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Zusammenfassung

Diese Arbeit beschäftigt sich mit Multilevel-Verfahren zur effizienten Lösung von Partiellen

Differentialgleichungen im Bereich des Wissenschaftlichen Rechnens. Dabei liegt ein wei-

terer Schwerpunkt auf der eingehenden Untersuchung des Informationsaustauschs zwischen

Finite-Elemente-Räumen zu nicht-geschachtelten Gittern.

Zur Diskretisierung von komplizierten Geometrien mit einer Finite-Elemente-Methode

sind unstrukturierte Gitter oft von Vorteil, weil sie der Form des Rechengebiets einfacher

angepasst werden können. Solche Gitter, und somit die zugehörigen diskreten Funktio-

nenräume, besitzen im Allgemeinen keine leicht zugängliche Multilevel-Struktur, die sich

zur Konstruktion schneller Löser ausnutzen ließe. In der vorliegenden Arbeit stellen wir

eine Klasse “semi-geometrischer” Multilevel-Iterationen vor, die auf Hierarchien voneinan-

der unabhängiger, nicht-geschachtelter Gitter beruhen. Dabei bestimmen in einem varia-

tionellen Ansatz rekursiv die Bilder geeigneter Prolongationsoperatoren im jeweils folgenden

(feineren) Raum die Grobgitterräume. Das semi-geometrische Konzept ist sehr allgemeiner

Natur verglichen mit anderen Verfahren, die auf geometrischen Überlegungen beruhen. Dies

zeigt sich in der verhältnismäßig losen Beziehung der verwendeten Gitter zueinander. Der

konkrete Nutzen des Ansatzes mit nicht-geschachtelten Gittern ist die Flexibilität der Wahl

der Grobgitter. Diese können beispielsweise unabhängig mit Standardverfahren generiert

werden. Die Auflösung des Randes des tatsächlichen Rechengebiets in den konstruierten

Grobgitterräumen ist eine Eigenschaft der entwickelten Verfahrensklasse.

Die flexible Einsetzbarkeit und die Effizienz der vorgestellten Lösungsverfahren zeigt sich

in einer Reihe von numerischen Experimenten. Dazu geben wir Hinweise zur praktischen

Umsetzung der semi-geometrischen Ideen und konkreter Transfer-Konzepte zwischen nicht-

geschachtelten Gittern. Darüber hinaus wird eine Erweiterung zu einem semi-geometrischen

monotonen Mehrgitterverfahren zur Lösung von Variationsungleichungen untersucht.

Wir führen die Analysis der Konvergenz- bzw. Vorkonditionierungseigenschaften im

Rahmen der Theorie der Teilraumkorrekturmethoden durch. Unsere technische Ausar-

beitung liefert ein quasi-optimales Resultat, das wir mithilfe lokaler Argumente für allge-

meine, shape-reguläre Gitterfamilien beweisen. Als relevante Eigenschaften der Operatoren

zur Prolongation zwischen nicht-geschachtelten Finite-Elemente-Räumen erweisen sich die

H1-Stabilität und eine L2-Approximationseigenschaft sowie die Lokalität des Transfers.

Diese Arbeit ist ein Beitrag zur Entwicklung schneller Löser für Gleichungen auf kom-

plizierten Gebieten mit Schwerpunkt auf geometrischen Techniken (im Unterschied zu al-

gebraischen). Verbindungen zu anderen Ansätzen werden sorgfältig aufgezeigt. Daneben

untersuchen wir den Informationsaustausch zwischen nicht-geschachtelten Finite-Elemente-

Räumen als solchen. In einer neuartigen Studie verbinden wir theoretische, praktische und

experimentelle Überlegungen. Eine sorgfältige Prüfung der qualitativen Eigenschaften sowie

eine quantitative Analyse der Unterschiede verschiedener Transfer-Konzepte zueinander

führen zu neuen Ergebnissen bezüglich des Informationsaustauschs selbst. Schließlich errei-

chen wir durch die Einführung eines verallgemeinerten Projektionsoperators, der Pseudo-

L2-Projektion, eine deutlich bessere Approximation der eigentlichen L2-orthogonalen Pro-

jektion als andere Ansätze aus der Literatur.
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Introduction

This thesis is about multilevel methods for an efficient solution of partial differential equa-

tions in complicated domains. We introduce a new class of semi-geometric preconditioners

and multigrid methods for problems arising from unstructured finite element discretizations.

The multilevel framework is developed from a variational approach based on a hierarchy of

non-nested meshes. We present new results on the proposed multilevel iterative methods

as well as the actual information transfer between finite element spaces associated with

non-nested meshes.

Background

Mathematical models of many phenomena in the natural sciences and engineering are for-

mulated as boundary value problems of partial differential equations. For this class of

problems and many others, computer experiments have proved their capability of providing

additional insight or even complementing or substituting actual experiments. In the field

of scientific computing, beside important modeling aspects, the design of an efficient nu-

merical simulation also comprises an appropriate discrete approximation of the considered

quantities. For many problems associated with partial differential equations, finite element

methods [25, 39, 56] are popular choices as they have favorable properties from both a

theoretical and a practical point of view.

A crucial factor for an efficient numerical treatment of partial differential equations is

the solution of the appearing linear systems of equations, where required after a lineariza-

tion or an implicit time discretization by Rothe’s method. Although such a linear system

of equations, which is typically large but sparse and in our applications also symmetric

positive definite but ill-conditioned, can in principle be solved disregarding the underlying

discretization scheme, one may profit from additional insight into the structure of the con-

sidered problem. The multilevel methods to be studied in the present thesis do this in a

rather sophisticated manner.

Multilevel methods

In scientific computing, the term multilevel appears in many ways. During the last decades,

multilevel ideas have influenced the thinking of many researchers in some form or another,

ranging from advanced mathematical modeling aspects in order to concurrently describe

phenomena on different length or time scales to the design of modern computer architec-

tures. For the development of numerical methods for partial differential equations, the

multilevel paradigm is particularly appealing for both analytical and algorithmical reasons.

In this thesis, we focus on the application of multilevel ideas to the development of

iterative solvers for elliptic partial differential equations. As a direct solution is usually

not feasible for large systems due to enormous time and memory consumption, the discrete

systems need to be solved iteratively to achieve a reasonably flexible numerical simulation

environment. Multigrid methods [37, 103, 178, 199] turn out to be the fastest solvers in

many applications. They show an optimal convergence behavior in the sense that the work
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required to reduce the iteration error to a requested accuracy is proportional to the prob-

lem size. It is well-known that the performance of the classical linear iterations such as

the Jacobi or the Gauß–Seidel method is not satisfactory even for simple equations as it

degenerates with increasing problem size. In rather general settings, they have smoothing

properties, though. The power of multilevel iterations results from a sophisticated combi-

nation of smoothing iterations and coarse level corrections. These ingredients should be

complementary in the sense that they reduce different components of the error; at each

level a different section of the spectrum should be processed. This paradigm manifests in

the multigrid methods. Here, only very few steps of a relaxation method are performed at

each level to obtain defect problems where the corresponding errors may be well represented

in spaces with less degrees of freedom. An essential element of an efficient algorithm is a

methodology of how to realize such a coarse approximation.

Multilevel finite elements

A numerical approximation of the continuous quantities relies on a suitable discrete repre-

sentation of the computational domain, for instance by a grid or mesh. The finite element

method is usually preferred to finite difference schemes in case the resolution of the poten-

tially complicated geometry is of interest. In addition, the variational setting in a Hilbert

space allows for a powerful convergence analysis. More precisely, the considered multilevel

methods fit into the framework of additive and multiplicative Schwarz methods [177] act-

ing on the residual by parallel and successive subspace correction [194], respectively. The

decisive steps for the analysis of the multiplicative case were taken by Bramble, Pasciak,

Wang and Xu in [27, 32, 33, 193]. The final breakthrough was made by Oswald [151] and

others establishing a fundamental connection of multilevel finite elements to approximation

theory. The parallel BPX-preconditioner [34] and the work by Griebel [95, 96] show that

the strictly level-oriented view is actually not mandatory provided that suitable multilevel

bases are used.

The standard multigrid algorithms for finite element discretizations are based on a

hierarchy of finite element spaces associated with a sequence of nested meshes. In this case,

the variational approach in a suitable Hilbert space yields a very natural way to realize

the coarse space approximation and the information transfer between two successive spaces

by the canonical inclusion (coarse-to-fine) and the orthogonal projection (fine-to-coarse).

However, many important applications in computational engineering, especially involving

complicated geometries in three dimensions, do not allow for straightforward multilevel

hierarchies. The treatment of general unstructured finite element meshes is a demanding

task for multilevel iterative methods. Such meshes are beneficial for a flexible adaptation

of the discrete representation to the computational domain with relatively few degrees

of freedom, though. In fact, the shortcomings of standard multigrid methods regarding

the handling of complex geometric data may be considered one of the major reasons for

multilevel methods not being as prevalent as their powerful convergence or preconditioning

properties would certainly justify.
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Multilevel methods for complicated geometries

This thesis constitutes a contribution to the development of multilevel methods for com-

plicated domains, which is clearly a topic of current research interest. In the past years,

several methodologies have been developed for the application of basic multilevel algorithms

to problems with complicated boundaries of the computational domain. The particular

strategies to obtain suitable hierarchies or approximation spaces are in part very different.

For instance, the theoretical contribution of Yserentant [200] about so-called boundary

fitted elements may be considered a justification of the paradigm to construct a multilevel

hierarchy by coarsening away from the boundary. Other methods are based on tailored

fine and coarse level discretizations, which are mostly built from structured meshes. The

multigrid method based on parametric finite elements [107, 108] we present in Chapter 7

belongs to this class of algorithms. The conceptually simplest method to determine a

multilevel hierarchy for complicated domains is a rough approximation by a structured mesh

from the inside, which is analyzed by Kornhuber and Yserentant [123] in case of a pure

Dirichlet problem. The composite finite element methods by Hackbusch and Sauter [105,

106] also rely on sequences of structured meshes. By sophisticated adaptation procedures

of sufficiently fine, structured meshes to the boundaries of the computational domains,

logically nested and physically almost nested mesh hierarchies are constructed. A related

technique motivated by image based computing in Liehr et al. [137] works with locally cut

off basis functions close to the boundary.

All these approaches have in common that the relation of two successive meshes is

generally much closer than in the setting that we aim at; the families of meshes exhibit

some additional structure.

Further, meshfree and particle methods, which do not rely on a mesh, constitute a dif-

ferent approach to approximate continuous quantities in potentially complicated domains.

For the discretization of partial differential equations, for instance, the partition of unity

methods have been developed, which glue local approximation spaces by partition of unity

functions associated with overlapping decompositions of the computational domains; see

Babuška and Melenk [10, 145]. Multilevel methods for partition of unity discretizations of

elliptic partial differential equations have been studied by Griebel and Schweitzer [99, 170]

and others. We refer to [55, 62] for recent analytical results.

Another branch of research is concerned with the development of algebraic multigrid

methods [159, 176], which attempt to construct coarse level hierarchies only by taking the

entries of the given stiffness matrix into account, at least in the pure form. Variants for

finite element discretizations exist; see [40, 53, 109, 115].

The auxiliary space method by Xu [195] is a general approach to make an existing

multilevel preconditioner, which has been designed for a simpler setting, applicable to more

complicated problems. One of its main purposes is the reuse of available implementations

by transferring the given problem to a more easily treatable auxiliary space. Applied to the

issue of finite element spaces associated with unstructured meshes representing complicated

domains, this amounts to a non-variational approach using a (multilevel) preconditioner

defined with respect to structured meshes. However, both analysis and experiments indicate

that the sizes of the original space and of the auxiliary space need to be comparable in a
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quite restrictive sense; see [195]. Further applications of this idea to, e. g., higher order

elements or other problem classes have been investigated in [195] and then [112, 113, 179].

We turn our special attention to another class of multilevel methods. The idea of ac-

celerating an iterative solution process by adding a correction step from non-nested meshes

has probably first been used in practice by aerospace engineers as early as the year 1986;

see the reports by Mavriplis and Jameson [143, 144] and also Löhner and Morgan [139]. It

has later found its way into domain decomposition methods by Cai [43] and Chan et al.

[47, 48, 49, 51, 52].

Purpose of this thesis

This thesis is about multilevel methods based on non-nested meshes, which meet the chal-

lenges indicated above. We approach this topic in different ways. Our research has clearly

been driven by the desire to construct coarse level approximations to be efficiently used

in multilevel preconditioners. However, we also contribute to the research on the actual

information transfer between finite element spaces associated with non-nested meshes.

The purpose of the present text is to provide additional insight into the design of coarse

spaces in case of unstructured finite element meshes. We focus on geometric multilevel

techniques (as opposed to algebraic ones); both fine and coarse level spaces are always

associated with a mesh in one way or another. Consequently, we put emphasis on geomet-

rically motivated or inspired transfer concepts.

The proposed multilevel iterations, i. e., multigrid methods and multilevel precondition-

ers, rely on a variational approach based on a hierarchy of non-nested coarse meshes. The

assumptions on the ingredients of our framework are particularly weak. We analyze the

presented preconditioners and multigrid methods in the context of additive and multiplica-

tive Schwarz methods to obtain preconditioning and convergence results independent of

the mesh size, respectively. Our careful analysis offers a clear view of the requirements the

geometric interlevel transfer needs to satisfy. In addition, we relate this approach to other

geometry-based multilevel techniques.

Throughout this text, we highlight the actual information transfer between finite ele-

ment spaces associated with nested or non-nested meshes. This means we also direct our

attention to the information transfer as such, in contrast to its distinguished role in the

constructed multilevel methods. We are convinced that a deep insight into diverse transfer

concepts is very helpful for both the construction of specific operators and their application

in multilevel methods. Accordingly, this thesis comprises new results regarding geometric

information transfer between finite element spaces associated with non-nested meshes.

Several practical considerations complement the indicated theoretical achievements. In

this regard, we address implementation aspects of both the abstract multilevel framework

based on non-nested meshes and the concrete realization of diverse transfer concepts of the

requisite interlevel transfer. Various numerical experiments constitute an integral part of

this thesis. We demonstrate the performance of the introduced multilevel iterative methods

and investigate the fundamental characteristics of information transfer between non-nested

meshes in practice.
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Therefore, we are confident that this text is indeed a comprehensive elaboration of the

topic “Multilevel Methods Based on Non-Nested Meshes”. We will suggest several open

questions in the conclusion.

Multilevel methods based on non-nested meshes

We study the approach of preconditioning based on non-nested mesh hierarchies in full

detail. In view of the abstract concept being somewhere between geometric and alge-

braic multigrid methods but clearly leaning towards the geometric side, the term “semi-

geometric” would certainly be justified to name the proposed multilevel methods.

The strategy for the development of the semi-geometric framework to be presented here

is to use a family of completely unrelated meshes with associated finite element spaces to

construct a hierarchy of nested spaces by a variational approach. This can be achieved

by recursively considering the ranges of suitable prolongation operators in the next finer

spaces. For the additive variant, two different possibilities are considered.

The core of our analysis is the existence proof of suitable fine-to-coarse mappings, which

allow for a stable subspace splitting as introduced in [32, 33, 151, 193] and thus quasi-optimal

convergence and preconditioning results. To this end, we identify relevant properties for

the information transfer between non-nested finite element spaces, namely the H1-stability

and the L2-approximation property. In our technical elaboration, we carefully distinguish

between the different domains which are represented by the separate meshes. Besides,

working with local measures for the mesh sizes, we achieve results that hold true for non-

quasi-uniform meshes provided that the interlevel transfer concept is chosen appropriately.

The semi-geometric concept reflects a rather weak setting (yet still variational) com-

pared with other geometry-based approaches; the relations between the employed meshes

are particularly loose. The concrete benefit of using non-nested meshes is that the coarse

meshes can be chosen quite freely, e. g., generated independently by standard mesh gen-

erators. The approach has the additional advantage that for the coarse level problems no

approximation of the boundary data is necessary.

The performance and the flexibility of the devised methods are demonstrated by nu-

merical results. We report on a number of experiments carried out in various different

ways to study the practical properties of the semi-geometric concept. Finally, we do not

only investigate the methodology based on non-nested meshes in detail but also extend our

algorithm to a semi-geometric monotone multigrid method for variational inequalities and

briefly study an application to Signorini’s problem.

Information transfer between non-nested meshes

We believe that a comprehensive analysis of the studied topic needs to include a thorough

investigation of the actual information transfer. In this context, it is not at all clear from

the start which transfer concepts are best suited for embedding a non-nested coarse space

into a finite element space associated with a finer mesh. This is true despite the availability

of some obvious candidates.

Our research is in part motivated by the early work of Clément [58] on quasi-interpo-

lation and then Scott and Zhang [171]. We also learned about advanced techniques for
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the construction of transfer operators from Wohlmuth [190, 191] and Kim et al. [118] in

the context of non-conforming domain decomposition methods. Other interesting studies

giving basic insights into the analysis of approximation operators in finite element spaces,

which influenced our work, can be found in [8, 30, 31, 43, 49, 174, 175, 177, 193], partially

in completely different contexts.

In this thesis, both intuitive and more elaborate mappings are examined in a unique

study combining theoretical, practical and experimental considerations. We discuss locally

and globally defined operators including well-known quasi-interpolation concepts and also

focus on their algorithmic structures. Our considerations cover a respectable range of

geometric ideas. On the one hand, we aim to assess the suitability of the transfer concepts

for the use in the semi-geometric framework. On the other hand, we are interested in

determining qualitative and quantitative differences of the generated operators as such. At

this point, we introduce and analyze an operator called “pseudo-L2-projection”, which is

based on a global Petrov–Galerkin variational formulation with a discontinuous test space.

This generalized projection operator turns out to be the closest to the actual L2-orthogonal

projection. We confirm this by a sophisticated experiment investigating the mutual relations

of different prolongation operators.

Outline

This thesis is organized as follows. In Chapter 1, we briefly present the frame in which

the various multilevel methods will be discussed. This includes linear and non-linear model

problems associated with elliptic partial differential equations. A short description of fi-

nite element methods and a motivation for the search of efficient preconditioners for the

discrete problems clarify basic notions, which are used throughout this text. Chapter 2

is devoted to standard geometric multilevel methods for finite element discretizations of

elliptic equations. We explain the fundamental ideas and algorithmical structures; special

attention is paid to the information transfer between nested finite element spaces. More-

over, we outline the framework of parallel and successive subspace correction methods.

All this is meant to prepare the subsequent discussion of the generalized multilevel algo-

rithms. In Chapter 3, we introduce the semi-geometric multilevel framework. The flexible

approach based on a hierarchy of non-nested meshes is analyzed in full detail including

the quasi-optimal convergence and preconditioning results. This chapter also contains the

first part on the implementation. Here, essential aspects for the practical realization of

the semi-geometric ideas are described. In Chapter 4, several geometry-based multilevel

techniques are reviewed. We point out relevant connections to the semi-geometric approach

and draw interesting comparisons. Chapter 5 contains the study of the actual information

transfer between finite element spaces associated with non-nested meshes. Both qualitative

and quantitative properties of a broad range of different transfer concepts are put forward.

Moreover, we discuss implementation aspects for specific prolongation operators in prac-

tical finite element codes. In Chapter 6, we present numerical results demonstrating the

performance of the devised methods. This chapter also includes the extension to a semi-

geometric monotone multigrid method for variational inequalities. Chapter 7 serves as an

excursus on a parametric multilevel approach with nested spaces, which is in fact a method

with an adjusted discretization.



1 Derivation of the model problems

The issues elaborated in this thesis appear in the numerical simulation of phenomena de-

scribed by elliptic partial differential equations. We discuss the topic of “multilevel methods

based on non-nested meshes” in the frame defined by the series of model problems pictured

in this introductory chapter. Both the analysis and practical considerations of the novel

multilevel preconditioners are carried out in the present context.

As our own contributions concentrate on the efficient iterative solution of the equations

rather than advanced modeling aspects, perhaps with the exception of some thoughts in

Chapter 7 about parametric discretizations, we keep this part short. To achieve a suffi-

ciently self-contained presentation, we state the considered model problems in Section 1.1

and Section 1.2. Scalar and vector-valued boundary value problems and variational equa-

tions are derived, complemented by non-linear obstacle and contact problems, respectively,

associated with variational inequalities. As taking the possible time dependence of the

modeled physical systems into account does not provide any additional insight for the topic

of this thesis, we only consider stationary problems. Naturally, the developed methods may

be employed to solve the elliptic systems, which are obtained in each time step by implicit

time discretization schemes.

Section 1.3 is concerned with a finite element discretization of the variational problems.

The introduced finite-dimensional approximation spaces in one form or another play a

fundamental role in all parts of this thesis. We turn our attention to the corresponding

operator and matrix notations in Section 1.4. Here, we also briefly motivate the research

of efficient iterative solvers and preconditioners for the considered types of problems.

1.1 Elliptic partial differential equations
In this section, we briefly state basic models leading to boundary value problems of elliptic

partial differential equations. Besides, a certain amount of notation is introduced to keep

the subsequent sections and chapters more compact.

Let Ω ⊂ Rd be a Lipschitz domain of dimension d ∈ {2, 3}, i. e., an open, bounded,

connected subset of the Euclidean space with Lipschitz boundary Γ := ∂Ω. For a subset

U ⊂ Rd, we denote the closure and the interior of U with respect to the standard topology

of Rd by U and int(U), respectively. We denote vector quantities, matrices and fourth order

tensors by bold symbols, e. g., v, D, C, and their components by vi, Dij , Cijlm for suitable

indices i, j, l,m. Analogously, we use bold symbols for vector-valued function spaces, i. e.,

V := (V )d. Given a real normed vector space V , we denote its dual space consisting of all

bounded (or continuous) linear functionals by V ′ = Lin(V,R). For a function depending

on the variable x ∈ Rd, the partial derivative with respect to xj , 1 ≤ j ≤ d, is abbreviated

with ∂j . Furthermore, we enforce the summation convention on all repeated indices ranging

from 1 to d.

The standard basis of Rn, n ∈ N, will be referred to as (ei)1≤i≤n. The Euclidean inner

product is v ·w :=
∑

i viwi for v,w ∈ Rn and the Euclidean norm of v ∈ Rn is |v| :=
√
v · v.

Then, the (d− 1)-sphere is the set Sd−1 :=
{
v ∈ Rd | |v| = 1

}
. The symbol Rm×n denotes
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the set of m × n matrices with real entries. For a matrix A, the symbol AT denotes its

transpose. If m = n, the index sym selects the subset of symmetric matrices. We write I

for the identity matrix and define the Kronecker delta for some indices i, j by δij := 1 if

i = j and δij := 0 if i 6= j.

We will make use of the relation symbols ., &, and h. Here, a . b and f & g,

respectively, mean that there are some constants c1 and c2, which are independent of the

meshes and the considered functions, such that a ≤ c1b and f ≥ c2g. If a . b and a & b,

we write a h b.

1.1.1 Diffusion equation

The following boundary value problem plays a fundamental role in the mathematical de-

scription of diffusion processes. It commonly appears if the flux of some quantity is pro-

portional to its gradient; see [80, 82].

The boundary Γ may consist of two disjoint, Lebesgue measurable parts, namely the

closed Dirichlet boundary ΓD and the open Neumann boundary ΓN . Given a sufficiently

smooth, symmetric diffusion tensor D : Ω→ Rd×dsym and data f : Ω→ R, p : ΓN → R, find a

function u : Ω→ R such that

−div(D∇u) = f in Ω,

u = 0 on ΓD,

∇u · n = p on ΓN .

(1.1)

Homogeneous media are associated with constant tensors D. If D is a multiple of the iden-

tity matrix, the equation is called isotropic. Provided
∫

Ω f dx+
∫

ΓN
p ds = 0, this equation

may be considered the stationary limit of the heat equation derived as a consequence of

Fourier’s law of heat conduction and conservation of energy. In this case, u represents the

temperature and the thermal conductivity D of the material in the domain Ω is assumed

to be temperature-independent. The data f and p model external heat sources and the

heat flux across the Neumann boundary ΓN , respectively.

Similarly, the diffusion equation also models saturated steady-state flow of an incom-

pressible fluid through a porous medium, such as groundwater flow. This relation is derived

from Darcy’s law, which states that the flux is proportional to the pressure gradient and

is supposed to hold true for small Reynolds numbers, and conservation of mass; see [186].

Here, u describes the pressure of the fluid and D = 1
µκ with the symmetric permeabil-

ity tensor κ and the dynamic viscosity µ > 0 of the medium. However, boundary value

problems of the form (1.1) arise in many other applications.

We recall several standard notations from functional analysis; see, e. g., [1, 75, 82]. Let∫
· dx be the Lebesgue integral; for a subset U ⊂ Rd we denote the d-dimensional Lebesgue

measure by measd(U). Let L2(Ω) be the Hilbert space of square integrable functions on

Ω with inner product (v, w)L2(Ω) :=
∫

Ω vw dx and norm ‖ · ‖L2(Ω) := (·, ·)1/2
L2(Ω)

. The sym-

bol L∞(Ω) represents the space of essentially bounded functions with norm ‖v‖L∞(Ω) :=

ess supx∈Ω|v(x)|. By Hm(Ω), as customary, we denote the Sobolev space of functions with

m ≥ 0 square integrable weak derivatives on Ω; in particular, H0(Ω) = L2(Ω). Let α ∈ Nd
be a multi-index of order |α| :=

∑
1≤i≤d αi. Then, ∂α denotes the weak differentiation and
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the corresponding norm and semi-norm in Hm(Ω) are

‖v‖Hm(Ω) :=

 ∑
|α|≤m

‖∂αv‖2L2(Ω)

 1
2

and |v|Hm(Ω) :=

 ∑
|α|=m

‖∂αv‖2L2(Ω)

 1
2

.

Moreover, the subspace of H1(Ω) with vanishing image of the usual trace operator to

the Dirichlet boundary ΓD is called H1
D(Ω); we have H1

D(Ω) = {v ∈ H1(Ω) | v|ΓD =

0 in H
1
2 (ΓD)} = {v ∈ H1(Ω) | v = 0 a. e. on ΓD}.

The Sobolev space Hs(Ω) of fractional order s = m + σ, m ∈ N, σ ∈ (0, 1), is defined

as the closure (or completion) of the space of infinitely differentiable functions with respect

to the Slobodeckij norm

‖v‖Hs(Ω) :=

‖v‖2Hm(Ω) +
∑
|α|=m

∫
Ω

∫
Ω

|∂αv(x)− ∂αv(y)|2

|x− y|d+2σ
dx dy

 1
2

.

For a sufficiently smooth (d − 1)-dimensional submanifold S ⊂ Rd, usually a subset of Γ,

the Lebesgue integral and the (d−1)-dimensional measure of a subset U ⊂ S are
∫
· ds and

measd−1(U), respectively. In particular, we make use of the analogues of the above defined

function spaces on the considered submanifolds.

The variational formulation of problem (1.1) is: Find u ∈ H1
D(Ω) such that

a(u, v) = F(v), ∀ v ∈ H1
D(Ω), (1.2)

with the continuous and symmetric bilinear form

a : H1(Ω)×H1(Ω)→ R, a(v, w) := (D∇v,∇w)L2(Ω) = (Dij∂iv, ∂jw)L2(Ω).

We assume that the right hand side of equation (1.2) is represented by a bounded linear

functional, namely F ∈ H1
D(Ω)′. If the data is sufficiently smooth, we have, e. g., F(v) =

(f, v)L2(Ω) + (p, v)L2(ΓN ).

Let Dij ∈ L∞(Ω), 1 ≤ i, j ≤ d, and D be uniformly elliptic, i. e., there is a constant

α > 0 such that

Dij(x)ξiξj ≥ α|ξ|2, for a. e. x ∈ Ω, ∀ ξ ∈ Rd.
Then, the bilinear form a is elliptic if measd−1(ΓD) > 0. By the Lax–Milgram theorem,

problem (1.2) has a unique solution.

1.1.2 Linear elasticity

The second problem class to be considered comprises continuum mechanical models of

elastostatics. A deformation of a solid body can be described by kinematic quantities,

equilibrium conditions and a constitutive equation. The displacement field induced by

applied forces is the solution of an elliptic boundary value problem. We assume small

displacements and obtain this system of partial differential equations by linearizing both

the strain–displacement relations and the stress–strain relations. Our presentation follows

mainly [57]; see also the monographs [80, 135, 192]. We only deal with the full-dimensional

case d = 3.
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Kinematics

In this paragraph, we consider measures of the strains caused by a deformation of a solid.

The deformable body is represented by the domain Ω ⊂ R3. We call the closure Ω with

respect to the standard topology of R3 the reference configuration. Then, a deformation of

Ω is an orientation-preserving, sufficiently smooth mapping

ϕ : Ω→ R3

which is injective up to the boundary. With the notation ϕ = ϕiei the deformation gradient

is the matrix

∇ϕ := (∂jϕi)1≤i,j≤3 .

As the deformation is assumed to preserve the orientation, the determinant of the defor-

mation gradient is positive, i. e.,

∇ϕ(x) ∈ R3×3
+ := {M ∈ R3×3 | detM > 0}, ∀ x ∈ Ω.

We call the mapping u : Ω→ R3 defined by ϕ = id+u displacement field and its derivative

∇u = ∇ϕ − I displacement gradient. The set Ω
ϕ

:= ϕ(Ω) is the deformed configuration

with points xϕ := ϕ(x).

A comparison of the infinitesimal length elements in the reference and the deformed

configuration motivates the definition of the (right) Cauchy–Green strain tensor ∇ϕT∇ϕ.

This tensor is in fact an adequate indicator of the strain emerging inside the deformed body

because a deformation is a rigid-body motion, i. e., it is of the form

ϕ(x) = a+Qx, a ∈ R3, Q ∈ O3
+, ∀ x ∈ Ω,

if and only if ∇ϕ(x)T∇ϕ(x) = I, ∀ x ∈ Ω; see [57, Theorem 1.8-1]. Here, O3
+ denotes the

set of orthogonal matrices with determinant +1.

To quantify the local deviation of the considered deformation ϕ and a rigid-body mo-

tion, one usually introduces the Green–St. Venant strain tensor E(ϕ) := 1
2(∇ϕT∇ϕ− I).

Therefore, one can express the strains in terms of the displacement gradient,

E(u) =
1

2

(
∇uT + ∇u+ ∇uT∇u

)
. (1.3)

In the linear elastic setting, we assume the displacements to be small and neglect the

quadratic term in (1.3). This gives rise to the linearized strain tensor

ε(u) =
1

2

(
∇uT + ∇u

)
. (1.4)

Equilibrium conditions

The static equilibrium of the solid body is characterized by a system of partial differential

equations. We assume that the deformed body is subjected to volume forces and surface

tractions given by the force densities fϕ : Ωϕ → R3 and pϕ : ΓϕN → R3, respectively. Here,
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ΓϕN is an open, measurable subset of Γϕ := ∂Ωϕ. The corresponding force densities in the

reference configuration are, see [57, Section 2.6],

f : Ω→ R3, f(x) = (det∇ϕ(x))fϕ(xϕ), ∀ xϕ = ϕ(x), x ∈ Ω, (1.5)

and

p : ΓN → R3, p(x) = (det∇ϕ(x))|∇ϕ(x)−Tn|pϕ(xϕ), ∀ xϕ = ϕ(x), x ∈ ΓN , (1.6)

with n the unit outer normal of ΓN := ϕ−1(ΓϕN ).

The stress principle of Euler and Cauchy is the foundation of continuum mechanics for

time-independent problems. If the deformable body is in static equilibrium, this axiom

asserts the existence of a vector field

tϕ : Ω
ϕ × S2 → R3

which represents the elementary surface forces inside the deformed configuration. More

precisely, the Cauchy stress vector tϕ for the oriented surface element with normal nϕ

coincides with the given surface tractions, i. e., tϕ(xϕ,nϕ) = pϕ(xϕ) for xϕ ∈ ΓϕN , and

satisfies an axiom of force balance and an axiom of moment balance for any subdomain of

Ω
ϕ
; see [57, Axiom 2.2-1].

Now, the following theorem yields a linear dependence of the Cauchy stress vector

on nϕ by the Cauchy stress tensor T ϕ which may be characterized by a system of partial

differential equations.

Theorem 1.1 (Cauchy’s theorem). Assume that the applied body force density fϕ : Ω
ϕ →

R3 is continuous and that the Cauchy stress vector field tϕ : Ω
ϕ × S2 → R3, (xϕ,n) 7→

tϕ(xϕ,n) is continuously differentiable with respect to the variable xϕ for each n ∈ S2

and continuous with respect to the variable n for each xϕ ∈ Ω
ϕ

. Then, there exists a

continuously differentiable, symmetric tensor field

T ϕ : Ω
ϕ → R3×3

sym, xϕ 7→ T ϕ(xϕ),

such that the Cauchy stress vector satisfies

tϕ(xϕ,n) = T ϕ(xϕ)n, ∀ xϕ ∈ Ω
ϕ
, n ∈ S2,

and such that
−divϕT ϕ(xϕ) = fϕ(xϕ), ∀ xϕ ∈ Ωϕ,

T ϕ(xϕ)nϕ = pϕ(xϕ), ∀ xϕ ∈ ΓϕN ,
(1.7)

where nϕ is the unit outer normal vector along ΓϕN and divϕT ϕ := ∂ϕj T
ϕ
ijei denotes the

divergence of the tensor field T ϕ with respect to the variable xϕ.

Proof . See [57, Theorem 2.3-1].

To transform the equations (1.7) to the reference configuration, we define the (second)

Piola–Kirchhoff stress tensor as

Σ(x) := (det∇ϕ(x))∇ϕ(x)−1T ϕ(xϕ)∇ϕ(x)−T , xϕ = ϕ(x).

Finally, the properties of the Piola transform [57, Theorem 1.7-1] and (1.5), (1.6) yield the
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Theorem 1.2 (Equilibrium conditions in the reference configuration). The Piola–Kirchhoff

stress tensor is symmetric and satisfies

−div(∇ϕ(x)Σ(x)) = f(x), ∀ x ∈ Ω,

∇ϕ(x)Σ(x)n = p(x), ∀ x ∈ ΓN .

Proof . See [57, Theorem 2.6-2].

In the continuum mechanical framework, these are the fundamental equations to charac-

terize a deformation induced by applied forces.

Constitutive equations

We assume that the material is homogeneous and elastic, i. e., there is a response function

Σ̂ : R3×3
+ → R3×3

sym for the Piola–Kirchhoff stress tensor such that

Σ(x) = Σ̂(∇ϕ(x)), ∀ x ∈ Ω.

In addition, let the material be isotropic, namely the response function may satisfy

Σ̂(FQ) = QT Σ̂(F )Q, ∀ F ∈ R3×3
+ , Q ∈ O3

+.

Then, a fundamental result of the mathematical theory of elasticity [57, Theorem 3.8-1]

asserts the existence of constants λ > 0 and µ > 0 such that the material law near a

reference configuration with Σ̂(I) = 0 is of the form

Σ̂(F ) = λ(trE)I + 2µE + O(E), ∀ E =
1

2
(F TF − I), F ∈ R3×3

+ , (1.8)

where trE = Eii is the trace of the matrix E. The numbers λ and µ are called Lamé

constants of the material. For small deformations and small strains, we neglect terms of

higher order in the deformation gradient ∇u as well as the strain tensor E in (1.8) and

obtain a linear material law for the stress tensor, which is denoted by σ in this case,

σij(u) = Cijlmεlm(u) = λδijεkk(u) + 2µεij(u). (1.9)

Here, ε is the linearization from (1.4) and C := (Cijlm)1≤i,j,l,m≤3 is Hooke’s tensor with the

symmetries Cijlm = Clmij = Cjilm.

Finally, assuming that the force densities f and p are given in the reference configuration

and neglecting higher order terms in ∇u again, we obtain the following boundary value

problem with Dirichlet conditions on ΓD = Γ \ΓN from Theorem 1.2. Find a displacement

field u such that
−∂j(σij(u)) = fi in Ω,

ui = 0 on ΓD,

σij(u)nj = pi on ΓN ,

(1.10)

for 1 ≤ i ≤ 3; see [57, Section 6.2].
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Variational formulation

Wherever appropriate, we use the same symbols as for the scalar diffusion equation in

Section 1.1.1. Let the vector-valued function spaces L2(Ω) :=
(
L2(Ω)

)3
and Hm(Ω) :=

(Hm(Ω))3 be equipped with the respective product topology; the (semi-)norms of these

Hilbert spaces are still denoted by ‖ · ‖L2(Ω), ‖ · ‖Hm(Ω) and | · |Hm(Ω) to avoid bold indices.

Moreover, the Dirichlet conditions on the part ΓD lead to H1
D(Ω) := {v ∈H1(Ω) | v = 0,

a. e. on ΓD}.
We introduce the continuous and symmetric bilinear form

a : H1(Ω)×H1(Ω)→ R, a(v,w) := (σij(v), ∂jwi)L2(Ω) = (Cijlmεlm(v), εij(w))L2(Ω)

and the linear form

F : H1(Ω)→ R, F(v) := (fi, vi)L2(Ω) + (pi, vi)L2(ΓN ).

Then, the weak formulation of problem (1.10) reads as: Find u ∈ H1
D(Ω) satisfying the

variational equation

a(u,v) = F(v), ∀ v ∈H1
D(Ω). (1.11)

As the tensor C from (1.9) is elliptic, i. e., there exists a constant α > 0 such that

Cijlmεlmεij ≥ αεijεij , ∀ ε ∈ R3×3
sym,

the (uniform) ellipticity of the form a is a consequence of the following

Theorem 1.3 (Korn’s inequality). Let Ω ⊂ R3 be a bounded Lipschitz domain and may

meas2(ΓD) > 0. Then, there is a constant c > 0 such that∫
Ω

εij(v)εij(v) dx ≥ c‖v‖2H1(Ω), ∀ v ∈H1
D(Ω).

Proof . See [117, Lemma 6.2].

Therefore, if meas2(ΓD) > 0, problem (1.11) has a unique solution in H1
D(Ω) by the Lax–

Milgram theorem.

1.2 Variational inequalities
In this section, we outline two types of non-linear problems which can be formulated as

variational inequalities. Both problem classes involve one-sided, pointwise constraints either

in the domain Ω or on a subset of the boundary Γ which the respective solution has to satisfy.

This gives rise to a free boundary value problem; the active set where the constraints are

binding has to be determined as part of the solution process.

We consider a scalar obstacle problem and Signorini’s problem, a linearized model of

elastic contact with a rigid and fixed foundation, and briefly summarize results from calculus

of variations about existence and regularity of weak solutions.
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1.2.1 Scalar obstacle problems

To obtain a classical obstacle problem, note that the solution of problem (1.2) can be

characterized as the (unique) minimum of the energy functional J : H1(Ω)→ R, J (v) :=
1
2a(v, v)−F(v) in H1

D(Ω). Next, let the solution be constrained from below by a sufficiently

smooth obstacle function g : Ω → R, g ≤ 0 almost everywhere in Ω. In this case, the

problem reads as

J (u) = min
v∈K
J (v), K :=

{
v ∈ H1

D(Ω) | v ≥ g, a. e. in Ω
}
. (1.12)

In fact, the set of admissible functions K ⊂ H1
D(Ω) is closed and convex.

For d = 2, ΓD = Γ and D = α I isotropic with α > 0, a solution of the above problem

is usually interpreted as the deformation of an elastic membrane subjected to a vertical

force (with density f) and constrained by an obstacle. In this case, the functional 1
2 |v|H1(Ω)

commonly called Dirichlet energy represents, up to higher order terms, the increase of the

surface area which is assumed to be proportional to the tension in the membrane.

However, problems of this kind also appear in many other applications; see [119, Chap-

ter VII] and [80, 121]. In some cases, a transformation may be necessary to obtain an

auxiliary problem whose solution is characterized by a variational inequality.

1.2.2 Elastic contact problems

For the description of Signorini’s problem, we subdivide the boundary Γ into three pairwise

disjoint, measurable parts: ΓD closed, ΓN open and the possible contact boundary ΓC
closed. Additionally, the condition ΓC ∩ ΓD = ∅ may hold, which appears to be quite

natural in most applications.

Let the (non-linear) geometric contact condition, i. e., non-penetration of the deformed

solid Ωϕ and the rigid obstacle, be approximated by the following linearization. Assume

that an initial gap function g : ΓC → R+ modeling the distance in outer normal direction n

between the reference configuration and the obstacle is given. Then, the closed and convex

set of admissible displacements is

K :=
{
v ∈H1

D(Ω) | v · n ≤ g, a. e. on ΓC
}
. (1.13)

Therefore, in the linearized setting with small deformations, a solution of the contact prob-

lem has to satisfy linear inequality constraints pointwisely almost everywhere on ΓC .

Like in the scalar case, the solution of the vector-valued Signorini problem is a minimizer

of an energy functional, here of the elastic energy J , in the set K; we have

J (u) = min
v∈K
J (v), J : H1(Ω)→ R, J (v) :=

1

2
a(v,v)−F(v). (1.14)

For more about the modeling of elastic contact problems, we refer to the monographs

[117, 135, 192] as well as our own paper [71] and the references therein.
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1.2.3 Existence of weak solutions and regularity

The solution of the constrained minimization problem (1.14) is also characterized by the

variational inequality: Find u ∈ K such that

a(u,v − u) ≥ F(v − u), ∀ v ∈ K. (1.15)

The respective characterization for problem (1.12) holds with scalar u, v ∈ K; see, e. g.,

[80, 82, 117].

We may cite the Lions–Stampacchia theorem verifying the well-posedness of the prob-

lems (1.12) and (1.14).

Theorem 1.4 (Lions, Stampacchia). Let X be a Hilbert space and K ⊂ X non-empty,

closed and convex. If the bilinear form a : X ×X → R is continuous and elliptic and the

linear form F : X → R is continuous, then the variational inequality (1.15) has a unique

solution which depends continuously on F .

Proof . See [138] or [119, Theorem II.2.1].

For sufficiently smooth data and domain boundary, an interior regularity theorem holds

for the linear problems; see [82, Section 6.3] and [57, Section 6.3]. More precisely, the

weak solutions are locally H2-regular, i. e., for all compactly embedded subsets U ⊂⊂
Ω, the restriction of the solution u of (1.2) or u of (1.11) to U is in H2(U) or H2(U),

respectively. The same results can be proved for the solutions of the variational inequalities

under additional assumptions on the regularity of the obstacle or gap function; see [41, 119]

and [117, Section 6.4] and the references therein. Note that, due to potential lack of

smoothness at the change from Dirichlet to Neumann conditions, ΓD ∩ΓN , one can usually

not expect the solution to be as regular close to the boundary. If Ω is a polygonal or

polyhedral domain, Γ is only piecewise smooth and full regularity is also lost at corner

points or edges.

1.3 Finite element approximation
This section is devoted to a brief description of finite element discretizations of the presented

variational problems. In particular, several important notations used throughout this thesis

are introduced. For a finite-dimensional approximation of the solution, one employs conti-

nuous, piecewise polynomial functions with respect to an unstructured mesh. Then, the best

approximation with respect to the energy norm is obtained by an a-orthogonal projection.

The discretization error is essentially analyzed by Céa’s lemma and an interpolation error

estimate. We refer to the monographs [25, 39, 56].

A non-overlapping decomposition T` of Ω into finitely many open polytopes (triangles

or quadrilaterals for d = 2 and tetrahedra, pyramids, prisms or hexahedra for d = 3) is

called mesh if the intersection T 1 ∩ T 2 is a common vertex, a common edge or, if d = 3, a

common face for different T1, T2 ∈ T`. Let (T`)`∈N be a family of shape regular meshes of

Ω, i. e., there is a constant c such that

sup
`∈N

max
T∈T`

hT
rT
≤ c. (1.16)



16 1 Derivation of the model problems

Here, for an element T ∈ T`, let hT := diam(T ) be the diameter of T ; besides, rT denotes

the radius of the largest ball inscribed in T . We say (T`)`∈N is quasi-uniform if, in addition,

there is another constant c, independent of `, such that

max
T∈T`

hT ≤ c min
T∈T`

hT , ∀ ` ∈ N. (1.17)

Only in this case it is reasonable to speak about a properly specified mesh parameter

h` > 0 associated with T`. However, we define the global quantity h` := maxT∈T` hT for

the moment. During our presentation we will repeatedly return to the question whether

quasi-uniformity is needful for the particular point.

Remark 1.5. We assume that Ω =
⋃
T∈T` T , ` ∈ N. In general, the meshes (T`)`∈N do

not need to represent the domain Ω exactly. They should constitute a sequence (Ω`)`∈N
of polygonal or polyhedral approximations, though. Then, the estimation of the additional

consistency error requires sufficiently fast convergence of this sequence to Ω in a certain

sense.

In the present section, each mesh T`, ` ∈ N, is used to construct a finite element dis-

cretization. More precisely, the sequence of the respective Galerkin projections is supposed

to converge to the solution of the continuous problem as described below. Let us, as early as

now, clarify that a hierarchy of meshes may also serve another purpose. In the subsequent

sections, when we consider multilevel preconditioners for discrete elliptic equations, a “fine”

level L ∈ N will be specified. Then, the “coarse” meshes (T`)`<L and the associated finite

element spaces are used as a means to construct auxiliary problems for the fast iterative

solution of the discrete problem at level L. Consequently, the coarse finite element spaces

do not need to be proper approximation spaces in the strict sense of the present section. We

will distinguish between these two notions carefully.

We denote the set of nodes of T` which do not lie on ΓD by N` and abbreviate its

cardinality by n` := |N`|. Let X` ⊂ H1
D(Ω) be the space of Lagrange conforming finite

elements of first order with incorporated Dirichlet boundary conditions on ΓD and denote

its nodal basis as Λ` = (λ`p)p∈N` with λ`p(q) = δpq, p, q ∈ N`. Note that, as usual, the symbol

p is used synonymously to indicate a node in N` and its position in Rd. Let ωp := supp(λ`p)

be the support of the basis function at node p ∈ N` commonly called patch. Here, the index

` is dropped as it is clear from the choice of p. To approximate the vector-valued space

H1
D(Ω), we use the finite element space X` := (X`)

3 with basis Λ` = (λ`pei)p∈N`,1≤i≤3.

The Galerkin discretizations of the linear problems (1.2) and (1.11) are

u` ∈ X` : a(u`, v) = F(v), ∀ v ∈ X` and u` ∈X` : a(u`,v) = F(v), ∀ v ∈X`.

(1.18)

For the finite element discretizations of the variational inequalities, we assume that g and n

are sufficiently smooth. Then, the discrete approximations of the constrained minimization

problems (1.12) and (1.14) are to find u` ∈ K` such that

a(u`, v − u`) ≥ F(v − u`), ∀ v ∈ K` := {v ∈ X` | v(p) ≥ g(p), ∀ p ∈ N`} ,

and to find u` ∈ K` such that

a(u`,v − u`) ≥ F(v − u`), ∀ v ∈ K` := {v ∈X` | v(p) · n(p) ≤ g(p), ∀ p ∈ N` ∩ ΓC} ,
(1.19)
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respectively. The unique solvability of the discrete equations and inequalities follows just

as in the continuous case. Here, as usual, the non-penetration constraints are only enforced

at the respective nodes. We briefly return to the issue of modeling discrete inequality

constraints in Remark 7.1 in the context of a parametric finite element method.

For the standard discretization error estimates for the linear problems we refer to [25, 39,

56]. If the continuous solution is sufficiently smooth, i. e., u ∈ H1+σ(Ω) or u ∈H1+σ(Ω) for

a constant σ ∈ (0, 1], then ‖u− u`‖H1(Ω) . h
σ
` |u|H1+σ(Ω) or ‖u− u`‖H1(Ω) . h

σ
` |u|H1+σ(Ω),

respectively. The analogous results hold true for the approximations of the variational

inequalities; see [41, 84, 117].

In any case, the boundary Γ needs to be sufficiently smooth. If the mesh T` does not

represent the domain Ω exactly, as indicated in Remark 1.5, one may have to replace the

Galerkin projection u` (or u`) by a suitable extension; see, e. g., [117, Section 6.4].

A previous research project of the author was about the numerical simulation of multi-

body contact problems on complex three-dimensional geometries. In the case of warped

contact boundaries and non-matching finite element meshes, particular emphasis has to be

put on the discretization of the transmission of forces and the non-penetration conditions

at the contact interfaces between the involved elastic bodies; see [69, 70, 71, 72].

1.4 The need for preconditioning

In this section, a motivation for the search of efficient preconditioners is given. Here, in

this introductory chapter, we only explain the concepts of iterative solution and precondi-

tioning for linear problems. Non-linear methods for the discrete variational inequalities are

discussed in more detail in Section 6.2. We will also need to establish some more notation.

But note that most terminologies are well-known and may be found in many books on

numerical mathematics.

From now on, let us consider the scalar case only. As the elaboration of the current sec-

tion for the vector-valued spaces is straightforward, we do not lose any generality. However,

this will appreciably simplify the notation.

As a finite element function v` ∈ X` has a unique representation

v` =
∑
p∈N`

v`(p)λ
`
p,

it can be identified with the vector v` = (v`(p))p∈N` ∈ Rn` . This identification is formalized

by the coordinate isomorphism Φ` given by

Φ` : Rn` → X`, Φ`(v) :=
∑
p∈N`

vpλ
`
p. (1.20)

Exactly at this point, the “restriction” to the scalar problems pays. This is because, given

a basis Λ`, we may now use bold symbols for vector and matrix representations of finite

element functions and operators, respectively; see also below.
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Operator and matrix notations

Next, we introduce an operator notation. Let V and W be normed vector spaces with

norm ‖ · ‖V and ‖ · ‖W , respectively. Recall the definition V ′ := Lin(V,R) of the dual of a

normed vector space V . Generally, Lin(V,W ) := {A : V → W | sup‖v‖V ≤1 ‖Av‖W < ∞}
denotes the space of bounded (or continuous) linear operators from V to W and Lin(V ) :=

Lin(V, V ). By 〈·, ·〉V we denote the duality pairing in V , i. e., 〈v′, w〉V := v′(w) for v′ ∈ V ′
and w ∈ V . For an operator A ∈ Lin(V,W ) we define the adjoint operator A′ ∈ Lin(W ′, V ′)

by

〈A′w′, v〉V = 〈w′, Av〉W , ∀ v ∈ V, w′ ∈W ′.

If V = W is a Hilbert space with inner product (·, ·)V , one may use the Riesz representation

theorem to characterize the adjoint operator A′ ∈ Lin(V ) by

(A′v, w)V = (v,Aw)V , ∀ v, w ∈ V.

An operator A ∈ Lin(V ) is called self-adjoint if A′ = A.

Now, let us return to the elliptic problems described in the previous sections. Note that

the bilinear form a induces an operator A ∈ Lin(H1
D(Ω), H1

D(Ω)′) via

(Av)(w) = 〈Av,w〉H1
D(Ω) = a(v, w), ∀ v, w ∈ H1

D(Ω).

Then, the variational problem (1.2) is equivalent to: Find u ∈ H1
D(Ω) such that the equation

Au = F holds in the space H1
D(Ω)′.

Hereafter, for a (not necessarily finite-dimensional) Hilbert space V , we prefer to identify

the dual V ′ with V itself via the Riesz representation theorem. With this in mind, the

Galerkin approximation from (1.18) of A in the finite-dimensional spaces X` yields the

discrete operators A` ∈ Lin(X`) given by

(A`v, w)L2(Ω) = a(v, w), ∀ v, w ∈ X`,

for ` ∈ N. The corresponding properties of the bilinear form a, namely symmetry and

ellipticity, imply that each operator A` is self-adjoint and positive definite.

Given a function f` ∈ X` such that (f`, v)L2(Ω) = F(v) for all v ∈ X`, the discrete

problem is to solve the equation

A`u` = f` in X` (1.21)

for u`. To obtain an algebraic representation with respect to the basis Λ`, we denote the

system matrix (or stiffness matrix) by A` ∈ Rn`×n` with the entries (A`)pq := a(λ`p, λ
`
q) for

p, q ∈ N`. The right hand side F ` ∈ Rn` of the linear system of equations is the vector

with the entries (F `)p := (f`, λ
`
p)L2(Ω) for p ∈ N`. Then, the algebraic formulation of the

discrete problem is the equation

A`u` = F ` in Rn` . (1.22)

Note that F ` is not the algebraic representation of f`. In fact, for f ` := Φ−1
` (f`) ∈ Rn`

we have F ` = M `f ` where M ` ∈ Rn`×n` is the mass matrix with the entries (M `)pq :=
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(λ`p, λ
`
q)L2(Ω) for p, q ∈ N`. Similarly, if AΦ

` ∈ Rn`×n` is the algebraic representation of A`,

namely the matrix defined via AΦ
` v = Φ−1

` (A`Φ`(v)) for all v ∈ Rn` , then the relation

A` = M `A
Φ
` holds. Both the matrix AΦ and the vector f ` do not need be computed.

Naturally, the matrices A` and M ` are symmetric, i. e., self-adjoint with respect to the

Euclidean scalar product, and positive definite.

Condition number

For any matrix A ∈ Rn×n, n ∈ N, and any operator A ∈ Lin(V ) in the space V ⊂ L2(Ω),

we define the operator norm induced by the Euclidean norm and the L2-norm, respectively,

by

|A| := sup
v∈Rn, 0<|v|≤1

|Av|
|v|

and ‖A‖ := sup
v∈V, 0<‖v‖L2(Ω)≤1

‖Av‖L2(Ω)

‖v‖L2(Ω)
. (1.23)

Later, for the numerical study of certain prolongation operators between non-nested finite

element meshes, we will also need other, more general operator norms; see Section 5.8.

Let A ∈ Rn×n or A ∈ Lin(V ) be a symmetric positive definite matrix or operator.

Then, the (energy) scalar product (·, ·)A is defined by

(v,w)A := v ·Aw, ∀ v,w ∈ Rn, or (v, w)A := (v,Aw)L2(Ω), ∀ v, w ∈ V.

In both cases, the symbol ‖ · ‖A :=
√

(·, ·)A denotes the induced (energy) norm. The

corresponding operator norm may be defined analogously to (1.23). If A ∈ Rn×n is positive

definite, the condition number κ(A) with respect to the norm | · | is

κ(A) := |A| |A−1| = λmax(A)

λmin(A)
, (1.24)

where

λmax(A) := max
0 6=v∈Rn

(v,v)A
|v|2

, λmin(A) := min
0 6=v∈Rn

(v,v)A
|v|2

are the maximum and minimum eigenvalues of A, respectively. Analogously, for positive

definite operators A ∈ Lin(V ) in finite-dimensional spaces V ⊂ L2(Ω), we have

κ(A) := ‖A‖ ‖A−1‖ =
λmax(A)

λmin(A)
(1.25)

with the extreme eigenvalues

λmax(A) := max
0 6=v∈V

(v, v)A
‖v‖2

L2(Ω)

, λmin(A) := min
06=v∈V

(v, v)A
‖v‖2

L2(Ω)

.

We denote the spectral radius of an operator A and a matrix A, which coincides with λmax

in the finite-dimensional setting, by the symbols ρ(A) and ρ(A), respectively.

The condition number is a measure of the sensitivity of the solution to perturbations of

the data. More precisely, the expansion up to first order of the relative error in the solution

u of a linear equation Au = f is bounded by κ(A) times the relative error in the operator
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A and the right hand side f ; see, e. g., [92] for more details. However, the issue that the

speed of most iterative solvers depends strongly on the condition number is more relevant

for the topic of this thesis.

Now, we return to the specific elliptic problem from above. An analysis of the spec-

trum of A` or A` yields the following well-known result; see, e. g., [177]. For a family of

quasi-uniform meshes (T`)`∈N, the condition number of the system matrix and the discrete

operator is κ(A`) = κ(A`) . h
−2
` for h` → 0. This estimate is sharp. In contrast, the mass

matrix is well-conditioned, we have κ(M `) . 1.

Convergence behavior of iterative solvers

Finally, let us consider the solution of the discrete equation (1.21) or (1.22) for a fixed finite

element space X`. We may omit the index ` and deal with the operator equation: Find

u ∈ X such that Au = f .

Let the iterative method start at the initial guess u0 ∈ X. Constructing a sequence

which is supposed to converge to u, we denote the k-th iterate by uk ∈ X, k ≥ 1. Then,

the error of the k-th iterate is ek := u − uk ∈ X with the residual rk := Aek = f − Auk.
The correction of step k is denoted by ck := uk − uk−1.

To measure the convergence behavior, one examines the asymptotic rate of conver-

gence ρ, also called contraction rate, defined by

ρ := lim
k→∞

ρk with ρk :=
‖ek‖
‖ek−1‖

, k ≥ 1,

with respect to a suitable norm ‖ · ‖ in X. As customary, we set this fraction and the ones

considered in the following to 0 if the denominator vanishes.

As the finite element solution u and, thus, the algebraic error ‖ek‖ is unknown, in

general, alternative quantities have to be used to describe the reduction of the error in the

k-th step of the generic iteration. Two common indicators are the L2-norm of the residual

‖rk‖L2(Ω) and the energy norm of the (next) correction ‖ck+1‖A leading to the rates

ρkres :=
‖rk‖L2(Ω)

‖rk−1‖L2(Ω)
and ρkA :=

‖ck+1‖A
‖ck‖A

, k ≥ 1, (1.26)

respectively. Note that, for ill-conditioned problems, the measures from (1.26) may not

reflect the actual error decay very well.

In the context of preconditioning, there is another natural, but still less frequently used

choice for an estimator of ρk. Let C ∈ Lin(X) be a symmetric positive definite operator,

a preconditioner, with (C−1v, v)L2(Ω) h (Av, v)L2(Ω) for all v ∈ X. Further, the k-th

correction may be computed as the preconditioned residual, namely ck = Crk−1. Then, the

fraction

ρkC :=

√
(ck+1, rk)L2(Ω)√
(ck, rk−1)L2(Ω)

, k ≥ 1,

is equivalent to the algebraic error reduction rate because

(ck+1, rk)L2(Ω) = (Crk, rk)L2(Ω) = (CAek, Aek)L2(Ω) = (ACAek, ek)L2(Ω) h ‖ek‖2A.
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Here, the last equivalence is a well-known result in the analysis of preconditioners; see,

e. g., [194, Lemma 2.1]. Naturally, the quality of the estimator for the iteration error ‖ek‖A
depends on the quality of the preconditioner C, more precisely, on the constants in the

equivalence (C−1v, v)L2(Ω) h (Av, v)L2(Ω).

Finally, for a sufficiently large number of iterations K, the geometric mean

ρ̄K :=

(
K∏
k=1

ρk

) 1
K

(1.27)

is a reasonable approximation of the asymptotic convergence rate ρ. If the early stage of the

iteration appears very differently from the asymptotic behavior, one may want to neglect

the first couple of steps in the definition (1.27). In practice, ρk needs to be replaced by one

of the approximate variants from above.

We consider some corresponding quantities for finite element vectors in the context of

geometric multigrid methods in Section 2.1 and Section 2.2.1.

Preconditioning

Iterative solvers suffer from their heavy dependence on the condition number. This is a

critical point for our finite element model problems since the condition numbers of the

representing operators or matrices grow like O(h−2
` ) for h` → 0.

For symmetric positive definite problems, the conjugate gradient method (cg) proposed

in [111] is one of the most important solvers. However, its convergence speed depends

crucially on the condition number as specified below. The idea of preconditioning is to

transform the original system to another one with smaller condition number. We call a

symmetric positive definite operator C ∈ Lin(X) a preconditioner for the operator A, if the

condition number of the preconditioned operator is relatively small, namely κ(CA)� κ(A).

In addition, the action of the operator C, which can be interpreted as an approximate inverse

of A, should be easy to evaluate.

Then, for the iteration error of the preconditioned conjugate gradient method (pcg),

the (sharp) estimate

‖ek‖A ≤ 2

(√
κ(CA)− 1√
κ(CA) + 1

)k
‖e0‖A

is well-known. Of course, the operators C and A do not need to commute. This is be-

cause the pcg method is equivalent to the cg method applied to the operator C1/2AC1/2

where C1/2 is the uniquely defined positive square root of C such that C1/2C1/2 = C and

symmetric. Still, only the action of C has to be computed in the algorithm. This im-

plies that the efficiency of the overall iterative method principally depends on the size of

κ(C1/2AC1/2) = κ(CA) and the cost of the assembly and the evaluation of C. Note that,

for a preconditioner C, the linear iteration

uk+1 = uk + ωC(f −Auk) (1.28)

converges for ω ∈ (0, 2
λmax(CA)).
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Therefore, the quest for an efficient iterative solution strategy for the (ill-conditioned)

symmetric positive definite linear problem (1.21) amounts to finding an operator C` ∈
Lin(X`) such that κ(C`A`) � κ(A`). In fact, the goal is to obtain robust convergence

behavior of the iterative method with respect to the mesh size h`. More precisely, both the

condition number κ(C`A`) of the preconditioned operator and the cost of the precondition-

ing routine should be bounded as far as possible. At the best, one can show a result like

κ(C`A`) . 1 with a bound independent of the discretization parameter. In this case, the

pcg method should yield robust convergence with respect to the problem size.

This is exactly the objective of the multilevel methods investigated in the last decades.

The fundamental ideas and a fairly detailed overview of the literature are presented in

Chapter 2. We develop a generalized concept in Chapter 3.
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In this chapter, the main features of multilevel methods for elliptic partial differential

equations are presented in a setting which is to a certain extent standard. We describe

the fundamental ideas and the algorithmic structures as well as outline the convergence

analysis from the theory of additive and multiplicative Schwarz methods. This is meant to

prepare the subsequent discussion of a generalized framework based on non-nested meshes.

Therefore, during the introduction of the multilevel algorithms, we put emphasis on the

information transfer between the involved finite element spaces.

To start with, Section 2.1 reviews the classical linear iterative methods giving a moti-

vation of the development of multilevel techniques to overcome the determined deficiencies.

Section 2.2 is about geometric multigrid methods. Here, we present the standard algorithms

for elliptic partial differential equations based on multilevel finite elements associated with

a hierarchy of nested meshes. In Section 2.3, it is shown how the framework of parallel and

successive subspace correction methods (Schwarz methods) can be used to prove optimal

preconditioning and convergence results. Note that the Schwarz theory, while not yield-

ing quantitative estimates of contraction rates, is capable of treating very general problem

classes with only minor regularity assumptions. We conclude with some remarks about the

applicability of multigrid methods to other problems settings in Section 2.4.

2.1 Standard linear iterative methods

To understand the fundamental concepts of the multilevel methods this thesis is concerned

with, it may be considered essential to briefly recall the basic properties of classical iterative

methods. This is done in the present section. At the same time, we motivate the devel-

opment of multilevel techniques by observing the inability of standard linear iterations to

reduce low-frequency contributions of the algebraic error. We also use this opportunity to

introduce several notations which will be used in the algorithms.

Let us first state some notations concerning the residual during an iteration. For an

index `, let uk` = Φ`(u
k
` ) ∈ X` be the k-th iterate. Then, we have

Rk
` := F ` −A`u

k
` =

(
(f`, λ

`
p)L2(Ω) − (A`u

k
` , λ

`
p)L2(Ω)

)
p∈N`

=
(

(rk` , λ
`
p)L2(Ω)

)
p∈N`

. (2.1)

Further, with rk` := Φ−1
` (rk` ), it is Rk

` = M `r
k
` and ‖rk` ‖L2(Ω) = (M−1

` R
k
` ) ·Rk

` . Therefore,

one usually considers |Rk
` | instead of ‖rk` ‖L2(Ω) to measure the convergence behavior of an

iterative method in practice, although the two quantities are only equivalent up to scaling

with the local mesh size.

Generally, the considered standard iterations are of the form (1.28). The methods are

called linear or stationary because the error propagation is controlled by the fixed linear

operator E := id − ωCA; the error update of the k-th step is ek+1 = Eek. Naturally, the

method converges if and only if the spectral radius of E satisfies ρ(E) < 1.

Given some initial residual r` ∈ X` and a current iterate v` ∈ X`, let the next iterate
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for the corresponding defect problem in X` be defined by the step

S`(v`, r`) := v` + ωC`(r` −A`v`). (2.2)

We also use a common product notation, which is recursively defined for ν > 1 by

Sν` (v`, r`) := S`(S
ν−1
` (v`, r`), r`), (2.3)

starting with S1
` (v`, r`) := S`(v`, r`) given by (2.2). Then, it is uk+ν

` = Sν` (uk` , f`) if u0
` = 0

for the discrete problem in equation (1.21). In matrix notation, for v`,R` ∈ Rn` , we have

S`(v`,R`) := v` + ωC`(R` −A`v`), (2.4)

which gives the next iterate in Rn` , and Sν` (v`,R`) defined analogously to (2.3). In (2.2)

and (2.4), one needs a suitable operator C` ∈ Lin(X`) and a suitable matrix C` ∈ Rn`×n` ,
respectively. Actually, the method given by the formula (2.4) can be derived and analyzed

as a pure matrix iteration without referring to the finite element context; see, e. g., the

standard references [104, 196]. The notation of the residual vector R` shall still indicate

that this input is obtained according to (2.1) here.

The most common iterations employed for smoothing in multigrid methods are con-

structed by a splitting of the system matrix A` ∈ Rn`×n` into three (n` × n`)-matrices

via

A` = D` −L` −U `.

Here, D` is the diagonal, −L` is the lower and −U ` is the upper triangular part. Then, the

Jacobi method is specified by CJac
` = D−1

` ; the Gauß–Seidel method has the representation

CGS
` = (D` − L`)−1. Both linear methods are Richardson iterations with relaxation pa-

rameter ω; the latter depends on the ordering of the degrees of freedom. It is important to

note that the cost of one step grows like O(n`) for sparse matrices such as the ones coming

from the finite element discretization in Section 1.3.

To illustrate the correlation between operator and matrix notations in the finite element

setting employed throughout this thesis, we remark that, for instance, the operator SJac
` in

the iteration

uk+1
` = SJac

` (uk` , f`) = uk` + ω
∑
p∈N`

a(λ`p, λ
`
p)
−1(rk` , λ

`
p)L2(Ω)λ

`
p (2.5)

represents the Jacobi method. Both characterizations (2.4) and (2.5) indicate that only the

data Rk
` = M `r

k
` is required to evaluate the above pointwise relaxation methods.

It is well-known that the performance of the basic iterative methods for large systems is

rather poor and strongly deteriorates with an increasing number of equations. For instance,

the square of the error reduction factor of the Gauß–Seidel method (with ω = 1) grows like

1 − O(h2
` ). As a matter of fact, this may be verified by the theory of subspace correction

methods outlined in Section 2.3; see [194].

Consequently, these simple iterations cannot be used as stand-alone methods in practice.

Many classical iterative schemes show a strong smoothing effect on the algebraic error,

though. The oscillatory parts of the error are damped relatively fast, mostly in very few
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Figure 2.1. Illustration of the smoothing effect of the Gauß–Seidel method: abso-

lute error of the initial guess (random, normalized) and the first five iterations.

iteration steps, whereas the overall convergence speed indeed turns out to be as poor as the

above pessimistic estimate predicts. This behavior is illustrated in Figure 2.1∗.

Here, the conception of the term “smooth error” relies on geometric considerations re-

lated to the finite element discretization. This notion is different in the context of algebraic

multigrid methods; sometimes the term “slow-to-converge error” is preferred. Further, the

smoothing property is relative. More precisely, at each level ` > 0, a smoothing operator

acting on the finite element space X` manages to reduce the high-frequency contributions

of the error with respect to the current mesh such that the remaining error may be approx-

imated accurately in the subspace X`−1 in a certain sense. The qualitative behavior does

not depend on the actual mesh size h`. This is the fundamental observation which led to

the development of multigrid methods in the first place. We do not state this formally here

but return to this issue later.

A lot of effort has been spent to investigate both quantitative and qualitative properties

of smoothing operators for multigrid methods. However, the focus of our own research has

been directed to an application of the abstract Schwarz theory which is beneficial to cover

very general problem classes with minor regularity assumptions. As we treat the multi-

level iterations considered in Section 2.2 as subspace correction methods in Section 2.3,

no quantitative characterization of the smoothing properties enters the analysis. This al-

ready indicates that the entire theory is a qualitative one which aims at robust convergence

statements for general problems instead of quantitative estimates of contraction numbers.

To obtain the latter, one usually needs rather restrictive assumptions on the problem set-

tings. Therefore, we neither go into detail about Brandt’s local mode analysis [37] (or local

Fourier analysis, for short LFA) nor investigate the classical smoothing properties identified

by Hackbusch [103]. For a discussion of these issues, we refer to [178].

∗Certainly, although I have created the graphs from my own computational results, I do not deserve
credit for this nice demonstration of the smoothing behavior of standard relaxation methods. One should
be able to find similar figures in every noteworthy multigrid book; see, e. g., [178].
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Let us, as early as now, remark that the classical iterative methods work well in the

new context to be developed in Chapter 3. This thesis does not include new results on

smoothing operators. But the numerical examples suggest that the smoothed error is well

represented by functions in the range of the prolongation from the coarser level.

2.2 Geometric multigrid methods
In this section, we discuss the major ideas of multilevel methods for elliptic partial dif-

ferential equations. In particular, we introduce the (standard) multigrid algorithm usually

implemented in a recursive fashion and BPX-type preconditioners. This is the class of algo-

rithms that will be extended to a semi-geometric method in Chapter 3. Particular attention

is paid to the formal description of the ordinary information transfer between nested finite

element spaces.

It seems generally accepted that multigrid methods have first been described by Fe-

dorenko [86, 87] and Bakhvalov [12]. An important milestone was reached with the work

by Brandt summarized in [37]. Furthermore, essential contributions are due to Hackbusch;

see the monograph [103]. We also briefly comment on the historical developments in the

context of the convergence analysis in Section 2.3.

It is well-known that the performance of the classical linear methods of Section 2.1 is

not satisfactory. In rather general settings, they have smoothing properties, though. The

paradigm of multigrid methods is to perform only very few steps of a relaxation method to

obtain a defect problem where the remaining error is relatively smooth, at least with respect

to a weighted energy norm at the current level. Then, the defect problem or, more precisely,

the corresponding error may be well represented in a space with less degrees of freedom.

An essential ingredient is a methodology of how to realize such a coarse approximation.

The power of multilevel iterations results from a sophisticated combination of smoothing

iterations and coarse level corrections. These ingredients should be complementary in the

sense that they reduce different components of the error; at each level a different section of

the spectrum should be processed.

2.2.1 Information transfer between nested

finite element spaces

First, we describe a standard way to obtain a coarse level approximation in geometric

multigrid methods. Because in this thesis we are concerned with the study of diverse

interpolating or projecting operators, we do this in a little more detail than absolutely

necessary.

To obtain a representation of the defect problem in a space with less degrees of freedom,

we directly work with finite element spaces of different scales. Note that the applicability

of multigrid methods is not restricted to this class of problems. Other variants may be

developed more conveniently by introducing certain stencil notations; see, e. g., [103, 178].

Still, aiming at efficient multilevel methods for unstructured finite element meshes, we do

not consider this point of view as it does not seem to provide any additional insight into the

structure of the studied problems. The presentation in this section is, moreover, closer to
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our investigation of geometrically inspired transfer concepts between finite element spaces

associated with non-nested meshes.

Recall that we have already introduced a scale of finite element spaces (X`)`∈N associated

with meshes (T`)`∈N in Section 1.3. For the considerations of the present chapter, assume

that the spaces are nested, i. e.,

X` ⊂ X`+1, ∀ ` ∈ N.

We consider the variational approach in the following. When dealing with a sequence of

nested finite element spaces, there is a very natural way to realize the information transfer

between two successive spaces. An important ingredient is the fact that the problem is set

in the Hilbert space L2(Ω).

The index ` > 0 may be fixed. For the coarse-to-fine transfer, let

I``−1 : X`−1 → X`

be the natural embedding of X`−1 into X`. Its matrix representation I``−1 ∈ Rn`×n`−1 is

defined via I``−1v = Φ−1
` (I``−1Φ`−1(v)) for all v ∈ Rn`−1 . Evidently, the entries of I``−1 are

the coefficients in the unique linear combination representing a basis function of X`−1 with

respect to the basis of X`. This is the mapping which is used as prolongation operator to

transfer a coarse level correction to the next finer level.

For finite element problems set in the space L2(Ω), the natural way to transfer the

residual to a coarser level is the orthogonal projection with respect to (·, ·)L2(Ω). To under-

stand this, it is reasonable to consider the residual as a dual object, namely a functional

in the respective dual space. Let r` ∈ X`. Then, as X`−1 ⊂ X`, it is possible to represent

the corresponding functional (r`, ·) ∈ X ′` exactly in X ′`−1. More precisely, there is a unique

function r`−1 =: Q`−1
` r` ∈ X`−1 such that

(r`−1, v)L2(Ω) = (r`, v)L2(Ω), ∀ v ∈ X`−1.

In other words, r`−1 is computed by the L2-projection of r` to the subspace X`−1 ⊂ X`.

This gives a fine-to-coarse mapping

Q`−1
` : X` → X`−1

which is used as restriction operator yielding the coarse level representation of the residual.

A matrix representation of Q`−1
` with respect to the bases Λ`−1 and Λ` is obtained by

use of the one of the embedding I``−1; we have

Q`−1
` = M−1

`−1(I``−1)TM `. (2.6)

In particular, for a residual r` = Φ−1
` (r`), we have the following relation between the

residual vectors at two successive levels,

R`−1 := M `−1r`−1 = M `−1Q`−1
` r` = M `−1M

−1
`−1(I``−1)TM `r` = (I``−1)TR`.

Therefore, the inversion of the mass matrix M `−1 in the evaluation of the operator Q`−1
`

can be avoided in a very natural way as the relevant input of the smoothing operator at level



28 2 Multilevel methods for elliptic equations

` − 1 is the quantity R`−1 rather than r`−1; see Section 2.1. Consequently, the transpose

of the prolongation matrix appears as restriction matrix in multigrid algorithms like the

one below. As a matter of fact, this is one of the most important reasons why standard

multigrid methods can be implemented in an efficient manner. A further discussion of how

to replace the fine-to-coarse L2-projections by other operators that are computable more

easily can be found in [31]. This is only necessary in case the structure of the smoothers or

subspace solvers cannot be exploited in the above fashion.

Now, let the operator A` and the matrix A`, respectively, be given by a suitable finite

element discretization as specified in Section 1.3. To obtain a coarse representation of

equation (1.21) at level `− 1, consider the operator

A`−1 = Q`−1
` A`I``−1. (2.7)

This immediately implies that

(A`−1v, w)L2(Ω) = (A`v, w)L2(Ω), ∀ v, w ∈ X`−1. (2.8)

For the matrix equation (1.22), we have

A`−1 = M `−1A
Φ
`−1 = M `−1M

−1
`−1(I``−1)TM `A

Φ
` I``−1 = (I``−1)TA`I``−1.

Due to the above relations, the concept outlined here is called Galerkin or variational

approach.

2.2.2 Coarse level correction

Assume that we have linear coarse-to-fine operators (I`+1
` )`∈N and fine-to-coarse opera-

tors (Q``+1)`∈N between the spaces (X`)`∈N. According to the previous section, the most

reasonable choices, if the equations come from finite element discretizations and allow for

natural (nested) coarse scales, are the canonical inclusion and the L2-projection. Then, in

the variational setting, the operators (A`)`∈N are actually representations of the operator A

at each level ` as stated in (2.8). In particular, they are symmetric positive definite.

Suppose the high-frequency components of the error have been reduced at some specified

level ` > 0 by a standard relaxation method. Then, the remaining error (i. e., the solution

of the defect equation) is expected to be relatively smooth and may be well approximated

at a coarser level. This is done in a finite element space with larger mesh size. Now, the

idea of computing a coarse level correction is to reduce the low-frequent error contributions

by a suitable routine at level `− 1.

We illustrate this concept by the variational principle in the following two-level setting.

Let the coarse level operator A`−1 be defined by the Galerkin approach (2.7). For a guess

v` ∈ X`, let

c` = I``−1A
−1
`−1Q

`−1
` (f` −A`v`) (2.9)

be the (exact) coarse level correction. Then, the variational principle ensures that the

associated error update operator is an orthogonal projection to the range of I``−1 with



2.2 Geometric multigrid methods 29

respect to inner product (·, ·)A; the coarse level correction is a minimizer of the energy

norm ‖ · ‖A, i. e.,

‖u` − v` − c`‖A = min
c`−1∈X`−1

‖u` − v` − I``−1c`−1‖A. (2.10)

In other words, the variational construction implies that I``−1c`−1 is the Galerkin approxi-

mation of the exact solution of the defect equation at the fine level ` in the space X`−1.

Naturally, it is only practicable to compute the coarse level correction c` exactly, namely

via (2.9), if the dimension of the respective space X`−1 is sufficiently small. Otherwise it

needs to be approximated. In the context of multigrid methods, this is done by recursion

such that the inverse of the matrix A` is only computed at level ` = 0, as described in the

next paragraph. In this case, the characterization (2.10) does not hold true any more.

Still, at this point, one realizes that the two-level method obtained by a simple com-

bination of a fine level smoothing procedure and an exact coarse level correction cannot

diverge if the smoother converges. Under certain conditions, this also holds true if the exact

coarse level correction is replaced by a suitable approximation; see [176]. Note that adding

the coarse level correction does not converge as a stand-alone method. This is because the

restriction operator generally has a non-trivial kernel.

2.2.3 The standard algorithm

In this section, we state a standard form of the multigrid method which comprises the ideas

outlined in the previous paragraphs.

The efficiency of the geometric multigrid cycle arises from an effective treatment of the

different frequencies of the error by a sophisticated combination of smoothing iterations and

coarse level corrections. The parameters ν1, ν2 ≥ 0 denote the number of pre-smoothing

and post-smoothing steps, respectively. By γ ≥ 1 we denote the number of recursive calls

of the coarse level correction routine.

We prefer to write down the multigrid cycles as preconditioners such that the respective

algorithms provide corrections rather than updated iterates. Note that this is in contrast

to the notation of the smoothing operators (S`)`∈N. As indicated in Section 1.4, a precon-

ditioner has to be evaluated for a given residual. It is a linear mapping in Lin(X`) that may

be represented by a matrix in Rn`×n` . Then, the overall iterative solver is a preconditioned

Richardson or a preconditioned conjugate gradient method to be considered afterwards.

We only state the operator formulation here.

Algorithm 2.1 (Multigrid cycle). For (the residual) r ∈ X` compute the value

C`r = MGγ,ν1,ν2

` (r) = MG (`, γ, ν1, ν2, r) ∈ X`

as follows.

MG (`, γ, ν1, ν2, r) {
if (` = 0) {

Solve exactly: x← A−1
0 r

}
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else {
Pre-smoothing steps: x← Sν1

` (0, r)

Coarse level correction:

Restriction: r′ ← Q`−1
` (r −A`x)

Initialize: x′ ← 0

for (i = 1, . . . , γ) do {
Recursive call: x′ ← x′ + MG (`− 1, γ, ν1, ν2, r

′)

}
Prolongation: x← x+ I``−1x

′

Post-smoothing steps: x← Sν2
` (x, r)

}
return x

}

As indicated before, x and x′ are primal objects whereas r and r′ are dual objects. For

γ = 1 and γ = 2, this is the V(ν1, ν2)-cycle and the W(ν1, ν2)-cycle, respectively. Other

combinations of smoothing and coarse level correction are possible. For simplicity, we have

not incorporated an additional relaxation parameter for the coarse level correction. We will

comment on the usefulness of an over-relaxation of the coarse level correction in certain

multigrid variants later.

To obtain the actual multigrid method, assume that the problem (1.21) to be solved

is set in a space corresponding to the fixed level L > 0. This means that the nested

finite element spaces (X`)`=0,...,L and the associated transfer operators and coarse level

operators discussed in Section 2.2.1 are given. Note that all this data essentially comes

from a hierarchy of nested meshes (T`)`=0,...,L. Suppose that the dimension of the space X0

at the coarsest level is sufficiently small such that efficient methods for the computation of

an exact solution exist. Finally, let (S`)`=1,...,L be suitable symmetric smoothing operators.

Then, the desired multigrid method is a Richardson iteration with the preconditioner CL ∈
Lin(XL) defined by Algorithm 2.1. For the sake of completeness, we state the multigrid

iteration in Algorithm 2.2 below. In practice, a sufficiently large reduction of the algebraic

error is achieved by employing a suitable (absolute or relative) stopping criterion according

to the estimates in Section 1.4. However, symmetric multigrid cycles are for linear problems

more commonly used as preconditioners inside pcg iterations.

Algorithm 2.2 (Multigrid iteration). For chosen parameters ν1, ν2, γ, compute an ap-

proximate solution of the equation ALu = fL in XL by the following iteration.

Initialize: u0 ← 0

for (k = 1, 2, . . .) do {
Multigrid cycle: uk ← uk−1 + MG (L, γ, ν1, ν2, fL −ALuk−1)

Check stopping criterion

}
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2.2.4 Full multigrid or nested iteration

Let us briefly discuss the cost of the multigrid methods, i. e., the number of operations

that have to be carried out asymptotically. The arguments put forward in this section are

well-known and may be found, e. g., in [103, 178]. However, the advantages of multilevel

techniques to obtain an asymptotically optimal method for the solution of elliptic boundary

value problems have first been investigated systematically and to the full extent in [37].

First of all, if n0 is sufficiently small, the cost to solve the coarse level equation exactly

is considered negligible; thus, the cost of one multigrid cycle grows like the number of

unknowns at the finest level, namely O(h−dL ) in case of quasi-uniform meshes. In the present

context, the finite element spaces represent discretizations of a boundary value problem for

a given partial differential equation. Therefore, it is natural to compute an approximate

solution of the equation, e. g., by the multigrid iteration of Algorithm 2.2, such that the

algebraic error is of the size of the discretization error. Even if the multigrid method is

optimal for any fixed size of the algebraic error, i. e., the number of necessary steps to reach

a specified accuracy remains bounded, a direct application of Algorithm 2.2 is not sufficient

to obtain an optimal method in this case. This is because the tolerance has to be decreased

as hL → 0.

Assume that the finite element approximation described in Section 1.3 yields a dis-

cretization error (in the energy norm) of the order O(hL) for the Galerkin solution in the

space XL. In the next section about the fundamental analysis of multilevel methods for

elliptic equations (Section 2.3), we discuss the dependence of the convergence behavior of

the multigrid algorithms on the dimension of the finite element space. If the convergence is

independent of the discretization parameter hL, i. e., the contraction number of each single

multigrid step is uniformly bounded away from one, the number of multigrid cycles needed

for the above accuracy is O(| log(hL)|) asymptotically. Therefore, the number of operations

to reach an iterate with an algebraic error of the size of the discretization error grows like

O(h−dL | log(hL)|).
Nested iteration is a technique to reduce the cost to optimal order O(h−dL ). It is mo-

tivated by the well-known fact that iterative solvers profit from good initial iterates. The

paradigm of the following procedure is to ensure that the iteration error at each level is

proportional to the discretization error at that same level.

Algorithm 2.3 (Full multigrid iteration). For chosen parameters ν1, ν2, γ, compute an

approximate solution of the equation ALu = fL in XL by the following iteration.

Solve exactly: ũ0 ← A−1
0 f0

for (` = 1, . . . , L) do {
Interpolation: u0 ← Ĩ``−1ũ

0

for (k = 1, . . . ,K`) do {
Multigrid cycle: uk ← uk−1 + MG (`, γ, ν1, ν2, f` −A`uk−1)

Check stopping criterion

}
Final iterate: ũ0 ← uk

}
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Here, the operators (A`)`=0,...,L and the right hand side data (f`)`=0,...,L are as specified

in Section 1.3. Special attention has to be paid to the stopping criteria (or the number of

multigrid steps) at the different levels. Certain assumptions on the problem settings guar-

antee the existence of small numbers (K`)`=1,...,L such that the iterates at each level are

sufficiently accurate in the above sense. Naturally, these numbers depend on the conver-

gence of the multigrid iteration itself. For a sufficiently small contraction rate (a traditional

assumption is ρk < 1/4), one cycle may be enough. Usually, no more than two or three steps

are necessary. Moreover, one carries out the same number of steps at each level because

the convergence rate is bounded independently of the level.

In this case, the total cost is still bounded by a constant times the computational work

at the final level L; thus, the method is of optimal complexity. Note that, for the above

considerations to be valid, the operators (Ĩ``−1)`=1,...,L need to satisfy an additional approxi-

mation property, e. g., formulated as consistency condition; see [103, Chapter 5]. Evidently,

in the variational setting of the present section, the canonical inclusion (I``−1)`=1,...,L is

sufficiently accurate.

Cascadic multigrid methods

A different multigrid-like method to obtain optimal complexity for the task to reduce the

iteration error to the size of the discretization error is the so-called cascadic multigrid

method. This algorithm has first been proposed by Deuflhard in [68] in a slightly different

form.

Here, the call of the multigrid cycle MG (`, γ, ν1, ν2, f` − A`uk−1) in Algorithm 2.3 is

replaced by a non-recursive (one-level) iterative scheme, e. g., one of the standard relaxation

methods from Section 2.1 or the conjugate gradient method. Therefore, no coarse level

correction in the strict sense of the word is computed. We refer to [21, 22] for further

details.

2.2.5 BPX-like preconditioners

We also state a class of additive multilevel preconditioners, which work directly with the

generating system (Λ`)`=0,...,L usually called multilevel nodal basis in this context. These

methods have been developed to achieve preconditioning with a highly parallel algorithmic

structure. Note that they do generally not converge as stand-alone solvers, though.

For a residual r ∈ XL, one computes a correction via

CLr := A−1
0 Q0r +

L∑
`=1

∑
p∈N`

(r, λ`p)L2(Ω)

d`p
λ`p (2.11)

with a nodewise scaling by d`p = 4`(λ`p, λ
`
p)L2(Ω) or d`p = 4`(λ`p,1)L2(Ω) or d`p = a(λ`p, λ

`
p);

see [34, 198, 204]. Analogously to before, Q0 : XL → X0 is the L2-projection; here and in

the following, if the domain of a mapping is clearly the finest finite element space, we only

indicate the target subspace (in this case, X0) and drop the index L. As equation (2.11) is

formulated in the space XL and each term in the double sum lies in some subspace X` ⊂ XL,
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we have omitted the inclusion operators (I``−1)`=1,...,L for clarity, as common in this field.

If the meshes are adaptively refined, there may appear basis functions at level ` > 0 with

λ`p = λ`−1
q for some p ∈ N` and q ∈ N`−1. In this case, the corresponding correction terms

need to be excluded from the sums. Note that the direct solution of the coarse problem

at level 0 may be replaced by another method, for instance, also nodewise scaling. This

is done in the genuine BPX-preconditioner developed by Bramble, Pasciak and Xu in [34].

We do not consider the hierarchical basis preconditioner and the corresponding multigrid

method developed in [197, 198] and [13], respectively, here.

Again, one notes that only the residual vectors R`, ` ∈ {0, . . . , L} are required to eval-

uate the preconditioner. This is because the quantity c0 := A−1
0 Q0r ∈ X0 is characterized

by

a(c0, v) = (r, v)L2(Ω), ∀ v ∈ X0;

thus, we have c0 = A−1
0 R0.

Remark 2.4. The influential research published in [95, 96] gives an interpretation of multi-

level methods (including the multigrid methods and the BPX-type preconditioners) as level-

wise block Gauß–Seidel or Jacobi methods with respect to the associated semi-definite sys-

tem. This point of view allows, for instance, to regroup the degrees of freedom in a nodewise

fashion to obtain a point-oriented multilevel algorithm; see [95, Chapter 6]. This has major

consequences for the (parallel) implementation of the resulting block iterative methods.

2.3 Convergence analysis
In this section, we briefly explain the convergence analysis of the multilevel algorithms in the

framework of parallel and successive subspace correction methods. Relevant characteristics

are highlighted to facilitate the subsequent discussion of a generalized methodology based

on non-nested meshes. More precisely, for the analysis of the semi-geometric multilevel

methods to be developed in Chapter 3, we refer to some of the main results particularly

summarized here.

The theory to be presented in the following is a qualitative as opposed to a quantitative

one. It is fair to say that among all available approaches this is the most robust one as

it allows for the most general statements. No quantitative results concerning convergence

factors are achievable in this framework, though. The main advantage is that no regularity

assumptions are required to prove asymptotically optimal preconditioning and convergence

results.

Based on a formulation of the multigrid method in an abstract Hilbert space setting

developed in [27], the decisive steps were taken by Bramble, Pasciak, Wang and Xu in [32,

33, 193]; see also the review paper [194]. The result was not optimal, namely independent

of the mesh size hL and the number of levels L, before the importance of a general norm

equivalence in multilevel finite element approximation theory was completely understood

by Oswald [151] and others.

The earlier approach of combining stronger smoothing and approximation properties,

which relies on a regularity result for the underlying partial differential equation, is presum-

ably presented most elaborately in [103]; we also refer to this monograph and the references
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therein for an overview of the historical development of this particular theory. Finally, the

paper [199] is a notable review of different techniques and also includes many historical

comments.

2.3.1 Subspace splitting and subspace correction

As a matter of fact, the fundamental idea of constructing convergent sequences in a function

space by a subspace correction technique traces back to the work by Schwarz [169] published

as early as in the year 1870, although in a purely analytic context. Here, we outline how

the multilevel methods presented in Section 2.2 fit into the framework of additive and

multiplicative Schwarz methods acting on the residual by parallel and successive subspace

correction, respectively. The presentation follows [151, 177].

Here and in the following, we make exclusive use of the operator notations. As before,

the letter C stands for an (overall) preconditioner and E represents an iteration operator

for an error update. Moreover, the character B denotes certain approximations of the

operator A in some subspaces whereas T stands for a specified subspace correction.

Let the finite-dimensional space V be decomposed into a usually not direct sum of

subspaces (V`)`=0,...,L, L <∞, i. e.,

V =
L∑
`=0

V`.

Assume that the subspaces are equipped with suitable auxiliary forms b`(·, ·) = (B`·, ·)L2(Ω),

` ∈ {0, . . . , L}, defined by the symmetric positive definite operators B` ∈ Lin(V`), which

are supposed to represent approximations of the restrictions A` of the operator A to the

subspaces V`. Then, the subspace splitting reads as

(V, a) =
L∑
`=0

(V`, b`). (2.12)

This notation emphasizes the importance of the bilinear forms b`(·, ·) for the following

discussion. A norm ||| · ||| associated with the splitting (2.12) may be defined by

|||u|||2 := inf
u`∈V`, u=

∑L
`=0 u`

L∑
`=0

b`(u`, u`), u ∈ V. (2.13)

In the next paragraph (Section 2.3.2), we introduce the notion of stable subspace split-

tings by considering the relation between the energy norm and the splitting norm ||| · |||. This

facilitates the development of a very general concept to analyze additive preconditioners by

investigating specific norms of the above form. An extension to the respective multiplicative

preconditioners is also achievable; see [97, 151, 155].

But first, let us present several subspace correction methods directly associated with

the splitting (2.12). Considering the operators T` ∈ Lin(V, V`), ` ∈ {0, . . . , L}, given by

u 7→ T`u ∈ V` : b`(T`u, v) = a(u, v), ∀ v ∈ V`,
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and the right hand side f̃ =
∑L

`=0 f̃` defined by the variational formulation

b`(f̃`, v) = F(v), ∀ v ∈ V`,

we obtain a preconditioned system PLu = f̃ with an operator PL ∈ Lin(V ) via

PL =
L∑
`=0

T`.

Note that in operator notation T` can be written as B−1
` Q`AL with the L2-projections

Q` : V → V`, (Q`v, w)L2(Ω) = (v, w)L2(Ω), ∀ v ∈ V, w ∈ V`;

thus, we have PL = CLAL with CL =
∑L

`=0B
−1
` Q`.

Recall that ek ∈ V denotes the algebraic error of the k-th iterate, k ≥ 0. Then, the

error reduction of the above parallel subspace correction method is

ek+1 = ELe
k := (id− PL)ek = (id−

L∑
`=0

T`)e
k.

We will see that the BPX-like methods considered in Section 2.2.5 may be formulated as

additive Schwarz methods in the above fashion.

The multiplicative algorithms from the previous section, namely the geometric multigrid

cycles defined by Algorithm 2.1, also fit into this framework. To illustrate this, let us

examine preconditioners where the approximate subspace solvers operate one after another.

The corresponding error equation of the (non-symmetric) successive subspace correction

method induced by the splitting (2.12) and the auxiliary operators (B`)`=0,...,L is given by

ek+1 = ẼLe
k := (id− T0) · · · (id− T`) · · · (id− TL) ek. (2.14)

Here, we use the customary convention that products (or chains) of operators are evaluated

in sequential order from right to left. A symmetric multiplicative variant can be defined by

ek+1 = Ẽ′LẼLe
k

with (Ẽ′Lv, w)A = (v, ẼLw)A for all v, w ∈ V ; see [33]. In this case, the preconditioned

operator is (id− Ẽ′LẼL). Further, we have

Ẽ′L = (id− TL) · · · (id− T`) · · · (id− T0).

The action of this multiplicative preconditioner on a residual may be implemented as a

common multigrid cycle (here, a V-cycle) if the subspaces and the subspace operators are

chosen appropriately. Note that the coarse level operator (id− T0) is a projection, namely

(id− T0)2 = (id− T0), if B0 = A0, i. e., if the exact subspace correction in V0 is computed.

Often, each single operator B`, ` ∈ {1, . . . , L} represents an additive or a multiplicative

subspace correction method associated with a splitting (V`, a) =
∑

p∈N`(V`,p, b`,p). In case
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the subspace solver in V`,p is exact, i. e., B`,p = A` for p ∈ N`, this corresponds to “smooth-

ing” in V` with the Jacobi or the Gauß–Seidel method, respectively; see, e. g., [194] for an

elaboration of this connection.

We need to point out that the application of the above concepts is not limited to

multilevel preconditioning or multigrid methods. On the contrary, the strategy of space de-

composition and parallel or successive subspace correction originates from the development

of the abstract Schwarz theory and is equally popular in domain decomposition methods;

see, in particular, [151, 177, 194].

2.3.2 A relevant norm equivalence

A basic tool for the study of the additive preconditioner is to consider the relation between

the energy norm and the splitting norm. Of course, as the space V is of finite dimension,

the norms ||| · ||| and ‖ · ‖A are equivalent. On top of that, the fundamental observation is

that the values

0 < λmin := inf
v∈V, v 6=0

a(v, v)

|||v|||2
≤ λmax := sup

v∈V, v 6=0

a(v, v)

|||v|||2
<∞,

which are the best possible constants in the norm equivalence

a(v, v) h |||v|||2, ∀ v ∈ V, (2.15)

are also the minimal and maximal eigenvalue λmin(PL) and λmax(PL), respectively, of the

operator PL. Thus, it is sufficient to estimate the condition number of the splitting, namely

κ = λmax/λmin. This is a celebrated result from the theory of domain decomposition

methods or Schwarz methods; see [151, 177, 187, 204].

As an illustration, for the BPX-preconditioner [34, 194], each V` = X`, ` ∈ {0, . . . , L},
is again split into the subspaces V`,p = span{λ`p}, p ∈ N`. Then, the norm ||| · ||| reads as

|||v|||2 = inf
v`,p∈V`,p, v=

∑L
`=0

∑
p∈N`

v`,p

 L∑
`=0

∑
p∈N`

b`,p(v`,p, v`,p)

 , v ∈ V, (2.16)

with b`,p(·, ·) = 4`(·, ·)L2(Ω). Here, the subspace correction in V0 is not treated any dif-

ferently; cf. (2.11) and the following comments. For more general smoothers, i. e., more

complicated auxiliary forms b`(·, ·), one may not have a compact representation of the form

(2.11) and (2.16), respectively. If in each subspace V`, e. g., a symmetric Gauß–Seidel

method is to be applied, which allows for a representation via two triangular matrices with

respect to the chosen basis, a forward-backward substitution scheme needs to be incorpo-

rated.

In the early nineties, Oswald established a fundamental connection of multilevel finite

elements to approximation theory. Introducing abstract scales of approximation spaces

(see [150]), one can prove that certain Besov spaces coincide with the Sobolev space H1(Ω).

Applied to the above subspace splitting, the theory implies that, if adequate Jackson and

Bernstein inequalities are satisfied in the respective subspaces, the norm equivalence (2.15)
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holds true with constants independent of the mesh size and the number of levels. The

relevant results can be found in [151, Theorem 15].

Note that the validity of the required inequalities is guaranteed for nested sequences of

standard finite element spaces as considered in Section 2.2. An inequality of Jackson-type

asserts suitable approximation properties whereas a Bernstein-type inequality states an in-

verse estimate. This immediately implies that the BPX-method and most of its variants are

optimal preconditioners; see [151, Section 4.2]. In general, if one can show L-independent

Jackson and Bernstein inequalities for a sequence of nested subspaces, Oswald’s consider-

ations yield a condition number bound which is independent of the mesh parameters and

the number of levels of the employed hierarchy.

We also refer to [23, 34, 64, 197, 198, 199], especially for an analysis of the case of

adaptively refined scales of finite element spaces. General norm equivalences have also

been derived for problems with jumping coefficients in [78, 154] (if the jumps align with the

coarsest mesh) and, more recently, in [98, 167, 168].

2.3.3 The theory of Schwarz methods

In this section, we briefly outline the abstract theory of Schwarz methods. For the specified

additive methods, one basically needs to work on the norm equivalence (2.15); the task is to

find assumptions which guarantee good constants. For the derivation of an energy estimate

for the error reduction of the multiplicative methods, we follow [32, 33, 194] and [177]. See

also the review paper [199].

First, we state an assumption on the auxiliary forms (B`)`=0,...,L. Let ω1 > 0 be the

smallest constant such that

(A`v, v)L2(Ω) ≤ ω1(B`v, v)L2(Ω), ∀ v ∈ V`, ∀ ` ∈ {0, . . . , L}. (2.17)

In fact, ω1 = max0≤`≤L ρ(B−1
` A`). A more classical way to formulate this “smoothing

property” is

ρ(A`)
−1‖v‖2L2(Ω) ≤ ω̃1(B`v, v)L2(Ω), ∀ v ∈ V` ∀ ` ∈ {0, . . . , L},

with another constant ω̃1 > 0.

Second, one requires a stability estimate for the subspace splitting (2.12). Assume that

there is a constant K0 > 0 such that, for v ∈ V , there is a representation v =
∑L

`=0 v` with

v` ∈ V`, ` ∈ {0, . . . , L}, satisfying

L∑
`=0

(B`v`, v`)L2(Ω) ≤ K0(Av, v)L2(Ω). (2.18)

In the context of multigrid methods, this may be illustrated as follows. To guarantee the

existence of small upper bounds for K0 and ω1 at the same time, the subspace solvers B−1
`

should be spectrally equivalent to (ρ(A`)
−1 id).

Third, the interaction between the subspaces and the involved auxiliary forms is mea-

sured by strengthened Cauchy–Schwarz inequalities. We define the constant K1 := ρ(ε) > 0
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where ε ∈ R(L+1)×(L+1) is a symmetric matrix with positive entries such that

a(Tiv, Tjw) ≤ ω1εija(Tiv, v)
1
2 a(Tjw,w)

1
2 , ∀ v, w ∈ V. (2.19)

Slightly weaker assumptions may be found in the literature; see [199] and the references

therein. Note that εij ≤ 1 holds for all i, j ∈ {0, . . . , L}. Therefore, Gershgorin’s circle

theorem implies at least the upper bound ρ(ε) ≤ L+ 1.

As a result, for the parallel subspace correction method, the condition number estimate

κ(PL) ≤ ω1K0K1

holds. This is because the assumptions (2.17), (2.18) and (2.19) imply the norm equivalence

K−1
0 |||v|||

2 ≤ a(v, v) ≤ ω1K1|||v|||2, ∀ v ∈ V.

Now, assume that ω1 < 2. This is equivalent to the convergence of the Richardson

iteration

uk+1 = uk +B−1
` (f` −A`uk), k ≥ 0,

for the subspace equation in V` with preconditioner B−1
` for all ` ∈ {0, . . . , L}. Then, the

convergence behavior of the multiplicative subspace correction method given by (2.14) is

estimated with respect to the energy norm by

‖ẼL‖2A ≤ 1− 2− ω1

K0(1 + ω1K1)2
; (2.20)

see [194, Theorem 4.4]. The result does not depend on the order of the subspace corrections.

Another way to analyze the multiplicative Schwarz algorithms can be found in [97, 151].

The authors show that the convergence rate of the multiplicative method can be directly

linked to that of the additive method. Thus, it is sufficient to find the best possible constants

λmin and λmax in the norm equivalence (2.15).

2.3.4 Convergence estimates for multigrid algorithms

Having established the basic concepts of the Schwarz theory, let us now return to the setting

of Section 2.2. In particular, we consider the sequence

X0 ⊂ . . . ⊂ XL =: V.

The key to the successful application of the abstract results concerning the multiplicative

Schwarz methods as described in Section 2.3.3, which has been developed by Bramble,

Pasciak, Wang and Xu in [32, 33], is to find suitable subspaces V` ⊂ X`, ` ∈ {0, . . . , L},
and establish the required assumptions. For this purpose, the following L2-orthogonal

decomposition was first considered in [33]. Using the L2-projections Q` : XL → X` to the

finite element subspaces X` ⊂ XL, ` ∈ {0, . . . , L− 1}, the splitting reads as

V` := (Q` −Q`−1)V := {Q`v −Q`−1v | v ∈ V } ⊂ X`, ` ∈ {0, . . . , L}, (2.21)



2.4 Remarks on robustness 39

with QL := id and Q−1 := 0. Then, under the assumption that the operators (S`)`=1,...,L

satisify the smoothing properties

(S`v, v)L2(Ω) h ‖h`v‖2L2(Ω), ∀ v ∈ V`, (2.22)

the uniform convergence of the multigrid method (Algorithm 2.2) by the rate given in

(2.20) may be proved; see [33, Section 4] and [199, Section 7]. In particular, the multigrid

cycle (Algorithm 2.1) yields a preconditioner with a condition number estimate independent

of h`. Earlier, a-orthogonal decompositions have been used in combination with additional

regularity assumptions; see [199] for a comparison.

In fact, a main result of [33] is that it is sufficient to find a set of (fine-to-coarse)

operators QX` : XL → X` such that

|QX` v|H1(Ω) . |v|H1(Ω), ∀ v ∈ XL, (2.23)

and

‖h−1
` (v −QX` v)‖L2(Ω) . |v|H1(Ω), ∀ v ∈ XL, (2.24)

for ` ∈ {0, . . . , L− 1}. Then, one considers a splitting analogous to the L2-orthogonal one

in (2.21) to establish the assumptions of the previous discussion from (2.22), (2.23), (2.24);

this is formulated in [33, Theorem 1]. We study the above properties in detail in Section 3.4.

At this point, let us remark that the theory also covers hierarchies of finite element spaces

generated by adaptive refinement. This follows essentially from the fact that, by (2.21) and

(2.22), it is sufficient that the subspace solvers act on the subdomains of refinement. We

do not go into detail here but take the liberty of referring to [33] and the references given

in the comments at the end of Section 2.3.2.

2.4 Remarks on robustness
Multigrid methods are widely used and adaptations for various problem classes exist in the

literature. A modern and comprehensive monograph presenting many advanced problems

and possible cures is [178]. Let us indicate only very few points here.

The standard prolongation operator, namely the natural embedding acting on the finite

element functions, for instance, by linear or trilinear interpolation, is very simple. The

overall algorithm can be expected to be efficient only if the smoothing procedure effectively

makes the error geometrically smooth; the remaining error should vary slowly in space,

i. e., be low-frequent with respect to the current finite element mesh. As indicated in

Section 2.1, for isotropic problems with moderately varying coefficients, standard iterations

like the damped Jacobi or Gauß–Seidel method are very successful at this. However, one

may need more sophisticated ingredients in case of other problem classes.

In principle, there are two different approaches. On the one hand, an adaptation of the

smoothing operators keeping the standard multilevel finite element hierarchy may lead to

an efficient method if one achieves that the remaining error is indeed geometrically smooth.

On the other hand, one might attempt to adapt the hierarchy itself keeping a standard

relaxation scheme such that the error which is “slow-to-converge” is well approximated in
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the range of the prolongation. The latter is the paradigm of algebraic multigrid methods;

we refer to [159, 176] for an introduction.

For instance, in case of jumping coefficients, appropriate techniques may involve a

matrix- or operator-dependent prolongation; see, e. g., [7, 67]. An adequate coarse level

hierarchy for anisotropic problems can be constructed by semi-coarsening strategies, at

least in case the structure is sufficiently simple. In this thesis, alongside the development

of a semi-geometric framework (Chapter 3), we cannot investigate every robustness issue

described above. In particular, we do not aspire to cover the entire spectrum of possi-

ble applications. But at least one interesting topic is addressed which is beyond the pure

semi-geometric multilevel methods. As indicated in Section 1.2, we will demonstrate that a

semi-geometric monotone multigrid method for variational inequalities may be constructed

in a rather straightforward way. This circumstance and ongoing experiments make us confi-

dent that the semi-geometric concepts developed in this thesis are capable of being extended

to other problem classes and combined with various techniques from the literature.

Systems of partial differential equations

Naturally, the theory described in this chapter also applies to systems of partial differential

equations. To illustrate this, let V := (XL)d be a vector-valued space. Then, for instance,

a suitable splitting for the BPX-type preconditioner may be realized as decomposition into

d-dimensional subspaces, namely

(V , a) =
L∑
`=0

∑
p∈N`

(V p, bp)

with

V p = span{λ`pei | 1 ≤ i ≤ d}, p ∈ N`, ` ∈ {0, . . . , L},

or by considering the one-dimensional subspaces in the triple sum

(V , a) =
L∑
`=0

∑
p∈N`

d∑
i=1

(V p,i, bp,i)

with

V p,i = span{λ`pei}, 1 ≤ i ≤ d, p ∈ N`, ` ∈ {0, . . . , L}.

For the standard smoothing operators in multigrid cycles such as the damped Jacobi or

Gauß–Seidel methods, the first approach is called collective relaxation whereas the second

one is referred to as decoupled relaxation. Note that much more general block relaxation

schemes are possible; see, e. g., [178].



3 Semi-geometric multilevel
preconditioners

This chapter is about a novel multilevel preconditioning strategy for linear problems arising

from finite element discretizations. We introduce a class of semi-geometric methods which

are based on a hierarchy of unrelated, especially non-nested meshes. We investigate the

characteristics of the approach in full detail and provide a complete analysis.

In numerical simulations based on finite elements, one may take advantage of unstruc-

tured meshes to adapt the discretization to complicated geometries particularly appearing

in many important applications in computational engineering. As such meshes in general do

not allow for straightforward multilevel hierarchies, the disadvantage usually experienced is

that iterative solvers may be less efficient or even not applicable at all in this case. The idea

of accelerating an iteration by a correction from non-nested meshes has probably first been

used in practice by aerospace engineers as early as the year 1986; see [143, 144] and [139].

It has also found its way into domain decomposition methods in [43, 48, 49, 51, 52, 195].

Some related techniques are studied in Chapter 4. In a way, the semi-geometric concept

reflects the presumably weakest setting compared with other geometry-based approaches;

the relations between the employed meshes are particularly loose. We still achieve a proof

that the constructed multigrid methods based on non-nested meshes converge uniformly

with respect to the discretization parameter. In contrast to, e. g., the methods to be re-

viewed in Section 4.1, we wish to keep the original fine level discretization, with respect

to which the problem is stated, and do not change the corresponding mesh or the finite

element space. In this case, it is generally a challenging task to construct suitable coarse

level approximations. However, the proposed method allows for a rather direct control of

the additional coarse degrees of freedom; the little geometric information entering the setup

leads to a very efficient multilevel hierarchy.

At this point, the construction of the semi-geometric space hierarchy employs generic

prolongation operators which are specified in Chapter 5. Fundamental requirements for

the information transfer between non-nested finite element meshes are yet derived by the

present analysis.

We start with some introductory remarks to advance from the standard nested setting

to a non-nested multilevel framework. An outline of the rest of the chapter is given at the

end of Section 3.1.

3.1 Introduction into the semi-geometric

framework

In this section, we carefully prepare the derivation of the multilevel preconditioners based

on non-nested meshes. For this purpose, some of the concepts and a few notations from the

previous sections (especially, Section 1.3) need to be adjusted. There are several important

differences to the standard multigrid setting.
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Let TL be a shape regular mesh of Ω such that the problems introduced in Chapter 1

are set in the associated finite element space XL. Now, we consider a set of non-nested

shape regular meshes (T`)`=0,...,L−1. We emphasize that the meshes do not need to be quasi-

uniform for both the construction of the multilevel methods and their analysis. However,

we will return to this question when investigating possible concepts for the information

transfer between non-nested meshes in more detail.

It is important to remark that each mesh represents a possibly different domain. More

precisely, the coarse meshes (T`)`<L do not necessarily represent Ω; see Remark 1.5. How-

ever, at the finest level L, we keep the computational domain ΩL := Ω on which the problem

to be solved has initially been defined. At the coarser levels, the domains (Ω`)`<L may be

introduced by

Ω` := int
(⋃
{T | T ∈ T`}

)
, ` ∈ {0, . . . , L− 1}.

According to Section 1.3, the space XL ⊂ H1
D(ΩL) has the Dirichlet boundary con-

ditions on ΓD ⊂ ∂ΩL incorporated. As, in general, Ω` 6= ΩL for ` < L, not only the

Dirichlet values but even the (d − 1)-dimensional set ΓD cannot be described exactly at

each level. Therefore, let (X`)`=0,...,L−1 be the standard finite element spaces associated

with the meshes (T`)`=0,...,L−1 without any boundary modifications such that N` is the set

of all nodes including all boundary nodes. Consequently, the functions which are constant

in Ω` are contained in X` for ` ∈ {0, . . . , L− 1}.
The goal is to develop a multilevel method for the iterative solution of the discrete prob-

lems in XL based on the non-nested coarse meshes. For the semi-geometric preconditioning

framework built from the auxiliary spaces (X`)`<L, the recursive structure implies that it

is most reasonable to assume

Ω0 ⊃ . . . ⊃ ΩL = Ω. (3.1)

We discuss the treatment of the boundaries and especially the boundary conditions in full

detail in Section 3.3 and Section 3.4.

Note that, in case of non-nested meshes, the finite element spaces are non-nested, too.

As a consequence, a basis function λ`p associated with a node p ∈ N`, in general, cannot be

written as a linear combination of the form∑
q∈N`+1

αpqλ
`+1
q ,

which is an essential ingredient in standard multigrid methods. Despite this issue, the

heuristics which led to the invention of multigrid methods in the first place, namely the

role of the individual spaces as a decomposition of frequencies, may not be affected. In

other applications, a non-nested hierarchy of spaces may result from a non-conforming

(finite element) approximation. We do not consider this kind of non-nestedness here.

Outline

The rest of this chapter is organized as follows. We develop a suitable space hierarchy

and the associated coarse level approximations by a variational approach in Section 3.2.

The multilevel methods considered in Chapter 2 are reformulated with respect to the novel
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spaces. This includes a setup phase as the construction of the coarse level operators is not

standard. In Section 3.3, we state basic properties of the presented approach concerning the

resolution of boundaries and boundary conditions by the coarse level spaces. Section 3.4 is

the main part of this chapter containing the convergence analysis of the proposed methods.

In Section 3.5, we comment on the application of the semi-geometric concept to two-level

overlapping Schwarz methods in the context of the domain decomposition paradigm. Fi-

nally, Section 3.6 is concerned with the implementation of the developed framework.

As indicated before, the information transfer between non-nested finite element spaces,

both the issue as such and the application to the present framework, is studied in detail in

Chapter 5.

3.2 Multilevel preconditioners based on

non-nested meshes
This section aims at a semi-geometric preconditioning framework. We introduce additive

and multiplicative multilevel preconditioners in the fashion of the methods described in

Section 2.2. The delicate point, though, is the construction of an appropriate hierarchy of

spaces from the originally unrelated spaces (X`)`=0,...,L. This has to be done in a way which

allows for a powerful convergence analysis as well as an efficient implementation.

3.2.1 Construction of a space hierarchy with multilevel bases

For this purpose, let the spaces (X`)`=0,...,L be connected by the prolongation operators

(Π`
`−1)`=1,...,L, namely

Π`
`−1 : X`−1 → X`, ∀ ` ∈ {1, . . . , L}.

As before, we carefully distinguish between operators and matrices. The analysis of a set

of suitable linear operators (Π`
`−1)`=1,...,L will be a key issue of this thesis. This is because

the chosen transfer concept is a major ingredient of the construction of the space hierar-

chy (V`)`=0,...,L which is presented in this section. The generated spaces are significantly

influenced by this data.

As we will use the notion of the “range of an operator” repeatedly throughout this

thesis, let us make this perfectly clear.

Definition 3.1 (Range or image). Let X,Y be sets and Π : X → Y a mapping. For a (not

necessarily strict) subset Z ⊂ X, the output of Π restricted to Z is formally denoted by

ΠZ := Π(Z) := {y ∈ Y | ∃ z ∈ Z, y = Πz} ⊂ Y.

If the domain, i. e., the argument Z, is clear from the context, Π(Z) may be called in words

the range (or image) of Π.

Furthermore, we introduce a product notation for the composition of linear operators

formally by induction. For suitable data v, let

Πk′
k′−1 · · ·Πk

k−1v := Πk′
k′−1(Πk′−1

k′−2 · · ·Π
k
k−1v) (3.2)
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for k′ > k; the initial step is

Πk
k−1 · · ·Πk

k−1v := Πk
k−1v. (3.3)

Now, let VL := XL; we emphasize that the fine space will not be touched in the present

framework. This may be different for some of the approaches reviewed in Section 4.1. We

construct a nested sequence of spaces (V`)`=0,...,L via

V` := ΠL
L−1 · · ·Π`+1

` X`, ∀ ` ∈ {0, . . . , L− 1}.

That way, the images of certain compositions of the given operators determine the space

hierarchy. We have, indeed, that

VL ⊃ VL−1 ⊃ . . . ⊃ V0

because by construction

Π`
`−1X`−1 ⊂ X`, ∀ ` ∈ {1, . . . , L},

and, thus,

V`−1 = (ΠL
L−1 · · ·Π`+1

` )(Π`
`−1X`−1) ⊂ (ΠL

L−1 · · ·Π`+1
` )(X`) = V`, ∀ ` ∈ {1, . . . , L− 1}.

With the nodal bases of the finite element spaces X`−1 and X` a matrix represen-

tation Π`
`−1 ∈ Rn`×n`−1 of Π`

`−1 can be computed for ` ∈ {1, . . . , L} via Π`
`−1v :=

Φ−1
` (Π`

`−1Φ`−1(v)) for all v ∈ Rn`−1 . Here, Φ` : Rn` → X` is the coordinate isomorphism

introduced in (1.20). Assume that these matrices have full rank. Then, a basis of VL−1 can

be written as

λ̃L−1
q :=

∑
p∈NL

(ΠL
L−1)pqλ

L
p , ∀ q ∈ NL−1, (3.4)

and, finally, a basis of V` for ` ∈ {0, . . . , L− 2} can recursively be defined by

λ̃`q :=
∑

p∈N`+1

(Π`+1
` )pqλ̃

`+1
p , ∀ q ∈ N`. (3.5)

For convenience, we set λ̃Lq := λLq for q ∈ NL. Moreover, the new coordinate isomorphisms

with respect to the bases Λ̃` := (λ̃`p)p∈N` , ` ∈ {0, . . . , L}, will be denoted by Φ̃` : Rn` → V`.

In this manner, basis functions at level `−1 are nothing but linear combinations of basis

functions at level ` induced by the operator Π`
`−1. For a simple one-dimensional setting,

the constructed bases are exemplarily illustrated in Figure 3.1. Note that the mapping

Π`
`−1 between the given spaces X`−1 and X` usually does not act on V`−1 directly. Still,

the matrix Π`
`−1 determines an operator Π̃`

`−1 : V`−1 → V` by

v 7→ Π̃`
`−1v := Φ̃`(Π

`
`−1Φ̃−1

`−1(v)), ∀ v ∈ V`−1, ∀ ` ∈ {1, . . . , L}. (3.6)
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=

 

 

Figure 3.1. One-dimensional example: Bases of the original non-nested spaces

XL 6⊃ XL−1 6⊃ XL−2 (left) and of the constructed nested spaces VL ⊃ VL−1 ⊃ VL−2

(right). A nodal function λL−1
p , the respective function λ̃L−1

p , and the fine space

functions involved in the corresponding linear combination are highlighted.

One can easily see that Π̃`
`−1 is the natural embedding because it interpolates the respective

basis exactly. More precisely, by the definitions in (3.4) and (3.5), we have

Π̃`
`−1λ̃

`−1
q = Φ̃`(Π

`
`−1Φ̃−1

`−1(λ̃`−1
q )) = Φ̃`(Π

`
`−1eq) = Φ̃`

 (Π`
`−1)1q
...

(Π`
`−1)n`q


=

∑
p∈N`

(Π`
`−1)pqλ̃

`
p = λ̃`−1

q , ∀ q ∈ N`−1,

for ` ∈ {1, . . . , L}. Thus, we can regard the matrix Π`
`−1 ∈ Rn`×n`−1 as an algebraic

representation of the natural embedding of V`−1 into V`. Consequently, the L2-projection

from V` to V`−1 is, as before, represented by the matrix

M−1
`−1(Π`

`−1)TM `. (3.7)

In Section 2.2.1, we have seen that this holds true for any imaginable set of operators

between the original non-nested spaces (X`)`=0,...,L; no special structure is required.

As we have chosen not to prescribe any boundary conditions at coarser levels, the basis

Λ` is a partition of unity in the domain Ω`, namely∑
q∈N`

λ`q(x) = 1, ∀ x ∈ Ω`,

for ` ∈ {0, . . . , L − 1}. The fine level space XL approximates the space H1
D(Ω) and has

the Dirichlet values on ΓD incorporated. Therefore, the basis ΛL is a partition of unity on

all elements not meeting the Dirichlet boundary. In certain circumstances, this property

carries over to the new bases (Λ̃`)`<L as stated in the following
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Lemma 3.2. Let the row totals of the matrices (Π`+1
` )`=0,...,L−1 be equal to one, i. e.,∑

q∈N`(Π
`+1
` )pq = 1 for all p ∈ N`+1, ` ∈ {0, . . . , L − 1}. Then, the new basis (λ̃`p)p∈N` is

a partition of unity in Ω = ΩL away from the Dirichlet boundary, namely∑
q∈N`

λ̃`q(x) = 1, ∀ x ∈ Ω \ ΩD,

for ` ∈ {0, . . . , L− 1}. Here,

ΩD := int
(⋃
{T ∈ TL | T ∩ ΓD 6= ∅}

)
.

In any case, for v ∈ V`, one has that v(x) = 0 if x 6∈ Ω.

Proof . The assertion follows by induction from the relation

∑
q∈N`

λ̃`q =
∑
q∈N`

∑
p∈N`+1

(Π`+1
` )pqλ̃

`+1
p =

∑
p∈N`+1

∑
q∈N`

(Π`+1
` )pq

 λ̃`+1
p ,

which is valid for ` ∈ {0, . . . , L− 1}, and the fact that the basis at level L itself is a parti-

tion of unity away from the Dirichlet boundary, that is in Ω \ΩD. In particular, each basis

function λ̃`p, p ∈ N`, is zero outside Ω.

The condition on the row totals means that the operators (Π`
`−1)`=1,...,L need to preserve

constants in Ω \ ΩD. Note that every non-trivial projection operator clearly satisfies this

assumption if the functions which are constant in Ω \ ΩD are contained in its domain.

Further examples are given in Chapter 5. But, in general, the constructed coarse level bases

Λ̃` = (λ̃`p)p∈N` are not interpolatory. Although λ`p(q) = δpq for p, q ∈ N`, this property does

not persist for the new basis functions of the nested spaces (V`)`=0,...,L. By construction

the functions at the coarser levels are piecewise linear with respect to the finest mesh TL;

cf. Figure 3.1.

With this information we can summarize our efforts as follows. From the completely

unrelated finite element spaces (X`)`=0,...,L we have constructed a sequence of nested spaces

(V`)`=0,...,L such that the given prolongation operators (Π`
`−1)`=1,...,L induce the natural

embeddings (V`−1 ↪→ V`)`=1,...,L by their matrix representations (Π`
`−1)`=1,...,L with respect

to the original bases (Λ`)`=0,...,L. In particular, the coarse level matrices for the nested

spaces with the respective bases Λ̃`, as customary in a variational approach, can be written

as

A`−1 = (Π`
`−1)TA` Π`

`−1, ∀ ` ∈ {1, . . . , L};

see Section 2.2.1. If AL is symmetric positive definite and if Π`
`−1 has full rank for all

` ∈ {1, . . . , L}, the respective coarse level matrices (A`)`=0,...,L−1 are symmetric positive

definite, too. Note that the bandwidth of the coarse matrices highly depends on the transfer

concept employed to obtain the prolongation operators.

As the coarse level equations are merely set up as auxiliary problems, similar to (purely)

algebraic multigrid approaches, the operators (A`)`<L may usually not be considered dis-

cretizations or Galerkin approximations in proper finite element spaces of the original prob-

lem set in some Sobolev space. However, under certain conditions, one might be able to
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prove approximation results in terms of a priori discretization error estimates for the con-

structed spaces (V`)`<L.

3.2.2 Semi-geometric multigrid methods

Let us now proceed to the prospective multilevel preconditioners. We point out that, again

for simplicity, we state one of the simplest multiplicative Schwarz preconditioners with

suitable smoothing operators (S`)`=1,...,L. Naturally, the constructed spaces (V`)`=0,...,L and

the prolongation operators (Π`
`−1)`=1,...,L can also be used in more sophisticated methods.

In Section 2.2, a multigrid algorithm has been written purely in operator notation. We

have always carefully distinguished between operators and the representing matrices with

respect to selected bases and will continue doing so. Here, we prefer the matrix notations.

To start with, we adopt the notion of a setup phase, which is a paraphrase for the

construction of a multilevel space hierarchy common in the area of algebraic multigrid

methods; see, e. g., [176]. At this point, we state a rather general frame to merely illustrate

that a certain setup is an integral part of the presented semi-geometric methods. The

intermediate steps of this procedure (the “other factors”) are elaborated more precisely

later, as noted below.

Algorithm 3.3 (Setup semi-geometric multigrid method). Choose type of prolongation

operator according to Chapter 5.

setupSGMG (type, (T`)`=0,...,L) {
for (` = L, . . . , 1) do {

Compute the prolongation matrix Π`
`−1

Take some other factors into account

Compute the coarse level matrix A`−1 = (Π`
`−1)TA` Π`

`−1

}
}

The algorithm implicitly comprises a generation of coarse level nodes or degrees of

freedom. The choice of these variables is facilitated by the usage of the nodesets (N`)`<L.

However, the coarse meshes are just auxiliary devices and one might disregard some of

the nodes, i. e., some of the basis functions in (Λ`)`<L, when computing the new bases

(Λ̃`)`<L. We return to this in Section 3.3. One may consider the nodes of the given meshes

as “suggested degrees of freedom”. The span of a basis function λ`p or rather of λ̃`p is

not necessarily included in the coarse space V`, though. Moreover, the selected “transfer

concept” or “type of prolongation” may require some modifications of the meshes, nodes,

matrices and so forth; see Section 3.6.

Ultimately, the semi-geometric multigrid cycle appears as standard multigrid cycle with

respect to the spaces (V`)`=0,...,L. Therefore, we obtain the following multilevel precondi-

tioner in matrix notation by an application of the ideas of Section 2.2.3 to the novel space

hierarchy.

Algorithm 3.4 (Multigrid cycle). For (the residual vector) R ∈ Rn` compute the correction

C`R = SGMGγ,ν1,ν2

` (R) = SGMG (`, γ, ν1, ν2, R) ∈ Rn`
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by the following procedure.

SGMG (`, γ, ν1, ν2, R) {
if (` = 0) {

Solve exactly: x← A−1
0 R

}
else {

Pre-smoothing steps: x← Sν1
` (0,R)

Coarse level correction:

Restriction: R′ ← (Π`
`−1)T (R−A`x)

Initialize: x′ ← 0

for (i = 1, . . . , γ) do {
Recursive call: x′ ← x′ + SGMG (`− 1, γ, ν1, ν2, R

′)

}
Prolongation: x← x+ Π`

`−1x
′

Post-smoothing steps: x← Sν2
` (x,R)

}
return x

}

Note that it is straightforward to rewrite the above algorithms in operator notation.

In fact, Algorithm 3.4 for the semi-geometric multigrid cycle is basically equivalent to

Algorithm 2.1 for the geometric one. The only aspect worth mentioning is that the action

of the matrix Π`
`−1 on vectors representing finite element functions in V`−1 corresponds to

the operator Π̃`
`−1 from (3.6). Moreover, the action of (Π`

`−1)T on residual vectors in Rn`
is part of the fine-to-coarse L2-projection as discussed before in (3.7) and more detailed in

Section 2.2.1.

As all operators (Π`
`−1)`=1,...,L employed in the construction of the space hiearchy are

linear, one can always find proper matrices (Π`
`−1)`=1,...,L. But note that, in case the transfer

concept involves inverting local or global (mass) matrices, prolongation and restriction may

also be realized differently. In this case, it may be advantageous to keep the transfer

routines separate such that a multigrid cycle does not comprise just one matrix-vector

multiplication but rather suitable local or global forward-backward substitution procedures

in each transfer step. Although it is difficult to make a clear statement about what is the

more efficient way to implement the prolongation and restriction routines for extraordinary

transfer concepts, we believe that it will usually be the precomputation of the matrices

(Π`
`−1)`=1,...,L.

3.2.3 Additive semi-geometric preconditioners

The following parallel subspace correction methods in the spirit of Section 2.2.5 are inter-

esting in our context because the mappings of the non-nested finite element spaces into the

finest space XL can be realized in two different (likewise straightforward) ways. For an

additive variant, one needs prolongation operators

ΠL
` : X` → XL, ∀ ` ∈ {0, . . . , L− 1},
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mapping straight into the space XL. Then, the corresponding subspaces (W`)`=0,...,L−1

⊂WL := XL read as

W` := ΠL
` X`, ∀ l ∈ {0, . . . , L− 1}.

Given the original bases (Λ`)`=0,...,L, the coarse level bases and matrices with respect to

the spaces (W`)`=0,...,L are defined as before in Section 3.2.1 with the obvious adaptations.

Then, an additive preconditioner associated with the multilevel hierarchy (W`)`=0,...,L can

be written as a sum.

Algorithm 3.5. For (the residual vector) R ∈ RnL compute the correction CLR as

CLR = SGMGadd(L, ν, R) = ΠL
0A
−1
0 (ΠL

0 )TR+
L−1∑
`=1

ΠL
` S

ν
` (0, (ΠL

` )TR) + SνL(0,R).

Here, S` is a suitable symmetric smoothing operator in the subspace W`, ` ∈ {0, . . . , L},
and thus S` acts on Rn` . For academic reasons, one may also consider a modification of

Algorithm 3.5 where the fine smoothing (at level L) is performed before the restriction

and after the prolongation. The modified algorithm should be expected to yield better

preconditioning results at the cost of a less parallel structure. This expectation is due to

the fact that the coarse level spaces yield better approximations of the defect problems in

case of less oscillating errors.

To illustrate the appearance of the new basis functions, let us consider a BPX-like

preconditioner in operator notation. If the coarsest auxiliary problem in Algorithm 3.5

is not solved exactly and, in addition, the smoothers (S`)`=0,...,L have a natural parallel

structure such as diagonal scaling or the Jacobi method, the subspaces (W`)`=0,...,L can

further be split allowing for even more parallelism. In this case, the additive preconditioner

can have, e. g., the following form,

CLr =
L∑
`=0

∑
p∈N`

(r, λ̃`p)L2(Ω)

a(λ̃`p, λ̃
`
p)

λ̃`p.

This is the additive (diagonal scaling) preconditioner with respect to the multilevel nodal

basis {λ̃`p | p ∈ N`, ` ∈ {0, . . . , L}}; see Section 2.2.5.

In the rest of this paragraph, we comment on the setup phase of the additive semi-

geometric method. The central observation is that the prolongation operators (ΠL
` )`=0,...,L−1

can be realized in two different ways.

Given some operators (Π`
`−1)`=1,...,L, one can choose to define the operator ΠL

` via

ΠL
L−1 · · ·Π

`+1
` . But this sort of construction is not mandatory. In fact, if the operator ΠL

`

is constructed directly, namely in a similar algorithmic manner as the various operators to

be presented in Chapter 5, we do not have W` = V`. An equivalence like this can only

hold true in special cases, e. g., if the meshes are nested. This is because without any

relation between the meshes one cannot prohibit a loss of information when interpolating

from one space to another. Although the considered finite element spaces (X`)`=0,...,L and

the connecting operators (Π`
`−1)`=1,...,L are assumed to satisfy some relevant approximation

properties, this does not mean that every bit of local information can be transferred to the
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next space. This stronger property is supposably only valid for nested meshes. But even

in the nested case, this depends on the choice of the transfer concept; it is only guaranteed

for special operator types.

Evidently, the setup of the first variant is the same recursive one as stated in Algo-

rithm 3.3. In contrast, the obvious non-recursive (“immediate”) routine for the computa-

tion of the matrices (ΠL
` )`=0,...,L−1 and (A`)`=0,...,L−1 from the meshes (T`)`=0,...,L may be

called setupSGMGimm.

In practical computations, even if the coarse level matrices obtained by Galerkin assem-

bly have very similar structures, the approach with “immediate” mappings (ΠL
` )`=0,...,L−1

tends to need a little more memory. This is due to the fact that the total number of entries

of the prolongation matrices (ΠL
` )`=0,...,L−1 may be considerably larger, depending on the

chosen transfer concept. However, the advantage of this approach may be a little extra

flexibility of the generation of the coarse meshes. This is because it obviates the need for

ensuring reasonable relations between two consecutive meshes.

In the successive approach, the operators are assembled in a recursive fashion. Only the

single matrices (Π`+1
` )`=0,...,L−1 need to be computed. Then, the evaluation of prolongation

and restriction is done by applying the operators one after the other. In fact, admittedly,

this disagrees with the additive structure of the overall algorithm. We examine whether

the difference of the two approaches is significant in practical computations in Chapter 6.

3.3 Coarse representation of boundaries

and boundary conditions

In this section, we explain the semi-geometric multilevel hierarchy in more detail, com-

plementing the introductory remarks from Section 3.1. The treatment of boundary values

for the coarse level problems is also reconsidered. Here, the focus lies on an illustrative

presentation and useful practical considerations. We take a more analytic viewpoint next.

For the development of the multilevel preconditioning framework, we have chosen to

use a quite general set of non-nested meshes. The desire to detach the generation of coarse

meshes (and spaces) as far as possible has several reasons. First of all, it allows for employing

independent mesh generation processes, possibly of different nature, at each level. The

coarse domains (Ω`)`<L can be considerably different from the fine domain ΩL. This may

be beneficial, for example, to acquire coarse meshes of simpler shapes, perhaps even meshes

with some regular structures. In other cases, if the computational domain ΩL varies due

to (pseudo-)time stepping or changes slightly during (shape) optimization, it may be of

practical use to reuse the coarse level meshes. Finally, we emphasize that the analysis of

the presented multilevel methods, which is carried out in the next section, does not require

very restrictive assumptions on the particular interaction of two successive meshes. Of

course, the case that the coarse meshes are nested is included.

To retain the capability to capture the behavior of the functions under consideration

in the whole computational domain, each domain in the sequence (Ω`)`=0,...,L should be

covered by all other domains which are used to provide coarse level information. For the

methods with a recursive structure of the information transfer, this is reflected in (3.1).
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For the additive method with immediate mappings (ΠL
` )`=0,...,L−1, this condition becomes

weaker as it is sufficient to assume Ω` ⊃ ΩL for ` ∈ {0, . . . , L− 1}.
It is important to note that the constructed coarse level spaces resolve the boundary of

the computational domain in a certain sense. This is an immediate consequence of the fact

that the bases (Λ̃`)`=0,...,L−1 are defined by linear combinations of basis functions in ΛL.

For quite a few transfer concepts, each basis Λ̃` is a partition of unity in Ω` as asserted in

Lemma 3.2. In any case, the equality

Ω = int
(⋃
{x ∈ Rd | ∃ v ∈ V`, v(x) 6= 0}

)
holds true for all ` ∈ {0, . . . , L}.

As the domains (Ω`)`=0,...,L are principally independent of each other, the Dirichlet

boundary ΓD ⊂ ∂ΩL of the mixed boundary value problem is assumed to be resolved by

the finest mesh TL only. Still, by the assumption that the range of the operator ΠL
L−1 is in

the space XL ⊂ H1
D(ΩL), the Dirichlet conditions are incorporated into all coarse spaces

in a very natural way. As a general rule, as we only study the variational approach in

this thesis, namely the operators at the coarser levels are entirely defined by a Galerkin

relation, the coarse space problems do not need any special considerations of the respective

boundaries. This means that all possible boundary conditions only have to be treated in

the finest space XL. In particular, the concept used to obtain the matrices (Π`
`−1)`=1,...,L

may be rather general; no boundary modifications of the employed prolongation operators

are necessary, in contrast to [171].

This paradigm (to consider coarse level basis functions as linear combinations of fine

level basis funtions and then cancel undesired contributions) reminds of monotone multi-

grid methods for variational inequalities. There, the coarse level spaces are modified by a

recursive truncation of basis functions depending on the active constraints of the current

fine level iterate. This approach ensures that the coarse level correction does not violate the

active constraints; see [121, 122, 124]. We explain this in a little more detail in Section 6.2.

The resolution of the boundary at coarser levels by design, namely by means of suitable lin-

ear combinations of fine level functions, also resembles the composite finite element method

[105, 106]; see Section 4.1.3.

For most transfer concepts, especially for the ones which yield “local” operators accord-

ing to Definition 3.8 to be considered in the next section, it is reasonable to neglect the

elements at level ` which lie completely outside of Ω`+1, ` ∈ {0, . . . , L−1}. Otherwise, if the

domain Ω` constituted by T` is considerably larger than ΩL, it can happen that (λ̃`q)q∈N`
is not a basis but merely a spanning set of the constructed subspace V`. In this case, the

discrete representation of the composed operator ΠL
L−1 · · ·Π

`+1
` has zero columns. Indeed,

one may also realize this procedure as a modification of the nodes depending on the transfer

operators. Assuming that the matrices (Π`+1
` )`=0,...,L−1 have been computed according to

some formula to be specified later, we can reduce the sets of nodes via

N` 7−→ {p ∈ N` | ∃ q ∈ N`+1, (Π`+1
` )pq 6= 0}

for descending ` ∈ {0, . . . , L − 1}. Naturally, in a practical implementation the redundant

degrees of freedom associated with neglected nodes are never created. The above procedure
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needs to be included in the setup of the semi-geometric multilevel hierarchy setupSGMG

(Algorithm 3.3).

Finally, let us remark that it is possible to slightly relax the conditions on the coarse

domains such that they only need to cover the interior nodes. For the Dirichlet part of the

boundary, this can be achieved without additional assumptions on the transfer operators.

However, for the Neumann boundary, one needs to construct special interpolation operators

[47, 91] because plain extension by zero to the part of the fine domain lying outside of the

coarse domain is not sufficiently accurate. We postpone the technical discussion to the end

of Section 3.4.3; see Remark 3.11 and Remark 3.13.

3.4 Quasi-optimality of the semi-geometric

multilevel methods

In this section, we examine the convergence and preconditioning properties of the multilevel

algorithms. We aim to investigate the new spaces and more importantly the involved

operators more closely to establish conditions under which the multilevel methods from

Algorithm 3.4 and Algorithm 3.5 yield good preconditioners. The constants in the norm

equivalence discussed in Section 2.3.2 are not derived directly. Instead, the approach by

Bramble, Pasciak, Wang, and Xu [33] as specified in Section 2.3.4 is applied to the semi-

geometric situation. Ultimately, we check whether a specific choice of the spaces (X`)`=0,...,L

and of the prolongation operators (Π`
`−1)`=1,...,L affirms the existence of suitable fine-to-

coarse operators (QV` )`=0,...,L−1 allowing for a stable splitting of the space VL into a sum

of the subspaces (V`)`=0,...,L. The truth of the matter is that the existence of such (non-

trivial) fine-to-coarse mappings provides fundamental information about the smoothness of

the coarse level functions.

We consider this a very natural context to examine the convergence of the methods

because one directly sees where the various operators and their stability and approximation

properties enter the proofs. We emphasize that the relevant estimates follow from assump-

tions on the original spaces (X`)`=0,...,L and the prolongation operators (Π`
`−1)`=1,...,L rather

than on the spaces (V`)`=0,...,L. The issue of how to find transfer concepts satisfying the

determined assumptions is addressed subsequently.

As we have to overcome additional technical difficulties, the proof is split into several

parts. This will be stated more precisely at the end of Section 3.4.1. A special feature of our

analysis is that we carefully distinguish between the different domains (Ω`)`=0,...,L. In this,

especially in the Sections 3.4.2 and 3.4.3, we cannot avoid some technical considerations.

The analysis is finalized in Section 3.4.4 where we complete the proof by an application of

the techniques mentioned above and make some concluding comments.

3.4.1 Stability and approximation properties

First, we introduce local mesh size functions. Recall that a mesh T` is a non-overlapping

decomposition of the computational domain into open polytopes {T ∈ T`} satisfying certain

regularity assumptions specified in Section 1.3. In case of non-quasi-uniform meshes, one
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usually introduces functions hT` : Ω` → R+ reflecting the local mesh size of T`. For this

purpose, for any subset U ⊂ Rd, let

L∞> (U) := {v ∈ L∞(U) | ∃ α > 0, such that v(x) > α for a. e. x ∈ U}

be the space of positive functions in L∞(U) which are bounded away from zero. Then,

one may consider the standard, piecewise constant functions in L∞> (Ω`) defined almost

everywhere by

hT`(x) := hT , if x ∈ T.

Naturally, the values at the boundaries of the elements do not need to be specified. If

pointwise evaluation of hT` is desired, continuous functions may be used, e. g., in the finite

element space X` defined by

hT` :=
∑
p∈N`

hpλ
`
p (3.8)

with hp := maxp∈T hT or hp :=
∑
p∈T hT

|{T | p∈T}| ; see, e. g., [63]. After all, we abbreviate hT` =: h`

and assume that local mesh size functions h` ∈ L∞> (Ω`) are given for ` ∈ {0, . . . , L}.
As illustrated during the derivation of the algorithms in the previous sections, the coarse

meshes shall in principle be independent of the fine mesh and of each other. However, it

is convenient for the analysis and very reasonable in practical algorithms to consider the

following coarsening assumption. We assume that the local relation of the mesh sizes is

designed such that a constant σ < 1 exists satisfying

h`(x) ≤ σh`−1(x), for a. e. x ∈ Ω`, ∀ ` ∈ {1, . . . , L}. (3.9)

In other words, the mesh T`−1 mimics a coarsening of the mesh T`. Note that the function

h`−1 is well-defined in Ω` in case Ω0 ⊃ . . . ⊃ ΩL.

The following general definition of stability and approximation properties of operators

between certain function spaces introduces notions which are crucial to the analysis of the

semi-geometric multilevel methods. Here, we work with localized estimates instead of global

L2-approximation inequalities, the latter of which involving the quantity maxT∈T` hT .

Definition 3.6. Let ΩY ⊂ ΩX ⊂ Rd be domains. Given a subspace X ⊂ H1(ΩX) and a

(target) finite element space Y ⊂ H1(ΩY ) with discretization parameter hY ∈ L∞> (ΩY ), an

operator Π : X → Y is called H1-stable in X if

|Πv|H1(ΩY ) . |v|H1(ΩX), ∀ v ∈ X.

We say that the operator Π satisfies the (or an) L2-approximation property if

‖h−1
Y (v −Πv)‖L2(ΩY ) . |v|H1(ΩX), ∀ v ∈ X.

Note that the inclusions (of sets) in the above definitions do not need to be strict. More-

over, no relation between X and Y has been specified other than the fact that functions

from X are also well-defined in the domain ΩY . Definition 3.6 constitutes a quite general

concept. We will use the notions for both coarse-to-fine operators and fine-to-coarse op-

erators. The term H1-stability is slightly stronger than H1-continuity, especially in the
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finite-dimensional case where every linear operator is continuous (with respect to every

equivalent norm), because the latter notion includes mappings with a continuity constant

dependent on the mesh.

Certainly, one will not be able to find operators which are H1-stable and satisfy the

L2-approximation property according to Definition 3.6 if Dirichlet boundary conditions are

incorporated into the target space Y unless they are already satisfied in the space X. For

example, consider the function 1 ∈ H1(ΩX) which is constant with value 1 in the entire

domain. As |1|H1(ΩX) = 0, the only “stable” image is Π1 = 0 in case there are Dirichlet

conditions in Y . But this violates the approximation property as ‖h−1
Y (1− 0)‖L2(ΩY ) > 0.

This important observation also influences our analysis of the spaces (V`)`=0,...,L as we

need to prove the existence of suitable (fine-to-coarse) mappings QV` : VL → V`. To make

the following steps perfectly clear, we split the analysis into two parts. In Section 3.4.2,

we state a preliminary result and carry out the proof assuming that the prolongation op-

erators (Π`
`−1)`=1,...,L are H1-stable and possess L2-approximation properties according to

Definition 3.6 with respect to the spaces (X`)`=0,...,L. This may be considered as an ana-

lysis of the special case without any Dirichlet conditions such that all bases (Λ`)`=0,...,L are

partitions of unity on their respective domains (Ω`)`=0,...,L because suitable operators are

available (only) in this case. In Section 3.4.3, we relax the assumptions to cover the general

semi-geometric setting.

3.4.2 Existence proof of suitable fine-to-coarse mappings

Let us proceed to the proof. We need to make some effort because, in general, the con-

structed coarse spaces (V`)`<L are not standard finite element spaces.

The assumptions in the following lemma are a little too restrictive to cover the general

semi-geometric setting described in Section 3.1 and Section 3.2. One may basically view

this as the case without any Dirichlet boundary conditions prescribed in the finite element

spaces, namely ΓD = ∅. We do not aim at stating this explicitly, though. Although

some additional difficulties have to be overcome in the next section, the present technical

considerations give the main structure of the final proof.

We state the required inequalities explicitly to stress the different domains. Note that

the estimates (3.12) and (3.13) asserted in the lemma are with respect to ΩL = Ω. The

coarse domains (Ω`)`<L appear in the assumptions (3.10) and (3.11).

Lemma 3.7. Let Π`
`−1 : X`−1 → X`, ` ∈ {1, . . . , L}, be H1-stable prolongation operators,

i. e.,

|Π`
`−1v|H1(Ω`) . |v|H1(Ω`−1), ∀ v ∈ X`−1, (3.10)

with the L2-approximation properties

‖h−1
` (v −Π`

`−1v)‖L2(Ω`) . |v|H1(Ω`−1), ∀ v ∈ X`−1. (3.11)

Then, there are mappings QV` : VL → V`, ` ∈ {0, . . . , L− 1}, which are also H1-stable and

have an L2-approximation property, i. e.,

|QV` v|H1(ΩL) . |v|H1(ΩL), ∀ v ∈ VL, (3.12)
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and

‖h−1
` (v −QV` v)‖L2(ΩL) . |v|H1(ΩL), ∀ v ∈ VL. (3.13)

Proof . First of all, recall the product notation from equations (3.2) and (3.3). Now, let

` ∈ {0, . . . , L − 1} be fixed. To construct a suitable mapping from VL to the subspace

V`, we employ the recursive structure of the definition of the multilevel space hierarchy in

Section 3.2.1. For this purpose, let E` : VL ⊂ H1(ΩL)→ H1(Ω`) be an extension operator

satisfying (E`v)|ΩL = v in H1(ΩL) and

|E`v|H1(Ω`) . |v|H1(ΩL). (3.14)

Such an operator exists if ∂ΩL is Lipschitz; see, e. g., [1, Theorem 4.32]. Note that the

extended function does not need to have a special form.

As X` is a standard finite element space associated with Ω`, it is not difficult to find

an H1-stable mapping QX` : H1(Ω`) → X` which satisfies the relevant L2-approximation

property

‖h−1
` (v −QX` v)‖L2(Ω`) . |v|H1(Ω`), ∀ v ∈ H1(Ω`).

For instance, one may employ a Clément-type quasi-interpolation operator discussed in full

detail in Section 5.2. Then, we choose QV` as ΠL
L−1 · · ·Π

`+1
` Q

X
` E` which is indeed a mapping

from VL to V`. The H1-stability of QV` follows directly from the respective inequalities for

the operators in the composition; for v ∈ VL, we have

|QV` v|H1(ΩL) = |ΠL
L−1 · · ·Π`+1

` Q
X
` E`v|H1(ΩL)

. |ΠL−1
L−2 · · ·Π

`+1
` Q

X
` E`v|H1(ΩL−1) . . . .

. |QX` E`v|H1(Ω`) . |E`v|H1(Ω`) . |v|H1(ΩL).

(3.15)

This confirms the estimate (3.12).

Let v ∈ VL. To prove the approximation property (3.13), we use the triangle inequality

to calculate

‖h−1
` (v −QV` v)‖L2(ΩL) = ‖h−1

` (E`v −QV` v)‖L2(ΩL)

≤ ‖h−1
` (E`v −QX` E`v)‖L2(ΩL)

+ ‖h−1
` (QX` E`v −Π`+1

` Q
X
` E`v)‖L2(ΩL)

+

L−1∑
k=`+1

‖h−1
` (Πk

k−1 · · ·Π`+1
` Q

X
` E`v −Πk+1

k · · ·Π`+1
` Q

X
` E`v)‖L2(ΩL).

Adjusting the domains, we continue the above estimate with

≤ ‖h−1
` (E`v −QX` E`v)‖L2(Ω`) + ‖h−1

` (QX` E`v −Π`+1
` Q

X
` E`v)‖L2(Ω`+1)

+
L−1∑
k=`+1

‖h−1
` (Πk

k−1 · · ·Π`+1
` Q

X
` E`v −Πk+1

k · · ·Π`+1
` Q

X
` E`v)‖L2(Ωk+1).
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Then, we rearrange the mesh size functions and make use of the estimate (3.9) to obtain

= ‖h−1
` (E`v −QX` E`v)‖L2(Ω`) + ‖h−1

` h`+1h
−1
`+1(QX` E`v −Π`+1

` Q
X
` E`v)‖L2(Ω`+1)

+
L−1∑
k=`+1

‖h−1
` hk+1h

−1
k+1(Πk

k−1 · · ·Π`+1
` Q

X
` E`v −Πk+1

k · · ·Π`+1
` Q

X
` E`v)‖L2(Ωk+1)

≤ ‖h−1
` (E`v −QX` E`v)‖L2(Ω`) + σ ‖h−1

`+1(QX` E`v −Π`+1
` Q

X
` E`v)‖L2(Ω`+1)

+

L−1∑
k=`+1

σk+1−` ‖h−1
k+1(Πk

k−1 · · ·Π`+1
` Q

X
` E`v −Πk+1

k · · ·Π`+1
` Q

X
` E`v)‖L2(Ωk+1).

Finally, the L2-approximation properties of the single operators yield

. |E`v|H1(Ω`) + σ |QX` E`v|H1(Ω`) +
L−1∑
k=`+1

σk+1−` |Πk
k−1 · · ·Π`+1

` Q
X
` E`v|H1(Ωk).

As in (3.15), we use the H1-stability properties of the operators (Πk+1
k )k=`,...,L−1 and of the

mapping QX` for the terms in the sum and then the boundedness (3.14) of the extension

operator to obtain

.
L∑
k=`

σk−` |E`v|H1(Ω`) .
L∑
k=`

σk−` |v|H1(ΩL) . |v|H1(ΩL). (3.16)

In the very last step of (3.16), the sum over k is bounded by means of a geometric series.

This concludes the proof of the approximation property of QV` .

We needed to find an H1-regular extension (from H1(ΩL) to the potentially larger

domain Ω`) such that the L2-approximation property of the operator QX` may be exploited.

Plain extension by zero may not be H1-regular. But mere evaluation is still well-defined

for, e. g., Clément-type operators.

The derivation of the space hierarchy with multilevel bases in Section 3.2.1 clarifies that

all coarse level functions are merely associated with the computational domain ΩL = Ω;

see, in particular, Lemma 3.2. However, in the proof of Lemma 3.7, the coarse domains

(Ω`)`<L appear and the treatment of functions which are defined with respect to different

domains becomes crucial. Note that this is only because we exploit the product structure

of the definition of the space hierarchy when looking for suitable mappings QV` . If one

had a means to work directly with the basis functions in (Λ̃`)`<L, such a recursive access

to the transfer operators (Π`
`−1)`=1,...,L and thus to the domains (Ω`)`<L could possibly be

avoided.

3.4.3 Relaxation of the assumptions

As indicated before, we need to modify the proof of Lemma 3.7 because it is in general

impossible to find suitable prolongation operators satisfying the assumptions (3.10) and

(3.11) for all function in (X`)`<L in case VL ⊂ H1
D(ΩL) with measd−1(ΓD) > 0. We will
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relax these requirements in the following. More precisely, it is sufficient that the operators

are stable and possess approximation properties in subspaces of functions which already

satisfy the zero boundary conditions in a certain sense. We essentially show that mappings

QV` : VL → V` also exist in this case.

Let us emphasize that the following construction, which recursively excludes basis func-

tions which “couple with ΓD”, is not necessary for the practical algorithms. This is because

the Dirichlet boundary conditions are immediately incorporated into the coarse level func-

tions in a very natural manner; see Section 3.3. However, for the sake of the analysis to be

carried out here, we need to be careful that the single operators constituting QV` respect the

boundary conditions. This requires, again, a recursive technique which will be discussed in

full detail here.

Let the Dirichlet nodes of TL, namely the nodes on ΓD, be denoted by ND
L . To avoid

confusion, let us remark that these nodes have not appeared so far; they are not contained

in NL. For ` < L, recall that the set N` consists of all nodes of T` including all boundary

nodes. We recursively define for ` ∈ {0, . . . , L− 1} the sets

ND
` := {p ∈ N` | ∃ q ∈ ND

`+1, int(supp(λ`p)) ∩ int(supp(λ`+1
q )) 6= ∅}

and

N̂` := N` \ ND
` .

Then, the auxiliary spaces to be used in the following are

X̂` := span{λ`p | p ∈ N̂`} ⊂ H1(Ω`)

for ` ∈ {0, . . . , L − 1}. In other words, if a basis function is removed, one has to remove

all functions from coarser spaces which “couple” with this basis function. By this means,

we take care that the constructed operator really maps to the coarse space V`. This will

become clear in the following. Note that no new fine space is introduced.

It will be beneficial to require the prolongation operators to satisfy

Π`+1
` X̂` ⊂ X̂`+1. (3.17)

To illustrate this assumption, let us derive a sufficient condition which is easy to verify. We

introduce the notion of “local operators” mapping to a finite element space in the following

Definition 3.8. Let X be a finite element space associated with a mesh of a domain ΩX

with nodes NX , nX := |NX |, and coordinate isomorphism ΦX : RnX → X. An operator

ΠX : H1(ΩX)→ X is called local if

Φ−1
X (ΠXv)p = Φ−1

X (ΠXw)p, ∀ p ∈ NX , ∀ v, w ∈ H1(ΩX), v|ωp = w|ωp .

The above definition specifies the operators whose image at a node of the target finite

element space only depends on the values of the input in the corresponding patch. Now,

the following statement is the promised characterization of a class of operators satisfying

the condition stated in (3.17). Its proof is straightforward.

Lemma 3.9. A local operator satisfies (3.17).
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The above construction is designed to relax the assumptions of Lemma 3.7 by merely re-

quiring the H1-stability and the L2-approximation properties of the prolongation operators

in the spaces (X̂`)`=0,...,L−1. Moreover, under certain conditions, one may expect each space

X̂` to have enough approximation power in the sense that a mapping QX` : H1(Ω`) → X̂`

exists such that

‖h−1
` (v −QX` v)‖L2(Ω`) . |v|H1(Ω`), ∀ v ∈ H1

D(Ω`). (3.18)

As before, QX` needs to operate on functions associated with Ω` as it will be applied to

extended functions E`v with v ∈ H1(ΩL). The issue that, in general, ΓD 6⊂ ∂Ω` but merely

ΓD ⊂ Ω` is just a technicality. This is because a suitable trace operator from H1(Ω`) to

H
1
2 (ΓD) also exists in the present case; see, e. g., [75]. Therefore, the space H1

D(Ω`) may

be understood as {v ∈ H1(Ω`) | v|ΓD = 0 in H
1
2 (ΓD)} = {v ∈ H1(Ω`) | v = 0 a. e. on ΓD}.

Similar to the proof of Lemma 3.7, we choose the mappings QX` as quasi-interpolation

operators. The idea to guarantee (3.18) is to limit the size of the subdomain in which the

fine-to-coarse operator approximates by zero due to the reduction from X` to X̂`. Loosely

speaking, this “strip” must not grow asymptotically faster into the domain than the mesh

size. This is stated more precisely in the following lemma, which is the main result of this

section.

Lemma 3.10. Let the transfer operators Π`
`−1 : X`−1 → X`, ` ∈ {1, . . . , L}, be local

and H1-stable. Suppose that they satisfy L2-approximation properties with respect to the

auxiliary spaces (X̂`−1)`=1,...,L, i. e.,

|Π`
`−1v|H1(Ω`) . |v|H1(Ω`−1), ∀ v ∈ X̂`−1, (3.19)

and

‖h−1
` (v −Π`

`−1v)‖L2(Ω`) . |v|H1(Ω`−1), ∀ v ∈ X̂`−1. (3.20)

In addition, assume that

dist(p,ΓD) . h`(p), ∀ p ∈ ND
` , (3.21)

for ` ∈ {0, . . . , L − 1} with suitably chosen (continuous) mesh size functions h`, e. g., ac-

cording to (3.8). Then, there are mappings QV` : VL → V`, ` ∈ {0, . . . , L− 1}, which satisfy

the same H1-stability and L2-approximation properties as previously stated in Lemma 3.7,

namely (3.12) and (3.13).

Proof . For ` ∈ {0, . . . , L− 1}, choose QV` like before as ΠL
L−1 · · ·Π

`+1
` Q

X
` E`. In particular,

one may employ a standard quasi-interpolation operator QX` : H1(Ω`) → X̂`, which now

maps to the modified auxiliary space X̂`. Note that the extension operator E` preserves

the zero values on ΓD. Anticipating the validity of the approximation property (3.18), we

conclude the proof following the lines of the proof of Lemma 3.7. Indeed, QV` maps VL
to V`. This is a consequence of the recursive construction and the fact that the operators

(Π`
`−1)`=1,...,L are local.

Let us postpone the proof of the existence of an H1-stable Clément-type operator QX`
satisfying the relevant L2-approximation property to Section 5.2, Lemma 5.4.
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In general, a non-recursive definition of the spaces (X̂`)`<L is inadequate as it is not

clear how to enforce ΠL
L−1 · · ·Π

`+1
` X̂` ⊂ V`, ` ∈ {0, . . . , L − 1}, in this case. This property

is evidently used in the proof of Lemma 3.10. In particular, it is not enough to make

modifications at level L− 1 only.

Although the assumption (3.21) does not seem to have appeared in the literature in

this form before, we consider it a very natural requirement. It is a rough statement about

the resolution of ΓD by the eliminated coarse level nodes, which formally specifies the

asymptotic growth condition discussed above. This is further illustrated in the prospective

proof of Lemma 5.4. As only the coarse mesh size h`, ` < L, is involved, the assumption is

rather weak.

Remark 3.11. With the arguments put forward above one may “refine” the analysis and

relax the conditions on the coarse domains a little. From our proof of Lemma 3.10, we

see that it is not necessary that the coarse domains (Ω`)`<L cover ΓD. At these parts

an extension by zero would be sufficiently accurate in the sense that QX` still possesses

the required approximation property. To satisfy a suitable analogon of (3.21), the coarse

domains should cover all other nodes, though; this means Ω0 ⊃ . . . ⊃ ΩL−1 and p ∈ ΩL−1

for all p ∈ NL.

Finally, let us state a more convenient form of the conditions the mappings (Π`
`−1)`=1,...,L

need to satisfy. Naturally, one does not examine single entities but rather considers entire

types or classes of approximation operators. Generally speaking, a transfer concept is an

instruction which provides a concrete prolongation operator depending on certain data,

namely the domains ΩY ⊂ ΩX ⊂ Rd, the space X ⊂ H1(ΩX) and the finite element space

Y ⊂ H1(ΩY ). One might formally write this as

(X, Y ) 7−→ (Π : X → Y ). (3.22)

Such a concept is usually specified by a simple interpolation formula or some other (to a

greater or lesser extent abstract) rule. The following lemma states a sufficient condition,

which will be used later when we examine different choices of the coarse-to-fine information

transfer.

Lemma 3.12. Let a transfer concept in the sense of (3.22) generate only local, H1-stable

operators which satisfy L2-approximation properties for all settings with the following char-

acteristics:

• arbitrary domain ΩY = ΩX =: Ω,

• finite element space Y with Dirichlet boundary conditions on ΓD ⊂ ∂Ω,

• X = H1
D(Ω).

Then, this transfer concept applied to the situation of Lemma 3.10 yields prolongation

operators which fulfill the requirements (3.19) and (3.20).



60 3 Semi-geometric multilevel preconditioners

Proof . For ` ∈ {1, . . . , L}, let Π`
`−1 : X`−1 → X` originate from a transfer concept with

the assumed qualifications. We denote the reduced domains by Ω̂` := Ω` \ΩD
` where ΩD

` is

the maximal subset of Ω` such that all functions in X̂` are zero everywhere; it may happen

that ΩD
` = ∅. In addition, let Γ`D ⊂ ∂Ω̂` be maximal such that v|Γ`D is zero everywhere

for all v ∈ X̂`. The spaces H1
D(Ω̂`) may accordingly be defined with Dirichlet boundary

conditions on Γ`D.

Let v ∈ X̂`−1. We have that Π`
`−1v = Π`

`−1(v|
Ω̂`

) because the operators are local. More-

over, v|
Ω̂`
∈ H1

D(Ω̂`) as ΩD
`−1 ⊃ ΩD

` by construction. Consequently, we can exploit the

properties of the transfer concept to conclude the stated estimates.

As we have proved that the above conditions are sufficient for the direct applicability of

the considered class of operators in Lemma 3.10, it remains to check one generic case later.

Remark 3.13. A further relaxation of the conditions on the overlap of the domains is

discussed in [47, 91]. It is possible to allow coarse meshes without the relation Ω`−1 ⊃
Ω`; the size of the uncovered part needs to be bounded, though. This comes at the price

of designing special interpolation operators. If the Neumann boundaries or the respective

portions of the coarse domains are not completely covered, both analysis and numerical

experiments show that a naive extension by zero in Ω` \ (Ω` ∩ Ω`−1) is only sufficiently

accurate near the Dirichlet boundary. To overcome this, interpolation formulas which are

modified near the Neumann boundary have been considered in [47, 91] in case d = 2.

This observation also relates to the fact that the approach of [123] is not suitable for

problems other than pure Dirichlet problems; see Section 4.1.1 for more detailed comments.

3.4.4 Convergence theorem

The proofs of Lemma 3.7 and Lemma 3.10 are essential steps of the convergence analysis

of the semi-geometric multilevel methods. For general finite element spaces (X`)`=0,...,L

satisfying the coarsening assumption (3.9), we have shown the existence of mappings

(QV` )`=0,...,L−1 with the required H1-stability and L2-approximation properties. The analy-

sis has been carried out for the multiplicative and also the first additive variant as both use

the recursive procedure setupSGMG. Note that the adaptation of Lemma 3.10 and its proof

to the second additive variant with setupSGMGimm (see Section 3.2.3) is straightforward.

Now, we are in a position to apply the theoretical achievements mainly due to Bramble,

Pasciak, Wang and Xu [32, 33] as outlined in Section 2.3 to the semi-geometric setting.

For this purpose, assume that the smoothing operators (S`)`=1,...,L satisfy the elementary

properties stated in (2.22). We do not aim to put forward more explicit results concerning

the smoothers in this thesis. Instead, we take the liberty of referring to, e. g., [28]. Then,

our considerations result in the following

Theorem 3.14. Let the assumptions of Lemma 3.10 hold and the smoothing property (2.22)

be satisfied. Then, the semi-geometric multilevel methods Algorithm 3.4 and Algorithm 3.5

yield preconditioning uniformly with respect to the mesh size. Further, the semi-geometric

multigrid method, i. e., the Richardson iteration preconditioned by Algorithm 3.4, converges

uniformly with respect to the mesh size.
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Again, we remark that the result holds for adaptively refined meshes in the sense that the

smoothing property (2.22) only needs to be satisfied in a suitable subspace; no relaxation

operations are necessary outside of the subdomain of refinement. This line of reasoning

has been put forward in comparably straightforward manners by numerous authors in the

literature; in particular, see [34]. Note that such a generalization is possible only if the

stability and approximation properties of the constructed operators also hold true in the

non-quasi-uniform case. In addition, if two successive meshes locally match, the respective

prolongation operator should coincide with the identity in the corresponding parts of the

domain. If this is not achieved naturally, namely following from the basic properties of the

employed transfer concept, it should be enforced in a suitable other way.

On the way to L-independent convergence

Theorem 3.14 states uniform convergence of the semi-geometric multigrid methods with

respect to the mesh size. Let us comment on the dependence of the result on the number of

levels L. As, in theory, the number of levels needs to grow to infinity with decreasing fine

mesh size to retain coarse level problems which are small enough to be solved very accu-

rately, the convergence theorem is only quasi-optimal in case it worsens with increasing L.

Note that the stability constant of QV` can only be proved to be bounded by the product

of the stability constants of the single operators. This is because the proof directly exploits

the product structure of the constructed space hierarchy. Thus, the possible dependence of

the constants in (3.12) and (3.13) on the number of levels is not ruled out. However, we

obtain a convergence result which is optimal if the number of levels is fixed. In our context,

as we have the advantage to choose the coarser meshes quite freely, we can easily ensure

that the number of degrees of freedom roughly reduces by one order of magnitude per level

for d = 3; thus, this restriction is not too relevant for practical purposes. An analysis

providing not only quasi-optimal but L-independent convergence results for the developed

multilevel methods with the specially constructed space hierarchy has to be carried out

in a different way. In principle, one should examine the norm equivalence put forward in

Section 2.3.2. If one can show that an inverse inequality holds uniformly in each new space

V`, the norm equivalence holds true without a dependence on the number of levels L.

The following special case is of particular practical importance. If the coarse meshes

(T`)`=0,...,L−1 are nested, e. g., resulting from a regular refinement routine of an initial coarse

mesh T0, the operators connecting the associated finite element spaces (X`)`=0,...,L−1 may

be chosen as the natural inclusions (because the spaces are nested). In this case, the sta-

bility constants of the mappings QV` from the previous lemmas are estimated merely by

the product of the stability constants of the two mappings QX` and ΠL
L−1. Therefore, the

(constants in the) inequalities (3.12) and (3.13) do not depend on the number of levels L

because neither the estimate of QX` nor the one of ΠL
L−1 do. This holds true under the gen-

eral assumptions of this section. Although this case resembles the auxiliary space method

analyzed in [195], note that the latter suggests a non-variational approach to keep standard

(multilevel) iterations applicable in the respective auxiliary space. In addition, the auxil-

iary spaces considered in [112, 113, 195], in part in a quite different context, though, need

to be almost as fine as the original spaces. This is in contrast to the framework developed
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in this chapter.

A further aspect, which has not been investigated in the literature so far, concerns

the magnitude of the stability constants of suitable operators for the information transfer

between non-nested finite element spaces. They appear to be rather small in practice. We

will examine this in Chapter 5; especially, see the numerical studies in Section 5.8.

Remark 3.15. Finally, we need to comment on a series of papers about non-nested multi-

grid methods which do not fall into the category of variational methods. In part these

methods are specially designed for certain non-conforming discretizations. Starting with

[35] and then [172, 201, 202, 203], several assumptions have been formulated concerning

the relation between the operators at the single levels, the most intuitive being

‖Π`
`−1v‖A` ≤ ‖v‖A`−1

, ∀ v ∈ X`−1,

for ` ∈ {1, . . . , L}. Here, the operators (A`)`=0,...,L do not stem from a Galerkin restriction

and are therefore not related to each other by the variational equation (2.7).

The more sophisticated analyses need an approximation property which can, in general,

only be guaranteed by additional regularity assumptions, though. This is because orthogonal

projections with respect to the corresponding energy inner products (a`(·, ·))`=0,...,L−1 are

used in all mentioned approaches. For the development of additive preconditioners for some

non-conforming discretizations, we refer to [152, 153]. Further progress for the non-nested

V-cycle has been made more recently by [38, 79].

3.5 A coarse space for overlapping

Schwarz methods
This is a convenient point to comment briefly on the application of the above concept to

two-level overlapping Schwarz methods with a global coarse space. For a detailed introduc-

tion into this field, see, e. g., [177, Chapter 3]. We also mention the enormous number of

references in this monograph. The idea of this class of methods is to decompose the com-

putational domain into overlapping subdomains, preferably of simple structure, on which

local (e. g., exact) solvers can be successfully applied. The information transfer between

the single problems is realized by the local overlaps and a global component.

Without going into great detail, we point out some significant connections to the previ-

ous considerations. The notations are a little different here. As there are only two distinct

levels, the fine and coarse quantities may be labeled with the indices h and H , respectively.

In this context, let us mark a decomposition into subspaces by the index i (instead of `).

Assume that V = Xh is a given finite element space associated with a mesh Th of the

computational domain Ωh = Ω to approximate the solution as described in Section 1.3. Let

the local finite element spaces

(Vi)i=1,...,N with Vi ⊂ V, i ∈ {1, . . . , N},

be associated with a “horizontal” overlapping decomposition (Ωi)i=1,...,N of Ω. In particular,

v = 0 in Ω \ Ωi for all v ∈ Vi. Naturally, one will not have access to the global space V
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but only to the local spaces (Vi)i=1,...,N in practice, which are defined with respect to local

meshes (Ti)i=1,...,N . As most proof techniques involve a coloring argument, one usually

assumes that the number of adjacent subdomains is bounded (independently of h and N).

A Schwarz preconditioner, which acts as (successive or parallel) subspace correction

method corresponding to the above decomposition, is in general not scalable with respect

to the number of subdomains N . To prove preconditioning results independent of the

number of subdomains, one usually introduces a global coarse space; see, e. g., [177]. For a

historical overview of the role of coarse spaces in domain decomposition methods, we refer to

[189]. In many cases, bounds on the condition number of the preconditioned operator may

be proved, which essentially depend on the ratio of the maximum size of the subdomains to

the minimum size of the overlaps. Coarse spaces associated with elementary coarse meshes

are ready to hand as long as the structure of the decomposition is simple. To achieve

the mentioned result, in general, one needs to ensure enough global information transfer

by choosing the coarse mesh size sufficiently small, e. g., comparable to the size of the

subdomains. In addition, an (almost) exact solution of the subproblems is often required.

Two-level overlapping Schwarz methods have also been developed for problems with

unstructured meshes. In this case, as we have seen in the multilevel setting, it may be

difficult to construct nested coarse spaces as the local fine meshes do typically not allow

for a proper global coarse mesh. Advanced coarse spaces for this problem class include

partition of unity spaces [160, 161, 162] and spaces obtained by smoothed aggregation

[134, 164]. A paper on recent progress of the theory of domain decomposition methods

with irregular subdomains is [188]; see also the references therein. Here, we focus on an

approach which is close to the one presented before. If XH is a global finite element space

associated with a mesh TH of ΩH ⊃ Ω which is not related to the space Xh, a coarse space

can be constructed by means of a suitable prolongation operator Πh
H : XH → Xh correlating

the global coarse mesh with the local fine meshes. Similarly to the multilevel case, a nested

space is defined via

V0 := Πh
HXH (3.23)

like in [43, 49, 51, 52]. Then, the analysis of the decomposition

V = V0 +

N∑
i=1

Vi,

namely the proof of a partition lemma, requires respective H1-stability and L2-approxi-

mation properties of the applied operator Πh
H . This may indicate that the considerations of

the present chapter and the research of geometrically inspired transfer concepts in Chapter 5

are useful for other purposes, too.

Naturally, in this two-level setting, we do not need to worry about the fact that a

composed mapping is used in the proof; the composition always consists of as few as two

mappings. This means that the stability and approximation results for the respective fine-

to-coarse mapping QV0 : V → V0 are optimal if the coarse space is constructed via (3.23)

and if the operator Πh
H satisfies the meantime well-known properties.

In the context of the semi-geometric multilevel methods, not only for the analysis but

also for practical purposes, the locality of the information transfer is crucial. Here, the
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situation is a little different. Whereas, in a multilevel setting, the reduction of the number

of the degrees of freedom per level is only by a factor typically in the order of 2−d, one may

be able to manage with very few coarse degrees of freedom per subdomain in case of the

overlapping two-level method. Therefore, it might not be mandatory to use a local transfer

operator. A global transfer concept might not affect the overall efficiency as only small

dense systems need to be solved corresponding to the subspace V0. Admittedly, this does

not hold true for the asymptotic range as the size of the subdomains and, thus, the coarse

mesh size needs to decrease to retain spaces (Vi)i=1,...,N with sufficiently small dimension.

3.6 Implementation aspects

In this section, we outline some essential aspects concerning the implementation of the

abstract semi-geometric framework. The developed software concepts are quite close to

the description of the algorithmic structure given in the current chapter. Here, we focus

on the realization of the basic principles of the semi-geometric multilevel methods. Both

analysis and practical aspects of the linear operators for the information transfer between

non-nested finite element spaces are presented separately in Chapter 5. We have realized

our concrete implementation as a new module nnmglib in the package obslib++, which

is maintained by the author of [124] and his work group. The software uses fundamental

components of the finite element toolbox ug; see [17].

3.6.1 Bounding the complexity of the multilevel hierarchy

In this paragraph, we consider an important point concerning the complexity of the studied

multilevel algorithms. As a measure of the efficiency of the multilevel hierarchy itself,

in addition to iteration counts or convergence rates, we put forward the notions of grid

complexity Cgr and operator complexity Cop defined by

Cgr :=

∑L
`=0 n`
nL

, Cop :=

∑L
`=0 n

A
`

nAL
, (3.24)

which are common in the literature on algebraic multigrid methods. Here, nA` is the number

of non-zero entries in the sparse matrix A` ∈ Rn`×n` , ` ∈ {0, . . . , L}.
As an illustration, let us elaborate on the above concept of complexity in the case of

the geometric multigrid method with uniform refinement. This will also come in useful

for a later comparison with the semi-geometric approach. Note that a priori estimates

of the quantities Cgr and Cop are much more difficult to establish for (purely) algebraic

multigrid methods. This is because the determination of the coarse degrees of freedom and

the corresponding coarse level operators is part of the algorithm in this case; see, e. g., [176].

To start with, a uniform refinement of a mesh consisting of triangles and quadrilaterals

for d = 2 or tetrahedra and hexahedra for d = 3 results in a multiplication of the number of

elements with the factor 2d. Asymptotically this also holds true for the number of nodes,

namely
n`+1

n`
=: c` → 2d for ` → ∞. As the sequence (c`)`=0,1,... is strictly increasing, we
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may estimate∗

Cgr =

∑L
`=0(

∏`−1
`′=0 c`′)n0

(
∏L−1
`′=0 c`′)n0

=
L∑
`=0

1∏L−1
`′=` c`′

>
L∑
`=0

1

2`d
→ 2d

2d − 1
for L→∞. (3.25)

This gives a precise idea of the magnitude of Cgr for geometric multigrid methods. In fact,

the limit 2d

2d−1
is not a lower bound of the grid complexity but at least a good approximation.

For example, in case d = 3, and a structured simplicial mesh of a cube with 96 elements

in T0, the difference of Cgr to the limit 8
7 is less than 0.0004 for a hierarchy of four levels

with three coarse meshes (L = 3). Neglecting the boundary nodes, whose influence on the

measure decreases exponentially with the refinement index `, one obtains the same estimate

for the operator complexity Cop.

A prevalent technique to keep Cgr and Cop small (and the application of both Algo-

rithm 3.4 and Algorithm 3.5 efficient) is truncation of the prolongation operators by delet-

ing the matrix entries which are smaller than a parameter εtr > 0 times the maximal entry

in the respective row. Afterwards, the modified rows are rescaled such that the row totals

remain unchanged; see [176]. In the semi-geometric framework, it is absolutely necessary

to perform a truncation procedure to retain the optimality of the algorithms. Otherwise,

one can in general not prevent the appearance of very small and thus irrelevant entries

in the prolongation matrices. Therefore, let the outlined truncation be included in the

setup of the semi-geometric multilevel hierarchy, setupSGMG (Algorithm 3.3). At level

` ∈ {1, . . . , L}, it is carried out after the computation of the matrix Π`
`−1 and before the

Galerkin product A`−1. The incorporation into setupSGMGimm is done analogously. Note

that there is no straightforward way to prevent the entries of a final prolongation matrix

from being very small as early as during its assembly. This is because it is usually built

from local contributions, which have to be summed up first. We study this in more detail

in Chapter 5; see, in particular, Section 5.7. Regardless of the precise transfer concept, at

least the entries smaller than 1% of the maximum entry must be removed for a minimum

degree of sparseness of the prolongation matrices.

Consequently, one has at least two different options to influence the bandwidth of the

prolongation matrices. On the one hand, we may control the structure of the matrices

(Π`
`−1)`=1,...,L a priori by the choices of the meshes (T`)`=0,...,L−1 and the type of informa-

tion transfer between the associated non-nested finite element spaces. On the other hand,

the sparsity pattern of the computed matrices may be controlled a posteriori by suitable

modifications, e. g., the described truncation with rescaling. The first point is special to

the semi-geometric framework whereas the second one is more common. In principle, inter-

mediate approaches are conceivable, e. g., modifying the setup procedure (Algorithm 3.3)

by including local adaptations of the coarse meshes. Notable methodologies aiming at this

direction are reviewed in Chapter 4.

As a general rule, to construct efficient multilevel methods, one needs to trade off

the approximation properties of the coarse level problems against the band structures of

the representing coarse level matrices. Especially, in the context of non-nested coarse

∗The product symbol
∏

in (3.25) must not be confused with the notation of the generic prolongation
operators. The former only appears here whereas the latter is used throughout this thesis.



66 3 Semi-geometric multilevel preconditioners

meshes, one should expect better approximation properties of the coarse spaces in case of

a variational approach, such as the one presented in Section 3.2.1, whereas the sparsity

patterns of the matrices (A`)`=0,...,L−1 and, accordingly, the complexity Cop are generally

more favorable with a non-variational approach.

3.6.2 Information transfer between non-nested meshes

As indicated before, we keep the transfer concept still abstract in this section. The imple-

mentation of concrete prolongation and restriction operators is discussed, in particular, in

Section 5.7. However, let us remark that the routines for the information transfer between

non-nested meshes are usually built from local coupling contributions such as global or local

integrals or function evaluations. This holds true whether or not the transfer is actually

local in the sense of Definition 3.8.

As the set of non-nested meshes (T`)`=0,...,L does not come with natural parent–child

relations stemming from a regular refinement procedure, one needs to compute suitable

neighborhood relations between elements in successive meshes to ensure that the eventual

assembly routines of the prolongation matrices are local. For this purpose, we have incor-

porated the quadtree/octree implementation of [5] into obslib++. Suitable advancing front

techniques exploiting the connectivities of the single meshes can be applied instead; see,

e. g., [89] in a related context. Although a hierarchical structure is an adequate choice to

treat general problems in a flexible fashion, note that a plain sorting variant may be more

efficient for certain cases in the present context. This holds particularly true if the elements

of the used meshes are distributed rather evenly because in this case the overhead of the

hierarchical quadtree/octree structure might not be negligible.

Naturally, any reasonable choice of coarse meshes satisfies
∑L

`=0 |T`| . |TL|. This implies

that the number of operations to compute the desired relations of the elements in the pairs

(T`−1, T`)`=1,...,L (or in the pairs (T`, TL)`=0,...,L−1 if the variant setupSGMGimm is employed

in case of the additive semi-geometric preconditioners) grows at most like O(nL log nL). In

Section 5.7, it turns out that we achieve optimal complexity O(nL) for the actual assembly

of the sequence of prolongation matrices, having these relations ready to hand.

Coarse spaces from non-nested coarse meshes

Our practical implementation is indeed as flexible as the theoretical considerations in this

chapter indicate. The coarse meshes can be unstructured; they do not need to be nested.

The user provides the fine level mesh TL with respect to which the boundary value problem

to be solved is actually set. In addition, coarse level meshes (T`)`=0,...,L−1 are imported

using the extended geometry handling incorporated into obslib++ by [76, 100], too.

We have implemented a new module nnmglib in obslib++ to manage the setup of the

semi-geometric (monotone) multigrid methods and additive preconditioners. This library

also includes the methods for the computation of a variety of concrete transfer concepts

(see Chapter 5 and in particular Section 5.7) as well as the methods for the elaborate study

concerning the information transfer between non-nested meshes as such (see Section 5.8).

Let us point out that, at an intermediate stage, a part of the basic data structures, which
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are derived from related transfer classes in ug, has been developed during the preparation

of a student research project [76].

Note that the mesh TL is directly equipped with a set of degrees of freedom as the finite

element space VL = XL and a basis ΛL are known from the start. In contrast, the nodes and

the elements of the meshes (T`)`=0,...,L−1 merely represent auxiliary geometric entities and

are thus not yet included in the algebraic structure. Their intended purpose is to supply the

bases (Λ`)`=0,...,L−1 which are not used in the eventual semi-geometric algorithm. In other

words, we proceed as customary in algebraic multigrid methods; the coarse level degrees of

freedom are not created before the setup.

As indicated in the discussion of the algorithms in Section 3.2.2 and Section 3.2.3,

once the discrete operators (Π`
`−1)`=1,...,L or (ΠL

` )`=0,...,L−1 and (A`)`=0,...,L−1 are known,

i. e., once the matrices (Π`
`−1)`=1,...,L or (ΠL

` )`=0,...,L−1 and (A`)`=0,...,L−1 are computed by

setupSGMG or setupSGMGimm, the presented multilevel iterations are nothing but alge-

braic operations involving those matrices. In principle, one does not need the prolongation

matrices to be given explicitly. It is sufficient to have routines performing the respective

evaluations for given residual or correction vectors ready to hand.

The efficiency of the multigrid method relies on the effectivity of the individual smooth-

ing iterations. More precisely, at each level ` ∈ {1, . . . , L}, one needs to be able to reduce the

oscillating error components with respect to the space X` sufficiently fast, i. e., using very

few (Gauß–Seidel) iterations. The remaining error has to be sufficiently smooth, namely its

representation at the coarser level in X`−1 is sufficiently accurate. In standard geometric

multigrid methods, one relies on sequences of nested meshes with h`−1 = 2h`. For our

purposes, the coarse meshes need to be chosen appropriately such that a similar coarsening

assumption holds. Conversely, an increased number of local relaxations in certain regions,

possibly carried out in a special order or as block relaxation, could compensate for a “locally

bad choice” of the coarser mesh. There are indeed first approaches, although not in the

present context, which try to control or optimize the amount of local work performed by

the smoother during the algorithm. One example is an a priori redistribution of the total

number of relaxation steps towards regions with badly shaped elements. We learned about

this methodology from [90].

As a matter of fact, for the above conditions on an effective interplay of smoothing

and coarse level correction to be satisfied in practice, one only needs to guarantee that the

coarsening factor is in a rather generous range. Our numerical examples include results

on the basic robustness of the semi-geometric approach with respect to the choice of the

coarse meshes. However, for adaptively refined meshes, we cannot eliminate the possibility

that an undesirable local relation between coarse and fine mesh affects the convergence

behavior, unless a robust method for readjusting the coarse mesh is applied. In case a

highly non-uniform mesh originates from an adaptive refinement procedure (presumably

based on suitable error estimators), one might exploit this additional information for an

adaptation of the coarse level meshes. A careful elaboration of these issues is beyond the

scope of this thesis, though. The utility of an automatic coarse mesh construction, in other

words of coarsening procedures, is discussed in Section 4.2.
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In the past years, several methodologies have been developed for the application of basic

multilevel algorithms to problems with complicated boundaries of the computational do-

main. In this chapter, we describe some of the accomplishments of the research on multigrid

methods since the very first algorithms have been recorded with respect to finite difference

schemes in the unit square. Some of the efforts which have been made to improve the

applicability of general multilevel ideas are explained; relevant connections to the introduc-

tion of the semi-geometric framework of the previous chapter are established. In part, the

presented approaches aim at constructing coarse approximations of finite element spaces as-

sociated with unstructured meshes. Others employ structured meshes coming with tailored

discretizations which allow for a (to some extent) straightforward coarse level hierarchy.

Certainly, most of the developments to be reviewed in this chapter are in a sense inter-

woven. One cannot overlook that the research activities of the cited authors have influenced

each other in some form or another. Some ideas immediately build upon the theoretical

and algorithmical achievements in multigrid and domain decomposition methods presented

in Chapter 2, whereas it seems that others have been developed from a somewhat different

point of view.

In agreement with the overall concept of this thesis, we focus on geometric techniques

and discuss some important methodologies. Multigrid methods based on adjusted dis-

cretizations, which are mostly built from structured meshes, are reviewed in Section 4.1.

Next, in Section 4.2, we turn our attention to geometric coarsening techniques for unstruc-

tured meshes. We always point out relevant connections and draw comparisons.

As we prefer to put our emphasis on a most thorough study of the properties of the semi-

geometric framework, it is beyond the scope of this thesis to evaluate all of the algorithmic

ideas described below in detail. We believe that the present chapter provides an adequately

deep insight into the development of multilevel methods for problems with complicated

boundaries, though. Moreover, we select one method working with a special discretization

and present a (monotone) multigrid method based on parametric finite elements in Chap-

ter 7. Note that the overall structure of the paradigm put forward in Chapter 3 is a rather

general one compared with other concepts which have been investigated in this or a related

context.

4.1 Geometric multigrid methods with

adjusted discretizations
In this section, we report on several geometric multilevel techniques based on adjustments

of the (fine level) discretizations. Each of the specified approaches employs a discretization

scheme of a special nature to construct a suitable coarse space hierarchy. So, for the methods

in this section, one has to be willing to give up some of the advantages that finite element

discretizations associated with unstructured meshes have. We have also considered another
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way to adjust the discretization for the above purpose, namely a parametric finite element

approach. A brief study of a (monotone) multigrid method based on a parametric concept

is provided as an excursus in Chapter 7.

The goal of our presentation is to highlight structural similarities and differences and

relate the methodologies to the semi-geometric framework of Chapter 3 and to each other.

In part, the basic idea is not at all difficult and, e. g., immediately builds on Cartesian

(auxiliary) meshes. Both the analysis and the algorithmic realization may be more involved,

though. A major difference of the approaches to be described in this section, compared

to the semi-geometric concept, is the fact that a new discretization of the problems set

up in Chapter 1 is introduced. The formulation of the respective finite element spaces is

designed to allow for natural coarse scales. However, just as before, one may need fine level

information to evaluate coarse level functions, too.

In this thesis, we do not consider meshfree discretizations such as the partition of unity

or generalized finite element methods. Instead of using finite element spaces associated

with proper meshes, such an approach basically employs a partition of unity associated

with an overlapping decomposition of the computational domain and local approximation

spaces; see [10, 145] and, for a more recent overview, [11]. Multilevel methods for partition

of unity discretizations of elliptic partial differential equations have been developed, e. g.,

in [99, 170]. We refer to [55, 62] for recent analytical results.

Before going into detail about the single approaches, we consider it particularly impor-

tant to point out that here the relation of two successive meshes is generally much closer

than in the semi-geometric setting; the families of meshes exhibit some additional struc-

ture. This will be easy to see for the methods described in Section 4.1.1, Section 4.1.2

and Section 4.1.4, but it especially holds true for the composite finite element method re-

viewed in Section 4.1.3. Still, the latter is indeed a “multilevel method based on non-nested

meshes”, too. The research of this and the other techniques has been driven by the demand

to construct multilevel finite element splittings for efficient iterative solvers. In contrast

to the more flexible semi-geometric framework, the techniques considered here cannot be

applied to given unstructured meshes. We emphasize that, among all studied methods, the

variant of composite finite element spaces described in Section 4.1.4 is the only one which

is able to resolve the domain without changing the gradients of the multilevel finite element

functions. Unfortunately, the straightforward applicability is affected by the disadvantage

that the Dirichlet boundary conditions require special attention.

As in the previous chapter, auxiliary spaces and the spaces which are finally used in the

multilevel algorithms are denoted by X and V , respectively, with some indices.

4.1.1 Filling the domain gradually

Let us start the overview with the conceptually simplest method—at least from an algorith-

mical point of view—to determine multilevel hierarchies for domains which are not easily

resolved by coarse meshes. This approach has been analyzed in [123]. The idea is to em-

bed the computational domain Ω into a larger square (d = 2) and to employ a family of

structured meshes generated by a regular (uniform) refinement routine. This yields a crude

successive approximation of Ω by a finite element mesh from the inside in the following
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Figure 4.1. Generation of a multilevel hierarchy by uniform refinement of a struc-

tured mesh as proposed in [123]. As only those basis functions are taken into account

whose supports are completely contained in the computational domain Ω, one ob-

tains a sequence of nested finite element spaces approximating H1
0 (Ω).

way; see Figure 4.1 for an illustration of such a sequence of triangulations.

Let (T �
` )`∈N be a family of (uniform) meshes of a surrounding square, not of the pre-

sumably much more complicated domain Ω itself. Then, using the standard nodal bases

(Λ`)`∈N of the finite element spaces (X`)`∈N associated with the considered meshes, namely

Λ` = (λ`p)p∈N�
`

for ` ∈ N, a hierarchy of nested finite element spaces can be defined by

V` := span{λ`p |ωp ⊂ Ω}, ∀ ` ∈ N.

This means that one fills the domain bit by bit with all elements which fit into it. But

only those basis functions whose supports are entirely contained in Ω are included in the

definition of V` as only interior nodes, denoted by N`, may bear degrees of freedom. Conse-

quently, at level `, only those elements which belong to at least one ωp := supp(λ`p), p ∈ N`,
are depicted in Figure 4.1. Note that a similar technique of approximation from the inside

has also been analyzed in [29, Section 6] for a refinement application.

By this procedure, one obtains a sequence V0 ⊂ . . . ⊂ V` ⊂ . . . ⊂ H1
0 (Ω). Thus,

the method seems only reasonable for Dirichlet boundary conditions on ∂Ω; see also Re-

mark 3.13. Moreover, from an application point of view, the discretization VL at a fixed

(finest) level L is not expected to be appropriate in case boundary effects are of particular

interest. For the analysis of multilevel preconditioners, the authors of [123] consider an L2-

orthogonal decomposition as in (2.21) associated with the constructed subspaces. Under

suitable regularity assumptions on the boundary ∂Ω, a quasi-optimal result on the relevant

equivalence between the energy norm and the corresponding splitting norm is achieved;

see [123, Theorem 6.1]. For this purpose, the cited reference involves a careful investigation

of how the fact that the discrete domain “grows” during the refinement affects the stability

of the constructed subspace splitting. This yields preconditioning uniformly with respect

to the mesh size for problems set in H1
0 (Ω). But, as in our analysis in Section 3.4, the

condition number estimate depends on the number of refinements.

Naturally, the above ideas transfer to the case d = 3 although the analysis may be

more involved; see [123]. Note that the methods to be described in Section 4.1.3 and

Section 4.1.4 make use of a sequence of structured meshes to derive a tailored discretization

scheme for the function space associated with the computational domain Ω, too. However,

those approaches are based on much more sophisticated adaptations at the boundary ∂Ω.
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Remark 4.1 (Finite elements associated with tree structures). In recent years, tree struc-

tures have become more and more important for high performance computing. In the con-

text of large-scale numerical simulations based on finite element discretizations, the obvious

advantage of regular meshes, e. g., generated from the leaves of a quadtree or octree de-

composition of the computational domain, is that the stiffness matrix does not need to be

assembled. This is usually accompanied by a substantial speed-up of the matrix-vector mul-

tiplications involving the precomputed local stiffness matrices. The real benefit of a tree

structure, however, is that it may be exploited for adaptive mesh refinement in parallel and

efficient load-balancing. We take the liberty of referring to [42] and the references therein.

As the composite finite element methods described in Section 4.1.3 and Section 4.1.4 are

also based on regular meshes, they may take advantage of some of the mentioned points, too.

Note that we also employ a tree structure for a fast and flexible determination of “neighbor-

ing” elements from unrelated meshes. This is explained within the implementation aspects

of, first, the semi-geometric framework (Section 3.6) and, second, the concrete prolongation

and restriction operators (Section 5.7).

4.1.2 Boundary fitted elements

In this section, we present a method which is different in many respects. Also for academic

reasons, one may be interested in the so-called boundary fitted finite element spaces intro-

duced in [200]. Such a space is associated with a mesh T of Ω with the property that there

is a constant c such that

dist(T, ∂Ω) ≤ c hT , ∀ T ∈ T . (4.1)

In other words, the size of the elements T ∈ T increases at least linearly with the distance

to ∂Ω. This is illustrated by the left sketch in Figure 4.2∗. Here, the term “boundary

fitted” expresses the fact that the relatively coarse mesh T still resolves the computational

domain exactly, provided that this is possible. Note that the meshes depicted in Figure 4.2

contain hanging nodes only to keep the illustration as simple as possible. As we do not

aspire to address non-conforming (multilevel) discretizations, such nodes should be either

avoided during the mesh generation process or eliminated by algebraic constraints as usual.

Let the boundary fitted finite element space be denoted by XT . Obviously, Dirichlet

boundary conditions on a portion ΓD ⊂ ∂Ω may be incorporated as in the standard case

of Section 1.3 such that XT ⊂ H1
D(Ω). Further, consider the weighted L2-norm ‖ · ‖L2(Ω),T

given by a weighted L2-inner product via

‖v‖L2(Ω),T := (v, v)
1
2

L2(Ω),T and (v, w)L2(Ω),T :=
∑
T∈T

1

h2
T

(v, w)L2(T ), ∀ v, w ∈ L2(Ω).

Then, for families of triangulations (d = 2) satisfying (4.1) with a universal constant c and

sufficiently regular domains, Yserentant showed in [200] that the semi-norm | · |H1(Ω) is

equivalent to ‖ · ‖L2(Ω),T , namely

|v|H1(Ω) h ‖v‖L2(Ω),T , ∀ v ∈ XT .
∗This sketch resembles the one in the original paper; cf. [200, Figure 1]. The straight shape of the

boundary has been chosen for simplicity.
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Figure 4.2. Detail of a boundary fitted multilevel triangulation. The actual bound-

ary fitted finite element space is defined with respect to the coarsest mesh on the

left. The mesh on the right comes from a refinement of all triangles except the ones

at the boundary.

As a consequence, the condition number of the discrete representation of the operator A

with respect to the standard basis in XT , see Section 1.4, is bounded independently of the

size of the triangles near the boundary.

Now, a space of boundary fitted elements shall be used as coarse space in a geometric

multigrid method, i. e., V0 := XT . In fact, the theoretical considerations in the cited refer-

ence may be considered a justification of the paradigm to construct a multilevel hierarchy

by coarsening away from the boundary (starting from a fine mesh). This appears natural in

case the given fine mesh exhibits a layer-like structure. Naturally, a boundary fitted mesh

will be created by a converse procedure, namely by a refinement towards the boundary

(starting from a coarse mesh) followed by a simple post-processing; see [200].

To obtain the next finer level in a multilevel hierarchy (T`)`=0,...,L, every triangle except

for the ones at the boundary is refined. This process is illustrated in Figure 4.2. Note

that the coarse space associated with the boundary fitted mesh T =: T0 can still have a

lot of degrees of freedom. But, as the special discretization makes the coarse level problem

well-conditioned, relatively few steps of any decent iterative solver should suffice to reduce

the error by orders of magnitude.

One should remark that a similar idea is the basis of the “boundary concentrated finite

element method” [116]. This discretization scheme is designed for elliptic problems with

varying regularity of the solution in the domain, which is due to non-smooth boundary

data or complicated boundaries. Exploiting the inner regularity, the method does not only

increase the mesh size but also the polynomial degree away from the boundary in the

fashion of an hp-method. Then, a moderate increase of the condition number of the system

matrix with respect to the mesh size and the polynomial degree can be proved; see [116,

Proposition 3.4].

4.1.3 Composite finite elements

In this and the following section, we describe some other geometric multigrid methods

which are based on adjustments of the discretization. The development of these methods is

also driven by the desire to use simpler meshes in the definition of multilevel finite element

hierarchies. However, in contrast to the simple variant presented in Section 4.1.1, the design

of the space hierarchies involves a rather sophisticated adaptation of certain auxiliary spaces
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to the domain boundaries. We present two different variants of the composite finite element

method, the technique originally introduced for triangulations (d = 2) in [105, 106] and a

variation motivated by image based computing [137].

A logically regular mesh hierarchy

A new discretization of the space H1
D(Ω) has been introduced in [105, 106]. Similar to

the method discussed in Section 4.1.1, the finite element scheme is based on a sequence of

regular meshes. But instead of merely neglecting all elements or degrees of freedom which

are not admissible in a certain sense, the meshes are adapted to the computational domain

as described in the following. This yields more flexibility when it comes to the incorporation

of essential and natural boundary conditions.

Here, we do not aspire to give a most precise definition of composite finite element spaces

but rather summarize the essential ideas brought forward in [105, 106]. For example, it is

sufficient to treat only bounded domains for our purposes.

As before, let (T �
` )`∈N be a family of structured meshes with mesh size h` = 2−` h0.

The nodes of T �
` are denoted by N �

` , ` ∈ N. To derive multilevel finite elements to be used

in computations, one fixes a maximal level index L. Then, a very specific mesh hierarchy is

constructed from the geometry of the domain Ω and the given meshes. Later, an associated

hierarchy of nested finite element spaces may be defined similar to the abstract concept

already analyzed in Chapter 3. In fact, the created spaces highly depend on the algorithm

employed for the adaptation of the fine mesh to Ω and, thus, the adaptation of the coarse

meshes, too.

First, let us create a fine mesh TL which resolves the computational domain but remains

logically regular, i. e., the connectivity of the nodes is unchanged. For this purpose, the

mesh size hL has to be sufficiently small such that the mesh T �
L is capable of resolving all

geometric details of ∂Ω. At this specified fine level, the elements near the boundary are

adapted by small distortions moving a node p ∈ N �
L to ∂Ω if dist(p, ∂Ω)� hL.

We assume that the boundary of the computational domain is represented exactly by

this procedure, although in practice this will only be done to sufficient accuracy; see also

Remark 1.5. Then, only interior elements are maintained in the new mesh TL; the set of

nodes is called NL. Simple examples of such an adapted mesh and the domain, respectively,

are illustrated in the right part of Figure 4.3.

As approximation of H1
D(Ω) at level L, we use the standard space of Lagrange conform-

ing finite elements of first order associated with the constructed fine mesh TL and denote

it by XL, as usual. For the derivation of coarse approximation spaces, the meshes (T`)`<L
are generated from the regular meshes (T �

` )`<L via small distortions by moving the nodes

according to the corresponding fine nodes. This means that a node in N �
` is relocated if

and only if its counterpart in N �
L is; see Figure 4.3.

Moreover, an element T ∈ T �
` , ` < L, potentially adapted by a movement of some of its

nodes as explained above, is only included in T`, if at least one of its (logical) children is an

element in T`+1, namely has not been discarded as “outside element”, or if T (physically)

contains a node from N`+1. On the whole, the outlined procedure may be considered a
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Figure 4.3. Detail of a composite finite element mesh hierarchy TL−3, . . . , TL and

the respective portion of the domain. The regular meshes are distorted by moving

some of the fine mesh nodes with their associated coarse mesh nodes to the boundary

of Ω. As the displacement of the nodes is of a size significantly smaller than hL, the

influence on the much coarser meshes is rather small; here, the distortion is almost

invisible in TL−2.

Figure 4.4. Here, the situation is more complex than in the previous sketch. A

parent element is included in the coarse mesh if at least one of its (logical) children

is present in the fine mesh or at least one fine mesh node is contained in it.

formal mapping

(T �
` , N �

` )`=0,...,L 7−→ (T`, N`)`=0,...,L.

We refer to the provided illustrations, which both represent details of composite finite

element triangulations (d = 2). The part of the coarse meshes depicted in Figure 4.3 is

very simple as every element in T`, ` < L, has exactly four children in the next finer mesh

T`+1. Note that no triangle has a node lying outside its (logical) parent triangle. This is

different in Figure 4.4, where further coarse level elements need to be considered.

Obviously, the mesh hierarchy (T`)`=0,...,L becomes non-nested but remains logically

nested as, on the one hand, no new elements are created during the adaptation and, on

the other hand, only elements lying (almost) completely outside Ω are discarded. In other

words, there are well-defined parent–child relations stemming from the regular meshes, but

the portion of “physical space” covered by the children may be slighly different from that

of the parent.

As all nodes which are present at coarser levels are moved according to the fine level

adaptation, the procedure essentially yields a node-nested sequence of meshes (T`)`=0,...,L,

namely coarse nodes are also fine nodes. Only coarse nodes lying outside the domain and

thus corresponding to zero values may not have a fine level analogon. Other node-nested
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hierarchies obtained by geometric coarsening will be studied in Section 4.2.

Remark 4.2 (Mesh adaptation versus mesh generation). Certainly, the issue of mesh

adaptation has not been treated carefully enough. As we have investigated a more flexible

way to construct coarse level spaces using general non-nested meshes in Chapter 3, we do

not go into detail here. However, let us point out that the development of robust adaptation

methods which produce meshes of high quality is a demanding task and may require quite

elaborate techniques, especially for d = 3. In fact, one needs to proceed as carefully as in

general mesh generation algorithms.

As a rule, unless more sophisticated techniques are used, the mesh size hL has to be

relatively small to avoid degeneration of elements. The user also has to balance the desired

accuracy of the resolution of the domain boundary by the meshes or spaces of the hierarchy

to be constructed. We refer to [105, 106] for more details on possible adaptation procedures.

The composite finite element method can in principle exploit some of the advantages

of regular meshes summarized in Remark 4.1. For the intergrid transfer, this holds true

outright as long as no special post-processing is necessary which destroys the simple con-

nectivity. In any case, one needs to find a way to locally process the additional information

generated during the adaptation procedure to retain the overall regular structure. Then, it

turns out that the local stiffness matrices only need to be computed in the neighborhoods

of the boundary in the sense of Remark 4.3. We return to this issue in the next paragraph.

Construction of nested coarse spaces

Now, having the coarse meshes (T`)`=0,...,L−1 ready to hand, we may define a space hierarchy

by a recursive construction. For this purpose, let X` be the finite element space associated

with the adapted mesh T`, ` ∈ {0, . . . , L − 1}. Recall that these spaces are non-nested as

the meshes are merely node-nested.

As we have already seen in full detail in Chapter 3, one needs to make use of suitable

transfer operators to obtain a sequence of nested spaces. Here, following [105], the nodal

interpolation I`+1
` : X` → X`+1 is employed as prolongation operator for ` ∈ {0, . . . , L−1}.

Then, owing to the abstract formulation developed in Chapter 3, the coarse spaces are

immediately defined by

V` := ILL−1 · · · I`+1
` X`, ∀ ` ∈ {0, . . . , L− 1}. (4.2)

Again, we have V0 ⊂ . . . ⊂ VL := XL and bases of the new spaces may be written down via

linear combinations of fine level basis functions in a straightforward manner.

A major motivation for constructing the composite finite element spaces is the desire to

represent complicated domains by few degrees of freedom, similar to the boundary fitted

finite element method from Section 4.1.2. Here, this comes at the price of more complicated

basis functions which are certainly no longer piecewise linear with respect to any reason-

able coarse mesh. Note that, if one is primarily interested in such a coarse space, it may

be possible to avoid the construction of large portions of the meshes (T`)`=0,...,L; see [106].

Nevertheless, a successive refinement of a given regular mesh in a sufficiently large neighbor-

hood of the potentially complicated boundary is necessary such that the presented recursive

definition of the spaces in (4.2) makes sense at least locally.
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Figure 4.5. Details of composite meshes (levels L− 3 and L− 2) for the examples

from Figure 4.3 (left) and Figure 4.4 (right). As explained in Remark 4.3, elements

from different levels are gathered to illustrate the composition of the coarse level

functions near the boundary. Note that, for the second example, the depicted meshes

(but not the coarse degrees of freedom marked by dots) happen to be identical for

these two levels.

Remark 4.3 (Composite meshes). To illustrate the term “composite finite element method”

a little more, we point out the dependence of a coarse level function on the fine level mesh,

more precisely on the adaptation process. This point of view actually comprehends the idea

of constructing a “composite mesh” which is not a proper finite element mesh but merely

indicates the hierarchical composition of the coarse level spaces; see [106].

We have seen that only in a neighborhood of the boundary the finite element spaces X`

are modified to “composite spaces” V` consisting of suitable linear combinations of fine level

functions from VL := XL. Thus, gathering all elements which are necessary to evaluate

a function at level ` < L, one may imagine a “composite mesh” where, recursively, an

element is replaced by its logical children if one of them has been adapted before. Figure 4.5

illustrates these purely logical meshes for the examples presented in the previous two sketches

(Figure 4.3 and Figure 4.4), in each case for the levels L−3 and L−2. To avoid ambiguity,

the dots represent the positions the coarse degrees of freedom are associated with, namely

the nodes in N`, ` < L.

This highlights the fact that, near the boundary, basis functions at coarse levels are

“composed” of certain fine level functions. Note that the notion of being close to the bound-

ary depends on the level. The coarser the mesh T`, the more likely an element T ∈ T` is

close to the boundary in the sense that one of its children has been adapted by moving one

of its nodes. In this case, one of the mappings I`+1
` , . . . , ILL−1 is not the identity on T .

For example, in Figure 4.5, the node on the bottom right should be considered “close to the

boundary” at level L − 3 but “far away from the boundary” at level L − 2 in both the left

and the right case.

Finally, we notice that an equivalent way to construct the multilevel spaces is achieved

by interpolating the original functions from X` on this composite meshes at all levels ` < L;

see [106] for a precise definition. We prefer the more algebraic description in (4.2) as it is

closer to our own formulation.

The previous remark indicates that one can take advantage of the hierarchical structure

for the implementation of the presented multilevel finite elements; see also Remark 4.1.

In the semi-geometric framework of Chapter 3, this means that we may exploit certain

a priori knowledge of the generated mesh hierachy for the computation of the level transfer
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and thus for the assembly of the coarse level operators. More precisely, for an efficient

evaluation of coarse level (basis) functions, it is beneficial that the prolongation operators

locally coincide with the identity mapping on certain parts of the domain where successive

meshes are locally nested. Therefore, depending on the complexity of ∂Ω, at different levels

` ∈ {0, . . . , L− 1}, there are usually a lot of nodes p ∈ N` and elements T ∈ T` such that

I`+1
` λ`p(x) = λ`p(x), ∀ x ∈ T. (4.3)

In case (4.3) holds locally on ωp ∩ ωq for some nodes p, q ∈ N`, the corresponding stiffness

matrix entry may even be precomputed due to the regularity of the mesh.

Approximation properties

It is true that the coarse level spaces are primarily determined by the resolution of the fine

level boundary and are thus no finite element spaces in the proper sense. Still, the relation

to the standard multilevel finite element setting is rather close. After all, the constructed

meshes are not just logically nested but also physically “almost nested”. In the adaptation

of the fine mesh TL, only a small modification of some nodes is admissible. Therefore, the

displacement of the nodes or the distortion of the elements is in the same order, namely

significantly smaller than hL, also at the coarser levels. Simply put, the influence of the

relocated nodes becomes more negligible with decreasing level index `. This is the main

ingredient of the a priori error analysis in [105].

Let us emphasize that this is in contrast to the “loose” coupling of successive meshes in

the semi-geometric setting of Chapter 3. Nevertheless, the weak assumptions elaborated in

full detail in Section 3.4 allow for the proof of a quasi-optimal result. The semi-geometric

preconditioners may be created in a slightly more general way as both the fine and the coarse

level meshes are not confined to such a specific structure. In addition, we will investigate a

wide range of possible operators for the information transfer between non-nested meshes.

It is the restrictive structure of the mesh hierarchy which allows the authors of [105] to

obtain optimal approximation properties of the constructed coarse spaces. More precisely,

assuming that for each element the sum of certain distortion measures of all its logical

children over all levels remains bounded, see [105, Assumption 3 (f)], one may prove the

H1-stability of the required compositions of the prolongation operators (I`+1
` )`=0,...,L−1 and

also L2- and H1-approximation properties of the spaces (V`)`=0,...,L for H2-regular problems,

in each case with constants which are independent of the number of levels L.

Note that the above assumption constitutes not just a requirement on the relation

between two successive meshes but indeed a condition on the adaptation process and thus

on the entire mesh hierarchy. It can be satisfied by using the routines for the generation of

composite finite element meshes proposed in [105, 106].

4.1.4 A variant with cut off finite element functions

A related technique using structured meshes is motivated by image based computing and

resolves the potentially complicated boundaries of the computational domain by means of

a level set function. Here, the abstract formulation of a multilevel space hierarchy is almost
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as simple as the one put forward in Section 4.1.1 for “gradually filling the domain”. The

algorithmic realization may be more involved, though. In this section, we briefly review

this variant of the composite finite element method introduced in [137]. We do not explore

the approach, which is particularly favorable for some applications, in full detail but rather

extract a couple of key aspects.

As before, we consider regular (triangular or tetrahedral) meshes (T �
` )`=0,...,L of a sur-

rounding square or cube symbolically denoted by � ⊂ Rd. Different from the previous

paragraph, the auxiliary spaces (X`)`=0,...,L are the linear Lagrange finite element spaces

directly associated with these undistorted meshes. The impressively simple idea for the

construction of a sequence of nested approximation spaces (V`)`=0,...,L is merely to restrict

the above functions to the domain Ω. Thus, the multilevel discretization may be defined

all at once via

V` := X` ∩ C0(Ω) = {v|Ω | v ∈ X`}, ∀ ` ∈ {0, . . . , L}. (4.4)

Evidently, the characterization (4.4) is not inherently recursive although the algorithmical

realization usually is. This is due to the need for a suitable approximation of ∂Ω; we will

return to this point below.

Naturally, the restriction in (4.4) can be understood as a resolution of Ω by cutting off

the basis functions of X` ⊂ H1(�). For this purpose, let χΩ be the characteristic function

of the computational domain, i. e.,

χΩ : Rd → R, χΩ(x) :=

{
1, if x ∈ Ω

0, otherwise.

As before, let Λ` = (λ`p)p∈N` be the nodal basis of X` for ` ∈ {0, . . . , L}. Then, one obtains

a basis Λ̃` = (λ̃`p)p∈Ñ` of V` with

Ñ` = {p ∈ N` | supp(λ`p) ∩ Ω 6= ∅}, ∀ ` ∈ {0, . . . , L},

and

λ̃`p = λ`p χΩ, ∀ p ∈ Ñ`, ` ∈ {0, . . . , L}. (4.5)

Note that, in general, no Dirichlet conditions may be prescribed at ∂Ω. More precisely,

one needs a proper mesh at those portions ΓD ⊂ ∂Ω where Dirichlet conditions shall be

enforced. Unless treated in a more sophisticated manner, ΓD needs to align the regular mesh

T �
L . Although this poses difficulties for the general applicability, the method is effective

for plenty of problems, for example in case ΓD ⊂ ∂�; see [137, 157]. Let us assume that

the Dirichlet boundaries are treated appropriately and formally replace V` by V` ∩H1
D(Ω).

Then, the nestedness of the constructed spaces

V0 ⊂ . . . ⊂ VL ⊂ H1
D(Ω) (4.6)

is trivial.

As indicated before, some efforts have to be made to attain the cut off basis functions

conceptionally defined in (4.5). We emphasize that ∂Ω needs to be approximated only once
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Figure 4.6. Coarse and fine level basis functions are cut off depending on the

representation of the boundary at the finest level (depicted on the right). The cut

off support is filled with red whereas the original one is indicated by the red frame.

for the entire space hierarchy as the resolution at the fine level will determine the resolution

at all coarser levels. For this purpose, following [137], suppose that the boundary of the

computational domain is given as the zero level set of a function φ : � → R such that

∂Ω = {x ∈ � | φ(x) = 0} and Ω = {x ∈ � | φ(x) < 0}. Neglecting potential additional

geometry error, we assume that φ ∈ XL. In practice, if the level set function is generated by

an image processing algorithm, its finite element interpolation in XL should be sufficiently

accurate in case the mesh size hL is in the order of the pixel or voxel size.

Figure 4.6 illustrates an example of the cut off basis functions. One needs to point out

that the requirement φ ∈ XL is only one of many possible variants. Basically, the support

of each basis function needs to be sufficiently simple, namely allow for efficient quadrature.

This may require the introduction of local auxiliary meshes of the simplices intersected

by ∂Ω. In addition, stability issues may occur if measd(supp(λ̃Lp )) becomes very small for

some nodes p ∈ ÑL. We refer to [137] for a detailed discussion. A similar local remeshing

procedure for the integration of basis functions over complicated portions of structured

meshes is used in the different context of discontinuous Galerkin methods in [81].

Remark 4.4. For the sake of clarity, let us point out that the “cut off functions” in the

present composite finite element variant must not be confused with the “truncated functions”

employed in the monotone multigrid methods as explained in Section 6.2.

For the definition of the multilevel hierarchy (4.6), the presumably most important point

is that the difficulties only lie in the representation of the interface at the finest level. This

is because the coarse level basis functions are simple linear combinations of the fine level

basis functions entirely determined by the connectivity of the regular meshes (T �
` )`=0,...,L.

Once the basis Λ̃L is constructed, e. g., via the procedure developed in [137], the bases

(Λ̃`)`<L are explicitely given by the standard prolongation operators between the original

spaces (X`)`=0,...,L. Thus, the construction of a convenient representation of the basis Λ̃L is

a key issue. As in the previous case of composite finite elements, one usually needs to take

coarse level basis functions into account which are associated with nodes lying far outside

of Ω. But, unlike before, the present variant also incorporates fine level degrees of freedom

associated with outside nodes.

This variant of the composite finite element method is very attractive for multigrid
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methods not only from an algorithmical point of view but also when it comes to the re-

quired multilevel approximation properties. It has the advantage, as opposed to all other

approaches, that the computational domain in resolved exactly without changing the gra-

dients of the (coarse level) basis functions. As long as one does not introduce artificial

couplings of components which are physically too far away from each other, see [137, 157],

the coarse spaces have perfect approximation properties provided that the stability issues

concerning the minimum size of the supports of the basis functions are taken care of. As

indicated before, this is subject to the restriction that the part ΓD of the boundary is

resolved by the mesh or the Dirichlet boundary conditions have been treated in another

appropriate way.

Remark 4.5 (Immersed interface multigrid method). Finally, let us briefly mention an-

other approach which naturally fits into this context. In the fashion of the previously de-

scribed methods, it may be considered a very special multigrid method associated with a very

special discretization also based on Cartesian meshes.

The immersed interface method developed in [136] is a discretization for elliptic equa-

tions which is specifically designed for problems whose solutions have jumps across compli-

cated interfaces through the computational domain. Employing a standard finite difference

scheme in the rest of the domain, one resolves the interfaces by modified stencils near the

jump. Now, the application of geometric multigrid ideas essentially requires similar tech-

niques for the derivation of suitable (weighted) prolongation operators as introduced earlier

in [7, 67]. Note that, just as the discretization itself, the immersed interface multigrid

method [2, 3, 4] takes the local shape of the interface into account.

For their operator-dependent prolongation, the authors of [4] experience a loss of the

diagonal dominance of the coarse level matrices if the restriction is chosen as the transpose

of the prolongation. Alternative (non-variational) choices are studied in [2]. See also [185]

for a similar approach.

4.2 Geometric coarsening

In this section, we consider another concept for the construction of coarse level approxi-

mations of finite element spaces. This methodology does not introduce a special fine level

discretization which is more amenable to the purpose of multilevel algorithms. Instead, the

main input is the original unstructured mesh. The procedures we bring into focus in the fol-

lowing are geometric coarsening and agglomeration algorithms which attempt to construct

a space hierarchy based on the given fine mesh.

Let us emphasize that the coarsening techniques reviewed in Section 4.2.1 and Sec-

tion 4.2.2 produce non-nested but node-nested mesh hierarchies. Similar to our approach,

one needs an additional mesh generation for the coarse levels. However, the procedures

described in the following enforce special structures on the constructed coarsened meshes,

which may lead to degenerate meshes unless treated with great care; see also the compre-

hensive paper [146].

In a way, the semi-geometric concept constitutes the “weakest” of all conceivable coars-

ening strategies. Indeed, it seems that the theoretical and algorithmical aspects developed
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in Chapter 3 may be applied to the mesh hierarchies derived in the present section. This

is because the algorithms are explicitly designed to satisfy a local coarsening assumption

comparable to (3.9), at least following some heuristic. Still, it would be surprising if any of

the following coarsening or agglomeration schemes allowed for a superior theoretical result

without requiring strong additional assumptions. Compare also with the discussion of the

composite finite element method in Section 4.1.3.

Most geometric coarsening strategies are in fact graph-based algorithms; geometric ag-

glomeration may also fall into this category. A central notion in graph theory is the one of

independent sets. To avoid any conflicts with the notation in the other parts of this thesis,

we use calligraphic symbols in the context of graph theoretical techniques. As it will be

useful at several points, let us recall the following definition without digressing too much.

Definition 4.6 (Maximal independent set). Let G = (V ,E ) be a graph with vertex set V
and edge set E . Besides, (v1, v2) denotes the edge between v1, v2 ∈ V . Then, a subset

U ⊂ V is called maximal independent set (MIS) if

• it is independent: (u1, u2) 6∈ E for all u1, u2 ∈ U and

• it is maximal: for all v ∈ V \U there is a vertex u ∈ U such that (u, v) ∈ E .

In the following, maximal independent sets either of graphs essentially representing the

mesh connectivity or of some conflict graphs are employed in the geometric coarsening

strategies. Although it is not difficult to obtain such a set, in general, an MIS of a graph

is not unique. However, a feasible set may be computed using both well-known and simple

search algorithms; see, e. g., [102]. An example is the following

Algorithm 4.7. For a given graph G = (V ,E ), determine a maximal independent set U
via the following greedy algorithm.

greedyMIS (V ,E ) {
Initialize: U = ∅, W = ∅
for (v ∈ V ) do {

if (v 6∈ W ) {
Update:

U ← U ∪ {v}
W ← W ∪ {w ∈ V | (v, w) ∈ E }

}
}
return U

}

Evidently, the resulting set highly depends on the sorting of the vertices in V . Note that

it is not easy to keep the MIS particularly small or particularly large at reasonable costs; one

cannot expect it to satisfy any additional assumptions. The fact that both Definition 4.6

and Algorithm 4.7 are of local nature implies that the greedy search may be implemented

efficiently as an advancing front technique.
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4.2.1 Basic node-nested coarsening with remeshing

For the basic geometric coarsening techniques, regard a given unstructured mesh T as graph

G based on the mesh connectivity in the usual sense, i. e., the nodes N of T are the vertices

of G which are connected by an edge if and only if they share an edge of an element in T .

We comment on other possibilities later.

Now, a node-nested coarse mesh is constructed in [48, 102] by a suitable remeshing of

a selected subset of the nodes N . The required set of coarse nodes may be obtained as an

MIS of the graph G , for instance, by Algorithm 4.7. Then, it is suggested to compute a

(generally not unique) Delaunay triangulation of the just determined set of points; see [102].

The Delaunay algorithm is supposed to generate one of the best possible meshes with respect

to the aspect ratio. The authors of [48] prefer algorithms of Cavendish-type [46] for the

generation of the coarse meshes. All mentioned papers deal with the case d = 2.

Usually, it is beneficial to treat the boundary nodes in a special way. Heuristic ap-

proaches to roughly retain the overall shape of the computational domain are either to

consider the boundary separately, i. e., form two different graphs for the boundary nodes

and the interior nodes, or to perform Algorithm 4.7 with the boundary nodes appearing

first in the vertex list; see [48, 102].

A multilevel hierarchy is generated naturally by recursion. Unfortunately, the repeated

application of the above strategies based on remeshing maximal independent sets may lead

to a degrading mesh quality, namely a decreasing aspect ratio. This issue is analyzed in

full detail in [146]. In any case, if the multilevel spaces are constructed by a variational or

a non-variational approach using the created mesh hierarchy, one should expect the quality

of the constructed coarse meshes to matter. Therefore, every coarsening algorithm should

have some instruments to guarantee for a minimum quality of the constructed elements.

The same is, in principle, true of the agglomeration techniques reported on below.

The authors of [48] also experiment with a closely related coarsening scheme which uses

an MIS of the dual graph of the mesh. Here, in the dual graph G ′ = (V ′,E ′), the elements

T are the vertices V ′ which are connected by an edge in E ′ if and only if they share an edge

in E . Then, a remeshing of the centroids of the determined elements yields a non-nested

mesh which is not node-nested any more.

4.2.2 Advanced coarsening algorithms

The coarsening of an unstructured mesh via a remeshing of an MIS is motivated by the

following basic considerations. On the one hand, it is reasonable to pick an independent set

to prevent regions from being excluded in the overall coarsening procedure. On the other

hand, it is mandatory to pick a maximal set as otherwise it is likely that too many degrees

of freedoms are removed in certain regions.

In computational geometry, more sophisticated techniques exist which do not just con-

sider the standard mesh connectivity graph. Instead, a so-called conflict graph is estab-

lished, which may include additional geometric information about the given mesh. The

fundamental idea proposed in [146] is to connect “conflicting” nodes, namely the ones

which are physically too close together, by an edge in the new graph. For this purpose,

suitable local length scales need to be determined from the given mesh; see [146, 149].
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Moreover, it is possible to utilize special routines to retain certain characteristic features

such as sharp corners or folds. We refer to [149] and the references therein.

Instead of globally remeshing an MIS, one may also perfom an incremental vertex dele-

tion, e. g., by edge contraction. However, note that coarsening of three-dimensional meshes

is much more demanding than that of two-dimensional meshes. This is due to the fact that

the connectivity is more involved in case d = 3; see [149]. Some of the above techniques

have been applied, e. g., in [6] to build multilevel preconditioners associated with triangular

surface meshes.

Another coarsening algorithm for unstructured triangular meshes (d = 2) has been

developed in [14, 15] for the construction of hierarchical basis preconditioners. The idea is to

regard the given mesh as a perturbation of an adaptively refined structured mesh. Assuming

certain knowledge of the underlying refinement procedure, the authors attempt to mimic a

“reverse” process. As a result, a non-nested but node-nested coarse mesh is obtained which

is connected to the fine mesh by a particular logical structure similar to the one considered

for the composite finite element methods in Section 4.1.3. For instance, each fine node

which does not coincide with a coarse node lies logically, but not necessarily physically, on

a coarse edge. This special relation between the successive meshes makes it possible to prove

stability estimates for certain composed interpolation operators immediately exploiting the

logical structure. We refer to [15] for a detailed analysis.

4.2.3 Element agglomeration

In the early nineties, multigrid-like methods based on volume or element agglomeration

techniques have been developed and employed in practice by engineers in computational

fluid dynamics; see, e. g., [120, 130, 183]. In fact, the idea to construct coarse level ap-

proximations by simply forming agglomerates appears most natural for finite volume dis-

cretizations. The technique of element agglomeration has also been applied in the context

of algebraic multigrid methods [115]. On the (purely) algebraic side, related considerations

led to the development of aggregation-based algebraic multigrid methods [24]; see, e. g.,

[20, 148] for an overview and the series of papers [180, 181, 182] for the more sophisticated

variant of smoothed aggregation.

Applied to the finite element method, instead of constructing proper coarse meshes for

an unstructured fine mesh, as is done in all previously described approaches, geometric

agglomeration procedures generate macroelements, i. e., sets of polygons or polyhedra con-

sisting of plain unions of fine level elements. This may be done, e. g., by a direct greedy

search [120, 130, 183] comparable to Algorithm 4.7, essentially fusing neighboring elements

which have not yet been handled.

In their proceedings contribution [50], the authors identify the coarse nodes and, more

importantly, the surrounding macroelements by an advanced graph-based method. We

skip the details but remark that a basic ingredient is the removal of certain edges of the

dual graph of the given mesh (the ones surrounding the coarse nodes, which have been

chosen as subset of the fine nodes). See Figure 4.7 for an examplary illustration of the

agglomeration process. Then, the coarse level spaces are defined by suitable prolongation

operators, which is similar to the construction in Section 3.2.1. More precisely, a basis
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Figure 4.7. Agglomeration of elements of an unstructured mesh to macroelements

according to [50]. The coarse nodes marked by dots form an MIS of the graph of

the fine mesh.

function associated with a selected coarse node is a linear combination of the fine level basis

functions associated with the nodes of the adjacent macroelements. In particular, this linear

combination generally may depend on the locations of the fine nodes. However, it seems

that very simple interpolation weights solely coming from combinatorical considerations are

sufficient; see [50]. One could call the traditional choice in [120], where only the numbers

one and zero appear as coefficients, “plain agglomeration”.

In general, during the recursion to obtain a multilevel space hierarchy, even if a straight-

forward procedure is available to further coarsen an agglomerated mesh in a reasonable

fashion, special care has to be taken to prohibit a degeneration of the formed macroele-

ments by a repeated agglomeration. The same issue arises in the context of the coarsening

algorithms with remeshing in Section 4.2.1 and Section 4.2.2.

To obtain a quasi-optimal convergence result for the derived multilevel algorithms em-

ploying the particular agglomeration strategy of [50], the existence of suitable fine-to-coarse

mappings (as described in detail in Section 3.4) has been proved. As a matter of fact,

we need to point out that the critical assumption in [50, Section 5], namely the uniform

boundedness of the diameter of the macroelements by a constant times the fine mesh size, is

nothing else but a condition on the regularity of the agglomeration process. Considering the

practical examples presented in [120, 130, 183], this condition seems to be rather difficult

to satisfy. The ideas of [146], i. e., to establish a suitable conflict graph as briefly outlined

in Section 4.2.2, might be a remedy.





5 Prolongation and restriction operators
between non-nested meshes

The practical suitability of the semi-geometric framework developed in Chapter 3 relies on

an effective choice of the employed prolongation operators. In this chapter, we analyze the

information transfer between finite element spaces originating from non-nested meshes. We

are convinced that a deep insight into diverse transfer concepts is very helpful for both the

construction of specific operators and their application in multilevel methods.

It seems that, until now, virtually all development of approximation operators in this

context was for the purpose of numerical analysis exclusively, neglecting practical concerns.

Not enough attention has been paid to the feasible usage of geometrically inspired transfer

operators between non-nested finite element spaces in numerical algorithms. The author

believes that, principally, this is due to the fact that the potential capability of algorithms

based on non-nested meshes have not been studied to the full extent. Mostly, the opportu-

nity was missed to include an adequate discussion of the properties relevant for the present

purposes and to draw conclusions for the development of algorithms. However, we need

to point out that in the context of a meshfree method possible replacements for the L2-

projection between non-nested partition of unity spaces have been studied in [99, 170]. The

only other notable exception seems to be the formulation of suitable coupling conditions at

interior interfaces in non-conforming domain decomposition methods [190, 191].

To understand similarities and differences between possible prolongation operators for

non-nested meshes, we review basic properties of some selected transfer concepts in a theo-

retical part (Section 5.1 to Section 5.5). We are confident that our considerations cover a

respectable range of geometric ideas. A part of our observations reflects the current state

of the literature. However, it seems that other points made in this chapter, especially

concerning the practical relevance of certain stability and projection properties, have not

been examined so far. In particular, we consider a generalized projection operator called

“pseudo-L2-projection”, which is based on a Petrov–Galerkin variational formulation with

respect to biorthogonal test spaces, and provide a complete analysis. In Section 5.6, we

comment on the applicability of the transfer concepts in the semi-geometric framework. The

practical implementation of the respective operators in a customary finite element code is

addressed in Section 5.7.

In an equally important experimental part (Section 5.8), we investigate the fundamental

characteristics of information transfer between non-nested meshes in practice. The proper-

ties of the analyzed operators are assessed and the differences between them are measured

with respect to suitable norms. In particular, we draw a map showing the mutual rela-

tions of the transfer concepts. Indeed, the performed studies provide valuable insight into

the nature of mappings between distinct and non-nested finite element spaces; they also

facilitate some conclusions for the application in the semi-geometric multilevel methods.

We point out that the quest for suitable prolongation operators which allow for the con-

struction of efficient preconditioners is related to the development of coarsening strategies

in algebraic multigrid methods. Such a coarsening is, in general, not free to access geomet-
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ric information except for the matrix entries, though. For most strategies, this makes it

difficult to find operators comparable to the ones we analyze in the following. This further

illustrates that a major difference between the semi-geometric and the algebraic approach

is how the approximation properties of the constructed coarse spaces are achieved, a fact

which has already been mentioned in the previous two chapters.

Outline of the theoretical part

In the following, beside a new generalized projection operator, which is derived and analyzed

in Section 5.5, we consider quite a few different, geometrically inspired transfer concepts.

This is done in the first four sections starting with Section 5.1. Both intuitive and more

elaborate mappings are examined, partly from the literature on multigrid methods and

domain decomposition with unstructured meshes. Most of the operators to be studied

comprise some kind of weighting (with discrete test functions, particularly in L∞(Ω)) and

are thus well-defined in L1(Ω). But some need more regularity such as continuity of the

input function. We discuss locally and globally defined operators including well-known

quasi-interpolation concepts and also focus on their algorithmic structure. Above all, we

aim to assess the suitability of the transfer concepts for the use in the semi-geometric

framework.

From now on we assume the current level index ` to be chosen appropriately. By

Lemma 3.12 we know that it is sufficient to consider a fixed domain called Ω in the following,

without any index. We have denoted a generic or unspecific prolongation operator by Π.

To every concrete operator we will assign a different calligraphic symbol (I, P, Q, R, S),

sometimes varied by a tilde or a hat. As before, if an operator maps between the two

non-nested spaces X`−1 and X` or between the two nested spaces V`−1 and V`, this will

be indicated by, e. g., Π`
`−1. Similarly, an operator mapping some other space, such as a

Lebesgue or Sobolev space, to the finite element space X` will be denoted by, e. g., Π`. This

shall suggest that a mesh T` with a local mesh size function h` ∈ L∞> (Ω) in the spirit of

Section 3.4.1 is always involved.

Before going into detail about the single concepts, let us recall Lemma 3.2 which implies

that the property of an operator to preserve constants, except for the domain boundaries,

ensures that each of the constructed bases (Λ̃`)`=0,...,L−1 is a partition of unity there. Note

that every projection clearly satisfies this condition.

5.1 Standard finite element interpolation

First, we consider the most elementary operator. The standard finite element interpolation

or nodal interpolation in case of first order Lagrange elements is defined by

I` : C0(Ω)→ X`, u 7→ I`u :=
∑
p∈N`

u(p)λ`p.

The operator is surjective, namely I`(C0(Ω)) = X`. The interpolation in X` with the

domain restricted to the finite element space X`−1 is called I``−1. One has to note that, in
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general, I``−1 : X`−1 → X` is no L2-orthogonal projection if the meshes T`−1 and T` are non-

nested. But the interpolation operator I` is obviously a projection, i. e., for every v ∈ C0(Ω)

we have I`I`v = I`v. Evidently, the operator is local according to Definition 3.8. Moreover,

for shape regular meshes, it fortunately possesses the H1-stability and L2-approximation

properties given in Section 3.4.1, at least when restricted to finite element spaces. This

result can be found in several papers; see, e. g., [43, 49, 177].

It is surprising that an operator as simple as the nodal interpolation satisfies the re-

quirements of the analysis in Section 3.4. This means that the sequence (I``−1)`=1,...,L can

actually be used in algorithms to realize the information transfer between the non-nested

finite element spaces. Note that the fact that its domain is just the (strict) subset C0(Ω) of

H1(Ω) has no major influence on the applicability of the standard interpolation operator in

the proofs of Section 3.4.2 and Section 3.4.3. This is because the operators (Π`
`−1)`=1,...,L

in the employed compositions are always applied to functions in standard finite element

spaces. One needs to have a fine-to-coarse operator ready to hand to map from H1(Ω`) to

X` in the first place, though. This may be done by means of a quasi-interpolation operator

to be defined in Section 5.2.

Remark 5.1. Let a transfer concept be such that (given two admissible spaces, the latter

one being a finite element space X`) each generated operator Π` acts as the identity mapping

on the target space. This is true if, for instance, Π` is a surjective projection. Then, if the

meshes T`−1 and T` are nested, the fact that the corresponding spaces X`−1 ⊂ X` are also

nested implies immediately that the restricted mapping Π`
`−1 : X`−1 → X` is the natural

embedding and thus coincides with the standard interpolation I``−1. In any case, even if the

meshes are non-nested, the induced operator Π̃`
`−1 : V`−1 → V` from (3.6) is the natural

embedding and thus an L2-projection between the specially constructed spaces.

Otherwise (if there exists an element v ∈ X`−1 such that Π`Π`v 6= Π`v) the semi-

geometric construction of the space hierarchy in Section 3.2, which directly employs the

operators (Π`
`−1)`=1,...,L, does not reduce to the standard scheme with the usual interpolation

in case of nested meshes. Thus, a considerable part of structure is unnecessarily disregarded.

From a computational point of view, the standard nodal interpolation is very attractive.

Given an arbitrary function in C0(Ω), the computation of the interpolant is very cheap with

one function evaluation per node inN`, i. e., per basis function in Λ`. It is without any doubt

the least expensive way to transfer information to a finite element space in a reasonable

way. For the computation of the matrix I``−1, this amounts to the evaluation of λ`−1
q (p) for

all q ∈ N`−1 and p ∈ N`. Naturally, one may neglect the combinations with p 6∈ ωq. This

is straightforward if successive meshes are nested and parent–child relations are known. In

the non-nested setting, such neighborhood relations have to be computed; see Section 3.6.2.

On the H1-stability of the nodal interpolation

In the literature, several different proofs have been brought forth for the stability and ap-

proximation property of the standard finite element interpolation in case the domain is

restricted to a (coarser) finite element space; see [43, 49, 177]. All techniques seem to have

in common the dependence of the stability estimates on certain mesh properties such as
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the shape regularity. This leads, in general, to constants greater than one. However, our

numerical experiments suggest that the H1-stability constant is bounded by one; see Sec-

tion 5.8. Indeed, we found an elementary proof in case d = 1 for the fact that “interpolation

smoothes”. Note that the notion of shape regularity (1.16) only makes sense for d ≥ 2. For

one-dimensional problems no such assumption needs to be considered.

Only for the following reasoning, we investigate a one-dimensional setting. Let X`

be a finite element space as introduced in Section 3.1 without any incorporated Dirichlet

boundary conditions. In the present case d = 1, this approximation space is associated

with a subdivision of the domain Ω` into a set of intervals T`. Then, the following lemma

basically states that the linear interpolation operator I``−1 : X`−1 → X` has an H1-stability

constant less or equal one whether or not Dirichlet conditions come into play.

Lemma 5.2. In the case d = 1, let the set of intervals T`−1 be coarser than T` in the sense

that there is no pair of elements T`−1 ∈ T`−1, T` ∈ T` such that T`−1 ⊂ T`. Then, the

nodal interpolation operator I``−1 : X`−1 → X` satisfies the following optimal H1-stability

estimates.

• If Ω` ⊂ Ω`−1,

|I``−1v|H1(Ω`) ≤ |v|H1(Ω`) ≤ |v|H1(Ω`−1), ∀ v ∈ X`−1, (5.1)

• otherwise,

|I``−1v|H1(Ω`) ≤ |v|H1(Ω`∩Ω`−1), ∀ v ∈ X`−1 ∩H1
D(Ω`−1). (5.2)

Moreover, the interpolation operator I`,D`−1 : X`−1 → X` enforcing zero function values at

the boundary ∂Ω` satisfies

|I`,D`−1v|H1(Ω`) ≤ |v|H1(Ω`∩Ω`−1), ∀ v ∈ X`−1 ∩H1
D(Ω`) ∩H1

D(Ω`−1). (5.3)

Remark. In statement (5.3), note that H1
D(Ω`)∩H1

D(Ω`−1) = H1
D(Ω`) if Ω` ⊂ Ω`−1. This

is because we treat functions defined on the smaller domain as extended to the larger one

by zero here. Moreover, the symbols ⊂ and ⊃ always include the case of equality.

Proof . First, consider the case Ω` ⊂ Ω`−1. Let v ∈ X`−1 be arbitrary. If T` ∈ T`
is completely contained in an element of T`−1, we have locally exact interpolation, i. e.,

(I``−1v)|T` = v|T` ; thus, |I``−1v|H1(T`) = |v|H1(T`).

The assumptions imply that all other elements in T` have intersections of positive (one-

dimensional) measure with exactly two elements in T`−1. For such an element T` ∈ T`, let

us introduce some notations in Figure 5.1. Then, one has

|v|2H1(T`)
=

∫
S1

(
vp − vs
|S1|

)2

dx+

∫
S2

(
vt − vp
|S2|

)2

dx =
(vp − vs)2

|S1|
+

(vt − vp)2

|S2|

as the first derivative of v is piecewise constant. Besides, we estimate

|I``−1v|2H1(T`)
=

∫
T`

(
vt − vs
|T`|

)2

dx =
(vt − vs)2

|T`|
=

(vt − vp + vp − vs)2

|S1|+ |S2|

<
(vt − vp)2

|S1|
+

(vp − vs)2

|S2|
+

2(vt − vp)(vp − vs)
|S1|+ |S2|

.
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T 1
`−1 T 2

`−1

T`

vs vp

vt

s p t

S1 S2

v ∈ X`−1

Figure 5.1. This sketch for the proof of Lemma 5.2 shows a function v ∈ X`−1 on

the coarse elements T 1
`−1, T

2
`−1 ∈ T`−1 and its interpolant on the fine element T` ∈ T`.

We have the intersections S1 := T` ∩ T 1
`−1 and S2 := T` ∩ T 2

`−1. The values of v at

the nodes s, t ∈ N` and p ∈ N`−1 are denoted by vs, vt and vp, respectively.

If the last term on the right hand side is less or equal zero, we have |I``−1v|2H1(T`)
< |v|2H1(T`)

.

This holds in each of the following cases:

• vp = vs or vp = vt,

• vp > vs and vp > vt,

• vp < vs and vp < vt.

It remains to consider the elements where vs < vp < vt (cf. Figure 5.1) or vs > vp > vt. It

suffices to study the first case. We will show in the following that the linear interpolant on

the fine level interval T` for given values vs and vt at the left and right endpoint, respectively,

has minimal H1-semi-norm out of all piecewise linear functions.

Without loss of generality, let T` = (0, 1) and vs = 0, vt = 1. This leaves as variables

the coordinate p ∈ (0, 1) and the intermediate value v := vp ∈ (0, 1). We introduce the

functional

H : (0, 1)2 → R, H(p, v) :=
v2

p
+

(1− v)2

1− p
describing the square of the H1-semi-norm of the piecewise linear function connecting the

three points (0, 0), (p, v) and (1, 1). It is not difficult to see that, given any p ∈ (0, 1),

the functional H attains its minimum if the measured function is linear, namely if v = p.

Indeed, the calculation of the first partial derivatives shows that the gradient ∇H(p, v)

vanishes if and only if v = p. In addition, the Hessian at these points

∇2H(p, p) =
2

p(1− p)

(
1 −1

−1 1

)
is positive semi-definite. Therefore, the functional H has a set of minima (with value 1) on

the diagonal line {p = v}.
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T`−1

T`

vt

s p t

v ∈ X`−1 ∩H1
D(Ω`−1)

Figure 5.2. In this sketch for the proof of Lemma 5.2, the fine element T` ∈ T`
contains a boundary node p ∈ N`−1∩∂Ω`−1. It shows a function v ∈ X`−1∩H1

D(Ω`−1)

on the coarse element T`−1 ∈ T`−1 and its interpolant on T`. We have the values 0

at the nodes s ∈ N` and p ∈ N`−1 and vt at the node t ∈ N`.

Applied to our problem, this means that |I``−1v|2H1(T`)
≤ |v|2H1(T`)

also holds true for

the elements T` ∈ T` with vs < vp < vt or vs > vp > vt. Now, summation over all T` ∈ T`
concludes the proof of (5.1).

For the second assertion (5.2), we realize that the nodal interpolation is identically zero

on the exterior elements T` ⊂ Ω` \ Ω`−1. On the interior elements T` ⊂ Ω`−1, the local

estimates hold as before. One of the two remaining cases is illustrated in Figure 5.2; the

other one is the respective situation at the right boundary of Ω`−1. We obviously have that

|I``−1v|2H1(T`)
=

v2
t

|T`|
≤ v2

t

|T` ∩ T`−1|
= |v|2H1(T`∩T`−1).

Consequently, the estimate (5.2) follows as before by adding up the local contributions.

Finally, let us consider the operator I`,D`−1 with the property (I`,D`−1v)(p) = 0 if p ∈
N`∩∂Ω`. As indicated in (5.3), we show the stability estimate for the functions in the space

X`−1 ∩H1
D(Ω`) ∩H1

D(Ω`−1). Therefore, the input v vanishes on the elements T`−1 ∈ T`−1

with T`−1 ∩ ∂Ω` 6= ∅ or T`−1 ⊂ Ω`−1 \ Ω`, if any. This implies that I`,D`−1 coincides with the

standard operator on the considered subspace, namely

I`,D`−1v = I``−1v, ∀ v ∈ X`−1 ∩H1
D(Ω`) ∩H1

D(Ω`−1).

Therefore, the third assertion (5.3) follows from the previous two and the proof of the

lemma is concluded.

It seems not feasible to use the same elementary techniques to prove analogous results for

space dimension d ∈ {2, 3}. This is because the constant of the shape regularity assumption

(1.16) comes into play by a local inverse inequality and the sum over neighboring elements.

5.2 The concept of quasi-interpolation
Next, we deal with a class of approximation operators which have originally been introduced

to generalize the nodal interpolation in finite element spaces. Such quasi-interpolation
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operators are a necessary tool if the considered functions are discontinuous.

5.2.1 Clément interpolation

The Clément interpolation operator, first introduced in [58], is defined by

R` : L2(Ω)→ X`, u 7→ R`u :=
∑
p∈N`

(Qpu)(p)λ`p, (5.4)

with the L2-projections Qp onto the local polynomial spaces Pr(ωp) of degree r ∈ N, i. e.,

u 7→ Qpu ∈ Pr(ωp) : (Qpu, v)L2(ωp) = (u, v)L2(ωp), ∀ v ∈ Pr(ωp), p ∈ N`. (5.5)

For instance, each projection Qp simply acts as local averaging by Qpu = 1
|ωp|

∫
ωp
u if r = 0.

The class of Clément-type interpolation operators is probably most famous for its frequent

usage in proofs of the reliability of a posteriori error estimators; see [45, 184] for a detailed

review.

Whereas the original results in [58] have been derived for triangular meshes in case

d = 2, the relevant properties can indeed be proved for finite element spaces associated

with general, not necessarily affine meshes and d ∈ {2, 3}. This is the content of the

following

Lemma 5.3 (Clément). The operator R` : L2(Ω) → X` is H1-stable and has the L2-

approximation property for r ∈ N.

Note that the assertion holds true for non-quasi-uniform meshes; we refer the reader to

the discussion in [8]. The technical ideas of the proof are perhaps most clearly elaborated

in [30, Lemma 3.1], although in a slightly different context. Both the required estimates,

namely stability and approximation property, are valid even if r = 0, as asserted in the

above lemma originating from the work by Clément [58]. At this point, there seems to be

no profound reason why the authors in [47, 49, 52] insist on the usage of the space of linear

polynomials as local trial space instead. They do not comment on the choice at all.

By definition, the Clément interpolation acts as the nodal interpolation on polynomials

of degree r, namely R`v = I`v for all v ∈ Pr(Ω). For the purpose of information transfer

between both nested and non-nested finite element spaces which are built from piecewise

polynomials, this cannot be exploited, though.

Let us now complete the analysis of Section 3.4 by showing the applicability of the just

defined local operator R`. For the proof of Lemma 3.7, this has been managed by the

above Lemma 5.3 by Clément. In the more complex case of Lemma 3.10, it is still the same

operator which may be applied. The H1-stability is retained. However, as the target space

X̂` contains less functions due to the recursive modification, we need to prove the following

Lemma 5.4. Let assumption (3.21) of Lemma 3.10 hold. Then, there exists a Clément-

type quasi-interpolation operator QX` : H1(Ω`) → X̂` which satisfies the L2-approximation

property (3.18).
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Proof . We adapt a technique used in [49, Lemma 3] to our considerably more general case.

Let R` : H1(Ω`)→ X` be the standard Clément operator defined by (5.4) where the target

space is the full finite element space X` at level ` < L. Then, for any v ∈ H1(Ω`), we choose

QX` v =
∑

p∈N`\ND`

(Qpv)(p)λ`p = R`v −
∑
p∈ND`

(Qpv)(p)λ`p.

Recall that ND
` denotes the recursively excluded nodes in a neighborhood of the Dirichlet

boundary at level L. We obtain indeed a mapping to X̂`.

For any node p ∈ N`, let us first calculate

‖(Qpv)(p)λ`p‖2L2(ωp) =
∑

T∈T`, T⊂ωp

‖(Qpv)(p)λ`p‖2L2(T ) ≤
∑

T∈T`, T⊂ωp

‖Qpv‖2L∞(T )‖λ
`
p‖2L2(T )

.
∑

T∈T`, T⊂ωp

h−dT ‖Qpv‖
2
L2(T ) h

d
T = ‖Qpv‖2L2(ωp) . ‖v‖

2
L2(ωp).

Here, a well-known inverse estimate between ‖ · ‖L∞(T ) and ‖ · ‖L2(T ) for polynomials in the

domain T has been employed; see, e. g., [25].

Now, let v ∈ H1
D(Ω`). By assumption (3.21), for p ∈ ND

` , we can find a connected

set ω̃p, ωp ⊂ ω̃p ⊂ Ω`, with sufficiently smooth boundary such that diam(ω̃p) h diam(ωp)

and measd−1(ω̃p ∩ ΓD) > 0. Moreover, the assumption (3.21) also implies that, for any

node p ∈ ND
` , the number of elements in T` which are intersected by a straight line from

p to a closest point on ΓD is bounded uniformly in `. Therefore, as the mesh T` is shape

regular, one may construct these sets (ω̃p)p∈ND`
with a finite covering property, i. e., there

is a universal constant C ∈ N such that, for each x ∈ Ω`, the number of extended patches

with x ∈ ω̃p is bounded by C.

By the Poincaré inequality, we have

‖v‖2L2(ωp) ≤ ‖v‖
2
L2(ω̃p) . diam(ω̃p)

2|v|2H1(ω̃p) h diam(ωp)
2|v|2H1(ω̃p).

This amounts to

‖h−1
` (Qpv)(p)λ`p‖L2(ωp) . |v|H1(ω̃p)

with a mesh size function h` ∈ L∞> (Ω`) suitably chosen; see Section 3.4.1. Consequently,

‖h−1
` (v −QX` v)‖L2(Ω`) ≤ ‖h

−1
` (v −R`v)‖L2(Ω`) +

∑
p∈ND`

‖h−1
` (Qpv)(p)λ`p‖L2(ωp)

. |v|H1(Ω`) +
∑
p∈ND`

|v|H1(ω̃p) . |v|H1(Ω`),

where the final step follows from the choice of the extended patches (ω̃p)p∈ND`
and the shape

regularity of the mesh T`.
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Projection properties

Restricting the attention to the discrete space X`, one notes that the Clément interpolation

R` : X` → X` does not keep invariant the basis functions; see (5.6) below. But this

information is not sufficient to determine the projection properties of the operator in the

spaces L2(Ω) and X`−1, respectively. This is because we do not know whether the functions

λ`p ∈ Λ` are contained in the range R`(L2(Ω)) or even R`(X`−1). However, considering the

size of the supports of the images of certain functions, we can prove the following quite

universal

Proposition 5.5. Let the mesh T` contain at least two interior nodes. Then, the quasi-

interpolation R` : L2(Ω)→ X` is not a projection.

Proof . Let v ∈ L2(Ω) be a non-negative, non-trivial function such that supp(R`v) 6= Ω. It

is easy to see that such a “local” function v exists if the mesh T` has at least two interior

nodes. Then, one can find an element T0 ∈ T` with T0 6⊂ supp(R`v) but T 0∩supp(R`v) 6= ∅,
in other words an element adjacent to the support of R`v. It is obvious that

supp(R`λ`p) =
⋃{

T | T ∈ T`, T ∩ ωp 6= ∅
}
, ∀ p ∈ N`. (5.6)

By definition, we have the linear combination R`R`v =
∑

p∈N`(Qpv)(p)R`λ`p with numbers

(Qpv)(p) ≥ 0. Because the functions R`λ`p =
∑

r∈N`(Qrλ
`
p)(r)λ

`
r, p ∈ N`, are also non-

negative, the contributions coming from R`λ`p and R`λ`q, p 6= q, do not cancel out each

other in the calculation of the effective coefficients of R`R`v with respect to the basis Λ`.

Thus, it follows that T0 ⊂ supp(R`R`v) and, consequently, R`R`v 6= R`v. This concludes

the proof of the proposition.

There are in fact subspaces U ⊂ L2(Ω) such that R`R`u = R`u for all u ∈ U ; for

instance, Pr(Ω) has this property, as mentioned before. We now investigate to what extent

the above considerations also hold true for R``−1 : X`−1 → X`, namely if the domain of the

operator is restricted to the discrete subspace X`−1. For this purpose, suppose that there

is a node p ∈ N`−1 and an element T1 ∈ T` such that

int
(⋃
{T | T ∈ T`, T ∩ supp(λ`−1

p ) 6= ∅}
)
∩ int

(⋃
{T | T ∈ T`, T ∩ T 1 6= ∅}

)
= ∅. (5.7)

Simply put, T1 needs to be sufficiently far away from the “reach of p”. This implies that

int(supp(R`λ`−1
p ))∩ T1 = ∅. Thus, supp(R`λ`−1

p ) 6= Ω and one can find an element T0 ∈ T`
which is adjacent to the support of R`λ`−1

p . Concluding as before, we have the following

Proposition 5.6. Provided that (5.7) can be fulfilled, the Clément interpolation is not a

projection even if its domain is restricted to the discrete subspace X`−1.

Note that the relatively weak assumption (5.7) is valid for virtually every pair of meshes

(T`−1, T`) one might handle. Therefore, we have shown that the Clément interpolation

operator is practically never a projection.

From Proposition 5.6 and Remark 5.1 we observe the following: Neither does the

Clément operator reduce to the standard interpolation in case of nested meshes T`−1 and T`
nor is it the identity mapping if the meshes and hence the associated spaces are identical.

Evidently, this observation is valid for any polynomial degree r ∈ N.
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Figure 5.3. Original patch ωp (left), a non-overlapping decomposition into sub-

elements by means of a dual mesh (center), a covering by overlapping circles (right).

5.2.2 On the design of local quasi-interpolation operators

Clément’s idea was to employ a local L2-projection for each basis function and evaluate the

resulting polynomial at the respective node. The local trial spaces are defined with respect

to the patches (ωp)p∈N` . Therefore, the value of the interpolant R`v ∈ X` of a function

v ∈ L2(Ω) inside an element T ∈ T` depends on the values of v in the neighborhood

ωT := int
(⋃{

T ′ | T ′ ∈ T`, T ′ ∩ T 6= ∅
})

.

Presumably, this is the most reasonable “domain of influence” for an interpolation operator.

In general, it seems to be impossible or at least inadvisable to construct an acceptable

interpolant just from the values of each element separately, especially in the finite element

setting with continuous ansatz spaces.

An interpolation process, namely the computation of the coefficients ((Π`v)(p))p∈N`
should be symmetric to a certain degree. Usually, it is not favorable to exclude adjacent

elements to the node p ∈ N` from the weighting procedure. Still, other weighting operators

might work with suitably chosen subsets of the elements in ωp. For instance, this could

be realized as a decomposition of each element into sub-elements. For each node p ∈ N`,
this defines a smaller neighborhood ω̃p ⊂ ωp. Then, replacing the local polynomial spaces

Pr(ωp) by the spaces Pr(ω̃p), we obtain the L2-projections

u 7→ Qpu ∈ Pr(ω̃p) : (Qpu, v)L2(ω̃p) = (u, v)L2(ω̃p), ∀ v ∈ Pr(ω̃p), p ∈ N`.

The nature of the decomposition essentially determines the character of the operator.

Simply put, larger overlaps tend to result in a smoother interpolant. Naturally, for the

corresponding stability and approximation properties to be valid, the subdivision of the

single elements has to be designed in such a way that the size of each sub-element decreases

by the same rate as the size of the associated element. Simple examples in case d = 2 are

given in Figure 5.3. The sketch at center originates from a dual mesh used, e. g., in [174].

The decomposition on the right employs overlapping circles centered at the nodes.

However, for computational purposes the above approach seems to be somewhat extra-

vagant; see also Section 5.7 for the implementation of quasi-interpolation operators. Finally,

let us remark that making the “domain of influence” smaller cannot change the operator

R` into a projection.
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5.2.3 Convergence of approximation operators

Clément [58] included the proposition that the interpolant R`v converges to v with respect

to the norm ‖ · ‖Hr(Ω) as h` → 0. We state this assertion in a slightly more general

way because the convergence result does not only hold for the quasi-interpolation specified

by (5.4) but also for other operators satisfying basic approximation properties. Still, the

proof is basically extracted from the original work.

Lemma 5.7. Given the integer m > 0, let X ⊂ Hm(Ω). Suppose the operator Π : X → Y

maps to a finite element space Y ⊂ Hm−1(Ω) with (global) discretization parameter hY > 0.

Then, if Π is Hm−1-stable and satisfies the approximation property

|v −Πv|Hm−1(Ω) . hY |v|Hm(Ω), ∀ v ∈ X, (5.8)

the convergence result

lim
hY→0

|v −Πv|Hm−1(Ω) = 0, ∀ v ∈ X,

holds for decreasing mesh size hY of the target space.

Proof . For every w ∈ Hm(Ω), we have

|v −Πv|Hm−1(Ω) ≤ |w −Πw|Hm−1(Ω) + |v − w|Hm−1(Ω) + |Π(v − w)|Hm−1(Ω)

≤ c1hY |w|Hm(Ω) + (1 + c2)|v − w|Hm−1(Ω)

with constants c1, c2 > 0. For given ε > 0, we may choose the function w such that

(1 + c2)|v − w|Hm−1(Ω) < ε
2 . Now, let hY > 0 such that c1hY |w|Hm(Ω) < ε

2 . Then,

|v −Πv|Hm−1(Ω) < ε for hY < hY . This completes the proof.

We have stated the lemma for a global quantity hY . Naturally, the assertion may also

be proved in case the approximation property (5.8) is given locally, namely with respect to

a function h−1
Y ∈ Hm−1(Ω).

Lemma 5.7 is an interesting observation illustrating the nature of the approximation

operators addressed in this thesis a bit. It is rather weak and we do not use it for the

theoretical considerations of this and the other sections, though. Also note that we only deal

with L2-approximation properties and will, as a rule, not be able to prove approximation

properties in Sobolev spaces of higher order for the operators considered in this chapter.

5.2.4 An alternative quasi-interpolation procedure

As we have seen in the previous paragraphs, the local orthogonal projections are usually

defined with respect to polynomial spaces. A variant of Clément’s quasi-interpolation op-

erator can be found in [30, 174]. It is defined by

R̃` : L2(Ω)→ X`, u 7→ R̃`u :=
∑
p∈N`

(Q̃pu)(p)λ`p,

with the L2-projections Q̃p onto the local trial spaces Xp
` , i. e.,

u 7→ Q̃pu ∈ Xp
` : (Q̃pu, v)L2(ωp) = (u, v)L2(ωp), ∀ v ∈ Xp

` , p ∈ N`, (5.9)
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where

Xp
` :=

{
v|ωp | v ∈ X`

}
, ∀ p ∈ N`. (5.10)

In the original context of [30], R̃` has been employed to prove a new result on the H1-

stability of the standard L2-projection under weaker assumptions.

The operator R̃` is a projection with domain L2(Ω), namely R̃`R̃`v = R̃`v for any

v ∈ L2(Ω), because (Q̃pλ
`
p)(p) = λ`p(p) = 1 for any p ∈ N` and (Q̃qλ

`
p)(q) = λp|ωq(q) = 0

for q 6= p. The same argument implies that the quasi-interpolation R̃` is surjective, i. e.,

R̃`(L2(Ω)) = X`. In addition, it satisfies the requested stability and approximation esti-

mates; see [30, Lemma 3.1]. However, to our knowledge, this alternative quasi-interpolation

has never been used in practical computations.

In this context, another local operator immediately suggests itself. Replacing the

trial spaces Xp
` in (5.9) by span{λ`p}, we notice that the local L2-projections to the one-

dimensional spaces are very easy to evaluate. This yields the formula

R̃′` : L2(Ω)→ X`, u 7→ R̃′`u :=
∑
p∈N`

(λ`p, u)L2(Ω)

(λ`p, λ
`
p)L2(Ω)

λ`p. (5.11)

We return to this operator in Remark 5.8. It is not a projection; see Remark 5.10. We

will explain by Remark 5.19 in the context of some theoretical considerations and by Re-

mark 5.22 in the context of our numerical experiments that R̃′`, although looking quite

similar, is qualitatively and quantitatively very different from the other analyzed transfer

concepts.

5.3 The L2-projection
In this section, we comment on the use of an operator in the present context, which has

repeatedly appeared in this thesis before. Let Q` : L2(Ω) → X` be the L2-projection

onto X`, i. e., the orthogonal projection in the Hilbert space L2(Ω) to the subspace X`

characterized by the variational equation

u 7→ Q`u ∈ X` : (Q`u, v)L2(Ω) = (u, v)L2(Ω), ∀ v ∈ X`.

The mapping Q` is global as opposed to Definition 3.8. This can be understood considering

the algebraic representation of the fully discrete operatorQ``−1 via a product similar to (2.6),

Q``−1v = Φ`(M
−1
` B`Φ

−1
`−1(v)), ∀ v ∈ X`−1, (5.12)

with the mass matrix M ` associated with X` and a sparse coupling matrix B` ∈ Rn`×n`−1

with the entries

(B`)pq = (λ`p, λ
`−1
q )L2(Ω), ∀ p ∈ N`, q ∈ N`−1. (5.13)

From a heuristic point of view the L2-projection might be quite a good choice. But

the usage of the L2-projection “as is” to transfer information from coarser levels to finer

levels cannot be expected to result in a computationally efficient multilevel algorithm for

non-nested meshes. This is because a mass matrix associated with the finer finite element
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space has to be inverted. This inverse M−1
` is usually dense; thus, the basis functions of the

coarse spaces constructed in (3.4) and (3.5) have large supports. This yields dense coarse

matrices (A`−1)`=1,...,L whose Galerkin assembly requires the application of the inverse mass

matrix M−1
` to 2n` vectors at level `. Moreover, prolongation and restriction of a coarse

level correction and a fine level residual, respectively, are expensive to compute.

Note that the operator attained by simply lumping the matrix M ` will be considered

in the following section. We want to point out that some of the (to a greater or lesser

extent) sophisticated prolongation operators taken from the literature and discussed here

are distinctly motivated by the idea to find an L2-projection-like mapping or a weighted

interpolation which is more suitable for computations. Partly, this is achieved by modifying

the fine-level mass matrix M ` but keeping the coupling matrix B` from (5.13) between

coarse and fine space.

To obtain a stability estimate for the L2-projection, the requirement of quasi-uniformity

of the mesh T` has been considered inevitable for quite a long time. Meanwhile, weaker

criteria ensuring the H1-stability of Q` are available; see, e. g. [30, 44, 60, 174]. For

estimates with respect to other Lebesgue norms, see [77] and the references therein. Two

different proofs both using inverse estimates of Bernstein-type, which generally hold true

only for quasi-uniform meshes, can be found in [36, Theorem 3.4] and [25, Folgerung II.7.8].

If another suitable approximation operator such as the Clément quasi-interpolation from

Section 5.2 is at hand, the L2-approximation property in case of quasi-uniform meshes can

be proved with elementary techniques similar to Lemma 5.15. However, a direct proof

is achievable. This proof employs the fact that Q` is the orthogonal projection with re-

spect to (·, ·)L2(Ω); thus, it yields the best approximation in X` with respect to the norm

‖ · ‖L2(Ω). Further ingredients are a standard finite element interpolation error estimate

and an interpolation technique between Sobolev spaces. See, e. g., [36, Theorem 3.2].

5.4 On L2-quasi-projections
In this section, we give two transfer concepts from the literature yielding quasi-projection

operators. The first one has been proposed in the thesis [193] and is defined for simplicial

meshes by the choice of a discrete inner product (·, ·)` in X`, namely

(u, v)` :=
1

d+ 1

∑
T∈T`

|T |
∑

p∈N`∩T
u(p)v(p), ∀ u, v ∈ X`. (5.14)

Then, consider the operator Q̃` : L2(Ω)→ X` specified by

u 7→ Q̃`u : (Q̃`u, v)` = (u, v)L2(Ω), ∀ v ∈ X`. (5.15)

Note that Q̃` is usually not a projection; see the discussion in Remark 5.10 below. This

motivates the term quasi-projection. A proof of the H1-stability and the L2-approximation

property of the operator Q̃` in case of a quasi-uniform mesh T` is given in [193, Lemma 3.6].

By construction, the mass matrix with respect to the discrete inner product,

(M̃ `)pq = (λ`p, λ
`
q)` = δpq

|ωp|
d+ 1

, ∀ p, q ∈ N`,
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is diagonal and for u ∈ L2(Ω) the quasi-projection operator reads as

Q̃`u =
∑
p∈N`

(λ`p, u)L2(Ω)

(M̃ `)pp
λ`p. (5.16)

For u ∈ X`−1, the definition (5.15) yields a fully discrete representation of the operator Q̃`,
as explained in the previous section, namely

Q̃``−1u = Φ`(M̃
−1

` B`Φ
−1
`−1(u)), ∀ u ∈ X`−1,

with the same coupling matrix B` as in (5.13).

The constant factor d + 1 in (5.16), which comes from the interpretation of (5.14) as

a quadrature rule, does not matter for our purposes. Another discrete inner product also

motivated by a quadrature rule (on centroids of faces instead of nodes) can be found in

[26]. There, it is used in the fashion of (5.15) to define a prolongation operator between

the non-nested spaces associated with a discretization with Crouzeix–Raviart elements on

nested meshes.

Remark 5.8. The operator R̃′` defined by (5.11) may also be obtained in the above fashion

by choosing the discrete inner product

(u, v)′` :=
∑
T∈T`

(λ`p, λ
`
p)L2(Ω)

∑
p∈N`∩T

u(p)v(p), ∀ u, v ∈ X`. (5.17)

In other words, R̃′` is the orthogonal projection to X` equipped with this inner product.

The following second quasi-projection operator has been introduced in [31] as approx-

imation operator replacing the L2-projection from the space H1(Ω) to the discrete spaces

X`. It is a mapping directly defined via a representation like (5.16), here,

Q̂` : L2(Ω)→ X`, u 7→ Q̂`u :=
∑
p∈N`

(λ`p, u)L2(Ω)

(λ`p,1)L2(Ω)
λ`p, (5.18)

where 1 denotes the constant function with value 1. After all, we can obtabin a matrix

representation of the fully discrete operator Q̂``−1 : X`−1 → X` from the one of the standard

L2-projection in a simple way by lumping the mass matrix M ` in (5.12). In the numerical

practice, this seems a very natural thing to do. Moreover, for simplicial meshes, it is easy to

verify by integration over the reference element that (λ`p,1)L2(Ω) =
|ωp|
d+1 for all p ∈ N`; thus,

the operators Q̃` and Q̂` are equivalent in this case. Again, one needs to notice that there

is virtually no experience with the quasi-projection operators in practical computations.

Let us postpone the proof of the following lemma to the next section; see Remark 5.19.

Lemma 5.9. The operator Q̂` : L2(Ω) → X` is H1-stable and has the L2-approximation

property for all shape regular families of meshes.

Although we do not study prolongation operators for higher order finite element spaces

here, we emphasize that this concept is, in general, only well-defined for first order elements.

This is because the denominators in (5.18), coming from lumping the mass matrix M `, may

vanish for other element types.
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Remark 5.10. We remark a striking fact about the quasi-projection operators sketched in

this section. As a rule, neither the operator Q̃` nor the operator Q̂` defined in (5.15) and

(5.18), repectively, is a projection. A proof of this assertion can be achieved analogously to

the ones of Proposition 5.5 and Proposition 5.6, which treat the same issue for the Clément

interpolation. This is also true for the operator R̃′` from (5.11) as the main ingredient

is merely the property (5.6). In addition, one can easily see that for p ∈ N` we have

(λ`p, λ
`
p)L2(Ω) < (λ`p,1)L2(Ω); thus, Q̂`λ`p 6= λ`p.

Finally, we notice that certain operators are self-adjoint with respect to the L2-inner

product. For instance,

(Q̂`u, v)L2(Ω) =
∑
p∈N`

(λ`p, u)L2(Ω)(λ
`
p, v)L2(Ω)

(λ`p,1)L2(Ω)
= (u, Q̂`v)L2(Ω), ∀ u, v ∈ L2(Ω).

This is also true for Q̃` and R̃′`. However, we do not know whether this property may be put

to a good use in the analysis or the practical computations at this point. This is because the

two involved spaces are usually not identical in applications. Note that the only operator

that is self-adjoint and at the same time a projection is the orthogonal projection Q`.

5.5 The pseudo-L2-projection
We propose a transfer concept which is different in some respects. The new operator will be

denoted by the symbol P with the appropriate indices. Generally speaking, we introduce a

Petrov–Galerkin scheme with a discontinuous test space built from a set of functions which

are biorthogonal to the standard nodal basis with respect to the L2-inner product (·, ·)L2(Ω).

In the fully discrete setting, this will yield a band matrix representation of the operator as

no mass matrix has to be inverted. The transfer concept based on a biorthogonal system,

which is examined in full detail in this section, is in fact a projection from L2(Ω) onto the

finite element space X`. But, in general, it is not an orthogonal projection although it

resembles one strongly (and coincides with Q` in case of nested meshes). Additionally, in

the author’s view, the operator P` represents a way to get “as close as possible” to the real

L2-projection while at the same time it guarantees an efficient evaluation. This is clearly

confirmed in a remarkable manner by the numerical experiments in Section 5.8. Therefore,

we call this oblique projection operator “pseudo-L2-projection”. This term is also meant

to contrast, e. g., the L2-quasi-projection concepts of Section 5.4, which yield in actual

fact no projections. Moreover, the pseudo-L2-projection seems to be the only, reasonably

straightforward operator in the fashion of the previous ones (5.11), (5.16), (5.18) which is

actually a projection.

5.5.1 An operator with a dual test space

In this paragraph, we derive the pseudo-L2-projection, followed by some historical remarks

in Section 5.5.2. Then, the relevant properties of the operators generated by the proposed

transfer concept are analyzed in Section 5.5.3. Recall that, by the arguments put forward
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Figure 5.4. Examples for dual basis functions ψ`p in case d = 1, 2. Outside the

depicted domains (two line segments, four triangles, four quadrilaterals, respectively)

they are extended discontinuously by 0.

in the introduction of the chapter, it is sufficient to consider one fixed domain Ω. The

notational convention of the level indices applies here, too.

Biorthogonal basis functions

For the definition of the pseudo-L2-projection, choose a set of functions Ψ` = (ψ`p)p∈N` with

ψ`p ∈ C0(ωp) for all p ∈ N` such that

(ψ`p, λ
`
q)L2(Ω) = δpq(λ

`
p,1)L2(Ω), ∀ p, q ∈ N`, (5.19)

and set the discontinuous test space as

Y` := span{ψ`p | p ∈ N`} 6⊂ C0(Ω).

Note that such a dual basis with respect to (·, ·)L2(Ω) of the nodal finite element basis

Λ` = (λ`p)p∈N` exists. This can also be seen in the explicit construction of the set Ψ` which

is carried out below.

Before proceeding to the actual definition of the projection operator, let us elaborate

on the dual test space. First, we show that a biorthogonal system satisfying (5.19) may be

constructed from the nodal basis Λ` in a straightforward manner. More precisely, on its

support ωp, each ψ`p can be represented by a linear combination of the nodal basis functions

associated with the adjacent elements restricted to ωp; see Figure 5.4 for an illustration.

Note that, for general elements like bilinear quadrilaterals or trilinear hexahedra, the

coefficients in this linear combination depend on the non-affine transformation to the ref-

erence element. Nevertheless, it is not difficult to find a suitable set Ψ`. For this purpose,

we denote the number of nodes of an element T ∈ T` by nT . Let MT ∈ RnT×nT be the

element mass matrix and DT ∈ RnT×nT a diagonal scaling matrix, for each element T ∈ T`
given by

(MT )pq = (λ`p, λ
`
q)L2(T ), (DT )pq = δpq(λ

`
p,1)L2(T ), ∀ p, q ∈ N` ∩ T .

Obviously, MT is symmetric positive definite. Then, for p ∈ N`∩T , the local function ψp,T
defined by

ψp,T (x) :=
∑

r∈N`∩T

(DTM
−1
T )prλ

`
r(x), if x ∈ T , (5.20)
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Figure 5.5. The two- and three-dimensional reference elements with the local

numbering of the nodes: triangle, quadrilateral, tetrahedron, prism, hexahedron.

and extended by 0 outside T , is biorthogonal to the family Λ` because for all q ∈ N` we

have

(ψp,T , λ
`
q)L2(Ω) =

∑
r∈N`∩T

(DTM
−1
T )pr(MT )rq = (DTM

−1
T MT )pq = (DT )pq.

Thus, for the composed function

ψ`p :=
∑

T∈T`, p∈T

ψp,T 6∈ C0(Ω) (5.21)

the desired relation (5.19) holds. Indeed, supp(ψ`p) = ωp and ψ`p ∈ C0(ωp) for all p ∈ N`.
The above procedure has been proposed in a similar form for functions on two-dimensional

interfaces in three-dimensional space in [88]. This reference also includes another way to

define the biorthogonal basis by a special transformation from the reference element directly

incorporating the non-constant Jacobian. See also [156].

In case of affine elements, i. e., elements with an affine transformation to the respective

reference element, the coefficients in the above sum do not depend on the actual node p

and element T but can be computed on the reference element in a one-time process. This is

due to the scaling with (λ`p,1)L2(Ω) on the right hand side of (5.19). As most unstructured

meshes are entirely built from triangles and tetrahedra for d ∈ {2, 3}, respectively, the

computation of the inverse element mass matrices is not necessary to obtain the test space

Y` in this case.

As an illustration of the affine case, for some p ∈ N`, consider an element T ∈ T` with

T ⊂ ωp and rewrite the sum (5.20), which gives the value of ψ`p on the chosen element, as

nT∑
i=1

mi
pλ

`
i . (5.22)

Here, the index i is running over the nodes of T in the local numbering given in Figure 5.5;

the set (λ`i)i=1,...,nT may contain the basis functions associated with these nodes. Assume

that the global index p ∈ N` corresponds to the local number i = 1. Then, for the one-

dimensional line segment and the two- and three-dimensional element types depicted in

Figure 5.5, the coefficients (mi
p)i=1,...,nT are specified in Table 5.1. The dual functions

associated with the other nodes are obtained from the given ones by simple permutations.
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element type i = 1 2 3 4 5 6 7 8

line segment 2 −1

triangle 3 −1 −1

quadrilateral 4 −2 1 −2

tetrahedron 4 −1 −1 −1

prism 6 −2 −2 −3 1 1

hexahedron 8 −4 2 −4 −4 2 −1 2

Table 5.1. The coefficients (mi
p)i=1,...,nT in the linear combination (5.22) for the

case that p ∈ N` corresponds to the local number i = 1.

We conclude the study of the dual test space Y` by an L∞-estimate for the basis Ψ`. As

a matter of fact, the scaling by (λ`p,1)L2(Ω) on the right hand side of (5.19) does not only

provide universal coefficients for affine elements but also implies the following boundedness

result.

Lemma 5.11. The functions (ψ`p)p∈N` constructed as stated above are bounded indepen-

dently of the mesh size, i. e.,

‖ψ`p‖L∞(Ω) . 1, ∀ p ∈ N`. (5.23)

Proof . It is well-known that (λ`p,1)L2(T ) = ‖λ`p‖L1(T ) h hdT and that the local matrices MT

and DT are spectrally equivalent, namely

v ·MTv h v ·DTv, ∀v ∈ RnT ,

independently of the local mesh size hT of the element T ∈ T`; see, e. g., [177, Lemma B.31].

Consequently, for any p ∈ N`, the boundedness of ψ`p on T follows from its definition via

the equations (5.20) and (5.21) and from the boundedness of the nodal basis Λ`.

Remark 5.12. Evidently, we also have ‖ψ`p‖L∞(Ω) & 1 for all p ∈ N`.

Finally, we note that the system Ψ` is a partition of unity. This follows immediately

from the fact that the row totals of the element mass matrix MT are equal to the entries

of the scaling matrix DT . In particular, P0(Ω) ⊂ Y`; see also [88, Lemma 1].

For a more detailed analysis of biorthogonal bases, carried out in the context of the

mortar finite element method, and the construction of such systems for higher order finite

element spaces, we refer to [118, 131, 132, 191].

Petrov–Galerkin formulation

Now, we define the pseudo-L2-projection P` : L2(Ω)→ X` by a Petrov–Galerkin variational

formulation with trial space X` and test space Y`, i. e.,

u 7→ P`u : (P`u, v)L2(Ω) = (u, v)L2(Ω), ∀ v ∈ Y`. (5.24)
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This variational problem has a unique solution because dim(Y`) = dim(X`) < ∞ and for

u ∈ X` it is (u, v)L2(Ω) = 0 for all v ∈ Y` if and only if u = 0. In particular, the definition

yields the obvious representation formula

P`u =
∑
p∈N`

(ψ`p, u)L2(Ω)

(λ`p,1)L2(Ω)
λ`p, ∀ u ∈ L2(Ω). (5.25)

Actually, the operator P` is well-defined in L1(Ω). This follows by Hölder’s inequality

because ψ`p ∈ L∞(Ω) for all p ∈ N`. The fully discrete representation of the pseudo-L2-

projection P``−1 : X`−1 → X` is obtained analogously to the ones of the L2-projection and

the L2-quasi-projections from the previous sections.

The idea to use a Petrov–Galerkin scheme to define a generalized projection operator

can be found in [174] for d ∈ {1, 2}, too. There, the test space is constructed differently;

more precisely, the local test functions are associated with a dual mesh (see Figure 5.3)

often found in finite volume schemes. We establish deeper connections to the literature in

the following paragraph.

5.5.2 Historical remarks

Undoubtedly, the root of the class of operators considered in this section lies in the research

of quasi-interpolation concepts by Clément [58]; we have described some fundamental ideas

in Section 5.2. However, the first appearance of a weighted interpolation operator using

a system of biorthogonal test functions was in [171]. We comment on this in more detail

below. Note that biorthogonal systems of some form or another are considerably more

common in the context of wavelets; see, e. g., [59, 65].

Generalized projections using dual test functions have first been introduced to the area of

domain decomposition methods by [190, 191] and then [118]. In this context, one considers

a non-conforming discretization associated with a non-overlapping decomposition of the

computational domain. In each subdomain, an independent finite element space is used;

the meshes meeting at the interior interfaces do not need to match. Then, the mortar finite

element method developed in [19] achieves an optimal a priori error estimate by enforcing

weak matching conditions in terms of orthogonal projections with respect to the L2-inner

product on the interfaces. This approach was reformulated as saddle point problem in [18]

with suitable trace spaces of the standard finite element functions as Lagrange multiplier

spaces. A motivation for the usage of discontinuous test functions (or Lagrange multipliers)

in [190, 191] was the fact that the normal derivative of the global function is not necessarily

continuous at the coupling interfaces. All in all, in practical computations, operators of the

type (5.25) have been used to map trace functions between non-matching interfaces; see

also [71, 72] and the references therein.

As indicated before, an earlier version of the transfer concept based on biorthogonal

test functions was proposed by Scott and Zhang in [171]. The operator is defined by

S` : Wm
p (Ω)→ X`, u 7→ S`u :=

∑
q∈N`

(ψ`σq , u)L2(σq)λ
`
q, (5.26)
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with m ≥ 1 if p = 1 and m > 1/p otherwise. As is customary, Wm
p (Ω) is the space

of p-integrable functions with p-integrable weak derivatives up to order m on Ω defined

analogously to the Sobolev spaces Hm(Ω) in Section 1.1.1. The operator S` has originally

been introduced for simplicial meshes T`. With this in mind, the definition (5.26) employs

suitably chosen d- or (d−1)-dimensional simplices (σq)q∈N` with the additional property that

σq ⊂ ∂Ω if q ∈ ∂Ω. Then, there exists a system of dual functions, namely a set (ψ`σq)q∈N`
with ψ`σq ∈ C

0(σq) for all q ∈ N` which is biorthogonal to the restricted basis (λ`q|σq)q∈N`
with respect to the d- or (d− 1)-dimensional inner product (·, ·)L2(σq), i. e.,

(ψ`σq , λ
`
r)L2(σq) = δqr, ∀ q, r ∈ N`.

The assumptions on m and p ensure that the required trace theorem holds for u ∈Wm
p (Ω);

thus, by Hölder’s inequality, the integrals on the chosen sub-simplices in (5.26) are well-

defined. Note that the mapping S` depends on the specific choice of these simplices.

The Scott–Zhang operator is designed to preserve Dirichlet boundary conditions on ∂Ω;

see also Remark 5.13 below. This makes its definition via the choice of the sub-simplices

(σq)q∈N` more intricate and unsymmetric in a sense. In contrast, our version is symmetric,

namely the test functions ψ`q ∈ Ψ` constructed in Section 5.5.1 have the same support as the

basis functions λ`q ∈ Λ`. As we employ functions which are biorthogonal to the standard d-

dimensional nodal basis with respect to the full L2-inner product (·, ·)L2(Ω), we do not have

to choose any sub-simplices but rather work with the given finite element meshes. A further

advantage, which we do not yet exploit here, is the lower requirement for the regularity of

the considered functions, namely L1(Ω) instead of Wm
p (Ω) with m, p as specified above.

Remark 5.13. For the Scott–Zhang operator, by forcing the sub-simplex σq to be a sub-

set of ∂Ω if the corresponding node q lies on the boundary, one obtains the property that

(S`u)|∂Ω = 0 in case of u|∂Ω = 0. Note that the trace of u is a well-defined function

in L1(∂Ω) for u ∈ Wm
p (Ω) with m and p as aforementioned. By contrast, in the semi-

geometric framework, we cope with the Dirichlet boundary conditions in a more direct way

as described in Section 3.3. Even if the auxiliary coarse spaces (X`)`=0,...,L−1 do not satisfy

the desired boundary conditions, the variational approach ensures that all coarse functions

in the constructed spaces (V`)`=0,...,L−1 do.

At this point, the Scott–Zhang operator seems to be a little more general because it

preserves vanishing traces without further ado, whereas we need a priori knowledge about the

Dirichlet boundary. But this extra flexibility, which involves more regularity assumptions,

does not seem to be of any use in the present context. We rather believe our more direct

way to treat the boundary conditions to be superior in practice.

5.5.3 On the properties of the pseudo-L2-projection

In this section, we examine the new operator more closely. First of all, the mapping P` is

surjective, namely P`(L2(Ω)) = X`, because (5.19) and (5.25) immediately imply P`λ`p = λ`p
for all p ∈ N`. Moreover, it is a projection onto X`. This is a simple consequence of the

linearity of the operator and, again, the biorthogonality property (5.19). In addition, it is

important to note the following stability property of the constructed operator.
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Lemma 5.14. The pseudo-L2-projection P` is continuous or L2-stable, i. e.,

‖P`v‖L2(Ω) . ‖v‖L2(Ω), ∀ v ∈ L2(Ω). (5.27)

Proof . For a function v ∈ L2(Ω) and an element T ∈ T`, we have

‖P`v‖L2(T ) ≤
∑

p∈N`∩T

‖ψ`p‖L2(ωp)‖v‖L2(ωp)

‖λ`p‖L1(ωp)
‖λ`p‖L2(T ).

The shape regularity of the mesh T` implies that diam(ωp) h diam(T ) =: hT and that

the number of terms in the sum is uniformly bounded. Using Hölder’s inequality, and the

boundedness (5.23), one obtains the following three estimates:

‖ψ`p‖L2(ωp) . h
d/2
T , ‖λ`p‖L2(T ) . h

d/2
T , ‖λ`p‖L1(ωp) h hdT . (5.28)

Therefore,

‖P`v‖L2(T ) . ‖v‖L2(ωT ), ωT := int
(⋃{

T ′ ∈ T` |T ′ ∩ T 6= ∅
})

. (5.29)

Again, because of the shape regularity of T`, each element of T` belongs to a uniformly

bounded number of patches ωT ; thus, we have

‖P`v‖2L2(Ω) .
∑
T∈T`

‖v‖2L2(ωT ) . ‖v‖
2
L2(Ω).

This completes the proof of the lemma.

Note that Lemma 5.14 holds true for all shape regular (not necessarily quasi-uniform)

meshes because all estimates in (5.28) are local in the sense of Section 3.4.1. Also confer

Section 5.2.2.

In the following, we prove the sufficient conditions according to Lemma 3.12 such that

the pseudo-L2-projection is applicable in the semi-geometric multilevel algorithms. Again,

all estimates in an element T ∈ T` are local, namely only involving the values in ωT .

Therefore, the required properties hold for shape regular meshes.

L2-approximation property

First, we notice that a preliminary result about the L2-approximation property of P` can

be proved in a very simple way, similarly to [133]. As a matter of fact, the proof of the

estimate is not specially-designed for the pseudo-L2-projection but holds true for a fairly

broad class of operators. This is the assertion of the following

Lemma 5.15. Let the operator Π` : H1(Ω)→ X` be L2-stable and a surjective projection.

The mesh T` may be quasi-uniform with global parameter h` > 0. Then, Π` satisfies the

L2-approximation property.
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Proof . For v ∈ H1(Ω) we employ the Clément quasi-interpolation operator R` onto X` and

the triangle inequality to calculate

‖v −Π`v‖L2(Ω) ≤ ‖v −R`v‖L2(Ω) + ‖R`v −Π`v‖L2(Ω)

= ‖v −R`v‖L2(Ω) + ‖Π`(R`v − v)‖L2(Ω)

. ‖v −R`v‖L2(Ω)

. h` |v|H1(Ω).

By assumption, the operator Π` is the identity on the image of R`; thus, the equality in

the second line holds. The remaining estimates follow directly from the stability of Π` and

the approximation property of R` stated in Lemma 5.3.

As a direct consequence one obtains that the pseudo-L2-projection satisfies the L2-

approximation property in case of quasi-uniform meshes. It seems impossible to generalize

the above technique to non-quasi-uniform meshes with a mesh size function h` ∈ L∞> (Ω)

without requiring an assumption on the stability of Π` with respect to a weighted L2-norm.

However, the relevant property can be proved directly; the following lemma holds for all

shape regular meshes.

Lemma 5.16. The pseudo-L2-projection P` has the L2-approximation property.

Proof . For a function v ∈ H1
D(Ω) and an element T ∈ T` such that T ∩ ΓD = ∅, let

v̄ = 1
|ωT |

∫
ωT
v be the local average. As the projection operator P` reproduces constants

apart from ΓD, we have

‖v − P`v‖L2(T ) ≤ ‖v − v̄‖L2(T ) + ‖P`v − v̄‖L2(T )

= ‖v − v̄‖L2(T ) + ‖P`(v − v̄)‖L2(T )

. ‖v − v̄‖L2(T ) + ‖v − v̄‖L2(ωT )

. ‖v − v̄‖L2(ωT )

. diam(ωT )|v|H1(ωT ).

This follows from the local L2-stability of the operator P`, see (5.29), and the Poincaré

inequality. If T ∩ ΓD 6= ∅, the above calculations hold true for the choice v̄ = 0. As

diam(ωT ) h hT , this implies

‖h−1
T (v − P`v)‖L2(T ) . |v|H1(ωT ).

The global version of the above estimate, with the piecewise constant mesh size function

h` ∈ L∞> (Ω) considered in Section 3.4.1, follows from the shape regularity of the meshes T`;
confer the proof of Lemma 5.14.

H1-stability

Finally, let us study the stability of the new operator in the following lemmas. This con-

cludes the analysis of the properties which are relevant for the application of the transfer

concept in the semi-geometric framework.
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Lemma 5.17. The pseudo-L2-projection P` is H1-stable.

Proof . Let v ∈ H1
D(Ω). For an element T ∈ T` such that T ∩ ΓD = ∅, consider the local

average v̄ = 1
|ωT |

∫
ωT
v. As the projection operator P` reproduces constants away from ΓD,

we have

|P`v|H1(T ) = |P`v − v̄|H1(T ) = |P`(v − v̄)|H1(T )

≤
∑

p∈N`∩T

‖ψ`p‖L2(ωp)‖v − v̄‖L2(ωp)

‖λ`p‖L1(ωp)
|λ`p|H1(T ).

The Poincaré inequality yields

‖v − v̄‖L2(ωp) ≤ ‖v − v̄‖L2(ωT ) ≤ diam(ωT )|v|H1(ωT ).

If T ∩ ΓD 6= ∅, the above calculations hold true for the choice v̄ = 0. With the inverse esti-

mate |λ`p|H1(T ) . diam(T )−1‖λ`p‖L2(T ) and the three local estimates in (5.28), we conclude

|P`v|H1(T ) . |v|H1(ωT )

because diam(ωT ) h hT due to the shape regularity of the mesh. The proof is completed

by the same argument as in Lemma 5.14.

Note that the proof of Lemma 5.17 holds for all shape regular meshes. We give an alter-

native proof for the stability estimate for arbitrary operators satisfying an L2-approximation

property in case of quasi-uniform meshes.

Lemma 5.18. Let Π` : H1(Ω) → X` satisfy the L2-approximation property and assume

that the mesh T` is quasi-uniform. Then, Π` is H1-stable.

Proof . To prove this statement, note that Lagrange conforming finite element spaces asso-

ciated with quasi-uniform meshes come with global inverse inequalities (and mesh size pa-

rameters h` = maxT∈T` hT ). As is known, this implies the H1-stability of the L2-projection

Q`. Moreover, Q` is the identity on X`. Thus, for v ∈ H1
D(Ω), we estimate

|Π`v|H1(Ω) ≤ |Π`v −Q`v|H1(Ω) + |Q`v|H1(Ω)

. h−1
` ‖Π`v −Q`v‖L2(Ω) + |v|H1(Ω)

= h−1
` ‖Q`(Π`v − v)‖L2(Ω) + |v|H1(Ω)

. h−1
` ‖Π`v − v‖L2(Ω) + |v|H1(Ω)

. |v|H1(Ω).

This is the assertion, which also holds true for P`.

As indicated before, we complete the analysis of the L2-quasi-projections described in

Section 5.4 now. More precisely, a proof of Lemma 5.9 about the properties of the operator

Q̂` is given in the following
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Remark 5.19 (Proof of Lemma 5.9). First of all, note that the operator Q̂` has the rep-

resentation formula (5.18) which is very similar to the one of the pseudo-L2-projection

considered in this section. Besides, constant functions are reproduced locally (again, apart

from ΓD) as

(Q̂`v̄)|T =
∑

p∈N`∩T

(λ`p, v̄)L2(ωp)

(λ`p,1)L2(ωp)
λ`p|T =

∑
p∈N`∩T

v̄λ`p|T = v̄

for v̄ ∈ R. Then, for both the L2-norm and the H1-semi-norm, the terms of the sum over

the nodes p ∈ N` are estimated in a straightforward manner, as was done for P` in the

present section. The L2-approximation property is derived analogously to Lemma 5.16.

We remark that, even though the formula (5.11) is quite similar, the analysis of the

simplified quasi-interpolation operator R̃′` may not be carried out in this way. This is

because the property to preserve constant functions is missing.

5.6 Application to the semi-geometric

multilevel methods
We have indeed found a selection of geometrically inspired transfer concepts which may

be employed in the semi-geometric framework of Chapter 3. So, the final step of the

theoretical considerations concerning the information transfer between non-nested meshes,

which have been made in full detail at least for the pseudo-L2-projection, is to summarize

the applicability of the different approaches.

If a transfer concept has proved to generate local operators satisfying the required

stability and approximation properties for all shape regular meshes, we obtain the final

result by Theorem 3.14. The multilevel methods based on non-nested meshes yield quasi-

optimal preconditioners for a variety of choices of the prolongation operators as stated in

the following

Theorem 5.20. Let the assumption (3.21) of Lemma 3.10 hold and the smoothing prop-

erty (2.22) be satisfied. Besides, the transfer operators may be generated by one of the

following concepts.

• Standard nodal finite element interpolation I (Section 5.1)

• Classical Clément quasi-interpolation R (Section 5.2.1)

• Alternative quasi-interpolation R̃ (Section 5.2.4)

• The L2-quasi-projections Q̃, Q̂ (Section 5.4)

• Pseudo-L2-projection P (Section 5.5)

Then, the semi-geometric multilevel methods Algorithm 3.4 and Algorithm 3.5 yield pre-

conditioning uniformly with respect to the mesh size. Further, the semi-geometric multigrid

method converges uniformly with respect to the mesh size.
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Note that only the concepts I, R̃, P produce projection operators. But this is not a re-

quirement of the analysis of Section 3.4. We remark that the relevant properties have

not been proved for general shape regular families of meshes for the simplified quasi-

interpolation R̃′ (Section 5.2.4). The main reason that the techniques used for some of

the other operators cannot be applied here is the fact that the constant functions are not

preserved at least locally, as discussed in Remark 5.19. However, we still intend to as-

sess the performance of these operators in practice. Certainly, the actual L2-projection Q
(Section 5.3) may not be employed as the generated operators are not local.

To further assess the practical properties of the transfer operators both qualitatively

and quantitatively, we proceed in several steps. Implementation issues are addressed in

Section 5.7 followed by a unique experimental analysis investigating the characteristics of

information transfer between non-nested meshes in Section 5.8. The practical application

to the semi-geometric multilevel methods is studied by numerical experiments in Chapter 6.

5.7 Implementation aspects

We have already pointed out some essential guidelines concerning the implementation of

the respective operators with the introduction of each single transfer concept (Section 5.1

to Section 5.5). We have also described how non-nested transfer routines are incorporated

into a multilevel framework in Section 3.6. In this section, we focus on the realization of the

specific transfer concepts in practical finite element codes. This complements the remarks

in Section 3.6 about the implementation aspects of the semi-geometric framework itself.

All described methods are implemented in the developed module nnmglib of obslib++.

A part of our implementation at an earlier stage has also been used in [83] to formulate

weak coupling conditions between simulations from continuum mechanics and molecular

dynamics. More precisely, between the corresponding function spaces, transfer concepts

similar to the ones investigated here play a crucial role.

For the computation of a matrix representation of a linear operator from X`−1 to X`,

e. g., in setupSGMG (Algorithm 3.3), one needs to deal with quantities associated with

different meshes without any usable a priori relation. Recall that we may yet assume, by a

quadtree or octree structure mentioned in Section 3.6.2, suitable neighborhood relations to

be given. In particular, for each node p ∈ N`, a set N p
`−1 ⊂ N`−1 containing a sufficiently

small number of nodes has been determined such that

q ∈ N`−1, int(ωq) ∩ int(ωp) 6= ∅ =⇒ q ∈ N p
`−1.

Then, all terms which appear in the presented discrete operators may evidently be computed

only based on these local subsets. We elaborate on this in the following.

Note that the assembly process is in general not symmetric. This is easy to understand

in the context of the nodal interpolation where coarse level basis functions need to be

evaluated at fine level nodes. Besides, the only part which is symmetric in the sense that

coarse and fine level quantities are treated equally is the rectangular matrix B`. It appears

in the representations of Q``−1, Q̃``−1, Q̂``−1 and also R̃`′`−1 and merely contains the L2-inner

products of coarse and fine level basis functions.
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Numerical integration

For all transfer concepts, with the exception of the nodal interpolation I, inner products

of functions associated with different meshes need to be computed. This is obvious for the

above indicated operators involving the sparse but global coupling matrix B` ∈ Rn`×n`−1

defined in (5.13). The analogon for the pseudo-L2-projection P requires the entries

(ψ`p, λ
`−1
q )L2(ωp∩ωq), ∀ p ∈ N`, q ∈ N`−1. (5.30)

We turn to the other mappings which employ local orthogonal projections below.

To evaluate (5.13) or (5.30) in the setup phase (Algorithm 3.3) exactly, one has to com-

pute the intersections of the elements in the consecutive meshes. As we have previously

done in [69, 71] for the intersection of locally projected non-matching interface meshes,

we employ the quickhull algorithm in an implementation by [16] for this purpose. After

a suitable remeshing of the computed intersection polytopes, one achieves an exact inte-

gration, up to roundoff errors, by the application of low order quadrature rules∗. We have

implemented the methods concerning element intersections in a module cutlib.

In practice, good results may be obtained by an approximate numerical integration via a

quadrature rule solely based on the finer mesh. The order of the employed quadrature rules

should be adequate such that they are exact at least in case of nested meshes. This requires

order two for the above operators and order r+ 1 for the Clément quasi-interpolations. We

are aware of the fact that such an approach might fail to retain optimal (discretization)

error estimates, for instance, in the mortar finite element setting; see [85, 141]. However,

the situation is different here and we do not experience any problems. In addition, let us

refer to our numerical studies in Section 5.8.3, where we show that the error in the operator

itself due to approximate integration is small if the quadrature rule is chosen adequately.

Computation of orthogonal projections

The implementation issues concerning the operatorQ``−1, which is the orthogonal projection

to the space X` with respect to the L2-inner product, are discussed in detail in Section 5.3.

For the stated reasons, it is not suitable for an application in the multilevel algorithms. But,

for the experiments in Section 5.8, we employ the direct sparse solver pardiso [165, 166] to

decompose the appearing mass matrices. This is more efficient than an iterative solver in

this special case as the respective inverse needs to be applied to a large number of vectors.

The pseudo-L2-projection is defined via a global variational formulation, too. This has

direct consequences for the implementation as no subproblems need to be solved in case

of unstructured simplicial meshes. Moreover, the system of biorthogonal test functions is

designed to obviate the inversion of a global matrix. Note that the quasi-projections from

Section 5.4 also yield simple formulations; they are not projections, though. The same holds

true for the quasi-interpolation concept in case the trial and test spaces are one-dimensional,

e. g., for the Clément operator with r = 0.

In contrast, we have seen that general transfer concepts may require the evaluation of

local orthogonal projections. In the following, we sketch the implementation of the operators

∗We always refer to numerical integration as quadrature, no matter what the dimension d is.
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R``−1 with r > 0 and R̃``−1. To solve the corresponding local variational equations (5.5)

and (5.9) for the right hand sides given by the coarse level basis functions, one needs to

compute coarse-to-fine coupling matrices and mass matrices similar to the ones in (5.12)

but associated with the local spaces. Let (ϕpi )i=1,...,np be a basis of the considered trial

space at p ∈ N`. Then,

(Mp)ij = (ϕpi , ϕ
p
j )L2(ωp), ∀ 1 ≤ i, j ≤ np, (5.31)

and

(Bp)iq = (ϕpi , λ
`−1
q )L2(ωp), ∀ 1 ≤ i ≤ np, q ∈ N`−1, (5.32)

are the respective local matrices. We omit the level index ` as it is clear from the choice

of p.

For the Clément quasi-interpolation operators, the trial and test spaces are obtained

by restrictions of global polynomial spaces to the patches. Therefore, one may choose a

universal basis for the implementation; for instance, (ϕi)i=1...,d+1 with ϕi(x) = x · ei for

i ≤ d and ϕd+1 ≡ 1 is a convenient choice in case r = 1. For the alternative operator R̃``−1,

the dimension of the local finite element spaces depends on the complexity of the patches.

An appropriate basis of Xp
` from (5.10), p ∈ N`, is immediately obtained by restricting the

nodal basis functions to ωp. The issues concerning the numerical integration of (5.32) are

solved as before for the global coupling matrices.

As usual in finite element assembly algorithms, a single loop over all elements in T`
makes sure that no redundant computations are carried out; each integral is only com-

puted once. However, to store the local information rather than merely summing up the

element contributions, some additional structure is needed as the essential objects at this

point, namely the patches, are usually not included in customary finite element codes. For

a flexible handling of all above cases, we introduced a class nodepatch whose instances

manage the local data, i. e., essentially the matrices from (5.31) and (5.32). The objects

also require access to the information which nodes belong to the respective patch in case of

R̃``−1. This is crucial for the local numberings of the sets (ϕpi )i=1,...,np , p ∈ N`; we assume

p is always associated with i = 1. For R``−1 this is not necessary if the bases are chosen

as described above, namely as globally defined polynomials. In any case, for each fine level

node, the coupling coarse level nodes are determined during the assembly routine. This is

also true for the assembly of the global matrices in case of the other operators discussed

before. The number of candidates is evidently limited by the sets N p
`−1, p ∈ N`, generated

by the quadtree or octree structure.

Finally, the entries of the global matrix R̃
`

`−1 ∈ Rn`×n`−1 are obtained by the scalar

products

(R̃
`

`−1)pq =

np∑
i=1

(M−1
p )i1(Bp)iq, ∀ p ∈ N`, q ∈ N`−1.

Similarly, the matrix representations of the Clément operators read as

(R`
`−1)pq =

np∑
i=1

np∑
j=1

(M−1
p )ij(Bp)jqϕi(p), ∀ p ∈ N`, q ∈ N`−1.
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These formulas are immediately derived by solving the variational equations (5.5) and (5.9),

respectively, for the basis functions (λ`−1
q )q∈N` and evaluating the result at the node p.

Both approaches require the inversion of n` local (np×np)-matrices. In the latter, the local

dimension is constant; we have np = dim(Pr(ωp)) = (d+r)!
d! r! .

5.8 Numerical results
Let us now focus on the practical properties of the operators generated by the previously

described transfer concepts. In this section, we report on various numerical experiments

which are performed to assess the stability properties of the single operators and the inter-

connections between them. Subjecting these mappings to a close examination, we aspire to

make out the fundamental characteristics of the information transfer between non-nested

finite element spaces as such. We consider this approach very helpful to get the feel of

the diverse operators and approximate variants when it comes to their properties in prac-

tice. A detailed performance analysis of the application of the transfer concepts to the

prolongation in the semi-geometric multilevel methods is studied afterwards in Section 6.

To investigate the behaviors of the mappings between two non-nested finite element

spaces, we introduce suitable operator norms with respect to the L2-norm and the H1-

semi-norm associated with the appropriate domains. By a sampling procedure explained in

Section 5.8.2, we obtain results on the accuracy of the approximate numerical integration.

Moreover, the numerical experiments indicate that mostly the constants in the H1-stability

estimates required for the analysis in Section 3.4 are bounded by one; the dependence of the

operator norm on the mesh size is studied in Section 5.8.4. Finally, we examine quantitative

differences of the transfer concepts by measuring certain distances between the generated

operators in Section 5.8.5. Let us mention, as early as now, that we confirmed that the

operators Q̂ and Q̃ coincide for simplicial meshes. We also learned that the rather expensive

operator R̃, which works with local projections onto restricted finite element spaces, is

identical to P in this particular case. The investigation of other element types and higher

order trial functions needs to be done somewhere else.

The development of the rather exceptional system for the assessment outlined above

is motivated by the desire to become a little more familiar with the application of (to a

greater or lesser extent) sophisticated (quasi-)interpolation and (quasi-)projection operators

in practical computations in the overall context of this thesis. It is a quite remarkable

method which, in the end, allows for “drawing a map” arranging the operators in a suitable

sense. To our knowledge, the evaluation of operators for the information transfer between

finite element spaces associated with non-nested meshes has never been studied in such a

manner so far. The experiments designed and conducted here are completely new.

5.8.1 Setup of the experiments

For the experiments to be carried out in this section, we consider a number of independently

generated meshes of the unit ball. This is an appropriate geometric setting as one can

easily obtain completely independent unstructured volume meshes for a large variety of

different mesh sizes by standard tetrahedral mesh generation tools, e. g., from CUBIT [61].
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Figure 5.6. Three of the fifteen unrelated meshes (B1, B3, B4, from left to right)

for the numerical experiments of this section.

In addition, it yields very good reproducibility. Note that the setting is also sufficiently

general. On the one hand, this can be seen in an illustrative example in Remark 5.21. On

the other hand, we have tested other geometries with essentially the same results.

We make use of a set of meshes (Bi)i=1,...,15 of the unit ball with their characteristics

given in Table 5.2 ordered by the number of elements. Let the respective domains be

denoted by (Ωi)i=1,...,15. The meshes B1, B3 and B4 are illustrated in Figure 5.6. Note that

the situation between the single meshes is sufficiently general in the sense that there are no

mutual relations other than that they approximate the same domain. In particular, none

of the meshes stems from a refinement routine; they are all imported separately.

To avoid conflicts with the meaning of meshes in the other parts of this thesis, we

use a different notation here, namely the letter B with some index unequal `. This is in

contrast to the meshes T`; the latter are always associated with a specific level in a finite

element space hierarchy. Here, we consider mappings between all these different meshes

and introduce the notation, again, by using the generic operator symbol Π with i and j

as indices and exponents. Let (Xi)i=1,...,15 be the standard finite element spaces associated

with the meshes (Bi)i=1,...,15 without any boundary modifications. Then, we denote the

connecting operators, e. g., by Πj
i : Xi → Xj for 1 ≤ i, j ≤ 15. The studied concrete

versions are generated by the transfer concepts presented before.

Let us clarify that we examine the information transfer between the given non-nested

finite element spaces rather than the nested ones which have been constructed in Sec-

tion 3.2.1. It is these original operators which appear in the analysis of Section 3.4. Recall

that the corresponding matrices represent the natural embeddings of the newly constructed

spaces in the semi-geometric setting as discussed previously.

In the following, several quantities of different natures are studied. Usually, operator

norms play a central role; for Πj
i , Π̃

j
i ∈ Lin(Xi, Xj), we estimate terms of the form

sup
v∈Xi∩H1

0 (Ωi),‖v‖i 6=0

‖Πj
iv‖j
‖v‖i

or sup
v∈Xi∩H1

0 (Ωi),‖v‖i 6=0

‖Πj
iv − Π̃j

iv‖j
‖v‖i

(5.33)

where ‖ · ‖i and ‖ · ‖j are suitably chosen (semi-)norms in Xi and Xj , respectively.

All mentioned transfer concepts may be employed to construct operators mapping an

infinite-dimensional function space to a finite element space which is normally a subspace.

However, we emphasize that we do not consider a general Hilbert space setting but restrict
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#elements #nodes in Ω #nodes on ∂Ω

B1 566 151 94

B2 1,380 325 165

B3 2,314 520 241

B4 4,111 882 363

B5 9,307 1,896 659

B6 13,383 2,678 868

B7 20,077 3,970 1,225

B8 31,728 6,162 1,733

B9 48,320 9,228 2,364

B10 75,884 14,388 3,539

B11 93,620 17,647 4,179

B12 122,578 23,046 5,388

B13 181,789 33,067 5,643

B14 203,618 36,868 6,099

B15 262,365 47,348 7,539

Table 5.2. Characteristics of the independently generated meshes (Bi)i=1,...,15 of

the unit ball. The meshes do not stem from a refinement routine; they cover a broad

range of sizes.

the attention to the case of two finite element spaces which is relevant for this thesis.

Therefore, the suprema in (5.33) and below are taken over finite element functions in Xi

only. This is in perfect agreement with the analysis of Section 3.4 and with the comments

about the fully discrete case made throughout the first part of this chapter. Still, it has

major consequences for the expected results of the numerical studies as each considered

operator generally does not map a Hilbert space to some subspace. Simple and well-known

statements such as “a projection operator has norm greater or equal one” do not hold true

in our case. Finally, we require the test functions to be in H1
0 (Ωi) such that their extensions

by zero to the possibly larger domain Ωj are continuous and, thus, weakly differentiable.

5.8.2 A sampling procedure

For the numerical evaluation or rather estimation of quantities of the form (5.33), we

introduce a sampling technique. In the fully discrete setting, a variety of trial functions is

employed to scan the behaviors of the considered operators Πj
i between the respective finite

element spaces Xi and Xj .

For this purpose, choose a set of functions {vk}k=1,...,N ⊂ Xi ∩ H1
0 (Ωi) for an integer

N � 1. Assume that vk is not identically zero for all k = 1, . . . , N ; thus, ‖vk‖L2(Ωi) > 0

and |vk|H1(Ωi) > 0. Then, the norms of an operator Πj
i ∈ Lin(Xi, Xj) with respect to the

L2-norm and the H1-semi-norm are approximated by

‖Πj
i‖L2 := max

k=1,...,N

‖Πj
ivk‖L2(Ωj)

‖vk‖L2(Ωi)
and |Πj

i |H1 := max
k=1,...,N

|Πj
ivk|H1(Ωj)

|vk|H1(Ωi)
, (5.34)
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Figure 5.7. Sampling procedure. Exemplary illustration of the improving accu-

racy with increasing sample size. Values computed by one independent sampling

according to (5.34) for each N ≥ 100 (left); approximation of mean and standard

deviation of the sampling procedure depending on N (right).

respectively. For brevity, in the notations of the approximate operator norms, we omit the

two different spaces with the two different domains and the dependence on the sample.

Naturally, | · |H1(Ωi) is a norm in H1
0 (Ωi). Distances between operators may be measured

by ‖ · ‖L2 or | · |H1 introduced in (5.34). We also consider relative quantities, namely terms

of the form
‖Πj

i − Π̃j
i‖L2

‖Πj
i‖L2

and
|Πj

i − Π̃j
i |H1

|Πj
i |H1

for some Πj
i , Π̃

j
i ∈ Lin(Xi, Xj).

For the computation of a quantity involving Πj
i , we proceed as outlined in Section 5.7 to

obtain a numerical representation of the operator. Then, N matrix-vector multiplications

with a prolongation matrix in Rnj×ni are required to map the sample from Xi to Xj .

To evaluate the L2-projection, an additional forward-backward substitution per function is

necessary. The finite element input data {vk}k=1,...,N is gathered as vectors in Rni generated

by standard pseudo-random numbers (almost) uniformly distributed in [−1,+1].

We do not aspire to investigate the behavior of the sampling procedure itself too closely.

Let us just illustrate that the results we achieve seem absolutely reasonable and deduce a

presumable accuracy of the estimation by Figure 5.7. In the left part, we see that the

variation of the computed maximum (here, the approximation |P4
1 |H1) is quite small. For

each size 100 ≤ N ≤ 6000, one independent random sample has been chosen; the values

of the corresponding estimates according to (5.34) are marked by dots. To confirm this,

we estimate the standard deviation of the sampling procedure depending on the number

of samples by performing a large number of independent samplings for each size N =

100, 200, . . . , 6000. The computed mean and standard deviation are depicted in the right

part of the figure. In addition, we experience that the quality only weakly depends on ni.

Note that it is also robust with respect to the choice of the specific type of the operator. On

the whole, our tests indicate that the error for any of the norms is in the order of 0.01−0.02

for adequate N . Consequently, the collected data we present in the following is sufficiently

reliable.
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Figure 5.8. The differences between an operator computed by exact integration on

intersections and the approximate evaluation based on inexact numerical integration

becomes small for higher order quadrature rules. For the operators Q, P, Q̂ (from

left to right), the diagrams show the relative error with respect to | · |H1 (first row)

and ‖ · ‖L2 (second row) depending on the number of integration points per element.

Each line represents one of the combinations (Bi,Bj) with i < j ≤ 7.

5.8.3 Influence of numerical integration

In this paragraph, we consider the inexact integration of the coupling terms between the

basis functions of Xi and Xj by means of a quadrature rule solely associated with Tj , as

described in Section 5.7. We verify that this approximation is very accurate in case of

sufficiently many function evaluations per element. Therefore, one can avoid the rather ex-

pensive computation of the intersections of the elements in the involved meshes in practice,

even if one puts emphasis on the application of a particular transfer operator.

To quantify the effect not on the integrals as such but on the actual mappings, we

estimate the relative differences between the operators generated by the transfer concepts

Q, P and Q̂ on the one hand and approximate versions on the other hand. Inner products of

finite element functions associated with the same mesh are always evaluated exactly except

for roundoff errors. Moreover, neglecting roundoff errors also in the intersection procedure

(and, for Q, in the application of the inverse mass matrix), we may indeed assume that it

is possible to evaluate the operators exactly. In contrast, the inexact evaluation is based

on quadrature merely associated with the mesh of the target finite element space.

In Figure 5.8, we show the results for three standard quadrature rules with one, four

and fifteen points, which are exact for polynomials of order one, two and five, respectively.

In our experiments, a rule with eight points (order three) only performed comparable to the

one with four points. The results are given for the combinations of the first seven meshes
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Q: H1-error Q: L2-error P: H1-error P: L2-error Q̂: H1-error Q̂: L2-error

2.3% 1.4% 2.5% 1.5% 1.5% 0.9%

Table 5.3. Average relative errors of the approximate operators in case the higher

order quadrature rule is applied.

(Bi)i=1,...,7, namely we investigate Πj
i : Xi → Xj for i < j ≤ 7 and Π ∈ {Q,P, Q̂}.

As expected, the quality of the approximation improves considerably as the number of

integration points is increased. We also note that, for fixed coarse mesh Bi, the error be-

comes smaller with increasing index j. This is obvious but cannot be seen in the figure as we

do not intend to label all the single lines. Other than that, we do not experience any depen-

dence on the mesh size. In particular, for the most critical combinations (Bi,Bi+1)i=1,...,6,

the errors depicted in Figure 5.8 do not grow with increasing i. We may also allow operators

Πj
i : Xi → Xj with i > j provided hj is not a lot larger than hi. The experiments indicate

that the error is under control for the studied examples in case i ≤ j + 3.

Further, let us comment on the slightly different error decay for the three transfer con-

cepts in Figure 5.8. The coarse-to-fine integrand is the same for the orthogonal projection

Q and the lumped version Q̂; see Section 5.7. But the error transport via the inverse mass

matrix is different from the one via scaling with its row totals, apparently yielding larger

error for Q. For the pseudo-L2-projection P, the respective integrand (5.30) has larger

derivatives because the biorthogonal test functions are employed instead of the nodal basis,

which leads to a larger quadrature error. The scaling of the rectangular matrix is the same

as for Q̂.

Finally, an important conclusion from our studies is that the higher order quadrature

rule always produces a very accurate approximation of the operators. For the concepts

other than the ones investigated in detail here, no new issues arise. We summarize the

average relative errors in Table 5.3.

5.8.4 Stability of the operators

As discussed in detail in Section 3.4.4, the analysis of the semi-geometric multigrid method

involves the product of the stability constants of the employed prolongation operators. This

is because we exploit the recursive structure of the semi-geometric space hierarchy in the

proofs. As we are now able to study norms of operators between finite element spaces in a

practical way, let us examine this point more carefully.

In this paragraph, we provide experimental evidence that the H1-stability constants

of the operators generated by most of the transfer concepts are bounded by one. This

cannot hold true in a general Hilbert space setting as, e. g., a projection operator to a

subspace, which is not identically zero, obviously has operator norm greater or equal one.

However, the first hint for the case of two finite element spaces is given in Section 5.1 about

the standard nodal interpolation, where this assertion is proved for Π = I and d = 1 in

Lemma 5.2.

The numerical results can be found in Appendix A starting on page 165. Table A.1

to Table A.8 present the H1-stability constants, i. e., the norms | · |H1 of the operators I,



120 5 Prolongation and restriction operators between non-nested meshes

0◦ 1◦ 2◦ 3◦ 4◦ 5◦ 8◦ 16◦ 32◦ 64◦

B7 → B8 0.736 0.734 0.735 0.736 0.734 0.733 0.732 0.736 0.735 0.736

B7 → B9 0.791 0.790 0.789 0.790 0.790 0.790 0.789 0.787 0.791 0.794

B7 → B12 0.871 0.871 0.871 0.869 0.869 0.869 0.867 0.872 0.869 0.871

B7 → B15 0.923 0.923 0.923 0.923 0.924 0.924 0.922 0.923 0.922 0.922

Table 5.4. The setting is sufficiently general. The computed estimates of the

operator norms are independent of rotations of the meshes. We show exemplarily

the H1-stability of P between meshes of different sizes.

Q, P, R (for r = 0, 1, 2), Q̂ and R̃′, each time considered between the spaces associated

with (Bi,Bj) for i < j ≤ 15. Here, i and j are the row and column indices, respectively.

The numbers are measured quite accurately in the previously described fashion. Apart

from the comments at the end of this chapter (Section 5.9), we do not study the presented

operators for an application to fine-to-coarse transfer. However, for completeness, we give

the respective stability estimates in the tables for j < i ≤ j + 3 and also include i = j. As

we are less interested in these cases here, they appear shaded gray.

First, one notes that the estimated quantities are less or equal one. With the exception

of the operator R̃′, this holds true over the whole range of depicted problem settings with the

numbers of elements varying from 566 to 262, 365 (a factor of a little more than 460). The

corresponding ratios of the typical mesh sizes of Bj to Bi for the considered combinations

roughly vary from 1
8 to 2

1 ; the range in between is well covered. Therefore, our extensive

numerical experiments make us confident that this observation about the boundedness of

the operators with respect to the H1-semi-norm is valid for the “well-behaved” transfer

concepts in general situations. As a consequence, let us make perfectly clear that this

would rule out the possible dependence of the constants in the H1-stability and in the

L2-approximation properties (3.12) and (3.13) of the constructed fine-to-coarse operators

QV` on the number of levels in the analysis of Section 3.4.

Second, we confirm that the mappings generated by Clément’s quasi-interpolation,

namely R with r = 0, 1, 2, and the quasi-projection Q̂ are not even close to projections; the

norms on the diagonal, which describes the cases of identical meshes, are considerably less

than one. The former are also denoted by Rr=0, Rr=1, Rr=2 in the following.

Third, concerning the dependence on the mesh size, one notes two aspects in addition

to the mentioned boundedness. Again, let us exclude R̃′ from the considerations. Then, on

the one hand, the norm estimate increases up to one with increasing j for fixed i. This is due

to the fact that the operators reproduce constant functions and even an oscillating function

associated with a very coarse mesh appears locally constant on a very fine mesh. On the

other hand, along the off-diagonal lines, which roughly contain cases with comparable ratios

between the respective element numbers, the estimates vary only moderately.

Now, for R̃′ the previous considerations are not true. The fact that this naive transfer

concept does not locally reproduce constant functions affects the numerical results, which

can be seen in Table A.8. The qualitative and quantitative disagreement between R̃′ and

the other operators is explained in more detail in the next paragraph.
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Remark 5.21. To further illustrate that the relations between the employed meshes of the

unit ball are sufficiently general, we present the following experiment. Consider a couple of

rotations of the mesh B7 about the axis spanned by the sum of the standard basis vectors

(ei)1≤i≤3 by different angles. Then, Table 5.4 states the estimates | · |H1 for the operator P
between these rotated meshes (for the angles specified at the head) and the meshes B8, B9,

B12 and B15. Note that the target meshes are of very different sizes.

If there were distinguished relations between the unrotated mesh and (some of) the other

meshes, one would expect some differences in the stability estimates. This is not the case in

present and other studies we performed. Although the sampling does not yield this accuracy,

we state the numbers up to the third decimal place to show that the differences we obtain

are yet marginal.

5.8.5 Quantitative analysis of the relations between

the transfer concepts

In this paragraph, we present a quantitative study of the diversity of the operators generated

by the relevant geometric transfer concepts. This eventually allows for arranging them in a

map-like sketch illustrating similarities and differences. Here, we explain some interesting

relations achieved by measuring mutual distances. In the charts designed for this purpose,

we mark the operators by the symbols specified in Table 5.5 where they appear. As indicated

before, the mapping R̃′ is treated separately afterwards.

I Q P Q̂ Rr=0 Rr=1 Rr=2

circle ◦ star ∗ dot • triangle 4 plus + square � crossing ×

Table 5.5. Symbols of the operators in the charts.

To start with, for each practicable choice of two finite element meshes from (Bi)i=1,...,15,

we consider the distance of the generated operators to the L2-projection Q. Figure 5.9

shows the relative difference with respect to | · |H1 . The diagram consists of two rows and is

arranged such that a section marked by Bi below (for some index i) comprises the results

for the situations (Bi,Bj), i < j, each time ordered by increasing j from left to right.

We point out two distinct facts established by the performed experiments and readily

understood by the figures. First, with decreasing ratio between fine and coarse mesh size, all

depicted operators approximate Q more accurately. This is because they have the common

property to preserve the constant functions, which has been mentioned before. In a certain

sense, a very fine mesh is “almost nested” in a very coarse mesh and the coarse function

is “almost constant” in the patches of the fine mesh; thus, the operators asymptotically

become more and more like the identity if the coarse mesh is fixed.

The second, even more important result is the following. We see that, for all experi-

ments, the pseudo-L2-projection P is clearly the closest to the actual L2-projection. In fact,

it is remarkable how much closer the operators generated by this transfer concept are to the

orthogonal projection compared to all other approaches. The standard interpolation and

the Clément-type interpolation with local polynomial degree r = 2, although being only
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Figure 5.9. Relative distances to the L2-projection Q with respect to | · |H1 . The

labels B1, . . . ,B11 indicate the particular space Xi. In each of these sections, the

results are given for increasing j from left to right.
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Figure 5.10. The distances primarily depend on the ratio of the number of ele-

ments. Here, we state the relative H1-difference to Q in selected situations. The

estimates are shown for all combinations of meshes from (Bi)i=1,...,15 where this

number varies between 3.3 and 4.2 (left) and 7.0 and 9.2 (right).

Q P I Rr=2 Q̂ Rr=1 Rr=0 R̃′
Q 0.15 0.32 0.32 0.48 0.56 0.58 0.67

P 0.16 0.23 0.25 0.43 0.51 0.54 0.76

I 0.40 0.26 0.24 0.41 0.46 0.52 1.03

Rr=2 0.43 0.31 0.26 0.28 0.35 0.40 1.10

Q̂ 0.79 0.66 0.54 0.34 0.27 0.16 1.50

Rr=1 1.00 0.85 0.67 0.47 0.30 0.31 1.80

Rr=0 1.06 0.91 0.76 0.55 0.18 0.31 1.80

R̃′ 0.44 0.46 0.54 0.54 0.60 0.66 0.65

Table 5.6. Relative distances with respect to | · |H1 in the situation (B5,B10). The

value in a cell is relative to the operator specified by the row.

moderately close to each other as we show shortly, have a very similar (almost identical)

distance to Q. These two concepts are the next closest to the orthogonal projection; they

are roughly twice as far away from Q as the pseudo-L2-projection is. The other operators

are considerably further away.

Another important point is that the ratio between fine and coarse mesh size is most

relevant for the considered distances but not the mesh size itself. This is illustrated in

Figure 5.10. Here, we have collected all cases with a roughly comparable ratio of the

numbers of elements, namely between 3.3 and 4.2 on the left and between 7.0 and 9.2 on

the right. This classification is somewhat arbitrary; however, the figure clearly shows that

the approximate differences to Q are almost constant over all the considered situations.

Note that the charts have the same scale on the vertical axes as before.

To highlight the interconnections, let us give the complete data, namely the mutual

relative distances between the operators with respect to | · |H1 for one typical setting. The

results for the mappings generated between the spaces associated with B5 and B10 are given

in Table 5.6, ordered by their proximity to the orthogonal projection. In each cell, we state
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Q P I Rr=2 Q̂ Rr=1 Rr=0 R̃′
Q 0.08 0.22 0.22 0.34 0.41 0.41 0.98

P 0.09 0.16 0.17 0.29 0.36 0.37 1.03

I 0.25 0.18 0.13 0.23 0.28 0.30 1.24

Rr=2 0.26 0.19 0.13 0.17 0.23 0.25 1.28

Q̂ 0.44 0.37 0.26 0.18 0.15 0.09 1.50

Rr=1 0.57 0.49 0.34 0.27 0.16 0.14 1.69

Rr=0 0.56 0.49 0.36 0.29 0.10 0.14 1.65

R̃′ 0.51 0.52 0.56 0.56 0.60 0.63 0.62

Table 5.7. Relative distances with respect to ‖ · ‖L2 in the situation (B5,B10).
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Figure 5.11. Relative H1-distances to I in the situations selected in Figure 5.10.

the relative difference of the two specified operators with respect to the one in the current

row. Therefore, the upper right half is the more interesting part. For completeness, the

corresponding quantities with respect to ‖ · ‖L2 are given in Table 5.7. The tables belong

to the setting which is fourth in the “columns” of the right part of Figure 5.10. Please be

assured that this is an absolutely typical example and indeed representative.

Concerning the relative differences with respect to the single operators, we do not pro-

vide a complex chart like the one in Figure 5.9 for every type of transfer. Let us instead

offer a condensed view and comment on the distances to the operators we consider next im-

portant, namely the nodal interpolation I and the pseudo-L2-projection P. In the fashion

of Figure 5.10, we choose all cases with relatively similar element ratios. Again, this results

in only slightly varying distances in the single charts; see Figure 5.11 and Figure 5.12. We

recognize that the operators Rr=2 and P are closest to I. For the projection P, the closest

operator is I followed by Q and Rr=2. We summarize the overall state at the end of this

section.

The operator R̃′ has not appeared in the figures so far. As this transfer concept does not

preserve the constant functions, it is different in some respects. For instance, the distance

to the L2-projection increases with decreasing mesh size ratio, which is contrary to the

other operators. To further illustrate this disagreement, we display a diagram, which would

be a detail of Figure 5.9, but now with the absolute values of the distances. Figure 5.13
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Figure 5.12. Relative H1-distances to P in the situations selected in Figure 5.10.
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Figure 5.13. Absolute distances in the situations (B3,B4), . . . , (B3,B15), in both

parts ordered from left to right. The left chart shows the mutual differences between

all operators but R̃′. The remaining differences, namely the ones between R̃′ and

all other operators, are depicted in the right chart. Note the different scales on the

vertical axes.
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Q
P

I

Rr=2

Rr=1

Rr=0

Q̂

Figure 5.14. The mutual relations of the single operators visualized as a map-

like graph. The length of each connecting line represent the absolute H1-distance

between the respective operators.

(left) shows the mutual differences in the situations involving B3 for the “well-behaved”

mappings, i. e., all but R̃′. For the present purpose, we do not need to specify which of the

21 lines represents the difference between which two operators; these relations are visualized

in a more convenient way at the end of this section. Let us just mention that the line at

the bottom is the difference of Q̂ and Rr=0; the line at the top is the distance between Q
and Rr=0. Moreover, note that all differences are significant, namely clearly greater than

zero, also for very small ratios
hj
hi

. This also holds for the corresponding relative quantities

as the norms appear to be bounded; see Section 5.8.4. Now, Figure 5.13 (right) depicts the

distances between R̃′ and the other operators. One notices that these quantities increase

relatively fast with increasing j. In contrast, the differences in the left part decrease or

increase only moderately.

Remark 5.22. This illustrates that one needs to be careful in dealing with a seemingly nat-

ural transfer concept which the operator R̃′ certainly is. Both the derivation in Section 5.2.4

and especially the formula (5.11) look promising to approximate the L2-orthogonal projec-

tion. However, in the context of the quasi-interpolation concepts reviewed in Section 5.2,

the replacement of each polynomial trial space by the span of the associated single basis

function is apparently not practicable. This is because the constant functions are left out of

account. Likewise, in the derivation of transfer formulas of the type (5.11), (5.16), (5.18)

and (5.25) or in the choice of discrete inner products such as (5.14) and (5.17), one can-

not choose the scaling freely. For instance, the scaling by the diagonal entries of the mass

matrix in (5.11), which seems reasonable at first glance, is not appropriate, whereas the

scaling by its row totals in (5.18) is.

Let us conclude this section with the promised overview. We visualize the interconnec-

tions between the transfer concepts by Figure 5.14, which, admittedly, a little more colorful
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but without the annotations, could be mistaken for a piece of abstract art. In this map-like

graph, the lengths of the lines represent the absolute distances of the connected operators

with respect to | · |H1 . We pick a typical situation; here, the operators generated from B3 to

B7 are considered. By the studies throughout this paragraph, we see that other situations

or some averages yield essentially the same result as the sizes of the mutual distances are

reasonably stable. The operator R̃′ is not in the picture as it is almost equally far away

from all the depicted “well-behaved” ones.

5.9 Fine-to-coarse transfer of primal information
Throughout this chapter, we have investigated the information transfer between non-nested

finite element spaces. So far, the aim of the considerations was to find stable and efficient

approximation operators for the coarse-to-fine transfer. In the context of the semi-geometric

multigrid methods developed in Chapter 3, the respective operators are employed to pro-

longate coarse level corrections to finer levels. More precisely, they serve as a means to

create a nested space hierarchy with sufficient approximation properties. Let us consider a

different point of view in this section.

A very special case of information transfer between non-nested finite element spaces

appears in the following. Let

X := XL ⊃ . . . ⊃ X` ⊃ . . . ⊃ X0

be a sequence of nested finite element spaces as in Section 2.2 about standard geometric

multigrid methods. In non-linear multigrid methods such as the full approximation scheme

or full approximation storage algorithm, see [37], one needs an approximation of the current

iterate at the coarser levels. The approximation may be realized by suitable fine to-coarse

mappings

Π`−1
` : X` → X`−1.

This is in addition to finding a coarse level model or objective function; see [147] for an

example in discrete non-linear optimization. We do not go into detail here.

Note that a coarse level approximation of poor quality does not only slow down the

“convergence” at the coarser levels but also might degenerate the overall convergence. This

is because the coarse level correction depends crucially on the initial coarse level iterate. In

fact, the correction which is added at the finer level is some interpolated difference between

the initial coarse level iterate and the final coarse level iterate.

The fine-to-coarse operator which is already available is the standard restriction oper-

ator which acts on the residuals by multiplication of the transposed interpolation matrix.

Admittedly, this mapping, commonly called full weighting operator, is generally not suitable

for this transfer of primal information. Certain scaled variants are reported to work well,

though; see, e. g., [94]. However, the operator used in the overwhelming majority of papers

is the standard nodal finite element interpolation. Again, this seems the most attractive

choice from a computational point of view. We remark that the linear interpolation from

fine to coarse between node-nested meshes is usually called injection as only the weights

zero and one appear. Colleagues [101] have been advertising the usage of the L2-projection

or the lumped variant in this context.
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The extensive numerical studies presented in Section 5.8 suggest that it would be in-

teresting to investigate the application of some of the considered transfer concepts in this

context. This goes beyond the scope of this thesis, though. Let us just comment on a

practical aspect. For the computation of approximation operators from X` to X`−1, one

may exploit the special structure of the problem, namely the relation between the nested

meshes and spaces. In common finite element codes, it is usually much more convenient to

deal with quantities at the same level than at different levels.

To illustrate this, let I``−1 ∈ Rn`×n`−1 be the matrix representation of the linear in-

terpolation from X`−1 to X` with respect to the standard nodal bases. As the spaces are

nested, the entries of this matrix are entirely determined by the logical connections. Then,

an integral of v ∈ L1(Ω) with test function λ`−1
p , p ∈ N`−1, may be computed as a weighted

sum of the entries of the vector v :=
(
(v, λ`q)L2(Ω)

)
q∈N`

, i. e.,

(v, λ`−1
p )L2(Ω) =

∑
q∈N`

(I``−1)qp vq.

For example, the fine-to-coarse coupling matrix B`−1
` ∈ Rn`−1×n` , which is the analogon of

the coarse-to-fine matrix in (5.13) appearing in the formulas of the L2-projection and the

L2-quasi-projections, reads as

B`−1
` = (I``−1)TM `.

In fact, this is equivalent to an exact composite quadrature formula. The same applies

to the computation of the local projections for the evaluation of the quasi-interpolation

operators of Section 5.2.
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In this chapter, we focus on the practical properties of the devised semi-geometric multi-

level methods. We report on broad experiences with this general class of multigrid methods

and preconditioners based on non-nested meshes. Because of the geometric nature of the

construction of the coarse level spaces we consider it especially important to analyze its de-

pendence on the interaction of the meshes. In particular, the robustness of the convergence

behavior with respect to the choice of the coarse meshes is demonstrated by numerical

experiments. We verify the quality of the constructed coarse level hierarchies and compare

the convergence rates to the ones obtained with a geometric multigrid method in case of a

simple geometry. Here, only the practically most relevant case d = 3 is considered.

In Section 6.1, the flexible applicability of the developed semi-geometric framework and

the performance of the multilevel algorithms are demonstrated. In Section 6.2, we introduce

a semi-geometric monotone multigrid method for the solution of variational inequalities. To

this end, we explain the required extensions to the linear method and present numerical

examples illustrating the performance in case of Signorini’s problem.

6.1 Semi-geometric multilevel methods
This section provides evidence that the semi-geometric concept is a flexible technique for

the solution of problems with unstructured meshes. We report on a number of experiments

carried out to assess the performance of the multilevel methods in a variety of respects.

In Section 6.1.1, fundamental experiments on the asymptotic convergence behavior of the

presented multigrid methods are described. Section 6.1.2 illustrates the flexibility of the

approach by studying the dependence on the choice of the coarse meshes. In Section 6.1.3,

we present experiments on the additive algorithms including an analysis of the two different

setup variants. Section 6.1.4 is devoted to studying the almost nested case, which allows for

a comparison of the convergence rates with the ones obtained by geometric multigrid meth-

ods. In Section 6.1.5, we apply different transfer concepts in the semi-geometric framework.

Finally, Section 6.1.6 prepares the discussion of the non-linear methods to be considered

the next section by a short description of an example from linear elasticity.

6.1.1 Asymptotic semi-geometric multigrid convergence

We start with an example to demonstrate the asymptotic convergence behavior of the semi-

geometric multigrid method. As usual for the investigation of linear solvers, we first measure

the effective convergence rates numerically on the basis of a setting with trivial solution

uL = 0. For this purpose, we consider the Poisson problem with zero Dirichlet boundary

values on ∂Ω and zero right hand side. In this case, we can compute the energy norm

of the algebraic error ‖ekL‖A = |ekL|H1(Ω) = |ukL|H1(Ω) and the corresponding contraction

rates ρk, k ≥ 1. Finite element functions generated by pseudo-random data in the interval

[−1,+1] are employed as initial guesses u0
L. This is a reasonable setting to estimate the

asymptotic convergence behavior if the assumption holds that these initial iterates are
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Figure 6.1. Sketch of the solution of the model problem (left); one of the coarse

meshes used later, depicted in relation to the fine mesh (center) with zoom in on a

corner of the cube (right). The meshes are completely unrelated.
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Figure 6.2. Error reduction during the semi-geometric multigrid iteration (left)

and the pcg iteration (right) for a problem with 244,932 degrees of freedom. In both

charts, the three lines represent the V(1, 1)-, the V(2, 2)- and the V(3, 3)-cycle (top

down). Note the different scales on the horizontal axes.

sufficiently general in the sense that they contain contributions from the different parts of

the spectrum of the operator AL.

Recall from Section 3.6.1 that, in case of non-nested meshes with geometrically induced

prolongation operators, one always needs to specify a parameter εtr > 0. The experiments in

this paragraph employ εtr = 0.20; we discuss this parameter in more detail in Section 6.1.2,

Section 6.1.4 and Section 6.1.5. Moreover, we choose Π = I for now.

For the first series of experiments, the domain Ω = ΩL may be the unit ball. As before

for the studies in Section 5.8, this geometry is chosen because, for one thing, it yields good

reproducibility and, for another thing, it allows for the generation of completely independent

meshes for a large variety of different mesh sizes. Unstructured meshes approximating the

unit ball have already been depicted in Figure 5.6. The solution of the Poisson problem

with constant right hand side not equal to zero is illustrated in Figure 6.1 (left).

Let us now consider the convergence behavior of the semi-geometric multigrid method

(Algorithm 3.4) with appropriately chosen coarse meshes. The typical error reduction
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#elements #dof Cgr Cop ρ̄V(1,1) ρ̄V(2,2) ρ̄V(3,3) ρ̄pcg
V(1,1) ρ̄pcg

V(2,2) ρ̄pcg
V(3,3)

1,380 325 1.17 1.26 0.047 0.012 0.005 0.016 0.004 0.001

4,111 882 1.17 1.31 0.072 0.018 0.008 0.024 0.007 0.003

13,383 2,678 1.18 1.37 0.092 0.028 0.017 0.030 0.010 0.006

48,320 9,228 1.15 1.35 0.108 0.037 0.025 0.038 0.014 0.008

93,620 17,647 1.15 1.34 0.137 0.048 0.030 0.050 0.018 0.011

181,789 33,067 1.15 1.36 0.162 0.052 0.031 0.057 0.021 0.012

361,907 64,833 1.15 1.38 0.202 0.060 0.035 0.071 0.024 0.014

719,951 127,787 1.14 1.35 0.189 0.071 0.046 0.068 0.028 0.017

1,017,911 179,831 1.11 1.27 0.229 0.091 0.062 0.087 0.033 0.021

1,390,421 244,932 1.10 1.24 0.272 0.094 0.061 0.096 0.036 0.021

Table 6.1. Convergence rates of the semi-geometric multigrid method and the

corresponding pcg for a broad range of problem sizes.

during a multigrid or pcg iteration is illustrated in Figure 6.2. However, in the following,

we are more interested in the average or the asymptotic convergence rate than in the actual

convergence history.

Important characteristic quantities of a constructed multilevel hierarchy are the com-

plexities Cgr and Cop defined in (3.24) as they reflect both the memory consumption of the

structure and the execution cost of each cycle. Moreover, the average convergence rate of

the multigrid iteration with a semi-geometric V(ν1, ν2)-cycle is denoted by ρ̄V(ν1,ν2), the one

of the respective pcg iteration by ρ̄pcg
V(ν1,ν2). Here and in the following, rates and complexities

are rounded to three and two digits, respectively.

Table 6.1 demonstrates the characteristics of the semi-geometric method for several

different problem sizes. Note that the table contains more data, namely more problems,

than usually considered in studies about geometric multigrid methods. This is to make

perfectly clear that we do not just examine refinements of certain meshes but rather consider

problems which are associated with independently generated unstructured meshes. The

factor of the number of elements from the largest to the smallest problem is around 8
10
3 ;

thus, the range of problem sizes corresponds to more than three times uniform refinement

(d = 3).

For this study, we pursue the following strategy to generate the coarse mesh hierarchy.

First of all, a simple enclosing geometry is used. In the present case, we are free to choose

the unit ball itself or a scaled version. Then, for the problem sizes listed in the table, the

maximum level L and the respective coarsest meshes T0 are chosen such that the number of

elements |T0| is in the order of 10−L to 8−L times the number of elements of the given fine

mesh. Finally, the meshes (T`)1,...,L−1 are generated by regular refinement from T0. This

means that the coarse meshes (T`)`<L are nested, but TL is not. Consequently, we have

X0 ⊂ . . . ⊂ XL−1 6⊂ XL. The more general case is considered later.

For example, for the problem with 1,017,911 elements we have L = 4, |T0| = 196 and

n0 = 64; three uniform refinement steps have been carried out to obtain T1, T2, T3 from T0.

The given unstructured fine mesh is referred to as TL = T4. The other problems are treated

similarly with slightly varying coarse mesh sizes; the number of coarse levels L increases
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Figure 6.3. Increase of the total setup time of the semi-geometric multilevel hi-

erarchy plotted versus the increase of the problem size (degrees of freedom). The

dashed lines represent the linear functions with slope one. The data corresponds to

the problems of Table 6.1 (left) and of Table 6.5 A (right), respectively.

from one to four. In all cases, the coarse level problems associated with ` = 0 can be solved

efficiently by a direct method. As we usually achieve n0 < 100, both the computation of an

LU decomposition and the execution of the corresponding forward-backward substitution

schemes are inexpensive.

The data in Table 6.1 indicates that we have indeed found a means to construct mul-

tilevel hierarchies such that, on the one hand, Cgr and Cop stay in a reasonable range and,

on the other hand, the convergence rates increase only moderately. For comparison, in

the fully nested geometric case, the complexity measures are around 1.15 as already esti-

mated in Section 3.6.1. The obtained rates are in fact not far off the ones usually observed

in geometric multigrid methods. For instance, to reduce the error by a factor of at least

10−10, in case of the largest problem with 244,932 degrees of freedom one needs ten V(2, 2)-

cycles as compared with six V(2, 2)-cycles in case of the smallest problem with 325 degrees

of freedom. We study the relations between geometric and semi-geometric methods more

closely in Section 6.1.4. For comparison, the convergence rate of the symmetric Gauß–

Seidel method degenerates to 0.984 for the largest problem. A conjugate gradient iteration

converges with a rate of 0.907. If preconditioned with the symmetric Gauß–Seidel method,

the rate can only be improved to 0.758.

It is important to note that the setup time increases roughly linearly with the number

of degrees of freedom, which is illustrated in Figure 6.3 (left). This is a consequence of

the fact that all operations for the assembly of the matrices (Π`
`−1)`=1,...,L are local and

the matrices themselves have limited bandwidth, as discussed in detail in our remarks on

implementation aspects in Section 3.6 and Section 5.7. We comment on the right part of

Figure 6.3 in Section 6.1.2.

Next, we consider an example where also the coarse meshes are non-nested. Let us point

out that this is a variant which is absolutely covered by the developed theory. The coarse

mesh hierarchies are constructed following a similar heuristic as before; we choose L > 0

appropriately and use independently generated meshes of the unit ball such that the ratio
|T`−1|
|T`| , ` ∈ {1, . . . , L}, is in the order of eight to ten. In Table 6.2, one sees that the results are
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#elements #dof Cgr Cop ρ̄V(1,1) ρ̄V(2,2) ρ̄V(3,3) ρ̄pcg
V(1,1) ρ̄pcg

V(2,2) ρ̄pcg
V(3,3)

719,951 127,787 1.12 1.32 0.264 0.093 0.049 0.085 0.033 0.017

1,017,911 179,831 1.10 1.26 0.287 0.110 0.070 0.108 0.042 0.024

1,390,421 244,932 1.10 1.24 0.366 0.143 0.098 0.126 0.052 0.036

Table 6.2. Convergence rates of the semi-geometric multigrid method and the

corresponding pcg in case the coarse meshes are also non-nested.
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Figure 6.4. Convergence behavior of the symmetric Gauß–Seidel method in the

constructed coarse spaces VL−1 for the homogeneous coarse problems associated

with the fifth, seventh and ninth problem from Table 6.1 (from left to right). The

reduction rates are rather small in the first few iteration steps but increase rapidly.

not as good as in the previous study although the convergence behavior is still acceptable

for practical usage. Note that we obtain grid and operator complexities comparable to the

ones before. We return to this issue when considering the additive variants in Section 6.1.3.

As a result, these first expriments show that the idea to employ finite element spaces

associated with non-nested meshes to construct multigrid methods by the framework de-

veloped in Chapter 3 works very well. However, we also see that it does not seem to be

beneficial to employ coarse level meshes which are completely independent of each other.

The approach with X0 6⊂ . . . 6⊂ XL may still yield an optimal method, which is also demon-

strated in Section 3.4. But, in practice, better convergence rates with comparable or smaller

complexities are obtained by choosing X0 ⊂ . . . ⊂ XL−1 6⊂ XL.

Finally, we briefly focus on the smoothing properties of the standard linear iterative

methods in the new spaces (V`)`<L. Above all, the excellent convergence of the presented

multilevel methods is evidence for the adequacy of the employed smoothers. However, it is

difficult to illustrate their effect similarly to the standard geometric case as in Section 2.1.

The least we can do is examine the convergence behavior of the common smoothing itera-

tions in the constructed coarse spaces. For this purpose, consider the homogeneous problem

associated with the coarse level operator AL−1 in the non-standard space VL−1. Then, for

three different problems, Figure 6.4 clearly shows that some components of the error are

reduced very fast in the first few steps, presumably the high-frequent contributions in the

geometric sense. This is the exact same behavior as is well-known from the classical iterative

methods applied to problems set in standard finite element spaces.
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Figure 6.5. Snake-like geometry. The semi-geometric space hierarchy is generated

by structured coarse meshes associated with an enclosing cube.

#elements #dof Cgr Cop ρ̄V(2,2) ρ̄pcg
V(2,2) ρ̄V(2,2) ρ̄pcg

V(2,2) ρ̄V(2,2) ρ̄pcg
V(2,2)

44,780 8,893 1.11 1.19 0.053 0.018 0.069 0.026 0.068 0.025

126,224 24,102 1.12 1.24 0.063 0.024 0.067 0.025 0.066 0.023

263,122 49,182 1.12 1.27 0.062 0.021 0.066 0.024 0.068 0.025

405,195 75,035 1.13 1.30 0.068 0.027 0.089 0.029 0.085 0.030

904,880 165,351 1.10 1.28 0.158 0.056 0.285 0.087 0.270 0.087

1,397,664 254,069 1.07 1.19 0.230 0.075 0.360 0.109 0.327 0.096︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
ΓD = ∂ΩL mixed (i) mixed (ii)

Table 6.3. Convergence rates of the semi-geometric multigrid methods for the

snake-like geometry with different boundary conditions.
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Complicated domain with mixed boundary conditions

Here, we consider the convergence of the semi-geometric multigrid methods for an example

with a more complicated domain and address the dependence on the type of the boundary

conditions. This also illustrates that the same or similar sets of coarse meshes, here the

ones associated with a cube, may be employed to construct a suitable multilevel hierarchy

for very different problems. For this purpose, let the computational domain Ω = ΩL be

given by the snake-like geometry depicted in Figure 6.5. As before, we measure the mean

convergence rates and the complexities for different problem sizes; each treated fine mesh

has been generated independently.

Table 6.3 contains the results of the convergence study. Regarding the influence of the

boundary conditions, we consider three configurations: pure Dirichlet boundary, i. e., the

case ΓD = ∂Ω, and two different settings with mixed boundary conditions, namely first (i),

homogeneous Neumann boundary conditions at the circular tails and Dirichlet conditions

elsewhere and second (ii), vice versa.

The convergence rates are a little larger than for the example with the unit ball. It is fair

to say that, in practice, similar increases in the convergence rates are generally observed for

most iterative methods when turning from a rather simple geometry to a more complicated

one, although it is usually difficult to quantify this effect, also for the analysis. However,

the characteristic behavior of the multilevel methods, namely moderately increasing rates

with increasing problem sizes is achieved for the more complicated problems, too. Still, for

the largest problem with 254,069 degrees of freedom, one needs nine to eleven pcg steps

preconditioned by the semi-geometric V(2, 2)-cycle to reduce the error by a factor of at least

10−10, depending on the boundary conditions.

6.1.2 Flexible choice of coarse meshes

In this section, the influence of the choice of the coarse meshes is studied in more detail.

First, we make sure that the setting of the previous paragraph is sufficiently general by

showing that the results do not depend on the exact positions of the employed meshes.

Second, we examine the behavior of the semi-geometric method in case the same set of

coarse meshes is employed to construct multilevel spaces for different problems. This study

shows that, in practice, it is not necessary to put too much effort into finding the most

appropriate set of coarse meshes; very good convergence may be obtained even if the coarse

meshes “fit only roughly”.

As indicated before, we feel obliged to demonstrate that all above described qualitative

and quantitative behaviors are not due to any special relations between the meshes. For

this purpose, we consider several rotated settings. Then, Figure 6.6 depicts the measured

convergence rates ρ̄ for three of the problems from Table 6.1 in case the respective fine

mesh is rotated about the axis spanned by the sum of the standard basis vectors (ei)1≤i≤3

by different angles. The obtained rates are almost constant over the entire range of studied

configurations; the complexity measures (not illustrated here) do not change either. The

influence of small changes to the coarse meshes on the multilevel hierarchy is examined in

more detail in Section 6.1.4.

Let us now turn to the issue of robustness of the convergence behavior with respect to the
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Figure 6.6. The measured convergence rates are virtually independent of rotations

of the meshes. Each line represents one of the quantities ρ̄ for the V-cycles and the

pcg iterations, respectively, plotted versus the angle of rotation. The three diagrams

are associated with the fifth, seventh and eighth problem from Table 6.1 (from left

to right).

#elements #nodes

A ball 744 5,952 47,616 184 1,210 8,767

B cube 768 6,144 49,152 189 1,241 9,009

C cube 1,729 13,832 110,656 421 2,798 20,339

Table 6.4. Overview of the characteristics of the meshes employed in the conver-

gence study with fixed coarse meshes reported on in Table 6.5.

choice of the coarse meshes. In Section 6.1.1, we have seen that the multigrid convergence

rates increase only moderately in case the coarse meshes are chosen by an appropriate

heuristic. The power of the semi-geometric idea results from the advantage that the same

set of coarse meshes (T`)`<L may be applied successfully to solve very different problems.

We demonstrate this by the following study.

To investigate the influence of the choice of the coarse meshes, three different sets

(T`)`=0,...,L−1 are considered; the examples are labeled A, B and C. For this purpose, we

choose an enclosing ball or cube and each time generate a simple coarsest mesh T0. Then,

two uniform refinement steps are performed resulting in a total of four levels (L = 3) for

each of the given fine problems to be considered. The characteristic data of the coarse

meshes are given in Table 6.4. Note that the numbers are very similar for the examples A

and B. However, the first one is an unstructured mesh of a ball whereas the second one is

a structured mesh of a cube; cf. Figure 6.1. The meshes of example C are also associated

with a cube but a little finer and unstructured.

We report on the convergence of the multigrid method and the respective complexity

measures for problems of different sizes ranging from 33,067 to 244,932 degrees of freedom

in Table 6.5. For each of the coarse mesh hierarchies specified before (A, B and C), the

table contains the measured convergence rates ρ̄V(2,2) and ρ̄pcg
V(2,2), now for εtr = 0.20 and

εtr = 0.05. Note that the behavior for these two choices of the parameter εtr is essentially

the same although mostly the rates are significantly smaller for the more accurate but more

expensive information transfer with εtr = 0.05, as expected.

First, within each example, i. e., in each part labeled A, B and C, it is evident that
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#elements #dof Cgr Cop ρ̄V(2,2) ρ̄pcg
V(2,2) Cgr Cop ρ̄V(2,2) ρ̄pcg

V(2,2)

A 181,789 33,067 1.28 1.74 0.031 0.014 1.29 1.95 0.020 0.008

262,365 47,348 1.20 1.52 0.047 0.019 1.21 1.68 0.032 0.012

361,907 64,833 1.15 1.38 0.066 0.024 1.15 1.50 0.047 0.018

490,617 87,244 1.11 1.28 0.086 0.031 1.11 1.37 0.066 0.023

719,951 127,787 1.08 1.19 0.131 0.046 1.08 1.26 0.098 0.036

858,429 151,930 1.07 1.16 0.154 0.050 1.07 1.22 0.121 0.045

1,017,911 179,831 1.06 1.13 0.180 0.060 1.06 1.18 0.144 0.050

1,390,421 244,932 1.04 1.09 0.222 0.075 1.04 1.13 0.181 0.068

B 181,789 33,067 1.20 1.53 0.046 0.016 1.21 1.68 0.028 0.010

262,365 47,348 1.14 1.36 0.064 0.021 1.15 1.47 0.042 0.015

361,907 64,833 1.11 1.26 0.087 0.030 1.11 1.35 0.064 0.023

490,617 87,244 1.08 1.19 0.109 0.037 1.08 1.26 0.087 0.030

719,951 127,787 1.05 1.13 0.155 0.052 1.06 1.18 0.131 0.044

858,429 151,930 1.05 1.11 0.182 0.061 1.05 1.15 0.156 0.051

1,017,911 179,831 1.04 1.09 0.205 0.069 1.04 1.13 0.180 0.062

1,390,421 244,932 1.03 1.06 0.265 0.091 1.03 1.09 0.228 0.082

C 181,789 33,067 1.35 1.94 0.026 0.011 1.36 2.19 0.013 0.006

262,365 47,348 1.25 1.66 0.043 0.014 1.26 1.84 0.025 0.009

361,907 64,833 1.19 1.48 0.050 0.019 1.19 1.62 0.037 0.015

490,617 87,244 1.14 1.35 0.088 0.031 1.14 1.46 0.074 0.019

719,951 127,787 1.10 1.24 0.092 0.035 1.10 1.32 0.075 0.028

858,429 151,930 1.08 1.20 0.113 0.043 1.09 1.27 0.088 0.033

1,017,911 179,831 1.07 1.17 0.146 0.048 1.07 1.23 0.112 0.041

1,390,421 244,932 1.05 1.12 0.162 0.066 1.05 1.17 0.186 0.059︸ ︷︷ ︸ ︸ ︷︷ ︸
εtr = 0.20 εtr = 0.05

Table 6.5. Convergence rates of the semi-geometric multigrid method and the

corresponding pcg in case the coarse meshes remain fixed within each of the parts

A, B and C. The results are given for two choices of the parameter εtr.
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Figure 6.7. Comparison of the convergence behaviors: rate ρ̄pcg
V(2,2) (left) and com-

plexity Cop (right) plotted versus the number of degrees of freedom. The rather flat

red lines marked with × represent the values from Table 6.1 where appropriate coarse

meshes have been chosen for each single problem size. The other three lines illustrate

the increase of the convergence rate and the decrease of the operator complexity in

case the coarse meshes remain unchanged. The latter data is from the examples A,

B and C from Table 6.5; the paramter εtr is always chosen as 0.20.

the convergence rates increase and the complexity measures decrease with increasing fine

problem sizes. Second, one notes that the coarse meshes of example B yield space hierarchies

with slightly worse convergence rates but at the same time better complexities. This is due

to the fact that a number of nodes or elements of the coarse meshes lies far outside the

actual computational domain ΩL. As explained earlier, such nodes or elements do not

contribute to the constructed coarse spaces (V`)`<L. The meshes of example C are finer,

which results in smaller convergence rates over the entire range of considered fine problems

with slighly larger complexities.

Note that the rates for the largest problems can obviously not compete with the ones in

Table 6.1. Starting from very small values, they grow substantially faster because the coarse

level hierarchy is not capable of representing the defect problem sufficiently accurately for

increasing problem sizes. This is also reflected in the considerably smaller complexities Cop

for the larger problems. Both effects are illustrated in Figure 6.7. Moreover, the increase of

the setup time is significantly slower than linear in case the coarse meshes remain unchanged;

see Figure 6.3 (right). This is as expected and has two reasons. First, clearly less effort

needs to be spent computing the coupling terms compared with the case of appropriately

chosen (much finer) coarse meshes. Second, the coarse level spaces have relatively few

degrees of freedom, which results in a faster assembly of the coarse level matrices.

All in all, the experiments show that a set of chosen coarse meshes is applicable for

a respectable range of fine problem sizes. Consequently, one may choose the coarse mesh

hierarchies in a rather flexible way. The fact that similar coarse meshes, occasionally even

the same sets of meshes, are favorable for many fine meshes of different natures has further

been illustrated by the more complicated geometry at the end of Section 6.1.1.
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#elements #dof Cop CΠ ρ̄pcg
std ρ̄pcg

mod Cop CΠ ρ̄pcg
std ρ̄pcg

mod

13,383 2,678 1.37 0.16 0.266 0.090 1.35 0.28 0.216 0.049

48,320 9,228 1.35 0.17 0.288 0.099 1.33 0.30 0.279 0.107

93,620 17,647 1.34 0.17 0.347 0.184 1.31 0.45 0.331 0.158

181,789 33,067 1.36 0.18 0.359 0.198 1.32 0.48 0.403 0.220

361,907 64,833 1.38 0.19 0.367 0.206 1.34 0.48 0.459 0.294

719,951 127,787 1.35 0.19 0.412 0.258 1.30 0.64 0.515 0.352

1,017,911 179,831 1.27 0.18 0.423 0.275 1.24 0.65 0.536 0.378

1,390,421 244,932 1.24 0.18 0.436 0.292 1.21 0.65 0.564 0.393︸ ︷︷ ︸ ︸ ︷︷ ︸
setupSGMG setupSGMGimm

Table 6.6. Convergence rates of the pcg iteration with the additive semi-geometric

multilevel preconditioners.

6.1.3 Additive semi-geometric preconditioners

This paragraph is concerned with the additive semi-geometric preconditioners introduced

in Section 3.2.3. We study the relevant variants in the setting described at the beginning

of this chapter (Section 6.1.1). Note that, as is often observed for this type of method,

the quality of the additive preconditioner (Algorithm 3.5) does not depend significantly on

whether the coarse problem at level ` = 0 is solved exactly. It turns out that an inexact

coarse level solve by the standard smoothing operator is sufficient.

We have seen that there are two equally straightforward ways for the construction of the

coarse level hierarchy, namely the recursive procedure setupSGMG (Algorithm 3.3), which

is also employed for the multigrid method, and the “immediate” variant setupSGMGimm

as described in Section 3.2.3. These two methods result in considerably different structures

of the prolongation and restriction routines. We also study this in the experiments.

For this purpose, let us consider another complexity measure which is less common.

Recall that n` is the number of degrees of freedom at level ` and nA` is the number of

non-zero entries in the matrix A` ∈ Rn`×n` , ` ∈ {0, . . . , L}. In addition, we denote by nΠ
`

the number of non-zero entries in Π`
`−1 or in ΠL

`−1, ` ∈ {1, . . . , L}, depending on which

matrices have been computed. Then, to quantify the memory requirements and also the

cost of prolongation and restriction more accurately, we introduce the ratio

CΠ :=

∑L
`=1 n

Π
`

nAL
.

For comparison, CΠ is around 0.04 for the medium-sized problem with completely nested

meshes which is studied in the next paragraph (Section 6.1.4).

In Table 6.6, we consider the performance of the pcg iteration preconditioned by the

(standard) additive semi-geometric method given by Algorithm 3.5 in case X0 ⊂ . . . ⊂
XL−1 6⊂ XL. The results are given for both proposed variants for the setup of the operators

(ΠL
` )`=0,...,L. To ensure comparability of the data with a modified version, we report on

the convergence rates ρ̄pcg
std in case ν = 2 smoothing steps are performed at each level.
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#elements #dof Cop CΠ ρ̄pcg
std ρ̄pcg

mod Cop CΠ ρ̄pcg
std ρ̄pcg

mod

719,951 127,787 1.32 0.19 0.354 0.180 1.28 0.33 0.487 0.321

1,017,911 179,831 1.26 0.19 0.400 0.252 1.22 0.48 0.518 0.344

1,390,421 244,932 1.24 0.19 0.416 0.265 1.21 0.48 0.538 0.369︸ ︷︷ ︸ ︸ ︷︷ ︸
setupSGMG setupSGMGimm

Table 6.7. Convergence rates of the pcg iteration with the additive semi-geometric

multilevel preconditioners in case the coarse meshes are also non-nested.

The modified algorithm already mentioned in Section 3.2.3 is obtained by splitting the

smoothing steps at level L and performing one before the restriction and one after the

prolongation such that the numbers of operations are the same in the two versions. We

denote the respective convergence rates by ρ̄pcg
mod. Table 6.7 contains the results for the

examples with X0 6⊂ . . . 6⊂ XL.

The experiments show that the convergence rates of the pcg with the standard additive

algorithm are significantly larger than the ones of the multiplicative versions. They may

indeed be improved considerably by modifying the order of the operations at the finest

level as described above. It is interesting to note that the rates in Table 6.7 with the

completely non-nested coarse meshes are slightly better. In the analogous experiment for

the multiplicative algorithms, this is not the case.

Let us now focus on the complexity measures of the constructed multilevel hierarchies.

Evidently, if setupSGMG is employed, all complexities are the same as for the multiplicative

methods. In this case, we see that CΠ is almost constant over the entire range of problem

sizes. This is different for the hierarchies produced by setupSGMGimm. Although Cop stays

in a quite reasonable range (so does Cgr which is not given in the table), the quantity CΠ is

considerably larger. In contrast to before, it grows with increasing problem size. This effect

seems to be less severe for the second variant (Table 6.7) where also the coarse meshes are

non-nested.

The examples of the behavior of the additive multilevel methods in this paragraph

employ εtr = 0.20. Note that the observations only weakly depend on the choice of this

parameter.

6.1.4 Studying the almost nested case

In this paragraph, we investigate the connection between the semi-geometric multigrid

methods and the truly geometric variant more closely. This is done by considering a suffi-

ciently simple geometry and treating the geometric multigrid method as a special case in a

family of almost nested settings. By this experiment, we aspire to give a more precise idea

of what kind of results can be achieved in the general unstructured case.

For this purpose, consider a hierarchy of four nested meshes of the unit cube where

the coarsest mesh consists of 768 elements with 189 nodes. Throughout the study, we

keep the finest mesh TL = T3 with 393,216 elements and 68,705 nodes fixed. In contrast,

the coarse domains and the corresponding coarse meshes are scaled with a different factor



6.1 Semi-geometric multilevel methods 141

O
p

er
a

to
r

co
m

p
le

xi
ty

0.95 1.00 1.05
1.1

1.2

1.3

1.4

1.5

1.6

C
o

n
ve

rg
en

ce
ra

te
s
ρ̄

o
f
V

-c
yc

le

0.95 1.00 1.05
0

0.05

0.10

0.15

0.20

0.25

0.30

C
o

n
ve

rg
en

ce
ra

te
s
ρ̄

o
f

p
cg

0.95 1.00 1.05
0

0.05

0.10

Scaling factor Scaling factor Scaling factor

Figure 6.8. The complexity measure Cop (left) and the convergence rates ρ̄V(2,2)

(center) and ρ̄pcg
V(2,2) (right) of a semi-geometric multigrid method, plotted versus

the scale of the coarse meshes. Each line represents a different parameter εtr ∈
[0.01, 0.49]. The marked lines correspond to the values 0.01 (∇), 0.20 (◦) and 0.49

(4), respectively.

between 0.95 and 1.05 for each set of tests. We study the complexity of the constructed

space hierarchy and the convergence of the semi-geometric multigrid method for a variety

of values for the parameter εtr in [0.01, 0.49]. Note that, for linear finite elements associated

with simplicial meshes, it does generally not make sense to choose εtr greater than or equal

0.5. This is because such a choice would result in deleting entries even in case of perfectly

nested meshes, leaving nodes without direct coupling to the next coarser level.

The results are illustrated in Figure 6.8. Note that each single line represents either

the complexity Cop or one of the convergence rates ρ̄V(2,2) and ρ̄pcg
V(2,2) for a fixed parameter

εtr plotted versus the scale of the coarse meshes. The lines corresponding to the extreme

εtr-values 0.01 and 0.49 are marked by a downward and upward triangle, respectively; the

intermediate value of 0.20 is marked by a circle. Table 6.8 contains the numbers for these

three values. We stop with the scales 0.95 and 1.05, respectively. For smaller factors, the

convergence rates further increase quite fast as less and less of the computational domain

Ω = ΩL is covered by the coarse meshes; the complexity measures do not change much in

this case. For larger factors, the convergence rates slowly increase whereas the complexity

measures decrease. This is due to the fact that more and more elements of the coarse

meshes lie completely outside the computational domain.

This series of experiments is well suited to explain several phenomena. As expected and

observed in the vast majority of experiments, the convergence rates principally increase with

increasing truncation parameter. Note that the deterioration of the convergence behavior

is usually rather slow, though. It is evident that the semi-geometric methods, which leave

the coarse meshes flexible, coincide with the standard geometric variants in the special case

of nested meshes. In addition, an important observation is that both the complexities and

the convergence rates of the geometric multigrid methods are retained in case the meshes

are almost nested if a suitable parameter εtr is applied; see the discussion below. This

also indicates that our construction is robust in the sense that the coarse level hierarchy

(and with it the multigrid convergence) only varies slightly if the coarse meshes themselves

change slightly. Perturbations of the meshes are irrelevant for the efficiency of the methods.
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scale Cop ρ̄V(2,2) ρ̄pcg
V(2,2) Cop ρ̄V(2,2) ρ̄pcg

V(2,2) Cop ρ̄V(2,2) ρ̄pcg
V(2,2)

0.95 1.52 0.169 0.054 1.33 0.168 0.055 1.20 0.256 0.089

0.96 1.52 0.118 0.041 1.34 0.142 0.043 1.19 0.268 0.091

0.97 1.53 0.018 0.008 1.32 0.048 0.020 1.18 0.235 0.076

0.98 1.53 0.026 0.009 1.25 0.047 0.018 1.16 0.112 0.037

0.99 1.52 0.031 0.012 1.16 0.041 0.015 1.15 0.041 0.016

1.00 1.15 0.044 0.016 1.15 0.044 0.016 1.15 0.044 0.016

1.01 1.50 0.031 0.012 1.16 0.048 0.017 1.15 0.048 0.018

1.02 1.51 0.025 0.009 1.25 0.047 0.019 1.15 0.122 0.047

1.03 1.51 0.020 0.008 1.31 0.048 0.019 1.16 0.273 0.085

1.04 1.50 0.020 0.008 1.30 0.037 0.017 1.18 0.256 0.089

1.05 1.46 0.024 0.009 1.29 0.045 0.017 1.18 0.269 0.088︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
εtr = 0.01 εtr = 0.20 εtr = 0.49

Table 6.8. Studying the convergence behavior for a family of almost nested meshes

associated with the unit cube. The middle row (scale 1.00) corresponds to the

completely nested case in which the approach coincides with the standard geometric

multigrid method.
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Figure 6.9. The complexity measure Cop (left) and the convergence rates ρ̄V(2,2)

(center) and ρ̄pcg
V(2,2) (right) of a semi-geometric multigrid method, plotted versus the

size of the translation of the coarse meshes for different parameters εtr.
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This can also be seen in another experiment illustrated in Figure 6.9. Here, we consider

different translations of the coarse meshes associated with the cube of scale 1.05 in direction

of the unit vector (2
3 ,

2
3 ,

1
3)T ∈ R3 by sizes up to 0.12. In this case, the computational domain

is covered for almost the entire range of translations.

As a general rule, we observe the following effects. The larger the parameter εtr the

less sensitive is the complexity Cop to changes of the coarse meshes. The smaller εtr the

less sensitive are the convergence rates to changes of the coarse meshes. In our scaling

examples, the convergence actually improves in case of small perturbations for sufficiently

small εtr. This is of course accompanied by a rapid increase of Cop. The choice εtr = 0.20 is a

reasonable attempt to achieve the two competing goals. It manages to keep the convergence

rates almost constant for a rather broad range of different problem sizes while leading to a

moderate increase of Cop; see Figure 6.8.

Note that the size of the problem studied here (68,705 degrees of freedom on a struc-

tured mesh) is roughly comparable to the seventh setting (64,833 degrees of freedom on an

unstructured mesh) of the very first experiment in Section 6.1.1; see Table 6.1. This high-

lights the quality of the developed multigrid methods and preconditioners for unstructured

meshes, respectively, as the measured semi-geometric convergence rates, ρ̄V(2,2) = 0.060

and ρ̄pcg
V(2,2) = 0.024, are not much worse than the ones produced by the geometric method

on the cube, ρ̄V(2,2) = 0.044 and ρ̄pcg
V(2,2) = 0.016. However, for unstructured meshes with-

out natural coarse level hierarchy, it seems impossible to achieve this convergence with an

operator complexity as small as 1.15 which is easily obtained in the structured case.

6.1.5 Application of other transfer concepts

In this paragraph, we study several interesting phenomena regarding the application of

different transfer concepts in the semi-geometric methods. So far, we have presented our

convergence results employing the standard finite element interpolation I to construct the

semi-geometric multilevel hierarchy from the non-nested sequence of meshes. The exper-

iments in the following justify this choice as it turns out that the operator I is most

reasonable in a rather general sense. Here, we compare the nodal interpolation and the

other transfer concepts investigated in Chapter 5 apart from the L2-projection, which is

not practicable due to its global character, as discussed before. However, we have seen in

Section 5.8.5 that some of the local operators approximate the L2-orthogonal projection

between finite element spaces associated with non-nested meshes quite well.

For the purposes of the present analysis, it is useful to introduce an over-relaxation

parameter α ≥ 1. In the context of multilevel iterative methods, the term over-relaxation

stands for a multiplication of the coarse level correction Π`
`−1x

′ in the resepective cycles

at level ` (see Algorithm 3.4) by a number greater than one. On the one hand, it is

generally reasonable to examine whether an over-relaxation of the coarse level correction

can improve the convergence, especially in view of the affinity of our method to aggregation-

based algebraic multigrid; see [20, 176]. On the other hand, the study of this effect allows

us to identify some differences between the transfer concepts. The choice of α influences the

convergence behaviors of the studied multigrid methods to different degrees. In particular,

we consider the dependence on the truncation procedure, namely on the size of εtr.
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#elements εtr I Q̂ R̃′ Rr=0 Rr=1 Rr=2 P
93,620 0.01 1.48 1.83 1.83 1.98 1.97 1.90 2.01

0.05 1.45 1.61 1.61 1.70 1.70 1.54 1.56

0.10 1.41 1.51 1.51 1.57 1.58 1.45 1.41

0.20 1.34 1.39 1.39 1.43 1.44 1.35 1.32

719,951 0.01 1.49 1.91 1.91 2.08 2.07 1.99 2.11

0.05 1.46 1.66 1.66 1.77 1.76 1.57 1.60

0.10 1.42 1.54 1.54 1.62 1.61 1.47 1.42

0.20 1.35 1.40 1.40 1.45 1.45 1.35 1.32

Table 6.9. For two selected problems of different size from Figure 6.10, we give the

measured operator complexities Cop depending on the parameter εtr and the choice

of the transfer Π.

Recall that it has been demonstrated in Section 5.8.5 that the pseudo-L2-projection

is the closest to the L2-projection. We are now interested in determining whether this

is beneficial for the application in the semi-geometric methods. Note that the theoretical

investigations in Chapter 5 still imply that most of the geometrically inspired transfer

concepts, although in part very different from each other, should yield optimal multilevel

methods.

We have conducted a large number of experiments; the most relevant results are sum-

marized in two pages of diagrams (Figure 6.10 and Figure 6.11) which are explained in

the following. The arrangement of the diagrams is designed to give an insight into the

dependence of the convergence rates on the following variables:

• the type of the employed transfer operators, Π ∈ {I, Q̂, R̃′, Rr=0, Rr=1, Rr=2, P},

• the truncation parameter, εtr ∈ {0.01, 0.05, 0.10, 0.20},

• the over-relaxation parameter, α ∈ [1.0, 1.4],

• the problem size, meshes from Table 6.1 and Table 6.5 (A), respectively.

The operator type is fixed in each of the seven rows whereas the size of the parameter εtr

is fixed in each of the four columns. The charts show the convergence rates ρ̄pcg
V(2,2) plotted

versus the parameter α. Each line represents a different problem size; we have ten lines

per diagram in Figure 6.10 and eight lines per diagram in Figure 6.11. The nine measuring

points for the parameter α, which constitute the respective lines, are marked by dots. Note

that all axes have the same scales.

We present our results for both variants of the convergence studies performed at the

beginning of this section. More precisely, Figure 6.10 depicts the convergence rates in case

appropriate coarse meshes are chosen as in Section 6.1.1. In Figure 6.11, we study the

behaviors for the fixed coarse meshes from example A of Section 6.1.2. The case εtr = 0.01

is not of practical relevance as the constructed coarse level problems are usually too dense;

see, e. g., Section 6.1.4 and the complexities in Table 6.9. We still give the measured data

as it corresponds to the most accurate usage of the respective transfer concepts.
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Figure 6.10. Convergence rates ρ̄pcg
V(2,2) plotted versus the over-relaxation parameter

α ∈ [1.0, 1.4]. The operator type is fixed in each row; the level of truncation by the

parameter εtr is fixed in each column. Each line represents a different problem size.
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Figure 6.11. Convergence rates ρ̄pcg
V(2,2) plotted versus the over-relaxation parameter

α ∈ [1.0, 1.4]. This addresses the case of a fixed set of coarse meshes, which has

initially been studied in Section 6.1.2. Each line represents a different problem size.
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First, note that the convergence rates slighly worsen with increasing εtr. This holds

true for every operator; it can be seen in each row of both Figure 6.10 and Figure 6.11 as

the curves are shifted upward a bit from left to right. We have studied this effect in detail

for the nodal interpolation I in the previous examples. This confirms that a geometrically

inspired transfer concept shows the following reasonable behavior: Neglecting (small) parts

of the available information (slightly) affects the inherent approximation power and thus

(slightly) worsens the convergence.

Second, recall that we have seen in Section 5.8.5 that the studied operators exhibit

significant quantitative differences. However, the results when applied in the construction

of the multigrid method are not very different, except for the operator P in the last row

of Figure 6.10. For P, the optimal relaxation parameter seems to depend highly on the

problem size, whereas for the other operators it does not change much if at all. Beside P
only Rr=2 shows this tendency. The effect is less prominent for the example with fixed

coarse meshes in Figure 6.11.

Third, we observe that over-relaxation is not necessary to obtain fast convergence in

the semi-geometric approach; in all cases, the convergence rates increase moderately with

the problem size and can be improved at most slightly, again with the exception of P.

The magnitude of the convergence rates confirms the applicability of the studied transfer

concepts. This includes the operator R̃′ despite the findings of Section 5.8.5. The fact that

over-relaxation is not suitable is in contrast to algebraic multigrid based on aggregation,

where the idea to take advantage of this technique was motivated by the fact that the

constructed coarse level (basis) functions exhibit regions in which they are very flat. In this

case, a dramatic improvement could be achieved by over-relaxation with α as large as 1.8;

see [24]. This observation suggests that the shapes of our coarse level basis functions are

more similar to the standard ones. This conclusion is supported by the fact that the optimal

over-relaxation parameter tends to depend on the level of truncation, which is certainly a

procedure “increasing flatness”.

We have no conclusive explanation yet why P behaves differently in this context. The

reason might lie in the fact that this operator reflects a concentration of the local weighting

towards the centers of the patches, compared to the other operators comprising a weighting.

However, the nodal interpolation I, which is in a sense the “most local operator possible”,

behaves similarly to all other transfer concepts.

6.1.6 Linear elastic problems

Before proceeding to the non-linear problems in the next section, let us briefly address

the performance of the (linear) semi-geometric multigrid methods for systems of partial

differential equations. Here, we perform two of the previous experiments once again in

the different setting, namely for a linear elastic problem. We do this to keep the effects

originating from the system of partial differential equations (compared with the scalar

equation) and from the treatment of the contact conditions separate.

Let the constants in the linear constitutive law (1.9) be E = 200 GPa and ν = 0.3, i. e.,

λ ≈ 115.38 GPa and µ ≈ 76.92 GPa. The material described by these parameters may be

considered a selected steel grade. Evidently, iterative solvers are robust with respect to
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#elements #dof Cgr Cop ρ̄V(1,1) ρ̄V(2,2) ρ̄V(3,3) ρ̄pcg
V(1,1) ρ̄pcg

V(2,2) ρ̄pcg
V(3,3)

1,380 975 1.17 1.26 0.162 0.048 0.019 0.053 0.014 0.006

4,111 2,646 1.17 1.31 0.178 0.064 0.035 0.063 0.022 0.011

13,383 8,034 1.18 1.37 0.224 0.086 0.045 0.077 0.029 0.016

48,320 27,684 1.15 1.35 0.257 0.109 0.065 0.091 0.039 0.024

93,620 52,941 1.15 1.34 0.310 0.140 0.092 0.115 0.051 0.030

181,789 99,201 1.15 1.36 0.351 0.164 0.098 0.133 0.059 0.035

361,907 194,499 1.15 1.38 0.392 0.188 0.115 0.152 0.072 0.043

719,951 383,361 1.14 1.35 0.394 0.205 0.139 0.154 0.076 0.049

1,017,911 539,493 1.11 1.27 0.451 0.250 0.161 0.178 0.088 0.055

1,390,421 734,796 1.10 1.24 0.480 0.255 0.178 0.188 0.095 0.063

Table 6.10. Convergence rates of the semi-geometric multigrid method and the

corresponding pcg applied to a linear elastic problem.

Young’s modulus E. We do not study the behavior for the critical case ν → 0.5 here.

It is important to note that the cost of the setup relative to the number of degrees

of freedom is much less here. This is because we treat the different physical unknowns

separately, i. e., the scalar displacements in direction of the basis vectors (ei)1≤i≤3, such

that the coarse level hierarchy is the same in each component. Recall the basis Λ` =

(λ`pei)p∈N`,1≤i≤3 of the vector-valued space X` := (X`)
3 defined in Section 1.3. Then, the

(3× 3)-block between the nodes p ∈ N` and q ∈ N`−1 is

(Π̄
`
`−1)pq :=

 (Π`
`−1)pq 0 0

0 (Π`
`−1)pq 0

0 0 (Π`
`−1)pq

 , (6.1)

for ` ∈ {1, . . . , L}, where (Π`
`−1)pq ∈ R is the entry of the respective prolongation matrix

in the scalar case. These blocks constitute the matrix representations Π̄
`
`−1 ∈ R3n`×3n`−1 ,

` ∈ {1, . . . , L}, of the prolongation operators. If the diagonal structure of the blocks in (6.1)

is not changed, one may obviously save memory by storing only a single scalar quantity

per pair of nodes. In addition, the bases of the semi-geometric spaces (V `)`=0,...,L−1 read

as Λ̃` = (λ̃`pei)p∈N`,1≤i≤3 for ` ∈ {0, . . . , L − 1} in this case. Here, the functions (λ̃`p)p∈N`
are defined by the exact same formulas as in the scalar case, namely by (3.4) and (3.5).

Therefore, the complexity measures are the same as for the scalar experiments; we state

them again in the tables for clarity. We reconsider the block structure of the prolongation

matrices in Section 6.2.1 in the context of the monotone multigrid methods.

First, we report on an example which uses the same meshes as described in Section 6.1.1.

In the smoothing iterations, collective relaxation of the degrees of freedom associated with

the same node is employed as indicated in Section 2.4. The results of the experiments stated

in Table 6.10 show a moderate increase of the convergence rates with increasing problem

size, comparable to the behavior of the method in the scalar case. Note that the largest

problem has 734,796 degrees of freedom here.

To compare the performance with geometric multigrid methods, let us also consider
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scale Cop ρ̄V(2,2) ρ̄pcg
V(2,2) Cop ρ̄V(2,2) ρ̄pcg

V(2,2) Cop ρ̄V(2,2) ρ̄pcg
V(2,2)

0.95 1.52 0.253 0.091 1.33 0.268 0.097 1.20 0.388 0.154

0.96 1.52 0.230 0.073 1.34 0.232 0.082 1.19 0.394 0.147

0.97 1.53 0.095 0.034 1.32 0.136 0.049 1.18 0.350 0.127

0.98 1.53 0.098 0.037 1.25 0.140 0.052 1.16 0.208 0.072

0.99 1.52 0.118 0.044 1.16 0.138 0.052 1.15 0.139 0.051

1.00 1.15 0.144 0.053 1.15 0.144 0.053 1.15 0.144 0.053

1.01 1.50 0.121 0.045 1.16 0.146 0.054 1.15 0.159 0.056

1.02 1.51 0.110 0.040 1.25 0.146 0.055 1.15 0.231 0.086

1.03 1.51 0.109 0.041 1.31 0.139 0.051 1.16 0.373 0.137

1.04 1.50 0.115 0.042 1.30 0.140 0.050 1.18 0.397 0.145

1.05 1.46 0.121 0.043 1.29 0.154 0.053 1.18 0.404 0.151︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
εtr = 0.01 εtr = 0.20 εtr = 0.49

Table 6.11. Studying the almost nested case for the linear elastic setting by the

experiment from Section 6.1.4. The qualitative behavior is the same as for the scalar

problems. The convergence of the geometric multigrid method, namely the case of

completely nested meshes, is presented in the middle row.

the almost nested case which has been studied for scalar problems in Section 6.1.4. The

problem associated with the unit cube now has 206,115 degrees of freedom. The results of

the analogous experiments are given in Table 6.11. Again, note that the complexities are

the same as before. The corresponding sketch, namely the analogon of Figure 6.8 is very

similar to before but with the curves shifted upward; we omit it here.

6.2 Semi-geometric monotone multigrid methods

It is worthwile to consider an extension of the semi-geometric multigrid methods to a non-

linear iteration for the solution of variational inequalities. In this section, we briefly discuss

how to convert the linear method to a monotone multigrid method [121, 122, 124] and

present numerical examples for Signorini’s problem. For an overview of other methods for

the solution of elastic contact problems, let us refer to [125] and the references therein as

well as to the monographs [135, 192].

We emphasize that the multilevel finite element spaces employed in the semi-geometric

monotone multigrid methods are non-standard in a double sense. The finite element func-

tions of the given non-nested coarse spaces (X`)`=0,...,L−1 are altered twice. First, the

semi-geometric hierarchy is constructed by means of the framework developed in Chap-

ter 3. Second, the coarse spaces are modified depending on the current fine level iterate

by truncating certain basis functions. This is explained in Section 6.2.1. It is interesting

that this double modification does not really seem to impact the asymptotic convergence

behavior.

Although, in contrast to methods employing outer iterations, the treatment of the con-
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tact constraints is well incorporated into the multigrid method, the modifications of our

particular implementation are relatively small. This is because we have a flexible tool-

box obslib++ for the extended problem class ready to hand; see [124] and also the work

[70, 71, 72, 73, 100, 125, 126, 127, 128, 129] based thereon.

The contact constraints are handled by a projected block Gauß–Seidel smoother in the

finest space XL. Note that the monotone multigrid methods do not require coarse level

approximations of the current iterates. This is in contrast to other non-linear multigrid

algorithms; see the discussion in Section 5.9. By a suitable truncation of the coarse level

bases, every action at the coarser levels is completely defined by the current fine level

iterate. This means that the non-linearity is treated, on the one hand, by employing a

non-linear smoother at the finest level and, on the other hand, by modifying the space

hierarchy appropriately.

6.2.1 Conversion into a monotone multigrid method

In this paragraph, we outline the additional ingredients required to change the linear semi-

geometric multigrid method into a monotone method for contact problems. The details

about the characteristics of obslib++ can be found in [124]. We focus on the issues which

are special to the present purpose.

Let a sequence of non-nested vector-valued finite element spaces (X`)`=0,...,L be given.

Also assume that the prolongation matrices (Π̄
`
`−1)`=1,...,L with the block structure (6.1)

have been computed according to a suitable transfer concept. To solve the Signorini prob-

lem, namely the variational inequality (1.19) in the finite element space XL, one needs

to distinguish between the components of the displacements in the normal direction and

the tangential directions at the possible contact boundary ΓC . This may be done by an

orthogonal transformation, e. g., realized as local Householder reflections. At each node

p ∈ NL ∩ΓC , the basis (ei)1≤i≤3 is rotated to a new system (epi )1≤i≤3 such that ep1 = n(p);

see [129]. The Euclidean basis vectors remain unchanged at the majority of nodes, i. e.,

we have epi = ei for p ∈ NL \ (NL ∩ ΓC), 1 ≤ i ≤ 3. This yields a locally modified basis

Λ′L = (λLp e
p
i )p∈NL,1≤i≤3 of XL. In particular, the non-penetration condition becomes

KL = {v ∈XL | v(p) · e1 ≤ g(p), ∀ p ∈ NL ∩ ΓC}

if v ∈XL is written with respect to Λ′L as we do in the following.

The blocks from (6.1) of the prolongation matrix Π̄
L
L−1 ∈ R3nL×3nL−1 which are as-

sociated with possible contact nodes are adjusted accordingly. We denote the resulting

matrix, which is the representation of the transfer operator from XL−1 to XL with respect

to the standard basis ΛL−1 and the modified (“rotated”) basis Λ′L, by Π̄
′L
L−1. For the

nodes p ∈ NL and q ∈ NL−1, let the entries of the block (Π̄
′L
L−1)pq ∈ R3×3 be denoted by

(Π̄
L
L−1)ijpq, 1 ≤ i, j ≤ 3. We have the analogous notation for the blocks (Π̄

`
`−1)pq from (6.1)

associated with nodes p ∈ N` and q ∈ N`−1.

Consequently, the definition of the coarse level bases is slightly more involved than

before in Section 6.1.6, where the block entries of the prolongation matrices were diagonal
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at all levels. Here, the basis Λ̃L−1 = (λ̃
L−1

q,j )q∈NL−1,1≤j≤3 of V L−1 reads as

λ̃
L−1

q,j :=
∑
p∈NL

3∑
i=1

(Π̄
′L
L−1)ijpq λ

L
p e

p
i , ∀ q ∈ NL−1, 1 ≤ j ≤ 3.

Further, note that the bases of the spaces X` have not been modified at the coarse levels,

i. e., for ` < L. Therefore, to construct the spaces (V `)`=0,...,L−2, we have the recursive

relation

λ̃
`

q,j :=
∑

p∈N`+1

(Π`+1
` )pqλ̃

`+1

p,j , ∀ q ∈ N`, 1 ≤ j ≤ 3, (6.2)

for the bases Λ̃` = (λ̃
`

q,j)q∈N`,1≤j≤3 with ` ∈ {0, . . . , L− 2}.
As indicated before, we employ a non-linear block Gauß–Seidel method, which is de-

scribed in detail in [124]. The non-penetration conditions are treated only on the possi-

ble contact boundary represented at the finest level, i. e., at the nodes in NL ∩ ΓC . Let

ukL ∈ V L = XL be some intermediate iterate. For this approximate solution, we denote

the set of active nodes where the constraints are binding by

AkL := {p ∈ NL ∩ ΓC | ukL(p) · e1 = g(p)}.

The paradigm of monotone multigrid methods is that the coarse level correction must not

change the active constraints. Therefore, a linear multilevel preconditioner depending on

the current iterate is employed which acts only on the subspace

V k
L := {v ∈ V L | v(p) · e1 = 0, ∀ p ∈ AkL} ⊂ V L.

For this purpose, the coarse spaces need to be constructed in a non-trivial way as, in

general, the constraints in AkL cannot be represented at the coarser levels ` < L in the

standard multilevel basis. This difficulty is overcome by using so-called truncated basis

functions. As the approach developed in [121, 124] is of purely algebraic character, this

idea can be applied to the semi-geometric framework quite straightforwardly.

To derive a multilevel hierarchy of subspaces of V k
L from the semi-geometric spaces

(V `)`=0,...,L−1, consider the sets

Ak` := {p ∈ N` | ∃ q ∈ Ak`+1, (Π`+1
` )pq > 0}

recursively defined for ` ∈ {0, . . . , L − 1}. We remark that the scalar quantities (Π`+1
` )pq

are indeed appropriate in this definition. Moreover, note that these sets are used for a

recursive modification of the spaces exclusively. No special treatment of the nodes in Ak`
by the smoothing operators at the coarse levels is necessary; the standard smoothers are

adequate.

We obtain the truncated coarse level spaces by local modifications. The respective bases

(Λ̃`)`=0,...,L−1 are changed to Λ̃
k

` = (λ̃
`,k

q,j)q∈N`,1≤j≤3 with

λ̃
L−1,k

q,j := λ̃
L−1

q −
∑
p∈AkL

(Π̄
′L
L−1)1j

pq λ
L,k
p,1 , ∀ q ∈ NL−1, 1 ≤ j ≤ 3, (6.3)
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Figure 6.12. Illustration of the considered contact problem: sketch of the solu-

tion (left); an unstructured mesh of the warped geometry (center) with zoom in

on a corner (right). The coloring of the left image reflects the component of the

displacement field in direction of the obstacle, i. e., downward.

and then, recursively for ` ∈ {0, . . . , L− 2},

λ̃
`,k

q,j :=
∑

p∈N`+1

(Π`+1
` )pqλ̃

`+1,k

p,j , ∀ q ∈ N`, 1 ≤ j ≤ 3, (6.4)

which corresponds to (6.2). This yields coarse spaces (V k
` )`=0,...,L−1 contained in V k

L. Note

that generally V k
` 6⊂ V `.

The outlined truncation procedure is efficiently implemented by local algebraic modifi-

cations. Concerning the prolongation matrices, we see by (6.3) and (6.4) that only entries

between the levels L−1 and L need to be modified, namely set to zero, in blocks associated

with nodes in AkL. In contrast, the stiffness matrices at the levels ` < L change at the nodes

in (Ak` )`=0,...,L−1. This holds true in the standard (not semi-geometric) case of [124], too.

All in all, this approach leads to a convergent non-linear iteration process which reduces

to a linear subspace correction method as soon as the actual contact boundary is identified;

see [122, 124]. Note that the truncated basis functions are of crucial importance for the

convergence and the efficiency of the method, particularly for complicated geometries in

case d = 3. As a matter of fact, monotone multigrid methods for contact show to be of

optimal complexity, even for frictional problems; see also [125, 126].

6.2.2 Numerical results

In the following experiment, we study the asymptotic convergence behavior of the semi-

geometric monotone multigrid method for Signorini’s problem. For this purpose, we con-

sider the cube-like geometry depicted in Figure 6.12 where one of the six faces, namely

the possible contact boundary, is warped. Let the rigid obstacle be the half space given

by the tangential plane of the center point of the warped surface. This problem remotely

reminds of the one studied analytically by Hertz [110] as early as in the year 1881. For

the assessment of the performance of solvers for contact problems, it is crucial to choose

a setting where at least the geometry or the obstacle are not flat. Otherwise, the correct

discrete contact zone is likely to be identified in the very first step of the iteration.



6.2 Semi-geometric monotone multigrid methods 153

#elements #dof |AL| Cgr Cop KV(2,2) ρ̃V(2,2) KV(3,3) ρ̃V(3,3) KV(4,4) ρ̃V(4,4)

6,568 4,197 9 1.15 1.34 19(4) 0.238 16(4) 0.166 14(3) 0.133

63,645 36,102 44 1.13 1.33 21(7) 0.295 18(7) 0.202 16(7) 0.162

310,198 168,978 155 1.11 1.33 20(7) 0.325 17(6) 0.226 15(6) 0.158

543,408 293,346 240 1.11 1.32 23(8) 0.357 19(8) 0.237 18(7) 0.196

1,037,557 555,198 418 1.12 1.36 25(8) 0.422 20(8) 0.309 18(8) 0.231

1,206,114 643,704 478 1.10 1.31 27(9) 0.449 21(9) 0.340 19(8) 0.269

Table 6.12. Convergence of the semi-geometric monotone multigrid method.

The setting of this study needs to differ from the ones before as the problem is non-

linear. In particular, it is not sufficient to study the convergence behavior to the trivial

solution only. We prescribe non-zero Dirichlet boundary conditions for the displacements

at the top quadratic surface of the domain, pointing towards the obstacle. The influence of

the size of the boundary values is discussed below; the data does not need to be physically

reasonable for our purposes. May the material parameters of the linear elastic body be

chosen as in Section 6.1.6.

A usual estimate for the algebraic error in the context of iterative methods for variational

inequalities is the energy norm of the computed correction as indicated in (1.26); see [121].

We denote by KV(ν1,ν2) the number of monotone multigrid steps, i. e., of non-linear V(ν1, ν2)-

cycles specified by the construction in Section 6.2.1, to reach an estimated algebraic error

less than 10−10 starting from the initial iterate u0
L = 0. Let ρ̃V(ν1,ν2) be the corresponding

approximate asymptotic convergence rate given by (1.26) with k = KV(ν1,ν2) − 1.

Table 6.12 contains the results of the convergence study in case of Dirichlet values of

size 0.08. For comparison, the size of the domain is two in all space dimensions. Moreover,

the initial distance to the obstacle at the center point of the warped surface is zero. Similar

to before in Section 6.1.1, we have generated several completely independent meshes of

different sizes, which are then treated as given fine level problems. Then, the coarse meshes

are chosen appropriately by means of the outlined strategy to construct a suitable coarse

level hierarchy. In addition to the usual problem data, namely the number of elements and

the number of degrees of freedom, we state the quantity |AL| := |AKV(ν1,ν2)

L |. To describe

the convergence behavior over this range of problems, we consider the mentioned rates

ρ̃, the total number of multigrid steps and also the number of included non-linear steps

constituting the transient phase at the beginning of the iteration. The latter are given in

brackets. Both has not been necessary for the linear problems presented in the previous

section; there, the convergence behavior was completely characterized by the quantities ρ̄.

The presented numbers show a moderate increase of the convergence rates and iteration

counts with increasing problem size. Operator and grid complexities stay in a rather small

range. The monotone multigrid cycles tend to need one or two more smoothing iterations

to achieve results comparable to the linear method. This is an observation which has in

principle been made for the case where the truncated spaces are constructed from standard

multilevel finite elements in [124], too. However, comparing the results in Table 6.12 with

the ones in Table 6.10, recall that both the problem settings and the error measurements
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Figure 6.13. Studying the dependence of the convergence on the magnitude of

the prescribed boundary data: number of nodes in the actual contact zone (left);

total number of semi-geometric monotone multigrid steps KV(3,3) marked by × and

included non-linear steps marked by ∗ (center); convergence rates ρ̃V(3,3) (right).

The values are given for the third and fifth problem of Table 6.12 in red and blue,

respectively.

are different. A detailed investigation of other practical issues in the context of monotone

multigrid methods for Signorini’s problem can be found in [124]. For instance, we do not

study the effect of highly varying normals here.

Let us now examine the dependence of the convergence on the magnitude of the pre-

scribed boundary data. For this purpose, we consider two of the above problems of different

sizes and apply Dirichlet boundary values at the top surface in direction of the obstacle

between 0.02 and 0.16 in eight independent runs each. Before, in Table 6.12, a medium

size of 0.08 was studied. It turns out that the convergence is only weakly affected. The

result of this study is illustrated in Figure 6.13 for the monotone multigrid iteration with

V(3, 3)-cycles. As an illustration, we give the increasing number of nodes which are in

contact, namely |AL|, in the left diagram.



7 Multigrid methods based on
parametric finite elements

In this chapter, we turn our attention to a selected technique for the application of ele-

mentary multilevel ideas to problems with complicated boundaries. This is done in the

context of the numerical simulation of elastic contact problems. Combining the general

multilevel setting with a different perspective, namely an advanced modeling point of view,

we present a (monotone) multigrid method based on a hierarchy of parametric finite element

spaces. For this purpose, a full-dimensional parameterization is employed which accurately

represents the computational domain.

Although the developed concept is related to several considerations made throughout

this thesis, especially to the discussion in Section 4.1, we prefer to organize this as a supple-

ment at the end. Indeed, the development of this particular focus does not need to be linked

too closely to the previous chapters. However, we mainly do this because the purpose of the

parametric finite element discretization put forward in this chapter is two-fold. On the one

hand, it allows for an elegant multilevel hierarchy to be used in the mentioned multigrid

algorithms. But, on the other hand, it comes with particular advantages for the modeling

of contact problems. As a matter of fact, a combination of the parametric concept with

other ideas, which can take advantage of an enhanced representation of the computational

domain to improve some modeling aspects, is certainly advisable. This is elaborated in

more detail in Section 7.1. After all, the long-term objective lies in an increased flexibility

of hp-adaptive methods for contact problems.

7.1 Introduction

In the numerical simulation of elastic contact problems, the treatment of the non-penetra-

tion conditions at the potential contact boundary is of particular importance for both the

quality of a finite element approximation and the overall efficiency of the algorithms. A vital

challenge is to achieve an accurate description of geometric features, e. g., of warped sur-

faces, often incorporated in three-dimensional models from computer-aided design (CAD).

Here, we investigate a new connection of different numerical methods, namely modern dis-

cretization techniques for partial differential equations on complex geometries on the one

side and fast multilevel solvers for constrained minimization problems on the other side.

It is fair to say that the development of hp-adaptive methods for contact problems

has not yet reached a mature state; see, e. g., [54] and the references therein. Partly,

this is due to the difficulties concerning the geometric representation of the computational

domain. A generally accepted paradigm is, though, that high order (finite element or

boundary element) methods need high order meshes [114, 140]. This is especially difficult

for three-dimensional multi-body contact problems. In this case, the application of non-

conforming domain decomposition techniques [173] to realize the information transfer across

geometrically non-matching warped contact interfaces is a highly demanding task. For low

order finite elements, this has been achieved, among others, by the author; see [71].
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The perspective we offer here is a parametric finite element method. For hp-adaptive

methods it is convenient to have a parameterization describing the geometry accurately

ready to hand. This is because a change of the computational domain due to locally

altered polynomial degree is not desirable. Therefore, it is reasonable to uncouple the

representation of the geometry on the one hand and of a scale of approximation spaces

for the discrete solution on the other hand. These two purposes are usually not separated

properly. But of course, one can find curved elements of other than isoparametric structure

in some form or another in the literature; see, e. g., [93, 205] or the monograph [56] and

the references therein. Note that, for similar reasons, an “isogeometric” concept, which

uses NURBS bases for both the description of the geometry and the discrete solution of the

differential equation, has been introduced in [114].

For practical computations, the development of fast and robust solvers is equally im-

portant. As this issue has not yet been in the main focus of, e. g., the isogeometric analysis

[114], we would like to contribute ideas from the field of multilevel methods for variational

inequalities. More precisely, as indicated before, we show how to use a monotone multigrid

method to efficiently solve the non-linear contact problem discretized with low order para-

metric finite elements. Note that the actual treatment of higher order elements is beyond

the scope of the present discussion.

To obtain multilevel parametric finite element spaces in case d = 3, we use a full-

dimensional parameterization, constructed by tetrahedral transfinite interpolation [158] of

CAD data, to lift standard Lagrange elements to the computational domain. Note that,

similarly, a surface parameterization has been used in a wavelet Galerkin scheme for bound-

ary integral equations, see [108]. Such a procedure may serve as an essential prerequisite

to tackle the problems mentioned above. In particular, many of the issues arising in the

generation of p-version meshes for curved boundaries [140] can be avoided in a quite ele-

gant way. In this sense, although rather expensive, the use of a high order parameterization

permits maximal freedom in an hp-adaptive discretization scheme. We presume that the

present concept can also be combined with the ideas in [71].

All in all, the results presented in this excursus constitute at least a little progress on

the way to an efficient hp-adaptive numerical simulation of contact problems in case of

complex three-dimensional geometries.

7.2 Parametric finite elements
In this section, we introduce a parametric finite element discretization of the contact prob-

lem stated in Section 1.2.2. On the one hand, this method uses much more geometric

information from a CAD model than standard finite elements; on the other hand, we do

not use the same functions for the discrete approximation of the displacement field as for

the representation of the geometry, which is done in the so-called “isogeometric analysis”

introduced in [114]. This allows for a reasonable multilevel hierarchy in case of low order

trial functions to be discussed in the next section.

In the following, the symbols ϕ with some indices stand for certain parameterizations

or transformations; this must not be confused with the notation of the deformation in

the continuum mechanical model. We denote the (closed) d-simplex by ∆d and its faces
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ϕT∆

↪−→
ϕk
↪−→

Figure 7.1. From left to right: the reference element T̂ = ∆3; a mesh of the

simplex ∆3; a parametric mesh (here, K = 1) where each element is an image of an

affine element; a tetrahedral decomposition of a cylinder with K = 8.

by ∆d
j , j ∈ {1, . . . , d + 1}. To describe the elastic body (here, d = 3) by a practicable

parameterization, we consider a non-overlapping simplicial decomposition of Ω ⊂ Rd into a

fixed number of K ≥ 1 subdomains. Formally this reads as

Ω =

K⋃
k=1

Ωk =

K⋃
k=1

ϕk(∆
d),

where the notation already indicates that the subdomains (Ωk)k=1,...,K appear as particular

images of suitable parameterizations (ϕk)k=1,...,K . This is illustrated in Figure 7.1 (right).

Let us assume that the faces of the simplicial cells Ωk, namely the surfaces ϕk(∆
d
j ),

k ∈ {1, . . . ,K}, j ∈ {1, . . . , d+1}, are given as B-patches. This way to represent polynomial

surfaces is analyzed in [66]. In this case, the author of [158] proposes to construct the full-

dimensional mappings ϕk : ∆d → Rd, k ∈ {1, . . . ,K}, as transfinite interpolations of the

surface values from the CAD model using certain blending functions. Particularly, the

single parameterizations are smooth and they match across these B-patch surfaces if the

surfaces themselves match. This gives rise to a consistent global parameterization which

we do not write down explicitly. We note that this global mapping is continuous but not

necessarily differentiable across the interior interfaces. In addition, one can guarantee that

each parameterization ϕk satisfies the regularity assumption

det(∇ϕk) > 0 in ∆d. (7.1)

In fact, this is one of the main results of [158].

In the following, we define the parametric finite element spaces in a rather straightfor-

ward way via a lift of standard Lagrange finite elements. For this purpose, let (T k` )`∈N be a

family of nested simplicial meshes of ∆d for each k ∈ {1, . . . ,K}. To keep the global finite

element spaces conforming, we assume that the meshes meeting at the faces of the simpli-

cial subdomains Ωk of Ω match at each level ` ∈ N. Let T̂ be the reference element; here,

T̂ = ∆d. Then, for each T∆ ∈ T k` , there is an affine mapping ϕT∆
such that ϕT∆

(T̂ ) = T∆.

Now, we give a concise description of the parametric elements in Ω by employing the

special finite element transformations

ϕT := ϕk ◦ϕT∆
: T̂ → Rd, (7.2)
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which are diffeomorphisms between the reference element T̂ and the actual elements. That

way, the parametric elements at level ` ∈ N are identified as the images of the elements

of the meshes (T k` )k=1,...,K ; see Figure 7.1. More precisely, a family of parametric meshes

(T`)`∈N of Ω can be defined by

T` :=
{
T = ϕT (T̂ ) = ϕk(ϕT∆

(T̂ )) | 1 ≤ k ≤ K, T∆ ∈ T k`
}
, ∀ ` ∈ N.

Assume that this family of global meshes is shape regular and quasi-uniform according to

the equations (1.16) and (1.17). Note that assumption (7.1), combined with the continuous

differentiability of the mappings (ϕk)k=1,...,K , in the compactum ∆d, implies that it is

sufficient to ensure these conditions for each sequence (T k` )`∈N separately as far as we keep

K fixed.

Finally, let P := Pr(T̂ ) be the space of polynomials of degree r in T̂ . Then, for ` ∈ N,

the parametric finite element space associated with the parametric mesh T` is

X` :=
{
v ∈ C0(Ω) | ∀ T ∈ T` ∃ w ∈ P : v(x) = w(ϕ−1

T (x)), ∀ x ∈ T
}

=
{
v ∈ C0(Ω) | v ◦ϕT ∈ P, ∀ T ∈ T`

}
.

(7.3)

Note that, in principle, the above definition makes sense for any reasonable set of finite

element transformations (ϕT )T∈T` . In case the mappings are constructed as in (7.2) via the

high order parameterization from [158], this is a “superparametric” concept if the degree r

is small. This is in contrast to the subparametric or isoparametric finite elements which

are usually considered in the literature; see [56].

From a practical point of view, virtually every kind of parameterization can be em-

ployed with the following qualification. For an efficient assembly of the stiffness matrix and

the right hand side via sufficiently accurate numerical quadrature, the derivatives of the

resulting finite element transformations (7.2) and the mappings themselves must be easy

to evaluate; see, e. g., [9].

Let us now apply the above concept. We suppose that the Dirichlet data has been

treated appropriately. Then, a discretization of Signorini’s problem described in Sec-

tion 1.2.2 is obtained by specifying a suitable set of admissible displacements K` using

the vector-valued parametric finite element space X` := (X`)
3 defined by (7.3) with r = 1.

The discrete variational problem reads exactly as before in the standard case of Section 1.3

if, as usual, the non-penetration conditions on the possible contact boundary ΓC are merely

enforced at the nodes N`∩ΓC . For clarity, we recall the variational inequality: find u` ∈ K`

such that

a(u`,v − u`) ≥ F(v − u`), ∀ v ∈ K` := {v ∈X` | v(p) · n(p) ≤ g(p), ∀ p ∈ N` ∩ ΓC} .

Remark 7.1. Although, from a modeling point of view, as much geometric information as

possible should be used for an accurate description of contact phenomena, we remark that

a strong pointwise non-penetration condition everywhere on ΓC is usually not suitable for

the variational formulation the (parametric) finite element method relies on. Besides, a

decoupled set of constraints is preferable for a variety of reasons. The common remedy is

to prescribe the contact constraints with respect to a suitable cone of Lagrange multipliers.
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This requires the introduction of appropriate sets of functionals in (H
1
2 (ΓC))′. To retain

inequality constraints which can be enforced merely by looking at the nodes, one can employ

discontinuous test spaces similar to the ones we used for the pseudo-L2-projection as pointed

out in Section 5.5.2. This connection is elaborated in more detail, e. g. in our preprint [73].

The quality of a priori error estimates for the above discretization certainly depends on

a number of aspects which have to be examined more closely. Beside regularity assumptions

for the solution of (1.15), the balance of the primal degrees of freedom and the constraints

by means of an inf-sup condition and certain properties of the parameterization, e. g., the

regularity (7.1), influence the error analysis.

7.3 Monotone multigrid for parametric elements

For the solution of the arising discrete variational inequalities, we propose a monotone

multigrid method; see Section 6.2. Similar to some of the approaches reviewed in Section 4.1,

the scale of parametric finite element spaces constitutes an adjusted discretization technique

which allows for an almost straightforward application of multilevel ideas. For this purpose,

we examine the constructed space hierarchy, which we presume to possess the required

approximation properties, and the corresponding natural transfer operators in a little more

detail.

By construction, the spaces defined by (7.3) are nested. This is an immediate conse-

quence of the fact that the parameterization is fixed and does not change with the index `.

Still, let us formulate this statement in the following lemma and give an elementary proof

of the assertion.

Lemma 7.2. The parametric finite element spaces (X`)`∈N are nested.

Proof . For ` ≥ 1, let v ∈ X`−1 be arbitrary. Then, for T ∈ T`−1 there is a unique ele-

ment T∆ ∈ T k`−1 for some k ∈ {1, . . . ,K} such that ϕk(T∆) = T . Let (T i∆)i=1,...,N be the

children of T∆ in T k` . In general, 1 ≤ N ≤ 2d; in case of standard uniform refinement of

the simplices, it is N = 2d. We have the corresponding elements (T i)i=1,...,N in T` with

T i = ϕk(T
i
∆) for i ∈ {1, . . . , N}. By assumption, v ◦ ϕT = v ◦ ϕk ◦ ϕT∆

∈ P. Therefore,

v ◦ ϕT i = v ◦ ϕk ◦ ϕT i∆ ∈ P because T i∆ ⊂ T∆ and the finite element transformations are

affine. As each element of T` appears as the child of an element in T`−1 in the above fashion,

we obtain v ∈ X`. Consequently, X`−1 ⊂ X` for all ` ≥ 1.

Therefore, no advanced transfer concepts need to be studied here as the canonical in-

clusion I``−1 : X`−1 → X` is the most natural operator to be used as prolongation. Note

that these operators only depend on the logical structure; as in the standard nested case of

Section 2.2.1, the representing matrices contain the entries 0, 0.5 and 1 and may be com-

puted from the neighborhood relations in and between the simplicial meshes (T k`−1)k=1,...,K

and (T k` )k=1,...,K . This is because the respective multilevel basis is defined via a lift by

proceeding as in (7.3). As a result, for a fixed finest level L, the computation of the

matrices (I``−1)`=1,...,L between the nested spaces (X`)`=0,...,L does not need the parame-

terization. However, the computation of the outer normals (n(p))p∈NL∩ΓC and also of the
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#elements #dof #steps ρ̃ |AL|
96 107 8 (2) 0.032 3

768 615 10 (3) 0.031 15

6,144 3,915 11 (4) 0.065 58

49,152 27,795 13 (6) 0.091 199

393,216 209,187 14 (6) 0.102 753

3,145,728 1,622,595 15 (8) 0.114 2,984

Figure 7.2. Contact problem of a parameterized cylinder with a rigid obstacle

shaped like a broad channel. The colors indicate the displacement in e3-direction.

values (g(p))p∈NL∩ΓC for the prescription of the contact constraints may require access to

the mappings (ϕk)k=1,...,K .

We anticipate that the constructed coarse spaces have the desired multilevel approxima-

tion properties. More precisely, under mild assumptions on the employed parameterization

mappings (ϕk)k=1,...,K , the relevant Jackson- and Bernstein-type inequalities mentioned in

Section 2.3.2 transfer from the standard finite element spaces to the parametric spaces; see

also [107].

Finally, we would like to point out that no modifications are necessary in the code of the

solver provided that the local normal/tangential coordinate systems can be computed from

the parameterization. Consequently, a monotone multigrid method can be employed for

contact problems discretized with parametric finite elements in the quite straightforward

way outlined above. See Figure 7.2 for a numerical example illustrating the performance

of the method. We report on the asymptotic convergence rate of a conjugate gradient

method with the monotone multigrid (V(3, 3)-cycle) as preconditioner. Starting with the

initial iterate zero at each refinement level (i. e., no nested iteration), we list the number of

total steps needed to reduce the residual norm to less than 10−10. The count of included

non-linear steps is given in brackets.

Concluding remarks

The results briefly described in this excursus certainly have preliminary character; the

performance of the presented algorithms needs to be studied in more detail. This is work

in progress∗. However, the experiments so far show that (monotone) multigrid methods

based on parametric finite elements work as expected; see Figure 7.2. Still, the effort

of constructing a (high order) parameterization by the methodology developed in [158]

especially pays if there is also a considerable gain on the modeling side. Here, the effect of

this special resolution of the boundary on the discrete approximation of contact phenomena

or general boundary effects needs to be investigated more closely.

∗We would like to thank Helmut Harbrecht and Maharavo Randrianarivony for bringing this topic to
our attention. Moreover, we acknowledge the latter for providing his code for the tetrahedral transfinite
interpolation described in [158]. The valuable assistance of Lukas Döring in the implementation of a flexible
interface of the parameterization concept to our finite element code is highly appreciated.



Conclusion

We have presented a class of multilevel methods based on non-nested meshes. The devised

algorithms can indeed be used to efficiently solve problems associated with unstructured

meshes, which do not exhibit any natural multilevel structures. Our numerical experiments

provide convincing arguments for both the applicability and the flexibility of the semi-

geometric framework.

Relevant connections to other geometry-based multilevel techniques have been explained

at different points throughout the presentation. Let us emphasize that the assumptions of

our convergence analysis are particularly weak. We have been able to prove quasi-optimal

convergence and preconditioning results without any of the surely tighter relations between

the hierarchies of non-nested meshes or spaces that come into play with other geometric

multilevel algorithms.

In the thorough investigation of the information transfer between finite element spaces

associated with non-nested meshes, we have identified several local operators, which are

suitable for an application in the semi-geometric framework. All studied transfer concepts

between non-nested finite element spaces have been geometrically motivated and thus in-

volved the corresponding non-nested meshes.

In particular, we have seen in a series of experiments that the introduced pseudo-L2-

projection operator is by far the closest to the actual L2-projection when applied in the

present context. However, the numerical experiments concerning the multilevel iterations

based on the semi-geometric approach have shown that the standard nodal interpolation is

the most appropriate choice in practice. It turns out that this quite simple transfer concept

yields the most efficient multilevel hierarchies. Besides, the fact that most of the studied

operators are well-suited provides more proof for the practical applicability of the proposed

multilevel methods.

Another finding of the extensive numerical studies is the robustness of the semi-geo-

metric approach with respect to the choice of the coarse meshes and the required truncation

of the prolongation matrices. It also seems that it is generally appropriate to choose coarse

meshes which are nested such that X0 ⊂ . . . ⊂ XL−1 6⊂ XL. This is supported by the

experiments. However, the case of completely non-nested hierarchies is covered by the

analysis we have carried out in Chapter 3 and also works in practice.

An issue which needs to be investigated more closely is the possible local adaptation

of the coarse meshes to a given fine mesh. This may be necessary for highly non-uniform

meshes to more accurately retain the approximation power of the coarse level spaces. In

addition, the described methods could be analyzed for finite element spaces of higher order.

Moreover, the brief discussion of the parametric multigrid idea in Chapter 7 demonstrates

that the first steps have been taken towards a flexible combination of the parametric concept

and the indicated multilevel approach. We will study this in more detail in future work.
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from\to B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
B1 1.00 0.76 0.75 0.80 0.83 0.85 0.87 0.88 0.90 0.91 0.91 0.92 0.93 0.93 0.94
B2 0.52 1.00 0.68 0.72 0.77 0.79 0.82 0.83 0.85 0.87 0.88 0.88 0.90 0.91 0.92
B3 0.45 0.57 1.00 0.67 0.74 0.76 0.78 0.81 0.83 0.85 0.86 0.86 0.89 0.89 0.90
B4 0.37 0.46 0.54 1.00 0.68 0.71 0.74 0.77 0.79 0.81 0.83 0.84 0.87 0.87 0.88
B5 0.36 0.42 0.49 1.00 0.64 0.67 0.70 0.74 0.77 0.78 0.79 0.83 0.84 0.85
B6 0.37 0.44 0.55 1.00 0.63 0.67 0.71 0.74 0.76 0.77 0.81 0.82 0.83
B7 0.39 0.49 0.54 1.00 0.64 0.67 0.71 0.73 0.75 0.78 0.79 0.81
B8 0.43 0.47 0.53 1.00 0.63 0.67 0.69 0.71 0.75 0.76 0.77
B9 0.42 0.47 0.53 1.00 0.63 0.64 0.67 0.72 0.73 0.75
B10 0.41 0.46 0.53 1.00 0.60 0.63 0.69 0.69 0.72
B11 0.44 0.49 0.55 1.00 0.61 0.66 0.67 0.70
B12 0.46 0.52 0.55 1.00 0.63 0.64 0.67
B13 0.46 0.48 0.51 1.00 0.63 0.62
B14 0.46 0.50 0.60 1.00 0.60
B15 0.46 0.52 0.54 1.00

Table A.1. H1-stability of I.

from\to B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
B1 1.00 0.93 0.96 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B2 0.61 1.00 0.86 0.92 0.96 0.97 0.97 0.98 0.98 0.99 0.99 0.99 1.00 1.00 1.00
B3 0.49 0.68 1.00 0.86 0.94 0.95 0.96 0.97 0.97 0.98 0.99 0.99 1.00 1.00 1.00
B4 0.37 0.52 0.64 1.00 0.88 0.92 0.94 0.95 0.96 0.97 0.98 0.98 0.99 0.99 1.00
B5 0.35 0.44 0.55 1.00 0.80 0.87 0.91 0.94 0.96 0.96 0.97 0.98 0.98 0.99
B6 0.37 0.48 0.65 1.00 0.81 0.88 0.92 0.95 0.95 0.96 0.98 0.98 0.98
B7 0.39 0.56 0.64 1.00 0.82 0.89 0.93 0.94 0.95 0.97 0.97 0.98
B8 0.46 0.54 0.63 1.00 0.82 0.89 0.91 0.93 0.97 0.97 0.98
B9 0.44 0.53 0.64 1.00 0.83 0.86 0.90 0.95 0.96 0.97
B10 0.43 0.54 0.65 1.00 0.80 0.85 0.92 0.94 0.97
B11 0.49 0.60 0.71 1.00 0.82 0.90 0.92 0.96
B12 0.54 0.66 0.71 1.00 0.87 0.90 0.94
B13 0.54 0.60 0.67 1.00 0.87 0.89
B14 0.58 0.65 0.82 1.00 0.88
B15 0.60 0.74 0.78 1.00

Table A.2. H1-stability of Q.
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from\to B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
B1 1.00 0.87 0.89 0.92 0.93 0.94 0.95 0.96 0.97 0.97 0.97 0.98 0.98 0.98 0.98
B2 0.57 1.00 0.76 0.81 0.89 0.90 0.91 0.93 0.94 0.95 0.96 0.96 0.97 0.97 0.98
B3 0.45 0.61 1.00 0.77 0.85 0.87 0.89 0.91 0.93 0.94 0.95 0.95 0.97 0.97 0.97
B4 0.35 0.48 0.57 1.00 0.78 0.82 0.85 0.88 0.90 0.92 0.93 0.93 0.95 0.96 0.96
B5 0.33 0.43 0.51 1.00 0.72 0.78 0.82 0.85 0.88 0.90 0.91 0.93 0.94 0.94
B6 0.35 0.44 0.60 1.00 0.73 0.78 0.83 0.86 0.88 0.89 0.92 0.93 0.93
B7 0.37 0.52 0.59 1.00 0.74 0.79 0.83 0.85 0.87 0.90 0.91 0.92
B8 0.43 0.49 0.57 1.00 0.73 0.79 0.81 0.84 0.88 0.89 0.91
B9 0.42 0.50 0.58 1.00 0.74 0.77 0.80 0.86 0.88 0.89
B10 0.41 0.50 0.59 1.00 0.71 0.76 0.83 0.85 0.88
B11 0.47 0.55 0.65 1.00 0.74 0.81 0.83 0.87
B12 0.51 0.60 0.65 1.00 0.78 0.81 0.85
B13 0.51 0.56 0.61 1.00 0.81 0.80
B14 0.54 0.60 0.77 1.00 0.79
B15 0.57 0.68 0.72 1.00

Table A.3. H1-stability of P.

from\to B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
B1 0.43 0.47 0.55 0.62 0.68 0.72 0.77 0.79 0.82 0.84 0.85 0.86 0.89 0.89 0.90
B2 0.25 0.40 0.41 0.47 0.60 0.62 0.65 0.70 0.73 0.77 0.78 0.80 0.83 0.84 0.85
B3 0.20 0.27 0.40 0.40 0.51 0.55 0.60 0.65 0.69 0.73 0.74 0.77 0.80 0.81 0.82
B4 0.13 0.20 0.26 0.39 0.42 0.48 0.53 0.58 0.63 0.67 0.69 0.71 0.76 0.77 0.78
B5 0.13 0.16 0.22 0.38 0.36 0.41 0.47 0.53 0.58 0.61 0.63 0.69 0.70 0.72
B6 0.13 0.18 0.27 0.38 0.37 0.43 0.48 0.54 0.56 0.59 0.65 0.66 0.69
B7 0.14 0.22 0.26 0.38 0.37 0.43 0.49 0.51 0.55 0.61 0.62 0.65
B8 0.17 0.21 0.25 0.38 0.37 0.43 0.46 0.49 0.56 0.57 0.60
B9 0.12 0.15 0.20 0.25 0.30 0.33 0.37 0.44 0.45 0.49
B10 0.12 0.16 0.20 0.25 0.27 0.31 0.38 0.40 0.43
B11 0.19 0.24 0.29 0.37 0.36 0.43 0.44 0.48
B12 0.21 0.26 0.29 0.37 0.40 0.41 0.45
B13 0.21 0.23 0.26 0.37 0.36 0.39
B14 0.22 0.25 0.33 0.37 0.38
B15 0.23 0.30 0.32

Table A.4. H1-stability of R, r = 0.
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from\to B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
B1 0.39 0.47 0.54 0.61 0.68 0.71 0.74 0.77 0.79 0.81 0.83 0.83 0.86 0.86 0.87
B2 0.20 0.31 0.37 0.46 0.54 0.58 0.63 0.67 0.71 0.74 0.75 0.77 0.80 0.81 0.82
B3 0.15 0.23 0.30 0.36 0.46 0.51 0.56 0.61 0.66 0.69 0.71 0.73 0.77 0.78 0.79
B4 0.12 0.16 0.20 0.28 0.38 0.43 0.47 0.54 0.59 0.63 0.66 0.68 0.73 0.74 0.75
B5 0.11 0.13 0.17 0.27 0.30 0.36 0.42 0.48 0.53 0.56 0.58 0.65 0.66 0.68
B6 0.11 0.14 0.22 0.26 0.31 0.36 0.43 0.48 0.51 0.54 0.61 0.62 0.64
B7 0.12 0.17 0.21 0.26 0.31 0.37 0.43 0.46 0.49 0.56 0.57 0.60
B8 0.13 0.16 0.20 0.26 0.31 0.37 0.39 0.43 0.50 0.52 0.55
B9 0.13 0.16 0.20 0.25 0.31 0.34 0.37 0.45 0.46 0.50
B10 0.12 0.16 0.20 0.25 0.28 0.32 0.39 0.40 0.44
B11 0.14 0.18 0.23 0.25 0.29 0.36 0.38 0.42
B12 0.16 0.20 0.23 0.25 0.33 0.34 0.38
B13 0.16 0.18 0.21 0.25 0.29 0.32
B14 0.17 0.20 0.26 0.25 0.31
B15 0.18 0.23 0.25

Table A.5. H1-stability of R, r = 1.

from\to B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
B1 0.63 0.65 0.71 0.75 0.80 0.82 0.83 0.86 0.87 0.89 0.89 0.90 0.92 0.92 0.93
B2 0.37 0.59 0.57 0.63 0.71 0.74 0.77 0.79 0.82 0.84 0.85 0.86 0.88 0.89 0.90
B3 0.28 0.40 0.59 0.57 0.66 0.70 0.73 0.77 0.79 0.83 0.83 0.84 0.87 0.87 0.88
B4 0.21 0.31 0.38 0.58 0.58 0.62 0.67 0.71 0.75 0.78 0.79 0.81 0.84 0.85 0.86
B5 0.20 0.25 0.33 0.57 0.51 0.56 0.62 0.67 0.71 0.73 0.75 0.79 0.80 0.81
B6 0.20 0.27 0.39 0.57 0.51 0.57 0.63 0.68 0.70 0.72 0.77 0.78 0.79
B7 0.23 0.33 0.39 0.56 0.52 0.58 0.63 0.66 0.68 0.73 0.75 0.77
B8 0.26 0.31 0.37 0.56 0.51 0.58 0.61 0.64 0.70 0.71 0.73
B9 0.25 0.31 0.38 0.56 0.52 0.55 0.59 0.65 0.67 0.70
B10 0.25 0.31 0.38 0.56 0.49 0.53 0.61 0.62 0.66
B11 0.28 0.35 0.43 0.56 0.50 0.58 0.60 0.64
B12 0.31 0.39 0.42 0.55 0.55 0.57 0.61
B13 0.32 0.35 0.39 0.55 0.53 0.55
B14 0.34 0.38 0.49 0.55 0.54
B15 0.35 0.44 0.46

Table A.6. H1-stability of R, r = 2.
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from\to B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
B1 0.43 0.47 0.55 0.62 0.68 0.72 0.77 0.79 0.82 0.84 0.85 0.86 0.89 0.89 0.90
B2 0.25 0.40 0.41 0.47 0.60 0.62 0.65 0.70 0.73 0.77 0.78 0.80 0.83 0.84 0.85
B3 0.20 0.27 0.40 0.40 0.51 0.55 0.60 0.65 0.69 0.73 0.74 0.77 0.80 0.81 0.82
B4 0.13 0.20 0.26 0.39 0.42 0.48 0.53 0.58 0.63 0.67 0.69 0.71 0.76 0.77 0.78
B5 0.13 0.16 0.22 0.38 0.36 0.41 0.47 0.53 0.58 0.61 0.63 0.69 0.70 0.72
B6 0.13 0.18 0.27 0.38 0.37 0.43 0.48 0.54 0.56 0.59 0.65 0.66 0.69
B7 0.14 0.22 0.26 0.38 0.37 0.43 0.49 0.51 0.55 0.61 0.62 0.65
B8 0.17 0.21 0.25 0.38 0.37 0.43 0.46 0.49 0.56 0.57 0.60
B9 0.17 0.20 0.26 0.38 0.37 0.40 0.44 0.51 0.52 0.56
B10 0.16 0.21 0.26 0.37 0.35 0.38 0.45 0.47 0.51
B11 0.19 0.24 0.29 0.37 0.36 0.43 0.44 0.48
B12 0.21 0.26 0.29 0.37 0.40 0.41 0.45
B13 0.21 0.23 0.26 0.27 0.36 0.39
B14 0.22 0.25 0.33 0.37 0.38
B15 0.23 0.30 0.32

Table A.7. H1-stability of Q̂.

from\to B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
B1 1.04 1.19 1.37 1.50 1.72 1.81 1.88 1.96 2.03 2.10 2.12 2.14 2.21 2.23 2.25
B2 0.59 1.01 0.99 1.17 1.43 1.54 1.63 1.74 1.84 1.91 1.95 2.00 2.08 2.09 2.13
B3 0.46 0.67 0.98 0.99 1.27 1.39 1.49 1.62 1.73 1.82 1.86 1.90 1.99 2.02 2.06
B4 0.32 0.51 0.64 0.98 1.07 1.20 1.31 1.47 1.59 1.68 1.73 1.78 1.89 1.91 1.96
B5 0.31 0.40 0.53 0.96 0.90 1.04 1.18 1.32 1.46 1.51 1.59 1.72 1.74 1.80
B6 0.33 0.44 0.67 0.95 0.91 1.06 1.21 1.35 1.41 1.49 1.63 1.66 1.72
B7 0.36 0.55 0.66 0.95 0.94 1.08 1.23 1.29 1.37 1.52 1.56 1.63
B8 0.43 0.52 0.63 0.94 0.92 1.07 1.14 1.23 1.40 1.44 1.51
B9 0.41 0.51 0.65 0.94 0.93 1.00 1.09 1.27 1.31 1.39
B10 0.41 0.52 0.65 0.94 0.87 0.96 1.13 1.17 1.27
B11 0.47 0.59 0.73 0.93 0.89 1.07 1.11 1.21
B12 0.52 0.66 0.73 0.93 0.99 1.03 1.13
B13 0.52 0.58 0.66 0.93 0.91 0.98
B14 0.55 0.63 0.83 0.93 0.95
B15 0.58 0.74 0.79

Table A.8. H1-stability of R̃′`.
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[205] M. Zlámal. The finite element method in domains with curved boundaries. Int. J.

Numer. Methods Engrg. 1973; 5(3):367–373.


