
Information Extraction from Text for
Improving Research on Small Molecules and

Histone Modifications

Dissertation
zur Erlangung des Doktorgrades (Dr. rer. nat.)

der
Mathematisch-Naturwissenschaftlichen Fakultät

der
Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Corinna Klein
geb. Kolářik

aus

Zittau

Bonn 2011



Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. rer. nat. Martin Hofmann-Apitius
2. Gutachter: Prof. Dr. rer. nat. Holger Fröhlich

Tag der Promotion: 10. Juni 2011
Erscheinungsjahr: 2011



Abstract

The cumulative number of publications, in particular in the life sciences, requires efficient
methods for the automated extraction of information and semantic information retrieval. The
recognition and identification of information-carrying units in text – concept denominations
and named entities – relevant to a certain domain is a fundamental step. The focus of
this thesis lies on the recognition of chemical entities and the new biological named entity
type histone modifications, which are both important in the field of drug discovery. As the
emergence of new research fields as well as the discovery and generation of novel entities
goes along with the coinage of new terms, the perpetual adaptation of respective named
entity recognition approaches to new domains is an important step for information extraction.
Two methodologies have been investigated in this concern: the state-of-the-art machine
learning method, Conditional Random Fields (CRF), and an approximate string search
method based on dictionaries. Recognition methods that rely on dictionaries are strongly
dependent on the availability of entity terminology collections as well as on its quality.
In the case of chemical entities the terminology is distributed over more than 7 publicly
available data sources. The join of entries and accompanied terminology from selected
resources enables the generation of a new dictionary comprising chemical named entities.
Combined with the automatic processing of respective terminology – the dictionary curation
– the recognition performance reached an F1 measure of 0.54. That is an improvement by
29 % in comparison to the raw dictionary. The highest recall was achieved for the class of
TRIVIAL-names with 0.79.

The recognition and identification of chemical named entities provides a prerequisite
for the extraction of related pharmacological relevant information from literature data.
Therefore, lexico-syntactic patterns were defined that support the automated extraction of
hypernymic phrases comprising pharmacological function terminology related to chemical
compounds. It was shown that 29-50 % of the automatically extracted terms can be proposed
for novel functional annotation of chemical entities provided by the reference database
DrugBank. Furthermore, they are a basis for building up concept hierarchies and ontologies
or for extending existing ones. Successively, the pharmacological function and biological
activity concepts obtained from text were included into a novel descriptor for chemical
compounds. Its successful application for the prediction of pharmacological function of
molecules and the extension of chemical classification schemes, such as the the Anatomical
Therapeutic Chemical (ATC), is demonstrated.

In contrast to chemical entities, no comprehensive terminology resource has been available
for histone modifications. Thus, histone modification concept terminology was primary
recognized in text via CRFs with a F1 measure of 0.86. Subsequent, linguistic variants
of extracted histone modification terms were mapped to standard representations that
were organized into a newly assembled histone modification hierarchy. The mapping was
accomplished by a novel developed term mapping approach described in the thesis. The



combination of term recognition and term variant resolution builds up a new procedure for
the assembly of novel terminology collections. It supports the generation of a term list that
is applicable in dictionary-based methods. For the recognition of histone modification in
text it could be shown that the named entity recognition method based on dictionaries is
superior to the used machine learning approach.

In conclusion, the present thesis provides techniques which enable an enhanced utilization
of textual data, hence, supporting research in epigenomics and drug discovery.
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Chapter 1

Introduction

Research in medicine, biology, pharmacology, and toxicology deals with understanding
the function of cellular and systemic processes, the mechanisms of disease development as
well as the distribution and metabolization of chemicals, drugs, and nutraceuticals in cell
cultures, model organisms and humans.

Pharmaceutical research specifically aims at identifying chemicals that well-directedly in-
fluence biological processes for treating medical conditions or alleviating disease symptoms.
It is a complex, multistage process that includes many scientific disciplines and presupposes
the analysis of a huge amount of heterogeneous, distributed information. The drug devel-
opment steps span from hypothesis generation, target identification and validation to lead
design, candidate support and clinical trials as well as the analysis and prediction of adverse
events.

The retrieval, linkage, analysis, and interpretation of available information and experimen-
tal data as well as the deduction of mechanisms and rules is important for the generation
of new hypotheses as well as for decision making. Likewise to the different fields that
are involved in pharmaceutical research processes, the required information and data are
scattered over heterogeneous databases and unstructured data resources, e.g. papers, reports,
patents, blogs, and wikis.

The collection and storage of information on chemicals and pharmaceuticals has a long
tradition, demonstrated by text resources, like the ‘Beilstein’s Handbuch der organischen Chemie’
started by F. K. Beilstein in 1880, which contains chemical, physical, pharmacological and
physiological properties on organic compounds1. The advantage of databases that emerged
from such resources is the possibility to query for certain structures, substructures or defined
properties.

However, a restriction of databases is their data model, which in fact has to be extended
for the inclusion of new data types, to reflect novel topics and trends by model evolution,
which is a non-trivial task for complex data models [Chen et al., 1994]. Another primary
challenge is the inclusion of new data sets, its curation (i.e. a quality checking) as well as the
progressional annotation of present entities with new findings.

The rapid accumulation of new publications, which must be processed by human curators
to extract data of new discoveries and to revise present ones, represents an additional
difficulty for keeping databases with biological, pharmaceutical and chemical information
up-to-date. Baumgartner et al. [2007] for instance predict that the annotation of biological
entities, like proteins and genes of diverse organisms with terms from Gene Ontology2

1http://www.beilstein-institut.de/index.php?id=111
2www.geneontology.org

http://www.beilstein-institut.de/index.php?id=111
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[Ashburner et al., 2000], will only be manageable with high efforts and will still take a long
time from now on.

Apart from their advantages, databases alone cannot capture the richness of scientific
information and argumentation contained in the literature. Complex assumptions, inter-
pretations of findings and hypotheses usually are expressed and set into context by natural
language. It is the basic medium to distribute ideas and recent findings, thus making it
available to a broad readership. Hence, a high amount of the most current information
obtained by laborious research does not reside in structured data sources, but in unstruc-
tured text. According to Hale [2005] only a small proportion of information is available in
structured form manageable by database systems, whereas around 80 % is unstructured and
written in natural language. Thus, the examination and analysis of a wide range of scientific
literature, patents, adverse event reports, company reports, news, and patient generated
content is a key element of science and research, especially in pharmaceutical research. For
bench scientists, published data is the best source for interpreting their experiments and
to keep up-to-date with the most current scientific knowledge. They provide contextual
factors; especially for those topics that came up after the related databases were set up. In
general, literature-based discovery has often been held out as a potential source of promising
hypotheses [Zweigenbaum et al., 2007]. The study of literature enables the identification of
novel facts, new connections between entities of interest and drives the generation of new
ideas to be further explored and validated by experimentation.

However, the goal is hard to achieve by reading all documents as the amount of scientific
literature is constantly increasing, especially in biomedicine and pharmacology-related
fields. Research in this area shows a very high level of specialization and, consequently,
the knowledge is often fragmented. As a result, written information is scattered over many
journals from specialized subfields. Researchers can be aware of articles being published
within their own community, but might not find connections to other related research results
because they did not expect other links.

Thanks to the improvement and availability of computer systems and the world wide
web it is becoming easier to store and distribute data; however it becomes harder to access
and manage them [Claus and Underwood, 2002]. Meanwhile, an increasing number of
articles are accessible via the worldwide web as electronic texts. As a consequence, scientists
from academia and industry are faced with an overload of textual information available.
Figure 1.1 exemplarily shows the steep increase of publications collected by the bibliographic
database MEDLINE from 1950 to 2009.

The enormous growth of biomedical literature has urged the development of domain-
specific efficient informatics tools to organize and support the analysis of this huge amount of
unstructured data for accomplishing the discovery of so far unknown associations, hypothe-
ses or trends. Furthermore, automated text utilization is needed to support the combination
of information on biomedical entities residing in scientific literature with known facts in
databases. This supports the annotation of entities in repositories with new properties and
the use of as much information as possible for research.
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Figure 1.1: Cumulative number of published articles in MEDLINE from 1950 until the begin-
ning of 2009.

1.1 Overview on the Biomedical Relevance and Information
Resources of Chemical Entities and Histone Modifications

Chemical molecules are in the center of research in pharmacology and medicine which aim
to understand the role of small-molecules in biological processes and to develop new phar-
maceuticals for treating diseases. Information about biochemical reactions and interactions
with targets, which are mainly proteins, as well as the mode of action of chemical compounds
and their possible toxic effects are of high interest in the early stages of drug development.
In later phases side and adverse drug effects (ADR) are investigated to prevent serious
health problems caused by the utilization of pharmaceuticals. Interestingly, in the last years
side effect information have become a trigger of innovative development for finding new
applications of existing drugs, also called drug repositioning [Rikken and Vos, 1995, Grau
and Serbedzija, 2005, Campillos et al., 2008]. They help to identify new off-side targets and
to investigate novel modes of action.

The types of information produced in biomedical and pharmacological research are
diverse. They span from numeric measured values obtained through experiments, like
affinity or inhibition constants, to the descrition of the mode of action, side effects or ADR in
form of natural language, such as ‘dihydrofolate reductase inhibitor’. Such terms are broadly
applied for the annotation and classification of chemical compounds.

Information on chemical molecules is dispersed over diverse and dynamic resources.
On one hand side there is a high amount of natural language data in form of scientific
articles, patents, free text fields in data sources, etc. and on the other hand structured
information resides in databases or classification systems. As research in chemistry and
pharmacology has been and is still motivated by commercial interests, many chemical data
sources are offered by private information and content providers or were developed in house
of pharmaceutical companies. Thus, many available databases on chemical compounds, e.g.
reviewed by [Jónsdóttir et al., 2005], are not freely accessible. Furthermore, access is often

17



Chapter 1 Introduction

only provided on a per-item basis which hinders to obtain a data collection as a whole. A
description on the historical development of this situation in chemistry is given by Murray-
Rust et al. [2005]. In contrast, the community in biology and bioinformatics generated a
high number of databases with the intention to allow access for everyone. Fortunately, with
the generation of freely accessible databases such as KEGG [Goto et al., 1998], DrugBank
[Wishart et al., 2006] or PubChem3 as well as the ontology ChEBI [Degtyarenko et al.,
2008], the situation in chemistry has started to change in the last decade. However, for
getting a substantial overview on available data it is mandatory to collect and integrate the
information on chemical compounds from diverse data sources. Different data types, formats
and used terminology are great challenges that are related to this process. Furthermore, data
quality is another important issue. Bradley [2008] for instance state that PubChem include
data from suppliers without an extensive curation procedure. Therefore it accumulated
structure and information errors.

One of the few initiatives that provides a free-to-access collection of compound data from
across the web and repositories in form of a database is ChemSpider4. It "aggregates chemical
structures and their associated information into a single searchable repository and makes it available
to everybody". Furthermore, with the help of the automatic recognition of chemical names in
documents and web pages ChemSpider aggregates links to available data repositories. It
provides diverse physicochemical properties shown in an online overview on the assembled
data5. However, it is not dedicated to extract and aggregate mode of action descriptions
from the growing amount of natural language data for the annotation of chemical com-
pounds. Function annotation of chemical compounds is the addition of attributes which are
usually descriptions of properties, like the biological function, a pharmacological effect of a
compound or the membership to a certain structural class. Terms represent these properties,
e.g. ‘antiinflammatory agent’ and ‘cyclooxygenase-2 inhibitor’. They are provided as controlled
vocabularies by chemical/pharmacological classification schemes, thesauri or ontologies,
such as Anatomical Therapeutic Chemical (ATC) Classification System6 and the United
States Pharmacopeia (USP)7, MeSH8 or ChEBI9 respectively. Furthermore, annotations of
chemical as well as pharmaceutical compounds are collected in databases, such as DrugBank
or PubChem. However, as providers of repositories put different effort in the curation of
their data, they comprise different levels of annotation completeness and correctness. In
addition to the structured annotation data a further important resource for finding new
annotation information are scientific articles. For example, according to Agarwal and Searls
[2008] a high number of new drug targets derive from novel biological discoveries first
appearing in the scientific literature from academic sources. They further state that known
targets are more frequently functionally characterized in some new way or associated with
a disease process than targets are newly discovered. Thus, the exploitation of literature
is important for making progress in pharmaceutical research. It is furthermore a valuable

3http://pubchem.ncbi.nlm.nih.gov/
4http://www.chemspider.com/
5http://www.iupac.org/publications/ci/2008/3001/ic_chemspider.html
6http://www.whocc.no/atc_ddd_index/
7http://www.usp.org/USPVerified/pharmaceuticalIngredients/
8www.nlm.nih.gov/mesh/
9www.ebi.ac.uk/chebi/
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resource for generating new hypotheses, especially when new research fields emerge, such
as epigenetics, which is introduced in the following section.

1.1.1 Introduction to Epigenetics and its Role in Biology, Medicine, and
Pharmacology

Epigenetics gained growing interest in molecular biology as well as in medicine in the last
years and investigates

"stably heritable phenotypes resulting from changes in a chromosome without
alterations in the DNA sequence" [Berger et al., 2009].

To explain the molecular background of epigenetic phenomena as well as to make its
biomedical and pharmacological relevance clear, an excursus to epigenetic research and
molecular biology is provided in the following paragraph.

Histone modifications – chemical modifications of proteins attached to chromatine, the
methylation of cytosines of DNA strands and its regulating proteins are in the focus of
this relatively young research field. Histone proteins form the core of nucleosomes – the
chromatin unit – each consisting of four distinct histone protein dimers. As Figure 1.2
illustrates, DNA double strands are wrapped around this protein complex, whereas the
histone tails protrude from the nucleosome core to the outside. Hence, its amino acids
are accessible to enzymes covalently introducing different small chemical groups or small
molecules or processing the amino acid itself.

Figure 1.2: Nucleosome structure and amino acid sequence of the protein tail from histone
H3. Amino acid positions that are often modified are depicted in red. H2A,
H2B, H3, and H4 denote the four different histone proteins being part of the
nucleosome core protein complex. (The figure was adapted from Marmorstein
[2001].)
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To date several histone modifying groups, molecules or transformation processes are
known which are depicted in Table 1.1. The chemical modifications of amino acids change
their physico-chemical properties and mark histone proteins for the recruiting of other
proteins, thus participating in the formation of the different chromatin structure states –
hetero- and euchromatin [Margueron et al., 2005]. Hence, the protein modifications alter the
accessibility of DNA for the transcription machinery leading to either enhancing or silencing
of the expression of genes. Exemplarily, the modification of the amino acid lysine with three
methyl groups is shown in Figure 1.2. More than 70 sites for histone post-translational modi-

Modification Types Modification examples

Groups acetyl, methyl, phosphate, adenine diphosphate (ADP) ribosyl, car-
bonyl, sumoyl

Molecules biotin, ubiquitin
Process proline isomerization, arginine deamination (i.e. citrulline genera-

tion)

Table 1.1: Examples of histone modifying groups, molecules, and processes [Margueron
et al., 2005, Latham and Dent, 2007, Cuthbert et al., 2004, Nelson et al., 2006].

fications (PTMs) have been reported [Taverna et al., 2007], whereas combinations of different
histone modifications on one or different histones form a kind of code. An important feature
of these marks is their ability to crosstalk, which is essential for transcription regulation.
They often act in concert, and multiple feed-forward and feed-back mechanisms involving
the same nucleosome or histone, or distinct nucleosomes and histones have been identified
[Gräff and Mansuy, 2008]. Furthermore, it was found that DNA and histone methylation
are coordinately regulated [Smallwood et al., 2007]. These modifications are stable, can
be long-term and inherited over several cell divisions, making epigenetic regulation a key
mechanism for cellular differentiation and cell fate decisions, also leading to stably heritable
phenotypes [Szyf, 2007, Gräff and Mansuy, 2008, Berger et al., 2009]. However, they carry ex-
pression regulation functionalities [Jenuwein and Allis, 2001] which are not fully understood
until now. Additionally, not all factors taking part in the regulation of the modifications
itself are known.

Meanwhile, the epigenetic marking of chromatin is recognized as potentially important
biomarker of disease states and drug side effects, and provides a link between the environ-
ment and gene expression regulation [Herceg, 2007, Szyf, 2007]. It is becoming increasingly
clear, that epigenetic mechanisms account for several diseases, like cancer [Ting et al., 2006],
autoimmune diseases [Wilson, 2008], and neuropsychiatric disorders, as well as for side ef-
fects of drugs and cell aging [Santos-Rebouças and Pimentel, 2007, Feinberg, 2007, Lund and
van Lohuizen, 2004, Tryndyak et al., 2006, Kavlock et al., 2008, Dang et al., 2009]. Lifestyle
and diet might induce epigenetic changes that are most likely subtle and cumulative [Herceg,
2007] and can influence the susceptibility for diseases [Fraga et al., 2005]. Furthermore, epi-
genetic mechanisms contribute in a major way to the functioning of the brain, e.g. they are
involved in memory and learning processes [Isles and Wilkinson, 2008, Gräff and Mansuy,
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2008]. Several behavioral pathologies might be a consequence of psychosocial early life
exposures, which altered epigenetic programming.

It is expected that signal transduction pathways, which are activated by cell-surface or
intra-cellular receptors, are linked to epigenetic changes, connecting environmental or physi-
ological events with a reprogramming of gene activity. Moreover, it is possible that epigenetic
processes might override genetic polymorphisms at distinct points in life and in specific
tissues exclusively. Therefore, they might be related to the susceptibility for certain diseases,
especially for late onset diseases or medical conditions in subsequent generations [Kavlock
et al., 2008]. For instance Anway et al. [2005] summarize the transgenerational effects of
endocrine disruptors, like fungicides and pesticides in relation to male infertility caused by
epigenetic changes. Also drugs with well-established mechanisms of action and therapeutic
targets, like the antihypertensive hydralazine and the antiarrhythmic procainamide, were
shown to affect DNA methylation and cause broad epigenetic reprogramming in T cells
[Cornacchia et al., 1988]. Another well known example is the antiepileptic drug Valproic acid.
For years it was considered to be a gamma-Aminobutyric acid (GABA) receptor stimulator,
but was later found to be an Histone deacetylase (HDAC) inhibitor [Göttlicher et al., 2001].
Another drug causing epigenetic alterations is Tamoxifen which was found to be itself
responsible for enhancing breast cancer cell lines to become Tamoxifen-resistant [Badia et al.,
2007] and is described by Tryndyak et al. [2006] to be a potential hepatocarcinogen.

As the examples clearly show, unexpected environmental toxic and pharmacological
agents might target the class of chromatin modifiers or influence signaling pathways which
are highly responsive to drugs and toxic agents, thus affecting the long-term programming
of the genome in diverse tissues [Szyf, 2007]. It leads to the conclusion that research in
pharmacology has to contemplate potential hazards of drugs to the epigenome in the future.

Rising research interest for this field resulted in a steep increase of literature data in the
last years. It is a fast growing resource for studying histone modification-related information,
boosted by the development of two experimental methods, ChIP-chip [Ren et al., 2000]
and Chip-Sequencing [Johnson et al., 2007]. They enabled the investigation of interactions
between modified histones and DNA at a genome wide range, which is reflected by a steep
increase of publications since 2000 shown in Figure 1.3.

Although there are databases providing epigenetic data, like the UCSC Genome Browser10

[Koch et al., 2007], the ChromatinDB11 [O’Connor and Wyrick, 2007], the Histone Database12

[Marino-Ramírez et al., 2006], and ChromDB13 [Gendler et al., 2008], MeInfoText14 of [Fang
et al., 2008] and PubMeth15 [Ongenaert et al., 2008], however, in its current version, they
do not support the analysis of histone modifications across species, nor are they related to
studied cell or tissue types, phenotypes, diseases or chemicals. Hence, the highly topical
and considerable context information on histone modifications resides in natural language
text in the form of scientific publications.

However, no efforts have been put into the systematic analysis of the terminology used

10http://genome.ucsc.edu/
11http://www.bioinformatics2.wsu.edu/cgi-bin/ChromatinDB/cgi/visualize_select.pl
12http://genome.nhgri.nih.gov/histones/
13www.chromdb.org
14http://mit.lifescience.ntu.edu.tw/
15www.pubmeth.org
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Figure 1.3: Cumulative number of published articles on histone modifications in MEDLINE

from 1964 until June 2008.

for the description of histone modifications in the literature and no approach was developed
so far to identify it in text.

1.2 Overview on Text Processing Methods

With the growing amount of natural language data accumulating in biomedicine, pharma-
cology, and chemistry, two fundamental needs are associated which have to be satisfied by
automated methods:

• Information Retrieval (IR): The finding of relevant documents from large collections
that satisfy an information need.

• Information Extraction (IE): The extraction of defined informative text parts usable for
successive data mining approaches.

Whereas the first methods developed for information retrieval date back to the 50th,
information extraction methods have been evolving since about two decades ago [Cardie,
1997, Sarawagi, 2008]. Considering the rising amount of scientific literature, patents, re-
ports etc. it is important to have methods at hand which support the finding of relevant
documents from the large pool of text. Methods and aproaches developed for Information
Retrieval help to sift through natural language data and support the finding and ranking of
relevant documents which correspond to a query. Therefore, the vector space model and
the probabilistic model have been developed [Singhal, 2001], whereas text is represented by
index terms. These could be single words, word stems or phrases that are obtained from text
[Takenobu et al., 2000]. However, such approaches also bear limitations; they do not cope
well with ambiguous terms and complexity [Hale, 2005]. Especially biomedical and chemical
entities posses a high number of synonyms and provide a specific challenge for document
retrieval tasks. Thus, Information Extraction techniques, especially the recognition of entity
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denominations and its mapping to one unique representation is carried out in support of
other tasks and hence forms a part of a process pipeline. Extracted facts can be the data input
for ontology or network construction and help to improve information retrieval systems or
they are subjected to data mining algorithms [Cohen and Hunter, 2004, McNaught and J.,
2005]. [Krallinger and Valencia, 2005] give an exemplary overview on information extrac-
tion and its linkage to information retrieval in the field of molecular biology. Information
Extraction allows for the application of data mining techniques to textual data with the
aim of generating new knowledge by finding unknown patterns, denoted as text mining
[Hearst, 1999, Siefkes and Siniakov, 2005, Zweigenbaum et al., 2007]. Although there is this
clear definition of text mining, the term is often not that strictly used by the community.
It is rather utilized to describe the conglomeration of techniques adopted to textual data.
However, text mining began to establish in the 90th as data mining applied to unstructured
text in databases for knowledge discovery [Feldman and Dagan, 1995, Hotho et al., 2005].

The focus of this work lies on recognizing and identifying given named entity types in
text as well as extracting new terminology based on methods of information extraction. It is
a preliminary step for Information Retrieval and Information Extraction systems as well as
for data mining approaches relying on textual information. Thus, an overview on the main
challenges of Information Extraction is provided in the next section.

1.2.1 Introduction to Information Extraction

Human language is admirable for its richness and complexity, especially when describing
interrelations of complex biological processes. Therefore, its formalization and making it
manifest for computer processing is a big challenge.

Textual documents contain concrete data in unstructured form and thus cannot be passed
directly to data mining methods for discovering general patterns. Therefore, unstructured
textual data need to be processed before subjecting them to concrete applications by utilizing
Information Extraction techniques, algorithms and methods performing two main tasks:

• Identification and extraction of facts of predefined types from natural language text,
i.e. unstructured machine-readable documents [Riloff, 1999]. These can be entities, like
‘aspirin’ and relationships between them, e.g. ‘aspirin is an inhibitor of cyclooxygenase’.

• Representation of the extracted facts in an appropriate structured form for future use,
like data mining.

In general, IE cannot be used to generate new knowledge, but only to represent facts
explicitly expressed in text in a more formal structure. Thus, IE methods can be considered
as a first step, which then have to be followed up by data mining techniques to discover
interesting relationships in the data. Usually, the extraction of specific facts depends on the
user’s needs. Typical subtasks of information extraction are:

• Terminology Extraction: It deals with the identification of relevant terms from text of a
certain domain.

• Named Entity Recognition (NER): Is the recognition of entity names, like proteins,
genes, chemical substances, diseases, etc.
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IE type Examples of published approaches and applications

Terminology extrac-
tion

Automatic recognition of multi-word terms Frantzi et al. [1998],
Application: Arrowsmith [Smalheiser and Swanson, 1998]

Named Entity Recog-
nition

Chemical entity recognition: OSCAR3 [Corbett and Murray-Rust,
2006], ChemFrag Mack et al. [2004], protein name recognition: AB-
NER [Settles, 2005], ProMiner [Hanisch et al., 2003]

Relation Extraction Gene-drug interaction finding: Chang and Altman [2004] (based
on co-occurrence between entity types), SemRep [Ahlers et al.,
2007] (considers semantic relations between entity types), protein-
protein interaction finding: iHOP [Hoffmann and Valencia, 2004]

Table 1.2: Examples of Information Extraction approaches.

• Relationship Extraction: It deals with the identification of relationships between entities
or terms.

In the 1980s IE was first established as an independent research field. At that time a
number of academic and industrial research groups were working on the extraction of
information from naval messages. Between 1987 and 1998 seven Message Understanding
Conferences (MUCs) were launched by DARPA16 for comparing the performance of IE
systems. Since then information extraction has been experiencing rapid growth extending
its applications to new domains and employing numerous new techniques [Siefkes and
Siniakov, 2005].

In the last years the potential of Information Extraction methods that make natural lan-
guage data more useful for research, commercial applications, etc. has been identified by
the biomedical and pharmacology community. Thus, automated handling and analyzing
textual data have already become integral part of pharmaceutical research [Roberts and
Hayes, 2008].

Collecting data via Information Extraction techniques from text offers an opportunity to
integrate many fragments of information, gathered by researchers from multiple fields of
expertise, into a more complete picture exposing the interrelated roles of genes, proteins
and chemical reactions in cells, tissues and organisms [Bekhuis, 2006]. The most basic use
of extracted information is the direct population of a knowledge base. Furthermore, IE
is carried out in support of other tasks, like information retrieval and hence forms a part
of a process pipeline. Extracted facts can also be the data input for ontology or network
construction or they are subjected to data mining algorithms [Cohen and Hunter, 2004,
McNaught and J., 2005]. Examples of IE approaches and application of the methodologies
are given in Table 1.2.

16Defense Advanced Research Projects Agency: http://www.darpa.mil/
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1.2 Overview on Text Processing Methods

1.2.1.1 Introduction to Named Entity Recognition

Most approaches which process natural language data basically rely on the recognition of
the information carriers in text as a primary step. These are names of entities and concept
denominations whose use is highly domain specific. The latter ones describe concepts of
abstract nature and those of the real world. The term ‘Named Entity’ was coined for the
Sixth Message Understanding Conference (MUC-6) and is described by:

"A named entity is a phrase or a combination of phrases in a document that
denotes a specific object or a group of objects" [Park and Kim, 2005].

The recognition of these text units is one of the most important preliminary steps in
information extraction and basically supports information retrieval systems.

The problem of Named Entity Recognition (NER) was defined for the first time in the
general-language domain in the context of the MUC [Grishman and Sundheim, 1996].
Initially, the main focus lied in the identification of person names, places, and organizations
in large text corpora.

Meanwhile, the interest drifted also to other eager text producing fields, like the biomedi-
cal domain. Staab et al. [2002] estimated that more than 12 % of words found in biochemistry
publications correspond to technical terms. These are genes, proteins, cell types, chemical
substances, diseases, experimental methods, etc. Named entities and concepts used here
have particular naming characteristics, like different numbers of words, capitalization, spe-
cial characters, Roman numerals, etc. Their recognition provides a special challenge and
became of major interest in bioinformatics within the last decade.

Several methods have been developed to support the recognition of named entities from
numerous domains. The computational research aiming at automatically identifying named
entities in texts forms a vast and heterogeneous pool of strategies, methods and represen-
tations [Nadeau et al., 2007, Krauthammer and Nenadic, 2004]. In the following a general
overview on methods used for NER are classified by their basic underlying technique:

• Rule-based approaches: The earliest NER systems typically applied rule-based ap-
proaches [Cohen and Hunter, 2004, Nadeau et al., 2007]. In general, such systems
consist of a set of term formation patterns using grammatical (e.g. Part-Of-Speech),
syntactic (e.g. word precedence), lexical, morphological and orthographic features
(e.g. capitalization) as well as domain knowledge in combination with dictionaries.
They rely on a combination of regular expressions, heuristic and hand-crafted rules.
However, the generation and maintenance of such rules is bound to high costs. Further-
more, rule-based NER systems lack the ability of portability, so that such approaches
are often domain and language specific.

• Dictionary dependent approaches: They basically rely on domain-specific term lists,
called dictionaries, that are identified with a string matching approach in text. The
performance of the system is dependent on the comprehensiveness of the term list and
the string matching algorithm.

• Machine learning based approaches: Here, the identification problem of entity names
is converted into a classification problem. Certain properties of text tokens and inherent

25



Chapter 1 Introduction

dependencies between them are utilized to generate a statistical model. The two
challenges are the appropriate selection of a discriminating feature set and the detection
of term boundaries, which are difficult to ‘learn’ [Krauthammer and Nenadic, 2004].
Usually, supervised learning is used for NER which involves a program that can
learn to classify a given set of labeled examples. As annotated corpora have become
available, Machine Learning (ML)-based approaches have attracted notice to NER
research.

• Hybrid approaches: Most of the existing approaches use a combination of the basic
methodologies and hence exploit their particular advantages. For instance, dictionaries
and rules are also applied by machine learning methods.

When dealing with textual data a general problem is the prevalent use of various term
and spelling variants for referring to the same real-world entity or to an abstract concept.
A chemical entity for instance can be assigned to more than 100 different synonyms and
spelling variants. Another challenge is the utilization of identical labels that may be related
to different meanings. Often there is no one-to-one correspondence between concepts
and terms which results in the problem of polysemes17. Term variations and ambiguous
terms in text and in databases constitute an impediment for information extraction and
retrieval. Information retrieval in databases is often dependent on the query terms used
for the search. Smith [2003] called this the Database Tower of Babel Problem which hampers
searching for information and putting them together into a larger system as ever more
diverse groups are involved in sharing and translating ever more diverse information. Thus,
the mapping of terms recognized in text to unambiguous references of abstract concepts or
real world entities present in databases or ontologies, helps to aggregate different surface
forms [Spasić et al., 2005]. This procedure is called named entity normalization (NEN) or
reference resolution. Named entity recognition and normalization taken together can be
referred to as concept identification [Cohen and Hunter, 2004, Zweigenbaum, 2008, Fundel,
2007]. It is crucial for the semantic interpretation of recognized terms and the integration of
textual data [Jijkoun et al., 2008]. The correct identification of concepts in text is an important
prerequisite for information retrieval for instance. Without normalization, different terms
identified for the same concept would be treated as distinct items, which thus distorts follow
up approaches and statistical analyses. An overview on state-of-the-art methods for Named
Entity Recognition and term normalization is provided in Sections 3.1.2 and 3.1.3 of Part I.

1.2.2 Challenges of Chemical Named Entity and Histone Modification Term
Recognition

Biological entities which came into the focus of Named Entity Recognition comprise for
instance genes, proteins, and protein complexes, mutations and allele variants of genes (e.g.
single nucleotide polymorphisms (SNPs)), and disease. In contrast, less efforts were spent
on the finding of chemical names in documents. With regard to histone modification no
approach has been described in the literature so far that deals with its detection in text.

17A polyseme is a word or phrase with multiple, related meanings. A word is judged to be polysemous if it has
two senses of the word whose meanings are related.
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1.2 Overview on Text Processing Methods

As domain concept denominations and named entities differ in their characteristics it is
fundamental to analyze their characteristics and reveal the main challenges one is faced
to. For this reason the terminology utilized for chemical substances as well as histone
modification are discussed within the following sections. Furthermore, a short overview on
the historical development of chemical naming is given.

1.2.2.1 Overview on Terminology of Chemical Substances

In the early beginnings of chemistry – when it still was called alchemy – peculiar names have
been given to investigated substances and compounds, like ‘powder of algaroth’ or ‘pompholix’
[Crosland, 2004]. With the foundation of modern chemistry a more rational naming system of
chemical compounds was developed by de Moreveau, Berthollet, Fourcroy, and Lavoisier in
the late 18th century [Kauffman, 1989, Crosland, 2004]. They proposed the first nomenclature,
the Méthode de nomenclature chimique, and built the basis for some of the chemical names
that are still in use, such as ‘hydrogen’ or ‘sodium chloride’. Several decades later, in 1921,
the first appointed commission for organic, inorganic and biochemical nomenclature – the
International Union of Pure and Applied Chemistry (IUPAC) – was founded. The intention
was to define a systematic and rational nomenclature with particular emphasis on organic
chemistry. IUPAC Definitive Rules were published in 1957 and 1965 [Skolnik, 1976]. They
were designed to systematically name a compound reflecting its structure, membership and
behavior [Reyle, 2006]. It consists of an extensive rule set recommended for the description of
a chemical structure by natural language, so that it is reconstructible. Nevertheless, variants
of the nomenclature are also provided by Beilstein (‘Beilstein’s Handbuch der Organischen
Chemie’)18 and Chemical Abstract Service (CAS)19, leading to variations in systematic names.
Making things more complex, authors tend to apply the current rules non-conform, are
sloppy or misinterpret the naming principles [Reyle, 2006, Eller, 2006, Brecher, 1999].

Besides, new names are permanently invented, especially a number of brand names for
pharmaceuticals which are different for countries in which they are approved. The analgesic
‘N-Acetyl-4-aminophenol’ for instance is named as ‘Tylenol’ in the United States, ‘PARALEN’ in
Czech Republic, and known as ‘Paracetamol’ in Germany. Names used for a concept establish
in a community leading to habituation of people who have been keeping names out of
date still in use. Different synonyms and term variants have been distributed for chemical
structures, so that it is not unusual to find more than 100 names for one chemical substance
(e.g. ‘aspirin’).

The following classification gives an overview on the main naming groups to which
chemical terms can be assigned to:

• Systematic names: They reflect the information of the chemical structure, its member-
ship and behavior, e.g. ‘3-(3,4-dihydroxyphenyl)prop-2-enoic acid’.

• Trivial names: They do not reflect the structure of the substance and cannot be recog-
nized according to rules of any formal nomenclature system. Mostly they have a
historical background and were derived from some notable property. Many trivial

18http://www.crossfirebeilstein.com/
19http://www.cas.org/expertise/index.html
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names continue to be used because their systematic names are considered inconvenient
for everyday use, e.g. ‘caffeic acid’ utilized for ‘3-(3,4-dihydroxyphenyl)prop-2-enoic acid’.

• Semisystematic names: In such names at least one part is used in a systematic sense,
e.g. in‘N-benzoylglycine’ the part ‘benzoyl’ is systematic, whereas ‘glycine’ is the trivial
name for ‘α-aminoacetic acid’.

• Registered trademark/brand names: They are invented for exclusively identifying
the brand owner as the commercial source of products, ‘aspirin’.

• Acronyms and abbreviations: They are used for convenience to get a short name, like
‘L-DOPA’ for ‘3,4-dihydroxy-L-phenylalanine’ or ‘DTT’ used for ‘Dithiothreitol’.

• Sum formula: They consist of the elements contributing to a compound and the
number of their occurrence, e.g. ‘C9H8O4’.

• Ordinary language names: They mainly have historical origin and denote typical
properties or the way of use, e.g. ‘table salt’.

Every chemical naming type described above has its own characteristics and can be linked
to certain challenges which have to be considered when aiming at automated identification
of chemical terminology in text.

Trivial names can be related to different concepts having diverse meanings. The name
‘Bayer’ for instance can stand for the company or the drug ‘aspirin’. Systematic names are
often long and have a complex structure and, even though there is a nomenclature rec-
ommendation provided by the IUPAC, there are large variations in how it can be and is
applied. The two systematic names ‘3-(3,4-Dihydroxyphenyl)-2-propenoic acid’ and ‘3-(3,4-
dihydroxyphenyl)prop-2-enoic acid’ are both used for ‘caffeic acid’. Additionally, the incorpo-
ration of whitespaces or its omission as well as different bracket positions within a name
are relevant, since different spelling variants might be related to different structures, like
‘2-chloro(ethylbenzene)’ and ‘(2-chloroethyl)benzene’ [Brecher, 1999] depicted in Figure 1.4.

Figure 1.4: Structure depictions of the compounds ‘2-chloro(ethylbenzene)’ and ‘(2-
chloroethyl)benzene’.

Acronyms and abbreviations provide a challenge because the same combination of charac-
ters is often generated for different concepts so that they possess various meanings if used in
different domains. Thus, ‘DTT’, introduced above, stands also for ‘digital terrestrial television’.
Furthermore, several chemical structures have the same sum formula so that they are not
unique, for instance ‘C9H8O4’ represents both ‘aspirin’ and ‘caffeic acid’. Another source of
diversity is a further author’s free combination of chemical naming types that can regularly
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Chemical name class Term characteristics and challenges Suitable NER ap-
proach

Systematic names Spelling variants through different
possibilities to apply IUPAC rules
and that are partially the result of
unexact use of term generation rules,
long terms, names can be part of enu-
merations

Machine learning

Semisystematic names Combination of systematic with triv-
ial names/abbreviations, authors
coin new terms, no rules exist

Machine learning

Trivial names Limited number of short names Dictionary-based
Registered trademark/brand
names

Limited number of short names Dictionary-based

Acronyms and abbreviations Term ambiguity, coinage of new ab-
breviations without rules

Dictionary-based,
Machine learning

Sum formula Term ambiguity Dictionary-based
Ordinary language names Term ambiguity Dictionary-based

Table 1.3: Overview on chemical name types, their term characteristics and techniques that
come into consideration for chemical named entity recognition.

be found in the literature, like ‘17-alpha-E’. Here, an abbreviation and systematic name part
are joined in one term and is used for ‘17-alpha-Estrogen’.

Names of chemical elements, substances, and compounds have been collected in freely
available and commercial databases, such as DrugBank, HMDB [Wishart et al., 2007], KEGG
or the CAS REGISTRY20, The World Drug Index and CrossFire Beilstein database) respec-
tively that could be used as terminology resource. Furthermore, ontologies like ChEBI and
term hierarchies, such as MeSH21 are a source of chemical terminology. Usually they com-
prise systematic, trivial, brand and trade names of a chemical as well as chemical formula,
some abbreviations or a subset of them.

By virtue of the various term characteristics, the introduced chemical name classes bear
different problems and challenges regarding the named entity finding in text. Thus, not
every technique will be equally well dedicated. In principle, fundamental term properties
which are crucial for NER are term variability, ambiguity, and the coverage of available
terminology collections. Table 1.3 provides an overview on the name type classes, related
term characteristics, and NER techniques that basically come into consideration.

A general challenge of Chemical Named Entity Recognition and Identification is the fact
there is a huge chemical entity space. This can limit the applicability of dictionary-based

20http://www.cas.org/expertise/cascontent/registry/index.html
21http://www.nlm.nih.gov/mesh/
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approaches since they are dependent on the comprehensiveness of terminology collections.
However, term disambiguation and mapping to uniq representations (term identification)
is straightforward with dictionary-based approaches which provides a clear advantage in
comparison to machine learning approaches. In contrast, semisystematic names, terms that
are newly coined by authors and terms that do not exactly follow IUPAC rules are expected
to be better found by machine learning based methods due to their ability learn general
properties of chemical entity’s names. A literature survey on chemical entity recognition is
provided in Section 3.1.2.1 of Part I.

1.2.2.2 Overview on Designators of Chemical Named Entities

As chemical entities can be assigned to many spelling variants, only the chemical structure is
a unique and unambiguous representation of chemical molecules. Computer readable struc-
ture formats, such as the MOLfile introduced by Molecular Design Limited (MDL) [Dalby
et al., 1992], have been invented that represent the connectivity between atoms of a molecule,
charge, stereochemistry, etc. However, for indexing and ensuring uniqueness of molecules in
a database designators have been designed with the aim to describe chemical molecules by
short ASCII strings. These are Simplified Molecular Input Line Entry Specification (SMILES
[Weininger, 1988]), InChI22, and InChIKey23, which encode the molecular structure. In con-
trast, the proprietary, but widely utilized CAS registry numbers24 comprise no information
on the chemical molecule. Since they are potentially usable for named entity normalization,
they are described in more detail; the developer, the designator’s characteristics, and an
example are provided in the following.

CAS

• Developed by Chemical Abstract Service of the American Chemical Society

• Consists of three numbers separated by hyphens

• Encodes no structure information

• Is assigned to chemical entities in the order of admission to the CAS registry

• Example for ‘aspirin’: 50-78-2

SMILES

• Developed by A. and D. Weininger

• Algorithmically generated, human-readable structure descriptions (short ASCII
strings) of chemical molecules

• There are several equally valid SMILES for a molecule:

• Examples for ‘aspirin’:

CC(=O)Oc1ccccc1C(=O)O,

CC(=O)Oc1ccccc1C(O)=O,
22http://www.iupac.org/web/ins/2000-025-1-800
23http://www.inchi.info/inchikey_overview_en.html
24http://creationwiki.org/CAS_registry_number
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CC(=O)OC1=CC=CC=C1C(=O)O

InChI (International Chemical Identifier)

• Developed by D. Tchekhovskoi, S. Stein and S. Heller at US National Institute of
Standards and Technology

• Canonical identifier, algorithmically generated from structure-data files in Mol,
SDF or CML format [Dalby et al., 1992, Murray-Rust et al., 1997]

• Chemical structures are expressed in terms of 6 layer types25 (Example in Fig-
ure 1.5):

– Main layer: Describes the bond connectivity for carbons and hydrogen in a
chemical substance,

– Electronic charge layer,

– Stereochemical layer,

– Isotopic layer,

– Fixed-H layer: Represents one particular tautomer of a given structure. (For
the definition of tautomers cf. Appendix A.1.)

– Reconnected Layer: Allows to represent bonds between metals and carbon in
a compound.

• InChI could be extremely long; it is not guaranteed that search engines will read
and index them properly

• Example for ‘aspirin’: InChI=1S/C9H8O4/c1-6(10)13-8-5-3-2-4-7(8)9(11)12/h2-5H,
1H3,(H,11,12)

InChIKey (hashed InChI)

• Developed by S. Heller, A. McNaught, I. Pletnev, S. Stein, and D. Tchekhovskoi

• Condensed form of InChI with a fixed length of 27 characters26

• InChIKey facilitates web and database indexing and searching

• Example for ‘aspirin’: BSYNRYMUTXBXSQ-UHFFFAOYSA-N

Canonical descriptors in general have clear advantages over chemical names for data
searching, indexing, and referencing. However, except CAS numbers, they are rarely used
in text. This is for several reasons. As CAS numbers have been assigned to chemicals
since 195727, they are widely applied for referencing chemical compounds in databases.
However, CAS numbers do not encode chemical structure information, but are short strings.
A drawback of CAS are mistypings and misapplications by incorrectly linking a name to a
structure leading to the conclusion that they are not always reliable [Banville, 2006]. SMILES
have been invented in 1988 to unambiguously describe the structure of chemical molecules.

25http://wwmm.ch.cam.ac.uk/inchifaq/
26The description was taken from: http://www.inchi.info/inchikey_overview_en.html
27According to statements from: http://www.cas.org/expertise/cascontent/registry/regsys.

html
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Figure 1.5: Structure and InChI identifier of the compound ‘[35Cl]chloro-L-glycinium’. All
available information layers are marked and highlighted within the structure in
the respective color. (Figure adapted from McNaught [2006].)

The representation of chemical compounds by InChI has been developed in 2000-2004 and
InChIKeys in 2007 and thus are quite young designators. Both encode structure information,
but are hardly interpretable by humans, whereas InChI can become quite long, providing
a problem for indexing because of inserted line breaks, etc. Nevertheless, they are freely
available and meanwhile they have been adopted by many databases as reference.

1.2.2.3 Overview on Histone Modification Terminology

Since 2004 an official nomenclature has been existing for describing histone modifications
in text – called the ‘Brno nomenclature’, which was devised at the first meeting of the
Epigenome Network of Excellence28 [Nightingale et al., 2006]. An example term that corre-
sponds to the official ’Brno nomenclature’ firstly published by [Turner, 2005] is ‘H3K9me3’.
‘H3’ stands for the protein ‘histone 3’, the letter ‘K’ specifies the amino acid lysine and ‘9’ its
position within the protein sequence. Furthermore, words starting with ‘trimethyl’ or ‘me3’
explain that the lysine carries three methyl groups as chemical modification.

However, a primary analysis of histone modification terms, showed that the way how his-
tone modifications are denominated in text is quite diverse and the application of the naming
recommendation is not common. In general, this is a widespread habit also observable for
the nomenclature application devised for other biomedical entities, like Single Nucleotide
Polymorphisms (SNPs) or the use of the HUGO nomenclature for genes [Tamames and
Valencia, 2006, Klinger et al., 2007]. Some typical examples of histone modifications as they
can be found in scientific text are depicted in Table 1.4.

At a glance, the term list shows some of the diverse representation of one specific histone
modification. Characteristically, there are histone type and modification descriptions par-

28http://www.epigenome-noe.net/
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Histone modification term variants

H3K9me3 (Remark: Corresponds to the official nomenclature)
Me3-K9 H3
Me(3)-K9 H3
H3K9 tri-methylation
H3-K9 trimethylation
H3 Lys9 trimethylation
H3 tri-methylated at lysine 9
histone H3 trimethylated at lysine (K) 9
K9 trimethylation at histone H3
K9-trimethylated histone H3
tri-methylation of H3 at lysine residues K9
trimethylated H3K9
di- and trimethylated H3K9

Table 1.4: Selection of term variants of one histone modification type as they occur in scien-
tific articles.

tially abbreviated and differing in hyphenation as well as word order. Furthermore, a term
can also be part of an enumeration which includes two or even more modification types. An
example is shown in the last line of Table1.4.

However, no approach has been developed so far that is able to recognize histone modifi-
cation terms and to map them to uniq representative terms following the nomenclature.
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Chapter 2

Problem Description and Goal

Function annotation of chemical entities and keeping them up-to-date is a challenging task.
On one hand side there is a high number of chemical entities whose pharmacological or bio-
logical functions, however still incomplete, are stored in databases and classification systems.
On the other side new findings and insights on the functions of entities, like descriptions
about novel targets of chemical compounds and their interrelations continuously accumulate
in published scientific articles, patents, reports, etc. Annotation terms related to chemical en-
tities are an important source for getting a fast overview on their properties, e.g. for finding
new uses of a chemical compound, to be able to classify and assign it to a given hierarchy
or to predict function annotations of novel non-classified entities. Thus, the extraction of
function descriptions on chemical entities from text sources and its inclusion into already
available classification schemes and databases enriches and completes the knowledge about
them. Nacher and Schwartz [2008] for instance realized that 138 drugs of DrugBank do not
contain annotations in form of ATC identifiers and hence could not be integrated into their
drug-therapy network study. It leads to the conclusion that pharmaceuticals are missing in
ATC or were not annotated in DrugBank, which resulted in an incomplete network. It also
makes clear that such studies highly depend on information of resources used, which might
limit their value.

Therefore, the aim of this thesis is the development of a framework, which allows for
harvesting biomedical and pharmaceutical property information from text and its combina-
tion with available structured annotation data. This supports the annotation of chemical
entities and the extension of classification systems. The general idea of such a framework
is depicted in Figure2.1. It includes two challenges that have to be tackled: the recognition
of chemical named entities in natural language data and the extraction of pharmaceutical
property information from text which is related to chemical compounds.

As chemical molecules can interfere with epigenetic processes it is important to investigate
the influence of the chemical environment onto organisms. Most of this information is still
provided in the form of natural language data as scientific literature only, which has been
massively increaseing in the last years. However, not much work has been accomplished
to make literature easier accessible for the application in epigenomic research. Only two
research groups identified literature as valuable information resource to establish databases
for epigenomics studies [Fang et al., 2008, Ongenaert et al., 2008]. Both use text mining for
collecting information about DNA methylation, affected genes and cancer types. However,
they omit to extract information about histone modifications from text, which play a key
role in epigenetic mechanisms. No automated approach has been published so far that
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Figure 2.1: Framework for the aggregation of information on chemical entities.

support the recognition of histone modifications descriptions in text and allow for its
identification. To be able to harvest direct or indirect relations between chemical entities and
histone modifications from text in the future, the challenge is to find histone modification
descriptions in text. Therewith, literature data is made more accessible for information
extraction approaches and better available for information retrieval tools.

2.1 Outline of the Thesis

The remaining part of the thesis is divided into two parts. Part I provides the reader with
basic background information to understand the developed techniques described in the
chapters of Part II. It includes Chapter 3 that gives a general introduction on Natural Lan-
guage Processing techniques which is a prerequisite for information extraction. Beyond,
Named Entity Recognition and term normalization methods on which the work is based
on are explained as well as state-of-the-art literature overviews are provided. It briefly de-
scribes the generation and annotation of text corpora as well as measures used for evaluating
information extraction methods. It is followed by the depiction of techniques utilized for
predicting function annotations of entities as well as methods that support the extraction of
entity related annotation information from text. Last, text data visualization and available
approaches are shortly introduced.
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2.1 Outline of the Thesis

Part II presents the developed methods, the obtained results and discusses its outcome
in two separate chapters, which address the two given objectives. Chapter 4 describes the
developed information aggregation framework. It is divided into Section 4.1 which investi-
gates an approach for the recognition of chemical named entities. It includes the generation
of a test corpus and a dictionary of chemical names integrated into the dictionary-based
approach ProMiner. The dictionary processing steps are explained and the obtained results
are discussed and compared to other approaches. Section 4.2 covers the work developed
for extracting function annotation information, specifically pharmacological property in-
formation, on chemicals substances from text. In Section 4.3 the developed information
aggregation framework is explained in detail and the obtained results are discussed. It
includes two application scenarios that apply the extracted pharmacological concepts for
a) the automated support of chemical compound annotation based on textual data and b)
the extension of a therapeutic classification system by drug instances. Chapter 5 responds
to the task of histone modification recognition in text. It describes the initial extraction of
histone modification terminology from text for which the machine learning approach CRF
was adapted. Through the newly developed term mapping strategy different modification
representations form text were related to defined standard terms. This supported the gener-
ation of a histone modification-specific dictionary includable into ProMiner, resulting in a
dictionary-based approach. The two NER approaches were evaluated on generated corpora
and the results compared and discussed. Additionally, the design of a histone modification
hierarchy is presented and several applications of the complete approach are depicted. The
final Chapter 6 highlights and discusses the main achievements of this thesis and draws the
conclusion for future prospectives.
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Fundamentals
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Chapter 3

Fundamentals on Applied and Developed
Methods

3.1 Information Extraction Techniques

3.1.1 Overview on Methods applied in IE

Usually, information extraction involves some form of natural language processing (NLP).
The following methods are the main components of information extraction systems [Cohen
and Hunter, 2004]:

• Sentence Splitting

• Tokenization

• Part-of-Speech Tagging

• Named Entity Recognition and Normalization

• Phrase Chunking and Parsing.

Sentence splitting and tokenization are text preprocessing steps in almost all information
extraction approaches. Constituting thereon, Part-of-Speech Tagging is the prerequisite of
Phrase Chunking and Parsing and is also used in some approaches for Named Entity Recog-
nition. A general description of these methodologies is given in the following paragraphs.
Beyond, techniques applied in this work, i.e. Named Entity Recognition and Normaliza-
tion are discussed in more detail in a separate Section 3.1.2. Phrase Chunking applied for
information extraction is described in more detail in Section 3.2.2.

Sentence Splitting: Sentences are one of the most important elements of natural lan-
guage. They are the smallest units for expressing completed thoughts or events in written
documents. The correct recognition of sentence borders is therefore crucial for many IE ap-
proaches [Siefkes and Siniakov, 2005]. The detection of sentence boundaries is not trivial as
the punctuation symbol ‘.’ does not always occur at the end of sentences. It is ambiguous, as
it often appears within entity names (organisms e.g. ‘E.coli’, proteins e.g. ‘M.HsaI’, chemicals
e.g. ‘SO4.2Na’, etc.), abbreviations and decimals whose use is usually domain-dependent.

Approaches have been developed that are based on different methodologies. In general,
most of them rely on extensive regular-expressions or hand-crafted rules. However, also
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machine learning (neural networks and decision trees, Conditional Random Fields) has been
used for this task. An overview is given by [Palmer and Hearst, 1997, Katrin Tomanek and
Hahn, 2007].

Tokenization: Another basic step in preprocessing text requires segmentation of the char-
acter string into its smallest units – tokens, which are words, punctuation marks and
separators. This results in a sequence of tokens. In English language, word boundaries
are normally indicated by white space. However, in scientific text tokenization typically
requires typographical processing at the character level, to handle special characters and
white space, upper case and lower case, superscripts and subscripts, and equivalence of
Roman, Greek, and numerical suffixes [Siefkes and Siniakov, 2005, Krallinger et al., 2008].
Jiang and Zhai [2007] give a good overview on different tokenization methods used in the
biomedical domain.

Part-of-Speech Tagging: Part-of-Speech (POS) indicates the role of words within a sen-
tence. POS tagging is the assignment of a word to a noun, a verb or an adjective for instance.
A common set of tags includes around forty categories (e.g. the Penn Treebank tagset1

[Marcus et al., 1994b]), whereas much larger sets are known. POS tagging is a challenging
problem since a word can have multiple parts of speech. The word ‘antibiotic’ for instance
can be a noun (e.g. in ‘development of a new antibiotic’) or an adjective (in ‘antibiotic substance’)
depending on the context of the word.

Systems accomplishing this task are generally based on machine learning algorithms,
such as Hidden Markov Models trained on manually POS-labeled corpora [Marcus et al.,
1994b]. Some POS taggers also use manually compiled rules to judge ambiguous words;
others are entirely rule-based, like the Brill’s tagger [Brill, 1992, 1994]. Biomedical literature
shows a slightly different POS distribution as compared to general English newswire texts
[Cohen and Hunter, 2004, Krallinger et al., 2008]. This has motivated the implementation
of specialized taggers optimized for the biomedical domain, such as the MedPost tagger
[Smith et al., 2004] or dTagger [Divita et al., 2006].

3.1.2 Named Entity Recognition

3.1.2.1 Literature Survey on Biomedical and Chemical Named Entity Recognition

Gene and protein name recognition has been one of the most active fields in life science text
mining since the late 1990th, which lead to a number of advanced applications and a growing
number of publications in this scientific area. A good overview is provided by [Krallinger
et al., 2008]. The predominant role of gene and protein name recognition in biomedical
text mining is also illustrated by the fact that it was a central task of the two BioCreAtIvE
assessments in 2003 and 2006 and of the JNLPBA (International Joint Workshop on Natu-
ral Language Processing in Biomedicine and its Applications)2. The best system applied
to protein and gene name finding (gene mention task) at the challenge of BioCreAtIvE II

1http://www.ims.uni-stuttgart.de/projekte/CorpusWorkbench/CQP-HTMLDemo/
PennTreebankTS.html

2http://research.nii.ac.jp/~collier/workshops/JNLPBA04st.htm
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obtained an F1 measure of 87.21 % [Smith et al., 2008]. Most of the successful systems use
machine learning methods or dictionary-based approaches combined with approximate
string matching.

Such an independent evaluation does not exist for the recognition of chemical named
entities, however, an introduction to systems dealing with the recognition of this entity
class in natural language text and their morphological analysis is given in the following
paragraphs. Published approaches span from manually developed rule sets, grammar or
dictionary-based approaches to machine learning based systems. The systems are differently
specialized; some focus on finding only subclasses of chemical names, whereas others intend
to recognize the complete bandwidth of chemical names. If available, performance measures
are provided which are defined in Section 3.1.5.

Kemp and Lynch [1998] detect nongeneric chemical names in patents using handcrafted
rules in combination with dictionaries which comprise chemical name fragments. They claim
to correctly find 97.4 % of 14 855 specific chemical names in 70 patents from the International
Patent Classification (IPC) class CO 7D. The false positive rate is reported to be 4.2 %.

Narayanaswamy et al. [2003] describe a manually developed set of rules relying upon
lexical information, linguistic constraints of the English language and contextual information
for the detection of six entity classes. These are proteins/gene, protein part, chemical,
chemical name fragment, source and general biological term. The reason for choosing this
approach is stated as the lack of an annotated corpus. The evaluation was done on a small
hand-selected corpus containing 55 MEDLINE abstracts obtained by searching for acetylates,
acetylated and acetylation. They found 158 chemical names from which 22 were ambiguous
and classified into different classes and 13 chemical part names with two ambiguous terms.
The F1 measure for the first class is 90.86% (93.15% precision, 86.08% recall). The latter has
an F1 measure of 91.67% (100% precision, 84.62% recall).

Another rule-based system is the ChemFrag annotator of IBM which identifies complex
tokens as organic chemical names [Mack et al., 2004]. It combines regular expression rules
applied to recognize organic chemical name fragments with rules that assemble these
fragments into longer descriptions. The rules are formal expressions, controlling the balance
of parentheses, numbers and hyphens. In some of the rules a small dictionary of prefixes and
suffixes is used. Mack et al. [2004] describe obtained results of an unpublished evaluation of
the ChemFrag annotator on ten annotated patent documents to be 91 % in precision, 94 % in
recall, and 92 % in F1 measure.

The system EbiMed of Rebholz-Schuhmann et al. [2007] recognizes drug names using a
drug dictionary compiled from MedlinePlus. However, they do not provide an evaluation
of their method.

In parallel to this work Hettne et al. [2009] published a dictionary approach based on
Peregrine [Schuemie et al., 2007], which is a string matching method developed for gene
and protein name recognition. They use a combination of several terminology resources to
obtain a chemical name dictionary. They report on a precision of 51 %, 49 % recall and 50 %
F1 measure on the corpus of 100 MEDLINE abstracts published by Kolářik et al. [2008] and
described in Section 4.1.1.

Wilbur et al. [1999] employ two approaches – chemical morpheme segments combined
with heuristic and a score constituted of three measures and a Bayesian classifier applying
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character-based n-Grams – for discriminating between chemical names and non-chemical
terms of a given term list from the Unified Medical Language System (UMLS) Methathe-
saurus3. They state to label 96.2 % of the chemical names and 97.0 % of the non-chemical
terms correctly with the latter method.

Townsend et al. [2005] use a Naïve Bayes method applied to overlapping 4-Grams and
context leading to a recall 70.4 %, precision 78.4 % and F1 measure 74.3 % evaluated on a
small corpus of seven articles randomly selected from Organic and Biomolecular Chemistry
2003 and three documents from Organic and Biomolecular Chemistry [Townsend et al., 2004].
A further development lead to the open source program OSCAR34 (Open Source Chemistry
Analysis Routines) [Corbett and Murray-Rust, 2006], which is the only software available
to the academic community. Compared to Townsend et al. [2004] OSCAR3 additionally
uses a modified Knesser-Ney smoothing [Chen and Goodman, 1996] to produce a refined
4-Gram model and implies an internal lexicon of chemical names initially populated from
ChEBI. Furthermore, a set of rules is applied to group single chemical words for assemble
multi-word chemical names. Chemical formulae are recognized with cascaded regular
expressions. The system was evaluated on several different topical abstract corpora from
MEDLINE. They achieved precision values between 64.1 % and 75.3 % as well as recall values
between 69.1 % and 80.8 %.

In the work of Corbett et al. [2007] the toolkit LingPipe5 was applied that is based on
first-order Hidden Markov Models and n-Grams. They combined it with several dictionaries
for the identification of chemical entities obtaining 73.5 % in recall, 75.3 % in precision and
74.4 % in F1 measure.

The program developed by Sun et al. [2007] focuses on finding sum formula like
‘CH3(CH2)2OH’ in text using support vector machines and CRFs. Their best result was
obtained with Support Vector Machines (SVMs) with recall of 90.36 %, precision of 94.64 %
and an F1 measure of 92.45 % on a randomly selected corpus of 200 chemistry publications
from Royal Society of Chemistry.

Unfortunately, there exists no organized international assessment like BioCreAtIvE for
the recognition of chemical entities in text. Hence, the comparison of available approaches
turned out to be difficult because different corpora of different size have been applied for
the evaluation.

A dictionary and a ML based technique have been adopted in this work for the recognition
of named entities. Hence, they are explained in more detail in the next sections.

3.1.2.2 Dictionary-based NER Approaches

Available approaches that mainly rely on dictionaries are most often applied for identifying
protein and gene names. The performance of dictionary-based methods depends on the one
hand on the search algorithm and on the other hand on the quality and completeness of the
dictionary. Both components are discussed in the following paragraphs.

3www.nlm.nih.gov/research/umls/
4http://oscar3-chem.sourceforge.net
5http://alias-i.com/lingpipe/
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i idi

1 DB06151 ST1 InChI=1/C5H9NO3S/c1-3(7)6-4(2-10)5(8)9/h4,10H,2H2,1H3,(H,6,7)(H,8,9)/
t4/m0/s1/f/h6,8H
CC(=O)NC(CS)C(=O)O

DBL1 28939; C06809; D00221; . . .
S1 Acetylcysteine; ACC; Mucomyst; Acetadote; Fluimucil; Parvolex;

Lysox; Mucolysin; (2R)-2-acetamido-3-sulfanylpro-panoic acid;
. . .

2 DB04816 ST2 InChI=1/C14H8O4/c15-9-5-1-3-7-11(9)14(18)12-8(13(7)17)4-2-6-10(12)16/ h1-
6,15-16H
C1=CC2=C(C(=C1)O)C(=O)C3=C(C2=O)C=CC=C3O

DBL2 3682; C10312; . . .
S2 Danthron; Altan; Antrapurol; Bancon; Chrysazin; Chrysazine;

Criasazin; Danivac; Dantron; Diaquone; Dionone; Dorbane;
Dorbanex; Dorbantyl; Duolax; Istan; Istin; Istizin; LTAN; Lax-
anorm; Laxanthreen; Laxipur; Laxipurin; Modane; Neokutin s;
Pastomin; Prugol; Regulin; Roydan; Scatron d; Zwitsalax; 1,8-
dihydroxyanthracene-9,10-dione; . . .

...
...

...
...

Table 3.1: Example of a dictionary based on DrugBank, usually incorporated in rule based
Named Entity Recognition systems.
i: Object number,
idi: Identifiers of central resource (DrugBank in this case),
STi: Structural identifiers,
DBLi: Identifiers of other databases,
Si: Set of synonyms.

Dictionary A dictionary is a collection of entity names from a certain domain, usually
gathered from public domain-specific repositories. Thus, public databases provide a valuable
term resource being routinely used by systems aiming at the identification of protein and
gene names or disease terms, e.g. [Hanisch et al., 2005, Tsuruoka and ichi Tsujii, 2004, Fundel
and Zimmer, 2006, Chun et al., 2006, Sasaki et al., 2008]. In such a dictionary all terms for a
given concept are kept together. Usually, they are mapped to unique identifiers like database
keys or other unique representations. Table 3.1 provides an example section of a chemical
dictionary.

The problem with dictionary-based NER, however, is that dictionaries are seldom complete
because of the existence of term variants and new names. The generation and addition of
spelling variants is used to overcome this problem partially [Hanisch et al., 2005].

As databases are regularly updated by the curating organization, a dictionary-based NER
system relying on these databases has to be automatically updated as well to incorporate
new names and symbols. Otherwise it would go out of date.

45



Chapter 3 Fundamentals on Applied and Developed Methods

String Matching Algorithms String matching can be divided into perfect and approxi-
mate string matching methods that work on character or token basis [Navarro, 2001]. Perfect
string matching performs an exact text search for synonyms from a given term list against
text. In comparison, approximate matching allows insertions, deletions or substitutions
of single characters or tokens. Usually, similarity and distance metrics are used to score
compared strings, e.g. by consideration of several editing operations, differently rated, for
transforming one term into another. Cohen et al. [2003] give a good overview on mainly
applied distance and similarity metrics.

Wang and Matthews [2008] studied the influence of exact string matching, six different
similarity measures and rules onto the protein name recognition. They showed that exact
string matching and classical similarity methods performed worse compared to an adapted
TF-IDF6, a measure usually used for information retrieval. Here the token order is not fixed
and a fuzzy token comparison lead to acceptable results. An exact string matching method
in combination with a prior expanded dictionary containing different spelling variants for
identifying protein and gene names was developed by Fundel et al. [2005]. They used a
postprocessing filtering via Support Vector Machines and achieved F1 measures between
79 and 92.1 % at the BioCreAtIvE challenge for protein and gene names of three different
organisms. Since approximate string matching allows for a fuzzy term search, most of the
available NER approaches utilize this technique. Hence, term variants in text differing from
terms in the dictionary to some extend can be detected by the systems. Systems based on
approximate string matching have been provided by Tsuruoka and Tsujii [2003], Hanisch
et al. [2003], Egorov et al. [2004], and Schuemie et al. [2007]. Tsuruoka and Tsujii [2003] used
the edit distance as measure for calculating the similarity between two strings on character
level. Arbitrary costs were defined for the individual edit operations that are dependent on
the considered letter. To recognize a protein name in a given text, they performed a similarity
calculation for every term contained in the dictionary and selected the term that was most
similar. The F1 measure performance on the GENIA corpus was 70.2 %. Hanisch et al.
[2003] developed the protein and gene name recognizer ProMiner which also incorporates
an approximate search algorithm, but compared to Tsuruoka and Tsujii [2003] it is based on
tokens. An evaluation on the BioCreAtIvE I corpus resulted in an F1 measure between 79
and 89.9 % [Hanisch et al., 2005] depending on the organism studied. Egorov et al. [2004]
and Schuemie et al. [2007] developed a quite similar approach. Egorov et al. [2004] obtained
98 % precision and 88 % recall on a randomly selected MEDLINE corpus of 1000 abstracts.
Schuemie et al. [2007] achieved 72 % precision and 75 % recall on the BioCreAtIvE II corpus.

As ProMiner was modified to recognize chemical entities in text, it is described in more
detail below.

ProMiner ProMiner has been developed by Hanisch et al. [2003] to search multi-word
terms in text using a term similarity function and context information. Their goal was to be
able to efficiently process large corpora of text for recognizing protein and gene names.

The algorithm is not based on editing operations, but on the assessment of tokens making

6Term Frequency Inverse Document Frequency: It is a statistical measure used to evaluate how important a
word is to a document in a collection or corpus. In this case a word corresponds to a token and the document
collection corresponds to all names in the dictionary.
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Algorithm 1 Algorithm of ProMiner (adapted from Hanisch et al. [2003]).
Require: S Set of all synonyms in the dictionary
Require: T Set of all Tokens occurring in text
Require: C = c1, c2, . . . , cn ⊆ S
Require: τ(c), c ∈ C
Require: σ(t), t ∈ T
Require: token(c), c ∈ C

1: for each token ti ∈ T read from the abstract do
2: for each synonym sj ∈ σ(ti) do
3: if (sj /∈ C) then
4: C = C ∪ sj ;
5: end if
6: end for
7: for each candidate c ∈ C do
8: if (ti ∈ τ(c)) then
9: Update match terms of sα(c);

10: τ(c) = τ(c)\ti;
11: else
12: Update mismatch terms of sα(c);
13: sβ(c)+ = (1/token(c));
14: end if
15: if (sβ(c) > Boundary threshold or Mismatch delimiter found then
16: C = C\c;
17: if (sα(c) > Acceptance threshold) then
18: report c;
19: end if
20: end if
21: end for
22: end for

up the candidate term that are conform or non-conform with a tokenized text snippet. In
general, tokenized text is provided to the search algorithm which processes it token-wise.
By this means, each token ti is compared to synonym tokens of the dictionary that were
generated the same way as text tokens. This comparison procedure results in a set of
potential dictionary candidate synonyms C = c1, c2, . . . , cn that are similar to a given text
snippet s. They are assessed by scoring functions, whereas two scores are defined for each
cj ; a boundary and an acceptance score. They depend on the number of mismatching and
matching tokens. Both scores are compared to respectively defined thresholds that are
checked each time a token has been processed. They define the term acceptance, stop of
term prolongation or rejection of a term. The procedure is shown in the Algorithm 1 below.

Hanisch et al. [2003] observed that tokens are differently important for the recognition of a
protein or gene name. Therefore, each token of the synonyms in the dictionary is assigned to
one of primarily defined token classes depicted in Table 3.2. This procedure relates a token
either with a certain value, fixed for a specific token class or it defines the influence of a
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token onto the search behavior. Respective token class values define the token contribution
to the final score. They were obtained from training examples by parameter optimization
via robust linear programming.

ProMiner has been successfully used for the recognition of gene and protein names and
obtained high performance results in BioCreAtIvE 1 and 2 [Hanisch et al., 2005, Fluck et al.,
2006].

Class Name Description Token example Example term

Modifier Semantically
modifying tokens

‘transporter’ ‘recep-
tor’, ‘kinase’

‘norepinephrine transporter’

Specifier Numbers and
Greek letters

‘3’, ‘III’, ‘alpha’ ‘gold(III) fluoride’, ‘3-
carbamoyl- 5-methylisoxazole’

Delimiter Separator tokens ( ) . ; ‘6-(octadecylthio)purine’
Non-descriptive Annotating

tokens
‘fragment’ ‘prothrombin fragment 1’

Standard Standard tokens ‘THF’

Table 3.2: Description of the main token classes used by ProMiner. Example tokens and
terms are provided (adapted from Hanisch et al. [2003]).

Although the algorithm was primarily developed for the recognition of protein and gene
names in text, it is generic, so that it can be adjusted do other domains as well. In principle
there are four basic components that need to be considered when modifying the system. In
the following they are briefly introduced:

• Domain-specific dictionary: It is the most important component on which ProMiner
relies. The generation and incorporation of a raw dictionary is the basic step to adjust
it to a new domain.

• Curation: Basically, resources like entity specific databases or ontologies used for
dictionary generation have not been developed for compiling dictionaries applied by
NER tools. Therefore, they lack spelling variants of terms being used by authors in
text and hence cannot be found by the matching procedure. An automated expansion
of the dictionary is crucial for the performance of the system. Furthermore, resources
might not be well curated so that wrong synonyms enter the term list. That is why
some synonyms have to be removed. Additionally, the meaning of terms can depend
on their case form, like ‘his’ that is a pronoun and ‘HIS’ which is an abbreviation for the
amino acid ‘histidine’. Therefore, some terms have to be marked to be treated during
the identification phase in a special way.

• Tokenization: If the segmentation of text and synonyms in the dictionary into tokens is
domain relevant, it provides a further possibility for the modification of the system.

• Disambiguation: A single term or name can be associated with several concepts from
different domains and hence with different meanings. Occurrences of ambiguous
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terms need to be resolved to reduce false positive findings. ProMiner handles these
cases by analyzing context information.

3.1.2.3 Machine Learning-based NER Approaches

When new entities are discovered (e.g. genes, proteins, diseases, etc.) or created (e.g. drugs),
new names are coined as well. Systems that have the potential to find names, that are not
contained in repositories and are thus not available to be included into a dictionary, are
mostly based on Machine Learning.

In the context of Named Entity Recognition supervised techniques are used which rely
on manually labeled training examples. Here, data are often represented as a sequence of
tokenized text that is also called the observation or input sequence x = (x1, . . . , xn), n ∈ N.
Each given input sequence x is related to a label sequence y = (y1, . . . , yn) (also called state
sequence). Typically, the label sequence is encoded by a label alphabet L = {I,O,B} first
introduced by Ramshaw and Marcus [1995]. Label B assigned to a token xi denotes the
beginning of a certain entity mention, yi = I represents token xi as inside of it and yi = O
means that xi is a token which is outside an entity of interest and hence does not belong
to it. An example of a token sequence and its corresponding label sequence is provided in
Table 3.3.

By this means, the general task in ML-based NER is to find a label sequence y for an

x . . . for both H3 acetylation and H3K4 trimethylation of . . .
y . . . O O B I O B I O . . .

Table 3.3: Token sequence (x) and label sequence (y) for an example text snippet containing
histone modification descriptions (highlighted in red).

observation sequence x. A number of different models has been proposed for assigning
labels to the sequence of tokens in a sentence. Some models assume independence of the
labels in the sequence, like decision trees [Quinlan, 1986] or Support Vector Machines (SVM)
[Schölkopf and Smola, 2002]. However, the labels of adjacent tokens are seldom independent
of each other in NER tasks. This has led to a number of different models that capture the
dependency between the labels of contiguous tokens. These are Hidden Markov Models
(HMM) [Rabiner and Juang, 1986], Maximum Entropy Markov Models (MEMM) [McCallum
et al., 2000], and Conditional Random Fields (CRFs) [Lafferty et al., 2001, McCallum and
Li, 2003], whereas CRFs have recently gained popularity [Cohen and Hunter, 2004, Nadeau
et al., 2007, Sarawagi, 2008]. Conditional Random Fields are now established as the state-
of-the-art ML methods for named entity recognition. CRFs have shown clear advantages
over HMM and MEMM both theoretically and empirically. CRFs provide an advantage
over HMMs as they exploit arbitrary feature sets along with the dependency in the labels of
neighboring words. This allows them to overcome the independence assumptions made in
the other models. Text tokens representing components of the input sequence x are described
by several features representing characteristic attributes. An example subset of features used
in this work is depicted in Table 3.4. The features have been assigned to different classes
which depend on their characteristics and generation method. In CRFs the conditional
probability of the label sequence can depend on arbitrary, non-independent features of the

49



Chapter 3 Fundamentals on Applied and Developed Methods

Name Explanation

Static morphol. features Regular Expression
All Caps [A-Z]+
Natural Number [0-9]+
Alpha-Num [A-Za-z0-9]+
Init Caps [A-Z].*
Init Caps Alpha [A-Z][a-z]*
Real Number [-0-9]+[.,]+[0-9.,]+
Alpha-Num [A-Za-z0-9]+
Roman [ivxdlcm]+ or [IVXDLCM]+
Has Dash .*-.*
Init Dash -.*
End Dash .*-
Punctuation [„ ,.;:?!−+‘’ ”]

Autom. generated Autom. generation of a feature for every token:
morphol. features
Prefixes/Suffixes Match that prefix or suffix

WordsAsClass Match that token

Context Is a token preceded or succeeded by:
Spaces White space
In Brackets Brackets

Table 3.4: Example features which are used as parameters of the CRF [McDonald et al., 2004,
McDonald and Pereira, 2005, Klinger et al., 2008] are ordered by their classes and
corresponding feature examples as well as their descriptions are given.

observation sequence, whereas the model does not need to take the distribution of those
dependencies into account. In contrast, Maximum entropy Markov models (MEMMs) and
other Markov models have a theoretical weakness, the ‘label bias’ problem [Lafferty et al.,
2001]. As linear-chain CRFs were used to recognize histone modification terms in text in this
work, they are described in more detail in the following paragraph.

Conditional Random Fields Linear chain Conditional Random Fields are a undirected
probabilistic graphical model for computing the conditional probability p(y|x) of a possible
label sequence y given the input sequence x. In this paragraph the description of a special
form of Conditional Random Fields – linear chain CRFs – which are appropriate to model
sequential data, follows the explanation given in Klinger and Tomanek [2007] and Sutton
and Mccallum [2006]. According to Sutton and Mccallum [2006] linear chain CRFs are
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defined as

pλ(y | x) = 1
Z(x) ·

n∏
i=1

exp

 n∑
i=1

m∑
j=1

λjfj
(
yi−1, yi, x, i

) (3.1)

where n+1 is the length of the observation sequence, m the number of features, and λj ∈ R.
The weighting factors λj are model parameters and define the contribution of single features
fj to the entire model. The normalization to [0, 1] is given by

Z(x) =
∑
y∈Y

exp

 n∑
i=1

m∑
j=1

λjfj
(
yi−1, yi, x, i

) . (3.2)

Here, Y is the set of all possible label sequences over which is summed up, so that a feasible
probability is obtained. In this special case of linear-chain CRF well-known algorithms
from the field of Hidden Markov Models like forward-backward propagation can be used
to compute the normalization factor [Rabiner and Juang, 1986]. The feature functions fj
given in Equation 3.3 combine features of the considered token with properties of the label
sequence. They represent attributes of text tokens in combination with every possible label
transition7. In a linear chain CRF they have the general form

fj
(
yi−1, yi, x, i

)
=


1 if yi−1 6= O and

yi 6= O and
xi has feature mj

0 ,

(3.3)

where i = 1, . . . , n;n ∈ N is the label for a token at position i in sequence x, j = 1, . . . ,m;m ∈
N is the number of features. In case of this work, fj exhibit Boolean values. This results in a
feature vector representation of every token.

In order to get a system that provides specified labels to untagged observation sequences,
a model has to be learned on given training data. The goal of model training is to estimate λj
of the weight vector λ so that the probability of the output label sequence given the training
data is maximized. Following Likelihood function given training data T is maximized:

L̄(T ) =
∑

(x,y)∈T
log pλ(y|x) , (3.4)

which is done via maximum likelyhood estimation. The model training is described in
Klinger and Tomanek [2007] and in Wallach [2002]. It can efficiently be performed using
hill-climbing methods such as conjugate gradient or limited memory BFGS (L-BFGS) [Sha
and Pereira, 2003].

If a model and documents to be labeled are given, the task is the determination of the
most likely sequence of states y* for a given observation sequence x. This means identifying
the label sequence y*

y∗ = argmax
y∈Y

p(y|x) (3.5)

7In the I,O,B-format like mentioned above for the existence of one entity there are 8 possible label transitions:
B → B, O → O, I → I , I → O, I → B, B → O, B → I and O → B.
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that maximizes the conditional probability. The most likely sequence is calculated using
Viterbi’s algorithm [Rabiner and Juang, 1986], a dynamic programming method.

There are several implementations of CRFs available that can be customized for example
by modifying the feature set [Sarawagi, 2008] like MALLET developed by McCallum [2002].

3.1.3 Term Normalization

Term variations and ambiguous terms in text and in databases constitute an impediment for
information extraction and retrieval, like query term dependent retrieval results in databases
shown in [Kolářik et al., 2007].

Term variations originate from the ability of a natural language to denominate a single
concept in a number of ways [Spasić et al., 2005]. Authors generate synonymous names
due to e.g. different naming conventions, misspellings or use of acronyms. Jacquemin
[1999] determined that one third of term occurrences in an English scientific corpus are term
variants. They appear as orthographic, morphologic, syntactic, and lexico-semantic term
variations or term abbreviations [Savary and Jacquemin, 2003, Nenadié et al., 2004]. Their
description and examples for every type are depicted in Table 3.5.

Term variation
type

Explanation Term variation examples

Orthographic Usage of hyphens and
slashes, lower and upper
cases, spelling variations

H3K9 trimethylation, H3K9 tri-
methylation

Morphologic Inflection (plural, singular
forms), derivational transfor-
mations, genitive form

histones, histone’s

Syntactic Prepositional variants, term
coordinations

tri-methylation of H3K9, tri-methylation
at H3K9, H3K9 tri-methylation, di- and
tri-methylation of H3K9

Lexico-
semantic

Use of synonyms, which are
interchangeable

H3K9 tri-methylation, H3Lys9 tri-
methylation

Abbreviation
and acronyms

Frequently used in technical
sublanguages

H3K9me3

Table 3.5: Classification and description of term variation forms. Term variations are marked
in red.

To enable the integration of textual data and improved information retrieval, synonyms
have to be mapped onto one concept representation and ambiguity needs to be resolved.

52



3.1 Information Extraction Techniques

Two general methodologies support the mapping of different concept and entity surface
representations, which are discussed in the following.

3.1.3.1 Generation of Canonical Term Representatives

The mapping of different term surface forms to one canonical term representative is an
option to standardize terms. A canonical term representative is a base form of individual
term variations belonging to one meaning. It is obtainable by transformation of a term
trough linguistic normalization, e.g. generating a singular form, removing dashes, etc. The
utilization of such a standard term as concept and entity representation allows to integrate,
compare or map different terminological and textual data from various resources, that can
be text, ontologies (cf. its definition in Section 3.2.1), terminologies or databases.

Sarkar et al. [2003] investigated four strategies for their potential to map terms from Gene
Ontology to terms of UMLS. They used exact string match, the generation of canonical term
forms, the tool MetaMap (MMTx)8 and Blast-based matching. It was shown that the term
canonicalization approach performed best. In a second study Krauthammer and Nenadic
[2004] generated canonical term forms of biomedical terms and successfully applied them
for mapping different surface realizations belonging to one concept.

A tool which supports canonical term form generation is the Lexical Variant Generating
program9 developed by National Library of Medicine. It is a component of Lexical Tools
related to UMLS and provides a series of commands that can be selected and combined to
perform lexical transformations of terms [Aronson, 1994]. It involves lexical look-up in the
SPECIALIST lexicon of UMLS as well as stripping and replacement functions for example,
combined with algorithmic generation of an uninflected term form.

3.1.3.2 Mapping of Terms to Reference Identifiers

Due to synonymy and ambiguity several steps are required after named entity recognition
to aggregate different surface term forms and to resolve the correct term meaning. Hence,
term disambiguation is often necessary to reject the terms with wrong meanings early in
the term identification pipeline, e.g. common English words. Additional filter steps reduce
false positive terms. The final mapping to reference resources usually applies dictionaries
compiled from these repositories. Similar to NE recognition the procedure has to tackle
spelling and term variants, as utilized term collections often do not contain the complete
set of synonyms of a given concept. Usually it is accomplished by the addition of spelling
varied synonyms and/or application of mapping rules and similarity-based or fuzzy term
matching methods.

Some named entity recognition methods imply normalization already in their general
pipeline. The fundamental advantage of dictionary-based NE recognition approaches, like
ProMiner, is their inherent feature directly allowing to normalize named entities in one
step. This means when a term is found in text and disambiguated, it is a simple process
to map it to unique identifiers that it represents. In contrast, Machine Learning-based
NER approaches do not provide identification information of recognized terms. Hence,

8http://ii-public.nlm.nih.gov/MMTx/docs.shtml
9http://www.nlm.nih.gov/research/umls/online%20learning/LEX_004.htm
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the entire normalization process has to be accomplished after NE recognition resulting in
a two-step process. Although dictionaries are prevalently used in combination with fuzzy
string mapping for NE normalization, some ML-based approaches have also been developed
and tested.

Ben Wellner [2005] for instance applied CRFs in combination with TF-IDF for character-
wise string comparison to map terms from text to UMLS concepts. They obtained an
F1 measure of 73 % while testing their approach on 34,296 lexical entries of UMLS.

Lim et al. [2007] applied a vector space model for finding similar terms in a term list
leading to an F1 measure of 70.7 % at the BioCreAtIvE II gene mention corpus.

The best systems at BioCreAtIvE II obtained F1 measures of 81 % for the recognition of
human proteins and genes and 92 % for yeast [Morgan et al., 2008].

Another tool that maps terms from biomedical text to concept identifiers of UMLS is
MetaMap [Aronson, 2001]. It is a program developed at the National Library of Medicine
which maps noun phrases identified by automatic term recognition in text to concepts.
MetaMap uses a multi-level mapping strategy. First, a target term is analyzed for generating
multiple variants, such as acronyms, synonyms and inflectional variants. These derivations
of the original term are then mapped against concept names in the UMLS Metathesaurus
and are ranked according to a similarity score.

Chemical compounds provide an inherent property of uniqueness by their structure
representation. Hence, several approaches have been developed to translate named entities
to a structural representation.

One of the first approaches actively used as commercial product is Name=Struct from
Brecher [1999]. It splits the names into meaningful fragments which are interpreted by a set
of rules generating a structure representation from them. He claims to correctly transform
97 % of the parsable names from catalogs of not specified commercial chemical vendors,
which were 72 % to 92 %, and 55 % of chemical names of the ChemFinder WebServer.

The system CHEMorph [Gerhard Kremer, 2006, Anstein et al., 2006] linguistically analyses
systematic names that are based on the IUPAC nomenclature rules as well as on special
nomenclature rules for sugar names. It generates SMILES strings from them and determines
possible classes of the terms and is based on work of Reyle [2006]. CHEMorph was developed
to detect synonymous entries as well as errors and inconsistencies in/or between databases.
They claim to generate 93 % semantic analyses of 100 arbitrarily chosen names.

Corbett and Murray-Rust [2006] developed the system OPSIN, which is an Open Parser
for Systematic IUPAC Nomenclature. It assigns chemical structures to complete systematic
names by machine interpretation of systematic chemical names. They state to correctly
transform 54.7 % of 8183 systematic names from the first 10,000 identifiers of PubChem.

All introduced methods involve the fragmentation of chemical terms and the analysis of
the generated name components. Sets of rules are applied to constitute a chemical structure
representation. However, the research groups used different terms for the evaluation which
makes a final judgment of the systems difficult.

54



3.1 Information Extraction Techniques

The cells were also resistant to several anticancer agents such as mitoxantrone,
7-ethyl-l0-[4-(1-piperidino)1-piperidino]carbonyloxycamptothecin, and 7-ethyl-
10-hydroxycamptothecin. AZT was 7.5-fold less inhibitory to HIV-1 replication in
MT-4/DOX 500 cells than in MT-4 cells. . . .

Figure 3.1: Text passage example from Wang et al. [2003] in which chemical entities are
annotated (highlighted in red).

3.1.4 Corpus Selection and Annotation

The collection and annotation of texts representing a certain language is the basis for informa-
tion extraction processes. It is required for evaluating the performance of IE approaches and
training of ML-based systems developed to recognize Named Entities and more complex IE
challenges. Defined annotated corpora – gold standards – allow for system’s comparison
applied for specific tasks, like the ones announced by MUC, Text REtrieval Conference
(TREC)10 or the BioCreAtIvE challenge (Critical Assessment of Information Extraction in
Biology)11. Furthermore, the change of an ML system’s performance can be analyzed when
using different parameters.

A corpus is chosen according to certain criteria meeting several demands that have been
defined for specific IE tasks. In general, the text set should be balanced, representative for
a certain sublanguage and recoverable. In the annotation process text snippet positions
are manually marked with interpretative information, like certain defined entity classes
or more complex structures, like relations. Leech [1993] defined several issues and corpus
design maxims. Furthermore, he proposed the strategy of storing annotation and raw text
separately also known as Standoff annotation. Figure 3.1 shows an example text section with
annotated chemical entities highlighted in red, whereas Table 3.6 provides the corresponding
Standoff annotation.

Standoff annotation
Term Position Entity type

mitoxantrone 69 – 81 Chem. entity
7-ethyl-l0-[4-(1-piperidino)1-
piperidino]carbonyloxycamptothecin

83 – 146 Chem. entity

7-ethyl-10-hydroxycamptothecin 153 – 183 Chem. entity
AZT 185 – 188 Chem. entity

Table 3.6: Standoff annotation corresponding to the text passage in Figure 3.1. Chem. entity
is the annotation type with which chemical names have been annotated.

10http://trec.nist.gov/
11http://biocreative.sourceforge.net/
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Cohen et al. [2005a] have studied the most prominent corpora designed to promote
biomedical text mining and analyzed their properties based on the number of applications
that made use of them. They state that the utilization of annotated corpora is dependent on
the distribution format and on structural and linguistic annotations. Further requirements
are the publication of the annotation guidelines and inter-annotator agreement.

Several approaches have been developed for text annotation, like the open source tool
WordFreak developed by Morton and LaCivita [2003] and MMAX12, a commercial tool
developed by EML Research GmbH.

However, the costs of producing annotated text data can be quite high. Especially ML
systems require a fairly large number of both positive and negative examples for system
training and testing.

The annotation of corpora is a tedious, time-consuming, and expensive task. Furthermore,
as Sarawagi [2008] outlined, statistical learning techniques crucially depend on the training
data being representative of the distribution on which the trained model is deployed. In
general, training examples contribute statistical data to a learner, which in turn estimates
several parameter values. The reduction of the amount of data to be labeled for learning and
the support of choosing complying examples is of eminent value for the annotation process.

3.1.4.1 Active Learning

Active learning supports the limitation of human annotation effort by sample selection with
the aim of obtaining a high system’s performance. It is based on the assumption that labeled
examples are not equally informative or equally easy to label. An informative example is one
whose contribution to the statistics leads to a significant improvement of model parameter
estimates. Engelson and Dagan [1996] state that this avoids redundant annotation of many
examples that contribute roughly the same information to the learner.

Active learning is an iterative process which is composed of three main phases that are
repeated until a stopping criterion is reached. A learning program examines many unlabeled
examples and selects only those for labeling that are most informative for the learner at each
stage of training. The phases consist of training, selective sampling and human annotation,
described in Algorithm 2. The setting typically consists of a small set of labeled examples L
and a large set of unlabeled examples U .

The stopping criterion can either be the number of iterations or a desired performance
measure, whereas the model performance is evaluated on a test set in each iteration.

Various active learning algorithms have been developed, mainly differing in the method
of assessing the informativity of new potential training instances. The two most popular
active learning methods used in NLP are uncertainty-based sampling [Cohn et al., 1994]
and query by committee [Seung et al., 1992]. In uncertainty-based learning, new instances
are selected for annotation on which the classifier is least certain of their classification. The
assumption is that instances which are harder to classify are more useful for training. In
case of probabilistic models uncertainty of the classifier is commonly estimated using the
entropy. For non-probabilistic ones, the classification margin is used, as in the case of support
vector machines [Vlachos, 2008]. In query by committee, a body of classifiers is trained

12http://www.eml-research.de/english/research/nlp/download/mmax.php
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Algorithm 2 Active Learning process (adapted from Vlachos [2008]).
Require: Small set of labeled data L
Require: Large set of unlabeled data U
Require: Model M trained on L

1: repeat
2: Apply the trained model classifier M on U
3: Rank the instances of U according to a performance measure
4: Manually annotate the top b instances of U and add them to L
5: Train the model on the expanded L
6: until a stopping criterion is satisfied.
7: return a model M

on L and subsequently applied to the instances of U . Instances for which the classifiers
yield the highest disagreement are considered to be the most informative. Common ways
of estimating the disagreement are the vote-entropy [Argamon-Engelson and Dagan, 1999]
and the Kullback-Leibler divergence [Pereira, 1993].

Active Learning has been applied to several problems in NLP, such as document classi-
fication, POS tagging, chunking, statistical parsing, and information extraction [Tomanek
et al., 2007].

Active learning based on uncertainty sampling was applied in this work to extend an ini-
tially generated training corpus for the recognition of histone modifications in text. Similarly
as in [Tomanek and Hahn, 2009] it was utilized to improve a primary learned CRF model.
Therefore, an initial CRF system was applied as base learner to a large set of unlabeled data
U , which was in this case MEDLINE. The obtained conditional probability p(y*|x) of the
most likely label sequence y* (c.f. Equation 3.5) for an observation sequence x was utilized
to determine the uncertainty q of the system, which is calculated by:

q = 1− p(y*|x) (3.6)

The unlabeled data were ranked according to q. Those with the highest uncertainty values q
were chosen for annotation and the extension of the training corpus. The convergence of
the F1 measure, an evaluation measure defined in the following section, was employed as
stopping criterion.

3.1.5 Evaluation Measures

Different systems which provide the same solution for one task need to be compared with
each other to ascertain the best suited one. Furthermore, an evaluation has to be conducted
for measuring whether certain changes in a system have lead to an improvement in its
performance. Hence, the output of Named Entity Recognition or information extraction
systems is evaluated according to a gold standard which defines relevant and non relevant
objects in a text corpus.

In the 80th van Rijsbergen [1979] developed a quality measure, the F1 measure, for
the evaluation of information retrieval approaches which is also used for NER and other
information extraction tasks. It is predicated on following measures of the output comparison
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with the gold standard. Documents or entities that are relevant and are successfully found
by the system are thus ‘true positive’ outputs. Documents/entities that are retrieved by the
system but that actually are not contained in the gold standard are ‘false positive’ outputs.
Instead, documents/entities that truly are relevant but that the system failed to identify are
‘false negative’ outputs. Table 3.7 gives another overview on the basic measures.

Annotated data
Positive Negative

System output
Positive | True positives (TP) False positives (FP)

Negative | False negative (FN) True negatives (TN)

Table 3.7: Description of basic measures collected for the evaluation of IE approaches. (The
figure was adapted from van Rijsbergen [1979].)

These basic measures are used for the calculation of precision and recall which are defined
in the following paragraphs.

Precision is a measure of exactness and is calculated by dividing the number of true
positives by the total number of outputs, which is the sum of true positives and false
positives. The equation is given as:

Precision = TP

TP + FP
. (3.7)

The recall is a measure of completeness and is calculated by taking the ratio of true positives
by the total number of potential correct outputs, which is the sum of true positives and false
negatives. The equation is given as:

Recall = TP

TP + FN
. (3.8)

Recall and precision are usually considered conjoined whereas an optimal system obtains
results with high values in both. However, often approaches can reach a high performance
only in one measure, because rising or optimizing one is associated with the cost of decreas-
ing the other measure. Which measure is aimed to maximize depends on the requirement to
be fulfilled by the system. For instance on one hand side it could be important to develop
an approach with high precision, accepting that some information is missed. On the other
hand high recall rates could be more important than an optimal precision, even though there
might be a higher number of false positive findings. An example scenario is a search for
a certain topic by a company, whereas missing information could be highly relevant for
product development or market monitoring and thus finally for its finances.

However, users of information extraction approaches are often interested in systems that
identify a high number of available entities or relations with a low false positive rate. Thus,
the weighted harmonic mean between recall and precision, the F1 measure, is applied for
the method’s evaluation, which is defined by:

Fβ = (1 + β2) · Precision ·Recall
β2 · Precision+Recall

where β = 1. (3.9)
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The weighting factor β ≥ 0 can be used to shift the weight towards precision or recall,
whereas Fβ is balanced in both for β = 1.

Another measure – the accuracy – represents the ratio of correct outputs to the total
number of cases evaluated. It measures the fraction of correct answers, i.e. true positives
and true negatives, with respect to the total number of test cases:

A = TP + TN

TP + TN + FP + FN
. (3.10)

Accuracy is often used to evaluate classifier predictions [Kotsiantis, 2007]. However, there
is the accuracy paradox indicating that classifiers or systems may reach a high accuracy,
but show at the same time only a low precision. Hence, to evaluate information extraction
system’s the metrics precision, recall, and F1 measure should be favored.

3.2 Function Annotation of Entities

The subsequent sections deal with techniques addressing the challenges and problems of
entity annotation and are organized as follows: At first, the characteristics of ontologies and
their advantage for utilization in annotation is explained in Section 3.2.1. It is followed by
Section 3.2.2, which introduces fundamental methodologies and approaches that support the
identification of entity annotations and new property information in text resources utilizable
as automated annotation collection and as basis for the definition of new annotation classes.
Methods that make use of already annotated chemical compounds for propagating or
predicting certain function annotations/properties to non-annotated chemical entities are
outlined in Section 3.2.3.

3.2.1 Impact of Ontologies for Function Annotation and Data Management

Basically, Ontology has been a branch of philosophy since about 2000 years. It is the science
that describes the reality by a classification of entities and deals with relations which hold
between entities belonging to a certain domain and distinct domains of science [Smith, 2003].
Biemann [2005] gives a nice historical overview on ontology in philosophy. In the context of
information science ontologies provide systems with a re-usable machine-readable definition
of relevant information by representing the domain knowledge in a formal way [B. Yildiz,
2007, Mizoguchi and Ikeda, 1996]. Guarino [1998] describes an ontology prevalently used in
Artificial Intelligence as:

"an engineering artefact, constituted by a specific vocabulary used to describe a
certain reality, plus a set of explicit assumptions regarding the intended meaning
of the vocabulary words. . . . In the simplest case, an ontology describes a hier-
archy of concepts related by subsumption relationships; in more sophisticated
cases, suitable axioms are added in order to express other relationships between
concepts and to constrain their intended interpretation."

This is in contrast to the philosophical sense of an ontology, which is a particular system
of categories accounting for a certain vision of the world, independently on a particular
language [Guarino, 1998].
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Ontologies applied in the context of information science serve as metadata schemas,
providing a controlled vocabulary of concepts, each with explicitly defined and machine-
processable semantics. They are crucial for the engineering, management, organization
and representation of knowledge, the modeling, integration, retrieval and extraction of
information as well as for database design, language engineering, agent-based systems
design for example, and object-oriented analysis [Guarino, 1998, Silvescu et al., 2001].

The main components of an ontology are concepts, their definitions, relations, and axioms.
The combination of an ontology with associated instances, that are ‘things’ represented by a
concept, is a knowledge base [Stevens et al., 2000].

The use of a controlled vocabulary from an ontology supports annotation processing by
machines for their automated comparison, analysis, and propagation as well as improved
information sharing when applied in different data sources. The GOA project aiming at
uniformly annotating proteins of species in the focus of research with Gene Ontology terms13

is a prominent example [Camon et al., 2003]. Furthermore, the hierarchical organization of
ontologies predestine their application in data retrieval systems. It allows for semantic search
of information at different levels of granularity. For example a query of a bibliographic
or fact database with the chemical family concept ‘azides’, returns all entries containing
compounds that belong to this chemical family. Beyond, ontologies provide defined concept
denominations, that, when used for indexing and search, avoids the problem of search
term-dependent retrieval results.

Thus, ontologies obtained increasing attention in the computer science community within
the last two decades, especially in Bioinformatics, Artificial Intelligence, Computational
Linguistics, and Database Theory.

3.2.2 Information Extraction for Supporting Function Annotation of Entities

Entity classification systems, ontologies or free text fields of repositories provide function
annotations of entities. The latter ones are for instance the Function field from the protein
database Swiss-Prot14 [Bairoch and Apweiler, 1997] and Pharmacology as well as Mechanism
of Action embodying pharmacological effects of chemical entities from DrugBank.

Usually, the excerption of new entity annotations is often done manually by database
curators. Therefore they read high amounts of articles to fill in predefined forms with
annotation information of interest. Though, as Baumgartner et al. [2007] state, manual
work will not be sufficient to annotate huge numbers of biologically entities. Although
they analyzed the annotation coverage of entities in genomic and protein databases and
predicted its prospective development, the problem is a general one. Thus, textual data
represent a bottleneck for entity annotation because of the data overload. From this follows
that automated support is needed to assist the annotation process for instance by selecting
relevant documents and paragraphs or by finding new entity annotations in text. This can
basically be aided through Information Extraction methodologies.

The following sections describe the impact of ontologies for Information Extraction on
one hand and the role of Information Extraction techniques for the generation of ontologies
on the other hand.
13www.geneontology.org
14http://www.expasy.ch/sprot/
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3.2.2.1 Impact of Ontology for Information Extraction

Ontologies attained strong attention for Information Extraction. Systems relying on them
are generally divided into ontology-based and ontology-driven information extraction
approaches [Spasić et al., 2005].

In the first case they serve as a source of vocabulary for natural language processing
systems, e.g. GoPubMed [Doms and Schroeder, 2005]. Although collecting names is not the
function of ontologies, most of the biomedical and chemical ones provide lists of names for
entities they comprise. However, their application for Named Entity Recognition is limited,
because concept denominations provided by ontologies often differ from terms available in
text. Furthermore, they are often long multi-word names which differ from terms available
in text. This is especially the case for Gene Ontology making it difficult to recognize its
terminology in text [Blaschke et al., 2005].

In ontology-driven information extraction systems ontologies are actively used to guide
the analysis of textual data for extracting factual knowledge to instantiate one or several
predefined extraction forms [Guarino, 1998, Spasić et al., 2005, Nedellec and Nazarenko,
2006]. The forms to fill represent parts of the ontology, e.g. concepts and relationships that
model a gene regulation network in which proteins interact positively or negatively with
genes [Nedellec and Nazarenko, 2006]. An example IE approach based on ontologies is
OpenDMAP [Hunter et al., 2008] which was constructed for harnessing instances of protein
transport events, protein-protein interactions and the expression of a gene in a particular
cell type.

The assembly of adequate ontologies for certain domains or subdomains or the extension
of existing ones is a bottleneck for many applications. Especially the idea of the Semantic
Web revealed the development and application need of ontologies to automatedly support
information structuring and preparation for knowledge representation of this fast growing
information resource [Maedche and Staab, 2001].

3.2.2.2 Ontology Learning

The manual design of ontologies by knowledge engineers and domain experts is time and
labor intensive. The process spans from knowledge acquisition and identification of the
domain’s key concepts to its encoding in some formal language, like the obo or owl format
[Stevens et al., 2000]. To support ontology construction and speed up the process, the
definition of new concepts and relations to be integrated into an ontology has to be assisted
or the finding of instances which correlate to concepts. Information Extraction from text
is a promising approach for knowledge acquisition [Nedellec and Nazarenko, 2006]. It is
based on the fact that natural language texts from specific domains comprise the domain’s
concepts and their relations.

Methods developed for learning ontologies and its instantiation from large natural lan-
guage resources rely on the identification of concept descriptions and instances, i.e. noun
phrases or named entities of a given domain. The subsequent analysis of the concept
distribution or their co-occurrence in combination with clustering methods as well as the
utilization of relation extraction methods support the generation of a structured concept
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output [Nedellec and Nazarenko, 2006, Biemann, 2005]. Mizoguchi and Ikeda [1996] and
Biemann [2005] give an overview on these techniques and methods.

However, as Biemann [2005] claims, learning ontologies completely from text instead of
manually creating them is problematic. He summarizes that none of the automated methods
used today are good enough for creating semantic resources of any kind in a completely
unsupervised fashion. Furthermore, a text corpus is biased and might only reflect a limited
concept and relation space of a certain domain [Nedellec and Nazarenko, 2006], so that
important parts for the ontology application could be missing. Thus, automated methods,
like IE techniques applied to extract concept relationships in text as well as instances, can
only support ontology construction.

Information Extraction combined with Named Entity Recognition can meet the challenge
of finding annotation information on entities in large amounts of text. Hence, a fundamental
technique underlying this work that has been employed by several groups for term extraction
and ontology learning is explained in the subsequent section.

Extraction of Hypernymic Phrases Predominant semantic relations in ontologies are the
taxonomic relationship is-a of hypernym/hyponym pairs and meronymy, the part-of relation.
The first one can be interpreted either as an instance-class relation or as a generalization
relation between two classes, whereas the latter one is only a relation between classes.

Hearst [1992] found out, that many text genres frequently contain phrases describing
taxonomic relationships between noun phrases. In general, phrases following this constitu-
tion, relate two or more noun phrases, some semantically specific (hyponym) and others
more general (hypernym) by a taxonomic relationship. An example for such a construct
is ‘Adinazolam is a benzodiazepine derivative’, whereas ‘Adinazolam’ constitutes the hyponym
and ‘benzodiazepine derivative’ the general term – the hypernym. Fiszman et al. [2003b]
also demonstrated in a study that the coverage of hypernymic propositions in biomedical
text, like MEDLINE, is promising. The extraction of such relations would support ontology
extension and its population with instances as well as entity annotation.

The identification of hypernymic phrases in text is a multi-level process. A prerequisite
before extracting complete hypernymic phrases from text is the recognition of concept
descriptions and instances, which are the basic information carriers: Named Entities and
terminological units that are noun phrases [Bourigault, 1992, Siefkes and Siniakov, 2005].
The noun phrase definition can be found in Manning and Schütze [1999]; examples are
provided in Figure 3.2. As NER was discussed in previous sections, methods for noun
phrase recognition and extraction are introduced at this point.

According to NER the general task of recognizing the major sentence constituents like
noun phrases, is the finding of their boundaries. This is achieved by partial decomposition
of the sentence structure through a local analysis of sentence fragments (also called chunks)
named as shallow parsing or alternatively chunking, which is in contrast to full parsing
dealing with the structure analysis of an entire sentence.

To accomplish this task, several techniques have been developed to find non-recursive
noun phrases in text spanning from machine learning to pattern- or rule-based approaches.
ML approaches which have been specifically set up for base noun phrase recognition are
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Figure 3.2: Example of a parsing tree with the different indicated levels Li. L1 depicts part-of-
speech and L2 − L4 provide the different parsing levels. The Figure was adapted
from Craven and Kumlien [1999].
D: determiner, N: noun, PN: proper noun, Adj: adjective, P: preposition, VP: past
tense of be, VPP: verb past participle, PU: punctuation

based on Support Vector Machines, like the YAMCHA tagger [Kudoh and Matsumoto, 2000],
Conditional Random Fields [Sha and Pereira, 2003], MEMMs [McCallum et al., 2000, Sha
and Pereira, 2003] or on transformation-based learning [Brill, 1994], like the tagger TBL from
Ramshaw and Marcus [1995]. Usually, they were trained on annotated newswire corpora,
e.g. provided by the Conference on Computational Natural Language Learning (CoNLL15)
or the Penn Treebank corpus of Wall Street Journal text [Marcus et al., 1994a]. They induce
statistical models from lexical and token feature information as well as from automatically
assigned part-of-speech classes or from one of both [Ramshaw and Marcus, 1995, Wermter
et al., 2005]. They reached F1 measures between 86-94 % dependent on the utilized corpus.

Rule- or pattern-based methods utilize sets of syntactic patterns defined by regular expres-
sions, regular grammars or rule sets [Zweigenbaum, 2008]. For this, text has to undergo a
syntactic analysis process in order to determine part-of-speech tag sequences corresponding
to the given token sequences.

Dagan and Church [1994] and Justeson and Katz [1995] developed syntactic patterns
defined by regular expressions which depends on documents tagged with part-of-speech,
though they do not report on performance. A further approach for identifying concept
denominations in text which relies on patterns was developed by Frantzi [1997]. She focused
on defining a measure to identify candidate terms from domain texts in general and does
not provide the performance of the system. Another noun phrase chunker – Analytics –

15http://www.cnts.ua.ac.be/conll2000/
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developed by TEMIS16 is based on a set of hand-crafted finite-state grammar rules and
extracts nouns, proper names, and noun phrases. It has been shown in Wermter et al. [2005]
that it obtains a good F1 measure performance of ∼ 91 % in recognizing base noun phrases
in biomedical domain texts (Genia corpus) which is comparable to machine learning based
methods, like YAMCHA or TBL (∼ 89 % and ∼ 86 % respectively).

To identify hypernymic relations completely, the simplest method would be to extract
and statistically analyze co-occurring entities or concepts in text. It relies on the hypothesis
that entities which are repeatedly mentioned together are somehow related. Co-occurrence
can provide a huge amount of related entities, but embodies no information about the
quality and direction of an existing relation. Additionally, approaches based on this method
may identify a high number of false positive relations as well, i.e. relations of another type
or unrelated concepts and entities, like shown in the following example: ‘. . . chemical A is
not a protein B activator . . . ’. Hence, more sophisticated methods should be used to extract
specifically related concepts like rule- and pattern-based extraction. The underlying basis
of this approach is that sentences or phrases conforming exactly to a pattern or a rule,
express the predefined relationship(s) between the sentence entities. Skusa et al. [2005] give
a good overview on relation extraction methods. Basic linguistic structures relevant for the
recognition of taxonomic relationships is described in the following paragraph.

Hearst [1992] identified a set of lexico-syntactic patterns that are easily recognizable, occur
frequently in text and across genre boundaries. That is why hypernymic propositions are
also called Hearst phrases or patterns.

In general, three syntactic structures encode hypernymic propositions. These are phrases
which consist of noun phrases connected by verbs. Furthermore, there are appositive
structures, and nominal modifications of nouns [Cimiano et al., 2005, Hearst, 1992, Rindflesch
and Fiszman, 2003]. Some patterns for each class are introduced within the following
paragraph, whereas NPi represent noun phrases. NP1,...,n correspond to the hypernym of
NP0, whereas their relationship is reflexive and transitive, but not symmetric.

In propositions involving verbs the most frequent occurring verb is a form of ‘be’.

• Propositions involving verbs:
NP1 is (a | an) NP0

NP1, NP2, . . . , and NPn are NP0

The example hypernymic proposition ‘Adinazolam is a benzodiazepine derivative’ matches
the first pattern. ‘Adinazolam’ corresponds to NP1 and is a pharmaceutical. The term
‘benzodiazepine derivative’ complies with NP0.

In appositive structures, two noun phrases must be contiguous conjointed by commas,
parentheses, or lexical items, like ‘including’, ‘such as’, and ‘especially’.

• Proposition of appositive structure:
NP0 such as NP1, NP2, . . . , NPn1 (and | or) NPn

NP0 (including | especially | like) NP1

16http://www.temis.com/
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NP1, NP2, . . . , NPn (and | or) other NP0

In nominal modifications the two taxonomically related concepts of the hypernymic
proposition are represented in a single noun phrase.

• Nominal modification:
NP0NP1

NP1NP0

In these cases, the head noun may represent either the hypernym or the hyponym, while
the modifying noun represents the other [Fiszman et al., 2003b].

Several groups concerned with the recognition of hypernymic propositions in text pursu-
ing different goals and interests. Approaches that incorporate such patterns for the extraction
of Hearst phrases from are introduced in the following section.

Literature Overview on Hearst Phrase Extraction Hearst [1992] applied pattern-based
relation recognition to general texts to find terms and expressions that are not defined in
Machine Readable Dictionaries. Since the set of entries within such a dictionary is fixed, the
use of text for building up large lexicons for natural language processing was considered
advantageous. Her intention was to automatically acquire hyponymic lexical relationships
between two or more noun phrases from unrestricted, domain independent text. Finally,
the extracted hierarchical related terms were compared with WordNet17 [Miller, 1990], a
hand-built lexical thesaurus. It was shown that the approach achieves promising results for
augmenting and verifying existing lexicons like this.

Fiszman et al. [2003b] developed an approach called SemRep to interpret hypernymic
propositions in MEDLINE articles. Their approach is composed of a two-step process. First
they identify syntactic structures that potentially encode hypernymic propositions with
a module named SemSpec (Semantic Specification). Subsequently, identified syntactic
arguments are matched by MetaMap to concepts in the Metathesaurus of UMLS. These
concepts are then subjected to semantic validation, whereas the system includes the semantic
groups Disorders, Procedures and Chemicals and Drugs. They report on 46 % recall and
78 % precision for the identification of treatment propositions. However, no application of
SemRep was extensively discussed in their work.

Cimiano et al. [2005] extracted hypernymic phrases by matching regular expressions
over part-of-speech tags. They intended to induce concept hierarchies from text collections,
WordNet and the World Wide Web by applying an agglomerative hierarchical clustering
algorithm which is guided by hypernymic/hyponymic term pairs. A manual evaluation of
the learned taxonomic relations within the hierarchy revealed a precision of 65.66 % which is
a better result compared to the one that was obtained by a pure clustering method tested.

Although the introduced works were developed with different basic intentions, they
show the value of extracting hypernymic propositions from text and their subsequent use

17http://wordnet.princeton.edu/

65

http://wordnet.princeton.edu/


Chapter 3 Fundamentals on Applied and Developed Methods

in diverse fields. They laid the basis for developing an approach to extract chemical entity
related information from text.

3.2.3 Function Prediction of Chemical Entities

The prediction of properties like the pharmacological activity or the toxicity of chemical
compounds is an important technique applied in computer-aided drug design. It is for
instance utilized to virtually select a subset of a chemical compound library that is tested in
wet-lab experiments. This can reduce costs and increase hit rates for lead discovery.

Function prediction has been the main subject of structure-activity relationship studies,
which tries to correlate molecular structure to biological properties, pharmacological activity
or toxic effects [Wilson, 1982, Winkler, 2002, Selassie, 2008]. It aims to find models derived
from training data which can be used to predict respective properties of new compounds.
Another actively utilized method is ligand-based virtual screening [Bajorath, 2002, 2001].
This method is utilized for finding molecules which have similar or better activities compared
to compounds with known biological or pharmacological effects. Here structural similarity
between molecules is utilized for the virtual search of a large compound collection in a
database and to rank molecules according to its structural overlap.

Both SAR and virtual screening support the finding of new functions for compounds with
unknown biological activity toxicity. They rely on molecule’s inherent properties, i.e. the
structure and physico-chemical property information. Therefore chemical compounds are
represented by descriptors, so called molecular fingerprints. They capture a broad range
of molecular characteristics like physico-chemical properties and chemical structure. They
typically encode 2-dimensional (2D) and/or 3-dimensional (3D) features of fragments or
the complete molecule as a vector of binary values. The variables indicate the presence or
absence of certain substructures, topological properties, etc. of a molecule. Examples are the
publicly available MACCS keys [McGregor and Pallai, 1997], the BCI fingerprint [Barnard
and Downs, 1997], the Daylight fingerprint or 3D pharmacophore fingerprints [Brown and
Martin, 1996].

Several similarity metrics, statistical methods, and supervised machine learning algo-
rithms have been developed to comply with this task. These are for instance regression
analysis, logic-based classifiers, perceptron-based techniques, statistical learning algorithms,
instance-based learning or Support Vector Machines. [Sen and Srivastava, 1992, Kotsiantis,
2007, Selassie, 2008] give a good overview on their basic principles, the main algorithms as
well as their advances, and problems.

In the case of virtual screening one of the most prominent similarity measure used for
comparing the structural similarity between two molecules is the Tanimoto coefficient Tc
[Willett et al., 1998, Reddy et al., 2007]. Therefore two molecules A and B are represented by
vectors A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn), whereas the variables an and bn denote
the binary values set ‘on’ for respective features. The Tanimoto coefficient is defined by the
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following equation:

Tc(A,B) =

n∑
i=0

aibi

n∑
i=0

a2
i +

n∑
i=0

b2
i −

n∑
i=0

aibi

(3.11)

The expectation in ligand-based virtual screening is that compounds exhibiting a similarity
above a certain threshold of Tc possess a certain biological activity of the reference molecules.
In general a cutoff of = 0.85 Tanimoto similarity is used as rule of thumb, because it is
expected that 80 % of these compounds show the required biological activity [Patterson et al.,
1996]. However, studies e.g. by Martin et al. [2002], Bajorath [2001] revealed that this is not a
binding constraint.

Models obtained by regression analysis which is often used for SAR studies are validated
through several measures, the correlation coefficient r, the standard deviation, Leave-One-
Out cross validation q2, and the F value (for its definition cf. [Selassie, 2008]). The first
three ones provide a quality measures of the fit of the model and constitute the variance in
the data, whereas the F-value is used as statistical significance of the regression. Models
exhibiting r and q2 = 0.90 as well as high values of F value are usually considered to be
related to a high predictive power. However, as Kubinyi [2004] and Golbraikh and Tropsha
[2002] revealed, a model validated as highly predictive on the training set is not necessarily
related to a high predictivity on testing sets.

The main factor relevant for both SAR and ligand-based virtual screening is the chosen
molecule descriptor. It influences the performance and hence needs to contain adequate
information that is relevant for the given problem [Winkler, 2002, Bajorath, 2001].

As a new descriptor for predicting classes of the drug classification schemes like ATC was
developed in this work, the literature was searched for a method with which it could be
compared with. The found available approach accomplishing this task is described in the
following section.

3.2.3.1 Related Work – Class Prediction of Chemical Compounds

A method – called SuperPred – that predicts pharmacological function as class labels of the
ATC classification scheme for compounds has been published by Dunkel et al. [2008]. It
is based on chemical structure similarity and is described in more detail, because it was
used for comparison with the developed approach explained in (cf. Chapter 4.2). SuperPred
applies SMILES string representations of chemical structures as input and generates a
ranked list of ATC classes for a given chemical compound. It relies on a basic dataset
of 6300 compounds that are related to ATC class annotations and whose structures are
represented by structural fingerprints. They comprise a combination of physico-chemical
and substructure properties. The main principle behind the operation of SuperPred is
that structurally similar compounds exhibit similar biological activity. For comparing the
structural similarity between two molecules the Tanimoto coefficient was used. The results
are given in terms of decreasing Tc values, providing structurally most similar compounds
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of the basic data set as well as their ATC classes. They state that SuperPred achieved an
accuracy of 80.6 % for the fraction of compounds which exhibit a Tanimoto coefficient of
> 0.85.

3.2.3.2 Classification Methods

Four classification methods that were used in this work for ATC class prediction of chemical
compounds are briefly introduced in the following section. Its fundamental principles
and the corresponding main parameters are described. For more information the reader is
referred to further descriptions provided by the cited literature.

k-Nearest Neighbor (k-NN) is an instance-based classifier relying on similarity between
instances. Those that have similar properties generally exist in close proximity within a
dataset [Cover and Hart, 1967, Kotsiantis, 2007].

Similarity between instances is determined by relative distance metrics like Euclidean or
Manhattan distance [Fielding, 2007, Kotsiantis, 2007]. In the ideal case, the metric minimizes
the distance between two similarly classified instances, while maximizing the distance
between instances of different classes. Hence, the Nearest Neighbor classifier assigns a novel
object to the class of training examples to which it is closest in the feature space. k-NN
locates the k nearest instances to the query instance and determines its class by identifying
the single most frequent class label. Although, the k-nearest neighbor algorithm is sensitive
to the local structure of the data, it is simple and produces remarkably low classification
errors [Kotsiantis, 2007].

Decision Trees are trees which classify instances by sorting them on basis of attribute
values. Each node in a decision tree represents an attribute, its edges form the decision
making function [Kotsiantis, 2007].

To build a tree, the training data is repeatedly partitioned [Quinlan, 1986] based on an
attribute value test. That attribute is selected in every step that best separates the training
data according to a measure, which is the information gain of an attribute A with values
A1, A2, . . . Av, v ∈ N :

gain(A) = I(p, n)− E(A) , (3.12)

I(p, n) is the entropy denoted as

I(p, n) = − p

p+ n
log2

p

p+ n
− n

p+ n
log2

n

p+ n
and (3.13)

E(A) =
v∑
i=1

pi + ni
p+ n

I(pi, ni) . (3.14)

Here, n and p characterize the number of negative and positive examples for an attribute A
in the training data.

The classification of a test instance is performed by moving from the root along the
branches to a leaf node, that is assigned to a class label.
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The most important parameter which influences the performance of the classifier and can
avoid overfitting is tree pruning. Thereby noise is reduced by neglecting uninformative
nodes and hence making better decisions is enabled [Mansour, 1997]. Furthermore, this also
reduces the computational time and complexity.

The Naïve Bayes classifier is a probabilistic classifier and specialized form of Naïve
Bayesian networks [John and Langley, 1995]. The Naïve Bayes classifier is based on Bayes’
theorem

p(y|x) = p(y)p(x|y)
p(x) , (3.15)

where x is a vector of random variables denoting the observed attribute values and y is
a random variable denoting the class of an instance. The classifier is founded on two
assumptions:

(a) the feature variables are conditionally independent given the class and

(b) it posits that no hidden or latent attributes influence the classification process [John
and Langley, 1995].

A further common assumption often made is to consider the values of numeric attributes
normally distributed within each class. Under the conditional independence assumption of
the feature variables one obtains

p(x|y) =
n∏
i=1

p(xi|y) . (3.16)

The denominator p(x) of Equation 3.15 is not important for classification as it can be consid-
ered a normalization factor. Thus, normalization is achieved by the sum of p(x|y) over all
classes giving the value one.

Given a test case x, the Naïve Bayes classifier computes the probability of each class y
given the vector of observed values and predicts the most probable class.

Support Vector Machines (SVM) were developed by Vapnik [1995] to solve binary clas-
sification problems [Schölkopf and Smola, 2002]. Thereby a hyperplane determined that
separates two data classes with labels {1,−1} by maximizing the possible distance between
the separating hyperplane

{〈w, x〉+ b = 0} (3.17)

and the instances on either side of a margin m. Here, x is the data vector, w is the normal
vector orthogonal to the hyperplane, and b is the bias. Those hyperplane is determined,
which minimizes 1

2 ||w||
2 such that side condition

yi(〈w, xi〉+ b) ≥ 1 (3.18)

holds, given the training data, whereas yi is the class label. The optimal separating hyper-
plane is defined through support vectors that are training instances closest to its boundaries
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[Burges, 1998]. The values for w and b are determined through optimization methods, such
as quadratic programming. The decision function used for assigning a class label to new
data x has the form:

fw(x) = sgn(〈wx〉+ b) . (3.19)

Often, data that have to be classified are not clearly separable, such that no hyperplane exists.
A solution for this problem is to allow some misclassification. Thus, slack variables ξi ≥ 0
are introduced giving a so called soft margin hyperplane:

yi(〈w, xi〉+ b) ≥ 1− ξi ∀ 1 ≤ i ≤ n. (3.20)

In this case, 1
2 ||w||

2 + C
∑n
i=1 ξi is minimized. Here C is a positive constant, which is an error

penalty chosen by the user, whereas a large C corresponds to a high penalty.
To find a hyperplane for non-linearly separable data, a solution would be to map them into
a higher dimensional feature spaceM. However, as such a mapping is computationally
intensive and the illustration of the obtained separation could become very complex in
the low-dimensional space, it is not feasible. Thus, a kernel trick is used, which allows to
avoid the mapping into a high dimensional space and the calculation of the scalar products.
Therefore, a kernel function

K(xi, xj) := 〈Φ(xi),Φ(xj)〉 , (3.21)

is introduced, replacing the scalar product, whereas Φ : X → F is the mapping and F , 〈·, ·〉
is the scalar product space, also called feature space. There are several commonly utilized
kernel functions, such as polynomial or radial basis functions (RBF) [Burges, 1998].

3.3 Data Visualization

Visual representation of data translate them into a visible form which can highlight important
features and enables rapid insight into complex data [Thomas and Cook, 2005]. Since the
sense of sight is the dominant one for humans, visual data representation is essential for the
analytical reasoning process, especially when dealing with large text corpora.

For making the above discussed information extraction techniques applicable and thus
becoming more useful to biomedical researchers, the form of presenting text mining results
is one of the major challenges of biomedical text mining [Cohen et al., 2005a]. As Hotho et al.
[2005] illustrate, many of the graphical visualization approaches that have been developed
for text mining purposes are based on methods which span from explorative data analysis
and information visualization to visual data mining. Their aim is to integrate the human in
the data exploration process by visual data analysis. The enabling to navigate thousands
of documents can improve and simplify the use of literature and provides the capability
to better and faster gain insight into massive data as well as extract relevant patterns or
information and come up with new hypotheses [Keim, 2002].

According to Cohen et al. [2005a] and Zweigenbaum [2008] tools, provided to biomedical
researchers who can benefit from the increasing amount of textual data, should address the
following issues:
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• Usability,

• Visualization type,

• Layout and visual cues,

• Navigation,

• Interactivity, and

• Retrieval speed.

Several web applications have been developed in the last years for supporting visualiza-
tion and exploration of large text corpora, like Textpresso18 [Müller et al., 2004], GoPubMed19

[Doms and Schroeder, 2005], iHOP20 [Hoffmann and Valencia, 2004], EBIMed21 [Rebholz-
Schuhmann et al., 2007], Whatizit22 [Rebholz-Schuhmann et al., 2008], and
SCAIView23 [Gattermayer, 2007, Hofmann-Apitius et al., 2008]. They basically rely on
the recognition of biomedical Named Entities and concepts, like proteins, genes, chemicals,
Gene Ontology or MeSH terms in text documents, which are highlighted in the document
view by most of the web applications. They enable document search and rank the obtained
documents according to relevance or provide a statistical analysis of entities from several
predefined entity classes. However, most of them are restricted to MEDLINE as document
resource and cannot be customized to user defined entities in general.

Another tool AliBaba24 [Plake et al., 2006] provides a graph representation of extracted
entities that are linked by relation expressions identified in text and statistical measures.
Gattermayer [2007] provides a detailed feature comparison of most available tools.

Since entities, obtained with Named Entity Recognition techniques extended and con-
stituted in this work, were applied to augment the in-house developed web application
SCAIView [Gattermayer, 2007], it is described in more detail at this point. SCAIView has
been developed for enabling enhanced information retrieval and viewing entity as well as
concept names recognized by Named Entity Recognition in a document corpus.

It is a knowledge discovery system that encompasses the capability of syntactic and
semantic search25. The inclusion of a tree representing terminology hierarchy and ontology
concepts of the biomedical domain allows for complex queries by a combination of query
terms with the in- or exclusion of concepts of the provided hierarchies and ontologies.
SCAIView builds on named entity recognition results of ProMiner and CRF approaches as

18http://www.textpresso.org/
19www.gopubmed.org
20http://www.ihop-net.org/UniPub/iHOP/
21http://www.ebi.ac.uk/Rebholz-srv/ebimed/
22http://www.ebi.ac.uk/webservices/whatizit/info.jsf
23http://scai.fraunhofer.de/scaiview.html?&L=1
24http://alibaba.informatik.hu-berlin.de/
25Syntactic search uses words or multi-words phrases that occur in documents and queries as atomic element

in document and query representations. Semantic search is based on semantic analysis of documents
through natural language processing techniques and retrieving documents by matching these semantic
representations [Giunchiglia et al., 2008].
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well as text indexing technology from Lucene, which is a high-performance Information
Retrieval library developed for the generation and searching of text indexes by the apache
foundation26. Identified named entities are added to the index as well. A front-end provides
a graphic depiction, which currently provides two different visualization possibilities in
form of distinct views onto the corpus tagged with recognized entities:

• Entity view: It gives information on the found entities xi, like the ranking by Rela-
tive Entropy 3.22 (also known as Kullback-Leibler divergence [Kullback and Leibler,
1951]), the number of occurrence within the corpus, short entity descriptions for some
entity classes, and links to external information resources. Thus, the web application
augments identified and highlighted entities with additional available information.

RelativeEntropy(xi) = p1(xi) · lg
p1(xi)
p2(xi)

, with (3.22)

p1(xi) = fxis

Fs
, and (3.23)

p2(xi) = fxic

Fc
, where (3.24)

fxis is the frequency of a single entity xi of entity class z in a defined document
subcorpus s,

fxic is the frequency of a single entity xi of entity class z in the complete document
corpus c,

Fs =
n∑
i
fxis is the frequency of all entities xi . . . xn of entity class z in a defined

document subcorpus s, and

Fc =
n∑
i
fxic is the frequency of all entities xi . . . xn of class z in the complete

document corpus c.

• Document view: It shows the subcorpus related to a distinct selected entity with the
possibility to highlight all available biomedical entity types in the text. It helps to get a
fast overview on the main entities and hence the theme of the documents.

Example of the entity and document view highlighting the NER results via SCAIView are
illustrated by Figures 3.3 and 3.4.

26http://lucene.apache.org/
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Figure 3.3: Entity view of SCAIView (screenshot). It shows a ranked list of drugs which are
prevalently related to the queried disease ‘diabetes’.
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Figure 3.4: Document view of SCAIView (screenshot). It shows the found documents that
are related to the drug ‘Metformin’ (highlighted in yellow) and ‘diabetes’. Genes
and proteins as well as drugs and terms of the MeSH disease hierarchy part are
highlighted in dark blue and light blue respectively.
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Chapter 4

Building a Framework for the Information
Aggregation of Chemical Entities

The first aim of this work addresses the generation of a framework for the aggregation of
function annotation information on chemical entities from unstructured natural language
text and structured resources. It relies onto two subtasks: the recognition of chemical named
entities and the extaction of biomedical and pharmaceutical property information from text,
which is combined with available structured annotation data. The approaches developed for
both subtasks are individually covered in Section 4.1 and Section4.2. The final developed
framework is described in Section 4.3, which includes the application of the aggregated
function information.

4.1 Recognition of Chemical Named Entities in Text

Dictionary-based Named Entity Recognition methods introduced in Section 3.1.2.2 provide
the strong advantage that normalization of found terms can be done in a straightforward way
(as discussed in Section 3.1.3.2). The mapping of term representations of chemical molecules
to ontologies or databases thus enables its linking to chemical structure representations and
further information, like its biological effects, targets or physicochemical properties. Hence,
the potential of applying a dictionary-based system for finding chemical named entities in
text becomes clear. An important task for such an approach is the generation and of a domain-
specific dictionary. It can be combined with an automated pre-processing step, the curation
of synonyms contained in the dictionary which removes non-chemical terms, generates
spelling variants, etc. This process supports the regular automated update of dictionaries
and the maintenance of the quality of the system with manageable manual efforts. The
post-processing of the obtained results is the third component which disambiguates found
entities. All issues have been covered in the subsequently described studies preparing an
approximate string matching method, like ProMiner, to be applicable for Chemical Named
Entity Recognition.

4.1.1 Generation of an Evaluation Text Corpus and Annotation of Chemical
Entity Classes

One of the basic steps when entering a new domain for that named entity recognition has
to be developed, is the collection of a domain-specific text corpus. It is a foundation to get
an overview how authors use the domain-specific terminology in text and to which main
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subclasses they belong to. The annotation of named entities is essential for the development
of Named Entity Recognition methods, in particular for the training of machine learning
based approaches and for the evaluation and comparison of the results of different tools.

In difference to the biomedical domain, where public contests, like BioCreAtIvE, lead
to a number of corpora publicly available with several annotated biological entities (for
an overview cf. Cohen et al. [2005b]), there is no corpus publicly available to establish
and evaluate chemical NER systems. Several publications report on annotated training and
evaluation sets generated for the development of their approaches [Corbett et al., 2007, Kemp
and Lynch, 1998, Elena M. Zamora, 1984]. They used patents or articles from MEDLINE,
the European Patent Office and journals of the American Chemical Society, hindering the
distribution of the annotated corpora due to publisher conventions. Therefore, a new text
corpus has been annotated with chemical entities.

MEDLINE was chosen as document resource. The corpus was assembled by R. Klinger
performing following steps: A system based on CRFs for detecting IUPAC names described in
[Klinger et al., 2008] was applied to select titles and abstracts from MEDLINE. The constraint
was that they contain at least one IUPAC entity. The basic assumption for this choice was if
that abstracts comprise IUPAC names, also other chemical terms can be expected in these
abstracts. The selected corpus contains 67 abstracts with chemical terms functioning as
positive examples and 39 documents lacking any chemical entities so that they encompass
the negative text examples. This procedure resulted in the corpus CHEM-EVAL, which is
composed of 106 documents (title and abstract) from MEDLINE and contains 31,791 tokens.

The corpus was annotated employing the tool WordFreak1. According to a primary term
analysis, chemical named entities were assigned to seven classes defined with respect to
morphological name properties and semantics: TRIVIAL, ABB, SUM, IUPAC, PART, MODIFIER,
and FAMILY. An overview on the classes, their general definition and examples is given in
Table 4.1.

In the following, the annotator’s definition of the classes is described in more detail. The
separation between TRIVIAL and IUPAC names is based on term length. Chemical terms
consisting of only one word are classified as TRIVIAL, even if they are IUPAC names officially.
Systematic multi word and semi-systematic names are always annotated as IUPAC. This
includes names that imply only a IUPAC-like part and an abbreviation, like ‘17-alpha-E’,
where ‘E’ stands for ‘estrogen’. The requirement is that the name needs to be complete. It
also incloses names describing a radioactive labeling of a compound, e.g. ‘3H-testosterone’.
Although it does not strictly follow the definition of IUPAC, the distinction was chosen to
match the machine learning needs; the discrimination between tokens belonging to IUPAC

and non-IUPAC terms. Furthermore, descriptions of substance classes which could be used as
a base for building various chemical derivates and analogs were annotated as IUPAC and not
assigned to the class FAMILY (e.g. ‘1,4-dihydronaphthoquinones’). Terms were only assigned
to the class FAMILY if they describe well defined chemical families (e.g. ‘glucocorticoid’),
excluding pharmacological classes (e.g. ‘anti-inflammatory drug’). Partial chemical names
like ‘17beta-’ occurring separately in text have been annotated as PART. The objective of this

1http://wordfreak.sourceforge.net/
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Annotation
class

Description Examples

TRIVIAL trivial and brand names ‘aspirin’, ‘estrogen’

ABB abbreviations and acro-
nyms

‘TPA’

SUM sum formula, atoms,
SMILES, InChI

‘KOH’, ‘C1H22N2NiO7’

IUPAC IUPAC names, IUPAC-
like names, systematic,
semi-systematic names

‘1-hexoxy-4-methyl-hexane’

PART partial IUPAC class
names

‘17beta-’

FAMILY chemical family names ‘disaccharide’

MODIFIER names modifying the
meaning of the chemi-
cal name

‘analogs’, ‘7-substituted’

Table 4.1: Classes defined for the annotation of the CHEM-EVAL corpus, their description
and example names.

entity class is to use it in future for the resolution of IUPAC name enumerations like ‘2- and
3-methylhexane’. In general, chemical names were not tagged if they are part of other entities
like proteins e.g. ‘3-ketosphinganine’ in ‘3-ketosphinganine reductase’.

The corpus annotated by two annotators, the author and Juliane Fluck which comprises
1343 annotated entities in total. The distribution of the annotated chemical entities over the
classes is shown in Figure 4.1. As entity class MODIFIER is of no relevance for the present
approach it is omitted in all following analyses of this work.

As Figure 4.1 illustrates, the main portion of the annotated entities belongs to the classes
TRIVIAL (31.8 %) and IUPAC (29.0 %). They are followed by the other classes with a large
distance. A generalization of the entity distribution for all documents in MEDLINE is not pos-
sible, because CHEM-EVAL is only a small corpus. Nevertheless, it gives a rough estimation
which chemical entity types occur most probably in titles and abstracts of MEDLINE.
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Figure 4.1: Chemical entity distribution over the defined chemical annotation classes on the
annotated CHEM-EVAL corpus.

4.1.2 Generation of a Chemical Named Entity Dictionary

Definition of the Chemical Dictionary Content A chemical named entity recognizer
should be able to identify names of chemical substances as well as chemical substance
families. The identification of substructure and chemical class names helps to retrieve
documents containing findings that subsume several chemical compounds.

Biopolymers like proteins and gene sequences, also chemical compounds in the sense of
their definition, have been excluded from the assortment for a chemical dictionary. They are
already comprised in protein and gene dictionaries of the available precursory version of
ProMiner.

Terminology Resource Analysis Similar to gene and protein resources, databases for
chemical substances do not only hold structural, chemical and physico-chemical or biological
information. Repository providers collect denominations of chemical substances as well such
that a mapping of chemical names to structures is given and normalization of found terms
in text is possible. Following resources have been taken into consideration as terminology
providers:

• Commercial Databases

– CrossFire Beilstein database2

– CAS REGISTRYSM 3

– The World Drug Index (WDI) 4

• Freely available Databases

– Kyoto Encyclopedia of Genes and Genomes (KEGG)5 [Goto et al., 1998]

2http://www.info.crossfiredatabases.com/
3http://www.cas.org/expertise/cascontent/registry/regsys.html
4http://www.daylight.com/products/wdi.html
5http://www.genome.jp/kegg/
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4.1 Recognition of Chemical Named Entities in Text

– PubChem6

– DrugBank7 [Wishart et al., 2006]

– Human Metabolome Database (HMDB)8 [Wishart et al., 2007].

• Thesauri and Ontologies

– Medical Subject Headings (MeSH)9

– Chemical Entities of Biological Interest (ChEBI)10 [Brooksbank et al., 2005, Degt-
yarenko et al., 2008]

The considered data sources have been generated by the suppliers with different focus
and hence provide different subsets of the entire chemical compound space. CAS, Beilstein,
WDI, KEGG, DrugBank and HMDB are specialized on small molecules, polymers, drugs and
organism’s metabolites, whereas the thesauri and ontologies also collect chemical structure
families and side groups of chemical molecules. More detailed descriptions of the resources
can be found in Appendix A.2.1.

There are several requirements to be drawn on term resources used for dictionary-based
NER approaches, like availability, number of provided entities and synonyms, low ambi-
guity of terms, etc. Given that entity normalization is a straight forward procedure and an
inherent advantage of dictionary-based NER methods, the selection of dedicated references
uniquely identifying the entities is another important issue for the choice of resources.

Several analyses have been performed to determine resources that can serve as terminology
resource for compiling a chemical dictionary. The analysis is related to resource versions
downloaded in January 2008. At first, the overall available number of entities provided by
eight resources is considered. A general overview on the number of entries contained in the
analyzed repositories is given in Table 4.2.

The data clearly show that the commercial databases stand out from the public resources
in the number of available entries. Unfortunately, the commercial operators do not allow for
using their databases to extract entity names and to establish a dictionary from them. Thus,
only terms from freely available databases and ontologies can be extracted and utilized
for generating dictionaries applied in NER systems. Therefore, the databases DrugBank,
KEGG drug and KEGG compound, HMDB, PubChem as well as the ChEBI ontology, the
MeSH hierarchy (referred to as MeSH-T), and the supplementary file of MeSH (referred to
as MeSH-C) were considered for this work.

4.1.2.1 Raw Dictionary Generation and Performance Analysis

Dictionaries applicable by ProMiner have been created from all of the freely available
resources to perform further analyses. Table 4.3 illustrates which data fields have been

6http://pubchem.ncbi.nlm.nih.gov/
7www.drugbank.ca
8http://www.hmdb.ca/
9http://www.nlm.nih.gov/mesh/

10http://www.ebi.ac.uk/chebi/
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Resource Number of entries

Commercial
CrossFire Beilstein 10 mill

CAS 33 mill
World Drug Index 80,000

Public

PubChem-C; PubChem-S 18,4 mill; 36,8 mill
MeSH-T 8,617
MeSH-C 175,136

ChEBI 15,562
KEGG (K-C; K-D) 21,498 (15,033; 6,834)

DrugBank 4,764
HMDB 2,968

Table 4.2: Total number of entities contained in chemical information resources; Data from
Jan 2008
(PubChem-C: PubChem Compound;
PubChem-S: PubChem Substance;
K-C: KEGG-Compound;
K-D: KEGG-Drug;
MeSH-T: subtree D of the main MeSH hierarchy;
MeSH-C: Supplementary Concept Records of MeSH)

extracted from the respective resources. Furthermore, the size of the dictionaries, the total
amount of synonyms, and the calculated average synonym number per entity are provided.

It turns out, PubChem is the dictionary with the most objects, but the average synonym
number is the lowest compared to the other dictionaries. Only those PubChem substance
entries have been considered for dictionary generation which have at least one synonym and
a link to PubChem compound. The second largest one is the supplementary file of MeSH
(MeSH-C). However, it contains a low synonym average number as well. Contrarily, HMDB
and DrugBank, the smallest databases, excel the others in that respect.

In a further study the actual number of synonyms per entry have been counted for every
given resource. The distribution of the synonym count is depicted in the graphs of Figure 4.2.
Many entries of PubChem, MeSH-C and MeSH-T, as well as DrugBank and HMDB contain
a high amount of synonyms. This makes these resources very valuable, because many of the
used synonyms in literature are potentially covered.

Only considering the number of entries and its provided synonyms is not enough. It is
expected that some of the repositories partially overlap in entities and its synonyms, but will
also be complementary to some extend. An example of entries overlapping in synonyms is
documented in Table 4.4 for ‘aspirin’. It shows the number of its synonyms and examples of
non-overlapping synonyms provided by the different resources.
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Database Fields used Dictionary
size

Synonym
number

D

DrugBank Name, Synonyms, Brand Names, Brand Mix-
tures, Chemical IUPAC Name, Chemical For-
mula, Isomeric SMILES, Canonical SMILES,
CAS Registry Number

4,765 63,737 13.4

HMDB Name, Common Name, Synonyms, Chemi-
cal IUPAC Name, Isomeric SMILES, Canonical
SMILES, InChI Identifier, CAS Registry Num-
ber

3,007 41,576 13.8

KEGG-D NAME, FORMULA 7,367 25,122 3.4

KEGG-C NAME, FORMULA 15,172 43,976 2.9

MeSH-T MH, ENTRY, N1, RN 8,617 79,615 9.2

MeSH-C NM, N1, RN, SY 179,832 534,955 3.0

ChEBI name, synonym, xref (if CAS is available) 19,935 86,768 4.4

PubChem <PC-Substance_synonyms_E> 5,339,322 7,323,992 1.4

Table 4.3: Database/ontology fields used for the extraction of chemical names to be included
in separate dictionaries. The dictionary size and number of contained synonyms
is given respectively. D is the average number of synonyms per entity.

Test of Single Resource Dictionaries on the Corpus CHEM-EVAL Obviously, the con-
sidered resources have been developed for different purposes. A concluding question is
which resources contribute in which extend to the six defined annotation classes of major
interest. For instance, it can be expected that MeSH-T and ChEBI dictionaries will mainly
match entities from the class FAMILY, because of the hierarchical chemical domain represen-
tation of the underlying resources. To get a preliminary impression of the class coverage of
the dictionaries for the CHEM-EVAL corpus, a simple string matching approach has been
applied as baseline experiment. It furthermore helps to identify and classify synonyms of
the dictionaries that lead to false positive matches. Therefore, no pre-processing or curation
of the dictionaries was performed, which means that no names were removed, added or
changed. Following constraints were used for all searches:

• All synonyms were searched with a simple case insensitive string search, hyphens
were ignored.
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Figure 4.2: Plot of the synonym count distribution for the analyzed repositories.

Resource Number of synonyms Non-overlapping synonym examples

KEGG-C 7 —
KEGG-D 5 —
ChEBI 27 acide 2-(acétyloxy) benzoïque
DrugBank > 100 Kyselina acetylsalicylova
HMDB 63 —
MeSH-T 20 —
PubChem > 100 CCRIS 3243

Table 4.4: Overlap example ‘aspirin’: The resources, number of synonyms and examples of
non-overlapping synonyms are provided.
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4.1 Recognition of Chemical Named Entities in Text

• No control of the correct association of the found names to the corresponding entry
was performed.

Result Analysis of the Simple String Matching The results obtained with a simple
search strategy and uncurated dictionaries can be considered as a baseline and give only
a rough estimate of the coverage of different sources. Furthermore, they help to choose
terminology resources and to reflect which efforts have to be invested in dictionary curation
and the adaption of the search strategy.

Table 4.5 provides recall and precision for every specific dictionary and the six annotated
chemical named entity classes TRIVIAL, ABB, SUM, IUPAC, PART, and FAMILY (see also
[Kolářik et al., 2008]). Furthermore, the identification results of every dictionary were
combined (named as Concatenated Dictionary Results in the following) to get an impression
of the potential optimal recall. The obtained recall and precision are presented in the right
column.

• Analysis of the Results obtained for Dictionaries: The first row in Table 4.5 depicts
precision and recall when the single class entities were analyzed altogether. It can be
observed that precision and recall are not very high for all dictionaries. This is even
true when the Concatenated Dictionary Results are analyzed. The highest recall when
considering single dictionaries was obtained with the PubChem dictionary, identifying
33 % of all entries, followed by the ChEBI and MeSH-T dictionary (both 27 %). The
combination of all results enhances the recall to 49 %, but decreases the precision
to 13 %. The precision of 13 – 59 % is low due to several recognition problems and
non-chemical synonyms. Table 4.6 gives a summarized overview on the identified
recognition problem classes and lists some examples of false positives terms.

The highest precision rates were achieved by the KEGG-D dictionary (59 %), followed
by MeSH-C (44 %). In contrast, ChEBI and PubChem produced the lowest precision of
13 % and 15 % respectively. This is because ChEBI embodies many unspecific terms like
‘groups’ or ‘inhibitors’ by virtue of its hierarchical structure. Additionally, it comprises
pharmaceutical property terms (e.g. ‘enzyme inhibitors’ or ‘adrenergic agonist’) that have
been excluded from the term class FAMILY by definition. In PubChem a lot of short
names, common English words and single characters are responsible for false positives,
these are for instance ‘Serial’, ‘and’, ‘for’, ‘at’, ‘all’, ‘mg’, ‘reach’. These terms belong to
the false positive classes 1, 3 and 8 shown in Table 4.6.

Many other names unspecificly occur in both resources. These are for instance one-
character terms (e.g. ‘D’, ‘J’) and short names or abbreviations whose meaning is
dependent on the spelling case (cf. false positives belonging to classes 7 and 8). This
means in particular that if they are written in lowercase they match common English
words, but if they are capitalized or written uppercase they represent a name of a
pharmaceutics or a valid abbreviation.

A further problem arises when chemical names are an integral part of another entity
name, like a protein, which is shown by class 6 in Table 4.6. This would lead to the
retrieval of false positive documents, while only being interested in the chemical and
not in the protein.
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• Analysis of results obtained for the single chemical entity classes:
The analysis of the recall for every single annotation class shows that terms belonging
to the TRIVIAL class could be found with the highest recall. The use of the PubChem
dictionary identified 66 %, followed by MeSH-T with 64 % and KEGG-C with 57 %.
The combination of the results by concatenation lead to a promising recall of 88 %.
Considering the recognition of FAMILY names, the ChEBI and MeSH-T dictionary
obtained the highest value (both 42 %). This result is not unexpected, because only
those two resources contain general chemical group and family terms in their hierarchy.
Sum formula were only recognized to a certain degree by the ChEBI, PubChem (both
31 %), and KEGG-C dictionary (12 %). The recognition rate of the ABB class has to
be carefully regarded, because abbreviations are often short names, sometimes only
one character long and therefore highly ambiguous. Entities belonging to class IUPAC

have been recognized with a low recall by all tested dictionaries. It shows that IUPAC

terms are either sparsely covered by the dictionaries or the simple search strategy is
not capable to identify them. The bad result for class PART is inevitable, since only full
names of chemicals lie in the interest of databases. Nevertheless, some are contained
in ChEBI denominating chemical groups. However, terms of this kind, for instance
‘diethyl’ or ‘benzoyl’, are part of chemical entity names like ‘diethyl-N-[2-fluoro-4-(prop-2-
ynylamino)benzoyl]-L-glutamate’ and increase the rate of false positive partial matches.
Therefore, strategies to avoid such problems have to be integrated into the recognition
approach.

In summary, from the obtained results it can be concluded, the overall recall of a simple
search strategy using individual uncurated dictionaries is low. The results show that only
the combination of all dictionaries leads to an acceptable recall rate for chemical named
entities belonging to the classes TRIVIAL and FAMILY.

Curation processes applied to the dictionaries are necessary to achieve a higher preci-
sion performance. Competitively good results obtained by ProMiner for gene and protein
name recognition at BioCreAtIvE 2007 lead to the assumption that the precision could be
highly enhanced through dictionary curation and more elaborate named entity recognition
techniques. This will be described in Section 4.1.2.2.
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Class PubChem ChEBI MeSH_C MeSH_T HMDB KEGG_C KEGG_D DrugBank Combined

ALL 0.15 0.13 0.44 0.34 0.21 0.30 0.59 0.33 0.13
(1206) 0.33 0.27 0.10 0.27 0.16 0.24 0.12 0.13 0.49

IUPAC 0.16 0.08 0.09 0.05 0.06 0.07 0.03 0.01 0.23
(391)

PART 0.04 0.13 0.00 0.00 0.04 0.05 0.00 0.00 0.13
(92)

SUM 0.31 0.31 0.04 0.00 0.00 0.12 0.00 0.00 0.31
(49)

TRIV 0.66 0.52 0.18 0.64 0.36 0.57 0.35 0.40 0.88
(414)

ABB 0.49 0.23 0.09 0.2 0.15 0.15 0.03 0.03 0.58
(161)

FAM 0.18 0.42 0.05 0.42 0.08 0.19 0.17 0.00 0.71
(99)

Table 4.5: Comparison of the entities recognized in the evaluation corpus with dictionaries based on the analyzed resources.
All annotation classes are considered. (The total number of the annotated entities per class are given in brackets.)
Precision (slanted) and recall are given for an exact match of an entity.
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Classification False positives

1) Common English single words ‘neutrino’, ‘baseline’, ‘murine’, ‘probe’, ‘voltage’,
‘selective’

2) Colloquial terms ‘Sweet Stuff’, ‘Green Gold’ used for ‘Cocaine’

3) Single characters ‘P’, ‘A’, ‘E’, ‘R’

4) Partial match ‘methyl’ in ‘2-methyl-1-propanol’

5) Non-chemical terms e.g. pharmacological class terms: ‘enzyme in-
hibitors’, ‘antihypertensive agent’,
proteins: ‘proteinase 3’

6) Chemical name as part of another
entity name, e.g. a protein name

‘norepinephrine’ within ‘norepinephrine trans-
porter’

7) Chemical name if searched case in-
sensitive matches common words
with another meaning

‘proven’ was identified through synonym
‘Proven’

8) Abbreviation matches common
words

‘his’ was identified through synonym ‘HIS’

9) Ambiguous abbreviations ‘CAP’ is a short form of the chemical entity ‘Chlo-
ramphenicol’ as well as an abbreviation of a dis-
ease (‘community-acquired pneumonia’), a protein,
a pathway name [Prada et al., 2006], the modi-
fied nucleotide at the 5´end of messenger RNA,
etc.

Table 4.6: Classification of false positive identified names using a simple search strategy.

4.1.2.2 Improvement of the Dictionary Quality by Curation

Before the curation process is described in detail, an overview on the dictionary generation
process is provided. The workflow is illustrated in Figure 4.3, which shows the flow from
the raw data to the raw dictionary that is processed by the curation procedure. The curated
dictionary is then included into ProMiner. The main influential parameters/settings of
the curation and recognition process are included. Furthermore, the general structure of
the Named Entity Recognition result is shown. Dictionary curation implies processing
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Figure 4.3: Workflow of the dictionary generation and processing. The single dictionary
generation steps and its use within the approximate string matching approach
ProMiner are illustrated. Finally, the general structure of the ProMiner output is
given.

steps aiming at the improvement of the dictionary quality which leads to an increase in
the NER approach performance. Thus, most of the recognition problems described in the
previous section can be solved by removing some terms or complete entries. Additionally, a
decrease in false positive findings can be achieved by defining a certain treatment for specific
synonym classes. Basically, it can be divided into two steps:

1.) Automated curation: This is an automated preprocessing of the raw dictionary sup-
porting periodic updates of the dictionary. It is divided into two steps:

– Automated expansion and deletion of synonyms or objects

– Automated classification of synonyms

The information about changed entries and classified synonyms is stored in control
files which are accessible to curators in a readable format.

2.) Manual curation: This means a manual check of the identification results after a
ProMiner run on a large text corpus like complete MEDLINE and leads to:

– Manual expansion and deletion of synonyms or objects

– Manual classification of synonyms

The automatedly generated curation control files are manually extended by this proce-
dure.
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Automated Curation Databases are regularly extended and updated and require auto-
mated curation processes to support periodical updating of the dictionaries without user
intervention. Serving this demand, ProMiner contains a curation module, which was origi-
nally developed for the gene and protein domain Hanisch [2005]. Its generic design allows to
adapt it to new domains, like chemical named entities. In the following the general concepts
of the raw dictionary preprocessing are described in more detail:

• Automated Synonym and Object Processing

– Automated synonym expansion and processing: This aims at generating and
adding spelling variants to extend the entries. The reason for this is the observa-
tion that authors use synonyms and spelling variants of chemical names in text
which are not covered by the applied terminology resources e.g. ‘SantalolA’ added
as variant of ‘Santalol A’ or‘1 Naphtol’ added for ‘1Naphtol’. Another observation
was that synonyms of pharmaceuticals provided by databases contain the exten-
sion of the producing company or the assignment to nomenclature classifications
of nonproprietary names, like the International Nonproprietary Names (INN)11

or United States Adopted Names (USAN)12. Usually they are provided in brack-
ets following the chemical name, like ‘torasemide (INN)’ or ‘torsemide (USAN)’.
However, such name extensions do not occur in scientific texts. Since ProMiner
assumes that these tokens of a synonym are a valid parts of it, they have to be
removed from synonyms, otherwise they could not be found in text. Such name
extensions were defined by automatic generated term lists from synonyms pro-
vided by the introduced databases that were subsequently manually filtered and
applied for automated synonym processing. This resulted in a term list of 1672
words.

– Automated synonym and object deletion: The utilized terminology from chem-
ical databases, the MeSH hierarchy, and the ChEBI ontology contain entries, like
proteins, which have to be excluded from the dictionary by definition. Such en-
tries (compare with Table 4.6 class 5) have been automatedly removed by looking
up key words and suffixes specifically characterizing wrong synonyms. Key
words of proteins are for instance ‘protein’, ‘receptor’ or the suffix ‘ase’, a typical
ending of an enyzme name. Proteins not possessing such term properties (e.g.
‘TNF alpha’), have been identified by ProMiner applying the human protein and
gene search within the chemical raw dictionary. Pharmacological class terms were
removed which contain keywords like ‘agonist’ or ‘blocker’. Beyond, terminology
resources contain names (cf. class 2) which are for instance colloquial language
terms. Since they lead to false positive matches, such synonyms need to be re-
moved as well. To identify these terms in the raw dictionary, curator-defined
term lists are used by the curation module. Additionally, single lowercase words
(Table 4.6 class 1) which occur in a user specified common English word list are
deleted as well. Filter checking the synonym length have been applied to delete

11http://www.who.int/medicines/services/inn/en/index.html
12http://www.ama-assn.org/ama/pub/about-ama/our-people/coalitions-consortiums/

united-states-adopted-names-council.shtml
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synonyms comprising only one or two characters or numbers and hence treating
false positives of class 3.

• Automated Classification of Synonyms

This procedure assigns terms to predefined classes whereby they are marked to be
specifically treated during the term matching procedure. These classes are:

– Case-sensitive synonyms: These target ambiguous terms whose meaning is
dependent on the case, concerning terms of classes 7 and 8 described in Table 4.6.
They have to be searched in a case-sensitive manner. The automated assignment
to class Case-sensitive synonyms is a rule-based process including two main
steps:

1. If a lowercase equivalent of a non-lowercase synonym from the raw dictionary
is found in a user defined common English word list (e.g. synonym: ‘Proven’
and list entry: ‘proven’), the synonym is added to a defined list.

2. Application of regular expressions to synonyms like [A-Z]{3-4} which matches
synonyms like ‘ADA’.

– Questional: Synonyms, especially short ones described by classes 9 and also 8,
like ‘CAP’, can have several meanings. This particular one is an abbreviation for
‘Chloramphenicol’, but could also be a name for a pathway, the description of the
modified nucleotide at the 5´end of mRNA or a headdress. Therefore, such terms
should only be accepted as match, if a further synonym of the respective entity is
identified in the same document as well. This is encoded by a further control file
used by the curation process.

– Synonyms having a specific structure: There are synonyms that obtain a specific
treatment during tokenization.

* Some synonyms consist of numbers and delimiters at which text strings are
normally split during tokenization. CAS numbers are this terms for instance,
e.g. ‘50-78-2’ which would be separated into ‘50’, ‘78’ and ‘2’. As single
numbers would match to many occurring terms in text resulting in many
false positives, they are defined to be left together.

– Standard synonyms: All other synonyms are members of this class and are
detected in a case-insensitive manner.

The generated synonym handling information is stored in curator alterable term lists for
the two non-standard synonym classes.

Manual Curation If adapting the curation process to a new domain or if databases are
massively extended by new entries, the generated domain-specific rules for automated
entry extension, deletion and synonym classification might not cover new problem cases.
Therefore, the automatedly curated dictionary is applied in a ProMiner search on a large
corpus like MEDLINE, whereas the recognition result is visualized and checked by the author
thereafter. Especially recognized synonyms occurring with a high frequency in a large corpus
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can be an indicator for problem cases. Hence, they may point to ambiguous synonyms often
used in different domains.

Only manual curation can help to uncover new problem terms which were not contained
in a small test corpus like CHEM-EVAL. It leads to a manual extension of the dictionary and
control lists corresponding to the introduced classes and an adjustment of the classification
rules. New synonyms are included into the dictionary which have been found in text, like
‘POB’ for ‘Phenoxybenzamine’ or the company code ‘SDZ WAG 994’ for ‘N-Cyclohexyl-2`-O-
methyladenosine’ The file containing Questional names, for example, was extended by 547 new
entries.

4.1.2.3 Adjusting the Approximate String Matching to the Chemical Domain

Named entities of different domains exhibit a variable structure in terms of its composition
(multiword terms) and types of special symbols used within a name. Therefore, tokeniza-
tion of the dictionary terminology as well as text can have an influence on the recognition
performance. Furthermore, as biological and chemical entities are physically related to each
other, this property is also reflected by their names. Authors use nested terms for describing
proteins or pathways e.g. protein ‘androgen receptor’ where ‘androgen’ is a chemical entity by
itself. Hence, chemical names can be integral part of other entity names, also shown by the
false positive terms of class 5 in Table 4.6. Here, the protein – mostly a receptor or an enzyme
– is described and not the chemical substance itself. If such terms would be integrated into a
succeeding term frequency analysis of a text corpus used for document retrieval for instance,
misleading results could be obtained when there is only interest in documents describing
the chemical and not the protein. Hence, these chemical terms should not be found by the
term search procedure because they are part of a different entity class.

• Modulation of the Tokenization: Many chemical named entities are composed of
several words and comprise commas, white spaces, hyphens, apostrophes and different
types of brackets. Thus, compared to terms of other domains they provide a specific
structure that has to be considered for tokenization. As the tokenization of a string
sequence depends on the types of delimiters used for separation, different settings can
influence the recognition results.

The approximate string matching tool ProMiner includes a tokenizer which transforms
text as well as the synonyms into a sequence of tokens. By default the string splitting
takes place at brackets, punctuation marks, and white spaces. For chemical entity
recognition the hyphen has been introduced additionally to test its influence on the
system’s performance.

In a tokenization variation study the curation parameters were left constant, whereas
the tokenization performed with different sets of delimiters. In the first study the
default delimiter set was used. In a second one the hyphen was added to the delimiter
set. The analysis was performed by applying the DrugBank dictionary within ProMiner.
The obtained results were evaluated on the test corpus CHEM-EVAL.

The yielded results studied in dependence of different tokenization settings did not
show a marginal difference in the recognition performance. Utilizing the hyphen
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as additional delimiter in the tokenization improved the precision only by about
1 % compared to the default tokenization settings (data not shown). This result was
obtained at the cost of a recall drop by 1 %. Preferring a high recall, tokenization
default settings were used in all following chemical named entity recognition studies.

• Consideration of Context Information:

The approximate search algorithm of ProMiner provides a possibility to reject such
partial term matches. It analyses the context of a recognized entity name and is able
to look for specific tokens (usually words) occurring nearby an entity name, often
directly succeeding it. Such context tokens change the meaning of a term are defined
as forbidden tokens by the token class Modifier. Hence, a curator-defined term list
is used by the search machinery that contains single words corresponding to tokens
generated by the tokenization process. If tokens of this class are found in or nearby a
candidate term in text, but no other similar term of the dictionary contains them, it is
not accepted as a hit.

To create such a curator-defined token list, an available Modifier list used for protein
and gene name detection from ProMiner was analyzed for its application in the chem-
ical domain. 28 terms like ‘motif’ or ‘domain’ important for proteins and genes, but
not for chemicals were manually removed. Additionally, the list was manually and
automatedly extended by further tokens modifying the meaning of a chemical entity
name, like ‘pathway’ in ‘CAP pathway’. However, most of the added tokens are words
specifying enzymes or enzyme classes. They were derived from the enzyme database
Brenda13 and comprise about 1400 head words of enzyme names, e.g. ‘oxidase’ and
‘hydrolase’. The impact of the inclusion of context information was evaluated together
with the dictionary curation which is shown in the following section.

4.1.2.4 Evaluation of the Dictionary Curation and the Approximate String Matching

For studying the impact of the curation and the adjusted approximate string matching,
single dictionaries from all studied resources were evaluated on CHEM-EVAL. They were
left uncurated or were processed by the curation pipeline and then included into ProMiner.
Figure 4.4 provides precision and recall for every single case.

It is obvious that the dictionary curation and an approximate string matching procedure
adjusted to the chemical terminology characteristics results in a considerable improvement
of the precision without a major loss in recall. Regarding precision, it could be demonstrated
that the curation process results in high quality dictionaries. The highest increase of precision
was obtained for ChEBI with 50 %, followed by DrugBank with 48 % and HMDB with 47 %.
The lowest improvement was observable for KEGG-D with 22 % and PubChem with 28 %.
In case of KEGG-D a relative high precision was already obtained with the uncurated
dictionary, whereas the precision with the raw dictionary of PubChem is low. The analysis of
the false positives revealed that terms or entries corresponding to all error classes described
in Table 4.6 were removed or successfully tackled by the curation process, except those which
belong to class 4. This means that general English words, one- and two-character terms, and

13www.brenda-enzymes.info
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Figure 4.4: Impact of the curation process on the single dictionaries evaluated on CHEM-
EVAL. Precision and recall are provided for the ProMiner search with dictionaries
either uncurated (indicated by a colored number) and curated (indicated by a
colored number + ‘c’):
1: uncurated DrugBank; 1c: curated DrugBank
2: uncurated KEGG-D; 2c: curated KEGG-D
3: uncurated MeSH-T; 3c: curated MeSH-T
4: uncurated KEGG-C; 4c: curated KEGG-C
5: uncurated HMDB; 5c: curated HMDB
6: uncurated ChEBI; 6c: curated ChEBI
7: uncurated MeSH-C; 7c: curated MeSH-C
8: uncurated PubChem; 8c: curated PubChem

colloqial names as well as objects describing non-chemical entities were removed. Terms
that have different meaning when searched case insensitive cause false positive matches
were set as case sensitive and ambiguous abbreviations were resolved. Furthermore, the
context-adapted search allowed the filtering of proteins which comprise a chemical entity as
part of their names.

The remaining false positives are caused by partial matches of synonyms in chemical
names and correspond to error class 4. An example is ‘pyran-4-one’ which was found as part
of ‘2-morpholin-4-yl-6-thianthren-1-yl-pyran-4-one’ or ‘testosterone’ found as partial match of
both ‘[1 beta-3H]testosterone’ and ‘3H-testosterone’. Such partial matches are responsible
for false positive as well as false negative NER results at the same time.

The low decrease in recall in general and even a slight improvement of 3 % for DrugBank
and MeSH-C shows that the curation procedure does not remove many valid synonyms of
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chemical entities. Thus, it does not lead to many further false negative results.
A good recognition of named entities in text is a basic step in making natural language

accessible for further information extraction methods, data analysis and information re-
trieval. However, the recognition alone is not sufficient to serve NER successive approaches.
Especially the performance of relation extraction methodologies or information retrieval
systems that enable semantic search are dependent on the mapping of different synonyms
of an entity to one representation.

The merging of the single dictionaries which results in one combined chemical name list
is described in the following sections.

4.1.2.5 Generation of a Final Chemical Dictionary

Combination of Single Curated Chemical Resource Dictionaries To support informa-
tion extraction methodologies and information retrieval approaches that allow for semantic
search, the mapping of different synonyms which belong to one chemical entity to one
representation becomes very important. It allows to collect and extract all occurrences of an
entity from a given text corpus in one step. An unresolved synonym mapping of entities that
origin from different resources becomes apparent especially in information retrieval tasks.
This is illustrated by Table 4.7 which shows differences in the number of MEDLINE articles
that were obtained for the entity ‘Aspirin’ when single resource dictionaries were used in
ProMiner. These results are compared to the article number gained with an exemplarily
manual unified list of ‘Aspirin’ synonyms generated from all resources.

As can be seen, the dictionary KEGG-D with the least number of synonyms yielded the
fewest number of articles. However, to obtain a high number of articles it is important to
include an almost complete set of synonyms that represent an entity. Since this situation is
not given with the single dictionaries, the retrieved article sets differ in dependence of the
dictionary used for the article search. As result, several names corresponding to a chemical
entity point to different identifiers, because they are derived from various data resources.
Thus, they are considered as different entities by the approach, although they represent the
same chemical entity. This leads to the problem that the analysis of the partially redundant
and non-overlapping NER results for ‘Aspirin’ which point to different resource identifiers
is made laborious. Thus, to allow that every obtained article on a certain chemical entity
is included within an information retrieval or extraction task, they have to be pooled ex
post by a good strategy. In contrast, if a synonym list was used that is a combination of
synonyms from all resources, more articles were obtained at once in comparison to all single
results. This is reflected by the last row in Table 4.7. This example and the analysis of
the raw and curated single dictionaries in Section 4.1.2.1 demonstrate, there is no single
repository which can be particularly considered as a standard resource for the generation
of a chemical name dictionary. A combination of the single dictionaries would lead to a
high recall, especially for the chemical entity classes TRIVIAL and FAMILY. Thus, merging
of corresponding dictionary entries of every chemical entity from the different resources
in advance would remove redundant synonyms and decrease the number of entries, thus
reducing the size of the final dictionary. Furthermore, the join of objects from resources that
do not provide a link to a structure with those that are related to a structure representation,
like the InChI identifier, supports term-structure normalization.

95



Chapter 4 Building a Framework for the Information Aggregation of Chemical Entities

Resource Resource identifier Number of synonyms Obtained articles
from MEDLINE

KEGG-D D00109 5 77,448
MeSH-T D001241 20 77,686
KEGG-C C01405 7 78,213
CHEBI 15365 27 78,252
HMDB HMDB01879 63 78,582
PubChem 148573 156 79,031
DrugBank DB00945 134 80,408

All combined D00109; 15365; C01405;
D001241; HMDB01879;
DB00945; 148573

233 (joined and unified) 91,164

Table 4.7: Resource identifiers, number of synonyms, and number of MEDLINE articles ob-
tained for ‘Aspirin’ either using single dictionaries from the analyzed chemical
data sources in ProMiner or a combination of its synonyms. The Resources are
ordered by the obtained number of MEDLINE articles. The last row provides the ar-
ticle number for an exemplarily manual combined synonym list used in ProMiner
which is linked with the normalized InChI identifier InChI=1/C9H8O4/c1-6(10)13-
8-5-3-2-4-7(8)9(11)12/h2-5H,1H3,(H,11,12).

Selection of the Resources to be Merged A prerequisite to the dictionary merging is to
identify the resources to be joined. Additionally, strategies had to be established to map
entities from several repositories onto each other which leads to one common dictionary for
chemical named entities. To test whether every single dictionary, especially the large one
PubChem, should to be considered for the merging process to make up the final dictionary,
two analyses were conducted.

At first the synonym overlap of the single resources with PubChem was investigated. The
results are shown in Figure 4.5. It was discovered that the synonym overlap of most single
resources, except for the resources MeSH-T and MeSH-C, with PubChem is high. The high
coverage of DrugBank and ChEBI is related to the inclusion of structures from DrugBank and
ChEBI into PubChem. In contrast, MeSH-T provides a complimentary resource to PubChem
since it contains chemical structure family denominations.

In the second study different concatenations of simple ProMiner outputs obtained with
single uncurated or curated dictionaries were conducted and evaluated on the corpus CHEM-
EVAL. Therefore, ProMiner results were successively added so that the impact of single
added dictionaries onto recall and precision could be tested. At first those single ProMiner
results of dictionaries were combined which yielded a high precision on CHEM-EVAL by
their single evaluation described in Section 4.1.2.4 (cf. Figure 4.4). Hence, the initial result
combination consists of DrugBank and KEGG-D. Step by step it was augmented with further
ProMiner outputs of remaining dictionaries. Figure 4.6 shows recall and precision for the
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Figure 4.5: The figure shows the synonym overlap between the uncurated PubChem dictio-
nary and uncurated dictionaries generated from DrugBank, HMDB, combined
KEGG, MeSH-T, MeSH-C, and ChEBI. (The figure was adapted from [Kolářik
and Klinger, 2008]).

different generated ProMiner result concatenations.
It could be shown that the addition of single ProMiner results obtained with single

dictionaries improves the recall in every step. This is true for uncurated and curated
dictionaries. Already the concatenation of the single results of DrugBank and KEGG-D
increased the recall without main loss in precision. However, every following combination
with ProMiner results of additional dictionaries decreases the precision. Especially the
largest dictionary PubChem introduces the highest decrease in precision, followed by ChEBI.
Even though PubChem contains most objects, its impact to the overall recall is only marginal
in comparison to the combination result of all other dictionaries (compare result points 15
with 16 and 15c with 16c in Figure 4.6). Furthermore, only a small number of synonyms
is related to the chemical entities in PubChem on average. It was observed that PubChem
contains wrong synonym assignments to chemical entities. The latter fact would lead to
wrong normalizations of terms and lowers the quality of a Named Entity Recognition System.
Additionally, the size of the PubChem dictionary makes it difficult to handle. This leads to the
conclusion that PubChem is not necessarily needed for the final chemical entity dictionary.
Figure 4.6 also shows that the addition of the results obtained with the dictionary from
database HMDB does not highly contribute to the recall. However, considering applications
that are operated after Named Entity Recognition, the inclusion of HMDB into the final
dictionary is valuable since this database provides additional information on chemical
entities, like Gene Ontology annotations.

According to the considerations, following resources were considered for the generation
of a combined dictionary: DrugBank, KEGG-D, KEGG-C, HMDB, ChEBI, MeSH-T and
MeSH-C. They can be assigned to three basic semantic entity classes:

• Pharmaceuticals and nutraceuticals: DrugBank, KEGG-D, and MeSH-C

• Small molecules and metabolites: KEGG-C, HMDB, ChEBI, and MeSH-C

• Chemical family classes: MeSH-T and ChEBI.
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Figure 4.6: Impact of different concatenations of ProMiner results from single uncurated and
curated dictionaries onto entity recognition. The evaluation was conducted on
the corpus CHEM-EVAL, precision and recall are provided.
10: uncurated DrugBank, KEGG-D; 10c: curated DrugBank, KEGG-D
11: uncurated 10 + MeSH-C; 11c: curated 10 + MeSH-C
12: uncurated 11 + MeSH-T; 12c: curated 11 + MeSH-T
13: uncurated 12 + KEGG-C 13c: curated 12 + KEGG-C
14: uncurated 13 + HMDB; 14c: curated 13 + HMDB
15: uncurated 14 + ChEBI; 15c: curated 14 + ChEBI
16: uncurated 15 + PubChem; 16c: curated 15 + PubChem

After choosing the resources a workflow had to be established for generating a chemical
dictionary and hence finally adapting ProMiner to the chemical domain. It is introduced in
short within the next section.

Merging Workflow Conception To obtain ProMinerChem, a ProMiner version that allows
for Named Entity Recognition of chemical entities, dictionary generation and processing
steps were combined to a workflow. The complete workflow, is drafted in Figure 4.7. It starts
with the generation of the raw dictionaries by extracting the chemical terminology from the
data repositories. This is followed by the curation of the dictionaries. Both processes were
already described in the previous Section 4.1.2.2. The last step, which depicts the merging
procedure, is used to combine selected single dictionaries. It is explained in the following
paragraphs.
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Figure 4.7: Workflow conception for the dictionary merging. The row highlighted in yellow
shows the utilized resources.

Dictionary Merging The most suitable and simple approach would be to merge all dictio-
nary entities which point to the same unique identifier commonly representing a chemical
structure that is provided by all utilized resources.

InChI and CAS identifiers, introduced in Section 1.2.2.1, are uniquely related to chemical
structure information. CAS is indirectly linked to a structure representation and InChI
is a defined string representative of a chemical structure and hence unique. In contrast,
InChIKey is not yet prevalently used in chemical data resources. In the case of SMILES
several different string variants can be generated for one chemical compound so that it is
hard to map them onto each other. Thus, InChI and CAS identifiers were considered to
serve as denominators through which entries of different databases are mappable and can
normalized by the relation to a chemical structure.

A concluding step is to analyze the coverage of both InChI and CAS identifiers in the
discussed resources. The number of entities linked to InChI and CAS identifiers and its
portion in comparison to the total entity number is provided in Table 4.8 respectively.

What can be seen is: MeSH-T and MeSH-C only refer to CAS identifiers, but to a low
amount (~34 % and ~33 %). The low CAS-coverage of MeSH-T is consequential, because it
is a hierarchy of chemical classes, mainly providing high level concepts. The entries of the
other resources are linked to both identifiers, whereas InChI is more present than CAS. The
coverage of entities linked to InChI is between ~54 % and ~99 %. The lowest fraction was
obtained for ChEBI. This could be explained by the high number of chemical class names
occurring in this ontology that cannot be linked to an InChI identifier. The addition of all
objects from the single curated dictionaries and the common analysis of the InChI and CAS
identifier number provides a general overview on the linkage of entities with these two
identifiers. A corresponding statistics is provided in Table 4.9.

It points to the fact that CAS is the most prevalent identifier and hence needs to be
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InChI CAS Entry No.

KEGG comb. 17,507 (77.64 %) 13,814 (61.26 %) 22,548
DrugBank 4,487 (94.17 %) 2,225 (46.69 %) 4,765
HMDB 2,982 (99.17 %) 2,648 (88.06 %) 3,007
ChEBI 10,717 (53.76 %) 6,069 (30.44 %) 19,935
MeSH-T — 2,936 (34.07 %) 8,617
MeSH-C — 58,675 (32.63 %) 179,831

Table 4.8: Overview on the linkage of the entities to the identifiers InChI and CAS in the
analyzed raw data sources. For KEGG the respective values of the drug and
compound subdatabases were unified.

Total object number 172,992
Objects related to CAS 82,768 (47.85 %)
Objects related to InChI 35,153 (20.32 %)
Objects related to both InChI and CAS 23,146 (13.38 %)
Objects not related to InChI and CAS 78,370 (45.30 %)

Table 4.9: Statistics on the object number of the overall dictionary (after dictionary curation)
and the linkage coverage of InChI and CAS.

considered for merging. About 27 % less objects are linked to InChI. Far less (only ~13 %)
are related to both, CAS and InChI identifiers. In contrast, a high number of entries carry
none of the two discussed identifiers, especially those from MeSH-T, MeSH-C, and ChEBI.
The only solution to merge those, is to comprise their synonyms.

The developed merging strategies used for the join of corresponding objects, its challenges
and obtained results are described within the following sections.

The analyses described in the former sections have lead the basis for the development of a
merging strategy. Three merging steps have been developed utilizing the two identifier types
InChI, CAS, and, if not available, entity synonyms. Primarily, they have been separately
implemented, analyzed, and optimized. In the following every single merging strategy is
described in detail.

CAS Merging The simplest process is the merging by CAS numbers. As the single infor-
mation levels of CAS identifiers do not encode some chemical information, only a prefect
string matching can be applied to this type of identifier. This ensures that only those objects
are joined that are related to the same chemical structure. Hence, all entries that comprise an
identical CAS identifier have been merged.

InChI Merging Available InChI strings linked to entities of the selected databases for
merging have been compared by string matching. All entries of the resources possessing an
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identical InChI have been merged, leading to a combined synonym and database reference
list.

As introduced in Section 1.2.2.1 the InChI string is segmented into layers that encode
different information on the compound’s structure, like charge, stereochemistry or certain
isomeric variants of tautomeric structures. In the case of tautomers the InChI transformation
program14, developed under the auspices of the International Union of Pure and Applied
Chemistry (IUPAC), provides different InChI generation options. There is a normalization
procedure called ‘Mobile H Perception’ when checked during the InChI creation the same
InChI identifier is generated for different tautomeric isomers. When it is not used, InChI
represents a specific tautomer by the presentation of a Fixed H-layer. According to this it
was observed, that the used resources provide different InChI identifiers for a tautomeric
compound that vary in the provided layers. An example structure represented by different

Figure 4.8: An example of varying InChI identifiers provided by different resources for the
substance ‘oxalacetic acid’ is shown. Respectively, the corresponding database
identifiers are given. The difference between the normalized InChI version and
the non-normalized InChI is depicted by the ‘Fixed-H layer’, which is marked in
red.

InChI identifiers is depicted in Figure 4.8 for the compound ‘oxalacetic acid’. For the given
example it turned out that ChEBI provides the InChI with a Fixed H-layer, whereas KEGG
and HMDB omit it. It is assumed that this is caused by differences in the use of the InChI
generation program which transforms a structure representation into an InChI string. Since
these differences in InChI occurred very often for tautomeric structures obtained from
different resources, the Fixed H-layer was removed from all available InChI identifiers by a
preprocessing step. It was performed before the InChI comparison and entry merging was
done.

Synonym Merging Entries containing no InChI or CAS identifiers can only be merged
if they contain a certain number of overlapping synonyms. Furthermore, there could be
14http://www.iupac.org/inchi/release102final.html
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Database ID Synonyms

Entry 1 D004874 MeSH-T Ergonovine Maleate, Ergotrate, Ergonovine,
Ergometrine Maleate, Ergobasin, Ergometrine,
Ergometrin, Bedford Brand of Ergonovine Maleate

Entry 2 D01163 KEGG-D Ergometrine maleate, Ergometrine, Ergonovine
maleate, C19H23N3O2.C4H4O4

Entry 3 C07543 KEGG-C Ergonovine, Ergometrine, C19H23N3O2

Entry 4 DB01253 DrugBank Ergobasine, Ergotrate, Ergometrine, Ergotrate
maleate, C19H23N3O2

Table 4.10: Entries of ‘Ergometrine’ from different resources which overlap in their synonyms
(respective synonyms are underlined). Respective structures from the given
resources are depicted in Figure 4.9. Terms marked in blue are specifically high-
lighted for the illustration of the synonym problem described in Section 4.1.2.5.

entities which are linked in one resource to an InChI and/or CAS identifier, but do not carry
any of those in another one.

The basic idea is when objects overlap in their synonyms to a certain extend, they are likely
related to the same chemical compound and hence can be joined, thus reducing redundant
information within the dictionary. An example is provided in Table 4.10. It shows entries
of ‘Ergometrine’ from the four resources MeSH, KEGG-D, KEGG-D, and DrugBank which
overlap in its synonyms.

Synonyms occurring in different dictionary entries have been identified using a specific
function of ProMiner, that automatically finds ambiguous synonyms. They were collected,
whereas the information on their occurrence in multiple objects was stored. Furthermore,
they were used to calculate the overlaps of dictionary objects in its synonyms. The fraction
of shared synonyms was taken to define a precondition, the measure M and a constraint C
that restricts the merging:

• Precondition: Objects that overlap by a certain set of ambiguous synonyms are col-
lected, grouped and ordered by the number of their synonyms. The one with most
synonyms is defined as standard entity ES to which all other entities within one group
E1 . . . En are compared to. Subsequent, the fraction of overlapping synonyms FO
between ES and En is determined. Thereby sum formulae are not expedient to be
considered for the overlap calculation, because they are not unique by nature and
hence are highly ambiguous (e.g. ‘C8H5O4’ is related to three different chemical entities
– ‘2-carboxybenzoate’, ‘3-carboxybenzoate’, and ‘4-carboxybenzoate’). Table 4.11 shows an
example group of four overlapping objects.
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Figure 4.9: Molecular structures of the resource entries provided in Table 4.10.

• Measure M :

M = FO · 100 %
SEn

(4.1)

M is calculated for every En, where SEn is the total number of synonyms of En. It
presents which fraction of overlapping synonyms FO between ES and En in relation
to the total number of synonyms SEn in En.

• Constraint A (C): The measure M is compared to a user defined threshold T . Merging
of two objects ES and En is allowed, if M ≥ T . This results in the merged object
Mi = ES

⋃
En.

If constraint C is not fulfilled, entities are not allowed to be merged.

The example provided in Table 4.11 contains the calculated constraint measuresM that are
compared to a defined threshold for T as well as the merging decision. During the procedure
the merging decision information on each entity pair En and ES is stored. For all En that
overlap with ES and fulfill the constraints, merging is done resulting in one new merged
entity Mi. After the constraint testing and merging of all entries, the original objects En and
ES that were joined by the procedure were replaced by Mi and subsequently removed from
the input object list.

Merging by synonyms is an iterative process, because a join of entries could lead to the
fact that other entities fulfill the merging constraints in a subsequent iteration step. Hence,
object merging has to be repeated until the resulting object number does not change between
two succeeding iteration steps. This means that no new merging has been taken place in the
last step.

The threshold value T that defines the merging constraint has been determined by experi-
mentation through value variation. Selection criteria were the number of remaining objects
and ambiguous synonyms as well as manual inspection of the merging results. Its analysis
built the basis for the merging constraint threshold value selection.
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Entity Total No. of
object syn-
onyms

FO M Merge decision for ES and
En

ES (ES=̂E1 of
Table 4.10)

8

E2 3 3 100 % yes
E3 2 2 100 % yes
E4 4 2 50 % yes

Table 4.11: Example of one sorted group of objects overlapping in the synonyms. The entries
of Table 4.10 were taken as an example case. The object ES contains the highest
number of synonyms. (It corresponds to entity E1 in Table 4.10.) The respective
overlap in the synonyms FO between entries En and ES is given as well as the
calculated values that correspond to the measure MCA. The example threshold
used for constraint C is T = 30 %. The merging decision is denoted by ‘yes’ or
‘no’.

Merging Workflow Composed of the Single Merging Strategies To exploit the advan-
tages of the three single merging procedures for the generation of a joined dictionary, the
single steps were combined to a workflow, which is shown in Figure 4.10. By the fact that
only ~20 % of the objects contain InChI and ~48 % CAS identifiers, only those entries were
subjected to the corresponding InChI and/or CAS merging procedures. This is depicted
by the conditions InChI=yes/no and CAS=yes in Figure 4.10. Since InChI is the potentially
more reliable identifier, InChI merging was performed at first. Finally, all objects were
passed to the Synonym merging procedure.

Conducting the workflow on the example entities shown in Table 4.10, they would be
successively merged in the following order: since Entry 3 and Entry 4 provide the same
normalized InChI identifier (data not shown) InChI merging joins both which results in
MergeResult 1. It is followed by CAS merging which combines MergeResult 1 with Entity
1 resulting in MergeResult 2. As last step the synonym merging joins MergeResult 2 with
Entry 2 finally generating a merged entry.

Analysis of the Merging Results Before the single merging strategy and merging work-
flow results are analyzed in detail, general assumptions on the expected results are made:

• It is expected that the data sources partially overlap in the provided chemical entities.
Thus, the merging of objects from primary utilized resources leads to a reduction of
the total object number in the dictionary. If it is assumed that a chemical compound
or element is available in all considered resources, the maximal number of primary
objects contributing to a joined object should not exceed the number of data sources
used. Accordingly, one synonym should maximally occur in as many objects as data
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Figure 4.10: Workflow of the merging procedure.

sources were considered. In the present case this number is 7. Merged objects that
consist of more than this amount of initial objects point to problems in the data or
limitations in the merging procedure.

• The merging of objects should lead to a reduction of ambiguous terms.

The newly generated dictionary and the joined objects were evaluated accordingly. Fur-
thermore, it was expected that the quality of the dictionary reflects the quality of the data. As
the names for the closely related chemical compounds ‘Ergometrine’ and ‘Ergometrine maleate’
exemplarily depicted in Table 4.10 show, the terminological data provided by the resources
exhibit some limitations. It was found that not all synonyms that are made available by the
data sources are correctly assigned to chemical compounds and associated CAS and InChI
identifiers. In the allocated example wrongly assigned names are marked in blue. It reflects
that several names in three of the four given data sources are not correctly linked to the two
given structures. In consequence of this, a synonym that is found in text for ‘Ergometrine’
or ‘Ergometrine maleate’ would be related to both structures, irrespective whether the entries
were left separate or were merged. As closely related objects, such as organic acids and
corresponding salts, are not distinguished through the database suppliers by name space,
respective objects can be joined by the merging procedures. Concluding, the name and
object space in the final dictionary can only be that distinct as it is provided by the sources.

To investigate the characteristics of the three single merging steps and its results, they
were first separately analyzed. Subsequent, the results of the merging workflow, that
consecutively connects the three single steps, are presented.
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Results of the CAS Merging The CAS merging procedure reduced the object number by
16,102 objects which is a reduction by 9.31 %. Ambiguous terms were decreased by 24,294
(~52 %). Table 4.12 shows the distribution of the number of joined objects. As can be seen,

Number of resources Number of objects

1 146,671
2 6,524
3 2,231
4 956
5 384
6 96
7 10
8 3
9 3

10 1
11 5
12 4
13 2

Table 4.12: Distribution of the number of resulting objects joined from resources by CAS
merging.

a high amount of objects could not be joined by CAS merging. Which is followed by two,
three and four resources which contribute most to joined objects. However, there are also
few newly generated ones that were combined from more than 7 initial objects. They mainly
consist of objects originating only from the database HMDB. They belong to the class of
‘glycosphingolipids’ and ’ceramides’ that are not distinguished via CAS identifiers in HMDB.
However, those HMDB entries possess different InChI identifiers, but share most of its
synonyms. It shows that this database does not provide correct CAS identifiers for all its
entries. This findings suggested to study the number of InChI identifiers that were newly
combined in merged objects after CAS merging. The analysis of the results disclosed that
2,288 (~22 %) of the 10,219 newly joined objects are related to more than one InChI identifier.
As their analysis revealed, around 2/3 of these InChI identifiers display differences in the
Fixed H-layer as was illustrated in Figure 4.8.

A systematic inspection of the connection between CAS and InChI turned out to be difficult
for over 700 identified merged objects that comprise more than one InChI not differing in
the Fixed-H layer. Thus, for some merged entities an exemplary analysis of the provided
resource information was conducted manually. It revealed that the problems are manifold.
Most of them mainly differ in the provided stereochemical information. Some examples of
the latter ones are depicted in Figure 4.11.

A list of reasons for multiple InChI identifiers assigned to a newly joined object are given
by the following examples:

• Interchange of stereochemistry of chemical compounds; there is confusion with the
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Figure 4.11: Two merged example objects containing more than one InChI identifier are
shown. They were obtained as result of the CAS merging process. The InChI
identifiers and corresponding structures are numbered.

two chiral forms15 (S- and R-form) of chemical structures,

• Use of wrong chemical structures in a database entry,

• Error propagation: Wrong assignment of the same CAS number to ionized and union-
ized structures in the utilized resources because this information has already been
adopted from other sources,

• The generation of InChI was based on different computer readable structure represen-
tations of the same chemical compound, e.g. one contains stereochemical information
and another does not.

This finding documents that the utilized resources inconsistently relate InChI identifiers
to CAS numbers. There arises the question, how this can happen. Basically, the linkage
between CAS and InChI originates from the utilized resources and results from the collection
and assembly of entity information provided by the suppliers. Usually, InChI identifiers
are automatically generated from structure information represented in computer readable
form, such as mol-files. Thus, if there are more than one InChI identifiers newly combined
in merged objects, the structure information provided by the database suppliers differ in the
15http://www.cem.msu.edu/~reusch/VirtualText/sterism3.htm
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merged entries. Another point could be that some of the CAS identifiers were not correctly
assigned. To find out which type of InChI differences occur in objects that are related to more
than one InChI identifier, a randomly selected portion of 560 merged objects was manually
analyzed. The results are depicted in Table 4.13.

Type of InChI differences Fraction Merging correct?

Fixed-H layer 54 % yes
Stereochemical information 25.4 % yes
Accompanied moieties 8.4 % yes
Different structure 7.3 % no
Charge information 5.2 % yes
Isotope information 0.18 % yes

Table 4.13: Results of the InChI identifier comparison of 560 merged objects with more than
one InChI. The type of difference in the InChI identifiers and its fraction are
given. Furthermore, the correctness of the respective CAS merging was assessed
according to the object discrimination by the provided synonyms.

The results in Table 4.13 reflect that CAS merging is correct for most objects that differ
in the structure by stereochemical, charge and isotope information as well as accompanied
moieties. As these closely related chemical entities are in general not clearly distinguishable
by synonyms that are provided by the utilized resources, they could be merged. However,
7.3 % of the analzyed fraction correspond to wrongly assigned CAS numbers or InChI
identifiers. In the future a procedure should be included that compares also the compound’s
structure during CAS merging, identifies contradicting CAS assignments to objects and
hinders their merging.

Results of the InChI Merging The results of the InChI merging procedure are shown
in Table 4.14. It depicts the number of reduced entities for two cases: One represents the
resulting entity number when the Fixed H-layer of all InChI identifiers is not removed and
the second one the resulting entity number resulting from the InChI merging with InChI
preprocessing to remove the Fixed H-layer. Initially, differences in the Fixed H-layer of
assigned InChI identifiers were uncovered through the analysis of the CAS merging results.
To remove this specific difference in InChI identifiers, an InChI normalization procedure
has been integrated into the InChI merging process. However, other layers of the InChI
identifiers cannot be removed without loosing information.

Table 4.14 demonstrates that multiple objects from different resources are in general linked
to the same InChI identifier. This is illustrated by the fact that even the simple merging
without removing the Fixed H-layer already reduces the total amount of objects in the
dictionary by 5,977. Furthermore, the removal of the Fixed H-layer reduces the overall
object number by 8,247 entities and the amount of ambiguous synonyms by 11,988 terms
(~26 %). According to the results of the CAS merging procedure, it points to the fact that
different tautomeric structural InChI representations of chemicals are present in the utilized
databases.
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Before merging Simple InChI
merging (Fraction
in %)

InChI merging with remov-
ing the Fixed H-layer before
(Fraction in %)

Number of objects
in the dictionary

172,992 166,801 (96.42 %) 164,463 (95.07 %)

Number of objects
providing InChI

35,153 28,622 (81.42 %) 26,624 (75.74 %)

Table 4.14: The figure shows the total object number and the number of objects only con-
taining InChI identifiers before and after the InChI merging, when using InChI
identifiers as they are or when removing the Fixed H-layer from them.

Similarly to the CAS merging an analysis of joined objects the distribution of the number
of joined objects was generated. Table 4.15 shows the results.

Number of resources Number of objects

1 158,497
2 4,127
3 1,292
4 424
5 96
6 20
7 3
8 2
9 0

10 1
11 0
12 1

Table 4.15: Distribution of the number of resulting objects joined from objects of the utilized
resources by InChI merging when Fixed H-layers are removed.

As only a small fraction of all dictionary objects contain InChI identifiers most of them
were not joined by this procedure. The major number of joined objects consist of two, three
and four initial objects. However, striking are new ones which were combined from over 7
objects. They mainly consist of KEGG-C and KEGG-D entries. They are for instance related
to different forms of sugar utilized as pharmaceutic aid, phenol, glycol, and polyacrylic acid.

Results of the Synonym Merging It was expected that the join of objects that overlap in
their synonyms combines various terminology of chemical entities from different resources
that are not linkable by the discussed identifiers. This is a great advantage for successive
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approaches which rely on the results of Named Entity Recognition. Furthermore, it reduces
redundant data and ambiguous synonyms within the dictionary.

Starting point was the dictionary simply concatenated from the seven single curated
resource dictionaries. It implies 172,992 objects, 781,524 chemical compound names, and
46,907 ambiguous synonyms. These are about 6 % of the total number of chemical compound
names. Ambiguous synonyms that do not belong the class of chemical formulae and
respective overlapping objects were collected and grouped. Following basic results were
obtained:

• Ambiguous synonyms omitting chemical formulae: 37,978 (~81 % of the total number
of ambiguous synonyms)

• Overlapping objects: 44,551.

In a further primary study the number of ambiguous terms present in more than one
object was analyzed. This had following reason: When a synonym is unspecificly provided
for many chemical entities within the resources and contributes considerably to the synonym
overlap between objects, it would be responsible for the join of objects related to different
chemical entities. Thus, synonyms which are related to many objects were analyzed in more
detail. Table 4.16 provides the results of this study.

Objects Number of synonyms Synonym example

≤ 7 37,772 chloroethene, histidine, 2-(1-methylimidazol-4-yl)ethan-
amine, 3,3’,4’,5,7,8-Hexahydroxyflavone

> 7 164 d-glucuronic acid, gal-alpha1->4gal-beta1->1’cer, n-acetyl-
ganglioside gm1, gm 2, cer, glucosylceramide

Table 4.16: Analysis of ambiguous synonyms (without chemical formulae) which are pro-
vided by more than one object in the curated non-merged dictionary. The respec-
tive number of ambiguous synonyms residing in ≤ 7 and > 7 objects as well as
synonym examples are provided.

According to the assumption made at the beginning of Section 4.1.2.5 it was considered
that every utilized resource theoretically contributes one object that is related to one chemical
entity. Thus, ambiguous synonyms should originate from 7 objects maximally. However, the
analysis provided in Table 4.16 showed something else. There are over 160 synonyms that
reside in more than 7 objects. Some of them reside in up to 19 objects (data not shown). The
study of their characteristics revealed that they are not simply unspecific abbreviations, but
often complex names of chemical entities. Investigation of correspondingly related resources
uncovered that most of these terms reside in objects from databases HMDB. Such highly
ambiguous chemical names do not differentiate the different chemical entities. Thus, names
that were provided by more than 7 objects were not considered for synonym merging. This
finally resulted in 44,520 overlapping objects and 46,763 ambiguous synonyms in total that
were considered for synonym merging.
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Figure 4.12: Analysis of the object number n of respective objects En that overlap with ES
within one group.

In a preprocessing step overlapping objects were collected and combined to 15,467 groups
which correspond to a respective set of 15,467 objects defined as standard objects ES . In a
primary study every group was analyzed for the number of En objects which overlap with
one ES object per group respectively. Figure 4.12 shows the results. It was observed that
standard objects ES overlap with one, two or three objects En in most groups. However,
there are 69 groups that are related to ES objects which share synonyms with 10 to maximal
41 objects En. As they could lead to the join of many objects, they were studied in more
detail. When all En objects of these groups were analyzed altogether, it was observed, that
from 219 En objects 78 % have a M value of less than 20 % (M was defined in Section 4.1.2.5).
Furthermore, the analysis of available InChI and CAS identifiers for respective ES and En
of these groups showed that they belong to different chemical entities. Letting them to
be merged would join many objects which are related to separate chemical entities. Thus,
not all objects partially overlapping in their synonyms should be allowed to be merged
without restriction. The constraint C defined in Section 4.1.2.5 is needed to direct the join
of object-pairs. It indicates that the synonym overlap of En with ES with respect to the
total number of synonyms in En has to exceed a given threshold T to allow their join. To
determine an appropriate parameter value for T that leads to the best merging result, several
experiments were conducted.

For getting an overview on the M values of all overlapping object pairs ES En, the
distribution of M values was analyzed. The amount of object pairs ES En possessing the
same M values are represented in Figure 4.13.

As it shows, there are many objects En which exhibit the same overlap fraction in relation
to its total number of synonyms SEn . This is reflected by an over-representation of objects
with distinct M values at 100 %, 50 %, 33 %, 25 %, 20 %, and 16.6 %. The analysis revealed
that 27,366 En objects have a synonym overlap of less than 100 % and 10,297 objects En
overlap in 100 % of their synonyms with ES .

The challenge of the synonym merging was to find an appropriate T threshold that restricts
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Figure 4.13: Distribution of the number of object pairs ES En in relation to observed M
values.

the object merging in such a way that a preferably correct join of objects was performed. As
many objects are related to distinct prevalent M values (cf. Figure 4.13), threshold values
for T were selected according to the most striking peaks or values close to them. Hence,
following T values were chosen: 100, 16, 20, 25, 30, and 40. Most of them are from the low
range of found M values. They were selected with the aim to find a low T value that still
generates correct synonym merging results.

To get an insight into the quality of the chemical resources the distribution of M values
was studied for every single resource on its own with respect to a unique assignment of
names to chemical entities or chemical class denominations. Table 4.17 shows the number of
synonyms residing within the single curated dictionaries, the ambiguous synonym amount,
and the M values for seven ranges.

As can be seen, the MeSH-T dictionary does not provide any ambiguous synonyms. It
is followed by the MeSH-C dictionary which comprises very less ambiguous synonyms
compared to the remaining ones. In all other resources, except DrugBank, a high number of
ambiguous synonyms belong to the class of chemical formulae which were not considered
for the merging. However, there are chemical entity names or chemical class denominators
which occur in several objects. In the case of KEGG ambiguous synonyms correspond to
chemical entities that e.g. belong to the class of sugars. Here, a chemical compound can
provide either a ring structure or an open state and are represented by two objects in the
database. Other chemicals that contribute to ambiguous synonyms differ slightly in chemical
structure (e.g. stereochemical isomers) and are provided as separate objects as well. They
possess different InChI and CAS identifiers, so that InChI and CAS merging would not join
such entries. Here, often the same chemical names that do not differentiate between specific
chemical structure properties are provided by the resource. Hence, when such chemical
entities are not specificly named and the synonym overlap between them is high enough,
they are expected to be joined through synonym merging. Most ambiguous synonyms were
obtained for DrugBank and ChEBI. In DrugBank the same compound can occur in different
subsections of the database – in the approved drug part and experimental drug section.
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Resource Ambig.
chemi-
cal
formu-
lae

Ambig.
syno-
nyms

Number of ES En pair in defined M ranges

0-16 17-20 21-25 26-30 31-40 41-99 100

MeSH-T 0 0 0 0 0 0 0 0 0
MeSH-C 0 23 2 0 0 1 2 4 7
KEGG-C 1,392 28 0 0 0 0 6 8 17
HMDB 454 124 53 6 1 1 12 10 8
KEGG-D 423 139 0 0 0 0 34 93 34
DrugBank 0 315 72 10 3 2 13 65 21
ChEBI 1,665 968 170 99 48 52 152 144 397

Table 4.17: Analysis of ambiguous synonyms residing within the single curated resource
dictionaries. The number of ambiguous chemical formulae, ambiguous synonyms
without chemical formulae and the number of ES En pairs according to seven M
ranges are provided.

Hence, this leads to redundant names within the dictionary. As they provide the same
InChI and CAS identifier, they are joined by the InChI merging process, when run before
the synonym merging procedure. In ChEBI synonym overlap was often found between
objects which describe chemical classes and side groups, elemental, molecular, radical or
ionic forms of entities. Furthermore, quite frequently the same synonyms are provided
for an entity which is an organic acid, e.g. ‘L-Ascorbic acid’ and its ionic form ‘L-Ascorbate’.
In both entries ‘CHEBI:29073’ and ‘CHEBI:38290’ contain the synonym ‘L-Ascorbate’. As
already discussed at the beginning of Section 4.1.2.5 and in the CAS merging result part,
these closely related chemical compounds are not clearly differentiated by names through
the terminology resources. Concluding, such objects should be merged.

Thus, when appropriate merging parameters could be found, object join through syn-
onyms is a promising strategy to combine chemical entities from different resources. Es-
pecially in case of those objects that do not provide CAS and/or InChI identifiers. Thus,
merging with synonyms was tested for its potential to join entries on chemical entities from
different studied resources and to investigate its limitations.

To control the synonym merging of object pairs that are restricted by the C constraint,
following test was conducted: For every selected T value 10 object pairs ES En were
randomly chosen. The pairs were tested if they belong to the same chemical entity or not.
Therefore, it was manually checked whether both chemical entities are related to either the
same CAS or normalized InChI identifier. It gives an indication in how far the merging of
object pairs connected through the chosen M values is correct or not. Table 4.18 provides the
obtained results.
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T Total number
of tested pairs

ES En pairs with
the same CAS or
InChI identifiers
(fixed H-layer re-
moved)

ES En pairs with
different CAS or
InChI identifiers
(fixed H-layer re-
moved)

16 10 6 4
20 10 6 4
25 10 6 4
30 10 8 2
40 10 8 2
100 10 9 1

Table 4.18: Comparison of CAS and normalized InChI identifiers related to randomly chosen
ES En pairs at selected T values.

The outcome shows that only 60 % of the randomly selected ES En pairs at T of 16,
20, and 25 belong to the same chemical entity. This fraction is 20 % higher at T values of
30 and 40 and reaches 90 % at T values of 100. The latter finding points to a problem in
the relation between CAS/InChI and terminology of chemical entities within the studied
resources. Thus, it was expected that all objects En which share 100 % of their synonyms
with ES would have the same identifiers respectively. Furthermore, the finding leads to
the expectation that merging at T values between 16 and 25 would lead to more incorrectly
merged objects.

Thus, the simplest strategy would be to merge only those entries that provide a 100 %
synonym overlap by setting T to 100. This leads to a reduction of dictionary objects and
ambiguous synonym. Furthermore, InChI and CAS identifiers as well as database links are
concentrated in fewer newly merged object. However, 95.8 % of these En objects possess
only one, two or three synonyms; on average they contain 1.4 synonyms. Corresponding
detailed data are provided in Table 4.19.

Tsyn. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Obj. En 7596 1870 536 182 53 30 8 11 1 5 0 1 2 1 0 1

Table 4.19: Analysis of the number of synonyms (Tsyn.) of objects (Obj. En) which overlap in
100 % of its synonyms with ES .

In contrast, objects En that only partially overlap with ES , possess 6.8 synonyms on
average. This is 4.9 times more compared to the average of the synonym number of objects
En which overlap by 100 % with ES . It shows the tendency that En objects with a higher
synonym number only partially overlap with ES objects. This is due to the different amount
of synonyms provided by the resources and grades of terminology collection completeness.
Thus, a complete overlap does not apply for allES En pairs. Merging of objects only partially
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Iteration
step

T = 16 T = 20 T = 25 T = 30 T = 40 T = 100

0
obj. 172,992 172,992 172,992 172,992 172,992 172,992
a.s. 46,763 46,763 46,763 46,763 46,763 46,763

1
obj. 150,297 150,696 151,354 152,623 154,704 166,299
a.s. 21,955 20,734 19,875 19,953 21,550 39,839

2
obj. 148,577 149,149 150,000 151,617 154,138 166,283
a.s. 9,452 9,740 10,964 13,637 18,334 39,817

3
obj. 148,465 148,069 149,943 151,582 154,112 166,279
a.s. 7,656 8,694 10,390 13,353 18,240 39,812

4
obj. 148,460 149,066 149,941 stop stop 166,278
a.s. 7,469 8,625 10,366 39,812

5 stop stop stop stop

Table 4.20: Results of the synonym merging applying different T values. The number of
objects (obj.) and ambiguous synonyms (a.s.) obtained in every merging iteration
step are given for selected T thresholds. When no merging took place anymore
the process stopped. Ambiguous terms remaining after the first iteration step
are marked in green, the final object number in blue, and the number of final
ambiguous terms in bold.

overlapping in their synonyms not only decreases the number of objects and ambiguous
synonyms, but it additionally joins terminology that is semantically related to one chemical
entity. Therefore, ES En pairs which do not share synonyms by 100 % should also be consid-
ered for the synonym merging procedure.

To study the influence of the selected T values onto the join of two objects, six separate
synonym merging procedures were performed. These processes generated six differently
merged dictionaries respectively. The obtained dictionaries were analyzed with respect to
a) the object number and b) the remaining ambiguous synonyms. Since it is an iterative
process, the analysis was done after every iteration step. The intermediate and final results
related to different T threshold values are provided in Table 4.20.

It was observed that different iteration steps were performed for varying T until the
merging procedure terminated. Synonym merging that apply T = 30 or T = 40 needed
three rounds, whereas all others took four iterations until they stopped. In the overall
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procedure the first iteration round is the most important one. It generates the initial set of
merged objects with which further ones are joined in subsequent iteration rounds. When
objects are wrongly merged in this first part of the process, errors are propagated until the
end of the procedure. An indicator for the merging quality is the number of remaining
ambiguous terms that are related to the respective number of generated objects after the first
round. It was found that there is a minimum of remaining ambiguous terms at a T = 25,
although less objects were merged compared to experiments at lower T values. (Ambiguous
terms remaining after the first iteration step are indicated in green in Table 4.20.) Compared
to T = 25 only 78 ambiguous synonyms more remain at T = 30 after round one. From this
it can be inferred that these two particular merging experiments joined the objects in such a
way, that the fewest overlap in synonyms was generated after the first round. At lower T
values new merged objects were generated that overlap with additional ones after round
one. In contrast, at T = 40 and T = 100 objects were falsely not merged, leaving ambiguous
terms in the dictionary. Finally, most initial objects were joined and most ambiguous terms
were reduced when a T threshold of 16 was applied. It is clear that the less synonym
overlap fraction M is allowed as merging constraint, the more objects are merged. Thus,
the difference in the final number of objects (indicated in blue) and ambiguous synonyms
(indicated in bold) between low T threshold values and the largest one is very high.

However, the obtained results do not provide information on the correctness of the merged
objects. For getting a deeper insight into the merging results, the distribution of the number
of original entries newly combined to merged objects was studied. Therefore, the original
resource identifiers were counted for every joined object. Furthermore, the fraction of
wrongly merged objects that provide both InChI and CAS identifiers was analyzed. It was
related to the total number of objects that provide InChI and CAS identifiers for every
number of combined objects. This subset of joined objects was chosen, because its analysis
could be performed automatically. Since it was decided to join objects according to the
list given in Table 4.13, only the first InChI layer with removed accompanied moieties was
considered for the evaluation. Therewith, wrongly merged objects consisting of completely
different compounds could be found. An object was considered as wrongly merged when it
possesses more than one respectively truncated InChI identifier and two CAS identifiers.
The latter criterion was chosen because when objects of slightly different structures are
allowed to be joined, it is expected that two different CAS identifiers can be found in newly
generated objects. The distribution of the final merged objects with regard to the number of
combined initial entities (OR) and the fraction of wrongly merged objects (indicated in grey)
are provided in Table 4.21.

As can be seen, most of the final dictionary objects were not merged. They are followed
by a high number of joined objects that are a combination of two, three up to 7 single initial
objects. The fraction of wrongly merged objects is zero for objects combined from two initial
ones for all T values. This seems to be in contrast to the findings in Table 4.18. Manual
investigation of the object pairs analyzed in Table 4.18 showed that especially those that
were considered as unrelated, were found in merged objects which consist of more than
two initial objects. From OR > 2 on the fraction of wrongly merged objects increases with
every OR value. The comparison of the fraction of wrongly merged objects at respective
OR > 2 values and different T values revealed that it is low and almost equal for T ≤ 40 and
OR ≤ 6. Higher values and larger differences in the wrongly merged object fraction between
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OR Number of objects (Fraction of wrongly merged objects in %)

T = 16 T = 20 T = 25 T = 30 T = 40 T = 100

1 131,720 132,659 133,984 136,534 140,383 160,431
2 9,623 (0) 9,680 (0) 9,713 (0) 9,598 (0) 9,450 (0) 5,074 (0)
3 3,269 (0.37) 3,191 (0.32) 3,106 (0.36) 2,922 (0.28) 2,633 (0.15) 691 (0.57)
4 1,733 (0.87) 1,656 (0.97) 1,543 (1.04) 1,371 (1.03) 1,000 (1.1) 71 (5.63)
5 932 (3.77) 878 (3.77) 782 (4.36) 607 (4.64) 375 (6.13) 7 (14.29)
6 461 (11.09) 414 (9.95) 364 (11.88) 266 (10.90) 158 (11.39) 2 (50.00)
7 269 (20.97) 223 (18.55) 205 (21.67) 142 (27.46) 57 (22.81) 1 (100)
8 156 (16.13) 140 (15.11) 100 (17.00) 68 (25.00) 27 (44.43) 1 (100)
9 92 (38.46) 82 (39.51) 60 (38.33) 32 (34.38) 12 (50.00)
10 76 (46.05) 51 (43.14) 32 (40.63) 18 (50.00) 9 (77.78)
11 38 (55.26) 32 (50.00) 18 (55.56) 7 (85.71) 3 (66.67)
12 21 (66.67) 20 (65.00) 11 (72.73) 5 (80.00) 2 (50.00)
13 18 (72.22) 12 (75.00) 4 (25.00) 1 (100) 1 (100)
14 5 (60.00) 3 (100) 1 (100) 1 (100)
15 6 (100) 3 (100) 3 (66.67) 3 (100) 1 (100)
16 8 (87.50) 4 (75.00) 4 (50.00) 2 (100) 1 (100)
17 5 (100) 1 (100) 2 (100) 1 (100)
18 6 (100) 7 (100) 2 (100) 2 (100)
19 1 (100) 3 (100) 1 (100)
20 6 (83.33)
21 3 (66.67) 1 (100) 3 (100) 2 (100)
22 1 (100) 3 (100) 1 (100)
23 1 (100)
24 1 (100)
25 1 (100)
26 1 (100)
27 2 (100)
28 2 (100)
37 1 (100)
39 1 (100)
42 2 (100)
47 1 (100)
53 1 (100)
56 1 (100)
62 1 (100)

Total 148,460
(2.23)

149,066
(1.79)

149,941
(1.55)

151,582
(1.23)

154,112
(0.76)

166,278
(0.21)

Table 4.21: Distribution of the object number that were combined by the synonym merging
procedure in combination with the fraction of wrongly merged objects. The
number of objects (OR) that were included into new objects is given as well as the
number of objects with this specific property in relation to different combinations
of T values are depicted. The fraction of wrongly merged objects, which possess
more than one InChI and two CAS identifiers, is provided in % in grey. 117
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different T values emerge from OR ≥ 8. Most newly merged objects that derive from a
join of more than 7 initial dictionary objects, exceeding the number of used terminology
resources, could be found for T values lower than 100. Its number strongly increases at
T < 30 and is related to almost 100 % wronlgy merged objects. Corresponding, a high
number of different CAS identifiers were combined in these objects that point to unrelated
chemical compounds. Thus, T values that lead to a high number of wrongly joined objects
should not be considered as merging threshold.

The conducted experiments and the analysis of respective results lead to following conclu-
sion: automated object merging based on synonyms leads to a successful join of objects. The
performed studies supported the utilization of threshold T = 30. The merging process at this
T produced a low number of ambiguous terms after iteration step one and stopped already
after the third merging round. Manual investigation of object overlap pairs, provided in
Table 4.18, showed a higher object identity compared to lower T values and the same in
comparison to T = 40. Furthermore, merging at T = 30 produced a lower total fraction of
wrongly merged objects than experiments with lower T values. These observations lead to
the conclusion that T = 30 would be an appropriate merging parameter. Synonym merging
with this threshold lead to a total reduction by 21,410 objects. This is a descent by 12.38 % in
comparison to the initial object number in the curated dictionary. Additionally, ambiguous
synonyms were reduced by 33,410. A high advantage of synonym merging is the connection
of entries which do not comprise an InChI or CAS identifier with those that provide them.
Hence, 7,075 objects from MeSH-C and 1,672 objects from MeSH-T could be connected to
InChI identifiers and thus directly to structural information.

There are several challenges and limitations that are related to synonym merging. As it
is an iterative procedure the beginning of the merging shapes the whole process because
errors made in early steps are propagated. In general, the final results are more laborious
to evaluate in comparison to the two other merging strategies. Thus, only a fraction of
the merged objects could be analyzed automatically. Similarly to the other two merging
strategies, synonym merging is strongly dependent on the quality of the data that is provided
by the resource suppliers.

Results of the Merging Workflow The merging workflow combined the three single
merging substeps InChI, CAS, and synonym merging with each other. They were performed
consecutively according to the workflow shown in Figure 4.10. As synonym merging
threshold the determined value T = 30 was applied. In compliance with the single merging
steps, the distribution of the initial number of objects joined to new ones was analyzed.
Furthermore, the fraction of wrongly merged objects was analyzed in the same way as the
synonym merging results, described at page 116. The results are given in Table 4.22.

Analog to the separately studied merging approaches most objects origin from one, two,
three or four initial objects from the utilized resources. Merged objects that consist of up to 7
initial objects have a low fraction of wrongly merged objects. These values are much lower
compared to the single synonym merging results shown in Table 4.21. It demonstrates that
the combination of the three single merging procedures yields more correct merging results
than the synonym merging alone. Nevertheless, there are 116 objects that consist of more
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OR Number of objects (Fraction of
wrongly merged objects in %)

1 132,253
2 9,871 (0)
3 3,444 (0.03)
4 1,679 (0.18)
5 824 (0.97)
6 348 (3.74)
7 148 (10.14)
8 57 (8.77)
9 29 (20.69)
10 21 (19.05)
11 14 (14.29)
12 8 (12.50)
13 7 (57.14)
14 5 (0)
22 1 (100)
23 1 (100)
26 1 (100)

Total 148,711 (0.41)

Table 4.22: Distribution of merged objects generated from initial objects of the utilized re-
sources joined through the processes InChI merging, CAS merging, and synonym
merging combined in the workflow. The synonym merging threshold was T = 30.
The fraction of wrongly merged objects, which possess more than one InChI and
two CAS identifiers, is provided in % in grey.

than 7 initial objects. This are 26 less compared to the synonym merging alone at T = 30
and over 100 more in comparison to InChI or CAS merging. Its analysis revealed that 7 % of
them consist of objects originating from database HMDB. These objects are related to the
same CAS identifiers, but different InChI identifiers respectively. Manual investigation of
the other 93 % of the objects showed that most of the combined chemical entities are indeed
related. For instance about 96 % of the final merged object that consists of 26 initial ones is
related to sugars with 6 carbon atoms. Most of them differ only in charge, stereochemistry,
open and closed state in case of sugars or accompanied moieties.

Concluding, the obtained final object number and remaining ambiguous terms were
compared between the single merging strategies and the workflow. The intermediate and
final results of the complete merging workflow are provided in Table 4.23. The results of the
independent single merging processes InChI, CAS and synonym merging are given as well.
They are denoted as ‘Single Step’ in Table 4.23.

As the results show, the overall object number was reduced in every step of the merging
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Object number Number of ambiguous terms

Single Step Workflow Single Step Workflow

Curated
dictionary

172,992 (100 %) 172,992 (100 %) 46,763 (100 %) 46,763 (100 %)

InChI merging 164,463 (95.07 %) 164,463 (95.07 %) 34,775 (74.36 %) 34,775 (74.36 %)

CAS merging 156,890 (90.69 %) 22,469 (48.05 %)

Synonym
merging

151,582 (87.62 %) 13,353 (28.56 %)

InChI + CAS
merging

154,340 (89.23 %) 18,876 (40.37 %)

InChI + CAS +
Synonym
merging

148,711 (85.96 %) 10,073 (21.54 %)

Table 4.23: Results of the merging workflow. The number of dictionary objects is provided
for the initial concatenated curated dictionary as well as the number of remaining
dictionary objects generated by every merging step. The results of every inde-
pendent merging subprocedure and of single steps of the workflow are listed
(indicated in blue). (For synonym merging the threshold T = 30 was applied.)
Furthermore, the number of ambiguous terms is provided respectively. The frac-
tion of objects and ambiguous synonyms compared to the non-merged dictionary
is provided in %.

workflow. Since a low object fraction (~20 %) provides an InChI identifier, only a minor
amount of objects could be joined. It lead to a reduction of objects by ~5 % and a decrease in
ambiguous synonyms by ~25 %. Since InChI identifiers contain structural information and
is the most reliable identifier the workflow has been started with InChI merging. As next
step merging was performed through the use of CAS identifiers. It obtained a further object
reduction by ~6 % and ambiguous synonyms by further ~34 %. As last step the synonym
merging was conducted. It lead to an additional object decrease by factor ~3. Compared
to the initial values, the complete merging workflow reduced the overall object number by
24,281 (i.e. 14 %). Only the synonym merging performed as single process could decrease the
number of redundant chemical entities in the dictionary in that range alone. Although the
difference between the amount of final objects and the object of the unmerged dictionary is
relatively low, the overall number of ambiguous synonyms was decreased by a high fraction
of ~79 %. This reflects the good performance of the whole merging workflow. The analysis of
ambiguous terms that remain after the whole merging procedure revealed that over half of
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them (56.62 %) belong to the class of chemical formulae. Objects that are linked to the other
fraction either do not share InChI or CAS identifiers with other objects, or their synonym
overlap with others is too low so that they were not merged. Therefore, the synonym overlap
was again analyzed after merging workflow completion. It was found that for a fraction of
these objects the chosen synonym merging threshold T = 30 was too high. This concerns
38 objects which possess M values between 16 and 29.99. They could be joined by adding
a further synonym merging step with a lower T threshold. The other 132 objects which
have M values lower than 16 give rise to the fact that their names were wrongly assigned to
respective chemical entities by the utilized resources.

In summary, the analysis of the merged objects revealed that object merging by succes-
sively applying the three different merging procedures provides a better result than only
performing one of them in terms of object number, the number of ambiguous synonyms and
correctness of the merging result.

4.1.3 Results of the Chemical Named Entity Recognition

To assess the performance of ProMinerChem, the ProMiner version adapted to the chemical
domain, it was evaluated on the annotated corpus CHEM-EVAL. Two versions ProMinerChem
were generated: ProMinerChem2008 comprises the curated and merged dictionary of the
terminology from following 2008 resource versions: HMDB, DrugBank, ChEBI, KEGG-D,
KEGG-C, MeSH-T, and MeSH-C. This setting was chosen to be able to compare the outcome
with the data shown in Section 4.1.2.1 and that were published in [Kolářik et al., 2008]. The
second one ProMinerChem2009 incorporates the curated merged dictionary from respective
chemical data resources version 2009. Their results were compared with the concatenated
ProMiner output obtained on CHEM-EVAL with all uncurated raw dictionaries (2008 version)
or by omitting the data source PubChem.

Table 4.24 depicts precision, recall and F1 measure obtained on CHEM-EVAL, whereas two
values are given for every measure. The first values were yielded including all chemical
name classes that were annotated on CHEM-EVAL, i.e. TRIVIAL, IUPAC, PART, FAMILY, SUM,
and ABB. Results shown in brackets were get by leaving out the class PART in the evaluation.
These results are presented, because chemical name parts corresponding to class PART, like
‘3-’ are usually not provided by chemical entity databases and will thus not be covered by
the dictionary. Only ChEBI contains chemical side group entities which correspond to this
class. However, since related names are responsible for false positive partial matchings,
these entries were removed by the curation procedure. The resource dictionaries used in
the second column correspond to those applied in the generation of ProMinerChem2008 and
ProMinerChem2009. Thus its results were set as standard with which the results of the curated
and merged dictionaries were finally compared with. Table 4.24 shows that the curation
and merging of the dictionaries lead to a high increase in precision by 55 % and a high
improvement of the F1 measure by 29 % compared to the concatenated result of the raw
dictionaries. It demonstrates the success of the performed curation procedure. Nevertheless,
the recall was decreased by the curation by 7 %. When entities of class PART were omitted,
similar results (shown in brackets) were obtained. However, the recall is only 6 % lower
compared to the raw dictionaries. Considering only the comparison of ProMinerChem2008
and ProMinerChem2009, it can be observed that there is no difference in all evaluation results
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Concatenated
ProMiner
results of raw
dictionaries
including Pub-
Chem (from
Table 4.5)

Concatenated
ProMiner
results of
raw dictiona-
ries omitting
PubChem

ProMinerChem2008 ProMinerChem2009

Precision 0.13 (0.12) 0.15 (0.15) 0.70 (0.69) 0.70 (0.69)
Recall 0.49 (0.50) 0.47 (0.50) 0.40 (0.44) 0.40 (0.44)
F1 measure 0.21 (0.19) 0.22 (0.23) 0.51 (0.54) 0.51 (0.54)

Table 4.24: Evaluation of the concatenated ProMiner results obtained with all uncurated raw
dictionaries or by leaving out PubChem, ProMinerChem2008 and ProMinerChem2009
on CHEM-EVAL. The result values in brackets correspond to the evaluation that
leaves out terms of the chemical annotation class PART.

between the two versions. It leads to the conclusion that only entries were added to the
resource versions 2009 which are not relevant for the evaluation of ProMinerChem on the
corpus CHEM-EVAL.

For identifying the strength and weakness of ProMinerChem2009 according to the six sin-
gle annotation classes TRIVIAL, IUPAC, PART, FAMILY, SUM, and ABB the recall has been
studied for every class separately. Figure 4.14 provides the number of class entities that
were manually annotated on CHEM-EVAL. Furthermore, it displays the number of entities
recognized by the ProMiner incorporating the uncurated dictionary and ProMinerChem2009.
Although the dictionary-based approach performs moderate in the recognition of entities
from all classes, it works well in the case of entities that belong to the entity class TRIVIAL.
ProMinerChem recognizes such entities with a recall of 79 % on CHEM-EVAL. On the con-
trary, the graphic depicts that ProMinerChem has problems with the recognition of the other
classes, especially with names corresponding to the classes IUPAC, ABB, and SUM. The low
performance according to class ABB and SUM partially results from the removal of one- and
two-letter names by the curation procedure, because they lead to many unspecific matches.
Furthermore, 6 abbreviations were filtered through disambiguation after the recognition,
because they are highly ambiguous and should only be found when a further synonym
occurs within the abstract. The remaining not recognized named entities were not covered
by the dictionary.

Comparison of the ProMinerChem Performance with Available Results of Other chem-
NER Approaches To assess the performance of ProMinerChem it was compared to the
output of the approach OSCAR3 [Corbett and Murray-Rust, 2006], the only freely available
software for the recognition of chemical named entities, and the IUPAC-tagger [Klinger et al.,
2008] developed complementary to ProMiner in-house by R. Klinger. Hence, both could
directly be evaluated on the corpus CHEM-EVAL. OSCAR3 finds names of entities which
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Figure 4.14: Evaluation of the recall according to defined chemical entity annotation classes
TRIVIAL, IUPAC, PART, FAMILY, SUM, and ABB. The number of manually
annotated entities on CHEM-EVAL is compared with the recognized entities
applying ProMiner either with the raw dictionaries or ProMinerChem.

correspond to six entity classes. For evaluation only entities of the class CM, that marks up
recognized chemical entities, were utilized. Furthermore, Hettne et al. [2009] used the corpus
CHEM-EVAL for testing and evaluating Peregrine, a dictionary-based approach, which was
adapted to the chemical domain as well. The best result obtained by Peregrine with regard
to a comparable dictionary composition was included in the approach comparison. Two
results are given that are related to the curation of the dictionary and the disambiguation as
postprocessing step of recognized named entities. Table 4.25 depicts precision, recall and
F1 measure of all evaluable approaches and the best obtained ProMinerChem results on the
corpus CHEM-EVAL. The annotation class PART was not considered in the evaluation.

ProMinerChem Peregrine OSCAR3 IUPAC-tagger

Curated Disambiguated

Precision 0.69 0.55 0.67 0.53 0.71
Recall 0.44 0.46 0.40 0.75 0.35
F1 measure 0.54 0.50 0.50 0.62 0.47

Table 4.25: Evaluation of ProMinerChem comprising the curated and merged chemical dic-
tionary of resource versions from 2009, Peregrine with a curated or curated and
disambiguated dictionary omitting PubChem, OSCAR3 and the IUPAC-tagger on
the corpus CHEM-EVAL not using annotation class PART for the evaluation.
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Comparing firstly the two dictionary-based approaches ProMinerChem and Peregrine
separately from the other two, it is obvious that ProMinerChem yielded a higher precision and
F1 measure than Peregrine. Compared to Peregrine using a curated dictionary, ProMinerChem
obtained a 14 % higher precision and a 4 % higher F1 measure. In contrast, the recall achieved
by ProMinerChem was 2 % lower. It is remarking, that although Peregrine includes chemical
terminology of two more resources, i.e. UMLS16 and ChemIDplus17, it could not obtain
a higher recall compared to the concatenated results of the raw dictionaries (cf. second
column in Table 4.24 for comparison). The approach ProMinerChem corresponds best to
Peregrine that applies additionally a disambiguation of the recognized entities. In this case,
the precision obtained by ProMinerChem is only 2 % better. However, ProMinerChem provides
a 4 % higher recall and a 4 % better F1 measure than Peregrine. It leads to the conclusion that
ProMinerChem includes a better disambiguation strategy than Peregrine. Summarizing the
results of both dictionary approaches, they show a similar achievable recall and precision.

In contrast, OSCAR3 has a 16 % lower precision, but the highest recall compared to all other
approaches. It shows, that an approach which is not only restricted to a given terminology
resource can find a high amount of chemical named entities in text. However, it is on the
cost of a much higher number of false positive names recognized and classified as chemical
term. Their investigation revealed that OSCAR3 found entities which are no chemical
entities at all, like ‘vitro’, ‘beta-cell’ or ‘Aspergillus flavus’. The other machine learning-based
approach IUPAC-tagger provides a 2 % better precision than ProMinerChem, but a lower
recall than the two dictionary-based approaches and OSCAR3. As Figure 4.15 on page 125
shows, both the IUPAC-tagger and OSCAR3 are superior in recognizing entities of the class
IUPAC. It displays the recall of entities recognized by ProMinerChem2009, OSCAR3, and the
IUPAC-tagger according to the defined annotation classes. The graph shows that in general
dictionary-based approaches provide its best results for entities of class TRIVIAL. In contrast
to Peregrine, ProMinerChem2009 additionally finds a high number of terms which belong to
the FAMILY class.

Complementary, the IUPAC-tagger obtains high numbers of IUPAC-names and entities of
class PART. A high recall was found for entities from all classes that were recognized with
OSCAR3. However, the drawback of the two mainly machine learning-based methods is
that they cannot normalize chemical entities in a straight forward way. Thus they cannot
directly map synonyms of one chemical entity to a representative identifier or a chemical
structure. Since normalization is of great importance for applications that are built on Named
Entity Recognition results, such as information retrieval or relation extraction, it has to be
conducted as a separate step. However, until now there is no procedure freely available
which can conduct this post-processing in an appropriate way. Klinger et al. [2008] reviewed
existing approaches for the transformation of chemical names to structures. They tested
OPSIN18 which is included in the OSCAR3 package and the only available term to structure
transformation program for academic use. They came to the conclusion that only 16.24 %
of chemical named entities recognized with the IUPAC-tagger and 30 % of 100,000 sampled
IUPAC-names from PubChem could be transformed into structures. In contrast, the mapping

16http://www.nlm.nih.gov/research/umls/
17http://www.nlm.nih.gov/pubs/factsheets/chemidplusfs.html
18http://oscar3-chem.sourceforge.net
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Figure 4.15: Recall of the recognized entities on CHEM-EVAL according to defined chemical
entity annotation classes TRIVIAL, IUPAC, PART, FAMILY, SUM, and ABB. The
recall is given for ProMinerChem, Peregrine, OSCAR3, and the IUPAC-tagger
respectively.

of names is easy realizable with dictionary-based methods when data resources provide
a maximal number of synonyms that is combined with structural information. Hence,
dictionary-based approaches have a strong advantage in this concern.

4.1.4 Application of Recognized Chemical Named Entities for Information
Retrieval

For demonstrating the benefit of the Named Entity Recognition of chemical compounds in an
application, ProMinerChem was operated on complete MEDLINE. Subsequently, the identified
chemical entities in MEDLINE articles have been added to a text index generated from
complete MEDLINE by Lucene. This index has been included into SCAIView for visualizing
the recognized entities within the documents. It supports text search and document retrieval
as well as knowledge discovery. Thus, the query term entered in the search field of SCAIView
defines a specified subcorpus for which the frequency of entities of a specified entity class is
calculated and compared to its frequency in whole MEDLINE. From this the relative entropy
introduced in Section 3.3 is calculated and provides a ranking of the entities, starting with
those that are at most distinctive for the selected subcorpus compared to complete MEDLINE.

The integration of hierarchical entity classification systems into approaches that enable
text search provide a good opportunity for structuring text. Thus, text retrieval at different
levels of granularity is supported. Classifications to which chemical compounds, elements
and pharmaceuticals are assigned to by functional or structural properties are for instance
the pharmacological drug classification system ATC, the ontology ChEBI and the MeSH-T
hierarchy. As the resources DrugBank and KEGG relate their chemical entities to ATC,
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it has been included into SCAIView. Figure 4.16 on page 127 shows the ATC hierarchy
and the result of the performed text search. Here, only chemical entities were considered
for the query which belong to the branch of ‘A Alimentary Tract and Metabolism’. As they
are potentially involved in the development or in the treatment of metabolic diseases they
provide a more focused text search than using the complete set of chemical entities.

The top 18 highest ranked chemical entities of the obtained list have been chosen for
a deeper analysis. It was figured out that they are strongly associated with the disease
‘diabetes’. Therefore, retrieved articles that are related to every single chemical entity were
studied. Table 4.26 shows the selected chemical compounds and its relation to ‘diabetes’.

Chemical compound Function in relation to ‘diabetes’

Metformin Antidiabetics, inhibition of gluconeogenesis
Rosiglitazone, Piogli-
tazone

Antidiabetics, increases sensitivity of liver, muscle and lipidic
tissue for insulin

Glimepiride stimulating the release of insulin by pancreas and increases activity
of intracellular insulin receptors

Phenformin improves insulin sensitivity, withdrawn
Epinephrine hormone and neurotransmitter, inhibits insulin secretion by the

pancreas
Aspirin Antipyretikum, prevention of angiopathy and coronary heart dis-

ease which are secondary malfunctions of diabetes
Calcium Calcium homeostasis plays role in development of diabetes
Troglitazone Antidiabetic and antiinflammatory, withdrawn drug
Hydrocortisone Induces high blood sugar as side effect and can cause complica-

tions for diabetics
Acarbose inhibits enzymes needed to digest carbohydrates, prevents the

degradation of complex carbohydrates into glucose
Gliclazide, Glibencla-
mide, Tolbutamide,
Gliclazide, Chlorpro-
pamide

Antidiabetics, stimulate insulin secretion by the pancreas

Potassium Diabetes is accompanied by potassium deficiency
Vitamin E Supplement, to prevent angiopathy which is increased in diabetics

because of disturbed sugar metabolism and increased oxidative
stress

Table 4.26: Top 18 chemical compounds related to ‘diabetes’ obtained from SCAIView and
their function description.

As was found out, all chemicals highly ranked are related to diabetic conditions. At
first sight, most of them are pharmaceuticals directly used for the treatment of diabetes.
However, in the list are also the elements ‘Calcium’ and ‘Potassium’ which are related to
diabetes induction or malfunctions. The substance ‘Vitamin E’ and the drug ‘Aspirin’ are
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both utilized as supplements. Both are taken to reduce secondary conditions like oxidative
stress which is involved in kidney and liver injuries or to prevent stroke. On the other side,
‘Hydrocortisone’ rises the blood sugar level as side effect which is problematic for diabetics.

The brief example shows the advantages of the application of Named Entity Recognition
in combination with text retrieval and knowledge discovery. It allows to obtain articles on
topics of interest, a filtering and ranking of entities of a certain type which is relevant in the
given field. Furthermore, highlighted entities in the text allow to get a fast overview on its
content.

4.1.5 Summary of the Chemical Named Entity Recognition and Discussion

The recognition of chemical named entities in text addressed the basic requirement of the
information aggregation framework. In the course of conducted experiments a dictionary-
based approach ProMiner was modified for its utilization in the context of the chemical
domain. The fundamental challenge was the generation of a dictionary comprising de-
nominations of chemical entities, i.e. elements, chemical compounds and structure families.
Therefore, eight structured resources, i.e. five databases collecting physicochemical as well as
pharmaceutical properties and chemical names, the ontology ChEBI as well as the MeSH the-
saurus as well as supplementary material from MeSH have been considered as terminology
sources. To get a general overview on the resources, the number of chemical entities as well
as the coverage of chemical synonyms have been analyzed with respect to their potential to
build up a dictionary of chemical entities. Thus, primary raw dictionaries generated from
the eight single resources have been searched with ProMiner only using basic recognition
settings. The study of the found chemical entities and its comparison to the annotated
entities from the newly generated corpus CHEM-EVAL revealed a potential recall boundary
that is achievable with this approach. In addition, basic problems of chemical entity name
recognition have been identified, whereas nine error classes were defined. It shows the
impact of terminology resources and challenges with which the text mining community is
confronted with. Usually, data resources that are allowed to be used for named entity recog-
nition approaches were not specifically generated for it. Their quality is of great importance
since dictionary-based approaches rely on terminology that is provided by data resources.

For solving the recognition problems caused by false positive matches, automated dic-
tionary curation – the automated synonym and object processing as well as synonym
classification were introduced. Additionally, the modification of the approximate string
matching to the chemical domain and its influence onto the search was described. The
potential of the precision improvement has been demonstrated. The automated dictionary
curation has a high advantage in reducing efforts when the dictionary has to be updated from
time to time. It is important since resources exploited for their terminology are extended in
their entities and synonyms with the publication of a new version. The curation procedure
provides several options for increasing the performance: The removal of synonyms and
object as well as a classification of synonyms. The latter one defines the search behavior of
ProMiner for synonyms assigned to the diverse classes. In short the tokenization of text and
its influence onto the performance was discussed. The final curation setting and utilized
modified search capabilities reduced the number of false positive matchings. This resulted
in a high increase in precision by 36.38 % for the single dictionaries on average which was
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related to an acceptable low decrease in recall. It was demonstrated that false positive terms
from all error classes could be removed automatedly, except those from class 4 which are
responsible for partial term matches.

It was furthermore shown that no single data resource serves for the generation of a final
dictionary, because they comprise entities from different subdomains, like metabolomics or
pharmacology. Hence, recognition results obtained with single raw dictionaries were ana-
lyzed giving priority to seven of them for further use: DrugBank and KEGG-D representing
pharmaceuticals, HMDB, KEGG-C, the supplementary material of MeSH (MeSH-C) and
ChEBI containing metabolites, nutraceuticals, and small compounds found in living beings
as well as MeSH-T and ChEBI mainly covering structure family information. It was expected
that their combination would assure the enclosure of many chemical entities from different
subfields studied in biomedical research. As resources utilized for dictionary generation
overlap in their entities they lead to redundant entries in a simply concatenated dictionary.
Hence, they likely contain the same or complementary information in form of chemical
objects and names several times. To ensure an easy use of the NER results for information
retrieval and other successive approaches relying on textual data, it was required to map
the same chemical entities from different resources onto each other. Hence chemical entities
from considered resources had to be combined which goes along with a combination of
synonyms as well as a reduction of redundant objects within the dictionary and ambiguous
terms. Thus, it reduces the size of the final dictionary in comparison to the initial curated one.
For object merging three processes have been developed. They are based on the mapping
by InChI and CAS identifiers as well as the consideration of synonyms that are shared by
chemical entities from the utilized resources. For the first time chemical entities from the
seven utilized repositories were joined through the overlap of synonyms. The merging
was restricted through the determined threshold T whose best value was 30. To exploit the
advantages of all three merging procedures they were integrated into an overall merging
workflow. As result a dictionary with a reduced redundancy was obtained exhibiting a
decrease in the object number by 24,281 compared to the simply concatenated dictionary
that contains 172,992 entries. This resulted in a reduction of ambiguous synonyms by ~79 %.
However, the analysis of the single merging results also disclosed problems which come
along with the information provided by the resources. Although InChI was introduced
as standard for describing chemical structures by a string representation, its use for data
mapping provides several pitfalls. Repositories represent the same chemical compound
by different InChI representations. Hence, to normalize InChI representations of different
tautomeric variants provided for the one chemical compound, the Fixed H-layer has been
removed. In the case of CAS identifiers also wrong assignments to chemical entities were
found. Furthermore, not for all chemical entities terminology information is strictly used
by the considered chemical information resources. This resulted in remaining ambigu-
ous synonyms. Possibly, commercial providers of chemical information offer more correct
name-to-structure assignments, however, this type of resource is not allowed to be used for
dictionary generation and hence was not analyzed in this work.

Finally, the developed dictionary generation procedure was applied on data resource
versions of 2008 and 2009 from which two dictionary versions have been generated. They
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were separately included into ProMiner, that resulted in two versions ProMinerChem2008
and ProMinerChem2009 adjusted for the chemical domain. Their performance was evaluated
on the newly annotated text corpus CHEM-EVAL. Furthermore, it was compared with the
results obtained by concatenation the outputs achieved with the separate raw dictionaries
individually integrated into ProMiner. The best performance obtained with ProMinerChem
was additionally compared to approaches specialized in the recognition of chemical named
entities that were either available or that evaluated their approach on CHEM-EVAL. Thus,
OSCAR3, IUPAC-tagger, and results of Peregrine were analyzed. The performance compari-
son revealed that OSCAR3 is the best approach with an F1 measure of 0.62, recall of 0.75,
and precision of 0.67. It is based on a Naïve Bayes approach utilizing overlapping 4-Grams,
a lexicon and rules for the composition of single tokens to a chemical term. In terms of
F1 measure OSCAR3 is followed by ProMinerChem, which is 8 % lower. The IUPAC-tagger,
relying on the machine learning approach Conditional Random Fields, obtained the highest
precision of 0.71. The second best value was achieved by ProMinerChem which is only 2 %
lower. As turned out, the two dictionary-based approaches ProMinerChem and Peregrine
yielded similar overall results, whereas ProMinerChem obtained a better precision and thus
a higher F1 measure. Entities assigned to the class TRIVIAL were recognized very well by
both approaches. It demonstrates the applicability of ProMinerChem for this specific class of
chemical named entities.

The results of the NER approach comparison also show that it is difficult to recognize the
entire chemical name space with ProMinerChem or Peregrine. Basically, the performance of a
dictionary-based approach is dependent on the synonyms that are provided by the utilized
terminology resources. Hence, especially novel coined synonyms that were not entered into
resources cannot be detected.

For improving the overall recall of ProMinerChem in the future, a further inclusion of
publicly available chemical information resources, e.g. ChemIDplus19, which is a database
provided by the National Institutes of Health (NIH), and maybe a part of PubChem might be
profitable. Furthermore, a combination of the dictionary-based approach with a technique
potent in IUPAC-name recognition, like the IUPAC-tagger published by Klinger et al. [2008],
could additionally improve the overall recall and complement the weakness of the chemical
version of ProMiner. Taking into account only the longest match of systematic chemical
names could also reduce the partial matches of terms from error class 4. However, entities
recognized with a Machine Learning approach have to be normalized by an additional
procedure. In contrast, entity normalization, the linkage of a named entity to an unique rep-
resentation like an identifier of a database or ontology or a chemical structure representation,
is straight forward with ProMinerChem. This is enabled through the storage and linkage of
resource, InChI, and CAS identifiers in conjunction with the synonyms of the entities. The
inherent normalization is a clear advantage of ProMinerChem. On the contrary, OSCAR3 and
the IUPAC-tagger, can only recognize chemical names in text, but are not able to normalize it
concomitantly. They have to be combined with a follow up method that maps the found
chemical names to an unique representation – either an identifier or a chemical structure.
However, as was shown in Section 3.1.3.2 normalization of chemical names through its
transformation to a chemical structure is a challenging task, which is not yet completely

19http://chem.sis.nlm.nih.gov/chemidplus/
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solved.
The benefit of the chemical named entity recognition approach ProMinerChem was demon-

strated in an application scenario. Therefore, ProMinerChem was operated on complete
MEDLINE. The recognized chemical entities were used to extend a text index generated
by Lucene which builds the data basis for SCAIView. In a defined scenario for disease
‘diabetes’ the application of recognized chemical entities for knowledge discovery was shown.
Thus, the query for this disease was combined with a subset of chemical entities defined by
selection of a single class of the drug classification hierarchy ATC included in SCAIView.
On one hand side the highlighting of chemical entities besides disease terms, proteins, etc.
in text eases the sifting through large amounts of text. On the other side, the potential
of Named Entity Recognition results was demonstrated when applied in a knowledge
discovery approach which is based on scientific articles.
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4.2 Extraction of Function Annotation Information on Chemical
Compounds from Text

The identification of principles underlying the pharmacological action, information on side
effects, etc. of small molecules provide a basis for the development of new therapeutic
agents. Chemical and biological properties as well as pharmaceutical effects are expressed
and communicated by natural language in form of terms which reflect the underlying
concepts respectively. Some example terms available for aspirin are depicted for clarification
in Table 4.27. They comprise for instance information on effects onto protein targets, like the
inhibition of an enzyme, or processes which are affected by them.

Chemical compound Classification terms

Aspirin ‘Anti-Inflammatory Agents, Non-Steroidal’, ‘Anticoagulants’, ‘Cy-
clooxygenase Inhibitors’, ‘Fibrinolytic Agents’, ‘Platelet Aggregation
Inhibitors’, ‘Salicylates’
ATC Codes: A01AD05, B01AC06, N02BA01

Table 4.27: Example classification terms and ATC codes for ‘Aspirin’ provided by DrugBank.

Such concept descriptions are provided by various drug classification schemes, like
ATC or the Therapeutic Category of Drugs (TCD)20. They allow for ordering chemical
compounds according to the affected organ systems or effects on specific targets for instance.
Furthermore, they enable the establishment of relationships between classes of chemicals.
The classification of pharmacological effects requires a substantial understanding of the
concepts and their relationships used in the domain of pharmacology.

Likewise Gene Ontology terms are applied for proteins and genes, chemical entities in
databases, like DrugBank, are annotated with terms of such classification schemes. However,
the annotation of drugs in public databases is far from being complete. Nacher and Schwartz
[2008] showed in their work that not all entities of DrugBank are linked to ATC identifiers.
Furthermore, classification schemes do not contain all available drug classification concepts,
because they have been generated with certain constraints.

In fact, most of the knowledge on pharmaceutical effects is communicated through nat-
ural language text. Hence, a high amount of research results concerning drug properties,
especially the most recent findings, are available only as unstructured text in scientific
publications, patents and drug safety reports. The exploitation of this information resource
is therefore of high value. It can be achieved by extracting pharmaceutical properties of com-
pounds from textual resources for annotating chemical compounds with new information
and for extending or developing new classification schemes.

To meet this aim, approaches and workflows have been developed for extracting terms
from text that describe pharmacological, systemic, chemical or biological properties of chem-
ical compounds. Finally, they were utilized for extending the annotation of chemical entities

20http://www.genome.jp/kegg-bin/get_htext?br08301.keg
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and expanding a classification schemes with further chemical compounds.

4.2.1 Developed Methodology for the Extraction of Function Annotation
Information on Chemical Entities from Text

Terms which describe properties of chemical compounds in text often occur in phrases which
correspond to hypernymic constitutions, like NounPhrase1 is a NounPhrase0 which corre-
sponds to the example ‘Adinazolam is a benzodiazepine derivative’. Therefore, the extraction of
phrases, introduced in Section 3.2, is fundamental for gaining property information from
text which is directly related to a chemical compound. This assures the correct assignment
of property terms to their corresponding named chemical entities. The perpetuation of the
assignment is basically important, because only correct relations allows for the utilization of
property terms for annotation purposes.

Hence, the developed term extraction approach is based on work published by Hearst
[1992] and Fiszman et al. [2003b,a]. Both made use of the hypernymic proposition as
linguistic concept; Hearst [1992] for finding terms to extend machine readable dictionaries
like WordNet and the latter ones for providing a method to find and semantically interpret
these phrases in biomedical research articles.

4.2.1.1 Description of A New Method for the Extraction of Property Information on
Chemical Compounds from Text

The basic aim was to find new property terms related to chemical compounds in text and
thus new information applicable for chemical compound annotation, drug classification
extension or ontology generation. Hence, similarly to Hearst’s technique the developed
approach is independent from pre-encoded knowledge on the chemical entities. It means
that the related information type on the chemical entities was not specified. Therefore
all noun phrases associated with a chemical named entity in a phrase structure following
hypernymic phrase constitution have been extracted from text. Figure 4.17 illustrates the
complete workflow of the developed drug property term extraction approach.

Phrases representing hypernymic proposition were identified and extracted from sub-
stance-specific texts at first (cf. step (1) in Figure 4.17). This is equivalent to Fizman’s initial
step. Subsequently in step (2), all phrases were filtered to remove those not containing any
chemically relevant information. Therefore, the chemical name recognition approach devel-
oped in this work and described in Chapter 4.1 was applied. The remaining phrases were
split into its fragments and assigned to the classes hypernym and hyponym. Additionally,
the information about the conjunction of a hypernym with a certain chemical substance is
stored (cf. step (3)). In the last step (4) spelling variants of hypernym terms are removed by
a term canonicalization and mapping process.

In the following paragraphs the outlined single steps are discussed in more detail.

Step 1: Extraction of Hypernymic Phrases Biological and pharmacological descriptions
of drug effects are usually represented by nested multi-word terms of complex structure.
Such terms usually consist of base noun phrases often containing protein names that are
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Figure 4.17: Workflow of the term extraction process.

complex by themselves. Furthermore, they comprise inserted numbers, name abbrevia-
tions or adjectives written inside or outside of parentheses as can be seen in the following
examples:

a) ‘competitive beta (1)-selective adrenergic antagonist’

b) ‘angiotensin-converting enzyme (ACE) inhibitor’

c) ‘inhibitor of the cyclooxygenase pathway of arachidonic acid metabolism’.

d) ‘selective high-affinity antagonist of human substance P/neurokinin 1 (NK1) receptor’

Classical chunkers developed for base noun phrase extraction, introduced in Section 3.2
identify only a part of these complex noun phrases implying pharmacological interesting
information. Hence, they miss phrase segments which are fundamental for the meaning
of extracted drug related terms. Lets take the example term d). A base noun phrase
chunker, like Analytics (commercially provided as Skill Cartridge by Temis21), identifies
only the phrase fragment ‘selective high-affinity antagonist of human substance’ and thus loosing
information about the protein. Therefore, such incomplete terms would be of no avail for
drug annotation.

Since there was no corpus annotated with complex noun phrases available to train a
machine learning system and avoid the necessity starting from scratch, an existing noun

21www.temis-group.com

134

www.temis-group.com


4.2 Extraction of Function Annotation Information on Chemical Compounds from Text

phrase chunker was taken as a basis. Furthermore, annotation of such a training corpus
requires linguistic experts that were not at hand. For this reason the noun phrase chunker
Analytics was chosen. Table 4.28 provides examples for nouns, proper names, and noun
phrases extractable with Analytics.

The software from Temis, that includes Analytics, allows a user specific creation of Skill
Cartridges with new grammar rules which can easily be incorporated into the already
existing system. Hence, noun phrase patterns were extended with additional rules in
the new defined Skill Cartridge ExtAnalytics. Some example patterns and corresponding
complex noun phrases extracted with ExtAnalytics are shown in Table 4.28 as well.

Chunker Pattern Examples

Analytics
Noun phrase (NP) ‘selective high-affinity antagonist of human

substance’
NP ‘P/neurokinin’
Noun (N) ‘receptor’
Proper Name (PN) ‘NK1’

ExtAnalytics
NP NP Bracket PN Bracket N ‘selective high-affinity antagonist of human

substance P/neurokinin 1 ( NK1 ) receptor’

N NP Bracket PN Bracket ‘azapeptide HIV-1 protease inhibitor ( PI )’

Table 4.28: Example patterns incorporated into the noun phrase chunkers Analytics and
ExtAnalytics as well as corresponding noun phrase examples.

Similarly to the Skill Cartridge recognizing complex noun phrases, rule sets have been
manually established to generate a Skill Cartridge that identifies hypernymic propositions.

Applied Hypernymic Proposition Patterns: Eight lexico-syntactic structures applied in
the developed approach of this work were collected from [Cimiano et al., 2005, Hearst, 1992,
Rindflesch and Fiszman, 2003] and are described by following patterns:

Pattern 1: NP1 is (a | an) NP0

Pattern 2: NP1 is one of (the | a | an) NP0

Pattern 3: NP1, NP2, . . . , and NPn are NP0

Pattern 4a: NP0 such as NP1, NP2, . . . , NPn1 (and | or) NPn

Pattern 4b: such NP0 as NP1, NP2, . . . , NPn1 (and | or) NPn

Pattern 5: NP0 (including | especially | like) NP1

Pattern 6: NP0 for example NP1, NP2, . . . , NPn1 (and | or) NPn
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Pattern 7: NP1, NP2, . . . , NPn (and | or) other NP0

Pattern 8: NP1, (a | an) NP0.

Nominal modifications (introduced in Section 3.2.2.2) have not been applied in this work,
since nouns of the last proposition could not be easily assigned either to hypernym or
hyponym without semantic analysis. Given that the intention was to find new terms and
not searching for predefined ones, they were not used in the developed approach.

To allow for the comparison of the performance of both noun phrase chunkers, they
were integrated into two separate Hearst phrase chunkers; one incorporating the original
noun phrase chunker, referred to Analytics-HP chunker, and the second one contains the
extended NP chunker, named as ExtAnalytics-HP chunker.

Step 2: Phrase Filtering The obtained phrases are primarily semantically not specified,
which means that all in text occurring Hearst phrases were extracted. Since there was an
interest only in chemical information, phrases were automatedly filtered so that phrases
without drug-specific information were omitted. For this ProMinerChem, was applied to
obtain chemical substance related phrases. All phrases containing chemical entity names
covered by the Drug Name Dictionary were further processed. Thus, the approach is held
generic so that it can easily be adapted to other domains by only exchanging the named
entity recognition to focus on various entities of interest.

Step 3: Phrase Fragmentation Following the filtering step, terms describing drug prop-
erties were extracted from remaining phrases. The phrases were automatedly split and
assigned to their meaning parts, i.e. drug names (the hyponyms) – NP1, NP2, . . . , NPn and
terms describing drug properties or effects (hypernym) – NP0. Partitioning of the phrase
‘Adinazolam is a benzodiazepine derivative’ given as an example would result in: ‘Adinazolam’ –
a drug and ‘benzodiazepine derivative’ – a drug property term. The latter one – the NP0 of the
Hearst phrase – is the term of interest and that is used for further processing and analyses.

Step 4: Generating Canonical Term Forms As described in Section 3.1.3 different vari-
ants of terms representing one concept are extensively used in texts, terminologies as well as
in databases. To ascertain whether the extracted terms were novel compared to annotation
terms available in the database, it was necessary to deal with this difficulty. Examples of
occurring term variations are provided in Table 4.29 as well as derivated canonical terms.

Therefore, the available tool Lexical Variant Generator (lvg2006)22 developed by National
Library of Medicine (NLM) was integrated into the workflow to obtain canonical term
forms. The following processing steps were applied to each term: First it was tokenized
with a Genia tagger-based tokenizer and POS-tagged. Nouns and adjectives lemmatized by
the Genia tagger [Tsuruoka et al., 2005] were transformed into a canonical representative
form with the UMLS lexical tool Lexical Variant Generator. Syntactic variants of a term,
like ‘inhibitor of protein synthesis’, were automatically normalized by a developed heuristic,
resulting in ‘protein synthesis inhibitor’. Furthermore, a dictionary of synonymous expressions

22http://www.nlm.nih.gov/research/umls/meta4.html
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and synonyms not covered by lvg2006 was generated for the automated mapping to a
canonical term form. They encompass synonymous head nouns typical for the chemical and
pharmacological domain, like ‘agent’, ‘drug’ or ‘compound’. Examples for semantic equivalent
term parts that can differ in the number of words are ‘blocker’ vs. ‘blocking agent’. Terms
varying in these single words were automatically mapped to each other because they share
an equivalent meaning.

Term variation type Term variations Canonical term form

Orthographical ‘antiinflammatory agents’,
‘anti-inflammatory agent’

‘anti inflammatory agent’

Morphological ‘inhibitor’s’ ‘inhibitor’

Syntactic ‘inhibitor of protein synthesis’ ‘protein synthesis inhibitor’

Lexico-semantic ‘blocking agent’ ‘blocker’
‘antihypertensive agent’ ‘antihypertensive’

Table 4.29: Term variation types and term variation examples normalized with UMLS lexical
tool Lexical Variant Generator (lvg2006) and a developed heuristic.

4.2.1.2 Generation of Evaluation Corpora

Two corpora DRUGBANK-HP and MEDLINE-HP have been generated to assess the extraction
quality of the developed Hearst phrase chunkers. Primarily, the two following criteria were
applied for the annotation:

1.) Basically, a true positive phrase has to fit syntactically to the given Hearst patterns.

2.) Semantically, the phrase content needs to make sense in a pharmacological way. This
means it should be a part of an explicit description providing some biological, chemical
or pharmacological properties of a drug or an enumeration of drugs. It does not need
to be just a subordinate clause that has no drug property or effect term referring to a
drug.

DRUGBANK-HP encompasses phrases from free text fields of DrugBank that contain many
sentences with linguistic hypernymic propositions. They describe the mode of action and the
pharmacological effect of a substance. The text of these fields has been utilized to generate
a text corpus. Half of it was taken for manual annotation of text phrases corresponding
to Hearst patterns. This resulted in 572 selected phrases serving as DRUGBANK-HP gold
standard.

The second corpus MEDLINE-HP is based on MEDLINE abstracts. Primarily, 1089 ab-
stracts dealing with the pharmaceutical ‘Ibuprofen’ were chosen arbitrarily. From these texts
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101 Hearst phrases containing pharmacological information on ‘Ibuprofen’ were manually
extracted.

4.2.1.3 Evaluation of the Hypernymic Phrase Extraction

The analysis of the extracted phrases was done semi-automatically. Phrases not exactly
matching the examples in the standard corpus were inspected by hand and were classified
into three classes of false positives (FP) defined in Table 4.30. The remaining phrases were
considered as true positives (TP). Tables 4.30 and 4.31 show the results of the evaluation on
the DRUGBANK-HP and MEDLINE-HP corpus respectively.

Description Analytics-HP ExtAnalytics-HP Example phrases

Number of automatically ex-
tracted phrases

417 500

True positives 345 451

(1) FP partial: Phrase is too
short compared to standard

65 26 ‘clarithromycin, a macro-
lide antibiotic’

(2) FP too long: Phrase is too
long, at the beginning or at
the end

4 19 ‘availability of dopamine,
a brain chemical’

(3) FP wrong content: Phrase
matches Hearst-pattern, con-
tent makes no sense

3 4 ‘ibuprofen, a 61-year-old
woman’

False negatives 155 72

Recall 0.69 0.86
Precision 0.83 0.90
F1 measure 0.75 0.89

Table 4.30: Results of the Hearst phrase extraction with ‘Analytics-HP’ and ‘ExtAnalytics-HP’
on corpus DRUGBANK-HP (FP = false positives). The extracted example phrases
are depicted in bold, whereas the correct phrase section is underlined.

As Table 4.30 illustrates, the application of the ExtAnalytics-Hearst Phrase chunker in-
creased precision, recall, and F1 measure on DRUGBANK-HP in comparison to the Analytics-
Hearst Phrase chunker. It clearly shows, the extension of the noun phrase chunker leads
to an improvement in the identification correctness of the complete Hearst phrase. The
extraction of phrases that are too short is based on errors in the Part-of-speech tagging of
syntactic ambiguous words. In almost all of these cases words were detected as adjectives
which are in the given pharmaceutical context nouns, e.g. the word ‘antibiotic’ in ‘macrolide
antibiotic’ or ‘analgesic’ in ‘synthetic opioid analgesic’. According to the given patterns, the last
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word in a phrase has to be a noun and hence the extension of the phrase is stopped too early.
This results in ‘macrolide’ and ‘synthetic opioid’

Explanation Results

Number of manually annotated phrases 101
Total number of automatically extracted phrases 108
True Positives 79
(1) FP partial 2
(2) FP too long 18
(3) FP wrong content 9
False Negatives 2

Recall 0.73
Precision 0.97
F1 measure 0.83

Table 4.31: Evaluation of the ExtAnalytics Hearst Phrase chunker on MEDLINE-HP (for
descriptions of false positives (FP) variants cf. Table 4.30.)

Table 4.31 provides the phrase recognition results on the MEDLINE-HP corpus. Compared
to the DRUGBANK-HP corpus a higher recall, but a lower precision was achieved. The
proportion of true positives recognized in DRUGBANK-HP is similar (∼78 %). It turned out
that a lower fraction of FP partial was extracted, but a higher amount of FP too long and FP
with wrong content. It shows that the two corpora differ in their term characteristics and
content.

4.2.1.4 Results of the Function Annotation Term Extraction Procedure

In the following, terms extracted for 11 drugs, that are mentioned in the context of various
therapeutic areas, were evaluated. Table 4.32 provides the drug list. They have been
arbitrarily selected with the solely constraint that for all of them a considerable number of
MEDLINE abstracts (>4200) was retrieved. It was set to assure the analysis of an adequate
number of excerpted Hearst phrases.

For each of the 11 drugs the term extraction procedure was done separately. Table 4.32 lists
the number of obtained Hearst phrases, unique terms (all redundant terms were removed),
and unique normalized terms. It shows, that a high amount of Hearst phrases and potential
drug annotation terms could be extracted from MEDLINE abstracts. Canonicalization of
terms reduced the number by 16 % on average. The ratio between the extracted Hearst
phrases and canonicalized terms is similar for the selected drugs and lies between 1.58 and
2.08.
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Drugs Hearst phrases Number of ex-
tracted unique
terms

Number of unique
terms after canonical-
ization

Ibuprofen 597 404 329
Diclofenac 309 203 156
Atenolol 235 175 136
Mitomycin 320 223 203
Metoprolol 207 152 125
Tamoxifen 1003 635 527
Ciprofloxacin 529 363 316
Nifedipine 975 601 507
Chlorpromazine 427 320 271
Phentolamine 321 186 154
Midazolam 403 284 252

Table 4.32: Number of Hearst phrases extracted from MEDLINE, unique terms, and normal-
ized terms for 11 drugs.

4.2.1.5 Summary of the Developed Workflow for the Extraction of Function
Annotation Terms and Discussion of the Results

As could be shown in this work, Hearst phrase extraction in combination with the recognition
of chemical names is a valuable approach to find new annotation terms that are not yet
applied for chemical compounds in databases like DrugBank or drug classification schemes
like ATC.

The developed Hearst phrase extraction approach was driven to obtain a high performance.
It was achieved by an extension of patterns used for the recognition of noun phrases going
beyond basic noun phrases and its incorporation into the Hearst phrase chunker. This
resulted in a high F1 measure of 0.89 on the DrugBank test set and 0.83 on an arbitrarily
chosen test set from MEDLINE. It lead to an improvement of 14 % in F1 measure compared
to a Hearst phrase chunker that is based on patterns ready to identify basic noun phrases.

Compared to SemSpec developed by Fiszman et al. [2003b] the results obtained by the
presented approach on the DrugBank standard corpus (90 % precision and 86 % recall) and
on the MEDLINE standard corpus (97 % precision and recall 73 %) were higher, both in recall
and precision. Fiszman et al. [2003b] reported a precision of 83 % and recall of 69 %. It can be
concluded that the newly introduced system has a better recognition performance for Hearst
Phrases on MEDLINE abstracts than SemSpec. However, a direct one-to-one comparison is
difficult, because the patterns for hypernymic proposition recognition used by SemSpec was
not completely explained and thus may differ. Furthermore, the two systems were evaluated
on two different text corpora.

For 11 selected drugs the presented term extraction procedure has been applied on MED-
LINE. Many terms could be obtained from the Hearst phrases for every single drug. Through
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the canonicalization of term variations the overall term number could be reduced by 16 %
on average. This is an important aspect when dealing with textual data.
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4.3 Developed Framework for Information Aggregation and
Annotation of Chemical Compounds

Function annotation of chemical entities in databases is done by assigning concept denomina-
tions from predefined classification schemes or ontologies in general. Providing annotations
to chemical is related to the parsing of these structured resources and assigning the obtained
identifiers to chemicals. However, it only allows for incorporating well established property
information. In addition, Nacher and Schwartz [2008] illustrated that even classification
schemes, like ATC are not complete. Hence, providing chemical entities with new anno-
tations, other resources like recent publications or reports have to be read and respective
information has to be extracted. To support the process of extracting potentially new an-
notation information from text and its comparison to annotation information available in
structured resources, a new approach has been developed.

4.3.1 Description of the Workflow for Finding New Function Annotations of
Chemical Entities in Text

The complete process basically relies on a given annotation terminology which is compared
to potentially new annotation terms extracted from text, thus building on the workflow
previously described in Section 4.2.1.1. Although the conception of the process is generally
applicable, two main resources have been considered for its design in this work; the database
DrugBank and the bibliographic database MEDLINE which contains over 17 million scientific
articles. DrugBank was chosen because it provides a database field comprising function
annotations of chemical compounds as well as effect and mechanism’s descriptions in form
of complete sentence descriptions embodied in free text fields.

In the course of the developed workflow annotation terminology which is related to
chemical entities from DrugBank was extracted and compared to property terms specifically
extracted for these entities from free text fields of DrugBank and MEDLINE by the method-
ology described in Section 4.2.1.1. Figure 4.18 provides an overview on the developed
workflow.

In the following the three single steps depicted in Figure 4.18 are explained in more detail:

• Step 1: Property terms were extracted from MEDLINE titles and abstracts and canon-
icalized corresponding to the new method introduced in Section 4.2.1.4. They were
named as MEDLINE-Text Terms. Furthermore, the developed term extraction method-
ology was applied on DrugBank free text fields, whereas the canonicalized term set is
named DrugBank-Text Terms.

• Step 2: Annotation terms and ATC identifiers have been extracted from DrugBank
from respective database fields. Additionally, ATC identifiers were mapped to their
corresponding terms provided by the WHO. Finally, all terms were transformed to
canonical term forms building the term set called DrugBank-Annotation Terms.

• Step 3: MEDLINE-Text Terms and Drug-Bank-Text Terms were both compared to
DrugBank-Annotation Terms using ProMiner. Therefore, term sets extracted either
from MEDLINE or DrugBank text were separately used as a dictionary incorporated
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Figure 4.18: Developed workflow of the term extraction and comparison process. The three
process steps are enumerated and are described in more detail in Section 4.3.1.

into ProMiner. It was used to search for corresponding terms in the list of canonicalized
DrugBank-Annotation Terms. Those terms of the sets MEDLINE-Text Terms DrugBank-
Text Terms that were not found in the DrugBank-Annotation Term list were considered
as potentially new annotation terms. They have been manually evaluated to analyze
their applicability as new drug classification/annotation terms. A constraint that
needed to be fulfilled for defining a term as novel drug classification/annotation is
the following: A term should contain relevant pharmacological, biological effect or
chemical property information on a drug.

In the previous Section 4.2.1.4 it was shown that a high number of terms were extracted
from MEDLINE for selected drugs, for which an at least moderate number of articles have
been published. It demonstrates that text is a valuable concept term source. However, it does
not give evidence that these terms are relevant for different scenarios i.e. chemical entity
annotation or other applications, like classification system expansion. Hence, experiments
had to be conducted to test the information quality and applicability of the extracted and
canonicalized terms. At first place the annotation of chemical entities in DrugBank has been
studied.

In Section 4.2.1.4 it was shown that the number of the extracted terms from MEDLINE

was quite high and the average number of annotation terms in DrugBank is four to five.
For finding out whether the remaining terms comprise new information, they had to be
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Figure 4.19: Screenshot of a part of a DrugBank entry for the drug ‘Ibuprofen’. The extracted
database fields ‘Drug Category’, ‘ATC Codes’, ‘Indication’, ‘Pharmacology’, ‘Mecha-
nism of Action’ and ‘Toxicity’ are depicted.

manually inspected. Hence, the term comparison task was exemplarily accomplished only
for the 11 selected drugs from DrugBank already introduced in Section 4.2.1.4.

In the following the results at separate steps of the workflow described in Section 4.3.1 are
explained. At first the three term sets generated during steps 1 and 2 and their characteristics
are explained in more detail.

• DrugBank-Annotation Terms: Chemical entities provided by databases like Drug-
Bank are related to pharmacological annotations in form of terms and/or identifiers of
classification systems. DrugBank contains identifiers of the ATC classification scheme
and additional non-systematic pharmacological class terms. An example section from
DrugBank is shown in Figure 4.19. The analysis of the available annotations is depicted
in Figure 4.20 on page 145. It provides the distribution of the number of annotations
per drug. As can be seen, a large quantity of drugs are annotated with four or five
drug category terms.

1073 annotation terms and ATC identifiers were extracted from the database fields
‘Drug Category’ and ‘ATC Codes’ of all approved drugs of DrugBank. Identifiers of
the ATC classification system used for chemical entity annotation, were automatedly
mapped to their corresponding terms provided by the WHO. To be sure to work with
representative invariant terms all annotation terms were canonicalized by the process
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Figure 4.20: Distribution of the number of annotation identifiers or terms assigned to drugs
in DrugBank.

developed for canonicalizing terms from text. This procedure reduced the overall
number of annotation terms to 966, which is a decrease by about 10 %. It was detected
that different term variants of one drug category were assigned to several drugs in
DrugBank. They are of morphological, orthographical and lexico-syntactic type. It
accounts that even terms used for annotation vary in databases.

• MEDLINE-Text Terms: The term set obtained from MEDLINE corresponds to the term
extraction results described in Section 4.2.1.4.

• DrugBank-Text Terms: To assess the information content of terms used in free text
fields of DrugBank, the complete free text of following fields has been extracted from
DrugBank: ‘Indication’, ‘Pharmacology’, ‘Mechanism of Action’ and ‘Toxicity’. This corpus
was subjected to the term extraction pipeline, whereas the assignment to the database
entities was stored. A total of 1164 Hearst phrases containing drug names were
automatically obtained from the entire DrugBank text corpus. They comprise 860
terms, which were reduced to 829 after canonicalization. This shows that, even in
database text, different term variants are used for the description of the same concept.
As result a second drug specific term set obtained from DrugBank text was generated.
It turned out that for most approved drugs one or two terms were extracted from
DrugBank text.

4.3.1.1 Results of the Term Comparison Procedure

The term comparison was performed with three experimental settings.
(1) In a first experiment the overlap between the DrugBank-Annotation Term set, the

MEDLINE-Text Term set and DrugBank-Text Term set has been studied. Therefore, DrugBank-
Annotation Terms and terms derived from the DrugBank and MEDLINE text corpora were
compared. Three classes were defined to which the DrugBank-Annotation Terms can be as-
signed to: ‘Terms only used as DrugBank-Annotation Terms’, ‘DrugBank-Annotation Terms
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also found in DrugBank text’, and ‘DrugBank-Annotation Terms also found in MEDLINE’.
(2) In a second experiment the overlap between the DrugBank-Text Term set, the Drug-

Bank-Annotation Term set, and the MEDLINE-Text Term set has been studied in a similar
manner as above. Again three classes were defined like above. The analysis of the result
shows that 84 % (694) of the total number of DrugBank-Text Terms have not been used as
drug annotation terms so far within DrugBank. They contain pharmaceutically relevant
information on drugs. Most of the terms give more detailed information than the provided
annotation terms, e.g. about the protein that the drug influences or the mechanism of the
drug effect, e.g. ‘irreversible proton pump inhibitor’. Other new terms describe the natural
resource of the drug or even a new reaction mechanism of the drug onto a protein target
(‘histamine h2 agonist’).
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Figure 4.21: Analysis of drug property-describing terms from DrugBank-Annotation Terms
and DrugBank-Text Terms compared to MEDLINE Text Terms. The left side
shows the comparison of DrugBank-Annotation Terms with the other two term
sets. The right side depicts the analysis of DrugBank-Text Terms compared the
remaining two.

The diagram of Figure 4.22 shows the detailed result of both experiments for the defined
11 drugs, whereas the terms are represented by the three described classes. The left side
presents the first experiment, whereas the right side the second one. This experiment shows
that even database text contains terms that have the potential to be applied as annotation
terms. Furthermore, they can add additional information to a terminology or classification
system. Figure 4.22 also demonstrates that most of the DrugBank-Text Terms are either
available in MEDLINE or in the DrugBank-Annotation Term set.

(3) In a third experiment MEDLINE-Text Terms have been compared with DrugBank
Annotation Terms for each of the 11 drugs separately. The results depicted in Figure 4.22
illustrate that only a limited number of them overlap. Only 1.3-6.4 % are already in use in
the DrugBank annotation field. The remaining terms were checked manually to ascertain
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Figure 4.22: Terms extracted from MEDLINE and their assignment to three classes (a more
detailed description is provided in the text):
Class 1: Terms available in DrugBank Annotation Terms and DrugBank text,
Class 2: New drug annotation terms and
Class 3: Terms not usable for drug annotation.

its novelty. It turned out, a high portion – 29-53 % – of terms extracted from MEDLINE

abstracts could serve as annotation terms and have not been used in DrugBank so far. This
means that they would add new information to the database if they were used for drug
annotation. A deeper analysis of the valid new terms shows that they can be assigned
to various drug property classes. A list of classification types and term examples from
DrugBank and MEDLINE abstracts is given in Table 4.33. Analyzed terms that were not
considered as new, either originate from false positive Hearst phrases with wrong content,
from too long phrases that incorporate a term already existing in the DrugBank Annotation
Terminology, or they contain non-relevant additional information about a drug.

It became apparent, the ATC drug classification schema as well as the internal annotation
types of DrugBank is restricted to some drug property classes, like pharmacological property
or chemical structure classes. As can be seen in Table 4.33, some of the new terms found
in MEDLINE can be assigned to new annotation categories not contained in the DrugBank
annotation terminology. With that not only additional drug property terms were found in
text, but also new classes of information. Furthermore, new pharmacological concepts not
contained in ATC have been extracted from the MEDLINE text corpus. Some examples are
listed in Table 4.34.

These new terms usually contain descriptions of a compound’s effects on a certain protein
like the inhibition of an enzyme or agonistic action on a receptor. With regard to the term
content, they correspond to concepts of the ATC scheme at level 4. It demonstrates that the
drug classification by this system is limited and not comprehensive which constricts its use
for diverse research applications. Hence, the extracted drug classification concepts could be
used to augment the ATC scheme.
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Classification Terms in DrugBank New terms from MEDLINE

Pharmacological property ‘antipyretic agent’ ‘radiosensitizer’

Chemical structure class ‘methylhydrazine’ ‘flurbiprofen derivative’

Effect on biological processes ‘antiperistaltic’ ‘nf kappaB activation inhibitor’

Effect on protein ‘neuraminidase inhibitor’ ‘cytochrome P-450-monooxy-
genase inhibitor’

Chemical property — ‘racemic drug’

General molecular effect — ‘free radical scavenger’

Biotransformation — ‘short half life drug’

Biological resource — ‘rheum palmatun anthraquinone
component’

Combination — ‘aspirin like anti inflammatory
drug’

Table 4.33: Drug classification categories with example terms from DrugBank and MEDLINE.

4.3.2 Application of the Information Aggregation Framework: Drug
Classification Schema Extension

Classification systems of medical compounds are generated on the basis of efficacy studies,
mechanism of action, clinical outcomes and market strategies and are maintained by phar-
macopeias of different countries. Usually they assign drugs to classes of several hierarchical
levels reflecting its pharmaceutical, therapeutic or other properties. They are applied in
drug utilization studies, as annotations of chemical compounds in databases as well as for
the clear organization of pharmaceuticals on web interfaces to databases, etc. The classi-
fication system most prevalently applied is the Anatomical Therapeutic Chemical (ATC)
classification system maintained by the World Health Organization (WHO). This scheme
hierarchically classifies drugs providing five different levels of granularity, i.e. the organ
system they act on as well as therapeutic, pharmacological, chemical properties of drugs,
and the drugs. Although the classification system is an international standard for drug
utilization studies, it does not contain the entirety of drugs, because it considers new entries
only upon requests made by manufacturers, regulatory agencies or researchers23. Therefore,
the system does not include substances for which no requests have been made or withdrawn

23http://www.frma.org.au/atc/maintainence.htm
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Pharmacological concepts not contained in ATC

‘Angiotensinogen inhibitor’
‘Organic Anion Transport Protein inhibitor’
‘Alpha-1-acid glycoprotein antagonist’
‘voltage-gated potassium channel inhibitor’
‘voltage-gated sodium channel antagonist’
‘DNA (Cytosine-5-)-Methyltransferase inhibitor’
‘Membrane stabilizer’
‘Cytochrome P-450 CYP2D6 substrate’
‘Alpha 1A adrenergic receptor agonist’
‘Dopamine beta hydroxylase agonist’
‘Alpha 1B adrenergic receptor agonist’

Table 4.34: Denominations of concepts extracted from the MEDLINE text corpus which are
not covered by the drug classification scheme ATC.

drugs.
When ATC is used in network studies, this problem becomes more evident. For instance

there is no possibility to learn from drugs that are not on the market anymore. Nacher and
Schwartz [2008] realized that 138 drugs of DrugBank do not contain ATC identifiers and
hence could not be integrated into their drug-therapy network study. Their result was an
incomplete network making clear that such studies highly depend on information contained
in resources used, which might limit their value. This case points to a clear drawback of
ATC.

Hence, generally the incorporation of drug instances into classification systems like
ATC is of high potential, because it helps to close the information gap for allocating more
information to applications that are built on such schemes. A way to accomplish this task is
to predict respective scheme classes of pharmaceuticals or chemicals not represented by the
systems. Thus, for internal research purposes, they can be included in an automated way
independently from suppliers like the WHO.

4.3.2.1 Description of a New Method for the Extension of Classification Schemes by
New Drug Instances

For the prediction of ATC classes of drugs the classification technique was utilized. There
are several established algorithms and implementations available that can be applied and
compared with each other. Classifiers are dependent on features that represent the data of
the different classes. The basically new idea was to apply property concepts on chemicals
which were extracted from text by the methodology described above as class features. They
were allocated to ATC classes through chemical compounds that are already assigned to
them.

This work was done in cooperation with H. Gurulingappa whose master thesis [Gurulin-
gappa, 2008] was supervised by me. The underlying conception was developed by me,
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whereas Gurulingappa was responsible for the application of selected methods as well as
the development of conception details, i.e. additional term normalization, classifier testing
and evaluation was conducted by Gurulingappa. The description of the applied methods
can be found in [Gurulingappa et al., 2009]. Here just a brief outline of the methodology
is given, whereas the focus lies on the obtained results to demonstrate the potential of the
concept denominations extracted from text.

For experimentation the classification was restricted to a subset of ATC classes to diseases
of the cardiovascular system. The super class ‘Cardiovascular Agents’ of ATC contains 400
drugs which constitute 13 % of the entire drugs of this scheme. It implies 38 therapeu-
tic/pharmacological classes at level three and 118 pharmacological/chemical classes at level
four. From the third level 21 ATC classes related to 390 drugs were chosen as training set.
On average they contain 10 drugs per class. To analyze the approach on drugs therapeu-
tically applied for diseases of the cardiovascular system that are not covered by the ATC
classification system, a test set was generated. It consists of 114 drugs with an indication on
diseases of the cardiovascular system selected from the United States Pharmacopeia (USP)24

and Therapeutic Category of Drugs (TCD)25 maintained by the Japanese Pharmacopeia. To
evaluate the classification results, all drug instances of the test set were manually annotated
with ATC classes by H. Gurulingappa.

For all drugs of the training and test set property terms were extracted from MEDLINE titles
and abstracts and were canonicalized with the developed approach described in Section 4.2.1.
For drugs of the training set 3051 unique property terms have been obtained. Gurulingappa
introduced an additional step for the normalization of obtained terms through a mapping to
standard biomedical concepts contained in the UMLS metathesaurus. It has the additional
advantage that synonyms and term variants are represented by a single concept identifier
of UMLS. Synonyms, like ‘5-HT antagonists’ and ‘Antiserotonergic agents’ are mapped to the
identifier ‘C0037753’. This step, performed with MMTx (Version 2.4.C), reduced furthermore
the redundancy in the data set. Even though UMLS contains over two million concepts,
not all extracted property terms are present. Hence, 32.6 % could not be mapped to UMLS
identifiers. In order to overcome the problem of partial and unmapped concepts, a list of
property concepts not present in UMLS was generated, which contain manually normalized
terms that are linked to self created concept identifiers. Furthermore non-informative terms
like ‘drug’ have been removed. Finally, a total set of 368 unique concept identifiers were
obtained for all 390 drugs of the training set. The overall number of the terms was reduced
by 87.94 %.

The 368 unique concept identifiers were used to generate a feature vector for every
considered chemical compound, whereas every concept represents one feature within that
vector, which is depicted in Table 4.35.

For the purpose of experimentation, two types of feature vectors were generated for every
drug. The first one is a binary feature vector with 368 numerical positions. The second one
is a weighted feature vector. Its positional values equal to the number of the frequency with
which the corresponding feature occurs within the corpus, normalized on a logarithmic

24http://www.usp.org/
25http://www.genome.jp/kegg-bin/get_htext?br08301.keg
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Vector position Concept ID Term

1 C0001219 ‘Acrylates’
2 C0001413 ‘Adenine Nucleotides’
3 C0001640 ‘alpha adrenergic receptor agonist’
4 C0001641 ‘Adrenergic alpha-Antagonists’
...

...
...

368 S10000121 ‘Antihyperlipoproteinemic’

Table 4.35: Depiction of the feature vector conception.

scale. Examples of both types are illustrated in Table 4.36.
For finding a suitable classifier to predict ATC classes for not contained chemical com-

pounds, Gurulingappa investigated the performance of four classifiers, i.e. Naïve Bayes,
Decision Tree, k-Nearest Neighbor and Support Vector Machines. The training was done
with different subsets of the features ranked by Chi-square [Simon, 2006] and 100-fold
bootstrapping. Every classifier was tested with different parameter sets respectively (data
not shown here), whereas the best one was chosen for the final comparison. The curves in
Figure 4.23 reflect the course of the prediction accuracy obtained with the four classifiers
and 10 % - 100 % of the features that were increased in steps of 10 %.

Figure 4.23 illustrates that the Naïve Bayes classifier with the weighted feature vector
and SVMs with the binary feature vector outperformed the other classifiers. Furthermore it
shows that the classifiers performed different when applying binary feature vectors instead
of weighted feature vector. The analysis of all classifiers disclosed that the Naïve Bayes
classifier generated a global maximum with a classification accuracy of 89.47 ±2.13 % when
the top 70 % weighted features were applied.

Binary vector | 1 | 0 | 0 | 0 | 0 | 1 | . . . | 0

Weighted vector | 0.9 | 0 | 0 | 0 | 0 | 0.69 | . . . | 0

Position 1 2 3 4 5 6 . . . 368

Table 4.36: Schematic depiction of a section of the binary and weighted feature vectors.
Every position of the vector corresponds to a concept and hence to an identifier
either from UMLS or from a separately defined concept list for those concepts
not contained within UMLS.
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Figure 4.23: Performance of k-Nearest Neighbor, Naïve Bayes, Decision Tree, and SVM using
weighted and binary feature vectors, validated by 100-fold bootstrapping. The
classifier parameters were k=1 for k-Nearest Neighbor, application of the Kernel
Estimator for Naïve Bayes, no pruning for Decision Tree and polynomial kernel
for SVM. (The figure was adapted from [Gurulingappa et al., 2009].)

4.3.2.2 Results of the Classification Schema Extension

After selecting an adequate feature subset and Naïve Bayes as optimal classifier from the
four tested classification methods it was evaluated on the test set of 114 drugs.

For comparison, the structure-based ATC classification method SuperPred was tested,
which is introduced in Section 3.2.3.1. Therefore, SMILES string representations of all drugs
in the test set have been provided as system input. The output of SuperPred provides
structurally most similar compounds of the system’s basic data to the query molecule that
are ranked by decreasing Tanimoto coefficient values as well as their ATC classes. The
ones of the top ranked chemical compound were compared to the manually annotated ATC
classes of drugs in the testing set.

The number of correctly, wrongly and non-classified drugs obtained with both approaches
is shown in Figure 4.24. Additionally, Figure 4.25 provides the results for recall, precision
and F1 measure. The evaluation of the classification results illustrates that the concept-based
approach was able to outperform the structure-based approach SuperPred by classifying the
drugs with a precision of 94 %, a recall of 82 %, and an overall classification F1 measure of
86 % on the limited test set of cardiovascular drugs. In contrast, SuperPred provided a much
lower precision of 60 %, the same recall of 82 %, and an overall classification F1 measure of
69 %.
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Figure 4.24: Comparison of concept-based with structure-based ATC class prediction for
drugs in the test set comprising 114 drugs. The number of correctly, wrongly
and non-classified drugs is provided for both approaches. (Figure was adapted
from [Gurulingappa et al., 2009]).
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Figure 4.25: Evaluation of concept-based and structure-based ATC class prediction for drugs
in the test set. Recall, precision and F1 measure are given.

4.3.3 Summary of the Developed Information Aggregation Framework and
Discussion of the Results

The developed information aggregation framework combines the recognition of chemical
named entities described in Section 4.1 with the extraction of related function information
explained in Section 4.2. To demonstrate the application potential of the framework, 11
drugs have been selected to obtain function annotation terms from MEDLINE articles which
were exemplarily compared with annotation concepts provided by DrugBank. The analysis
of property terms subsequently extracted from MEDLINE illustrated that 29-53 % of them
could be identified as valid new drug classifications. They contain new valuable annotation
information and hence could serve as novel annotation terms. Additionally, the extracted
and canonicalized terms could enlarge the drug classification spectrum and speed up the
annotation process, even if not all found terms might be useful. In general this approach can
be applied for annotating chemical compounds or pharmaceuticals from other databases.
Furthermore, it is generic and thus can be applied to other areas as well only by exchanging
named entity recognition to focus on Hearst phrases that are content-specific for a certain
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domain. The developed approach can be utilized to assist database curators to scan free text
data resources which represent the most up-to-date sources of information. Therewith, the
work of information gathering and manual entity annotation is supported.

The extracted property information was employed in the developed drug classification
scheme extension. Therefore, property concepts extracted from text were utilized as features
of property descriptors that were applied by an automated process to extend the drug
classification scheme ATC with new drug instances by class prediction methods. It was
demonstrated that ATC class prediction, using a defined biological, pharmaceutical weighted
feature vector and a Naïve Bayes classifier, was successful for the selected subset of ATC
proved by a high F1 measure of 86 %. The method outperformed SuperPred – a recently
published structure-based ATC class prediction methodology, which achieved an F1 measure
of 69 %.

The value of utilizing textual data for pharmaceutical research, especially for drug repur-
posing, is also supported by a study published by Campillos et al. [2008] at the same time the
study on the extension of the ATC classification was done. They explored side-effect infor-
mation from drug package inserts that have been generated from the use of marketed drugs.
They extracted terms as well and classified side effects using the Unified Medical Language
System ontology for medical symptoms. Their idea was to infer molecular activities of drugs
that are not implicitly encoded by their chemical structure and hence not solely inferable
from structure and sequence similarity of their known targets. They predicted new targets
for well-known drugs by applying side-effect similarity measures and successfully verified
their hypotheses with binding assays in vitro. Like the previously described approach, the
introduced method also incorporated biomedical concepts and clearly demonstrated that it
is worth to use them for the prediction of new targets for already marketed drugs.

A drawback of the concept-based approaches, like the presented classification, in general
is its dependency on available textual data provided in a specific linguistic form. Thus,
the extracted concept features are strongly dependent on the text corpus underlying the
complete concept extraction process that could lead to an inherent feature sparseness and
data bias because of missing data. Additionally, the approach does not take organism-
specific pharmacological actions of chemical substances into account, so that the ATC class
prediction is organism-independent. This could be solved by filtering the articles for certain
organisms before the Hearst phrase extraction is performed. However, it might decrease
the amount of property concepts available on chemical compounds in text. To partially
overcome this problem, other text corpora or full text articles could be added to the phrase
extraction pipeline. Furthermore, an extraction of other relations than the discussed ones
could enhance the extraction and collection of more information on chemical compounds
to enrich the feature space. However, the approach does not allow its use for completely
novel chemical compounds. Therefore, additional concepts from further resources, like other
databases or classification schemes that contain pharmaceutical and biological property
concepts could be incorporated.

The application of biological and pharmaceutical property concepts for extending classifi-
cation schemes by further chemical entities has proved to be applicable and provided good
results on a subset of ATC. In the future, efforts have to be made for including a complete
classification scheme. Therefore, the above discussed extension of the feature space is an
important step. However, with further improvement of the method it could be a valu-
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able technique applied as one additional approach for decision making in pharmaceutical
research in the future.
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Chapter 5

Histone Modification Recognition in Text

Histone modifications play a key role in epigenetic mechanisms. Growing research in this
field resulted in a steep increase of literature data in the last years. However, no automated
approach has been published so far that support the recognition of histone modifications
descriptions in text and allow for its identification.

In July 2008, MEDLINE contained over 24,600 abstracts dealing with epigenomics, where-
fore PubMed was queried using the term ‘epigenetics’. About half of them contain informa-
tion about histone modifications as was depicted in Figure 1.3 of Section 1.1. On average,
over 1000 articles have been published every month in the last two years, which is a high
publication rate.

Querying PubMed for histone modifications reveals several problems. The same exam-
ple terms of H3K9me3 provided in the introduction have been used to search for articles
containing information of that histone modification type. Table 5.1 provides the abstract’s
quantity obtained with a PubMed query for every given term. The results illustrate the high
dependence of the retrieved number of articles from the search term. This is a definite disad-
vantage when searching for documents on a specific histone modification type and indicator
for the absence of defined histone modification terms from the controlled vocabulary of
MeSH.

5.1 Development of a CRF-based NER Approach for
Recognizing Histone Modifications

Analyzing the selected terminology examples, it was expected that a simple search strategy
is not able to find all description variants related to a certain histone and modification
type. Further on, the generation of a dictionary from scratch would be difficult, because
not all description variants that authors create, could be foreseen in advance, especially
enumeration variations of histone modifications.

Therefore, a Machine Learning-based system, like Conditional Random Fields (CRFs)
introduced in Section 3.1.2.3, was trained to support the identification of histone modifi-
cations in text. To develop such a system an annotated training corpus was required from
which the histone modification description characteristics could be learned and a model to
be applicable on new unseen examples could be induced.
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Histone modification term variants Number of obtained articles from PubMed

H3K9me3 41
Me3-K9 H3 1
Me(3)-K9 H3 78
H3K9 tri-methylation 7
H3-K9 trimethylation 28
H3 Lys9 trimethylation 11
H3 tri-methylated at lysine 9 14
histone H3 trimethylated at lysine (K) 9 3
K9 trimethylation at histone H3 36
K9-trimethylated histone H3 15
tri-methylation of H3 at lysine residues K9 0
trimethylated H3K9 18
di- and trimethylated H3K9 8

Table 5.1: Term variant examples of one histone modification type. The number of obtained
articles from PubMed are given (data from July 2008).

5.1.1 Corpus Selection and Annotation

5.1.1.1 Corpus Generation

For training a CRF model an initial corpus (referred to as EPI-TRAIN) of 187 MEDLINE

titles and abstracts has been selected manually from a corpus in which both histones and
modification terms occur together. This was obtained by a co-occurrence MEDLINE search
with ProMiner using two generated separate dictionaries. One contains the terms ‘histone’
and ‘histones’. Contrarily, the second dictionary comprises 75 modification terms and some
spelling variants that represent different modification types in general. These are for instance
‘di-methylation’, ‘dimethylation’, ‘ubiquitation’ and ‘acetylation’. With this approach 10,576
articles have been obtained. From that corpus 187 titles and abstracts have been selected
manually. It was ensured that every histone modification type is covered by the corpus.

For testing the trained model, a corpus called EPI-TEST has been generated on the basis
of a PubMed search using the MeSH term ‘epigenetics’. From the 24,653 obtained articles
1,000 titles and abstracts have randomly been chosen. They are distinct from the articles
contained in the EPI-TRAIN corpus. For further evaluation of the system a general third
corpus EPI-TEST-R has been randomly sampled from complete MEDLINE. Table 5.2 shows
the properties of all three corpora; the number of documents, sentences, and tokens.

5.1.1.2 Corpus Annotation

As for the annotation of the CHEM-EVAL corpus WordFreak has been used for this task. All
three corpora have been annotated with the entity class Hmod. A term to be annotated as
entity type Hmod had to fulfill following constraints: The term had to contain at least one
histone type and one modification term, e.g. ‘histone acetylation’ or ‘histone 3 dimethylation’.
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The removal of a modification, like ‘H3K9 demethylation’, has also been annotated, because
an existing modification is changed. Instead, if a histone modification term fraction is part
of an enzyme, e.g. in ‘H3K9 methyltransferase’, the term is not annotated. Enumerations are
handled as follows: If modification terms, similar to the official nomenclature, occur in an
enumeration, like ‘H3K36me3, H3K79me3 and H3K9ac’, they have been annotated as single
terms. By contrast, long forms, like ‘H3K36-mono- or dimethylation’, have been annotated
as a whole phrase. An annotated text containing different examples terms is provided in
Figure 5.1. The number of annotated entities for every corpus is provided by Table 5.2 as
well.

TITLE: Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36
trimethylation ABSTRACT: Understanding the function of histone modifications across inducible genes
in mammalian cells requires quantitative, comparative analysis of their fate during gene activation and
identification of enzymes responsible. We produced high-resolution comparative maps of the distribution
and dynamics of H3K4me3, H3K36me3, H3K79me2 and H3K9ac across c-fos and c-jun upon gene
induction in murine fibroblasts. In unstimulated cells, continuous turnover of H3K9 acetylation occurs on
all K4-trimethylated histone H3 tails; distribution of both modifications coincides across promoter and 5’
part of the coding region. In contrast, K36- and K79-methylated H3 tails, which are not dynamically
acetylated, are restricted to the coding regions of these genes. Upon stimulation, transcription-dependent
increases in H3K4 and H3K36 trimethylation are seen across coding regions, peaking at 5’ and 3’ ends,
respectively. Addressing molecular mechanisms involved, we find that Huntingtin-interacting protein
HYPB/Setd2 is responsible for virtually all global and transcription-dependent H3K36 trimethylation, but
not H3K36-mono- or dimethylation, in these cells. These studies reveal four distinct layers of histone
modification across inducible mammalian genes and show that HYPB/Setd2 is responsible for H3K36
trimethylation throughout the mouse nucleus.

Figure 5.1: Example title and abstract with histone modifications annotated as entity type
Hmod (PMID: 18157086, Edmunds et al. [2008]).

Corpus Documents Sentences Tokens Annotated
entities

EPI-TRAIN 187 1,605 44,876 601
EPI-TEST 1,000 8,880 236,160 221
EPI-TEST-R 1,000 5,313 123,920 0

Table 5.2: Number of documents, sentences, tokens and annotated entities for the three
selected training and test corpora.

5.1.2 CRF Training and Feature Selection

For obtaining a CRF model to be used for identifying histone modifications in documents
MALLET [McCallum, 2002] was used as basic implementation. The package provides default
features for representing text tokens, like morphological features (cf. Table 3.4). Nevertheless,
further features have been added, like spaces which were described in Klinger et al. [2008].
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EPI-TRAIN EPI-TEST

Recall 0.81 (± 0.05) 0.76
Precision 0.87 (± 0.05) 0.87
F1 measure 0.84 (± 0.05) 0.81

Table 5.3: Recall, precision, and F1 measure are provided if a CRF model with the optimal
feature set is used to label the selected training corpus EPI-TRAIN and the test
corpus EPI-TEST. The numbers in brackets for the EPI-TRAIN corpus provide the
standard deviation of the 10-fold cross-validation.

A granular tokenization of the text was performed, splitting it at white spaces, before and
after diverse bracket forms and special symbols, like ‘-’ or comma, etc. In the following a
tokenized example text snippet is depicted (‘|’ displays the text string separator):

‘. . . | Indeed | , | Rtf1 | is | required | for | H2B | ubiquitination | , | suggesting |
that | its | effects | on | H3 | - | Lys4 | and | H3 | - | Lys79 | methylation | are | an | . . . ’.

To validate the trained CRF model a 10-fold cross-validation was performed on EPI-TRAIN.
Following initial results were obtained for precision, recall and F1 measure: 0.87 ± 0.05, 0.81
± 0.07, 0.84 ± 0.05.

5.1.2.1 Feature Selection

As Klinger et al. [2008] showed in the application of CRFs for the recognition of IUPAC and
IUPAC-like names, single features have a different impact on precision and recall. They
demonstrated that some features are very important for the performance of the system,
whereas others do not change the F1 measure. They studied the influence of features by
leaving single ones or combinations of some feature types out. Omitting non-informative
features reduces its number that has to be considered for the CRF model. This could be
advantageous in processing time when larger text corpora are tagged by the system.

Feature sets proven to lead to a good recognition performance on one entity type might
result in a poor outcome for another. Hence the optimal feature set used for the recognition
of IUPAC names [Klinger et al., 2008] might not be an optimal one for identifying the new
entity type Hmod. That is why an analysis of the features to be selected for obtaining good
recognition results was performed.

To prove the impact of the different features used for the recognition of histone modifi-
cations, single features belonging to various classes or combinations of them have system-
atically been left out. For every modified feature set a single model has been trained on
EPI-TRAIN and was validated by 10-fold cross-validation. The obtained precision, recall, and
F1 measure are displayed in Figure 5.2.

The best feature set has a high performance in recall (0.81), precision (0.87), and F1 measure
(0.84) on EPI-TRAIN. Comparing the initial results with the new ones, an improvement
of 1 % could be obtained with this step (cf. Table 5.3). The optimal feature set includes
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Figure 5.2: Recall, precision, and F1 measure are given for every single feature analysis
experiment on EPI-TRAIN. Non-used features or combinations of them belong to
two classes Automatic generated morphological features (AM) and Context (C) and
are depicted in the plot. The final used feature combination is marked with ‘(*)’.
1: No Word as class (C)
2: No Spaces (C)
3: No natural number (AM)
4: No Capletter (AM)
5: No Capsmix (AM)
6: No InBracket (C)
7: No Init caps (AM)
8: No Single char (AM)
3-8: Combination of features from 3 to 8 not used
3-8+: Combination of features including feature 3 to 8 and 24 additional morpho-
logical features not used
3-8++: Combination of features including feature 3 to 8 and 31 additional mor-
phological features not used
3-8+++: Combination of features including feature 3 to 8 and 57 additional
morphological features not used

following features and feature generating methods: Prefix, Suffix, InBrackets, Words as Class,
Spaces, wordClass, and doBriefWordClass. The features from class Static morphological have
no impact on the result, hence they have been omitted altogether. On the contrary, leaving
out Spaces and Words as Class affect the histone modification term recognition and lead to a
considerable decrease in precision, recall, and F1 measure. It points out that it is relevant
whether the token is preceded or succeeded by white space and if words occurring in histone
modification descriptions are learned by the system. The first one is important especially
in enumerations or abbreviations of terms to separate them from each other. This feature
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already indicated a high impact on the identification of IUPAC and IUPAC-like names
[Klinger et al., 2008].

The apparent optimal feature set identified by feature selection was applied to tag both
test corpora EPI-TEST and EPI-TEST-R. On EPI-TEST-R a precision of 1 was obtained (data
not shown). It illustrates that no false positive term was found in the general sample test
corpus, containing no histone modification term. It shows that the system in general is able
to distinguish between non-histone modification terms from positive terms. Recall, precision,
and F1 measure that were yielded on EPI-TEST are provided in Table 5.3. Compared to the
results on the training corpus, tagging of EPI-TEST lead to the same precision (0.87), but
to lower recall (0.76). It gives some indication that the model was not general enough for
finding all histone modification terms. This might be due to the relative small training corpus
EPI-TRAIN containing too few annotated histone modification term examples. However,
the model is already sufficient to identify terms in EPI-TEST not previously seen as training
example. This is supported by the fact that 68.6 % of the true positive terms did not occur
within the training corpus.

5.1.2.2 Recognition Problems

The tagged entities have been examined to identify false positive and false negative terms.
False positives have been divided into four classes. The following list provides a brief
description of every class and shows some examples:

• Error class 1: Modification descriptions without histone mentions: ‘acetylation and
methylation’.

• Error class 2: Enzymes introducing or removing histone modifications: ‘H3K9 methyl-
transferase’.

• Error class 3: Incorrect recognition of term boundaries: ‘H3 - K9 ) with no sign of
histone H2AX phosphorylation’, ‘H3K9me3 at pericentric heterochromatin. H3K27me3 and
H4K20me’. The red marked entities should have been found as separate entities here.

• Error class 4: Terms with other meaning: ‘phosphorylation of IRS’, ‘eradication of H7N1,
H7N3 and H5’.

It turned out that most of the false positives belong to classes 3 and 4. More training data
could reduce the number of false positives. Furthermore, a post-processing step decreases
their number which is later described in Section 5.2.

The analysis of the unified false negative modification terms not found in EPI-TEST showed
that 6 histone modification terms (20 %) occurred in at least one document within the training
corpus EPI-TRAIN. Histone modification terms which were not recognized are for instance:
‘histone acetylation’, ‘histone methylation’, and ‘ubiquitylation of histone H2B’. This might be due
to the fact that the CRF learns the properties of the context tokens which surround an entity
within a text. If new adjacent tokens with other feature distributions as those represented by
the trained model occur in a new example, the modification term is not recognized, which
is a clear disadvantage of this method. Similar to solving the reduction of false positives,
an increase of annotated documents could help to enhance the performance of the CRF for
overcoming this problem and to improve the recognition of false negative terms as well.
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Figure 5.3: F1 measures obtained on EPI-TEST after every active learning step in relation to
the total number of tokens in the iteratively extended training corpus.

5.1.3 Improvement of a primary CRF Model by the Extension of the Training
Corpus through Active Learning

The necessity to enhance the histone modification recognition emerged from the seen prob-
lems. This could be achieved by increasing the training corpus used for building up the
CRF model. The intention was to select example texts to be annotated and added to the
training corpus EPI-TRAIN. This was done via active learning based on uncertainty sampling
introduced in Section 3.1.4.1.

The sampling procedure could keep the annotation effort of new training samples in a
passable limit. Since active learning is an iterative process, several rounds of annotation,
CRF training and testing on the test corpus EPI-TEST have been performed. In every iteration
step new sample documents were chosen from complete MEDLINE for annotation on which
the system was least confident.

The enhancement of the system’s F1 measure, evaluated on EPI-TEST, was studied. The
convergence of F1 measures was utilized as stopping criterion for the active learning process.
15 iteration steps have been done until convergence in the F1 measure was observed on
EPI-TEST. Table 5.4 shows the number of iterations, the annotated entities as well as the
rising number of tokens of the enlarging training corpus in every iteration round. The
process resulted in an extended training corpus EPI-TRAIN-AL containing 434 documents
more compared to the initial training corpus. The F1 measure depending on the number of
tokens are depicted in Figure 5.3.

It turned out, the extension of the training corpus improved the system’s precision by 6 %,
and both recall as well as F1 measure by 5 %. The evaluation results obtained for the CRFs
either trained on the original training corpus or on EPI-TRAIN-AL are provided in Table 5.5.
All evaluation measures stayed the same on EPI-TEST-R (data not shown).
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Run Annotated entities Tokens

AR 1 502 53,785
AR 2 522 68,083
AR 3 550 78,648
AR 4 567 88,994
AR 5 624 99,987
AR 6 647 109,804
AR 7 672 118,100
AR 8 709 128,456
AR 9 733 139,382
AR 10 769 152,425
AR 11 814 161,271
AR 12 879 171,974
AR 13 896 180,052
AR 14 917 189,237
AR 15 936 198,803

Table 5.4: Result of the active learning procedure. The number of iteration (AR) No. 1–15 is
provided at the left followed by the total number of annotated entities and tokens
for every iteration step.

EPI-TEST

Initial model Extended model
after 15 active
learning rounds

Precision 0.87 0.93
Recall 0.76 0.81
F1 measure 0.81 0.86

Table 5.5: Comparison of the identification results on EPI-TEST before and after active
learning.
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The new model (referred to as extended model in Table 5.5) trained on the extended
training corpus improved the ability to differentiate between positive and non-histone
modification terms, which is reflected by a high precision of 0.93. Furthermore, it reduces
the number of false positive terms by 22 and increases true positives by 27. False positives
belonging to all error classes, introduced within the previous section, were decreased.

5.2 Canonicalization of Histone Modification Terms

Machine learning techniques utilized for named entity recognition like the CRFs are only
able to provide a classification of tokens with which an assignment to a certain predefined
entity class is possible. Hence, the recognition of single histone modification descriptions or
enumerations of them in text provides only positional term information useful for highlight-
ing histone modifications in text. However, it does not support semantic search, because
different term variations of one modification description are still considered as different
entities. An inevitable next step is to map different description variants of histone modi-
fications onto a canonical term form respectively, which shown in Figure 5.4, and to filter
out false positive terms. This supports semantic retrieval of all documents related to one
histone modification type, which has not been possible up till now and solves the document
retrieval problem depicted in Table 5.1.

Canonical terms that come into consideration for histone modification are those which
follow the ‘Brno nomenclature’. It defines a specific abbreviation type of histone modification
terms. These terms provide several advantageous properties; they are short, their generation
is defined and they are unique. According to the nomenclature, histones are defined by
a single ‘H’, followed by a number or a combination of a number and letters illustrating
a certain histone type. The amino acids are described by single characters defined by the
one-letter code1 in combination with their position information within the protein chain.
The modification types are depicted by two or three letters. It is followed by a number which
defines the amount of modifications of one type on this specific amino acid. An example is
‘H3K9me2’.

5.2.1 Canonicalization Workflow

To map recognized histone modification terms onto canonical standard terms corresponding
to the ‘Brno nomenclature’ they are transformed by an automated canonicalization procedure
which was developed and implemented in a workflow. In general, a term is passed through
checking units which translate the information implied in the term to produce a canoni-
calized standard term form. Figure 5.5 depicts a general overview on the canonicalization
workflow.

The workflow units, i.e. the filters and transformation units include rule sets which are
applied to every found term. They have been established by analyzing entities from the
two annotated corpora EPI-TRAIN (before active learning was performed) and EPI-TEST.
Primarily, rules have been developed using all entities from EPI-TRAIN. Subsequently, they
have been tested on manually transformed entities from EPI-TEST. For reducing the number

1http://www.chem.qmul.ac.uk/iupac/AminoAcid/A2021.html
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Figure 5.4: Mapping of different apparent term variants of the entity ‘H3K9me3’ recognized
in text to one standard term corresponding to the ‘Brno nomenclature’.

of false positives, further rules have been incorporated into the system after testing on
EPI-TEST entities. In the following every step of the workflow is described in more detail.

• Validity check: Is performed to filter false positive terms recognized by the learned
CRF model. One basic rule is the absence of a histone type, for instance. Furthermore,
several regular expression patterns are applied which describe false positive terms, e.g.
C3-H(1|2) which matches C3-H1.

• Term length check: If a term passed the previous filter, it is checked for a general
property, the term length. Long terms and short terms are treated differently in the
remaining part of the workflow because different canonicalization processes are used.
Short terms already consist of abbreviations and either correspond to the nomenclature
or are similar to it, like ‘Me3-K9 H3’. Long forms include complete modification type,
amino acid or histone descriptions, like ‘dimethylated lysine 20 of histone H4’.

– Term transformation of long terms: Rules check the presence of basic histone
modification information and transform it to the standard representation, example
term: ‘dimethylated lysine 20 of histone H4’:

* Histone type ‘H4’,

* Amino acid ‘H4 K’,

* Position of the amino acid in the protein sequence ‘H4 K 20’, and

* Quality of the modification ‘H4 K 20 me 2’.
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Figure 5.5: Canonicalization workflow which transforms recognized histone modification
terms into canonical term forms.

The first property needs to be there, others are optional to create a standard output
term.

– Term transformation of short terms: If the term consists of several modification
types, the term is split, two terms are generated, and the missing information are
added to the second one, an example term is ‘H3K9me2S10p’. Otherwise, the term
is transformed to result in a canonicalized form:

* Splitting of the term ‘H3K9me2’, ‘S10p’,

* Addition of remaining information ‘H3S10p’ (‘H3K9me2’ stays the same).

• End check: Every resulting term is allowed to have only one representative of all four
information types. In case the algorithm produces output terms not following this
constraint, they are considered as false canonicalization results and are filtered, i.e. if:

– A term has more than one amino acid like ‘H3 K 4 S 10 me 3’ resulting from: ‘histone
H3 lysine 4 trimethylation (Me(3)-K4 H3) and histone H3 serine 10 phosphorylation’.

– More than one modification type is contained, like ‘H4 K 18 ac ac’ from ‘acetylation
on H3K14 and H4K5, and hypoacetylation on H3K18’
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EPI-TRAIN EPI-TEST

Manually canonicalized terms 414 123
Terms correctly canonicalized 397 (96 %) 121 (98 %)

Table 5.6: Evaluation results of the term canonicalization process obtained on entities of
the corpora EPI-TRAIN and EPI-TEST. Given are the number of manually anno-
tated histone modification terms and the number and fraction of terms correctly
automatedly canonicalized.

– Wrong modifications have been assigned to the wrong amino acid, like ‘H3 K 4
ph’ from ‘phosphorylated histone H3 displayed mostly Lys-4 dimethylation’. In this case
lysine cannot be phosphoylated.

Terms containing enumerations of histone types, modified amino acids, modifications or
positions, like ‘di- and trimethylation of lysine 4 at histone 3’, can be resolved by the procedure
as well. The canonicalization of such terms would lead to more than one standard term. The
transformation of the given example term results in the two terms ‘H3K4me2’ and ‘H3K4me3’.

5.2.2 Evaluation of the Canonicalization

To enable the evaluation of the canonicalization process, every annotated and unique his-
tone modification of EPI-TRAIN and EPI-TEST was manually assigned to canonical terms
leading to two standard test sets. They have been used for the automated evaluation of the
canonicalization results. The number of manually transformed histone modification terms
and results of the canonicalization procedure are given in Table 5.6. It shows a very good
performance of the system. Over 96 % of the entities from the EPI-TRAIN corpus and over
98 % of the entities from the EPI-TEST corpus have been transformed correctly.

To evaluate the system on a large text corpus, complete MEDLINE was tagged by the
CRF-based system. This resulted in 82,981 terms that have been recognized. They were
subsequently passed to the canonicalization procedure. The study of the filtering result
revealed that 63,314 (76.30 %) of all recognized terms are classified as false positives. Most
of these are abbreviations occurring very often in MEDLINE and histone types which do
not describe a modification. Table 5.7 shows some example terms and its frequency in the
large text corpus. The large amount of wrongly found abbreviations is a surprising result,
as the evaluation of the CRF approach on the randomly chosen test corpora EPI-TEST and
EPI-TEST-R, both consisting of 1000 abstracts and titles, yielded a high precision (cf. results
in Section 5.1). It demonstrates that training and test corpora are restricted representatives
of a large text corpus. Even though the training corpus EPI-TRAIN-AL consists of a high
number of selected articles and good results were obtained through evaluation on the test
sets, the finding of that many false positives could not be prevented at a real test case, i.e.
the tagging of complete MEDLINE.

However, from these filtered false positives only 0.08 % were wrongly classified as such,
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Example term Frequency in MEDLINE

AChE 21,700
ECoG 2,012
BChE 1,678
histone 1,511
BUdR 1,224
UNaV 1,158
SIgA 1,045
FUdR 890
BLyS 871
IUdR 822

Table 5.7: Examples of false positive terms recognized by the CRF approach in complete
MEDLINE.

thus actually being true positives. It demonstrates a high performance of the filtering step.
Through a more detailed analysis it turned out that most of the false positive terms comprise
a different meaning and hence belong to the error class 4 (introduced in Section 5.1.2).

The remaining true positive terms have been subjected to the subsequent term transfor-
mation process. This lead to 16,250 canonicalized entities obtained from complete MEDLINE.
From those 4,086 terms were evaluated. They were chosen in such a way so that for every
concept (364) every unique synonym was analyzed. A high fraction of 3,628 (~89 %) were
transformed correctly, whereas 458 (~11 %) were wrongly canonicalized. Examples of them
are shown in Table 5.8. As can be seen, histone types, amino acids and modification types
were wrongly combined.

Many of the terms that caused problems in the canonicalization correspond to recognition
error class 3 (cf. Section 5.1.2.2), which indicate the identification of wrong term boundaries.
Furthermore, long enumerations with several different histone modification descriptions

Example term Wrongly auto-
mated canonical-
ization

Correct canonical-
ization

histone H2B ubiquitination affects H3K79
trimethylation

H2BK79ub3,
H2BK79me3

H2Aub,
H3K79me3

H3K27 trimethylation , H2A ubiquitination H2AK27me3,
H2AK27ub3

H3K27me3,
H2Aub

Table 5.8: Example of wrongly canonicalized histone modification terms and its correct
canonicalization.
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provide a challenge for the canonicalization. Hence, for improving canonicalization, new
rule sets have to be included into the term transformation process in the future.

5.3 Development of a Dictionary-based Approach for
Recognizing Histone Modification Terms in Text

5.3.1 Generation of a Histone Modification Term Dictionary

A basic problem of the CRF approach is the influence of direct surrounding context of a
certain token on its assignment to a certain state from the IOB-label alphabet. As discussed
in Section 5.1.2, this leads to the result that the system does not always find histone modifi-
cation terms in new unseen documents which do exist in the training corpus. It is a clear
drawback, because it lowers the reliance of the approach. As NER builds the basis for
document retrieval and information extraction, non-recognition of present entities would
lead to a loss of available information.

To overcome this problem, the idea was to use histone modification terms recognized
by the CRF system in a large text corpus like MEDLINE to generate a dictionary. This is
then utilized by the dictionary-based NER approach ProMiner. Since the canonicalization
procedure maps all terms that belong to one histone modification type to a canonicalized
term representation and filters false positives, i.e. non-histone modification terms, the dictio-
nary generation is straightforward to accomplish. Through this, the histone modification
dictionary HmodDict was assembled and included into ProMiner resulting in ProMinerHmod.
Figure 5.6 shows the workflow of the dictionary generation procedure.

Figure 5.6: Depiction of the generation of the histone modification dictionary HmodDict
which was included into ProMiner. This leads to a ProMinerHmod version.

As described in the workflow, the canonicalized entities are the resource for the dictionary
HmodDict. It comprises 364 unique histone modification objects which are related to 4,086
synonyms that was included into ProMiner resulting in ProMinerHmod.
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5.3.2 Comparison of the Results from ProMinerHmod and the CRF Approach

To be able to analyze the impact of the generated dictionary in comparison to the CRF
approach, ProMinerHmod and the CRF were operated on a large text corpus – the complete
MEDLINE. Subsequently, the obtained histone modification terms were subjected to the
canonicalization procedure. The respective number of extracted terms from complete MED-
LINE achieved with ProMinerHmod and the CRF approach are given in Table 5.9. Additionally,
it shows the number of true positives and canonicalized entities.

CRF ProMinerHmod

Recognized terms on
complete MEDLINE

82,981 21,273

False positives Total 67,455 0
Fraction of histone
type terms

3,488 0

True positives 15,526 21,273

After filtering through
canonicalization proce-
dure

16,250 21,913

Table 5.9: Comparison of the CRF system with the dictionary approach for recognizing
histone modifications on MEDLINE. The total number of histone modification
terms recognized on complete MEDLINE, and the fraction of false positives and
true positives are provided for both approaches. The entity number obtained after
term canonicalization is given in the last row.

Compared to ProMinerHmod the CRF approach provides a 3.9 times higher number of
recognized terms on complete MEDLINE. However, the terms recognized with the CRF
include a large amount of non-histone modification descriptions that are false positive
findings. Finally, only 18.71 % of the recognized terms are true positive histone modification
descriptions. The canonical entities are the result of the transformation of histone modifica-
tion information comprised by the terms. Its number is provided in the last row of Table 5.9.
Enumerations of histone modifications embodied in one term lead to its mapping to more
than one entity. This explains the higher number of resulting entities in comparison to the
true positive terms. Hence, the canonicalization of terms recognized by the CRF reduces the
number of entities by the factor of 5.1.

As the results of ProMinerHmod show, the dictionary-based approach finds 5,747 true
positives (1.37 times) more compared to the CRF method. Here, canonicalization reduces
the term number by a factor of 1.05 only. If canonicalized entities are compared between
both approaches, ProMinerHmod yields 5,663 entities (1.35 times) more compared to the CRF
approach.
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Entity type Additional histone modifica-
tion concepts recognized by
ProMinerHmod

Hac 1644
H3ac 539
Hme 342
H3ph 284
H1ph 232
Hph 229
H3K9me 192
H3K4me 139
H4ac 131
H3me 124

Table 5.10: Difference in the number of canonicalized entities between the CRF approach
and ProMinerHmod. The 10 most differing entity types in relation to the difference
in the number of canonicalized entities is shown.

To analyze the cause of the difference in the entity number, the unified true positive
histone modification terms obtained by the two approaches were compared with each other.
It revealed that 1,672 new term variations were not contained in the primary generated
dictionary HmodDict and hence were newly found in MEDLINE by ProMinerHmod. This is
caused by the approximate string search introduced in Section 3.1.2.2. It allows for permuta-
tions of single tokens of a term, when the token number exceeds a given threshold. In the
experiment the default setting was used that permits permutation of terms which comprise a
minimum amount of four tokens. In a second study the occurrence of canonicalized histone
modification entity types were compared between the two approaches respectively. The
result for the top 10 most differing entities is provided in Table 5.10. As the result shows,
ProMinerHmod recognizes more terms with respect to specific histone modification types in
MEDLINE than the CRF approach. When summed up, this portion already presents 3,856
histone modification entities more compared to the CRF results. This finding could be
related to two causes: On the one hand side, this finding fits to the observation described in
Section 5.1.2.2. There it was found that not all histone modification terms were recognized
in the testing corpus EPI-TEST although they were available in the training corpus. It also
shows that even though the training corpus has been extended by active learning, the gen-
erated model is not able to find all histone modifications available in the training corpus.
Better recognition results could only be obtained with more training data which includes a
high additional annotation effort. On the other side, the dictionary method ProMinerHmod
provides more reliable results than the Machine Learning-based NER approach when it
is endowed with many term forms and synonyms. It finds a term that is provided by the
dictionary every time it occurs in the processed text corpus. This is not the case for the CRF
approach. As was shown, the approximate search algorithm of ProMiner has also the ability
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to find novel term variations of given synonyms. However, ProMinerHmod it is not able to
find new histone modification concepts which are not contained in the dictionary. Thus,
Machine Learning-based methods are more flexible in recognizing novel coined terms in
text that correspond to new entity types. Hence, they can be used as a tool to utilize text as
resource for the generation of dictionaries when no other terminology source is available.

5.4 Generation of a Histone Modification Concept Hierarchy

Scientists working in epigenomic research have different information needs concerning
histone modifications. They would like to obtain scientific articles with different focuses for
getting an overview on the research in their own or related fields. Some would possibly ask
a text retrieval system general questions, like:

‘Search for all documents that contain modifications of histone 3’.
Others might like to perform a more specific text search, like:

‘Search for all documents dealing with trimethylated lysine at position 9 of histone 3’.
The first question implicitly includes the second one in this case. It describes a demand
that semantic text retrieval systems, like Textpresso2 [Müller et al., 2004] and SCAIView
[Hofmann-Apitius et al., 2008], can cope with. In such a system the recognized named
entities are mapped to concepts of a hierarchy which is used for the organization of texts
and allows for semantic search.

Available hierarchical structured terminologies and ontologies potentially applicable for
a semantic search system on histone modifications have been analyzed. MeSH-T, Gene
Ontology, PSI-Mod3, and HistOn [Post et al., 2007] were examined for their usability as
histone modification concept hierarchy. It turned out, there is no resource exhaustively
covering histone modifications.

Therefore, an organism-independent hierarchy of histone modification concepts was es-
tablished. In general, the hierarchy could be generated from two different points of view:
Modification-centric or histone-centric. The decision was taken for a histone centric organiza-
tion, for which the canonicalized terms were used as basic concept denominations. Herewith,
getting a fast overview on all modification types of a certain histone type is enabled. Fur-
thermore, applied in a semantic text retrieval system, it allows for organizing scientific texts
related to one histone type at different granularity levels of modifications. A section of
the complete generated hierarchy is given below for histone 3 as an example, whereas five
possible methylation states are provided (mono-methylation: me1, di-methylation: me2,
asymmetric di-methylation: me2a, symmetric di-methylation: me2s, tri-methylation: me3,
and unspecified modification type: me) at two amino acids (K: lysine and R: arginine) and
two positions (2 and 4):

0.3.0 H3
0.3.0.1 H3me
0.3.0.1.0.1 H3R2me
0.3.0.1.0.2 H3K4me

2www.textpresso.org
3http://psidev.sourceforge.net/mod/data/PSI-MOD.obo
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0.3.0.1.1 H3me1
0.3.0.1.1.1 H3R2me1
0.3.0.1.1.2 H3K4me1
0.3.0.1.2 H3me2
0.3.0.1.2.1 H3R2me2
0.3.0.1.2.2 H3K4me2
0.3.0.1.2.a H3me2a (asymmetric)
0.3.0.1.2.a.1 H3R2me2a
0.3.0.1.2.s H3me2s (symmetric)
0.3.0.1.2.s.1 H3R2me2s
0.3.0.1.3 H3me3
0.3.0.1.3.1 H3R2me3
0.3.0.1.3.2 H3K4me3

To every term in the hierarchy a unique number has been assigned. It has at most 7 levels. A
basic term set consisting of general histone modification concepts has been assigned to every
included histone type. Subsequently, the hierarchy has been populated by canonicalized
terms from Gene Ontology (GO), MeSH-T, HistOn, manually collected specific histone
modification terms from the antibody online catalog of Abcam4, and MEDLINE articles. The
terms of the developed hierarchy have been automatically compared with the canonicalized
ones from these resources. Those which have not been used so far within the hierarchy have
been proposed by the system for its extension. An analysis of the impact of the single term
resources is given below.

Since there was no existing comprehensive hierarchy ready to use, we developed our own,
including 462 concepts. It is a manually created text file which was transformed into an
xml-format. The used term resources contribute to the hierarchy concepts as follows:

• Histone types (13)

– 13 histone types connected to GO obtained with Gene product search using
AmiGO,

– 13 in MeSH-T,

– 7 in the online catalog of Abcam,

– 8 in HistOn,

– 10 in MEDLINE articles

• General histone modification types (262)

– 16 in GO,

– 47 in MEDLINE articles,

– 1 in MeSH-T

• Specific modification types from different resources (156)

4http://www.abcam.com/
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– 148 from online catalog of Abcam,

– 52 in MEDLINE articles,

– 1 in GO and HistOn.

The terms from the different resources overlap in content. GO and MeSH-T are the best
of the considered resources for histone types, whereas Abcam and MEDLINE articles are
the most useful resources for general and specific histone modification types. The current
version of the created histone modification hierarchy covers the most important histone
types and was integrated into the knowledge discovery system SCAIView, introduced in
Section 3.3. Figure 5.7 depicts a section of the hierarchy as it is provided to users.

Figure 5.7: Section of the histone modification hierarchy included into SCAIView.

5.4.1 Automated Support of the Hierarchy Extension

New histone modifications will be described in the literature in the future, not yet contained
in the hierarchy. Since manual search for new histone modification concepts would require
to scan the literature regularly, it would take time until a new modification term could be
included into the hierarchy. That is why a strategy was developed to automatedly support
the regular hierarchy extension by proposing new concepts. Therefore, the canonicalized
histone modification terms obtained from a ProMinerHmod run on complete MEDLINE are
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taken together with their occurrence frequency. They are compared to the existing concepts of
the hierarchy and ranked by their occurrence frequency in MEDLINE. This procedure results
in a list of novel histone modification concepts not yet contained in the hierarchy. It can be
utilized to manually extend the histone modification concept hierarchy, whereas the concept
frequency supports the inclusion decision. Table 5.11 provides the new histone modification
concepts obtained with this procedure and the results of its semi-manual analysis. It shows
the total amount of newly found concepts, the number of potentially new concepts to be
included into the hierarchy and disregarded concepts. The latter ones were excluded because
of a) a occurrencefrequency < 2 in MEDLINEand b) wrongly canonicalized concepts.

Concept frequency in MEDLINE

Total number of newly found histone
modification concepts

168

Number of potentially new concepts for
hierarchy extension

90

Number of disregarded concepts 78

Table 5.11: Results of the extraction of new histone modification concepts from MEDLINE.

As was found, 57% of the valid new concepts describe a specific histone modification,
such as ‘H3S139ph’. 53% contain the information on a general modification type to which
‘H4Kac’ belongs as an example. The results let expect that with new findings published in
the literature, the histone modification concept hierarchy is expected to grow with time until
all occurring modification types are experimentally discovered and extensively mentioned
in the literature.

5.5 Applications of the Histone Modification Identification
Approach and the Concept Hierarchy

5.5.1 Analysis of the Information Content of Histone Modification
Descriptions Extracted from MEDLINE

To see which histone modification concepts were found most often in MEDLINE an anal-
ysis of its frequency was conducted. Therefore, the canonicalized terms extracted with
ProMinerHmod were counted and sorted by its frequency. Table 5.12 provides the results of
the top 20 most often occurring histone modification concepts in MEDLINE.

As the analysis of the results reveals, the most often recognized terms are histone types.
Furthermore, often only the modification type in relation to a certain histone protein is
given. More detailed modification descriptions including the amino acid and side group
number are less often mentioned in the articles of MEDLINE. Hence, the examination of
recognized histone modification terms from MEDLINE revealed that not every term contains
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Histone modification concept Concept occurrence in
MEDLINE

Hac 6,149
H2A.Xph 2,445
H4ac 1,362
Hme 1,089
H3ac 871
Hph 725
H3K9me 613
H1ph 601
H3ph 539
H2A.X 489
H3K4me 385
H3K4me3 380
H2Aub 331
H3S10ph 275
H3K27me3 263
H3K9me2 255
H2Bub 226
H3me 212
H3K9me3 200
H3K9ac 199

Table 5.12: Frequency of the 20 most occurring histone modification concepts in MEDLINE.

detailed modification information. To get a general overview on the information content of
the terms they were analyzed and automatedly translated into patterns reflecting the order
and particular basic information units of the term; i.e. histone (H), amino acid (As), sequence
position (Pos), and modification (Modi). Therefore, histone modification terms recognized
with ProMinerHmod were analyzed and translated. The generated patterns were statistically
investigated, whereas the most often occurring patterns, corresponding term numbers, the
relative amount and example terms are depicted in Table 5.13.

The depicted statistics of the 10 most often occurring patterns reflects the results shown in
Table 5.13 above. A difference of the pattern creation to the canonicalization is the order of
the information which was left as it appears in the terms in connection with prepositions or
coordinating conjunctions. It was maintained in the patterns to be able to determine how
histone modifications are described.

5.5.2 Document Retrieval

As became apparent by the PubMed query results presented in Table 5.1, MeSH does not
index articles in MEDLINE with defined histone modification terms. Hence, PubMed can only
be queried by typing the modification term in the search window. It has the consequence
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Pattern type No of occurrence
(relative amount in
%)

Term examples

H Modi 7,347 (38.24 %) ‘histone 3 acetylation’, ‘H3 acetylation’
Modi H 3,473 (18.08 %) ‘methylated histone 3’
Modi of H 2,261 (11.77 %) ‘methylation of histone 3’
H As Pos Modi 2,150 (11.19 %) ‘H3 lysine 9 trimethylation’, ‘H3K9me3’
Modi of H As Pos 352 (1.83 %) ‘methylation of H3K9’
Modi H As Pos 214 (1.11 %) ‘methylated H3 lysine 9’
H Modi and Modi 175 (0.91 %) ‘H3 methylation and acetylation’
H Modi As Pos 158 (0.82 %) ‘histone 3 methylated K9’
H As Modi 120 (0.63 %) ‘H3 lysine methylation’
H As Pos 108 (0.56 %) ‘H3 lysine 9’

Table 5.13: Patterns of the 10 most often occurring histone modifications encode how they
are described in text. Given are pattern type, frequency, relative amount in %,
and example terms. Abbreviation definitions:
H: Histone type,
As: Amino acid type,
Pos: Position of the amino acid,
Modi: Type of modification.

that different article numbers are retrieved when using varying query terms, because they
are split into its word fragments and searched by co-occurrence. This could furthermore
lead to false positive documents provided to the user.

To demonstrate the advantage of both developed histone modification recognition ap-
proaches combined with the term canonicalization process, the document retrieval was
tested on complete MEDLINE. From the obtained recognition results the article identifiers
from MEDLINE, which are PMIDs, were collected, unified and counted for every cano-
nicalized histone modification concept. Table 5.14 presents the number of obtained articles
for some frequently described histone modifications concepts when employing the listed
terms in a PubMed query or using the canonicalization results of the CRF-based system and
the dictionary-based system ProMiner incorporating HmodDict.

As the number of retrieved articles for the selected histone modification concepts clearly
shows, all developed approaches considerably outperform the document search from
PubMed. For instance, when searching PubMed for the term ‘H3K9me’, the number of
documents provided is only a small fraction – 4.9 % – compared to number of articles ob-
tained with the best performing term recognition approach ProMinerHmod combined with
the term canonicalization procedure. It demonstrates the high potential of the developed
system.

Now it is also possible to retrieve and analyze published articles from MEDLINE that
imply information on histone modifications in respect of publication year. For the first
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Modification
type

PubMed
search

CRF ProMinerHmod

I. model E. model

H3K9me 18 231 285 368
H3K4me 10 173 208 241
H3K4me3 92 104 171 190
H3K9me3 55 90 120 124
H3K9me2 61 80 113 145

Table 5.14: Number of articles from MEDLINE (version from December 2008) obtained for
some selected histone modifications retrieved by a PubMed search, with CRFs
using the initial (I.) and extended (E.) model (before and after active learning) for
term recognition or ProMinerHmod. The recognized terms were canonicalized by
the workflow described in Section 5.2 above.

time this provides a global picture of the histone modification research history based on
literature, which was not possible to analyze before. Figure 5.8 shows the result of the
investigation depicting the distribution of the accumulated publication number for single
selected modification types that have been released during a time span of 1962 and 2008.
Concepts that do not describe modifications were omitted.

The array of curves shows quite different publication rate distributions for single histone
modification types in the last 46 years. In general, the publication rate on unspecific histone
modification descriptions is much higher compared to specific ones in this period. The
highest number of publications and a similar curve progression was observed for descrip-
tions on the acetylation and phosphorylation of histones in the time span from 1965 to
1995. Subsequent, the publication rate for Hac has risen much stronger since 1995. In this
year enzymes of the class histone acetyltransferases (HATs) have been isolated that are
responsible for the acetylation of histone’s lysine residues [Kimura et al., 2005].

In comparison, the fraction of publications on specific histone modifications that specify
the amino acid, its position and the type of modifications is much smaller. However, an
increase in publication number can also be observed for these modification types within the
last 12 years. This could be due to progress in experimental methods that made it easier
to analyze histone modifications by high throughput methods. On the other side, since
abstracts have been analyzed for this study they might not represent the information of the
complete publications. Hence more specific histone modification types could have been
identified if the publications would be available as full text.

5.5.3 Application of the Histone Modification Finding Results

As discussed in Section 3.3 visualization is still an open area of research in text mining for
making the contents of large document collections easier to navigate, which hence supports
an easier finding of interesting information.
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Figure 5.8: Distribution of the accumulated publication number for selected histone modifi-
cation concepts from 1962 – 2008.

Information Retrieval Improved by Named Entity Identification The hierarchical orga-
nization of histone modification concepts which are linked to their denominations in text
and its graphical presentation provides a good possibility to accomplish this task. Every
concept node in the hierarchy is related to corresponding entities identified in the utilized
text corpus. Furthermore, it provides identified entities of its subnodes by default. This
allows for semantic histone modification search at different levels of granularity and for the
confinement of articles to be considered for document retrieval.

Adequate to the integration of NER recognition results of chemical entities into SCAIView,
histone modification concepts identified in articles of MEDLINE have been included into
SCAIView. Hence, the filtering of large text corpora for articles that contain histone modifi-
cations is now possible at a semantic level. This can be realized by selecting all or specific
concepts of the provided histone modification hierarchy and a query term. Furthermore,
the text corpus can be filtered for further entity types, like diseases, chemicals, genes or
proteins. This additionally specifies the search and might reduce the number of articles to be
investigated.

An exemplary application scenario is the investigation of histone modifications related to
diabetes – an onset disease appearing in adulthood and already used for the application of
chemical entities in Section 4.1.4. SCAIView provides those modification concepts which
are probably highly connected to the selected disease. This is shown by a list of histone
modification concepts ranked according to their relative entropy. Thus one obtains a good
overview on histone modification concepts relevant in a certain defined subfield. Since
entities are related to respective MEDLINE articles the huge amount of articles are filtered
at the same time so that only relevant articles related to the query are provided to the user.
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Figure 5.9: Screenshot of SCAIView showing histone modification entities that are related to
diabetes. The disease term was used as query.

Figure 5.9 at page 181 illustrates the obtained result.
Histone modifications related to diabetes that emerged are almost of the methylation type

of the amino acids lysine and arginine at histone 3 on several N-terminal protein sequence
positions. As epigenetic chromatin marks can be related to gene repression or activation,
their changes at certain chromatin positions in certain cell types might result in a stable
expression pattern change of several genes. For more specific information the articles sorted
according to the modification types have to be studied. In the document view proteins
and genes, drugs, etc. can be highlighted, providing a fast overview on further described
biomedical entities. As an example, the publication of [Villeneuve et al., 2008] is shown in
Figure 5.10. Here, the proteins TNF-alpha, a cytokine involved in systemic inflammation,
HP1 alpha, a fundamental protein in heterochromatin formation, and SUV39H1, a H3K9me3
methyltransferase, are highlighted.

The application example illustrates how the result of the histone modification identification
in text in combination with the generated concept hierarchy can be utilized in advanced
document retrieval systems like SCAIView.

Co-occurrence Network Construction based on Named Entity Identification A ques-
tion which can be answered with the developed system is which diseases, genes, and proteins
have been predominantely investigated in relation to histone modifications. Scientific arti-
cles, such as those provided by MEDLINE, embody an answer in form of discussed research
results, reviews, etc. However, it is not easy to obtain, because information on diseases
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Figure 5.10: Selected example MEDLINE article provided by the document view of SCAIView.
The respective histone modification concept H3K9me3, proteins and genes are
highlighted.

and proteins related to epigenetic mechanisms is scattered over a large pool of natural
language data. The analysis of this huge text collection can be supported by Named Entity
Recognition whose results are leveraged to build a co-occurrence network for visualizing the
extracted data. It is based on the hypothesis that entities which co-occur in the same article
or sentence are functionally linked. Potentially interrelated entities from articles of diverse
subfields are collected, pair-wise occurrences determined and included into a graphical
representation. As this is a simple technique, it has been widely used for analyzing textual
data [Rodriguez-Esteban, 2009]. Such a network allows to identify those entities – network
nodes – that posses a high connectivity to other entities (also called hubs [Barabási and
Oltvai, 2004]).

The co-occurrence network construction was performed by following procedure: histone
modifications, human proteins or genes, and MeSH terms of the MeSH subhierarchy C
as well as parts of G and F, that were recognized and identified with ProMiner, were
utilized to generate three independent article-entity type indexes. The three obtained entity
type indexes were utilized to build up network connections of histone modifications with
proteins/genes or diseases if at least one or more of every entity type co-occurred in the
same article. This constraint should decrease the probability that a histone modification
is related to both a protein and a disease only by chance. The number of co-occurrences
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between a histone modification h and a protein/gene or a disease term (denoted as pd)
was determined, which is called h(pd)Tri here. For normalization the frequency of all co-
occurrences between a histone modification and a protein/gene or disease, h(pd)Di, was
taken. Here only two entity types were needed to be found in the same article as constraint.
The found entities were utilized to establish a histone modification protein/gene, disease
co-occurrence network, whereas the computed ratio R (cf. Formula 5.1) was taken as one of
two constraints for filtering and generating a subnetwork.

R = h(pd)Tri
h(pd)Di

(5.1)

The basic network is shown in Figure 5.11 (a) and the filtered subnetwork in (b) (cf. next
page). The latter excludes those entity relations with R < 0.3 and h(pd)Tri < 4 for obtaining
a sufficiently clear network.

The analysis of subnetwork revealed that all entities are interrelated. Acetylated histones
4 and 3 as well as phosphorylated histone H2A.X are related to many proteins/genes and
diseases, thus constituting the hubs in the network. A list of the most highly connected
entities of the network are shown in Table 5.15. Short descriptions of its molecular or
biological roles are given as well.

As can be seen, the highly connected entities of the subnetwork illustrate that most textual
data are related to research in cancer. Histone modifications with elevated connectivity
are less specified. They are involved in the transcription activation of genes in general
or mechanisms responsive to DNA damage. The high connectivity of cancer types and
molecular mechanisms that point to the damage of DNA suggest a complex epigenetic
mechanism. According to the general view, the found genes and proteins are linked to
the development of cancer. However, for identifying its role respective to the chromatin
modification machinery more detailed literature studies have to be conducted and further
information, like pathway or protein interaction data should be added.

For identifying the most prevalent disease classes of the network, the MeSH hierarchy
superclasses of every found MeSH disease term was obtained and the frequency of respective
superclass occurrences was determined. The list of the most often emerging superclass terms
are shown in Table 5.16. It further revealed that the most prevalent disease of the network
belongs to the class of neoplams. Both findings, the prevalent histone modification related
to gene expression regulation and the main found disease, reflect the fact that epigenetic
mechanisms are involved in the development of cancer [Esteller, 2007]. On the other side it
might also reflect that most research related to epigenetic mechanisms and disease was done
in the field of cancer. Nevertheless, the collection of MeSH disease terms also demonstrates
that epigenetic phenomena are related to many different disease classes and might thus be
involved in the development of many diseases.

Subsequently, an enrichmet analysis of Gene Ontology terms that are related to the network
proteins/genes was performed to obtain an insight into the their molecular function and
related biological processes. Therefore, the obtained protein/gene list was analyzed by
GOEAST [Zheng and Wang, 2008]. They use a hypergeometric test to identify significantly,
species-specifically enriched GO terms among a given list of genes. As background they
utilize GO terms of probes available on species-specific microarrays from diverse platforms of
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(a) Complete network

(b) Subnetwork

Figure 5.11: Network of co-ocurring histone modifications, proteins or genes, and diseases
extracted from MEDLINE articles generated with Cytoscape [Shannon et al.,
2003]. Histone modifications are depicted as red ellipses, human proteins or
genes as green diamonds, and diseases as red rectangles. In (a) all relations are
shown, (b) presents the same network that was filtered and shows only those
co-occurring entities with R > 0.3 and h(pd)Tri > 3.184
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Relations
to other
entities

Entity Molecular and biological role

85 H4ac Gene activation (A)
81 H2A.Xph In chromatin micro-environment of DNA double-strand

breaks caused by ionizing or UV irradiation (B)
71 H3ac Gene activation (A)
28 H3ph Gene activation (A)
20 Neoplasms
14 DNA Damage
10 H1ph Chromatin decondensation (K)
9 H3S10ph Gene activation (A)
9 Mammary Carcino-

mas, Human
8 Leukemia
7 H4K20me3 Heterochromatin formation and gene silencing (C)
7 H3K9me Heterochromatin formation and gene silencing (C)
7 H2Aph In chromatin micro-environment of DNA double-strand

breaks caused by ionizing or UV irradiation (D)
7 TP53 Transcription factor, inductor of apoptosis, tumor sup-

pressor, works together with CDKN1A (E)
6 Prostatic neoplas-

ms
6 HIST4H4 Encodes histone H4 protein
6 H2AFX Encodes histone H2A protein variant
6 Genome Instability
6 H2A.XS139ph In chromatin micro-environment of DNA double-strand

breaks caused by ionizing or UV irradiation (D)
5 H3K27me3 Heterochromatin formation and gene silencing (C)
5 MAPK14 MAP kinase, responsive to stress stimuli, involved in

cell differentiation & apoptosis (I), phosphorylates TP53
(F)

5 Hereditary
Retinoblastoma

5 DNMT1 Maintenance DNA methyltransferase, co-operating with
histone modifications in gene silencing (G)

5 CDKN1A Kinase, cell cycle regulator, tumor suppressor (E)
5 CASP3 Caspase, important role in apoptosis (H)

Table 5.15: Number of co-occurrence relations between histone modification types and pro-
teins, genes or diseases of the subnetwork. The biological role of histone modifi-
cations and proteins are given. References: (A) [Lo et al., 2004, Zippo et al., 2009],
(B) [Rogakou et al., 1998, Hanasoge and Ljungman, 2007], (C) [Richards and Elgin,
2002, Kourmouli et al., 2004], (D) [Rogakou et al., 1998, Hanasoge and Ljungman,
2007], (E) [el Deiry et al., 1993], (F) [Lafarga et al., 2007], (G) [Robertson, 2002],
(H) [Soung et al., 2004], (I) [Bulavin et al., 2001], (K) [Sarg et al., 2006]
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Frequency MeSH term superclass

45 C04 Neoplasm
16 C06 Digestive System Diseases
12 C23 Pathological Conditions
9 C08 Respiratory Tract Diseases
8 G05 Genetic Phenomena
7 C15 Hemic and Lymphatic Diseases
7 C13 Female Urogenital Diseases and Pregnancy Complications
6 C20 Immune System Diseases
6 C18 Nutritional and Metabolic Diseases
5 C10 Nervous System Diseases
3 C16 Congenital, Hereditary, and Neonatial Disease and Abnormalities
3 C12 Male Urogenital Diseases
2 C21 Disorders of Environmental Origin
2 C19 Endocrine System Diseases
2 C17 Skin and Connectivity Tissue Diseases
2 C14 Cardiovascular Diseases
2 C11 Eye Disease
1 C01 Bacterial Infections and Mycoses

Table 5.16: Frequency of the most occurring MeSH superclasses that are related to found
MeSH terms in the generated co-occurrence network.

Affymetrix5, Illumina6, and Agilent7. GOEAST corrects the raw P-values with the Benjamini-
Yekutieli method [Benjamini and Yekutieli, 2001] by default. The obtained GO terms were
filtered to exclude the Molecular component part of the Gene Ontology and the two highest
levels of Molecular function and Biological process GO parts because of their low information
content. For lack of space only the first 38 most significant GO terms and respective p-values
are provided in Table 5.17. The extended GO term list can be found in the Appendix B.1.

The enriched GO terms contain information about molecular mechanisms which confirm
the picture of the most present disease and genetic mechanisms – cancer and DNA damage –
in the network. Most of the over represented terms are related to cell proliferation regulation
and stress responses. Additionally, a high amount of significantly enriched GO terms belong
to metabolic process regulation which points to the known fact that an altered metabolism is
a further essential hallmark of cancer cells [Kroemer and Pouyssegur, 2008].

The chosen example demonstrates the value of Named Entity Recognition and Identifi-
cation. It shows how co-occurrence relations of entity mentions found in text can help to
obtain a literature-wide view on present research in a selected field, like epigenetics. The

5http://www.affymetrix.com/estore/
6http://www.illumina.com/
7http://www.home.agilent.com/agilent/home.jspx?cc=US&lc=eng
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GO term p-value

regulation of cell cycle 8.62e-46
negative regulation of cellular process 9.72e-37
positive regulation of cellular process 1.06e-36
cellular response to stimulus 4.09e-36
regulation of cellular process 3.24e-35
regulation of metabolic process 7.23e-35
regulation of apoptosis 1.20e-33
response to stress 1.60e-33
regulation of programmed cell death 1.84e-33
regulation of cell death 2.70e-33
protein binding 6.04e-33
cellular response to stress 1.80e-32
DNA metabolic process 1.89e-31
response to DNA damage stimulus 7.16e-31
positive regulation of metabolic process 9.54e-31
positive regulation of cellular metabolic process 1.07e-30
cellular macromolecule metabolic process 3.65e-30
regulation of cellular metabolic process 3.81e-30
cell cycle 3.99e-30
regulation of macromolecule metabolic process 2.16e-29
regulation of cell proliferation 4.59e-29
positive regulation of macromolecule metabolic process 6.84e-29
regulation of nitrogen compound metabolic process 1.09e-27
cell cycle process 3.46e-27
cell cycle checkpoint 4.33e-27
positive regulation of nitrogen compound metabolic process 5.14e-27
response to abiotic stimulus 8.63e-27
response to stimulus 1.06e-26
negative regulation of cellular metabolic process 1.07e-26
regulation of DNA metabolic process 1.78e-26
chromosome organization 1.89e-26
negative regulation of metabolic process 3.80e-26
regulation of primary metabolic process 5.76e-26
organelle organization 8.60e-26
response to radiation 2.14e-25
response to chemical stimulus 2.45e-25
regulation of mitotic cell cycle 4.76e-25
DNA damage response, signal transduction 5.18e-25

Table 5.17: Most significant Gene Ontology terms of the subontologies Molecular function
and Biological process related to proteins and genes in network. Respective
p-values obtained by an enrichment analysis via GOEAST are given. (Due to
space only 38 terms are given. The longer list can be found in the Appendix B.1)
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combination with further related information, like the annotation classes of proteins and its
analyses, allows for getting a fast and more detailed insight into the respective area. How-
ever, a drawback of this technique is the omission of relation types between entities which
carry more detailed information and the disregard of negation of relations between entities,
which could lead to false positive findings. Nevertheless, co-occurrence networks can be
used for getting an overview on a subfield or as starting point for further investigations, e.g.
for identifying new research topics. The integration with further data, like pathway infor-
mation, can lead to the generation of new hypotheses which drive research in new directions.

5.6 Summary and Discussion

The goal of the third task was to develop a system for recognizing histone modification
descriptions in text and to map different representations to one canonical term form. Since
there was no terminology available ready to be used in a dictionary-based approach, the
state-of-the-art machine learning based NER method Conditional Random Fields has been
chosen. Therefore, three corpora were annotated from which one was utilized as training
corpus to obtain an initial CRF model. This was tested on the other two evaluation corpora
yielding good recognition results. To test if the performance can be increased by selective
extension of the training corpus it was extended by the active learning technique. With the
extended final model a further improvement of the approach could be obtained leading to a
high performance with a precision of 0.93 and recall of 0.81.

As authors seldom consider the devised Brno nomenclature for histone modification
descriptions in scientific text, a procedure was developed and implemented for mapping
different term variants and synonyms of individual histone modification concepts to defined
term representations. The canonicalization was realized by transforming the information
provided by the recognized terms to canonical term forms which follow the definition of the
Brno nomenclature. Therefore, a program was implemented which consist of consecutively
arranged rule sets that check the terms for defined information units. Additionally, the
workflow removes false positive recognized terms. The performance, measured by the
fraction of correctly transferred terms, was shown to be high. 96 % and 98 % of the two
manually transformed term sets were automatedly transformed correctly. The mapping
of different term variants to one representative concept denomination is of high value for
the improvement of retrieval systems which is discussed below. However, long terms
exhibiting wrong boundaries that were recognized by the CRF model provide a limitation of
the canonicalization process. This is caused by the fact that the transformation rule sets were
developed from histone modification terms of the annotated training and testing corpora
which possess correct term boundaries. Two procedures could lead to an improvement:

a) The annotation of more training data used for the generation of the CRF model which
could hence lead to a decrease of the recognition of terms with wrong boundaries and

b) A further adaption of the canonicalization process.

The latter one might require less efforts than the first one, because it is not clear how much
training data is needed to reduce the number of terms with wrong boundaries.
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A further advantage of the term mapping procedure is the possibility to generate a syn-
onym dictionary in a straight forward way. Therefore, terms recognized with the CRF served
as synonym source for the generation of the term list to be included into a dictionary-based
NER method like ProMiner. This experiment was conducted because it was shown that
the CRF-based approach has the weakness of not finding every modification term in the
document collection, although it was given in the training data. In contrast, dictionary-based
approaches are expected to find the given terms in every case. Hence, ProMinerHmod and the
CRF approach were run on complete MEDLINE and the number of entities obtained by the
subsequent canonicalization procedure were compared. It could be demonstrated that the
dictionary-based approach leads to more canonicalized histone modification entities than
the CRF-based method. Hence, for obtaining more reliable results the ProMinerHmod should
be preferred when a term source is available or when a term list can be generated. However,
it has the disadvantage that newly coined terms are not covered by the present dictionary
version. Thus, the dictionary generation procedure has to be repeated from time to time.

The results obtained by the procedures described above have been included into the
knowledge discovery system SCAIView. To allow semantic search at different levels of
granularity a histone modification concept hierarchy was added to SCAIView as well. It
was assembled from diverse resources, as the investigation of considerable ontologies and
thesauri like Gene Ontology and MeSH revealed that there is no single comprehensive
resource available. The concept hierarchy implies 462 concepts at 7 levels of granularity. To
automatedly support its prospective extension with new modification concepts appearing in
text, an expansion procedure was developed. It proposes new concepts for manual selection
and inclusion into the present hierarchy. They are based on terms extracted from text, trans-
formed to standard term forms and sorted by its frequency.

By means of several application scenarios the value of the newly developed systems
was demonstrated. In the first application the occurrence of histone modification concepts
in MEDLINE and the arrangement of typical information units implied in the recognized
terms have been investigated. These were histone, modification, position, and amino acid
displayed as information unit patterns. It revealed that most publications in MEDLINE

deal with the acetylation, phosphorylation and methylation of histones in general. This
is followed by methylations of lysines at several histone tail positions. This information
content is also reflected by the frequency of corresponding information unit patterns of the
terms.

The second utilization dealt with the retrieval of documents covering information on
selected histone modification concepts. Therefore, the number of retrieved articles from
MEDLINE obtained by a PubMed search or the collection with the new approaches were
compared with each other. It was shown that a PubMed query could by far not retrieve that
many articles with the query term following the nomenclature as was identified with the
newly developed system. It thus allocates more comprehensive information to a researcher
than PubMed. Furthermore, for the first time a historical analysis of the publication rate per
year for every histone modification type over the last five decades is possible. It illustrated
the high increase of publication for some general histone modification descriptions, like Hac
and Hph and most of the more specific types in the period from 1995 to 2000.
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The application of the histone modification hierarchy and recognized concepts in a knowl-
edge discovery system like SCAIView was illustrated by a further scenario. It demonstrates
the improved navigation, retrieval, and analysis of documents from a large text corpus.

In a fourth scenario the generation of a co-occurrence network consisting of histone
modifications, proteins/genes and diseases is described. It demonstrates the high relation of
epigenetic mechanisms to cancer-related diseases and DNA damage. However, the network
analysis also revealed that histone modifications are connected to many diverse diseases
classes. The co-occurrence network show that information visualized this way can be used
for getting an overview on a subfield. Futhermore, it can be utilized as a starting point for
further investigations. Together with the integration of additional data to this network, such
as pathway information, it can lead to a better understanding of the linkage of epigenetic
mechanisms with cellular processes and the generation of new hypotheses which drive
research in new directions.

In summary, the developed approaches support the improvement of information retrieval
in the field of epigenetics. Furthermore, they build the basis for further information extrac-
tion tasks that harness the wealth of information contained in scientific articles. It can be
used to generate networks including histone modifications, proteins/genes and diseases for
finding new interrelations between them that were hidden in text so far. Additionally, it can
support the assembly of structured information resources, like databases, that are based on
scientific findings on histone modifications residing in text.
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Chapter 6

Conclusion and Perspectives

6.1 Conclusion

In this thesis a framework was developed that supports the aggregation of function an-
notation information on chemical entities from structured and unstructured resources. It
comprises two challenges: the recognition and identification of chemical entities in text
combined with its mapping to a unique representation and the extraction of related function
information.

The recognition of chemical named entities (NER) and its normalization/identification
(NEI) constitute a basic step to make unstructured natural language text applicable for more
complex information extraction and successive data mining tasks. Therefore, a dictionary-
based method was chosen for the chemical named entity recognition since it easily allows
for entity identification, which is the mapping of different denominations onto one standard
representation. It required the investigation of the terminology that is utilized for the de-
scription chemical molecules and the analysis of respective available terminology resources
to build up a chemical entity dictionary. The terminology was collected from 7 data resources
which provide a different grade of comprehensiveness in the number of chemical entities
and related synonyms. In order to map recognized names of chemical entities to structural
representations and reduce ambiguity in the dictionary, according chemical entities residing
in separate resources were merged. Therefore, InChI and CAS identifiers as well as syn-
onyms were utilized for terminology joining, whereof the challenging synonym merging is
discussed in detail in this work. Furthermore, it was shown that the curation – the processing
of the synonyms – highly improves the performance of the utilized dictionary-based system.
Names of chemical entities recognizable via the dictionary approach ProMinerChem in text
are thus normalizable to single entities as well as structural representations which enables
semantic search in successive information retrieval approaches. The performance of the re-
sulting ProMinerChem is comparable to the dictionary-based approach Peregrine which was
developed by Schuemie et al. [2007] in parallel to this work. It includes a termlist that was
generated from a similar set of terminology resources and thus allows to draw the conclusion
that dictionary-based methods are limited by an upper performance bound. It emerged that
ProMinerChem is well suited for the recognition of the class of trivial names, for which it
achieved the highest recall, whereas in contrast, the system has a low performance in finding
systematic names in text.

To combine function annotation information from literature with those residing in struc-
tured sources, such as chemical content databases a new framework has been established
that enables the excerption of information linked with chemicals from text. Therefore, the
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linguistic conception of hypernymic phrases was utilized to extract phrases which describe
hierarchical relationships between chemical entities and function or property terms. The
framework includes the recognition of chemical named entities as a first step to locate
respective text corpora and to finally filter the obtained results. It could be shown that
function annotation information could be harvested from such phrases in form of terms.
They embody a high percentage of new pharmacological class information not yet applied
as function annotation of chemical entities in comparison to two chosen reference resources;
the database DrugBank and the drug classification system ATC. Concluding, this developed
framework helps to find new annotation information for chemical entities on the basis of
literature data in an automatic way. Furthermore, it supports a faster extension of function
annotation of chemical entities in databases, class hierarchies and ontologies. As the pro-
cedure was developed generic, further entity classes can be annotated in a similar way in
the future through exchanging the chemical named entity dictionary used for the corpus
definition and phrase filtering. Succeedingly, the developed framework was successfully
applied on a large chemical entity set for which respective function annotation terms were
extracted from text.

As pharmacological classification systems used for function annotation of chemical enti-
ties, such as ATC, are incomplete, an automated support of its extension can help to improve
these sources and make them more valuable for pharmacological and biomedical research.
Therefore, it was investigated whether the pharmacological function concepts that were
harvested for the set of chemical entities from text are ample to characterize chemical entities
in order to compare or classify them. Therefore, a novel feature vector was assembled that
specifies chemical entities through pharmacological concepts found in text. It differs from
existing approached fingerprints that are almost exclusively based on structural information
and/or physicochemical properties. It was shown that this new descriptor can be utilized
to successively predict classes of the ATC system for chemical compounds not covered by
this scheme. The ATC class prediction approach was evaluated on a subset of the ATC
system and disclosed a high performance. Thus, it is supposed that the expansion of the
workflow on complete ATC supports its extension by novel chemical instances and would
lower the number of chemical entities that are missing in the classification system on prin-
ciple. This would broaden its scope and would make ATC a more valuable resource for
network studies that are conducted in pharmacological research for example. Conclud-
ing, analog to the work of Campillos et al. [2008] the thesis shows that pharmacological
concepts extracted from textual data provide a valuable source for the comparison and clas-
sification of chemical compounds in order to find new functions for present chemical entities.

As the highly topical and almost all context information on histone modifications resides
in scientific articles in the form of natural language, text is an important resource for build-
ing hypotheses in epigenetic research. Making text accessible to automated information
extraction and retrieval thus helps to find information on histone modifications in a more
elaborate way. For the first time this thesis approached the recognition and identification
of histone modification descriptions in text. Therefore, text itself served as terminology
resource from which histone modification descriptions were extracted via the Machine
Learning method Conditional Random Fields (CRF). The recognized and extracted histone
modification term variants were succeedingly mapped to standard representations following
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nomenclature rules through a novel developed term canonicalization approach. This new
procedure supports the generation of a new histone modification dictionary applicable in
ProMiner. It has been chosen as no other comprehensive terminology resource than text was
available. It was demonstrated that the generation of dictionaries on the basis of extracted
terminology from literature is a successful way, especially for new named entity types
related to newly emerging topics. Furthermore, it would also allow for the completion of
already existing term collections, such as Gene Ontology. The comparison of the recognition
results on complete MEDLINE revealed that the dictionary-based approach ProMinerHmod
outperformed the CRF approach. It found more histone modification descriptions and
also new spelling variants not yet included in the dictionary. In order to structure articles
on histone modifications by different grade of histone modification information a concept
hierarchy was established. Every item in the hierarchy is related to a standard term through
which the hierarchy is connectable to entities found in text. Its integration into a knowledge
management system, such as SCAIView, helps to conduct semantic search for information
related to histone modifications on selectable levels of the histone modification hierarchy.
As SCAIView now newly includes chemical entities, histone modifications, and many other
yet established biomedically relevant concepts and entities identified in text, e.g. proteins,
genes, cell types, diseases, etc., it is possible to conduct complex semantic text queries.
Thus, scientific articles can be retrieved and sifted through in a new way to generate novel
hypotheses in the field of biomedicine.

Concluding, this work investigated techniques to make the enormous amount of natural
language data available in the chemical and biomedical domain amenable for automated
methods. They thus support the improvement of document retrieval, entity annotation as
well as hierarchy extension and ontology generation and thus the finding of new hypotheses,
planning of experiments, etc. which are important to make progress in biomedical and
pharmaceutical research.

6.2 Perspectives for Future Research

The presented thesis revealed several aspects and issues that should be pursued in the future
for improving the performance of the approaches and for tackling unsolved challenges.
Additionally, the developed approaches should be considered for further applications.

The investigation of the chemical named entity recognition with ProMinerChem showed
that this method is not able to recognize the entire chemical named entity space, because
of the limitation of the generated chemical dictionary. For improving the recall of the
chemical named entity recognition further resources should be considered for the extension
of the chemical name dictionary. Additionally, the combination of ProMinerChem with
a complementary machine learning approach, like the IUPAC-tagger, would harness the
advantages of both approaches which hence would increase the overall recall. However, it
implicates the requirement to solve the normalization problem of chemical named entities
recognized with the machine learning approach.

A further challenge that has to be tackled in the future is the resolution of co-references.
Authors often introduce numbers or article-specific abbreviations that refer to systematic or
semi-systematic chemical compound descriptions or specific side groups in scientific articles
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or patents. Therewith authors avoid the repetitive writing of long complicated chemical
names which are usually defined once in a text document. In addition, abbreviations can
be connected with further information residing in tables, e.g. certain properties, or linked
with pictures providing the complete chemical structure or a Markush structure (definition
cf. Appendix A.1). As this demonstrates, information on chemical compounds is not
necessarily exclusively embodied within the textual part of documents. The extraction and
combination of textual and picture information would thus provide improved capabilities to
comprehensively navigate through the large amount of documents on chemical compounds.

Another issue is the facilitation to make textual documents amenable for chemical struc-
ture search methods. Therefore, identified chemical entities in textual documents which are
connected to a machine-readable and structure-searchable format would be made accessible
for structure search engines. This would broaden the document search capabilities and
provide a new dimension for querying and accessing textual information.

In consideration of the chemical’s property information extraction from text performed
with the Hearst phrase pattern matching, it was shown that the obtained concepts imply
new information not applied by the ATC classification scheme. They thus should be used for
the extension of pharmacological drug classification schemes or ontologies by new classes
or concepts. This closes information gaps and is of high importance for approaches that are
based on them, such as network studies.

Methodically, the inclusion of further relation types could lead to the extraction of addi-
tional concepts. Thus, they would augment the space of pharmacological concepts newly
available for qualitative function annotation of chemical compounds. The application of
the approach on complete articles could furthermore result in a higher number of extracted
concepts compared to abstracts. Such an extended approach would enhance the prediction
of pharmacologically classes on chemical compounds and hence the extension of compound
classification schemes by enriching the feature vector with further concepts. Beyond, the
implication of additional pharmacological function concepts from other sources than text
would enlarge the feature space to be considered and could help to handle textual data
sparseness.

Altogether, pharmacological classification schemes extended by further compounds
and/or pharmacological classes would allow more comprehensive analyses of information
on drugs. When applied in network approaches, like performed by Nacher and Schwartz
[2008], chemical entities can be set into a broader context which supports the finding of
possibly new relations between compounds and diseases, pharmacological effects, adverse
events, etc. to support drug repositioning for instance or to get new insights into the mecha-
nism of action. Proteins – components of pathways – could for instance be a bridge between
chemical compounds and histone modifications. Therewith, new insights can be obtained in
the future how environmental factors, like drugs and nutraceuticals, or organisms internal
compounds, like metabolites or hormones, influence the regulation of epigenetic mecha-
nisms. The recognition of histone modification descriptions in text lays the basis for such
studies. As described in the introduction, up to now text is the most comprehensive resource
on histone modifications available as it embodies context information not yet contained in
databases. Thus, the rapid growing number of publications in epigenetics might contain
hidden information which has not been put into an overall context yet. The automated
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exploitation of text for research in epigenetics could help to fill open questions on mechanism
which regulate histone modification insertion and its erasure. Furthermore, text contains
descriptions on affected expression states of specific genes, its chromosomal positions, and
studied cell types, diseases etc. Hence, the implication of textual information in epigenomic
research can help to learn new aspects about the etiology of diseases and to stimulate the
discovery of new agents, which modulate the epigenome in a therapeutic advantageous
manner. On the other side, unexpected environmental toxic and pharmacological agents
might target the class of chromatin modifying proteins or influence signaling pathways, thus
affecting the long-term expression programming of many genes in diverse tissues. Therefore,
research in drug development has to contemplate potential hazards to the epigenome in the
future.

195





Appendix A

Definitions and Data Resources

A.1 Definitions

Tautomer Tautomers are constitution isomers of organic compounds that result by the
relocation of a proton. In solutions where tautomerization is possible, a chemical equilibrium
of the tautomers will be reached, whereas the ratio of the tautomers depends on several
factors, including temperature, solvent, and pH-value [Sykes, 1988]. Figure A.1 shows
examples of basic tautomeric variants.

Figure A.1: The figure illustrates four basic different tautomery types. (It was adapted from
[A1]).

Markush structure A Markush structure is a generalized formula or description for a
related set of chemical compounds. It is named after Eugene Markush (1888–1968), an
American manufacturer of dyes and pharmaceuticals. Markush structures, often provided
by chemical patents, are used to describe compounds comprising substituents at several
positions. Hence, often many thousands of possible compounds are defined in this way [M1,
M2].
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A.2 Data Resources

A.2.1 Data Sources on Chemical Compounds

• Commercial Databases

– CrossFire Beilstein database1 is a large repository for information of over 10
Million organical compounds. Beside structural information stored entities are
associated with chemical and physical properties, bioactivity data, literature
references as well as their environmental fates and reactions.

– CAS REGISTRYSM 2 provided by CAS, is one of the largest databases of chemical
substance providing information back to the beginning of the late 19th century. It
contains more than 33 million organic and inorganic substances which are related
to calculated properties, like physico-chemical information and experimental
property data.

– The World Drug Index3 is an authoritative index for marketed and development
drugs. It contains chemical and biomedical data as well as synonyms for over
80,000 marketed and development drugs. Each record has a chemical structure
and is classified by drug activity, mechanism of action, treatment, manufacturer,
and medical information.

• Freely available Databases

– Kyoto Encyclopedia of Genes and Genomes (KEGG)4 is a composite database
that integrates genomic, chemical, and systemic function information. According
to Goto et al. [1998] is the intention of KEGG to computerize all molecular compo-
nents and the network of molecular interactions to describe, utilize and predict
function aspects of living systems. It comprises two subdatabases containing
chemical structures of most known metabolic compounds KEGG COMPOUND
and all approved drugs in the US and Japan KEGG DRUG [Kanehisa and Goto,
2000, Kanehisa et al., 2004, 2008].

– PubChem5 is part of the NIH Roadmap for Medical

Research6. It focuses on the chemical, structural and biological properties of small
molecules, particularly their application as diagnostic and therapeutic agents.
PubChem consists of three linked databases – PubChem Substance, PubChem Com-
pound, and PubChem BioAssay.

– DrugBank7 is a database about pharmaceuticals and nutraceuticals, that com-
bines detailed chemical, pharmacological and pharmaceutical information, with
drug target information [Wishart et al., 2006]. It was developed to facilitate

1http://www.info.crossfiredatabases.com/
2http://www.cas.org/expertise/cascontent/registry/regsys.html
3http://www.daylight.com/products/wdi.html
4http://www.genome.jp/kegg/
5http://pubchem.ncbi.nlm.nih.gov/
6http://nihroadmap.nih.gov/
7www.drugbank.ca
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in silico drug target discovery, drug design, drug docking or screening, drug
metabolism prediction, drug interaction prediction.

– Human Metabolome Database (HMDB)8 is a database containing detailed in-
formation about metabolites found in the human body, like hormones, disease-
associated metabolites, essential nutrients and signaling molecules as well as
ubiquitous food additives and some common drugs [Wishart et al., 2007]. The
focus lies on quantitative, analytic or molecular-scale information, metabolite
associated enzymes or transporters and disease-related properties.

• Thesauri and Ontologies

– Medical Subject Headings (MeSH)9 is a controlled vocabulary thesaurus from
the National Library of Medicine (NLM)10. It is used by NLM for indexing articles
from the MEDLINE/PubMed database as well as a catalog database for other
media of the library. The terms are organized in a hierarchy to which synonyms
as well as inflectional term variants are assigned. A subset of the MeSH thesaurus
(version 2007 MeSH) covering the chemical category of the MeSH hierarchy
(tree concepts with an identifier starting with a ’D’) was extracted to give one
dictionary of MeSH (referenced further as MeSH-T). Furthermore, NLM provides
a compound list with over 175,000 entries containing synonyms like trivial and
brand names, IUPAC and abbreviations. This was used to generate another
dictionary, referenced further as MeSH-C.

– Chemical Entities of Biological Interest (ChEBI)11 developed at European Bioin-
formatics Institute (EBI) contains 12 000 molecular entities, groups and classes. It
catalogs small molecules, i.e. enzyme substrates and products, atoms, ions, ion
pairs, radicals and other small chemical entities, which are related to the ChEBI
ontology. The objective of ChEBI is to bridge the gap between proteins and small
molecules as well as the correct and to ensure the consistent utilization of unam-
biguous biochemical terminology throughout the molecular biology databases at
the EBI [Brooksbank et al., 2005, Degtyarenko et al., 2008].

A.2.2 Pharmacological Classification Schemes on Chemical Compounds

Anatomical Therapeutic Chemical (ATC) classification system The ATC/Defined Daily
Dose (DDD) system12 was developed in the 70the by the Norwegian Medicinal Depot for
drug utilisation studies. Since 1996, the World Health Organization (WHO) recommends
the ATC/DDD system as an international standard which is updated every year [Ronning,
2001]. The ATC classification system divides drugs into different groups according to the
organ or organ system on which they act and their chemical, pharmacological and thera-
peutic properties. Drugs are classified in groups at following five levels, whereas the same
substance may be assigned to different ATC codes:

8http://www.hmdb.ca/
9http://www.nlm.nih.gov/mesh/

10http://www.nlm.nih.gov/
11http://www.ebi.ac.uk/chebi/
12http://www.whocc.no/atcddd/
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• 1st level: Anatomical main group (e.g.: A ‘Alimentary tract and metabolism’)

• 2nd level: Pharmacological/therapeutic main group (e.g.: A10 ‘Drugs used in diabetes’)

• 3rd level: Chemical/pharmacological/therapeutic subgroup (e.g.: A10B ‘Oral blood
glucose lowering drugs’)

• 4th level: Chemical/pharmacological/therapeutic subgroup (e.g.: A10BA ‘Biguanides’)

• 5th level: Subgroup for chemical substance (e.g.: A10BA02 ‘Metformin’)

The importance of the ATC classification is the possibility of the international compara-
bility, the monitoring of drug utilization to study long term trends and consumption from
various aspects [Skrbo et al., 1999].
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Extended Results

B.1 Extended Result List of the Gene Ontology Term
Enrichment Study from Section 5.5.3

Table B.1: Most significant Gene Ontology terms of the subontologies Molecular function and
Biological process related to proteins and genes in network. Respective p-values
obtained by an enrichment analysis via GOEAST are given.

GO term p-value

regulation of cell cycle 8.62e-46
negative regulation of cellular process 9.72e-37
positive regulation of cellular process 1.06e-36
cellular response to stimulus 4.09e-36
regulation of cellular process 3.24e-35
regulation of metabolic process 7.23e-35
regulation of apoptosis 1.20e-33
response to stress 1.60e-33
regulation of programmed cell death 1.84e-33
regulation of cell death 2.70e-33
protein binding 6.04e-33
cellular response to stress 1.80e-32
DNA metabolic process 1.89e-31
response to DNA damage stimulus 7.16e-31
positive regulation of metabolic process 9.54e-31
positive regulation of cellular metabolic process 1.07e-30
cellular macromolecule metabolic process 3.65e-30
regulation of cellular metabolic process 3.81e-30
cell cycle 3.99e-30
regulation of macromolecule metabolic process 2.16e-29
regulation of cell proliferation 4.59e-29
positive regulation of macromolecule metabolic process 6.84e-29
regulation of nitrogen compound metabolic process 1.09e-27
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GO term p-value

cell cycle process 3.46e-27
cell cycle checkpoint 4.33e-27
positive regulation of nitrogen compound metabolic process 5.14e-27
response to abiotic stimulus 8.63e-27
response to stimulus 1.06e-26
negative regulation of cellular metabolic process 1.07e-26
regulation of DNA metabolic process 1.78e-26
chromosome organization 1.89e-26
negative regulation of metabolic process 3.80e-26
regulation of primary metabolic process 5.76e-26
organelle organization 8.60e-26
response to radiation 2.14e-25
response to chemical stimulus 2.45e-25
regulation of mitotic cell cycle 4.76e-25
DNA damage response, signal transduction 5.18e-25
regulation of nucleobase, nucleoside, nucleotide and nucleic acid
metabolic process

2.85e-24

regulation of cellular biosynthetic process 3.07e-24
negative regulation of macromolecule metabolic process 3.71e-24
regulation of biosynthetic process 4.73e-24
DNA damage checkpoint 5.46e-24
regulation of macromolecule biosynthetic process 8.79e-24
DNA integrity checkpoint 2.10e-23
positive regulation of nucleobase, nucleoside, nucleotide and nucleic
acid metabolic process

5.60e-23

negative regulation of cellular biosynthetic process 6.31e-23
DNA repair 8.45e-23
negative regulation of programmed cell death 1.24e-22
negative regulation of biosynthetic process 1.25e-22
negative regulation of cell death 1.94e-22
negative regulation of macromolecule biosynthetic process 3.09e-22
cell cycle phase 6.89e-22
negative regulation of nitrogen compound metabolic process 7.38e-22
positive regulation of cellular biosynthetic process 1.40e-21
regulation of molecular function 1.60e-21
positive regulation of biosynthetic process 2.54e-21
negative regulation of nucleobase, nucleoside, nucleotide and nucleic
acid metabolic process

6.91e-21

positive regulation of gene expression 8.55e-21
nucleic acid metabolic process 8.87e-21
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GO term p-value

positive regulation of macromolecule biosynthetic process 2.34e-20
negative regulation of cell cycle 2.96e-20
regulation of developmental process 3.21e-20
primary metabolic process 4.86e-20
regulation of gene expression 5.86e-20
signal transduction 9.31e-20
nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 1.18e-19
positive regulation of apoptosis 2.29e-19
positive regulation of transcription 2.43e-19
positive regulation of programmed cell death 2.73e-19
positive regulation of cell death 3.68e-19
response to organic substance 8.38e-19
metabolic process 9.94e-19
intracellular signaling pathway 1.85e-18
regulation of gene-specific transcription 2.64e-18
response to UV 3.74e-18
double-strand break repair 4.86e-18
regulation of transcription from RNA polymerase II promoter 5.12e-18
signal transmission 6.81e-18
interphase of mitotic cell cycle 9.15e-18
regulation of cell differentiation 9.18e-18
regulation of multicellular organismal process 9.45e-18
positive regulation of RNA metabolic process 1.08e-17
transcription activator activity 1.21e-17
cellular nitrogen compound metabolic process 1.22e-17
DNA binding 1.33e-17
response to ionizing radiation 2.05e-17
interphase 2.08e-17
cell death 3.80e-17
death 4.47e-17
regulation of biological quality 4.59e-17
regulation of DNA replication 6.27e-17
regulation of transcription 6.49e-17
positive regulation of cell proliferation 6.92e-17
positive regulation of transcription, DNA-dependent 9.02e-17
negative regulation of cell proliferation 1.07e-16
regulation of cell cycle process 1.23e-16
nitrogen compound metabolic process 1.28e-16
regulation of catalytic activity 2.12e-16
post-translational protein modification 3.88e-16
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GO term p-value

regulation of RNA metabolic process 8.52e-16
DNA replication 1.64e-15
response to drug 1.72e-15
positive regulation of cellular protein metabolic process 1.79e-15
regulation of transcription, DNA-dependent 1.83e-15
response to steroid hormone stimulus 1.85e-15
transcription factor binding 1.94e-15
programmed cell death 2.10e-15
binding 2.20e-15
regulation of phosphorylation 2.43e-15
anti-apoptosis 3.06e-15
positive regulation of transcription from RNA polymerase II promoter 4.14e-15
response to hormone stimulus 4.93e-15
positive regulation of protein metabolic process 5.15e-15
regulation of binding 5.71e-15
regulation of cyclin-dependent protein kinase activity 6.75e-15
regulation of phosphorus metabolic process 7.10e-15
negative regulation of DNA metabolic process 7.52e-15
negative regulation of DNA replication 1.02e-14
regulation of cellular protein metabolic process 1.85e-14
mitotic cell cycle checkpoint 2.95e-14
macromolecule modification 3.28e-14
response to gamma radiation 3.37e-14
positive regulation of developmental process 4.20e-14
regulation of protein metabolic process 4.29e-14
chromatin modification 5.01e-14
response to light stimulus 6.06e-14
response to endogenous stimulus 6.31e-14
signaling pathway 8.82e-14
negative regulation of gene expression 1.05e-13
developmental process 1.18e-13
regulation of growth 1.22e-13
signaling 1.39e-13
transcription regulator activity 1.42e-13
structure-specific DNA binding 1.76e-13
telomere maintenance 1.78e-13
negative regulation of transcription from RNA polymerase II promoter 1.84e-13
protein modification process 1.91e-13
organ development 2.21e-13
mitotic cell cycle 2.43e-13
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GO term p-value

telomere organization 2.56e-13
positive regulation of molecular function 3.62e-13
negative regulation of transcription 7.61e-13
negative regulation of transcription, DNA-dependent 7.97e-13
induction of apoptosis 8.06e-13
cell cycle arrest 8.29e-13
induction of programmed cell death 8.50e-13
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C. Kolářik, M. Hofmann-Apitius, M. Zimmermann, and J. Fluck. Identification of new drug
classification terms in textual resources. Bioinformatics, 23(13):i264–i272, 2007.
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Corinna Kolářik, Roman Klinger, Christoph M. Friedrich, Martin Hofmann-Apitius, and
Juliane Fluck. Chemical Names: Terminological Resources and Corpora Annotation. In
Workshop on Building and Evaluating Resources for Biomedical Text Mining, (6th edition of the
Language Resources and Evaluation Conference), Marrakech, Morocco, 51–58, 2008.
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