
Learning to Predict Combinatorial
Structures

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Shankar Vembu

aus

Vizag, Indien

Urbana, IL, USA, 2010

ii

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Referent: Prof. Dr. Stefan Wrobel
2. Referent: Prof. Dr. Michael Clausen

Tag der Promotion: 18.05.2010

Zusammenfassung

Die größte Herausforderung bei der Entwicklung von diskriminativen Ler-
nalgorithmen für die Vorhersage von strukturierte Ausgaben stellt die An-
zahl der möglichen Ausgaben dar. Diese kann nämlich exponentiell mit der
Eingabegröße wachsen, so dass erschöpfendes Testen nicht in hinreichend
kurzer Zeit möglich ist. Um dennoch effiziente Lernalgorithmen zu erhal-
ten, hat man bisher gewisse Annahmen getroffen. Für viele kombinatorische
Strukturen, wie z.B. Kreise in Graphen, sind diese Annahmen jedoch nicht
zutreffend. In dieser Arbeit entwicklen wir Lernalgorithmen für strukturi-
erte Ausgaben unter zwei neuen Annahmen, die von viele kombinatorischen
Strukturen erfüllt werden:

(i) Die erste Annahme ist, dass ein bestimmtes Zählproblem effizient gelöst
werden kann. Unter dieser Annahme entwickeln wir eine Verallge-
meinerung der klassischen Kleinste-Quadrate Methode für strukturte
Ausgaben.

(ii) Die zweite Annahme ist, dass ein bestimmtes Probenentnahmepro-
lem effizient gelöst werden kann. Unter dieser Annahme entwickeln
wir einen neuen, wahrscheinlichkeitstheoretischen Lernalgorithmus für
strukturierte Ausgaben.

Diese Algorithmen lösen als Spezialfälle viele klassische Lernprobleme, wie
zum Beispiel die Mehrfachkennzeichen-Klassifikation, Kennzeichenordnen
und hierarchische Mehrfachkategorien-Klassifikation.

Abstract

The major challenge in designing a discriminative learning algorithm for pre-
dicting structured data is to address the computational issues arising from
the exponential size of the output space. Existing algorithms make differ-
ent assumptions to ensure efficient, polynomial time estimation of model
parameters. For several combinatorial structures, including cycles, partially
ordered sets, permutations and other graph classes, these assumptions do
not hold. In this thesis, we address the problem of designing learning al-
gorithms for predicting combinatorial structures by introducing two new
assumptions:

(i) The first assumption is that a particular counting problem can be
solved efficiently. The consequence is a generalisation of the classical
ridge regression for structured prediction.

(ii) The second assumption is that a particular sampling problem can be
solved efficiently. The consequence is a new technique for designing
and analysing probabilistic structured prediction models.

These results can be applied to solve several complex learning problems
including but not limited to multi-label classification, multi-category hier-
archical classification, and label ranking.

Acknowledgements

To Stefan Wrobel, for giving me the opportunity to pursue doctoral studies
at Fraunhofer IAIS, and for reading drafts of this manuscript and suggesting
improvements.

To Michael May, for giving me the opportunity to pursue doctoral stud-
ies at the Knowledge Discovery lab.

To Michael Clausen, Peter Köpke, and Andreas Weber, for serving on my
thesis committee.

To Thomas Gärtner, for continual advice, for introducing me to graph the-
ory and kernel methods, for teaching me how to write technical papers, for
numerous discussions on topics related to machine learning, and for carefully
reading drafts of this manuscript and suggesting improvements.

To Tamas Horváth and Kristian Kersting, for numerous discussions on re-
search in general.

To Mario Boley, for discussions on topics related to theoretical computer
science, and for being a wonderful colleague.

To Jörg Kindermann, for providing me with computing resources needed
to run the experiments described in Chapter 5.

To Daniela Börner, Renate Henkeler, and Myriam Jourdan, for helping me
with administrative issues.

To Jens Humrich and Katrin Ullrich, for being wonderful colleagues.

To all the members of the IAIS.KD lab, for creating a conducive atmo-
sphere that allowed me to work towards a doctorate in machine learning.

To family and friends.

viii

And lastly, to David Baldacci’s novels, for inspiring me to acknowledge in
this way!

Contents

Zusammenfassung iii

Abstract v

Acknowledgments vii

Notational Conventions xi

1 Introduction 1

1.1 Structured Prediction . 3

1.2 Why Predict Combinatorial Structures? 5

1.3 Goals and Contributions . 7

1.4 Thesis Outline . 8

1.5 Bibliographical Notes . 9

2 Structured Prediction 11

2.1 Loss Functions . 12

2.2 Algorithms . 14

2.3 Summary . 21

3 Predicting Permutations 23

3.1 Preliminaries . 23

3.2 Learning Reductions . 26

3.3 Boosting Methods . 27

3.4 Label Ranking SVM . 28

3.5 Structured Prediction . 29

3.6 Online Methods . 30

3.7 Instance-based Learning . 32

3.8 Summary . 33

4 Complexity of Learning 35

4.1 Efficient Learning . 35

4.2 Hardness Results . 37

4.3 Two New Assumptions . 43

x CONTENTS

4.3.1 The Counting Assumption 43
4.3.2 The Sampling Assumption 46

4.4 Summary . 47

5 Structured Ridge Regression 49

5.1 Ridge Regression . 49
5.2 Training Combinatorial Structures 50
5.3 Scalability Issues . 54

5.3.1 Linear models . 54
5.3.2 Online Optimisation 55

5.4 Approximate Inference . 57
5.4.1 Approximate Decoding 58
5.4.2 Approximate Enumeration 59

5.5 Empirical Results . 60
5.6 Summary . 65

6 Probabilistic Structured Prediction 67

6.1 Probabilistic Models and Exponential Families 67
6.2 Hardness of Computing the Partition Function 69
6.3 Approximating the Partition Function Using Uniform Samplers 70
6.4 Approximating the Partition Function Using Counting For-

mulae . 74
6.5 Approximating the Gradient of the Log Partition Function . 75
6.6 Sampling Techniques . 76

6.6.1 Basics of Markov Chains 76
6.6.2 A Meta Markov chain 80

6.7 Summary . 83

7 Conclusions 85

A Kernels and Low-dimensional Mappings 89

B Counting Dicyclic Permutations 91

C Appendix for Chapter 6 93

C.1 Approximating the Partition Function using Approximate Sam-
ples . 93

C.2 Approximating the Gradient of the Log Partition Function
using a Reduction from Counting to Sampling 95

C.3 Mixing Time Analysis of MCcube using Path Coupling 96

References 99

Notational Conventions

We will follow the notational conventions given below wherever possible.

• Calligraphic letters (A,B . . .) denote sets (or particular spaces):

– X an instance space.

– Y a label set.

– H a Hilbert space.

• Capital letters (A,B, . . .) denote matrices or subsets of some set.

• Bold letters or numbers denote special matrices or vectors:

– I the identity matrix, i.e., a diagonal matrix (of appropriate di-
mension) with all components on the diagonal equal to 1.

– 0 the zero element of a vector space or a matrix with all compo-
nents equal to 0. For the vector spaces Rn the zero element is
the vector (of appropriate dimension) with all components equal
to 0.

– 1 the matrix (in Rn×m) or the vector (in Rn) with all elements
equal to 1.

• Lowercase letters (a, b, . . .) denote vectors, numbers, elements of some
set, or functions:

– m the number of training instances.

– x a single instance.

– y a single label.

• Lowercase Greek letters α, β, . . . denote real numbers.

• Bold lowercase Greek letters α,β, . . . denote vectors of real numbers.

• Symbols:

– A⇒B: if A then B.

– A⇐B: A if B.

xii NOTATIONAL CONVENTIONS

– A⇔B: A if and only if B.

– f : X → Y denotes a function from X to Y.

– f(·): to clearly distinguish a function f(x) from a function value
f(x), we use f(·) for the function and f(x) only for the value
of the function f(·) applied to x. This is somewhat clearer than
using f for the function as (out of context) f could be read as a
number.

– A⊤ denotes the transpose of the matrix A.

– | · | denotes the function returning the ℓ1 norm of a vector.

– ‖ · ‖ denotes the function returning the ℓ2 norm of a vector.

– [[n]] denotes the set {1, . . . , n}.

• Other notational conventions and exceptions:

– Aij denotes the component in the i-th row and j-th column of
matrix A.

– Ai· denotes the i-th row vector of matrix A.

– A·j denotes the j-th column vector of matrix A.

– λ denotes the regularisation parameter.

– P a probability distribution.

– R the set of all real numbers.

– N the set of all natural numbers 1, 2, 3,

Chapter 1

Introduction

The discipline of machine learning (Mitchell, 2006) has come a long way since
Frank Rosenblatt invented the perceptron in 1957. The perceptron is a lin-
ear classifier: it takes a sequence of features as its input, computes a linear
combination of the features and a sequence of weights, feeds the result into
a step function (also known as activation function), and outputs a binary
value (0 or 1). A non-linear classifier can be designed using multiple layers
of computational units (neurons) with non-linear activation function such as
the sigmoid function resulting in what is called a multi-layered perceptron
(MLP) or a feed-forward network (see Figure 1.1). An MLP is a universal
function approximator (Cybenko, 1989), i.e, any feed-forward network with
a single hidden layer comprising a finite number of units can be used to ap-
proximate any function. The weights of an MLP are learned from a given set
of training examples using a procedure called backpropagation (Rumelhart
et al., 1986) which typically modifies the weights iteratively based on the
error incurred on the current training example, with training examples be-
ing fed into the network in a sequential manner. We thus have a machinery
that is able to learn from experience and can be used for prediction thereby
mimicking human behaviour (to a certain extent).

This thesis is concerned with structured prediction — the problem of
predicting multiple outputs with complex internal structure and dependen-
cies among them. One of the classical structured prediction problems is
temporal pattern recognition with applications in speech and handwriting
recognition. The MLP as described above can be used to approximate a
multi-valued function using multiple units in the output layer. The down-
side, however, is that it cannot model dependencies between the outputs
since there are no connections between units within a layer. Recurrent neu-
ral networks or feedback networks (Jordan, 1986; Elman, 1990; Hochreiter
and Schmidhuber, 1997) address this problem by introducing feedback con-
nections between units (see Figure 1.2). The feedback mechanism can be
seen as introducing memory into the network which makes the network par-

2 Chapter 1. Introduction

Output layer

Input layer

Hidden
layer

Figure 1.1: A multi-layered perceptron with input, output, and hidden lay-
ers.

ticularly suitable to solve temporal pattern recognition problems1. Despite
the fact that artificial neural networks can be used to handle temporal se-
quences, statistical models like hidden Markov models (HMM) (Rabiner,
1989) have enjoyed significant success in adoption (including commercial
use) in speech recognition problems as they can be trained efficiently using
procedures like the expectation-maximisation algorithm (Dempster et al.,
1977). An HMM is a dynamic Bayesian network that models the joint dis-
tribution of inputs and outputs by placing a Markovian assumption on the
input sequence.

As evidenced above, structured prediction and algorithms pertaining to
it have existed since the mid-80s. Later, with the introduction of support
vector machines (SVM) in the 90s (Boser et al., 1992; Cortes and Vap-
nik, 1995), there has been a flurry of activity in formulating and solv-
ing every conceivable machine learning problem using tools from convex
optimisation. Unsurprisingly, this has also had an effect on research in
structured prediction resulting in several algorithmic developments includ-
ing models/algorithms2 like conditional random fields (Lafferty et al., 2001),
max-margin Markov networks (Taskar et al., 2003, 2005), and structured
SVMs (Tsochantaridis et al., 2005). The contributions of this thesis follow
this line of research in the following sense:

1Temporal structure in data can also be modeled using a feed-forward network known
as time delay neural network (Waibel et al., 1989).

2Typically, a machine learning algorithm is a mechanism to estimate the parameters
of an underlying model of the given data. We use the terms model and algorithm inter-
changeably.

1.1. Structured Prediction 3

2uu1

w12

w21

w22w11

u1,t u2,t

u1,0
u2,0

u1,1 u2,1

w22

w22

w11

w11

w12w21

w12w21

Time

t−1

t

u2,t−1
u1,t−1

0

1

Figure 1.2: A fully-connected recurrent neural network with two units, u1

and u2, and its equivalent feed-forward network (Rumelhart et al., 1987). At
every time step, a copy of the network is created. Thus the network unfolds
in time and standard backpropagation can be used to train the network. As
long as there is a constraint that the weights be the same for all the copies
of the network over all the time steps, the behaviour of the feed-forward
network will be equivalent to that of the recurrent network (Rumelhart
et al., 1987). The amount of contextual information used depends on the
number of copies retained while training.

we address some of the limitations of recent structured prediction
algorithms when dealing with the specific problem of predicting
combinatorial structures by proposing new techniques that will
aid in the design and analysis of novel algorithms for structured
prediction.

1.1 Structured Prediction

We begin with a non-technical introduction to structured prediction focusing
particularly on applications. A formal algorithmic treatment is deferred
until the next chapter.

We restrict ourselves to supervised learning problems where training ex-
amples are provided in (input, output) pairs. This is in contrast to other
machine learning problems like density estimation and dimensionality reduc-
tion that fall under the category of unsupervised learning. More formally,
let X be the input space. For example, in OCR applications such as hand-
writing recognition, this space could represent the set of all possible digits
and letters including transformations like scaling and rotation. Each ele-

4 Chapter 1. Introduction

ment x ∈ X is represented as a sequence of features (e.g., image pixels) in
Rn. Let Y be the discrete space3 of all possible outcomes. In handwrit-
ing recognition, this space could be the set of possible outcomes, i.e., digits
‘0’–‘9’ and letters ‘a’–‘z’. The goal of a supervised learning algorithm is to
learn a hypothesis (function) f that maps all elements of the input space
to all possible outcomes, i.e., f : X → Y. Typically, we fix the hypoth-
esis space (decision trees, neural networks, SVMs), parameterise it, and
learn or estimate these parameters from a given set of training examples
(x1, y1), . . . , (xm, ym) ∈ X × Y, which are all drawn independently from an
identical distribution (i.i.d.) P over X × Y. The parameters are estimated
by minimising a pre-defined loss function ℓ : Y × Y → R — such as the
0− 1 loss or the squared loss — on the training examples with the hope of
obtaining a small loss when predicting the outputs of unseen instances. Of-
ten, the hypothesis space is further restricted using a mechanism known as
regularisation so that the learned hypothesis performs well (w.r.t. the loss
function) not only on training but also on unseen examples. This property
of a learning algorithm is called generalisation.

In structured prediction, the output space is complex in the following
sense: (i) there are dependencies between and internal structure among the
outputs, and (ii) the size of the output space is exponential in the problem’s
input. As a simple example, consider multi-label classification where the
goal is to predict, for a given input example, a subset of labels from among
a set of pre-defined labels of size d. Clearly, the size of the output space Y
is 2d. A reduction from multi-label to multi-class prediction may not yield
good results as it does not take the correlations between labels into account
(McCallum, 1999; Schapire and Singer, 2000).

Applications

Natural language processing (NLP) has always been a driving force behind
research in structured prediction. Some of the early algorithmic develop-
ments in (discriminative) structured prediction (Collins, 2002) were moti-
vated by NLP applications. Part-of-speech tagging is a classical example
where the goal is to mark (tag) the words in a sentence with their corre-
sponding parts-of-speech. An attempt to perform this tagging operation
by treating the words independently would discard important contextual
information. Linguistic parsing is the process of inferring the grammatical
structure and syntax of a sentence. The output of this process is a parse
tree, i.e, given a sentence of words, the goal is to output its most likely parse
tree (see Figure 1.3). Machine translation, which is the problem of translat-
ing text in one natural language into another, is another application where
structured predition algorithms have been successfully applied (Liang et al.,

3If the space is continuous, then it is a regression problem. We are only concerned with
discrete output spaces.

1.2. Why Predict Combinatorial Structures? 5

DT JJ

lazythe dog

S

N

NP VP

NP

N

VBD

The brown fox chased DT JJ

Figure 1.3: Illustration of parsing. The input is a sentence and the output
is its parse tree.

2006). The reader is referred to the works of Taskar (2004) and Daumé III
(2006) for more details on structured prediction applications in NLP.

Another group of applications is based on graph matching. A matching
in a graph is a set of edges without common vertices. Finding a match-
ing that contains the largest possible number of edges in bipartite graphs,
also known as maximum bipartite matching, is a fundamental problem in
combinatorial optimisation with applications in computer vision. For ex-
ample, finding a correspondence between two images is a graph matching
problem and was recently cast as a structured prediction problem (Caetano
et al., 2009). Segmenting three-dimensional images obtained from robot
range scanners into object categories is an important task for scene under-
standing, and was recently solved using a structured prediction algorithm
(Anguelov et al., 2005). Imitation learning is a learning paradigm where the
learner tries to mimic the behaviour of an expert. In robotics, this type of
learning is useful in planning and structured prediction has been successfully
used to solve such problems (Ratliff et al., 2006). The reader is referred to
the works of Taskar (2004) and Ratliff (2009) for more details on structured
prediction applications in robotics.

Further applications in bioinformatics and computational biology can be
found in the works of Sonnenburg (2008) and Frasconi and Passerini (2008).

1.2 Why Predict Combinatorial Structures?

We have already seen that some of the applications described in the previous
section involve predicting combinatorial structures such as permutations in

6 Chapter 1. Introduction

maximum bipartite matching and trees in linguistic parsing. Furthermore,
several existing, well-studied machine learning problems can be formulated
as predicting combinatorial structures.

Multi-label classification (Schapire and Singer, 1999, 2000; Elisseeff and
Weston, 2001; Fürnkranz et al., 2008) is a generalisation of multi-class pre-
diction where the goal is to predict a set of labels that are relevant for a
given input. The combinatorial structure corresponding to this problem is
the set of vertices of a hypercube.

Multi-category hierarchical classification (Cesa-Bianchi et al., 2006;
Rousu et al., 2006) is the problem of classifying data in a given taxonomy
when predictions associated with multiple and/or partial paths are allowed.
A typical application is taxonomical document classification where docu-
ment categories form a taxonomy. The combinatorial structure correspond-
ing to this problem is the set of subtrees of a directed, rooted tree.

Label ranking (Dekel et al., 2003) is an example of a complex prediction
problem where the goal is to not only predict labels from among a finite
set of pre-defined labels, but also to rank them according to the nature of
the input. A motivating application is again document categorisation where
categories are topics (e.g., sports, entertainment, politics) within a docu-
ment collection (e.g., news articles). It is very likely that a document may
belong to multiple topics, and the goal of the learning algorithm is to or-
der (rank) the relevant topics above the irrelevant ones for the document in
question. The combinatorial structure corresponding to this problem is the
set of permutations.

Real-world Applications

In this thesis, we focus particularly on the problem of predicting combina-
torial structures such as cycles, partially ordered sets, permutations, and
other graph classes. There are several applications where predicting such
structures is important. Consider route prediction for hybrid vehicles —
the more precise the prediction of routes, the better the optimisation of the
charge/discharge schedule, resulting in significant reduction of energy con-
sumption (Froehlich and Krumm, 2008). Route prediction corresponds to
prediction of cycles in a street network. The input space X would be a set
of properties of people, situations, etc.; the output space Y would be the set
of cycles over the places of interest; and yi are the known tours of people
xi. Route prediction could also find interesting applications in the design of
intelligent personal digital assistants that are smart enough to recommend
alternative routes or additional places to visit.

As another application, consider de novo construction of (personalised)

1.3. Goals and Contributions 7

drugs from the huge space of synthesisable drugs (e.g., a fragment space)
(Mauser and Stahl, 2007) — better predictions lead to more efficient entry
of new drugs into the market. The task here is to predict graphs (molecules)
on a fixed set of vertices. State-of-the-art software systems to support drug
design are virtual screening methods predicting the properties of database
compounds. The set of molecules that can be synthesised is, however, orders
of magnitude larger than what can be processed by these methods. In this
application, X would be some set of properties; Y would be a particular set
of graphs over, say, functional groups; and yi are the compounds known to
have properties xi.

1.3 Goals and Contributions

The main goal of this thesis is to design and analyse machine learning al-
gorithms for predicting combinatorial structures. This problem is not new
and there exists algorithms (Collins, 2002; Taskar et al., 2003; Taskar, 2004;
Taskar et al., 2005; Tsochantaridis et al., 2005) to predict structures such
as matchings, trees, and graph partitions. Therefore, as a starting point, we
investigate the applicability of these algorithms for predicting combinato-
rial structures that are of interest to us. It turns out that the assumptions
made by these algorithms to ensure efficient learning do not hold for the
structures and applications we have in mind. We elucidate the limitations
of existing structured prediction algorithms by presenting a complexity the-
oretic analysis of them. We then introduce two novel assumptions based
on counting and sampling combinatorial structures, and show that these as-
sumptions hold for several combinatorial structures and complex prediction
problems in machine learning. The consequences of introducing these two
assumptions occupy a major portion of this work and are briefly described
below.

A New Algorithm for Structured Prediction

We present an algorithm that can be trained by solving an unconstrained,
polynomially-sized quadratic program. The resulting algorithmic framework
is a generalisation of the classical regularised least squares regression, also
known as ridge regression, for structured prediction. The framework can
be instantiated to solve several machine learning problems, including multi-
label classification, ordinal regression, hierarchical classification, and label
ranking. We then design approximation algorithms for predicting combina-
torial structures. We also present empirical results on multi-label classifi-
cation, hierarchical classification and prediction of directed cycles. Finally,
we address the scalability issues of our algorithm using online optimisation
techniques such as stochastic gradient descent.

8 Chapter 1. Introduction

Analysis of Probabilistic Models for Structured Prediction

Maximum a posteriori estimation with exponential family models is a cor-
nerstone technique used in the design of discriminative probabilistic clas-
sifiers. One of the main difficulties in using this technique for structured
prediction is the computation of the partition function. The difficulty again
arises from the exponential size of the output space. We design an algorithm
for approximating the partition function and the gradient of the log parti-
tion function with provable guarantees using classical results from Markov
chain Monte Carlo theory (Jerrum et al., 1986; Jerrum and Sinclair, 1996;
Randall, 2003). We also design a Markov chain that can be used to sample
combinatorial structures from exponential family distributions, and perform
a non-asymptotic analysis of its mixing time. These results can be applied
to solve several learning problems, including but not limited to multi-label
classification, label ranking, and multi-category hierarchical classification.

1.4 Thesis Outline

The thesis is organised as follows:

Chapter 2 serves as an introduction to structured prediction. We begin with
a description of generative and discriminative learning paradigms fol-
lowed by a detailed exposition of several machine learning algorithms
that exist in the literature for structured prediction.

Chapter 3 is a survey, including original contributions, on algorithms for
predicting a specific combinatorial structure — permutations.

Chapter 4 analyses existing discriminative structured prediction algorithms
through the lens of computational complexity theory. We study the
assumptions made by existing algorithms and identify their shortcom-
ings in the context of predicting combinatorial structures. The study
will consequently motivate the need to introduce two new assumptions
— the counting and the sampling assumption. We provide several ex-
amples of combinatorial structures where these assumptions hold and
also describe their applications in machine learning.

Chapter 5 proposes a new learning algorithm for predicting combinatorial
structures using the counting assumption. The algorithm is a gener-
alisation of the classical ridge regression for structured prediction.

Chapter 6 analyses probabilistic discriminative models for structured pre-
diction using the sampling assumption and some classical results from
Markov chain Monte Carlo theory.

Chapter 7 summarises the contributions of this thesis and points to direc-
tions for future research.

1.5. Bibliographical Notes 9

1.5 Bibliographical Notes

Parts of the work described in this thesis appear in the following publica-
tions:

• Thomas Gärtner and Shankar Vembu. On Structured Output Train-
ing: Hard Cases and an Efficient Alternative. Machine Learning Jour-
nal, 76(2):227–242, 2009. Special Issue of the European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery
in Databases 2009.

• Shankar Vembu, Thomas Gärtner, and Mario Boley. Probabilistic
Structured Predictors. In Proceedings of the 25th Conference on Un-
certainty in Artificial Intelligence, 2009.

• Shankar Vembu and Thomas Gärtner. Label Ranking Algorithms: A
Survey. To appear in a book chapter on Preference Learning, Johannes
Fürnkranz and Eyke Hüllermeier (Editors), Springer-Verlag, 2010.

• Thomas Gärtner and Shankar Vembu. Learning to Predict Combina-
torial Structures. In Proceedings of the Workshop on Structured Inputs
and Structured Outputs at the 22nd Annual Conference on Neural In-
formation Processing Systems, 2008.

• Shankar Vembu and Thomas Gärtner. Training Non-linear Structured
Prediction Models with Stochastic Gradient Descent. In Proceedings of
the 6th International Workshop on Mining and Learning with Graphs,
2008.

Chapter 2

Structured Prediction

In supervised learning, the goal is to approximate an unknown target func-
tion f : X → Y or to estimate the conditional distribution p(y | x). There
are essentially two ways to define a learning model and estimate its pa-
rameters. In what is known as generative learning, a model of the joint
distribution p(x, y) of inputs and outputs is learned, and then Bayes rule is
used to predict outputs by computing the mode of

p(y | x) =
p(x, y)
∑

z∈Y
p(x, z)

.

The above is also known as Bayes classifier. In discriminative learning, the
goal is to directly estimate the parameters of the conditional distribution
p(y | x). According to Vapnik (1995), one should always solve a problem
directly instead of solving a more general problem as an intermediate step,
and herein lies the common justification to model the conditional instead of
the joint distribution. This has led to an upsurge of interest in the design of
discriminative learning algorithms for structured prediction. Prominent ex-
amples include conditional random fields (Lafferty et al., 2001), structured
perceptron (Collins, 2002), max-margin Markov networks (Taskar et al.,
2003, 2005), and support vector machines (Tsochantaridis et al., 2005). It
has now become folk wisdom to attack a learning problem using discrim-
inative as opposed to generative methods. An interesting theoretical and
empirical study was performed by Ng and Jordan (2001) who showed that
while discriminative methods have lower asymptotic error, generative meth-
ods approach their higher asymptotic error much more faster. This means
that generative classifiers outperform their discriminative counterparts when
labeled data is scarce.

A plethora of algorithms have been proposed in recent years for predict-
ing structured data. The reader is referred to Bakir et al. (2007) for an
overview. In this chapter, we discuss several of these algorithms, in par-
ticular those that are relevant to and motivated the contributions of this

12 Chapter 2. Structured Prediction

thesis. The main goal of a learning algorithm is to minimise an appropri-
ately chosen risk (loss) function depending on the problem or application.
We describe several loss functions for binary classification and their exten-
sions to structured prediction. The algorithmic contributions of this thesis
fall under the category of discriminative learning. We therefore review clas-
sical approaches to discriminatively learning a classifier using perceptron,
logistic regression and support vector machine, and show that many of the
recently proposed structured prediction algorithms are natural extensions of
them.

2.1 Loss Functions

Given an input space X , an output space Y, a probability distribution P
over X × Y, a loss function ℓ(·, ·) maps pairs of outputs to a quantity that
is a measure of “discrepancy” between these pairs, i.e., ℓ : Y ×Y → R. The
goal of a machine learning algorithm is to minimise the true risk

Rtrue(f) =

∫

X×Y

ℓ(f(x), y)dP (x, y) .

Since we do not have any knowledge of the distribution P , it is not possible to
minimise this risk. But given a set of training examples {(xi, yi)}mi=1 drawn
independently from X×Y according to P , we can minimise an approximation
to the true risk known as the empirical risk

Remp(f) =

m
∑

i=1

ℓ(f(xi), yi) .

In structured prediction, a joint scoring function on input-output pairs
is considered, i.e., f : X ×Y → R (with an overload of notation), where the
score is a measure of “affinity” between inputs and outputs. Analogously,
a joint feature representation of inputs and outputs φ : X × Y → Rn is
considered. A linear scoring function parameterised by a weight vector w ∈
Rn is defined as

f(x, y) = 〈w,φ(x, y)〉 .
The goal of a structured prediction algorithm is to learn the parameters w
by minimising an appropriate structured loss function. Given a test example
x ∈ X , the output is predicted as

ŷ = argmax
z∈Y

f(x, z) = argmax
z∈Y

〈w,φ(x, z)〉 . (2.1)

One of the major challenges in designing a structured prediction algorithm
is to solve the above “argmax problem”. The difficulty arises in non-trivial

2.1. Loss Functions 13

structured prediction applications due to the exponential size of the output
space.

In the following, we describe commonly used loss functions in classifica-
tion and regression and extend them to structured prediction.

Zero-One Loss

The zero-one loss is defined as

ℓ0-1(y, z) =

{

0 if y = z

1 otherwise
.

It is non-convex, non-differentiable, and optimising it is a hard problem
in general. Therefore, it is typical to consider approximations (surrogate
losses) to it, for instance, by upper-bounding it with a convex loss such as
the hinge loss1.

Squared Loss

The squared loss is commonly used in regression problems with Y ⊆ R and
is defined as

ℓsquare(y, z) = (y − z)2 .
The extension of this loss function for structured prediction is non-trivial due
to inter-dependencies among the multiple output variables. However, these
dependencies can be removed by performing (kernel) principal component
analysis (Schölkopf et al., 1998) on the output space and by subsequently
learning separate regression models on each of the independent outputs. The
final output can be predicted by solving a pre-image problem that maps the
output in the transformed space back to the original output space. Thus, a
structured prediciton problem can be reduced to regression. This technique
is called kernel dependency estimation (Weston et al., 2002).

Hinge Loss

The hinge loss became popular with the introduction of support vector ma-
chines (Cortes and Vapnik, 1995). For binary classification, it is defined
as

ℓhinge(y, z) = max(0, 1 − yz) ,
where y ∈ {−1,+1} and z ∈ R is the output of the classifier. The generali-
sation of hinge loss for structured prediction (Taskar et al., 2003; Tsochan-
taridis et al., 2005) is defined with respect to a hypothesis f and a training

1The hinge loss is non-differentiable, but learning algorithms like support vector ma-
chines introduce slack variables to mitigate this problem. Support vector machines will
be described in the next section.

14 Chapter 2. Structured Prediction

example (x, y). Let ∆ : Y × Y → R be a discrete (possibly non-convex)
loss function, such as the Hamming loss or the zero-one loss, defined on the
output space. Consider the loss function

ℓ∆max(f, (x, y)) = ∆(argmax
z∈Y

f(x, z), y) .

To ensure convexity, the above loss function is upper-bounded by the hinge
loss as

ℓ∆hinge(f, (x, y)) = max
z∈Y

[∆(z, y) + f(x, z)− f(x, y)] . (2.2)

Logistic Loss

The logistic loss is used in probabilistic models and is a measure of the neg-
ative conditional log-likelihood, i.e., − ln p(y | x). For binary classification
(cf. logistic regression) it is defined as follows:

ℓlog(y, z) = ln(1 + exp(−yz)) .

For structured prediction, it is defined (again w.r.t. to a hypothesis f and
a training example (x, y)) as

ℓlog(f, (x, y)) = ln

[

∑

z∈Y

exp(f(x, z))

]

− f(x, y) .

Exponential Loss

The exponential loss for binary classification is defined as

ℓexp(y, z) = exp(−yz) .

As shown in Figure 2.1, the exponential loss imposes a heavier penalty on
incorrect predictions than the logistic loss. However, this also means that
the exponential loss is sensitive to label noise. The exponential loss for
structured prediction (Altun et al., 2003) is defined as

ℓexp(f, (x, y)) =
∑

z∈Y

exp [f(x, z)− f(x, y)] .

We will revisit this loss in Chapter 5.

2.2 Algorithms

Perceptron

The perceptron (Rosenblatt, 1958), briefly described in the introductory
chapter, is a simple online learning algorithm. It learns a linear classifier

2.2. Algorithms 15

−1.5−1.0−0.5 0.0 0.5 1.0 1.5 2.0
t=y.f(x)

0

1

2

3

4

5

6

7

lo
ss
(t
)

0-1
Square
Hinge
Log
Exp

Figure 2.1: Various loss functions for binary classification.

parameterised by a weight vector w and makes predictions according to
ŷ = f(x) = sgn(〈w, x〉). The algorithm operates in rounds (iterations). In
any given round, the learner makes a prediction ŷ for the current instance x
using the current weight vector. If the prediction differs from the true label y
(revealed to the algorithm after it has made the prediction), then the weights
are updated according to w ← w + yx. The weights remain unchanged if
the learner predicts correctly. If the data are linearly separable, then the
perceptron makes a finite number of mistakes (Block, 1962; Novikoff, 1962;
Minsky and Papert, 1969) and therefore if the algorithm is presented with
the training examples iteratively, it will eventually converge to the true
solution, which is the weight vector that classifies all the training examples
correctly.

Theorem 2.1 (Block, 1962; Novikoff, 1962) Let (x1, y1), . . . , (xm, ym) be
a sequence of training examples with ‖xi‖ ≤ R for all i ∈ [[m]]. Suppose
there exists a unit norm vector u such that yi(〈u, xi〉) ≥ γ for all the exam-
ples. Then the number of mistakes made by the perceptron algorithm on this
sequence is at most (R/γ)2.

If the date is not separable, then we have the following result due to
Freund and Schapire (1999).

Theorem 2.2 (Freund and Schapire, 1999) Let (x1, y1), . . . , (xm, ym) be a
sequence of training examples with ‖xi‖ ≤ R for all i ∈ [[m]]. Let u be any
unit norm weight vector and let γ > 0. Define the deviation of each example

as di = max(0, γ− yi(〈u, xi〉)) and define D =
√

∑m
i=1 d

2
i . Then the number

16 Chapter 2. Structured Prediction

of mistakes made by the perceptron algorithm on this sequence of examples
is at most

(R +D)2

γ2
.

The perceptron can be extended to learn non-linear functions using the
kernel trick (Schölkopf and Smola, 2002). The resulting algorithm called
kernel perceptron (Freund and Schapire, 1999) learns functions of the form

f(·) =
m
∑

i=1

cik(xi, ·) ,

where k : X × X → R is a reproducing kernel function2 on the inputs
and {ci}i∈[[m]] are the kernel expansion coefficients. For every reproducing
kernel, there exists a function φ : X → H (the high-dimensional, possibly
infinite, feature space) such that k(x, x′) = 〈φ(x), φ(x′)〉. Thus any learning
algorithm whose function can be represented as a linear combination of inner
products can use the kernel trick to avoid explicit computations of these
inner products in the high-dimensional feature space. The kernel perceptron
starts by setting all coefficients ci to 0. It then operates in rounds, similar
to the perceptron, by repeatedly cycling through the data. If the algorithm
makes a mistake on a particular instance, then the corresponding coefficient
is updated according to ci ← ci + yi. The algorithm stops when it classifies
all training instances correctly. The convergence results of the perceptron
can be extended to the kernelised case (Gärtner, 2005).

Theorem 2.3 (Gärtner, 2005) Let (x1, y1), (x2, y2), . . . , (xm, ym) be a se-
quence of training examples. Let k : X × X → R be a kernel function such
that k(xi, xi) ≤ R for all i ∈ [[m]]. Let f∗(·) =

∑m
j=1 cjk(xj , ·) be a func-

tion that classifies all the training instances correctly. Suppose there exists
a margin γ such that yi

∑m
j=1 cjk(xj , xi) > γ for all i ∈ [[m]]. Then the num-

ber of mistakes made by the kernel perceptron algorithm on this sequence of
examples is at most

R‖f∗(·)‖2H
γ2

.

The perceptron algorithm can be extended to predict structured data
(Collins, 2002). Consider linear scoring functions on input-output pairs
f(x, y) = 〈w,φ(x, y)〉3. In every iteration, the output structure of an in-
stance x is determined by solving the argmax problem, ŷ = argmaxz∈Y f(x, z),

2A reproducing kernel k is a function with the following two properties: (i) for every
x ∈ X , the function k(x, ·) is an element of a Hilbert space H, (ii) for every x ∈ X and
every function f(·) ∈ H, the reproducing property, 〈k(x, ·), f(·)〉 = f(x), holds.

3Note the use of joint feature representaion of inputs and outputs (with a slight abuse
of notation).

2.2. Algorithms 17

using the current weight vector w. If this output is different from the true
output, i.e., if y 6= ŷ, then the weight vector is updated as follows:

w ← w + φ(x, y) − φ(x, ŷ) .

The algorithm stops when all the training instances have been predicted
with their correct output structures. Similar to the perceptron, convergence
results can be established for structured prediction in the separable and
inseparable cases (Collins, 2002). Let GEN(x) be a function which generates
a set of candidate output structures for input x and let ¯GEN(x) = GEN(x)−
{y} for a training example (x, y). A training sequence (x1, y1), . . . , (xm, ym)
is said to be separable with a margin γ if there exists a unit norm vector v
such that for all i ∈ [[m]] and for all z ∈ ¯GEN(xi), the following condition
holds: 〈v, φ(xi, yi)〉 − 〈v, φ(xi, z)〉 ≥ γ.

Theorem 2.4 (Collins, 2002) Let (x1, y1), (x2, y2), . . . , (xm, ym) be a se-
quence of training examples which is separable with margin γ. Let R denote
a constant that satisfies ‖φ(xi, yi) − φ(xi, z)‖ ≤ R, for all i ∈ [[m]], and
for all z ∈ ¯GEN(xi). Then the number of mistakes made by the perceptron
algorithm on this sequence of examples is at most R2/γ2.

For the inseparable case, we need a few more definitions. For an (xi, yi) pair,
definemi = 〈v, φ(xi, yi)〉−maxz∈ ¯GEN(xi) 〈v, φ(xi, z)〉 and ǫi = max{0, γ−mi}
and define Dv,γ =

√

∑m
i=1 ǫ

2
i . Then the number of mistakes made by the

structured perceptron was shown by Collins (2002) to be at most

min
v,γ

(R+Dv,γ)2

γ2
.

Logistic Regression

Logistic regression is a probabilistic binary classifier. The probability dis-
tribution of class label y ∈ {−1,+1} for an input x is modeled using expo-
nential families

p(y | x,w) =
exp(y 〈φ(x), w〉)

exp(y 〈φ(x), w〉) + exp(−y 〈φ(x), w〉) .

Given a set of training examplesX = (x1, · · · , xm) ∈ Xm, Y = (y1, · · · , ym) ∈ Ym,
the parameters w can be estimated using the maximum (log) likelihood prin-
ciple by solving the following optimisation problem:

ŵ = argmax
w

[ln p(Y | X,w)]

= argmax
w

[

1

m

m
∑

i=1

p(yi | xi, w)

]

.

18 Chapter 2. Structured Prediction

Observe that the loss function minimised by this model is the logistic loss.
Often, a Bayesian approach is taken to estimate the distribution of param-
eters

p(w | Y,X) =
p(w, Y | X)

p(X)
=
p(Y | X,w)p(w)

p(X)

and the mode of this distribution is used as a point estimate of the parameter
vector. By imposing a Gaussian prior on w, p(w) = exp(−λ‖w‖2), which
acts as a regulariser with λ being the regularisation parameter, a point
estimate can be computed by maximising the joint likelihood in w and Y :

ŵ = argmax
w

[ln p(w, Y | X)]

= argmax
w

[

1

m

m
∑

i=1

p(yi | xi, w) − λ‖w‖2
]

.

This technique of parameter estimation is known as maximum a posterior
(MAP) estimation. The optimisation problem is convex in the parameters w
and differentiable, and therefore gradient descent techniques can be applied
to find the global optimum solution.

Logistic regression can be extended for structured prediction with the
class conditional distribution

p(y | x,w) =
exp(〈φ(x, y), w〉)
∑

z∈Y
exp(〈φ(x, z), w〉) .

The denominator of the above expresion is known as the partition function
Z(w | x) =

∑

z∈Y exp(〈φ(x, z), w〉). Computation of this function is usually
intractable for non-trivial structured output spaces, and depends very much
on the features φ(x, y) and the structure of Y.

We now look at a particular structure — sequences — that motivated
the development of one of the popular conditional probabilistic models for
structured prediction — conditional random fields (CRF) (Lafferty et al.,
2001). CRFs offer a viable alternative to HMMs for segmenting and labelel-
ing sequences. Whereas HMMs model the joint distribution of input and
outputs p(x, y), CRFs model the conditional p(y | x). A CRF is defined as
follows (Lafferty et al., 2001):

Definition 2.1 Let X be a random variable over data sequences, of finite
length l, to be labeled. Let Y be a random variable over corresponding label
sequences, where the components Yi, i ∈ [[l]] can take values from a finite
alphabet Σ. Let G = (V,E) be a graph such that the vertex set V indexes
Y , i.e., Y = (Yp)p∈V . Then (X,Y) is a conditional random field if, when
conditioned on X, the random variables Yp satisfy the Markov property

p(Yp | X,Yq, q 6= p) = p(Yp | X,Yq, q ∼ p) ,
wher q ∼ p means that q is a neighbour of p in G.

2.2. Algorithms 19

iY

iX

i−1Y

i−1X

i+1Y

i+1X

iY Yi−1Y

i−1X iX X

i+1

i+1

Figure 2.2: Graphical models of HMMs (left) and CRFs. An open circle
indicates that the variable is not generated by the model (Lafferty et al.,
2001).

In the case of sequences, G is a simple chain (see Figure 2.2). The ad-
vantage of CRFs over HMMs is that the probability of transition between
labels can depend on past and future observations (if available) and not
only on the current observation. The partition function for sequences is
computationally tractable using dynamic programming techniques similar
to the forward-backward algorithm of HMMs (Lafferty et al., 2001; Sha
and Pereira, 2003). Furthermore, CRFs are guaranteed to converge to the
optimal solution due to the optimisation problem being convex, whereas
HMMs can only guarantee a locally optimum solution using expectation-
maximisation for parameter estimation.

Support Vector Machines

A learning algorithm for binary classification that has attracted considerable
interest during the past decade is the support vector machine (Boser et al.,
1992; Cortes and Vapnik, 1995). An SVM learns a hyperplane that separates
positive and negative examples with a large margin thereby exhibiting good
generalisation abilities (Vapnik, 1995). It learns a linear function f(x) =
〈w,φ(x)〉 and minimises the hinge loss by optimising

min
w
λ‖w‖2 +

1

m

m
∑

i=1

max{0, 1 − yi〈w,φ(xi)〉} .

The above optimisation problem can be rewritten as

min
w,ξ

λ‖w‖2 + 1
m

m
∑

i=1
ξi

s.t. : yi〈w,φ(xi)〉 ≥ 1− ξi,∀i ∈ [[m]]
ξi ≥ 0,∀i ∈ [[m]] ,

(2.3)

where ξ ∈ Rm are the slack variables which correspond to the degree of mis-
classification of the training instances. Non-linear functions in the original
feature space can be learned by mapping the features to a high-dimensional
space and by using the kernel trick. It is computationally more convenient to

20 Chapter 2. Structured Prediction

optimise the Lagrangian dual rather than the primal optimisation problem
(2.3) due to the presence of box constraints as shown below:

min
c∈Rm

1
2c

⊤Y KY c− 1⊤c

s.t.: 0 ≤ ci ≤ 1
mλ ,∀i ∈ [[m]]

(2.4)

where K is the kernel matrix with entries Kij = k(xi, xj) and Y is a diagonal
matrix with entries Yii = yi. The non-linear predictor can be expressed in
the following form due to the representer theorem (Schölkopf et al., 2001):

f(·) =

m
∑

i=1

cik(xi, ·) .

SVMs can be extended for structured prediction by minimising the struc-
tured hinge loss (2.2) which was first proposed by Taskar et al. (2003). In
structured SVMs (Tsochantaridis et al., 2005), the following optimisation
problem is considered:

min
w,ξ

λ‖w‖2 + 1
m

m
∑

i=1
ξi

s.t. : 〈w,φ(xi, yi)〉 − 〈w,φ(xi, z)〉 ≥ 1− ξi

∆(yi,z) ,∀z ∈ Y \ yi,∀i ∈ [[m]]

ξi ≥ 0,∀i ∈ [[m]] .
(2.5)

Observe that the slack variables have been rescaled. In another formulation,
proposed by Taskar et al. (2003), the margin is rescaled and the resulting
optimisation problem is

min
w,ξ

λ‖w‖2 + 1
m

m
∑

i=1
ξi

s.t. : 〈w,φ(xi, yi)〉 − 〈w,φ(xi, z)〉 ≥ ∆(yi, z)− ξi,∀z ∈ Y \ yi,∀i ∈ [[m]]
ξi ≥ 0,∀i ∈ [[m]] .

(2.6)
While there are exponential number of constraints in the above optimisation
problems, it is possible to employ the cutting plane method (Tsochantaridis
et al., 2005) by designing an algorithm that returns the most violated con-
straint in polynomial time. The most violated constraint w.r.t. a training
example (x, y) can be computed by solving the following loss-augmented
inference (argmax) problems in the slack re-scaling (2.5) and the margin
re-scaling (2.6) settings respectively:

ŷ = argmax
z∈Y

[1− 〈w,φ(x, y) − φ(x, z)〉]∆(z, y) , (2.7)

and
ŷ = argmax

z∈Y
[∆(z, y)− 〈w,φ(x, y) − φ(x, z)〉] . (2.8)

2.3. Summary 21

Tsochantaridis et al. (2005) showed that a polynomial number of constraints
suffices to solve the optimisation problem (2.5) accurately to a desired preci-
sion ǫ assuming that the algorithm that returns the most violated constraint
runs in polynomial time. Note that even if the argmax problem is tractable,
solving the loss-augmented argmax problem requires further assumptions on
the loss function such as it being decomposable over the output variables.
An example of such a loss function on the outputs is the Hamming loss.

The optimisation problem (2.6) can be rewritten using a single max
constraint for each training example instead of the exponentially many in
the following way:

min
w,ξ

λ‖w‖2 + 1
m

m
∑

i=1
ξi

s.t. : 〈w,φ(xi, yi)〉 ≥ max
z∈Y

[∆(z, y) + 〈w,φ(x, z)〉]− ξi,∀i ∈ [[m]]

ξi ≥ 0,∀i ∈ [[m]] .

(2.9)

The above formulation, known as min-max formulation, of the optimisation
problem (2.6) was proposed by Taskar et al. (2005) who showed that if it
is possible to reformulate the loss-augmented inference problem as a convex
optimisation problem in a concise way, i.e., with a polynomial number of
variables and constraints, then this would result in a joint and concise con-
vex optimisation problem for the original problem (2.9). In cases where it is
not possible to express the inference problem as a concise convex program,
Taskar et al. (2005) showed that it suffices to find a concise certificate of
optimality that guarantees that y = argmaxz∈Y [∆(z, y) + 〈w,φ(x, z)〉]. In-
tuitively, verifying that a given output is optimal can be easier than finding
one.

Structured SVMs can be kernelised by defining a joint kernel function
on inputs and outputs k[(x, y), (x′, y′)] and by considering the Lagrangian
dual of the optimisation problem (2.6):

min
α∈Rm|Y|

∑

i,j∈[[m]],z,z′∈Y

αizαjz′k[(xi, z), (xj , z
′)]−∑

i,z
∆(yi, z)αiz

s.t. :
∑

z∈Y
αiz ≤ λ, ∀i ∈ [[m]]

αiz ≥ 0, ∀i ∈ [[m]], ∀z ∈ Y .

(2.10)

The non-linear scoring function can be expressed as

f(·, ·) =
∑

i∈[[m]],z∈Y

αizk[(xi, z), (·, ·)] .

using the representer theorem (Schölkopf et al., 2001).

2.3 Summary

The main purpose of this chapter was to review classical discriminative ma-
chine learning algorithms, including perceptron, support vector machine and

22 Chapter 2. Structured Prediction

logistic regression, and describe how they can be extended to predict struc-
tured data. These extensions resulted in several recently proposed struc-
tured prediction algorithms such as conditional random fields (Lafferty et al.,
2001), max-margin Markov networks (Taskar et al., 2003, 2005), and struc-
tured SVMs (Tsochantaridis et al., 2005). In Chapter 4, we will discuss the
assumptions made by these algorithms in order to ensure efficient learning,
point to their limitations in the context of predicting combinatorial struc-
tures, and propose solutions to circumvent these problems.

Chapter 3

Predicting Permutations

Binary classification is a well-studied problem in supervised machine learn-
ing. Often, in real-world applications such as object recognition, document
classification etc., we are faced with problems where there is a need to predict
multiple labels. Label ranking is an example of such a complex prediction
problem where the goal is to not only predict labels from among a finite
set of predefined labels, but also to rank them according to the nature of
the input. A motivating application is document categorisation where cat-
egories are topics (e.g.: sports, entertainment, politics) within a document
collection (e.g.: news articles). It is very likely that a document may belong
to multiple topics, and the goal of the learning algorithm is to order (rank)
the relevant topics above the irrelevant ones for the document in question.

Label ranking is also the problem of predicting a specific combinato-
rial structure — permutations. It is an interesting problem as it subsumes
several supervised learning problems such as multi-class, multi-label, and
hierarchical classification (Dekel et al., 2003). This chapter is a survey of
label ranking algorithms.

3.1 Preliminaries

We begin with some definitions from order theory, and describe distance
metrics and kernels that will be used in this survey.

A binary relation ≻ on a (finite) set Σ is a partial order if≻ is asymmetric
(a ≻ b⇒¬b ≻ a) and transitive (a ≻ b ∧ b ≻ c⇒ a ≻ c). The pair (Σ,≻) is
then called a partially ordered set (or poset).

We denote the set {(u, v) ∈ Σ | u ≻ v} by p(≻) and the set of all
partial orders over Σ by PΣ. Note that every partially ordered set (Σ,≻)
defines a directed acyclic graph G≻ = (Σ, p(≻)). This graph is also called
as preference graph in the label ranking literature.

A partially ordered set (Σ,≻) such that ∀u, v ∈ Σ : u ≻ v ∨ v ≻ u is
a totally ordered set and ≻ is called a total order, a linear order, a strict

24 Chapter 3. Predicting Permutations

ranking (or simply ranking), or a permutation. A partial ranking is a total
order with ties.

A partial order≻′ extends a partial order≻ on the same Σ if u ≻ v⇒ u ≻′ v.
An extension ≻′ of a partial order ≻ is a linear extension if it is totally
ordered (i.e., a total order ≻′ is a linear extension of a partial order ≻ if
∀u, v ∈ Σ, u ≻ v⇒ u ≻′ v). A collection of linear orders ≻i realises a partial
order ≻ if ∀u, v ∈ Σ, u ≻ v⇔ (∀i : u ≻i v). We denote this set by ℓ(≻). The
dual of a partial order ≻ is the partial order ≻̄ with ∀u, v ∈ Σ : u≻̄v⇔ v ≻ u.

Distance Metrics

Spearman’s rank correlation coefficient (ρ) (Spearman, 1904) is a non-parametric
measure of correlation between two variables. For a pair of rankings π and
π′ of length k, it is defined as

ρ = 1− 6D(π, π′)

k(k2 − 1)
,

where D(π, π′) =
∑k

i=1(π(i) − π′(i))2 is the sum of squared rank distances.

The sum of absolute differences
∑k

i=1 |π(i) − π′(i)| defines the Spearman’s
footrule distance metric.

Kendall tau correlation coefficient (τ) (Kendall, 1938) is a non-parametric
statistic used to measure the degree of correspondence between two rankings.
For a pair of rankings π and π′, it is defined as

τ =
nc − nd

1
2k(k − 1)

,

where nc is the number of concordant pairs, and nd is the number of discor-
dant pairs in π and π′. The number of discordant pairs defines the Kendall
tau distance metric.

Kernels

We now define kernels on partial orders and describe their properties.

Position kernel: Define

k# : P×P → R by k#(≻,≻′) =
∑

u∈Σ

κ
(

|{v ∈ Σ | v ≻ u}|, |{v ∈ Σ | v ≻′ u}|
)

,

where κ is a kernel on natural numbers.

• This function is a kernel and can be computed in time polynomial in
Σ.

• It is injective, in the sense that k#(≻, ·) = k#(≻′, ·)⇔ ≻=≻′, for
linear orders but not for partial orders.

3.1. Preliminaries 25

Edge Kernel: Define

kp : P × P → R by kp(≻,≻′) = |p(≻) ∩ p(≻′)| .

• This function is a kernel and can be computed in time polynomial in
|p(≻)|.

• This kernel is injective in the sense that kp(≻, ·) = kp(≻′, ·)⇔ ≻=≻′.

A downside of this kernel is that a ≻ b is as similar to b ≻ a as it is to a ≻ c.
However, we can overcome this problem easily. Let ≻̄ be the dual partial
order of ≻. Define

kp̄(≻,≻′) = kp(≻,≻′)− kp(≻̄,≻′) .

• This function is a kernel (the feature space has one feature for every
pair of elements and the value of feature uv is +

√
2 iff u ≻ v, −

√
2 iff

v ≻ u, and 0 otherwise).

• It can be computed in time polynomial in |p(≻)|.

Extension Kernel: Define

kℓ : P × P → R by kℓ(≻,≻′) = |ℓ(≻) ∩ ℓ(≻′)| .

• This function is a kernel.

• It is injective in the sense that kℓ(≻, ·) = kℓ(≻′, ·)⇔ ≻=≻′.

• The kernel cannot be computed in polynomial time as counting lin-
ear extensions (or, equivalently, computing kℓ(≻,≻)) is #P-complete
(Brightwell and Winkler, 1992). However, it can possibly be approx-
imated as (i) the number of linear extensions can be approximated
(Huber, 2006), and (ii) the set of linear extensions can be enumerated
almost uniformly.

• We have kℓ(≻,≻′) = 0⇔∃u, v ∈ Σ : u ≻ v ∧ v ≻′ u. We call such
partial orders contradicting.

• For non-contradicting partial orders ≻,≻′ define the partial order ≻
∪ ≻′ such that ∀u, v ∈ Σ : u(≻ ∪ ≻′)v⇔ u ≻ v ∨ u ≻′ v.

Label Ranking — Problem Definition

Let X ⊆ Rn be the input (instance) space, Σ = {1, · · · , d} = [[d]] be a
set of labels, and Y be the output space of all possible partial orders over
Σ. Let T = {(xi, yi)}i∈[[m]] ∈ (X × Y)m be a set of training examples. Let
Gi = (Vi, Ei) denote the preference graph corresponding to yi, for all i ∈ [[m]].

26 Chapter 3. Predicting Permutations

The goal of a label ranking algorithm is to learn a mapping f : X → Y, where
f is chosen from a hypothesis class F , such that a predefined loss function
ℓ : F × Y × Y → R is minimised. In general, the mapping f is required to
output a total order, but it is also possible to envisage settings where the
desired output is a partial order. Let kX : X ×X → R and kY : Y ×Y → R
denote positive definite kernels on X and Y, respectively.

3.2 Learning Reductions

Learning reductions are an efficient way to solve complex prediction prob-
lems using simple models like (binary) classifiers as primitives. Such tech-
niques have been applied to solve problems like ranking (Balcan et al.,
2008), regression (Langford and Zadrozny, 2005), and structured prediction
(Daumé III, 2006), just to name a few.

Label ranking can be reduced to binary classification using Kesler’s
construction (Nilsson, 1965). This approach was proposed by Har-Peled
et al. (2002a,b) under the name of constraint classification. The idea is
to construct an expanded example sequence T ′ in which every example
(x, y) ∈ Rn × Y with its corresponding preference graph G = (V,E) is
embedded in Rdn × {−1, 1}, with each preference (p, q) ∈ E contributing
a single positive and a single negative example. The Kesler mapping P is
defined as follows:

P+(x, y) = {(x⊗ 0p, 1) | (p, q) ∈ E} ⊆ Rdn × {1}
P−(x, y) = {(−x⊗ 0q,−1) | (p, q) ∈ E} ⊆ Rdn × {−1} ,

where 0j is a d-dimensional vector whose jth component is one and the rest
are zeros. Let P (x, y) = P+(x, y)∪P−(x, y). The expanded set of examples
is then given by

T ′ = P (T) =
⋃

(x,y)∈T

P (x, y) ⊆ Rdn × {−1, 1} .

A binary classifier (linear separating hyperplane) trained on this expanded
sequence can be viewed as a sorting function over d linear functions, each
in Rn. The sorting function is given as argsortj∈[[d]] 〈wj, x〉, where wj is the

j-th chunk of the weight vector w ∈ Rdn, i.e., wj = (w(j−1)n+1, · · · , wjn).
A reduction technique proposed by Fürnkranz (2002) known as pairwise

classification can be used to reduce the problem of multi-class prediction to
learning binary classifiers. An extension of this technique known as ranking
by pairwise comparison (RPC) was proposed in (Fürnkranz and Hüllermeier,
2003; Hüllermeier et al., 2008) to solve the label ranking problem. The
central idea is to learn a binary classifier for each pair of labels in Σ resulting
in d(d − 1)/2 models. Every individual model Mpq with p, q ∈ Σ learns a
mapping that outputs 1 if p ≻x q and 0 if q ≻x p for an example x ∈ X .

3.3. Boosting Methods 27

Alternatively, one may also learn a model that maps into the unit interval
[0, 1] instead of {0, 1}. The resulting model assigns a valued preference
relation Rx to every example x ∈ X :

Rx(p, q) =

{

Mpq(x) if p < q

1−Mpq(x) if p > q

The final ranking is obtained by using a ranking procedure that basically
tries to combine the results of these individual models to induce a total
order on the set of labels. A simple ranking procedure is to assign a score
sx(p) =

∑

p 6=q Rx(p, q) to each label p and obtain a final ordering by sorting
these scores. This strategy exhibits desirable properties like transitivity of
pairwise preferences. Furthermore, the RPC algorithm minimises the sum
of squared rank distances and an approximation of the Kendall tau distance
metric under the condition that the binary models Mpq provide correct
probability estimates, i.e., Rx(p, q) =Mpq(x) = Pr[p ≻x q].

3.3 Boosting Methods

A boosting (Freund and Schapire, 1997) algorithm for label ranking was
proposed by Dekel et al. (2003). A label ranking function f : X × Σ → R
is learned such that for any given x ∈ X , a total order is induced on the
label set by p ≻x q ⇐⇒ f(x, p) > f(x, q). The label ranking function is
represented as a linear combination of a set of L base ranking functions, i.e,
f(x, p) =

∑L
l=1 λlhl(x, p), where {λl}l∈[[L]] are parameters that are estimated

by the boosting algorithm. We denote the label ranking induced by f for x
by f(x) (with a slight abuse of notation). A graph decomposition procedure
D, which takes a preference graph Gi = (Vi, Ei) for any xi ∈ X as its input
and outputs a set of Si subgraphs {Gi,s}s∈[[Si]], has to be specified as an input
to the learning algorithm. A simple example of a graph decomposition proce-
dure is to consider every edge e ∈ Ei as a subgraph. Other examples include
decomposing the graph into bipartite directed graph Gi,s = (Ui,s, Vi,s, Ei,s)
such that |Ui,s| = 1 or |Vi,s| = 1 (see Figure 2 in Dekel et al. (2003) for an
illustration). The generalised loss due to f(xi) w.r.t. Gi is the fraction of
subgraphs in D(Gi) with which f(xi) disagrees. The generalised loss over
all the training instances is defined as

ℓgen(f,T ,D) =
m
∑

i=1

1

Si

Si
∑

s=1

δ(f(xi), Gi,s) ,

where δ(·, ·) is a loss function defined on the subgraphs such as the 0-1 loss
or the ranking loss (Schapire and Singer, 2000). While minimising such a
discrete, non-convex loss function is NP-hard, it is possible to minimise an

28 Chapter 3. Predicting Permutations

upper bound given by

δ(f(xi), Gi,s) ≤ log2(1 +
∑

e∈Ei,s

exp(f(xi, term(e)) − f(xi, init(e)))) .

where init(e) (resp. term(e)) is the label corresponding to the initial (resp.
terminal) vertex of any directed edge e ∈ Ei,s. To minimise this upper
bound, Dekel et al. (2003) proposed to use a boosting-style algorithm for
exponential models (Lebanon and Lafferty, 2001; Collins et al., 2002) to
estimate the model parameters λ and also proved a bound on the decrease
in loss in every iteration of the algorithm.

3.4 Label Ranking SVM

Elisseeff and Weston (2001) proposed a kernel method for multi-label clas-
sification. A straightforward generalisation of this approach results in a
label ranking algorithm. Define a scoring function for label p and input
x as hp(x) = 〈wp, x〉, where wp is a weight vector corresponding to label
p. These scoring functions together will define the mapping f by a sort-
ing operation, i.e., f(x) = argsortj∈[[d]] 〈wj , x〉. The ranking loss (Schapire
and Singer, 2000) w.r.t. to a preference graph G = (V,E) is defined as
ℓ(f, x, y) = 1

|E| |(p, q) ∈ E s.t. hp(x) ≤ hq(x)|. The following optimisation
problem minimises the ranking loss:

min
{wj}j∈[[d]]

d
∑

j=1
‖wj‖2 + λ

m
∑

i=1

1
|Ei|

∑

(p,q)∈Ei

ξipq

subject to : 〈wp − wq, xi〉 ≥ 1− ξipq,∀(p, q) ∈ Ei,∀i ∈ [[m]]
ξipq ≥ 0,∀(p, q) ∈ Ei,∀i ∈ [[m]] ,

where λ > 0 is the regularisation parameter that trades-off the balance of
the loss term against the regulariser.

Shalev-Shwartz and Singer (2006) considered the setting where the train-
ing labels take the form of a feedback vector γ ∈ Rd. The interpretation is
that label p is ranked higher than label q iff γp > γq. The difference γp − γq

encodes the importance of label p over label q and this information is also
used in the optimisation problem. The loss function considered in this work
is a generalisation of the hinge-loss for label ranking. For a pair of labels
(p, q) ∈ Σ, the loss with respect to f is defined as

ℓp,q(f(x), γ) = [(γp − γq)− (hp(x)− hq(x))]+ ,

where [a]+ = max(a, 0). At the heart of the algorithm lies a decomposition
framework, similar to the one mentioned in the previous section, that de-
composes any given feedback vector into complete bipartite subgraphs, and
losses are defined and aggregated over these subgraphs. This decomposition

3.5. Structured Prediction 29

framework makes the approach very general, albeit at the cost of solving
a complex optimisation problem. Interestingly, the quadratic programming
formulation for multi-label classification as proposed by Elisseeff and We-
ston (Elisseeff and Weston, 2001) can be recovered as a special case of this
approach.

3.5 Structured Prediction

The motivation behind using a structured prediction framework to solve the
label ranking problem stems from the added flexibility to use arbitrary loss
functions and kernels, in principle, on the output space. In this section, we
let Y to be the space of all total orders of the label set Σ.

Recall the optimisation problem of structured SVMs (Tsochantaridis
et al., 2005) (cf. Chapter 2):

min
w,ξ

λ‖w‖2 + 1
m

m
∑

i=1
ξi

s.t. : 〈w,φ(xi, yi)〉 − 〈w,φ(xi, z)〉 ≥ ∆(yi, z) − ξi,∀z ∈ Y \ yi,∀i ∈ [[m]]
ξi ≥ 0,∀i ∈ [[m]] .

(3.1)
Here, ∆ : Y × Y → R is a loss function on total orders. To handle the
exponential number of constraints in the above optimisation problem, we
need to design a separation oracle (Tsochantaridis et al., 2005) that returns
the most violated constraint in polynomial time. The most violated con-
straint with respect to a training example (x, y) can be computed using the
following optimisation problem:

ŷ = argmax
z∈Y

f(x, y) + ∆(z, y) .

The above loss-augmented inference problem and the decoding problem can
be solved using techniques described by Le and Smola (2007). Here, the
scoring function f takes a slightly different form. Let g(x, p;wp) = 〈φ(x), wp〉
(φ is feature map of inputs) denote the scoring function for an individual
label p ∈ Σ parameterised by weight vector wp. Now define the scoring
function f for the pair (x, y) as follows:

f(x, y;w) =
d
∑

j=1

g(x, j)c(y)j =
d
∑

j=1

〈φ(x), wj〉c(y)j ,

parameterised by the set w = {wj}j∈[[d]] of weight vectors, where c is a
decreasing sequence of reals and c(y) denotes the permutation of c ac-
cording to y, i.e., c(y)j = cy(j) for all j ∈ [[d]]. The final prediction ŷ =
argmaxy∈Y f(x, y) is obtained by sorting the scores g(x, p) of the individual
labels. This is possible due to the Polya-Littlewood-Hardy inequality (Le

30 Chapter 3. Predicting Permutations

and Smola, 2007). The decoding problem is thus solved. We now turn our
attention to designing a separation oracle. The goal is to find

ŷ = argmax
z∈Y

f(x, y) + ∆(y, z)

= argmax
z∈Y

d
∑

j=1
〈φ(x), wj〉c(y)j + ∆(y, z) .

(3.2)

For certain loss functions that are relevant in information retrieval appli-
cations, Le and Smola (2007) showed that the above optimisation problem
can be formulated as a linear assignment problem and can be solved using
the Hungarian marriage method (Kuhn-Mungres algorithm) in O(d3) time.
For arbitrary loss functions, it may not be feasible to solve the optimisa-
tion problem (3.2) efficiently. Note that the term ∆(·, ·) in the separation
oracle and also in the constraint set of structured SVM specifies an output
dependent margin. Replacing it with a fixed margin γ (= 1) would greatly
simplify the design of separation oracle since it reduces to a sorting operation
as in the decoding problem. Since the optimisation problem (3.1) can be
kernelised in its dual form (cf. problem (2.10)), it allows us to use arbitrary
kernel functions on the output space such as those described in Section 3.1.

3.6 Online Methods

Online classification and regression algorithms like perceptron (Rosenblatt,
1958) typically learn a linear model f(x) = 〈w, x〉 parameterised by a weight
vector w ∈ Rn. The algorithms operate in rounds (iterations). In round t,
nature provides an instance to the learner; the learner makes a prediction
using the current weight vector wt; nature reveals the true label yt of xt;
learner incurs a loss ℓ(

〈

wt, xt
〉

, yt) and updates its weight vector accord-
ingly. Central to any online algorithm is the update rule that is designed
in such a way so as to minimise the cumulative loss over all the iterations.
In label ranking scenarios, online algorithms (Crammer and Singer, 2003,
2005; Shalev-Shwartz and Singer, 2007b) maintain a set of weight vectors
{wj}j∈[[d]], one for every label in Σ, and the update rule is applied to each
of these vectors.

Online algorithms for label ranking have been analysed using two differ-
ent frameworks: passive-aggressive (Crammer et al., 2006) and primal-dual
(Shalev-Shwartz and Singer, 2007a). Passive-aggressive algorithms for label
ranking (Crammer and Singer, 2005) are based on Bregman divergences and
result in multiplicative and additive update rules (Kivinen and Warmuth,
1997). A Bregman divergence (Bregman, 1967) is similar to a distance met-
ric, but does not satisfy the triangle inequality and the symmetry properties.
In every iteration t, the algorithm updates its weights in such a way that
it stays close to the previous iteration’s weight vector w.r.t. the Bregman

3.6. Online Methods 31

divergence, and also minimises the loss on the current input-output (xt, yt)
pair. Let W ∈ Rd×n denote the set of weight vectors in matrix form. The
following optimisation problem is considered:

W t = argmin
W

BF (W‖W t−1) + λℓ(f(xt;W), yt) ,

where BF is the Bregman divergence defined via a strictly convex function
F . The choice of the Bregman divergence and the loss function result in dif-
ferent update rules. Additive and multiplicative update rules can be derived
respectively by considering the following optimisation problems (Crammer
and Singer, 2005):

W t = argmin
W

‖W −W t−1‖2 + λℓ(f(xt;W), yt) ,

and
W t = argmin

W
DKL(W‖W t−1) + λℓ(f(xt;W t), yt) ,

whereDKL is the Kullback-Liebler divergence. The loss functions considered
by Crammer and Singer (2005) is similar to the ones defined by Dekel et al.
(2003) (see also Section 3.3), where a preference graph is decomposed into
subgraphs using a graph decomposition procedure, and a loss function such
as the 0-1 loss or the ranking loss is defined on every subgraph. The loss
incurred by a ranker W for a graph decomposition procedure D(G) is given
as

ℓ(f(x;W), y) =
∑

g∈D(G)

|{(r, s) ∈ g : 〈wr, x〉 ≤ 〈ws, x〉} 6= ∅| .

The primal-dual framework (Shalev-Shwartz and Singer, 2007a) was used
by Shalev-Shwartz and Singer (2007b) resuting in a unifying algorithmic
approach for online label ranking. The loss function considered in this work
is a generalisation of the hinge-loss for label ranking. The training labels
are assumed to be a set of relevant and irrelevant labels (as in multi-label
classification). For a given instance x ∈ X , let Σr ⊆ Σ denote the set of
relevant labels. The hinge-loss for label ranking w.r.t. an example (xt,Σt

r)
at iteration t is defined as:

ℓγ(W t; (xt, yt)) = max
r∈Σt

r ,s/∈Σt
r

[γ − (
〈

wt
r, x

t
〉

−
〈

wt
s, x

t
〉

)]+ .

The central idea behind the analysis is to cast online learning as an opti-
misation (minimisation) problem consisting of two terms: the complexity
of the ranking function and the empirical label-ranking loss. The notion
of duality in optimisation theory (Boyd and Vandenberghe, 2004) is used
to obtain lower bounds on the optimisation problem, which in turn yields
upper bounds on the number of prediction mistakes made by the algorithm.
The reader is referred to (Shalev-Shwartz and Singer, 2007b) that presents
several update rules for label ranking, and these are also shown to generalise
other update rules such as the ones defined by Crammer and Singer (2003).

32 Chapter 3. Predicting Permutations

3.7 Instance-based Learning

In instance-based learning, the idea is to predict a label for a given instance
based on local information, i.e., labels of neighbouring examples. In label
ranking, these labels are rankings (partial orders, total orders, partial rank-
ings) and one has to use aggregation algorithms (Dwork et al., 2001; Fagin
et al., 2004; Ailon et al., 2008; Ailon, 2007; van Zuylen and Williamson,
2007) to combine rankings from neighbouring examples. Instance-based
learning algoritms for label ranking were proposed recently by Brinker and
Hüllermeier (2006, 2007); Cheng and Hüllermeier (2008); Cheng et al. (2009).
Let {yi}i∈[[B]] denote a set of B neighbouring rankings for any given instance
x ∈ X . The goal is to compute a ranking ŷ that is optimal w.r.t. a loss
function ℓ : Y × Y → R defined on pairs of rankings. More formally, the
following optimisation problem needs to be solved:

ŷ = argmin
y∈Y

B
∑

i=1

ℓ(y, yi) . (3.3)

This is a very general statement of the problem. Various aggregation algo-
rithms, which we survey in the sequel, can be used to solve this optimisation
problem depending on the nature of the loss function and also on the inputs
(of the optimisation problem).

Aggregating Total Orders

The problem of finding an optimal ranking when the inputs in the optimi-
sation problem (3.3) are total orders can be fomulated as a feedback arc
set problem in digraphs (specifically in tournaments) (Ailon et al., 2008).
A tournament is a directed graph G = (V,E) such that for each pair of
vertices p, q ∈ V , either (p, q) ∈ E or (q, p) ∈ E. The minimum feedback
arc set (FAS) is the smallest set E′ ⊆ E such that (V,E − E′) is acyclic.
The rank aggregation problem can be seen as special case of weighted FAS-
tournaments; the weight wpq of an edge (p, q) is the fraction of rankings that
rank p before q.

Optimising the Spearman footrule distance metric in the minimisation
problem (3.3) is equivalent to finding the minimum cost maximum matching
in a bipartite graph with d nodes (Dwork et al., 2001). A 2-factor approx-
imation algorithm with time complexity O(Bd + d log d) was proposed by
Fagin et al. (2004). Optimising the Kendall tau distance metric in (3.3) is
NP-hard (Bartholdi III et al., 1989) and therefore one has to use approx-
imation algorithms (Ailon et al., 2008; van Zuylen and Williamson, 2007)
to output a Kemeny optimal ranking. There exists a deterministic, com-
binatorial 8/5-approximation algorithm for aggregating total orders (van
Zuylen and Williamson, 2007). The approximation ratio can be improved

3.8. Summary 33

to 11/7 by using a randomised algorithm (Ailon et al., 2008) and to 4/3 by
using a derterministic linear programming based algorithm (van Zuylen and
Williamson, 2007). A polynomial time approximation scheme was proposed
by Kenyon-Mathieu and Schudy (2007).

Aggregating Partial Rankings

A typical application of this setting is multi-label ranking (Brinker and
Hüllermeier, 2007) where the preference graph is bipartite with directed
edges between relevant and irrelevant labels. There exists a deterministic,
combinatorial 8/5-approximation algorithm for aggregating partial rankings
(van Zuylen and Williamson, 2007). The running time of this algorithm is
O(d3). A slightly better approximation guarantee of 3/2 can be obtained
by using a deterministic, linear programming based algorithm (van Zuylen
and Williamson, 2007). These algorithms minimise the Kemeny distance
between the desired output and the individual partial rankings. An exact
method for aggregating partial rankings using (generalised) sum of squared
rank distance metric was proposed by Brinker and Hüllermeier (2007).

Aggregating Partial Orders

In this setting, we allow inupt labels to be partial orders and the desired
output is a total order. To the best of our knowledge, there are no approx-
imation algorithms to aggregate partial orders, but it is possible to reduce
the problem to that of aggregating total orders as follows: given a partial
order, sample a set (of some fixed cardinality) of linear extensions (Huber,
2006) and use existing approximation algorithms for aggregating total or-
ders. If the desired output is a partial order and not a total order, one can
consider the following optimisation problem:

ŷ = argmax
z∈Y

m
∑

i=1

kX (xi, x)kY (yi, z) .

Under the assumption that kX (·, ·) ≥ 0 and kY(·, ·) ≥ 0, and if the edge
kernel (cf. Section 3.1) on partial orders is used, the above optimisation
problem can be approximately solved using the maximum acyclic subgraph
algorithm (Hassin and Rubinstein, 1994; McDonald et al., 2005).

3.8 Summary

Label ranking is a specific example of the learning problem of predicting
combinatorial structures. The problem has attracted a lot of interest in
recent years as evidenced by the increasing number of algorithms attempting
to solve it. The main purpose of this chapter was to give an overview of

34 Chapter 3. Predicting Permutations

existing literature on label ranking algorithms. While most of these are
specialised algorithms, we have seen in Section 3.5 that the problem can
also be solved within the structured prediction framework using structured
SVMs. We will revisit the problem of predicting permutations — as an
example — in the next chapter.

Chapter 4

Complexity of Learning

In Chapter 2, we discussed several discriminative structured prediction al-
gorithms. We will now revisit some of these algorithms, try to get a deeper
understanding of the assumptions they make to ensure efficient learning,
and identify their shortcomings in the context of predicting combinatorial
structures. We will then introduce two new assumptions and show that they
hold for several combinatorial structures. These assumptions will be used
in the design and analysis of structured prediction algorithms in subsequent
chapters.

4.1 Efficient Learning

Recall that the structured loss with respect to a hypothesis h and a training
example (x, y) is defined as ℓ∆max(h, (x, y)) = ∆(argmaxz∈Y h(x, z), y), where
∆ : Y ×Y → R is a discrete, non-convex loss function defined on the output
space. To ensure convexity, it is typical to upper-bound this loss by the struc-
tured hinge loss ℓ∆hinge(h, (x, y)) = argmaxz∈Y [∆(z, y) + h(x, z) − h(x, y)].
Regularised risk minimisation based approaches (Tsochantaridis et al., 2005;
Taskar et al., 2003, 2005) aim at solving the optimisation problemQ({(xi, yi) |
i ∈ [[m]]}) =

argmin
h∈H

λΩ[h] +
∑

i∈[[m]]

ξi

subject to h(xi, yi)− h(xi, z) ≥ ∆(z, yi)− ξi, ∀i ∈ [[m]],∀z ∈ Y \ yi

ξi ≥ 0, ∀i ∈ [[m]] ,
(4.1)

where λ > 0 is a regularisation parameter, H is a reproduding kernel Hilbert
space with a corresponding kernel k[(x, y), (x′, y′)], and Ω : H → R is a
convex regularisation function such as the squared ℓ2 norm, ‖ · ‖2.

The major issue in solving this optimisation problem is that the number
of constraints grows proportional to |Y|. If the set Y is parameterised by

36 Chapter 4. Complexity of Learning

a finite alphabet Σ, then the number of constraints is usually exponential
in |Σ|. To ensure polynomial time complexity different assumptions need to
be made, and depending on the nature of Ω different methods are used that
iteratively optimise and add violated constraints. We now describe these
assumptions in decreasing order of strength.

Decoding

The strongest assumption is the existence of a polynomial time algorithm for
exact decoding (Tsochantaridis et al., 2005). Decoding refers to the problem
of computing argmaxz∈Y h(x, z) for a given (h, x) ∈ H × X .

Separation

A weaker assumption made by structured perceptron (Collins, 2002) is the
existence of a polynomial time algorithm for separation1. Separation refers
to the problem of finding for a given scoring function h, x ∈ X and y ∈ Y,
any z ∈ Y such that h(x, z) > h(x, y) if one exists or prove that none
exists otherwise. A polynomial time algorithm for exact decoding implies a
polynomial time algorithm for separation.

Optimality

An even weaker assumption is that optimality is in NP (Taskar et al., 2005).
Optimality refers to the problem of deciding if for a given scoring function h,
x ∈ X and y ∈ Y, it holds that y ∈ argmaxz∈Y h(x, z). A polynomial time
algorithm for separation implies a polynomial time algorithm for optimality.

For several combinatorial structures considered in this work, there exists
a short certificate of non-optimality (i.e., non-optimality is in NP), but there
is no short certificate of optimality unless coNP=NP (complexity classes are
illustrated in Figure 4.1). This implies that polynomial time algorithms for
exact decoding and separation do not exist. In other words, none of the
existing structured prediction algorithms (Collins, 2002; Taskar et al., 2003;
Tsochantaridis et al., 2005; Taskar et al., 2005) can be trained efficiently to
predict the combinatorial structures that are of interest to us.

Recently, there have been some attempts to use approximate inference
algorithms for learning structured prediction models. Kulesza and Pereira
(2007) performed a theoretical analysis of the relationship between approx-
imate inference and efficient learning. They showed that learning can fail
even when there exists an approximate inference algorithm with strong ap-
proximation guarantees and argued that, to ensure efficient learning under

1Algorithms for decoding and separation are also referred to as inference algorithms in
the literature.

4.2. Hardness Results 37

Figure 4.1: Complexity class diagram.

approximate inferece, it is crucial to choose compatible inference and learn-
ing algorithms. As an example, they showed that a linear programming
based approximate inference algorithm is compatible with the structured
perceptron. Martins et al. (2009) provided risk bounds for learning with
relaxations of integer linear programming based inference that is common
in natural language applications. Training structured SVMs with approxi-
mate inference was considered in the works of Finley and Joachims (2008)
and Klein et al. (2008) with mixed (negative and positive) results. The con-
clusion of Klein et al. (2008)’s empirical study was that structured SVMs
trained with exact inference resulted in improved performance when com-
pared to those trained with approximate inference. Finley and Joachims
(2008) considered two classes of approximate inference algorithms — under-
generating (e.g., greedy methods) and overgenerating (e.g., relaxation meth-
ods like linear programming and graph cuts) algorithms — and showed that
models trained with overgenerating methods have theoretical and empiri-
cal advantages over undergenerating methods. The aforementioned mixed
results motivated us to consider efficient learning methods for structured
prediction that tries to avoid using any inference algorithm, be it exact or
approximate, during training.

4.2 Hardness Results

In the following, we will also be interested in the set of hypotheses potentially
occurring as solutions to the optimisation problem (4.1) and denote it as
Hopt = {Q(D) | D ⊆ X × Y}.

First, we show that the assumptions described in the previous section do
not hold for several relevant output sets. In particular, we show that they do
not hold if the non-optimality decision problem for a given (Y,Hopt) is NP-
hard. This decision problem is the complement of the optimality problem
and is defined as deciding if for a given h ∈ Hopt, x ∈ X and y ∈ Y, a z ∈ Y
exists such that h(x, z) > h(x, y). Second, we show that for the specific

38 Chapter 4. Complexity of Learning

case of undirected cycles (route prediction), non-optimality is indeed NP-
complete. Our hardness result gains further significance as we can also show
that this case can indeed occur for a specific set of observations. Third, we
turn to a class of problems for which the output forms particular set systems,
show that in this case the assumptions decoding, separation, and optimality
are not contained in P, and note that decoding is often hard as it corresponds
to edge deletion problems (Yannakakis, 1978).

Representation in Output Space

As described in the previous section, state-of-the-art structured output learn-
ing algorithms assume (at least) that deciding if an output structure with
higher score than a given one exists is in NP. With the definitions given
above, we formally define (Y,Hopt)− Optimality as:

h ∈ Hopt, x ∈ X , y ∈ Y 7→ (∄z ∈ Y : h(x, z) > h(x, y)) .

Let kX : X×X → R be the kernel function on the input space X . We assume
that a polynomial time computable map ψ : Y → Rd is defined and will refer
to the inner product under this map by kY : y, y′ 7→ 〈ψ(y), ψ(y′)〉. For the
joint kernel of inputs and outputs, we consider the tensor product kernel
k[(x, y), (x′, y′)] = kX (x, x′)kY(y, y′), which has found applications in many
important domains (Jacob and Vert, 2008; Erhan et al., 2006). We refer to
the Hilbert spaces corresponding to kX , kY , k as HX ,HY ,H, respectively.

The strong representer theorem (Schölkopf et al., 2001) holds for all
minimisers h∗ ∈ Hopt of the optimisation problem (4.1). It shows that
h∗ ∈ span{k[(xi, z), (·, ·)] | i ∈ [[m]], z ∈ Y}. That is,

h∗(x, y) =
∑

i∈[[m]],z∈Y

αizk[(xi, z), (x, y)] =
∑

i∈[[m]],z∈Y

αizkX (xi, x) 〈ψ(z), ψ(y)〉

=

〈

∑

i∈[[m]],z∈Y

αizkX (xi, x)ψ(z), ψ(y)

〉

.

This motivates us to first consider (Y, ψ)− Optimality, defined as:

w ∈ span{ψ(y) | y ∈ Y}, y ∈ Y 7→ (∄z ∈ Y : 〈w,ψ(z)〉 > 〈w,ψ(y)〉) .

To show that (Y, ψ)− Optimality is not in NP, it suffices to show that
(Y, ψ)− Non-Optimality is NP-hard. Formally, we define (Y, ψ)− Non-

Optimality as:

w ∈ span{ψ(y) | y ∈ Y}, y ∈ Y 7→ (∃z ∈ Y : 〈w,ψ(z)〉 > 〈w,ψ(y)〉) ,

and correspondingly (Y,Hopt)− Non-Optimality.

4.2. Hardness Results 39

Route Prediction — Hardness of Finding Cyclic Permutations

We now consider the route prediction problem introduced in Section 1.2 as
an instance for which (Y,Hopt)− Non-Optimality is NP-complete and for
which thus the assumptions made by state-of-the-art structured prediction
algorithms do not hold.

In the route prediction problem, each xi represents a sequence of fea-
tures such as an individual person, a day, and a time of the day; Σcyc is a
set containing points of interest; Ycyc is the set of cyclic permutations of
subsets of Σ (we are interested in cyclic permutations as we assume that
each individual starts and ends each route in the same place, e.g., his/her
home); and dcyc = Σ × Σ. We represent a cyclic permutation by the set of
all neighbours. For instance, the sequences {abc, bca, cab, cba, acb, bac} are
equivalent and we use {{a, b}, {b, c}, {c, a}} to represent them. Furthermore,
we define ψcyc

(u,v)(y) = 1 if (u, v) ∈ y, i.e., v and u are neighbours in y, and 0
otherwise.

Lemma 4.1 With all constants and functions defined as above, (Ycyc, ψcyc)−
Non-Optimality is NP-complete.

Proof The proof is given by a Karp reduction of the Hamiltonian path prob-
lem. Let G = (V,E) be an arbitrary graph. Wlog, assume that V ∩ [[3]] = ∅.
Construct a weighted graph G̃ on the vertices of V ∪ [[3]] with adjacency
matrix

w̃ = (|V | − 2) · ψcyc({{1, 2}, {2, 3}, {3, 1}}) +
∑

e∈E

ψcyc(e) .

Now, (Ycyc, ψcyc)−Non-Optimality(w̃, {{1, 2}, {2, 3}, {3, 1}}) holds iff there
is a cyclic permutation on V ∪ [[3]] that has an intersection with G of size
|V | − 1. The intersection of any graph with a graph is a set of paths in G.
As the total number of edges in the intersection is |V | − 1, the intersection
is a path in G. A path in G with |V | − 1 edges is a Hamiltonian path. �

Theorem 4.2 With all constants and functions defined as above, (Ycyc,Hcyc
opt)−

Non-Optimality is NP-complete.

Proof We consider Hcyc
opt for λ = 0 and construct training data and a

function that satisfies all but one constraint if and only if the graph has a
Hamiltonian cycle.

For an arbitrary graph G = (V,E) let G̃, w̃ be defined as above and let
X = 2E with kX (e, e′) = |e ∩ e′|. With m = |E| + 1, {xi | i ∈ [[|E|]]} = E,
and xm = E we choose the training data D as

{({e}, {e}) | e ∈ E} ∪ {(E, {{1, 2}, {2, 3}, {3, 1}})} .

40 Chapter 4. Complexity of Learning

For i ∈ [[|E|]], let αiz = 1/2 for z = yi and αiz = 0 otherwise. For i = m, let
αiz = (|V | − 2)/2 for z = yi and αiz = 0 otherwise. For i ∈ [[|E|]], we then
have

h(xi, yi) =

〈

∑

j∈[[m]],z∈Ycyc

αjzkX (xj , xi)ψ(z), ψ(yi)

〉

= 1

and y 6= yi⇒ h(xi, y) = 0. Thus there are no violated constraints for i ∈
[[|E|]] and h is indeed optimal on this part of the data. Furthermore, for all
y ∈ Ycyc:

h(xm, y) =

〈

∑

i∈[[m]],z∈Ycyc

αizkX (xi, xm)ψ(z), ψ(y)

〉

= 〈w̃, ψ(y)〉 .

Together with Lemma 4.1 this gives the desired result. �

Connections to other Assumptions

Recall the assumptions made by existing structured prediction algorithms,
namely, decoding, separation, and optimality (cf. Section 4.1). Define
(Y,H)− Decoding as

h ∈ H, x ∈ X 7→ argmax
z∈Y

h(x, z) ,

(Y,H)− Separation as

h ∈ H, x ∈ X , y ∈ Y 7→
{

z for some z ∈ Y with h(x, z) > h(x, y)

∅ otherwise
,

and (Y,H)− Optimality as

h ∈ H, x ∈ X , y ∈ Y 7→ ∄z ∈ Y : h(x, z) > h(x, y) .

Proposition 4.3

(Y,H)− Non-Optimality is NP-complete.

⇒ (Y,H)− Optimality is coNP-complete.

⇒ (Y,H)− Separation is coNP-hard.

⇒ (Y,H)− Decoding is coNP-hard.

Proof The result follows immediately by observing that (1) optimality is
the complement of non-optimality, (2) any separation oracle can be used
to decide optimality, and (3) any algorithm for decoding can be used as a
separation oracle. �

4.2. Hardness Results 41

Corollary 4.4 Unless coNP=NP, (Ycyc,Hcyc)− Optimality is not con-
tained in NP. Unless P=coNP, there is no polynomial time algorithm for

1. (Ycyc,Hcyc)− Separation, and

2. (Ycyc,Hcyc)− Decoding.

Proof The result follows immediately from Theorem 4.2 and Proposi-
tion 4.3. �

Lastly, the decision problem (Y,H)− Optimal-Value

β ∈ R, h ∈ H, x ∈ X , y ∈ Y 7→ (β = max{h(x, z) | z ∈ Y})

is also of interest. Following the proof that Exact-TSP2 is DP -complete
(Papadimitriou, 1994)3, it can be shown that (Ycyc,Hcyc)−Optimal-Value

is DP -complete. The significance of this result is that optimal-value can be
reduced to separation and decoding, providing even stronger evidence that
neither of these problems can be solved in polynomial time.

Set Systems

We now consider set systems (Σ,Yπ) with Yπ = {y ∈ 2Σ | π(y) = 1}
where π : 2Σ → {±1}, and let ψ∈ : Y → {0, 1}Σ be the indicator function
ψ∈

e (y) = 1 if e ∈ y and 0 otherwise. An independence system is a set system
for which y′ ⊆ y ∈ Yπ implies y′ ∈ Yπ, i.e., for which π is hereditary.
A particularly interesting family of independence systems corresponds to
hereditary properties on the edges of a graph G = (V,E) where E ⊆ Σ =
{U ⊆ V | |U | = 2}. In this case, decoding corresponds to minimum
edge deletion problems, which are NP-hard for several important hereditary
graph properties like planar, outerplanar, bipartite graph, and many more
(Yannakakis, 1978).

Proposition 4.5 With all constants and functions defined as above, (Yπ, ψ∈)−
Non-Optimality is in P if and only if the minimum edge deletion problem
corresponding to the hereditary property π is in P .

Proof (⇒) For the graph G = (V,E), let w be a function mapping a
set F ⊆ E to the adjacency matrix of (V, F). We give a Turing reduction
from the minimum edge deletion problem to non-optimality in Algorithm 1.
To see this, it is sufficient to observe that: (i) the while loop continues
as long as E contains a subset that is larger than |Y | and satisfies π; as

2
Exact-TSP is the problem of finding a Hamiltonian cycle of a given lenth.

3DP , introduced by Papadimitriou and Yannakakis (1984), is the class of languages
that are the intersection of a language in NP and a language in coNP, i.e., DP = {L1 ∩
L2 : L1 ∈ NP, L2 ∈ coNP}. Note that this is not the same as NP ∩ coNP , and that
NP, coNP ⊆ DP .

42 Chapter 4. Complexity of Learning

Algorithm 1 An algorithm for solving the minimum edge deletion problem
for some hereditary property π given a (non-)optimality oracle.

Require: Graph G = (V,E)
Ensure: A maximum subgraph of G that satisfies π
1: Let Y ← ∅
2: while (Yπ, ψ∈)− Non-Optimality(w(E), Y) do

3: Let F ← E;
4: for e ∈ E \ Y do

5: if (Yπ, ψ∈)− Non-Optimality(w(F \ {e}), Y) then

6: F ← F \ {e}
7: end if

8: end for

9: for e ∈ E do

10: if (Yπ, ψ∈)−Non-Optimality

(

|F\Y |−|Y \F |−1
|F\Y | w(F \ Y) + w(Y ∩ F \ {e}), Y

)

then

11: F ← F \ {e}
12: end if

13: end for

14: Let Y ← F
15: end while

〈w(E), ψ∈(Y)〉 increases in each iteration by one, the number of iterations
is bounded from above by |{| 〈w(E), ψ∈(Z)〉 | : Z ∈ Yπ}| < |E|, (ii) the first
for loop (lines 4–8) removes edges not contained in Y from F while ensuring
that F contains a subset that is larger than |Y | and satisfies π; therefore
F \Y 6= ∅; and because of hereditary max{|X| : X ⊆ F ∧π(X)} = |Y |+1,
and (iii) the second for loop (lines 9–13) removes edges of Y from F while
ensuring that F still contains a subset that is larger than |Y | and satisfies
π. As the removal of these edges from the adjacency matrix (w) will shrink
〈w,ψ(Y)〉, the weight of the edges in F \ Y is reduced accordingly.

(⇐) It remains to observe that to decide whether Y is non-optimal, it
suffices to find a maximum structure and compare its size with Y . �

For properties π that are non-hereditary, two modifications of the algo-
rithm arise: (a) The constant in line 10 may be larger than 1; its precise
value can be found by first increasing it from c = 0 until ¬(Yπ, ψ∈)− Non-

Optimality

(

|F\Y |−|Y \F |−c
|F\Y | w(F \ Y) + w(Y ∩ F), Y

)

. (b) The structure

F itself is not necessarily contained in Yπ; a polynomial time subroutine for
finding a X ⊇ F such that X ∈ Yπ is needed additionally.

4.3. Two New Assumptions 43

4.3 Two New Assumptions

We have thus far discussed the assumptions mabe by existing structured
prediction algorithms to ensure efficient learning. We have also seen, in
the form of hardness results, that these assumptions do not hold for several
combinatorial structures thereby exposing the limitations of existing algo-
rithms to learn efficiently to predict combinatorial structures. We are now
ready to introduce two new assumptions, and provide several examples of
combinatorial structures and applications in machine learning where these
assumptions hold. These assumptions are based on counting and sampling
combinatorial structures and will be elucidated in the following sections.

4.3.1 The Counting Assumption

The major difficulty in structured output learning is to handle the exponen-
tially many constraints in the optimisation problem (4.1). While successively
adding violated constraints is feasible under several assumptions, in the pre-
vious section we discussed cases like route prediction where none of these
assumptions hold.

In the following, we will first show, considering again cyclic permuta-
tions as a concrete example, that counting the number of super-structures
can be feasible even if there are exponentially many of them and even if
the assumptions of decoding, separation, and optimality do not hold. The
counting assumption is stated as follows:

Assumption 4.1 Denote by ψ : Y → Rd the finite dimensional embedding
of the output space Y. It is possible to efficiently compute the quantities

|Y|, Ψ =
∑

y∈Y

ψ(y), and C =
∑

y∈Y

ψ(y)ψ⊤(y) .

Route Prediction — Counting Cyclic Permutations

For a given alphabet Σ, we are now interested in computing |Ycyc|, the
number of cyclic permutations of subsets of Σ. For a subset of size i there
are i! permutations of which 2i represent the same cyclic permutation. That
is, there are (i − 1)!/2 cyclic permutations of each subset of size i, and for
an alphabet of size N = |Σ| there are

|Ycyc| =
N
∑

i=2

(

N
i

)

(i− 1)!

2

different cyclic permutations of subsets of Σ.

Computing Ψcyc is simple. For each pair of neighbours, there are N − 2
remaining vertices, and for each subset of these of size i, there are 2(i+ 1)!

44 Chapter 4. Complexity of Learning

permutations, of which 2(i + 1) represent the same cyclic permutation:

Ψcyc = 1

N−2
∑

i=0

(

N − 2
i

)

i! ,

where 1 is the vector of all ones.
It remains to compute Ccyc. Each element of this matrix is computed as

Ccyc
e,e′ =

∑

y∈Ycyc

ψcyc
e (y)ψcyc

e′ (y) .

For |e ∩ e′| > 0, we have

Ccyc
e,e′ = 1

N−|e∪e′|
∑

i=0

(

N − |e ∪ e′|
i

)

i! ,

and for |e ∩ e′| = 0, we have

Ccyc
e,e′ = 1

N−4
∑

i=0

(

N − 4
i

)

2(i + 1)! .

Simple Set System Cases

We first consider the general ℓ-label prediction problem where Y = {Z ⊆
Σ | |Z| = ℓ} with ψ : Y → RΣ defined as ψi(Z) = 1 if i ∈ Z and 0 otherwise.
This setting generalises the usual multi-class (ℓ = 1) and multi-label (by
summing over all ℓ ≤ |Σ|) settings. For general ℓ ∈ [[Σ]] we have (with
|Σ| = d),

|Y| =
(

d
ℓ

)

; Ψ = 1

(

d− 1
ℓ− 1

)

;C = 1

(

d− 2
ℓ− 2

)

+ I

(

d− 1
ℓ− 1

)

.

As special cases we have for multi-class (Y = Σ) that Ψ = 1, C = I, and
for multi-label (Y = 2Σ) that Ψ = 2|Σ|−11, C = 2|Σ|−2I + 2|Σ|−21.

For both of these simple cases, exact decoding is very simple. For a
given (test) instance x, let κ ∈ Rm with κi = kX (xi, x). For the multi-
class case decoding is ŷ = argmaxe∈Σ[ακ]e. For the multi-label case it is
ŷ = {e ∈ Σ | [ακ]e ≥ 0}. Hence, we could in this case also apply separation
based learning algorithms.

Simple Non-Set System Cases

We now consider poset regression. Let Y ⊂ Σ, ψ : Y → RΣ and let (Σ,≻)
be a poset. With ψi(z) = 1 if z ≻ i and ψi(z) = 0 otherwise, we have
Ψi = |{k ∈ Σ | k ≻ i}| and Cij = |{k ∈ Σ | k ≻ i ∧ k ≻ j}|. As a

4.3. Two New Assumptions 45

special case, we have the ordinal regression problem where Y = Σ = [[d]]
(with d ordinal values), ψ : Y → RΣ with ψi(z) = 1 if z ≥ i and ψi(z) = 0
otherwise. In this case Ψi = |Σ| − i and Cij = |Σ| − max(i, j). Note that
hierarchical classification is also a special case of poset regression where ≻
forms a directed tree. In both cases, decoding can be done by exhaustively
testing only |Σ| alternatives.

Permutations

Let Y be the set of permutations of Σ and let ψ : Y → RΣ×Σ. Then
|Y| = |Σ|! and with ψ(uv)(z) = 1 if u ≻z v, ψ(uv)(z) = −1 if v ≻z u, and
ψ(uv)(z) = 0 otherwise, we have Ψ = 0, and

C(uv)(u′v′) =

−|Σ|! if u = v′ ∧ u′ = v

+|Σ|! if u = u′ ∧ v = v′

+|Σ|!
3 if u = u′ xor v = v′

−|Σ|!
3 if u = v′ xor v = u′

0 otherwise

The assumptions made in the literature are unlikely to hold in this case as
the ‘without any cycle of length ≤ ℓ’ edge deletion problem is NP-complete
(Yannakakis, 1978) for any fixed ℓ ≥ 4.

Posets and Partial Tournaments

Consider Σ = [[N]]×[[N]]; Y ⊆ 2Σ such that all y ∈ Y form a poset (an acyclic
directed graph closed under transitivity) ([[N]], y); as well as ψ : Y → RY

with ψuv(z) = 1 if (u, v) ∈ z, ψuv(z) = −1 if (v, u) ∈ z, and ψuv(z) = 0
otherwise. To the best of our knowledge, no exact way to compute Ce,e′ is
known. However, we can relax Y to Ỹ ⊆ 2Σ such that all y ∈ Y form a
partial tournament (a directed graph with no cycles of length two). With
η = N(N − 1)/2 we have |Ỹ | = 3η, Ψ = 0, and

C̃(uv),(u′v′) =

−2 · 3|η|−1 if u = v′ ∧ u′ = v

+2 · 3|η|−1 if u = u′ ∧ v = v′

+2 · 3|η|−2 if u = u′ xor v = v′

−2 · 3|η|−2 if u = v′ xor v = u′

0 otherwise

The assumptions made in the literature are unlikely to hold in this case as
the ‘transitive digraph’ edge deletion problem is NP-complete (Yannakakis,
1978).

46 Chapter 4. Complexity of Learning

Graph Prediction

Consider graphs on a fixed set of vertices, that is Σ = {U ⊆ [[N]] | |U | = 2}
and a property π : 2Σ → Ω such as acyclicity, treewidth bounded by a given
constant, planarity, outerplanarity bounded by a constant, clique etc. Let
Yπ and ψ∈ be defined as in Section 4.2. For properties like clique, we can
compute Y, ψ,C:

|Yclique| = 2N , Ψclique
{u,v} =

N
∑

i=2

(

N − 2
i− 2

)

, Cclique
e,e′ =

N
∑

i=|e∩e′|

(

N − |e ∩ e′|
i− |e ∩ e′|

)

.

For other properties, no way to compute C might be known but we can
always relax Y to Ỹ = 2Σ. We then have Ψ̃ = 2|Σ|−1 and C̃e,e′ = 2|Σ|−|e∪e′|.

4.3.2 The Sampling Assumption

The sampling assumption pertains to discriminative probabilistic models for
structured prediction. The sampling assumption is stated as follows:

Assumption 4.2 It is possible to sample efficiently from the output space
Y exactly and uniformly at random.

We now describe three combinatorial structures with their corresponding
application settings in machine learning. For each of these structures, we
show how to obtain exact samples uniformly at random.

Vertices of a hypercube

The set of vertices of a hypercube is used as the output space in multi-label
classification problems (see, for example, Elisseeff and Weston (2001)). An
exact sample can be obtained uniformly at random by generating a sequence
(of length d, the number of labels) of bits where each bit is determined by
tossing an unbiased coin.

Permutations

The set of permutations is used as the output space in label ranking problems
(see, for example, Dekel et al. (2003)). An exact sample can be obtained
uniformly at random by generating a sequence (of length d, the number of
labels) of integers where each integer is sampled uniformly from the set [[d]]
without replacement.

Subtrees of a tree

Let T = (V,E) denote a directed, rooted tree with root r. Let T ′ denote
a subtree of T rooted at r. Sampling such rooted subtrees from a rooted

4.4. Summary 47

tree finds applications in multi-category hierarchical classification problems
as considered by Cesa-Bianchi et al. (2006) and Rousu et al. (2006). We
now present a technique to generate exact samples of subtrees uniformly
at random. The technique comprises two steps. First, we show how to
count the number of subtrees in a tree. Next, we show how to use this
counting procedure to sample subtrees uniformly at random. The second
step is accomplished along the lines of a well-known reduction from uniform
sampling to exact/approximate counting (Jerrum et al., 1986).

First, we consider the counting problem. Let v ∈ V be a vertex of T and
denote its set of children by δ+(v). Let f(v) denote the number of subtrees
rooted at v. Now, f can be computed by using the following recursion:

f(r) = 1 +
∏

c∈δ+(r)

f(c) . (4.2)

Next, we consider the sampling problem. Note that any subtree can be
represented by a d-dimensional vector in {0, 1}d, where d = |V |. A näıve
approach to generate samples uniformly at random would be the following:
generate a sequence of d bits where each bit is determined by tossing an
unbiased coin; accept this sequence if it is a subtree (which can be tested
in polynomial time). Clearly, this sample has been generated uniformly at
random from the set of all subtrees. Unfortunately, this näıve approach will
fail if the number of acceptances (subtrees) form only a small fraction of
the total number of sequences which is 2d, because the probability that we
encounter a subtree may be very small. This problem can be rectified by a
reduction from sampling to counting, which we describe in the sequel.

We will use the term prefix to denote a subtree T ′ included by another
subtree T ′′, both rooted at r. Let L(T ′) denote the set of leaves of T ′. We
will reuse the term prefix to also denote the corresponding bit representation
of the induced subtree T ′. The number of subtrees with T ′ as prefix can be
computed using the recursive formula (4.2) and is given (with a slight abuse
of notation) by f(T ′) = (

∏

v∈L(T ′) f(v)) − |L(T ′)|. Now, we can generate a
sequence of d bits where each bit u with a prefix v is determined by tossing
a biased coin with success probability f(u)/f(v) and is accepted only if it
forms a tree with its prefix. The resulting sequence is an exact sample drawn
uniformly at random from the set of all subtrees.

4.4 Summary

The purpose of this chapter was to highlight the limitations of existing
structured prediction algorithms in the context of predicting combinato-
rial structures. We have shown how even the weakest assumption made by
these algorithms — Optimality — is coNP-complete for several classes of
combinatorial structures. We then introduced two new assumptions based

48 Chapter 4. Complexity of Learning

on counting and sampling combinatorial structures. We have also seen how
these assumptions hold for several combinatorial structures and applications
in machine learning. As we will see in the next chapters, these two assump-
tions will result in (i) the design of a new learning algorithm and (ii) a new
analysis technique for discriminative probabilistic models for structured pre-
diction.

Chapter 5

Structured Ridge Regression

In this chapter, we design a new learning algorithm for structured predic-
tion using the counting assumption introduced in the previous chapter. The
algorithm, as we will see in the following sections, is a generalisation of ridge
regression for structured prediction. The algorithm can be trained by solving
an unconstrained, polynomially-sized quadratic program, and does not as-
sume the existence of polynomial time algorithms for decoding, separation,
or optimality. The crux of our approach lies in the polynomial time compu-
tation of the vector Ψ =

∑

z∈Y ψ(z) and the matrix C =
∑

z∈Y ψ(z)ψ⊤(z)
leading to a tractable optimisation problem for training structured predic-
tion models.

5.1 Ridge Regression

Given a set of training examples (x1, y1), . . . , (xm, ym) ∈ X × R, the goal
of regularised least squares regression (RLRS)(Rifkin and Lippert, 2007) or
ridge regression is to find a solution to the regression problem1 via Tikhonov
regularisation in a reproduding kernel Hilbert space. The following optimi-
sation problem is considered:

f∗ = argmin
f∈H

λ
2‖f‖2 + 1

2

m
∑

i=1
(f(xi)− yi)

2 , (5.1)

where λ > 0 is the regularisation parameter. According to the representer
theorem (Schölkopf et al., 2001), the solution to this optimisation problem
can be written as

f∗ =
m
∑

i=1

cik(xi, ·)

1The same technique can be used for binary classification. The term regularised least
squares classfication (RLSC) was coined by Rifkin (2002).

50 Chapter 5. Structured Ridge Regression

for some c ∈ Rm and a positive definite kernel k : X × X → R on the input
space. Using this fact, the optimisation problem (5.1) can be rewritten as

c∗ = argmin
c∈Rm

λ
2 c

⊤Kc+ 1
2‖y −Kc‖2 .

The optimal solution c∗ can be found by solving a system of linear equations

(K + λI)c∗ = y .

Rifkin (2002) discusses the pros and cons of regularised least squares
regression in comparison with SVMs. Training an SVM requires solving a
convex quadratic optimisation problem, whereas training an RLSR requires
the solution of a single system of linear equations. However, the downside
of training a non-linear RLSR is that it requires storing (O(m2) space) and
also inverting (O(m3) time) the entire kernel matrix. Also, the solution of
an RLSR is not sparse unlike the solution of an SVM thereby demanding
huge computations at test time. In the case of linear RLSR, the optimisation
problem (5.1) can be written as

(XX⊤ + λI)c∗ = y ,

where X is the input matrix of size m× n. If n≪ m, it is possible to solve
this system in O(mn2) operations using the Sherman-Morrison-Woodbury
formula (Rifkin, 2002). Empirically, RLSC was shown to perform as well as
SVMs (Rifkin, 2002).

5.2 Training Combinatorial Structures

We now present a learning algorithm for predicting combinatorial structures.
Interestingly, the connection to ridge regression is incidental that is estab-
lished due to manipulating a particular structured loss function in such a
way that the resulting optimisation problem remains tractable under the
counting assumption.

Problem Setting

Let X ⊆ Rn be an input space and Y be the output space of a combinatorial
structure. Given a set of training examples (x1, Y1), . . . , (xm, Ym) ∈ X × 2Y ,
the goal is to learn a scoring function h : X ×Y → R that, for each xi ∈ X ,
orders (ranks) Y in such a way that it assigns a higher score to all y ∈ Yi

than to all z ∈ Y \Yi. Let ψ : Y → Rd be a finite dimensional embedding of
Y with the dot-product kernel kY = 〈ψ(y), ψ(y′)〉. Let kX : X × X → R be
a kernel on X . Denote the joint scoring function on input-output pairs by
h ∈ H = HX ⊗HY where ⊗ denotes the tensor product and HX ,HY are the
reproducing kernel Hilbert spaces (RKHS) of kX , kY , respectively. Note that

5.2. Training Combinatorial Structures 51

the reproducing kernel ofH is then k[(x, y), (x′, y′)] = kX (x, x′)kY(y, y′). We
aim at solving the optimisation problem

h∗ = argmin
h∈H

λ‖h‖2 +
∑

i∈[[m]]

ℓ(h, i) , (5.2)

where ℓ : H× [[m]]→ R is the empirical risk on a training instance and λ > 0
is the regularisation parameter.

Loss Functions

For each xi we aim at ordering all elements of Yi before all elements of Y\Yi.
Note that traditional (label) ranking methods cannot be applied due to the
huge (exponential) size of Y \Yi. We use AUC-loss as the empirical error of
the optimisation problem (5.2):

ℓauc(h, i) =
∑

y∈Yi

∑

z∈Y\Yi

σ[h(xi, z)− h(xi, y)] (5.3)

where σ is the modified step function: σ(a) = +1 if a > 0, σ(a) = 0 if a < 0,
and σ(a) = 1/2 if a = 0. Our definition of ℓauc differs from the ‘area under
the ROC curve’ measure only in the sense that it is not normalised. To
obtain a convex function we bound it from above by the exponential loss

ℓexp(h, i) =
∑

y∈Yi

∑

z∈Y\Yi

exp [1 + h(xi, z) − h(xi, y)] ≥ ℓauc(h, i) . (5.4)

Despite being convex the exponential loss does not allow compact formula-
tions in our setting, but using its second order Taylor expansion at 0, i.e.,
exp(a) ≈ 1 + a+ 1

2a
2, does. Ignoring constants that can be accommodated

by the regularisation parameter, we get

ℓ(h, i) =
∑

y∈Yi

∑

z∈Y\Yi

[h(xi, z) − h(xi, y) + 1
2h

2(xi, z)

−h(xi, z)h(xi, y) + 1
2h

2(xi, y)] .
(5.5)

The above loss function can be seen as a generalisation of the square
loss for structured prediction, and hence the connection to ridge regression
is established. Similar loss functions were considered in previous work on
structured prediction problems. Altun et al. (2002) introduced the ranking
loss (5.3) for structured prediction and minimised an upper bound given
by the exponential loss (5.4) for discriminative sequence labeling. For this
specific problem, dynamic programming was used to explicity compute the
sums over all possibls sequences efficiently (Altun et al., 2002). A closely
related loss function to our approximation (5.5) is the one minimised by
least-squares SVM (Suykens and Vandewalle, 1999) and also its multi-class
extension (Suykens, 1999). Our approach can therefore be seen as an ex-
tension of least-squares SVM for structured prediction problems. The main

52 Chapter 5. Structured Ridge Regression

reason behind deviating from the standard max-margin hinge loss is to make
the problem tractable. As will become clear in the following sections, using
the loss function (5.5) results in a polynomially-sized unconstrained optimi-
sation problem.

Representer

The standard representer theorem (Schölkopf et al., 2001) states that there
is a minimiser h∗ of the optimisation problem (5.2) with

h∗ ∈ F = span{k[(xi, z), (·, ·)] | i ∈ [[m]], z ∈ Y} .
It also holds in our case: Without loss of generality we consider h = f + g
where f ∈ F and g ∈ H with g⊥F . Now h(xi, z) = 〈h(·, ·), k[(xi, z), (·, ·)]〉 =
〈f(·, ·), k[(xi, z), (·, ·)]〉 + 0 = f(xi, z) as well as ‖h(·, ·)‖2 = ‖f(·, ·)‖2 +
‖g(·, ·)‖2 . This shows that for each h ∈ H there is an f ∈ F for which
the objective function of (5.2) is no larger.

As usually |Y| grows exponentially with the input of our learning al-
gorithm, it is intractable to optimise over functions in F directly. Let
e1, . . . , ed be the canonical orthonormal bases of Rd. We then have that
{kX (xi, ·)⊗〈el, .〉 | i ∈ [[m]], l ∈ [[d]]} spans {kX (xi, ·)⊗〈ψ(z), .〉 | i ∈ [[m]], z ∈
Y}. Therefore it is sufficient to optimise over only md variables. We hence
consider

α∗ = argmin
α∈Rm×d

λ‖fα‖2 +
∑

i∈[[m]]

ℓ(fα, i) (5.6)

with
fα(x, z) =

∑

i∈[[m]],l∈[[d]]

αilkX (xi, x) 〈el, ψ(z)〉 .

Optimisation

We now exploit the fact that the vector Ψ =
∑

z∈Y ψ(z) and the matrix
C =

∑

z∈Y ψ(z)ψ⊤(z) can be computed in polynomial time for a wide range
of combinatorial structures as shown in Section 4.3. If ψ : Y → Rd can be
computed in polynomial time but computing C,Ψ is hard, we may resort
to approximations to C and Ψ. Another option would be to relax the set
Y to a superset Ỹ such that C̃, Ψ̃ can be computed in polynomial time for
Ỹ. For set systems we can (in the worst case) relax to Ỹ = 2Σ such that
Ca,b = 2|Σ|−|a∪b| with kY(z, z′) = |z ∩ z′|.

Denote fα(xi, ·) =
∑

j∈[[m]],l∈[[d]] αjlkX (xi, xj)el by f i
α
. Let Y be the

matrix Y ∈ Rm×d such that Yi· =
∑

y∈Yi
ψ⊤(y) and K be the kernel matrix

such that Kij = kX (xi, xj). We then have f i
α

= αKi· and F i
α

= Yi·f
i
α
. We

can now express ℓ(fα, i) using Ψ, C, and
∑

z∈Y

f(xi, z) =
〈

f i
α
,Ψ
〉

,

5.2. Training Combinatorial Structures 53

∑

z∈Y\Yi

f(xi, z) =
∑

z∈Y

f(xi, z)−
∑

y∈Yi

f(xi, y) ,

∑

z∈Y

f2(xi, z) = f i
α
Cf i

α
,

∑

z∈Y\Yi

f2(xi, z) =
∑

z∈Y

f2(xi, z) −
∑

y∈Yi

f2(xi, y) .

For the simple setting where |Yi| = 1, for all i ∈ [[m]], we have

ℓ(fα, i) =
1

2
f i

α
Cf i

α
+
〈

f i
α
,Ψ
〉

− |Y|F i
α
− F i

α

(

〈

f i
α
,Ψ
〉

− |Y|
2
F i

α

)

.

We have thus expressed ℓ(fα, i) explicity in terms of Ψ and C, and comput-
ing these quantities will depend on the specific combinatorial structure (cf.
Section 4.3).

Let ◦ denote the Hadamard product, let tr denote the trace operator,
and let diag be the operator that maps a square matrix to the column vector
corresponding to its diagonal as well as a column vector to the corresponding
diagonal matrix. Using the canonical orthonormal basis of Rd, we can write
the optimisation problem (5.6) as

argmin
α∈Rd×m

λ trαKα⊤ +
1

2
trKα⊤CαK + Ψ⊤αK1 +

|Y|
2
‖diag(Y αK)‖2

− |Y| trYαK −Ψ⊤αKdiag(Y αK) .
(5.7)

We can use iterative methods like Newton conjugate gradient for training
with the gradient

2λαK + CαK2 + Ψ1⊤K − Y ⊤diag(Ψ⊤αK)K

−|Y|Y ⊤K + (|Y|Y ⊤ −Ψ1⊤)(I ◦ YαK)K

and the product of the Hessian with vector v

2λvK+CvK2 + |Y|Y ⊤(I◦Y vK)K−Ψdiag(Y vK)K−Y ⊤diag(Ψ⊤vK)K .

Computing ℓ(fα, i) with Infinite Dimensional Output Embedding

In the case of infinite dimensional output embeddings, we assume that
span{kY(z, ·) | z ∈ Y} has a basis u1(·), . . . uk(·) with k polynomial in
the input of our learning problem. Therefore it is sufficient to optimise over
mk variables as span{kX (xi, ·) ⊗ ul(·) | i ∈ [[m]], l ∈ [[k]]} = F resuting in
the following optimisation problem:

α∗ = argmin
α∈Rm×k

λ‖fα‖2 +
∑

i∈[[m]]

ℓ(fα, i)

54 Chapter 5. Structured Ridge Regression

with

fα(x, z) =
∑

i∈[[m]],l∈[[k]]

αilkX (xi, x)ul(z) .

We now introduce bra-ket notation for convenience and denote kY(z, ·)
by |z〉 and its dual by 〈z|. General elements of HY and its dual will be
denoted by kets and bras with letters other than z and y. Note that hence
|a〉 ∈ HY does not imply that there exists z ∈ Y with |a〉 = |z〉. In particular,
we denote fα(xi, ·) =

∑

j∈[[m]],l∈[[k]] αjlkX (xi, xj)ul(·) by
∣

∣f i
α

〉

. The product
|a〉 〈b| is a linear operator HY → HY , the product 〈b| |a〉 is just the inner
product 〈a, b〉. Note that for ψ : Y → Rd with 〈φ(z), φ(z′)〉 = kY(z, z′)
it holds that |z〉 = ψ(z) and 〈z| = ψ⊤(z). With |Ψ〉 =

∑

z∈Y |z〉, C =
∑

z∈Y |z〉 〈z|, and F i
α

=
∑

y∈Yi
f(xi, y) we obtain

∑

z∈Y

f(xi, z) =
〈

f i
α

∣

∣ |Ψ〉 ,

∑

z∈Y

f2(xi, z) =
〈

f i
α

∣

∣C
∣

∣f i
α

〉

,

and hence

ℓ(fα, i) =
1

2

〈

f i
α

∣

∣C
∣

∣f i
α

〉

+
〈

f i
α

∣

∣ |Ψ〉 − |Y|F i
α
− F i

α

(

〈

f i
α

∣

∣ |Ψ〉 − |Y|
2
F i

α

)

.

5.3 Scalability Issues

The optimisation problem (5.7) suffers from scalability issues similar to those
that arise in ridge regression. Also, the gradient and Hessian computations
involve dense matrix-matrix and matrix-vector computations that may prove
to be detrimental for use in large-scale structured prediction problems. We
now present a couple of techniques to address these issues. First, we refor-
mulate the problem using a linear scoring function. This is not a serious
restriction as we will see in the following section that it is indeed possible
to solve an equivalent problem to (5.7) using linear models and techniques
from low-dimensional embeddings. Second, we show how to solve the prob-
lem (5.7) using online optimisation and RKHS updates very much similar
in spirit to the kernel perceptron (Freund and Schapire, 1999).

5.3.1 Linear models

Consider a linear model with scoring function f(x, y) = 〈w,φ(x, y)〉 where
φ(x, y) = ψ(y) ⊗ x, and the following problem:

argmin
w∈Rnd

λ‖w‖2 +
∑

i∈[[m]]

ℓ(f, i) , (5.8)

5.3. Scalability Issues 55

where the loss function is the same as (5.5). If we let ψ : Y → {0, 1}d, we
can again express ℓ(f, i) using Ψ, C, and

∑

z∈Y

f(xi, z) = 〈w,Ψ ⊗ xi〉 ,

∑

z∈Y
f2(xi, z) = w⊤[

∑

z∈Y
φ(xi, z)φ

⊤(xi, z)]w

= w⊤[C ⊗ xix
⊤
i]w .

Under the assumption that H = HX ⊗HY , the optimisation problem (5.8)
is equivalent to (5.7) with kX (x, x′) = 〈x, x′〉. Given any arbitrary kernel
on the input space X and a set of training examples, we can extract a
corresponding low-dimensional embedding of the inputs (see Appendix A for
an overview on kernel functions and low-dimensional mappings) and still be
able to solve the problem (5.8). The advantage of such a formulation is that
it is straightforward to apply online optimisation techniques like stochastic
gradient descent and its extensions (Zinkevich, 2003; Shalev-Shwartz et al.,
2007; Hazan et al., 2007) resulting in scalable algorithms for structured
prediction.

5.3.2 Online Optimisation

Online methods like stochastic gradient descent (SGD) and stochastic meta
descent (SMD) (Schraudolph, 1999) incrementally update their hypothesis
using an approximation of the true gradient computed from a single train-
ing example (or a set of them). While this approximation leads to slower
convergence rates (measured in number of iterations) when compared to
batch methods, a common justification to using these methods is that the
computational cost of each iteration is low as there is no need to go through
the entire data set in order to take a descent step. Consequently, stochastic
methods outperform their batch counterparts on redundant, non-stationary
data sets (Vishwanathan et al., 2006). The central issue in using stochastic
methods is choosing an appropriate step size of the gradient descent, and
techniques like stochastic meta descent (Schraudolph, 1999; Vishwanathan
et al., 2006) have emerged as powerful means to address this issue.

Stochastic Gradient Descent in Feature Space

It is rather straightforward to use stochastic gradient descent for linear
models with a parameter vector w. The update rule at any iteration is
w ← w − η∇, where ∇ and η are the instantaneous gradient and step size2

respectively. However, for non-linear models such as kernel methods, we
have to perform gradient descent in RKHS and update the dual parameters.
We illustrate this with an example following the online SVM algorithm of

2The step size is often chosen to be time-dependent.

56 Chapter 5. Structured Ridge Regression

Kivinen et al. (2001). Consider regularised risk minimisation with loss func-
tion ℓ : X × Y × Y → R:

R(f) = λΩ(f) + 1
m

m
∑

i=1
ℓ(xi, yi, f(xi)) .

The stochastic approximation of the above functional is given as

Rstoc(f, t) = λΩ(f) + ℓ(xt, yt, f(xt)) .

The gradient of Rstoc(f, t) w.r.t. f is

∇fRstoc(f, t) = λ∇fΩ(f) +∇f ℓ(xt, yt, f(xt))

= λ∇fΩ(f) + ℓ′(xt, yt, f(xt))kX (xt, ·) .

The second summand follows by using the reproducing property of HX to
compute the derivate of f(x), i.e., ∇f 〈f(·), kX (x, ·)〉 = kX (x, ·), and there-
fore for the loss function which is differentiable in its third argument we ob-
tain ∇fℓ(x, y, f(x)) = ℓ′(x, y, f(x))kX (x, ·). The update rule is then given as
f ← f − η∇Rstoc(f, t). For the commonly used regulariser Ω(f) = 1

2‖f‖2,
we get

f ← f − ηt∇t(λf + ℓ′(xt, yt, f(xt))kX (xt, ·))
= (1 − ληt)f − ηtℓ

′(xt, yt, f(xt))kX (xt, ·) .
Expressing f as a kernel expansion f(·) =

∑

i cikX (xi, ·), where the expan-
sion is over the examples seen until the current iteration, we get

ct ← (1− λη)ct − ηtℓ
′(xt, yt, f(xt))

= ηℓ′(xt, yt, f(xt)) for ct = 0
ci = (1− λη)ci for i 6= t .

We are now ready to derive SGD updates for the optimisation problem
(5.7).

Online Structured Ridge Regression

At iteration t, let Kt = K[[t]][[t]] ∈ Rt×t, kt = (K[[t]][[t]]).t, yt = Yt., and let

αt ∈ Rd×t be the parameter matrix. In the following, we omit the subscript
t. The instantaneous objective of the optimisation problem (5.7) can be
written as

argmin
α∈Rd×t

λ trαKα⊤ +
1

2
k⊤α⊤Cαk + Ψ⊤αk

+
|Y|
2

(yαk)2 − |Y|yαk −Ψ⊤αkyαk

(5.9)

with gradient ∇,

2λαK + Cαkk⊤ + Ψk⊤ + |Y|yαky⊤k⊤

−|Y|y⊤k⊤ −Ψk⊤yαk −Ψ⊤αky⊤k⊤ .
(5.10)

5.4. Approximate Inference 57

product of Hessian ∇2 with vector v,

2λvK + Cvkk⊤ + |Y|yvky⊤k⊤ −Ψk⊤yvk −Ψ⊤vky⊤k⊤ . (5.11)

With step size η, we obtain the following update rule: α← α− η∇. We
now discuss a couple of implementation aspects pertaining to the optimisa-
tion problem (5.9).

Truncating Kernel Expansion Coefficients

As the function (5.9) is minimised in RKHS, the parameter matrix α grows
incrementally with time by adding a single row in every iteration. In order
to speed up computations, we truncate all parameters that were updated
before time τ . This is justified for regularised risk minimisation problems
because at every iteration, αi. with i < t is shrunk by a factor (1 − λη)
and therefore the contribution of old parameters in the computation of the
kernel expansion decreases with time (Kivinen et al., 2001; Vishwanathan
et al., 2006). We use this simple technique to speed up computations in our
experiments. It is also possible to apply other techniques (see, for example,
(Dekel et al., 2008)), to discard less important coefficients. Note that the
learning rate is set to ensure 0 ≤ 1− λη < 1.

Step Size Adaptation

The step size plays an important role in the convergence of stochastic approx-
imation techniques and has been the focus of recent research (Vishwanathan
et al., 2006). We set the step size ηt = p

λt where p is a parameter that has
to be fine tuned to obtain good performance. A better way to set the step
size would be to consider SMD updates (Schraudolph, 1999; Vishwanathan
et al., 2006).

5.4 Approximate Inference

Thus far we have described a training algorithm for structured prediction,
but have not discussed how to predict structures using the learned model.
We now design (inference) algorithms for predicting combinatorial struc-
tures. As exact inference is in general hard (cf. Chapter 4), we have to
resort to approximations. We therefore design approximation algorithms
using the notion of z-approximation (Hassin and Khuller, 2001; Ausiello
and Marchetti-Spaccamela, 1980) with provable guarantees.

58 Chapter 5. Structured Ridge Regression

5.4.1 Approximate Decoding

In order to construct (predict) structures for a given input using the model
described in Section 5.2, we have to solve the decoding problem

argmax
y∈Y

f(x, y) .

In cases where exact decoding is not possible, we resort to approximate
decoding methods and aim at finding ŷ such that

f(x, ŷ) ≈ max
y∈Y

f(x, y) .

z-approximation

z-approximation algorithms are particularly suitable for optimisation prob-
lems involving negative weights. The reader is referred to Hassin and Khuller
(2001) for examples. z-approximation was proposed by Zemel (1981) instead
of the more common “percentage-error” f(x, ŷ)/maxy∈Y f(x, y). ŷ has z-
approximation factor ν for a maximisation problem if

f(x, ŷ) ≥ (1− ν)max
y∈Y

f(x, y) + νmin
y∈Y

f(x, y) . (5.12)

An algorithm with ν = 0 is optimal whereas an algorithm with ν = 1 is
trivial. z-approximation has several advantages (Hassin and Khuller, 2001;
Ausiello and Marchetti-Spaccamela, 1980) including (i) maxy∈Y f(x, y) has
the same z-approximation as maxy∈Y(f(x, y) + c) where c is a constant;
(ii) maxy∈Y f(x, y) has the same z-approximation as miny∈Y(−f(x, y)) (z-
approximation for minimisation is defined by exchanging min and max in
(5.12)); and (iii) the z-approximation factor is invariant under replacing
binary variables by their complement.

Decoding Sibling Systems

A sibling system is an output space Y with a sibling function r : Y → Y
and an output map ψ such that ∀z ∈ Y : ψ(z) + ψ(r(z)) = c as well as
∀z ∈ Y : 〈c, ψ(z)〉 = 0 with fixed c. In other words, it is an output space in
which each structure can be complemented by its sibling.

Proposition 5.1 There is a 1/2-factor z-approximation algorithm for de-
coding sibling systems.

Proof Choose some y ∈ Y at random. If f(x, y) ≥ 0, then ŷ = y; otherwise
ŷ = r(y). This completes the description of the algorithm.

We know that f(x, y) = 〈wx, ψ(y)〉 for some wx ∈ Rd. Now ∀y ∈
Y : f(x, y) + f(x, r(y)) = 〈wx, ψ(z)〉 + 〈wx, ψ(r(z))〉 = 〈wx, c〉 = 0 and

5.4. Approximate Inference 59

as miny∈Y f(x, y) = −maxy∈Y f(x, y), we have

f(x, ŷ) ≥ 0 =
1

2
max
y∈Y

f(x, y) +
1

2
min
y∈Y

f(x, y)

thereby satisfying (5.12) with ν = 1/2. �

Notice that if r is bijective and c = 0, then also Ψ = 0, thus significantly
simplifying the optimisation problem (5.7). For Y = 2Σ an example of a
bijective sibling function is r : y 7→ Σ \ y.

Decoding Independence Systems

An independence system (Σ,Y) is an output space Y such that ∀y ∈ Y :
z ⊂ y⇒ z ∈ Y and membership in Y can be tested in polynomial time.
Consider an output map ψ : Y → R|Σ| with ψu(z) =

√

µ(u) if u ∈ z and
ψu(z) = 0 otherwise, for some measure µ. Here we find a polynomial time
1− (log2 |Σ|)/|Σ| factor z-approximation following (Halldórsson, 2000).

Proposition 5.2 There is a 1 − log2 |Σ|/|Σ| factor z-approximation algo-
rithm for decoding independence systems.

Proof Partition Σ into ⌈|Σ|/ log2 |Σ|⌉ many subsets Ei of size |Ei| ≤
⌈log2 |Σ|⌉. Choose ŷ = argmaxy∈S f(x, y) where S = {argmaxy⊆Ei∩Y f(x, y) |
i ∈ [[⌈|Σ|/ log2 |Σ|⌉]]}. We again choose wx such that f(x, y) = 〈wx, ψ(y)〉.
Now we can find ŷ = argmaxy∈S 〈wx, ψ(yi)〉 in polynomial time by ex-

haustively testing 2|Ei| ≤ 2⌈log2 |Σ|⌉ ≤ |Σ| + 1 alternatives in each of the
⌈|Σ|/ log2 |Σ|⌉ ≤ |Σ| subsets. This completes the description of the algo-
rithm.

For the z-approximation, suppose there was y′ ∈ Y with f(x, y′) >
f(x, ŷ)|Σ|/ log2 |Σ|. As {Ei} partitions Σ, we have

f(x, y′) =
〈

wx, ψ(y′)
〉

=
∑

i

〈

wx, ψ(y′ ∩Ei)
〉

≤ |Σ|
log2 |Σ|

max
i

〈

wx, ψ(y′ ∩ Ei)
〉

≤ |Σ|
log2 |Σ|

f(x, ŷ)

contradicting the assumption. Together with miny∈Y f(x, y) ≤ f(x, ∅) = 0
this proves the stated approximation guarantee. �

5.4.2 Approximate Enumeration

If the non-optimality decision problem ∃y ∈ Y : f(x, y) > θ is NP-hard then
there is no algorithm for enumerating any set S ′x ⊇ S∗x = {ŷ ∈ Y | f(x, ŷ) > θ}

60 Chapter 5. Structured Ridge Regression

of cardinality polynomial in |S∗x| in output polynomial time (unless P=NP).
To see this, suppose there was an output polynomial algorithm for listing S ′x.
This algorithm can be used to obtain an output polynomial algorithm for
listing S∗x with additional complexity only for testing s ∈ S∗x for all s ∈ S∗x.
Now if the algorithm terminates in input polynomial time then it is sufficient
to check the cardinality of S∗x to decide non-optimality. If on the other hand
the algorithm does not terminate in input polynomial time, then S∗x can not
be empty.

Hence, we consider enumerating approximate solutions, i.e., we want to
list

{

ŷ ∈ Y | f(x, ŷ) ≥ (1− ν)max
y∈Y

f(x, y) + νmin
y∈Y

f(x, y)

}

. (5.13)

If Y is such that listing the whole of Y is hard, this precludes a general
algorithm for the trivial case (ν = 1) and makes it rather unlikely that an
algorithm for ν > 0 exists. We now assume that we know how to list (sample
uniformly from) Y and that the situation is similar to sibling systems: We
have a bijective function r : Y → Y and a map ψ such that ∀z ∈ Y :
ψ(z) + ψ(r(z)) = c as well as ∀z ∈ Y : 〈c, ψ(z)〉 = 0 for fixed c. Then we
can list the set (5.13) in incremental polynomial time by a simple algorithm
that internally lists y from Y but instead of outputting y directly, it only
outputs y if f(x, y) > f(x, r(y)) and otherwise outputs r(y).

5.5 Empirical Results

In all experiments, we fixed the regularisation parameter of our algorithm
λ = |Y| ·∑i∈[[m]] |Yi|/m.

Multi-label Classification

We compared the performance of our algorithm with the kernel method
proposed by Elisseeff and Weston (2001) that directly minimises the ranking
loss (number of pairwise disagreements). We followed the same experimental
set up (dataset and kernels) as described in (Elisseeff and Weston, 2001).
We used the Yeast dataset consisting of 1500 (training) and 917 (test) genes
with 14 labels, and trained our algorithm with polynomial kernel of varying
degree (2-9). Figure 5.1 shows the results for Hamming loss and ranking
loss.

Hierarchical Classification

We trained our algorithm on the WIPO-alpha patent dataset3 consisting of
1352 training and 358 test documents. The number of nodes in the hierarchy

3Available at one of the authors (Rousu et al., 2006) webpage:
http://users.ecs.soton.ac.uk/cjs/downloads/

5.5. Empirical Results 61

2 3 4 5 6 7 8 9
0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

R
a
n
ki

n
g
 l
o
ss

CSOP
MLSVM

2 3 4 5 6 7 8 9
Degree of the polynomial kernel

0.19

0.20

0.21

0.22

0.23

0.24

H
a
m

m
in

g
 l
o
ss

CSOP
MLSVM

Figure 5.1: Comparison of multi-label SVM (MLSVM) and our algorithm
(CSOP) on multi-label classification.

Table 5.1: Comparison of various algorithms on hierarchical classification.

Algorithm ℓ0/1 ℓ∆ ℓH
SVM 87.2 1.84 0.053

H-SVM 76.2 1.74 0.051
H-RLS 72.1 1.69 0.050

H-M3 − ℓ∆ 70.9 1.67 0.050
H-M3 − ℓH̃ 65.0 1.73 0.048

CSOP 51.1 1.84 0.046

is 188 with maximum depth of 3. Each document belongs to exactly one leaf
category and hence contains no multiple paths. The performance of several
algorithms (results are taken from (Rousu et al., 2005)) is shown in Table 5.1.
ℓ0/1 denotes the zero-one loss in percentage, ℓ∆ is the average Hamming loss
per instance, and ℓH is the hierarchical loss (average per instance). The
hierarchical loss is based on the intuition that if a mistake is made at node
i, then further mistakes made in the subtree rooted at i are unimportant
(Cesa-Bianchi et al., 2006). Formally, for any pair of hierarchical labels z
and y,

ℓH(z, y) =

|Σ|
∑

i=1

I(ψi(z) 6= ψi(y) ∧ ψj(z) = ψj(y), j ∈ ANC(i)) ,

62 Chapter 5. Structured Ridge Regression

where ANC(i) is the set of ancestors of i, and I(p) is 1 if p is true and 0 other-
wise. In this way the hierarchy or taxonomy of the problem domain is taking
into account. SVM denotes an SVM trained for each microlabel indepen-
dently, H-SVM denotes an SVM trained for each microlabel independently
and using only those samples for which the ancestor labels are positive, H-
RLS is the hierarchical least squares algorithm described in (Cesa-Bianchi
et al., 2006) and H-M3 is the kernel-based algorithm proposed by Rousu
et al. (2006) which uses the maximum margin Markov network framework.
The two different versions of this algorithm correspond to using the Ham-
ming loss and the hierarcical loss during training. While the performance
on the Hamming loss was comparable to the baseline SVM, our algorithm
resulted in best performance on the ℓ0/1 loss and the hierarchical loss.

Dicycle policy estimation

We experimented with an artificial setting due to lack of real world data sets
on dicycle prediction4. We simulate the problem of predicting the cyclic tour
of different people. We assume that there is a hidden policy for each person
and he/she takes the route that (approximately) maximises the reward of
the route. In the setting of dicycle prediction, the learned function is linear
in the output space (f(xi, y) =

〈

f i
α
, ψ(y)

〉

) and for testing we can check
how well the estimated policy f i

α
approximates the hidden policy in the

test (i ∈ [[m + 1,m′]]) set. The data is constructed as follows: (i) generate
n matrices A(i) ∈ RΣ×Σ uniformly at random with entries in the interval

[−1, 1] and A
(i)
uv = −A(i)

vu; (ii) generate (m+m′)n random numbers uniformly
between 0 and 1 to form the inputs xi ∈ Rn; (iii) create the output structures

yi ≈ argmaxy∈Y

∑

(u,v)∈y,j∈[[n]] xijA
(j)
uv for training, that is i ∈ [[n]]. On the

test set, we evaluated our algorithm by cosine similarity of the learned policy
and the true policy:

∑

i∈[[m,m+m′]]

〈

f i
α
,
∑

j∈[[n]]

x′ijA
(j)

〉

·
∥

∥f i
α

∥

∥

−1 ·
∥

∥

∥

∥

∥

∑

j∈[[M]]

x′ijA
(j)

∥

∥

∥

∥

∥

−1

Figure 5.2 shows a plot of the cosine measure on an experiment (m′ =
500, n = 15, |Σ| = 10) for varying number of training instances. As ex-
pected, we see that our algorithm is able to estimate the true policy with
increasing accuracy as the number of training instances increases. The plot
also shows the performance of structured SVM using approximate decoding
during training. Approximate decoding is performed by randomly sampling
a couple of cyclic permutations and using the best scoring one (the number

4Note that we considered directed cyclic permutations as opposed to undirected ones
described in Section 4.2 due to the fact that Ψcyc = 0 for dicycles, thereby reducing the
number of computations involved in optimising (5.7). See Appendix B for more details on
counting dicyclic permutations.

5.5. Empirical Results 63

0 100 200 300 400 500 600 700 800 900 1000 1100
Number of training instances

0.55

0.60

0.65

0.70

0.75

0.80

C
o
si

n
e
 m

e
a
su

re

CSOP
SVM-Struct

Figure 5.2: Comparison of structured SVM and CSOP on dicycle policy
estimation.

of repetitions used in our experiments was 25). The results were unstable
due to approximate decoding and the results shown on the plot are averages
from 5 trials. For structured SVM, we experimented with several values
of the regularisation parameter and report the best results obtained on the
test set — though this procedure gives an advantage to structured SVM,
our algorithm still resulted in better performance.

Stochastic Gradient Descent

We performed a couple of experiments using artificially generated data to
compare the performances of online and batch learning. In the first ex-
periment, we trained a simple multi-label classification model to learn the
identity function f : {0, 1}d → {0, 1}d. The goal was to compare batch
and online learning, using Newton conjugate gradient (NCG) and stochastic
gradient descent (SGD) respectively, in terms of the final objective value of
the optimisation problem (5.7) and training time. We also studied the ef-
fects of the truncation parameter τ on speed and final objective. We trained
SGD on a single pass of the data set. Figures 5.3 and 5.4 summarises the
results for multi-label classification on an artificial data set with 5 features
and labels. We set the truncation parameter τ to 0.15 × m, where m is
the number of training instances. We see that the final solution of SGD is
comparable to that of NCG, and the speed up achieved by SGD is apparent
for large data sets. The effect of τ on training time and objective is shown
in Figure 5.4. The training time of SGD increases with τ and attains the
training time of NCG at around 19% of m. Beyond this value, we found

64 Chapter 5. Structured Ridge Regression

0 2000 4000 6000 8000 10000
−50

−40

−30

−20

−10

0

O
b
je

ct
iv

e
 (

x
 1

e
+

4
)

SGD
NCG

0 2000 4000 6000 8000 10000
No. of instances

0
10
20
30
40
50
60
70
80
90

T
im

e
 (

in
 m

)

Figure 5.3: Comparison of SGD and NCG training on multi-label classifica-
tion.

2 4 6 8 10 12 14 16 18 20
−25

−20

−15

−10

−50

O
b
je

ct
iv

e
 (

x
 1

e
+

4
)

SGD
NCG

2 4 6 8 10 12 14 16 18 20
No. of kernel expansion coeff. as % of m (=5000)

0

1

2

3

4

5

6

7

T
im

e
 (

in
 m

)

Figure 5.4: Effect of truncation parameter τ on training time and final
objective value on multi-label classification with SGD and NCG.

that SGD was taking longer time than NCG. This underlines the effect of τ
when performing SGD updates in RKHS.

In our second experiment, we considered dicycle policy estimation as
before. We trained SGD and NCG on data sets of varying size from 100
to 5000 with n = 15 and Σ = 10. We fixed τ to 500 kernel expansion
coefficients. Figure 5.5 shows a plot of final objective versus training time of

5.6. Summary 65

0 20 40 60 80 100
Time (in m)

−40

−35

−30

−25

−20

−15

−10

−50
O

b
je

ct
iv

e
 (

x
 1

e
+

8
)

SGD
NCG

Figure 5.5: Comparison of SGD and NCG training on dicycle policy esti-
mation.

SGD and NCG on the different data sets. The plot shows that NCG takes a
much longer time to attain the same final objective value as SGD. Note that
as we perform single pass training, with fixed amounts of training instances
NCG attains a smaller value of the objective function than SGD. However,
as SGD can deal with much more training instances in the same time, after a
fixed amount of time, SGD attains a smaller value of the objective function
than NCG.

5.6 Summary

We presented a learning algorithm for predicting combinatorial structures
under the counting assumption introduced in Chapter 4 . Our approach
subsumes several machine learning problems including multi-class, multi-
label and hierarchical classification, and can be used for training complex
combinatorial structures. As for most combinatorial structures considered
in this paper the inference problem is hard, an important aspect of our
approach is that it obviates the need to use inference algorithms, be it exact
or approximate, for training.

We have also seen how to train a linear model using the counting as-
sumption. Under some reasonable assumptions, a non-linear model can be
approximated using a linear model using techniques from metric embedding
theory. Furthermore, we addressed the scalability issues of our approach
by presenting an online learning algorithm using stochastic gradient descent
that can update model parameters (kernel expansion coefficients) in RKHS.

66 Chapter 5. Structured Ridge Regression

For prediction, inference can naturally not be avoided. Therefore, we
have to rely on approximation algorithms described in Section 5.4. We note
that it is non-trivial to design approximation algorithms for the decoding
problem of the combinatorial structures considered in this work. Indeed,
there are hardness of approximation results for the maximum acyclic sub-
graph problem (Guruswami et al., 2008) and the problem of finding longest
directed cycles (Björklund et al., 2004).

While we have seen how to minimise a squared loss function, it would
be interesting to train a probabilistic model by minimising the negative log-
likelihood à la conditional random fields (cf. Section 2.2). This will be the
focus of the next chapter.

Chapter 6

Probabilistic Structured

Prediction

Maximum a posteriori (MAP) estimation with exponential family models
is a fundamental statistical technique for designing probabilistic classifiers
(cf. logistic regression). In this chapter, we consider MAP estimators for
structured prediction using the sampling assumption introduced in Chap-
ter 4, i.e., we concentrate on the case that efficient algorithms for uniform
sampling from the output space exist. We show that under this assumption
(i) exact computation of the partition function remains a hard problem, and
(ii) the partition function and the gradient of the log partition function can
be approximated efficiently. The main result of this chapter is an approx-
imation scheme for the partition function based on Markov chain Monte
Carlo theory. We also design a Markov chain that can be used to sample
combinatorial structures from exponential family distributions given that
there exists an exact uniform sampler, and also perform a non-asymptotic
analysis of its mixing time.

6.1 Probabilistic Models and Exponential Fami-

lies

Let X×Y be the domain of observations and labels, andX = (x1, . . . , xm) ∈ Xm,
Y = (y1, . . . , ym) ∈ Ym be the set of observations. Our goal is to estimate
y | x using exponential families via

p(y | x,w) = exp(〈φ(x, y), w〉 − lnZ(w | x)) ,

where φ(x, y) are the joint sufficient statistics of x and y, and Z(w | x) =
∑

y∈Y exp(〈φ(x, y), w〉) is the partition function. We perform MAP parame-
ter estimation by imposing a Gaussian prior on w. This leads to optimising

68 Chapter 6. Probabilistic Structured Prediction

the negative joint likelihood in w and Y :

ŵ = argmin
w

[− ln p(w, Y | X)]

= argmin
w

[

λ‖w‖2 +
1

m

m
∑

i=1

[lnZ(w | xi)− 〈φ(xi, yi), w〉]
]

,
(6.1)

where λ > 0 is the regularisation parameter. We assume that the ℓ2 norm of
the sufficient statistics and the parameters are bounded, i.e., ‖φ(x, y)‖ ≤ R
and ‖w‖ ≤ B, where R and B are constants. Note that it is possible to
upper bound the norm of the parameter vector w as shown below.

Proposition 6.1 The norm of the optimal parameter vector ŵ is bounded
from above as follows:

‖ŵ‖ ≤
√

ln |Y|
λ

.

Proof Consider any (x, y) ∈ X ×Y. Denote by ℓ(w, x, y) the loss function,
where ℓ(w, x, y) = lnZ(w | x)− 〈φ(x, y), w〉 ≥ 0, and note that ℓ(0, x, y) =
ln |Y|. Let F (w) = − ln p(w, Y | X). The true regularised risk w.r.t. ŵ and
an underlying joint distribution D on X × Y is

E(x,y)∼D[ℓ(ŵ, x, y)] + λ‖ŵ‖2 ≤ F (0) = ln |Y| .

This implies that the optimal solution ŵ of the above optimisation problem
lies in the set {w : ‖w‖ ≤

√

ln |Y|/λ}. �

The difficulty in solving the optimisation problem (6.1) lies in the com-
putation of the partition function. The optimisation is typically performed
using gradient descent techniques and advancements thereof. We therefore
also need to compute the gradient of the log partition function, which is
the first order moment of the sufficient statistics, i.e., ∇w lnZ(w | x) =
Ey∼p(y|x,w)[φ(x, y)].

Computing the log partition function and its gradient are in general NP-
hard. In Section 6.2, we will show that computing the partition function
still remains NP-hard given a uniform sampler for Y. We therefore need to
resort to approximation techniques to compute these quantities. Unfortu-
nately, application of concentration inequalities do not yield approximation
guarantees with polynomial sample size. We present Markov chain Monte
Carlo (MCMC) based approximations for computing the partition function
and the gradient of the log partition function with provable guarantees.
There has been a lot of work in applying Monte Carlo algorithms using
Markov chain simulations to solve #P-complete counting and NP-hard op-
timisation problems. Recent developments include a set of mathematical
tools for analysing the rates of convergence of Markov chains to equilibrium
(see (Randall, 2003; Jerrum and Sinclair, 1996) for surveys). To the best of
our knowledge, these tools have not been applied in the design and analysis

6.2. Hardness of Computing the Partition Function 69

of structured prediction problems, but have been referred to as an important
research frontier (Andrieu et al., 2003) for MCMC based machine learning
problems in general.

6.2 Hardness of Computing the Partition Func-

tion

We begin with a hardness result for computing the partition function. Con-
sider the following problem:

Definition 6.1 Partition: For a class of output structures Y over an
alphabet Σ, an input structure x ∈ X , a polynomial time computable map
ψ : Y → Rd, and a parameter w, compute the partition function Z(w).

We now show that no algorithm can efficiently solve Partition on the class
of problems for which an efficient uniform sampling algorithm exists. To
show this, we suppose such an algorithm existed, consider a particular class
of structures, and show that the algorithm could then be used to solve an
NP-hard decision problem. We use that (a) cyclic permutations of subsets
of the alphabet Σ can be sampled uniformly at random in time polynomial
in |Σ|; and (b) there is no efficient algorithm for Partition for the set of
cyclic permutations of subsets of the alphabet Σ with ψuv(y) = 1 if {u, v} ∈ y
and 0 otherwise. Here (a) follows from Sattolo’s algorithm (Sattolo, 1986)
to generate a random cyclic permutation. To prove (b), we show that by
applying such an algorithm to a multiple of the adjacency matrix of an
arbitrary graph and comparing the result with |Σ|3 we could decide if the
graph has a Hamiltonian cycle or not.

Theorem 6.2 Unless P=NP, there is no efficient algorithm for Partition

on the class of problems for which we can efficiently sample output structures
uniformly at random.

Proof Consider the output space of undirected cycles over a fixed set of
vertices Σ, i.e., Y =

⋃

U⊂Σ cyclic permutations(U), for an input x ∈ X . Let
ψ : Y → RΣ×Σ with ψuv(y) = 1 if {u, v} ∈ y and 0 otherwise.

Suppose we can compute lnZ(w) = ln
∑

y∈Y exp(〈ψ(y), w〉) efficiently.
Given an arbitrary graph G = (V,E) with adjacency matrix w̄, let Σ = V
and w = w̄ × ln(|V |! × |V |). We will show that G has a Hamiltonian cycle
if and only if lnZ(w) ≥ |V | × ln(|V |!× |V |).

Necessity: As the exponential function is positive and ln is monotone
increasing, it follows that lnZ(w) ≥ |V | × ln(|V |!× |V |).

70 Chapter 6. Probabilistic Structured Prediction

Sufficiency: First, observe that |Y| < |V |! × |V |. Suppose G has no
Hamiltonian cycle. Then

lnZ(w) ≤ ln[|Y| × exp[(|V | − 1)× ln(|V |!× |V |)]]
= ln |Y|+ (|V | − 1)× ln(|V |!× |V |)
< |V | × ln(|V |!× |V |) .

This completes the proof. �

We are interested in the class of problems for which sampling uniformly
at random is easy, and cyclic permutations is one example of these. The
above result shows that computing the partition function is hard even if we
restrict the problem to this class. Essentially, it transfers the general NP-
hardness result of computing the partition function to the restricted class
of problems that we are interested in. In the following section, we show
how to approximate the partition function given that there exist efficient
algorithms for uniform sampling.

6.3 Approximating the Partition Function Using

Uniform Samplers

As a first step towards approximating the partition function, let us consider
using concentration inequalities. If we can sample uniformly at random from
Y, then we can apply Hoeffding’s inequality to bound the deviation of the
partition function Z(w | x) from its finite sample expectation Ẑ(w | x). Let
S denote the sample size. Then

Ẑ(w | x) =

S
∑

i=1

|Y|
S

[exp(〈φ(x, yi), w〉)] .

Unfortunately, the bound obtained from using Hoeffding’s inequality is not
useful due to its dependence on the size of the output space |Y|. We now
present an algorithm that is a fully-polynomial randomised approximation
scheme for computing the partition function.

Definition 6.2 Suppose f : P → R+ is a function that maps problem in-
stances P to positive real numbers. A randomised approximation scheme
for P is a randomised algorithm that takes as input an instance p ∈ P and
an error parameter ǫ > 0, and produces as output a number Q such that

Pr[(1− ǫ)f(p) ≤ Q ≤ (1 + ǫ)f(p)] ≥ 3

4
.

A randomised approximation scheme is said to be fully polynomial (FPRAS)
if it runs in time polynomial in the length of p and 1/ǫ.

6.3. Approximating the Partition Function Using Uniform Samplers 71

We exploit the intimate connection between counting and sampling prob-
lems (Jerrum et al., 1986) to approximately compute the partition function
using sampling algorithms. The technique is based on a reduction from
counting to sampling. The standard approach (Jerrum and Sinclair, 1996)
is to express the quantity of interest, i.e., the partition function Z(w | x),
as a telescoping product of ratios of parameterised variants of the partition
function. Let 0 = β0 < β1 · · · < βl = 1 denote a sequence of parameters also
called as cooling schedule and express Z(w | x) as a telescoping product

Z(w | x)
Z(βl−1w | x)

× Z(βl−1w | x)
Z(βl−2w | x)

× · · · × Z(β1w | x)
Z(β0w | x)

× Z(β0w | x) .

Define the random variable fi(y) = exp[(βi−1 − βi) 〈φ(x, y), w〉] (we omit the
dependence on x to keep the notation clear), for all i ∈ [[l]], where y is chosen
according to the distribution πβi

= p(y | x, βiw). We then have

E
y∼πβi

fi =
∑

y∈Y

exp[(βi−1 − βi) 〈φ(x, y), w〉]exp[βi 〈φ(x, y), w〉]
Z(βiw | x)

=
Z(βi−1w | x)
Z(βiw | x)

,

which means that fi(y) is an unbiased estimator for the ratio

ρi =
Z(βi−1w | x)
Z(βiw | x)

.

This ratio can now be estimated by sampling using a Markov chain ac-
cording to the distribution πβi

and computing the sample mean of fi. The
desideratum is an upper bound on the variance of this estimator. Having
a low variance implies a small number of samples S suffices to approximate
each ratio well. The final estimator is then the product of the reciprocal of
the individual ratios in the telescoping product.

We now proceed with the derivation of an upper bound on the vari-
ance of the random variable fi, or more precisely on the quantity Bi =
Varfi/(E fi)

2. We first assume that Z(β0w | x) = |Y| can be computed in
polynomial time. This assumption is true for all combinatorial structures
consider in this chapter. If it is not possible to compute |Y| in polynomial
time, then we can approximate it using the same machinery described in this
section. We use the following cooling schedule (Stefankovic et al., 2009):

l = p⌈R‖w‖⌉; βj =
j

pR‖w‖ , ∀j ∈ [[l − 1]] ,

where p is a constant integer ≥ 3, i.e., we let the cooling schedule to be of
the following form:

0,
1

q
,
2

q
,
3

q
, . . . ,

p⌊R‖w‖⌋
q

, 1 ,

72 Chapter 6. Probabilistic Structured Prediction

where q = pR‖w‖ (w.l.o.g. we assume that R‖w‖ is non-integer). Given
this cooling schedule, observe that exp(−1/p) ≤ fi ≤ exp(1/p), which fol-
lows from the definition of the random variable fi, and also that

exp(−1/p) ≤ E fi = ρi ≤ exp(1/p) .

We are now ready to prove the bound on the quantity Bi.

Proposition 6.3 Bi = Varfi

(E fi)2
≤ exp(2/p), ∀ i ∈ [[l]].

We first need to prove the following lemma.

Lemma 6.4 exp(1/p)− 1 ≤ ρi ≤ exp(−1/p) + 1.

Proof a ≤ b⇒ exp(a) − exp(−a) ≤ exp(b) − exp(−b) as the exponen-
tial function is monotone increasing. Thus a ≤ 1/3⇒ exp(a) − exp(−a) ≤
exp(1/3) − exp(−1/3) < 1. Setting a = 1/p with p ≥ 3 and using the fact
that exp(−1/p) ≤ ρi ≤ exp(1/p) for all i ∈ [[l]] proves the lemma. �

Proof (of Proposition 6.3) Consider ρi ≥ exp(1/p)− 1 ≥ fi − 1. This im-
plies fi − ρi ≤ 1. Next, consider ρi ≤ exp(−1/p) + 1 ≤ fi + 1. This im-
plies fi − ρi ≥ −1. Combining these, we get |fi − ρi| ≤ 1, which implies
Varfi ≤ 1, and therefore Varfi/(E fi)

2 ≤ exp(2/p). �

Equipped with this bound, we are ready to design an FPRAS for ap-
proximating the partition function. We need to specify the sample size S in
each of the Markov chain simulations needed to compute the ratios.

Theorem 6.5 Suppose the sample size S = ⌈65ǫ−2l exp(2/p)⌉ and suppose
it is possible to sample exactly according to the distributions πβi

, for all
i ∈ [[l]], with polynomially bounded time. Then, there exists an FPRAS with
ǫ as the error parameter for computing the partition function.

Proof The proof uses standard techniques described in (Jerrum and Sin-

clair, 1996). Let X
(1)
i , . . . ,X

(S)
i be a sequence of S independent copies of

the random variable fi obtained by sampling from the distribution πβi
, and

let X̄i = S−1
∑S

j=1X
(j)
i be the sample mean. We have E X̄i = E fi = ρi,

and VarX̄i = S−1Varfi. The final estimator ρ = Z(w | x)−1 is the random

6.3. Approximating the Partition Function Using Uniform Samplers 73

variable X =
∏l

i=1 X̄i with EX =
∏l

i=1 ρi = ρ. Now, consider

VarX

(EX)2
=

VarX̄1X̄2 · · · X̄l

(E X̄1 E X̄2 · · ·E X̄l)2

=
E(X̄1

2
X̄2

2 · · · X̄l
2
)− [E(X̄1X̄2 · · · X̄l)]

2

(E X̄1 E X̄2 · · ·E X̄l)2

=
E X̄1

2
E X̄2

2 · · ·E X̄l
2

(E X̄1 E X̄2 · · ·E X̄l)2
− 1

=

l
∏

i=1

(

1 +
VarX̄i

(E X̄i)2

)

− 1

≤
(

1 +
exp(2

p)

S

)l

− 1

≤ exp

(

l exp(2
p)

S

)

− 1

≤ ǫ2/64 ,

where the last inequality follows by choosing S = ⌈65ǫ−2l exp(2/p)⌉ and
using the inequality exp(a/65) ≤ 1 + a/64 for 0 ≤ a ≤ 1. By applying
Chebyshev’s inequality to X, we get

Pr[(|X − ρ|) > (ǫ/4)ρ] ≤ 16

ǫ2
VarX

(EX)2
≤ 1

4
,

and therefore, with probability at least 3/4, we have

(

1− ǫ

4

)

ρ ≤ X ≤
(

1 +
ǫ

4

)

ρ .

Thus, with probability at least 3/4, the partition function Z(w | x) = X−1

lies within the ratio (1 ± ǫ/4) of ρ−1. Polynomial run time immediately
follows from the assumption that we can sample exactly according to the
distributions πβi

in polynomial time. �

We have shown how to approximate the partition function under the
assumption that there exists an exact sampler for Y from the distribution
πβi

for all i ∈ [[l]]. A similar result can be derived by relaxing the exact
sampling assumption and is proved in Appendix C.1. In fact, it suffices to
have only an exact uniform sampler. As we will see in Section 6.6, it is
possible to obtain exact samples from distributions of interest other than
uniform if there exists an exact uniform sampler.

74 Chapter 6. Probabilistic Structured Prediction

6.4 Approximating the Partition Function Using

Counting Formulae

In this section, we describe how to approximate the partition function using
counting formulae (cf. Section 4.3), which obviates the need to use the
sophisticated machinery described in the previous section. However, the
downside of this technique is that it is not an FPRAS and works only for a
specific feature representation.

Consider output spaces Y with a finite dimensional embedding ψ : Y →
{0,+1}d, and an input space X ⊆ Rn. Define the scoring function f(x, y) =
〈w,φ(x, y)〉, where φ(x, y) = ψ(y) ⊗ x. Suppose that the size of the output
space |Y|, the vector Ψ =

∑

y∈Y φ(y), and the matrix C =
∑

y∈Y ψ(y)ψ⊤(y)
can be computed efficiently in polynomial time. We first observe that given
these quantities, it is possible to compute

∑

y∈Y f(x, y) and
∑

y∈Y f
2(x, y)

(as in the linear model described in Section 5.3), and these are given as

∑

y∈Y

f(x, y) = 〈w,Ψ⊗ x〉 ,

∑

y∈Y

f2(x, y) = w⊤(C ⊗ xx⊤)w .

We then consider the second order Taylor expansion of the exp function at
0, i.e., texp(a) = 1 + a+ 1

2a
2 ≈ exp(a) and write the partition function as

Z(w | x) =
∑

y∈Y

exp[f(x, y)]

≈
∑

y∈Y

1 + f(x, y) + f2(x, y)

= |Y|+ 〈w,Ψ⊗ x〉+ w⊤(C ⊗ xx⊤)w .

At first glance, one may argue that using the second order Taylor ex-
pansion is a crude way to approximate the partition function. But observe
that in a restricted domain around [−1, 1], the second order Taylor expan-
sion approximates the exp function very well as illustrated in Figure 6.1.
In order to exploit this property, we have to constrain the scoring function
f(x, y) to lie in the range [−1, 1]. But from Proposition 6.1, we know that
‖w‖ ≤

√

ln |Y|/λ. A direct application of Cauchy-Schwarz’s inequality gives
us the following bound on the scoring function: |f(x, y)| ≤ R

√

ln |Y|/λ. An
immediate consequence is a bound that relates the regularisation parameter
and the scoring function.

Proposition 6.6 λ ≥ R2 ln |Y| ⇒ |f(x, y)| ≤ 1.

6.5. Approximating the Gradient of the Log Partition Function 75

−4−3−2−1 0 1 2 3 4
x

0

5

10

15

20

25

y

exp
Taylor

Figure 6.1: Exponential function and its second Taylor approximation.

6.5 Approximating the Gradient of the Log Par-

tition Function

The optimisation problem (6.1) is typically solved using gradient descent
methods which involves gradient-vector multiplications. We now describe
how to approximate the gradient-vector multiplication with provable guar-
antees using concentration inequalities. Let z be a vector in Rn (where n
is the dimension of the feature space φ(x, y)) with bounded ℓ2 norm, i.e.,
‖z‖ ≤ G, where G is a constant. The gradient-vector multiplication is given
as

〈∇w lnZ(w | x), z〉 = E
y∼p(y|x,w)

[〈φ(x, y), z〉] .

We use Hoeffding’s inequality to bound the deviation of 〈∇w lnZ(w | x), z〉
from its estimate 〈d(w | x), z〉 on a finite sample of size S, where

d(w | x) =
1

S

S
∑

i=1

φ(x, yi) ,

and the sample is drawn according to p(y | x,w).
Note that by Cauchy-Schwarz’s inequality, we have | 〈φ(x, yi), z〉 | ≤ RG,

for all i ∈ [[S]]. Applying Hoeffding’s inequality, we then obtain the following
exponential tail bound:

Pr(| 〈∇w lnZ(w | x)− d(w | x), z〉 | ≥ ǫ) ≤ 2 exp

(−ǫ2S
2R2G2

)

.

76 Chapter 6. Probabilistic Structured Prediction

For online optimisation methods like stochastic gradient descent and ad-
vancements thereof (Hazan et al., 2007; Shalev-Shwartz et al., 2007; Ratliff
et al., 2007), the optimisation problem is solved using plain gradient de-
scent, and therefore it might be desirable to approximate the gradient and
analyse the effects of the approximation guarantee on factors such as rates
of convergence and regret bounds (Ratliff et al., 2007). In Appendix C.2, we
show how to approximate the gradient of the log partition function using the
machinery described in Section 6.3, i.e., using the reduction from counting
to sampling.

6.6 Sampling Techniques

We now focus on designing sampling algorithms. These algorithms are
needed (i) to compute the partition function using the machinery described
in Section 6.3, and (ii) to do inference, i.e., predict structures, using the
learned model by solving the optimisation problem argmaxy∈Y p(y | x,w)
for any x ∈ X . Sampling algorithms can be used for optimisation using the
Metropolis process (Jerrum and Sinclair, 1996) and possibly other meth-
ods like simulated annealing for convex optimisation (Kalai and Vempala,
2006). Note that these methods come with provable guarantees and are not
heuristics.

6.6.1 Basics of Markov Chains

We start with some preliminaries on Markov chains. The exposition mostly
follows the articles by Jerrum and Sinclair (1996); Jerrum (1998); Randall
(2003), and the lecture notes of Vigoda (Fall 2006).

Let Ω denote the state space of a Markov chain M with transition prob-
ability matrix P : Ω × Ω → [0, 1]. Let P t(u, ·) denote the distribution of
the state space at time t given that u ∈ Ω is the initial state. Let π denote
the stationary distribution of M. A Markov chain is said to be ergodic if
the probability distribution over Ω converges asymptotically to π, regard-
less of the intial state. A Markov chain is said to be (a) irreducible if for
all u, v ∈ Ω, there exists a t such that P t(u, v) > 0, and (b) aperiodic if
gcd{P (u, u) > 0} = 1, for all u ∈ Ω. Any finite, irreducible, aperiodic
Markov chain is ergodic. A Markov chain is said to be time-reversible with
respect to π if it satisfies the following condition also known as detailed
balanced equations:

π(u)P (u, v) = π(v)P (v, u), ∀u, v ∈ Ω .

The mixing time of a Markov chain is a measure of the time taken by the
chain to converge to its stationary distribution. It is measured by the total
variation distance between the distribution at time t and the stationary

6.6. Sampling Techniques 77

distribution. The total variation distance at time t is

‖P t, π‖tv = max
u∈Ω

1

2

∑

v∈Ω

|P t(u, v)− π(u)| .

For any ǫ > 0, the mixing time τ(ǫ) is given by

τ(ǫ) = min{t : ‖P t′ , π‖tv ≤ ǫ, ∀ t′ ≥ t} .

A Markov chain is said to be rapidly mixing if the mixing time is bounded
by a polynomial in the input and ln ǫ−1. We now describe techniques to
bound the mixing time of Markov chains.

Canonical Paths

Let M be an ergodic, time-reversible Markov chain with state space Ω, tran-
sition probabilties P (·, ·) and stationary distribution π. Given that M satis-
fies the detailed balanced condition, we may view M as an undirected graph
(Ω, E) with vertex set Ω and edge set E = {{u, v} ∈ Ω× Ω : Q(u, v) > 0},
where Q(u, v) = π(u)P (u, v) = π(v)P (v, u).

For every ordered pair (u, v) ∈ Ω×Ω, a canonical path γuv from u to v in
the graph corresponds to a sequence of legal transitions in M that leads from
the initial state u to the final state v. Let Γ = {γuv : u, v ∈ Ω} be the set
of all canonical paths. In order to obtain good bounds on the mixing time,
it is important to choose a set of paths Γ that avoids the creation of “hot
spots:” edges that carry a heavy burden of canonical paths. The degree to
which an even loading has been achieved is measured by a quantity known
as congestion, which is defined as follows:

ρ(Γ) = max
e

1

Q(e)

∑

γuv∋e

π(u)π(v)|γuv | ,

where the maximum is over oriented edges e of (Ω, E) and |γuv| denotes the
length of the path γuv. Intuitively, we expect a Markov chain to be rapidly
mixing if it admits a choice of paths Γ for which the congestion ρ(Γ) is not
too large. This intuition is formalised in the following result due to Sinclair
(1992).

Theorem 6.7 (Sinclair, 1992) Let M be an ergodic, time-reversible Markov
chain with stationary distribution π and self-loop probabilities P (v, v) ≥ 1/2
for all states v ∈ Ω. Let Γ be a set of canonical paths with maximum edge
loading ρ̄ = ρ̄(Γ). Then the mixing time of M satisfies

τu(ǫ) ≤ ρ̄(lnπ(u)−1 + ln ǫ−1) ,

for any choice of initial state u ∈ Ω.

78 Chapter 6. Probabilistic Structured Prediction

Coupling

A coupling is a Markov process (Xt, Yt)
∞
t=0 on Ω × Ω such that each of the

processes Pt and Qt, considered in isolation, is a faithful copy of M, i.e.,

Pr(Xt+1 = x′ | Xt = x ∧ Yt = y) = P (x, x′)

Pr(Yt+1 = y′ | Xt = x ∧ Yt = y) = P (y, y′) ,

and also

Xt = Yt⇒Xt+1 = Yt+1 .

If it can be arranged that the processes (Xt) and (Yt) coalesce rapidly in-
dependent of the initial states X0 and Y0, we may deduce that the Markov
chain M is rapidly mixing. The key result is what is called the “Coupling
Lemma” due to Aldous (1983).

Lemma 6.8 (Aldous, 1983) (Coupling lemma) Suppose M is a count-
able, ergodic Markov chain with transition probabilities P (·, ·) and let (Xt, Yt)

∞
t=0

be a coupling. Suppose t : (0, 1] → N is a function such that Pr(Xt(ǫ) 6=
Yt(ǫ)) ≤ ǫ, for all ǫ ∈ (0, 1], uniformly over the choice of initial state (P0, Q0).
Then the mixing time τ(ǫ) of M is bounded from above by t(ǫ).

Path Coupling

Although coupling is a powerful technique to bound the mixing time, it
may not be easy to measure the expected change in distance between two
arbitrary configurations. The idea of path coupling introduced by Bubley
and Dyer (1997) is to consider only a small set of pairs of configurations
U ⊆ Ω×Ω that are close to each other w.r.t. a distance metric δ : Ω×Ω→
R. Suppose we are able to measure the expected change in distance for
all pairs in U . Now, for any pair P,Q ∈ Ω, we define a shortest path
P = r0, r1, . . . , rs = Q of length s from P to Q (sequence of transitions of
minimal weight from P to Q), where (rl, rl+1) ∈ U for all 0 ≤ l < s. If we
define U appropriately, then δ(P,Q) =

∑s−1
l=0 δ(rl, rl+1), and by linearity of

expectation, the expected change in distance between the pair (P,Q) is just
the sum of the expected change between the pairs (zl, zl+1). We now state
the “path coupling lemma” of Bubley and Dyer (1997).

Lemma 6.9 (Bubley and Dyer, 1997) (Path Coupling lemma) Let δ be
an integer valued metric defined on Ω × Ω, which takes values in [[B]]. Let
U be a subset of Ω×Ω such that for all (Pt, Qt) ∈ Ω×Ω there exists a path
Pt = r0, r1, . . . , rs = Qt between Pt and Qt where (rl, rl−1) ∈ U for 0 ≤ l < s
and

∑s−1
l=0 δ(rl, rl+1) = δ(Pt, Qt). Suppose a coupling (P,Q) 7→ (P ′, Q′) of

the Markov chain M is defined on all pairs of (P,Q) ∈ U such that there
exists a β < 1 such that E[δ(P ′, Q′)] ≤ βE[δ(P,Q)] for all (P,Q) ∈ U .

6.6. Sampling Techniques 79

Then the mixing time τ(ǫ) is bounded from above as follows:

τ(ǫ) ≤ lnBǫ−1

1− β .

Coupling from the Past

Coupling from the past (CFTP) (Propp and Wilson, 1996; Huber, 1998) is a
technique used to obtain an exact sample from the stationary distribution of
a Markov chain. The idea is to simulate Markov chains forward from times
in the past, starting in all possible states, as a coupling process. If all the
chains coalesce at time 0, then Propp and Wilson (1996) showed that the
current sample has the stationary distribution.

Suppose M is an ergodic (irreducible, aperiodic) Markov chain with (fi-
nite) state space Ω, transition probabilties P (·, ·) and stationary distribution
π. Suppose F is a probability distribution on functions f : Ω→ Ω with the
property that for every u ∈ Ω, its image f(u) is distributed according to the
transition probability of M from state u, i.e.,

Pr
F

(f(u) = v) = P (u, v), ∀u, v ∈ Ω .

To sample f ∈ F , we perform the following steps: (i) sample, indepen-
dently for each u ∈ Ω, a state vu from the distribution P (v, ·), and (ii) let
f : Ω → Ω be the function mapping from u to vu for all u ∈ Ω. Now, let
fs, . . . , ft−1 : Ω → Ω with s < t be an indexed sequence of functions, and
denote by F t

s : Ω→ Ω the iterated function composition

F t
s = ft−1 ◦ ft−2 ◦ · · · ◦ fs+1 ◦ fs .

A t-step simulation of M can be performed as follows starting from
some initial state u0 ∈ Ω: (i) select f0, . . . , ft−1 independently from F , (ii)
compute the composition F t

0 = ft−1 ◦ ft−2 ◦ · · · ◦ f1 ◦ f0, and (iii) return
F t

0(u0). Of course, this is very inefficient requiring about |Ω| times the work
of a direct simulation. However, this view will be convenient to explain the
conceptual ideas behind CFTP as given below.

For fixed transition probabilities P (·, ·), there is a considerable flexibility
in the choice of distributions F , allowing us to encode uniform couplings over
the entire state space. The Coupling Lemma can be stated in this setting.
Suppose f0, . . . , ft−1 are sampled independently from F . If there exists a
function t : (0, 1]→ N such that

Pr[F
t(ǫ)
0 (·) is not a constant function] ≤ ǫ ,

then the mixing time τ(ǫ) of M is bounded by t(ǫ). Thus, in principle, it
is possible to estimate the mixing time of M by observing the coalesence
time of the coupling defined by F , and thereby obtain samples from an

80 Chapter 6. Probabilistic Structured Prediction

approximation to the stationary distribution of M by simulating the Markov
chain for a number of steps comparable with the empirically observed mixing
time. However, in practice, the explicit evaluation of F t

0 is computationally
infeasible.

The first idea underlying Propp and Wilson’s proposal was to work with
F 0
−t instead of F t

0 , i.e., by “coupling from the past”, it is possible to obtain
samples from the exact stationary distribution.

Theorem 6.10 Suppose that f−1, f−2, . . . is a sequence of independent sam-
ples from F . Let the stopping time T be defined as the smallest number t
for which F 0

−t(·) is a constant function, and assume that ET <∞. Denote

by F̂ 0
−∞ the unique value of F 0

−T (which is defined with probability 1). Then

F̂ 0
−∞ is distributed according to the stationary distribution of M.

The second idea underlying Propp and Wilson’s proposal is that in
certain cases, specifically when the coupling F is “monotone”, it is pos-
sible to evaluate F 0

−T without explicity computing the function composition
f1 ◦f2 ◦· · · ◦f−T+1 ◦f−T . Suppose that the state space Ω is partially ordered
� with maximal and minimal elements ⊤ and ⊥ respectively. A coupling F
is monotone if it satisfies the following property:

u � v⇒ f(u) � f(v), ∀u, v ∈ Ω .

If F is montone, then F 0
−t(⊤) = F 0

−t(⊥) implies F 0
−t is a constant function

and that F 0
−t(⊤) = F 0

−t(⊥) = F̂ 0
∞. Therefore, it suffices to track the two

trajectories starting at ⊤ and ⊥ instead of tracking |Ω| trajectories. Since
only an upper bound on T is needed for computing F̂ 0

∞, a doubling scheme
t = 1, 2, 4, 8, 16, . . . is typically used rather than iteratively computing F 0

−t

for t = 0, 1, 2, 3, 4,

6.6.2 A Meta Markov chain

The main contribution of this section is a generic, ‘meta’ approach that can
be used to sample structures from distributions of interest given that there
exists an exact uniform sampler. We start with the design of a Markov chain
based on the Metropolis process (Metropolis et al., 1953) to sample according
to exponential family distributions p(y | x,w) under the assumption that
there exists an exact uniform sampler for Y. Consider the following chain
Meta: If the current state is y, then

1. select the next state z uniformly at random, and

2. move to z with probability min[1, p(z | x,w)/p(y | x,w)].

6.6. Sampling Techniques 81

Exact Sampling Using Coupling from the Past

As described in the previous section, CFTP is a technique to obtain an
exact sample from the stationary distribution of a Markov chain. To apply
CFTP for Meta, we need to bound the expected number of steps T until
all Markov chains are in the same state. For the chain Meta, this occurs as
soon as we update all the states, i.e., if we run all the parallel chains with
the same random bits, once they are in the same state, they will remain
coalesced. This happens as soon as they all accept an update (to the same
state z) in the same step. First observe that, using Cauchy-Schwarz and
triangle inequalities, we have

∀y, y′ ∈ Y : |
〈

φ(x, y)− φ(x, y′), w
〉

| ≤ 2BR .

The probability of an update is given by

min
y,y′

[

1,
p(y | x,w)

p(y′ | x,w)

]

≥ exp(−2BR) .

We then have

ET ≤1× exp[−2BR]+

2× (1− exp[−2BR])× exp[−2BR]+

3× (1− exp[−2BR])2 × exp[−2BR] + · · ·

By using the identity
∑∞

i=0 i×ai = a−1/(a−1−1)2 with a = (1−exp[−2BR]),
we get ET = exp[2BR]. We now state the main result of this section.

Theorem 6.11 The Markov chain Meta can be used to obtain an exact
sample according to the distribution π = p(y | x,w) with expected running
time that satisfies ET ≤ exp(2BR).

Note that the running time of this algorithm is random. To ensure that the
algorithm terminates with a probability at least (1− δ), it is required to run
it for an additional factor of ln(1/δ) time (Huber, 1998). In this way, we
can use this algorithm in conjunction with the approximation algorithm for
computing the partition function resulting in an FPRAS. The implication
of this result is that we only need to have an exact uniform sampler in order
to obtain exact samples from other distributions of interest.

We conclude this section with a few remarks on the bound in Theo-
rem 6.11 and its practical implications. At first glance, we may question the
usefulness of this bound because the constants B and R appear in the ex-
ponent. But note that we can always set R = 1 by normalising the features.
Also, the bound on B (cf. Proposition 6.1) could be loose in practice as
observed recently by Do et al. (2009), and thus the value of B could be way
below its upper bound

√

ln |Y|/λ. We could then employ techniques similar

82 Chapter 6. Probabilistic Structured Prediction

to those described by Do et al. (2009) to design optimisation strategies that
work well in practice. Also, note that the problem is mitigated to a large
extent by setting λ ≥ ln |Y| and R = 1.

While in this section we focused on designing a ‘meta’ approach for sam-
pling, we would like to emphasise that it is possible to derive improved
mixing time bounds by considering each combinatorial structure individu-
ally. As an example, we design a Markov chain to sample from the vertices
of a hypercube and analyse its mixing time using path coupling. Details are
delegated to Appendix C.3.

Mixing Time Analysis using Coupling

We now analyse the Markov chain Meta using coupling and the coupling
lemma (cf. Lemma 6.8).

Theorem 6.12 The mixing time of Meta with an exact uniform sampler
is bounded from above as follows:

⌈(ln ǫ−1)/ ln(1− exp(−2BR))−1⌉ .

Proof Using Cauchy-Schwarz and triangle inequalities, we have

∀y, y′ ∈ Y : |〈φ(x, y) − φ(x, y′), w〉| ≤ 2BR .

The probability of an update is

min
y,y′

[

1,
p(y|x,w)

p(y′|x,w)

]

≥ exp(−2BR) .

The probability of not updating for T steps is therefore less than (1 −
exp(−2BR))T . Let

t(ǫ) = ⌈(ln ǫ−1)/ ln(1− exp(−2BR))−1⌉ .

We now only need to show that Pr(Pt(ǫ) 6= Qt(ǫ)) = ǫ. Consider

Pr(Pt(ǫ) 6= Qt(ǫ))

≤ (1− exp(−2BR))(ln ǫ)/ ln(1−exp(−2BR))

= exp[ln(1− exp(−2BR) + ǫ− 1 + exp(−2BR))]

= ǫ .

The bound follows immediately from the Coupling Lemma. �

6.7. Summary 83

6.7 Summary

The primary focus of this chapter was to rigorously analyse probabilistic
structured prediction models using tools from MCMC theory. We designed
algorithms for approximating the partition function and the gradient of the
log partition function with provable guarantees. We also presented a simple
Markov chain based on Metropolis process that can be used to sample ac-
cording to exponential family distributions given that there exists an exact
uniform sampler.

If we were to solve the optimisation problem (6.1) using iterative tech-
niques like gradient descent, then we have to run Markov chain simulations
for every training example in order to compute gradients in any iteration
of the optimisation routine. We therefore argue for using online convex op-
timisation techniques (Hazan et al., 2007; Shalev-Shwartz et al., 2007) as
these would result in fast, scalable algorithms for structured prediction.

Chapter 7

Conclusions

State-of-the-art approaches for structured prediction like structured SVMs
(Tsochantaridis et al., 2005) have the flavour of an algorithmic template in
the sense that if, for a given output structure, a certain assumption holds,
then it is possible to train the learning model and perform inference effi-
ciently. The standard assumption is that the argmax problem

ŷ = argmax
z∈Y

f(x, z)

is tractable for the output set Y. Thus, all that is required to learn and
predict a new structure is to design an algorithm to solve the argmax prob-
lem efficiently in polynomial time. The primary focus of this thesis was
on predicting combinatorial structures such as cycles, partially ordered sets,
permutations, and several other graph classes. We studied the limitations of
existing structured prediction models (Collins, 2002; Tsochantaridis et al.,
2005; Taskar et al., 2005) for predicting these structures. The limitations are
mostly due to the argmax problem being intractable. In order to overcome
these limitations, we introduced new assumptions resulting in two novel
algorithmic templates for structured prediction.

Our first assumption is based on counting combinatorial structures. We
proposed a kernel method that can be trained efficiently in polynomial time
and also designed approximation algorithms to predict combinatorial struc-
tures. The resulting algorithmic template is a generalisation of the classical
regularised least squares regression for structured prediction. It can be used
to solve several learning problems including multi-label classification, ordi-
nal regression, hierarchical classification, and label ranking in addition to
the aforementioned combinatorial structures.

Our second assumption is based on sampling combinatorial structures.
Based on this assumption, we designed approximation algorithms with prov-
able guarantees to compute the partition function of probabilistic models for
structured prediciton where the class conditional distribution is modeled us-
ing exponential families. Our approach uses classical results from Markov

86 Chapter 7. Conclusions

chain Monte Carlo theory (Jerrum and Sinclair, 1996; Randall, 2003). It
can be used to solve several learning problems including but not limited
to multi-label classification, label ranking, and multi-category hierarchical
classification.

We now point to some directions for future research. In Section 5.4,
we designed approximation algorithms for solving the argmax problem for
combinatorial output sets, but could do so with only weak approximation
guarantees. While the approximation factor has no effect in training models
such as structured ridge regression (cf. Chapter 5), we believe there is a need
to further investigate the possibilities of designing approximation algorithms
with improved guarantees. We describe two promising directions for future
work below.

Approximate Inference using Simulated Annealing

If we restrict ourselves to linear models, then the argmax problem reduces
to a linear programming problem:

ŷ = argmax
y∈Y

〈w,φ(x, y)〉 .

Recently, Kalai and Vempala (2006) considered using simulated annealing
(Kirkpatrick et al., 1983) to minimise a linear function over an arbitrary
convex set. More precisely, they considered the following linear minimisation
problem: for a unit vector c ∈ Rn and a convex set K ⊂ Rn:

min
z∈K
〈c, z〉 ,

under the assumption that there exists a membership oracle for the set
K. The algorithm, described below, goes through a series of decreasing
temperatures as in simulated annealing, and at each temperature, it uses
a random walk based sampling algorithm (Lovász and Vempala, 2006) to
sample a point from the stationary distribution whose density is proportional
to exp(−〈c, z〉 /T), where T is the current temperature. Let R be an an
upper bound on the radius of a ball that contains the convex set K, and r
be a lower bound on the radius of a ball around the starting point contained
in K. At every temperature (indexed by i), the algorithm performs the
following steps:

1. Set the temperature Ti = R(1− 1/
√
n)i.

2. Move the current point to a sample from a distribution whose density
is proportional to exp(−〈c, z〉 /Ti), obtained by executing k steps of a
biased random walk (refer (Lovász and Vempala, 2006) for details).

3. Using O∗(n)1 samples observed during the above walk and estimate
the covariance matrix of the above distribution.

1The O∗ notation hides logarithmic factors.

87

Theorem 7.1 (Kalai and Vempala, 2006) For any convex set K ∈ Rn,
with probability 1− δ, the above procedure given a membership oracle for the
convex set K, starting point z0, R, r, I = O(

√
n log(Rn/ǫδ)), k = O∗(n3),

and N = O∗(n), outputs a point zI ∈ K such that

〈c, zI〉 ≤ min
z∈K
〈c, z〉 + ǫ .

The total number of calls to the membership oracle is O∗(n4.5).

While the combinatorial structures considered in this work do not form
a convex set, it would be interesting to consider the convex hull of such sets,
for instance, the convex hull of the vertices of a hypercube and derive results
similar in spirit to Theorem 7.1. For sampling, we can use the algorithms
described in Section 6.6 to sample from exponential family distributions.

Approximate Inference using Metropolis Process

The Metropolis process (Metropolis et al., 1953) can be seen as a special
case of simulated annealing with fixed temperature, i.e., the Markov chain
on the state space Ω is designed to be time-homogeneous. This chain can be
used to maximise (or minimise) objective functions f : Ω → R defined on
the combinatorial set Ω (Jerrum and Sinclair, 1996). Consider the follow-
ing chain MC(α) which is similar to the ‘meta’ Markov chain described in
Section 6.6. If the current state is y, then

1. select the next state z uniformly at random, and

2. move to z with probability min(1, αf(y)−f(z)),

where α ≥ 1 is a fixed parameter. The stationary distribution of this chain
is

πα(·) =
αf(·)

Z(α)
,

where Z(α) is the partition function.

Note that πα is a monotonically increasing function of f(·) as desired.
It is now crucial to choose the parameter α appropriately. Having a small
α would make the distribution πα well concentrated whereas having a large
πα would make the chain less mobile and susceptible to locally optimal
solutions. Note than we can analyse the mixing time of this chain using the
techniques described in Section 6.6. The probability of finding the optimal
solution is at least the weight of such solutions in the stationary distribution
πα. Therefore, if we can derive non-trivial upper bounds on the weights of
optimal solutions, then we can be certain of hitting such solutions using
the chain with high probability. The success probability can be boosted by
running the chain multiple times. Choosing an appropriate α and deriving

88 Chapter 7. Conclusions

non-trivial upper bounds on the the weights of optimal solutions is an open
question. Note that if we set α = exp(1), we are essentially sampling from
exponential family distributions.

Appendix A

Kernels and Low-dimensional

Mappings

The Johnson-Lindenstrauss lemma (Johnson and Lindenstrauss, 1984; Das-
gupta and Gupta, 1999) states that any set of m points in high dimensional
Euclidean space can be mapped to an n = O(lnm/ǫ2) Euclidean space such
that the distance between any pair of points are preserved within a (1 ± ǫ)
factor, for any 0 < ǫ < 1. Such an embedding is constructed by projecting
the m points onto a random k-dimensional hypersphere. A similar result
was proved by Arriaga and Vempala (1999) and Balcan et al. (2006) in the
context of kernels. Given a kernel matrix K in the (possibly) infinite dimen-
sional φ-space, it is possible to compute a low-dimensional mapping of the
data points that approximately preserves linear separability. Specifically, if
the data points are separated with a margin γ in the φ-space, then a random
linear projection of this space down to a space of dimension n = O(1

γ2 ln 1
ǫδ)

will have a linear separator of error at most ǫ with probability at least 1− δ.
One of the drawbacks of using this random projection method for low-

dimensional mapping of kernels is the need to store a dense random matrix
of size n×m which is prohibitively expensive for large-scale applications. To
circumvent this problem, one could resort to Nyström approximation of the
eigenvectors and eigenvalues of the kernel matrix using random sampling.
This technique is a fast, scalable version of the classical multi-dimensional
scaling (MDS) (see (Platt, 2005) and references therein), and is referred to
as NMDS in the following.

Let K be a positive definite matrix. Choose k ≪ m samples (or data
points) at random, re-order the matrix such that these samples appear at
the beginning, and partition it as

K =

(

A B
B⊤ C

)

.

Let A = UΛU⊤, n be the dimension of the embedding, U[n] and Λ[n] be

90 Chapter A. Kernels and Low-dimensional Mappings

the submatrices corresponding to the n largest eigenvectors and eigenvalues
respectively. Then the low-dimensional embedding (matrix) is

(

U[n]Λ
1/2
[n]

B⊤U[n]Λ
−1/2
[n]

)

.

The computational complexity of this approach is O(nkm+ k3).
The NMDS approach cannot be applied if the input matrix is indefi-

nite. For example, in learning on graphs, the input is a sparse adjacency
matrix but not a kernel. In such cases, we would still like to find a low-
dimensional embedding of this graph without the need to compute a kernel
as an intermediate step. Note that if we use the (normalised) Laplacian as
the input, then the algorithm would output the leading eigenvectors, but
we need to compute the trailing eigenvectors of the Laplacian. Fowlkes
et al. (2004) proposed a two-step approach to solve the problem even when
the input matrix is indefinite. First, NMDS is applied to the input ma-
trix. Let Ū⊤ = [U⊤Λ−1U⊤B], Z = ŪΛ1/2 and let V ΣV ⊤ denote the or-
thogonalisation of Z⊤Z. Then the matrix ZVΣ−1/2 contains the leading
orthonormalised approximate eigenvectors of K and the low-dimensional
embedding is given by ZV . The computational complexity is still in the
order of O(nkm+ k3), but with an additional O(k3) orthogonalisation step.

Appendix B

Counting Dicyclic

Permutations

We represent a directed cyclic permutation by the set of (predecessor, successor)-
pairs. For instance, the sequences {abc, bca, cab} are equivalent and we use
{(a, b), (b, c), (c, a)} to represent them. Furthermore, we define ψcyc

(u,v)(y) = 1

if (u, v) ∈ y, i.e., v follows directly after u in y; ψcyc
(u,v)(y) = −1 if (v, u) ∈ y,

i.e., u follows directly after v in y; and 0 otherwise.

For a given alphabet Σ, we are now interested in computing |Ycyc|, the
number of cyclic permutations of subsets of Σ. For a subset of size i there
are i! permutations of which i represent the same cyclic permutation. That
is, there are (i− 1)! cyclic permutations of each subset of size i, and for an
alphabet of size N = |Σ| there are

|Ycyc| =
N
∑

i=3

(

N
i

)

(i− 1)!

different cyclic permutations of subsets of Σ.

Computing Ψcyc is simple. Observe that, for each cyclic permutation
containing a (predecessor, successor)-pair (u, v), there is also exactly one
cyclic permutation containing (v, u). Hence the sum over each feature is
zero and Ψcyc = 0 (where 0 is the vector of all zeros).

It remains to compute Ccyc. Each element of this matrix is computed as

Ccyc
(u,v),(u′,v′) =

∑

y∈Ycyc

ψcyc
(u,v)(y)ψ

cyc
(u′,v′)(y) .

As seen above, for u = u′ and v = v′ there are as many cyclic permutations
for which ψcyc

(u,v) = +1 as there are cyclic permutations for which ψcyc
(u,v) = −1.

In both cases, ψcyc
(u,v)(y)ψ

cyc
(u′,v′)(y) = +1, and to compute Ccyc

(u,v),(u,v) it suffices

to compute the number of cyclic permutations containing (u, v) or (v, u).

92 Chapter B. Counting Dicyclic Permutations

There are (i− 2)! different cyclic permutations of each subset of size i that
contain (u, v). We thus have

Ccyc
(u,v),(u,v) = 2

N
∑

i=3

(

N − 2
i− 2

)

(i− 2)! .

Similarly, for u = v′ and v = u′, we have ψcyc
(u,v)(y)ψ

cyc
(u′,v′)(y) = −1 and

Ccyc
(u,v),(v,u) = −2

N
∑

i=3

(

N − 2
i− 2

)

(i− 2)! .

For u 6= u′ 6= v 6= v′ 6= u, we observe that there are as many cyclic
permutations containing (u, v) and (u′, v′) as there are cyclic permutations
containing (u, v) and (v′, u′), and hence in this case Ccyc

(u,v),(u′,v′) = 0. Finally,

we need to consider Ccyc
(u,v),(u,v′), C

cyc
(u,v),(u′,v), C

cyc
(u,v),(v,v′), and Ccyc

(u,v),(u′,u). Here
we have

Ccyc
(u,v),(u,v′) = Ccyc

(u,v),(u′,v) = −2
N
∑

i=3

(

N − 3
i− 3

)

(i− 3)! and

Ccyc
(u,v),(v,v′) = Ccyc

(u,v),(u′,u) = +2
N
∑

i=3

(

N − 3
i− 3

)

(i− 3)! .

Appendix C

Appendix for Chapter 6

C.1 Approximating the Partition Function using

Approximate Samples

In Section 6.3, we designed an FPRAS for approximating the partition func-
tion under the assumption that there exists an exact sampler. We now con-
sider the case where we only have approximate samples resulting from a
truncated Markov chain. Let Ti denote the simulation length of the Markov
chains, for all i ∈ [[l]]. The main result of this section is as follows:

Theorem C.1 Suppose the sample size S = ⌈65ǫ−2l exp(2/p)⌉ and suppose
the simulation length Ti is large enough that the variation distance of the
Markov chain from its stationary distribution πβi

is at most ǫ/5l exp(2/p).
Under the assumption that the chain is rapidly mixing, there exists an
FPRAS with ǫ as the error parameter for computing the partition function.

Proof The proof again uses techniques described in (Jerrum and Sin-
clair, 1996). The bound Varfi/(E fi)

2 ≤ exp(2/p) (from Proposition 6.3)
w.r.t. the random variable fi will play a central role in the proof. We
cannot use this bound per se to prove approximation guarantees for the
partition function Z(w | x). This is due to the fact that the random vari-
able fi is defined w.r.t. the distribution πβi

, but our samples are drawn
from a distribution π̂βi

resulting from a truncated Markov chain, whose
variation distance satisfies |π̂βi

− πβi
| ≤ ǫ/5l exp(2/p). Therefore, we need

to obtain a bound on Varf̂i/(E f̂i)
2 w.r.t. the random variable f̂i defined

analogously to fi with samples drawn from the distribution π̂βi
. An in-

teresting observation is the fact that Lemma 6.4 still holds for ρ̂i, i.e.,
exp(1/p)− 1 ≤ ρ̂i ≤ exp(−1/p) + 1, for all integers p ≥ 3, and using similar
analysis that followed Lemma 6.4, we get

Varf̂i

(E f̂i)2
≤ exp(2/p), ∀ i ∈ [[l]] .

94 Chapter C. Appendix for Chapter 6

Also, note that |π̂βi
−πβi

| ≤ ǫ/5l exp(2/p) implies |ρ̂i − ρi| ≤ ǫ/5l exp(1/p)
(using the fact that exp(−1/p) ≤ ρi ≤ exp(1/p)). Therefore,

(1− ǫ

5l
)ρi ≤ ρ̂i ≤ (1 +

ǫ

5l
)ρi . (C.1)

Equipped with these results, we are ready to compute the sample size
S needed to obtain the desired approximation guarantee in the FPRAS.

Let X
(1)
i , . . . ,X

(S)
i be a sequence of S independent copies of the random

variable f̂i obtained by sampling from the distribution π̂βi
, and let X̄i =

S−1
∑S

j=1X
(j)
i be the sample mean. We have E X̄i = E f̂i = ρ̂i, and

VarX̄i = S−1Varf̂i. The final estimator ρ̂ = Z(w | x)−1 is the random
variable X =

∏l
i=1 X̄i with EX =

∏l
i=1 ρ̂i = ρ̂. From (C.1), we have

(1− ǫ

4
)ρ ≤ ρ̂ ≤ (1 +

ǫ

4
)ρ . (C.2)

Now, consider

VarX

(EX)2
=

l
∏

i=1

(

1 +
VarX̄i

(E X̄i)2

)

− 1

≤
(

1 +
exp(2

p)

S

)l

− 1

≤ exp

(

l exp(2
p)

S

)

− 1

≤ ǫ2/64 ,

if we choose S = ⌈65ǫ−2l exp(2/p)⌉ (because exp(a/65) ≤ 1 + a/64 for
0 ≤ a ≤ 1). By applying Chebyshev’s inequality to X, we get

Pr[(|X − ρ̂|) > (ǫ/4)ρ̂] ≤ 16

ǫ2
VarX

(EX)2
≤ 1

4
,

and therefore, with probability at least 3/4, we have

(1− ǫ

4
)ρ̂ ≤ X ≤ (1 +

ǫ

4
)ρ̂ .

Combining the above result with (C.2), we see that with probability at least
3/4, the partition function Z(w | x) = X−1 lies within the ratio (1 ± ǫ/4)
of ρ−1. Polynomial run time follows from the assumption that the Markov
chain is rapidy mixing. �

C.2. Approximating the Gradient of the Log Partition Function using a

Reduction from Counting to Sampling 95

C.2 Approximating the Gradient of the Log Parti-

tion Function using a Reduction from Count-

ing to Sampling

In this section, we show how to approximate the gradient of the log par-
tition function using the reduction from counting to sampling described in
Section 6.3. Recall that the gradient of the log partition function generates
the first order moment (mean) of φ(x, y), i.e.,

∇w lnZ(w | x) =

∑

y∈Y

φ(x, y) exp(〈w,φ(x, y)〉)
∑

y∈Y

exp(〈w,φ(x, y)〉)

= E
y∼p(y|x,w)

[φ(x, y)] .

The numerator in the above expression is the quantity of interest and it
can be seen as a weighted variant of the partition function Z(w | x) where
the weights are the features φ(x, y). We will use φj(x, y) to denote the jth
component of φ(x, y) and let Zj(w | x) =

∑

y∈Y φj(x, y) exp(〈φ(x, y), w〉).
Consider again the random variable fi(y) = exp[(βi−1 − βi) 〈φ(x, y), w〉],
where y is now chosen according to the distribution

πj
βi

=
φj(x, y) exp(〈φ(x, y), βiw〉)

∑

y∈Y φj(x, y) exp(〈φ(x, y), βiw〉)
,

i.e, we use the same random variable as defined in Section 6.3, but sample
according to a slightly different distribution as given above. It is easy to
verify that fi(y) is an unbiased estimator for the ratios in the telescoping
product of the quantity of interest, i.e,

E
y∼πj

βi

fi =
Zj(βi−1w | x)
Zj(βiw | x)

, ∀i ∈ [[l]] ,

where l is the length of the cooling schedule (cf. Section 6.3). It remains to
analyse the mixing time of the Markov chain with stationary distribution πj

βi
.

Since features can take the value of zero, Theorems 6.11 and 6.12 cannot
be applied. One solution to this problem would be to modify the state
space of the Markov chain in such a way that we sample (uniformly) only
those structures satisfying |φj(x, y)| ≥ γ, where γ is a parameter, and then
run the Metropolis process. It would be interesting to further analyse the
approximation that is introduced by discarding all those structures satisfying
|φj(x, y)| < γ, but we do not focus on this aspect of the problem here.

A note on computational issues follows. At first glance, it may seem com-
putationally inefficient to run the machinery for every feature, but note that
it is possible to reuse the computations of individual ratios of the telescoping

96 Chapter C. Appendix for Chapter 6

product by designing an appropriate cooling schedule. First, consider the
following expression:

∑

y∈Y

φj(x, y) exp(〈w,φ(x, y)〉)

=
∑

y∈Y

exp(〈w,φ(x, y)〉 + lnφj(x, y))

=
∑

y∈Y

exp(cj 〈w,φ(x, y)〉) ,

where cj = 1 + lnφj(x, y)/ exp(〈w,φ(x, y)〉). Let c = maxj cj . The cooling
schedule is then given as

0,
1

q
,
2

q
,
3

q
, . . . ,

cp⌊R‖w‖⌋
q

, 1 ,

where q = cpR‖w‖.

C.3 Mixing Time Analysis of MCcube using Path

Coupling

The state space Ω is the vertices of the d-dimensional hypercube {0, 1}d.
Consider the following Markov chain MCcube on Ω. Initialise at 0 and repeat
the following steps: (i) pick (i, b) ∈ [[d]] × {0, 1}, and (ii) move to the next

state, formed by changing ith bit to b, with probability min
(

1, π(v)
π(u)

)

. Let

d(·, ·) denote the Hamming distance. The transition probabilities of this
chain are given by

P (u, v) =

1
2dmin

(

1, π(v)
π(u)

)

, if d(u, v) = 1;

1
2 , if u = v;

0, otherwise .

We now analyse the mixing time of MCcube using path coupling (cf.
Section 6.6.1). Recall that the first step in using path coupling is to define
a coupling on pairs of states that are close to each other according to some
distance metric δ : Ω× Ω→ R on the state space.

Theorem C.2 The Markov chain MCcube on the vertices of a d-dimensional
hypercube has mixing time τ(ǫ) = O(d ln(dǫ−1)).

Proof We will first prove the bound on the mixing time for uniform sta-
tionary distribution and later generalise it to arbitrary distributions.

We choose Hamming distance as the metric, and consider pairs of states
(u, v) that differ by a distance of 1. To couple, we choose (i, b) ∈ [[d]]×{0, 1}

C.3. Mixing Time Analysis of MCcube using Path Coupling 97

uniformly at random, and then update to (u′, v′) formed by changing ith bit
to b if possible. We now need to show that the expected change in distance
due to this update never increases. More precisely, we need to prove that

E[δ(u′, v′)] = βδ(u, v), β ≤ 1 ,

and invoke the path coupling lemma (cf. Lemma 6.9) to obtain the final
result. Let u and v differ at the j-th bit. We have the following two cases.

• Case 1: i 6= j. In this case, if ui = vi = b, then there is no update
and therefore no change in distance. If ui = vi 6= b, then both u
and v update their i-th bit and therefore, again, there is no change in
distance.

• Case 2: i = j. In this case, there is definitely a decrease in distance
with probability 1/d as one of u or v (but not both) will update their
i-th bit.

We therefore have

E[δ(u′, v′)] = 1− 1

d

=

(

1− 1

d

)

δ(u, v) (since δ(u, v) = 1)

= βδ(u, v)

with β ≤ 1 as desired. Invoking the path coupling lemma gives us the
following bound on the mixing time

τ(ǫ) ≤ d ln(dǫ−1) .

Let z be the new state formed in cases 1 and 2 above. For non-uniform
distributions, we have the following:

E[δ(u′, v′)] = 1 +
d− 1

2d
[P (u, z)(1 − P (v, z)) + P (v, z)(1 − P (u, z))]

− 1

2d
[P (u,w) + P (v,w)] .

Note that z differs from u and v by a single bit, and therefore under the
assumptions that

P (u, z) = min

[

1,
π(z)

π(u)

]

≈ 1 and

P (v, z) = min

[

1,
π(z)

π(v)

]

≈ 1 ,

we have, once again,
E[δ(u′, v′)] = βδ(u, v) ,

with β ≤ 1. �

Bibliography

Nir Ailon. Aggregation of partial rankings, p-ratings and top-m lists. In
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, 2007.

Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent
information: Ranking and clustering. Journal of the ACM, 55(5), 2008.

David Aldous. Random walks on finite groups and rapidly mixing markov
chains. Séminaire de probabilités de Strasbourg, 17:243–297, 1983.

Yasemin Altun, Thomas Hofmann, and Mark Johnson. Discriminative learn-
ing for label sequences via boosting. In Advances in Neural Information
Processing Systems 15, 2002.

Yasemin Altun, Mark Johnson, and Thomas Hofmann. Loss functions and
optimization methods for discriminative learning of label sequences. In
Proceedings of the Conference on Empirical Methods in Natural Language
Processing, 2003.

Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jor-
dan. An introduction to MCMC for machine learning. Machine Learning,
50(1-2):5–43, 2003.

Dragomir Anguelov, Benjamin Taskar, Vassil Chatalbashev, Daphne Koller,
Dinkar Gupta, Geremy Heitz, and Andrew Y. Ng. Discriminative learning
of Markov random fields for segmentation of 3D scan data. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2005.

Rosa I. Arriaga and Santosh Vempala. An algorithmic theory of learning:
Robust concepts and random projection. In Proceedings of the 40th An-
nual Symposium on Foundations of Computer Science, 1999.

G. Ausiello and A. Marchetti-Spaccamela. Toward a unified approach for the
classification of NP-complete optimization problems. Theoretical Com-
puter Science, 12(1):83–96, September 1980.

100 BIBLIOGRAPHY

Gökhan H. Bakir, Thomas Hofmann, Bernhard Schölkopf, Alexander J.
Smola, Ben Taskar, and S.V.N. Vishwanathan. Predicting Structured
Data. MIT Press, Cambridge, Massachusetts, USA, 2007.

Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. Kernels as fea-
tures: On kernels, margins, and low-dimensional mappings. Machine
Learning, 65(1):79–94, 2006.

Maria-Florina Balcan, Nikhil Bansal, Alina Beygelzimer, Don Coppersmith,
John Langford, and Greg Sorkin. Robust reductions from ranking to
classification. Machine Learning Journal, 72(1-2):139–153, 2008.

John Bartholdi III, Craig Tovey, and Michael Trick. Voting schemes for
which it can be difficult to tell who won the election. Social Choice and
Welfare, 6(2):157–165, 1989.

Andreas Björklund, Thore Husfeldt, and Sanjeev Khanna. Approximating
longest directed paths and cycles. In Proceedings of the 31st International
Colloquium on Automata, Languages and Programming, 2004.

H.D. Block. The perceptron: A model for brain functioning. Reviews of
Modern Physics, 34:123–135, 1962.

Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik. A training al-
gorithm for optimal margin classifiers. In Proceedings of the 5th Annual
ACM Conference on Computational Learning Theory, 1992.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
Univeristy Press, 2004.

L. M. Bregman. The relaxation method of finding the common points of
convex sets and its application to the solution of problems in convex pro-
gramming. USSR Computational Mathematics and Mathematical Physics,
7:200–217, 1967.

Graham Brightwell and Peter Winkler. Counting linear extensions. Order,
8(3):225–242, 1992.

Klaus Brinker and Eyke Hüllermeier. Case-based label ranking. In Proceed-
ings of the 17th European Conference on Machine Learning, 2006.

Klaus Brinker and Eyke Hüllermeier. Case-based multilabel ranking. In
Proceedings of the 20th International Joint Conference on Artificial Intel-
ligence, 2007.

Russ Bubley and Martin E. Dyer. Path coupling: A technique for prov-
ing rapid mixing in Markov chains. In Proceedings of the 38th Annual
Symposium on Foundations of Computer Science, 1997.

BIBLIOGRAPHY 101

Tibério S. Caetano, Julian John McAuley, Li Cheng, Quoc V. Le, and
Alexander J. Smola. Learning graph matching. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 31(6):1048–1058, 2009.

Nicolò Cesa-Bianchi, Claudio Gentile, and Luca Zaniboni. Incremental al-
gorithms for hierarchical classification. Journal of Machine Learning Re-
search, 7:31–54, 2006.

Weiwei Cheng and Eyke Hüllermeier. Instance-based label ranking using the
Mallows model. In Proceedings of the Preference Learning Workshop at the
European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases, 2008.

Weiwei Cheng, Jens C. Huhn, and Eyke Hüllermeier. Decision tree and
instance-based learning for label ranking. In Proceedings of the 26th An-
nual International Conference on Machine Learning, 2009.

Michael Collins. Discriminative training methods for hidden Markov models:
Theory and experiments with perceptron algorithms. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing, 2002.

Michael Collins, Robert E. Schapire, and Yoram Singer. Logistic regression,
AdaBoost and Bregman distances. Machine Learning, 48(1-3):253–285,
2002.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
Learning, 20(3):273–297, 1995.

Koby Crammer and Yoram Singer. A family of additive online algorithms
for category ranking. Journal of Machine Learning Research, 3:1025–1058,
2003.

Koby Crammer and Yoram Singer. Loss bounds for online category ranking.
In Proceedings of the 18th Annual Conference on Learning Theory, 2005.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and
Yoram Singer. Online passive-aggressive algorithms. Journal of Machine
Learning Research, 7:551–585, 2006.

G. Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals, and Systems, 2(4):303–314, 1989.

Sanjoy Dasgupta and Anupam Gupta. An elementary proof of the John-
son–Lindenstrauss lemma. Technical Report TR 99–006, University of
California, Berkeley, 1999.

Hal Daumé III. Practical Structured Learning Techniques for Natural Lan-
guage Processing. PhD thesis, University of Southern California, Los An-
geles, CA, August 2006.

102 BIBLIOGRAPHY

Ofer Dekel, Christopher D. Manning, and Yoram Singer. Log-linear models
for label ranking. In Advances in Neural Information Processing Systems
16, 2003.

Ofer Dekel, Shai Shalev-Shwartz, and Yoram Singer. The forgetron: A
kernel-based perceptron on a budget. SIAM Journal on Computing, 37
(5):1342–1372, 2008.

Arthur Dempster, Nan Laird, and Donald Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), 39(1):1–38, 1977.

Chuong B. Do, Quoc V. Le, and Chuan-Sheng Foo. Proximal regularization
for online and batch learning. In Proceedings of the 26th International
Conference on Machine Learning, 2009.

Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggrega-
tion methods for the web. In Proceedings of the 10th International World
Wide Web Conference, 2001.

André Elisseeff and Jason Weston. A kernel method for multi-labelled classi-
fication. In Advances in Neural Information Processing Systems 14, 2001.

Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–
211, 1990.

Dumitru Erhan, Pierre-Jean L’heureux, Shi Yi Yue, and Yoshua Bengio.
Collaborative filtering on a family of biological targets. Journal of Chem-
ical Information and Modeling, 46(2):626–635, 2006.

Ronald Fagin, Ravi Kumar, Mohammad Mahdian, D. Sivakumar, and Erik
Vee. Comparing and aggregating rankings with ties. In Proceedings of
the 23rd ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, 2004.

Thomas Finley and Thorsten Joachims. Training structural SVMs when
exact inference is intractable. In Proceedings of the 25th International
Conference on Machine Learning, 2008.

Charless Fowlkes, Serge Belongie, Fan R. K. Chung, and Jitendra Malik.
Spectral grouping using the Nyström method. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 26(2):214–225, 2004.

Paolo Frasconi and Andrea Passerini. Predicting the geometry of metal
binding sites from protein sequence. In Advances in Neural Information
Processing Systems 21, 2008.

BIBLIOGRAPHY 103

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of Computer and
System Sciences, 55(1):119–139, 1997.

Yoav Freund and Robert E. Schapire. Large margin classification using the
perceptron algorithm. Machine Learning, 37(3):277–296, 1999.

Jon Froehlich and John Krumm. Route prediction from trip observations.
In Society of Automotive Engineers World Congress, 2008.

Johannes Fürnkranz. Round robin classification. Journal of Machine Learn-
ing Research, 2:721–747, 2002.

Johannes Fürnkranz and Eyke Hüllermeier. Pairwise preference learning
and ranking. In Proceedings of the 14th European Conference on Machine
Learning, 2003.

Johannes Fürnkranz, Eyke Hüllermeier, Eneldo Loza Menćıa, and Klaus
Brinker. Multilabel classification via calibrated label ranking. Machine
Learning, 73(2):133–153, 2008.

Thomas Gärtner. Kernels for Structured Data. PhD thesis, Universität
Bonn, 2005.

Venkatesan Guruswami, Rajsekar Manokaran, and Prasad Raghavendra.
Beating the random ordering is hard : Inapproximability of maximum
acyclic subgraph. In Proceedings of the 49th Annual IEEE Symposium on
Foundations of Computer Science., 2008.

Magnús M. Halldórsson. Approximations of weighted independent set and
hereditary subset problems. Journal of Graph Algorithms and Applica-
tions, 4(1), 2000.

Sariel Har-Peled, Dan Roth, and Dav Zimak. Constraint classification for
multiclass classification and ranking. In Advances in Neural Information
Processing Systems 15, 2002a.

Sariel Har-Peled, Dan Roth, and Dav Zimak. Constraint classification: A
new approach to multiclass classification. In Proceedings of the 13th In-
ternational Conference on Algorithmic Learning Theory, 2002b.

Refael Hassin and Samir Khuller. z-approximations. Journal of Algorithms,
41(2):429–442, 2001.

Refael Hassin and Shlomi Rubinstein. Approximations for the maximum
acyclic subgraph problem. Information Processing Letters, 51:133–140,
1994.

104 BIBLIOGRAPHY

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms
for online convex optimization. Machine Learning, 69(2-3):169–192, 2007.

Sepp Hochreiter and Juërgen Schmidhuber. Long short-term memory. Neu-
ral Computation, 9(8):1735–1780, 1997.

Mark Huber. Fast perfect sampling from linear extensions. Discrete Math-
ematics, 306(4):420–428, 2006.

Mark Huber. Exact sampling and approximate counting techniques. In Pro-
ceedings of the 30th Annual ACM Symposium on Theory of Computing,
1998.

Eyke Hüllermeier, Johannes Fürnkranz, Weiwei Cheng, and Klaus Brinker.
Label ranking by learning pairwise preferences. Artificial Intelligence, 178:
1897–1916, 2008.

Laurent Jacob and Jean-Philippe Vert. Protein-ligand interaction predic-
tion: An improved chemogenomics approach. Bioinformatics, 24(19):
2149–2156, October 2008.

Mark Jerrum. Mathematical foundations of the Markov chain Monte Carlo
method. In Probabilistic Methods for Algorithmic Discrete Mathematics,
pages 116–165. Springer-Verlag, 1998.

Mark R. Jerrum and Alistair J. Sinclair. The Markov chain Monte
Carlo method: An approach to approximate counting and integration.
In Hochbaum DS(ed) Approximation Algorithms for NP–hard Problems,
pages 482–520. PWS Publishing, Boston, Mass., 1996.

Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random genera-
tion of combinatorial structures from a uniform distribution. Theoretical
Computer Science, 32:169–188, 1986.

W. Johnson and J. Lindenstrauss. Extensions of Lipschitz maps into a
Hilbert space. Contemporary Mathematics, 26:189—-206, 1984.

Michael I. Jordan. Attractor dynamics and parallelism in a connectionist
sequential machine. In Proceedings of the 8th Annual Conference of the
Cognitive Science Society, 1986.

Adam Tauman Kalai and Santosh Vempala. Simulated annealing for convex
optimization. Mathematics of Operations Research, 31(2):253–266, 2006.

Maurice Kendall. A new measure of rank correlation. Biometrika, 30:81–89,
1938.

BIBLIOGRAPHY 105

Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors:
A PTAS for weighted feedback arc set on tournaments. In Proceedings of
the 37th Annual ACM Symposium on Theory of Computing, 2007.

S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated
annealing. Science, 220:671–680, 1983.

Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus
gradient descent for linear predictors. Information and Computation, 132
(1):1–63, 1997.

Jyrki Kivinen, Alexander J. Smola, and Robert C. Williamson. Online learn-
ing with kernels. In Advances in Neural Information Processing Systems
14, 2001.

Thoralf Klein, Ulf Brefeld, and Tobias Scheffer. Exact and approximate
inference for annotating graphs with structural svms. In Proceedings of the
European Conference on Machine Learning, and Principles and Practice
of Knowledge Discovery in Databases, 2008.

Alex Kulesza and Fernando Pereira. Structured learning with approximate
inference. In Advances in Neural Information Processing Systems 20,
2007.

John Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional
random fields: Probabilistic models for segmenting and labeling sequence
data. In Proceedings of the 18th International Conference on Machine
Learning, pages 282–289, 2001.

John Langford and Bianca Zadrozny. Estimating class membership proba-
bilities using classifier learners. In Proceedings of the 10th International
Workshop on Artificial Intelligence and Statistics, 2005.

Quoc V. Le and Alexander J. Smola. Direct optimization of ranking mea-
sures. Technical report, NICTA, Canberra, Australia, 2007.

Guy Lebanon and John Lafferty. Boosting and maximum likelihood for ex-
ponential models. In Advances in Neural Information Processing Systems
14, 2001.

Percy Liang, Alexandre Bouchard-Côté, Dan Klein, and Ben Taskar. An
end-to-end discriminative approach to machine translation. In Proceedings
of the 21st International Conference on Computational Linguistics and the
44th Annual Meeting of the Association for Computational Linguistics,
2006.

László Lovász and Santosh Vempala. Hit-and-run from a corner. SIAM
Journal on Computing, 35(4):985–1005, 2006.

106 BIBLIOGRAPHY

André F. T. Martins, Noah A. Smith, and Eric P. Xing. Polyhedral outer
approximations with application to natural language parsing. In Proceed-
ings of the 26th Annual International Conference on Machine Learning,
2009.

Harald Mauser and Martin Stahl. Chemical fragment spaces for de novo
design. Journal of Chemical Information and Modeling, 47(2):318–324,
2007.

Andrew McCallum. Multi-label text classification with a mixture model
trained by EM. In In Proceedings of the Workshop on Text Learning at
the 16th National Conference on Artificial Intelligence, 1999.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič. Non-
projective dependency parsing using spanning tree algorithms. In Proceed-
ings of the Human Language Technology Conference and the Conference
on Empirical Methods in Natural Language Processing, 2005.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Au-
gusta H. Teller, and Edward Teller. Equation of state calculation by fast
computing machines. Journal of Chemical Physics, 21:1087–1092, 1953.

Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to Com-
putational Geometry. MIT Press, Cambridge, Massachusetts, 1969.

Tom M. Mitchell. The discipline of machine learning. Technical Report
CMU-ML-06-108, School of Computer Science, Carnegie Mellon Univer-
sity, 2006.

Andrew Y. Ng and Michael I. Jordan. On discriminative vs. generative clas-
sifiers: A comparison of logistic regression and näıve Bayes. In Advances
in Neural Information Processing Systems 14, pages 841–848, 2001.

Nils J. Nilsson. Learning Machines: Foundations of Trainable Pattern-
Classifying Systems. McGraw-Hill, New York, NY, USA, 1965.

Albert B. Novikoff. On convergence proofs on perceptrons. In Proceedings
of the Symposium on the Mathematical Theory of Automata, volume 12,
1962.

Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

Christos H. Papadimitriou and Mihalis Yannakakis. The complexity of facets
(and some facets of complexity). Journal of Computer and System Sci-
ences, 28(2):244–259, 1984.

BIBLIOGRAPHY 107

John C. Platt. Fastmap, metricmap, and landmark MDS are all Nyström al-
gorithms. In Proceedings of the 10th International Workshop on Artificial
Intelligence and Statistics, 2005.

James Gary Propp and David Bruce Wilson. Exact sampling with cou-
pled Markov chains and applications to statistical mechanics. Random
Structures and Algorithms, 9(1-2):223–252, 1996.

Lawrence R. Rabiner. A tutorial on hidden Markov models and selected
applications in speech recognition. Proceedings of the IEEE, 2(77):257–
286, 1989.

Dana Randall. Mixing. In Proceedings of the 44th Symposium on Founda-
tions of Computer Science, 2003.

Nathan Ratliff. Learning to Search: Structured Prediction Techniques for
Imitation Learning. PhD thesis, Carnegie Mellon University, Robotics
Institute, May 2009.

Nathan Ratliff, J. Andrew (Drew) Bagnell, and Martin Zinkevich. Maximum
margin planning. In Proceedings of the 23rd International Conference on
Machine Learning, 2006.

Nathan Ratliff, J. Andrew (Drew) Bagnell, and Martin Zinkevich. (online)
subgradient methods for structured prediction. In Proceedings ot the 11th
International Conference on Artificial Intelligence and Statistics, 2007.

Ryan M. Rifkin. Everything old is new again : A fresh look at historical
approaches in machine learning. PhD thesis, Massachusetts Institute of
Technology, Sloan School of Management, 2002.

Ryan M. Rifkin and Ross A. Lippert. Notes on regularized least squares.
Technical Report MIT-CSAIL-TR-2007-025, CBCL Memo 268, MIT
Computer Science and Artificial Laboratory, 2007.

Frank Rosenblatt. The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 65(6):386–
408, 1958.

Juho Rousu, Craig Saunders, Sándor Szedmák, and John Shawe-Taylor.
Learning hierarchical multi-category text classification models. In Pro-
ceedings of the 22nd International Conference on Machine Learning, 2005.

Juho Rousu, Craig Saunders, Sándor Szedmák, and John Shawe-Taylor.
Kernel-based learning of hierarchical multilabel classification models.
Journal of Machine Learning Research, 7(2-3):1601–1626, 2006.

108 BIBLIOGRAPHY

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal rep-
resentations by error propagation. In D. E. Rumelhart, J. L. McClelland,
et al., editors, Parallel Distributed Processing: Volume 1: Foundations,
pages 318–362. MIT Press, Cambridge, 1987.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
internal representations by error propagation. MIT Press Computational
Models Of Cognition And Perception Series, pages 318–362, 1986.

Sandra Sattolo. An algorithm to generate a random cyclic permutation. Inf.
Process. Lett., 22(6):315–317, 1986.

Robert E. Schapire and Yoram Singer. Boostexter: A boosting-based system
for text categorization. Machine Learning, 39(2/3):135–168, 2000.

Robert E. Schapire and Yoram Singer. Improved boosting algorithms using
confidence-rated predictions. Machine Learning, 37(3):297–336, 1999.

Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Sup-
port Vector Machines, Regularization, Optimization, and Beyond. The
MIT Press, 2002.

Bernhard Schölkopf, Alexander J. Smola, and Klaus-Robert Müller. Non-
linear component analysis as a kernel eigenvalue problem. Neural Com-
putation, 10(5):1299–1319, 1998.

Bernhard Schölkopf, Ralf Herbrich, and Alexander J. Smola. A generalized
representer theorem. In Proceedings of the 14th Annual Conference on
Computational Learning Theory, 2001.

Nicol N. Schraudolph. Local gain adaptation in stochastic gradient descent.
In Proceedings of the 9th International Conference on Neural Networks,
1999.

Fei Sha and Fernando C. N. Pereira. Shallow parsing with conditional ran-
dom fields. In Proceedings of the Human Language Technology Conference
of the North American Chapter of the Association for Computational Lin-
guistics, 2003.

Shai Shalev-Shwartz and Yoram Singer. A primal-dual perspective of online
learning algorithms. Machine Learning, 69(2-3):115–142, 2007a.

Shai Shalev-Shwartz and Yoram Singer. A unified algorithmic approach for
efficient online label ranking. In Proceedings of the 11th International
Conference on Artificial Intelligence and Statistics, 2007b.

Shai Shalev-Shwartz and Yoram Singer. Efficient learning of label ranking by
soft projections onto polyhedra. Journal of Machine Learning Research,
7:1567–1599, 2006.

BIBLIOGRAPHY 109

Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal
estimated sub-gradient solver for SVM. In Proceedings of the 24th Inter-
national Conference on Machine Learning, 2007.

Alistair J. Sinclair. Improved bounds for mixing rates of Markov chains and
multicommodity flow. Information and Computation, 1:351–370, 1992.

Sören Sonnenburg. Machine Learning for Genomic Sequence Analysis. PhD
thesis, Fraunhofer Institute FIRST, December 2008.

Charles Spearman. The proof and measurement of association between two
things. American Journal of Psychology, 15:72–101, 1904.

Daniel Stefankovic, Santosh Vempala, and Eric Vigoda. Adaptive simulated
annealing: A near-optimal connection between sampling and counting.
Journal of the ACM, 56(3):1–36, 2009.

Johan A.K. Suykens. Multiclass least squares support vector machines. In
Proceedings of the International Joint Conference on Neural Networks,
1999.

Johan A.K. Suykens and Joos P.L. Vandewalle. Least squares support vector
machine classifiers. Neural Processing Letters, 9(3):293–300, 1999.

Ben Taskar. Learning Structured Prediction Models: A Large Margin Ap-
proach. PhD thesis, Stanford University, 2004.

Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin Markov net-
works. In Advances in Neural Information Processing Systems 16, 2003.

Ben Taskar, V. Chatalbashev, Daphne Koller, and C. Guestrin. Learning
structured prediction models: A large margin approach. In Proceedings
of the 22nd International Conference on Machine Learning, 2005.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin
Altun. Large margin methods for structured and interdependent output
variables. Journal of Machine Learning Research, 6:1453–1484, 2005.

Anke van Zuylen and David P. Williamson. Deterministic algorithms for
rank aggregation and other ranking and clustering problems. In Pro-
ceedings of the 5th International Workshop on Approximation and Online
Algorithms, 2007.

Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

Eric Vigoda. Markov chain Monte carlo methods, lecture notes. http:

//www.cc.gatech.edu/∼vigoda/teaching.html, Fall 2006.

110 BIBLIOGRAPHY

S.V.N. Vishwanathan, Nicol N. Schraudolph, and Alexander J. Smola. Step
size adaptation in reproducing kernel Hilbert space. Journal of Machine
Learning Research, 7:1107–1133, 2006.

Alexander Waibel, Toshiyuki Hanazawa, Geoffrey Hinton, Kiyohiro Shikano,
and Kevin J. Lang. Phoneme recognition using time-delay neural net-
works. IEEE Transactions on Acoustics, Speech, and Signal Processing,
37(3):328–339, 1989.

Jason Weston, Olivier Chapelle, André Elisseeff, Bernhard Schölkopf, and
Vladimir Vapnik. Kernel dependency estimation. In Advances in Neural
Information Processing Systems 15, 2002.

Mihalis Yannakakis. Node- and edge-deletion NP-complete problems. In
Proceedings of the Annual ACM Symposium on Theory of Computing,
1978.

E. Zemel. Measuring the quality of approximate solutions to zero-one pro-
gramming problems. Mathematics of Operations Research, 6(3):319–332,
1981.

Martin Zinkevich. Online convex programming and generalized infinitesimal
gradient ascent. In Proceedings of the 20th International Conference on
Machine Learning, 2003.

