
Systematic Identi�cation of Sca�olds

Representing Di�erent Types of

Structure-Activity Relationships

Kumulative Dissertation

zur Erlangung des Doktorgrades (Dr. rer. nat.)

der Mathematisch-Naturwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Ye Hu

aus Jiangsu, China

Bonn

March, 2011



Angefertigt mit Genehmigung
der Mathematisch-Naturwissenschaftliche Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Referent: Univ.-Prof. Dr. rer. nat. Jürgen Bajorath
2. Referent: Univ.-Prof. Dr. rer. nat. Michael Gütschow



Abstract

In medicinal chemistry, it is of central importance to understand structure-

activity relationships (SARs) of small bioactive compounds. Typically, SARs

are analyzed on a case-by-case basis for sets of compounds active against a

given target. However, the increasing amount of compound activity data that

is becoming available allows SARs to be explored on a large-scale. Moreover,

molecular sca�olds derived from bioactive compounds are also of high interest

for SAR analysis. In general, sca�olds are obtained by removing all substituents

from rings and from linkers between rings.

This thesis aims at systematically mining compounds for which activity an-

notations are available and investigating relationships between chemical struc-

ture and biological activities at the level of active compounds, in particular,

molecular sca�olds. Therefore, data mining approaches are designed to iden-

tify sca�olds with di�erent structural and/or activity characteristics. Initially,

sca�old distributions in compounds at di�erent stages of pharmaceutical de-

velopment are analyzed. Sets of sca�olds that overlap between di�erent stages

or preferentially occur at certain stages are identi�ed. Furthermore, a system-

atic selectivity pro�le analysis of public domain active compounds is carried

out. Sca�olds that yield compounds selective for communities of closely re-

lated targets and represent compounds selective only for one particular target

over others are identi�ed. In addition, the degree of promiscuity of sca�olds

is thoroughly examined. Eighty-three sca�olds covering 33 chemotypes corre-

spond to compounds active against at least three di�erent target families and

thus are considered to be promiscuous. Moreover, by integrating pairwise scaf-

fold similarity and compound potency di�erences, the propensity of sca�olds

to form multi-target activity or selectivity cli�s and, in addition, the global

sca�old potential of individual targets are quantitatively assessed, respectively.

Finally, structural relationships between sca�olds are systematically explored.

Most sca�olds extracted from active compounds are found to be involved in

substructure relationships and/or share topological features with others. These

substructure relationships are also compared to, and combined with, hierarchi-

cal substructure relationships to facilitate activity prediction.
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Introduction

After the completion of human genome project, it has been predicted that prod-

ucts of ∼3,000 genes might represent druggable targets and ∼600 to ∼1,500 of
these targets might be directly linked to diseases [1, 2]. On the other hand,

chemical space consisting of all possible small molecules is estimated to contain

more than 1060 molecules with at most 30 heavy atoms [3]. However, �bio-

logically relevant chemical space� that consists of chemical compounds acting

on biological system represents only a small fraction of theoretically possible

chemical space [4]. In chemical biology and medicinal chemistry research, it

is of high importance, and also challenging, to understand structure-activity

relationships (SARs) of such bioactive compounds that bind to one or more

individual targets and trigger biological responses and therapeutic e�ects.

Structure-Activity Relationships

Traditionally, SARs have been explored on a case-by-case basis, i.e. for individ-

ual compound series active against a given target. For this purpose, a number of

computational approaches are available such as classical quantitative SAR mod-

els [5], pharmacophore [6] or machine learning techniques [7]. Recently, several

new methodologies have also been developed. For example, di�erent numeri-

cal functions have been designed to quantitatively characterize SAR features

contained in a data set [8, 9]. In addition, computational activity landscapes

have also been utilized to graphically represent both structure and potency

relationships between compounds having similar biological activity [10]. Ac-

tivity landscapes of di�erent design and complexity have been introduced such

as two-dimensional Network-like Similarity Graphs [11] or three-dimensional

landscape views [12], where regions displaying di�erent global and local SAR

characteristics can be identi�ed. Furthermore, SAR contributions of substitu-
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tion sites and their combinations have also been quantitatively analyzed for

series of analogous compounds [13]. However, such SAR determinants can also

be explored at the level of molecular sca�olds.

Molecular Sca�olds

Molecular sca�olds or frameworks extracted from active compounds have been,

and continue to be, of high interest in medicinal chemistry. Di�erent de�nitions

of sca�olds are available. For example, sca�olds might be generated by breaking

prede�ned bonds in compounds on the basis of retrosynthetic rules [14]. Al-

ternatively, sca�olds might also be obtained by removing all substituents from

rings and from linkers between rings, forming molecular frameworks, also called

Bemis-Murcko sca�olds [15].

A number of sca�old analyses have been carried out from rather di�erent

points of view. For example, possible sca�old topologies have been exhaus-

tively enumerated for up to eight rings and the structural complexity of chem-

ical databases was analyzed on the basis of these sca�old topologies [16, 17].

Furthermore, the relationship between aromatic ring count and compound de-

velopability was analyzed on the basis of di�erent physicochemical properties

and ring types [18, 19]. Moreover, sca�old distributions and diversity have

been examined for di�erent data sources such as screening libraries [20], large

databases of organic compounds [21], natural products [22, 23], and drugs or

drug candidates [24].

In addition, a classi�cation scheme has been introduced that organizes sca�olds

and their derivatives in hierarchies and facilitates the identi�cation of new lig-

and types [25, 26]. Moreover, the notion of �privileged substructures�, originally

introduced by Evans et al [27], is highly attractive for drug discovery. Privi-

leged substructures are sca�olds thought to preferentially, or exclusively, bind

to a speci�c target family [28�30].

Availability of Public Compound Data

With the advant of high-throughput screening techniques, compounds can be

e�ectively assayed against an array of targets [31]. Therefore, increasing num-
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bers of active compounds become available, which enable SARs to be analyzed

on a large scale, instead of by conventional case-by-case investigations. E�orts

have been dedicated to build publicly accessible databases that are composed

of compounds annotated with targets and measured binding a�nities. For ex-

ample, PubChem [32] is a pioneering initiative that has organized millions of

compound structures and substance information. Furthermore, it also contains

more than 490,000 bioassays including high-throughput screening data. In addi-

tion, BindingDB currently stores 284,206 small molecules with 648,915 binding

records for 5,662 di�erent protein targets [33], and ChEMBLdb deposits 658,075

compounds with more than 3,000,000 activity measurements against 8,091 tar-

gets [34].

These databases grow steadily. Therefore, the design of e�ective computational

methods for mining large databases and extracting available SAR information

becomes critically important for the identi�cation of potential hits and predic-

tive model of biological activities.

Thesis Outline

The major goal of my doctoral studies has been the systematic analysis of SARs

in publicly available compound data at the level of molecular sca�olds. A series

of studies have been designed to identify sets of sca�olds with di�erent SAR

characteristics and information content. This dissertation consists of eight in-

dividual chapters:

(a) Analysis of sca�old distributions in compounds at di�erent stages of phar-

maceutical development and exploration of sca�olds that might preferentially

occur at early- and/or late-stage (Chapter 1 ).

(b) Identi�cation of sca�olds selective for communities of closely related targets

(Chapter 2 ).

(c) Identi�cation of sca�olds yielding compounds that are always selective for

a particular target over one or more others (Chapter 3 ).

(d) Search for promiscuous sca�olds and chemotypes representing compounds

active against multiple target families (Chapter 4 ).
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(e) Exploration of sca�olds with high propensity to yield compounds forming

activity or selectivity cli�s against di�erent targets (Chapter 5 ).

(f) Assessment of sca�old hopping potential of pharmaceutical targets at a

global level (Chapter 6 ).

(g) Investigatation of structural diversity of sca�olds representing currently

available active compounds (Chapter 7 ).

(h) Examination of a hierarchical sca�old classi�cation scheme and search for

additional structural information between sca�olds (Chapter 8 ).
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Chapter 1

Sca�old Distributions in Bioactive

Molecules, Clinical Trials

Compounds and Drugs

Introduction

The frequency of occurrence of molecular frameworks (or sca�olds) has been

explored in many studies in order to associate sca�olds with di�erent biologi-

cal activities and investigate lead- or drug-like properties of active compounds.

Here, we have analyzed sca�old distributions in compounds at di�erent stages

of pharmaceutical development, i.e. biologically active molecules, compounds in

clinical trials, and registered or approved drugs. Subsets of sca�olds that over-

lapped across di�erent stages were extracted and their inter- and intra-subset

structural diversity was examined. In addition, sca�olds that preferentially

occurred during certain development stages were identi�ed.
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Molecular building blocks including scaffolds (core struc-
tures)[1–4] and fragments of varying origin and size[5–8] have
been intensely investigated in the search for target-class-di-
rected structural motifs[9–11] and in fragment-based drug dis-
covery.[12–15] In the context of these studies, it has often been
possible to associate scaffolds, fragments, or combinations of
fragments with specific or multiple biological activities.[4–11] The
majority of these studies have surveyed distributions of frag-
ments in biologically relevant compounds on the basis of fre-
quency analysis.[5–10] Furthermore, scaffolds present in known
drugs[1] or compounds directed against different target
classes[10, 11] have been analyzed in order to evaluate structural
features that distinguish drugs from non-drugs or that are
characteristic of certain drug classes. These structure-oriented
investigations are conceptually related to other studies of lead-
like or drug-like compound character that have predominantly
focused on analyzing molecular property distributions with the
aid of various molecular descriptors.[16–19] Taken together, these
and other studies have substantially aided in elucidating struc-
tural signatures of various biological activities and in identify-
ing molecular property distributions consistent with drug- or
lead-likeness.

We have been interested in analyzing scaffold distributions
from a different perspective, that is, in order to better under-
stand how structural features in compounds at different stages
of pharmaceutical development might compare. Therefore, we
carried out a comparative molecular scaffold analysis of three
sets of compounds representing different stages in drug dis-
covery: biologically active molecules (hits or leads), com-
pounds in clinical trials, and registered/approved drugs. With
this analysis, we attempted to explore several questions. For
example, would there be notable differences in the composi-
tion of scaffold populations at different development stages?
Might some scaffolds preferentially occur in early- but not late-
stage compounds or drugs? Or would certain scaffolds be con-
sistently found in these types of compounds? Clearly, such
questions are, to some extent, inspired by the high clinical at-
trition rates of drug candidates.[20, 21]

Initially, we assembled suitable compound data sets. As a
pool of hits and leads, we retrieved all active molecules direct-
ed against human targets from BindingDB,[22] which contains

active compounds taken from original literature sources and
their target information. A total of 17 837 BindingDB molecules
were collected, which can be regarded as a representative
sample of biologically relevant chemical space. Because no
publicly accessible repository exists for compounds that are or
have been in clinical trials, we extracted clinical trials com-
pounds from the MDL Drug Data Report (MDDR),[23] obtaining
a total of 1586 molecules. The situation is different for ap-
proved drugs that are available in DrugBank.[24] Hence, 1493
approved drugs were taken from DrugBank and combined
with 1491 registered or launched drugs extracted from the
MDDR, giving a set comprising 2980 unique drugs; com-
pounds producing identical SMILES strings were considered
duplicates. The limited overlap between drugs currently avail-
able in DrugBank and the MDDR has been a rather surprising
finding. Small numbers of compounds that occurred in more
than one of the accessed databases were omitted such that
there was no compound overlap between our sets of bioactive
compounds, clinical trials compounds, and drugs. Table 1 sum-
marizes the composition of these compound data sets.

A few aspects of the design of the compound sets are
worth considering. For the purpose of our scaffold analysis, the
bioactive compound set was intended to be larger than the
clinical trials and drug sets simply because biologically relevant
chemical space is larger than drug candidate/drug space. Also,
the clinical trials compounds we could access are transient;
that is, they either reach drug status at some point or fail
(however, in light of the high clinical attrition rates, the majori-
ty of these compounds are expected to fail). Hence, these
compounds are a snapshot of current trials and represent a
smaller sample than known drugs that have accumulated over
time. Furthermore, it should also be considered that com-
pound selectivity/specificity criteria differ between these sets.
Whereas BindingDB contains many molecules with reported
activity against multiple targets, for clinical trials compounds
and drugs, a specific mode of action must usually be demon-
strated as part of the drug approval process. Hence, specificity
requirements become increasingly stringent over different de-

[a] Y. Hu, Prof. Dr. J. Bajorath
Department of Life Science Informatics, B-IT, LIMES
Program Unit Chemical Biology and Medicinal Chemistry
Rheinische Friedrich-Wilhelms-Universit�t Bonn
Dahlmannstr. 2, 53113 Bonn (Germany)
Fax: (+ 49) 228-2699-341
E-mail : bajorath@bit.uni-bonn.de

Supporting information for this article is available on the WWW under
http://dx.doi.org/10.1002/cmdc.200900419.

Table 1. Data sets.[a]

Data Set # Molecules # Scaffolds # Carbon Skeletons

BindingDB 17 837 6451 2910
Clinical Trials 1586 1270 842

Drugs 2980 1233 603

[a] The number of molecules, unique hierarchical scaffolds, and unique
carbon skeletons is reported for each compound set.
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velopment stages, and it is currently unclear how generally in-
creasing compound specificity might be reflected at the struc-
tural level.

To systematically extract molecular scaffolds from our com-
pound sets, we applied the scaffold generation scheme of
Bemis and Murcko[1] that was first used to study building
blocks of drugs. These scaffolds are derived from compounds
by removing all substituents from ring systems but retaining
non-substituted aliphatic linkers between rings.[1] As a further
level of generalization, we also generated carbon skeletons
from scaffolds by setting all atom types to carbon and all
bond orders to single bonds. Thus, several unique scaffolds
can correspond to the same carbon skeleton, and unique skel-
etons represent different molecular topologies. Figure 1 illus-
trates the relationship between compounds, scaffolds, and
carbon skeletons.

Table 1 lists the number of scaffolds and skeletons extracted
from each compound data set. In each case, a relatively large
number of scaffolds was obtained, with a ratio of ~2.7 com-
pounds per scaffold for bioactive molecules, ~2.4 for drugs,
and ~1.3 for clinical trials compounds. Furthermore, these scaf-
folds displayed a surprising degree of diversity, as indicated by
the large number of carbon skeletons generated from them,
ranging from ~2.2 scaffolds per skeleton for bioactive mole-
cules and ~2 for drugs to ~1.5 for clinical trials compounds.

We next determined the overlap between these three scaf-
fold sets. The results are shown in Figure 2. There was compa-
rably small overlap between these scaffold ensembles. A total
of 65 scaffolds were found in all three sets (subset BCD); 79
scaffolds were found in bioactive molecules and clinical trials
compounds, but not drugs (BC); 85 scaffolds in bioactive mole-
cules and drugs, but no clinical trials compounds (BD); and 90
scaffolds in clinical trials compound and drugs, but not in bio-
active molecules (CD). The intra- and inter-subset diversity of
these scaffolds was comparable, as revealed by a similarity-
based scaffold network calculated for these four subsets,
shown in Figure 3 (generated with Cytoscape[26]). Scaffolds

from different overlap subsets are represented as gray-scaled
nodes. Edges are drawn between nodes if their pairwise Tani-
moto coefficient[27] calculated using MACCS structural keys[28] is
greater than 0.8. Thus, structurally similar scaffolds are con-
nected. In this network representation, no large central net-
work component is observed as well as no preferential cluster-
ing of intra-subset scaffolds. Only a limited number of similari-
ty-based scaffold clusters are formed. These clusters are mostly
composed of scaffolds from different subsets. These observa-
tions reflect significant structural diversity among overlap scaf-
folds. Similar observations were made when the scaffold sub-
sets were analyzed on the basis of a similarity-based scaffold

Figure 1. Scaffolds and carbon skeletons: Three molecules, the scaffold they
share, and the corresponding carbon skeleton are shown. Parts of the mole-
cules removed to generate the scaffold are displayed on a gray background.
All calculations required for our analysis were carried out using in-house-
generated Perl scripts and the PipelinePilot environment (version 6.1.5).[25]

Figure 2. Scaffold Venn diagram: The comparison of scaffold ensembles ex-
tracted from the three compound data sets is shown. Four subsets of scaf-
folds are identified that represent different overlaps. The number of scaffolds
in each subset is given in parentheses.

Figure 3. Similarity-based scaffold network: The four scaffold overlap subsets
shown in Figure 2 are organized in a network representation (generated
with Cytoscape[26]). Scaffolds are represented as nodes: BCD (black), BC (dark
gray), BD (light gray), and CD (white). Edges are drawn between nodes rep-
resenting structurally similar scaffolds.

188 www.chemmedchem.org � 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemMedChem 2010, 5, 187 – 190
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network of the entire set of 6451 BindingDB scaffolds (Sup-
porting Information figure S1). This network was calculated as
the one shown in Figure 3 and subset scaffolds were then
mapped. Furthermore, we also mapped the scaffold subsets
on a target-based network of BindingDB scaffolds (Supporting
Information figure S2). Different from the similarity-based scaf-
fold networks, in this case, nodes represent BindingDB scaf-
folds that are connected if compounds containing these scaf-
folds are shared by at least two target proteins. This network
displayed target-directed clustering of BindingDB scaffolds, but
only very little clustering of subset scaffolds was observed
when they were mapped onto the network. Thus, there were
no systematic structural relationships detectable within or be-
tween these scaffold overlap subsets and no target cluster
preferences. Supporting Information figure S3 reports all scaf-
folds comprising the four overlap subsets.

We also isolated scaffolds from drugs withdrawn from the
market. These represent an interesting subset of approved
drugs, owing to severe side effects associated with them that
were identified in the course of regular patient treatment.
However, only a small number of withdrawn drugs were found
in DrugBank (62) and the MDDR (33), yielding a set of 95
unique compounds from which a total of 43 scaffolds were iso-
lated. Of these scaffolds, 11, 7, and 24 were also found in Bind-
ingDB compounds, clinical trials compounds, and drugs, re-
spectively. Five of these scaffolds consistently occur in all com-
pound sets. The four scaffold overlap sets containing scaffolds
from withdrawn drugs are shown in Supporting Information
figure S4. Given the small number of scaffolds isolated from
withdrawn drugs, it is difficult to draw conclusions from their
distributions in other compound sets. However, approximately
half of these scaffolds also appear in non-withdrawn drugs,
and thus cannot be directly responsible for severe side effects.

Table 2 lists the number of compounds in the different data
sets that contain scaffolds from overlap subsets BCD, BC, BD,
and CD. The BCD scaffolds represented 1503 bioactive mole-
cules (8.4 %), 213 clinical trials compounds (13.4 %), and 552
drugs (18.5 %). Many but not all of these scaffolds are small ar-
omatic and heteroaromatic rings and are thus rather generic in
nature (Supporting Information figure S3 a). Accordingly, the

BCD subset produced fewer carbon skeletons than the other
scaffold subsets (Table 2). However, the BCD subset also con-
tained a number of large and complex scaffolds that were re-
current in bioactive molecules, clinical trials compounds, and
drugs (Supporting Information figure S3 a). Thus, compounds
having such scaffolds are likely to pass through different
stages of pharmaceutical development. Furthermore, the pres-
ence of 90 CD scaffolds indicated that bioactive molecules cur-
rently available in the public domain are an incomplete sample
of structural classes present in clinical trials compounds and
drugs. The BD subset consists of 85 drug scaffolds that are
also available in bioactive molecules, but not current clinical
trials compounds. Compounds containing these scaffolds
might often not be subjected to clinical evaluation because
they already exist in established drugs and thus lack novelty.
The BC subset of 79 scaffolds is also of interest because scaf-
folds present in bioactive molecules and clinical trials com-
pounds, but not drugs, might contain chemotypes that prefer-
entially undergo attrition during clinical evaluation. The availa-
bility of the BC subset makes it possible to further analyze
whether individual scaffolds contained in compounds of inter-
est have previously failed during clinical evaluation, which re-
quires follow-up studies of patent literature and clinical trials
reports.

We also searched our data sets for scaffolds with characteris-
tic frequencies of occurrence. Representative examples are
shown in Figure 4. For example, scaffolds that occur with high
frequency in all compound data sets are generally small and
generic (including the benzene ring), as one would anticipate.
Furthermore, only few scaffolds were found that had a steadily
decreasing frequency from bioactive molecules to clinical com-
pounds and drugs, which would be consistent with attrition

Table 2. Comparison of four distinct sets of scaffolds.[a]

Set
Identifier

# Scaffolds # CSK # Molecules

BindingDB Clinical Trials Drugs

BCD 65 28 1503 213 552
BC 79 68 520 86 NA
BD 85 50 357 NA 192
CD 90 78 NA 146 250

[a] Systematic comparison of the scaffold ensembles extracted from the
three compound data sets according to Table 1 yields four distinct scaf-
fold subsets that are either shared by all three (BCD) or two of three (BC,
BD and CD) ensembles. The number of scaffolds in each subset and the
number of corresponding carbon skeletons (# CSK) is reported. The
number of molecules in each data set containing these scaffolds is also
provided.

Figure 4. Scaffolds with various frequencies of occurrence: Shown are repre-
sentative examples of scaffolds with distinct distributions in bioactive mole-
cules, clinical trials compounds, and drugs. The frequencies of compounds
(in %) containing each scaffold in the three compound data sets are report-
ed as bioactive/clinical trials/drugs. a) scaffolds with overall moderate to
high frequency of occurrence; b) scaffolds enriched in drugs; c) scaffolds fre-
quently occurring in bioactive molecules, but rarely in late-stage compounds
or drugs; and d) scaffolds with decreasing frequency of occurrence over dif-
ferent development stages.
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along the pathway. In contrast, 90 scaffolds were found that
were detectably enriched in drugs over both bioactive mole-
cules and clinical compounds. Moreover, 114 scaffolds were
identified that occurred with high frequency in bioactive mole-
cules but rarely in both clinical trials compounds and drugs.

In summary, we have systematically analyzed and compared
scaffolds contained in bioactive molecules, compounds in clini-
cal trials, and known drugs. The analysis provides insight into
differences in scaffold distributions, the degree of scaffold di-
versity, and the occurrence of overlap between scaffolds con-
tained in compounds at different pharmaceutical development
stages. The scaffolds comprising our four overlap subsets have
been made available and can be readily used as markers to an-
alyze newly discovered active compounds and to determine
whether the scaffolds they contain are known to preferentially
occur in early-stage molecules, compounds in clinical trials,
and/or drugs. Upon publication of our analysis, the scaffold in-
formation can also be freely obtained via the following URL:
http://www.lifescienceinformatics.uni-bonn.de (Downloads sec-
tion).

Keywords: bioactive molecules · clinical trials compounds ·
drugs · molecular scaffolds · scaffold distributions · statistical
analysis
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Summary

Structural features of compounds at di�erent stages of pharmaceutical devel-

opment were analyzed and compared on the basis of molecular sca�olds. The

overlap between these sca�old sets was rather limited. Four subsets of overlap-

ping sca�olds were assembled, which revealed to what extent compounds were

likely to pass through di�erent development stages. These subsets of sca�olds

displayed signi�cant inter- and intra- structural diversity. Furthermore, scaf-

folds with di�erent frequencies at development stages were also identi�ed, i.e.

sca�olds that preferentially occurred in early- and/or late-stage compounds.

These ensembles of sca�olds having di�erent characteristics can be utilized as

structural markers to analyze other active compounds.

Having analyzed sca�old distributions in di�erent sets of active compounds,

the next step has been to study the relationship between molecular selectivity

and target families or individual targets at the level of molecular sca�olds.

Speci�caly, we aimed at examining whether chemical frameworks exist with

inherent selectivity against certain target families.

15





Chapter 2

Systematic Analysis of Public

Domain Compound Potency Data

Identi�es Selective Molecular

Sca�olds Across Druggable Target

Families

Introduction

The concept of �privileged substructures� has been a focal point in searching for

fragments that are recurrent in and unique to ligands of a given target family for

decades. Such target-class privileged chemotypes were usually identi�ed on the

basis of frequency of occurrence analysis of pre-selected substructures. Di�erent

from traditional case-by-case studies, we carried out a systematic selectivity

pro�le analysis of public domain compounds and explored molecular sca�olds

that were selective for given target families. More than 200 sca�olds were found

in publicly available compounds that were active against only one community

of closely related targets. The majority of these sca�olds displayed signi�cant

target-selective tendencies within a community. These sca�olds were found to

be underrepresented in approved drugs.
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Molecular scaffolds that yield target family-selective compounds are of high interest in pharmaceutical
research. There continues to be considerable debate in the field as to whether chemotypes with a priori
selectivity for given target families and/or targets exist and how they might be identified. What do
currently available data tell us? We present a systematic and comprehensive selectivity-centric analysis
of public domain target-ligand interactions. More than 200 molecular scaffolds are identified in
currently available active compounds that are selective for established target families. A subset of these
scaffolds is found to produce compounds with high selectivity for individual targets among closely
related ones. These scaffolds are currently underrepresented in approved drugs.

Introduction

Twenty years ago Evans et al.1 first put forward the idea
that chemotypesmight exist that preferentially bind to a given
target class, and the characterization of molecular scaffolds
active against individual target classes has ever since been a
topic of intense research in pharmaceutical settings.2 The
notion of “privileged substructures”1 is highly attractive for
drug discovery and chemical biology because they might
ultimately be evolved into chemical entities that are selective
for individual targets. However, it has been shown that
substructures thought to be target class-characteristic typi-
cally also appeared in compounds active against other target
families3 and exclusive binding of known chemotypes to given
target classes has not been confirmed to this date.

The concept of privileged substructures touches upon a
much more general question in molecular probe and drug
discovery, namely, how to generate small molecules that are
selective for a target of interest within a target family.4

Currently, only little is known about the relationship between
molecular selectivity at the level of target families and indivi-
dual targets5 and it is not understood what the likelihood
might be to discover selective compounds for different target
classes.

Target selectivity (TSa) is typically explored on a case-by-
case or family basis, and systematic analyses of compound
selectivity data across different families are currently not
available. With the growing availability of small molecule
structure-activity data in the public domain, we are now in a
position to explore molecular selectivity in a way that funda-
mentally differs from traditional case-by-case studies. This is
accomplished by focusing, in an unbiased manner, on what
data currently available for different target families might tell
us about the selectivity of known molecular scaffolds and

compounds. Such an analysis also provides a basis for the
identification of new selective compounds.

To these ends, we have designed and carried out a systema-
tic computational selectivityprofile analysis of theBindingDB
database,6 a major public domain repository of activity
information of small molecules, which we have found to
represent by far the currently most comprehensive source of
activity annotations that can be transformed into compound
selectivity data. BindingDB contains ∼31000 compound en-
tries with ∼57000 activity measurements taken from the
scientific literature. Because of the ensuing high level of
accuracy of the activity annotations, BindingDB is particu-
larly suitable for a large-scale exploration of molecular selec-
tivity. It represents an up-to-date view of the current scientific
literature and knowledge in the field. The results of our
analysis are reported herein and offer some surprising insights
into the availability of target class-selective molecular scaf-
folds that might be evolved into target-selective compounds.

Results

Compounds, Targets, and Selectivity Sets. A total of 6343
compounds active against 259 human targets (Supporting
Information Table S1) were extracted from BindingDB.
Many of these compounds were active against multiple
targets, yielding a total of 17 929 compound-target combi-
nations, andwe identified 520 target pairs that shared at least
five active compounds (with an average of 34 molecules per
pair). For eachmolecule active against a target pair, its target
selectivity was calculated as TS= pKi

A - pKi
B (where pKi

A

and pKi
B refer to the logarithmic potency value of the

compound against targets A and B, respectively). Absolute
TS values of selected compounds ranged from 0 to 6.86, i.e.,
from equal potency (and thus no selectivity) to potency
differences of nearly 7 orders of magnitude (i.e., highest
selectivity for one of two targets). Each pair of targets and
the compounds they shared represented 1 of 520 selectivity
sets for further analysis.

*To whom correspondence should be addressed. Phone: þ49-228-
2699-306. Fax: þ49-228-2699-341. E-mail: bajorath@bit.uni-bonn.de.

aAbbreviations: TS, target selectivity.
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Target Pair Network and Target Communities. The 259
human targets participated in multiple target pairs, and a
network representation was generated to analyze target rela-
tionships (Figure 1). In the network, nodes represent targets
and edges are drawn between nodes if they share at least five
molecules. This number of molecules was chosen to control
network noise and ensure the reliability of selectivity profiling.
The width of edges is scaled according to the number of active
compounds shared by a target pair. The network reveals the
presence of 18 separate and in part densely connected com-
munities containing at least four targets (smaller communities
were not considered). These communities are found to repre-
sent different target families (Figure 1). Thus, known biolo-
gical activities of small molecules organize targets into
functional families, as has been observed in drug-target
networks based on chemical drug similarity.7,8 For the pur-
pose of our selectivity studies, network analysis was only
required to organize and preselect target communities. The
largest community identified in our network (community 1)
contains 82 targets thatmainly belong to three target families,
i.e., tyrosine kinases, carbonic anhydrases (CAs), and matrix
metalloproteinases (MMPs). Tyrosine kinases form a large
subset (1a) on the left in Figure 1, while CAs andMMPs form
a densely connected subset (1b) on the right (i.e., they share
many active compounds). These two subsets are linked by
cytochrome P450 enzymes and steroid sulfatase. By removal
of the edge connecting steroid sulfatase and CA2, community
1 was divided into subsets 1a and 1b, hence producing a total
of 19 communities for further analysis. These communities
consisted of 4-59 targets and 8-2252 active compounds.
Details for each community are provided in Supporting
Information Figure S1 and Supporting Information
Table S2.

Scaffolds and Selectivity Profiles. From the initial pool of
6343 active compounds, hierarchical molecular scaffolds9

were isolated that represented at least five active compounds,
yielding a total of 210 distinct scaffolds, listed in Supporting
Information Table S3. For each target within a community
with at least five ligands having the same scaffold, the active
compounds were collected. The TS values for target pairs
containing this target and the active compounds were calcu-
lated. The median of these TS values is an indicator of
scaffold selectivity for the particular target. A high median
TS value means that a scaffold shows high selectivity toward
the target over other targets within the community. A
negative median TS value indicates that the scaffold pro-
duces compounds that are selective for other members of the
community. On the basis of median TS values, a scaf-
fold-target heat map was generated to represent the target
selectivity profile of each scaffold within a community.
Furthermore, for each scaffold found in a community, all
relevant compounds used in the generation of the target-
scaffold heat map were pooled, and the median of their
absolute TS values was calculated. In this case, high median
values indicate that a scaffold produces many compounds
with different potency against individual targets and hence a
differentiated selectivity profile within a community. A scaf-
fold-community heat map was also generated to represent
the community selectivity profile of each scaffold. Supporting
InformationFigure S1 reports the number of scaffolds in each
community. For two communities (6 and 13), no relevant
scaffolds were found. For the other communities, the number
of scaffolds ranged from 1 to 102. For individual targets,
between 1 and 32 scaffolds were found.

Target and Community Selectivity of Scaffolds. The scaf-
fold-target heat map for community 3 representing serine

Figure 1. Target pair network.Nodes represent targets, and edges are drawn between nodes if they share at least five compounds. The network
representation reveals a total of 18 communities containing at least four targets. Community 1 is subdivided (dashed vertical line) on the basis of
target family membership. Nodes in communities are colored light-red and others light-blue.
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proteases is shown in Figure 2a as an example (Supporting
Information Figure S2 shows the corresponding heat maps

for all communities). Median TS values are represented via a
continuous color spectrum ranging from -3 (yellow) to 3

Figure 2. Target and community selectivity profiles. (a) The heat map representing the target selectivity profile of community 3 is shown.
Targets form columns and scaffolds rows. A cell corresponding to a scaffold-target combination is filled if the scaffold is present in at least five
compounds active against the target and color-coded according to median TS values. (b) A section of the community selectivity profiles is
shown. Here, columns represent communities and rows scaffolds. Cells are color-coded according to absolute median TS values. (c) Shown are
community-centric target selectivity profiles for two representative scaffolds (174 and 157) that are selective for communities 1b and 3,
respectively. Nodes are color-coded bymedianTS values of active compounds according to part a. Thus, for targets with red nodes, the scaffold
has highest potential to produce selective compounds. Targets for which fewer than five active compounds containing the scaffold exist are
depicted as gray nodes. Edges between nodes are drawn according to Figure 1.
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(red). A key observation in Figure 2a is that individual
scaffolds mostly display different selectivity against related
targets, and this trend is observed for all communities
(Supporting Information Figure S2). For example, scaffold
6 represents compounds that are active against factor Xa
and thrombin but these inhibitors are much more potent
against factor Xa and thus highly selective for this target.
Similar observations aremade for scaffolds 48, 104, 138, 164,
192, and 196, all of which differentiate between these two
proteases. Other scaffolds represent compounds that inhibit
proteases more broadly. For example, scaffold 157 repre-
sents inhibitors of five proteases. However, the compounds
are more potent against neutrophil elastase than against
the other targets. Supporting Information Figure S2 shows
that selectivity-conferring scaffolds were found for many
targets across all communities, and Supporting Information
Table S4 lists the scaffolds that are most selective for
individual targets. The number of scaffolds per target varies
in part significantly, but for many targets only a single
scaffold is found that yields selective compounds relative to
the other targets of the communities.

Figure 2b shows a heat map representing the community
selectivity profile of a subset of scaffolds (and Supporting
Information Figure S3 shows the corresponding profiles for
all 210 scaffolds). Here, median of absolute TS values are
represented via a continuous color spectrum ranging from 0
(yellow) to 3 (red). A value of 0 means that the scaffold does
not generate selective compounds across the community,
and a value of 3 means that compounds containing the
scaffold display at least a 1000-fold difference in potency
against targets within the community. Figure 2c shows two
representative examples of scaffolds that act on multiple
targets within a community yielding substantial differences
in compound selectivity. A key observation in Figure 2b is
that only four scaffolds (1, 31, 51, and 134) are active against
multiple communities. These scaffolds mainly correspond to
compounds that are nonselective. By contrast, all other
scaffolds are found to specifically act on only one commu-
nity. However, these community-selective scaffolds display a
distinctly different potential to yield target-selective com-
pounds. Supporting Information Table S5 reports the po-
tential of community-selective scaffolds to produce target-
selective compounds. A total of 111 scaffolds display a
target-selective tendency (median |TS| g 1), and 37 of these
scaffolds represent compounds with at least 100-fold po-
tency differences against other community targets.

Taken together, the results of the target and community
selectivity profile analysis reveal that community-selec-
tive scaffolds are consistently found and that a subset of
these scaffolds has in part significant potential to yield
target-selective compounds within their communities. Figure 3
shows examples of scaffolds having high potential to pro-
duce target-selective compounds for major drug targets
including, among others, receptor tyrosine kinases, G-protein-
coupled receptors, or caspases.

Community-selective scaffolds can also be utilized to
identify new target-selective compounds, as illustrated in
Figure 4. For example, the community and target selectivity
profiles suggest that compounds containing scaffold 37
should have high potential to produce inhibitors that are
selective for factor Xa over thrombin. When a nonpublic
domain database was searched,10 two compounds contain-
ing this scaffold were identified that are currently not avail-
able in BindingDB and both of these compounds are indeed

Figure 3. Community-selective scaffolds. For different target com-
munities, selective scaffolds are shown that have high potential to
yield target-selective compounds. Scaffolds have “scaffold number:
median TS value” annotations. On the left of each figure, the
scaffold with the highest median TS value in the community is
shown. On the right, another scaffold with a broader selectivity
profile is shown.
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reported to be highly selective for factor Xa (Figure 4a).
Similarly, compounds were found containing scaffold 77
(Figure 4b) and 181 (Figure 4c) that were inhibitors of

polo-like kinase 1 and caspase 3, respectively, with no
reported activity against other community targets. The
target selectivity profile for the caspase community also

Figure 4. Searching for selective compounds. Examples of scaffolds (and their community selectivity profiles) are shown that were utilized to
search the MDDR database. Compounds found to have the predicted selectivity are shown on a blue background. MDDR compounds are
license-protected and therefore represented as Markush structures. Each Markush structure is annotated with MDDR identifiers of the
compounds it represents.
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suggested that compounds containing scaffold 12 should
have comparable potency for caspase 3 and 7 but not for
other members of the caspase family. This prediction is
confirmed by a recent study aiming at the development of
isatin sulfonamides as caspase inhibitors.11 Four compounds
containing scaffold 12 were reported that inhibited both
caspase 3 and 7 with nanomolar potency and were ∼200-
fold selective over caspases 1, 6, and 8.

Distribution of Community-Selective Scaffolds in Drugs.

We have also determined the distribution of community-
selective scaffolds in knowndrugs. Therefore, 1247 approved
drugs were retrieved from DrugBank12 and a total of 726
unique scaffolds were isolated from them. Only 11 of these
drug scaffolds were also found within the set of 206 target
community-selective scaffolds, illustrating that these scaf-
folds are currently underrepresented in approved drugs.
Because a subset of community-selective scaffolds is target-
selective, as discussed above, chemical exploration of these
scaffolds might be expected to provide further opportunities
for drug discovery.

Discussion

The focal point of our study has been the exploration of
small molecule selectivity on a large scale. Ligand preferences
of target families have thus far been explored by calculating
the frequency of occurrence of selected substructures in
compounds active against individual target families. Such
statistical approaches are based on a binary formulation of
biological activity (i.e., active vs inactive) and do not take
selectivity into account. The approach reported herein is
specifically focused on exploring the selectivity of active
compounds at the level of molecular scaffolds. It is data-
driven and does not employ any preconceived notions of
structure-selectivity relationships or target family assign-
ments. Rather, the target pair network provides a data
structure to organize known targets into communities based
on shared ligands. Moreover, community and target selectiv-
ity profiles make it possible to assign molecular scaffolds to
communities and explore their potential to produce target-
selective compounds. Key findings of our analysis include the
following: more than 200 scaffolds exist in currently available
public domain compounds that are selective for communities
of closely related targets, and amajority of these scaffolds yield
compounds that are either selective for individual targets or
display a target-selective tendency. These scaffolds can also be
utilized to search for other active compounds having a desired
selectivity profile. Hence, currently available data suggest that
a substantial molecular knowledge base exists to generate
target class- or target-selective smallmolecular probes or leads.
Because we focus on currently available activity data of small
molecules, the scaffold and selectivity information we report
should provide many alternative starting points for a further
experimental evaluation of scaffold selectivity profiles and the
chemical exploration of molecular selectivity.

Methods

In order to comprehensively cover public domain compound
data that couldbe utilized to extract target selectivity information
relevant for our analysis, we also analyzed bioassays available
in Pubchem13 as a potential source. Compound screens were
analyzed for appropriate selectivity information. However, given
the target pair criteria applied in our study, only three relevant
target pairs could be identified in Pubchem. The results of our
analysis are reported in Supporting InformationFigure S4. From

BindingDB, compounds with reported activity (IC50 and/or Ki

values) against human targets were extracted. If multiple potency
measurements were reported in a BindingDB entry, their geo-
metric mean was calculated to yield a single potency value. For
each molecule active against a target pair, its target selectivity
(TS) was calculated as TS = pKi

A - pKi
B. TS and median TS

values are simple, intuitive, and continuous measures of target
selectivity that do not require the definition of selectivity thresh-
olds. Conventional hierarchical scaffolds were derived according
to Bemis and Murcko.9 These scaffolds represent ring systems
connected by linkers after removal of substituents. Compounds
and scaffolds were recorded and processed in SMILES format.14

The target pair network was generated using Cytoscape.15 Target
communities connected only by intra- but no intercommunity
edges and comprising a minimum of four targets were isolated.
Community- and target-selective scaffolds were searched in the
MDDR database10 and compared to scaffolds extracted from
DrugBank.12 Nonselective scaffolds were not further analyzed.
The community- and target-based selectivity profile analysis was
carried out with in-house generated Pipeline Pilot16 and Perl
programs.

Supporting Information Available: Tables S1-S5 listing all
investigated targets, target communities, scaffolds, target-selec-
tive scaffolds, and community-selective scaffolds, respectively;
Table S6 listing the results of scaffold overlap analysis between
selectivity-conferring and current drug scaffolds; Figures S1-S3
showing target and scaffold distributions, target selectivity
profiles, and community selectivity profiles, respectively; Figure
S4 showing the results of target pair analysis in PubChem. This
material is available free of charge via the Internet at http://
pubs.acs.org.
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Summary

We have presented a systematic and rather comprehensive selectivity pro�le

analysis of publicly available active compounds at the level of molecular scaf-

folds. In this data-driven analysis, a compound-based network representation

was utilized to organize targets into communities based on currently available

target-ligand interactions. A total of 206 sca�olds were found to be speci�cally

active against only one target community. Community and target selectivity

pro�les of each sca�old were analyzed in order to assess the target selective ten-

dency. The majority of these community-selective sca�olds displayed a notable

potential to produce compounds selective for certain target(s). Community-

selective sca�olds could also be used to search for new selective compounds and

provide further opportunities for chemical exploration.

In light of these �ndings, a logical follow-up question has been whether truly

target-selective sca�olds exist that yielded compounds solely selective for one

particular target against others. This question was investigated in the next

study.
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Chapter 3

Exploring Target-Selectivity

Patterns of Molecular Sca�olds

Introduction

In the previous study, we have thoroughly analyzed selectivity pro�les of pub-

lic domain compounds and identi�ed target class-selective molecular sca�olds.

Here, we further re�ned the approach and explored the presence of target-

selective sca�olds that would exclusively produce compounds selective for a

particular target over others. Although currently available selectivity data is

sparsely distributed, small sets of target-selective sca�olds were identi�ed at

di�erent selectivity threshold levels. Furthermore, we also explored selectivity

patterns formed by these target-selective sca�olds. These patterns and corre-

sponding sca�olds can aid in the design of new compounds with desired target

selectivity.
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ABSTRACT We investigate the question of whether target-selective molecular
scaffolds can be identified on the basis of currently available compound activity
data. Starting from a pool of 17745 public domain compounds with activity
annotations for 433 human targets, we ultimately identify, through a selectivity
classification and database-mining approach, 42 molecular scaffolds represented
by multiple compounds that are highly selective for a particular target over one or
more others. In many other cases, individual compounds representing unique
scaffolds are target-selective. Hence, currently available public domain compound
selectivity data are sparse. However, we also identify selectivity patterns that evolve
around specific targets and are formed bymultiple target-selective scaffolds. These
scaffolds should provide interesting starting points for further chemical exploration.

KEYWORDSMolecular selectivity, privileged substructures, target family selective
molecular scaffolds, target-selective scaffolds, selectivity patterns, compound
database mining

In medicinal chemistry, “privileged substructures”,1 that
is, chemotypes that bind with high preference to a family
of targets, have been-and continue to be-intensely

studied. In many instances, substructures considered to be
target class-selective on the basis of frequency of occurrence
analysis have also been detected in compounds active
against other target families;2 hence, the existence of truly
privileged structural motifs has been controversial.2

Recently, we have carried out a large-scale analysis of
public domain compound data to investigate whether target
class-selective molecular scaffolds exist.3 To avoid potential
caveats of occurrence frequency-based analysis, we
searched for compounds with multiple activity annotations
and formed pairs of biological targets that were “connected”
by at least five active compounds. This target pair informa-
tion was then organized in a compound-based target net-
work that enabled the identification of different target
communities. From these compounds, conventional hier-
archical scaffolds4 were isolated, and scaffolds were deter-
mined that exclusively occurred in one of the target commu-
nities formed by the network. The approach is summarized
on the left side in Figure 1.

For this target pair-based analysis, BindingDB5 was found
to be a comprehensive public domain source of bioactivity
data. For example, by systematically analyzing currently
available PubChem6 confirmatory bioassays, only three
target pairs were identified that met the selection crite-
rion. Of 17745 compounds available in BindingDB with
activity annotations against a total of 433 human targets,
6343 compounds active against 259 targets met our target
pair selection criterion (i.e., five or more shared ligands),

yielding a total 520 target pairs organized into 18 target
communities. From these 6343 compounds, a total of
206 target community-selective scaffolds were identified,
that is, scaffolds that only occurred in one of 18 communities
(Figure 1). We also calculated a pairwise potency-based
selectivity ratio for compounds representing these scaffolds,
which indicated that a subset of these scaffolds had the
potential to yield selective compounds, at least at the level of
target pairs.3

In light of these findings, a logical follow-up question thus
became if there might also be truly target-selective scaffolds
present among community-selective ones. Target-selective
scaffolds, that is, scaffolds that exclusively yield target-
selective compounds, would be of high interest formedicinal
chemistry research. Hence, we have investigated this ques-
tion and report the results herein.

To make the analysis of target-selective scaffolds as com-
prehensive as possible, we decided to revise the previous
target pair and scaffold selection approach, as illustrated on
the right side in Figure 1. Therefore, we applied a more
stringent target pair selection criterion by requiring not only
at least five shared ligands but also at least five scaffolds
representing shared ligands. A total of 220 human targets
yielding 428 target pairs met these requirements and are
reported in Table S1 of the Supporting Information with
their BindingDB target IDs. This target pair information was
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then organized in a scaffold-based target network, as illu-
strated on the right in Figure 1. In this network, targets are
connected if compounds active against them represent at
least five scaffolds. We found that this scaffold-based target
network further refined the formation of target communities
as compared to the previous compound-based target net-
work. In the scaffold-based network, 21 well-defined com-
munities containing at least three targets were found (rather
than 18). The target, compound, and scaffold composition of
these 21 communities are reported in Table 1, and the
scaffold-based network with target community annotations
is shown in Figure S1 of the Supporting Information. After a
more stringent target pair criterion was applied, we then
relaxed the scaffold selection criterion by accepting any
scaffold (and not only scaffolds represented by at least five
compounds), which yielded a total of 1991 scaffolds, 1963 of
which occurred in only one of 21 communities. These
community-selective scaffolds were active against 174 tar-
gets in 405 target pairs and also included 185 of the 206
community-selective scaffolds previously identified from
the compound-based target network (Figure 1, left side).
The remaining 21 scaffolds occurred inmore than one of the
21 communities in the scaffold-based network.

The 1963 community-selective scaffolds were then ranked
on the basis of the median absolute selectivity ratio (|pSR|)
of compounds that they represent for established target
pairs. The absolute selectivity ratio of a compound for a tar-
get pair is simply given by the positive difference of its
logarithmicpotencyvalues against the two targets.Accordingly,

median |pSR| values g1 and g2 indicate that at least half
of the compounds represented by a scaffold have at least
a 10- and 100-fold potency difference for one target over
another, respectively. Figure S2 of the Supporting Informa-
tion shows the distribution of scaffolds over median |pSR|
values, the number of compounds that they represent, and
the target pairs that these compounds are active against. Of
the 1963 community-selective scaffolds, 1026 scaffolds had
amedian |pSR|g 1, and 329 scaffolds had amedian |pSR|g
2. Thus, a significant number of scaffolds corresponded to
highly selective compounds. However, 1350 scaffolds were
found to represent a single compound, 1049 scaffolds were
found to be active against a single target pair, and 785 scaf-
foldswere found to correspond to both a singlemolecule and
a target pair. Thus, this distribution reflects a notable degree
of data incompleteness, which generally affects the systema-
tic analysis of target-ligand interactions.7 Hence, when
more compounds representing individual scaffolds and
moremeasurements become available, the number of selec-
tive scaffolds is expected to decrease. However, among the
329 highly selective scaffolds with median |pSR| g 2, there
were also 50 scaffolds that representedmultiple compounds
active against multiple target pairs (Figure S2 of the Support-
ing Information), which represented particularly interesting
scaffolds for further analysis.

Community-selective scaffolds were further classified ac-
cording to different selectivity threshold levels of the com-
pounds that they represent, that is, at least 10-, 50-, or 100-
fold selectivity. The classification scheme is illustrated in

Figure 1. Target communities and community-selective scaffolds. Shown is an overview of alternative approaches to establish target
communities on the basis of compound activity data and isolate community-selective scaffolds, which provide a basis for the identification
of target-selective scaffolds.
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Table 1. Composition of Target Communitiesa

no. of

community target family targets target pairs compounds scaffolds

1 tyrosine kinases and cytochrome P450 enzymes 50 100 2128 782

2 serine proteinases 12 34 545 229

3 protein kinase C 8 22 72 34

4 carbonic anhydrases 11 55 327 87

5 phosphodiesterases 11 39 117 47

6 matrix metalloproteinases 10 24 187 56

7 protein kinase B and serine protein kinases 6 11 109 78

8 caspases 9 31 114 49

9 histone deacetylases 8 22 121 68

10 purinergic receptors 6 7 107 54

11 phosphoinositide 3-kinases (PI3Ks) 6 10 46 26

12 GABAA receptors 5 9 8 7

13 opioid receptors 4 6 84 27

14 cathepsins 4 6 307 152

15 dipeptidyl peptidases 4 6 287 105

16 esterases 4 6 238 110

17 polo-like kinases 4 5 35 21

18 sphingosine 1-phosphate (S1P) receptors 3 3 20 9

19 peroxisome proliferator-activated receptors 3 3 61 16

20 steroid receptors 3 3 35 9

21 β-secretases and cathepsin D 3 3 127 66
a Target communities extracted from the scaffold-based target network are characterized by the number and nature of the targets and, in addition, by

the number of compounds active against pairs of targets and the corresponding scaffolds.

Figure 2. Scaffolds contained in highly selective compounds. Seven scaffolds are shown forwhich corresponding compounds hadmedian
|pSR|g 2 and forwhich each compoundwas 50-fold selective for a target over another. For each scaffold, themedianmedian |pSR| value is
reported as well as the number of target pairs in which it occurs and the average number of molecules per pair.
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Figure S3 of the Supporting Information, and further details
are provided in the Methods of the Supporting Information.
If a scaffold was always selective for a target over one or
more others (in different pairs), it was termed “purely” selec-
tive (i.e., a scaffold can be purely selective for more than one
target). For the 10-, 50-, and 100-fold selectivity levels, a total
of 499, 252, and 191 purely selective scaffolds were identi-
fied, respectively. These scaffold sets were compared to the
50 scaffolds with median |pSR| g 2 that represent multiple
compounds active against multiple target pairs (Figure S4
of the Supporting Information), revealing an overlap of 11
(10-fold), 7 (50-fold), and 3 (100-fold) scaffolds, respectively.
Figure 2 shows the seven purely selective scaffolds for the
50-fold selectivity level. These scaffolds and the correspond-
ing compounds are provided in Table S2 of the Supporting
Information.

Having found that community-selective scaffolds had
rather different distributions and selectivity profiles, we
searched for target-selective scaffolds among the purely
selective ones. We considered a scaffold target-selective if
it was selective for an individual target over one or more
others. Because complex pairwise selectivity relationships
can exist for scaffolds in multiple target pairs, the identifica-
tion of target-selective scaffolds can be complicated. Hence,
it was facilitated through a directed graph type method
illustrated in Figure S5 of the Supporting Information. Details
are provided in Methods of the Supporting Information. In
Table 2, the number of target-selective scaffolds is reported.
For the 10-, 50-, and 100-fold selectivity levels, 472, 250, and
191 target-selective scaffolds were identified. Hence, most
purely selective scaffoldswere also target-selective scaffolds.
For the 100-fold selectivity level, 149 of 191 target-selective
scaffolds only corresponded to a single compound selective
for one target over one or two others. The remaining 42
scaffolds were represented by 2-21 compounds and were
selective for an individual target over one or two others.
These scaffolds are displayed in Figure S6 of the Supporting
Information and their target annotations are provided.

Going beyond target selectivity of individual scaffolds, we
also asked the question of which target relationships, or
selectivity patterns, might be formed by target-selective
scaffolds. Therefore, we analyzed the three sets of selective
scaffolds reported in Table 2. For the 10-, 50-, and 100-fold
selectivity levels, 28 (50), 18 (31), and 19 (23) well-defined
target relationships were formed by single (multiple) scaf-
folds, respectively. As shown for the 50-fold selectivity level

in Figure 3a, these relationships can be viewed in a directed
target network where nodes (targets) are connected by
directed edges if they share one or more target-selective
scaffolds. In this case, all scaffolds correspond to selective
compounds, and the directionality of the edges indicates
target (A over B) selectivity. In addition, the width of the
edges is scaled according to the number of target-selective
scaffolds. In Figure 3a, different selectivity patterns are
observed. Figure S7 of the Supporting Information shows
the corresponding networks for the 10- and 100-fold selec-
tivity levels where similar observations can be made. As
shown in Figure 3a, in addition to binary selectivity relation-
ships, there are inverse relationships (where some scaffolds
are selective for target A over B and others for B over A) and

Table 2. Target-Selective Scaffoldsa

no. of

scaffolds scaffolds targets target pairs

community-selective 1963 174 405

target-selective
10-fold 472 83 66
50-fold 250 65 43
100-fold 191 58 38

aReported is the number of target-selective scaffolds (bold) repre-
sented by one or more compounds at different selectivity levels. In
addition, the corresponding numbers of targets and target pairs for all
community- and target-selective scaffolds are also reported.

Figure 3. Selectivity patterns. (a) The directed target network for
the 50-fold selectivity level is shown displaying different scaffold-
based target relationships. The width of directed edges is scaled
according to scaffold numbers.When a relationship is formed bya
single scaffold, the edge is shown in gray. (b) Scaffolds are shown
that yield compounds selective for DDP4 over other DDPs, corres-
ponding to the target cluster with pink nodes in panel a. The
two relationships at the top are formed by 10 and 11 scaffolds,
respectively, and two representative scaffolds are shown in each
case. The three selectivity relationships at the bottomeach involve
a single scaffold.
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also complex selectivity patterns. In addition, “selectivity
hubs” become apparent, that is, individual targets with
scaffold selectivity over several others. For example, the
cluster formed by blue nodes at the upper left in Figure 3a
represents selectivity relationships among the closely re-
lated serine proteases factor Xa (target ID 351), thrombin
(352), and factor IXa (358) where multiple scaffolds gene-
rate compounds that are at least 50-fold selective for factor
Xa over the other twoproteases.Moreover, the cluster of pink
nodes in the center corresponds to closely related dipeptidyl
peptidases (DPPs) where single or multiple scaffolds are
selective for DPP4 over related DPPs or pairs of DPPs.
Figure 3b shows seven representative scaffolds that produce
compounds selective for DDP4 over other DDPs and the
selectivity relationships that they form. These scaffolds and
the corresponding compounds are provided in Table S3 of
the Supporting Information. Such scaffolds can be collected
as starting points for generating compounds that are highly
selective for a particular target over other closely related
ones.

In summary, systematic mining of a publicly available
compound data has revealed that small sets of target-selec-
tive scaffolds represented by multiple compounds exist,
although selectivity data are sparsely distributed. These
target-selective scaffolds are represented by up to 21 com-
pounds that are highly selective for an individual target over
one or two others. However, the majority of currently avail-
able target-selective scaffolds (at different selectivity levels)
are only represented by individual compounds. Thus, many
scaffolds are available for further experimental evaluation
that might yield target-selective compounds. Importantly,
however, selectivity patterns can be observed around spe-
cific targets that are formed by multiple target-selective
scaffolds and establish different target relationships, which
can also be exploited in the design of target-selective com-
pounds.

EXPERIMENTAL PROCEDURES From BindingDB,5 com-
pounds with reported activity against human targets were extrac-
ted. If multiple potency measurements were reported in a BindingDB
entry, their geometric mean was calculated as the final single
potency value. Hierarchical scaffolds4 were extracted from active
compounds that represent ring systems and rings connected by
linkers after removal of substituents. Compounds and scaffolds were
represented in SMILES format8 for processing. Network representa-
tions were generated with Cytoscape.9 The method to determine
target-selective scaffolds and the selectivity level assignments of
scaffolds are detailed in the Methods of the Supporting Information.
Scaffold and target selectivity analysis were carried out using in-
house Pipeline Pilot10 and Perl programs. These programs are
described in the Methods of the Supporting Information and are
available via the following URL: http://www.lifescienceinformatics.
uni-bonn.de (“Downloads”).

SUPPORTING INFORMATION AVAILABLE Details of scaf-
fold selectivity analysis (Methods); tables reporting all targets
investigated in this study (Table S1) and the scaffolds and corre-
sponding compounds that are discussed (Tables S2 and S3); and
figures presenting the annotated scaffold-based target network
(Figure S1), the distribution of community-selective scaffolds
(Figure S2), the selectivity-based scaffold classification scheme

(Figure S3), the distribution of purely selective scaffolds (Figure S4),
the methodology applied to identify scaffolds with exclusive target
selectivity (Figure S5), the structures of target-selective scaffolds
(Figure S6), and the network representations of selectivity patterns
at different selectivity levels (Figure S7). This material is available
free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION
Corresponding Author: *To whom correspondence should
be addressed. Tel: þ49-228-2699-306. Fax: þ49-228-2699-341.
E-mail: bajorath@bit.uni-bonn.de.

REFERENCES

(1) Evans, B. E.; Rittle, K. E.; Bock, M. G.; Dipardo, R. M.;
Freidinger, R. M.; Whitter, W. L.; Lundell, G. F.; Veber, D. F.;
Anderson, P. S. Methods for Drug Discovery: Development of
Potent, Selective, Orally Effective Cholecystokinin Antago-
nists. J. Med. Chem. 1988, 31, 2235–2246.

(2) Schnur, D. M.; Hermsmeier, M. A.; Tebben, A. J. Are Target-
Family-Privileged Substructures Truly Privileged?. J. Med.
Chem. 2006, 39, 2000–2009.

(3) Hu, Y.; Wassermann, A. M.; Lounkine, E.; Bajorath, J. Sys-
tematic Analysis of Public Domain Compound Potency Data
Identifies Selective Molecular Scaffolds across Druggable
Target Families. J. Med. Chem. 2010, 53, 752–758.

(4) Bemis, G. W.; Murcko, M. A. The Properties of Known Drugs.
1. Molecular Frameworks. J. Med. Chem. 1996, 39, 2887–
2893.

(5) Liu, T.; Lin, Y.; Wen, X.; Jorissen, R. N.; Gilson, M. K.
BindingDB: A Web-Accessible Database of Experimentally
Determined Protein-Ligand Binding Affinities. Nucleic Acids
Res. 2007, 35, D198–D201.

(6) PubChem. http://pubchem.ncbi.nlm.nih.gov/ (accessed Sep-
tember 1, 2009).

(7) Mestres, J.; Gregori-Puigjan�e, E.; Valverde, S.; Sol�e, R. Data
completeness-The Achilles heel of drug-target networks.
Nat. Biotechnol. 2008, 26, 983–984.

(8) Weininger, D. SMILES, a Chemical Language and Information
System. 1. Introduction to Methodology and Encoding Rules.
J. Chem. Inf. Comput. Sci. 1988, 28, 31–36.

(9) Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N. S.; Wang, J. T.;
Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape:
A Software Environment for Integrated Models of Biomole-
cular Interaction Networks. Genome Res. 2003, 13, 2498–
2504.

(10) Scitegic Pipeline Pilot, Student Edition, Version 6.1; Accelrys,
Inc.: San Diego, CA, 2007.



 



Summary

From an initial pool of 17,745 compounds with activity annotations reported for

433 human targets, target-selective sca�olds that exclusively yielded compounds

selective for one target over one or two others at di�erent selectivity levels were

identi�ed. However, most sca�olds were only represented by a single compound,

which re�ected a high degree of data sparseness. Hence, only small sets of these

target-selective sca�olds were represented by multiple compounds. Moreover,

selectivity patterns formed by these sca�olds were derived, which support the

design of compounds selective for a given target over other closely related ones.

In the previous two associated studies (Chapter 2 and 3 ), community- or target-

selective sca�olds were identi�ed representing by compounds active against at

least two targets. In the next study, we asked the question whether sca�olds

also exist that are promiscuous in nature, rather than target-selective. Such

polypharmacological behavior at the level of molecular sca�olds had so far not

been systematically explored. Therefore, we designed an analysis to identify

promiscuous chemotypes across di�erent targets or target families.
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Chapter 4

Polypharmacology Directed

Compound Data Mining:

Identi�cation of Promiscuous

Chemotypes

Introduction

Although the conventional paradigm of target speci�city has dominated in drug

discovery over the past decades, it has also been shown that many drugs act

against multiple targets, rather than a single target. Therefore, systematical

exploration of such polypharmacology is of particularly high interest. Here we

designed a large-scale data mining approach to analyze activity annotations of

public domain compounds at three hierarchical levels of abstraction, i.e. active

compounds, hierarchical sca�olds, and carbon skeletons. A target family classi-

�cation scheme was applied to identify promiscuous sca�olds that represented

compounds active against targets in multiple families. For these sca�olds, tar-

get family relationships were analyzed to evaluate their degree of promiscuity.

In addition, activity pro�les were also compared and sca�olds were mapped to

approved drugs.
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Increasing evidence that many pharmaceutically relevant compounds elicit their effects through binding to
multiple targets, so-called polypharmacology, is beginning to change conventional drug discovery and design
strategies. In light of this paradigm shift, we have mined publicly available compound and bioactivity data
for promiscuous chemotypes. For this purpose, a hierarchy of active compounds, atomic property based
scaffolds, and unique molecular topologies were generated, and activity annotations were analyzed using
this framework. Starting from ∼35 000 compounds active against human targets with at least 1 µM potency,
33 chemotypes with distinct topology were identified that represented molecules active against at least 3
different target families. Network representations were utilized to study scaffold-target family relationships
and activity profiles of scaffolds corresponding to promiscuous chemotypes. A subset of promiscuous
chemotypes displayed a significant enrichment in drugs over bioactive compounds. A total of 190 drugs
were identified that had on average only 2 known target annotations but belonged to the 7 most promiscuous
chemotypes that were active against 8-15 target families. These drugs should be attractive candidates for
polypharmacological profiling.

INTRODUCTION

A single-target focus has traditionally dominated com-
pound optimization efforts in medicinal chemistry, and a high
degree of target specificity is usually considered a hallmark
of drug candidates. However, in recent years, there has been
increasing evidence of polypharmacological drug behavior.1-4

It has been shown that many known drugs elicit their
therapeutic effects by acting on multiple targets,1-4 with
protein kinase inhibitors being an extreme and well-studied
example.5,6 Hence, polypharmacology is beginning to be
regarded as a general principle in drug discovery that
influences compound design, optimization, and evaluation.6-9

Given this increasing focus on polypharmacology, we have
been interested in exploring promiscuous chemotypes in
compounds active against currently available targets. In
previous compound data mining exercises, we have extended
the concept of ‘privileged substructures’10 by identifying
target community selective molecular scaffolds,11 studied
activity cliff formation by selected structural classes,12 and
established topological and potency relationships between
bioactive scaffolds.13

In addition to target (class) selectivity of active com-
pounds, leading to the identification of community selective
molecular scaffolds,11 the potential promiscuity of chemo-
types is another important topic for compound design. In a
survey of the relevant literature, only one conceptually related
study was found.14 In this investigation, Cases and Mestres
collected 214 drug targets implicated in cardiovascular
diseases and studied polypharmacological relationships of
ligands active against these targets. In the context of this

analysis, the authors also extracted scaffolds from ligands
of cardiovascular targets and determined the five most
promiscuous scaffolds. In addition, scaffolds isolated from
polypharmacological compounds were utilized to establish
a relationship between molecular weight and cardiovascular
promiscuity.14

Herein, we report the results of a large-scale data mining
effort designed to identify highly promiscuous chemotypes
on the basis of 19 target families. In addition, we have
analyzed the activity profiles associated with these structures
and studied their distribution in approved drugs.

MATERIALS AND METHODS

Compounds active against human targets with at least 1
µM potency were extracted from two major public domain
repositories, ChEMBLdb (CDB)15 and BindingDB (BDB).16

These compounds were pooled and organized into target sets.
Only target sets containing at least 10 active compounds were
further considered. Targets were organized into 19 target
families following the CDB classification scheme,15 which
contained between 3 and 130 individual targets, as sum-
marized in Table 1. From all target set compounds, atomic
property based Bemis and Murcko (B-M) scaffolds17 were
isolated. These scaffolds were obtained by removing all
substituents from compounds and retaining only ring systems
and linkers between them. B-M scaffolds were then trans-
formed into carbon skeletons (CSKs) by converting all bond
orders to one and all atom types to carbon. CSKs correspond
to graph-based B-M scaffolds.17 B-M scaffolds and CSKs
are illustrated in Figure 1. We have selected B-M scaffolds
and CSK representations for our analysis because they
represent a straightforward structural hierarchy.

* Address correspondence to E-mail: bajorath@bit.uni-bonn.de. Tele-
phone: +49-228-2699-306.
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Target family nonspecific (promiscuous) scaffolds were
determined, and their target-based activity profiles were
analyzed. Promiscuous scaffolds were mapped to approved
drugs available in DrugBank.18 Our data mining effort did
not involve predictive model building and was hence not
amenable to external validation. Furthermore, it should be
noted that the scaffold promiscuity mining we present does
not involve a conventional analysis of structure-activity
relationships. All calculations required for our analysis were
carried out with in-house generated Scientific Vector Lan-
guage (SVL)19 or Perl scripts and Pipeline Pilot20 programs.
CDB and BDB compounds, B-M scaffolds, and CSKs were

stored as SMILES strings.21 Scaffold-target family networks
were drawn with Cytoscape.22

RESULTS AND DISCUSSION

Molecular Promiscuity Analysis. In order to study
bioactivity promiscuity we analyzed activity annotations of
public domain compounds at three levels of abstraction,
including active compounds with target annotations, atomic
property based B-M scaffolds, and corresponding carbon
skeletons. These levels represent a hierarchy: Different active
compounds yield the same B-M scaffold and different
scaffolds the same CSK. Importantly, unique CSKs represent
different molecular topologies, and our ultimate goal has been
to identify topologically distinct CSKs that represent pro-
miscuous scaffolds and compounds. Here topologically
distinct CSKs are considered general ‘chemotypes’. Promis-

Figure 1. Generation of scaffolds and carbon skeletons. Shown are three layers of structural representations, i.e., compound (outer), scaffold
(middle), and carbon skeleton (CSK; inner). B-M scaffolds in compounds are generated by only retaining ring systems and linkers between
them (highlighted in red). All six different B-M scaffolds correspond to the same CSK.

Figure 2. Scaffolds with multiple activities. Shown is the distribu-
tion of 83 B-M scaffolds that are active against 3 or more target
families.

Table 1. Target Familiesa

family ID family targets

1 Tyr protein kinase 31
2 Ser_Thr protein kinase 47
3 Ser_Thr_Tyr protein kinase 12
4 phosphadiesterase 9
5 protein phosphatase 3
6 aspartic protease 6
7 cysteine protease 10
8 metallo protease 20
9 serine protease 26
10 carbonic anhydrase 12
11 histone deacetylases 8
12 cytochromeP450 enzyme 13
13 transferase 5
14 ion channel 17
15 GPCR 130
16 cytosolic other 9
17 electrochemical transporter 14
18 nuclear receptor 17
19 other 69

a Nineteen target families were assembled following the
CHEMBLdb classification scheme. For each family, the number of
targets is reported.
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cuous chemotypes have a high potential to display polyp-
harmacological behavior. The knowledge of their structures
is useful for drug design. For example, promiscuous chemo-
types can be selected for polypharmacological applications.
However, promiscuous structural classes might also be
avoided if target specificity is desirable.

For our analysis, we collected compounds active against
human targets with at least 1 µM potency and organized them
into target sets that had to contain a minimum of 10
compounds for further consideration. A compound active
against multiple targets was a member of multiple target sets.
B-M scaffolds and CSKs were derived from these com-
pounds. To each scaffold, the activity annotations of the
compounds it represented were assigned, and to each CSK,
the activity annotations of the scaffolds it covered hence
providing a hierarchical analysis frame.

On the basis of our selection criteria, a total of 34 906
CDB and BDB compounds active against 458 human targets

were obtained that yielded 13 462 unique B-M scaffolds.
These 458 targets were divided into 19 families according
to Table 1.

Promiscuous Scaffolds. Initially, we searched for scaf-
folds that represented compounds active against targets in
multiple families. A total of 435 B-M scaffolds were found
with activity against targets in at least 2 different families.
Of these 435 scaffolds, 83 were active against 3 or more
target families, ranging from 3 to 13, as shown in Figure 2.
Thus, there was a significant decline in the number of active
scaffolds proceeding from 2 to 3 or more target families.
Therefore, we considered scaffolds promiscuous that were
active against at least three target families. These 83
promiscuous scaffolds corresponded to 33 topologically
distinct CSKs, shown in Figure 3, each of which covered
between 1 and 7 unique B-M scaffolds. Figure 3 reveals that
these CSKs were of very different chemical complexity and
represented rather different topologies. The CSKs ranged

Figure 3. Promiscuous chemotypes. The set of 33 topologically distinct CSKs covering 83 promiscuous scaffolds is shown. For each CSK,
the number of its B-M scaffolds and the number of target families these scaffolds are active against are reported. For example, “6/12”
means that the CSK covers 6 promiscuous scaffolds that are active against 12 target families. Below this annotation, the total number of
scaffold-target family relationships is reported for each CSK.
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from simple five- and six-membered rings to highly con-
densated ring systems and flexible structures containing
multiple rings in diverse topological arrangements. Thus,
promiscuity was clearly not limited to chemotypes of low
complexity.

Promiscuous Chemotypes. For each of these 33 CSKs,
the number of activity relationships formed between its B-M
scaffolds and members of the 19 target families was

determined (e.g., an individual B-M scaffold with compounds
active against three target families accounted for three
relationships). For each CSK, the number of its scaffold-target
family relationships is also reported in Figure 3. 7 CSKs
displayed at least 20 scaffold-family relationships and were
the most promiscuous chemotypes we identified.

For each of these 7 CSKs, their scaffold-family relation-
ships were analyzed in detail in a network representation,

Figure 4. Scaffold-target family networks. In a-g, scaffold-target family relationships are displayed in a network representation for B-M
scaffolds of each of the 7 most promiscuous chemotypes. At the top of each figure, the CSK structure is shown, and the total number of
scaffold-family relationships is reported (bold). Circular nodes represent B-M scaffolds (labeled with scaffold IDs), and rectangular nodes
represent target families (labeled with family IDs). An edge connects a scaffold and a family if compounds containing the scaffold are
active against target(s) of this family.
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Figure 5. Activity profiles. In a-g, activity profiles for B-M scaffolds covered by each of the 7 most promiscuous chemotypes are displayed
in a network representation. Nodes represent scaffolds, and an edge connects two scaffolds if they are active against the same target(s).
Edge labels report the number of shared targets. The structure of each B-M scaffold is shown and annotated with its activity profile consisting
of “target family:number of relevant targets” expressions. For example, the scaffold at the bottom in figure a has the activity profile “1:1;
2:3; 10:7”. This means that this scaffold is present in compounds that are active against 1 target in target family 1, 3 targets in family 2,
and 7 targets in family 10. In a-g, the sequence of CSKs corresponds to Figure 4.

Figure 6. Drugs represented by promiscuous CSKs. For each of the 7 most promiscuous CSKs, two representative drugs are shown. Drug
names and the number of annotated targets are reported.
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as shown in Figure 4. In these graphs, circular nodes
represent unique B-M scaffolds corresponding to a given
CSK and rectangular nodes represent target families. An edge
connects a scaffold and a family if compounds represented
by the scaffold were active against target(s) of this family.
The total number of relationships per CSK ranged from 20
to 31. The comparison of CSK networks revealed that
scaffolds corresponding to each of the most promiscuous
CSKs generally formed rather different relationships. How-
ever, only for the CSK shown in Figure 4g, two scaffolds
(3871 and 7221) displayed the same scaffold-family rela-
tionships. For all other CSKs, scaffolds were involved in
only partly overlapping or distinct relationships. In addition,
the degree of promiscuity of scaffolds corresponding to the
same CSK also varied, from 3 to 13 target families per
scaffold. Consequently, there was substantial target family
coverage by scaffolds of promiscuous chemotypes, ranging
from 8 to 15 target families per CSK.

Activity Profiles. We next analyzed the target activity
profiles of B-M scaffolds representing each of the 7 most
promiscuous CSKs. These profiles were generated by col-
lecting the target annotations of active compounds containing
each scaffold and assigning them to the scaffold. The results
are shown in Figure 5. Most B-M scaffolds of a promiscuous
chemotype were chemically very similar, often only distin-
guished by a single heteroatom substitution. Scaffold pairs
covered by promiscuous CSKs shared varying numbers of
targets. Moreover, Figure 5 reveals the presence of in part
strikingly different activity profiles for closely related scaf-
folds. For example, this can be observed for biphenyl
thioether and related scaffolds (Figure 5a), cyclohexane,
pyrimidine, piperidine, cyclohexane, and cyclohexadiene
(Figure 5b) or naphthalene, quinoline, and related scaffolds
(Figure 4e). Regardless of their chemical complexity, scaf-
folds representing each of the promiscuous CSKs were found
to display different target activity profiles, even if differences
between these scaffolds were only subtle. Compounds
containing these scaffolds had different or only in part
overlapping bioactivities and displayed different degrees of
promiscuity, which is also evident in Figure 5. Hence, the
activity profiles were highly differentiated, and these findings
further corroborate significant degree of target family cover-
age by promiscuous chemotypes.

Promiscuous Chemotypes in Drugs. Based on the results
of our systematic analysis of bioactive compounds, we then
searched for promiscuous scaffolds and chemotypes in
current drugs. For this purpose, we utilized the set of 83
unique B-M scaffolds that were active against 3 or more
target families and mapped these scaffolds to 1247 approved
drugs taken from DrugBank. We found that a subset of 39
of these scaffolds was present in a total of 215 drugs. Thus,
promiscuous scaffolds from bioactive compounds were
present in ∼17% of approved drugs. By contrast, these 83
scaffolds were only present in ∼6% of the bioactive
compounds we analyzed. Therefore, the proportion of
promiscuous chemical entities was much higher in drugs than
in bioactive compounds, although only a subset of these
scaffolds occurred in drugs. These 39 scaffolds corresponded
to 17 distinct CSKs. In Table 2, these 17 CSKs are ranked
according to the number of reported drug targets (for the
drugs they represented). The 7 most promiscuous CSKs we
identified in bioactive compounds also occurred most

Table 2. Promiscuous Chemotypes in Drugsa

a Seventeen promiscuous CSKs that occur in both bioactive
compounds and drugs are ranked according to the number of drug
target annotations. For each CSK, the number of corresponding
drugs, drug scaffolds, and target annotations are reported. There is
no overlap between drugs assigned to different CSKs, i.e., the
assignments are unique. The 7 most promiscuous scaffolds from
bioactive compounds are shown on a grey background.
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frequently in drugs. Only the steroid skeleton, ranked sixth
in Table 2, was not part of this set but had more assigned
drug targets than two of the 7 most promiscuous CSKs. For
each of the 7 most promiscuous CSKs, two representative
drugs are shown in Figure 6. Each of the remaining nine
CSKs had fewer target annotations and was only found in
one or two drugs. For drugs containing the 7 most promiscu-
ous CSKs, the average drug target-to-drug ratio was ∼2.2.
However, as reported above, the most promiscuous chemo-
types covered CDB and BDB compounds that were active
against targets from 8 to 15 different families. Thus, these
findings suggest that drugs corresponding to these 7 CSKs
might be more polypharmacological in nature than it appears
on the basis of their current drug target annotations. A total
of 190 drugs were covered by the 7 most promiscuous CSKs
(Table S1, Supporting Information). These drugs are thought
to be good candidates for experimental polypharmacological
profiling. The target family relationships for promiscuous
CSKs and the corresponding scaffolds reported in Figure 4
can be used as guidelines to prioritize target families for a
further analysis of the polypharmacological behavior of these
drugs.

CONCLUSIONS

In this study, we have systematically searched currently
available bioactive compounds for promiscuous structural
classes. A total of 458 targets belonging to 19 target families
provided the basis for our analysis. Promiscuity was explored
at the level of active compounds, atomic property based
scaffolds, and carbon skeletons (topologically distinct chemo-
types). A total of 83 scaffolds and 33 chemotypes were found
to be active against 3 or more target families. Similar
scaffolds typically displayed very different target family
relationships and activity profiles, resulting in broad target
family coverage among promiscuous chemotypes. Subtle
chemical differences among scaffolds of promiscuous chemo-
types were often accompanied by significant changes in
activity profiles. The 7 most promiscuous chemotypes were
found to be active against 8-15 different target families.
Seventeen promiscuous chemotypes covering 39 unique
scaffolds were also found in 17% of approved drugs, whereas
all 33 promiscuous chemotypes covering 83 scaffolds only
occurred in 6% of the bioactive compounds, hence revealing
a clear enrichment of a subset of promiscuous chemotypes
in drugs. Moreover, 190 drugs with on average only 2 known
target annotations were found to belong to the 7 most
promiscuous bioactive chemotypes, suggesting that these
drugs might display a higher degree of polypharmacology
than is currently known.

Supporting Information Available: Table S1 reports 190
approved drugs that are likely to exhibit a high degree of
polypharmacology. This information is available free of
charge via the Internet at http://pubs.acs.org.
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Summary

A total of 34,906 compounds active against human targets with at least 1 µM

potency were organized into 458 targets from 19 families and yielded 13,462 scaf-

folds. Of these sca�olds, 83 were found to be active against targets from three

to thirteen families. These promiscuous sca�olds corresponded to 33 topologi-

cally distinct carbon skeletons (CSKs) of di�erent structural complexity. Seven

of 33 CSKs were involved in at least 20 sca�old-target family relationships and

thus identi�ed as the most promiscuous chemotypes. The sca�old-target fam-

ily network we designed indicated that sca�olds covering the same promiscuous

chemotype mostly displayed rather di�erent activity pro�les, although struc-

tural di�erences between them were often quite subtle. Thirty-nine promiscu-

ous sca�olds were also found to be present in ∼17% of approved drugs. These

�ndings were consistent with the observation that many drugs elicit their ther-

apeutic e�ects by binding to multiple targets.

In addition to target selectivity and promiscuity analysis, the potency distribu-

tion of compounds representing the same sca�old active against multiple targets

has thus far not been investigated on a large scale. For example, it would be of

considerable interest to explore whether sca�olds can be found that display a

general tendency to produce compounds forming activity cli�s, i.e. structurally

similar compounds having signi�cant di�erence in potency. Thus far, activity

cli�s have only been studied for sets of compounds active against a given tar-

get. Therefore, in the next study, we searched for molecular sca�olds yielding

compounds that formed activity cli�s across di�erent targets.
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Chapter 5

Molecular Sca�olds with High

Propensity to Form Multi-Target

Activity Cli�s

Introduction

Activity cli�s are formed by structurally similar compounds with large potency

di�erences and are a focal point of SAR analysis. We further extended the con-

cept to compounds representing a given sca�old and analyzed whether sca�olds

exist that might have a high propensity to form cli�s against multiple targets.

We systematically analyzed compound activity data in two major public repos-

itories and identi�ed a number of sca�olds that were represented by multiple

compounds forming activity or selectivity cli�s against multiple targets. These

�ndings provide useful information for chemical optimization e�orts.
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In target-dependent activity landscapes of compound series, cliffs are formed by pairs of molecules that are
structurally analogous but display significant differences in potency. The detection and analysis of such
activity cliffs is a major task in structure-activity relationship analysis and compound optimization. In
analogy to activity cliffs, selectivity cliffs can be defined that are formed by structural analogs having
significantly different potencies against two targets. The formation of activity cliffs by analogs is generally
a consequence of different R-group patterns; e.g., a specific substitution of a given scaffold might increase
and another substitution decrease potency. Therefore, activity (or selectivity) cliffs are typically analyzed
for a given scaffold representing an analog series, and it has thus far not been explored whether certain
scaffolds might display a general tendency to yield compounds forming activity cliffs against different targets.
We have exhaustively analyzed scaffolds and associated compound activity data in the ChemblDB and
BindingDB databases in order to compare the availability of target-selective scaffolds in these databases
and determine whether multi-target activity and multi-target selectivity cliff scaffolds exist. Perhaps
unexpectedly, we have identified 143 scaffolds that are represented by multiple compounds and form activity
or selectivity cliffs against different targets. These scaffolds have varying chemical complexities and are in
part promiscuous binders (i.e., compounds containing these scaffolds bind to distantly related or unrelated
targets). However, analogs derived from these scaffolds form steep activity cliffs against different targets.
A catalog of scaffolds with high propensity to form activity or selectivity cliffs against multiple targets is
provided to help identify potentially promiscuous candidate scaffolds during compound optimization efforts.

INTRODUCTION

Molecular scaffolds (core structures) are of high interest
in pharmaceutical research as building blocks or markers of
drug-like compounds.1-5 Scaffolds are often defined in
different ways, which makes it difficult to assess and compare
studies that explore scaffold distributions or scaffold hop-
ping.3 For example, scaffolds might be systematically derived
by breaking predefined bonds in compounds following a
hierarchy or on the basis of retro-synthetic criteria,6 i.e., by
separating groups in molecules according to chemical reac-
tions carried out to synthesize them. Organic ring systems
have thus far been a major focal point of scaffold analysis
and design.7,8 However, scaffolds have been analyzed from
rather different points of view. For example, scaffold
distributions have been determined for screening libraries,9

large databases of synthetic molecules,10 or compounds at
different pharmaceutical development stages.11 Frequency
analysis has typically been applied to identify molecular
scaffolds that are recurrent in synthetic molecules12 or in
compounds active against different targets.13 In addition,
attempts have also been made to systematically organize
scaffold populations derived from active compounds on the
basis of structural and activity criteria and thereby establish
scaffold systems and hierarchies.14,15 Scaffold analysis has
also received much attention in the context of fragment-based
drug discovery16-18 where small weakly active compounds
are combined in order to generate potent leads.

In addition to the scaffold analysis schemes described
above, the high interest in “privileged substructures”19

thought to preferentially bind to a given target class has
triggered intense scaffold analysis efforts.20-22 For the
evaluation of privileged substructures, frequency analysis has
also been carried out to compare the occurrence of proposed
privileged substructures in different compound activity
classes.22 Although evidence for a preferential enrichment
of certain scaffolds in specific activity classes has been
accumulating,21 the existence of truly privileged substructures
has remained controversial.22

In order to thoroughly explore the presence of target class-
selective molecular scaffolds beyond frequency calculations,
we have previously carried out a large-scale analysis of
public domain compounds with multiple activity annota-
tions.23 In this study, target communities were defined via a
compound-based target network where individual targets
were connected if they shared at least five active compounds.
For different target communities, active compounds were
collected, and the community selectivity of scaffolds derived
from them was explored. This analysis has led to the
identification of a total of 206 scaffolds that were selective
for one of 18 target communities.23 On the basis of these
findings, we subsequently also searched for target-selective,
rather than target class-selective, scaffolds. For this purpose,
we modified the network analysis approach and introduced
a scaffold-based target network where targets were connected
if they shared at least five “active” scaffolds (rather than
compounds).24 Ultimately, we identified 42 scaffolds, each
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of which was represented by multiple compounds that were
highly selective (at least 100-fold) for a given target over
one or more others.24 However, we also found that currently
available selectivity data were in general only sparse. For
example, many scaffolds that formally met the criteria for
target selectivity were only represented by individual com-
pounds. Our scaffold analyses were based on public domain
compound data available in BindingDB (BDB),25 a major
source of activity information of small molecules, in addition
to PubChem.26 From BDB data, a total of 520 pairs of human
targets were identified that shared at least five ligands.23 By
contrast, in PubChem confirmatory bioassays, only three target
pairs could be identified that met our selection criterion.

Herein, we address as of yet unexplored questions in
scaffold analysis, namely, whether scaffolds exist that have
ahighpropensitytointroduce“activitycliffs”27instructure-activity
landscapes. Activity cliffs are formed by structurally similar
compounds having large differences in potency and are the
major source of SAR discontinuity,28 which provides op-
portunities for compound optimization but often hinders
QSAR modeling and activity predictions.27,28

It is indeed difficult to speculate about the question of
whether scaffolds might have significantly different abilities
to form activity cliffs. This is the case because strong activity
cliffs are formed by close structural analogs with large
potency differences, i.e., compounds that usually contain the
same scaffold. Therefore, the formation of target-specific
activity cliffs is primarily attributed to different substitution
patterns of the same or very similar scaffolds, and it has
thus far not been investigated whether scaffolds might exist
that have an intrinsic ability to form activity cliffs across
different targets. This analysis can also be extended to study
the relationship between scaffolds and “selectivity cliffs” that
are formed by structurally similar compounds having dif-
ferent selectivities against two targets.29

To investigate these questions, we have systematically
explored relationships between active compounds, correspond-
ing scaffolds, activity cliffs, and selectivity cliffs. Recently, the
ChemblDB (CDB) database30 has become available as another
major public domain source of compound activity data, in
addition to PubChem and BDB. In contrast to PubChem
bioassays, we found sufficient CDB compound data for
meaningful scaffold-based target network analysis and explora-
tion of target-selective scaffolds. Therefore, we have carried
out this analysis also for CDB to compare the results with BDB.
The scaffold information extracted from these databases has
then been utilized to search for scaffolds forming activity (and
selectivity) cliffs for multiple targets.

METHODS

Scaffold Definition and Extraction. Scaffolds were
derived from active compounds according to Bemis and
Murcko.1 Following this approach, scaffolds are isolated
from synthetic compounds by removing R groups from ring
systems but retaining linkers between rings.1 Thus, these
hierarchical scaffolds comprise individual, condensated, or
linked ring systems. The Bemis and Murcko approach has
been a major origin of systematic analyses of scaffold
distributions in drugs.1 It should also be noted that the
information required for ligand-centric scaffold distribution
analysis is exclusively obtained from two-dimensional mo-

lecular graphs. Hence, aspects of three-dimensional structure
or protein-ligand interactions do not play a role in the
context of this analysis.

BDB compounds with reported activity against human targets
were collected. For compounds with multiple potency measure-
ments against the same target, the geometric mean was
calculated as the final potency value. From CDB, compounds
active against human targets were selected that had the highest
target confidence level (CDB target confidence score 9) for
direct interactions (target relationship type “D”). From all
selected BDB and CDB compounds, scaffolds were isolated
and represented as SMILES strings31 for further analysis.

Scaffold-Based Target Network. For BDB and CDB
scaffolds, separate scaffold-based target networks were
generated for comparison. Target pairs were formed if two
targets shared multiple active compounds representing at least
five unique scaffolds. In such networks, targets are repre-
sented as nodes and connected by an edge if the target pair
criterion is met. The width of edges is scaled according to
the number of shared scaffolds. Network representations were
drawn with Cytoscape.32

Community- and Target-Selective Scaffolds. Scaffolds
that exclusively occurred in compounds active against only
one of n target communities in the network were determined
and termed “community-selective” scaffolds. For each
compound active against a target pair, its selectivity ratio
(SR) was calculated as follows:

Here, potA(i) and potB(i) represent the negative logarithm of
potency values of compound i for targets A and B, respec-
tively. Compounds and corresponding scaffolds were clas-
sified according to different selectivity levels, i.e., corre-
sponding to at least a 10-fold, 50-fold, or 100-fold potency
difference. If all compounds representing a unique scaffold
were found to be selective for one particular target over one
or more others (e.g., selective for A over B, A over C, etc.),
the scaffold was classified as “target-selective”.

Classification of Scaffolds. Scaffolds were further clas-
sified according to three different criteria reflecting the
formation of activity or selectivity cliffs by compounds
derived from these scaffolds.

Compound Potency Value Ranges. For each scaffold, the
potency range of its compounds against each target was
determined, and the maximum potency was recorded. If a
scaffold was represented by a single compound, the potency
interval was set to 0. If multiple compounds existed that
displayed the same potency, the scaffold was assigned to interval
[0, 1], i.e., 0 to 1 order of magnitude difference in potency.
Scaffolds were assigned to a total of six potency intervals, i.e.,
0, [0, 1], [1, 2], [2, 3], [3, 4], and [4, Max]. Max designates the
highest potency value range. For example, a scaffold was
assigned to interval [2, 3] if the potency range of its compounds
spanned 2 to 3 orders of magnitude. For each potency interval,
the total number of scaffolds, average number of unique
compounds per scaffold, average number of targets, and average
maximum potency were calculated.

Compound SelectiWity Ratio Ranges. In analogy to
compound potency-based scaffold classification, selectivity
ratio ranges for target pairs were determined for compounds
representing each scaffold and corresponding selectivity

SR ) potA(i) - potB(i)
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interval assignments were made, i.e. 0, [0, 1], [1, 2], [2, 3],
[3, 4], and [4, Max]. Here, Max designates the highest

selectivity value range. For example, a scaffold was assigned
to selectivity interval [3, 4] if the potency ratios of its
compounds against their target pairs spanned 3 to 4 orders
of magnitude. For each selectivity interval, the number of
scaffolds, average number of unique compounds per scaffold,
average number of target pairs, and average maximum
potency ratio were calculated.

Scaffold Discontinuity Scores. A local SAR discontinuity
score was originally developed to quantify the SAR contri-
butions of individual compounds in data sets and identify
compounds forming activity cliffs.33 We have adapted this
scoring scheme to assess the propensity of scaffolds to yield
compounds forming activity or selectivity cliffs. For each
scaffold, all compounds were collected for all targets (activity
cliff assessment) or target pairs (selectivity cliff assessment),

Figure 1. Scaffold overlap between CDB and BDB. Scaffold sets
extracted from CDB and BDB are compared in Venn diagrams:
(a) all scaffolds, (b) community-selective scaffolds. The number
of shared scaffolds is shown in bold.

Figure 2. Scaffold-based target networks. Nodes represent targets that are connected by an edge if they share at least five scaffolds. Edge
width is scaled according to the number of shared scaffolds. Target communities that contain at least three targets are considered in our
analysis and consecutively numbered. Target classes are described in Table 1. Nodes representing targets that do not belong to these
communities are colored gray. Network representations are shown for (a) CDB and (b) BDB. Targets common to CDB and BDB are
colored blue.
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and the potency-based scaffold discontinuity score (PScS)
or selectivity-based score (SScS) was calculated as follows:

Here, |pi - pj| and |SRi - SRj| indicate the absolute potency
value and selectivity ratio difference of compounds i and j

represented by scaffold s, respectively, sim(i,j) is the
structural similarity of compounds i and j, assessed by
MACCS34 Tanimoto similarity,35 and |ij| is the number of
all compound pairs. Scores were normalized with respect to
scaffold scores. Raw scores were first transformed into
conventional z scores and then mapped to a cumulative
probability function assuming a normal value distribution
in order to obtain final scores between 0 and 1.33 Scaffolds
were initially ranked on the basis of these scores that reflect
their general propensity to form activity and/or selectivity
cliffs.

Table 1. Composition of Target Communitiesa

number of

community target family targets target pairs compounds scaffolds

(a) CDB
1a tyrosine kinases, serine/threonine protein kinases 99 696 1283 605
1b GPCRs 43 151 2685 1090
1c GPCRs, cytochrome P450 enzymes 18 45 779 348
1d matrix metalloproteinases 13 47 577 256
2 serine proteases 13 27 345 202
3 phosphodiesterases 7 12 145 53
4 prostanoid receptors 7 11 120 51
5 carbonic anhydrases 9 36 462 173
6 phosphatases 6 8 35 20
7 dipeptidyl peptidases 6 10 118 67
8 steroid receptors 6 15 399 89
9 GABAA receptors 5 10 48 9
10 sphingosine 1-phosphate (S1P) receptors 5 10 152 39
11 cathepsins 5 9 270 154
12 histone deacetylases 5 7 21 11
13 somatostatin receptors 5 10 75 39
14 cytochrome P450 enzymes 4 4 95 36
15 melanocortin receptors 4 6 317 179
16 caspases 4 6 126 61
17 �-secretases and cathepsin D 3 1 12 6
18 matrix metalloproteinases 3 2 10 10
19 fatty acid binding proteins 3 2 10 6
20 dehydragenases 3 2 8 7
21 vasopressin/oxytocin receptors 3 2 91 32
22 excitatory amino acid transporters 3 3 32 10
23 retinoic acid receptors 3 3 8 6
24 steroid reductases/isomerases 3 3 37 12
25 peroxisome proliferator-activated receptors 3 3 154 65
26 guanine nucleotide-binding protein G 3 3 28 9
27 neuropeptide Y receptors 3 3 10 10
28 adrenergic receptors 3 3 101 46
29 nitric-oxide synthase 3 3 88 42

(b) BDB
1 tyrosine kinases and cytochrome P450 enzymes 50 100 2128 782
2 serine proteinases 12 34 545 229
3 protein kinase C 8 22 72 34
4 carbonic anhydrases 11 55 327 87
5 phosphodiesterases 11 39 117 47
6 matrix metalloproteinases 10 24 187 56
7 protein kinase B and serine protein kinases 6 11 109 78
8 caspases 9 31 114 49
9 histone deacetylases 8 22 121 68
10 purinergic receptors 6 7 107 54
11 phosphoinositide 3-kinases (PI3Ks) 6 10 46 26
12 GABAA receptors 5 9 8 7
13 opioid receptors 4 6 84 27
14 cathepsins 4 6 307 152
15 dipeptidyl peptidases 4 6 287 105
16 esterases 4 6 238 110
17 polo-like kinases 4 5 35 21
18 sphingosine 1-phosphate (S1P) receptors 3 3 20 9
19 peroxisome proliferator-activated receptors 3 3 61 16
20 steroid receptors 3 3 35 9
21 �-secretases and cathepsin D 3 3 127 66

a Target communities extracted from scaffold-based target networks are reported for (a) CDB and (b) BDB. For each community, the target
family annotation, the number of targets and target pairs, and the number of active compounds and corresponding scaffolds are reported.

PScS(s) )
∑ (|pi - pj| × sim(i, j))

|ij|

SScS(s) )
∑ (|SRi - SRj| × sim(i, j))

|ij|
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For each scaffold representing at least three compounds
active against more than one target, the score calculations
over all targets described above were then repeated for each
individual target using the compounds active against the
target. These calculations identify activity/selectivity cliffs
on a per target basis.

Scaffold analysis and classification was carried out with
in-house generated Perl and Pipeline Pilot36 programs.

RESULTS AND DISCUSSION

Comparison of BDB and CDB Scaffolds. Given our
selection criteria for compounds active against human targets,
17 745 compounds with activity annotations against 433
human targets were taken from BDB. These compounds
produced 6291 unique scaffolds. From CDB, 32 848 com-
pounds active against 671 human targets were selected
yielding 12 902 unique scaffolds. There was limited com-
pound and scaffold overlap between BDB and CDB; only
3589 compounds and 1409 scaffolds were shared by both
databases (Figure 1). Hence, the scaffold information in both
databases was complementary and a total of 47 004 unique
compounds and 17 784 unique scaffolds were available for
further analysis.

Scaffold-Based Target Network. The CDB and BDB
scaffold sets were used to build scaffold-based target
networks in order to establish target communities (classes)
for the analysis of community- and target-selective scaffolds.
In these network representations, targets (nodes) are con-
nected if they share active compounds yielding at least five
unique scaffolds. The scaffold-based target networks are
shown in Figure 2, and the resulting communities are
designated in Table 1. The CDB network in Figure 2a
displays a total of 29 separate communities each consisting
of at least three targets. The major network component 1
can be further subdivided into four distinct target communi-
ties (1a-1d), hence yielding a total of 32 target communities.
However, the network is clearly dominated by community
1a, representing tyrosine kinases, and, to a lesser extent, by
community 1b, representing G protein coupled receptors
(GPCRs). Thus, kinase inhibitors and GPCR antagonists
account for much of the information contained in CDB.
Target communities in the corresponding BDB network in
Figure 2b are more evenly distributed. A total of 21
communities with at least three targets are formed. Here,
the largest community 1 is formed by kinases and cyto-
chrome P450 isoforms (that share many active compounds
in BDB). However, this community is much smaller than
community 1a in the CDB network that contains much more
kinase (but no cytochrome P450) information. There is
significant overlap between a number of multi-target com-
munities in CDB and BDB (as indicated by blue nodes in
Figure 2), but both networks also contain several distinct
small communities. A particularly noteworthy case of
complementarity between these databases is provided by the
GPCR community 1b in the CDB network, its second largest
community. GPCR information is clearly under-represented
in BDB (see communities 10 and 13) where GPCR ligands
correspond to a total of fewer than 100 unique scaffolds,
whereas 1090 GPCR ligand scaffolds are found in CDB
(Table 1). Moreover, there are also relative differences
between target and scaffold information in CDB and BDB,

the most striking case again being the kinase communities.
In CDB, community 1a represents 696 target pairs that are
connected by 605 scaffolds. In BDB, the combined kinase/
cytochrome P450 community 1 only represents 100 target
pairs that are, however, connected by 782 scaffolds. Hence,
for kinases, CDB contains more target and BDB more
scaffold/chemical information. Similar observations are made
for other corresponding target communities.

Community- and Target-Selective Scaffolds. We deter-
mined the number of community-selective scaffolds for each
database and the number of target-selective scaffolds at
different selectivity levels. The results are reported in Table
2. Of 4167 CDB and 2467 BDB scaffolds that were extracted
from the scaffold-based target networks, 3658 and 1991,
respectively, were found to be community-selective (i.e., the
compounds represented by each scaffold were only active
against targets in a single community). However, only 340
community-selective scaffolds were common to CDB and
BDB, and hence the overlap was limited (Figure 1). We then
compared target-selective scaffolds in CDB and BDB.
Previously, we reported that a total of 191 target-selective
scaffolds were available in BDB at a 100-fold selectivity
level but that only 42 of those were represented by multiple
compounds.24 Similar results were also obtained for CDB.
The number of target-selective scaffolds declined from 695
at the 10-fold selectivity level to 244 at the 100-fold level.
However, at the 50- and 100-fold selectivity level, only 43
and 24 of these CDB scaffolds, respectively, were repre-
sented by multiple compounds, i.e., fewer than for BDB
(Table 2). Processing the entire CDB only added 23 unique
multiple-compound scaffolds at the 100-fold selectivity level
to the 42 previously identified BDB scaffolds, hence sup-
porting the conclusion that public domain selectivity data is
currently sparse.

Regardless of compound numbers, target-selective scaf-
folds are in general interesting from another perspective
because they often form “selectivity patterns” around indi-
vidual targets, i.e., inter-target relationships constituted by

Table 2. Comparison of Target and Scaffold Numbersa

CDB BDB

network targets 371 220
target pairs 1188 428
scaffolds 4167 2467

communities number 32 21
targets 303 174
target pairs 1154 405
community-selective

scaffolds
3604 1963

target-selective
scaffolds

10-fold 695 (112) 472 (100)
50-fold 343 (43) 250 (55)
100-fold 244 (24) 191 (42)

selectivity patterns 10-fold 184 (104) 78 (50)
50-fold 114 (64) 49 (31)
100-fold 88 (51) 42 (23)

a The numbers of targets, community- and target-selective
scaffolds, and selectivity patterns are reported for CDB and BDB.
Target-selective scaffolds and selectivity patterns are provided at
different selectivity levels. The numbers of target-selective scaffolds
and selectivity patterns that are represented by multiple compounds
are given in parentheses. Selectivity patterns are target relationships
evolving around specific targets that are formed by multiple
target-selective scaffolds.
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multiple target-selective scaffolds. As examples, Figure 3
shows corresponding BDB and CDB selectivity patterns that
evolve around dipeptidyl peptidase 4 and factor Xa, respec-
tively. In such selectivity patterns, target-selective scaffolds
establish different selectivity relationships between related
targets. Table 2 shows that many selectivity patterns can be
extracted from CDB and BDB. As can be seen in Figure 3,
selectivity patterns for given targets often differ in CDB and
BDB and can be combined to further increase their informa-
tion content, which again points at a notable degree of
complementarity between these databases. The analysis of
scaffold-based selectivity patterns is of practical relevance
because these patterns that can be exploited, for example,
in the design of compounds that are target-selective, have
inverse selectivity, or display a desired selectivity profile for
a group of related targets.

Potency and Selectivity Ranges. We next classified the
complete CDB and BDB scaffold sets according to the
potency and selectivity ranges of the compounds they
represent. The potency- and selectivity-based classifications
are reported in Table 3a and b, respectively. Increasing
potency ranges of compounds representing a given scaffold
provide an indication of activity cliff potential. Table 3a
reveals some clear trends for both CDB and BDB scaffolds.
With increasing potency ranges, the number of scaffolds
decreases, as one would expect, but the number of com-
pounds per scaffold increases and also the number of targets
the compounds are active against. For the largest potency
ranges of more than 4 orders of magnitude, 278 CDB
scaffolds are found that are, on average, represented by ∼17
compounds active against ∼7 targets and 165 BDB scaffolds

each represented by ∼18 compounds active against ∼5
targets. Equivalent trends are observed for the selectivity-
based classification in Table 3b. Here, the number of
scaffolds also decreases for increasing selectivity ranges, but
the number of compounds they represent and the number of
target pairs these compounds are active against increase. For
the largest target selectivity ranges, 52 CDB and 42 BDB
scaffolds exist that are, on average, represented by ∼18 and
∼9 compounds active against ∼209 and ∼31 target pairs,
respectively. There are generally fewer scaffolds for selectiv-
ity- than potency-based classification because selectivity
results from activity against a minimum of two targets, which
only applies to a subset of compounds and scaffolds. Many
of the prioritized scaffolds have already been explored rather
extensively, as suggested by, in part, large numbers of
compounds corresponding to individual scaffolds and mul-
tiple targets they have been tested against. This suggests that
more extensive chemical exploration of other scaffolds might
further increase the number of scaffolds yielding compound
potency differences of more than 4 orders of magnitude.
Taken together, these findings strongly indicated that several
hundred scaffolds already exist in public domain compound
data that generate compounds with differential activity

Figure 3. Comparison of selectivity patterns. Shown are four
representative selectivity patterns at the 50-fold selectivity level
for two target families, (a) dipeptidyl peptidases and (b) serine
proteases. For each family, the pattern derived from BDB is shown
on the left and the corresponding CDB pattern on the right.
Selectivity patterns are displayed in a directed network representa-
tion where nodes represent targets that are connected by an arrow
if they share at least one target-selective scaffold. The arrow points
from the selective target to the non-selective target, thus representing
a “selective over” relationship. The width of the arrows is scaled
according to the number of shared target-selective scaffolds. Arrows
representing selectivity relationships formed by a single scaffold
are colored gray. Nodes are annotated with target names. “DPP”
stands for dipeptidyl peptidase and “f” for factor. Nodes of targets
shared between BDB and CDB are colored blue.

Table 3. Scaffold Classification Based on Potency and Selectivity
Rangesa

(a) potency-based

potency range # scaffolds # cpds # targets max pot

CDB
0 6431 1.0 1.0 6.82
[0, 1] 2433 2.1 1.7 7.07
[1, 2] 1881 3.2 2.2 7.62
[2, 3] 1212 4.5 2.8 8.17
[3, 4] 667 7.2 3.6 8.68
[4, 11.72] 278 16.9 6.9 9.30

BDB
0 2823 1.0 1.0 6.59
[0, 1] 1232 1.9 1.7 6.96
[1, 2] 989 3.1 2.2 7.47
[2, 3] 658 4.8 2.7 7.90
[3, 4] 424 8.0 3.2 8.48
[4, 8.29] 165 17.7 5.4 9.18

(b) selectivity-based

selectivity range # scaffolds # cpds # tps max |sr|

CDB
0 1642 1.0 1.0 1.11
[0, 1] 948 2.2 2.8 0.93
[1, 2] 861 2.6 4.5 1.85
[2, 3] 560 4.0 11.8 2.70
[3, 4] 253 4.9 26.0 3.61
[4, 7.13] 52 15.6 208.6 4.63

BDB
0 1033 1.0 1.0 1.17
[0, 1] 491 2.6 2.4 1.14
[1, 2] 459 3.6 5.0 1.95
[2, 3] 295 4.7 6.9 2.70
[3, 4] 106 6.1 15.8 3.51
[4, 6.83] 42 9.2 31.3 4.74

a Scaffolds extracted from CDB and BDB are classified into six
sets based on (a) potency and (b) selectivity value ranges. Reported
are the number (#) of scaffolds, average number of compounds
(cpds) and targets or target pairs (tps) per scaffold, and the average
maximal logarithmic potency (max pot) or selectivity ratio (max
|sr|).
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against several targets and the tendency to produce activity
(or selectivity) cliffs.

Cliff-Forming Scaffolds. The search for activity cliff-
forming scaffolds was further refined by calculating a
discontinuity score for each scaffold. This calculation
involves systematic pairwise similarity and potency com-
parison of compounds containing the scaffold. High discon-
tinuity scores approaching 1 indicate the presence of
significant activity cliffs within the compound set. This
scoring formalism is also applicable to selectivity-based score
calculation because selectivity is expressed as a pairwise
potency ratio.

Scaffold discontinuity scores were first calculated over all
targets against which compounds with a particular scaffold
were active (i.e., global scores), which provides a general
measure for the propensity of a scaffold to form cliffs. Then,
the scores were recalculated on a per-target basis, thus
identifying target-dependent activity cliffs, if present, or
target pair-dependent selectivity cliffs. For both global and

target-based calculations, discontinuity scores of greater than
0.8 were considered. In our experience, this score level
reliably indicates the presence of activity cliffs.

In CDB and BDB, 137 and 75 scaffolds were found,
respectively, that achieved global potency-based discontinuity
scores of greater than 0.8 and were represented by more than
two compounds active against more than one target. The
complete sets of these CDB and BDB scaffolds with potency
values and intervals are provided in Tables S1 and S2
(Supporting Information), respectively. In Tables 4 and 5,
36 of these CDB and BDB scaffolds are reported, respec-
tively. Furthermore, in Tables 6 and 7, all 34 CDB and all
23 BDB scaffolds are listed that produced selectivity-based
discontinuity scores of greater than 0.8 and were represented
by more than two compounds active against more than one
target pair. Tables S3 and S4 (Supporting Information) list
these scaffolds with associated selectivity ratios and selectiv-
ity intervals. Only two scaffolds formed both strong activity

Table 4. Scaffolds from CDB with High Potency-Based
Discontinuity Scoresa

rank
scaffold

ID
PScS #cpds #targets

#targets
〈MultiCpds〉 #TargetCliffs

1 6445 1 30 24 10 4
2 9793 1 5 28 1 1
3 2269 1 4 3 3 1
4 1901 1 4 6 1 1
5 3866 1 3 9 3 2

16 2623 0.98 24 9 2 1
17 5821 0.98 9 3 3 3
27 5749 0.97 15 2 1 1
33 3659 0.96 27 3 3 2
34 11047 0.96 8 10 4 2
39 10707 0.95 46 22 11 7
40 8996 0.95 13 2 2 1
41 1927 0.95 10 8 7 3
48 5794 0.94 52 6 3 3
59 347 0.92 28 3 3 2
60 10775 0.92 14 2 2 1
61 8115 0.92 9 3 3 3
68 4196 0.90 16 15 6 1
73 2712 0.89 27 4 4 2
84 11159 0.87 21 2 2 2
85 9992 0.87 19 4 4 2
90 10539 0.86 24 10 7 1
91 3062 0.86 11 9 1 1
92 1105 0.86 9 3 3 2
94 2306 0.85 18 7 1 1
95 10235 0.85 12 2 1 1
96 12449 0.85 12 5 2 3
97 10483 0.85 12 3 3 2
98 2831 0.85 9 4 2 1

106 5285 0.84 10 3 3 1
111 3355 0.83 27 2 2 2
112 9749 0.83 9 5 4 3
117 6783 0.82 14 5 4 1
118 9066 0.82 14 3 3 2
126 5314 0.81 20 3 3 2
127 2849 0.81 19 3 2 1

a A total of 36 CDB scaffolds with PScS greater than 0.8 that
represent more than two compounds that are active against more
than one target are listed. For each scaffold, the score-based rank
position (rank), discontinuity score (PScS), the number of unique
compounds it represents (#cpds), the total number of targets
(#targets), the number of targets with multiple active compounds
(#targets <MultiCpds>), and the number of targets for which it
forms activity cliffs (#TargetCliffs) are reported.

Table 5. Scaffolds from BDB with High Potency-Based
Discontinuity Scoresa

rank
scaffold

ID
PScS #cpds #targets

#targets
〈MultiCpds〉 #TargetCliffs

1 1990 1 6 2 1 1
2 413 1 4 2 2 2
3 455 1 4 2 2 2
4 1161 1 3 2 2 2
5 851 0.99 32 6 2 2
7 363 0.98 17 4 3 2

11 312 0.97 9 3 3 3
14 1348 0.96 8 8 7 3
15 274 0.95 13 5 5 5
16 1304 0.95 13 4 1 1
20 1144 0.94 9 3 3 1
27 1506 0.92 13 4 2 2
28 1922 0.92 8 4 1 1
31 1120 0.91 13 2 2 1
35 204 0.90 31 2 1 1
36 606 0.90 24 5 5 1
41 819 0.89 9 3 1 1
42 2389 0.88 60 22 7 4
46 857 0.87 8 5 3 3
48 1106 0.86 8 5 4 3
51 1457 0.85 14 2 2 1
52 39 0.85 12 4 2 1
54 1169 0.84 10 6 6 4
56 1257 0.83 148 7 6 2
57 1109 0.83 40 9 4 3
58 193 0.83 35 2 1 1
59 972 0.83 27 2 2 1
60 833 0.83 14 2 2 2
61 1385 0.83 14 3 2 1
62 2363 0.83 11 2 2 2
63 1152 0.82 63 12 7 4
64 810 0.82 13 2 2 1
65 1425 0.82 9 3 2 1
68 1851 0.81 29 2 1 1
69 720 0.81 20 2 2 1
70 787 0.81 15 2 2 1

a A total of 36 BDB scaffolds with PScS greater than 0.8 that
represent more than two compounds that are active against more
than one target are listed. For each scaffold, the score-based rank
position (rank), discontinuity score (PScS), the number of unique
compounds it represents (#cpds), the total number of targets
(#targets), the number of targets with multiple active compounds
(#targets < MultiCpds>), and the number of targets for which it
forms activity cliffs (#TargetCliffs) are reported.

506 J. Chem. Inf. Model., Vol. 50, No. 4, 2010 HU AND BAJORATH



and selectivity cliffs, scaffold 10 707 (Table 4 and 6) and
scaffold 1152 (Table 5 and 7).

Many of the scaffolds in Tables 4 and 5 form activity cliffs
against multiple targets. For example, the top-scoring scaffold
in Table 4 (rank 1) corresponds to 30 compounds that are
active against 24 targets and form significant activity cliffs
against four of these targets. The scaffold at score rank 17
corresponds to nine compounds that are active against three
targets and form activity cliffs in each case. Furthermore,
the scaffold at score rank 39 is represented by 46 compounds
active against 22 targets, forming activity cliffs for seven of
these targets. In Table 5, the scaffold at rank 5 corresponds
to 32 compounds active against six targets and forming
activity cliffs against two of them. Moreover, the scaffold
at rank 15 is represented by 13 compounds that form activity
cliffs for all five targets they are active against. Similar
observations were made for selectivity cliffs. For example,
in Table 6, the scaffold at rank 4 is represented by 16
compounds forming nine selectivity cliffs, and the scaffold
at rank 2 in Table 7 corresponds to nine compounds forming
three selectivity cliffs. A total of 25 CDB (Table 6) and 15

BDB (Table 7) scaffolds were found to yield compounds
forming multiple selectivity cliffs. In many instances, fewer
than 10 compounds representing a particular scaffold pro-
duced activity or selectivity cliffs for multiple targets. Thus,
thorough chemical exploration of these scaffolds was not
required for cliff formation.

Multi-target Activity Cliffs. Which types of scaffolds
form multi-target activity cliffs? Figure 4a and b show
representative CDB and BDB scaffolds that are repre-
sented by more than two compounds and form at least
three activity cliffs for distinct targets. The target annota-
tions of the scaffolds are shown in Figures S1 and S2
(Supporting Information). These scaffolds are of different
sizes and chemical natures ranging from small generic
structures, e.g., simple aliphatic rings such as cyclohexane,
tetrahydrofuran, or pyrrolidine, to complex multiring
scaffolds. Hence, multi-target activity cliff scaffolds were
diverse, and there were no apparent preferences for
specific chemotypes. Importantly, many of these scaffolds
formed activity cliffs for targets belonging to different
communities. Similar observations were made for multi-
target selectivity cliff scaffolds. These BDB and CDB
scaffolds and their selectivity annotations are shown in
Figures S3 and S4 (Supporting Information), respectively.
Thus, the formation of multiple-target activity or selectiv-
ity cliffs was not limited to closely related targets but also
involved different classes of targets. Figure 5 shows
representative multi-target activity cliffs. Different pairs
of compounds representing a scaffold introduce activity
cliffs of varying magnitudes against different targets. Such

Table 6. Scaffolds from CDB with High Selectivity-Based
Discontinuity Scoresa

rank
scaffold

ID
#cpds SScS #TPs

#TPs
〈MultiCpds〉 #TPCliffs

1 9230 5 1 3 1 1
2 10683 4 1 34 6 5
3 4991 3 1 3 3 3
4 10707 16 0.99 27 12 9
5 2840 7 0.99 3 3 2
6 6582 3 0.99 10 10 7
7 12673 3 0.98 6 3 3
8 3211 3 0.97 3 3 2
9 3754 7 0.96 3 2 1

10 5304 5 0.96 6 3 2
11 572 5 0.95 3 3 2
12 7198 4 0.95 3 3 2
13 4266 3 0.95 3 1 1
14 8848 3 0.95 6 3 2
15 143 7 0.94 3 3 2
16 5834 6 0.93 6 3 3
17 7991 21 0.92 10 10 3
18 3153 3 0.92 3 1 1
19 10439 5 0.91 6 5 3
20 973 3 0.91 21 1 1
21 12298 4 0.90 3 3 2
22 1779 3 0.90 6 6 3
23 12627 3 0.90 3 3 2
24 2634 6 0.89 6 6 3
25 2712 8 0.88 6 5 2
26 1087 3 0.86 6 3 1
27 6611 13 0.84 3 3 1
28 9649 4 0.84 3 2 2
29 6332 17 0.83 35 21 3
30 12747 4 0.83 3 3 1
31 2008 3 0.82 3 3 2
32 6576 3 0.82 6 6 2
33 9011 66 0.81 3 1 1
34 347 23 0.81 3 3 2
a All 34 CDB scaffolds with SScS greater than 0.8 that

represent more than two compounds that are active against more
than one target are listed. For each scaffold, the score-based rank
position (rank), discontinuity score (SScS), the number of unique
compounds it represents (#cpds), the total number of target pairs
(#TPs), the number of target pairs with multiple active
compounds (#TPs 〈MultiCpds〉), and the number of selectivity
cliffs it forms (#TPCliffs) are reported.

Table 7. Scaffolds from BDB with High Selectivity-Based
Discontinuity Scoresa

rank
scaffold

ID
SScS #cpds #TPs

#TPs
〈MultiCpds〉 #TPCliffs

1 2115 1 3 3 3 3
2 312 0.99 9 3 3 3
3 381 0.99 6 3 3 3
4 424 0.99 5 3 3 3
5 196 0.97 4 2 1 1
6 857 0.97 4 7 1 1
7 1425 0.96 6 3 1 1
8 733 0.96 3 3 1 1
9 1615 0.94 6 4 1 1

10 1008 0.94 3 4 3 2
11 1169 0.93 8 13 8 4
12 1001 0.92 4 4 2 2
13 1100 0.90 6 3 3 2
14 2005 0.88 8 3 3 2
15 511 0.87 10 3 1 1
16 466 0.87 9 3 3 3
17 1238 0.87 5 3 2 1
18 1152 0.86 21 9 4 2
19 362 0.85 6 3 3 1
20 1319 0.85 3 3 3 3
21 1106 0.84 5 10 6 4
22 2208 0.81 45 6 6 2
23 446 0.81 19 26 9 4
a All 23 BDB scaffolds with SScS greater than 0.8 that

represent more than two compounds that are active against more
than one target are listed. For each scaffold, the score-based rank
position (rank), discontinuity score (SScS), the number of unique
compounds it represents (#cpds), the total number of target pairs
(#TPs), the number of target pairs with multiple active
compounds (#TPs 〈MultiCpds〉), and the number of selectivity
cliffs it forms (#TPCliffs) are reported.
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patterns are representative for many multi-target activity
cliff scaffolds. In Table S5 (Supporting Information), we
provide SMILES representations of the complete set of
multi-target activity cliff scaffolds represented by multiple
compounds. Table S6 (Supporting Information) provides
a corresponding list of multi-target selectivity cliff
scaffolds.

CONCLUSIONS

In this study, we have primarily explored the question of
whether molecular scaffolds exist that display a general
tendency to form activity or selectivity cliffs against different
targets. From the ChemblDB and BindingDB databases,
scaffolds and associated compound activity data were
systematically extracted, target communities were estab-

Figure 4. Scaffolds with high propensity to form activity cliffs. Scaffolds are shown that produce activity cliffs for at least three targets (a,
CDB; b, BDB). Scaffolds IDs (in italics) and target/community numbers (bold) are provided. For example, “3/2” means that a scaffold
forms activity cliffs for three targets in two communities.
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lished, and target-selective and cliff-forming scaffolds were
identified. Consistent with our early findings, compound
selectivity data is only sparse in public domain compound

databases, which currently limits a reliable assignment of
target-selective scaffolds. By contrast, we have identified a
significant number of scaffolds that are represented by

Figure 5. Representative multi-target activity cliffs. Two representative scaffolds are shown that form multi-target activity cliffs (a, CDB;
b, BDB). The scaffolds are shown on a gray background. Nodes represent targets. Two nodes are connected if they share compounds
containing the scaffold. A target is colored gray if only a single compound is reported to be active against it (hence, for such targets,
activity cliffs cannot be detected). A node is colored red if compounds active against the target yield a PScS value greater than 0.8 (indicating
strong discontinuity). Representative compounds containing the scaffold are shown and labeled. For these compounds, negative logarithmic
potency values for individual targets are reported. The differences between these values indicate the magnitude of the target-dependent
activity cliffs the compounds form. Target abbreviations: CA, carbonic anhydrase; MSK, mitogen- and stress-activated protein kinase;
PKB, protein kinase B; RSK, ribosomal S6 kinase.
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compounds forming activity or selectivity cliffs against
multiple targets. These targets are often unrelated and occur
in different target communities. Many multi-target cliff
scaffolds have not yet been extensively explored; i.e., they
are currently represented by only fewer than 10 compounds,
yet they already display strong tendencies of cliff formation.
Multi-target activity cliff scaffolds are in part promiscuous
in nature and able to bind to different types of targets.
However, these scaffolds yield compounds that form sub-
stantial activity cliffs for different targets and are thus
phenotypically distinct from “non-specific” molecules. Thus,
multi-target activity cliff scaffolds might be interesting
candidates for compound optimization when considered on
a per-target basis. Yet it should be taken into account that
compounds derived from such scaffolds might often be
highly potent against multiple targets. However, depending
on the therapeutic application, the use of multi-target activity
cliff scaffolds might also be desirable, for example, when
optimizing compounds for series of closely related targets
having similar or overlapping functions. The collection of
multi-target cliff scaffolds we have identified and provide
as part of this study should be helpful in order to evaluate
and prioritize scaffolds for compound optimization efforts.

Supporting Information Available: Tables S1-S4 list
scaffolds with high potency- or selectivity-based discontinuity
scores, and Tables S5 and S6 provide SMILES representa-
tions for multi-target activity and selectivity cliff scaffolds
that are represented by at least three compounds. Figures
S1-S4 show target and target pair annotations of multi-target
activity and selectivity cliff scaffolds. This information is
available free of charge via the Internet at http://pubs.acs.org.
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Summary

We have systematically searched for sca�olds forming multi-target activity or

selectivity cli�s. The analysis was facilitated by designing a scoring scheme that

integrated pairwise similarity and potency di�erence of compounds to quantita-

tively assess the tendency of sca�olds to introduce activity or selectivity cli�s.

In case of activity cli�s, 103 sca�olds were found that were represented by more

than two compounds and had a high propensity to form cli�s against multiple

targets. Moreover, 46 sca�olds were identi�ed to form selectivity cli�s against

multiple target pairs. These cli�-forming sca�olds were often represented by

fewer than 10 compounds. Therefore, such sca�olds might be further explored

in the design of compounds with desired activity or selectivity against closely

related targets.

Going beyond activity cli� formation, sca�old hopping refers to the identi�-

cation of new compounds having distinct sca�olds but comparable activity.

Sca�old hopping potential has been intensely studied in both computational

and medicinal chemistry. However, a systematic and general evaluation of scaf-

fold hopping potential across di�erent targets has not yet been explored. Thus,

an analysis of sca�old hops has been carried out on a large scale for individual

compound activity classes.
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Chapter 6

Global Assessment of Sca�old

Hopping Potential for Current

Pharmaceutical Targets

Introduction

In chemoinformatics and drug discovery, it is often di�cult to identify di�er-

ent structure classes having the same activity, which is commonly referred to

sca�old hopping. We present a systematic survey of global sca�old hopping

potential across di�erent pharmaceutical targets. Therefore, we analyzed topo-

logically distinct sca�olds in active compounds and designed a scoring scheme

that incorporated structural similarity of sca�olds and potency information to

quantitatively assess sca�old hopping potential for individual target sets and

sca�old pairs. Target sets were ranked according to the frequency of distinct

sca�olds sharing the same activity and sca�old hopping score. Furthermore,

sca�old pairs with low structure similarity yielding comparably potent com-

pounds were prioritized.
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Scaffold hopping is an intensely investigated topic, both in the context of computational method

evaluation and practical compound screening applications. Scaffold hopping refers to the identification

of different compound classes having similar biological activity and is typically explored on a case-by-

case basis. However, how frequently scaffold hops occur across different targets is presently not well

understood. We have investigated global scaffold hopping potential by systematically analyzing

topologically distinct scaffolds in currently available bioactive compounds with defined target and

activity annotations. The analysis reveals that for the majority of target proteins, active compounds

representing between five and 49 topologically distinct scaffolds are available. Moreover, for 70 targets,

between 50 and more than 300 distinct scaffolds are found. Thus, scaffold hops occur with rather high

frequency among active compounds.

In medicinal chemistry, the search for different structural classes

(chemotypes) having similar activity is generally of high

interest,1,2 for example, to support chemical optimization efforts

or secure intellectual property positions. Moreover, the demon-

stration of scaffold hopping potential has become the ‘‘holy

grail’’ of computational screening methods.3–9 The ‘‘value’’ of any

virtual screening approach is essentially judged upon its ability

to identify different chemotypes having similar activity, mostly

in benchmark calculations. Beyond the often rather artificial

scenario provided by typical benchmark studies, in prospective

applications, a virtual screen is generally claimed to be a

‘‘success’’ if at least one or a few novel compounds with different

core structures (scaffolds) and desired biological activity have

been identified. Unfortunately, the assessment of scaffold

hopping potential often suffers from the lack of clear scaffold

definitions and inconsistent analysis of scaffold hops.9 Moreover,

it is currently unclear how ‘‘difficult’’ scaffold hopping really

might be. No studies are available at present that provide a

general assessment of scaffold hopping potential across different

targets, although such insights would be of general interest, both

for the evaluation of computational screening methods and

practical medicinal chemistry applications.

General scaffold hopping potential might be estimated by

systematically analyzing, on a per-target basis, how many well-

defined scaffold hops are ‘‘encoded’’ by currently available

bioactive compounds. Accordingly, we have carried out a large-

scale analysis of scaffold hops among publicly available active

compounds. All calculations reported herein were carried out

with in-house Perl and Scientific Vector Language (SVL)10

programs and Pipeline Pilot11 tools.

From two major public repositories of bioactive compounds,

CHEMBLdb (CDB)12 and BindingDB (BDB),13 31,158 and

17,745 molecules with activity annotations (Ki or IC50 values)

against human targets were selected, respectively. These

compounds were organized in 586 and 433 individual target sets

and 12,047 and 6,291 atomic property-based Bemis & Murcko

scaffolds14 were extracted from them, respectively. CDB and

BDB currently show limited compound overlap15 and we there-

fore merged the CDB and BDB compound and scaffold sets,

yielding a total of 795 individual target sets containing 45,263

compounds and 16,873 unique scaffolds.

As illustrated in Fig. 1, property-based Bemis & Murcko

scaffolds consist of core ring structures and linkers between

them.14 Scaffolds only distinguished by heteroatom substitutions

and bond orders display the same topology, as reflected by

carbon skeletons (CSKs; i.e. scaffolds with all atom types set to

carbon and all bond orders to one), as also illustrated in Fig. 1.

We deliberately focused our analysis on topologically distinct

scaffolds that are more relevant for scaffold hopping than scaf-

folds that are only distinguished by minor heteroatom substitu-

tions or bond order alterations. Therefore, for each target set,

we determined all Bemis & Murcko scaffolds yielding the

same CSKs. In each of these cases, we only retained the scaffold

that was represented by the largest number of compounds or,

if several scaffolds had the same number of compounds, the

scaffold represented by the largest number of compounds with

highest median potency. An individual scaffold was retained

instead of the CSK because compounds representing the scaffold

were required for score calculations, as described below.

Importantly, by retaining one Bemis & Murcko scaffold per

CSK, all scaffolds selected for a target set at this stage were

topologically distinct. This selection scheme yielded 10,989

topologically distinct scaffolds corresponding to 35,004

compounds. In order to further streamline the collection of

target sets for meaningful scaffold hopping analysis, we only

retained target sets containing at least five compounds with at

least 1 mM potency (i.e., pKi or pIC50 > ¼ 6) and at least two
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scaffolds. Accordingly, our analysis was ultimately based on

8,693 topologically distinct scaffolds represented by 26,664

compounds organized into 502 different target sets. For the

assignment of targets to families, we followed the CDB classi-

fication scheme and combined targets available in CDB and

BDB. Table 1 reports the 19 target families considered in our

Fig. 1 Topologically distinct scaffolds. Nine representative scaffolds extracted from phosphodiesterase 5A inhibitors are shown. For each scaffold, the

corresponding carbon skeleton (CSK) is shown and the number of compounds each scaffold represents is reported. Scaffolds 1 to 3 yield distinct CSKs,

whereas scaffolds 4 to 9 share the same CSK. Scaffold 9 is selected for further analysis because it represents the largest number of compounds (i.e., 27),

and the other five scaffolds are not further considered. This selection scheme ensures that only topologically distinct scaffolds are analyzed.

Table 1 Target families and scaffold distribution.a

FamilyID Target Family

# Targets

Source # Scaffolds

BDB CDB Total < 5 [5, 50) [50, 100) > ¼ 100

1 Tyr protein kinases 30 32 38 4 28 2 4
2 Ser_Thr protein kinases 37 38 49 6 37 4 2
3 Ser_Thr_Tyr kinases 9 7 13 4 9 0 0
4 Phosphadiesterases 8 7 9 0 9 0 0
5 Protein phosphatases 1 3 3 0 3 0 0
6 Aspartic proteases 4 7 7 2 3 2 0
7 Cysteine proteases 11 12 14 1 9 2 2
8 Matrix metalloproteases 14 17 19 2 11 5 1
9 Serine proteases 18 21 25 2 20 0 3
10 Carbonic anhydrases 12 10 12 0 9 2 1
11 Histone deacetylases 8 5 8 0 7 1 0
12 CytochromeP450 enzymes 8 9 13 1 12 0 0
13 Transferases 4 4 8 1 7 0 0
14 Ion channels 4 20 22 8 14 0 0
15 GPCRs 45 129 137 13 92 19 13
16 Cytosolic-others 9 7 14 8 6 0 0
17 Electrochemical transporters 6 15 15 5 8 2 0
18 Nuclear receptors 15 16 20 5 13 2 0
19 Others 44 57 76 16 57 1 2

a Nineteen target families are listed following the CHEMBLdb classification scheme. For each family, the numbers of targets taken from CHEMBLdb,
BindingDB, and the total number of targets are reported (taking target overlap between these databases into account). In addition, for each family, the
number of targets is reported whose compound sets contain different numbers of scaffolds. Target family abbreviations: GPCR, G-Protein Coupled
Receptor; Others, all none classified targets.

340 | Med. Chem. Commun., 2010, 1, 339–344 This journal is ª The Royal Society of Chemistry 2010
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analysis that contained between three and 137 individual

targets.

We first determined the number of distinct scaffolds present

in each target set. The results are reported in Table 1 on

a target family basis. Surprisingly, the majority of target sets

were found to contain significant numbers of distinct scaffolds.

A total of 354 target sets contained between five and 49 scaf-

folds, 42 target sets between 50 and 99, and 28 sets at least

100 scaffolds. Thus, the range of five to 49 scaffolds represents

‘‘average’’ scaffold diversity across current targets corre-

sponding to average scaffold hopping potential. This is further

illustrated by monitoring the scaffold distributions within

target families (Fig. 2a). Many of these scaffolds were repre-

sented by compounds with in part very large potency differ-

ences (Fig. 2b).

A total of 70 target sets from twelve different target families

(covering �14% of the current target spectrum) were character-

ized by what we considered high to very high scaffold diversity,

each containing between 50 and more than 300 topologically

distinct scaffolds. We next analyzed these sets in more detail.

Table 2 shows the top 30 targets ranked by scaffold numbers.

Well-known pharmaceutical targets appear high on the ranking.

These targets, which are also popular for virtual compound

screening studies, include, for example, different adenosine and

dopamine receptor subtypes and other GPCRs, protein kinases,

and various proteases. These targets are chemically well

explored. We have recently shown that more than 80% of scaf-

folds from currently available bioactive compounds are topo-

logically equivalent and/or display substructure relationships.16

Here we have exclusively focused on topologically distinct scaf-

folds, but we also determined substructure relationships between

them, as reported in Table 2. For the target sets containing most

scaffolds, at least approx. half of these scaffolds, but often more

than 70% or 80% were found to be involved in substructure

relationships (i.e. one scaffold is a substructure of another in the

same set). From this point of view, it might not be very surprising

that these targets have high scaffold hopping probability, also in

Fig. 2 Target family statistics. (a) Scaffold distribution and (b) target set

median potency; presented as box plots. Target family IDs are according

to Table 1. The box plots report the smallest value (bottom line), lower

quartile (lower boundary of the box), median (thick horizontal line),

upper quartile (upper boundary of the box), and the largest value (top

line).

Table 2 Target sets ranked by scaffold numbera

Target Name #Sc FamilyID %Sc-in-Sub

Melanin-concentrating hormone
receptor 1

318 15 57.2

Vascular endothelial growth factor
receptor 1

302 1 66.2

Melanocortin receptor 4 207 15 63.3
Factor Xa 187 9 59.4
Cyclin-dependent kinase 2 180 2 70.6
Src tyrosine kinase 174 1 46.0
Thrombin 162 9 41.4
Adenosine receptor A3 160 15 73.1
Mu opioid receptor 157 15 86.6
Kappa opioid receptor 155 15 80.6
Delta opioid receptor 154 15 89.0
Cathepsin K 145 7 53.1
Serotonin receptor 5HT 1a 136 15 81.6
Acetylcholinesterase 136 19 53.7
Endothelial growth factor receptor 134 1 76.1
Dopamine receptor D2 134 15 50.7
Adenosine receptor A1 129 15 74.4
Mitogen-activated protein p38

alpha
129 2 64.3

Cathepsin S 129 7 55.8
Dipeptidyl peptidase 4 119 9 81.5
Adenosine receptor A2A 115 15 80.0
Serotonin transporter 110 15 43.6
Matrix metalloproteinase 3 108 8 61.1
Leukocyto-specific tyrosine kinase 106 1 69.8
Butyrylcholinesterase 104 19 51.9
Carbonic anhydrase II 101 10 55.4
Nociceptin receptor 1 100 15 72.0
Histamine H3 receptor 100 15 75.0
Protein kinase B Akt1 95 2 75.8
Matrix metalloproteinase 2 94 8 75.5

a The top 30 target sets ranked according to scaffold numbers are
reported. For each set, the number of scaffolds (#Sc) and the
percentage of these scaffolds (%Sc-in-Sub) that are involved in
substructure relationships are reported.

This journal is ª The Royal Society of Chemistry 2010 Med. Chem. Commun., 2010, 1, 339–344 | 341
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benchmark calculations, and we would hence consider them

‘‘easy’’ virtual screening targets.

In order to assess scaffold hopping potential in quantitative

terms, beyond scaffold numbers, we have also designed a func-

tion yielding a ‘‘hopping score’’ that incorporates compound

potency information and is calculated over individual scaffold

pairs in target sets. For a scaffold pair ij in target set T, all pos-

sible compound pairs Cij are enumerated (i.e., compounds in

a pair contain scaffold i and j, respectively). For each scaffold

pair ij, a ‘‘raw’’ score is calculated as:

scorerawði; jÞ ¼ ð1 � simði; jÞÞ*

P PCi* PCj

1 þ jPCi � PCjj
jCijj

Here sim(i,j) reports the Tanimoto similarity17 of the two scaf-

folds in a pair calculated using MACCS structural keys18 and

(1� sim(i,j)) is a measure of their dissimilarity. Because similarity

calculations are only carried out for topologically distinct scaf-

folds, a topologically insensitive molecular representation such

as MACCS keys can be used here. PCi and PCj are the potency

values of compound Ci and Cj and |Cij| is the total number of all

compound pairs representing the scaffold pair. Raw scores are

transformed into conventional Z-scores by subtracting the

sample mean and dividing standard deviation of the sample of all

original raw scores. The Z-scores are then normalized with

respect to a cumulative probability function in order to obtain

final scores between 0 and 1.

It should be noted that the large-scale analysis of compound

data inevitably involves at this stage the risk of comparing IC50

and Ki values, which represents a potential error source.

However, for compounds from a series representing an indi-

vidual scaffold, as used for our raw score calculations, consistent

potency measurements are usually reported. In addition, it

should also be noted that IC50 values are generally assay-

dependent and hence often less reliable than Ki measurement.

However, the potency weighting factor emphasizes large potency

differences and the score is balanced by multiple pairwise

contributions. Furthermore, the raw scores are converted into

Z-scores. Taken together, these procedures make the scoring

scheme fairly insensitive to limited fluctuations or inaccuracies of

potency values.

On the basis of this scoring scheme, scaffold pairs will be

prioritized (and obtain scores close to 1) that consist of scaffolds

with low similarity yielding comparably potent compounds;

identifying such scaffolds is a primary goal of scaffold hopping

analysis.9 By contrast, it is a priori not desired to facilitate scaf-

fold transitions from highly potent to only weakly potent

molecules. Therefore, not only target annotations, but also

compound potency should be taken into consideration when

assessing scaffold hopping potential on a large scale. For a target

set T, the hopping score is then calculated as the median of all

normalized scaffold pair scores:

score(T) ¼ median{scorenorm(i,j)|i,j ˛ T;i < j}

This score was calculated for the 70 target sets that were then

ranked on the basis of decreasing scores, as reported in Table 3.

This ranking differed from the one in Table 2 and highest scores

were in this case obtained for carbonic anhydrases. Most of the

target sets with significant scaffold hopping potential reported in

Table 3 contained fewer than 100 scaffolds. Matrix metal-

loproteases and various GPCRs were also highly ranked. The

rankings in Tables 2 and 3 were also combined on the basis of

rank fusion. Table 4 shows the top 30 targets organized by

increasing sum of ranks. These targets include many popular

GPCRs, kinases, and proteases. Hence, on the basis of currently

available compound data, these targets have highest scaffold

hopping potential.

Vascular endothelial growth factor receptor-2 is the top-

ranked target in Table 4 followed by carbonic anhydrase II.

Table 3 Target sets ranked by scaffold score.a

Target Name #Sc FamilyID MedianPot PotRange Score

Carbonic
anhydrase II

101 10 7.7 3.7 0.849

Carbonic
anhydrase IX

84 10 7.4 3.8 0.839

Carbonic
anhydrase I

67 10 7.2 3.2 0.744

Matrix
metalloproteinase 8

53 8 8.0 4.0 0.741

Cannabinoid
receptor 1

84 15 7.6 3.8 0.719

Matrix
metalloproteinase 13

76 8 7.9 4.8 0.705

Neurokinin receptor 1 70 15 8.9 4.7 0.698
Estrogen receptor alpha 59 18 7.4 3.6 0.693
Histone deacetylase 1 65 11 7.2 3.0 0.689
Matrix

metalloproteinase 2
94 8 7.9 4.0 0.665

Matrix
metalloproteinase 9

79 8 7.7 3.6 0.663

Cannabinoid receptor 2 74 15 7.4 3.9 0.660
Estrogen receptor beta 57 18 7.7 3.8 0.659
Matrix

metalloproteinase 3
108 8 7.3 3.6 0.628

Norepinephrine
transporter

51 17 7.1 3.2 0.584

Matrix
metalloproteinase 6

68 15 7.8 3.4 0.568

Acetylcholinesterase 136 19 7.3 5.1 0.567
Dopamine transporter 66 17 7.1 3.4 0.550
Cyclin-dependent

kinase 1
80 2 6.9 4.0 0.546

Vascular endothelial
growth factor
receptor 2

302 1 7.3 3.3 0.545

Histamine H3 receptor 100 15 7.9 4.1 0.538
Beta-secretase 1 89 6 7.4 3.5 0.519
Protein kinase B Akt1 95 2 7.5 3.8 0.517
Alpha-1a adrenergic

receptor
73 15 8.3 4.3 0.516

Poly (ADP-ribose)
polymerase-1

75 19 7.5 3.0 0.513

Adenosine receptor A3 160 15 7.6 3.9 0.501
Matrix metalloproteinase 1 90 8 7.3 4.0 0.490
Checkpoint kinase 62 2 7.7 3.9 0.486
Cyclin-dependent kinase 2 180 2 7.2 3.5 0.483
Serotonin transporter 110 15 7.9 4.4 0.477

a The top 30 target sets ranked according to scaffold hopping scores are
reported. For each set, the number of scaffolds (#Sc), median compound
potency (MedianPot), potency range (PotRange), and hopping score are
reported.
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Fig. 3 shows scaffold pairs for these targets that yield high or

low hopping scores. The top-scoring scaffold pairs display an

astonishing degree of structural diversity, whereas low-scoring

pairs are involved in close structural relationships. These obser-

vations are representative for many target sets that were found to

contain a spectrum of topologically distinct scaffolds, ranging

from closely related to virtually unrelated structures.

Finally, we also determined scaffold overlap between

different target sets. The results are reported in Fig. 4 as

a scaffold-based target network (drawn with Cytoscape19).

Sixty of the 70 target sets shared one or more scaffolds with

others. A total of 142 pair-wise target set relationships were

detected among the 70 target sets; 106 of these relationships

were formed exclusively within target families and 36 across

different families. Substantial scaffold overlap between target

sets was observed within the GPCR, kinase, and matrix met-

alloprotease target families. By contrast, inter-target family

scaffold overlap was rather limited. These 142 relationships

involved 1,298 scaffolds of a total of 5,232 scaffolds contained

in the 70 target sets, i.e. �25%. Hence, scaffold overlap was

generally limited and the majority of scaffolds belonged to

individual target sets.

In summary, in order to better understand how frequently

scaffold hops occur in compounds active against different

targets, we have systematically derived topologically distinct

scaffolds for sets of compounds representing 502 targets

belonging to 19 target families. The occurrence of different

scaffolds in target sets provides an estimate for the likelihood

that scaffold hops can be identified for given targets. In 354 of

our target sets, between five and 49 distinct scaffolds were

detected, providing a range for average scaffold hopping

frequency. In 70 target sets, between 50 and 318 different

scaffolds were found. A subset of these scaffolds was structur-

ally highly diverse but yielded similarly potent compounds,

thus meeting ‘‘ideal’’ scaffold hopping criteria. However, many

other scaffolds (on average �60% of all scaffolds in a target

set) displayed well-defined substructure relationships. Thus,

in these cases, it is not surprising that similarity-based virtual

screening methods often display scaffold hopping potential

(although scaffold hopping ability is usually considered the

ultimate ‘‘proof’’ that a computational screening method is

useful). By contrast, identifying scaffolds that are truly distinct

is much more difficult, given the observed distributions of

structurally related and unrelated scaffolds. However, on the

Table 4 Combined target set rankinga

Target Name #Sc FamilyID MedianPot PotRange Score

Rank

Scaffold Score Sum

Vascular endothelial growth factor
receptor 2

302 1 7.3 3.3 0.545 2 20 22

Carbonic anhydrase II 101 10 7.7 3.7 0.849 26 1 27
Acetylcholinesterase 136 19 7.3 5.1 0.567 13 17 30
Adenosine receptor A3 160 15 7.6 3.9 0.501 8 26 34
Cyclin-dependent kinase 2 180 2 7.2 3.5 0.483 5 29 34
Matrix metalloproteinase 3 108 8 7.3 3.6 0.628 23 14 37
Carbonic anhydrase IX 84 10 7.4 3.8 0.839 37 2 39
Matrix metalloproteinase 2 94 8 7.9 4.0 0.665 30 10 40
Cannabinoid receptor 1 84 15 7.6 3.8 0.719 37 5 42
Cathepsin K 145 7 7.6 5.5 0.464 12 32 44
Histamine H3 receptor 100 15 7.9 4.1 0.538 27 21 48
Cathepsin S 129 7 7.4 3.9 0.467 17 31 48
Src tyrosine kinase 174 1 7.3 3.8 0.406 6 42 48
Melanin-concentrating hormone

receptor 1
318 15 7.6 4.0 0.397 1 48 49

Matrix metalloproteinase 13 76 8 7.9 4.8 0.705 44 6 50
Thrombin 162 9 7.1 6.0 0.404 7 44 51
Protein kinase B Akt1 95 2 7.5 3.8 0.517 29 23 52
Serotonin transporter 110 15 7.9 4.4 0.477 22 30 52
Mitogen-activated protein p38

alpha
129 2 7.6 4.3 0.436 17 36 53

Factor Xa 187 9 7.9 5.3 0.395 4 49 53
Matrix metalloproteinase 9 79 8 7.7 3.6 0.663 43 11 54
Endothelial growth factor receptor 134 1 7.3 5.5 0.435 15 39 54
Neurokinin receptor 1 70 15 8.9 4.7 0.698 49 7 56
Carbonic anhydrase I 67 10 7.2 3.2 0.744 54 3 57
Beta-Secretase 1 89 6 7.4 3.5 0.519 35 22 57
Cannabinoid receptor 2 74 15 7.4 3.9 0.660 46 12 58
Leukocyto-specific tyrosine kinase 106 1 7.9 5.0 0.436 24 36 60
Cyclin-dependent kinase 1 80 2 6.9 4.0 0.546 42 19 61
Matrix metalloproteinase 1 90 8 7.3 4.0 0.490 34 27 61
Dipeptidyl peptidase 4 119 9 7.5 4.0 0.408 20 41 61

a Target sets are ranked according to the sum of the scaffold number- and scaffold score-based rankings. The top 30 targets are listed. For each set, the
number of scaffolds (#Sc), median compound potency (MedianPot), potency range (PotRange), scaffold hopping score, and individual ranks (Scaffold
and Score) and sum (SUM) are given.
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basis of our analysis, we conclude that there is considerable

scaffold hopping potential across the spectrum of currently

available targets. Thus, searching for structurally diverse active

compounds should be promising in many cases.
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Fig. 3 Highly ranked target sets. Scaffold pairs with high (Top) and

low (Bottom) hopping scores are shown for two top-ranked target sets;

(a) vascular endothelial growth factor receptor 2 ligands and (b) carbonic

anhydrase II inhibitors. For each set, three high scoring and two low

scoring scaffold pairs are shown. For each scaffold, the median potency

of the compounds it represents is reported. For each scaffold pair, the

hopping score and MACCS Tanimoto similarity are reported. For

example, 1/0.17 means that the scaffold pair has score of 1 and their

Tanimoto similarity is 0.17. For low-scoring scaffold pairs, structural

differences are highlighted.

Fig. 4 Scaffold-based target network. Scaffold overlaps between target

sets are viewed in a network representation. Nodes represent target sets

that are connected by an edge if they share one or more scaffolds. The

width of edges is scaled by scaffold numbers. Nodes are colored to reflect

target family membership and their size is scaled by median scaffold

hopping scores.
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Summary

In this study, we have investigated how frequently sca�old hops occur across

di�erent targets on the basis of currently available compound data. The major-

ity of compounds that were active against di�erent targets contained between

�ve to 49 topologically distinct sca�olds, representing average sca�old hopping

frequency. A total of 70 targets were found to contain between 50 to 318 scaf-

folds and were further ranked according to the sca�old hopping scores. The

top-scoring sca�old pairs displayed a signi�cant degree of structural diversity,

but comparable high potency. By contrast, low-scoring sca�old pairs were often

involved in substructure relationships, indicating the limited structural varia-

tions.

Based on the observation that many sca�olds were structurally related, we next

also investigated the sca�old diversity of currently available active compounds.

The following chapters explored structural relationships among sca�olds in dif-

ferent ways.
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Chapter 7

Structural and Potency

Relationships Between Sca�olds of

Compounds Active Against

Human Targets

Introduction

In order to systematically assess the degree of structural diversity among scaf-

folds of active compounds, we performed a large-scale analysis to detect two

types of structural relationships, i.e. a sca�old is a substructure of another

sca�old and a sca�old shares the same topology with another one. Sca�olds in-

volved in substructure relationships were further organized into sequential scaf-

fold paths, whereas sca�olds yielding the same carbon skeletons were analyzed

to identify compound activity cli� pairs. In addition, the potency direction

among compound cli� pairs was also analyzed.

77



 



DOI: 10.1002/cmdc.201000272

Structural and Potency Relationships between Scaffolds of Compounds
Active against Human Targets

Ye Hu and J�rgen Bajorath*[a]

The analysis of molecular scaffolds as core structures for drug-
like compounds has traditionally played an important role in
medicinal chemistry.[1, 2] Scaffolds have been defined, for exam-
ple, on the basis of synthetic and retrosynthetic criteria,[3] by
focusing on ring systems,[4] or by applying a molecular hierar-
chy of R-groups, ring structures, and linkers between rings,[5]

which represents the currently most widely applied definition.
A variety of statistical analyses have been carried out to char-
acterize scaffold distributions in drugs and pharmaceutically
relevant active compounds[5–10] or screening libraries.[11] For ex-
ample, we have previously analyzed the distribution of scaf-
folds in compounds at different pharmaceutical development
stages.[10] In this study, we identified sets of scaffolds that pref-
erentially occur in bioactive molecules, clinical trials com-
pounds, or drugs. However, structural relationships between
scaffolds found in these compounds were not explored.

Of particular interest in scaffold analysis is the ability to iden-
tify different molecular scaffolds that have the same specific
activity, a task often referred to as scaffold hopping.[12–15] The
exploration of scaffold hopping ability is a major focal point in
both medicinal chemistry[12, 13] and computational design.[14, 15]

For computational compound screening methods, the assess-
ment of scaffold hopping potential has become one of the
most important criteria.[15] The search for different scaffolds
sharing the same activity, through chemical and/or computa-
tional means, is based on assumed scaffold diversity among
specifically active compounds. However, the degree of scaffold
diversity among currently available active compounds has not
yet been investigated in a systematic manner. Therefore, we
asked the question as to what currently available compound
data might tell us about scaffold diversity. To these ends, a
large-scale analysis of scaffolds in compounds that are active
against currently available human drug targets was carried out.
Structural relationships between scaffolds were systematically
explored at different levels and related to compound potency
distributions.

For our analysis, ChEMBL db (CDB)[16] represented the most
relevant public domain compound source. CDB is a well-cura-
ted database that contains >500 000 compounds with more
than two million activity annotations and broad target cover-
age. The majority of CDB entries represent compound optimi-
zation data, that is, high-confidence activity annotations,[16]

which we considered an important criterion for a global
target-based assessment of scaffold diversity.

From CDB, 31158 compounds active against human targets
were selected that had the highest target confidence level (i.e. ,
CDB target confidence score 9) for direct interactions (target
relationship type “D”). These compounds represented 577 dif-
ferent target sets. From these sets, a total of 12 047 scaffolds
were extracted according to Bemis and Murcko.[5] Hence, all R-
groups were removed from ring systems, but linkers between
rings were retained. Figure 1 a shows the distribution of Bemis
and Murcko scaffolds over all target sets. These sets contained
from one to 615 scaffolds, but the majority of sets contained
fewer than 50 scaffolds. Only 44 target sets consisted of com-
pounds representing only a single scaffold. Figure 1 b shows
the distribution of compound potency ranges over target sets.
Approximately 75 % of the target sets contained active com-
pounds with a potency spread of more than two orders of
magnitude (the extreme case being renin inhibitors, with po-
tency up to the attomolar (10�18

m) level). We compared the
potency of compounds representing each scaffold. The
median potency of all compounds representing a unique scaf-
fold was calculated as the so-called “scaffold potency”.

Scaffolds were also transformed into carbon skeletons (CSKs)
by converting all heteroatoms to carbon atoms and all non-
single bonds to single bonds. Thus, scaffolds producing the
same CSK are topologically equivalent. On the basis of scaf-
folds and CSKs, two types of structural relationships were ex-
plored for each target set: 1) a scaffold is a substructure of an-
other scaffold; 2) different scaffolds yield the same CSK. Ac-
cordingly, scaffold diversity was assessed at two levels. We con-
sidered scaffolds to be structurally diverse if they were 1) not
involved in substructure relationships with others and
2) yielded unique CSKs (i.e. , were topologically distinct). Fig-
ure 1 c reports the ratio of scaffolds involved in two types of
structural relationships over the total number of scaffolds for
all target sets. For the analysis of substructural and CSK rela-
tionships between scaffolds, the benzene ring, the most gener-
ic scaffold, was not considered because benzene was a sub-
structure of the majority of CDB scaffolds. For 465 of 533
target sets containing multiple scaffolds (~87 %), structural re-
lationships were detected, which was a rather unexpected
finding. Moreover, for 107 target sets, all scaffolds were found
to be involved in substructural and/or CSK relationships.

For those target sets containing at least two scaffolds and
one structural relationship, we first determined the number of
scaffold pairs that were involved in substructure relationships.
Figure 2 a shows that one or more substructural scaffold rela-
tionships were observed in ~85 % of the target sets. A total of
261 sets contained more than five substructural relationships.
Among these, vascular endothelial growth factor receptor
(VEGFR) 2 antagonists contained 475 substructure pairs, the
overall largest number.

[a] Y. Hu, Prof. Dr. J. Bajorath
Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical
Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universit�t
Bonn, Dahlmannstr. 2, 53113 Bonn (Germany)
Fax: (+ 49) 228-2699-341
E-mail : bajorath@bit.uni-bonn.de
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In 397 target sets with one or more substructure relation-
ships, a total of 9020 unique substructure relationships were
detected. The corresponding scaffold pairs were analyzed for
sequential substructure relationships on a per-target basis (i.e. ,
A is a substructure of B, B of C, and C of D, etc.). It was found
that ~80 % of the substructure relationships had a path length
of 1 (i.e. , A is a substructure of B, but B is not a substructure of
another scaffold), ~18 % had a path length of 2 (i.e. , A is a sub-
structure of B and B of C), and 1.5 % had of length of 3. Only
five substructure paths of length 4 were identified. Three of

these paths were overlapping and are shown in Figure 2 b.
Hence, the majority of scaffolds were found to be involved in
substructure relationships, but sequential relationships involv-
ing more than three scaffolds were rare.

Next we identified scaffold pairs yielding the same CSKs. Fig-
ure 2 c shows their distribution. In nearly 90 % of all target sets,
scaffold pairs yielding the same CSKs were detected. For 270
of these sets, more than five scaffold pairs were topologically
equivalent (the maximum being 662 pairs for ligands of the
melanin-concentrating hormone receptor 1). Thus, most of the

Figure 1. Target set statistics. For all 577 target sets, distributions are reported for a) the number (#) of scaffolds, b) compound potency range, and c) per-
centage of scaffolds that are either involved in substructural relationships (black) or that have topologically equivalent scaffolds (light grey); that is, [# Scaf-
folds with Structural Relationships]/[Total # Scaffolds] .

Figure 2. Distribution of scaffold relationships. a) For 465 target sets containing at least two scaffolds and one structural relationship, the number (#) of scaf-
fold pairs with substructural relationships is reported. b) Three overlapping sequential substructural scaffold paths of length 4 are shown for the VEGFR2 an-
tagonist set; the median compound potency value is reported for each scaffold. c) Distribution of the number of scaffold pairs yielding the same CSKs.

1682 www.chemmedchem.org � 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemMedChem 2010, 5, 1681 – 1685
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target sets contained a substantial number of topologically
equivalent scaffolds.

For 348 of 533 target sets consisting of multiple scaffolds,
both substructural relationships and CSK equivalences were
observed. In 49 target sets, only substructural relationships
were found, and in 68 sets, only CSK equivalences. In only 68
other target sets, no structural relationships were detected.
Figure 3 a reports the distribution of scaffolds involved in dif-
ferent types of relationships over all target sets containing
multiple scaffolds. As can be seen, sets with both substructure
and CSK relationships typically consisted of many scaffolds. In
contrast, targets with no scaffold relationships mostly con-
tained only very few scaffolds. Figure 3 b shows an example of
a target set with both substructural scaffold relationships and
CSK equivalences. Figure 3 c and 3 d show representative ex-
amples of the only 14 target sets with more than five scaffolds
but no structural relationships. In these cases, scaffolds were
either completely unrelated (Figure 3 c) or related by symmetry
and/or polymer character (Figure 3 d). Hence, the limited
number of target sets with no substructural or CSK relation-
ships included rather unusual active compounds. However, the
majority of target sets were characterized by well-defined

structural scaffold relationships involving most, if not all scaf-
folds.

We also carried out an analysis of structural relationships be-
tween scaffolds isolated from a set of 1586 clinical trials com-
pounds extracted from the MDL Drug Data Report (MDDR),[17]

a set of 2980 registered or launched drugs extracted from
DrugBank[18] and the MDDR, as described previously,[10] and a
set of 50 000 synthetic compounds randomly collected from
ZINC.[19] These calculations were carried out without target set
constraints because these compounds could not be systemati-
cally organized into defined target sets based on activity anno-
tations. Thus, as a control, we also calculated scaffold relation-
ships for the entire collection of bioactive CDB compounds
without applying the target set organization. For all of these
sets of medicinal chemistry relevant compounds, >90 % of the
scaffolds were found to be involved in structural relationships.
Hence, scaffold diversity, as defined herein, among these com-
pounds was generally much lower than we anticipated, and
bioactive compounds mirrored this low level of structural di-
versity. When target set constraints were applied, structural re-
lationships among scaffolds were decreased; importantly, how-
ever, still >80 % of scaffolds extracted from specifically active
CDB compounds displayed defined structural relationships.

Figure 3. Target sets with scaffolds having defined structural relationships. a) The number of scaffolds involved in different types of relationships over all
target sets containing multiple scaffolds; no structural relationship (“None”; white), only substructural relationships (“Substructure”; light grey), only CSK
equivalence (“CSKeq”; dark grey), or substructure and CSK relationships (“Both”; black). b) Scaffolds from an exemplary target set (protein tyrosine kinase
erbB-4 inhibitors) are shown that contain both types of structural relationships. Arrows denote substructure relationships, and grey shading indicates CSK
equivalence. Median compound potency values are reported for all scaffolds. c), d) Scaffolds are shown for two representative target sets without structural
relationships including inhibitors of c) tyrosine protein kinase BTK and d) glutathione S-transferase A1.

ChemMedChem 2010, 5, 1681 – 1685 � 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemmedchem.org 1683



Therefore, these structurally related scaffolds corresponded to
compounds with well-defined activity against currently avail-
able targets.

We previously showed that different scaffolds have different
propensities to form activity cliffs[20] (an activity cliff is formed
by two or more structurally similar compounds with marked
difference(s) in potency[21]). Therefore, we also investigated ac-
tivity cliff formation among topologically equivalent scaffolds.
For each scaffold pair yielding the same CSK, all possible com-
pound pairs were selected that represented one or the other
scaffold. If the potency of compounds in a pair differed by at
least two orders of magnitude, it was considered to form an
activity cliff (and termed “compound cliff pair”). Figure 4 a re-
ports the number of topologically equivalent scaffold pairs
that were represented by multiple compound cliff pairs. In 258
target sets, no such scaffold pairs were found. However, 79
target sets contained more than five scaffold pairs represented
by multiple compound cliff pairs.

We then analyzed the potency “direction” among compound
cliff pairs; that is, we examined whether compounds represent-
ing one of two topologically equivalent scaffolds were always
more potent than compounds representing the other (“unidir-
ectional”) or not (“bidirectional”). Figure 4 b reports the poten-
cy direction among these pairs on a target set basis. A total of
122 target sets were exclusively unidirectional in compound
cliff pair potency distribution, and only five sets were exclu-
sively bidirectional; the remaining 80 targets contained both
uni- and bidirectional scaffold pairs. Thus, a notable tendency
for unidirectional potency among topologically equivalent scaf-
fold pairs with activity cliff potential was observed. Figure 4 c
shows the distribution of compound cliff pairs over topologi-
cally equivalent scaffold pairs, which further corroborates this
trend. A total of 1564 unique scaffold pairs with at least two
compound cliff pairs were found in 202 target sets, and 1398
of these scaffold pairs displayed unidirectional potency; 1218
unidirectional pairs occurred in single target sets, and the re-

maining 180 pairs in multiple sets. In contrast, only 166 bidi-
rectional scaffold pairs were found in 85 target sets, 145 of
which only occurred in single sets. The uni- and bidirectional
scaffold pair sets shared 46 pairs. Thus, cliff-forming com-
pounds representing these 46 pairs showed target-specific dif-
ferences in activity. The prevalence of topologically equivalent
unidirectional scaffolds indicates that the choice of these scaf-
folds plays an essential role for achieving high compound
potency.

In Figure 5, exemplary scaffolds with defined structural rela-
tionships are shown that correspond to compounds forming
significant activity cliffs. These scaffolds display substructural
relationships (Figure 5 a) or are topologically equivalent (Fig-
ure 5 b).

In summary, we have shown that the majority of currently
available molecular scaffolds representing compounds active
against human targets display substructure relationships and/
or are topologically equivalent. Of the 12 047 scaffolds ana-
lyzed herein, a total of 9993 scaffolds were involved in these
well-defined structural relationships. Thus, true scaffold diversi-
ty among active compounds was limited. However, we have
also shown that this applies, in the absence of target set con-
straints, to randomly selected medicinal chemistry relevant and
druglike compounds or drugs. Hence, bioactive compounds es-
sentially mirror general scaffold relationships in currently avail-
able small molecules. These findings might suggest that bio-
logically relevant chemical space is small, perhaps even smaller
than previously thought, and that the identification of distinct-
ly different compound structures sharing a specific target activ-
ity might often be difficult. However, the high frequency of
substructural and topological relationships between currently
available medicinal chemistry relevant scaffolds might also sug-
gest that many medicinal chemistry efforts build upon prior
knowledge and modify known structural motifs. Regardless,
among topologically equivalent scaffolds with the potential to
form activity cliffs, many scaffolds display clear preferences

Figure 4. Distribution of compound cliff pairs. a) The target set distribution of scaffold pairs with varying numbers of compound cliff pairs is shown. b) The
number of target sets that contain only scaffold pairs with unidirectional potency, bidirectional potency, or both. c) The distribution of uni- and bidirectional
scaffold pairs represented by multiple compound cliff pairs.
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over others to yield highly potent compounds. These observa-
tions indicate that structurally related scaffolds might yield
rather different target-dependent compound activity. Thus,
minor differences in scaffold structures might substantially
affect compound optimization efforts.

All calculations were carried out with in-house written Perl
or Scientific Vector Language (SVL)[22] scripts and Pipeline
Pilot[23] programs. For CDB compounds with multiple potency
measurements reported for the same target (either Ki or IC50

values), the geometric mean was calculated to yield the final
potency value. Compounds, scaffolds, and CSKs were repre-
sented in SMILES[24] format for processing.

Keywords: activity cliffs · compound potency · database
mining · molecular scaffolds · substructure relationships ·
topological equivalence
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Figure 5. Activity-cliff-forming scaffolds with defined structural relationships.
a) Ten scaffolds from inhibitors of the b-2 adrenergic receptor are shown
that are involved in substructural relationships. The root scaffold is shown
on a grey background, and nine scaffolds containing the root as a substruc-
ture are arranged according to increasing scaffold potency values (i.e. , the
median potency of compounds corresponding to each scaffold). Structural
regions outside the root substructure are circled. b) Four scaffolds extracted
from thymidylate synthase inhibitors that yield the same carbon skeleton
are shown. Differences in heteroatom positions and bond orders are high-
lighted, and scaffold potency values are reported.

ChemMedChem 2010, 5, 1681 – 1685 � 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemmedchem.org 1685



 



Summary

We have carried out a systematic analysis of structural relationships between

sca�olds of compounds active against human targets. The majority of target

sets (∼87%) contain sca�olds involved in substructure relationships and/or hav-

ing a topology equivalent to other sca�olds in the same set, suggesting limited

structural diversity. This also indicated that currently utilized chemical space

might be smaller than previously anticipated and that chemical modi�cations

were usually made on the basis of known chemical classes. Furthermore, we

have detected compound cli� pairs formed by topologically equivalent sca�olds

in ∼50% of target sets. Many of these sca�olds displayed a tendency to produce

highly potent compounds.

Further extending the sca�old classi�cation scheme introduced here, we also

adopted a well-known hierarchical sca�old classi�cation scheme, i.e. the Sca�old

Tree, which also represents substructure relationships along the tree branches.

By comparing substructure relationships identi�ed in our analysis with those

implemented in sca�old trees, we increased information content of this data

structure.
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Chapter 8

Combining Horizontal and Vertical

Substructure Relationships in

Sca�old Hierarchies for Activity

Prediction

Introduction

A rule-based Sca�old Tree classi�cation scheme organizes original sca�olds of

active compounds and their derivative sca�olds (virtual sca�olds) that are not

contained in original compounds in hierarchies. Leaf-to-root substructure re-

lationships originating from the Sca�old Tree structure were compared with

leaf-to-leaf substructure relationships that were often not described by tree

hierarchies. These two substructure relationships were found to be complemen-

tary in nature and therefore combined to prioritize virtual sca�olds for further

activity prediction. Sca�olds having high-priority on the basis of these comple-

mentary relationships were mapped to external sets of active compounds and

a number of correct activity predictions were obtaind.
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ABSTRACT: For a systematic exploration of structural relationships
between molecular scaffolds, ∼24,000 unique scaffolds were extracted
from 458 different target sets. Substructure relationships between these
scaffoldswere systematicallydetermined.The scaffold treedata structure
was utilized to study structural relationships between original scaffolds
and derivative scaffolds obtained by rule-based decomposition. Leaf-
to-root substructure relationships that resulted from rule-based decom-
position were compared to leaf-to-leaf relationships between original
scaffolds most of which were not part of the scaffold tree hierarchy.
Decomposed scaffolds not contained in active target set compounds
were prioritized on the basis of hierarchical scaffold patterns and
additional substructure relationships. For high-priority virtual scaffolds,
activity predictions were carried out, and these scaffolds were often
found in external test compounds having the predicted activity. Taken together, our results suggest that leaf-to-root substructure relationships in
scaffold trees should best be complemented with additional substructure relationships to determine high-priority virtual scaffolds for activity
prediction.

’ INTRODUCTION

The analysis of molecular scaffolds or frameworks of bioactive
compounds is highly relevant for a number of tasks in medicinal
chemistry including, for example, the identification of potentially
privileged substructures1,2 or of target class-selective chemo-
types.3 Furthermore, the search for different scaffolds yielding
compounds with similar activity, often referred to as scaffold
hopping, is another important goal.4,5

A scaffold is often obtained from an active compound by
removing all substituents from ring systems and from linker
segments between rings, following the Bemis and Murcko
definition.6 Alternatively, scaffolds might also be defined on the
basis of retrosynthetic criteria7 or other chemical rules. Large-
scale scaffold analyses have been carried out, for example, to
assess the structural diversity of synthetic compounds8 and
screening libraries,9 survey heteroaromatic scaffolds in bioactive
compounds,10,11 or study the distribution of scaffolds in com-
pounds at different pharmaceutical development stages.12

Since conventional scaffolds6 contain all rings and linkers
between rings, the addition of any ring to a compound (e.g., a
phenyl substituent) always constitutes a new scaffold, given the
underlying hierarchical scaffold definition (although the compound
might in such cases better be considered an analog). This is often
considered a potential caveat in scaffold analysis.13 Accordingly,
scaffold classification schemes have been introduced that do not
predominantly focus on core structures, but chemical transforma-
tions,13 similar to the matched molecular pair concept,14 or that
organize ring systems after removal of linkers.15

Another scaffold organization scheme was introduced that
iteratively removes rings from initially derived Bemis and
Murcko-like scaffolds, starting at peripheral and moving to more
central positions until only a single ring remains.16 Here rings are
not only removed that are connected by linkers but also from
condensated ring systems by dividing them into individual
(parental) rings. A set of generally applicable chemical rules is
applied to prioritize rings for iterative removal. For scaffolds from
any source, these procedures generate a hierarchy where initially
derived scaffolds (“leaves”) are systematically reduced until an
individual “root” ring remains. For sets of active compounds, the
resulting pathways of this “leaf-to-root” hierarchy are displayed as
so-called Scaffold Trees16 (STs) that currently probably repre-
sent the most general data structure to hierarchically organize
scaffold populations. ST “leaf” scaffolds differ from Bemis and
Murcko scaffolds only in that double bonded atoms (e.g., car-
bonyl oxygens) attached to rings or linkers are retained as part
of the scaffold. Given the rule-based decomposition of ring
systems, the ST hierarchy typically contains scaffolds that are
not contained in the original set of active compounds, so-
called virtual scaffolds.16 Thus, STs can be utilized to predict
biological activities of such scaffolds.16,17 For activity predic-
tion, STs of different compound sets can also be merged by
mapping shared scaffolds and combining the pathways they
are involved in.18
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We have been interested in scaffold hierarchies to system-
atically analyze substructure relationships between scaffolds and
their relevance for biological activity. This analysis was inspired
by a previous finding that 71% of bioactive scaffolds were
involved in defined substructure relationships (i.e., A is a sub-
structure of B).19 We reasoned that it might be possible to
reconcile and further explore these structural relationships on the
basis of scaffold hierarchies. In this context, STs have been of
particular interest because they capture substructure relation-
ships along decomposition pathways (i.e., from leafs to roots),
which we, for the purpose of our analysis, term “vertical”
relationships. However, the substructure relationships we iden-
tified previously are, in the context of the ST hierarchy, leaf-
to-leaf relationships, which we term “horizontal”. Such relation-
ships have thus far not been explicitly considered in ST analysis.
Therefore, we have systematically analyzed to what extent
vertical and horizontal substructure relationships between scaf-
folds complement each other. For this purpose, a large-scale
analysis of target set-dependent scaffold hierarchies has been
carried out. Prioritized candidate scaffolds that were not con-
tained in target set compounds have been mapped to external
compound sources and their biological activity has been pre-
dicted.

’MATERIALS AND METHODS

For scaffold generation, bioactive compounds were extracted
from the ChEMBL20 database (CDB) and BindingDB21 (BDB).
These databases are two major publicly available repositories of
active compounds from medicinal chemistry sources with de-
fined target and activtiy annotations. ST scaffolds were generated
using the Scaffold Tree Generator program.16 Figure 1 illustrates
the rule-based decomposition of ST scaffolds and the formation
of a tree branch. Resulting STs were drawn with Cytoscape.22

Hierarchically organized scaffolds were prioritized on the basis
of defined scaffold patterns and substructure relationships and
mapped to scaffolds of active compounds from the Molecular
Drug Data Report23 (MDDR) and approved drugs from
DrugBank.24 The scaffold analysis reported herein was carried
out with in-house generated Molecular Operating Environ-
ment25 (MOE) Scientific Vector Language (SVL), Perl, and
Pipeline Pilot26 scripts.

Upon publication the scaffold hierarchies generated for our
analysis can be freely obtained via the following URL: http://
www.lifescienceinformatics.uni-bonn.de (please, see the “Down-
loads” section).

’RESULTS AND DISCUSSION

Compound and Scaffold Statistics. From the pool of CDB
and BDB compounds, we extracted compound activity classes
(with specific target annotations) under the condition that each
activity class (target set) had to contain at least 10 compounds
with at least 1 μM potency. On the basis of these criteria, we
obtained 458 target sets containing a total of 34,916 active
compounds that yielded 23,879 unique ST scaffolds.
Scaffold Hierarchies. For each of our 458 target sets, an ST

was generated. Figure 2 shows a representative example and
illustrates how different leaf scaffolds form (or do not form)
converging scaffold pathways toward a root scaffold, i.e. an
individual ring. A consequence of this hierarchical scaffold
decomposition scheme is that not all ST scaffolds are represented

by active compounds from which leaf scaffolds are derived. This
leads to the distinction of “real” ST scaffolds (R) that are
contained in active compounds and “virtual” scaffolds (V) that
do not occur in source compounds, as illustrated in Figure 2.
Following this classification scheme, the 23,879 unique scaffolds
comprising 458 target set STs yielded 13,377 real scaffolds and
10,502 virtual scaffolds.
Substructure Relationships. Scaffold trees capture hierarch-

ical leaf-to-root substructure relationships between scaffolds
along decomposition pathways but do not explicitly account
for horizontal leaf-to-leaf substructure relationships. A central
point of our study has been to determine to what extent such
horizontal substructure relationships are implicitly captured by
the ST data structure. Therefore, we first identified all pairs of leaf
scaffolds that represented a defined substructure relationship.
For this analysis, the most generic scaffold, the benzene ring, was
not considered. As reported in Table 1, we detected 13,181 pairs
that involved a total of 9712 leaf scaffolds, i.e. 73% of all original

Figure 1. Scaffold hierarchy. Shown is an exemplary scaffold branch16

generated from an active compound. The leaf scaffold is extracted from
the compound by removing all single-bond substituents from rings or
linkers between rings. During each decomposition step, a smaller
(parent) scaffold is generated. One ring is iteratively removed per step
from the current scaffold according to 13 predefined chemical rules16

until only a single ring remains as the root scaffold. In this example,
parent scaffold 1 was generated by removing a benzene ring on the basis
of rule 8 (i.e., “remove rings with the least number of heteroatom first”).
In the following steps, rule 3 (“choose a parent scaffold having the
smallest number of acyclic linker bonds”) and rule 10 (“smaller rings are
removed first”) were applied and, finally, rule 8 again to yield the root
scaffold.
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scaffolds. Thus, the majority of all leaf ST scaffolds were involved
in pairwise substructure relationships (similar to 71% of all Bemis
and Murcko scaffolds extracted from CDB compounds19). We
then determined how many of these scaffold pairs also repre-
sented vertical ST substructure relationships. Only 4217 of all
13,181 pairs (32%) were detected in ST pathways. These pairs
involved a total of 5205 scaffolds, i.e. 39% of all leaf scaffolds
(Table 1). Thus, for all 458 target sets, the STs only contained
about one-third of the substructure relationships that were
present between the original scaffolds. On the basis of these
findings, we then asked the question how the additional sub-
structure relationship information might be utilized for tree
analysis.
Substructure Information Content. Substructure relation-

ships can be added to the ST structure by annotating trees with
nonpathway substructure pair information, as illustrated in
Figure 3. The hierarchy of the exemplary ST on the left in
Figure 3 contains three pairwise substructure relationships, and

scaffolds 3 and 4 are each involved in two pairs.Within a branch, a
scaffold can be a part of at most two pairs and hence these
scaffolds cannot be further distinguished by pair numbers.
However, on the right in Figure 3, the tree is annotated with
all additional substructure relationships involving leaf scaffolds
(two in this case). Now scaffold 2 is also involved in two pairs,
and leaf scaffold 1 and root scaffold 4 are each involved in three
pairs. Thus, taking this additional information into account,
scaffolds can be further differentiated by the number of sub-
structure pairs they participate in and scaffolds involved in most
pairs can be prioritized on the basis of substructure information
content. We next evaluated how added substructure information
might affect activity predictions. For this purpose, all possible
pairs between virtual and real scaffolds were systematically
analyzed.
Pairs of Virtual and Real Scaffolds. One of the most

interesting aspects of the ST data structure is the opportunity
to predict the activity of virtual scaffolds.16,17 Prime candidates
for activity prediction are virtual scaffolds that are proximal to
real scaffolds in the tree because of their structural relatedness,17

which represents a rather intuitive approach, leading to a number
of successful predictions.17,18

In order to systematically explore relevant scaffold pairings, we
isolated all V-R scaffold pairs (i.e., pairs formed by a virtual and a
real scaffold) from all target set STs. As reported in Table 2,
53,220 V-R pairs were found in 442 target sets. When we limited
the magnitude of structural differences within a pair to a maxi-
mum of two rings, the number of V-R pairs was reduced to

Figure 2. Real and virtual scaffolds. An exemplary scaffold tree is shown for the carboxylesterase-2 inhibitor set. Nodes represent scaffolds that are
labeled with IDs and gray-scaled according to different scaffold types including “real” scaffolds (black), “virtual” scaffolds (white), and “prioritized virtual”
scaffolds (gray). Edges connect scaffolds in a tree branch (decomposition pathway). In this orientation, leaf scaffolds are at the bottom and root scaffolds
at the top. Two scaffold branches are highlighted using dashed rectangles. In the left branch, virtual scaffolds 19589 and 20296 are located between two
“real” scaffolds 7107 and 8553, forming an R-(V)2-R pattern. In the right branch, virtual scaffold 7182 has two neighboring real scaffolds (6546 and
7115), forming an R-V-R pattern. Scaffold sequences comprising these patterns are displayed on a light gray background. Virtual scaffolds from such
patterns are considered prioritized virtual scaffolds for activity prediction.

Table 1. Substructure Relationshipsa

substructure relationship scaffold pairs scaffolds

horizontal 13,181 9712 (73%)

vertical 4217 5205 (39%)
aEach scaffold pair represents a substructure relationship. Horizon-
tal relationships represent leaf-to-leaf and vertical leaf-to-root sub-
structure relationships between scaffolds. Vertical relationships are
determined by the ST hierarchy.
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approximately half. Moreover, when structural deviations in pairs
were limited to one ring, 10,886 V-R pairs were obtained from
440 target sets that involved 6584 virtual and 8933 real scaffolds
(Table 2). These V-R pairs provided a pool of scaffold pairs for
pattern definition and activity prediction, as discussed in the
following.
Prioritized Scaffold Patterns. We next defined scaffold

patterns formed by V-R pairs that were of increasing attractive-
ness for activity prediction. Virtual scaffolds were considered
attractive candidates if they were “framed” by real scaffolds. In
Figure 2, such R-(V)n-R patterns are highlighted. For example,
two virtual scaffolds appear in a pathway between two real
scaffolds (i.e., n = 2). However, the most attractive pattern is
formed when a virtual scaffold has two real scaffolds as neighbors

(i.e., n = 1), yielding an R-V-R pattern. In this case, a virtual
scaffold is involved in substructure relationships to a known
active child and parent scaffold (and each of these real scaffolds
differs in one ring from the virtual scaffold). For the purpose of
our analysis, we regarded virtual scaffolds involved in R-(V)n-R
and R-V-R patterns as “prioritized virtual” scaffolds.
As illustrated in Figure 3, nonterminal scaffolds in tree branches

are always involved in at least two substructure relationships in the
ST hierarchy, and these structural relationships correspond to
two scaffold pairs (for example, pairs 1-3 and 3-4 in Figure 3).
However, scaffolds might also participate in additional substruc-
ture relationships/pairs with leaf (or other) scaffolds that are not
a part of the hierarchy. These pairwise relationships can be
systematically detected and added to the tree structure, as also
illustrated in Figure 3. Hence, by further extending the ST
hierarchy scaffolds can also be evaluated by taking additional
substructure information into account. For prioritized virtual
scaffolds in R-V-R patterns, nonhierarchy substructure pairings
(i.e., relationships to leaf scaffolds and other real scaffolds) add
further activity-relevant structural information. Moreover, for
many virtual scaffolds that are not part of R-V-R patterns, other
V-R pairs might also be found that provide additional substruc-
ture information. Thus, the likelihood of activity would be
expected to further increase for virtual scaffolds involved in
additional substructure relationships to known active scaffolds.
Scaffold Mapping. Different categories of virtual scaffolds

were mapped to scaffolds extracted from MDDR compounds
and approved drugs. We reasoned that prioritized virtual scaffolds

Figure 3. Scaffold pairs representing substructure relationships. For two scaffolds 1 and 2, the parent scaffolds 3 and 4 are generated by iteratively
removing one ring from each child. The resulting scaffold tree contains three scaffold pairs that form substructure relationships, i.e. 1-3, 3-4, and 2-4
(solid arrows). However, by examining additional substructure relationships for leaf scaffolds, two additional pairs, i.e. 1-2 and 1-4 (dashed arrows),
are identified. Thus, scaffolds 1 and 4 are now each involved in three substructure relationships, and this additional information can be used to further
prioritize scaffolds.

Table 2. V-R Scaffold Pairsa

V-R pair category V-R pairs virtual scaffolds real scaffolds target sets

|V - R| = n rings 53,220 9668 12,541 442

|V - R| e 2 rings 25,664 8750 11,799 442

|V - R| = 1 ring 10,886 6584 8933 440
aReported are the total number of V-R scaffold pairs within ST
hierarchies (|V- R| = n rings, i.e. no structural constraint), the number
of V-R pairs where the virtual and real scaffold differed by at most
two ring systems, and the number of pairs where Vand R differed by
only one ring. In addition, for each V-R pair category, the number of
virtual and real scaffolds and the number of target sets from which
the pairs originated are provided.
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should display an increasing tendency to match scaffolds from
bioactive compounds. From 157,522 MDDR compounds and
1247 drugs, 71,649 and 722 scaffolds were obtained, respectively.
Mapping of CDB/BDB scaffolds from ST hierarchies to the
MDDRwas considered a meaningful exercise because, as reported
in Table 3, only 20% of all real and 10% of all virtual scaffolds were
found to match MDDR scaffolds. For approved drugs, the
numbers of matching scaffolds were much smaller.
We first considered virtual scaffolds from R-(V)n-R patterns,

which reduced the number of candidate scaffolds from 10,502 to
997 (∼9%). However, the match rate of these scaffolds increased
to 17% in the MDDR and 3% in drugs (Table 3). We then
focused on virtual scaffolds from R-V-R patterns, which further
reduced the number of candidate scaffolds to 544. In this case,
22% of these scaffolds matched MDDR scaffolds. Thus, com-
pared to nonprioritized virtual scaffolds, the use of R-V-R virtual
scaffolds essentially doubled the match rate. Furthermore, we
also found that nearly all virtual scaffolds from R-V-R patterns
were also involved in additional substructure relationships.
Therefore, we complemented the set of R-V-R scaffolds with
other virtual scaffolds that were involved in at least two V-R
substructure pairs outside the ST hierarchy, which resulted in a
total of 1,678 prioritized virtual scaffolds. This extended scaffold
set produced a match rate of 27% in the MDDR (and 4.5% in
approved drugs). Thus, scaffold mapping revealed that prior-
itized virtual scaffolds were generally more likely to match
bioactive scaffolds than nonprioritized virtual scaffolds.
Activity Prediction. On the basis of these findings, we went a

step further and predicted the activity of high-priority virtual
scaffolds. For this purpose, we ranked the two sets of matching
virtual scaffolds from R-V-R patterns on the basis of additional
substructure information content, i.e. additional V-R pairs these
scaffolds were involved in. Tables 4 and 5 report the rankings
for prioritized virtual scaffolds matching MDDR compounds
(120 scaffolds) and approved drugs (23 scaffolds), respectively.
For these scaffolds, up to 58 additional substructure relationships
(V-R pairs) were detected. Each prioritized V-scaffold was then
predicted to have the same activity as the neighboring R-scaf-
folds, and this prediction was compared to the target annotations
of matching MDDR compounds or drugs. Correct predictions
were found at a high rate for 26 of 120 virtual scaffolds in the
MDDR and for six of 23 virtual scaffolds in DrugBank, although
these compound sources have different target distributions.

As shown in Tables 4 and 5, correct predictions were preferen-
tially observed for highly ranked virtual scaffolds having high
substructure information content.
In Table 4, the top-ranked prioritized virtual scaffold is the

biphenyl scaffold, which occurred in the cathepsin B scaffold tree
and was hence predicted to be present in compounds active
against cathepsin B. Figure 4 shows the scaffold tree environment
of the biphenyl scaffold and its two immediate real scaffold
neighbors, representing an R-V-R pattern. Also shown is a cathe-
psin B inhibitor that was found to contain this prioritized scaffold.
The second-ranked scaffold in Table 4 is naphthalene, which was

Table 3. Scaffold Mappinga

no. of scaffolds

scaffold type total MDDR drugs

real 13,377 2658 (20%) 226 (1.7%)
virtual 10,502 1005 (10%) 59 (0.6%)
prioritized virtual R - (V)n - R 997 174 (17%) 30 (3%)

R - V - R 544 120 (22%) 23 (4.2%)
R - V - R or g2 V-R pairs 1678 449 (27%) 75 (4.5%)

a Five sets of CDB/BDB scaffolds extracted from ST hierarchies
including real and virtual scaffolds and prioritized virtual scaffolds in
different patterns were mapped to scaffolds of MDDR compounds
and of approved drugs from DrugBank. The pattern designated
“R-V-R org2V-R pairs” combines all prioritized virtual scaffolds of
R-V-R patterns with other virtual scaffolds that were involved in at
least two additional substructure relationships (i.e. nonhierarchy
pairs). The total number of scaffolds comprising each set is given,
and the number of these scaffolds that matched MDDR or drug
scaffolds is reported.

Table 4. Activity Prediction for Prioritized Virtual Scaffolds
in the MDDRa

ScafID
#additional
V-R pairs

correct
prediction SMILES

11893 58 cathepsin B c1ccc(cc1)c2ccccc2
12745 53 serotonin receptor

2c, renin
c1ccc2ccccc2(c1)

10815 38 c1ccc(cc1)Cc2ccccc2
12771 22 matrix metalloproteinases

1, 3
c1ccc2ncccc2(c1)

10620 17 matrix metalloproteinases
2, 3, 9, 13

c1ccc(cc1)COc2ccccc2

12537 17 c1ccc2CCCc2(c1)
12634 17 c1ccc2[nH]cnc2(c1)
12772 16 c1ccc2ncncc2(c1)
22794 16 c1ccc2occc2(c1)
11896 13 c1ccc(cc1)c2ccccn2
21195 13 c1ccc(cc1)C2CCNCC2
15362 12 O=C(CC(c1ccccc1)-

c2ccccc2)N3CCCC3
21850 12 matrix metalloproteinases

3, 8
c1ccc(cc1)OCc2ccnc3ccccc23

11700 11 c1ccc(cc1)Oc2ccccc2
9220 9 O=S(=O)(Nc1ccccc1)-

c2ccccc2
9823 9 c1ccc(cc1)C2CCCCC2
12828 9 serotonin receptor

1d, 1b
c1ccc3c(c1)[nH]cc3-

(C2CC[Nþ]CC2)
13145 9 adenosine receptor

A2A
c1ncc2nc[nH]c2(n1)

22561 9 c1ccc2[nþ]cccc2(c1)
4470 8 O=C(NCCc1ccccc1)c2ccccc2
6312 8 O=C(c1ccccc1)c2ccccc2
9366 8 O=S(=O)(c1ccccc1)N2CCCC2
9812 8 c1ccc(cc1)C2CC2
22733 8 c1ccc2nc(ccc2(c1))N3CC-

[Nþ]CC3
600 7 C1COC(C1)n3cnc2cncnc23
2054 7 O=C(CCc1ccccc1)-

NCCc2ccccc2
10321 7 c1ccc(cc1)CCc2ccccc2
9597 6 c1[nH]cc(n1)C2CC2
10813 6 aldose reductase c1ccc(cc1)Cc2ccc3ccccc3(c2)
11486 6 adenosine receptor A1 c1ccc(cc1)Nc4ncnc3c4-

(ncn3(C2CCCO2))
11769 6 serotonin receptor 2a c1ccc(cc1)c2cc3ccccc3-

([nH]2)
11909 6 c1ccc(cc1)c2ccncn2

aThe 120 virtual scaffolds fromR-V-R patterns that matchedMDDR
scaffolds were ranked according to the number of additional non-
hierarchy V-R substructure pairs they were involved in and their
activity was predicted. Thirty-two scaffolds were involved in more
than five additional pairs and are listed. Prioritized virtual scaffolds
with correct activity prediction are shown in italics and their
activities are reported. In addition, SMILES27 representations of
ranked scaffolds are provided.
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Table 5. Activity Prediction for Prioritized Virtual Scaffolds in DrugBanka

ScafID #additional V-R pairs correct prediction SMILES

11893 58 c1ccc(cc1)c2ccccc2

12745 53 beta-2 adrenergic receptor, cyclooxygenase 2 c1ccc2ccccc2(c1)

10815 38 dopamine transporter c1ccc(cc1)Cc2ccccc2

12771 22 c1ccc2ncccc2(c1)

10620 17 c1ccc(cc1)COc2ccccc2

12537 17 c1ccc2CCCc2(c1)

11700 11 c1ccc(cc1)Oc2ccccc2

12828 9 serotonin receptor 1d, 1b, 2a c1ccc3c(c1)[nH]cc3(C2CC[Nþ]CC2)

13145 9 adenosine receptor A3 c1ncc2nc[nH]c2(n1)

22561 9 c1ccc2[nþ]cccc2(c1)

4470 8 O=C(NCCc1ccccc1)c2ccccc2

6312 8 O=C(c1ccccc1)c2ccccc2

9812 8 c1ccc(cc1)C2CC2

600 7 purine nucleoside phosphorylase (PNP) C1COC(C1)n3cnc2cncnc23

10321 7 c1ccc(cc1)CCc2ccccc2

11909 6 c1ccc(cc1)c2ccncn2

154 5 C1CC2CCC(C1)[Nþ]2

11248 3 alpha-2a adrenergic receptor c1ccc(cc1)Nc2ccccc2

17561 3 O=C(Nc1nccs1)c2ccccc2

10075 2 c1ccc(cc1)CC2CCCC2

21088 2 c1ccc(cc1)C(CCC[Nþ]2CCCCC2)c3ccccc3

21181 2 c1ccc(cc1)C2CCCC2

9415 0 O=S(=O)(c1ccccc1)c2ccccc2
aThe 23 virtual scaffolds fromR-V-R patterns thatmatched approved drugswere ranked according to the number of additional nonhierarchyV-R
substructure pairs they were involved in and their activity was predicted. Prioritized virtual scaffolds with correct activity prediction are shown in
italics and their activities are reported. In addition, SMILES27 representations of ranked scaffolds are provided.

Figure 4. Activity prediction for the biphenyl scaffold (bioactive compounds). Scaffold tree branches for the cathepsin B inhibitor set
contained the prioritized “virtual” biphenyl scaffold (labeled with ID 11893 and identified by a red circle). Neighboring “real” scaffolds
of the same branch are shown. A representative cathepsin B inhibitor containing the biphenyl scaffold (red) is shown on a light gray
background.
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Figure 5. Activity prediction for the naphthalene scaffold (bioactive compounds). Scaffold tree branches for (a) 5HT 2C antagonists and (b) renin
inhibitors contained naphthalene as a prioritized virtual scaffold. The presentation is according to Figure 4. Matching bioactive compounds containing
this scaffold (red) are shown.



H dx.doi.org/10.1021/ci100448a |J. Chem. Inf. Model. XXXX, XXX, 000–000

Journal of Chemical Information and Modeling ARTICLE

prioritized in two different scaffold trees originating from 5HT
2C serotonin receptor antagonists and renin inhibitors, respec-
tively, both of which correctly matched MDDR compounds. In
Figure 5, the different scaffold tree environments of the
naphthalene scaffold are shown. In the 5HT 2C scaffold tree
in Figure 5a, this high-priority scaffold occurs in a peripheral
branch, whereas in the renin inhibitor-derived tree in Figure 5b
it is the most central scaffold from which 10 sub-branches
originate. Hence, these target-set derived scaffold tree environ-
ments of naphthalene differed substantially. However, for both
targets, active compounds containing the naphthalene moiety
were identified. As reported in Table 5, the biphenyl scaffold did
not yield a correct match, i.e. no drug was found directed against
a target representing one of the trees where the biphenyl

scaffold was prioritized. However, for the naphthalene scaffold,
drugs acting against two of its targets were identified, the beta-2
adrenergic receptor and cyclooxygenase 2. The corresponding
scaffold tree environments and matching drugs are shown in
Figure 6a and Figure 6b, respectively. Thus, these targets
differed from those for which matching MDDR compounds
were identified. In Table 5, the third-ranked scaffold is diphe-
nylmethane, which is closely related to the biphenyl scaffold.
In this case, no matching MDDR compound was identi-
fied. However, the diphenylmethane scaffold was found to
correctly match a drug active against the dopamine transporter.
In Figure 7, the corresponding scaffold tree environment of
diphenylmethane is shown. Here, this prioritized virtual scaf-
fold is also the most central scaffold and involved in seven partly

Figure 6. Activity prediction for the naphthalene scaffold (drugs). Scaffold tree branches for (a) beta-2 adrenergic receptor antagonists and
(b) cyclooxygenase 2 inhibitors contained naphthalene as a prioritized virtual scaffold. The presentation is according to Figure 4.Matching drugs are shown.
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overlapping R-V-R patterns, making it a prime candidate for
activity prediction.

’CONCLUSIONS

In this study, we have systematically explored the overlap
between horizontal and vertical substructure relationships in
scaffold hierarchies of many different target sets. Only about a
third of all leaf-to-leaf substructure relationships detected in our
large-scale analysis were found to be implicitly covered by
scaffold hierarchies. Hierarchical and nonhierarchical substruc-
ture relationships are complementary in nature. Thus, the
additional substructure information was included in the analysis
to further differentiate between scaffolds. On the basis of our
findings, virtual scaffolds were successfully prioritized for
scaffold mapping and activity prediction by combining scaffold
pattern and substructure pair information. Given the wealth of
available scaffold substructure relationships, scaffold prioritiza-
tion scheme introduced herein should also be useful for practical
applications of scaffold hierarchies to predict novel active com-
pounds.
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Summary

Herein, we have systematically compared horizontal (nonhierarchical) and ver-

tical (hierarchical) substructure relationships among 13,377 sca�olds isolated

from 34,916 compounds active against 458 di�erent targets. Only ∼32% of scaf-

fold pairs having horizontal substructure relationships were detected in sca�old

hierarchies of the Sca�old Tree structure. Therefore, additional nonhierarchi-

cal substructure relationships were combined with Sca�old Tree data to further

prioritize virtual sca�olds that were not contained in original compounds for

activity prediction. By mapping virtual sca�olds to external sets of bioactive

compounds and approved drugs, prioritized sca�olds were more likely to match

known active compounds than non-prioritized ones. Moreover, the activity

of high-priority virtual sca�olds was predicted and more than 20% of these

sca�olds were found to match the predicted activity in external compounds.

Therefore, horizontal and vertical substructure relationships were complemen-

tary for activity prediction, which further increased information content of the

Sca�old Tree data structure.
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Conclusion

In medicinal chemistry, it is often di�cult to identify structure-activity relation-

ship determinants of bioactive compounds. Therefore, the aim of this thesis has

been to explore di�erent types of relationships between chemical structure and

biological activities at the level of molecular sca�olds through systematically

mining of currently available compound data. A series of large-scale analyses

has been presented.

First, sca�old distributions at di�erent stages of pharmaceutical development

were analyzed and compared. Sca�olds with characteristic frequencies of oc-

currence at di�erent stages have been identi�ed, indicating a likelihood of com-

pounds passing through di�erent development stages (Chapter 1 ).

Next, by exploring relationships between compound selectivity and targets or

target families, a set of community-selective sca�olds was identi�ed that repre-

sented compounds selective for sets of closely related targets. The identi�cation

of community-selective molecular sca�olds has revised the conventional view

of privileged substructures (Chapter 2 ). Moreover, a subset of community-

selective sca�olds was found to be target-selective, i.e. yielding compounds

consistently selective for one particular target over others (Chapter 3 ).

On the other hand, 83 sca�olds corresponding to 33 chemotypes were found to

be promiscuous, i.e. representing compounds active against at least three di�er-

ent target families. Despite subtle structural di�erences, promiscuous sca�olds

sharing the same chemotype displayed rather di�erent activity pro�les. Also,

these sca�olds were found to be enriched in approved drugs (Chapter 4 ).

In addition to analyzing sca�old frequencies, selectivity, and promiscuity, po-

tency distributions of compounds representing the same sca�old were system-
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atically investigated. Sca�olds having a high propensity to form multi-target

activity or selectivity cli�s were identi�ed (Chapter 5 ). Moreover, sca�old hop-

ping potential was systematically assessed for current pharmaceutical targets

(Chapter 6 ).

Finally, structural relationships were exhaustively explored between sca�olds of

compounds active against human targets. Approximately 87% of sca�olds dis-

played substructure relationships and/or shared the same topology with others.

Activity cli�s could be also identi�ed among topologically equivalent sca�olds

(Chapter 7 ). These substructure relationships were further compared to, and

combined with, a hierarchical sca�old classi�cation scheme called the Sca�old

Tree to facilitate activity prediction of virtual sca�olds that were not yet found

in active compounds contained in the tree structure (Chapter 8 ).

In summary, departing from conventional case-by-case SAR analysis, data min-

ing approaches presented in this thesis were designed to better understand

relationships between molecular sca�olds and biological activities on a large

scale. On the basis of publicly available compounds, sca�olds were isolated.

Sets of sca�olds displaying di�erent characteristics were identi�ed by taking

frequencies of occurrence, target selectivity, promiscuity, potency distribution,

and structural relationships into consideration, which have provided useful in-

formation for lead optimization and compound design.
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