domain is localized, which means that
the domain in which an optimal path is sought is restricted to a region around
the user input. Second, a multilevel banded heuristic to exploit the hierarchi-
cal structure is employed. As this multi-level approach is also used to speed
up the graph cut method presented in the next section, it is presented for
both in section 6.5.

Localizing the Boundary Search

The presented algorithm takes up the idea of Enhanced Lane [Kang & Shin
2002] of localizing the search domain and incrementally updating the opti-
mal path and adapts it to work on tiled images, as for example given by
a quadtree. In addition to that, the idea of an incremental update of the
optimal path is extended to the loading of the necessary tiles of the image,
to the computation of the edge features and to the construction of the cor-
responding parts of the graph.

While previous Intelligent Scissors based techniques hold the entire image
graph in memory, the presented approach only holds the parts corresponding
to the current search domain in memory. When the user moves the mouse so
that the search domain needs to be extended, the necessary tiles are loaded
on-demand, the graph is extended accordingly and the path map is updated.
If the user places a new seed, all currently loaded data is released again.

Let T denote the set of tiles (in the current implementation a tile size of
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128×128 pixels is used) constituting the image, and let

S = {v(t0), . . . , v(tn)}

be a sequence of free points v(ti) denoting the position of the mouse cursor at
time indices ti. The seed point corresponds to v(t0) while the final goal pixel
(i.e., the next seed point) corresponds to v(tn). Further, let Ta(ti) denote the
set of active tiles currently hold in main memory, and G(ti) and D(ti) the
graph and the corresponding path map at time index ti, respectively. Finally,
let Tn(ti) be the set of tiles that becomes active at time ti and Gn(ti) the
corresponding graph.

When the user starts the segmentation starts with the placement of the
seed point v(to), the tile T (t0) ∈ T is determined that contains the seed point
v(t0). This tile is then activated and added to the set of active tiles Ta(t0),
which is initially empty. The activation of a tile involves the following steps:
First, it has to be loaded from disk. However, often tiles are already cached
in main memory by the rendering engine since the parts of the terrain that
are segmented are visualized at the same time. Once the image tile has been
loaded, the corresponding graph G(t0) is created and the respective local
edge costs are computed on-the-fly. The edge costs are computed in the
same way as in the original Intelligent Scissors algorithm with one exception:
The geometric distance between pixels p and q is now calculated in 3D as

d(p, q) =
‖h(p)− h(q)‖

max(p,q)∈E ‖h(p)− h(q)‖

using the DEM h. After the computation of the local costs, the image tile is
no longer needed and can be released from memory. Finally, the path map
D(t0) is computed for the graph G(t0) with respect to the seed point v(t0).
To this end, the cost of v(t0) is set to zero, inserted into the sorted list L,
and Algorithm 3 is called.

As long as the free point remains inside the current search domain, the
current path map stays valid and can be used to look up the shortest path
and display the corresponding boundary segment. If, however, the cursor is
moved out of the active search domain, the search domain has to be extended
accordingly (see Figure 6.3) and the path map has to be updated. Let’s now
consider the situation at time ti, and let T (ti) be the tile the current free
point v(ti) is located in. Certainly, the tile T (ti) has to be activated and
added to the set of active tiles. In addition to that, also the tiles that lie
within a given distance dt to v(ti) are activated (if not already active). This
way it is assured that always at least an area of radius dt centered around the
current free point is active. Otherwise, object boundaries lying just outside

105



CHAPTER 6. DIGITAL LANDFORM MAPPING

.
.

.

.

.

.

.

(0,0) (1,0) (2,0)

(2,1)(1,1)(0,1)

v(t0)

v(t0)

v(t1)

v(t0)
v(t2)

v(t0)

v(t3)

Ta(t1) =
{
T(0,0)

}

Tn(t1) = ∅

Ta(t0) =
{
T(0,0)

}

Tn(t0) =
{
T(0,0)

}
Ta(t2) =

{
T(0,0), T(1,0)

}

Tn(t2) =
{
T(1,0)

}

Ta(t3) =
{
T(0,0), T(1,0), T(1,1), T(2,0), T(2,1)

}

Tn(t3) =
{
T(1,1), T(2,0), T(2,1)

}

Figure 6.3: Expansion of Search Domain. Whenever the mouse cursor comes close
to the border of the current search domain, the search domain is expanded
accordingly. Ta are the tiles that are already active at the respective time
index, while Tn are the tiles that are activated to expand the search domain.

the search domain might be missed, although the cursor is close to them.
More precisely, the set of new tiles is

Tn(ti) = {T ∈ T | T /∈ Ta(ti−1) ∧ d(v(ti), T ) < dt} ,

where d(v(ti), T ) denotes the distance between v(ti) and T , and dt is a dis-
tance threshold (set to half the tile size in the current implementation). These
tiles are then activated as described above, resulting in the graph Gn(ti). The
new set of active tiles

Ta(ti) = Ta(ti−1) ∪ T ′(ti)

is then obtained as the union of the previous set of active tiles Ta(ti−1) and
the tiles Tn(ti) activated in the current step. The new graph

G(ti) = G(ti−1) ∪ Gn(ti) ∪ E(ti).

is obtained in a similar fashion as the union of the old graph G(ti−1) and the
new graph Gn(ti). However, additional edges

E(ti) = {(p, q) | p ∈ G(ti−1), q ∈ Gn(ti), p ∈ N(q)}

that connect the graphs appropriately have to be added, where N(·) is the
set of neighboring nodes.

Once the graph has been extended, the path map D(ti−1) constructed
so far has to be expanded and updated accordingly (see Figure 6.4). The
domain for which the path map has to be computed certainly comprises the
new nodes in Gn(ti) since they have not been explored yet. However, some
nodes in G(ti−1) for which a shortest path has already been computed in
D(ti−1) might have to be updated as well, This is because there now might
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Figure 6.4: Incremental Path Map Update. If the search domain is expanded, the
path map has to be expanded and updated as well. The necessary update
of the path map is not restricted to the newly added nodes, but may also
comprise nodes that have already been in the search domain before expan-
sion. This is because for some nodes there might now exists a shorter path
running through the new part of the graph. However, in order to be able
to reduce the cost of such a node, its current cost has to be greater than
that of the minimum-cost node vmin at the border between the old and the
new graph. Therefore, all nodes U that have a greater cost then vmin are
determined, and their shortest path is updated.

exist a shorter path through nodes in Gn(ti) that have not been considered
until now. In order to be able to reduce the cost of a node in G(ti−1), its
current cost has to be greater than that of the minimum-cost node vmin(ti)
at the border between the old and the new graph, otherwise it cannot be
improved. Let

B(ti) = {p ∈ G(ti−1) | ∃ q ∈ N(p) with q ∈ Gn(ti)}

denote the set of border nodes. Then, the minimum-cost border node is

vmin(ti) = arg min
p∈B(ti)

c(p).

Therefore, in addition to the nodes of the new graph Gn(ti), all nodes

{p ∈ G(ti−1) | c(p) > c(vmin(ti))}

of the old graph G(ti−1) with greater costs than vmin(ti) are inserted into
L as well. This is conceptually equivalent to backtracking the path map
construction to the state where vmin(ti) has been about to be expanded (i.e.,
when it was the first element in the list L). Using the such initialized list L,
the path map is updated using Algorithm 3. Note that the update domain
is restricted to the newly added tiles and their neighbors that have already
been activated. Consequently, the time for the path map construction is
independent of the size of the current search domain and the considered
image.
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Using Elevation Data

So far, only aerial imagery has been considered as input for the segmenta-
tion. However, aerial imagery is typically only able to reproduce the relief
structure up to a certain extent. In addition to that, shadows, snow or other
phenomena might occlude an object of interest. Therefore, digital elevation
models, if available, are also often used as basis for landform mapping. For
landform mapping purposes, a DEM is usually represented as shaded relief
or using derivatives of it, such as slope and curvature. To enable such visu-
alizations of the terrain, according shaders were implemented that allow the
user to view the terrain as shaded relief, or shaded depending on slope or
curvature (see Figure 6.5).

In addition to the visualization, shader output can also be used as input
for the segmentation. This way the user can choose the representation that
is best suited for the visualization and mapping of the object at focus. In the
case of shaded relief, slope, or curvature the input image for the segmentation
is just a single channel image. The segmentation algorithm is not affected
by this, since it does not make any assumptions on the input data.

The shaded relief is computed using simple diffuse reflection. Each pixel
is assigned a gray value proportional to the cosine of the angle between the
surface normal n and the light vector l. The light direction can be interac-
tively changed by the user, which can be used to accentuate the object of
interest. Slope is calculated as the gradient magnitude

|∇h(x, y)| =

√(
∂h

∂x

)2

+

(
∂h

∂y

)2

,

(a) texture (b) shaded relief (c) slope (d) curvature

Figure 6.5: Different Relief Representations. The user can choose how the relief is
visualized and at the same time select the relief parameter landform mapping
is based on. This way, the user can use the representation that is most
effective to map the object at focus.
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whereas curvature is computed as the Laplacian

∇2h(x, y) =
∂2h

∂x2
+
∂2h

∂y2

of the DEM h. Although the mentioned relief parameters should meet most
requirements, the system can, if required, naturally and easily be extended
to support additional relief parameters (as long as they are of local nature
and can be efficiently computed in a shader).

6.4 Graph Cuts on Textured DEMs

6.4.1 Basic Idea of Graph Cuts

In this section the basic idea of image segmentation based on a graph cut
formulation is reviewed as introduced in the seminal work by Boykov and
Jolly [Boykov & Jolly 2001]. The goal is to divide an image into two disjoint
sets: foreground and background. For this purpose, the image is represented
as a graph where pixels in the image correspond to nodes in the graph and
weighted edges exist between neighboring pixels. The edge weights consist
of two components, namely local boundary costs computed from pixel gradi-
ents and global region costs derived from intensity histograms. By marking
certain regions in the image as foreground or background, respectively, the
user imposes hard constraints for the segmentation. The remaining parts of
the image are then segmented automatically by computing a global minimum
among all segmentations that satisfy the hard constraints. The cost function
is defined in terms of boundary and region properties of the resulting seg-
ments. These properties can be interpreted as soft constraints.

Let x = (x1, . . . , xn) be a vector containing the pixels of the image and let
N be the set of all unordered pairs (xi, xj) of neighboring pixels in the image
under a standard 8-neighborhood system (generally, the neighborhood sys-
tem can be arbitrary). Further, let G = (V , E) be a graph defined by a set of
nodes V and a set of undirected edges E . Nodes are created corresponding to
pixels xi in the image. In addition, there are two terminal nodes S (source)
and T (sink) that represent foreground and background labels, thus

V = {S, T}
n⋃
i=1

{xi} .

The set of edges E consists of two types of undirected edges: n-links (neigh-
borhood links) and t-links (terminal links). Each pair of neighboring pixels
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optimal 
cut

background

foreground

n-link

t-link S

T

S

T

Figure 6.6: Graph Cut Example. A simple segmentation example of a 3x3 image. A
graph with n-links between neighboring nodes and t-links connecting each
node to the source S (red) and sink T (green) is created from the image.
The cost associated with each edge is reflected by its thickness. After the
graph cut minimization the graph consists of two disjoint sets.

(xi, xj) in N is connected by an n-link. In addition, each pixel xi has two
t-links (xi, S) and (xi, T ) connecting it to each terminal, hence

E = N
n⋃
i=1

{(xi, S), (xi, T )} .

An s-t cut is a subset of edges C ⊂ E such that in the induced graph
G(C) = (V , E \ C) the terminals S and T become completely separated and
the nodes are divided between them (see Figure 6.6). Consequently, a cut
corresponds to a binary partitioning of the underlying image into foreground
and background with arbitrary topology. The goal with respect to image
segmentation is then to compute a cut that results in an optimal segmenta-
tion. Severed n-links are located at the segmentation boundary and hence
represent the cost of the segmentation boundary. In contrast, severed t-links
are used to model regional properties of segments. Thus, a minimum cost
cut corresponds to a segmentation with a desirable balance of boundary and
regional properties. In addition to that, hard constraints can be modeled by
assigning infinite costs to t-links.

Let a = (a1, . . . , an) be a binary vector whose components ai specify as-
signments of pixels xi to either foreground (“frg”) or background (“bkg”).
Then, the soft constraints imposed on the boundary and region properties of
a are described by the cost function

E(x, a) = λR(x, a) +B(x, a), (6.1)
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where

R(x, a) =
n∑
i=1

R(xi, ai)

B(x, a) =
∑

(xi,xj)∈E

B(xi, xj)δ(ai, aj)

and

δ(ai, aj) =

{
0 : ai = aj
1 : ai 6= aj.

The coefficient λ specifies the relative importance of the region properties
term R(x, a) versus the boundary properties term B(x, a). The regional
term R(x, a) assumes that individual costs for assigning a pixel xi to the
foreground or background are given by R(xi, “frg”) and R(xi, “bkg”), re-
spectively. In the original work by Boykov et al. pixels marked by the user
are used to build histograms of pixel intensities for the foreground p(xi|“frg”)
and background p(xi|“frg”). These histograms are then used to set region
costs as negative log-likelihoods

R(xi, “frg”) = − log p(xi|“frg”)

R(xi, “bkg”) = − log p(xi|“bkg”).

The use of negative log-likelihoods is motivated by the MAP-MRF formula-
tions in [Greig et al. 1989][Boykov et al. 1998].

The term B(x, a) comprises the boundary properties of segmentation a. It
can be interpreted as a penalty for a discontinuity between xi and xj. Typ-
ically, B(xi, xj) is large when pixels xi and xj are similar, and small when
they are very different. B(xi, xj) may be based on local intensity gradient,
Laplacian zero-crossing, gradient direction or similar criteria. In the original
implementation boundary costs are modeled using intensity differences

B(xi, xj) =
1

dist(xi, xj)
e−

(I(xi)−I(xj))
2

2σ2 ,

where I(xi) denotes the intensity of pixel xi and σ is the standard deviation
of pixel intensities in the image. This function penalizes a lot for discontinu-
ities between pixels of similar intensities if |I(xi)− I(xj)| < σ. Otherwise, if
pixels are very different, the penalty is small. Intuitively, this function cor-
responds to the distribution of noise among neighboring pixels of an image.

Assume that f = (f1, . . . , fn) and b = (b1, . . . , bn) are binary vectors con-
taining the hard constraints imposed by the user input. fi = 1 indicates that
the user has marked the pixel xi as foreground and bi = 1 as background,
respectively, where fi 6= bi,∀i. Then the edge weights E are defined as
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edge cost case

(xi, xj) B(xi, xj) (xi, xj) ∈ N
λR(xi, “bkg”) fi = bi = 0

(xi, S) K fi = 1
0 bi = 1

λR(xi, “frg”) fi = bi = 0
(xi, T ) 0 fi = 1

K bi = 1

where
K = 1 + max

xi

∑
(xi,xj) : xj∈N (xi)

B(xi, xj).

Once the graph has been completely defined, the goal is to compute the
global minimum of Equation 6.1 among all segmentations a satisfying the
hard constraints

∀fi = 1, ai = “frg”

∀bi = 1, ai = “bkg”.

A globally minimum s-t cut can be computed efficiently in low-order poly-
nomial time [Ford & Fulkerson 1962][Goldberg & Tarjan 1988][Cook et al.
1998]. The corresponding algorithms work on any graph and are therefore
not restricted to 2D images but can also be used to compute globally optimal
segmentation on volumes of any dimension. Apart from the theoretical con-
siderations, an efficient implementation of graph cut algorithms can be an
issue in practice. The most straightforward implementations of the standard
graph cut algorithms can be slow. Experiments in [Boykov & Kolmogorov
2004] compared several well-known versions of these standard algorithms in
the context of graph based methods in vision. The same paper also described
a new version of the max-flow algorithm that (on typical vision examples)
significantly outperformed the standard techniques.

6.4.2 Graph Cuts on Textured DEMs

In the following a graph cut based approach for the segmentation of textured
DEMs is presented. The user interface is similar to that of Li et al. [Li et al.
2004], where the user marks parts of the foreground and background back-
ground by brushing with the mouse. In the presented approach brushing is
directly performed on the textured DEM. This user input is used as hard
constraints as well as to initialize the region model as in the standard ap-
proach.
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Previous graph cut based approaches for image segmentation run the graph
cut optimization on the whole image. While this can already become slow
for moderate-sized images, it is far from providing interactive feedback for
huge aerial images. However, it is not necessary to include the whole aerial
image into the optimization. Instead, only a small area around the user input
is used. To derive this area of interest, the convex hull of the user hints is
computed and all tiles of the quadtree that are at least partially contained in
the convex hull are loaded. Then, these tiles are sewed together and a graph
is created from them the same way as in the original approach.

Region Term

In early approaches histograms of pixel intensity or color were used to model
foreground and background regions. However, it is often impractical to build
adequate histograms. For small sample sizes it is usually better to estimate
solely marginal histograms. Although information about the joint occurrence
of features in the different dimensions is lost, bin contents in the marginals
may be significant where those in the full distribution would be too sparse.
Moreover, for high-dimensional feature spaces a regular binning often results
in poor performance. While a coarse binning degrades resolving power, a fine
binning leads to statistically insignificant sample sizes for most of the bins.
A partial solution is offered by adaptive binning, whereby the histogram
bins are adapted to the distribution. The binning is induced by a set of
prototypes, which can be determined by vector quantization, for example
k-means [Duda et al. 2000].

An alternative is to use Gaussian mixture models (GMM), which have
already been used for soft segmentation [Ruzon & Tomasi 2000][Chuang et al.
2001] as well as for color and texture segmentation [Permuter & Francos
2003]. If xi is an observation vector (of random variables) of dimension d
and θ is a vector of unknown parameters, then the likelihood p(xi|θ) can be
represented as a marginal over hidden variables

p(xi|θ) =
K∑
j=1

p(xi|θj)p(θj).

Assuming that the p(xi|θj) are Normally distributed with mean µj and co-
variance matrix Σ, they can be written as

p(xi|θj) =
1

(2π)
d
2 |Σj|

d
2

e−
1
2((xi−µj)TΣ−1

j (xi−µj)),

where θj = (µj,Σj), and |Σ| denotes the determinant of the covariance ma-
trix. The expectation maximization (EM) algorithm [Dempster et al. 1977]

113



CHAPTER 6. DIGITAL LANDFORM MAPPING

can be used to estimate θj and the mixture weights p(θj).
The used region modeling follows the approach by Rother et al. [Rother

et al. 2004] that models foreground and background regions using Gaussian
mixture models. The foreground and background regions are represented
using a GMM with K = 5 components. Instead of a soft assignment of prob-
abilities for each component to a given pixel, each pixel is assigned a unique
GMM component. To this end, an additional vector k = (k1, . . . , kN) with
ki ∈ {1, . . . , K} is introduced that assigns each pixel a GMM component
either from the foreground or background. Although a soft assignment of
probabilities might seem preferable as it would allow for expectation max-
imization, it involves significant additional computational expense while at
the same time the practical benefit turns out to be negligible. The region
costs are then defined as

R(xi, ai, ki, θ) = − log p(c(xi)|ai, ki, θ)

= − log

(
K∑
j=1

p(c(xi)|ai, ki, θj)p(θj|ai, ki)

)

=
K∑
j=1

− log p(c(xi)|ai, ki, θj)− log p(θj|ai, ki)

where p(c(xi)|ai, ki, θj) is a multivariate Gaussian distribution, p(θj|ai, ki) are
the mixture weighting coefficients and c(xi) denotes the RGB color of pixel
xi.

Boundary Term

To set the boundary penalties, a contrast dependent distance of the respective
color values scaled by the pixel distances is used

B(xi, xj) =
1

‖h(xi)− h(xj)‖
e−β‖c(xi)−c(xj)‖

2

,

where c(xi) denotes the RGB color of pixel xi, and h is the DEM. When β is
zero, the smoothness term is simply the well-known Ising prior, encouraging
smoothness everywhere, to a degree determined by the constant λ. However,
it has been shown [Boykov & Jolly 2001] that it is more effective to set
β > 0 as this reduces the tendency to smoothness in high contrast regions.
Therefore, the constant β is chosen as

β =
1

2
〈
‖c(xi)− c(xj)‖2〉 ,
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where 〈·〉 denotes expectation over the image. This choice of β ensures that
the exponential term switches appropriately between high and low contrast.

Energy Function and Minimization

As in the previous section let x = (x1, . . . , xn) be a vector containing the
image pixels and a = (a1, . . . , an) be the corresponding binary assignment
vector. Further, let θ = {µ(a, k),Σ(a, k)} with a ∈ {0, 1} and k ∈ {1, . . . , K}
denote the parameters of the GMM model. Then, the energy function for
the segmentation is defined as

E(x, a,k, θ) =
n∑
i=1

R(xi, ai, ki, θ) + λ
∑

(xi,xj)∈E

B(xi, xj)δ(ai, aj)

Instead of the previous one-shot algorithm [Boykov & Jolly 2001], the iter-
ative energy minimization scheme presented in [Rother et al. 2004] is used.
This has the advantage of allowing automatic refinement of the GMM param-
eters using newly labeled pixels. First, pixels are assigned GMM components.
Then, GMM parameters are learned from the data. To this end, subsets

S(a, k) = {xi ∈ x | a = ai, k = ki}

of clustered pixels are determined. The means µ(a, k) and covariance Σ(a, k)
are estimated in standard fashion as the sample mean and covariance of pixel
values in S(a, k). The corresponding mixing weights are estimated as

p(θ|a, k) =
‖S(a, k)‖∑
k ‖S(a, k)‖

.

Finally, a global optimization using the minimum cut algorithm is carried
out. This process is iterated until the change in the overall energy is below
a threshold. The procedure is summarized in Algorithm 4.

6.5 Hierarchical Approach

In this section a multilevel banded heuristic for the presented Intelligent Scis-
sors as well as graph cut based landform mapping approaches is proposed.
The basic idea is to exploit the hierarchical structure of the quadtree to ac-
celerate the segmentation. The segmentation is started on a coarse level of
the quadtree hierarchy and then successively refined until the finest level is
reached. On the starting level the segmentation is carried out using the al-
gorithms presented in the previous sections. The obtained boundary is then
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Algorithm 4 Iterative Graph Cut

initialize GMMs from user input
repeat

assign GMM components to pixels:
kt+1
i ← arg mink∈{0,...,K}R(xi, a

t
i, k, θ

t)

learn GMM parameters from data:
θt+1 ← arg minθ

∑
iR(xi, a

t
i, k

t+1
i , θ)

estimate segmentation: use min cut to solve
at+1 ← arg minaE

t(x, a,kt+1, θt+1)

until Et−1 − Et < threshold

propagated to the next higher resolution level. There, the segmentation is
performed only within a narrow band surrounding the propagated boundary
from the coarser level. This procedure is repeated until the highest resolution
level (or a user-defined level) is reached. Since the algorithms only run on the
subgraph that comprises the narrow band, the necessary computations at the
fine resolution are significantly lower than running it on the full graph. Since
only the subgraph has to be established, memory consumption is reduced as
well.

This approach has already been used to accelerate graph cut based seg-
mentation on images [Lombaert et al. 2005]. It is inspired by the well-known
narrow band algorithm in level set methods [Adalsteinsson & Sethian 1995]
as well as the multilevel graph partition method [Karypis & Kumar 1998].
The approach is particularly suited for working on a quadtree representation
of image data because in this case a multiresolution representation of the
data already exists and does not need to be created in a preprocessing step.

Assume there are l = (1, . . . , L) levels in the quadtree, where 1 corresponds
the finest resolution level and L to the coarsest. Let ls and le denote the level,
where the segmentation starts and ends, respectively, with 1 ≤ le ≤ ls ≤ L.
Further, let Gl(V l, E l) denote the graph that is constructed on level l and Bl

the boundary resulting from the segmentation on the l-th level. In the Intel-
ligent Scissors approach the boundary consists of the nodes corresponding to
the optimal path. In the graph cut method the boundary is defined by the
nodes that are at the border between foreground and background regions.

The segmentation starts by propagating the user inputs down to each
level until ls. For the Intelligent Scissors method this comprises the seed
point and the free point, whereas for the graph cut method the user hints
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(a) Banded Intelligent Scissors (b) Banded Graph Cut

Figure 6.7: Hierarchical Refinement. (a) A shortest path (blue) together with a
narrow band surrounding it is propagated to the next higher level of the
quadtree hierarchy. (b) The result of a graph cut segmentation is propa-
gated to the next level. On the next level only pixels close to the border
of foreground and background regions are considered. The outermost pixels
are used as hard constraints.

marking foreground and background regions, respectively. After that, the
respective segmentation algorithm is performed on ls.

Suppose now that the current level is l and the boundary Bl ⊂ V l is given.
The boundary is then propagated to the next higher level. For a node v ∈ V l,
let prop(v) ⊂ V l−1 denote the four corresponding nodes on the next higher
resolution level. However, in addition to the boundary itself, also pixels in-
side a narrow band of with d surrounding the boundary are propagated to
the next level

prop(Bl) =
{
prop(v) ∈ V l−1 | ∃v′ ∈ Bl : ‖v − v′‖2

< d, v ∈ V l
}
.

From this band then the graph Gl−1(V l−1, E l−1) is built, where nodes are
created for the vertices of prop(Bl) and edges are created between neigh-
boring nodes as in the standard algorithm. The distance parameter plays
an important role in practice. If d is small, the algorithm may not be able
to recover the full details of object boundaries with high shape complexity
or high curvature. By contrast, if d is large, the computational benefits are
reduced and the wider band may also introduce additional outliers far away
from the desired object boundary. In practice, the use of d = 1 presents a
reasonable compromise.

While on the start level the incremental Intelligent Scissors based approach
is performed as presented in previous section, on the higher levels the optimal
path from the seed to the free point is computed on the graph created from
the propagated result. For the graph cut additional hard constraints at the
higher levels are provided by assigning the nodes at the inner border to the
foreground and the nodes at the outer border to the background (see Figure
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Algorithm 5 Hierarchical Segmentation

propagate user input to level ls
create Gls(V ls , Els)
for l = ls, . . . , 1e − 1 do
Bl ← solve on Gl(V l, El)
prop(Bl)← project boundary pixel Bl to next level l − 1
Gl−1 ← create from prop(Bl)
(graph cut: add additional hard constraints at borders)

end for
Ble ← solve on Gle(V le , Ele)

6.7). This procedure is repeated until the finest resolution level is reached,
yielding the final boundary Ble . The method is summarized in Algorithm 5.

6.6 Revised Landform Mapping

A limitation of all landform mapping tools working on aerial imagery and
elevation data only is that they can not be used to perform an accurate map-
ping at steep slopes. The reason for this is that steep slopes are only sparsely
sampled in orthoimages and therefore lack information needed for a detailed
mapping. However, even if additional imagery from different perspective is
available, a suitable representation for landform mapping is required. In view
of this, the landform mapping tools presented in the previous sections are
revised in order to be able to incorporate imagery in addition to the aerial
photographs.

To provide additional information at steep slopes, photos are registered to
the textured DEM with the method described in chapter 4. The different
georegistered photos are then composited on the DEM as presented in chap-
ter 5. The segmentation is then performed on the texture patches resulting
from the composition.

Since the reparameterized texture patches of a quadtree tile are also repre-
sented as images on a regular grid, creating the graph structure for them is as
straightforward as in the standard case. However, since neighboring patches
are parameterized separately, adjacent patch borders do not coincide exactly
(although they are shaped similarly). Therefore, finding adjacent nodes along
the patch borders and creating edges between them has to be performed ex-
plicitly.
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Let S ⊂ R3 be the surface patch of a quadtree tile and

MS = {VS, TS, (pv)v∈VS}

its respective triangulation with a set of vertices VS, triangles TS ∈ V3
S and

vertex locations (pv) ∈ S. Further, let Mo be the triangulation obtained
by ortho-projection in the parameter domain Ωo ⊂ R2, and Mr be the
triangulation obtained by the reparameterization in the parameter domain
Ωr ⊂ R2, respectively. Further, let

φo : Ωo ⊂ R2 → S

(u, v) 7→ φo(u, v)

and φr, respectively, denote the mappings from the respective parameter
spaces into S. Given a point t = (u, v) in the parameter domain Ωr at
the border of patch S, the objective is then to find its neighbor t′ in the
parameter domain Ω′r of the adjacent patch S ′ (see Figure 6.8). Since t is a
border vertex it is located on an edge and can therefore be represented as
the linear combination of the respective edge vertices. Assuming the edge
vertices are ti, tj ∈ Ωr of the triangulation Mr, then t can be expressed as

t = λti + (1− λ)tj.

Since the parameterization is linear over the triangles, t can be transformed
into S as

φr(t) = λφr(t) + (1− λ)φr(t)

= λpi + (1− λ)pj = p,

where pi, pj ∈ S are the corresponding edge vertices in world space and
p ∈ S is the interpolated vertex. From the world space representation p can
be transformed into the parameter space Ωo as

φ−1
o (p) = λφ−1

o (pi) + (1− λ)φ−1
o (pj)

= λvi + (1− λ)vj = v,

where vi, vj ∈ Vo are vertices of the triangulation Mo of the parameter
domain Ωo.

Let this mapping from Ωo to Ωr be denoted by

γ : Ωo → Ωr

and γ−1 be the inverse mapping.
To perform these mappings efficiently, they are implemented as a lookup
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Figure 6.8: Patch Representations. Two neighboring tiles of the quadtree are shown
in the different domains and with the corresponding mapping functions be-
tween them.

table. The lookup tables are generated by rendering the respective triangu-
lation color coded into an offscreen buffer. To create the lookup table for γ,
the triangulationMr is rendered and each vertex is assigned its orthotexture
coordinates as color as color. The colors are interpolated over the triangles.
Analogously, the lookup table for γ−1 is created by rendering the triangula-
tionMo and each vertex is assigned the texture coordinates obtained by the
reparameterization as color.

Let Ωr and Ω′r denote are parameter domains of the respective graphs G
and G′ of neighboring patches. Further, let B and B′ denote the set of border
nodes along the common border of G and G′. The edges of the joint graph
are then obtained as the union of the edges of both graphs and additional
edges between the closest border nodes. Thus,

E ∪ E ′
⋃
bi∈B

{(bi, c (bi,B′))}
⋃
b′i∈B

{(b′i, c (b′i,B))} ,

where
c(bi,B′) = arg min

b′j∈B′

∥∥γ(bi)− γ′(b′j)
∥∥2
.

This is similar to using a 4-neighborhood system. To mimic an 8-neighborhood
system, additional edges to the second and third closest border nodes have to
be inserted. Although there is a no longer a one-to-one mapping of pixels at
patch borders, the number of nodes at corresponding patch borders should be
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Algorithm 6 ConnectPatchBorders

Input:
graphs G and G′

Output:
set of edges E(G,G′)

E(G,G′)← ∅
B,B′ ← detect border nodes of G and G′

γ, γ′ ← create lookup tables
for bi ∈ B do
E(G,G′)← E(G,G′) ∪ {(bi, c(bi,B′))}

end for
for b′i ∈ B′ do
E(G,G′)← E(G,G′) ∪ {(b′i, c(b′i,B))}

end for

similar as the reparameterization aimed at minimizing stretch. The irregular
graph structure at the borders does not affect the segmentation algorithms,
since neither of them demands a fixed number of neighbors per node or a
grid graph structure.

6.7 Results and Discussion

For Turtmann Valley a detailed geomorphological map and a GIS database
of landform polygons exists [Otto & Dikau 2004][Otto 2006]. The map is
based on field work and manual mapping on the HRSC data using ArcGIS.
In order to asses the applicability of the presented landform mapping tools,
different landform types have been re-mapped with them and compared to
the manually mapped objects.

In evaluating the performance of boundary construction methods, typ-
ically three factors are considered to be of prime importance: speed, re-
peatability and accuracy. Accuracy measures the degree of agreement of the
extracted boundary with the actual boundary. In general, the use of better
cost functions in the algorithms could increase accuracy in tracking strong
edge features. Unfortunately, it is hard to define the actual boundary it-
self since it is not always composed of the edges with the strongest features.
Thus, a manually traced boundary is often considered to be a good approx-
imation of the target boundary and is therefore often used as ground truth.
However, the credibility of manual tracing is still questionable, since its re-
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(a) (b) (c)

(d) (e)

Figure 6.9: Comparison. Traditional manual mapping in 2D compared and the pre-
sented mapping tools. (a) Manual Mapping in ArcGIS. (b) Intelligent Scis-
sors (in process). (c) Intelligent Scissors (finished). (d) Graph Cut Initial-
ization. (e) Graph Cut Result.

peatability is usually worse than that of (semi-)automatic methods. What is
more, manual tracing is usually never performed with pixel accuracy. Thus,
it typically presents only a simplified version of the actual boundary that is
too coarse to serve as ground truth when evaluating accuracy of pixel exact
methods.

In view of this, a qualitative (i.e., visual) comparison of the object bound-
aries defined with the different methods is presented, combined with the
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Figure 6.10: Examples of the Intelligent Scissors Based Method. The top row
shows results obtained by mapping on the textured DEM. By contrast, the
bottom row depicts mapping based on shaded relief (left) and slope (right).

number of nodes in the resulting boundary as an indicator of accuracy. The
amount of user effort in terms of time and mouse clicks required to extract an
object boundary is used as an indicator for digitizing speed (i.e., the number
of nodes placed in ArcGIS, the number of seed points planted with Intelligent
Scissors and the number of mouse strokes used for the graph cut initializa-
tion).

Figure 6.9 depicts a shallow landslide on the western trough slope of the
valley caused by the failure of a drainage pipe. The landslide area in Figure
6.9 (a) was digitized manually in ArcGIS with 86 nodes. Using the Intelligent
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Figure 6.11: Examples of the Graph Cut Based Method. The left column shows
the initialization by the user and the right column the obtained segmenta-
tion results.

Scissors tool, only about 12 nodes (seed points) need to be placed as shown
in Figure 6.9 (b) and (c). Using the graph cut method, as shown in Figure
6.9 (d), the user marks the object of interest with green and the background
with red, respectively. Both tools make full use of the high-resolution of the
dataset resulting in polygons with up to several thousand nodes. The high
number of nodes may be impractical in terms of memory consumption, es-
pecially when the number of objects is high as well. To account for that, the
number of nodes can be reduced using an error-controlled polyline simplifi-
cation [Douglas & Peucker 1973].
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(a) (b)

Figure 6.12: Hierarchical Mapping. In (a) the segmentation is performed using the
finest resolution level only. The proposed boundary segment deviates from
the desired boundary due to effects of high frequency features. In (b) the
segmentation is started on the third finest level and is then successively re-
fined. The proposed boundary is as desired because on the starting level the
disturbing high frequency features do not exists and during the refinement
on the higher levels they lie outside the considered band.

From visual inspection, the Intelligent Scissors tool defines the most pre-
cise boundaries of the landslide area compared to the manual mapping. In
contrast, the object boundary created by the graph cut method appears to be
more jagged, which however depends on the chosen influence of the smooth-
ing term and can easily be adapted by changing it (although this requires
a re-run of the graph cut optimization it is very fast because the current
segmentation can be used as initialization that is already very close to the
optimum). Some areas are included within the polygon that have not been
mapped manually, for example parts of the gravel road. Other areas, for ex-
ample the darker parts within the polygon are not considered, although they
clearly belong to the landslide area. In this case this behavior is unwanted,
however, this does not always have to be the case. Thus, some post-editing
of the graph cut derived object is required in this case to obtain a satisfy-
ing result. Both methods produce a jagged section in middle part of the left
boundary (Figure 6.9 (c) and (e)), where the landslide area crosses the forest.
Here, the tools suffer from the lighting situation causing the left boundary
to be defined by the shadow of the trees. This effect does not occur when
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Figure 6.13: Mapping in steep slopes. Examples of the mapping at steep slopes using
registered photos.

digitized manually, as the user would notice the shadowing effects and com-
pensate for them.

Despite the aforementioned limitations, the mapping of landforms with
the two tools proves to be very accurate and fast in general. Within a few
steps, high resolution objects, represented by a high number of nodes and
accurate boundaries can be generated within short time. Additionally, the
3D visualization environment offers numerous ways to perceive the landform
and its boundaries not only on the aerial image, but including the landform
surface structure. However, apart from complex geomorphological landforms,
a segmentation of other objects or features like houses, roads, lakes or fields
with clear boundaries can very easily be performed. Restrictions observed in
full automatic classifications using remote sensing techniques do not apply,
as the user is in full control of the segmentation steps.

Due to technical differences each tool has individual advantages. The Intel-
ligent Scissors approach allows a more supervised mapping, as the location of
the automatic path can be controlled by the placement of intermediate seed
points. Due to its segmentation principle, the Intelligent Scissors approach
is especially suited for the extraction of linear features and boundaries, like
gullies, debris flow tracks, ridges, steps, or moraine and rock glacier bound-
aries. However, a limitation of Intelligent Scissors is that for highly textured
or un-textured regions many alternative “minimal” path exists. Thus, in
such regions many seed points may be necessary. In contrast, the graph
cut tool is less controlled and very efficient for mapping of closed objects
with complex and fine-grained borders. Another advantage of the graph cut
method is the possibility to extract more than one object at the same time.
This way, several debris fields or snow patches, for example, can be extracted
simultaneously with a few strokes.
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Both methods allow for efficient post-editing. Object boundaries can be
changed by editing arbitrary single nodes after the segmentation is termi-
nated. In addition to that, the graph cut method allows further refinements
of the segmentation result by applying additional hints followed by a re-run
of the optimization.

In general, boundary identification on aerial photography is influenced to
a great extent by the lighting conditions during the acquisition process. As
a result, segmentation results are biased, especially by shadows, causing the
segmentation algorithm to follow shadow boundaries instead of the true ob-
ject boundaries. One approach to overcome this problem is to consider the
elevation data in the boundary estimation procedure in addition to the aerial
photography. For the Intelligent Scissors method, the mapping can also be
performed based on shaded relief, slope or curvature computed from the
DEM (see Figure 6.10). However, high resolution elevation data is required
for this which is not as often available as high resolution aerial imagery.

As a result of our incremental and hierarchical algorithm, segmentation
can be performed at interactive speed nearly independent of the size of the
underlying dataset. Despite accelerating the segmentation, another advan-
tage of the hierarchical approach is shown in Figure 6.12. A forest boundary
is segmented twice, starting at different levels of the quadtree. In (a) the
segmentation is performed solely on the finest resolution level resulting in
several deviances from the desired boundary caused by fine scale features.
Many seed points need to be placed in order to obtain the desired result.
However, in (b) the segmentation is started from three levels above the finest
resolution leading to the correct boundary since the disturbing small scale
features are not present at the higher level.

Figure 6.13 shows results obtained using the revised landform mapping.
Using georegistered photos, a detailed mapping becomes possible at steep
slopes which was not possible using the aerial imagery only.
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CHAPTER 7

Conclusions and Future Work

7.1 Conclusions

The presented thesis used computer graphic methodologies to enrich data
modeling and analysis in the geoscience domain with a particular focus on
geomorphological applications.

Chapter 3 dealt with the visualization of vector data on textured DEMs.
In contrast to traditional 2D map representations commonly used in GIS,
the visualization of vector data on digital elevation models provides a more
natural and intuitive representation. Particular advantages of this represen-
tation are that the size and shape of landforms is not distorted as in the 2D
case, and that the morphology of landforms becomes directly apparent.

The presented texture-based approach rasterizes the vector shapes into an
offscreen buffer in each frame, which is then bound as a texture and pro-
jected onto the terrain geometry. The on-the-fly generation of the texture
has the advantage that neither a texture nor a complete texture pyramid has
to be precomputed and loaded into memory. Instead, only the much more
compact polygonal representation of the vector data is required. By apply-
ing a view-dependent reparameterization, perspective aliasing is significantly
reduced and thus quality superior to a uniform parameterization is achieved.

In contrast, the presented stencil-based approach extrudes vector shapes
to polyhedra. Then, these polyhedra are used to create a mask in the stencil
buffer indicating the position of the vector shape with respect to the cur-
rent view. In comparison to the texture-based technique, more primitives
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have to be rendered which makes the method slightly slower. However, since
the method works in image space, it is per-pixel exact and does not suffer
from projective aliasing artifacts that can, despite the reparameterization,
still pose problems for the texture-based approach in very steep slopes. Both
methods allow for interactive editing of vector data.

In chapter 4 an algorithm for the registration of uncalibrated photos to
textured DEMs was presented. The proposed registration algorithm is inde-
pendent of user-defined marker points on-site, which is especially important
in high alpine environments where many places are difficult to access. How-
ever, if additional marker points are available, they can naturally and easily
be included in the registration process. The presented method allows the user
a targeted enhancement of existing terrain datasets using photos of areas of
interest. Apart from increasing texture resolution significantly, particularly
at steep slopes, it is also possible to add information in areas that are blurred
or occluded in the aerial imagery due to shadows, snow, or clouds, for exam-
ple. The main idea of the registration algorithm is to make use of the given
textured DEM during an incremental structure from motion optimization.
This way, the robustness and effectiveness of the registration is improved.

Chapter 5 presented a method for compositing georegistered photos on a
textured DEM. The main idea is to reparameterize the terrain surface and
perform the blending in texture space. The reparameterization is carried out
in a preprocessing step. After that, visibility is determined for each view in
order to identify the regions on the terrain surface valid for texturing with
the respective image. With this information at hand, the registered photos
are then combined in a two-step procedure. First, color distributions in the
images are adapted in order to remove large scale color and lightness shifts.
Second, images are blended using a weighted pyramid blending approach in
texture space induced by the reparameterization of the terrain geometry. Fi-
nally, the new textures are inserted into the quadtree data structure of the
terrain engine to allow real-time rendering. Using the described composit-
ing approach smooth transitions between the images on the terrain surface
despite illumination differences are realized while at the same time high fre-
quency details are preserved.

Chapter 6 dealt with semi-automatic landform mapping tools that enable
the mapping of geomorphological objects directly on the textured DEM. Us-
ing a 3D visualization allows the user to perceive the landform structure
in its natural form similar to the perception in the field during the map-
ping process. Moreover, by navigating in the 3D environment landforms can
be inspected from arbitrary views including perspectives hardly possible in
nature. In addition to an enhanced landform visualization, the proposed
landform mapping tools assist the user in specifying geomorphological ob-
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jects quickly and accurately by using semi-automatic image segmentation
techniques. This relieves the user from defining landform borders exactly,
instead only vague hints that roughly indicate the location of the boundary
have to be provided. Using incremental and hierarchical techniques, the pre-
sented methods achieve interactive performance even on very large textured
DEMs.

Standard landform mapping tools working on aerial imagery and elevation
data only are not capable of performing an accurate mapping at steep slopes.
The main reasons for this is that orthoimages neither provide detailed enough
information at steep slopes nor are they suited for representing them. With
this in mind, the presented landform mapping tools were revised in order
to be able to incorporate additional imagery from different perspectives. To
provide the additional information at steep slopes, photos are registered to
the textured DEM using the method described in chapter 4. The differ-
ent georegistered photos are then composited on the DEM as presented in
chapter 5. The actual segmentation is then performed on the resulting repa-
rameterized texture patches. Using the presented method, a detailed and
accurate mapping of steep slopes becomes feasible.

7.2 Future Work

Possible future work concerning vector data could aim at consistency issues
of vector data and digital elevation models. Depending on the application,
vector data might be used to impose constraints on the terrain geometry
(e.g., areas marked as lakes have to be flat). On the other hand, 2D vector
shapes could be augmented with height values from the DEM and this way
extended to 2.5D surface. Combined with additional information about the
volumes of sediment storages, for example from geophysical surveying, even
volumetric representations of geomorphological objects could be obtained.
Within this context, the development of suitable algorithms for the com-
bined visualization of volumetric geomorphological objects and the terrain
surface is an interesting topic for future research.

The focus in the presented registration approach was to align the photos
as best as possible to a given terrain dataset. However, the ability to com-
pute accurate camera parameters opens the door for techniques that compute
dense surface shape models, such as multi-view stereo [Goesele et al. 2007].
In the future it might be interesting to investigate to what extend the ge-
ometric resolution of a DEM could be improved with such methods. Also,
removing the required manual initialization by the user in order to end up
with a fully automatic registration poses a challenge for future research.
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Regarding the compositing of images an interesting direction for future
work is the opportunity to build time-varying 3D models that can serve to
pull together large collections of images pertaining to the appearance, evo-
lution, and events surrounding one place over time. Also, a detection and
removal of artifacts caused by moving objects or unmodeled geometry poses
a challenge for future work.
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APPENDIX A

Appendix: Registration

A.1 Projective Geometry

A point in projective n-space Pn is a (n + 1)-homogeneous vector of coor-
dinates x = (x1, . . . , xn+1)T with xi ∈ R and at least one xi 6= 0. Two
homogeneous vectors x and y are called equivalent x ∼ y if and only if there
exists a nonzero scalar λ, such that xi = λyi, for every i (1 ≤ i ≤ n + 1).
The affine space Rn can be embedded isomorphically in Pn by the standard
injection (x1, . . . , xn, )

T 7→ (x1, . . . , xn, 1)T. Affine points can be recovered
from projective points with xn+1 6= 0 by the mapping

(x1, . . . , xn+1)T ∼
(

x1

xn+1

, . . . ,
xn
xn+1

, 1

)T

7→
(

x1

xn+1

, . . . ,
xn
xn+1

)T

.

A projective point with xn+1 = 0 corresponds to an ideal point at infinity in
the (x1, . . . , xn) direction in affine space. The set of all such “infinite” points
satisfying the homogeneous linear constraint xn+1 = 0 acts like a hyperplane,
called the hyperplane at infinity.

A.1.1 Projective plane

The projective plane is the projective space P2. A point of P2 is represented
by a 3-vector x = (x, y, w)T. A line l is also represented by a 3-vector. A
point is located on a line if and only if

lTx = 0.
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Figure A.1: Models of the Projective Plane. Points x and lines l of P2 can be
represented by rays and planes through the origin in R3. Left : By projecting
onto w = 1 points and lines in the projective plane can be interpreted as
points and lines in the w = 1 plane, whereas the xy-plane represent the
hyperplane at infinity. Right : By projection onto the unit sphere, points
in the projective plane can be visualized as points on the unit sphere and
lines can be represented as great circles obtained from the intersection of
the corresponding plane with the sphere.

However, this equation can also be interpreted as expressing that the line l

passes through the point x. The symmetry in the equation reveals that there
is no formal differences between points and lines in projective space, which
is known as the principle of duality. A line l passing through points x1 and
x2 is given by their vector product

l ∼ [x1]×x2 with [x1]× =

 0 w1 −y1

−w1 0 x1

y1 −x1 0

 .
A.1.2 Projective 3-space

Projective 3-space is the projective space P3. A point of P3 is represented
by a 4-vector X = (x, y, z, w)T. In P3 the dual entity of a point is a plane. A
point X is located on a plane π if and only if

πTX = 0.

A line can be given by the linear combination of two points λ1X1 + λ2X2 or
by the intersection of two planes π1 ∩ π2.
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A.1.3 Transformations

A planar projective transformation or homography of P2 → P2 is a linear
transformation on homogeneous 3-vectors represented by a nonsingular 3×3
matrix H

x 7→ x′ ∼ Hx.

The matrix H is homogeneous and has eight degrees of freedom (nine ele-
ments minus one for overall scaling). Similarly, a projective transformation
acting on P3 is a linear transformation on homogeneous 4-vectors represented
by a nonsingular 4× 4 matrix P

X 7→ X′ ∼ PX.

The matrix P is homogeneous and has 15 degrees of freedom (16 elements
minus one for overall scaling).

Group DOF 2D/3D Matrix Transformations Invariants

Projective 8/15

(
A t

vT 1

)
perspective
projection

cross-ratio, in-
cidence

Affine 6/12

(
A t

0T 1

)
non-uniform
scaling, shear

parallelism

Similarity 4/7

(
sR t

0T 1

)
uniform scaling ratio of length,

angles

Euclidean 3/6

(
R t

0T 1

)
translation, ro-
tation

length

Table A.1: Hierarchy of Transformations. The matrix A is an invertible 2 × 2 or
3 × 3 matrix, R is a 2D/3D rotation matrix, t a 2D/3D translation vector
and s a scalar. Transformations listed higher in the table are able to pro-
duce all transformations of the ones below. The last column summarizes the
invariants a specific group has in addition to the ones below.
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The projective transformations form a group called projective linear group.
It is possible to further subdivide this group into specializations with certain
geometric properties (see Table A.1). Important subgroups are the affine
group, consisting of matrices for which the last row is (0, . . . , 0, 1), and the
Euclidean group for which the upper left hand matrix is orthogonal.

A.2 Camera Models

A camera describes a mapping from 3D world space to a 2D image. In the
following cameras modeling central projection (see Figure A.2) are consid-
ered. All such cameras are specializations of the general projective camera.
It is a linear function that maps world points to image points

x ∼ PX,

where x ∈ P2, X ∈ P3, and P is the corresponding 3× 4 projection matrix of
rank 3. The most simple camera is the basic pinhole camera. The geometric
process for image creation in a pinhole camera has been nicely illustrated
by Dürer (see Figure A.3). In a Euclidean frame, the basic pinhole camera
maps 3D points to 2D image points using central projection. This mapping

x

y

z

x
X

camera 

center

principal 

axis

image 

plane

y

z
principal 

point C

f

f y
z

c

Figure A.2: Central Projection. A world point X is mapped by central projection to
the image point x on the image plane. The principal axis passes through
the center of projection C and is orthogonal to the image plane. It intersects
the image plane in the principal point c. The distance f between the center
of projection C and the image plane is called focal length.
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Figure A.3: Pinhole Camera Principle. “Man drawing a lute” by Albrecht Dürer
(woodcut, 1525)

is completely defined by the camera center C and the image plane (or focal
plane). Note that in Figure A.2 the image plane is located in front of the
camera center. However, this is equivalent to having it behind the center and
reflecting the image’s x and y-axis. Assuming that the camera center lies in
the origin of the world frame and that the image plane is located at Z = 1,
central projection can be described algebraically as a non-linear mapping

(X, Y, Z)T 7→ (x, y)T = (X/Z, Y/Z)T,

called perspective division. In homogeneous coordinates, however, this can
be expressed as a linear transformation xc

yc
zc

 ∼
 1 0 0 0

0 1 0 0
0 0 1 0




X
Y
Z
1

 , (A.1)

that maps world coordinates to canonical camera coordinates on the image
plane. Real cameras have, due to their construction, internal properties
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Figure A.4: Mapping from Canonical to Image Coordinates.

that further alter the canonical camera coordinates (xc, yc, 1)T to real image
coordinates (x, y, 1). In the following possible transformations are described.

For real cameras the focal length f can vary, which is equivalent to an
isotropic scaling along the image axes. Thus, the mapping becomes

(xc, yc)
T 7→ (x, y)T = (fxc, fyc)

T.

The ratio ax/ay of a pixel’s width ax and height ay is described by the aspect
ratio. To account for that, an additional scaling by ax and ay has to be
performed. Scaling by pixel dimensions can be combined with scaling by
focal length as αx = f/ax and αy = f/ay, which results in the mapping

(xc, yc)
T 7→ (x, y)T = (αxxc, αyyc)

T.

In general the principal point c is not fixed at the origin but at some point
(c̃x, c̃y). The image coordinates of c are cx = c̃x/αx and cy = c̃y/αy and hence

(xc, yc)
T 7→ (x, y)T = (αxxc + cx, αyyc + cy)

T.

Assuming that the image’s x-axis is aligned with the canonical x-axis, the
skew γ quantifies the angle between the image’s y-axis and the canonical
y-axis. This results in the final transformation

(xc, yc)
T 7→ (x, y)T = (αxxc + cx, αyyc + sxc + cy)

T,

where s = αy tan γ.
The complete set of transformations is illustrated in Figure A.4. In homo-
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geneous coordinates the equation describing the transformation from canon-
ical camera coordinates to image coordinates is x

y
1

 ∼
 αx s cx

0 αy cy
0 0 1

 xc
yc
1

 . (A.2)

This upper triangular, affine transformation matrix K is often called cali-
bration matrix and contains five independent intrinsic parameters. For most
CCD cameras it is reasonable to assume that the pixels are square and thus
αx = αy. Furthermore, skew can be assumed zero for all practical purposes.
Although the principle point can slightly vary around the center of the im-
age, it is often assumed to be fixed in practice. For a standard camera with
zoom and focus capabilities, focal length, however, can change from image
to image. It should be mentioned that there might be additional effects that
must be considered. The most prominent example is radial distortion, often
encountered in cheap cameras and short focal lengths. Such distortion effects
cannot be described by the above simple model and require higher dimen-
sional equations.

Typically, points are expressed in a world coordinate frame instead of the
camera frame. These two coordinate frames are related via a rotation and
a translation. The corresponding Euclidean transformation matrix between
the world and camera coordinate frame is

X′ ∼
[

R −R~C

0T 1

]
X. (A.3)

The parameters of R and t = −R~C that relate the camera position and
orientation to a world coordinate system are called extrinsic parameters.
There are six degrees of freedom, three for the rotation R and three for the
translation t.

Concatenating the transformations described by Equations A.2, A.1 and
A.3 yields x

y
1

 ∼
 αx s cx

0 αy cy
0 0 1

 [ I3×3 0
] [ R −R~C

0T 1

]
X
Y
Z
1

 ,

which can be simplified to x
y
1

 ∼ K
[

R t
]

X
Y
Z
1

 ,
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and further with P ∼ K
[

R t
]

to

x ∼ PX.

The matrix P describes a finite projective camera. It has 11 degrees of
freedom, the total of five intrinsic and six extrinsic parameters. In contrast to
the finite projective camera, the pinhole camera model has only nine degrees
of freedom because it assumes that pixels are square and that the skew is
zero. The left 3× 3 submatrix of P is nonsingular and conversely any 3× 4
matrix P where the left 3× 3 submatrix is nonsingular is the camera matrix
of some finite projective camera. Being nonsingular, the submatrix can be
decomposed by RQ decomposition into a product of matrices KR, where K is
an upper triangular matrix of the form in Equation A.2 and R is orthogonal.
The remaining ambiguity in the decomposition can be resolved by demanding
that K has positive diagonal entries.

A.3 Camera Estimation

The following section describes methods for estimating the camera projection
matrix P from corresponding world space and image entities. This compu-
tation of the camera matrix is known as resectioning. The simplest kind of
such a correspondence is that between a 3D point X and its image x under
the unknown camera mapping. Given n correspondences Xi ↔ xi between
3D points Xi and 2D image points xi, a 3×4 camera matrix P is sought such
that xi = PXi. For each correspondence a system of equations 0T −wiXTi yiX

T
i

wiX
T
i 0T −xiXTi

−yiXTi −xiXTi 0T

 P1

P2

P3

 = 0

can be derived, where each PiT is the i-th row of P. Since the three equations
are linearly dependent, usually only two of them are used. By stacking up
the equations of the n correspondences a 2n× 12 matrix A can be obtained.
The projection matrix P is computed from it by solving the set of equations
Ap = 0, where p is the vector containing the entries of P.

The matrix P has 12 entries defined up to a scale and hence has 11 degrees
of freedom. Thus, at least 11 equations are needed to solve for P. Since
each correspondence leads to two equations at least six correspondences are
necessary. If a minimum number of correspondences are given, an exact
solution exists that projects each Xi on the corresponding xi. However, if
the data is not exact, for example due to noise in the point coordinates, and
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n ≥ 6 correspondences are given, then there will not be an exact solution
to Ap = 0. Therefore, instead of demanding an exact solution, typically an
approximate solution is computed that minimizes an algebraic or geometric
error. In the case of algebraic error a popular approach is to minimize ‖Ap‖
subject to the normalization constraint ‖p‖ = 1. The solution can then
be obtained as the right singular vector of A corresponding to the smallest
eigenvalue. This algorithm is known as the DLT algorithm.

The result of the DLT algorithm depends on the coordinate frame in which
the points are expressed. In fact, the result is not invariant under similarity
transformations of the image. Therefore it is important to apply a data
normalization in advance. The normalization makes the DLT invariant to
similarity transformations and results in improved accuracy. To normalize
the points xi in the image, they are translated so that their centroid is at
the origin and scaled so that their average distance from the origin is

√
2.

The 3D points Xi are normalized similarly by translating their centroid to
the origin and applying a scaling so that their average distance to the origin
is
√

3.
The particular advantages of the DLT algorithm are a linear and thus

unique solution and its computational cheapness. Often, the result of the
DLT is used as a starting point for a non-linear minimization subject to an
error function based on the geometric error∑

i

‖xi −PXi‖2

to further refine the solution. Minimizing the geometric error requires the use
of iterative techniques such as Levenberg-Marquardt. The normalized DLT
algorithm followed by a nonlinear optimization, for example via Levenberg-
Marquardt, is the Gold Standard algorithm for the estimation of the camera
matrix.

The DLT algorithm described so far, computes a general projective cam-
era matrix P from a set of 3D to 2D correspondences. Often, it is desirable
to find a camera matrix subject to restrictive conditions of the camera pa-
rameters. Common assumptions are zero skew, square pixels and a known
principle point. In this case, typically a linear DLT is used to find an initial,
unconstrained camera matrix. Then, the fixed camera parameters are set to
their desired values and a Levenberg-Marquardt optimization is performed in
which only the variable parameters are optimized. Ideally, the assumed val-
ues of the fixed parameters will be close to the values obtained by the DLT.
In practice, however, this is not always the case. Altering these parameters
to their desired values in such a case might lead to difficulties in converging.
Therefore, instead of setting the fixed parameters to their desired values,
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an additional cost function can be introduced that penalizes differences of
the parameters from the desired values. The influence of these terms to the
overall error is increased during the optimization so that the parameters are
smoothly drawn to their desired values.

A.4 Two-view Geometry

The intrinsic projective geometry between two views is called epipolar geom-
etry. The geometric entities involved in the epipolar geometry are illustrated
in Figure A.5. Given two cameras the base line is the line joining the two
camera centers C and C′. Its intersections with the two image planes are the
epipoles e ∼ PC′ and e′ ∼ P′C. The image points x = PX and x′ = P′X
together with their respective camera centers C and C′ define two rays that
intersect in the common world point X. These two rays and the base line lie
in a common plane called epipolar plane. The intersections of the epipolar

$
C
$

e
e
′

l l
′

x

X

x
′

π

C C
′

Figure A.5: Epipolar Geometry. The two cameras are indicated by their camera
centers C and C′ and image planes. The camera centers C and C′, world
point X and its image projections x and x′ lie in a common plane π called
epipolar plane. The intersection of the epipolar plane with the image planes
defines the epipolar lines l and l′. The line connecting the camera centers
is called baseline and its intersections with the image planes are the epipoles
e and e′.
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plane with the two image planes result in the epipolar lines l and l′. The
epipolar line l joins the image point x with the epipole e while l′ joins x′

with e′.
The fundamental matrix is the algebraic representation of epipolar geom-

etry. Given a pair of images, there exists to each point x in one image a
corresponding epipolar line l′ in the other image. Any point x′ in the second
image corresponding to the point x in the first image must lie on the epipo-
lar line l′. The epipolar line l′ is the projection of the ray from the point
x through the camera center C of the first camera in the second image. The
mapping

x 7→ l′

is represented by the fundamental matrix F

l′ = Fx.

The fundamental matrix is a homogeneous 3× 3 matrix of rank 2 that maps
points to lines. It satisfies the condition that for any pair of corresponding
points x↔ x′ in the two images

x′Fx = 0.

This relation characterizes the fundamental matrix with respect to image
correspondences only, without referencing the camera matrices. This is an
important observation since it enables F to be computed from image corre-
spondences alone. There are many ways to compute the fundamental matrix
from point correspondences that differ in parameterization and optimality
criterion. A review of many algorithms, together with a comparison of their
performance, can be found in [Zhang 1998]. A popular and simple to imple-
ment algorithm that provides fairly good results is the normalized 8-point
algorithm [Hartley 1997]. Longuet-Higgins was the first to propose a linear
8-point algorithm for the computation of the essential matrix in [Longuet-
Higgins 1981]. However, it is susceptible to noise and therefore was considered
useless in practice until Hartley pointed out that the sensitivity to noise was
mainly due to badly conditioned equation systems that arise from improper
scaling of the input data. He proposed a modification to the algorithm that
included a normalization of the data.

A.5 Feature Extraction

In most matching or tracking applications, especially for camera calibra-
tion or 3D reconstruction, local features (or keypoints) are especially im-
portant since they provide a limited set of well localized and individually
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identifiable anchor points. Despite their recent success, the foundations of
modern feature detection and matching techniques were being laid in the
1980s, even though different terminology was used and the level of invariance
was less than today. Already in 1981, Lucas and Kanade [Lucas & Kanade
1981] developed a patch tracker based on two-dimensional image statistics,
while Moravec [Moravec 1983] introduced the concept of “corner-like” fea-
ture points. Förstner [Förstner 1986] and then Harris [Harris & Stephens
1988] both proposed finding keypoints using measures based on eigenvalues
of smoothed outer products of gradients, which are still widely used today.

These early techniques relied on matching patches around the detected key-
points, which limited their range of applicability to scenes seen from similar
viewpoints such as aerial photogrammetry applications. If features are being
tracked from frame to frame, an affine extension of the basic Lucas-Kanade
tracker has been shown to perform well [Shi & Tomasi 1994]. However, for
true wide baseline matching (i.e., the automatic matching of images taken
from widely different views) affine-invariant feature descriptors have to be
used. In the following some work in the field of local invariant features is
briefly reviewed. A more comprehensive survey on local invariant features can
be found in [Tuytelaars & Mikolajczyk 2008] while Mikolajczyk et al. [Miko-
lajczyk & Schmid 2005] review some recently developed view-invariant local
image descriptors and experimentally compare their performance.

The class of distribution-based descriptors uses histograms to represent dif-
ferent characteristics of appearance or shape. Probably the most simple de-
scriptor is the distribution of the pixel intensities represented by a histogram.
A more expressive representation was introduced by Johnson et al. [Johnson
& Hebert 1997] for 3D object recognition in the context of range data. Their
representation, called spin-image, is a histogram of the point positions in the
neighborhood of a 3D interest point. Recently, it was adapted to images in
[Lazebnik et al. 2003]. The two dimensions of the histogram are the dis-
tance from the center and the intensity value. Zabih and Woodfill [Zabih &
Woodfill 1994] developed an approach that is robust to illumination changes.
It relies on histograms of ordering and reciprocal relations between pixel in-
tensities which are more robust than raw pixel intensities. This descriptor
is suitable for texture representation, but requires a large number of dimen-
sions to obtain a robust descriptor [Ojala et al. 2002]. Lowe [Lowe 2004]
proposed a scale invariant feature transform (SIFT), which combines a scale
invariant region detector and a descriptor based on the gradient distribution
in the detected regions. The descriptor is represented by a 3D histogram
of gradient locations and orientations. The contribution to the location and
orientation bins is weighted by the gradient magnitude. The quantization
of gradient locations and orientations makes the descriptor robust to small
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geometric distortions and small errors in the region detection. Geometric
histograms [Ashbrook et al. 1995] and shape contexts [Belongie et al. 2002]
implement the same idea and are very similar to the SIFT descriptor. Both
methods compute a histogram describing the edge distribution in a region.

Another class of techniques are spatial-frequency techniques that describe
the frequency content of an image. The Fourier transform is one alternative to
decompose the image content into basis functions. However, spatial relations
between points are not explicit and basis functions are infinite. Therefore it
is difficult to adapt to a local approach. The Gabor transform [Gabor 1946]
overcomes these problems, but a large number of Gabor filters are required
to capture small changes in frequency and orientation. Wavelets and Gabor
filters are frequently investigated in the context of texture classification.

The class of differential descriptors represents the neighborhood of a point
using local derivatives. The properties of local derivatives (local jet) were
investigated by Koenderink and van Doorn [Koenderink & van Doom 1987].
Later, Florack et al. [Florack et al. 1991] derived differential invariants, which
combine components of the local jet to obtain rotation invariance. Freeman
and Adelson [Freeman & Adelson 1991] developed steerable filters, which
steer derivatives in a particular direction given the components of the local
jet. Steering derivatives in the direction of the gradient makes them invariant
to rotation. A stable estimation of the derivatives is obtained by convolu-
tion with Gaussian derivatives. Instead of using Gaussian filters, Baumberg
[Baumberg 2000] and Schaffalitzky et al. [Schaffalitzky & Zisserman 2002]
proposed using complex filters that differ from the Gaussian derivatives by
a linear coordinate change in the filter response domain.

A.6 Feature Matching

In the previous section methods to extract feature points and corresponding
descriptors from images were presented. In order to be able to use the features
to compute the fundamental matrix, for example, it is necessary to determine
corresponding or matching features (i.e., image projections of the same world
point) in the different images. Let FI and FJ denote the set of features found
in images I and J , respectively. Then, the problem of matching the features
of I and J is to find a (possibly empty) set of correspondences

MIJ = {(fi, gj) | fI ∈ FI and gJ ∈ FJ corresponding} .

In order to match the features, they have to be compared with respect to
some similarity criterion. Typically, the distance between two features fi and
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gj is measured using the Euclidean distance

‖d(fi)− d(gj)‖2

between their descriptor vectors d(fi) and d(gj). An alternative way to com-
pare two features is two measure the cosine of the angle between their de-
scriptors

cos(d(fi), d(gj)) =
〈d(fi), d(gj)〉
‖d(fi)‖ ‖d(gj)‖

.

Given some distance function dist(·) to compare two features, several strate-
gies for matching a set of features FI to a set FJ exist. In threshold-based
matching, a feature fi ∈ FI is assumed to be in correspondence to all features
in FJ whose distance between their descriptors is below a threshold

Mt = {(fi, gj) ∈ FI ×FJ | dist(fi, gj) < ε} .

With this approach each feature fi ∈ FI can have several or none corre-
sponding features in FJ . In contrast to that, nearest neighbor-based match-
ing assumes a feature fi to be in correspondence with the feature with the
closest descriptor

Mnn =

{
(fi, gj) ∈ FI ×FJ | gj = arg min

gk∈FJ
d(fi, gk)

}
.

Using nearest neighbor-based matching each feature in FI has exactly one
match. The closest-to-next-closest matching [Lowe 2004] is similar to nearest
neighbor matching, except that an additional thresholding is applied to the
distance ratio between the closest and the second closest neighbor. Thus,
the features fi and gj are matched if

dist(fi, gj)

dist(fi, gk)
< ε, (A.4)

and gj is the nearest and gk is the second-nearest neighbor to fi. Thus, each
feature has exactly one match or none. This measure performs well because
correct matches need to have the closest neighbor significantly closer than
the closest incorrect match to achieve reliable matching. For false matches,
there will likely be a number of other false matches within similar distances
due to the high dimensionality of the feature space.

The matching strategies presented above are not symmetric. If features of
FI are matched to features of FJ the resulting set of correspondences is in
general different from the one obtained by matching FJ to FI . However, sym-
metry can be enforced by performing the matching twice, exchanging I and
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J , and keeping only matches found in both runs. In addition to that, unique-
ness (i.e., a one-to-one mapping) can be efficiently enforced after matching
(demanding uniqueness during matching has high computational complex-
ity) by removing features for that more then one corresponding feature was
found.

The simplest way to find all corresponding features in an image pair is
to compare all the features in one image to all the features in the other.
Unfortunately, this is quadratic in the number of features, which makes it
impractical for some applications. More efficient matching algorithms can be
devised using different kinds of indexing schemes, many of which are based
on the idea of finding nearest neighbors in high-dimensional spaces. A vast
number of data structures for fast nearest neighbor searching have been pro-
posed in literature. One of them are kd-trees that are based on a hierarchical
decomposition of space in multidimensional rectangles. Unfortunately, kd-
trees have proven to be inefficient for dimensions larger than 10. Given that
the most powerful descriptors have many more dimensions, one would not
consider kd-trees as a possible solution. However, an approach to overcome
the dimensionality problem is to search for approximate nearest neighbors
[Arya et al. 1998][Liu et al. 2004]. Vision applications have found this solu-
tion to be sufficient in practice [Lowe 2004][Mori et al. 2001], as other parts
of the recognition systems are highly inaccurate too.

A.7 Outlier Removal

Although feature detection and matching algorithms have made substantial
progress in recent years, the resulting feature correspondences almost al-
ways contain a significant amount of false matches. Since these outliers can
severely disturb subsequent estimations, for example of a homography, cam-
era or fundamental matrix, they have to be identified and removed. Methods
for outlier removal are typically applied before any estimation takes place.
From the remaining set of correspondences the sought quantity can then be
computed using robust estimation techniques as presented in the next sec-
tion.

The disparity gradient is a measure of the geometric compatibility of two
feature pairs. Given two feature pairs (f, f ′) and (g, g′) their disparity gra-
dient can be defined as

dpg(f, f ′, g, g′) =
|dp(f, f ′)− dp(g, p′)|
|dcs(f, f ′, g, g′)|

, (A.5)

where the disparity
dp(f, f ′) = p(f)− p(f ′)
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between two features f and f ′ is the difference vector between their image
locations p(·). The cyclopean separation

dcs(f, f
′, g, g′) =

p(f) + p(f ′)

2
− p(g) + p(g′)

2

is defined as the vector joining the midpoints of the line segments connect-
ing the features (see Figure A.6). The idea behind the disparity gradient is
that if f and g are close together in both images, they should have a similar
parallax (a small numerator in Equation A.5). Consequently, the smaller
the disparity gradient, the more the two correspondences are in agreement.
The performance of outlier removal based on the disparity gradient can be
further improved if the process is performed locally instead of on the whole
image. To this end, the image is typically divided in patches (usually six
or eight, according to the image size) and for each patch the sum of dispar-
ity gradients for each correspondence inside the patch is computed. Those
matches that have a disparity gradient sum greater than the median of the
sums are rejected. Alternatively, the disparity gradient can be used in an
iterative process, where incompatible matches are successively removed until
all pairs have a similar disparity gradient. This simple test on the local ge-
ometric consistency of the matches typically removes about 80% of the false
correspondences at low computational time.

An alternative to the disparity gradient is to consider the relative position
of correspondences. The disparity of a correct match should be similar to
the disparity of neighboring matches. Typically, the angle between the dis-
parities and the ratio of their magnitudes are used for comparison and have
to be smaller than a given threshold in order to be accepted. For a given
correspondence this test is usually performed with the n closest neighbors
(typically three to five), and the match is considered valid if the majority

f ′
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g′

f

f ′
g

g′

lf

lg
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f ′

dcs

f

Figure A.6: Outlier Removal. Disparity gradient (left), relative positions of neighbors
(middle) and epipolar constraint (right).
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of the tests vote for accepting it. As long as the image pair’s baseline is
relatively small, these simple constraints give similar results as the disparity
gradient. However, it is more difficult to select good thresholds on the dis-
parity angle and magnitude.

Another popular method to remove outliers is to utilize the epipolar con-
straint imposed by the epipolar geometry and the corresponding fundamental
matrix. The fundamental matrix can be computed robustly from feature cor-
respondences (e.g., using the normalized 8-point algorithm) in a RANSAC
procedure (see next section). Given the fundamental matrix F describing
the epipolar geometry between image I and J , the feature pair (f, f ′) is
compatible with the epipolar geometry if

‖Fp(f)− p(f ′)‖ < ε.

A.8 Robust Estimation

The goal of robust estimation is to determine a set of inliers from given input
correspondences so that the sought quantity can be computed from them in
an optimal manner using the standard estimation algorithms. A popular and
very successful robust estimator is RANSAC (Random Sample Consensus)
[Fischler & Bolles 1981]. The idea is to randomly select a sample of data
points and to instantiate the model (compute an estimation of the sought
quantity) from it. The support for this model is measured by the number
of data points that lie within a distance threshold. This random selection is
repeated a number of times and the model with the most support is deemed
the robust fit. All data points that support this model constitute the set of
inliers.

In most cases, it is computationally infeasible and unnecessary to try every
possible sample. Instead the number of samples N is chosen sufficiently high
to ensure with a probability p (often set to 0.99), that at least one of the
random samples of s points (where s has to be large enough to instantiate
the model) does not contain any outliers. Let w denote the probability that
a selected data point is an inlier and thus ε = 1 − w the probability that it
is an outlier. Then at least

N =
log(1− p)

log(1− (1− ε)s)
(A.6)

selections of s points are required. In practice, the fraction of data consisting
of outliers is often unknown. In such cases ε can be initialized with a worst
case estimate that is updated as larger consistent sets are found. A new

149



APPENDIX A. APPENDIX: REGISTRATION
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Figure A.7: Bucketing Strategies. Example of two different bucketing strategies.
Regular buckets (right) and adaptive buckets (left).

(lower) estimate of ε also implies a reduced N according to Equation A.6.
The algorithm terminates as soon as N samples have been performed. This
adaptive approach works very well in practice and also covers the questions
of both number of samples and terminating the algorithm.

Bucketing techniques use clusters of measures (buckets) that cover the
whole data space to drive the sampling stage of RANSAC. The idea behind
bucketing techniques is to ensure that the estimated model is valid on the
whole working space. For example, a camera calibration has to be valid for
the entire image. It would be useless to obtain a perfect camera model from
a set of local correspondences which would be valid only on a small part of
the image. There are several ways of building subsets of the data points (see
Figure A.7). Points can be grouped into equally sized buckets as proposed
in [Zhang et al. 1995]. Alternatively, they can also be spread across buckets
that split the space arbitrarily along one or several dimensions. There are
also different strategies of selecting sample points from the buckets. For
example, a point may be randomly chosen from each bucket. Although this
densely samples the whole working space (if the buckets are small enough)
there might exist buckets that contain only outliers. Another approach is to
first randomly select a subset of (usually s) buckets from which then again
the points are randomly chosen.
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A.9 Bundle Adjustment

Bundle adjustment is the process of refining a given scene reconstruction in
order to obtain jointly optimal estimates for structure and viewing param-
eters. The name refers to the bundles of light rays leaving each 3D feature
and converging on each camera center (see Figure A.8). Suppose a set of 3D
points Xj is viewed by a set of cameras Pi. Let xij denote the coordinates
of the j-th point as seen by the i-th camera. The reconstruction problem
can then be formulated as follows: Given the set of image coordinates xij,
find the set of world points Xj and the set of camera matrices Pi such that
PiXj = xij. Without further restrictions on the Pi or Xj such a reconstruction
is a projective reconstruction. If the image measurements are noisy, then the
equations PiXj = xij will not be satisfied exactly. Typically, Gaussian noise
is assumed in the measurements and the Maximum Likelihood solution is
sought. To this end, projection matrices P̂i and 3D points X̂j are estimated
that project exactly to image points x̂ij. Thus,

x̂ij = P̂iX̂j, ∀i, j

while at the same time the image distance between the reprojected points
and measured image points for every view in which the 3D point appears is
minimized ∑

i,j

∥∥∥P̂iX̂j − xij

∥∥∥2

→ min
P̂i,x̂j

!.
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Figure A.8: Bundle Adjustment.
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Since each camera matrix has 11 degrees of freedom and each 3-space point
three degrees of freedom, a reconstruction involving n points over m views re-
quires a minimization over 3n+11m parameters. If the Levenberg-Marquardt
algorithm is used for minimization, matrices of dimension (3n+11m)×(3n+
11m) must be factored. As m and n increase this becomes extremely costly.
Fortunately, the matrices arising in bundle adjustment have a sparse block
structure due to the lack of interaction among parameters for different 3D
points and cameras. Therefore, considerable computational benefit can be
gained by using sparse variants of the Levenberg-Marquardt algorithm that
explicitly take advantage of the matrix structure [Lourakis & Argyros 2004].
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Appendix: Compositing

B.1 Mesh Parameterization

A parameterization of a surface can be viewed as a bijective mapping from
a suitable parameter domain to a surface. In general, the parameter do-
main itself will be a surface and so constructing a parameterization means
mapping one surface into another. In the case that these surfaces are rep-
resented by triangle meshes, the problem of computing such a mapping is
referred to as mesh parameterization. The map is piecewise linear, associ-
ating each triangle of the original mesh with a triangle in the parameter
domain. Parameterizations between surface meshes and a variety of domains
have numerous applications in computer graphics and geometry processing.
In recent years numerous methods for parameterizing meshes were developed,
targeting diverse parameter domains and focusing on different parameteriza-
tion properties [Floater & Hormann 2005][Sheffer et al. 2006].

For computer graphics applications, such as texture mapping, planar pa-
rameterization of meshes with disk-like topology are of particular interest.
Since planar parameterization is only applicable to surfaces with disk-like
topology, closed surfaces and surfaces with genus greater than zero have
to be cut prior to planar parameterization. Planar parameterization of 3D
surfaces inevitably creates distortion in all but special cases. Greater sur-
face complexity usually increases parameterization distortion, independent of
the parameterization technique used. To allow parameterizations with low
distortion, the surfaces must be cut to reduce the complexity. Since cuts in-
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troduce discontinuities into the parameterization, a delicate balance between
the conflicting goals of small distortion and short cuts has to be achieved.

B.1.1 Measuring Distortion

Given an orientable 2-manifold surface patch S ⊂ Rk, a parameterization is
defined as a homeomorphism

φ : Ω ⊂ R2 → S ⊂ Rk

(u, v) 7→ φ(u, v)

from the parameter space Ω into S. If φ is a differentiable parameterization,
the first fundamental form Iφ, which captures the metric structure of S, is
defined as

Iφ = ∇Tφ · ∇φ =

(
a b
b c

)
with a =

∥∥∥∥∂φ∂u
∥∥∥∥2

, b =

〈
∂φ

∂u
,
∂φ

∂v

〉
and c =

∥∥∥∥∂φ∂v
∥∥∥∥2

.

Since Iφ is a symmetric positive definite 2×2 matrix in every ω ∈ Ω, it induces
a scalar product on R2. It describes the lengths and angles of vectors in R2

after being mapped by Iφ.
A parameterization is called conformal (or angle-preserving) if for every

ω ∈ Ω
Iφ = λ(ω) · I.

Consequently, derivatives of the iso-u and iso-v curves passing through φ(ω)
are orthogonal and of the same magnitude. Thus, conformal mappings pre-
serve angles. If the maximal and minimal eigenvalue of Iφ are denoted by
λmin and λmax, respectively, conformality can also be expressed as

λmax
λmin

= 1.

Since 0 < λmin ≤ λmax, minimizing this ratio optimizes angular distortion.
Conformality allows the directional derivatives to be uniformly scaled by

a factor λ(ω) that may vary from point to point on the surface. If this factor
does not equal one, a shape in the domain appears stretched or shrinked when
mapped onto the surface and its area is distorted. If in addition to angles,
area is to be preserved globally, the magnitude of the directional derivatives
has to be fixed resulting in an isometry. A parameterization is said to be
isometric (or length-preserving) if

λ(ω) = 1, ∀ω ∈ Ω.
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In other words the first fundamental form equals the identity matrix in every
point. An isometric parameterization preserves angles and area globally. Un-
fortunately, isometric parameterizations exist only for developable surfaces
(i.e., surfaces with zero Gaussian curvature), such as a cylinder. In the gen-
eral case of non zero Gaussian curvature, angle and area preservation have
to be traded off. To measure area deformation imposed by a map φ, a suffi-
ciently small axis aligned square in Ω of area A can be considered. The image
of this square is a trapezoid spanned between the directional derivatives in
u and v whose area is given by A ·

√
det(Iφ). Thus, φ preserves area if and

only if
det(Iφ) = 1.

B.1.2 The Used Parameterization

In this thesis the parameterization method by Degener et al. [Degener et al.
2003] is applied. It uses an energy functional that quantifies angle and global
area deformations simultaneously while the relative importance between an-
gle and area preservation can be controlled by the user through a parameter.
In the presented thesis this parameter is chosen to obtain a parameterization
that is optimized for a uniform sampling of the terrain surface.

To enforce the area and angle preservation f(x) = x+ 1
x

is used as objective
function. Angle deformation is measured by the ratio of eigenvalues λmax

λmin
of

the first fundamental form. This yields

Eangle(ω) = f(

√
λmax
λmin

) =

√
λmax
λmin

+

√
λmin
λmax

.

Area deformation is defined as

Earea(ω) = f(
√

det(Iφ)) =
√

det(Iφ) +
1√

det(Iφ)
.

The deformation energies are then combined as

E(ω) = Eangle(ω) · (Earea(ω))θ

where the parameter θ varies between 0 and ∞ and controls the relative
importance of area and angle preservation. For the special choice of θ = 1,
the combined energy becomes the simple product

Eangle · Earea = f(λmax) + f(λmin).

As the eigenvalues λmax and λmin measure the greatest and the smallest
stretch that the parameterization φ imposes on a vector of unit length, the
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energy obtained for θ = 1 enforces an uniform sampling of the surface, and
penalizes oversampling (λmin < 1) as well as undersampling (λmax > 1).

A parameterization φ can now be assigned a combined area and angle
distortion by integrating over the surface patch S

E(φ) =

∫
S

E(φ−1)dp

To minimize the non-linear isometric energy the hierarchical parameteriza-
tion algorithm proposed by Hormann et al. [Hormann et al. 1999] is used.
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Appendix: Digital Landform Mapping

C.1 Edge Detection

Edge detection is one of the most common operations applied in image anal-
ysis, in particular in image segmentation. An edge is the boundary between
an object and the background, and indicates the boundary between over-
lapping objects. This means that if the edges in an image can be identified
accurately, all of the objects can be located and basic properties such as area,
perimeter, and shape can be measured.

Physical edges correspond to discontinuities in the physical, geometrical
and photometrical properties of scene objects. The principal physical edges
correspond to significant variations in reflectance, illumination, position and
orientation of scene surfaces. Image edges, however, are characterized as
discontinuities in image intensity, color or texture. Since image intensity is
often proportional to scene radiance, image edges often correspond to phys-
ical edges. Therefore, the most common approach to local boundary detec-
tion is to look for discontinuities in image brightness using image derivates.
Typically, edges are localized as positive maxima or negative minima of the
first-order derivative or as zero-crossings of the second-order derivative.

C.1.1 Convolution

Convolution is a mathematical concept that is the basis for sampling, re-
construction and filtering. A convolution takes two functions f and g as
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input and combines them to produce a new function f ∗ g. The functions
can be continuous or discrete, and may be defined on a one-dimensional,
two-dimensional or higher-dimensional domain. Since many of the impor-
tant applications of sampling and reconstruction in graphics are applied to
2D functions, in particular to images, only convolution in 2D is considered
in the following.

The convolution of two discrete sequences in 2D is defined as

(a ∗ b)[i, j] =
∑
i′

∑
j′

a[i′, j′]b[i− i′, j − j′],

whereas the continuous convolution is defined as

(f ∗ g)(x, y) =

∫ +∞

−∞

∫ +∞

−∞
f(x′, y′)g(x− x′, y − y′)dx′dy′.

These definitions can be easily extended to higher dimensions in the same
way. Convolution is commutative and associative, and it is distributive over
addition

f ∗ g = g ∗ f
f ∗ (g ∗ h) = (f ∗ g) ∗ h
f ∗ (g + h) = f ∗ g + f ∗ h.

Taking the derivative of a convolution is commutative and associative

∂

∂x
(f ∗ g) =

∂

∂x
f ∗ g = f ∗ ∂

∂x
g.

A function f(x, y) is said to be separable if there are two functions f1 and f2

of one variable such that

f(x, y) = f1(x)f2(y).

For the Gaussian this is a consequence of the fact that

ex+y = exey.

The key advantage of separable filters over non-separable 2D filters has to do
with efficiency in implementation. A convolution with a 2D separable filter
can be expressed by two convolutions with 1D filters. If the filter has radius
r this reduces computational complexity from O(r2) to O(r).
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C.1.2 Image Derivatives

Given a function f(x, y) describing the image, the vector

∇f(x, y) =

(
∂f

∂x
,
∂f

∂y

)
is called the image gradient. The gradient magnitude

|∇f(x, y)| =

√(
∂f

∂x

)2

+

(
∂f

∂y

)2

describes the amount of the difference between pixels in the neighborhood
(the strength of the edge). The gradient orientation

φ (∇f(x, y)) = arctan

(
∂f
∂x
∂f
∂y

)

gives the direction of the greatest change, which presumably is the direction
across the edge (the edge normal). The Laplacian operator

∇ · ∇ (f(x, y)) = ∇2 (f(x, y)) =
∂2f

∂x2
+
∂2f

∂y2

measures second derivatives. Edges can be found by looking for zero-crossings
in the Laplacian of the image. Since edges represent high-frequency image
content, edge detectors are in general susceptible to noise. The difficulty
is to distinguish noise from image edges that correspond to relevant edges.
While smoothing, for example with a Gaussian kernel, reduces noise and
therefore improves robustness of edge detection, it also causes information
loss and degrades the localization of edges. The ultimate goal is therefore to
find detectors that ensure a good compromise between noise reduction and
edge conservation. Blurring and differentiating can be combined to a single
convolution as

∇ (G ∗ f) = (∇G) ∗ f
∇2 (G ∗ f) =

(
∇2G

)
∗ f.
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Stäblein, G. (1980). Die Konzeption der Geomorphologischen Karten GMK
25 und GMK 100 im DFG-Schwerpunktprogramm. Berliner Geographische
Abhandlung, 31, 13–30. 91

175



References

Szeliski, R. and Kang, S. B. (1994). Recovering 3D shape and motion from im-
age streams using nonlinear least squares. Journal of Visual Communication
and Image Representation, 5(1), 10–28. 52, 72

Szeliski, R. and Shum, H.-Y. (1997). Creating full view panoramic image
mosaics and environment maps. Pages 251–258 of: SIGGRAPH ’97: Pro-
ceedings of the 24th annual conference on Computer graphics and interactive
techniques. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co.
72, 73

Tan, H. L., Gelfand, S. B. and Delp, E. J. (1992). A Cost Minimization Ap-
proach to Edge Detection Using Simulated Annealing. IEEE Trans. Pattern
Anal. Mach. Intell., 14(1), 3–18. 95

Tanner, C. C., Migdal, C. J. and Jones, M. T. (1998). The clipmap: a
virtual mipmap. Pages 151–158 of: SIGGRAPH ’98: Proceedings of the 25th
annual conference on Computer graphics and interactive techniques. New
York, NY, USA: ACM. 18

Teller, S., Antone, M., Bodnar, Z., Bosse, M., Coorg, S., Jethwa,
M. and Master, N. (2003). Calibrated, Registered Images of an Extended
Urban Area. Int. J. Comput. Vision, 53(1), 93–107. 53

Tomasi, C. and Kanade, T. (1992). Shape and motion from image streams
under orthography: a factorization method. Int. J. Comput. Vision, 9(2),
137–154. 52

Touma, C. and Gotsman, C. (1998). Triangle mesh compression. Pages 26–34
of: Proc. Graphics Interface. 11, 12

Toussaint, G. (1983). Solving geometric problems with the rotating calipers. 79

Triggs, B., McLauchlan, P. F., Hartley, R. I. and Fitzgibbon, A. W.
(2000). Bundle Adjustment - A Modern Synthesis. Pages 298–372 of: ICCV
’99: Proceedings of the International Workshop on Vision Algorithms. Lon-
don, UK: Springer-Verlag. 52

Turk, G. (1992). Re-tiling polygonal surfaces. SIGGRAPH Comput. Graph.,
26(2), 55–64. 15

Tuytelaars, T. and Mikolajczyk, K. (2008). A Survey on Local Invariant
Features. Foundations and Trends in Computer Graphics and Vision, 1(1),
1–106. 144

Uyttendaele, M., Eden, A. and Szeliski, R. (2001). Eliminating Ghosting
and Exposure Artifacts in Image Mosaics. Pages II:509–516 of: Computer
Vision and Pattern Recognition (CVPR) 2001. 73, 76, 90

176



References

van Asselen, S. and Seijmonsbergen, A. (2006). Expert-driven semi-
automated geomorphological mapping for a mountainous area using a laser
DTM. Geomorphology, 78(3-4), 309–320. 92

van der Zwet, P. N. J. and Reiber, J. H. C. (1992). A New Algorithm to
Detect Irregular Coronary Boundaries: the Gradient Field Transform. Pages
107–110 of: IEEE Proc. of Computers in Cardiology. 95

Vergauwen, M. and Gool, L. V. (2006). Web-based 3D Reconstruction Ser-
vice. Mach. Vision Appl., 17(6), 411–426. 53

Wahl, R., Massing, M., Degener, P., Guthe, M. and Klein, R. (2004).
Scalable Compression of Textured Terrain Data. Journal of WSCG, 12(3),
521–528. 21

Wartell, Z., Kang, E., Wasilewski, T., Ribarsky, W. and Faust, N.
(2003). Rendering Vector Data over Global, Multiresolution 3D Terrain.
Pages 213–222 of: Proceedings on the Symposium on Data Visualization,
vol. 40. 28

Weber, A. and Benner, J. (2001). Interactive Generation of Digital Terrain
Models Using Multiple Data Sources. Pages 60–64 of: DEM ’01: Proceedings
of the First International Symposium on Digital Earth Moving. London, UK:
Springer-Verlag. 28

Williams, D. J. and Shah, M. (1992). A fast algorithm for active contours and
curvature estimation. CVGIP: Image Underst., 55(1), 14–26. 95

Williams, L. (1978). Casting curved shadows on curved surfaces. In SIGGRAPH
78, 270–274. 33

Williams, L. (1983). Pyramidal parametrics. SIGGRAPH Comput. Graph.,
17(3), 1–11. 18

Wimmer, M., Scherzer, D. and Purgathofer, W. (2004). Light Space
Perspective Shadow Maps. Pages 143–151 of: Eurographics Symposium on
Rendering. 33

Wong, K. C., Heng, P. A. and Wong, T. T. (2000). Accelerating intelligent
scissors using slimmed graphs. Journal of Graphic Tools, 5(2), 1–13. 96

Yang, Q. H., Snyder, J. P. and Tobler, W. R. (2000). Map Projection
Transformation: Principles and Applications. CRC Press. 7

Zabih, R. and Woodfill, J. (1994). Non-parametric Local Transforms for
Computing Visual Correspondence. Pages 151–158 of: ECCV (2). 144

177



References

Zachmann, G. and Langetepe, E. (2003)(July). Geometric Data Structures
for Computer Graphics. 18

Zhang, F., Sun, H., Xu, L. and Lun, L. K. (2006). Parallel-split shadow maps
for large-scale virtual environments. Pages 311–318 of: VRCIA ’06: Proceed-
ings of the 2006 ACM international conference on Virtual reality continuum
and its applications. New York, NY, USA: ACM Press. 45

Zhang, Z. (1998). Determining the Epipolar Geometry and its Uncertainty: A
Review. Int. J. Comput. Vision, 27(2), 161–195. 143

Zhang, Z., Deriche, R., Faugeras, O. and Luong, Q.-T. (1995). A robust
technique for matching two uncalibrated images through the recovery of the
unknown epipolar geometry. Artif. Intell., 78(1-2), 87–119. 150

Zhao, W., Nister, D. and Hsu, S. (2005). Alignment of Continuous Video onto
3D Point Clouds. IEEE Trans. Pattern Anal. Mach. Intell., 27(8), 1305–1318.
Senior Member-Wenyi Zhao and Member-David Nister and Member-Steve
Hsu. 54

Zucker, S. W. (1976). Region growing: Childhood and adolescence. Comp.
Graphics and Image Process., 5, 382–399. 94

178


	Abstract
	Contents
	Preface
	Motivation
	Main Contributions
	Thesis Overview

	Background
	Digital Terrain Data
	HRSC Dataset of Turtmann Valley

	Data Handling
	Compression
	Culling
	LOD Generation
	LOD Data Structures

	Terrain Visualization
	The Used Terrain Engine


	Visualization of Vector Data
	Motivation
	Related Work
	Overlay-geometry-based Methods
	Geometry-based Methods
	Texture-based Methods

	Texture-based Approach
	Efficient On-the-fly Texture Creation
	Texture Reparameterization

	Stencil-based Approach
	Point-in-polyhedra Algorithm
	Polyhedra Construction
	Mask Generation
	Mask Application

	Results and Discussion

	Registration
	Motivation
	Related Work
	Structure from Motion
	Image-based Modeling
	Registration of Images to 3D Models

	Registration of Images to a Textured DEM
	Feature Extraction and Matching
	Incremental Bundle Adjustment
	Adding Ground Control Points

	Results and Discussion

	Compositing
	Motivation
	Related Work
	Texture Mapping 3D Models
	Blending
	Color Correction

	Compositing of Images on a DEM
	Texture Representation
	Visibility Computation
	Color Correction
	Blending

	Results and Discussion

	Digital Landform Mapping
	Motivation
	Related Work
	Image Segmentation
	Intelligent Scissors Based Methods
	Graph Cut Based Methods

	Intelligent Scissors on Textured DEMs
	Basic Idea of Intelligent Scissors
	Intelligent Scissors on Textured DEMs

	Graph Cuts on Textured DEMs
	Basic Idea of Graph Cuts
	Graph Cuts on Textured DEMs

	Hierarchical Approach
	Revised Landform Mapping
	Results and Discussion

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendix: Registration
	Projective Geometry
	Projective plane
	Projective 3-space
	Transformations

	Camera Models
	Camera Estimation
	Two-view Geometry
	Feature Extraction
	Feature Matching
	Outlier Removal
	Robust Estimation
	Bundle Adjustment

	Appendix: Compositing
	Mesh Parameterization
	Measuring Distortion
	The Used Parameterization


	Appendix: Digital Landform Mapping
	Edge Detection
	Convolution
	Image Derivatives


	References

