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1 Introduction
VLSI1 design is the process of creating the logical and physical representation of highly
integrated circuits, which consist of millions of transistors. Because most underlying
mathematical problems are extremely hard, and instance sizes occurring in practice are
huge, the design of today’s chips cannot be done without automated tools using sophisti-
cated algorithms.

VLSI design starts with logical design, which first specifies the desired logical function
of a chip using a hardware description language like VHDL (IEEE [1994]). This specifi-
cation then is mapped to a set of circuits, which are part of a given library, and a netlist.
A netlist partitions the set of all pins into nets such that all pins in the same net have to be
connected. The library contains standard circuits realizing elementary boolean functions
like AND,OR,NOT etc., as well as macro circuits realizing more complex modules like
adders.

The second part of VLSI design is physical design, which generally is divided into
placement, timing optimization, clock network design, and routing. In the placement step
circuits are placed on the chip area such that they are disjoint and certain objectives are
optimized to ensure that the subsequent physical design steps can be realized well. The
positions of circuits and their pins for example naturally impose a lower bound on the
total wiring length needed to connect all nets (net length). Since placement is done early
in the physical design flow, good estimations on the outcome of later steps are needed to
optimize these objectives efficiently. Brenner et al. [2008] and Struzyna [2010] describe
in detail how placement can be realized well in practice.

The timing optimization step deals with optimization of the timing behavior of the chip
and ensures that all required signal arrival times are met. Timing can be influenced for
example by exchanging circuits with logically equivalent ones having different electrical
properties, or by demanding different kinds of wires for certain connections in the routing
step. A detailed overview of timing optimization is given by Held [2008].

The clock network design step determines how clock signals are propagated from clock
generation circuits to different components of the chip which have to be synchronized,
e.g. storage elements. Arrival time bounds are considered and objectives such as power
consumption optimized. Chu and Pan [2009] give an overview of the basics of clock
network design. An extensive discussion of designing clock networks using trees is given
by Maßberg [2009].

Finally, in the routing step a set of wires connecting the pins of each net is computed.
Wires of different nets need to be disjoint and many complex technology dependent design

1Very Large Scale Integration
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2 1 Introduction

rules have to be satisfied. There are several optimization objectives to consider including
total wire length. Since this thesis focuses on routing, we will go into details in section
1.1.

Each of these physical design steps is covered by the BonnTools (Korte et al. [2007]),
a software package developed at the Research Institute for Discrete Mathematics at the
University of Bonn in cooperation with IBM.

In this thesis we present efficient methods to handle design rules in VLSI routing. Due
to increased lithographical challenges in the manufacturing process of chips with feature
sizes of 32 nm and below, design rules have become more and more complex. Therefore,
it has become very difficult for automatic routing tools to produce results with sufficiently
low numbers of design rule violations. As any remaining violation basically needs to be
fixed manually by the designers, this is, however, a mandatory task for any router used
in practice. We describe in detail how this is achieved for BonnRoute, the routing part of
the BonnTools. The main result is a new module of BonnRoute, called BonnRouteRules,
computing a design rule representation that can be used efficiently in the core algorithms
and data structures of BonnRoute.

We proceed as follows: After introducing the routing problem and the main compo-
nents of BonnRoute, we give an introduction into design rules in section 2.2. The main
part then is section 2.3, where we describe the BonnRoute wiring and distance rule repre-
sentation and explain in detail how a given set of design rules can be mapped to this model.
We also cover how this representation is used efficiently in data structures of BonnRoute
in section 2.4. Finally, in chapter 3 we present experimental results of BonnRoute on
current real world designs. We show that BonnRoute is able to route chips of modern
technologies very well in practice. The approaches developed in this thesis played a key
role in achieving this.

1.1 Routing
Routing is the last major step in the physical design flow. Formally and in its most basic
form it can be defined as follows:

SIMPLIFIED VLSI ROUTING PROBLEM
Instance: An undirected graph G = (V,E) with edge weights w : E → N, a

set N of nets with pins P (n) ⊂ V for each n ∈ N .
Task: For each n ∈ N , find a Steiner tree Tn = (V (Tn), E(Tn)) in G

which connects P (n) and is vertex disjoint from all Tn′ , n′ ∈ N \
{n} such that

∑
n∈N

∑
e∈E(Tn) w(e) is minimized.

Even in this simple form the routing problem already contains NP-hard problems like
the vertex disjoint paths problem (Kramer and van Leeuwen [1984]). In addition to dis-
jointness, in practice there are many restrictions on the wiring of a net by a given set of
design rules, which we will describe in section 2.2. Also note that besides minimizing
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total wire length, there are many other (partly conflicting) optimization goals that can be
considered. Properties like power consumption, signal delay, and production yield are
greatly influenced by routing: For example densely packed wires running in parallel for
a long distance increase coupling capacitance and therefore signal delay and power con-
sumption. Also from a production yield point of view wires that are packed less densely
often are beneficial, although net length may increase. Some Steiner tree topologies and
long detours in critical nets can cause bad timing results and can make an entire routing
unusable. Achieving timing closure, i.e. obtaining a routed design satisfying all signal
arrival time constraints, often is an iterative process where several physical design steps
including routing have to be iterated.

Moreover the instance sizes that occur in practice can be enormous. Often millions
of connections in a graph with billions of vertices have to be computed within a few
hours. Therefore, the routing problem is typically solved in two steps: Global routing and
detailed routing.

In Global routing Steiner trees are computed on a much coarser grid graph while re-
specting edge capacity constraints to avoid congestion. Generally it can be solved much
faster than detailed routing, e.g. by considering it as a resource sharing problem (Müller
[2009]). The result basically is a corridor for each net where the actual connections have
to be realized in detailed routing. Since this limits the search area for connections dras-
tically, one obtains a significant speed up of detailed routing. A key point for successful
detailed routing is that in global routing the available routing space and its usage was esti-
mated accurately and congestion avoided successfully. As global routing to a large extent
already determines the topology of the Steiner tree of each net, it is an important step in
optimizing several routing objectives.

Detailed routing determines the actual wiring within the global routing corridors. In-
stead of directly computing a Steiner tree connecting the pins of each net, most routing
tools iteratively connect two different connected components by shortest paths until the
whole net is connected. Although this does not necessarily lead to Steiner trees of mini-
mum length, it works very well in practice. Because for some nets there may be large dis-
tances to cover, many routing tools use a technique called switch-box routing. The global
routing corridor is divided further into cells, and connections are obtained by comput-
ing and concatenating multiple point-to-point connections within these cells (Hitchcock
[1969]).

Another approach to cover long distances efficiently is to use a track assignment step
between detailed routing and global routing. In such a step basically a net ordering within
the global routing corridors is computed, see e.g. Chang and Cong [2001] and Batterywala
et al. [2002] for details. While this offers possibilities to take properties like electrical
interference (crosstalk) between long neighboring wires into account, one certainly looses
the flexibility that a path search algorithm has.

Generally, one can distinguish between gridded and gridless detailed routing. Gridded
routers restrict themselves to a grid graph and use the shortest path algorithm of Dijkstra
[1959] or variants of it. In newer technologies at least for pin access one actually needs
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a gridless approach. In gridless routing one considers a set of rectilinear obstacles and
solves a shortest obstacle avoiding rectilinear path problem (Lee et al. [1996]).

Finally let us note that it is common practice today only to use wires running parallel
to the x- or y-axis (Manhatten routing). Throughout this thesis we restrict ourselves to
this case. There are, however, some works discussing the benefits of diagonal wires, also
called X architecture. See for example Teig [2002], Chen et al. [2003], and Ho et al.
[2005]. The downside of gridless routing is that wires not aligned to regular grid-like
structures often cannot be packed efficiently and therefore waste routing space.

1.2 BonnRoute

BonnRoute is the routing tool of the BonnTools, a software package for VLSI physical
design developed at the Research Institute for Discrete Mathematics at the University of
Bonn in cooperation with IBM. It consists of a global routing and a detailed routing part.
The global router, mainly developed by Müller [2009], is based on a very general resource
sharing approach and is able to optimize various different objectives like wiring length,
power consumption, and manufacturing yield. It generates provably near-optimum frac-
tional solutions, applies randomized rounding to obtain integrality, and resolves resulting
local congestion with rip-up and reroute techniques. The used algorithms are well paral-
lelized and make the global router extremely fast in practice, even on largest designs.

The detailed router of BonnRoute builds Steiner trees by successively connecting dif-
ferent connected components of each net by a shortest path within the global routing
corridors. Most connections are computed by a very fast, interval-based variant of the
shortest path algorithm of Dijkstra [1959]. It was originally proposed by Hetzel [1998]
and further generalized by Peyer et al. [2009] and Humpola [2009]. Being supported by
fast routing space data structures, it is able to cover even very long distances efficiently
by labeling whole intervals instead of nodes and using a future cost similar to the A∗

heuristic of Hart et al. [1968]. This path search works on a grid-like graph, called track
graph, which ensures that wires can be packed well, and therefore is called on-track path
search. Local conflicts between paths of different nets are resolved by a standard rip-up
and reroute approach.

For pin access, the smaller feature sizes and complex design rules of modern technolo-
gies make an additional, gridless approach necessary. In BonnRoute pin access paths are
precomputed, and their endpoints are used as source and target points for the on-track
path search. In particular, design rule violations and local conflicts between pin access
paths are avoided by construction. This involves solving a shortest path problem with
minimum segment length restrictions, which is done by a variant of Dijkstra’s algorithm
working on an extended Hanan grid (Nieberg [2011]). We will discuss some aspects of
pin access in section 2.5.1.

Note that in contrast to many other routers, BonnRoute does not contain a track assign-
ment step and does not do switch-box routing. Even connections over very long distances
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can be found efficiently by the on-track path search and do not require such steps. Bonn-
Route can optimize objectives like manufacturing yield without using track assignment:
Yield can be optimized in global routing, as well as in postprocessing steps in detailed
routing (Schulte [2006], Bickford et al. [2006]). A more detailed overview of the main
components of BonnRoute is given by Gester et al. [2012].

A recently added part of BonnRoute, the BonnRouteRules module, generates an appro-
priate model of the complex design rules of modern technologies such that the efficiency
of the core algorithms and data structures in BonnRoute is preserved. We will cover this
in detail as a main part of this thesis in section 2.3.





2 Handling Design Rules

A solution to the detailed routing problem must fulfill several design rules in order to
be actually usable in practice. Disjointness of the Steiner trees connecting each net is
not sufficient at all. In modern technologies there are increasingly complex spacing re-
quirements that must be obeyed by the wiring of different nets or even parts of the same
net. Moreover, there are various restrictions on the geometry of wire shapes. The rea-
son behind most of these design rules is to avoid problems in the lithographic production
process. Before a chip can be released to manufacturing it must pass a design rule check
(DRC), i.e. it is not allowed to contain any violation of any design rule. Detailed routing
tools which leave too many of such DRC errors are barely usable in practice, because
fixing DRC errors manually can be a huge amount of tedious work.

The increasing complexity of design rules, and their impact on automatic routing tools
have been discussed in some works, see e.g. Kahng [2003], Gupta and Kahng [2003],
Peyer [2007], and Cho et al. [2009]. An in-depth discussion how to handle such rules,
however, does currently not exist to the best of our knowledge. Most related work strongly
focuses on general manufacturing aware routing. This comprises routing techniques and
post-optimization steps trying to minimize certain types of production errors. A large
interest is currently on the new challenges imposed by the upcoming double patterning
technologies (DPT), see e.g. Tang and Cho [2011] and Ghaida et al. [2011]. We describe
the new kinds of design rules occurring in these technologies in section 2.2.4 and give an
outlook on how they can be handled in BonnRoute in section 2.3.11.

Our primary goal in this chapter is to show how BonnRoute is able to satisfy the most
important design rules of current technologies efficiently such that the resulting routing is
clean enough to be usable in practice. We first focus on distance rules, give an overview
of the reasoning behind them, and define the most important types needed in later sec-
tions formally. We then describe the general concept how wires and minimum distance
requirements are represented in BonnRoute. The main part then consist of showing how
the given design rules are mapped to this model. This conversion is the task of a new
module called BonnRouteRules developed by the author to enable BonnRoute for 32 nm
technologies and beyond. After that we finish this chapter by describing how this model is
actually used in BonnRoute. We propose a new data structure for locating routing shapes
efficiently, and discuss how minimum distance requirements are checked.

7



8 2 Handling Design Rules

2.1 Basic Definitions
We start with some basic definitions needed for the later discussions.

Definition 2.1. We use a three-dimensional cartesian coordinate system as the base coor-
dinate system in BonnRoute. The chip area is a nonempty rectangular cuboid

A := [xmin, xmax]× [ymin, ymax]× [pmin, pmax]

where xmin, xmax, ymin, ymax, pmin, pmax ∈ Z and pmin, pmax even.
Let P := {pmin, . . . , pmax} be the set of planes and Pwiring := {p ∈ P : p even} and

Pvia := {p ∈ P : p odd} the set of wiring and via planes, respectively. For p ∈ P define
Ap := {(x, y, p) ∈ A} as the chip area on plane p.

Each wiring plane p ∈ Pwiring has a preferred direction which is — since we restrict
ourselves to Manhatten Routing — either parallel to the x- or y-axis, i.e. horizontal or
vertical, denoted by dir(p) = hor and dir(p) = ver, respectively. To use routing space
efficiently, most wires run in the preferred direction of their plane. The few and usually
short wires which are running against this direction are called jogs. Preferred directions
of adjacent wiring planes typically are orthogonal to each other for several reasons. First,
this reduces the risk of electrical interference (crosstalk) between close long parallel wires
on adjacent planes. Second, it reduces the number of connections between two adjacent
wiring planes (vias) needed to run in orthogonal direction without using a jog.

Besides the base coordinate system there is the track coordinate system in BonnRoute.

Definition 2.2. For each wiring plane p ∈ Pwiring we have a non-empty set of track
coordinates Tp = {t1p, . . . , t

|Tp|
p } and for convenience define Tp := ∅ for all p /∈ P .

Assume that p has horizontal preferred direction, the vertical case is defined analogously.
We require that ymin ≤ t1p < . . . < t

|Tp|
p ≤ ymax and call each set in {[xmin, xmax] × t :

t ∈ Tp} a track on plane p. The set Qp := Tp−2∪Tp+2 = {q1
p, . . . , q

|Qp|
p } is non-empty if p

has at least one neighboring wiring plane, and its elements are called points of interest.
A point (i, j, p) ∈ {1, . . . , |Tp|} × {1, . . . , |Qp|} × {p} in the track coordinate system
corresponds to the point b(i, j, p) = (qjp, t

i
p, p) in the base coordinate system. We also call

b(i, j, p) an on-grid point.
We say that we have uniform tracks with pitch dp ∈ N on plane p if and only if ti+1

p −
tip = dp for all i = 1, . . . , |Tp| − 1.

An example of the track coordinate system is shown in figure 2.1.
Almost all of the wires generated by BonnRoute will run on tracks. This allows efficient

packing of wires and avoids many design rule violations by construction. Generally, off-
track wiring will only be used to access certain pins, which we cover in section 2.5.1.

Definition 2.3. For closed sets A,A′ ⊆ R2, we define

dist(A,A′) := min {‖a− a′‖2 : a ∈ A, a′ ∈ A′} .

Moreover we denote the interior of A by A◦.
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pitch dp

pitch dp+2

Figure 2.1: Tracks on wiring planes p and p + 2 (black lines) and the resulting on-grid
points (black dots).

The space occupied by objects relevant for detailed routing, i.e. wires, pins and block-
ages, can be represented by a set of shapes.

Definition 2.4. A shape is a 6-tuple s = (x1, y1, x2, y2, p, c) with x1, y1, x2, y2 ∈ Z, p ∈ P ,
c ∈ N defining an axis parallel rectangle A(s) := [x1, x2] × [y1, y2] ⊂ R2. We call c the
shape class of s, and s a shape on plane p.

Remark. As minimum distance rules in BonnRoute will be defined between shape classes,
the set of shapes with the same shape class builds an equivalence class in the sense that
all of them have the same spacing requirements to other shapes. We will discuss this in
detail in section 2.3.

Definition 2.5. Let s = (x1, x2, y1, y2, c, p), s
′ be two shapes on plane p. Let S, S ′ be sets

of shapes, and d ∈ {north, east, south,west}. We define:

(i) x1(s) := x1, y1(s) := y1, x2(s) := x2, y2(s) := y2, p(s) := p, c(s) := c.

(ii) |s|hor := |x2(s)− x1(s)|, |s|ver := |y2(s)− y1(s)|

(iii) Ihor(s) := [x1(s), x2(s)], Iver(s) := [y1(s), y2(s)]

(iv) edge(s, d) :=


{(x, y) ∈ A(s) : y = y2(s)} if d = north

{(x, y) ∈ A(s) : x = x2(s)} if d = east

{(x, y) ∈ A(s) : y = y1(s)} if d = south

{(x, y) ∈ A(s) : x = x1(s)} if d = west

(v) A(S) :=
⋃
r∈S A(r)

(vi) dist(s, s′) := dist(A(s), A(s′))

(vii) dist(S, S ′) := dist(A(S), A(S ′))
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(viii) s, s′ intersect if and only if A(s) ∩ A(s′) 6= ∅.

Definition 2.6. Given an axis parallel line segment l connecting two points (x1, y1, p1),
and (x2, y2, p2) ∈ Z× Z× P , and a shape s with p1 ≤ p(s) ≤ p2, we define the shape

l + s := (x1 + x1(s), y1 + y1(s), x2 + x2(s), y2 + y2(s), p(s), c(s)).

We say that l is running in direction x, y, or z if it is parallel to the x, y, z-axis, respectively.
Analogously we call a line segment l′ connecting two points in R2 horizontal or vertical
if l′ is parallel to the x, or y axis, respectively. We denote the length of such line segments
l, l′ by length(l), length(l′), respectively.

Definition 2.7. A set of shapes S is connected if and only if A(S) is a connected set.

Definition 2.8. We define a rectilinear polygon as a finite sequence e1, . . . , en of alter-
nating horizontal and vertical line-segments (edges) only intersecting at their endpoints
(vertices) which bounds a connected set in R2. If the pairs of intersecting edges are ex-
actly the pairs (ei, ei+1) for i = 1, . . . , n − 1 and (e1, en), we have a simple rectilinear
polygon. A vertex is called convex if it is incident to exactly two edges and their inside
angle is 90◦, otherwise it is called concave.

If for a set of shapes S the area A(S) is bounded by a simple rectilinear polygon
we denote this polygon by plg(S) and say that it is built by S. For a direction d ∈
{north, east, south,west} we define

plg(S)d :=

{
e ∈ plg(S) : ∃Se ⊆ S with e ⊆

⋃
s∈Se

edge(s, d)

}
.

Figure 2.2 shows an example.

s1

s3

s2

e1

e2

e3

e4

e5

e6
e7

e8

(a) (b)

Figure 2.2: In (a) the figure shows a set of shapes S = {s1, s2, s3} (gray) with the polygon
plg(S) = {e1, . . . , e8}, where plg(S)north = {e2, e4}, plg(S)east = {e5, e7},
plg(S)south = {e6, e8}, and plg(S)west = {e1, e3}. In (b) two polygons are
shown which are not simple.
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Remark. Rectilinear polygons which are not simple, i.e. where also non-consecutive
edges can intersect at their endpoints, and where consecutive edges can be disjoint as
in figure 2.2 (b), rarely occur in practice because they often violate certain design rules.
We therefore restrict our selves in this work to simple rectilinear polygons built by a set
of shapes for the sake of clarity.

We call a shape representing a wire we a wire shape. Vias, i.e. wires connecting two
adjacent wiring planes, consist of one shape per intersected plane, i.e. a via bottom shape,
via cut shape, and via top shape.

Definition 2.9. A via definition is a 3-tuple of shapes (vbot, vcut, vtop) on planes p − 1 ∈
Pwiring, p ∈ Pvia, and p + 1 ∈ Pwiring, respectively. Given a line segment v connecting
two points (x, y, p − 1), (x, y, p + 1) ∈ Z × Z × {p − 1, p − 2}, a via definition defines
the bottom shape v + vbot, the cut shape v + vcut, and the top shape v + vtop.

Pins and blockages may consist of several pin shapes, and blockage shapes, respec-
tively.

2.2 Design Rules

2.2.1 Background
Most design rules are caused by limitations in the lithographic production process of inte-
grated circuits. This process is basically comprised of the following steps. First a mask is
produced consisting of a flat piece of quartz with opaque regions corresponding to the de-
sired layout on some specific plane but several times larger. A projection printer produces
a miniaturized image of the mask, using it like a negative in conventional photography.
For this process a wafer, typically made of silicon, coated with a photosensitive polymer
(photoresist), is precisely aligned to the mask. The wafer is exposed to light through the
transparent regions of the mask, and parts of the polymer react and change their solubility.
These parts are then removed, and the remaining parts of photoresist correspond to the
desired layout. Subsequent production steps like material deposition and etching only are
effective on the parts of the waver uncovered from the photoresist. This process then is
iterated to map each plane of the desired integrated circuit on the wafer. See e.g. Schel-
lenberg [2009] for a more detailed description. Figure 2.3 gives an optical impression of
the result.

Figure 2.3 already shows that the produced structures with their rounded corners differ
from the originally intended, purely rectilinear design. In fact the current manufacturing
techniques are not able to produce an exact image, there always are several distortions. A
significant problem is that, for over ten years now, the feature sizes are much smaller than
the actual 193 nm wavelength used for their manufacturing. This increases distortions
considerably, and therefore clearly reduces the amount of actually functioning integrated
circuits at the end of the production process (yield). Already for feature sizes below
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Figure 2.3: Part of a real chip viewed by an electron microscope (with artificial colors).
One can see wires and pins on lower planes connected by vias (light blue).
(Picture adapted from Peyer [2007])

100 nm, yield would drop to zero without corrective measures. Therefore several resolu-
tion enhancement techniques (RET) are used in practice. One technique called “Optical
and process correction” (OPC) for example means changing the layout to be produced by
anticipating and compensating different kinds of distortions a priori.

As routing is the last major physical design step and determines large portions of the
whole layout to be printed, it has to take problems of the production process into account.
Patterns that, despite aggressive use of RET, cannot be manufactured properly have to be
forbidden. This and the additional space that may be needed for certain OPC operations
gives rise to a large set of complex design rules intending to restrict automatic routing
tools to lithography friendly routing.

In addition to such technology design rules there often are more restrictive user defined
design rules that only apply to certain nets. For timing critical nets, such as clock nets
for example, it is desirable to have wider wires with less resistance and more spacing for
long distance connections in order achieve faster signal runtimes. Also nets with high
signal switching activities might need larger vias and more spacing to neighboring wires
in order to become robust enough and not influence other nets. Therefore in practice each
net has its individual set of design rules that apply to it which may differ from the ones of
other nets. Note that since all design rules have to be satisfied simultaneously, determin-
ing the minimum required distance between the wiring of two different nets for example
requires inspecting the rules of both nets. Moreover most design rules refer to specific
planes, because the manufacturing or electrical properties of these can be different. Typi-
cally objects on higher planes are larger and the technology design rules are less complex
compared to lower planes.
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2.2.2 Distance Rules
We first focus on design rules which specify the minimum distance required between the
wiring of two different nets. In the following we describe the most important types of
such distance rules occurring in current technologies.

On wiring planes minimum distance requirements depend on width and run length:

Definition 2.10. Given a set of shapes S and a point q ∈ A(S), we define the width
width(S, q) of S at q as the maximum edge length of a square contained inA(S) covering
q, i.e. max{|r|hor : r shape with |r|hor = |r|ver and q ∈ A(r) ⊆ A(S)}.

Note that if S = {s} for some shape s we have width(S, q) = min{|s|hor, |s|ver} at
every point q ∈ A(S). We then simply define width(s) := min{|s|hor, |s|ver}.

Definition 2.11. Consider two closed sets A,A′ ∈ R2 and their projections to the x-axis
Ax, A

′
x ∈ R. The horizontal run length rlx(A,A

′) of A and A′ is the maximum length of
an interval in Ax ∩ A′x if this set is non-empty, otherwise we define rlx(A,A

′) := −1.
The vertical run length rly(A,A

′) is defined analogously and most of the time we simply
speak of the run length rl(A,A′) := max{rlx(A,A′), rly(A,A′)} of A and A′.

We often only distinguish between non-positive and positive run length which we de-
note by l≤0 and l+, respectively. Figure 2.4 shows an example.

l≤0

l+
l≤0

Figure 2.4: Horizontal run length for typical sets of wire and via shapes on some wiring
plane (light gray). To indicate via positions the dark gray shapes show the via
cut shapes on adjacent via planes.

Instead of a continuous function of widths and run length a minimum distance rule in
practice is specified in the following restricted form:

Definition 2.12. LetW = {W1, . . . ,W|W|}, L = {L1, . . . , L|L|} be finite sets of disjoint
intervals partitioning N and Z≥−1, respectively, and

D := {dijk ∈ N : i, j ∈ {1, . . . , |W|}, k ∈ {1, . . . , |L|}} .

Define the indicator function of I ∈ {W ∪ L} as

XI(x) :=

{
1 if x ∈ I
0 otherwise.
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A minimum distance rule is a step function δ : N× N× Z≥−1 → D:

δ(w1, w2, l) :=

|W|∑
i=1

|W|∑
j=1

|L|∑
k=1

dijkXWi
(w1)XWj

(w2)XLk
(l)

with the following properties:

(i) δ(w1, w2, l) = δ(w2, w1, l) for all w1, w2 ∈ N

(ii) δ is nondecreasing in each of its arguments.

We refer toW ,L as the set of width intervals and run length intervals of δ, respectively.
In addition we define for convenience

δ(w1, w2, l≤0) := max
l∈{−1,0}

δ(w1, w2, l),

δ(w1, w2, l+) := max
l∈N>0

δ(w1, w2, l).

Definition 2.13. Let S, S ′ each be a connected set of shapes and δ a minimum distance
rule. We say that S, S ′ violate δ if and only if there exist w,w′ ∈ N, l ∈ Z≥−1 such that
for

A := {p ∈ A(S) : width(p, S) ≥ w}
A′ := {p ∈ A(S ′) : width(p, S ′) ≥ w′}.

we have that A and A′ are non-empty, rl(A,A′) ≥ l and dist(A,A′) < δ(w,w′, l).

In practice most minimum distance rules only have a simple run length dependency
in the sense that only a change from non-positive to positive run length may change the
function value:

Definition 2.14. A minimum distance rule δ has simple run length dependency if and only
if it has run length intervals L = {[−1, 0], [1,∞]}, i.e. we have

δ(w1, w2, l) 6= δ(w1, w2, l
′) =⇒ l ≤ 0 ∧ l′ > 0

for all w1, w2 ∈ N, l, l′ ∈ Z≥−1, l ≤ l′.

Considering the polygon built by a set of shapes, there are more restrictive spacing
requirements for certain edges:

Definition 2.15. Given some technology-dependent constant lmax ∈ N, we call an edge
of a rectilinear polygon between two convex vertices an end edge if its length is less or
equal to lmax. All other edges are called side edges.
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Definition 2.16. A line end minimum distance rule is a function δle : {end, side} → N
with the property that δle(side) ≤ δle(end).

Consider two sets of shapes S, S ′ with A(S)∩A(S ′) = ∅ building rectilinear polygons
plg(S), plg(S ′), and let t ∈ {end, side} and d, d′ ∈ {north, east, south,west}. An end
edge e ∈ plg(S)d and a t edge e′ ∈ plg(S ′)d′ satisfy δle if and only if

rl(e, e′) > 0 ∧ {d, d′} ∈ {{north, south}, {east,west}} =⇒ dist(e, e′) ≥ δle(t).

Figure 2.5 shows an example of line end minimum distance rules.

≥ δle(end) ≥ δle(side)

lmax

Figure 2.5: Additional minimum distance required by a line end minimum distance rule
δle for end edges which are depicted in red. All other edges are side edges
because they are longer than lmax or not incident to two convex vertices.

Now we turn to minimum distance rules on via planes. The main difference here is that
the required spacing of two via cut shapes on a via plane depends on both diameters of
the shapes instead only on their widths.

Definition 2.17. Given a via cut shape swe define its cut class by ccut(s) := (|r|hor, |r|ver).

In fact for each via plane p there is only a finite set Ccut
p ⊂ N2 of different cut classes

allowed, i.e for each via shape s on p we must have ccut(s) ∈ Ccut
p .

Definition 2.18. A via minimum distance rule on a via plane p is a function δvp : Ccut
p ×

Ccut
p × {l≤0, l+} → N. Two via cut shapes s, s′ on plane p violate δvp if and only if

dist(s, s′) <

{
δvp(ccut(s), ccut(s

′), l≤0) if rl(A(s), A(s′)) ≤ 0

δvp(ccut(s), ccut(s
′), l+) otherwise.

In addition there are distance requirements even between via cut shapes on adjacent
via planes.
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Definition 2.19. An inter layer via minimum distance rule on via planes p, p + 2 is a
function δivp : Ccut

p × Ccut
p+2 × {l≤0, l+} → N. Two via cut shapes s on plane p and s′ on

plane p+ 2 violate δivp if and only if

dist(s, s′) <

{
δivp (ccut(s), ccut(s

′), l≤0) if rl(A(s), A(s′)) ≤ 0

δivp (ccut(s), ccut(s
′), l+) otherwise.

Remark. Note that for the sake of clarity we described the design rules in this section only
in their most basic form. Some of them occur in practice in even more complex variants.
Minimum distance requirements sometimes do not apply to the shapes directly. Certain
line end minimum distance rules for example can apply to end edges being expanded in
some fashion. Via minimum distance rules sometimes only apply to the centers of cut
shapes. For a more detailed overview of the various kinds of distance rules see Silicon
Integration Initiative [2007]. All the concepts we discuss in section 2.3, however, can be
naturally extended to cover all design rule variants relevant in practice.

2.2.3 Same Net Rules
Besides the minimum distance requirements between the shapes of different nets there are
several restrictions on the wiring of each net considered individually. Such same net rules
generally are difficult to handle in a path search algorithm directly, because they require
an analysis of the polygon built by the shapes of the path at a point of time where it is
still under construction. Many of them have evolved over several previous technologies.
A survey of such is given in Peyer [2007]. In the following discussions we will need only
some basic same net rules such as the the minimum width rule restricting the minimum
possible with of shapes that can be manufactured.

Definition 2.20. A minimum width rule is a pair w = (wx, wy) ∈ N2. A set of shapes S
satisfies w if and only if for every point p ∈ A(S) there exists a shape r with p ∈ A(r) ⊆
A(S) and |r|hor ≥ wx, |r|ver ≥ wy.

Generally two incident short polygon edges are forbidden:

Definition 2.21. A minimum edge rule is a pair r = (l1, l2) ∈ N2. Let S be a set of shapes
building the polygon plg(S). Two incident edges e1, e2 of plg(S) satisfy r if and only if
length(e1) < l1 =⇒ length(e2) ≥ l2.

For vias there also are several rules restricting their bottom, cut and top shapes and in
practice we have a fixed, finite, technology dependent set of via definitions V to choose
from. Moreover for each net we may only be allowed to use a subset of these to satisfy
individual timing or robustness requirements.

Definition 2.22. A valid via rule on a via plane p ∈ Pvia is a set of via definitions Vp ⊆ V
for some fixed technology dependent set of via definitions V.

A set S of shapes satisfies Vp if and only if all via shapes in S are defined by some point
in Z2 and a via definition in Vp.
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2.2.4 DPT Design Rules
Using double patterning technology (DPT) currently seems to be the most practical solu-
tion for manufacturing upcoming integrated circuits with smaller feature sizes than 22 nm
(Tang and Cho [2011]). The problem is that with the extreme ultra violet (EUV) lithog-
raphy still having technical and economical problems, one still has to use 193 nm wave-
length lithography for these much smaller structures.

The idea of double patterning is to use two masks and double exposure to print the
desired rectilinear, polygonal layout on each plane. Given a set S of shapes building
these rectilinear polygons, shapes with distance below some threshold ddp are assigned
to different masks such that the minimum distance between shapes on the same mask
(pitch) is increased, which makes production easier. Note that there are cases where such
an assignment is not possible: The conflict graph of S is an undirected graph GS , with
V (GS) := S and E(GS) := {{s, s′} : s, s′ ∈ S, 0 < dist(s, s′) < ddp}. Then this
assignment to masks can be seen as the problem of finding a two-coloring in G, i.e. an
assignment of two colors (corresponding to the two masks) to the nodes V (G) such that
there are no two adjacent nodes having the same color. Of course, the constraint graph
may not be bipartite, in which case there is no such coloring.

If two intersecting shapes are assigned to different masks this is called a stitch. Note
that of course the set of possible stitches depends on the specific shapes in S. There can
be a set of shapes S ′ 6= S with plg(S ′) = plg(S) such that GS′ admits a two-coloring
with stitches, while GS does not. Figure 2.6 shows an example of colored layouts.

ddp

(a) (b)

Figure 2.6: Two colored configurations of wire shapes. Shapes of equal color must have
a vertical distance of at least ddp. In (a) a complete 2-coloring is shown by
using one stitch (black horizontal line). In (b) it is not possible to obtain a
2-coloring of all the shapes. For example the gray shape cannot be feasibly
colored if the colors of the other segments are fixed as shown.

Stitches, however, can lead to overlay errors in the combined result, i.e. the two in-
tersecting shapes printed with different masks are not sufficiently connected. Therefore
it is desirable to compute a feasible coloring using the minimum number of stitches. If
the given layout is two-colorable, and an eligible shape decomposition providing all nec-
essary stitching positions is computed as for example in Chen and Chang [2010], this
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problem can be solved optimally in polynomial time by reducing it to a min cut problem
in a planar graph (Tang and Cho [2011]).

The harder problem, however, is to actually obtain a two-colorable instance at all. In
current works this problem is either addressed by locally fixing coloring conflicts heuristi-
cally, or by applying linear programming techniques minimizing layout perturbation, see
e.g. Ghaida et al. [2011]. Several other works discuss double patterning friendly detailed
routing to make the coloring instances easier a priori, see e.g. Cho et al. [2008], Yuan
et al. [2009], and Lin and Li [2010].

At the current point of time 14 nm design rules are still under development. It is un-
clear in which cases stitching will be allowed, or if it must not be used at all. Also the use
of jogs, which often are the cause of coloring problems, may become restricted, or even
forbidden completely. What is clear, however, is that minimum distance rules, besides
width and run length, will first of all depend on the colors of shapes. The required mini-
mum distance between equally colored shapes will generally be several times larger than
the one for differently colored shapes. This means that automatic routing tools somehow
must determine a feasible coloring, or at least ensure that one exists. In section 2.3.11 we
will discuss some basic ideas how this can be done in BonnRoute.

2.3 The BonnRouteRules Module
The design rules of modern technologies, some of which we described in section 2.2,
have become very complicated and moreover are specified in a complex environment.
Therefore it is not an easy task to represent them in a way that they can be checked and
fulfilled by an automatic routing tool efficiently.

In particular the way this was done for BonnRoute in technologies up to 45 nm does
not work anymore, because both the design rules themselves and also the way they are
specified changed significantly. One key point necessary in order to enable BonnRoute
for server and ASIC1 designs in 32 nm technology and beyond was to rewrite the overall
design rule handling. The result of this was a new module designed and implemented
by the author, called BonnRouteRules. This module serves as an interface for all design
rules and creates an appropriate representation in which these rules can be handled in
BonnRoute efficiently. The goal of this section is to describe the main aspects of this
module. Several technical details, however, are omitted for the sake of clarity.

2.3.1 BonnRoute Wiring Representation
In order to being able to describe the actual task of the BonnRouteRules module, we need
to introduce the wiring and distance rule representation of BonnRoute. Generally wires
and vias are represented by stick figures, i.e. line segments annotated with a wire type
describing their shape representation.

1Application Specific Integrated Circuit
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Definition 2.23. Let a shape type be an element of Tshape := {pref, jog, bot, cut, top,
above}. A wire type element is a 3-tuple (p, t, o) where p ∈ P, t ∈ Tshape, and o is a
shape on plane p called overhang. A wire type is a finite set of wire type elements (p, t, o)
with the following properties:

(i) @(p, t, o′) ∈ W with o′ 6= o

(ii) p ∈ Pwiring ⇐⇒ t ∈ {pref, jog, bot, top}

(iii) p ∈ Pvia ⇐⇒ t ∈ {cut, above}

(iv) t = cut ⇐⇒ ∃(p− 1, bot, o′) ∈ W ⇐⇒ ∃ (p+ 1, top, o′′) ∈ W

(v) t = above =⇒ ∃(p− 2, cut, o′) ∈ W

The elements of Tshape represent the types of shapes the wire type element will induce
together with a stick figure. It may induce the shape of a wire in preferred direction, a jog,
or some shape of a via. Property (i) of definition 2.23 ensures that there is at most one
overhang shape for each plane and shape type, property (ii) and (iii) define the possible
plane and shape type combinations that make sense, and the remaining properties ensure
the completeness of via shapes that belong together.

Definition 2.24. A stick figure is a pair s = (l,W ), where l is an axis parallel line
segment connecting two points (x1, y1, p1), (x2, y2, p2) ∈ Z× Z× P and W a wire type.
We define l(s) := l,W (s) := W ,

A(s) := {(x1, y1) + λ((x2, y2)− (x1, y1)), 0 ≤ λ ≤ 1} ⊂ R2,

and

x1(s) := x1, y1(s) := y1, x2(s) := x2, y2(s) = y2, p1(s) := p1, p2(s) := p2.

If l is running in z direction, s is a via stick figure, otherwise it is a wire stick figure. If
both endpoints of l are contained in tracks, we say that the stick figure is on-track, and
off-track otherwise.

For convenience we say that s is running in preferred or non-preferred direction, or is
horizontal or vertical, if and only if this is the case for l(s).

The actual shape representation of a stick figure is defined as follows:

Definition 2.25. Consider a stick figure s = (l,W ) on plane p. If s is a wire stick figure,
and W contains the elements (p, pref,mpref) and (p, jog,mjog), then s induces the shape

l +

{
ojog if l is running against the preferred direction of p
opref otherwise.
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If s is a via stick figure connecting two points on wiring planes p and p + 2, and W
contains the elements (p, bot, obot), (p+1, cut, ocut), and (p+2, top, otop), then s induces
the shapes l+obot, l+ocut, and l+otop, called via bottom shape, via cut shape and via top
shape, respectively. If in this caseW in addition contains an element (p+3, above, oabove),
then s additionally induces a fourth shape l + oabove, called via above shape.

For any shape r = l+o induced by s, where w = (p, t, o) ∈ W is the wire type element
used to define r, we also say that s and w induce r.

The first three via shapes mentioned in definition 2.25 correspond to the ones defined
by a via definition (as in definition 2.9). Figure 2.7 shows an example of stick figures and
their induced shapes.

x

y

z

via bottom shape

via cut shape

via top shape

via above shape

(a) via

x

y

(b) preferred direction wire and jog

Figure 2.7: Stick figures (black line segments) and induced shapes (gray).

Each path in BonnRoute is represented by a set of stick figures only intersecting at their
endpoints. We construct wire types such that stick figure connectivity implies sufficient
electrical connectivity of the induced shapes. This means we ensure that if we have a set
of stick figures connecting all pins of a net, the corresponding shapes are an electrically
robust connection of the net.

We define the width of a wire type element on a wiring plane as follows.

Definition 2.26. The width of a wire type element w = (p, t, o) on a wiring plane p with
preferred direction dir(p) = d is

width(w) :=


|o|hor if (d = ver ∧ t = pref) ∨ (d = hor ∧ t = jog)

|o|ver if (d = ver ∧ t = jog) ∨ (d = hor ∧ t = pref)

min{|o|hor, |o|ver} otherwise .

With very few exceptions, which in practice only occur in off-track routing, the wire
stick figures created by BonnRoute will have the following property:

Definition 2.27. A wire stick figure s has feasible length if and only if for the shape r
induced by s and w ∈ W (s) we have width(r) = width(w).
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In BonnRoute determining minimum distance requirements needs to be very fast be-
cause the question whether a wire shape at a certain position satisfies these has to be
answered dozens of times in each path search. We cannot afford a time consuming anal-
ysis of all the properties which design rules depend on, e.g. width and run length of sets
of shapes. Therefore all minimum distance requirements in BonnRoute will only depend
on the shape class of each individual shape. Since minimum distance rules as defined in
section 2.2 actually apply to sets of shapes, this approach is only feasible if we have the
following property:

Definition 2.28. A set of shapes S is width regular if and only if for all p ∈ A(S) we have
width(S, p) = maxs∈S:p∈A(s) width(s).

This means that the width at any point in the area of a set of shapes is uniquely deter-
mined by one of the shapes covering it. Therefore, in this case considering only the width
of each shape covering the point individually when evaluating a minimum distance rule
is equivalent to considering the exact width with respect to the whole set of shapes.

To maintain width regularity and satisfy same net rules, it is beneficial to avoid un-
necessary shape intersections. Generally, we want stick figures only to intersect at their
endpoints, and for each pair of stick figures s, s′ we want their induced shapes to intersect
only if l(s) ∩ l(s′) 6= ∅. In most cases this can be satisfied by simply avoiding unneces-
sary local detours. Therefore, BonnRoute typically only generates sets S of shapes on the
same plane which have the following property: There is no point q ∈ A(S) where a square
Q with edge length width(q, S) and q ∈ Q ⊆ A(S) intersects more than two shapes of
S. Having this property, width regularity of S immediately follows if each subset of two
shapes of S is width regular, which is easy to guarantee:

Proposition 2.29. A set of shapes S with |S| = 2 is width regular if and only if for all
s ∈ S at least one of the following conditions holds:

(i) |Il(s) ∩ Il(s′)| ≤ |s|w

(ii) Iw(s) ⊆ Iw(s′)

(iii) Iw(s) ⊇ Iw(s′)

where {s′} := S \ {s}, w :=

{
hor if |s|hor ≤ |s|ver

ver otherwise,
, and {l} := {hor, ver} \ {w}.

Proof. Let S be a set of two shapes s and s′. For sufficiency we show that each of the
three properties implies that width(p, S) = max{width(s),width(s′)} for all p ∈ A(s).
If (i) or (ii) is satisfied, we clearly have width(p, S) = width(s) for all p ∈ A(s) \A(s′)
and width(p, S) = max{width(s),width(s′)} for all p ∈ A(s)∩A(s′). If (iii) holds, we
have width(s) ≥ width(s′) and width(p, S) = width(s) for all p ∈ A(s).

To show necessity assume that all three properties are violated for s. Since (i) is not
satisfied, we have |Il(s)∩Il(s′)| > |s|w, therefore by violation of (ii) and (iii) there exists
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a p ∈ A(s)\A(s′) and a shape t with |t|hor = |t|ver > |s|w = width(s) and A(t) ⊆ A(S).
This means that S is not width regular.

In section 2.3.2 we will construct each wire type such that all shapes induced by two
intersecting wire stick figures with this wire type always satisfy at least one of the prop-
erties of proposition 2.29. By these measures, sets of shapes which are not width regular
rarely occur in practice. And even if they occur, using the width of individual shapes
instead of the actual width to evaluate minimum distance rules does not necessarily imply
obtaining a smaller minimum distance value. As long as both widths are contained in the
same width interval of the minimum distance rule, the outcome is the same.

Let us now turn to the different kinds of minimum distance rules between shape classes
we currently have in BonnRoute:

Definition 2.30. Let Tdist := {north, east, south,west, hor, ver, eucl}. A shape class
minimum distance rule is a quadruple (c1, c2, t, d) ∈ N × N × Tdist × N describing
the required minimum distance d between a pair of shape classes c1, c2 with respect to
distance type t.

Definition 2.31. Let s be a shape with shape class c(s) = c1 and r = (c1, c2, t, d) a shape
class minimum distance rule. The violation area A(s, r) of s and r is

A(s, r) :=



{p ∈ R2 : dist({p}, A(s)) ≤ d} if t = eucl

{(x, y) ∈ R2 : x ∈ [x1(s), x2(s) + d], y ∈ [y1(s), y2(s)]} if t = east

{(x, y) ∈ R2 : x ∈ [x1(s)− d, x2(s)], y ∈ [y1(s), y2(s)]} if t = west

{(x, y) ∈ R2 : x ∈ [x1(s), x2(s)], y ∈ [y1(s), y2(s) + d]} if t = north

{(x, y) ∈ R2 : x ∈ [x1(s), x2(s)], y ∈ [y1(s)− d, y2(s)]} if t = south

A(s, (c1, c2, east, d)) ∪ A(s, (c1, c2,west, d)) if t = hor

A(s, (c1, c2, south, d)) ∪ A(s, (c1, c2, north, d)) if t = ver

Given another shape s′, we say that s, s′ satisfy r if (c(s), c(s′)) 6= (c1, c2) or

(A(s, r)◦ ∩ A(s′) = ∅) ∧ (c(s′) = c1 =⇒ A(s′, r)◦ ∩ A(s) = ∅)

Otherwise s, s′ violate r.
For two shape class minimum distance rules r, r′ we say that r dominates r′ if and only

if for all shapes s1, s2 we have that s1, s2 satisfy r =⇒ s1, s2 satisfy r′.

An example of the different types of shape class minimum distance rules is shown in
figure 2.8. In section 2.4 we will describe how to identify violations of such shape class
minimum distance rules efficiently.

Note that we usually have multiple different shape class minimum distance rules be-
tween the same pair of shape classes, for example to model minimum distance require-
ments for different run lengths. Given a minimum distance rule δ and any two shapes s, s′



2.3 The BonnRouteRules Module 23

s

A(s, reucl)

s

A(s, reast)

s

A(s, rhor)

Figure 2.8: Area A(s, rt) (red) of a shape s and shape class minimum distance rules rt =
(c(s), c2, t, d) for t ∈ {eucl, east, hor}.

we will represent the minimum distance required by δ with a set R(δ, s, s′) := {r1, r2, r3}
of shape class minimum distance rules, where

r1 :=(c(s), c(s′), eucl, δ(width(s),width(s′), l≤0)),

r2 :=(c(s), c(s′), hor, δ(width(s),width(s′), l+)),

r3 :=(c(s), c(s′), ver, δ(width(s),width(s′), l+)).

In the case of simple run length dependency this is an exact representation:

Proposition 2.32. Given a minimum distance rule δ, we have

s, s′ satisfy δ ⇐⇒ s, s′ satisfy all r ∈ R(δ, s, s′) (2.1)

for any two shapes s, s′ if and only if δ has simple run length dependency.

Proof. Assume δ has simple run length dependency, and let s, s′ be two shapes. If
rl(A(s), A(s′)) ≤ 0, then by definition of simple run length dependency s, s′ violate δ
if and only if they violate r1. If we have rl(A(s), A(s′)) > 0, they violate δ if and only
if they violate r2 or r3. Since in the first case r2 and r3 are always satisfied, and in the
second case definition 2.12 (ii) ensures that r1 can only be violated if r2 or r3 is violated,
we have that s, s′ violate δ if and only if they violate an element of R(δ, s, s′).

To show the converse assume that δ does not have simple run length dependency. Then
there are shapes s, s′ with rl(A(s), A(s′)) ≤ 0 and

d := δ(width(s),width(s′), rl(A(s), A(s′)) 6= δ(width(s),width(s′), l≤0),

or with rl(A(s), A(s′)) > 0 and d 6= δ(width(s),width(s′), l+), which implies that (2.1)
is not satisfied.

In the following sections we describe in detail how we generate wire types, appropriate
shape classes, and shape class minimum distance rules in order to represent a given set of
design rules.
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2.3.2 Generating Wire Types
The most important task of the BonnRouteRules module is to convert for each net its
given set of design rules to an appropriate wire type and a set of shape class minimum
distance rules. In this section we describe in detail how the overhangs of all the wire type
elements are defined. We postpone the construction of shape classes to section 2.3.3.

We begin by defining the set of design rules we consider to be assigned to each net in
the in the input of the module:

Definition 2.33. A rule set is a set R := {Rp : p ∈ P} with

Rp :=


{δp, δlep , wp} if p ∈ Pwiring
{δvp , δivp , Vp} if p ∈ Pvia ∧ p+ 2 ≤ pmax

{δvp , Vp} if p ∈ Pvia ∧ p+ 2 > pmax

where δp is a minimum distance rule, δlep a line end minimum distance rule, wp a minimum
width rule, δvp and δivp via and inter layer via minimum distance rules, respectively, and
Vp a valid via rule.

Let N be a set of nets, R(n) := {Rp(n) : p ∈ P} a rule set for each n ∈ N con-
taining the rules that have to be satisfied by the wiring of n. Let (w̃xp , w̃

y
p) and d̃p be

the smallest minimum width and minimum distance value over the rules of all nets on
plane p, i.e. w̃xp := min{wxp : wp = (wxp , w

y
p) ∈

⋃
n∈N Rp(n)}, w̃yp analogously, and

d̃p := min{δp(w,w′, l) : δp ∈
⋃
n∈N Rp(n), w, w′ ∈ N, l ∈ Z≥−1}. Typically, the design

rules of most of the nets allow actually using wires of these minimum widths having this
minimum distance to each other. Therefore it is natural to use uniform tracks with pitch
w̃yp + d̃p on a wiring plane p if p has horizontal preferred direction, and w̃xp + d̃p other-
wise. If we consider for example two horizontal on-track stick figures s, s′ on neighboring
horizontal tracks, and the shape õp = (0,−b w̃

y
p

2
c, 0, d w̃

y
p

2
e), then the shapes l(s) + õp and

l(s′) + õp have exactly the necessary distance d̃p (if they have positive run length).

Remark. Nonuniform tracks, however, can enable even more efficient routing space usage
by better alignment to regular structures like power connection wires. But even in that
case it is still valid to assume that almost all neighboring tracks have the same distance. An
efficient method to compute routing tracks for optimal routing space usage was proposed
by Müller [2009].

Now let us fix some rule set R := {Rp : p ∈ P} = R(n) for some net n ∈ N . We
will construct a wire type WR with respect to this set of rules. In the following let p be a
wiring plane, and assume w.l.o.g. that it has horizontal preferred direction. The vertical
preferred direction case is analogous.

We create overhang shapes opref and ojog to add wire type elements (p, pref, opref) and
(p, jog, ojog) to the wire type WR. As noted earlier we define the shape classes of these
shapes later in section 2.3.3, and first concentrate on their geometry. These overhangs
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define the shapes induced by stick figures with wire type WR. Therefore, we want to
ensure using as little routing space as possible while satisfying the minimum width rule
wp = (wxp , w

y
p) ∈ Rp. A good measure of routing space usage is the number of blocked

tracks.

Definition 2.34. Assume that we have uniform tracks with track pitch tp ∈ N>0 on a plane
p ∈ Pwiring with horizontal preferred direction. For a shape o on plane p and minimum
distances d1, d2 ∈ N to the south and north, respectively, we define the number of blocked
tracks as

βp(o, d1, d2) :=

{
u− l + 1 if ltp ≤ y2(o)

0 otherwise

where

l :=

⌈
y1(o)− d1 + 1− |y2(õp)|

tp

⌉
,

u :=

⌊
y2(o) + d2 − 1 + |y1(õp)|

tp

⌋
.

Analogously the number of blocked tracks can be defined for wiring planes with vertical
preferred direction and vertical tracks.

Given a horizontal on-track stick figure s, this counts the number of tracks where we
cannot place another stick figure s̃ (with positive run length) without violating minimum
distance d1 or d2 between l(s)+o and l(s̃)+õp. Because the overhang õp typically induces
most of the wire shapes on p, this is a valid way to measure the use of routing space. Note
that definition 2.34 distinguishes between the southern and northern required minimum
distance. This will become useful for determining the blocked tracks of vias, where these
requirements actually can differ. For wires, however, we only use the same distance value
for both directions.

With dp := δp(w
y
p , w̃

y
p , l+) we now define the overhang opref by setting

y1(opref) := −min
{
wyp , min{y ∈ N : y − dp − |y2(õp)| ≡ 0 mod tp}

}
,

y2(opref) := wyp − |y1(opref)| ,
(2.2)

This actually minimizes the number of blocked tracks in the following sense:

Proposition 2.35. The shape opref as defined above minimizes the number of blocked
tracks βp(o, dp, dp) over all shapes o with |o|ver = wpy.

Proof. By definition of βp and opref we clearly have
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βp(opref , dp, dp)

≤
⌊
y2(opref) + dp − 1 + |y1(õp)|

tp

⌋
−
(
y1(opref)− dp − |y2(õp)|

tp
+ 1

)
+ 1

=

⌊
wyp + 2dp − 1 + w̃yp

tp

⌋
.

Furthermore for any shape o we have that βp(o, dp, dp) equals the number of integers
t ≡ 0 mod tp in the interval

[ y1(o)− dp + 1− |y2(õp)| , y2(o) + dp − 1 + |y1(õp)| ] .

This interval contains wyp + 2dp − 1 + w̃yp integers if |o|ver = wpy . Since for at least

bw
y
p+2dp−1+w̃y

p

tp
c of these integers t we must have t ≡ 0 mod tp, the proposition follows.

For the choice of the overhang shape ojog we do not need to consider the number of
blocked tracks because jogs are running orthogonal to tracks anyway. The number of
blocked tracks in this case depends on the length of the jog instead of its width. Jogs
generally should be used rarely and kept as short as possible to avoid blocking several
tracks. We therefore simply set

x1(ojog) := −
⌊
wxp
2

⌋
, x2(ojog) :=

⌈
wxp
2

⌉
(2.3)

to satisfy the minimum width rule.
For the remaining parts of opref and ojog, i.e. their extension in and against preferred

direction, respectively, we are not restricted by design rules. We want to ensure, however,
width regularity of each pair of a jog shape and preferred direction wire shape in order to
avoid minimum distance violations as in proposition 2.29. Therefore, we set

x1(opref) := y1(opref),

x2(opref) := y2(opref),

y1(ojog) := y1(opref),

y2(ojog) := y2(opref),

(2.4)

if wxp ≥ wyp , and
x1(opref) := x1(ojog),

x2(opref) := x2(ojog),

y1(ojog) := x1(ojog),

y2(ojog) := x2(ojog),

(2.5)
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otherwise.
With this we ensure width regularity of intersecting jog and wire shapes (as we will

show in lemma 2.36), and avoid concave vertices of the polygon build by such two shapes.
Such vertices generally are bad from a lithographic point of view, and may even cause
minimum edge rule violations. Figure 2.9 shows an example.

(a) width regular (b) not width regular (c) concave vertex

Figure 2.9: Using overhang shapes as defined in (2.4) the induced shapes of two inter-
secting stick figures running in orthogonal directions look like in (a). Width
regularity is preserved, and there are no concave vertices. This is not the
case for the shapes shown in (b) and (c), which result from differently defined
overhang shapes.

Overall we have the following lemma implied by our definition of overhang shapes:

Lemma 2.36. Let p be a wiring plane, w = (wxp , w
y
p) the minimum width rule in Rp ⊆ R,

and S a set of shapes on p induced by a set of wire stick figures with wire type WR. Then
the following properties hold:

(i) S satisfies w if we have |s|hor ≥ wxp and |s′|ver ≥ wyp for all shapes s, s′ ∈ S induced
by stick figures running in horizontal and vertical direction, respectively.

(ii) For all spref , sjog ∈ S induced by stick figures intersecting at one of their endpoints
and running in orthogonal directions we have that {spref , sjog} is width regular.

(iii) If wxp ≥ wyp , all stick figures with wire type WR running in x direction have feasible
length.

If wxp < wyp , all stick figures with wire type WR running in y direction have feasible
length.

Proof. The sufficient length of the shapes in S, and the definition of overhangs in (2.2)
and (2.3) immediately implies (i).

To show (ii) assume w.l.o.g. that width(spref) ≤ width(sjog). Then by the definition of
overhang shapes in (2.4) and (2.5) we have that spref satisfies property (ii) of proposition
2.29, and sjog satisfies property (i) of proposition 2.29. This implies that the set of these
two shapes is width regular.
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Property (iii) immediately follows from our definition of overhang shapes in (2.4) and
(2.5), because these imply that already the induced shape of any wire stick figure of length
one running in the respective direction specified in (iii) has feasible length.

We now turn to the case where p is a via plane, and we will add wire type elements to
WR defining the induced shapes of via stick figures. Assume w.l.o.g. that the wiring plane
p− 1 has horizontal and p+ 1 vertical preferred direction. We cannot define the overhang
shapes of these wire type elements arbitrarily. Instead we have to choose a via definition
from the set specified by the valid via rule Vp ∈ Rp. Each via definition consists of three
shapes that we can use as overhang shapes for defining via bottom, via cut, and via top
shapes. Of course we again want to use as little routing space as possible with each via.

Assuming uniform track pitches on p − 1 and p + 1, and considering an on-track via
stick figure s connecting two points on these planes, we compute for each via definition
vp = (op−1, op, op+1) ∈ Vp the amount of routing space needed by l(s) + op−1, l(s) + op,
and l(s) + op+1. For this we need to consider several minimum distance requirements:

• First we consider the minimum distance d(op−1) required by the minimum distance
rule δp−1 on the lower wiring plane, i.e. d(op−1) := δp−1(width(op−1), w̃yp−1, l+).
Analogously we set d(op+1).

• In some cases we even consider line end minimum distance rules. Let δlep−1 be
the line end minimum distance rule in Rp−1, and lmax the maximum length of an
end edge as in definition 2.15. Assume we already have a wire type element (p −
1, pref, opref

p−1) ∈ WR. If y1(op−1) < y1(opref
p−1) and |op−1|hor ≤ lmax, it holds that for

any wire stick figure sw intersecting s the edge edge(l(s) + op−1, south) is an end
edge. In this case we set dsouth(op−1) := max{d(op−1), δlep−1(side)}, otherwise we
set dsouth(op−1) := d(op−1). Analogously one can determine the required distances
dnorth(op−1), deast(op+1) and dwest(op+1).

• The minimum required distance between a via cut shape l(s) +op and any other via
cut shape on p is at least

d(op) := min
{
δvp((|op|hor, |op|ver), ccut, l) : ccut ∈ Ccut

p , l ∈ {l≤0, l+}
}
,

where Ccut
p denotes the set of allowed cut classes on p.

With this we can compute the number of blocked tracks of op−1 and op+1 as in the wiring
plane case above. We choose a via definition v∗p = (o∗p−1, o

∗
p, o
∗
p+1) ∈ Vp lexicographically

minimizing(
βp−1(o∗p−1, dsouth(o∗p−1), dnorth(op−1)) + βp+1(o∗p+1, deast(o

∗
p+1), dwest(o

∗
p+1)),

d(o∗p),

|o∗p−1|hor + |o∗p+1|ver,∣∣y1(o∗p−1)
∣∣+ dsouth(o∗p−1),∣∣x1(o∗p+1)
∣∣+ deast(o

∗
p+1)

)
.
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This clearly reflects the routing space usage of the induced shapes of on-track via stick
figures: The most important aspect is the number of blocked tracks on the affected wiring
planes, followed by the minimum distance required on the via plane, and the lengths of
the via bottom and top shape. The last two values are just to prefer via definitions that, in
case all other values are equal, need less space in south and east direction on p − 1 and
p + 1, respectively. It can be beneficial having all via shapes spare routing space in the
same direction.

We then add the wire type elements

(p− 1, bot, o∗p−1),

(p, cut, o∗p),

(p+ 1, top, o∗p+1),

(p+ 2, above, o∗p)

(2.6)

toWR. Note that in order to be able to handle inter layer via rules in section 2.3.3 correctly,
we reuse the overhang o∗p for the wire type element with shape type above. This means
that each via cut shape on p is projected to p + 2. With this approach we can keep our
checking algorithms in BonnRoute simpler, and only check violations between shapes on
the same plane.

This concludes our discussion on how we determine the overhangs of wire type ele-
ments. In the next sections we describe the construction of appropriate shape classes and
shape class minimum distance rules.

2.3.3 Generating Shape Classes
Assume we have created a wire type WR(n) with respect to rule set R(n) for each net
n ∈ N as described in section 2.3.2. So far we only defined the overhang shapes of
all wire type elements properly, and still have to represent their spacing requirements by
defining appropriate shape classes and shape class minimum distance rules.

As all distance checking in BonnRoute is done plane-wise, shape classes will also
be assigned to wire type elements independently on each plane. First we determine for
each wire type element a set of properties that define if we consider two such elements
equivalent or not. Shape classes then correspond to equivalence classes of wire type
elements with respect to these properties and are assigned to the corresponding overhang
shapes.

For each wire type element these properties basically are its minimum distance require-
ments to other wire type elements. As the design rules describing these requirements de-
pend on properties of both of the elements, we would have to inspect for each wire type
element each other one. Since this would result in quadratic runtime in the number of
wire type elements, which can become quite large, we want to avoid this.

Therefore we proceed as follows. For each wire type element w we inspect the design
rules that apply to it and extract the information describing what minimum distance is
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required to the different kinds of other wire type elements. Furthermore we collect in-
formation about w that, given some other wire type element w′, we can determine the
exact minimum distance required between w and w′. After building equivalence classes
of wire type elements with respect to these properties, we then can explicitly construct
shape class minimum distance rules between each pair of these classes. This leads to
quadratic runtime only in the number of shape classes, which generally is much smaller
than the number of wire type elements. The set of properties of wire type elements we
use to determine equivalence is constructed in the rest of this section.

Given two shapes on a wiring plane, by the definition of minimum distance rules it is
sufficient (despite of run length) to know the width intervals the widths of the shapes are
contained in, to determine their required minimum distance. To get this information with
respect to all minimum distance rules we have to consider sufficiently fine intervals. Let
p be a wiring plane, ∆p be the set of all minimum distance rules in

⋃
n∈N Rp(n), and

Ijp , j = 1, . . . , |∆p| their sets of width intervals as defined in definition 2.12. Let Ip be a
partition of

⋃
j=1,...,|∆p|

⋃
I∈Ijp I such that for each I ∈ Ip we have at most one Ij in each

Ijp with I ∩ Ij 6= ∅. To evaluate any minimum distance rule in ∆p for two given widths,
it then is sufficient to know the intervals in Ip these widths are contained in:

Proposition 2.37. Given two shapes s, s′ on plane p with run length rl(A(s), A(s′)) = l
and width(s) ∈ Is ∈ Ip, and width(s′) ∈ Is′ ∈ Ip we have

δ(width(s),width(s′), l) = δ(w,w′, l) ∀ w ∈ Is, w′ ∈ Is′ , δ ∈ ∆p

Proof. Assume there is a minimum distance rule δ ∈ ∆p with δ(width(s),width(s′), l) 6=
δ(w,w′, l) for some w ∈ Is, w′ ∈ Is′ . Then by definition of minimum distance rules the
set of width intervals Iδ of δ must contain disjoint intervals I1, I2 with width(s) ∈ I1, w ∈
I2, or width(s′) ∈ I1, w

′ ∈ I2. In the first case we have width(s) ∈ Is∩I1 andw ∈ Is∩I2,
so Is intersects two intervals in Iδ, which contradicts the construction of Ip. The second
case is analogous.

Let w = (p, tw, ow) be an element of wire type WR, where p ∈ P , and R := {Rp : p ∈
P} = R(n) for some net n ∈ N .

First we consider the case where p is a wiring plane. We assume that for every shape
s induced by any stick figure and w, we have width(s) = width(w), and use this value
to evaluate minimum distance rules. As almost all stick figures created by BonnRoute
have feasible length as defined in definition 2.27, this assumption generally is satisfied.
Note that already lemma 2.36 ensures feasible length of all horizontal or all vertical stick
figures on p. Stick figures not having feasible length generally only occur in rare cases
involving pin access. In these few cases our approach of using width(w) to evaluate min-
imum distance rules could theoretically lead to larger minimum distance requirements. In
practice, however, this is negligible.
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By proposition 2.37 we do not need to consider width(w) directly as a property for
building shape classes, the interval in Ip containing it is sufficient.

The second property we need is information about the edges of shapes induced by w.
To handle line end minimum distance rules in section 2.3.4 we estimate which edges of
shapes s induced by w and any stick figure are end edges. We represent this information
by a function λw : {north, east, south,west} → {end, side} where λw(a) = b indicates
that we regard the edge edge(s, a) of every shape s induced by w and any stick figure as
a b edge. We define the set Tedge := {north, east, south,west} × {side, end}, and use
elements (a, λw(a)) as a further property for defining shape classes.

The remaining properties basically represent the minimum distance requirements of
shapes induced by w and any stick figure. We obtain these requirements by evaluating
design rules in Rp, and represent them with a set D(w) ⊆ Ip × (Tedge∪̇{∗}) × Tdist ×
N. Each element (I, tedge, tdist, d) ∈ D(w) will result in a set of shape class minimum
distance rules of type t, which require a minimum distance of d between the shape class
c(ow) and other shape classes on p determined by I and tedge. The interval I basically
restricts this set of shape classes to the ones having this width interval. The element tedge
limits this set to the shape classes which represent shapes with certain types of edges if we
have tedge ∈ Tedge, and imposes no restriction at all if tedge = ∗. In section 2.3.5 we will
describe in detail how the corresponding shape class minimum distance rules are derived.

To construct the set D(w) we consider the minimum distance rule δp ∈ Rp. We eval-
uate δp(width(w), I, l) for each width interval I ∈ Ip and run length l ∈ {l≤0, l+}, and
decide which type of shape class minimum distance rules we have to use based on l as in
proposition 2.32. We set

D(w) := {([a, b], ∗, eucl, δp(width(w), a, l≤0)) : [a, b] ∈ Ip}
∪ {([a, b], ∗, hor, δp(width(w), a, l+)) : [a, b] ∈ Ip}
∪ {([a, b], ∗, ver, δp(width(w), a, l+)) : [a, b] ∈ Ip} .

(2.7)

Now let us turn to the case where p is a via plane. As the minimum distances required by
via minimum distance rules depend on the cut classes of via shapes instead of their widths,
our first property will be the cut class ccut(ow) = (|ow|hor, |ow|ver) of ow. Let δvp be the via
minimum distance rule in Rp, and δivp−2 the interlayer via minimum distance rule in Rp−2.
Let Ccut

p the set of all cut classes on p. Similarly to the wiring plane case we represent the
minimum distance requirements of w with a set D(w) ⊆ Ccut

p × Tshape × Tdist × N by
evaluating δvp and δivp−2 for all cut classes ccut in Ccut

p and Ccut
p−2, respectively. We set

D(w) :=
{

(ccut, cut, eucl, δvp(ccut(ow), ccut, l≤0)) : ccut ∈ Ccut
p

}
∪
{

(ccut, cut, hor, δvp(ccut(ow), ccut, l+)) : ccut ∈ Ccut
p

}
∪
{

(ccut, cut, ver, δvp(ccut(ow), ccut, l+)) : ccut ∈ Ccut
p

}
∪ Div(w)

(2.8)
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where

Div(w) :=
{

(ccut, above, eucl, δivp−2(ccut, ccut(ow), l≤0)) : ccut ∈ Ccut
p−2

}
∪
{

(ccut, above, hor, δivp−2(ccut, ccut(ow), l+)) : ccut ∈ Ccut
p−2

}
∪
{

(ccut, above, ver, δivp−2(ccut, ccut(ow), l+)) : ccut ∈ Ccut
p−2

} (2.9)

if tw = cut, and

Div(w) :=
{

(ccut, cut, eucl, δivp−2(ccut(ow), ccut, l≤0)) : ccut ∈ Ccut
p

}
∪
{

(ccut, cut, hor, δivp−2(ccut(ow), ccut, l+)) : ccut ∈ Ccut
p

}
∪
{

(ccut, cut, ver, δivp−2(ccut(ow), ccut, l+)) : ccut ∈ Ccut
p

} (2.10)

if tw = above. Note that because δivp−2 specifies minimum distances between shapes
on adjacent planes, but not between shapes on the same plane, we have to ensure that
corresponding shape class minimum distance rules are created exclusively between cut
and above shapes, which is reflected by our definition of Div(w).

This concludes our description of the necessary properties of wire type elements on
wiring and via planes, except the representation of line end minimum distance rules,
which we postpone to section 2.3.4.

Now we can finally define an equivalence relation ∼ on the set of wire type elements
on each plane p:

Definition 2.38. Let w = (p, t, o) and w′ = (p, t′, o′) be two wire type elements. We call
w and w′ equivalent and write w ∼ w′ if and only if

(i) p ∈ Pwiring

(ii) λw = λw′

(iii) width(w) ∈ I ∈ Ip ⇐⇒ width(w′) ∈ I

(iv) D(w) = D(w′)

or

(i) p ∈ Pvia

(ii) t = t′

(iii) (|o|hor, |o|ver) = (|o′|hor, |o′|ver)

(iv) D(w) = D(w′).



2.3 The BonnRouteRules Module 33

We proceed as follows to assign a shape class to the overhang shape of each wire type
element. LetW be the set of wire types that we created. First, for each wire type W ∈ W
and wire type element (p, t, o) ∈ W we set the shape class c(o) ∈ N such that it is a
unique number among all shape classes of wire type elements on p of wire types in W .
Let Ep be the set of all wire type elements on plane p of wire types inW . We build the set
Ep = {E1

p , . . . , E
|Ep|
p } ⊂ 2Ep of equivalence classes of Ep by ∼. The set of shape classes

on plane p then is Cp := {1, . . . , |Ep|}, and for each i ∈ Cp and (p, t, o) ∈ Ei
p ∈ Ep we set

c(o) := i. This way each overhang shape now has a shape class identifying its minimum
distance requirements that will be translated into shape class minimum distance rules in
section 2.3.5.

2.3.4 Handling Line End Minimum Distance Rules
Line end minimum distance rules in practice belong to the hardest design rules too obey
without being too restrictive. The problem is that in path search algorithms it is hard to
determine if the rule actually applies when the complete path has not been constructed yet.
An end edge of the polygon of a path found so far may become a side edge depending on
how the path is continued.

In order to keep this complexity out of our path search algorithms and preserve their
efficiency, we estimate the edge types of shapes induced by wire type elements a priori.
Of course this approach, which takes only individual shapes or most common combi-
nations of such into account, cannot be exact in all situations. End edges of an iso-
lated shape s may not be end edges anymore in the polygon with respect to a whole set
of shapes containing s. As by definition of line end minimum distance rules we have
δlep (side) ≤ δlep (end), this cannot lead to violations of δlep but may introduce too restrictive
minimum distance requirements. Therefore we will be optimistic and in most cases do
not regard edges running in preferred direction as end edges. The increased minimum dis-
tance requirement against preferred direction would waste a significant amount of routing
space by blocking neighboring tracks.

Given some wire type element w = (p, t, o) of wire type WR(n) for some net n and
wiring plane p, we define the function λw : {north, east, south,west} → {end, side}
indicating our estimated edge types as follows. W.l.o.g. assume that p has horizontal
preferred direction, and recall that the maximum length of an end edge is denoted by lmax
as in definition 2.15. If t ∈ {pref, bot, top} and |o|ver ≤ lmax, we generally assume that
the two vertical edges of shapes induced by w are end edges:

λw(east) := λw(west) :=

{
end if t ∈ {pref, bot, top} ∧ |o|ver ≤ lmax

side otherwise

For horizontal end edges the rule δlep requires vertical distance, which is against pre-
ferred direction in our case. In order to avoid blocking neighboring routing tracks, we are
optimistic and assume that horizontal edges of shapes induced by w never are end edges
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if t ∈ {pref, jog}. On the other hand, if t ∈ {bot, top} and |o|hor ≤ lmax, the shapes
induced by w belong to vias, and their horizontal edges may be end edges most of the
time depending on their width compared to other wire shapes of the same wire type. We
therefore inspect the width and length of o compared to the overhang shape opref of the
wire type element (p, pref, opref) ∈ WR(n) like in the computation of blocked tracks in
section 2.3.2. We set:

λw(north) :=

{
end if t ∈ {bot, top} ∧ |o|hor ≤ lmax ∧ y2(o) > y2(opref)

side otherwise

λw(south) :=

{
end if t ∈ {bot, top} ∧ |o|hor ≤ lmax ∧ y1(o) < y1(opref)

side otherwise

To ensure creating appropriate shape class minimum distance rules, we add additional
elements to the set of distance requirements D(w). Let therefore δlep be the line end mini-
mum distance rule in Rp ∈ R(n), and add the following elements to D(w) if λw(east) =
λw(west) = end:

([0,∞], (east, end),west, δlep (end)),

([0,∞], (west, end), east, δlep (end)),

([0,∞], (east, side),west, δlep (side)),

([0,∞], (west, side), east, δlep (side)).

(2.11)

Additionally we add

([0,∞], (south, end), north, δlep (end)),

([0,∞], (south, side), north, δlep (side))
(2.12)

if λw(north) = end, and

([0,∞], (north, end), south, δlep (end)),

([0,∞], (north, side), south, δlep (side))
(2.13)

if λw(south) = end.
This concludes our representation of the minimum distance requirements of δlep . An

illustration is shown in figure 2.10.
In section 2.3.5 we will show that if we estimated the edge types of shapes induced by

w correctly by λw, then with shape class minimum distance rules resulting from D(w)
this representation is exact. As already seen in figure 2.10, however, in practice there are
in fact situations where we have an end edge not indicated by the functions λw, which can
lead to violations of line end minimum distance rules. Fortunately, the different types of
such situations is limited and their number manageable. Typically in a stick figure path
the following types of such situations may occur (see figure 2.11):
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Figure 2.10: Additional minimum distance required by end edges according to the func-
tions λw in red. The dotted red regions indicate the cases where we added
the minimum distance although we in fact do no have an end edge there. All
of these, however, are contained in other shapes anyway such that no routing
space is wasted. The blue edge indicates a situation where we are optimistic
with λw assuming no end edge although there is one. For the green edges,
however, this optimism is correct because these are in fact side edges. If we
assumed end edges here, the neighboring tracks would be blocked unneces-
sarily. Finally the large via in the bottom right is a case where we regard an
edge running in preferred direction as an end edge because this via is large
enough to stick out of any preferred direction wire shape of the same wire
type.

lmax

(a)

lmax

(b)

lmax

(c)

lmax

(d)

Figure 2.11: Different situations where an edge edge(s, north) (in red) of a shape s in-
duced by a wire type element w is an end edge but λw(north) = side.
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(a) A jog followed by a via is the most common situation where violations of line end
minimum distance rules can occur because of our optimism.

(b) Even a jog followed by a short wire in preferred direction followed by a via may
create an unexpected end edge. Such short wire segments sometimes occur in the pin
access part of paths but usually not in the on-track long distance connections.

(c) Two vias on adjacent via layers at the same x and y-coordinate, so called stacked vias,
also can cause end edges running in preferred direction that we did not reflect in the
definition of λw.

(d) Again even a short wire in preferred direction may not help to avoid such an unex-
pected end edge.

Note that most of these situations involve jogs which should be used rarely anyway in
order to use routing space efficiently. Moreover shape configurations as shown in figure
2.11 (a) in practice violate several same net rules even if we have no violation of a line
end minimum distance rule. Similarly, cases (c) and (d) generally also violate same net
rules because they create a polygon with too small area.

Ideally the router should not create such sets of shapes anyway, and there are a couple
of approaches to achieve this. An easy measure to eliminate problems as shown in (c)
and (d) is to choose via definitions of sufficient length in the wire type definition, but
this comes at the price of additional routing space usage, even in cases where it would
not be necessary. Generally, we only do this in the case where such a via definition is
only slightly less efficient than an optimal one in terms of routing space consumption.
In order to avoid also situations as shown in figure 2.11 (a) and (b), we can restrict our
path search algorithm to only use vias in combinations with a sufficiently long wire in
preferred direction. But since this costs additional runtime, it is probably best to use this
only as a postprocessing step when such a violation actually occurred.

The other case where our definition of λw indicates an end edge where in the rectilinear
polygon defined by several shapes we do not have such an edge, in practice typically does
not waste any routing space at all. The resulting additional minimum distance requirement
is dominated by other objects most of the time anyway as shown in figure 2.10.

Overall our approach of handling line end minimum distance rules therefore is valid in
practice, which we will confirm in the results in section 3.2.

2.3.5 Generating Shape Class Minimum Distance Rules
Let p ∈ P and Cp := {1, . . . , |Ep|} the set of shape classes on p as created in section
2.3.3. We will now define a set of shape class minimum distance rules Dsc

p to represent
the minimum distance requirements D(w) of all wire type elements w on p. If p is a
wiring plane, by definition 2.38 and the assignment of shape classes described in section
2.3.3 each shape class c ∈ Cp uniquely corresponds to
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• a function λc : {north, east, south,west} → {end, side},

• an interval Ic ∈ Ip,

• a set Dc ⊆ Ip × (Tedge∪̇{∗})× Tdist × N.

We set

Dsc
p := {(c, c′, tdist, d) : c, c′ ∈ Cp, (Ic′ , tedge, tdist, d) ∈ Dc,

tedge = (a, b) ∈ Tedge =⇒ λc′(a) = b}.
(2.14)

This means that the set Dsc
p basically is built as follows: For each c ∈ Cp we process

the elements (I, tedge, tdist, d) ∈ Dc one by one. For each shape class c′ ∈ Cp with the
property that Ic′ = I , and either tedge = (a, b) ∈ Tedge ∧ λc′(a) = b, or tedge = ∗, we add
a shape class minimum distance rule (c, c′, tdist, d) to Dsc

p .
Similarly, if p is a via plane, each shape class c ∈ Cp uniquely corresponds to

• a model type tc ∈ Tshape,

• a cut class vc ∈ Ccut
p ,

• a set Dc ⊆ Ccut
p × Tshape × Tdist × N.

We set
Dsc
p := {(c, c′, tdist, d) : c, c′ ∈ Cp, (vc′ , tc′ , tdist, d) ∈ Dc}. (2.15)

With this we finally have completed representing a given set of design rules by wire
types, shape classes, and minimum distance rules between these. We now show that this
representation is correct.

Lemma 2.39. Let S, S ′ be width regular sets of shapes on plane p induced by stick figures
with wire types WR and WR′ , respectively. Furthermore let ER ⊆ Dsc

p be the set of
shape class minimum distance rules we created to represent the minimum distance rule
δp ∈ Rp ∈ R, i.e. the ones originating from our construction in (2.7).

(a) If each pair of shapes in s ∈ S, s′ ∈ S ′ satisfies all shape class minimum distance
rules in ER, then S, S ′ satisfy δp.

(b) If all minimum distance rules have simple run length dependency, and all wire stick
figures which induced shapes in S, S ′ have feasible length, then S, S ′ satisfy ER if
they satisfy the δp.

Proof. To show (a), assume that S, S ′ violate the minimum distance rule δp ∈ Rp al-
though there is no pair of shapes in s ∈ S, s′ ∈ S ′ violating an element of ER. By
definition of minimum distance rules this means that there must exist non-empty sets
A ⊆ A(S), A′ ⊆ A(S ′) and b, b′ ∈ N, l ∈ Z≥0 with width(p, S) ≥ b for all p ∈ A,
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width(p′, S ′) ≥ b′ for all p′ ∈ A′, rl(A,A′) ≥ l, and dist(A,A′) < δp(b, b
′, l). Let p ∈ A

and p′ ∈ A′ with dist(p, p′) < δp(b, b
′, l).

Since S and S ′ are width regular, there are shapes s ∈ S, s′ ∈ S ′ with p ∈ A(s), p′ ∈
A(s′),width(s) = width(p, S), and width(s′) = width(p′, S ′). Let w,w′ be the wire
type elements which induced s, s′, respectively and c := c(s) and c′ := c(s′) their shape
classes. As mentioned earlier, by construction c, c′ uniquely correspond to sets Dc =
D(w), Dc′ = D(w′) and intervals Ic, Ic′ ∈ Ip with width(w) ∈ Ic and width(w′) ∈ Ic′ .
For Ic′ = [i1, i2] let dl≤0

:= δp(width(s), i1, l≤0) and dl+ := δp(width(s), i1, l+). By the
construction of D(w) in (2.7) we know that Dc contains the elements

(Ic′ , ∗, eucl, dl≤0
), (Ic′ , ∗, hor, dl+), (Ic′ , ∗, ver, dl+).

This implies by (2.14) that ER contains the shape class minimum distance rules

(c, c′, eucl, dl≤0
), (c, c′, hor, dl+), (c, c′, ver, dl+).

Because width(s) ≤ width(w), width(s′) ≤ width(w′), and δp by definition is non-
decreasing in each of its arguments, we have that δp(b, b′, l) ≤ dl≤0

if l ≤ 0, and
δp(b, b

′, l) ≤ dl+ otherwise. But then one of these shape class minimum distance rules
must be violated by s, s′, which contradicts our assumption.

To prove (b), assume that all minimum distance rules have simple run length depen-
dency and all wire stick figures which induced shapes in S, S ′ have feasible length. The
feasible length property of wire stick figures by definition ensures that the widths of wire
type elements we used to construct shape classes equal the widths of all of their induced
shapes. Together with the fact that we defined the shape class minimum distance rules
in ER as in proposition 2.32 and the simple run length dependency of minimum distance
rules the claim follows.

Similarly, on via planes we have:

Lemma 2.40. Let s, s′ be two via cut shapes on a via plane p induced by via stick figures
with wire types WR and WR′ , respectively. In addition let ER ⊆ Dsc

p be the shape class
minimum distance rules we used to represent the via minimum distance rule δvp ∈ Rp ∈ R,
i.e. the ones implied by our construction in (2.8). Then s, s′ satisfy δvp if and only if they
satisfy all shape class minimum distance rules in ER.

Proof. Let w ∈ WR, w
′ ∈ WR′ be the wire type elements that induced s, s′, and let

c := c(s) and c′ := c(s′) be their shape classes, respectively. By definition 2.38 and the
assignment of shape classes, we know that c encodes the shape type cut, the cut class
ccut(s), and the set of distance requirements D(w). Analogously c′ encodes the shape
type cut, cut class ccut(s

′), and distance requirements D(w′).
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By the construction of D(w) in (2.8) and the conversion in (2.15) the set of shape class
minimum distance rules in ER involving c, c′ is:

{(c, c′, eucl, δvp(ccut(s), ccut(s
′), l≤0)),

(c, c′, ver, δvp(ccut(s), ccut(s
′), l+)),

(c, c′, hor, δvp(ccut(s), ccut(s
′), l+))}.

Because these rules are obviously satisfied by s, s′ if and only if δvp is satisfied by s, s′,
the lemma follows.

Similarly, for inter layer via minimum distance rules we have the following lemma:

Lemma 2.41. Let s, s′ be via cut shapes on a via plane p and p + 2, induced by via
stick figures with wire types WR and WR′ , respectively. Let ŝ be the via above shape on
p + 2 corresponding to s that exists by (2.6). In addition let ER ⊆ Dsc

p+2 be the shape
class minimum distance rules we used to model the inter layer via minimum distance rule
δivp ∈ Rp ∈ R, i.e. the ones implied by our construction in (2.9) and (2.10). Then s, s′

satisfy δivp if and only if ŝ, s′ satisfy all shape class minimum distance rules in ER.

Proof. Analogously to the proof of lemma 2.40 the shape classes c := c(ŝ) and c′ := c(s′)
correspond to cut classes of ŝ and s′, and to the shape types of the wire type elements
inducing them. Since these shape types must be above for c and cut for c′ by construction,
the elements of ER involving c, c′ are:

{(c, c′, eucl, δivp (ccut(s), ccut(s
′), l≤0)),

(c, c′, hor, δivp (ccut(s), ccut(s
′), l+)),

(c, c′, ver, δivp (ccut(s), ccut(s
′), l+))}

By construction of wire type elements with shape type above in (2.6), ŝ simply equals
s projected to p + 2 (up to shape class). Therefore these shape class minimum distance
rules are satisfied by ŝ, s′ if and only if δivp is satisfied by s, s′.

The following lemma shows that we do not violate line end minimum distance rules if
we estimated end edges correctly.

Lemma 2.42. Let S, S ′ be two sets of shapes on a wiring plane p with A(S)∩A(S ′) = ∅
such that all s ∈ S are induced by stick figures with wire type WR, and all s ∈ S ′ are
induced by stick figures with wire type WR′ . Let e be a te edge in plg(S) and e′ a te′ edge
in plg(S ′) for te, te′ ∈ {end, side}. Define

Se := {s ∈ S : ∃ d ∈ {north, east, south,west} : edge(s, d) ∩ e 6= ∅},

and S ′e′ analogously. Consider the setER of shape class minimum distance rules resulting
from our construction in (2.11) - (2.13) to represent the line end minimum distance rule
δlep ∈ Rp ∈ R.

Suppose we have the following property:
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(i) For all shapes s ∈ S, s′ ∈ S ′, d ∈ {north, east, south,west} it holds that

edge(s, d) ∩ e 6= ∅ =⇒ λw(d) = te,

edge(s′, d) ∩ e′ 6= ∅ =⇒ λw(d) = te′ .

Then e, e′ satisfy δlep if and only if Se, S ′e′ satisfy all shape class minimum distance rules
in ER.

Proof. Let e and e′ be edges of plg(S) and plg(S ′), respectively, such that property (i)
holds. To show sufficiency, assume that ER is satisfied by Se, S

′
e′ , but δlep is violated

by e, e′. We can assume w.l.o.g. that te = end and e, e′ both are horizontal: If both
were side edges or orthogonal to each other, δlep would not be violated. Clearly there
must exist s ∈ Se, s

′ ∈ S ′e′ and d, d′ ∈ {north, south} with edge(s, d) ∩ e 6= ∅ and
edge(s′, d′) ∩ e′ 6= ∅. W.l.o.g. let d = north which implies that d′ = south. By (i) we
must have λw(d) = te = end and λw′(south) = te′ for the wire type elements w and w′

that induced s and s′, respectively. By the construction in (2.11) - (2.13) the set D(w)
contains the element

([0,∞], (south, te′), north, δlep (te′)).

Definition 2.38 (ii) and the construction in (2.14) imply that there is a shape class mini-
mum distance rule

r := (c(s), c(s′), north, δlep (te′)) ∈ ER.

Since δlep is violated, we have rl(e, e′) > 0 and dist(e, e′) < δlep (t′), which implies that r
is violated by s, s′, which contradicts our assumption.

To show necessity, assume that we have (i) and δlep is satisfied by e, e′, but Se, Se′
violate ER. So there are shapes s ∈ Se, s′ ∈ Se′ violating a shape class minimum distance
rule r ∈ ER. W.l.o.g. let r := (c(s), c(s′), north, δlep (tr)), where tr ∈ {side, end}. We
must have λw(north) = end and λw′(south) = tr for the wire type elements w and w′

that induced s and s′, respectively. Otherwise r would not have been constructed. By (i),
te = λw(north) = end and te′ = λw′(south) = tr. Because r is violated, e, e′ must have
positive run length, e ∈ plg(S)north, e′ ∈ plg(S)south and dist(s, s′) < δlep (tr). But this
means that e, e′ violate δlep , which contradicts our assumption.

With this we know that in our representation violations of line end minimum distance
rules can only happen for a reduced set of edges:

Corollary 2.43. Let S, S ′ be as in lemma 2.42. If S, S ′ satisfy all shape class minimum
distance rules in Dsc

p , then each e ∈ plg(S), e′ ∈ plg(S ′) violating a line end minimum
distance rule δlep ∈ Rp ∈ R must be running in preferred direction of p.

Proof. The corollary follows directly from our construction of λw in 2.3.4 and the proof
of sufficiency of lemma 2.42.
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Overall we have the following main theorem stating that with only few exceptions the
design rules discussed here are satisfied by construction if we compute a routing satisfying
all shape class minimum distance rules.

Theorem 2.44. Consider two rule sets R,R′. Let S, S ′ be two sets of shapes induced by
stick figures with wire types WR and WR′ , respectively, and let Sp and S ′p be their shapes
on plane p.
S, S ′ satisfy all rules in R,R′ with the exceptions regarding line end minimum distance

rules stated in corollary 2.43 if Sp, S ′p satisfy all shape class minimum distance rules in
Dsc
p , and are width regular if p ∈ Pwiring.

Proof. The theorem follows directly from lemma 2.39(a), 2.40, 2.41, and corollary 2.43.

2.3.6 Reducing the Number of Shape Classes
Note that the number of shape classes we created to represent the given minimum distance
requirements may not be minimum. For example there could be minimum distance rules
requiring the same minimum distance for widths contained in different width intervals. In
addition it is possible and common that there are minimum distance requirements where
one dominates the other. Therefore there can be different shape classes representing the
same minimum distance requirements.

Definition 2.45. We call two shape classes c, c′ ∈ Cp equivalent if for each shape class
minimum distance rule r ∈ Dsc

p containing c we have that there is a r′ ∈ Dsc
p which

results from replacing c by c′ in r.

Although such equivalent shape classes and dominated shape class minimum distance
rules generally are no problem for BonnRoute, it is still desirable to get rid of them in
order to save memory and runtime. Note for example that the number of different wire
types also can be decreased by ensuring that there are no equivalent shape classes any-
more. In section 2.4 we discuss how shape class minimum distance rules are checked in
BonnRoute. Since this checking involves a data structure called fast grid (Müller [2009])
which maintains precomputed information for a restricted set of wire types, it is important
to keep the total number of different wire types as small as possible.

We first have to identify which shape class minimum distance rules are dominated
within Dsc

p .

Proposition 2.46. Let r := (c1, c2, t, d) and r′ := (c1, c2, t
′, d′) be shape class minimum

distance rules. Then r dominates r′ if and only if d ≥ d′ and at least one of the following
conditions hold:

(i) t = t′

(ii) t ∈ {hor, eucl} ∧ t′ ∈ {east,west, hor}
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(iii) t ∈ {ver, eucl} ∧ t′ ∈ {north, south, ver}

Proof. Sufficiency is clear because any of the three properties together with d ≥ d′ im-
plies that A(s, r) ⊇ A(s, r′) for every shape s.

To show necessity assume r dominates r′ but (i)-(iii) do not hold or we have d < d′.
The latter clearly would be a contradiction to r dominating r′, and if (i)-(iii) do not hold,
then we must have one of the following cases:

• t ∈ {hor} ∧ t′ ∈ {north, south, ver, eucl}

• t ∈ {ver} ∧ t′ ∈ {east,west, hor, eucl}

• t ∈ {north, east, south,west} ∧ t′ ∈ Tdist \ {t}

But each case implies that for every shape s we have A(s, r′) \ A(s, r) 6= ∅, which
contradicts r dominating r′.

This means we can easily check for each r ∈ Dsc
p if it is dominated by a any other

element in Dsc
p and remove r from Dsc

p if this is the case. Then for each two equivalent
shape classes c, c′ ∈ Cp we can replace c by c′ in each overhang shape with shape class c
of a wire type element on p. We remove c from Cp and all shape class minimum distance
rules from Dsc

p containing c.
After these operations the resulting set of shape classes Cp and minimum distance rules

Dsc
p do not contain equivalent or dominated elements anymore, but they still represent the

same minimum distance requirements as before by definition of equivalence and domi-
nance.

2.3.7 Runtime Analysis
The main routine of the BonnRouteRules module is building the representation of the
given design rules with wire types and shape class minimum distance rules as described
in the previous sections. It can be summarized as in algorithm 1.

Theorem 2.47. Algorithm 1 computes W , and {Dsc
p : p ∈ P}, such that theorem 2.44

holds for all R,R′ ∈ R and WR,WR′ ∈ W . Assuming that each design rule in the given
rule sets has constant size, its runtime is O

(
|P | |R| log |R|+

∑
p∈P |Cp|

2
)

.

Proof. As the algorithm proceeds exactly as in sections 2.3.2 to 2.3.6, the correctness
is clear. To prove the runtime, observe that each wire type created in line 3 contains
O(|P |) elements, and each of these elements can be constructed in constant time. For the
entire loop we therefore have a runtime of O(|P | |R|). The time needed for generating
shape classes in lines 5 and 6 isO(|P | |R| log |R|), and creating all shape class minimum
distance rules in lines 7 to 9 takes O(

∑
p∈P |Cp|

2) time. Since also the elimination of
equivalent shape classes in line 10 can be done in this time, summing up yields the desired
runtime.
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Algorithm 1: BUILD WIRING RULE REPRESENTATION

Input : A setR of rule sets.
Output: A set of wire typesW = {WR : R ∈ R}, and a set Dsc

p of shape class
minimum distance rules on shape classes Cp ⊂ N for each p ∈ P .

SetW := ∅ and Dsc
p := ∅ for all p ∈ P .1

for R ∈ R do2

Create wire type WR from R as in section 2.3.2.3

W :=W ∪WR4

Build equivalence classes W 1
p , . . . ,W

lp
p of {(p, t, o) ∈

⋃
W∈WW} by ∼ as in5

section 2.3.3 for each p ∈ P .
Set c(o) := i for each (p, t, o) ∈ W i

p for i ∈ Cp := {1, . . . , lp}.6

for p ∈ P and i, j ∈ Cp do7

Set Dsc
p,i,j to the set of shape class minimum distance rules based on8

D(wi), D(wj) for arbitrary wi ∈ W i
p, wj ∈ W j

p as in section 2.3.5.
Set Dsc

p := Dsc
p ∪Dsc

p,i,j .9

Remove dominated elements from Dsc
p and eliminate equivalent shape classes as10

in section 2.3.6 for all p ∈ P .

Experimental results in section 2.3.10 will show that with this approach the runtime of
the BonnRouteRules module in practice is insignificantly small. In section 2.3.9 we will
describe how the setR, which is part of the input of the module, is generated.

2.3.8 Further Aspects

Blockages

So far we only discussed how wires are represented in BonnRoute. Pins and blockages
are handled similarly, therefore we only describe the main differences in this section.

In terms of their representation we do not distinguish between pins and blockages.
For both the important thing is that they are part of the input of BonnRoute, cannot be
changed, and have no kind of stick figure representation in contrast to wires. In order to
represent their minimum distance requirements defined in the technology design rules we
create a set of blockage models for each plane.

Let p be a wiring plane. A blockage model on p is a 3-tuple (I, λ, c) where I is a width
interval in Ip as defined in section 2.3.2, λ : {north, east, south,west} → {end, side} a
function indicating end edges as in section 2.3.4, and c ∈ N a shape class. We define c
and appropriate shape class minimum distance rules such that they represent the minimum
distance requirements imposed by the technology design rules for blockages whose width
is contained in I and edge types determined by λ. Basically this can be done similarly as in
the previous sections. The only difference is that we can model the distance requirements
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more precisely by creating a fitting blockage model for each specific blockage situation.
We simply create one blockage model mI,λ

p = (I, λ, cI,λ,p) for each I, λ, and p to be sure
to cover all possible cases.

The more difficult task then, however, is to correctly assign blockage models to each
given connected set of blockage shapes Bp for p ∈ Pwiring. We can easily determine all
end edges in plg(Bp), the more difficult part is to determine widths exactly. Generally, we
cannot assume that Bp is width regular in the sense of definition 2.28, so just inspecting
width(b) for each b ∈ B may not be correct in some cases. We have to solve the following
decomposition problem: Given a set of shapes S, and a set I of disjoint intervals in N,
find for each I ∈ I a set of shapes SI such that

⋃
I∈I A(SI) ∩ Z2 = A(S) ∩ Z2, and

width(S, q) ∈ I for all q ∈ A(SI).
We solve this problem for S = Bp and I = Ip by a sweep-line algorithm to obtain

a set BI
p of blockage shapes for each I ∈ Ip, and assign the blockage model mI,λ

p to all
b ∈ BI

p , where λ represents the edge types of edges of plg(Bp) intersected by b.

Complex Design Rule Variants

The complex design rule variants remarked at the end of section 2.2.2 are also handled
by the BonnRouteRules module. For legacy reasons, however, BonnRoute currently only
supports the types of shape class minimum distance rules defined in section 2.3.1, and
for each of them an additional type only applying to so called expanded shapes. Wire
type elements and stick figures actually can for each plane define not only a (real) shape
describing the actual metal area, but also an additional expanded version of that shape.
This concept originates from earlier BonnRoute versions, where minimum distance rules
where checked differently. Instead of considering euclidean distances directly, only hor-
izontal and vertical distances of expanded shapes were checked, using a pattern based
approach. In the current implementation expanded shapes are still used to model design
rules which actually hold for shapes or edges expanded in some fashion. While this cur-
rently works reasonably well in practice with some minor pessimism involved, it is not
safe to rely on that. The fundamental problem with this approach is that in BonnRoute
these expansions are part of a wire type although they actually belong to individual de-
sign rules. Handling various different expansions of multiple design rules with only one
expanded shape is a difficult task, and may not work well anymore if design rules change.
Moreover, expanding edges or shrinking shapes is not supported accurately by this ap-
proach.

Therefore, we propose to naturally extend shape class minimum distance rules such that
it is possible to specify for each of the two shape classes some kind of shape modification.
This modification then is applied to each shape with this shape class during the checking
procedure performed by the checking module, described in section 2.4.3. At least simple
modifications such as restricting a shape to some edge, and performing certain expand or
shrink operations should be possible in practice without a significant runtime impact.
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Input Wiring

Often there are some nets which are already routed at the time when BonnRoute is used.
One typical example are some types of clock nets which have to be routed in a specific way
ensuring certain timing properties. Such nets are routed already before the normal signal
nets in a separate step before BonnRoute. The BonnRouteRules module then of course
has to provide appropriate wire types for each existing wire and via and somehow ensure
that these get assigned correctly. Generating the appropriate wire types can basically be
done as described in the previous sections after determining the rule set containing the
design rules holding for each wire and via. The only thing that is different is that stick
figure overhangs and via definitions are predefined and do not have to be computed. In
section 2.3.9 we will describe how the assignment of the resulting wire types to existing
wires and vias works.

2.3.9 Implementation

The BonnRouteRules module was implemented by the author in the C++ programming
language (Stroustrup [2000]), and is currently used in practice for server and ASIC de-
signs in 32 nm and 22 nm technologies. To make this possible the module must be able
to deal with several different data models and complex design rule specifications. More-
over it has to be robust against incomplete or inconsistent data, which can happen easily
in this complex environment. Note that detailed routing with BonnRoute is just one of
many steps in the overall automatic design flow, which involves several different tools,
and changes consistently. In this section we first describe how to obtain all necessary in-
put data needed by the BonnRouteRules module in the environment where it is currently
used. We then continue by discussing the basic structure of the module itself.

Collecting Input Data

In the design flow in which BonnRoute is used today design data is stored in the Open-
Access data model (Silicon Integration Initiative [2012]). Similar to BonnRoute, Open-
Access represents wires by axis parallel line segments (route segments). Each route seg-
ment s is annotated with non-negative numbers defining a shape o(s), which represents
overhangs such that the actual shape representation of s is s + o(s). A via s consists of
a point shaped line segment s and a reference v(s) to a via definition, which defines its
shapes on all three affected planes.

In terms of design rules, in OpenAccess we are not directly given a set of design rules
for each net. The assignment of design rules to objects is actually more complex: De-
sign rules are first grouped in so called constraint groups, which then can be assigned to
various objects, e.g. nets and route segments or groups of these, respectively. In addition
there is one distinguished constraint group, often called foundry constraint group, con-
taining all the design rules originating from the manufacturing process. The design rules
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contained in this constraint group hold for all nets, the requirements can only be tight-
ened, but not relaxed, for individual nets. The design rules that hold for a given object
can be distributed over the constraint group of the object itself, the constraint group of
its containing objects, and the foundry constraint group. In case of multiple occurrences
of the same kind of design rule, a specific, hierarchical order of the objects determines
which design rule actually applies.

The main part of the input of the BonnRouteRules module is a set of rule sets R,
which then is converted to wire types as in algorithm 1 in section 2.3.7. We build each of
these rule sets using the given OpenAccess data as follows: From the object we want to
construct the rule set for, and from its parent objects within the object hierarchy, we obtain
a finite sequence c of constraint groups. For each kind of design rule separately, we query
the constraint groups in c one by one, and in each case add the first found design rule to
the rule set. In addition we need information about the kinds of existing route segments
and vias for which these rules hold, so that we can create appropriate wire types for them.
We therefore collect for each rule set R a set of shapes OR containing the overhangs of
existing route segments, and a set VR of via definitions of existing vias. Finally, to be able
to assign wire types correctly, we need to remember for each rule set the constraint group
sequence that is was build from. Therefore we build an injective mapping φ : R → C,
where C is the set of finite sequences of constraint groups. All this input data collection
is done by algorithm 2.

Of course we can implement algorithm 2 efficiently:

Proposition 2.48. Algorithm 2 can be implemented in O(|N |+ |W | log |R|) time.

Proof. The procedure FindOrCreateRuleSet can be implemented using a balanced
search tree in O(log |R|) time. Since it is called 1 + |Wn| times for each n ∈ N we have
the desired runtime.

Our implementation is written in the scripting language Tcl (Ousterhout and Jones
[2009]), which fits well in the overall flow environment, keeps the code simple, and makes
this part easily adaptable. The downside of this is higher runtime compared to a compiled
programming language.

Basic Structure of the Module

The basic structure of the BonnRouteRules module is depicted in the UML R© class dia-
gram in figure 2.12. See (Object Management Group [2012]) for the specification of the
Unified Modeling Language (UML R©).

The module provides three interfaces. The DesignRuleInterface class provides methods
to input all necessary kinds of design rules into the module and is implemented by the
DesignRuleManager class. As mentioned in the previous sections, the design rule data
comes from OpenAccess, but the interface does not depend on that. In particular the sets
R, and OR, VR for R ∈ R, and the mapping φ, as defined in the previous section, are
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Algorithm 2: BUILD RULE SETS

Input : A set of nets N , and a set {Wn : n ∈ N} of sets of route segments and
vias. A set of constraint groups C containing the foundry constraint
group cfoundry. Constraint group assignments γ : N ∪W → C ∪ {∅},
where W :=

⋃
n∈N Wn, and ∅ denotes that no constraint group is

assigned.
Output: A set of rule setsR, and for each R ∈ R a set of shapes OR and via

definitions VR. A function φ : R → C, where C is the set of sequences
(c1, . . . , ck) with ci ∈ C, i ∈ {1, . . . , k} and 1 ≤ k ≤ 3.

SetR := ∅1

for n ∈ N do2

Set k := 1, c1 := cfoundry.3

if γ(n) 6= ∅ then4

Set k := 2, c2 := γ(n).5

Set R := FindOrCreateRuleSet((c1, . . . , ck),R).6

for w ∈ Wn do7

if γ(w) 6= ∅ then8

Set R := FindOrCreateRuleSet((c1, . . . , ck, γ(w)),R).9

if w is a route segment then10

Set OR := OR ∪ {o(w)}11

else if w is a via then12

Set VR := VR ∪ {v(w)}13

Procedure FindOrCreateRuleSet ((c1, . . . , cl),R)

if ∃R ∈ R with φ(R) = (c1, . . . , cl) then1

Set R := φ−1((c1, . . . , cl)).2

else3

Build a rule set R from (c1, . . . , cl).4

Set φ(R) := (c1, . . . , cl).5

SetR := R∪ {R}6

return R7
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Figure 2.12: UML R© class diagram of the BonnRouteRules module. Some arrows are
annotated with a multiplicity number and a role name.
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passed to the module via this interface. The purpose of the RouterControlInterface class
is to provide methods to the user to specify the set of nets to be routed, their priorities,
and preferred wiring planes. Finally, the WireTypeInterface is able to manage requests in
terms of mapping a sequence of constraint groups to an appropriate wire type, and vice
versa.

The modeling task as described in the previous sections, including algorithm 1, is real-
ized by the ModelBuilder class. This class contains methods to build a DesignRuleModel
consisting of classes describing the BonnRoute representation of wires, blockages and
their minimum distance requirements. It also builds a Mapping object, which implements
the RouterControlInterface by using the function φ and internal structures mapping wire
types to the rule sets they were created from. After all modeling work has been done, the
resulting representations and user defined net handling data is passed to BonnRoute by an
OutputHandler object. Currently this still is done via a file interface for legacy reasons
and convenient debugging possibilities, but a direct data handover could also be realized.

The design of the module ensures that data structures and algorithms are well separated,
and have clearly defined interfaces. Changes in the modeling process can be done by
reimplementing the ModelBuilder class without affecting many other parts of the module.
Furthermore there are no strong dependencies to the outside environment. A change
from OpenAccess to any other data model with similar concepts would not be difficult.
Generally, making changes as easy as possible is very important in our case because
the design rule handling is one of the first things that have to be adapted for each new
technology. Even during the lifetime of an existing technology the design rules often
change in order to react to experiences gained in the production process.

2.3.10 Experimental Results

To give an impression on the result and runtime of the BonnRouteRules module in practice
we present some statistics on eight 22 nm server chips and eight 32 nm ASICs. Table
2.1 reports for each of the chips the number of wire type elements (i.e. the sum of the
cardinalities of all wire types), the number of wire types, shape classes, and shape class
minimum distance rules. The table also shows the runtime needed for algorithm 1, which
creates all these structures, as well as the total runtime including the generation of the rule
sets, which is done in algorithm 2.

One can see that on most chips the module created several thousand wire type elements
building several hundred wire types. The high number of wire types is due to the fact that
many of them just model one via and no wires at all. Such wire types are only used for
pin access and postprocessing in combination with other wire types.

The total number of shape classes on each chip is below two hundred, and the mini-
mum distance requirements are modeled by around two thousand shape class minimum
distance rules on each instance. One can also see that some of the ASIC instances are
parts belonging to the same chip and therefore have very similar or even equal design
rules which is reflected in the BonnRouteRules output. Also interesting is that on the
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Chip Tech. Nets WTE WT SC SCR Runtime (sec)

(nm) Alg. 1 Total

S1 22 116,257 1,799 353 169 2,449 0.015 59
S2 22 136,573 2,226 366 160 2,014 0.016 71
S3 22 155,092 3,096 593 168 2,087 0.025 79
S4 22 438,328 3,177 723 156 1,630 0.022 152
S5 22 466,157 2,364 460 156 1,630 0.019 159
S6 22 501,875 3,414 682 163 1,751 0.028 171
S7 22 527,465 4,710 844 181 2,630 0.032 194
S8 22 604,213 6,130 1,499 148 1,358 0.043 214
A1 32 215,272 459 115 157 2,231 0.006 123
A2 32 648,023 1,080 284 157 2,231 0.012 195
A3 32 909,922 1,080 284 157 2,231 0.010 323
A4 32 985,565 1,080 284 157 2,231 0.016 324
A5 32 989,834 1,080 284 157 2,231 0.012 317
A6 32 1,252,364 1,080 284 157 2,231 0.011 390
A7 32 1,283,905 1,200 324 157 2,231 0.013 392
A8 32 1,650,584 459 115 157 2,231 0.006 455

Table 2.1: Total number of wire type elements (WTE), wire types (WT), shape classes
(SC), and shape class minimum distance rules (SCR). The runtime column
shows the runtime of algorithm 1 and the total runtime including algorithm 2.

p WTE SC SC
WTE(%) SCR

0 94 6 6.38 36
1 64 5 7.81 92
2 178 10 5.62 216
3 147 11 7.48 163
4 189 13 6.88 322
5 156 12 7.69 175
6 173 13 7.51 322
7 143 12 8.39 175
8 235 13 5.53 322
9 205 9 4.39 39
10 264 4 1.52 16

Table 2.2: Number of wire type elements (WTE), shape classes SC, and shape class min-
imum distance rules (SCR) on some planes p ∈ P of chip S3. Note that if p is
even, we have a wiring plane, and if p is odd, we have a via plane.



2.3 The BonnRouteRules Module 51

22 nm server designs the number of wire types is considerably higher than on the ASIC
instances because of more user defined design rules in addition to the ones originating
from manufacturing.

The runtime columns show that the runtime of algorithm 1 is insignificantly small in
practice since it always stays way below one second. The total runtime including algo-
rithm 2 is much larger, mainly because it is implemented in Tcl. This runtime can be
significantly reduced by identifying the few parts that cost most of the runtime and reim-
plementing those using a compiled programming language. But compared to the total
runtime of the whole routing flow, even the current total runtime of the BonnRouteRules
module is very small. We will see this in chapter 3, where we present experimental results
of the complete routing flow on the same 16 test instances.

In table 2.2 one can see how the numbers are distributed over the different planes con-
sidering the chip S3 as an example. While the number of wire type elements per plane
is between 60 and 270, we have only between 4 and 13 shape classes which is below
9% on each plane. On the highest planes these numbers typically decrease because there
the design rules are simpler. On via planes the number of shape class minimum distance
rules is considerably smaller compared to wiring planes. The reason is that we only have
via minimum distance rules on such planes and no other kinds of rules such as line end
minimum distance rules. In addition the number of different cut classes that can be used
is quite small, so there are not many different kinds of shapes on these planes.

Note that all of these statistics include the representation of some design rule variants
not discussed in this thesis. Overall, one can summarize that the methods presented here
provide a quite compact and efficient representation of the design rules of current tech-
nologies.

Finally, in figure 2.13 we give an optical impression of the shape classes of the shapes
within a small area of a 22 nm design. The figure shows that most of the wiring consists
of minimum width on-track wires, which can be packed densely and all have the same
shape class. Other shape classes are assigned to wider wires, larger via shapes, and big
blockages which all need more space. The shapes on the highest wiring plane shown in
the figure all have the same shape class. This again confirms that design rules on such
planes are considerably simpler compared to the lower planes. Generally, wires also have
to be much wider on higher planes.
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(a) First wiring Plane (b) First via plane

(c) Second wiring plane (d) Third wiring plane

(e) Fourth wiring plane (f) Fifth wiring plane

Figure 2.13: A small area of a 22 nm server design over several planes containing shapes
colored by shape class. Most shapes represent wires of minimum width run-
ning in preferred direction (red shape class), and there are only very few jogs
(light green shape class). One can see several larger vias (blue shape class)
as well as wider wires requiring more spacing (yellow shape class). Figure
(b) shows a via plane with several different via cut shapes, each having one
of the few allowed cut classes.
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2.3.11 Outlook: Handling DPT Design Rules
In this section we give an outlook on how the new kinds of distance rules occurring in fu-
ture double patterning technologies (DPT) can be incorporated in our distance rule model,
and handled in BonnRoute. As described in section 2.2.4, the DPT distance rules also de-
pend on the assigned masks of shapes, which can be regarded as a color assignment. This
means that routing tools must assign a color to each wire shape such that all distance rules
are satisfied, or at least it must be ensured that such an assignment exists. It is still unclear
how blockage and pin shapes are handled in a DPT routing flow, i.e. if the coloring of
these shapes is predetermined, or can also be chosen by the routing tool.

In BonnRoute the assignment of colors to wire shapes can be naturally encoded by wire
types generated by the BonnRouteRules module as follows. We extend the definition of
wire type elements such that each wire type element in addition to the overhang and shape
class also contains a color. Then for each rule set we create two instead of one wire type,
where the first one contains only wire type elements with the first color, and the second
only wire type elements with the second color. Of course when generating shape classes
as in section 2.3.3, we have to take the color of each wire type element w into account for
creating the set D(w) of distance requirements, and also use it as a further property for
defining equivalence in definition 2.38.

Having such two wire types corresponding to the two colors, we can let our path search
algorithms choose between these at any time. I.e. we label a node in our Dijkstra based
algorithms if at least one of these wire types can be used without shape class minimum
distance rule violations at the corresponding location. Of course it would not be a good
approach to let these algorithms choose wire types (e.g. colors) arbitrarily: Although
each path search will ensure that the found path together with the already existing shapes
admits a feasible coloring, it does not care about making the coloring of subsequent paths
hard, or even impossible. An interesting question is how to guide the router to use these
wire types efficiently such that in the end we obtain a complete coloring without many
time consuming rip-up and reroute sequences.

One simple, but probably most practical, way to achieve this, is to fix for each track in
an alternating manner one of the two colored wire types to be used for all stick figures
on that track. Of course this only makes sense if we define tracks such that neighboring
tracks admit placing stick figures running in preferred direction with differently colored
wire types without creating a minimum distance rule violation. Analogously we need
that tracks with a common neighboring track admit placing stick figures with equally
colored wire types. To achieve this track-wise coloring one can actually route with just
one artificial, third wire type with appropriate minimum distance requirements, which
guarantee the existence of the desired track based coloring. These distance requirements
basically have to ensure two things (illustrated in figure 2.14):

• The induced shapes of on-track stick figures running in preferred direction on the
same track have to keep enough distance such that they can be colored equally.

• For each jog stick figure connecting two points on neighboring tracks there must
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be enough space next to at least one end of the induced shape. Then by using an
appropriate stitch one can maintain the track based coloring.

With these two properties the two colored wire types then can be assigned to stick figures
afterwards in a post processing step accordingly.

d
ddp = 3d

Figure 2.14: Example of a track based coloring where we have minimum vertical distance
d for differently colored shapes of minimum width (which also equals d), and
minimum vertical distance 3d for the case with equal colors. The uniform
tracks with pitch 2d admit alternatingly using only one of the two colored
wire types on each track. Note that the minimum distance between shapes on
the same track (which have equal color), and the additional blocked track at
jogs (red) is needed to guarantee this kind of coloring while actually routing
only with one artificial wire type and assigning colors later.

While this simple approach with its efficient, dense packing of wires seems promising,
we still have to verify that in practice on the upcoming 14 nm DPT designs. The success
of this of course depends on whether stitching becomes restricted, and on how well pin
and blockage shapes in the input can be colored. Also wire types with shapes of larger
width may be problematic in this track based coloring approach. Probably, more complex
additional methods will be necessary, for example a generalized version of the on-track
path search algorithm in BonnRoute, which supports more sophisticated restrictions on
wire type usage by a multi-labeling approach.

2.4 Checking Distance Rules

In this section we describe how the shape class minimum distance rules generated in sec-
tion 2.3 are checked efficiently in BonnRoute. The question if a certain wire shape can
be placed at some position without violating any of these rules with respect to the exist-
ing shapes has to be answered dozens of times in every routing run. Therefore efficient
handling of such queries is essential for achieving good overall runtime.
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2.4.1 General Concept

In BonnRoute we use a path search algorithm even if long distances have to be covered.
To be able to check for minimum distance rule violations efficiently, we need a shape
data structure for determining the subset of all wire, pin and blockage shapes S within
the whole chip area which intersect some given query area.

Given a shape q, such range queries consist of determining the set Sq := {s ∈ S :
A(s)∩A(q) 6= ∅}. We discuss such data structures in section 2.4.2. With this the legality
of some given shape s on a plane p can be checked as follows: The checking module of
BonnRoute determines a set Qs of shapes such that for all shapes s′ ∈ S which violate a
shape class minimum distance rule in Dsc

p together with s we have A(s′) ∩ A(Qs) 6= ∅.
It then performs a range query for all q ∈ Qs and checks for each of the resulting shapes
if it violates any rule in Dsc

p together with s. We describe the checking module in section
2.4.3.

Since by far most legality queries are issued by the on-track path search algorithm
which only uses on-track stick figures, we have a second, very fast data structure for this
special case. The so called fast grid developed by Müller [2009] efficiently stores pre-
computed, continuously updated data, generated by the checking module for a restricted
set of wire types. For each track coordinate t and some wire type elements e of these
wire types it maintains the information whether e and a point-shaped stick figure placed
at t induce a legal shape or not. This data then is stored efficiently as intervals of track
coordinates where this information is equal.

2.4.2 Shape Data Structures

For processing range queries in BonnRoute we currently use the following data structure
called shape grid (Müller [2009]). The following section summarizes the basic structure
of the shape grid.

The Shape Grid

For storing a set of shapes S, the shape grid partitions the chip area on each plane into
shapes, called cells, such that each of them has at most one neighboring cell on each of
its four sides. For a cell c the set of shapes resulting from intersecting each shape in S
with c builds the cell configuration of c. The shapes of a cell configuration are stored with
coordinates relative to its center as anchor point. Since typically many cells have identical
cell configurations, only a cell configuration number is stored in each cell, identifying the
actual cell configuration, which is stored in a lookup table. When adding a shape to
the shape grid, a balanced search tree is used (e.g. Adelson-Velskii and Landis [1962])
in order to determine if an existing cell configuration can be reused or a new one has
to be created. Because it is common that several neighboring cells have the same cell
configuration, the shape grid only stores intervals of equal cell configuration numbers of
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horizontally or vertically neighboring cells. Each row or column of cell configurations is
stored by again using a balanced search tree. Figure 2.15 shows an example.

1 0 0 0 0 02 3 4 5 6 7

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 8 8 8 8 8 8 8 8

0 0 9 10 11 12 12 12 12 12 12 12

0 0 0 0 0 0 0 0 0 1 2 3

Figure 2.15: Cells of the shape grid with their cell configuration numbers. While having
five times seven cells, there are only fifteen intervals of equal neighboring
cells. Intervals with empty cell configurations (number zero) are not stored
explicitly. (Figure adapted from Müller [2009] and Gester et al. [2012].)

Finally at each interval a mapping of cell configuration shapes to corresponding nets is
maintained. This is needed in the rip-up and reroute approach in BonnRoute for evaluating
a cost function on the nets of shapes that need to be removed to make room for some new
wire shape. By respecting this cost function in rip-up path searches, one can for example
make it more expensive to rip-up nets having a high user defined priority such that these
are less likely to be rerouted with detours.

The shape grid, however, gradually has shown some weaknesses and room for im-
provement. First, since shapes are removed and added one by one, many intermediate cell
configurations can occur which are not used anymore at the end. Identifying and delet-
ing such unused cell configurations therefore is necessary from time to time in practice,
which costs additional runtime. Second, despite of building intervals of same cell con-
figurations, sometimes there are regular, strongly repeating structures in practice that are
not represented memory efficiently in the shape grid. An example are the large, grid like
patterns of vias occurring in power supply nets that can be aligned badly to cell bound-
aries leading to many short intervals. The shape grid also does not take advantage of the
fact that there are many standard circuits at different places of the chip area consisting of
the same shapes up to translation. Third, the result of a range query obtained from the
shape grid usually consists of the intersections of the original shapes with several cells.
For most routines using range queries it is inconvenient and unnecessary to work with this
larger set of cut shapes. In particular this can be problematic in routines which necessarily
depend on working on the original shapes. We therefore propose a new alternative data
structure addressing all these problems in the following section.
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The Shape Tree

In this section we present a new data structure for processing range queries, the shape
tree, which is much simpler than the shape grid and better addresses the needs of the
current BonnRoute implementation.

Most shapes in BonnRoute represent wires and therefore are induced by stick figures.
For each net the wiring generated by BonnRoute is represented as a normalized set of
stick figures, which means that stick figures only intersect at their endpoints and two
intersecting stick figures running in the same direction are merged if possible.

Moreover, most stick figures are on-track, because they are generated by the on-track
path search in BonnRoute. We have only a few percent of off-track stick figures, which are
needed for accessing pins. By subdividing the chip area appropriately, we therefore can
efficiently store stick figures using only one-dimensional search trees. Also the blockage
and pin shapes in BonnRoute can be stored in this structure. Important for efficiency,
however, is to avoid explicitly representing all shapes of repeating patterns, as we will
describe later in this section.

The shape tree data structure works as follows: W.l.o.g. let p be a wiring plane with
horizontal preferred direction, the vertical case is analogous. We determine coordinates
y0 < . . . < yn ∈ Z with y0 = ymin, yn = ymax and partition the chip area Ap into disjoint
stripes

Aip := [xmin, xmax]× [yi−1, yi[×{p} for i ∈ {1, . . . , n− 1}, and

Anp := [xmin, xmax]× [yn−1, yn]× {p}.

For efficiency, the height of the stripes should be chosen small enough, e.g. containing
at most one track. Let S be a set consisting of stick figures intersecting p and shapes on
plane p to be stored in the shape tree. For each stripe Aip, i ∈ {1, . . . , n} we maintain a
balanced search tree T ip, which contains elements e = (x(e), S(e)) ∈ Z×2S(Ai

p) sorted by
x(e) (as key), where S(Aip) := {s ∈ S : A(s) ∩ Aip 6= ∅}. Note that the tree may contain
different elements with equal keys.

At all times we maintain the following invariant for i ∈ {1, . . . , n}:

T ip := {es : s ∈ S(Aip)}, where

x(es) := x1(s)

S(es) := {s} ∪ {s′ ∈ S(Aip) : x1(s′) < x(es) < x2(s′)}
(2.16)

Let s be a shape on plane p or a stick figure intersecting p. We realize adding s to
(or removing s from) the shape tree by performing the following operations for each
i ∈ {1, . . . , n} where Aip is intersected by A(s):

• Add(s, i): First, we set S(e) := S(e) ∪ {s} for all e ∈ T ip with x1(s) < x(e) <
x2(s). Second, we check if there is an e ∈ T ip with x(e) = x1(s) and s ∈ S(e). If
not, we create such an e with x(e) := x1(s),

S(e) :=
{
s} ∪ {s′ ∈ S(Aip) : x1(s′) < x(e) < x2(s′)

}
,
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and set T ip := T ip ∪ {e}.

• Remove(s, i): We set S(e) := S(e) \ {s} for all e ∈ T ip with x1(s) ≤ x(e) ≤
x2(s), and remove e from T ip if {s′ ∈ S(e) : x1(s′) = x(e)} = ∅.

It is easy to see that the operations Add and Remove maintain invariant (2.16). Given a
shape q on plane p, we realize a range query by performing the following operation for
each i ∈ {1, . . . , n} where Aip is intersected by A(q):

• RangeQuery(q, i): We determine l := max{x(e) : e ∈ T ip, x(e) < x1(q)}
and return all s ∈ Sq(T

i
p) := {s ∈ S(e) : e ∈ T ip, l ≤ x(e) ≤ x2(q)} with

A(s)∩A(q) 6= ∅. The existence of l can be guaranteed by adding a dummy element
emin = (xmin − 1, ∅) to all T ip.

This procedure works as intended:

Proposition 2.49. Let S be a set consisting of stick figures and shapes stored in the trees
T ip, i ∈ {1, . . . , n} as described above such that invariant (2.16) holds, and let q be a
shape on plane p. Then calling the above procedure RangeQuery(q, i) for each i ∈
{1, . . . , n} with Aip ∩ A(q) 6= ∅ correctly answers the range query with respect to q, i.e.
we have

Sq := {s ∈ S : A(s) ∩ A(q) 6= ∅} ⊆
⋃

i∈{1,...,n}

Sq(T
i
p).

Proof. Assume there is a s ∈ Sq \
⋃
i∈{1,...,n} Sq(T

i
p). By construction there is a Ajp, j ∈

{1, . . . , n} with Ajp ∩ A(s) 6= ∅. Then by the invariant, T jp contains an element es with
x(es) = x1(s) and s ∈ S(es). Since s ∈ Sq we must have x1(s) ≤ x2(q) and x2(s) ≥
x1(q). If also x1(s) ≥ x1(q), then we clearly have s ∈ Sq(T

j
p ), which contradicts our

assumption. Otherwise, suppose x1(s) < x1(q) and s is not contained in Sq(T jp ). Then
we must have x1(s) < l := max{x(e) : e ∈ T jp , x(e) < x1(q)}. But because of x1(s) <
l < x1(q) ≤ x2(s) and the invariant, this implies that there is a e∗ ∈ T jp with x(e∗) = l
and s ∈ S(e∗) ⊆ Sq(T

j
p ), which again contradicts our assumption.

Regarding memory and runtime of the shape tree data structure, note that for storing
a set S we have in the worst case

∣∣T ip∣∣ = |S| and
∑

e∈T i
p
|S(e)| ∈ O(|S|2) for each i ∈

{1, . . . , n}. In the common situations occurring in practice, as described in the beginning
of this section, this looks much better. In the standard case where each stripe contains at
most one track, and S only contains normalized on-track stick figures running in preferred
direction, we have

∑
i∈{1,...n}

∣∣T ip∣∣ = |S| and |S(e)| = 1 for all e ∈ T ip, i ∈ {1, . . . , n}.
Remark. Note that since the shape tree data structure stores wires only in their stick figure
representation, some additional work has to be done if one wants to obtain the wire shapes
intersecting a query shape q. We then have to determine an appropriate query shape q′

covering a larger area A(q′) ⊇ A(q) such that for each shape s induced by a stick figure
(l,W ) we have A(s) ∩ A(q) 6= ∅ =⇒ l ∩ A(q′) 6= ∅. The area A(q′) of course depends
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on q and the overhang shapes of wire type elements on plane p(q). If it becomes much
larger than A(q), runtime of such range queries can increase. In practice, however, it is
only insignificantly larger than A(q) because the width of most overhang shapes is small.

Regarding pin and blockage shapes, we also cannot have many of them covering the
same x-coordinate within one stripe because of minimum distance rules. Moreover, we
build an overlap free representation of these in the initialization part of BonnRoute, stick
figures are disjoint from blockage shapes, and typically abut with, or are contained in pin
shapes in the case of pin access. We discuss how to deal with repeating, regular patterns
of such shapes efficiently in the next section.

Overall, by choosing an appropriate balanced search tree, e.g. as in (Adelson-Velskii
and Landis [1962]) or (Bentley [1979]), the shape tree data structure can be implemented
efficiently. An example of the shape tree is shown in figure 2.16.

1, 1 1

1, 1 1

1,1
1

2
2,2

2

Figure 2.16: Example of the shape tree data structure showing wire stick figures (black
lines), via stick figures (black dots) and a pin shape (dark gray) in an area
divided into four stripes. The vertical green line segments within the stripes
depict the x-coordinates x(e) of tree elements e of the tree corresponding to
the respective stripe. Each number next to such a line segment denotes |S(e)|
for a tree element e at that x-coordinate. Note that for some x-coordinates we
have multiple tree elements. While the top two stripes contain standard situ-
ations, which occur dozens of times in practice, the two bottom stripes con-
tain shapes causing a minimum distance violation, which generally should
not happen.
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Regular Shape Patterns

In practice there often are sets of shapes S which consist of placing a certain pattern of
shapes at multiple different locations. Instead of storing all shapes in S explicitly we
compute a much smaller set S ′ approximating S in the sense that A(S) ⊆ A(S ′) and only
store this reduced set of shapes in the shape tree together with a reference to the pattern.
If the query area of a range query intersects an element of S ′, then only the shapes of
the corresponding pattern which intersect this area are instantiated on the fly. A simple
example of such patterns are power vias, i.e. vias of power supply nets, aligned in a grid
like fashion as follows: A power via pattern v consists of a shape s, counts nx, ny ∈ N,
and distances dx, dy ∈ N . The corresponding set of power via shapes on p is:

S(v) := {(idx, jdy, p) + s : i ∈ {1, . . . , nx}, j ∈ {1, . . . , ny}}

Note that in practice nx or ny can be very large, e.g. ≥ 105 on current large designs. If
dx, dy are small enough, we simply can choose the approximating set S ′(v) as the shapes
with the smallest area containing a row or column of power vias, respectively. Having
stored only S ′(v) and references from each s ∈ S ′(v) to v, for a given query shape q the
set of shapes S(v)q = {s ∈ S(v) : A(s)∩A(q) 6= ∅} can be found inO(|S ′(v)q|+|S(v)q|)
time, where S ′(v)q := {s′ ∈ S ′(v) : A(s) ∩ A(q) 6= ∅}, plus the time of the range query
to obtain S ′(v)q.

Of course if S ′ contains few shapes, but approximates S only roughly, we have few
tree elements, but often check if the pattern intersects a query area in vain. Conversely,
if S ′ contains many shapes to be more accurate, we may not reduce the number of tree
elements significantly.

A second example of repeating patterns are the multiple occurrences of circuits hav-
ing the same internal structure. Most types of standard circuits occur several times on
a design, and have the same shapes up to translation and certain types of rotation and
mirroring. Instead of explicitly storing the shapes of each circuit in the shape tree, we
only store its circuit area, a given set of shapes whose area covers all shapes of the cir-
cuit, together with a reference. To retrieve the shapes within the circuit area that actually
intersect a query area efficiently, one might need a data structure like a quadtree (Finkel
and Bentley [1974]), which can be build once in advance for each type of circuit. This ap-
proach naturally can be extended to more general patterns as long as they can be identified
and approximated efficiently.

Using this relatively simple data structure instead of the shape grid also makes ignoring
certain shapes of a net while it is being routed much easier. Attached to each shape one can
store a net identifier such that ignoring every shape of a given net is possible in constant
time, which is not the case for the shape grid. Ignoring a specific set of shapes could be
achieved by storing this set in a hash table, and not adding any shape contained in that
table to any range query result.
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2.4.3 The Checking Module
The task of the checking module of BonnRoute is to decide if a given shape s on plane
p is legal with respect to the set of shape class minimum distance rules Dsc

p and all other
shapes S on p in the current routing situation. Moreover, it has to return an interval in
which this property does not change. To determine the area in which shapes in S can
cause a violation with s, it computes a set of shapes Q such that A(Q) ⊇ A(s, r) for all
A(s, r) in {

A(s, r) : r = (c, c′, t, d) ∈ Dsc
p , c(s) ∈ {c, c′} ⊆ Cp

}
,

where Cp denotes the set of shape classes on p. After determining the set of shapes
SQ := {s′ ∈ S : A(s′) ∩ A(Q) 6= ∅} by using one of the data structures described in
section 2.4.2, it checks for each s′ ∈ SQ if s, s′ violate any rule r ∈ Dsc

p .
Checking the different kinds of shape class minimum distance rules for violations ac-

cording to definition 2.31 is straight forward, and can be done in constant time. The
implementation of euclidean distance checks in practice can be accelerated by precom-
puting the function δd : {0, . . . , d} → {0, . . . , d}, δd(x) :=

⌈√
d2 − x2

⌉
for each distance

d ∈ N required by any shape class minimum distance rule (c, c′, eucl, d) ∈ Dsc. Then it
clearly holds for any q = (x, y), q′ = (x′, y′) ∈ Z2 that dist(q, q′) < d ⇔ |x − x′| <
d ∧ |y − y′| < δd(|x− x′|).

If we use the shape tree data structure presented in 2.4.2, it would be also easily possible
to realize the shape modifications of generalized shape class minimum distance rules
proposed in section 2.3.8. Note that with this data structure we directly obtain the original
shapes (instead of cut pieces as in the shape grid), which can be necessary to apply such
modifications efficiently.

2.5 Handling Same Net Rules
In the previous sections we mainly considered design rules involving shapes of different
nets. A further difficult task is satisfying the various kinds of same net rules, i.e. de-
sign rules that apply to shapes belonging the same net. In BonnRoute we try to avoid
same net errors by using a same net rule aware pin access algorithm, and by restricting
ourselves to on-track routing for longer distances. In combination with several postpro-
cessing methods and an external DRC error fixing step, this yields sufficiently low same
net error counts in practice. In this section we describe the main aspects of this approach.

2.5.1 Pin Access
In older technologies with 90 nm feature sizes and above all routing shapes had to be
aligned to a given, layer dependent grid, where typically the distance between each two
adjacent nodes (grid pitch) was the sum of the minimum width and minimum spacing
required by the technology design rules. Each pin was guaranteed to cover and align to a



62 2 Handling Design Rules

set of on-grid points. Typically simply accessing each pin at any of these points also did
avoid same net rule violations. Therefore, clean and efficient pin access was relatively
easy. In BonnRoute there was a single path search algorithm for covering long distances
and accessing pins, both of course on the predefined grid.

Starting with the 65 nm technology, all shapes can be placed on a much finer grid with
a pitch of only a few nanometers. For most connections it still is feasible, and good
for efficient packing of wires, to use equidistant tracks similar to the predefined grid in
older technologies. Pin access, however, has become much more difficult because densely
packed pin shapes may require to actually use the finer grid. Off-track wires generally are
necessary for pin access, but can easily cause dozens of violations of same net rules, which
have also become much more restrictive. In addition the much denser pin configurations
require a pin access approach which also avoids creating access paths blocking other
nearby pins.

With all these problems that have to be taken into account, pin access has become
a very difficult part of detailed routing. In BonnRoute we have developed specialized
algorithms and data structures for pin access, keeping this complexity out of our on-track
path search algorithm, and therefore maintaining its efficiency. A special path search
algorithm supporting off-track routing computes for each pin a set of paths connecting
the pin to near on-grid points. Then the on-track path search algorithm of BonnRoute
only accesses these on-grid points instead of the pin itself. By concatenating the resulting
on-track path with these pin access paths we obtain a complete connection.

Access Areas of Pins

The first step in our pin access approach is to determine eligible access areas for each pin.
An access area of a pin is basically an area that can be used for access without creating
same net errors. In this section we define access areas formally, and describe how to
compute them efficiently. Access areas are part of the input of the path search algorithm
of BonnRoute which computes pin access paths.

The intention behind access areas is to get rid of the parts of the pin’s area where a via
or a wire stick figure (regardless of its length) cannot access without causing some kind
of same net rule violation. Violations, however, depending on the length of a wire stick
figure, we do not want to remove. These are avoided directly in the pin access path search
algorithm itself. Some examples of same net errors caused by stick figures accessing a
pin are shown in figure 2.17.

In the following we formally define access areas based on the example of minimum
edge rules. Of course, in practice there are many other same net rules that have to be
taken into account, but these can be handled similarly. Let P be a pin with a set SP of
shapes contained in plane p and building a rectilinear polygon plg(SP). W.l.o.g. assume
that p has horizontal preferred direction, and there is a unique minimum edge rule redge
specified by the technology design rules on p. We first need to define what accessing P
actually means:
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SP

s1

s2

s3

Figure 2.17: A pin P with a set SP of shapes (dark gray), two wire stick figures s1, s2,
and one via stick figure s3 accessing P , each creating a minimum edge rule
violation. The violations caused by s2 and s3 we want to avoid by comput-
ing access areas which do not contain the corresponding access points (red
dots). The violation caused by s1, however, depends on the length of l(s1),
therefore the green access point will remain in our access areas unless other
kinds of errors can occur.

Definition 2.50. Let P be a pin with a set SP of shapes on plane p, and s a stick figure
with p ∈ {p1(s), p2(s)}. If s is a via stick figure and A(s) ∩ A(SP) = {a}, we say that s
accesses P at a. Otherwise, if s is a wire stick figure and there exist

(x, y) ∈ {(x1(s), y1(s)), (x2(s), y2(s))} ∩ A(SP),

(x′, y′) ∈ {(x1(s), y1(s)), (x2(s), y2(s))} \ A(SP),

we say that s accesses P at (x, y) in direction d ∈ {north, east, south,west} where

d :=


north if y < y′ ∧ x = x′

east if x < x′ ∧ y = y′

south if y > y′ ∧ x = x′

west if x > x′ ∧ y = y′.

In figure 2.17 the via stick figure s3 accesses p, the wire stick figure s1 accesses P in
direction west, and s2 accesses P in direction north.

While for via stick figures the accessed point of SP is sufficient to determine the viola-
tions caused by the induced shapes, for wire stick figures we additionally need to consider
the direction in which P is accessed. Regarding the length of wire stick figures we always
assume it to be sufficiently large such that the thereby influenced edges are long enough
to satisfy redge.

More precisely, we will construct the following access areas. As defined in section
2.3.1 let w = (p, t, o) be a wire type element with shape type t and overhang shape o. If
t ∈ {bot, top}, the wire type element is used for vias, and we define the access area of P
with respect to w as

Aw(SP) := {(x, y) ∈ A(SP) ∩ Z : plg(SP ∪ {(x, y, p) + o}) satisfies redge}.
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Similarly, if t = pref, it is used for wires in preferred direction, and we define for each
d ∈ {east,west} the access area

Aw,d(SP) := {(x, y) ∈ A(SP) ∩ Z : ∃l ∈ N : plg(SP ∪ {sx,y,d,l + o}) satisfies redge},

where sx,y,d,l is the line segment connecting the point (x, y, p) with (x+l, y, p) if d = east,
or with (x− l, y, p) if d = west.

Analogously we define Aw,d(SP) for t = jog and d ∈ {north, south}. We then have
the property that any shape induced by w and a via stick figure accessing P at a ∈ A(SP)
does not cause a violation of redge if and only if a ∈ Aw(SP). Similarly any shape induced
by w and a wire stick figure of sufficient length accessing P in direction d at a ∈ A(SP)
does not cause a violation of redge if and only if a ∈ Aw,d(SP).

Let us now describe the basic idea how we compute such access areas. Consider the
via case, i.e. we have a wire type element w = (p, t, o) with shape type t ∈ {bot, top}.
We inspect each edge e ∈ plg(SP) and derive, using o, a set of shapes Ce with the
property that for each (x, y) ∈ A(Ce) ∩ Z we have that (x, y, p) + o intersects e and
causes a violation of redge by the corresponding edges in plg(SP ∪ {(x, y, p) + o}). We
then compute A(SP)\A(

⋃
e∈plg(SP ) Ce) to obtain the desired access area Aw(SP). Figure

2.18 (a) shows an example of vertices of the polygon build by the shapes of a pin and the
induced shape of a via stick figure accessing it.

Considering an edge e of this polygon intersected by this via shape we can construct
the set Ce by adding an appropriate shape for some specific vertices of this polygon. For
vertex v in figure 2.18 (a) for example we add the following shape cve to Ce:

x1(cve) := x1(e) + |x1(o)|+ 1

x2(cve) :=


x1(e) + l2 − 1 if length(e1) < l1

x1(e) + l1 − 1 if l1 ≤ length(e1) < l2

x1(cve)− 1 otherwise

y1(cve) := y1(e)− y2(o) + 1

y2(cve) := y2(e) + y1(o)

Note that in the third case of setting x1(cve) we have A(cve) = ∅, meaning that no point of
A(SP) needs to be removed with respect to v and e. It can be easily verified thatA(cve)∩Z
is the set of points (x, y) ∈ A(SP) where v is a vertex in plg(SP ∪ {(x, y, p) + o}) with
incident edges e1 and e′ ⊆ e with length(e1) < l1 6=⇒ length(e′) ≥ l2. Figure 2.18 (b)
shows the complete set of shapes Ce.

Note that figure 2.18 only shows a standard case. There might be other edges of
plg(SP) in addition to e which intersect the wire/via shape, and therefore also need to
be considered. Moreover in practice in addition to minimum edge rules there are several
other same net rules to be considered when computing access areas. For each of these
rules we compute access areas one by one, and build their intersection to avoid violations
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e1

v e

e2

(a)

e1

e

e2 l2

l1

(b)

Figure 2.18: Illustration of computing the set of shapes Ce for an edge e ∈ plg(SP)north

for some pin P with shapes SP . Vertices like the ones indicated by the
red circles in (a) have to be considered when constructing the shapes of Ce,
which are shown in red in (b). In these red areas via stick figures inducing
shapes like the gray shape shown in (a) create a violation of the minimum
edge rule redge = (l1, l2).

of all of these rules simultaneously. The case where we are given a direction and a wire
type element used for wires is handled similarly.

We do not compute access areas each time we want to access a pin. Instead we build
classes of pins having the same shapes up to translation and some types of rotation and
mirroring. For each representative pin of such a class we construct and store access areas
for each wire type element (and direction if required) plane by plane. Since we only have
a few thousand of such classes even on largest designs with tens of millions of pins, this
precomputation is very fast in practice. To illustrate the result, figure 2.19 shows three
access areas of a pin of a real-world 22 nm design taking several different same net rules
into account, including minimum edge rules. This figure nicely demonstrates the strong
pin access restrictions imposed by the design rules of current technologies.

Computing Pin Access Paths

Having determined access areas of pins, we need to find paths connecting these to near
on-grid points, which then can be used as source and target for the on-track path search of
BonnRoute. To obtain such pin access paths, off-track routing may be required because
access areas of pins do not necessarily intersect an on-grid point or track. This and the
fact that pin access paths only have small distances to cover can lead to short path seg-
ments, which can easily violate same net rules. To avoid this, we search for shortest paths
under minimum segment length restrictions, which is done in BonnRoute as described
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Aw,north(SP)

Aw′(SP)

Aw,south(SP)

Figure 2.19: Example of access areas (green) of a pin P with shapes SP (dark gray)
of a real-world 22 nm instance for different wire type elements and direc-
tions. The northern and southern figures show the access areas for a wire
type element w defining the overhang shape of vertical wires for direction
north, south, respectively. The middle figure shows the access area for a
wire type elementw′ defining the overhang shape used for via bottom shapes.
Example shapes induced by these wire type elements and some stick figure
are depicted next to the access areas. Each of these can be placed with the
stick figure inside the corresponding access area without creating a violation
of same net rules.
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by Maßberg and Nieberg [2012]: Given obstacles represented by n shapes, one can solve
this problem by a modified version of Dijkstra’s algorithm working on an extended Hanan
grid in O(n4 log n) time.

In order to save runtime in practice, we do not compute pin access paths each time we
want to access a pin. Note that pins are parts of circuits, and large designs can contain
millions of these. All circuits, however, are placed instances of a much smaller number of
circuit definitions called books. This means that equal configurations of pin and blockage
shapes typically occur many times at different locations on each design.

Therefore we build classes of circuits with the property that all circuits in such a circuit
class contain equal pin and blockage shapes within some area up to translation and some
kinds of rotation and mirroring (Schulte and Nieberg [2008]). By also ensuring that the
relative positions of on-grid points within these areas are equal for all members of a circuit
class, it is sufficient to precompute and store pin access paths only for one representative
circuit of each class. The access paths for any other pin then can be obtained simply by
inspecting its corresponding representative circuit and translating the paths computed for
the corresponding pin appropriately.

In addition it is important to avoid conflicts between pin access paths of near pins.
In dense pin configurations, which occur frequently on designs in modern technologies,
it can easily happen that a pin access path of one pin blocks another pin belonging to
the same circuit. In BonnRoute this is also taken into account by actually computing a
conflict free set of access paths for each circuit class. This basically results in solving a
COLORED INDEPENDENT SET PROBLEM (Maßberg and Nieberg [2009]), which is done
in BonnRoute by a branch and bound method. See (Nieberg [2011]) for more details.

2.5.2 Postprocessing

Despite of the same net error avoiding pin access approach described in section 2.5.1 and
our restriction to on-track routing for longer distances, without further measures same net
errors still occur in significant numbers in practice.

There are two main reasons for this: First, even if a pin access path and an on-track
path are free of same net errors, this does not necessarily hold for the concatenation of
these. In fact on-track paths may be needed which access the on-grid endpoint of a pin
access path from a specific direction in order to remain same net error free. Computing
such directions is easy, guiding the on-track path search to do this, however, is not trivial.
This currently is not realized in BonnRoute, but would be a worthwhile improvement for
future versions.

Second, on-track routing satisfies many same net rules by construction because most
edges of the resulting rectilinear polygons of shapes generally have sufficient length, but
combinations of different kinds of shapes still can cause violations. For example, in-
tersecting jog and via shapes, as noted already in section 2.3.4, often lead to end edges
requiring more space, and in addition typically create minimum edge rule violations. An-
other example where this can happen are shapes induced by stick figures with different
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wire types.
Such errors are not easy to avoid. Generally considering these directly within the on-

track path search, e.g. by a multi-labeling approach, may cost too much runtime. Always
using larger vias/wires which are wider than minimum width or require larger minimum
distances is not an option because of high additional routing space usage. We can, how-
ever, apply such measures selectively in a postprocessing step where needed.

In BonnRoute we have two postprocessing phases where several routines try to apply
local modifications to the wiring in order to fix same net rule violations. In the first
phase each individual path is postprocessed directly after it has been created. Especially
modifications that need additional routing space are applied in this step, as later the wiring
of other nets may block this space. Examples of such modifications are changing the wire
type of certain stick figures or changing their geometry slightly. The second phase is done
after all nets have been routed. Here same net errors not only involving a single path are
addressed, and the whole wiring of each net is taken into account.

Note, however, that it is a tedious task to avoid or fix all kinds of same net rule viola-
tions, therefore we currently only handle the most important ones in BonnRoute. To clean
up remaining violations in practice, BonnRoute is combined with an industrial standard
router with strong local DRC error fixing capabilities. This combination gives very good
results in practice, which we present in chapter 3.2.



3 BonnRoute in Practice

BonnRoute is the routing part of the BonnTools software package developed at the Re-
search Institute for Discrete Mathematics at the University of Bonn in cooperation with
IBM. We have given an overview over its main components in section 1.2. BonnRoute,
formerly known as XRouter, is used in practice by IBM for over 20 years now. Over
thousand different ASIC chips have been routed with BonnRoute, some of which had
enormous sizes up to 11 million nets. Since 2011 BonnRoute is also able to route server
chips. One key part to support this new environment and the complex design rules of
32 nm and 22 nm technologies was the BonnRouteRules module that we presented in sec-
tion 2.3.

In this chapter we first give an overview of the combined routing flow in which Bonn-
Route is currently used at IBM. We then present detailed experimental results showing
that this flow gives excellent results in practice on current real-world ASIC and server
chips. The low number of remaining design rule violations in these results also confirms
that our design rule model described in chapter 2 works well in practice.

3.1 Combined Routing Flow

In practice BonnRoute is used together with another routing tool, an industrial standard
router (ISR) that originally has been used without BonnRoute at IBM, mainly for server
chip routing. Using a track assignment and switch-box routing step (see section 1.1), it is
fundamentally different from BonnRoute. Generally, one can say that while the strength
of BonnRoute lies in the fast and efficient packing of wires without many detours, ISR
is rather focused on obtaining an exceptionally clean result in terms of remaining design
rule violations. ISR also is far more modularized than BonnRoute, meaning that many
individual functions can easily be controlled from outside. Since these properties of the
two routing tools complement one another, first experiments using a combined flow with
both tools started several years ago in close cooperation with IBM.

This flow basically works as follows: First, BonnRoute routes all nets except a small
set of special nets that in the current BonnRoute implementation are not supported. The
resulting wiring generally satisfies almost all distance rules that apply to shapes of dif-
ferent nets. Exceptions are for example some cases of line end minimum distance rule
violations that can occur due to our optimistic model as discussed in section 2.3.4. In
addition BonnRoute avoids most same net rule violations by the measures we described
in section 2.5. The second step of the combined routing flow then is to use ISR to realize
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the remaining connections and fix design rule violations by a sequence of clean up steps.
This basically involves local rip-up and reroute of wires that violate minimum distance
rules, and several local postprocessing steps to fix same net errors.

Important for the overall success of this flow is that BonnRoute especially avoids errors
that are difficult to fix later. These basically are errors where the fixing requires a signif-
icant amount of additional routing space, which might not exist anymore in the second
step of the flow. Otherwise ISR struggles to fix such errors and needs a huge amount
of runtime such that the combined flow has no runtime benefit anymore. Identifying the
parts of the BonnRoute result that need to be improved to achieve better runtime of the
overall flow is not easy and still under development.

3.2 Experimental Results
In this section we present experimental results of BonnRoute and the combined routing
flow on several real world chips. Let us first describe the different criteria that we consider
for evaluating the routing results.

• One traditional important criterion of course is the total wiring length over all nets.
Shorter connections may give better results in terms of signal delay and power
consumption and leave more space for subsequent physical design steps. Note that
there are several postoptimization steps after routing in order to address timing
issues, that may need additional space. For example the insertion of additional
buffer circuits to amplify signals that have to cover long distances.

• From a timing point of view already one single net which is routed with a large
detour may cause problems. Therefore in addition to total wiring length we consider
the amount of nets with large detours. We call a net scenic if its total wiring length
is at least 100 µm and at least 25% (or 50%) larger than the length of a Steiner tree
having (approximatively) minimum length. For nets up to nine terminals, minimum
Steiner trees can be obtained for example as proposed by Chu and Wong [2008].
For larger nets heuristic Steiner tree algorithms are used.

• Especially for production yield a low number of vias is important, because vias have
a relatively high error probability in the manufacturing process. It is even common
practice to add so called redundant vias in a postprocessing step to achieve better
via robustness.

• A necessary condition for a routing result to be usable in practice is a sufficiently
low number of design rule violations (DRC errors). Any such remaining error
basically has to be fixed manually, which can be very difficult and time consuming.

• Finally, runtime is an important criterion. Routing typically is not just done once,
but has to be iterated together with other physical design steps to achieve a success-
ful result. Since a main part of the runtime of the overall physical design process
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is spent in routing, it is very important to make routing tools as runtime efficient as
possible.

Our testbed is shown in table 3.1. It consists of eight 22 nm server chips and eight
32 nm ASICs. The instance sizes range from about one hundred thousand nets up to 1.6
million nets. On the largest instance A8 there are about four million connections needed
to connect all pins of each net. We call such missing connections opens. Typically ASIC
instances reach larger sizes compared to server instances. But even ASICs today generally
do not reach the enormous sizes that occurred in former technologies. They are designed
more hierarchically, meaning that the design is split into several large blocks which are
considered separately.

Chip Tech. Image Size Wiring Nets Opens
(nm) (mm × mm) Planes

S1 22 0.80 × 0.24 7 116,257 253,462
S2 22 0.95 × 0.33 7 136,573 252,120
S3 22 0.26 × 1.11 9 155,092 288,162
S4 22 0.48 × 2.13 13 438,328 757,548
S5 22 0.96 × 1.06 9 466,157 816,773
S6 22 0.96 × 1.06 9 501,875 877,224
S7 22 0.96 × 0.89 7 527,465 1,042,216
S8 22 1.24 × 1.52 13 604,213 1,108,832
A1 32 0.64 × 0.64 8 215,272 583,135
A2 32 2.73 × 0.77 9 648,023 1,494,413
A3 32 2.37 × 1.56 9 909,922 2,249,512
A4 32 2.90 × 5.34 9 985,565 2,248,659
A5 32 3.05 × 1.17 9 989,834 2,398,713
A6 32 2.77 × 1.95 9 1,252,364 3,064,564
A7 32 5.63 × 1.41 9 1,283,905 2,950,513
A8 32 2.90 × 1.28 8 1,650,584 3,939,558∑

10,881,429 24,325,404

Table 3.1: Our testbed consisting of eight 22 nm server and eight 32 nm ASIC chips.

All of the results we show in the following were produced on a machine with 192 GB
memory and two Intel Xeon X5690 CPUs, each having six cores running at 3.47 GHz.
Both tools, BonnRoute and ISR, were run using 12 threads.

Table 3.2 shows the BonnRoute results on our testbed in terms of wiring length, num-
ber of vias, runtime, as well as the number of remaining opens and spacing errors. The
runtime columns show the runtime of the initialization, the global routing part, the de-
tailed routing part, and the total runtime of BonnRoute. One can see that detailed routing
by far dominates total runtime and global routing is extremely fast, needing less than two
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hours for all 16 chips. The detailed routing part runs in about 18 hours, and in total Bonn-
Route needs about 30 hours to close most of the over 24 million opens of the chips in our
testbed. The largest amount of the initialization runtime, which amounts to a total of over
four hours, is spent in the precomputation of pin access paths that we described in section
2.5.1, and in initializing the shape grid and fast grid data structures described in section
2.4.1. The total runtime is larger than the sum of initialization, global, and detailed rout-
ing runtime because it additionally contains the runtime of postprocessing steps, data I/O,
and data conversion.

The relatively small number of remaining opens compared to the initial number of
opens shows that BonnRoute connected almost all nets. Note that there are some special
nets currently not supported in BonnRoute, whose missing connections are also counted
as opens here. Also some spacing errors are created on each instance, but almost all of
them occur at line ends and are locally fixable.

Chip Wires Vias Runtime (hh:mm:ss) Opens Spacing

(m) (×103) Init Global Detailed Total Errors

S1 1.97 863 0:02:44 0:00:42 0:16:27 0:25:51 1,638 3,103
S2 2.54 881 0:03:33 0:00:58 0:07:20 0:18:26 147 879
S3 2.69 1,061 0:04:28 0:01:19 1:39:26 1:53:32 74 1,960
S4 12.47 3,198 0:08:58 0:05:05 0:19:49 0:53:21 3,231 2,032
S5 11.91 3,274 0:09:41 0:04:03 0:23:22 0:57:17 2,753 2,033
S6 13.31 3,543 0:11:43 0:04:16 0:29:08 1:05:49 2,902 1,904
S7 11.39 3,952 0:12:43 0:04:44 0:51:22 1:33:14 1,060 4,831
S8 14.91 4,163 0:14:43 0:04:43 1:19:14 2:06:36 1,548 3,944
A1 4.11 2,059 0:04:04 0:01:24 0:20:50 0:31:46 1,147 1,692
A2 22.33 5,674 0:15:36 0:06:14 1:12:12 1:48:57 3,736 2,596
A3 32.87 9,005 0:30:17 0:08:28 1:47:18 2:46:32 4,187 6,683
A4 59.06 9,476 0:30:26 0:16:19 1:55:19 3:03:56 6,162 4,673
A5 35.23 9,022 0:23:52 0:09:31 1:16:02 2:16:21 4,742 4,320
A6 46.27 12,054 0:36:51 0:11:32 2:27:26 3:45:45 5,568 7,866
A7 61.59 12,067 0:38:21 0:15:42 2:29:37 3:52:20 5,808 7,115
A8 49.54 15,233 0:23:37 0:12:34 1:39:11 2:47:51 3,536 6,897∑

382.19 95,525 4:31:37 1:47:34 18:34:03 30:07:34 48,239 62,528

Table 3.2: The results of BonnRoute in terms of runtime, opens, and spacing errors. The
runtime columns show the runtime of the initialization, global, and detailed
routing part of BonnRoute as well as the the total runtime including postpro-
cessing, data I/O, and data conversion.

In table 3.3 we compare the results of the combined flow we described in section 3.1 to
the results of a plain ISR run without BonnRoute.
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Chip Tool Runtime (hh:mm:ss) Wires Vias Scenic Nets DRC

BR Total (m) (×103) 20% 50% Errors

S1
ISR 0:52:39 2.05 1,196 47 7 4

BR+ISR 0:25:51 1:31:36 1.99 914 6 0 5

S2
ISR 1:07:33 2.6 1,135 163 38 95

BR+ISR 0:18:26 1:01:28 2.55 907 21 2 0

S3
ISR 2:07:32 2.9 1,481 1,812 1,079 21

BR+ISR 1:53:32 2:40:47 2.7 1,080 582 301 12

S4
ISR 7:29:14 13.85 4,120 15,128 10,880 634

BR+ISR 0:53:21 3:04:40 12.5 3,238 1,785 619 244

S5
ISR 5:53:25 12.29 3,980 3,868 2,421 269

BR+ISR 0:57:17 3:33:25 11.93 3,322 428 260 74

S6
ISR 9:40:39 14.19 4,330 6,314 3,665 53

BR+ISR 1:05:49 5:08:18 13.33 3,589 335 45 78

S7
ISR 7:51:13 11.97 5,279 3,101 1,422 290

BR+ISR 1:33:14 7:46:43 11.46 4,119 224 33 46

S8
ISR 15:27:13 15.94 5,276 4,832 2,185 77

BR+ISR 2:06:36 13:44:13 14.97 4,224 176 21 78

A1
ISR 2:09:07 4.20 2,360 352 92 12

BR+ISR 0:31:46 1:11:43 4.13 2,072 4 1 11

A2
ISR 4:26:10 24.01 6,616 6258 3593 23

BR+ISR 1:48:57 3:32:44 22.45 5,825 409 184 10

A3
ISR 7:52:17 34.59 9,910 7850 3932 21

BR+ISR 2:46:32 5:40:32 32.96 9,090 465 67 15

A4
ISR 9:22:09 60.24 10,481 14563 6371 63

BR+ISR 3:03:56 6:07:33 59.19 9,570 3,225 764 38

A5
ISR 8:33:55 37.00 10,358 8340 4789 24

BR+ISR 2:16:21 7:42:45 35.41 9,306 438 134 30

A6
ISR 9:39:12 48.96 13,530 11309 5997 32

BR+ISR 3:45:45 7:44:05 46.47 12,211 96 5 17

A7
ISR 12:10:51 65.94 13,797 19892 10874 50

BR+ISR 3:52:20 8:21:34 61.73 12,198 1,593 773 27

A8
ISR 8:28:07 52.43 17,209 13165 6430 49

BR+ISR 2:47:51 6:15:03 49.66 15,335 62 5 14

∑ ISR 113:11:16 403.17 111,058 116,994 63,775 1,717
BR+ISR 30:07:34 85:07:09 383.41 97,000 9,849 3,214 699

-24.80% -4.90% -12.66% -91.58% -94.96% -59.29%

Table 3.3: Comparison of our combined routing flow BR+ISR and ISR alone. All run-
times measure the total runtime of the respective step.
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For each chip we have two rows, where the first row contains the result of the ISR run
and the second row the result of the combined flow (BR+ISR). One can clearly see that
the combined flow is far superior to ISR alone. It has 24% less runtime, 5% less wiring
length, 12% less vias, and over 90% less scenic nets. Both, the combined flow and ISR
alone, manage to route most chips with very few remaining design rule violations.

Surprisingly, the BonnRoute runtime only amounts to about 35% of the total runtime
of the combined flow, although BonnRoute left only few opens and spacing errors as
seen in table 3.2. Furthermore, most of these errors as well as the same net errors left
by BonnRoute are locally fixable. This shows that the combined flow probably still can
be significantly improved in terms of runtime. One the one hand by reducing DRC error
counts already in the BonnRoute result, and on the other hand by improving the error
fixing steps within the ISR part of the combined flow.

But already with the current state of the combined flow the results are excellent and
clearly demonstrate that this is a very good approach to route current 32 nm and 22 nm
chips.
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Summary

One of the last major steps in the design of highly integrated circuits (VLSI design) is
routing. The task of routing is to compute disjoint sets of wires connecting different parts
of a chip in order to realize the desired electrical connectivity. There are several different
optimization goals that are considered including total wiring length, power consumption
or production yield. While this problem even in its most basic form is already NP-hard,
in practice it becomes even harder because all resulting metal shapes have to respect a
large set of technology dependent design rules. Moreover instance sizes in practice are
huge, such that routing, as most other steps in VLSI design, cannot be done without
sophisticated automated tools.

Design rules define restrictions on the minimum distance and geometry of metal shapes.
The intent of most design rules is to forbid patterns that cannot be manufactured well in
the lithographic production process. This process has become extremely difficult with the
current small feature sizes of 32 nm and below, which are still being manufactured using
193 nm wavelength technology. Because of this, the design rules of modern technologies
have become very complex, and computing a routing with a sufficiently low number of
design rule violations is a difficult task for automated routing tools. This is, however, a
necessary requirement in practice because every remaining violation basically has to be
fixed manually by the designers.

In this thesis we present in detail how design rules can be handled efficiently in an
automated routing tool. In chapter 2 we develop an appropriate design rule model which
considerably reduces complexity while not being too restrictive. This involves mapping
complex polygon-based rules to simpler rectangle-based rules and building equivalence
classes of shapes with respect to their minimum distance requirements. Our model en-
ables efficient checking of minimum distance rules, which has to be done dozens of times
in each routing run. We also discuss efficient data structures that are necessary to achieve
this.

We implemented our design rule model within BonnRoute, the routing tool of the Bonn-
Tools, a software package for VLSI physical design developed at the Research Institute
for Discrete Mathematics at the University of Bonn in cooperation with IBM. The result
is a new module of BonnRoute, called BonnRoutRules, which computes this design rule
model and embeds BonnRoute in the complex routing environment of current technolo-
gies. Chapter 2 also describes the internal structure of this module and some implemen-
tation aspects. At the end of the chapter we discuss the handling of design rules which
restrict the geometry of shapes instead of defining minimum distance requirements. Vi-



olations of such rules have to be avoided especially in pin access, which is an important
part of routing and has become considerable more difficult in recent technologies.

The BonnRouteRules module was a key part in enabling BonnRoute to route current
32 nm and 22 nm chips. In chapter 3 we first describe the combined routing flow used
by IBM in practice, in which BonnRoute solves the main routing task and an industrial
standard router is used for postprocessing. We then present detailed experimental results
of this flow on real-world designs. The results show that this combined flow produces
routings with almost no remaining design rule violations, which proves that our design
rule model works well in practice. Furthermore, compared to the industrial standard router
alone, the combination with BonnRoute provides several significant benefits: It has 24%
less runtime, 5% less wiring length, and over 90% less detours, which shows that with
this flow we have an excellent routing tool in practice.


