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Zusammenfassung

Künstliche Oberflächenstrukturen aus triangulierten Punktwolken

Ein Ziel der Photogrammetrie ist die Rekonstruktion der Form und Größe von
Objekten, die mit Kameras, 3D-Laserscannern und anderern räumlichen Er-
fassungssystemen aufgenommen wurden. Während viele Aufnahmetechniken
innerhalb von Sekunden triangulierte Punktwolken mit Millionen von Punkten
liefern, ist deren Interpretation gewöhnlicherweise dem Nutzer überlassen. Beson-
ders bei der Rekonstruktion künstlicher Objekte (i.S.v. engl. man-made =

”
von

Menschenhand gemacht“) ist man an der zugrunde liegenden Oberflächenstruktur
interessiert, welche nicht inhärent in den Daten enthalten ist. Diese umfasst die
geometrische Form des Objekts, z.B. quaderförmig oder zylindrisch, als auch die
zugehörigen Oberflächenparameter, z.B. Breite, Höhe oder Radius. Die Anwen-
dungen sind vielfältig und reichen von industriellen Fertigungskontrollen über
architektonische Raumaufmaße bis hin zu großmaßstäbigen Stadtmodellen.

Das Ziel dieser Arbeit ist es, solche Oberflächenstrukturen automatisch aus tri-
angulierten Punktwolken von künstlichen Objekten abzuleiten. Sie sind definiert
als ein Verbund ebener und gekrümmter geometrischer Primitive. Modellwissen
über typische Primitive und Relationen zwischen Paaren von ihnen soll die
Rekonstruktion positiv beeinflussen.

Nachdem wir ein parametrisiertes Modell für künstliche Oberflächenstruk-
turen formuliert haben, entwickeln wir ein Rekonstruktionsverfahren mit drei
Verarbeitungsschritten: Im Rahmen einer schnellen Vorsegmentierung, die lokale
Oberflächeneigenschaften berücksichtigt, teilen wir die gegebene vermaschte
Oberfläche in ebene Regionen. Unter Verwendung eines Schemas zur Modell-
auswahl, das auf der Minimierung der Beschreibungslänge beruht, ist diese
Oberflächensegmentierung unabhängig von Kontrollparametern und liefert au-
tomatisch eine optimale Anzahl an Regionen. Eine anschließende Verbesserung
führt eine Menge von ebenen und gekrümmten geometrischen Primitiven ein und
fusioniert benachbarte Regionen hierarchisch basierend auf ihrer gemeinsamen Be-
schreibungslänge. Eine globale Klassifikation und bedingte Parameterschätzung
verbindet die datengetriebene Segmentierung mit hochrangigem Modellwissen.
Dazu stellen wir die Oberflächenstruktur in Form eines graphischen Modells dar
und formulieren Faktoren basierend auf der Likelihood sowie auf apriori Wissen
über die Parameterverteilungen und Klassenwahrscheinlichkeiten. Wir leiten die
wahrscheinlichste Konfiguration von Flächen- und Relationsklassen mit Hilfe von
Belief-Propagation ab und schätzen eine optimale Oberflächenparametrisierung
mit Bedingungen, die durch die Relationen zwischen benachbarten Primitiven
induziert werden. Der Prozess ist eigens für verrauschte Daten mit Ausreißern
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4 ZUSAMMENFASSUNG

und wenigen Ausnahmeregionen konzipiert, die nicht durch geometrische Pri-
mitive beschreibbar sind. Er liefert wasserdichte 3D-Oberflächenstrukturen mit
Oberflächenprimitiven verschiedener Art.

Die Leistungsfähigkeit des vorgestellten Verfahrens wird an verschiedenen
Datensätzen experimentell evaluiert. Auf kleinen, synthetisch generierten Ober-
flächen untersuchen wir die Genauigkeit der geschätzten Oberflächenparameter,
die Sensitivität bzgl. verschiedener Eigenschaften der Eingangsdaten und bzgl.
Modellannahmen sowie die Rechenkomplexität. Außerdem demonstrieren wir die
Flexibilität bzgl. verschiedener Aufnahmetechniken anhand realer Datensätze.
Das vorgestellte Rekonstruktionsverfahren erweist sich als genau, hinreichend
schnell und wenig anfällig für Defekte in den Daten oder falsche Modellannahmen.



Abstract

Man-made Surface Structures from Triangulated Point Clouds

Photogrammetry aims at reconstructing shape and dimensions of objects captured
with cameras, 3D laser scanners or other spatial acquisition systems. While many
acquisition techniques deliver triangulated point clouds with millions of vertices
within seconds, the interpretation is usually left to the user. Especially when
reconstructing man-made objects, one is interested in the underlying surface
structure, which is not inherently present in the data. This includes the geometric
shape of the object, e.g. cubical or cylindrical, as well as corresponding surface
parameters, e.g. width, height and radius. Applications are manifold and range
from industrial production control to architectural on-site measurements to
large-scale city models.

The goal of this thesis is to automatically derive such surface structures
from triangulated 3D point clouds of man-made objects. They are defined as
a compound of planar or curved geometric primitives. Model knowledge about
typical primitives and relations between adjacent pairs of them should affect the
reconstruction positively.

After formulating a parametrized model for man-made surface structures,
we develop a reconstruction framework with three processing steps: During a
fast pre-segmentation exploiting local surface properties we divide the given
surface mesh into planar regions. Making use of a model selection scheme
based on minimizing the description length, this surface segmentation is free of
control parameters and automatically yields an optimal number of segments. A
subsequent refinement introduces a set of planar or curved geometric primitives
and hierarchically merges adjacent regions based on their joint description
length. A global classification and constraint parameter estimation combines
the data-driven segmentation with high-level model knowledge. Therefore, we
represent the surface structure with a graphical model and formulate factors
based on likelihood as well as prior knowledge about parameter distributions and
class probabilities. We infer the most probable setting of surface and relation
classes with belief propagation and estimate an optimal surface parametrization
with constraints induced by inter-regional relations. The process is specifically
designed to work on noisy data with outliers and a few exceptional freeform
regions not describable with geometric primitives. It yields full 3D surface
structures with watertightly connected surface primitives of different types.

The performance of the proposed framework is experimentally evaluated on
various data sets. On small synthetically generated meshes we analyze the accu-
racy of the estimated surface parameters, the sensitivity w.r.t. various properties
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6 ABSTRACT

of the input data and w.r.t. model assumptions as well as the computational
complexity. Additionally we demonstrate the flexibility w.r.t. different acquisi-
tion techniques on real data sets. The proposed method turns out to be accurate,
reasonably fast and little sensitive to defects in the data or imprecise model
assumptions.
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Notation

Geometry

X , V, T point, vertex, triangle
u, v ∈ {1, . . . , V } vertex indices

t ∈ {1, . . . , T} triangle indices
ne(·) set of neighboring vertices, triangles or graph nodes

X = [X,Y, Z]T Euclidean 3D coordinate vector
(x, y), (u, v) 2D parametrizations for surfaces
F 1,F 2,n, κ first/second fundamental forms, normal, curvature

| · | magnitude, norm, determinant or cardinality
tr(·) trace

a coefficients of a local graph surface

M, U, D, V moment matrix and its SVD: M = UDV
T

Sampling density

γ curve
lfs local feature size
ǫ sampling density

Intrinsic distances

D = [Dv] distance map, one value per vertex v
F = [Fv] friction map, one value per vertex v

dvu, s
v
u curvature-adaptive/Euclidean distance from u to v
∇· gradient

v0, v
∗ seed vertex, farthest vertex
Q queue of vertices in wave front

O(·) big O notation: asymptotic computational complexity

Vertex labeling

l = [lv] labeling for each vertex v
l ∈ {1, . . . , L} possible labels

Linc, Ldec L after incremental/decremental segmentation
l+, l− new label, label subject to removal

Description length

Φ description length
lb, ln, log binary, natural and general logarithm

r, ε coordinate range and resolution
B boundary length
·̄ outlier
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12 NOTATION

Surface model

θ parameters of one surface region
θn, θc, θd, θr, θA normal, centroid, distance to origin, radius, slope

θLh
, θL0

homogeneous and Euclidean part of Plücker line L
z, α zenith distance of a normal, opening angle of a cone

t· threshold

Graphical models

x = {xi} variable nodes
f = {fj} factor nodes

i = 1, . . . , I variable indices
j = 1, . . . , J factor indices

µ, π forward and backward messages

Classification

P , p, φ probability, probability density, potential
D given data
Z partition function

s = [sl] surface classes for each region
r = [rk] relation classes for each pair of adjacent regions

s ∈ {1, . . . , S} possible surface classes
r ∈ {1, . . . , R} possible relation classes

l = 1, . . . , L region indices
k = 1, . . . ,K relation indices

N (·), F (·), χ2(·) normal, Fisher and chi-squared distribution
Φ(·) CDF of the standard normal distribution

ν degrees of freedom
δ contradiction angle

H0, H1 null and alternative hypothesis
q test statistic

E(·) expectation

Parameter estimation

N , U , G number of observations, parameters and constraints
R redundancy

σ2, Σ, W variance, covariance matrix, weight matrix
y, v, p, g observations, residuals, parameters, constraints

cg residuals of the constraints
A, B Jacobians of constraints w.r.t. parameters/observations

J Jacobian of transformation into reduced tangent space
N(·) vector normalization

sgn, null(·), In sign, null space, n× n identity matrix
N, b normal equation matrix and right-hand side

Ω sum of squared residuals
Xv sum of squared coordinate residuals for point v

·̃, ·̂, ·0 true, estimated, approximate value
∆· difference w.r.t. approximate values
·r vector reduced to tangent space

w(·), ρ(·) weight function, re-weighting function



CHAPTER 1

Introduction

The core task of photogrammetry has always been to determine the
shape and location of visually observed objects. Techniques for detecting
individual points in images and forward-intersecting their 3D location
are established since decades and have recently been applied to data
sets with millions of images and billions of points exploiting parallel
computing techniques. Novel sensors for acquiring depth images in real-
time complement the capabilities of modern photogrammetric systems.
Against the backdrop of large amounts of data captured with low effort
on the one hand and advanced methods from the field of machine learning
and pattern recognition on the other hand, the problem of automatically
recognizing an abstract object or surface model gains in importance.
This thesis proposes a novel framework for reconstructing such surface
models from unordered point clouds of man-made objects. It serves as an
essential preprocessing step for subsequent interpretations and analyses.

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . 14
1.2 Goal and achievements . . . . . . . . . . . . . . . . 15
1.3 Related work . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Surface segmentation . . . . . . . . . . . . . . . 16
1.3.1.1 Segmentation via distance transforms . . . . . . 16
1.3.1.2 Hierarchical mesh simplification . . . . . . . . 17
1.3.1.3 Primitive fitting . . . . . . . . . . . . . . 18
1.3.1.4 Watershed segmentation . . . . . . . . . . . 18

1.3.2 Object reconstruction . . . . . . . . . . . . . . . 19
1.3.2.1 Labeling cell complexes . . . . . . . . . . . 20
1.3.2.2 Knowledge-based 3D building reconstruction . . . 20
1.3.2.3 Roofs and large-scale city models . . . . . . . 21

1.4 General concept. . . . . . . . . . . . . . . . . . . 22
1.5 Organization of the thesis. . . . . . . . . . . . . . . 22

13



14 CHAPTER 1. INTRODUCTION

1.1 Motivation

Recognizing and measuring 3D objects has always been a major field of research
in geodesy, photogrammetry and computer vision. Originally the focus used to
be on precisely measuring individual object dimensions like width and length of
a rectangular building footprint. In contrast, recent approaches try to recognize
the rectangular shape automatically from a large bulk of data like images or
laser scans, before estimating relevant object dimensions.

Fig. 1.1 illustrates the relation between the 3D point cloud of a small man-
made object and the corresponding surface model. While the point cloud does not
contain any semantical information like the type of surface each point represents
or which point corresponds to sharp edges or corners, the surface model consists
of multiple connected, parametrized surface regions of a certain type. Surface
properties and inter-surface relations, e.g. the orthogonality of two adjacent
planes, are explicitly encoded and allow the derivation of measures like the
distance of two parallel planes or the angle between adjacent surface parts.
High-level semantics, however, like a plane being a wall, window or part of the
roof, are not contained in the surface model and are not within focus of this
thesis.

(a) Paper house (b) 3D point cloud

90
.1

mm

120.2
m
m

96.2◦

(c) Reconstructed model

Figure 1.1: Surface structure of a small object. A paper house (a) is captured using
a laser scanner yielding a set of unordered 3D points (b). The reconstructed surface
model (c) contains both a segmentation into piece-wise planar surface regions as well
as a parametrization for each region. This allows to automatically derive measures like
the object’s dimensions or building-specific properties like the gable angle.

Applications of automatic shape recognition approaches are manifold:

Reverse engineering and production control. In the field of industrial de-
sign and production the method of reverse engineering has become popular.
It aims at recovering a 3D virtual model of an existing mechanical object
like a part of an engine. Similarly, one tries to reconstruct the geometry of
manufactured objects for quality control.

Architecture and craft. Both architects and craftsman rely on floor plans of
rooms, apartments or whole buildings. While it is time consuming and
error-prone to capture the topology and to measure width and height of
each wall individually, an automated shape recognition and measuring
system, e.g. based on laser scanned point clouds, would simplify and
accelerate this process.
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City models. Much effort is put into creating 3D city models from aerial laser
scans, from aerial imagery or from mobile mapping systems. While some
mapping services rely on user-driven building modelling, other services try
to reconstruct buildings automatically.

All above-mentioned applications concentrate on man-made objects due to
their common and usually relatively simple structure: Most man-made surfaces
are a compound of multiple planar or curved surfaces. In contrast, natural objects
like terrain or vegetation are fare more complex in topology and geometry and
thus require specially tailored approaches and specific model knowledge. In
this thesis man-made objects and the reconstruction of their underlying surface
structure is at the center of our attention.

1.2 Goal and achievements

The goal of this thesis is as follows. Given a set of triangulated 3D points
representing an object’s surface, we want to develop a framework for automatically
recognizing and parametrizing the underlying surface structure.

The surface structure should comprise multiple surface regions of prespecified
types and relations between pairs of adjacent, watertightly connected regions.
Furthermore, we want to estimate a parametrization for each region such that
the individual surfaces are close to their corresponding 3D points.

Many 3D data acquisition methods yield unordered point clouds, i.e. without
known connectivities between neighboring points. However, well established
algorithms exist for triangulating such point clouds, also referred to as surface
reconstruction, shape reconstruction or meshing. We will discuss some of them
in Section 2.1.1. Although existing approaches do not yield perfect results in
the presence of noisy data, low sampling density or holes, we will choose one
of them for preprocessing our reconstruction framework that best matches our
requirements.

Before briefly describing the general concept of the proposed framework in
Section 1.4, we collect relevant related work from the field of surface segmentation
and object reconstruction in the following section.

Author publications. The contents of this thesis have been partly published
in the following articles and conference proceedings:

Schindler and Förstner (2011) Fast marching for robust surface segmenta-
tion. In U. Stilla, F. Rottensteiner, H. Mayer, B. Jutzi, and M. Butenuth
(Eds.), Photogrammetric Image Analysis, Volume 6952 of Lecture Notes in
Computer Science, pp. 147–158. Springer Berlin Heidelberg.

Schindler, Förstner, and Frahm (2011) Classification and reconstruction
of surfaces from point clouds of man-made objects. In IEEE International
Conference on Computer Vision, Workshop on Computer Vision for Remote
Sensing of the Environment.

Schindler and Förstner (2013) DijkstraFPS: Graph partitioning in geome-
try and image processing. Zeitschrift für Photogrammetrie, Fernerkundung
und Geoinformation 2013 (4), 285–296.
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1.3 Related work

Previous work on the topic of surface structure recognition and estimation falls
into two groups: 1) mere segmentation, i.e. dividing the given surface mesh
into homogeneous regions, and 2) reconstruction, i.e. determining a parametric
representation of the underlying object or surface. We will discuss one group
after the other in the two following sections.

1.3.1 Surface segmentation

Under surface segmentation we understand the complete partitioning of a given
implicit or meshed surface into non-overlapping regions that fulfill a specific
homogeneity criterion. We distinguish segmentations as a preprocessing step
for subsequent interpretation and semantical segmentations that integrate the
interpretation of surface regions. Within this thesis we combine both concepts:
After a data-driven pre-segmentation we refine the partitioning using a semantical
segmentation including the assignment of different surface types.

In this section we discuss four groups of surface segmentation techniques:
There is a group of segmentation strategies based on distance transforms on sur-
faces. Many approaches are based on hierarchically simplifying a mesh, starting
with one region per vertex or triangle and merging them iteratively. Another
common concept is to detect geometrical primitives, yielding a segmentation
implicitly. Finally, some approaches are based on the watershed image segmenta-
tion, which can be understood as region-growing followed by an iterative merging
step. We will highlight relevant publications from each of these four groups and
draw conclusions for our work.

An overview of more mesh segmentation algorithms is given by Attene et al.
(2006) and Wilke (2002, Ch. 6). Chen et al. (2009) provide a benchmark and
various metrics for comparing mesh segmentations. Cignoni et al. (1998) and
Garland (1999a) give an extensive overview of the related concept of mesh
simplification.

1.3.1.1 Segmentation via distance transforms

We first look into surface segmentation algorithms based on distance transforms.
The principle is to initialize small regions at seed vertices and to propagate
the region boundaries to the outside, until the whole mesh is segmented. Since
the selection of all seeds at once is difficult at the beginning, one starts with
one random seed only and iteratively samples the farthest seed according to a
predefined distance metric, motivating the term farthest point sampling (FPS).
In this section we collect relevant publications about FPS, the foundation of the
surface segmentation introduced in Chapter 4.

Originally FPS is used for progressive image sampling (Eldar et al., 1997).
Moenning and Dodgson (2003a) adopt FPS for sub-sampling meshed surfaces,
using the fast marching method (FMM, Sethian, 1996) for computing the distance
map that is needed for finding the farthest point. Using an approximation from
Memoli and Sapiro (2001, 2002), Moenning and Dodgson (2003b) do not rely
on meshed surface, but can apply FPS to implicit surfaces and unordered point
clouds as well. While FPS is usually realized using a uniform or curvature-based
distance metric, Lai et al. (2008) formulate a distance metric for FPS based on
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random walks, i.e. evaluating the probability of a random walk traveling along a
certain path.

Schindler and Förstner (2011, 2013) recently proposed DijkstraFPS, a seg-
mentation algorithm for meshed surfaces. It is based on FPS as well, but updates
the distance map using Dijkstra’s algorithm (Dijkstra, 1959), which is a fast
and simple approximation of FMM. By combining the incremental sampling
with a decremental removal of surface regions, the algorithms yields more stable
region boundaries even on noisy data. Additionally, Schindler and Förstner
(2011) proposed an automatic stopping criterion to automatically determine the
optimal number of surface regions.

A related concept from Cohen-Steiner et al. (2004) randomly initializes
multiple seeds at once and gradually grows corresponding regions. In contrast
to the above-mentioned approaches, it uses shape proxies, i.e. fitted primitives
that can be flat or curved. The authors also suggest the incremental insertion
and deletion of regions as well as the combination of both.

We will describe DijkstraFPS in Chapter 4 and use it as a fast initializa-
tion for a subsequent hierarchical surface segmentation in Chapter 5. In the
following section we will discuss related work on this group of hierarchical mesh
segmentation algorithms.

1.3.1.2 Hierarchical mesh simplification by merging primitives

A second group of surface segmentation algorithms is based on a hierarchical
structure, obtained via split or merge operations. The process is guided by an
error metric w.r.t. fitted primitives. While splitting 1D polylines is easy (Ramer,
1972; Douglas and Peucker, 1973; Pan and Förstner, 1994), finding optimal splits
is much more difficult for 2D surfaces. Therefore, we concentrate on approaches
based on merging adjacent regions. In this section we will discuss the original
approach for planar regions from Garland et al. as well as the extension for
curved regions from Attene et al.

The fundamental idea behind hierarchical mesh simplification is to start with
a complete oversegmentation, e.g. one region for each vertex or triangle, and to
merge them iteratively according to a predefined objective function. Garland
and Heckbert (1997) propose a mesh simplification algorithm that iteratively
contracts vertex pairs reducing the number of vertices while trying to keep the
approximation error small. The dual approach is to iteratively merge triangles
leading to a surface segmentation (Garland et al., 2001). Both concepts are
summarized in Garland’s PhD thesis (Garland, 1999b). We will adopt the
concept of hierarchical mesh segmentation in Chapter 5.

Attene et al. (2006) as well as Attene and Patanè (2010) extend the segmen-
tation approach to different primitives such as planes, cones, spheres, cylinders
and tori. Together with mesh repairing (Attene, 2010) and other low-level mesh
processing operations this is part of the software ReMESH (Attene and Falci-
dieno, 2006). We will as well introduce planes, cones, cylinders and spheres. In
contrast to Garland et al. and Attene et al., who require the number of regions
to be specified by the user, we will formulate an optimization function that
automatically yields an optimal number of regions.

The hierarchical segmentation approach is well suited for reconstructing
man-made surface structures due to the variety of primitives that can be used.
One drawback might be the large number of trivial merge operations in the
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beginning: Up to 50 % of all merge steps are required to form pairs of triangles;
after 25 % more steps we obtain groups of four. On such a small scale it
is unnecessary to fit multiple primitives each time. Therefore, we will use a
hierarchical approach based on fitting primitives only as second, refining surface
segmentation (Section 5.5).

1.3.1.3 Primitive fitting

Many mesh segmentation methods focus on fitting primitives into the data
points, often without using a triangular mesh but unordered points only. The
segmentation is usually derived by assigning the points to their closest primitive.
After briefly addressing a state-of-the-art method from Schnabel et al. (2007,
2009) and an extension from Li et al. (2011) involving regularities between
different primitives, we collect strategies with hybrid representations: partly
described with primitives, partly with the original mesh.

The popular approach from Schnabel et al. (2007) detects primitives based
on random sampling consensus (RANSAC, Fischler and Bolles, 1981). The
authors detect planes, spheres, cylinders, cones and tori very efficiently with
three or less points per minimal set using corresponding normal vectors. In a
subsequent processing step they derive a watertight surface built from primitives
by solving a discrete graph optimization (Schnabel et al., 2009) based on a 3D
voxel grid. Although obtaining visually pleasing results, this approach ignores
the connectivity information contained in a triangular mesh and needs a post-
processing step to reconnect primitives to watertight surface models. The latter
involves solving a graph cut (Boykov and Kolmogorov, 2004) on a voxel grid,
which does not scale well with increasing object size.

After fitting primitives into unordered point clouds, Li et al. (2011) detect
regularities, i.e. common angles or distances, in the set of primitives. They
re-estimate all surface parameters using constraints induced by the detected
regularities. Since the authors analyze relations between primitive pairs, the
complexity can reach O(L4) for L primitives, becoming intractable for large mod-
els. We will detect primitive relations as well, but within a global classification
procedure taking data and model uncertainties into account.

Regions without a parametric representation, i.e. so-called freeform surfaces,
deserve special attention. Gallup et al. (2010) classify a given color image into
planar and non-planar regions and model both classes differently. Lafarge et al.
(2010) reconstruct a hybrid representation by trying to fit planes and curved
primitives first; if both attempts fail, they keep the original mesh structure.
Furthermore, the reconstruction is optimized w.r.t. photo consistency (Lafarge
et al., 2012). Although not part of our understanding of man-made structures
in a strict sense, our reconstruction framework will be able to model freeform
surfaces as well.

In order to obtain an inherently watertight segmentation, we will not globally
search for primitives but couple the primitive detection with the segmentation
strategies previously discussed in Sections 1.3.1.1 and 1.3.1.2.

1.3.1.4 Watershed segmentation

Watershed segmentation is an image segmentation method, which has been suc-
cessfully transfered to 3D meshes. After briefly describing the original watershed
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principle for 2D domains, we discuss analogue approaches for mesh segmentation
and evaluate the suitability for our application.

Watersheds, originally a term from the field of hydrology and geomorphology,
denote a net of boundary lines that segment an area into multiple drainage
basins. In image processing it is a common segmentation method (Beucher and
Lantuejoul, 1979): By virtually flooding the image starting from local minima
of a precomputed height function, e.g. the magnitude of local image gradient,
one merges basins until reaching a certain height, which needs to be given as
user-defined threshold. Meine and Köthe (2005) avoid the need for such a height
threshold by transferring the discrete problem into a continuous form via spline
interpolation. Instead, however, they require a user-defined integration scale.

Mangan and Whitaker (1999) segment a surface by adapting the watershed
image segmentation to triangulated meshes in 3D space. As height function they
use local curvature. Pulla et al. (2001) propose multiple alternative curvature
measures for Mangan and Whitaker’s algorithm. Page et al. (2003) and Page
(2003) obtain comparable results, although they define watersheds by simply
applying a threshold on local curvature, detect connected components and
fill unlabeled watersheds with a region-growing approach towards the region
boundaries. Atkar et al. (2005) exploit the watershed segmentation method
for segmenting computer aided design (CAD) models for the application of
path-planning of auto-body painting robots.

On noisy data, however, watershed segmentation tends to yield poor results.
It relies on a height function, which is usually the curvature and sensitive to noise.
We will face the same problem within our DijkstraFPS segmentation approach
presented in Chapter 4, but will introduce several strategies to nevertheless obtain
robust results. Furthermore, we will use the curvature-based DijkstraFPS seg-
mentation only as an initialization for a subsequent primitive-based segmentation
(Chapter 5).

A second drawback of the watershed segmentation is its dependence on
a predefined, more or less intuitive threshold. Our surface segmentation will
be completely parameterless and only depending on an assumption about the
underlying noise.

This concludes the collection of algorithms and concepts on pure surface
segmentation, which is an important first step of our reconstruction framework.

1.3.2 Object reconstruction

In the previous section we discussed concepts mainly for segmenting surfaces or
point clouds. Although some approaches involve fitting geometric primitives like
planes or quadratic surfaces, relations across multiple regions are usually not
considered. In this section we want to focus on approaches for reconstructing
objects in terms of a collection of connected surface regions with certain pre-
specified relations in between. We will first bring up the concepts of labeling
cell complexes and topological constraints for 3D building models, before giving
examples for reconstructing roofs and large-scale city models – mainly originated
by the photogrammetric community.
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1.3.2.1 Labeling cell complexes

A cell complex is a topological concept, basically dividing the space into cells
(Frank and Kuhn, 1986). By labeling each cell as inside and outside, the union
of all boundaries between differently labeled cells represents the object’s surface.

The complex can, e.g., be induced by a binary space partition tree: Starting
with one large cell, Labatut et al. (2009) and Labatut (2009) detect a dominant
primitive with a RANSAC approach and split the current cell in two parts, one
of each side of the primitive. This process is iterated as long as primitives can be
found. Similarly, Chauve et al. (2010) build a mixture of a binary space partition
and a voxel grid via region growing, but are limited to planar primitives only.

In both cases an optimal labeling and thus the object’s surface is found
using a common graph segmentation approach called graph cut (Boykov and
Kolmogorov, 2004). Assuming the viewpoint to be known for each point, the
graph cut is solved using visibility constraints: All cells between a 3D data
point and its corresponding viewpoint must be empty. The remaining cells are
supposed to be part of the object and, thus, their hull defines the object’s surface.

Although the authors present very promising results, such binary space
partition trees can become very complex for large scenes, multiple primitive
types and full 3D surfaces. Further, this approach depends on the knowledge
of corresponding viewpoints, which is not possible for all acquisition methods.
Therefore, we will – at the expense of requiring a triangulation – avoid the need
for building cell complexes.

1.3.2.2 Knowledge-based 3D building reconstruction

Reconstructing building models from 3D laser scanning data and imagery gained
special attention in the photogrammetric community. Most solutions are based
on building-specific object templates, primitive libraries, other knowledge bases
or formal grammars.

Elberink (2009) as well as Elberink and Vosselman (2009) detect roofs from
airborne laser scans via graph matching against target shapes. Similarly, Huang
et al. (2013) reconstruct roofs via fitting primitives from a library and estimating
their parameters using a variant of an optimization technique called Markov
Chain Monte Carlo sampling. Others exploit knowledge about buildings and
facades in form of size, position, orientation and topology of different building
parts (Pu and Vosselman, 2009a,b) or formulate special rules for grouping
adjacent primitives (Tian et al., 2009, 2010). Although being well suitable for
some kind of buildings, we will try to avoid to use such specific knowledge, since
it is not transferable to other applications like reverse engineering and indoor
scenarios as stated in Section 1.1.

Milde et al. (2008) detect planar patches in 3D point clouds, build a region
adjacency graph and match subgraphs against templates using formal grammars.
In a subsequent work they demonstrate the use of graphical models for modelling
buildings using the example of roofs with dormers (Milde and Brenner, 2009).
We will adopt the graph representation of building parts, extend it with curved
surface types as well as more inter-surface relations and determine the optimal
configuration in a graph optimization procedure.

As we will describe in detail in Section 3.2.1, we will introduce model knowl-
edge as well. In contrast to the above-mentioned approaches specifically designed
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for building reconstruction, the model proposed in this thesis is designed for
general man-made surface structures and will depend on few control parameters
only with clear semantics.

1.3.2.3 Roofs and large-scale city models

Last but not least we want to focus on large-scale city model reconstructions as
they are obtained from airborne laser scans and aerial images. Due to the large
area, high altitudes and low resolution the resulting models possess level of detail
2 or less, i.e. buildings are represented as cuboids with basic roof structures, and
are often limited to 2.5D structures or even 2D footprints only. Two overviews
are given by Brenner et al. (2001) and Brenner (2003).

Various approaches are initially based on image processing. Baillard and
Zisserman (2000) compute 3D lines from Canny edges, Werner and Zisserman
(2002b) detect principle directions from vanishing points, Rottensteiner (2010)
projects watershed regions into a laser point cloud and Kolbe (2001) extracts
building features from aerial images. These approaches are hardly transferable to
our application, since they require imagery and are limited to piece-wise planar
surfaces. In contrast to using radiometric images, Weidner and Förstner (1995)
and Brenner (2000) require digital evaluation models, limiting the approach to
2.5D reconstructions only.

Peternell and Steiner (2004), Dorninger and Nothegger (2007) and Lari et al.
(2011) reconstruct building roofs and facades, respectively, combining region
growing and clustering in parameter space. Pu and Vosselman (2006) also
segment facade surfaces using region growing, but recognize building parts via
numerous, application-specific if-then-else conditions. The main limitation of
these region-growing methods is the piece-wise planarity of detected surfaces.
We will overcome this problem using a subsequent primitive fitting approach
(Chapter 5).

Brunn (2000) reconstructs building models from digital surface models using a
graphical model on points, edges and triangles. Due to low sampling density and
large noise, the results are poor and limited to simple rectangular building shapes
only. Therefore, in contrast to classifying low-level elements like single points or
triangles of the surface mesh, we will perform a data-driven segmentation before
introducing high-level model knowledge.

Two very promising frameworks for reconstructing large-scale city models
are proposed by Zhou and Neumann (2010, 2011, 2012) and Lafarge and Mallet
(2012). Like many of the above-mentioned works they are conceptually limited
to 2.5D surfaces, thus not suited for our needs.

In contrast to many of the above-mentioned approaches we aim at reconstruct-
ing 3D surface models with level of detail 3, i.e. a detailed architectural model.
Nevertheless, our method is applicable to large-scale city models, since many
well performing building detection algorithms exist (Rottensteiner et al., 2012).
Buildings can be detected in low-resolution 2.5D point clouds and subsequently
precisely reconstructed using our framework, possibly using 3D point clouds with
higher resolution.

With this literature review about surface segmentation and reconstruction
methods in mind, we will now introduce the general concept of the proposed
reconstruction framework.
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1.4 General concept

In the following we will describe the three levels of our reconstruction framework,
which will be detailed in Chapter 3. Furthermore, we define the expected outcome
of the experimental evaluation in Chapter 7.

Considering the large amount of related work in this field, reconstructing
surface structures of complex man-made objects proves elusive. While many
authors successfully obtain visually pleasing segmentations of small, almost
noise-free surface meshes, approaches for real-world object reconstruction usually
restrict to rough models with low resolution and often 2.5 dimensions only.
We claim, this is due to the large gap between low-level data points and the
high-level model knowledge we usually want to exploit. Therefore, we propose a
reconstruction framework at three levels:

1. a low-level pre-segmentation into planar regions (Chapter 4),

2. a mid-level segmentation with planar, curved or freeform surface primitives
(Chapter 5) and finally

3. a high-level surface classification and parameter estimation using model
knowledge about man-made surface structures (Chapter 6).

We will detail this strategy in Section 3.2.2.
The result is an object surface describable as a compound of planar or

quadratic surfaces. All surfaces are augmented with certain parameters depending
on the underlying surface type, e.g. position and radius for a spherical surface
region or orientation and distance to the origin for a plane. Pairs of adjacent
surfaces hold a specific relation in between, possibly introducing a constraint on
the surfaces’ parameters, e.g. orthogonal normal vectors for two planes being
orthogonally related to each other.

The reconstructed surface model should be robust to noisy point clouds and
outliers. Given a point cloud with reasonably small noise and dense sampling,
we expect the reconstruction to yield correct surface types and accurate surface
parameters, independent of the respective acquisition method. Furthermore, the
computing time should be small enough for practical applicability, i.e. a couple
of minutes for surfaces with a few dozens of surface parts. The method should
be scalable to large-scale applications like city models.

After giving an overview of the theoretical background in Chapter 2, we will
describe the three parts of the proposed reconstruction framework in detail. The
experimental evaluation in Chapter 7 should confirm our expectations about the
resulting surface model.

1.5 Organization of the thesis

The thesis is organized as follows.
In Chapter 2 we briefly collect preliminaries on related topics. This involves

the generation and processing of triangular meshes, the computation of shortest
paths on manifolds, the minimum description length model selection strategy,
inference on graphical models as well as parameter estimation with a Gauss-
Helmert model.
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We describe both the task and the concept of this thesis in Chapter 3. Besides
a more detailed specification of the three reconstruction levels, we introduce the
model for man-made surface structures with its surface and relation types.

The following three chapters represent the three reconstruction levels. A fast,
data-driven pre-segmentation approach is described in Chapter 4, followed by
a hierarchical, model-driven segmentation in Chapters 5. Chapter 6 describes
the third level of the proposed reconstruction framework, namely the surface
classification via inference on a graphical model along with the surface parameter
estimation.

Chapter 7 presents various experiments to demonstrate the performance of
the proposed reconstruction framework. It involves experiments on synthetic
meshes as well as on real-world data sets.

We close this thesis with concluding remarks and an outlook on future work
in Chapter 8.





CHAPTER 2

Theoretical background

This chapter collects the relevant technical concepts used in our approach.
It involves reconstructing and processing triangular meshes, computing
shortest paths on such surfaces, estimating surface parameters, selecting
surface models by minimizing the total description length and inferring
an optimal classification of surfaces and inter-surface relations using
graphical models.
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2.5 Inference in graphical models . . . . . . . . . . . . . 44

2.5.1 Factor graphs . . . . . . . . . . . . . . . . . . 44

2.5.2 Marginal probability via the sum-product algorithm . . . . 46

2.5.3 Most probable variable setting via the max-sum algorithm . . 47

2.1 Triangular meshes

Many systems exist for capturing point clouds of 3D shapes (Mada et al., 2003).
An overview is given in Fig. 2.1.
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Figure 2.1: 3D shape acquisition techniques. The techniques are divided into contact
and non-contact, and the latter into transmissive and reflective (a). Optical methods
(b) are part of the last group. Some techniques like magnetic resonance imaging (MRI)
yield volumetric data in form of 3D voxel images, but most techniques yield unordered
2.5D or 3D point clouds that represent a surface. Adapted from Mada et al. (2003,
Fig. 1).

Since many acquisition techniques yield unordered point clouds, it has been a
major research topic to reconstruct the underlying surface, either by connecting
points to form triangular or quadrilateral meshes or by interpolating the original
point cloud with additional, meshed surface points. In this thesis we will focus on
triangular meshes only, since other polygons can be easily converted to triangles.

In the following sections we will collect relevant and most prominent methods
for triangulating point clouds, before deriving surface properties like vertex
normals and curvature.
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2.1.1 Point cloud triangulation

Point cloud triangulation, also referred to as surface reconstruction or shape
reconstruction, deals with the problem of deriving a meshed surface from un-
ordered 3D points. A meshed surface consists of a set of vertices {Vv} with
indices v = 1, . . . , V and a set of polygonal faces, i.e. triangular simplices {Tt} in
our case with indices t = 1, . . . , T , that are represented as a list of three vertex
indices each. The vertices together with all simplices form a simplicial complex
(Spanier, 1994, pg. 108).

Since object surfaces are usually describable as a manifold dividing the
space into inside and outside, we expect the triangular mesh to be free of self-
intersections and orientable. Therefore, most triangular meshes encode the
orientation of each triangular simplex by ordering the vertex indices clockwisely
as seen from outside.

Note that in the context of an observed 3D location with coordinates X we
use the term point X . For triangular corner points we use the term vertex V.

We will give a short overview of three major surface triangulation approaches.
The first two, the Delaunay complex and the crust, start from a tetrahedral-
ization of the 3D space and label tetrahedrons as inside or outside the object’s
surface. Since they conceptually connect the original 3D points, their resulting
triangulations are called linear interpolation. The third concept, signed distance
functions, is based on determining an implicit surface function making use of
locally estimated vertex normals. The zero-crossing of this function is sampled
and triangulated yielding an approximated surface with new, previously non-
existing vertices. The Delaunay complex mainly serves as basis for the crust,
which yields useful results under certain conditions. In this thesis, however, an
algorithm of the last group has turned out to triangulate noisy point clouds most
reliably.

2.1.1.1 Triangulation as part of the Delaunay complex

The Delaunay complex of a point cloud is created via Delaunay tetrahedralization
of the 3D space and consists of a set of tetrahedrons, each with four vertices
from the original points. By identifying the tetrahedrons inside the object one
obtains the set of boundary faces, i.e. a triangular surface mesh. In the following
we differentiate two basic concepts: either classifying or removing tetrahedrons
based on local properties, or within a global optimization approach.

Based on a simple rule about the topology of tetrahedrons and an ordering
criterion, Boissonnat (1984) iteratively removes tetrahedrons outside the object.
The hull of the remaining tetrahedrons forms the triangular surface mesh. Some
authors exploit other structures derived from the Delaunay complex, like the
Voronoi complex (O’Rourke et al., 1987; Glanvill and Broughan, 1997; Attali,
1997), which is dual to the Delaunay complex, or the Gabriel graph (Attene and
Spagnuolo, 2000), which consists of a subset of all Delaunay edges. Edelsbrunner
and Mücke (1994) introduce alpha complexes, which are subcomplexes of the
Delaunay complex, basically obtained by removing simplices with a circumsphere
larger than some predefined threshold. An overview of local methods for surface
reconstructions based on the Delaunay complex is given by Edelsbrunner (1998).
Unfortunately, all these methods are designed for noise-free samples of piece-wise
smooth surfaces. Often they do not yield useful results on real point clouds with
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significant noise, since the underlying assumption of the point cloud representing
a manifold is violated.

Global methods usually formulate an energy function involving all tetrahe-
drons. By minimizing this energy a globally optimal labeling is found, separating
the Delaunay complex into inside and outside. Labatut et al. (2007) combine
three energy terms: visibility, photo-consistency and smoothness. Pan et al.
(2009) propose an online surface reconstruction system with a similar approach
achieving real-time performance. Jancosek and Pajdla (2011) formulate an
energy function for point clouds from multi-view stereo reconstructions based on
photo-consistency. These methods inherently require imagery to be available. For
arbitrary point clouds, e.g. captured via laser scanning, they are not applicable.

All these methods utilize the Delaunay complex of the original point cloud.
The following group of algorithms incorporates additional points: the centers of
Voronoi cells.

2.1.1.2 The crust

The term crust is introduced by Amenta et al. (1998) and continues the concept of
surfaces being part of the Delaunay complex. In contrast to the methods discussed
in the previous section, the crust is derived from the Delaunay tetrahedralization
of the combined point cloud: including the original points and Voronoi points,
i.e. the vertices of the Voronoi diagram. While in 2D space the crust is simply
the subset of edges connecting original points, the definition is more difficult in
3D space. In the following we will collect only a few approaches.

In order to find triangles being part of the surface Amenta and Bern (1998,
1999) as well as Amenta et al. (1998, 2000) exploit triangles consisting of original
points only and their distance to adjacent Voronoi nodes. Extensions exist for
noisy point clouds (Amenta et al., 2001; Dey and Goswami, 2006), large data sets
(Dey et al., 2001), watertight surfaces (Dey and Goswami, 2003) and surfaces
with sharp edges (Dey et al., 2013). The identification of boundary triangles is
also formulated as a global optimization, e.g. in form of an eigenvalue problem
(Kolluri et al., 2004) or energy minimization (Aganj et al., 2009). A great
overview of various crust algorithms is given by Tcherniavski and Stelldinger
(2008).

Despite the large variety of algorithms – software is available for all algorithms
from Dey et al. – they do not always yield satisfactory results on real-world point
clouds. In case of large noise and a significant amount of outliers the resulting
meshes contain many non-manifold triangles, i.e. the meshes are not orientable,
which complicates the subsequent processing steps. Therefore, we choose an
approach of the following group of algorithms based on signed distance functions.

2.1.1.3 Surface as zero-crossing of signed distance functions

Signed distance functions are continuously defined over – in our case – the 3D
space and indicate the Euclidean distance to the closest point on the surface.
They are positive on the one side of the surface and negative on the other side.
Therefore, the zero-crossings can be detected and triangulated, e.g. using the well-
established marching cubes algorithm (Lorensen and Cline, 1987), which creates
polygons in each voxel whose vertices are differently signed. We distinguish two
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approaches, one defined over a regular voxel grid and the other one working with
the more efficient k-d tree data structure.

Hoppe et al. (1992) compute oriented vertex normals from k nearest neighbors,
defining gradients of the signed distance function. For each point of a regular
3D voxel grid they compute its signed distance to the nearest tangent plane.
The zero-crossing is found using the marching cubes algorithm. Since the
signed distance function tends to smooth the original points, it is reasonable to
incorporate edge-preserving relaxation terms in order to preserve sharp surface
features (Ohtake et al., 2001).

A more recent solution (Kazhdan et al., 2006), called Poisson surface recon-
struction, exploits octrees as an efficient data structure for 3D point clouds. The
name originates from solving the Poisson partial differential equation. Kazhdan
and Hoppe (2013) extend this approach by incorporating points as interpolation
constraints, yielding a closer approximation of the original points.

The Poisson surface reconstruction yields good results on most data sets. As
long as the input point cloud roughly represents a manifold without too large
holes, the resulting surface mesh is sufficiently close to the true surface.

Note that this approach requires vertex normals to be present, which is
automatically the case for some acquisition techniques. In other cases they can
be derived from the original point cloud.

In this section we only covered the most popular and promising methods for
triangulating point clouds. A good overview on related approaches is given by
Tishchenko (2010, Sect. 2) and by Wilke (2002, Ch. 4) as well as in the survey
on Delaunay based surface reconstruction algorithms from Cazals and Giesen
(2004).

Assuming to be given a reasonable triangulation of the original point cloud,
we want to derive surface properties such as vertex normals and curvature in the
following section.

2.1.2 Surface normals and curvature

We can use the triangular mesh to compute vertex features like normals and
curvature. Fig. 2.2 visualizes an intuitive interpretation of these two surface
properties. At each surface point there are two principal directions with minimal
and maximal curvature, respectively. The two corresponding curvatures κ1 = 1

r1

and κ2 = 1
r2

are the inverse radii of the two osculating circles. Using κ1 and κ2

we can define three common curvature measures (Pulla et al., 2001; Goldman,
2005), Gaussian curvature K, mean curvature H and mean squared curvature Q:

K = κ1κ2 , H =
1

2
(κ1 + κ2) , Q =

1

2

(
κ2
1 + κ2

2

)
. (2.1)

We will first define both differential geometric properties on implicit sur-
faces, transfer the concepts to graph surfaces and finally formulate a model for
estimating normals and curvature on discrete triangular meshes.

2.1.2.1 Implicit surfaces

First we assume to be given an implicit surface. In the following we describe
how to derive the normal direction n and the different curvature measures K,
H and Q at one point of the surface.
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Figure 2.2: Surface normal and principal curvatures. The red arrow indicates the
normal direction of an implicitly defined surface z = 0.5y − 0.2 cos(3x) cos(4.5y) at
a point X = [0, 0,−0.2]T. The two principal curvatures at X are visualized by two
osculating circles.

An implicit surface is defined as the set of points X = [X, Y, Z]T fulfilling the
equation f(X, Y, Z) = 0. Using a parametrization (u, v) a point on the surface is

X(u, v) =





X(u, v)
Y (u, v)
Z(u, v)



 . (2.2)

The normal is the normalized crossproduct of the gradients in u- and v-direction:

n ∝Xu ×Xv . (2.3)

Using the first and second fundamental forms (Strubecker, 1969; Pulla et al.,
2001; Goldman, 2005)

F 1 =

[
XT

uXu XT

uXv

XT

uXv XT

vXv

]

and F 2 =

[
XT

uun XT

uvn

XT

uvn XT

vvn

]

(2.4)

we can compute the three curvatures

K =
|F 2|
|F 1|

, H =
1

2
tr(F−1

1 F 2) , Q =
1

2
tr(F−1

1 F 2F
−1
1 F 2) . (2.5)

We will transfer this approach to the special type of graph surfaces in the
following section.

2.1.2.2 Graph surfaces

A graph surface explicitly defines the height z = z(x, y) as a function of x and y.
Therefore, the parametrization is trivial and the approach for computing vertex
normals n and curvatures from the previous section is easily applicable.

A point on the surface is parametrized as

X(x, y) =





x
y

z(x, y)



 . (2.6)
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In analogy to (2.3) the surface normal is

n =
1

√

1 + z2x + z2y





−zx
−zy
1



 . (2.7)

With the first and second fundamental forms (2.4) transfered to graph surfaces
z = z(x, y):

F 1 =

[
1 + z2x zxzy
zxzy 1 + z2y

]

and F 2 =
1

√

1 + z2x + z2y

[
zxx zxy
zxy zyy

]

(2.8)

and the curvature measures defined in (2.5), we obtain

K =
zxxzyy − z2xy
(
1 + z2x + z2y

)2 , (2.9)

H =

(
1 + z2x

)
zxx − 2zxzyzxy +

(
1 + z2y

)
zyy

2
(
1 + z2x + z2y

)3/2
, (2.10)

Q =

((
1 + z2y

)
zxx − zxzyzxy

)2
+
((
1 + z2x

)
zyy − zxzyzxy

)2

2
(
1 + z2x + z2y

)2

+

((
1 + z2x

)
zxy − zxzyzxx

) ((
1 + z2y

)
zxy − zxzyzyy

)

(
1 + z2x + z2y

)2 . (2.11)

Later we will work in a local tangent coordinate system with zx = zy = 0. Then
the curvature formulas drastically simplify to

K = zxxzyy − z2xy , H =
1

2
(zxx + zyy) , Q =

1

2

(
z2xx + 2z2xy + z2yy

)
.

(2.12)
So far we derived surface features for parametrized, continuous surfaces. In

the following section we will deal with discrete, densely sampled surface meshes.

2.1.2.3 Surface meshes

Now we assume to be given a set of points {Xv} that sample an unknown surface.
After transforming the local neighborhood of a point Xv such that the mesh
represents a graph surface, we fit a quadratic surface into the neighboring points
and derive surface features from the resulting parametrization.

In order to compute the vertex normal nv and curvatures Kv, Hv or Qv at a
point Xv, we first transform the point Xv with its neighbors Xu = ne(Xv) into
a local tangent coordinate system. The transformation is defined as a rotation
yielding the transformed normal vector pointing upwards, thus the gradients
vanish: zx ≈ zy ≈ 0. We estimate the parameters a of a quadratic graph surface
in the rotated coordinate system and finally derive expressions for both normal
and curvature.

The neighborhood ne(Xv) can be defined as a sphere of fixed radius, the
k nearest vertices or all vertices connected to Xv by a triangular edge. The
advantage of using k nearest vertices is that with k we can define the minimum
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number of points required for estimating parameters of the graph surface and
avoid an underdetermination.

The tangent coordinate system is defined as centered at point Xv and parallel
aligned with an approximate normal direction nv,0. This direction can, e.g.,
be derived from neighboring triangles: Since the vertex indices of orientable
triangular meshes can be assumed to be ordered, the cross product of the two
triangular edge vectors

nt = (XTt,1
−XTt,2

)× (XTt,1
−XTt,3

) (2.13)

is pointing outwards for all triangles t, each with the three vertices Tt,1, Tt,2 and
Tt,3. By averaging over all neighboring triangle normals

nv,0 ∝
∑

t∈ne(v)

nt (2.14)

and normalization such that |nv,0| = 1 we obtain consistently oriented approxi-
mations of vertex normals. In this context t ∈ ne(v) are the indices of triangles Tt
adjacent to the point Xv. Note that by using the non-normalized cross product
nt, whose magnitude is proportional to the area of the triangle t, we obtain a
weighted average nv,0.

We fit a quadratic graph surface

z = a00 + a10x+ a01y + a20x
2 + a11xy + a02y

2 (2.15)

through the transformed points u ∈ ne(v)

Xu =





Xu

Yu

Zu



 . (2.16)

We estimate the parameters a = [a00, a10, a01, a20, a11, a02]
T solving the equation

system

Zu =
[
1 Xu Yu X2

u XuYu Y 2
u

]

︸ ︷︷ ︸

xT
u











a00
a10
a01
a20
a11
a02











︸ ︷︷ ︸

a

. (2.17)

With the combined coordinate matrix X v = [xT

u ] and all Z-coordinates Zv = [Zu]
the estimated parameters â are

â =
(

X vX
T

v

)−1

X
T

vZv . (2.18)

If the local coordinate system is aligned almost parallel to the surface normal,
the parameters â10 ≈ â01 ≈ 0 vanish and we can use the simplified curvature
formulas (2.12). With the derivatives of the quadratic surface (2.15) plugged
into the equations for the normal (2.7) and curvatures (2.12) of graph surfaces
we obtain the normal at point v

nv ∝





−a10 − 2a20Xv − a11Yv

−a01 − 2a02Yv − a11Xv

1



 (2.19)
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normalized to |nv| = 1 and the curvatures

K = 4a20a02 − a211 , H = a20 + a02 , Q = 2a220 + a211 + 2a202 . (2.20)

Note that the normal nv needs to be rotated back into the original coordinate
system considering the approximate tangent direction nv,0. Fig. 2.3 shows
triangle normals, the derived approximation nv,0 as well as the estimated normal
nv for a vertex with five neighboring triangles. The three curvature measures
are illustrated in Fig. 2.4 for a small example data set.

Figure 2.3: Vertex and triangle normals on a small example mesh. The vertex normal
derived from the parameters of a graph surface (green) is close to the approximation
(blue) from surrounding triangle normals (red).

(a) Gaussian curvature K (b) Mean curvature H (c) Mean sq. curvature Q

Figure 2.4: Vertex curvature of a small example mesh implicitly defined as the 8-norm
sphere x8 + y8 + z8 = 1 with V = 2000 vertices. We compute the curvature from 50
nearest neighbors leading to a broad impact of object corners and edges. The individual
curvature measures mainly differ in how they distinguish curvature in one principal
direction at edges and curvature in two directions at corners.

Because similar vertices are more likely to belong to a common surface
region, we will make use of these geometric properties in Chapter 4 to compute
similarities between adjacent vertices and to control the surface pre-segmentation.
In fact, we will integrate dissimilarities along paths on surfaces and derive a
segmentation based on shortest paths, i.e. paths with few dissimilarity. In the
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following section we will briefly discuss algorithms for determining such shortest
paths.

2.2 Shortest paths on surfaces

As indicated in Section 1.3.1.1, we pre-segment the given surface mesh based on
distance transforms with distances being defined as the length of the shortest
path. Vertices with small distances in between will more likely belong to the
same region, while large distances are indicative of separate regions.

A distance transform is a function that assigns distance measures to all given
vertices taking into account a predefined distance metric as well as one or multiple
seed vertices, from where the distances are to be computed. While in Euclidean
spaces one usually is interested in Euclidean distances, distance transforms on
surfaces often yield intrinsically defined, geodesic or curvature-adaptive distances.

In discrete geometry there are two standard algorithms for deriving an
intrinsic distance map: Dijktra’s algorithm (Dijkstra, 1959) and the fast marching
method (FMM, Sethian, 1996) (Fig. 2.5). Both algorithms run in linearithmic
time O(V log V ) on sparse graphs like triangular meshes. Approximations for
FMM with linear complexity (Xu et al., 2010) and even parallel implementations
(Weber et al., 2008) exist. In the following we will briefly describe both Dijkstra’s
algorithm and FMM.

(a) Dijkstra’s algorithm (b) Fast marching method

Figure 2.5: Comparison of two distance transforms. The resulting distance map D is
shown as colored vertices from near (blue) to far (red). The bold black line indicates the
shortest path between two vertices indicated with green and red dots. While Dijkstra’s
algorithm is restricted to triangular edges, FMM can pass trough triangles as well and
thus yields slightly shorter distances.

2.2.1 Dijkstra’s algorithm

Given an attributed graph and one or more seed points, Dijkstra’s algorithm
computes the shortest path along graph edges from each vertex to its closest seed
point yielding a distance map D (Fig. 2.5a). Implicitly it yields path lengths,
i.e. intrinsic distances.

The implementation is based on a marching front Q, i.e. a set of vertices that
are currently in process. In every iteration one front vertex u := argminu∈Q Du

with shortest distance Du is removed Q := Q \ u and all its neighbors v ∈ ne(u)
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updated to the new distance Dv := min(Dv, Dv + dvu) with the local distance dvu
from vertex u to vertex v and added to the front Q := Q ∪ v. The algorithm is
given in Alg. 2.1.

Algorithm 2.1: Dijkstra’s algorithm. Given pair-wise distances dvu between vertices
Vu and their neighbors Vv ∈ ne(Vu) as well as a vertex list of the current front Q, the
algorithm propagates the front, updating the distance map D and vertex labels l, until
there are no more vertices to process.

Input: neighbors ne(u), pair-wise distances dvu, front Q
Updates: distance map D, vertex labels l
while front is not empty Q 6= {} do

select closest vertex in front u← argminu∈Q Du

remove u from front Q ← Q \ u
foreach neighbor v ∈ ne(u) do

evaluate new distance D′
v ← Du + dvu

if new distance D′
v < Dv then

update distance Dv ← D′
v and vertex label lv ← lu

add this neighbor v to front Q ← Q∪ v
end

end

end

2.2.2 Fast marching method

The fast marching method (FMM), especially its formulation for meshed man-
ifolds (Kimmel and Sethian, 1998), computes surface intrinsic distances on
meshed surfaces (Fig. 2.5b). In contrast to Dijkstra’s algorithm, paths can pass
through triangles, thus are not restricted to triangular edges.

Technically, both Dijkstra’s algorithm and FMM solve the so-called Eikonal
equation

|∇Dv| = Fv (2.21)

for all vertices Vv, v = 1, . . . , V , with the boundary condition Dv0
= 0 at a seed

vertex v0. In terms of distances on meshed manifolds FMM’s interpretation is
as follows: Given a seed vertex Vv0 and values F = [Fv] defining the friction at
each vertex Vv on the manifold, FMM yields the distance map D = [Dv] such
that the gradient magnitude |∇Dv| is identical to the local friction Fv. Then
the distance Fv is proportional to the arrival time of a propagating wave front
starting at vertex Vv0 , in case the local friction is inversely proportional to the
local speed of the wave front. In case of a Euclidean metric the friction Fv is
constant for all vertices Vv and the distances Dv represent the geodesic distances,
i.e. the length of the shortest path to the seed vertex Vv0

.
The implementation of FMM is similar to Dijkstra’s algorithm. The update

formula, however, is slightly more complicated: While in Dijkstra’s algorithm
distances simply are the sum of edge lengths, with FMM the front can travel
through triangles.

Both algorithms meet all requirements for the pre-segmentation proposed in
Chapter 4. Due to its simplicity and flexibility (Schindler and Förstner, 2013)
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we choose Dijkstra’s algorithm to compute distance transforms throughout this
thesis.

2.3 Parameter estimation in a Gauss-Helmert

model

In Chapter 6 we will need to determine maximum-likelihood estimations of
surface parameters θ given a set of V points {Xv}, v = 1, . . . , V and the surface
class s ∈ {1, . . . , S}, i.e. the primitive type we want to fit into the point cloud.
We can formulate this task in terms of a Gauss-Helmert model (Förstner and
Wrobel, 2004, pg. 81ff.), also known as mixed model (Koch, 1997, pg. 231f.).
In the current section we will formulate both the maximum-likelihood and the
least-squares estimation in a Gauss-Helmert model, discuss the special case of
homogeneous parameter or observation vectors, derive the estimation model with
constraints between observations only and explain a robust re-weighting scheme
to handle outliers.

We will use the notation of adjustment computations as follows: We are
given N = 3V observed coordinates y of the V points {Xv}, which are assumed
to be normally distributed around the true but unknown observation vector ỹ:

y ∼ N (ỹ,Σyy) . (2.22)

Further, there are G constraints g = g(y,p)
!
= 0 between the observations y and

the U unknown parameters p, the latter being the unknown surface parameters
θ depending on the surface class s. Usually each point leads to a constraint,
i.e. its distance to the surface is zero; thus there are G = V constraints g. The
system is underdetermined if there are less constraints than unknown parameters
G < U . On the other hand it is overdetermined with redundancy R = G− U if
there are more points than parameters.

The estimated entities ŷ = y + v̂ and p̂ need to fulfill the constraints

g(y + v̂, p̂) = 0 (2.23)

with the residuals v̂. This equation is linearized at approximate values y0 and
p0:

g(y0,p0) + A∆p̂+ B
T∆ŷ = 0 (2.24)

with the derivatives

A
G×U

=
∂g(y,p)

∂p

∣
∣
∣
∣
y=y0,p=p0

, (2.25)

B
T

G×N
=

∂g(y,p)

∂y

∣
∣
∣
∣
y=y0,p=p0

(2.26)

and the differences between approximation and estimation

∆p̂ = p̂− p0 , (2.27)

∆ŷ = ŷ − y0 . (2.28)

In the following we will present the maximum-likelihood and the least-squares
solution for this linearized model. Afterwards we discuss derivative approaches
for homogeneous entities, missing parameters and observations with outliers.
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2.3.1 Maximum-likelihood and least-squares estimation

There are different concepts for parameter estimation. We will briefly present
the objective function and the solution for both the maximum-likelihood and
the least-squares estimation within the Gauss-Helmert model. A more detailed
derivation can be found in the literature, e.g. by Förstner and Wrobel (2004,
pg. 81ff.) or by Koch (1997, pg. 231f.).

The objective of the maximum-likelihood estimation is to find an estimation
v̂ and p̂ that fulfills the constraints (2.24) and maximizes the likelihood of the
observations y given the estimated parameters p̂:

maximize p(y | p, σ2
0) (2.29)

subject to g(y,p) = 0 .

In case of normally distributed observations y ∼ N (ỹ,Σyy) the maximum-
likelihood estimation is equivalent to the least-squares estimation

minimize v̂
TΣ−1

yy v̂ (2.30)

subject to g(y,p) = 0 ,

which minimizes the weighted sum of squared residuals v̂ under the constraints
g. After setting the derivative of the objective function to zero and solving the
equation system, both approaches lead to the following iterative solution for the
parameters p̂, the observations ŷ, the variance coefficient σ̂2

0 and the covariance
matrix of the estimated parameters Σp̂p̂ (Förstner and Wrobel, 2004, pg. 84ff.):

p̂ = p0 + (ATΣ−1
gg A)

−1
A
TΣ−1

gg cg , (2.31)

ŷ = y +ΣyyBΣ
−1
gg (cg − A∆p̂) , (2.32)

σ̂2
0 =

(ŷ − y)TΣ−1
yy (ŷ − y)

R
, (2.33)

Σp̂p̂ = (ATΣ−1
gg A)

−1 (2.34)

with the redundancy R = G− U . The residuals of the constraints cg as well as
their covariance matrix Σgg are

cg = −g(y0,p0) + B
T(y0 − y) , (2.35)

Σgg = B
TΣyyB . (2.36)

Fig. 2.6 shows the estimated plane through a set of V = 50 points together with
the residuals v̂ and the 3σ-confidence interval derived from Σp̂p̂.

This is the basic model for all parameter estimation problems within this thesis.
In the following sections we will adapt this solution to work with homogeneous
entities, constraints between observations only and outliers.

2.3.2 Homogeneous parameter vectors

Homogeneous entities deserve special attention, like a 3D plane θ =
[
θn

−θd

]

with

normal θn and distance to the origin θd. Their variable scale leads to a singular
covariance matrix and thus a singular equation system. In contrast to addressing
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Figure 2.6: Estimated plane through a set of 3D points. The V = 50 points (black) are
synthetically generated and perturbed with σ = 25 % Gaussian noise w.r.t. maximum
coordinate range. The parameters of a plane (green) have been estimated within the
Gauss-Helmert model. The residuals v̂ are shown with blue arrows and point to the
closest location ŷ on the plane, i.e. fulfilling the constraint g(ŷ, p̂) and minimizing
v̂TΣyyv̂. The 3σ-confidence interval is shown as red, bivalve surface.

this problem with additional constraints (Meidow et al., 2009), we exploit a
strategy from Förstner (2012) which projects the estimation problem into the
lower-dimensional tangent space, where the covariance matrix is regular.

In case of a homogeneous parameter vector p its scale is variable. Therefore,
the covariance matrix Σp̂p̂ is singular and cannot be inverted as required in (2.34).
Since the scale |p| does not matter, we project the estimation problem into the
vector’s tangent space pr = Jpp with the Jacobian Jp as listed in Tab. 3.1 for
each primitive class and only solve for the update ∆p̂r in this reduced space:

g(y0,p0) + Ar∆p̂r + B
T∆ŷ = 0 (2.37)

with the derivative

Ar =
∂g(y,p)

∂pr

= AJ
T

p . (2.38)

The solution is obtained by estimating the parameter update ∆p̂r in the reduced
tangent space and transforming back to the original space p̂ when needed:

∆p̂r = (AT

rΣ
−1
gg Ar)

−1
A
T

rΣ
−1
gg cg , (2.39)

p̂ = N(p0) + J
T

p∆p̂r , (2.40)

ŷ = y +ΣyyBΣ
−1
gg (cg − Ar∆p̂r) , (2.41)

Σp̂p̂ = J
T

p (A
T

rΣ
−1
gg Ar)

−1
Jp (2.42)

and the estimated variance coefficient σ̂2
0 as in (2.33). Note that we need to

normalize the parameter vector p̂ such that it correctly corresponds to its variance
Σp̂p̂.

This way we can estimate homogeneous parameter vectors in a Gauss-Hel-
mert model. In the following section we will apply the very same principle to
homogeneous observation vectors, which we will deal with in Section 6.5.
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2.3.3 Homogeneous observation vectors

In case of a homogeneous observation vector y normalized to unit length we
proceed similarly. We project the vector y and its covariance matrix Σyy

into its tangent space yr = Jyy and Σyryr
= JyΣyyJ

T

y with Jy depending
on the primitive type as listed in Tab. 3.1 and solve for the residuals v̂r =
∆ŷr − (yr − yr,0) in this reduced space:

g(y0,p0) + A∆p̂+ B
T

r∆ŷr = 0 (2.43)

with the derivative

B
T

r =
∂g(y,p)

∂yr

= B
T
J
T

y . (2.44)

The solution is

v̂r = Σyryr
BrΣ

−1
gg (cg − A∆p̂) , (2.45)

ŷ = y + J
T

y v̂r , (2.46)

σ̂2
0 =

(ŷr − yr)
TΣ−1

yryr
(ŷr − yr)

R
(2.47)

with the residuals of the constraints cg and their covariance matrix Σgg:

cg = −g(yr,0,p0) + B
T

r (yr,0 − yr) , (2.48)

Σgg = B
T

rΣyryr
Br . (2.49)

Again, we need to normalize the updated observation vector ŷ.
This yields an optimal estimation in case of a homogeneous observation

vector y. Similarly, we can treat multiple concatenated homogeneous observation
vectors y = [yi] by projecting and normalizing each part individually. Although
not needed within this thesis, homogeneous parameter vectors p and observations
y can be used both in one estimation.

2.3.4 Constraints between observations only

A special case of the Gauss-Helmert model is to have no unknown parameters
at all and constraints between observations y only. The objective is to find
observations ŷ with as small corrections v̂ as possible that satisfy the constraints.

The corresponding functional model is

g(y) = 0 (2.50)

with the linearization at approximate observations y0:

g(y0) + B
T∆ŷ = 0 . (2.51)

Both the maximum-likelihood and the least-squares estimation lead to the
solution

ŷ = y +ΣyyBΣ
−1
gg cg (2.52)

with cg = −g(y0) + B
T(y0 − y) similarly to (2.35), Σgg as in (2.36) and the

estimated variance coefficient σ̂2
0 as in (2.33).

We will apply this model in Section 6.5 for jointly estimating surface parameter
vectors considering constraints between pairs of adjacent surfaces.
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2.3.5 Outlier re-weighting

So far we assumed the observations to be normally distributed. Often they are,
however, perturbed by a significant amount of outliers, which would disturb the
estimation if not treated appropriately. We will use an iterative re-weighting
scheme to downweight points with large residuals, i.e. alleged outliers.

In order to reduce the impact of outliers among the observations y we do not
minimize v̂

TΣ−1
yy v̂ =

∑

v v̂
T

vΣ
−1
yvyv

v̂v as in (2.31) for uncorrelated points Xv, but

minimize
∑

v

ρ

(√

Xv

E(Xv)

)

(2.53)

with a re-weighting function ρ (Förstner and Wrobel, 2004, pg. 108ff.) applied
to the chi-squared distributed sum of squared residuals Xv per point Xv

Xv = v̂
T

vΣ
−1
yvyv

v̂v ∼ χ2
3 (2.54)

with three degrees of freedom. Thus, the expectation E(Xv) = 3 is the number
of dimensions in 3D space. This is equivalent to

minimize v̂
T
W v̂ (2.55)

with a block diagonal weight matrix W built from weight matrices W v for each
point Xv

W v = wvΣ
−1
yvyv

. (2.56)

The covariance matrices Σyvyv
of each point Xv will be re-weighted for the next

iteration using the weight function

wv = w(Xv) =
ρ′
(√

Xv/3
)

√

Xv/3
(2.57)

depending on the sum of squared residuals Xv of all coordinates of a point Xv.
During the iteration sequence we exchange the weight function such that

outliers retain some weight during the first iterations but are completely ignored
in the final iterations (Tab. 2.1): The first iterations use the L1-L2 mixture,
followed by a few iterations with the exponential re-weighting function. Finally,
the cut-off function ignores outliers completely.

With the Gauss-Helmert model and its derivatives we have a powerful tool for
the estimation problems to be solved within this thesis. Besides its applicability
for both Euclidean and homogeneous entities and its robustness to noise, it
yields empirical variance and covariance information, which we will use to
evaluate different models for classification purposes in Section 6.2. Another
computationally less expensive model selection strategy is based on minimizing
a description length, which is addressed in the following section.

2.4 Model selection via description length mini-

mization

When modelling different primitive types, a model selection problem occurs. To
describe the given data, one needs to find a trade-off between approximation
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Table 2.1: Three outlier re-weighting schemes with the re-weighting function ρ(x)
and the weight function w(x). While the L1-L2 mixture still yields moderate weights w
for vertices with a large sum of squared residuals, the exponential re-weighting scheme
downweights them almost completely and the cut-off scheme distinguishes between
constant weight for inliers and zero weight for outliers. The cut-off point k is usually
set to k = 3 as shown in the figure, which corresponds to the 99.7 % quantile of the
standard normal distribution. The three re-weighting functions ρ are constructed to
have equal curvature at x = 0.

L1-L2 mixture
ρ(x) =

√

1 + x2 −
√
1

w(x) =
1√

1 + x2

−4 −2 2 4

2

4

ρ(x)

w(x)

Exponential
ρ(x) = 1− e−x2/2

w(x) = e−x2/2

−4 −2 2 4

2

4

ρ(x)

w(x)

Cut-off

ρ(x) =

{
1
2x

2 if |x| < k
1
2k

2 else

w(x) =

{

1 if |x| < k

0 else

−4 −2 2 4

2

4 ρ(x)

w(x)

error and model complexity: While an arbitrarily complex model would perfectly
approximate each data point, its complexity would be unnecessarily high. Both
aspects are covered by the concept of minimizing the description length (MDL),
which aims at finding an as short as possible description for the given data
without loosing information. We will use this concept for low- and mid-level
decisions in Chapters 4 and 5.

Following the MDL principle described by Georgeff and Wallace (1984),
Förstner (1989) applies MDL for detecting straight lines in noisy 2D point clouds
with outliers, as illustrated in Fig. 2.7. As shown by Leonardis et al. (1995)
and Yang and Förstner (2010), MDL can be applied to primitives in 2.5D and
3D space as well. In the following we will derive formulas for computing the
description length for various scenarios in 3D space.
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(a) No model: Φ0 = 478.4 bit (b) One straight line: Φ1 = 1590.6 bit

(c) Two straight lines: Φ2 = 508.5 bit (d) Additional outliers: Φ̄2 = 464.4 bit

Figure 2.7: Model selection on a 2D data set with 18 points spread across a coordinate
range of r = 1. The desired resolution is ε = 10−4 and a coordinate uncertainty of
σ = 0.005 = 0.5 % was used to generate synthetic, Gaussian noise. The residuals w.r.t.
one straight line are much larger than the noise σ, thus the description length Φ1 (b)
is larger than without any line Φ0 (a). Two straight lines are still worse than none,
Φ2 > Φ0 (c), since two outliers lead to bad line parameters and consequently to large
residuals. Only modelling those outliers explicitly leads to the minimum description
length Φ̄2 (d). Note that the improvement of Φ̄2 compared to Φ0 or Φ2 will be much
more significant for a larger data sets, since the overhead of a complex model will be
compensated by many points whose residuals will decrease.

2.4.1 Points without model

The most trivial scenario is to have a set of 3D points without any underlying
model. Thus, the description only contains the coordinates of all points.

Following Förstner (1989), the description length for one uniformly distributed
coordinate is lb r

ε with the coordinate range r and the resolution ε, up to which
we want to encode the points’ coordinates. Thus, for V points in 3D space
without any model assumption we obtain a description length

Φ0 = 3V lb
r

ε
. (2.58)

In the next sections we will extend this description. First we assume the
points to approximately lie on one or multiple planes. Finally, we allow some
points to be outliers, i.e. not corresponding to any plane.

2.4.2 Points on one plane

In case all V points lie on a plane, the description length decreases. After
the plane parameters have once been encoded, for each point only its in-plane
location and its off-plane residual need to be encoded, which is usually less
information than all three coordinates separately.

When encoding the 2D in-plane locations for all points, the 1D off-plane
residuals and the three independent plane parameters individually, we obtain
the description length

Φ1 = 2V lb
r

ε
︸ ︷︷ ︸

in-plane locations

+

V∑

v=1

(
1

2 ln 2
· v

2
v

σ2
+ lb
√
2π

σ

ε

)

︸ ︷︷ ︸

off-plane residuals

+ 3 lb
r

ε
︸ ︷︷ ︸

plane parameters

. (2.59)
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If the model assumption is correct, the residuals vv are normally distributed
with a small, given uncertainty σ. Then the overall description length with a
planar model Φ1 is usually smaller than without any model Φ0, although we
need to additionally store plane parameters with same range r and resolution ε
like for the point coordinates.

So far we introduced a model assumption to reduce the description length. In
the following section we add alternative models, i.e. additional planes, yielding
an only slightly modified description.

2.4.3 Points on multiple planes

When considering multiple planes, the description length only slightly changes.
We need to encode point labels, i.e. which plane each point corresponds to. If
the model assumption of multiple planes is correct, the additional description
induced by point labels is compensated by smaller residuals, since L > 1 planes
approximate the points better than a single plane.

Now we need to store three independent parameters for each of the L planes,
point labels with a description length of lbL per point and residuals vv. This
leads to an overall description length of

ΦL = 2V lb
r

ε
︸ ︷︷ ︸

in-plane locations

+
V∑

v=1

(
1

2 ln 2
· v

2
v

σ2
+ lb
√
2π

σ

ε

)

︸ ︷︷ ︸

off-plane residuals

+ 3L lb
r

ε
︸ ︷︷ ︸

plane parameters

+ V lbL
︸ ︷︷ ︸

labeling

.

(2.60)
We will apply this description length formulation in Chapter 4 to find an

optimal number of planes representing the original surface mesh. In Chapter 5
we will introduce additional surface types, one of which will be a freeform surface
without any surface parameters. Thus, all corresponding points are encoded as
outliers, which we will address in the following section.

2.4.4 Outliers

Finally, we might want to encode V̄ outliers, i.e. points not belonging to any
of the L planes. This is relevant if only a few points are far off the plane and
thus are better encoded independently. But we will apply this encoding to whole
surface parts as well that can not be described with one of the surface types
available, i.e. so-called freeform surfaces.

We still need to encode parameters for L planes, but the point labeling has
to consider L + 1 states, e.g. with L = 0 for outliers. Further, we encode the
V̄ outliers as uniform coordinates like in (2.58), thus sum the residuals vv only
over inliers v with lv > 0 and encode residuals for outliers uniformly:

Φ̄L = 2V lb
r

ε
︸ ︷︷ ︸

in-plane locations

+ V̄ lb
r

ε
︸ ︷︷ ︸

outlier residuals

+
∑

{v|lv>0}

(
1

2 ln 2
· v

2
v

σ2
+ lb
√
2π

σ

ε

)

︸ ︷︷ ︸

off-plane residuals

+

3L lb
r

ε
︸ ︷︷ ︸

plane parameters

+V lb(L+ 1)
︸ ︷︷ ︸

labeling

. (2.61)
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This formulation comprises all scenarios for describing a set of 3D points
with multiple planes. In this section we restricted ourselves to planar surfaces
only, although the concept is easily transferable to curved surfaces, as we will
see in Section 5.4.

The MDL strategy proves to be a suitable model selection approach: By
minimizing the description length for encoding a given point cloud, we find
the model that best represents the given points. The selected model not only
contains an optimal number of surfaces, since each additional surface increases
the description length; but it also yields optimal surface parameters, since only
the least sum of squared residuals leads to the minimal description length.

We will use the MDL principle twice throughout our reconstruction framework:
It will serve as optimization criterion for the planar pre-segmentation in Chapter 4
and will guide the refinement operations in Chapter 5 with curved and freeform
surface parts.

2.5 Inference in graphical models

In Chapter 6 we will classify mutually dependent surfaces and inter-surface
relations. Those discrete variables together with their dependencies can be
represented using a graphical model. This section gives a short introduction to
inference with graphical models. After introducing the factor graph representa-
tion, we will present two common inference algorithms.

2.5.1 Factor graphs

Factor graphs are a special representation for a set of stochastic variables and
their mutual dependencies. This section briefly describes the graph structure
and a solution for two common inference problems via so-called message passing.

A graphical model contains nodes, which represent stochastical variables xi,
and edges, representing conditional dependencies between adjacent nodes. The
joint probability density p(x) for all variables x = [xi]

p(x) =
1

Z

∏

j

fj(xj) (2.62)

is the product of multiple factors fj = fj(xj) > 0 depending on variable subsets
xj with a normalization Z such that

∫
p(x) = 1, i.e. p(x) is a probability density.

Depending on the cardinality |xj | the factors fj are called unary, binary or – as
in our case in Chapter 6 – ternary factors. The factors can be explicitly modeled
as factor nodes in a so-called factor graph (Kschischang et al., 2001), which
is bipartite: All edges connect one variable node with one factor node, like in
Fig. 2.8b.

There are two common problems related to graphical models: (1) to find the
marginal probability density p(xi) of a single variable xi or (2) to find a variable
setting x̂ = argmaxx p(x) that maximizes the joint probability density p(x).

The factors fj can be chosen to be conditional probability densities fj =
p(xj | D) depending on data D, which allows them to be learned from training
data. Alternatively, they can be interpreted as potentials φ, using the notion
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from the concept of Markov random fields (Kindermann and Snell, 1980). Then
the function fj(xj) can be chosen such that likely configurations of the variable
subset xj yield a large value fj ; otherwise there are no restrictions on the form
of the function fj . Although we will formulate factors on the basis of probability
densities, we will neglect the normalization, thus obtain potentials. Since we will
be interested in the variable setting x̂ maximizing the joint probability density
p(x), the normalization is not needed.

Exact solutions to the above-mentioned problems are computationally pro-
hibitive for general graphs (Bishop, 2006, Ch. 8.4). There are, however, al-
gorithms with polynomial complexity for chains and trees that make use of a
principle called message passing (Pearl, 1982): Each node receives messages
from its neighbors and computes updated messages that are sent back to the
neighbors in turn. Following Bishop (2006), we will show for both problems,
finding the marginal probability density as well as finding the most probable
variable setting, that with the right choice of messages an optimal solution can
be guaranteed for chains and trees after traversing the graph twice.

Effective approximations are possible for general graphs as discussed in
(Bishop, 2006, p. 417): One class of approximation schemes is based on stochastic
sampling and – given infinite computing time – yields exact results. In practice
they are tractable for small-scale problems only. Another class are deterministic
approximation schemes based on analytically approximating the posterior density
function, e.g. assuming Gaussian probability distributions. Finally, a simple
and widely used approximation is known as loopy belief propagation (Frey and
MacKay, 1998). One iteratively applies the message passing algorithm as it is
formulated for loop-less graphs and observes convergence in many but not all
cases. In our implementation in Chapter 6 we will work with this approach.

For the sake of clarity we will derive both algorithms, the sum-product and
the max-sum algorithm, for Markov chains and only mention the corresponding
messages for the general case. Fig. 2.8a shows the structure of a Markov chain
with directed edges: Linearly connected variable nodes xi depend only on its
predecessors ne(xi) = {xi−1}. The joint probability is

p(x) = p(x1) · p(x2 | x1) · p(x3 | x2) · · · · · p(xI | xI−1) . (2.63)

The corresponding factor graph in Fig. 2.8b indicates the factors of the joint
probability density

p(x) = f1(x1, x2)f2(x2, x3) · · · fI−1(xI−1, xI) , (2.64)

where the unary factor p(x1) is subsumed in the binary factor f(x1, x2). In the
following we will neglect the indices of the factors f , since they are uniquely
identifiable by their list of arguments.

We will use a factor graph in Section 6.1 to represent the man-made surface
structure with variables for both the surface types and inter-surface relations. In
general this will be a cyclic graph, i.e. containing loops, thus requiring inference
via loopy belief propagation or a similar strategy. In the following two sections we
will start describing the sum-product and the max-sum algorithm, respectively,
for Markov chains and provide formulas for the general case afterwards.
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x1 x2 x3 · · · xI−1 xI

(a) Graphical model of a Markov chain

x1 x2 x3 · · · xI−1 xIf1 f2 fI−1

(b) Corresponding factor graph

Figure 2.8: Graphical model and factor graph of a Markov chain. The graphical
model (a) consists of I variable nodes x with directed edges between each neighboring
pair of them. In the factor graph (b) these edges are replaced by factor nodes f

representing the mutual dependencies.

2.5.2 Marginal probability via the sum-product algorithm

The sum-product algorithm is a common method for inferring marginal proba-
bilities in a graphical model. We will first derive it for Markov chains, before
generalizing the formulas to general graphs.

Markov chains. The marginal probability density of a variable xi is obtained
via summation of p(x) over all other variables x1, . . . , xi−1, xi+1, . . . , xI :

p(xi) =
∑

x1

· · ·
∑

xi−1

∑

xi+1

· · ·
∑

xI

p(x) (2.65)

∝
∑

x1

· · ·
∑

xi−1

∑

xi+1

· · ·
∑

xI

f(x1, x2) · · · f(xI−1, xI) . (2.66)

This can be reordered as

p(xi) ∝

µi(xi)
︷ ︸︸ ︷

∑

xi−1

f(xi−1, xi)

µi−1(xi−1)
︷ ︸︸ ︷

∑

xi−2

f(xi−2, xi−1) · · ·

µ3(x3)
︷ ︸︸ ︷

∑

x2

f(x2, x3)

µ2(x2)
︷ ︸︸ ︷
∑

x1

f(x1, x2) ·
∑

xi+1

f(xi, xi+1)
∑

xi+2

f(xi+1, xi+2) · · ·
∑

xI−1

f(xI−2, xI−1)
∑

xI

f(xI−1, xI)

︸ ︷︷ ︸

πI−1(xI−1)
︸ ︷︷ ︸

πI−2(xI−2)
︸ ︷︷ ︸

πi+1(xi+1)
︸ ︷︷ ︸

πi(xi)

(2.67)

=µi(xi)πi(xi) (2.68)
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with recursively computed forward and backward messages

µi(xi) =
∑

xi−1

f(xi−1, xi)µi−1(xi−1) , (2.69)

πi(xi) =
∑

xi+1

f(xi, xi+1)πi+1(xi+1) . (2.70)

General graphs. In general graphs, where variable nodes xi may have more
than two neighboring factor nodes fj ∈ ne(xi), according to Bishop (2006,
p. 404ff.) the marginal probability density p(xi) is

p(xi) ∝
∏

fj∈ne(xi)

µfj→xi
(xi) , (2.71)

µfj→xi
(xi) =

∑

ne(fj)\xi

fj(ne(fj))
∏

x′

i∈ne(fj)

µx′

i→fj (x
′
i) , (2.72)

µxi→fj (xi) =
∏

f ′

j∈ne(xi)\fj

µf ′

j→xi
(xi) . (2.73)

It depends on messages µ that are initialized at leaf nodes with

µxi→fj (xi) = 1 , (2.74)

µfj→xi
(xi) = f(xi) (2.75)

and repeatedly passed to neighboring nodes according to a predefined schedule
until convergence.

The resulting marginal probability density p(xi) describes the probability
distribution of the variable xi with all other variables not being fixed. In
Chapter 6 we will, however, be interested in the most probable variable setting
x, i.e. maximizing the joint probability p(x) by fixing the values of all variables.
This inference problem is addressed by the max-sum algorithm as described by
the following section.

2.5.3 Most probable variable setting via the max-sum al-

gorithm

In contrast to the previous problem, where we were interested in the local
probability density p(xi) of a variable xi, not knowing the values of surrounding
variables, we are now trying to find the most probable variable setting x, i.e.
globally optimizing the joint probability density p(x). This problem is solved
by the max-sum algorithm, which is very similar to the previously described
sum-product algorithm. Instead of summing over all variable states, it chooses
the maximum. Furthermore, it usually works in the log-space, where products
become sums, thus motivating the name max-sum algorithm.
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Markov chains. The setting x that yields the maximum probability is found
by maximizing the joint probability density p(x) over all variables xi with indices
i = 1, . . . , I:

max
x

p(x) ∝ max
x1

· · ·max
xI−1

max
xI

(

f(x1, x2) · · · f(xI−2, xI−1)f(xI−1, xI)
)

(2.76)

∝ max
x1

(

f(x1, x2) · · ·max
xI−1

(

f(xI−2, xI−1)max
xI

f(xI−1, xI)

))

.

(2.77)

In order to avoid numerical problems it is convenient to maximize the logarithm
of the probability and introduce messages π that are recursively evaluated:

max
x

log p(x) ∝

max
x1













log f(x1, x2) + · · ·+max
xI−1







log f(xI−2, xI−1) + max

xI

log f(xI−1, xI)
︸ ︷︷ ︸

πI−1(xI−1)








︸ ︷︷ ︸

πI−2(xI−2)













︸ ︷︷ ︸

π1(x1)

.

(2.78)

Note that here the messages π are differently defined as for the sum-product
algorithm presented in the previous section.

General graphs. In general graphs the variable nodes xi may have more than
two neighboring factor nodes fj ∈ ne(xi). According to Bishop (2006, p. 413)
the joint probability of the most probable setting x is obtained via recursively
summing over all variables x starting at any root node xi:

max
x

log p(x) = max
xi

∑

fj∈ne(xi)

µfj→xi
(xi) , (2.79)

µfj→xi
(xi) = max

ne(fj)\xi

log fj(ne(fj)) +
∑

x′

i∈ne(fj)

µx′

i→fj (x
′
i) , (2.80)

µxi→fj (xi) =
∑

f ′

j∈ne(xi)\fj

µf ′

j→xi
(xi) . (2.81)

The messages µ are initialized at leaf nodes with

µxi→fj (xi) = 0 , (2.82)

µfj→xi
(xi) = log f(xi) (2.83)

and repeatedly passed to neighboring nodes until convergence.
So far we obtain the highest possible joint probability maxx log p(x). The

most probable setting x itself is obtained by storing pointers back to the values
of x′

i that achieved the maximum and backtracing these values from the root
node xi to all other nodes x.
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Although neither sum-product nor max-sum guarantee exact results on
general graphs, they usually yield satisfactory results. Within this thesis we use
the Probabilistic Graphical Model Library from Andres et al. (2008). We will
apply the max-sum algorithm with loopy belief propagation in Chapter 6 to
find the most probable setting of surface types and inter-surface relations for
reconstructing man-made surface structures.

All these preliminaries from the fields of mesh processing, parameter estima-
tion, model selection and graphical models form the theoretical background we
need for our surface structure reconstruction framework. In the following chapter
we will specify the task of this thesis in more detail and precisely formulate the
concept of the proposed reconstruction approach.





CHAPTER 3

Concept for reconstructing models of man-made
surfaces

This chapter specifies the task to be solved in this thesis in more detail.
We characterize the given data and necessary assumptions, formulate
the objective of this work and define criteria for the later evaluation.
Afterwards we detail the concept of the proposed reconstruction frame-
work. This includes the two parts of the model for man-made surface
structures, namely surface classes and inter-surface relations, as well as
the three levels, at which the reconstruction operates.

3.1 Task specification . . . . . . . . . . . . . . . . . . 51

3.1.1 Type of input data . . . . . . . . . . . . . . . . 52

3.1.2 Assumptions about the surface triangulation . . . . . . . 52

3.1.3 Objective of the proposed reconstruction framework . . . . 54

3.1.4 Criteria for the experimental evaluation . . . . . . . . 55

3.2 Concept . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Model for man-made surface structures . . . . . . . . . 56

3.2.1.1 Surface classes . . . . . . . . . . . . . . 57

3.2.1.2 Inter-surface relations . . . . . . . . . . . . 58

3.2.2 Reconstruction framework at three levels . . . . . . . . 60

3.1 Task specification

In Section 1.2 we already formulated the principle goal of this work: Given a
triangulation of a densely sampled surface, we want to automatically recognize
and parametrize the underlying surface structure. The following sections will
detail certain aspects of this task.

51
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3.1.1 Type of input data

This section specifies the given data more precisely: Besides a triangulated
point cloud we only require some uncertainty information about the points’
coordinates.

We expect to be given a dense point cloud of a man-made object captured
using common 3D acquisition techniques and triangulated using one of the
methods mentioned in Section 2.1.1. The data consists of a list of V 3D points
{Xv} with indices v = 1, . . . , V and a set of T triangles {Tt} with indices
t = 1, . . . , T . Each triangle Tt contains three indices referring to the point
list. Each point Xv contains a coordinate vector Xv and information about its
uncertainty, e.g. a covariance matrix ΣXvXv

or only a variance σ2.
Many acquisition methods yield additional point attributes, e.g. reflectivity,

color or waveforms profiles. Although our approach could conceptionally use
such information within the surface segmentation in Chapter 4, we will not rely
on any of them and only expect triangulated points with variance.

For successfully reconstructing a surface model, a triangulated point cloud
with known uncertainty does not suffice. We need to make certain assumptions
which we will discuss in the following section.

3.1.2 Assumptions about the surface triangulation

For the proposed reconstruction framework to function properly we need to make
a few, mostly weak assumptions on the given data.

Uncorrelated, isotropic, normally distributed uncertainty. The data
points are usually disturbed by random noise due to the acquisition process.
Although this noise depends on the acquisition system and configuration,
we assume it to be unbiased and normally distributed as well as small w.r.t.
the object size. While the proposed reconstruction framework could be
formulated for arbitrary covariance matrices ΣXX , we assume mutually
independent noise for all coordinates of a point; i.e. the covariance matrix
of a point ΣXvXv

= σ2
I 3 is diagonal with common variance σ2 for each

coordinate. Furthermore, we assume uniform mutually independent points,
i.e. zero correlations ΣXuXv

between points u 6= v, which simplifies most
processing steps. These assumptions also facilitate the practical application,
since precise noise models with full covariance matrices and correlation
between the points are often not available or intractable in terms of memory
and computing time.

Sampling density. We assume the surface to be densely sampled. A common
measure for characterizing the sampling density is the ǫ-sampling, which
is originally defined for a set of points {Xv} on a 2D curve: It depends
on the local feature size of a point X on a curve γ. Given the medial
axis as the set of points with more than one closest point on the curve γ,
the local feature size lfs(X ) is the Euclidean distance of X to the medial
axis. Then a set of points {Xv} is an ǫ-sample of the curve γ if every
point Xγ ∈ γ on the curve γ is within distance ǫ · lfs(Xv) of some point
Xv (Edelsbrunner, 1998). This concept is visualized in Fig. 3.1. We will
refer to local feature size and ǫ-sampling in Section 7.2.2.4 to characterize
the sensitivity of a segmentation procedure w.r.t. sampling density, as
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larger values of ǫ correspond to lower sampling density. According to
Tcherniavski and Stelldinger (2008), 3D surface triangulation algorithms
require an ǫ-sampling of ǫ < 0.5, most of them even ǫ < 0.2 or less.

γ

Xv

Xγ

medial axis

lfs(Xγ)

Figure 3.1: Local feature size and ǫ-sampling. A 1D curve γ is sampled with a set
of points {Xv} shown as black dots. The bold straight line represents the medial axis
of the curve, i.e. all points of the 2D plane with two or more closest points in γ. The
local feature size lfs(Xγ) is the distance of the point Xγ to the medial axis. The point
set {Xv} is an ǫ-sample of the curve γ if every point Xγ ∈ γ is within radius ǫ · lfs(Xv)
of some sample point Xv. In this example ǫ is around 0.25.

Piece-wise quadratic surface. Since we focus on man-made surface struc-
tures, we expect the triangulated point cloud to be intuitively dividable
into planar and quadratic parts, i.e. quadrics of special kinds, as these
groups of surfaces are most common in architecture and computer aided
design. In some cases we will not be able to exclude freeform surfaces
completely. Therefore, our reconstruction framework will be able to handle
them as well.

Semantics of a data point. In the field of surface segmentation there exist
two major concepts: Surface parts either consist of a set of triangles, i.e.
the region boundaries will be comprised of triangular edges, or a set of
points, i.e. the region boundaries will pass through triangles and will be
comprised of Voronoi edges. We assume the acquisition process to capture
points on locally planar surface patches, thus associate a point with a
surface region and not with an edge. Consequently, we will segment points,
not triangles. Fig. 3.2 illustrates both concepts.

Manifold surface. The surface does not need to be closed as often required by
meshing algorithms. The proposed reconstruction framework will be able
to handle open surfaces like every 2.5D mesh or meshes with holes. We do,
however, require the surface to be a manifold, i.e. locally homeomorphic to
either a disk or a half-disk. Although usually the case, the surface does not
have to be orientable: Conceptually, a surface homeomorphic to a Möbius
strip or a Klein bottle can be reconstructed with the proposed framework.
For technical reasons and due to the limited practical relevance of such
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(a) Segmenting triangles (b) Segmenting points

Figure 3.2: Two possible concepts for segmenting a meshed 2D manifold. One
possibility is to assign triangles to either one region or the other yielding a segmentation
boundary (bold line) following edges of the original triangulation (a). Alternatively, one
assigns vertices to its corresponding region yielding a segmentation boundary following
edges of the Voronoi diagram (b). Throughout this thesis we will follow the second
concept: We segment points.

non-orientable manifolds, we will focus on orientable surfaces within this
thesis.

Data structure with efficient queries. Some parts of the algorithm will re-
quire fast access to neighboring vertices Vu | u ∈ ne(v) given one vertex Vv.
Therefore, it is advisable to precompute those neighborhood relations or
to use data structures that support such queries in constant or logarithmic
time. Neighboring vertices connected via triangular edges can be obtained
in linear time O(V ) for the whole mesh with V vertices by traversing all
edges of the triangulation. Other possible neighborhoods are k-nearest
neighbors or vertices in a certain radius that can be efficiently queried in
logarithmic complexity O(log V ) per vertex using k-d trees or octrees, both
of which are created in linearithmic time O(V log V ).

Knowledge of the vertical axis. One determining factor, especially for con-
structing buildings, is gravity. Therefore, most architectural surfaces
contain many elements that are parallel or perpendicular w.r.t. the vertical
direction. We will assume this direction to be known or the given mesh
to be aligned such that the Z-axis is parallel to the vertical direction.
Although this assumption stabilizes the reconstruction process, we do not
necessarily require the vertical direction to be known. In case it is not
accessible, the proposed framework still works – only with less specific
surface classes.

After having clarified both structure and properties of the given data, we will
detail the objective of the proposed reconstruction framework.

3.1.3 Objective of the proposed reconstruction framework

The objective of this work is to automatically derive a surface structure from a
triangulated point cloud. The surface structure contains both a segmentation
into multiple non-overlapping regions as well as a surface parametrization for
each of those regions. In the following we will detail the objective for both
reconstruction parts and align ourselves w.r.t. the large number of specially
tailored methods for reconstructing buildings and building parts.
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The objective of this work is to develop an automatic segmentation and
reconstruction approach for triangulated point clouds of man-made surface
structures. The segmentation involves labels l = [lv] for each point Xv, since we
decided to segment points, not triangles, in the previous section. Each label is an
integer lv ∈ {1, . . . , L}, thus the segmentation is complete with L non-overlapping
regions. Each region should contain exactly one connected component of the
triangulation, whose vertices can be approximated with a geometrically simple
primitive or – in exceptional cases – described as freeform surface. We will not
group regions which are not neighbored, e.g. when analyzing a point cloud with
multiple road parallel building facades.

For each surface region l we want to determine the most likely primitive
type ŝl ∈ {1, . . . , S} and find parameter estimates θ̂l that minimize the sum of
squared residuals between corresponding points {Xv | lv = l} and the surface
defined by the region’s primitive. Furthermore, we want to guide the parameter
estimation with constraints g induced by inter-surface relations r̂k ∈ {1, . . . , R}
that are most likely given the two involved surface regions θl and θl′ . We will
define the set of S possible surface classes and R inter-surface relations shortly
in Section 3.2.1.

For reconstructing buildings, many highly specialized methods exist for
preprocessing the data or for solving very application-specific tasks: Small parts
of a building like windows (e.g. Pu and Vosselman, 2007; Tuttas and Stilla,
2013), doors (e.g. Kang et al., 2010) or even window cornice (e.g. Brandenburger
et al., 2013) are often detected with machine learning approaches in point clouds
and imagery. Many recent approaches for facade reconstruction exploit images
only (e.g. Werner and Zisserman, 2002a; Müller et al., 2007; Gool et al., 2007;
Ripperda, 2008) or the combination with terrestrial laser scans (Brenner and
Ripperda, 2006; Becker, 2009). These approaches explicitly model repetitive
structures of windows and doors using formal grammars. This way they are able
to detect structures that are not recognizable in a pure 3D mesh, but limited to
the special problem of facade reconstruction.

Besides that, many approaches exist for detecting vegetation and excluding
those parts of the point cloud for further processing when interested in man-made
objects (Sedlacek and Zara, 2009; Gallup et al., 2010). Such specific aspects
are not within scope of this work. We will assume the data to be preprocessed
where necessary and that points which violate the sampling density assumption
have been removed.

Therewith we clearly defined the objective of this thesis. For evaluating the
performance of the proposed reconstruction framework later on, we will declare
specific evaluation criteria in the following section.

3.1.4 Criteria for the experimental evaluation

The results of the segmentation and the reconstruction need to be evaluated
w.r.t. prespecified criteria. We expect the reconstruction framework to meet the
following requirements.

Correctness of surface structure. The reconstruction should yield a result
that matches the truly underlying surface structure. This comprises ac-
curate region boundaries without under- or oversegmentation as well as
correct surface and relation classes. For synthetically generated meshes
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this can be precisely evaluated – in contrast to real-world data sets, where
ground-truth information is rarely available and the evaluation needs to
be done per visual inspection.

Accuracy of surface parameters. The estimated surfaces should approxi-
mate the original data well. The estimation should be unbiased and
minimize the point residuals.

Sensitivity w.r.t. noise and outliers. The system should be able to handle
point clouds with coordinates disturbed by random noise, i.e. small devia-
tions from their true position. Furthermore, the reconstruction should not
be misled by outliers, i.e. points with large deviations from the underlying
object surface.

Sensitivity w.r.t. control parameters. Control parameters required for the
reconstruction process should be semantically perceivable by a user, such
that they can be adjusted to control the result. Furthermore, they should
be small in number and the result should not sensitively depend on their
precise value.

Computational complexity and scalability. For the sake of practical rele-
vance the computing time should be acceptable and the system should be
scalable for large data sets. Within this thesis we do not focus on optimiz-
ing computing times, but pay attention to computational complexity and
scalability.

Flexibility. The system should be designed such that it can be transfered to
many different fields of applications, e.g. from aerial laser scans to desktop
scenes, from laser scans to structured light reconstructions or from piece-
wise planar objects to more complex objects involving additional surface
types like arbitrary quadrics or tori.

In Chapter 7 we will take up again these criteria and analyze the proposed
framework accordingly.

With the detailed task of this thesis defined, we will introduce the concept of
the proposed reconstruction framework. The following section will describe the
model for man-made surfaces as well as the three processing levels.

3.2 Concept

In this section we want to describe the concept of the proposed approach in
more detail. Besides defining a concrete model for man-made surface structures
comprising different types of surface and inter-surface relations, we will outline
the three levels for segmenting the given mesh and reconstructing the surface
structure.

3.2.1 Model for man-made surface structures

As previously indicated, we aim at deriving a surface segmentation with each
region being describable with a planar or curved, but geometrically simple
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primitive. To incorporate pair-wise relations between adjacent surface regions,
we model them explicitly and consider constraints on corresponding surface
parameters depending on their most likely relation. An example for the surface
of a small object – as we would model it – is given in Fig. 3.3.

v-cone

v-cylinder

g-plane

v-plane

h-plane

ortho

collin

arbit

Figure 3.3: Model for man-made surface structures. A man-made surface consists
of multiple planar or curved surface regions, which are classified into several types of
surfaces as indicated by the annotations on the right-hand side. Adjacent regions are
connected via explicit relations as shown on the left-hand side. The abbreviations are
explained in Sections 3.2.1.1 and 3.2.1.2.

The surface and relation classes will be determined with a Bayesian approach
incorporating the likelihood derived from given data points as well as prior
information about class probabilities and distributions of surface parameters.
In the following we will describe the model components for man-made surface
structures in detail.

3.2.1.1 Surface classes

In this section we define particular surface classes that we intend to recognize and
to reconstruct from given triangular meshes. For each surface class, also referred
to as surface type or primitive type, we choose a parametrization together with
a constraint which corresponding points need to fulfill. Additionally we will
need to restrict the parameters of certain surface classes to a subspace in order
to avoid degenerated primitives. Later in Chapter 6 we will use different prior
probabilities in order to steer the model selection in the presence of more or less
restrictive classes.

The simplest and most intuitive surface classes that occur in man-made scenes
are planes. Since horizontal and vertical planes are contained very frequently,
especially on buildings, we will model them as individual surface classes. These
two special types of planes have less degrees of freedom and therefore a lower
model complexity. We will design our reconstruction framework such that small
approximation errors are accepted in favor of low model complexity, i.e. horizontal
and vertical planes are chosen in place of general planes wherever possible. For
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the sake of convenience and readability we will use the abbreviations h-plane,
v-plane and g-plane for these three surface classes. The parameter vector θ
of a plane contains its normal vector θn and its negative distance to the origin
−θd. While the normal of a v-plane is a 2D-vector in the horizontal plane, the
normal of a h-plane is always perfectly vertical, thus vanishes in the parameter
vector. The constraint for a point on a planar surface is usually XTθn = θd. For
a v-plane this equation is computed for X- and Y -components only and for a
h-plane only XZ = θd remains. In order to favor h-plane and v-plane, we
penalize the g-plane class by prohibiting horizontal or vertical normal vectors,
i.e. by restricting the zenith distance z = arccos(θnz

) to a range tz < z < 90◦− tz
or 90◦ + tz < z < 180◦ − tz.

Other common surface types are vertical and general cylinders (v-cylinder,
g-cylinder), vertical cones (v-cone) and spheres (sphere). As for planes, we
model specially oriented cylinders and cones, since iterative and direct solutions
for determining their parameters are simpler and computationally cheaper than
for the general counterparts, and general cylinders and cones occur very rarely.
Both sphere and v-cylinder are represented by a radius θr and their center
in 3D θc or in 2D θc′ . Besides its 3D center θc a v-cone has a parameter θA
representing its squared slope, being related to the opening angle α = α(θA).
Last but not least we represent the g-cylinder with a radius θr and six
Plücker coordinates θT

L =
[

θT

Lh
θT

L0

]
of the 3D line (Förstner and Wrobel, 2004,

pg. 117ff.) representing the cylinder axis. The constraint for incident points
usually involves the distance between the point X and the primitive center θc,
that is equal to the radius θr (sphere), equal to the radius θr when projected
into the horizontal (v-cylinder) or a slanted plane (g-cylinder) or linearly
depending on the slope

√
θA and the vertical coordinate difference (v-cone). To

prevent those curved surfaces from degenerating into planes, we penalize radii of
spheres and cylinders larger than a threshold tr and restrict the opening angle α
of a v-cone to a range tα < α < 180◦ − tα. Further we control the orientation
of the g-cylinder via its zenith angle, like we do for the g-plane.

Additionally we model freeform surfaces: meshed surface regions without
parametrization and without incidence constraint. To prevent every surface
region to be classified as a freeform surface – the approximation error will
be zero –, we will use a smaller prior probability than for other surface classes.
Thus, only if the approximation error with all other primitives is large and leads
to small likelihoods for planar or curved primitives, the freeform class will be
chosen despite their low prior probability.

All surface classes described above are listed in Tab. 3.1. Besides the respec-
tive parametrization, the incidence constraint and the parameter restriction, a
Jacobi matrix J is given for the parameter reduction into the tangent space of
homogeneous vectors θr = Jθ as previously described in Section 2.3.

3.2.1.2 Inter-surface relations

Additionally to the primitive types described in the previous section, we model
five different relations between adjacent surface regions (Tab. 3.2). For two planar
surfaces we allow orthogonality (ortho), identity (ident) and the arbitrary
relation (arbit). For curved surfaces we additionally introduce collinearity
(collin), i.e. two axes are identical or one center is incident with an axis, and
centering (center), i.e. one center or one axis is incident with the other surface.
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Table 3.1: Surface primitives for man-made surface structures. We define eight types of primitives: three different planes, four curved quadrics and a
non-parametric freeform surface. Besides the Euclidean or homogeneous parameter vector θ or θ, respectively, this table contains the incidence
constraint of corresponding 3D points X, possibly a restriction of the parameter space depending on parameters tz, tr and tα as well as the Jacobian
matrix J for the transformation into the tangent space introduced in Section 2.3.2. 2D entities are marked with a prime; i.e. X ′, θn′ and θc′ are the
point coordinates, normal vector and center projected into the horizontal coordinate plane. Normal vectors θn as well as both Plücker elements θLh

and θL0
are normalized to unit length: |θn| = |θLh

| = |θL0
| = 1. The latter two elements need to fulfill the Plücker constraint θT

Lh
θL0

= 0.

Surface Parametrization Incidence constraint Restriction Reduction

h-plane θ =
[
θd
]

Xz = θd — J = 1

v-plane θ =

[
θn′

−θd

]

X ′Tθn′ = θd — J =

[
nullT(θT

n′) 0
0T 1

]

g-plane θ =

[
θn

−θd

]

XTθn = θd
tz < z(θn) < 90◦ − tz or
90◦ + tz < z(θn) < 180◦ − tz

J =

[
nullT(θT

n) 0
0T 1

]

v-cylinder θ =

[
θc′

θr

]
∣
∣X ′ − θc′

∣
∣ = θr θr < tr J = I 3

g-cylinder θ =





θLh

θL0

θr




|θLh

×X+θL0 |
|θLh |

= θr

tz < z(θn) < 90◦ − tz or
90◦ + tz < z(θn) < 180◦ − tz,
θr < tr

J =





nullT

([
θLh

θL0

θL0
θLh

]T
)

0

0T 1






v-cone θ =

[
θc

θA

]

|X ′−θc′ |2
|Xz−θcz |2

= θA tα < α(θA) < 180◦ − tα J = I 4

sphere θ =

[
θc

θr

]

|X − θc| = θr θr < tr J = I 4

freeform θ =
[]

— — —
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For each relation we define a number of possible unordered pairs of surface
classes. Consequently, all combinations of two adjacent surface classes and one
relation not listed in Tab. 3.2 will not be recognized. Note that this list of
combinations is not necessarily complete and could be supplemented with, e.g.,
touching or parallel primitives. Other topologically possible combinations are
excluded, since they do not occur naturally, partly due to very complicated 3D
intersection lines that can be fourth degree curves.

The constraints on the two involved parameter vectors θ and θ′ are either
orthogonalities ⊥, equalities = or parallelisms ‖. The latter is the case for
homogeneous vectors that are equal up to scale. Some relations do not introduce
additional constraints, since they are either implicitly fulfilled, e.g. h-plane
and v-plane are ortho anyway, or the relation is designed as such: the arbit

relation. In order to avoid all pairs of adjacent regions being classified as
arbitrarily related, we will use a smaller prior probability for arbit than for
other relations later in Chapter 6.

This concludes the proposed model for man-made surface structures. It is
taken as a basis for the surface classification and constraint parametrization in
Chapter 6.

3.2.2 Reconstruction framework at three levels

Before describing the individual steps of the proposed reconstruction framework
in detail, we want to summarize the three processing levels. They combine a low-
level data-driven pre-segmentation of single vertices, a mid-level segmentation
refinement focusing on surface regions as well as a high-level model-driven
reconstruction working on the global surface structure and involving model
knowledge (Fig. 3.4):

1. Low-level pre-segmentation (Chapter 4). On the lowest level we
look at vertices of the triangular mesh, their local neighborhood and
derived surface properties like normals and curvature as described in
Section 2.1.2. We perform a pre-segmentation based on shortest paths on
surfaces (Section 2.2). The pre-segmentation assumes local planarity only
and cannot well represent curved regions or even inter-regional relations.
The computational complexity, however, is small; thus we quickly reduce
the amount of data for the next reconstruction level.

2. Mid-level segmentation (Chapter 5). We then introduce different
surface primitives and hierarchically merge adjacent regions that can be
well approximated with a single primitive. The decisions, when to merge
two regions, are made based on their description length (Section 2.4). Due
to the previous pre-segmentation this step quickly converges to an optimal
segmentation given a predefined set of possible primitive types. Although
a model selection already takes place, we do not model inter-regional
relations yet and obtain a real, data-driven surface structure.

3. High-level reconstruction (Chapter 6). Assuming an almost perfect
segmentation from the previous levels, we finally classify surface regions
and relations between adjacent pairs of them using inference on a graphi-
cal model (Section 2.5). This classification makes use of available model
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Table 3.2: Surface relations for man-made surface structures. We define five relations
for adjacent pairs of surfaces. For each relation this table contains a list of unordered
pairs of surfaces that are topologically possible and likely to occur in combination with
the respective relation. The last column displays the constraint induced on the two
involved parameter vectors θ and θ′. As in Tab. 3.1 the prime denotes 2D projections
of a center θc′ or the normal vector θn′ into the horizontal coordinate plane. All
constraints are either formulated as orthogonalities ⊥, equalities = or parallelisms ‖.
Some combinations induce no constraint at all.

Relation Surface pairs Constraint

ortho

g-plane, g-plane θn ⊥ θ′
n

g-plane, v-plane
θn′ ⊥ θ′

n′

v-plane, v-plane
g-cylinder, g-plane θLh

‖ θ′
n

g-cylinder, g-cylinder θLh
⊥ θ′

Lh

h-plane, v-plane
—h-plane, v-cylinder

h-plane, v-cone

ident

h-plane, h-plane

θ = θ′sphere, sphere
v-cone, v-cone
v-cylinder, v-cylinder
v-plane, v-plane

θ ‖ θ′
g-plane, g-plane
g-cylinder, g-cylinder

collin
v-cone, v-cylinder θc′ = θ′

c′

sphere, v-cylinder

[
θc′

θr

]

⊥ θ′

center

h-plane, sphere θd = θ′cz
sphere, v-plane [

θc′

1

]

⊥ θ′
v-cone, v-plane
v-cylinder, v-plane

g-plane, sphere θ ⊥
[
θ′
c

1

]

arbit

h-plane, g-plane

—

v-plane, v-plane
g-plane, v-plane
g-plane, g-plane
g-plane, g-cylinder
h-plane, g-cylinder
h-plane, sphere
g-plane, v-cylinder
freeform, *
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knowledge and yields constraints on surface parameters, which are es-
timated in a concluding parameter estimation using the Gauss-Helmert
model (Section 2.3). In contrast to the model obtained after the mid-level
reconstruction step, the incorporation of model knowledge now yields an
idealized model-driven surface structure.

triangulated points {Xv}
with uncertainty σ

DijkstraFPS
pre-segmentation

low-level
data-driven

planar surface regions

set of primitives
MDL-based HFC

refinement
mid-level

real surface structure

model knowledge about
primitives and relations

global classification,
constraint estimation

high-level
model-driven

idealized surface model

Figure 3.4: Three levels of the proposed reconstruction framework. During a data-
driven pre-segmentation we obtain a compound of planar surface regions. It is refined
by introducing a set of different primitives. Finally, the surface structure is idealized
with a constraint parameter estimation based on a global classification using further
model knowledge.

Therewith we defined the model for man-made surface structures and outlined
the three reconstruction levels. In the following chapters we will describe each of
them in more detail.



CHAPTER 4

Segmentation via Dijkstra farthest point sampling

The surface segmentation algorithm proposed in this chapter aims at
partitioning a given surface mesh into planar regions. It is inspired by a
surface sampling strategy called farthest point sampling (FPS): Given a
current sampling with L seed points of an underlying surface we add the
farthest point, i.e. the one with largest distance to the closest seed point
w.r.t. a carefully chosen metric, yielding a new sampling. This strategy
implicitly yields a surface segmentation in form of the corresponding
Voronoi diagram. Due to the distance transform based on Dijkstra’s
algorithm we use the term DijkstraFPS.
The following sections describe the core algorithm and the distance
metric in more detail. Multiple advanced sampling strategies as well as
distance metrics are presented to improve the robustness to noisy data.

4.1 Surface segmentation via farthest point sampling . . . . . 63
4.2 Advanced sampling strategies . . . . . . . . . . . . . 66

4.2.1 Incremental-decremental sampling . . . . . . . . . . 67
4.2.2 Automatic stopping criterion . . . . . . . . . . . . 69
4.2.3 Refinement with Lloyd iterations . . . . . . . . . . . 72

4.3 Advanced distance metrics . . . . . . . . . . . . . . 74
4.3.1 Non-planar regions . . . . . . . . . . . . . . . . 75
4.3.2 Extrinsic distance metrics . . . . . . . . . . . . . 76

4.1 Surface segmentation via farthest point sam-

pling

The proposed surface segmentation approach relies on the equivalence of a surface
sampling with L sampling points and the L corresponding Voronoi cells that are
formed by assigning each vertex to its closest sampling point w.r.t. a predefined

63
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distance metric. The crucial point is how to find reasonably distributed sample
points that represent the surface well and, likewise, yield a proper segmentation.
After explaining the concept of segmentation via point sampling in 2D space
and introducing an appropriate metric for 3D surfaces, we will present the
DijkstraFPS surface segmentation algorithm.

Moenning and Dodgson (2003a,b) propose a strategy for surface sampling
called farthest point sampling (FPS, Fig. 4.1). The FPS strategy suggests to start
with one random sample point and the corresponding, trivial Voronoi diagram
consisting of one region only. Now the surface is differently well represented:
Close to the one sample point the sampling might be sufficient since the distance
of surrounding points to the next sample is small; other areas are not sampled
at all, i.e. the points are far apart from the next sample. To improve the current
sampling the FPS strategy suggests to add the farthest point as a new sampling
point. This step is repeated L−1 times until a suitable sampling or segmentation
with L regions is reached.

(a) Initialization (b) 2 samples (c) 3 samples (d) 4 samples (e) 5 samples

Figure 4.1: Farthest point sampling. After initializing with one random point we
repeatedly sample the farthest point (white circles) to all previously sampled points
(bold dots). Meanwhile the space is divided into Voronoi cells.

Peyré and Cohen (2004, 2006) apply a similar farthest point strategy on
meshed surfaces for segmentation, re-meshing and surface flattening. In terms
of surface segmentation we do not sample an affine space but a 2D manifold
embedded in the 3D space. Thus, we need to distinguish between extrinsic and
intrinsic distance metrics: The distance between two points is defined as the
length of the shortest path connecting them. When using an extrinsic Euclidean
metric, this path is a straight line, thus the distance is the Euclidean distance.
In contrast, an intrinsic metric is only defined in a subspace, e.g. the 2D surface
manifold. Therefore, the shortest path is completely embedded in the surface
and – in case of a uniform and isotropic metric – yields the geodesic distance.
Fig 4.2 illustrates the difference on a 1D curve embedded in the 2D plane.

Figure 4.2: Intrinsic and extrinsic distances. The extrinsic distance (blue) is the
length of the shortest path between two points (bold dots), which is a straight line for
the case of a Euclidean metric. In contrast, the intrinsic distance (red) is the length of
the shortest path within a given manifold (black line).
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Note that intrinsic distances need not necessarily be geodesic distances in
terms of Euclidean lengths, but the integral over the local distance metrics
along the path. With the FPS strategy a Euclidean metric would yield evenly
distributed sample points, independent of the underlying surface shape (Fig. 4.3a).
Within the context of segmenting surfaces for reconstructing objects we are,
however, interested in planar or at least geometrically uniform regions. While
planar regions can remain untouched, heavily undulated regions need further
refinement, i.e. more sample points (Fig. 4.3b). Thus, the chosen distance
measure should reflect the amount of undulation between a vertex and its closest
sample point.

(a) Uniform sampling (b) Curvature-adaptive sampling

Figure 4.3: Uniform and curvature-adaptive sampling. Both 1D curves (black lines)
embedded in the 2D space are sampled with V = 8 points (bold dots). A uniform
sampling (a) yields the same geodesic distance between each pair of adjacent sample
points. In contrast, a curvature-adaptive sampling (b) yields smaller geodesic distances
at areas with larger curvature and vice versa.

In Section 2.2 we discussed two algorithms for computing intrinsic distances
on meshed surfaces based on propagating wave fronts. The Eikonal equation
(2.21) relates distance or path lengths D with local distances d, also referred
to as friction or inverse speed F . Integrating over the Euclidean length s of a
continuous path yields the distance

D =

∫

s

F ds . (4.1)

On discrete triangular meshes this becomes the sum over all visited vertices u

D =
∑

u

Fu · svu
︸ ︷︷ ︸

dv
u

(4.2)

with the local friction Fu multiplied with the Euclidean distance svu between
vertices Vu and Vv.

To achieve a curvature-adaptive sampling as in Fig. 4.3b, we define the
friction Fu proportional to the curvature κu along the path at point Xu or – in
terms of propagation speed – the speed needs to be inversely proportional to
the curvature κu. The curvature is the inverse radius of the osculating circle
κu = 1

ru
and the radius ru relates to the arc length su and the angle between

both vertex normals nu and nv (Section 2.1.2) as

svu = rvu · 6 (nu,nv) . (4.3)

Therefore, the curvature-adaptive pair-wise distances dvu are

dvu = κv
u · svu =

svu
rvu

= 6 (nu,nv) (4.4)
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yielding distances

D =
∑

u

6 (nu,nv) (4.5)

being the sum over pair-wise normal angles of all vertices u along the respective
path. This metric supports planar regions with constant normal direction, but
yields large distances on curved regions. Later in Section 4.3.1 we will introduce
advanced metrics, e.g. difference of curvature, that might be better suited for
surface regions with varying normals but constant curvature.

In Section 2.2 we discussed two common distance transforms: Dijkstra’s
algorithm (Dijkstra, 1959) and the fast marching method (FMM, Sethian, 1996).
Moenning and Dodgson (2003a,b) use the more precise distance transform FMM,
suggesting the name FastFPS for the overall sampling algorithm. Dijkstra’s
algorithm, however, is slightly faster, applicable to more general graph topologies
and yields sufficiently accurate results (Fig. 2.5). Therefore, we choose Dijkstra’s
algorithm in favor of FMM (Schindler and Förstner, 2011) and refer to the
segmentation algorithm with the term DijkstraFPS throughout this thesis.

Alg. 4.1 and Fig. 4.4 demonstrate the DijkstraFPS surface segmentation
algorithm. After each new seed vertex both the distance map D and the vertex
labeling l are updated using Dijkstra’s algorithm (Section 2.2).

Algorithm 4.1: Incremental DijkstraFPS surface segmentation. New seed vertices
u0 are added iteratively by choosing the farthest vertex w.r.t. distances D that are
constantly updated using Dijkstra’s algorithm (Alg. 2.1) with pair-wise distances dvu,
yielding a vertex labeling l.

Input: neighbors ne(u), pair-wise distances dvu, number of regions Linc

Output: distance map D, vertex labels l
initialize distances D ←∞ and labels l← NaN
for l+ ← 1 to Linc do

pick farthest point as new seed vertex u0 ← argmaxu Du

set distance Du0
← 0 and label lu0

← l+

initialize front Q ← {u0}
update distances D and labels l via Dijkstra’s algorithm (Alg. 2.1)

end

Apparently this algorithm is already sufficient for segmenting simple, piece-
wise planar surfaces. Given the correct number of regions L, all region boundaries
approximately correspond to object edges. Generating more regions yields an
oversegmentation. As we will see in the following section, we can improve
the segmentation and automatically detect the correct number of regions with
advanced sampling strategies.

4.2 Advanced sampling strategies

In the previous section we demonstrated the incremental DijkstraFPS surface
segmentation algorithm: We applied an incremental distance transform on trian-
gulated manifolds to generate an intrinsic distance map D and its corresponding
Voronoi segmentation l. There is, however, the possibility to also decrementally
remove regions. Beyond the immediate use for improving the incremental seg-
mentation during an incremental-decremental sampling scheme we will present
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(a) L = 1 (b) L = 2 (c) L = 6 (d) L = 10

Figure 4.4: Surface segmentation with DijkstraFPS on a synthetically generated
8-norm sphere with V = 1000 vertices. Starting from a random seed point (green dot
on top) the intrinsic distance to each other surface point is computed with Dijkstra’s
algorithm (a). The distance is color-coded from near (blue) to far (red). Using a
curvature-adaptive metric, implemented as pair-wise distances dvu between two vertices
u and v, we obtain small gradients along planar regions and large gradients at sharp
edges. Choosing the farthest point as additional seed point (on bottom) and repeating
Dijkstra’s algorithm we obtain a segmentation into two regions (b). The second wave
front stops somewhere in the middle when newly computed distances exceed distances
from the first iteration. After six iterations the cube is roughly segmented into its six
faces (c). Another four iterations yield a clear oversegmentation (d).

two advanced concepts making use of decremental sampling: determining the
number of regions for an optimal segmentation as well as refining a segmentation
via Lloyd iterations.

4.2.1 Incremental-decremental sampling

Due to the random initialization and possibly noisy edge attributes along the
paths, the Voronoi segmentation boundaries might not be perfectly aligned with
the object edges (Fig. 4.5a), although the supposedly correct number of regions L
is reached. This is also because in terms of undulation a vertex on a rounded edge
is far away from both adjacent object faces. Therefore, it is likely to be chosen
as farthest point, leading to a Voronoi region centered on an edge, displacing
Voronoi boundaries towards the object’s planar faces. This effect cannot be
corrected without removing this seed vertex.

Experiments showed that we can overcome this problem by 1) adding more
seeds in order to increase the chance of having at least some Voronoi boundaries
coinciding with true object edges and 2) removing seeds again until the desired
number of regions L is reached (Schindler and Förstner, 2011). The first step is
identical to the incremental DijkstraFPS algorithm yielding a clear oversegmen-
tation (Fig. 4.5b). But the second step is very similar as well: Instead of adding
the farthest point as new seed, we remove one region l− by setting the distance
of its vertices {Vv | lv = l−} to infinity Dv :=∞ and removing their labels, e.g.
assigning the value “not a number”: lv := NaN. Then we update the distance
map D using Dijkstra’s algorithm starting at vertices adjacent to the removed
region l−.

Usually the regions to be removed are located on object edges. They are
small, since their boundary is stopped very early when approaching planar object
faces. We therefore obtain reasonable results by simply choosing the smallest
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(a) Incremental, L = 6 (b) Incremental, L = 20 (c) Incremental, Linc = 20;
then decremental, Ldec = 6

Figure 4.5: Incremental-decremental surface segmentation on a synthetically generated
8-norm sphere with N = 1000 vertices and σ = 1 % Gaussian noise w.r.t. the coordinate
range. The rounded edges and the large noise lead to an incorrect segmentation after
L = 6 incremental DijkstraFPS iterations (a). Continuing the incremental segmentation
creates segmentation boundaries on all object edges, but introduces an oversegmentation
as well (b). Decrementally removing 14 regions eliminates the oversegmentation (c)
and yields more accurate segmentation boundaries than with the purely incremental
approach in (a).

region in terms of the number of corresponding vertices, whenever a region is to
be removed (Fig. 4.5c). The decremental algorithm is given in Alg. 4.2.

Algorithm 4.2: Decremental DijkstraFPS surface segmentation. Until reaching the
prespecified number of regions Ldec we choose the smallest region l− for removal. The
distance map D and vertex labels l are updated by propagating a front Q inwards
starting from the boundary of region l−.

Input: neighbors ne(u), pair-wise distances dvu, number of regions Ldec

Updates: distance map D, vertex labels l
while L > Ldec do

find smallest region l− ← argminl |{u | lu = l}|
set distances Du ←∞ and labels lu ← NaN for vertices {u | lu = l−}
fill front Q ← {v} with neighbors v of region l−: v ∈ ne(u), lu = l−, lv 6= l−

update distances D and labels l via Dijkstra’s algorithm (Alg. 2.1)
end

Our overall incremental-decremental segmentation strategy is as follows:

1. We incrementally segment the surface until a prespecified number of re-
gions Linc is reached or a stopping criterion is fulfilled. Now all object
edges should be covered with Voronoi boundaries or with small regions,
respectively. Note that only the first iterations affect many vertices (Reem,
2011) and thus oversegmenting the surface only marginally increases the
computing time.

2. We decrementally segment the surface until a prespecified number of regions
Ldec is reached or a stopping criterion is fulfilled.
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The strategy allows the user to define the expected number of regions Linc

and Ldec, respectively. In the following section we will formulate an automatic
stopping criterion based on the description length ΦL.

4.2.2 Automatic stopping criterion

When searching for the optimal number of planar regions L we need to find a trade-
off between fitting error – i.e. how well the points in a region l are approximated
by a best fitting plane – and model complexity – i.e. the number of regions and
plane parameters. Both aspects can be jointly formulated using the concept of
minimum description length (MDL) introduced in Section 2.4. Evaluating the
description length after each incremental and decremental segmentation step
and detecting local minima will allow us to automatically stop at an optimal
number of regions.

In analogy with Förstner (1989) and in accordance with (2.60) the description
length for V vertices on L planes in 3D space is

ΦL = 2V lb
r

ε
︸ ︷︷ ︸

in-plane locations

+

V∑

v=1

(
1

2 ln 2
· v

2
v
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2π

σ

ε
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off-plane residuals

+ 3L lb
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ε
︸ ︷︷ ︸

plane parameters

+ V lbL
︸ ︷︷ ︸

labeling

(4.6)
with the following components:

In-plane locations. The description length for storing one coordinate that
is uniformly distributed across a range r and rounded to a precision ε
requires lb r

ε bits. Since each of the V points has two uniformly distributed
coordinates along the plane, we need 2V lb r

ε bits for storing all of them.

Off-plane residuals. Additionally we need to store the third degree of freedom
of each point, namely the residual perpendicularly to the surface. This
residual is Gaussianly distributed and rounded to precision ε, thus requires

1
2 ln 2 ·

v2
v

σ2 + lb
√
2π σ

ε bits for each point v = 1, . . . , V .

Planes. We need to store the uniformly distributed plane parameters as well.
Regardless of the chosen representation, we have three independent param-
eters for each plane l = 1, . . . , L. Assuming the same range r and precision
ε as for the coordinates above, we obtain 3L lb r

ε bits for all parameters.

Labeling. For each point we need to store a label l ∈ {1, . . . , L}, each of which
requires lbL bits. Having V vertices in total we need V lbL bits for storing
the whole labeling l.

We claim that by minimizing this description length we obtain a visually pleasing
segmentation.

As depicted in Fig. 4.6a we can compute the description length for the current
segmentation after each incremental or decremental iteration. As expected, the
description length decreases rapidly during the first iterations (red line). Adding
a seventh seed point still improves the result significantly – there is no chance to
recognize the true number of object faces at this point. The description length
reaches a minimum at L∗ = 17 regions before slowly increasing again.
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(a) Description length during incremental (red) and decremental (blue) segmentation

(b) 6 regions (c) 17 regions (d) 51 regions (e) 6 regions again

Figure 4.6: Incremental-decremental segmentation with an automatic stopping crite-
rion on a synthetically generated 6-norm sphere with V = 1000 vertices and σ = 1 %
Gaussian noise w.r.t. the coordinate range. After reaching L = 51 regions (d) – three
times the number of regions of the currently best segmentation with L∗ = 17 regions
(c) –, we decrementally segment until again reaching an optimal segmentation with
L∗ = 6 regions (e). The segmentation is visually and quantitatively better than after
an incremental segmentation only (b).
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As mentioned above, adding more regions is not expensive. Thus, we keep
on segmenting the surface incrementally to make sure that we found a global
minimum and that the oversegmentation is large enough. Whenever we find a
segmentation with L regions yielding a smaller description length ΦL < ΦL∗

than the currently best segmentation with L∗ regions, we will adjust the upper
bound for the number of regions Linc := 3L. We stop as soon as reaching the
upper bound L = Linc, which is the case at L = 51 in Fig. 4.6a.

We now start to decrementally remove regions (Fig. 4.6a, blue line). Inter-
estingly the description length reaches a minimum at 6 rather than 17 regions
with a much lower description length than during the incremental segmentation.
To make sure to have reached a global minimum we store the result l∗ with
L∗ = 6 regions and continue the decremental segmentation. Whenever we find
a segmentation with smaller description length ΦL < ΦL∗ , we will adjust the
lower bound for the number of regions Ldec :=

⌊
L
2

⌋
. We stop as soon as we

reach the lower bound L = Ldec, which is the case at L = 3 in Fig. 4.6a. Then
the segmentation l∗ with L∗ = 6 regions is returned as the final result. The
incremental-decremental segmentation strategy is presented in Alg. 4.3.

Algorithm 4.3: Incremental-decremental DijkstraFPS segmentation strategy. The
description length is used as a stopping criterion for both the incremental and the
decremental segmentation step. In order to avoid local minima, the upper and lower
bounds Linc and Ldec are loosely set to 3L and

⌊

L
2

⌋

, respectively.

Input: neighbors ne(u), pair-wise distances dvu
Output: vertex labels l∗

initialize labeling L← 0, l← 0 and compute ΦL

initialize currently best segmentation l∗ ← l, L∗ ← L and ΦL∗ ← ΦL

initialize upper bound for the number of regions Linc ←∞
while upper bound not reached L < Linc do

add a region L← L+ 1 using incremental DijkstraFPS (Alg. 4.1)
update description length ΦL

if ΦL < ΦL∗ then
update best segmentation l∗ ← l, L∗ ← L and ΦL∗ ← ΦL

update upper bound Linc ← 3L
end

end
initialize lower bound for the number of regions Ldec ← 1
while lower bound not reached L > Ldec do

remove a region L← L− 1 using decremental DijkstraFPS (Alg. 4.2)
update description length ΦL

if ΦL < ΦL∗ then
update best segmentation l∗ ← l, L∗ ← L and ΦL∗ ← ΦL

update lower bound Ldec ←
⌊
L
2

⌋

end

end

In Fig. 4.6b–4.6e we see the corresponding segmentation results: During
the incremental segmentation, L = 17 regions (Fig. 4.6c) yield the minimum
description length. But during the decremental segmentation starting with
Linc = 51 regions (Fig. 4.6d) the description length is minimized at L∗ = 6
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regions (Fig. 4.6e), yielding a visually much more pleasing result than at L = 6
regions during the incremental segmentation (Fig. 4.6b).

The combination of subsequent incremental and decremental segmentations
can be repeated in order to find an even better result with smaller description
length. Experiments show that one or two repetitions are sufficient in most
cases. Nevertheless, we will anyway apply a second segmentation approach in
Chapter 5 to improve the result by further reducing a possible oversegmentation
and better aligning the region boundaries with the object’s edges.

Fig. 4.7 illustrates the final result using the incremental-decremental Dijk-
straFPS surface segmentation with description length minimization. While the
roundness of the cube’s edges decreases from left to right, the synthetically added
Gaussian noise increases from top to bottom. The roundness is controlled by
normalizing all point vectors Xv accordingly with 4-, 6-, 8-, 10- and 12-norm.
With an underlying standard deviation of σ = 0.05 % w.r.t. the coordinate range,
even a 12-norm sphere does not result in a segmentation with six regions only.
The points are too certain, thus their residuals w.r.t. only six planes would be
to expensive in terms of description length. More noise, however, can explain
the round edges. With σ = 0.20 % the 12-norm sphere is segmented as a cube.
With σ = 2.00 % even the 4-norm sphere yields six regions only.

As demonstrated in Fig. 4.7 and also previously shown by Schindler and
Förstner (2011), the incremental-decremental DijkstraFPS strategy yields ro-
bust surface segmentations even on noisy data sets. The following section will
present another strategy to exploit a combination of incremental and decremental
segmentation steps to improve an existing segmentation.

4.2.3 Refinement with Lloyd iterations

Another strategy combining incremental and decremental segmentation is to
apply Lloyd iterations (Lloyd, 1982), also known as k-means clustering, as
proposed by Cohen-Steiner et al. (2004) as well as by Peyré and Cohen (2004,
2006). The idea is to relocate the seed vertices as the intrinsic centroids of each
Voronoi region. By updating the seed vertices the Voronoi boundaries change
as well, stabilizing the overall segmentation and reducing effects of the random
initialization and the incremental segmentation process.

During one Lloyd iteration we process all regions sequentially: We remove
one region l by setting the distances of its vertices {Vv | lv = l} to infinity
Dv :=∞ and initialize a Dijkstra front Q = {Vu} with zero distances Du := 0
on all vertices u that are adjacent to region l, i.e. ∃v ∈ ne(u) | lv = l and lv 6= lu.
Then we propagate the front towards the empty region using a Euclidean metric
svu and Dijkstra’s algorithm (Alg. 2.1). Using the curvature-adaptive metric dvu
for this step might be reasonable as well, but empirically the Euclidean metric
yields more stable results. Afterwards we store the farthest point as new seed
point v0,l of this region l. After obtaining new seed points for all regions, we
derive a new Voronoi diagram using all updated seeds, Dijkstra’s algorithm and
the curvature-adaptive distance metric dvu. This process is shown in Alg. 4.4.

We can perform one Lloyd iteration only, repeat it multiple times or repeat
it until the segmentation remains unchanged after another iteration. Usually –
when starting with a reasonably accurate initialization – we observe convergence
after very few iterations (Fig. 4.8).
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Figure 4.7: Number of regions L (number in the lower right corner) automatically
determined by DijkstraFPS for cubes with V = 1000 vertices, different roundness and
different Gaussian noise σ. Given a standard deviation of only σ = 0.05 % w.r.t. the
coordinate range, all deviations from a piece-wise planar object like the rounded corners
need to get described with additional regions, thus we obtain L > 6 regions. Large
uncertainty, however, can explain such model violations. Therefore, the minimum
description length for σ = 2.00 % noise is achieved with six regions – no matter how
sharp the cube’s edges actually are.
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Algorithm 4.4: DijkstraFPS Lloyd iteration. After decrementally removing each
region l and storing the farthest point v0,l within region l according to a Euclidean
metric svu, an improved segmentation is obtained using Dijkstra’s algorithm with a
front starting at the seeds v0,l. This process can be iterated.

foreach region l do
set distances Dv ←∞ for vertices {v | lv = l}
set front Q ← {Vu} and distances Du ← 0 for adjacent vertices u
apply Dijkstra’s algorithm (Alg. 2.1) with Euclidean metric svu
store farthest vertex as new seed v0,l

end
re-initialize all labels lv ← NaN and distances D ←∞
apply Dijkstra’s algorithm (Alg. 2.1) with front Q ← {v0,l}

(a) No Lloyd iterations (b) Two Lloyd iterations

Figure 4.8: DijkstraFPS surface segmentation with Lloyd iterations on a synthetically
generated 8-norm sphere with V = 1000 vertices and σ = 1 % Gaussian noise w.r.t. the
coordinate range. All regions are sequentially removed and added again, moving their
seed point (red dots) to the region’s intrinsic centroid. In this example this process is
repeated only twice until the resulting segmentation l converges, i.e. remains unchanged
after another iteration.

With the DijkstraFPS surface segmentation, its automatic MDL-based stop-
ping criterion and Lloyd iterations for aligning the segmentation boundaries
more precisely we have a useful tool for segmenting a meshed surface. It yields
planar regions and is based on an intrinsic curvature-adaptive distance metric.
In the following section we will briefly discuss alternative metrics that are either
defined extrinsically or designed for non-planar surface regions.

4.3 Advanced distance metrics

So far we used an intrinsic, curvature-adaptive distance measure dvu = 6 (nu,nv)
for the DijkstraFPS surface segmentation. Therefore, we computed the angle
between adjacent vertex normals and were able to successfully segment piece-wise
planar surfaces. In this section we will, first, transfer this approach to objects
with non-planar faces. Second, we discuss the possibility to incorporate extrinsic
metrics into DijkstraFPS.
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4.3.1 Non-planar regions

In Fig. 4.9 we see a synthetic mesh consisting of a horizontal plane, a truncated
cone, a cylinder and a hemisphere (from top to bottom). A segmentation with
our distance metric based on angles between adjacent normals yields boundaries
at sharp edges, i.e. between plane and cone as well as between cone and cylinder.
The smooth edge between cylinder and sphere, however, is not detected. Marching
from cylinder to sphere does not lead to a sudden increase of the intrinsic distance.
Thus, even though there are region boundaries around, they are not fixed to the
truly underlying edge of the two object parts.

Computing differences of surface curvature dvu = |Kv −Ku| is an alternative
to differences of surface normals. Fig. 4.9b shows the Gaussian curvature K
computed from a certain neighborhood of each vertex. Since the Gaussian curva-
ture of a noisy cylinder – in contrast to a sphere – is close to zero, DijkstraFPS
successfully segments these two object parts using this new metric. The sharp
edges, e.g., between cylinder and cone, however, are segmented as a separate
region, since their local curvature is larger than in the area around.

(a) Angle between normals (b) Curvature difference

Figure 4.9: Different curvature-adaptive metrics on a synthetically generated mesh
with V = 5000 vertices and σ = 0.5 % Gaussian noise w.r.t. the coordinate range.
While considering angles between adjacent surface normals yields good segmentation
results on top of this object, the smooth edge between cylinder and hemisphere is not
correctly reconstructed. Considering differences of local curvature allows to improve
the segmentation between these two object parts, while sharp edges on top introduce
new edge regions.

Of course, the choice of using the Gaussian curvature and the size of the local
neighborhood affects the distance metric and thus the final segmentation. A
smaller neighborhood, e.g., shrinks the edge regions between cylinder and cone,
but makes it harder to locally distinguish the sphere from a plane. Alternative
measures for curvature differences exist, e.g. comparing curvature tensors (Seong
et al., 2008) or covariance matrices (Belton and Lichti, 2006), which yield similar
results.

The general problem of exploiting local surface features to derive a globally
optimal segmentation remains. Therefore, we propose a variant of DijkstraFPS
with extrinsically defined distances in the following section.
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4.3.2 Extrinsic distance metrics

Until now we defined the metric to be used for the distance transform via local
distances dvu between adjacent vertices Vu and Vv. Using the angle between
surface normals allows to sum up the undulation along a path. As shown above
this yields reasonable results. When segmenting a surface for reconstructing
piece-wise planar objects, however, we might want to minimize distances to best
fitting planes. In this section we demonstrate how to use such a criterion within
our DijkstraFPS surface segmentation.

In contrast to the previously proposed distance metrics we do not define pair-
wise distances dvu a priori, but on demand depending on the current segmentation.
When evaluating the new distance Dv of a vertex Vv neighboring to a vertex Vu
with label lu, we add the squared distance to the best fitting plane of region lu.
Thus, the distance dvu indicates the increase of the sum of squared residuals if
including this vertex into the current Voronoi region. Thus, it is also reasonable
to sample the farthest point for refining the segmentation, since it is the one
leading to the worst-fitting plane.

Fig. 4.10 shows resulting segmentations on a synthetic data set. As can be
clearly seen, the extrinsic metric yields globally more consistent results with less
curvy boundaries.

Although this approach yields promising results and might even support more
complex surface parts like quadratic surfaces, its drawback is a significantly larger
computing time. For each single distance dvu a plane has to be fit through vertices
of the region lu. This can be implemented more efficiently using incremental
updates of quadric metrics (Garland et al., 2001), but is still computationally
more expensive than pre-computing pair-wise distances once.

In the remainder of this thesis we will continue using intrinsic metrics. The
incremental-decremental DijkstraFPS segmentation yields a sufficient approx-
imation of the surface topology. We will improve the accuracy of the region
boundaries in the following chapter using a primitive fitting approach.

Besides angles between normal vectors (4.4) we discussed two advanced
distance metrics: curvature distances and extrinsic distances based on fitting
planes. Curvature distances yield a segmentation with object edges segmented
as separate regions, which is reasonable, but not particularly useful for our
application. The extrinsic metric is very robust due to globally fitting primitives
rather than computing distances locally; unfortunately this is at the expense of
higher computational complexity.

Sections 4.1 and 4.2 introduced DijkstraFPS as a robust surface segmen-
tation strategy. Although a combination with alternative metrics is possible
(Section 4.3), it does not yield an efficient approach for segmenting surfaces
with non-planar regions. Therefore, we will use DijkstraFPS for quickly pre-
segmenting a surface into planar regions and proceed with a different strategy
discussed in the following chapter.
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(a) Intrinsic metric,
incremental

(b) Extrinsic metric,
incremental

(c) Intrinsic metric,
incremental-decremental

(d) Extrinsic metric,
incremental-decremental

Figure 4.10: DijkstraFPS with intrinsic and extrinsic distance metrics on an 6-norm
sphere with V = 1000 vertices and σ = 1 % Gaussian noise w.r.t. the coordinate
range. In the top row the mesh is segmented using L = 6 incremental DijkstraFPS
iterations. In the bottom row the automatic incremental-decremental iteration scheme
is applied. In both cases the extrinsic metric (right) yields better results than the
intrinsic curvature-adaptive metric (left).





CHAPTER 5

Description length minimizing hierarchical face
clustering

The segmentation from the previous chapter is based on a local, curvature-
adaptive distance metric and is restricted to planar regions only. We will
refine the segmentation using a hierarchical approach based on fitting
primitives, which is called hierarchical face clustering (HFC, Garland
et al., 2001), combined with the minimum description length (MDL)
model selection strategy to obtain one superior surface segmentation
algorithm. After briefly describing the HFC approach, we will introduce
two kinds of operations, merging adjacent regions and diffusing boundary
vertices, with the corresponding description length reduction. A decision
strategy to efficiently derive an optimal segmentation concludes the
MDL-based HFC surface segmentation. We extend the MDL formulation
with a boundary regularization term and include more complex surface
classes like quadratic and freeform surfaces. Finally, we combine both
segmentation concepts: DijkstraFPS as a fast initialization and MDL-
based HFC for its robustness and more complex surface types.
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5.1 Hierarchical face clustering

Hierarchical face clustering (HFC, Garland et al., 2001) is a surface segmentation
approach that merges adjacent regions based on their combined fit error. In
this section we will briefly describe the original approach for piece-wise planar
surfaces before augmenting it with MDL model selection and alternative surface
types in the following sections.

Garland et al. (2001) start with all triangles separated, i.e. one region per
triangle. Then they create a list of all pairs of adjacent regions. For each list entry
they compute the fit error as the sum of squared residuals of all corresponding
points w.r.t. the respective best fitting plane. Now they iteratively merge the
two adjacent regions with the minimum fit error, until a user-defined number of
regions is reached (Fig. 5.1, Alg. 5.1).

Figure 5.1: Merging adjacent triangles (Garland et al., 2001). The fit error for
merging two adjacent faces is evaluated and the two faces with lowest fit error – here
the two dark triangles – are merged. This operation is repeated until a user-defined
number of faces is reached or the fit-error exceeds a predefined threshold. From Garland
et al. (2001, Fig. 2).

Algorithm 5.1: Hierarchical face clustering (HFC, Garland et al., 2001). The cluster-
ing algorithm iteratively merges the pair of adjacent regions yielding the smallest fit
error according to the sum of squared residuals w.r.t. the best fitting plane. It stops as
soon as the predefined number of regions L is reached.

Input: triangles {Tt}, vertices {Vv}, number of regions L
Output: labels l for all triangles
initialize labels l with one region per triangle: lt ← t with t = 1, . . . , T
collect pairs of adjacent regions, i.e. triangles (Tt, Tt′) sharing two vertices
for each pair do

compute the fit error of a plane through all vertices involved by Tt and Tt′
end
while number of regions L is not reached do

merge the pair of adjacent regions with the smallest fit error
update the list of region pairs and corresponding fit errors

end

In contrast to Garland et al. (2001) our objective is to segment vertices rather
than triangles. Therefore, we easily modify the original approach to start with
one region per vertex and iteratively merge adjacent pairs of them. Fig. 5.2
demonstrates the HFC segmentation of a synthetic cube. Since the best fitting
plane of any two vertices yields zero residuals, the first merge operations happen
at random vertices (Fig. 5.2a–5.2d). The remaining process is shown for a few
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iterations only, until it stops at a user-defined number of regions L = 6 after 194
iterations (Fig. 5.2h).

(a) Initialization (b) Iteration 1 (c) Iteration 2 (d) Iteration 3

(e) Iteration 50 (f) Iteration 100 (g) Iteration 150 (h) Iteration 194

Figure 5.2: Hierarchical face clustering on a synthetically generated 20-norm sphere
with V = 200 vertices and σ = 1 % Gaussian noise w.r.t. the coordinate range. In
contrast to Garland et al. (2001) we segment vertices rather than triangles. During
the first iterations (a)–(d) random pairs of vertices are merged (red arrows), since
two vertices always perfectly lie on a common plane. After a user-defined number of
iterations, however, the segmentation represents the L = 6 faces of a cube (h).

In the following section we will adopt this idea of hierarchically merging
regions and introduce an error measure based on the description length ΦL.
Besides the classical merge operation, we will allow to move boundary vertices
from one region to another.

5.2 Minimizing the description length

As described in (2.60) and again in (4.6), the description length ΦL of a labeling
l with L planes and a label lv ∈ {1, . . . , L} for each vertex v is

ΦL = 2V lb
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(5.1)
In the following we will analyze the description length reduction when merging
two regions as shown in Fig. 5.2 and when moving boundary vertices from one
region to another. Afterwards we discuss a fast and almost optimal decision
strategy that combines both operations.
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5.2.1 Description length reduction when merging two re-

gions

As in the original HFC surface segmentation approach from Garland et al. (2001),
the fundamental strategy of our MDL-based HFC is to iteratively merge adjacent
regions. In contrast to selecting pairs of regions solely based on their joint fit
error, we exploit the description length reduction ∆Φk induced by the respective
merge operation.

When merging a pair k of adjacent regions we obtain a new description length
Φk,L−1 = ΦL +∆Φk. The difference ∆Φk, caused by the merge operation, is the
difference of the previous description length ΦL and the resulting description
length Φk,L−1:

∆Φk = Φk,L−1 − ΦL (5.2)

= 2V lb
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(5.3)

=
V∑

v=1

(

1

2 ln 2
· v

′
v
2 − v2v
σ2

)

− 3 lb
r

ε
+ V (lb(L− 1)− lbL) (5.4)

depending on the residuals v before and v′ after the merge operation. Thus, less
description length lb(L− 1)− lbL < 0 is needed to store the label of each vertex;
three less plane parameters 3 lb r

ε need to be stored; but the sum of squared
residuals will increase depending on the geometry of the two merged regions.

In each iteration of the MDL-based HFC procedure we evaluate ∆Φk for
each pair k of adjacent regions and merge the pair k∗ with largest decrease of
description length k∗ = argmink ∆Φk. Furthermore, we automatically stop if no
description length reduction is possible, i.e. if ∆Φk∗ ≥ 0. After each iteration the
description length reduction needs to be re-computed only for pairs containing a
region that has been affected by the previous merge operation.

So far the MDL-based selection strategy yields an automatic stopping criterion.
In combination with another operation, i.e. moving or diffusing boundary vertices
to an adjacent region, MDL allows us to automatically select the best type of
operation as well.

5.2.2 Description length reduction when diffusing bound-

ary vertices

A number of subsequent merge operations might yield large regions with stable
parametrizations, but with tattered boundaries. Unfortunately, the boundaries
cannot be straightened via merge operations. A possibility to improve the
labeling l and to reduce the overall description length is to diffuse a vertex from
one side of the boundary to the other one.
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We obtain the new description length Φv,L = ΦL +∆Φv with the description
length reduction for diffusing a single vertex v

∆Φv = Φv,L − ΦL (5.5)
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(5.7)

only depending on the residual vv before and the residual v′v after the diffusion.
Thus, whenever one vertex has smaller distance to the neighboring plane, we
can diffuse it yielding a description length reduction.

Note that, to be precise, we would actually need to re-compute plane param-
eters for the new and old region of vertex v, which affects all residuals v of both
regions. The impact, however, is usually negligible. Thus, we assume the planes
to be fixed and only consider the residuals of vertex v for evaluating ∆Φv.

Having formulated the description length reduction for merge and diffusion
operations we could iteratively perform the best operation and re-compute
all affected operations each time. This is, however, similarly computationally
expensive like the extrinsic distance metric for the DijkstraFPS approach in
Section 4.3.2. In the following section we will propose an effective strategy to
speed up the process significantly, but obtaining almost identical results.

5.2.3 Decision strategy

In order to do operations with large description length reduction first and to
postpone vague ones, we should evaluate all ∆Φk and ∆Φv and perform the
best operation first. Afterwards we would re-evaluate all operations involving
vertices affected by the first one and again perform the best operation. This
strategy is optimal in the sense that it always performs the currently optimal
operation, but is prohibitively expensive for large data sets. One diffused vertex
v affects two regions. Thus, all merge operations with one of these regions and
all diffusions from or to one of these regions need to be re-evaluated, involving
the computation of one or two best fitting planes for each candidate operation.

A simplification and a huge time saving is the following strategy: We merge
pairs of regions and re-evaluate only affected merge operations after each iteration,
until there is no possible description length reduction anymore ∆Φk∗ ≥ 0. Then
we compute residuals v and v′ of all boundary vertices to the two adjacent planes
and diffuse all vertices v with ∆Φv < 0 at once. Afterwards we re-compute
planes for all affected regions, re-evaluate all affected merge operations and try
to merge regions again. As soon as there is no merge operation ∆Φk∗ < 0 and
no diffusion ∆Φv < 0, the algorithm stops. This decision strategy is summarized
in Alg. 5.2.

Fig. 5.3 shows the result of the MDL-based HFC for a synthetic data set with
and without boundary vertex diffusion. In contrast to only merging adjacent
regions, our combined merge and diffusion strategy yields better segmentation
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Algorithm 5.2: MDL-based hierarchical face clustering. Pairs k of adjacent regions
are merged and boundary vertices v diffused according to the induced description
length reduction ∆Φk and ∆Φv, respectively. The clustering algorithm automatically
stops when no further operations would reduce the total description length.

Input: triangles {Tt}, vertices {Vv}, noise variance σ2

Output: vertex labels l
initialize labels l with one region per vertex lv ← v with v = 1, . . . , V
determine best fitting planes for each region l
collect pairs of adjacent vertices, i.e. vertices (Vu,Vv) sharing a triangular edge
compute the description length reduction ∆Φk for each pair k
while any description length reduction possible min∆Φ < 0 do

determine best pair of regions for merging k∗ ← argmink ∆Φk

if merge operation would reduce the description length ∆Φk∗ < 0 then
merge pair k∗

determine best fitting plane of the resulting region
else

update description length reduction ∆Φv for boundary vertices v
diffuse all boundary vertices v with ∆Φv < 0
determine best fitting planes of affected regions

end
update description length reduction ∆Φk for affected pairs k

end

results: The vertex diffusion operations significantly straighten the segmentation
boundaries.

(a) Merging only (b) Merging and diffusion

Figure 5.3: MDL-based HFC with and without boundary vertex diffusion on a
synthetically generated 20-norm sphere with V = 1000 vertices and σ = 1 % Gaussian
noise w.r.t. the coordinate range. In (a) we only allow merge operations and obtain a
rather rough boundary and small regions that cannot be merged without increasing
the description length. With boundary vertex diffusions (b) all boundary vertices are
individually evaluated yielding a visually pleasing segmentation.

After describing the fundamental MDL-based HFC surface segmentation, we
will discuss an alternative formulation for regularizing the boundary length. Later
on we will introduce more complex surface types and apply the DijkstraFPS
pre-segmentation from Chapter 4 as a fast initialization.
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5.3 Regularizing the boundary length

Usually the MDL-based HFC, as described so far, already yields satisfactory
results. On surfaces with obtuse-angled edges, however, we might obtain bound-
aries with a meandering pattern. Vertices far on one side of the boundary might
have a smaller distance to the other plane by chance (Fig. 5.4a). By regularizing
the boundary length we will suppress this behavior. Furthermore, we will provide
a theoretical motivation for the proposed regularization term.

Although not necessary in terms of encoding the labeling l, we obtain good
results when introducing an additional bit for each piece of boundary. This
prevents huge boundary undulations at obtuse crease edges as in Fig. 5.4. I.e.
whenever two neighboring vertices u and v have different labels lu 6= lv, we
increment the description length by one bit.

Using exactly one bit per boundary piece is reasonable, since at each triangle
the boundary has two possible directions two continue, leading to lb 2 = 1 bit
description length. Leclerc (1989, pg. 81) and Pan (1994, eq. 27) derive a similar
description length of ≈ lb 3 bits per boundary pixel on a 2D image grid. Note
that simply adding a bit per piece of boundary introduces some redundancy,
since the term V lbL already covers the complete labeling. With additional
modifications, like a start vertex and the number of vertices per boundary (Pan,
1994), we might be able to drop the term V lbL completely. In this work,
however, we will treat the boundary bit as additional regularization and keep
the other terms unchanged. In most cases the difference is marginal.

Thus, the regularized description length Φ′
L is

Φ′
L = 2V lb

r

ε
+

V∑
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1

2 ln 2
· v

2
v

σ2
+ lb
√
2π

σ

ε

)

+ 3L lb
r

ε
+ V lbL+B (5.8)

with the boundary length B. This definition affects both ∆Φk and ∆Φv with
additional terms ∆Bk in (5.4) and ∆Bv in (5.7), respectively. The incremental
boundary ∆Bk for merging the region pair k is the number of triangular edges
that connect vertices of merged regions. For computing the difference of the
boundary length ∆Bv when diffusing a vertex v, it is sufficient to evaluate the
labels of the local neighbors ne(v).

(a) Without boundary bits (b) With boundary bits

Figure 5.4: MDL-based HFC with and without boundary regularization on a syn-
thetically generated valley with V = 255 vertices, a cutting angle of about 157◦ and
σ = 1 % Gaussian noise w.r.t. the maximum coordinate range. Some vertices have
smaller distance to the opposite plane, which is mainly caused by random noise and
the obtuse intersection angle. In order reduce their distances they are labeled with
the closer region in terms of distances to the corresponding plane, regardless of the
resulting boundary undulation (a). When penalizing each piece of boundary, its length
is minimized at the small expense of larger vertex distances (b).
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With the proposed regularization we obtain significantly straightened seg-
mentation boundaries at obtuse edges between adjacent planes. This is even
more relevant if considering non-planar surface regions with smooth edges, like a
sphere adjacent to a cylinder with equal radius. We will introduce such surface
types in the following section.

5.4 Different surface types

The concept of MDL allows to incorporate surface models of different complexity,
i.e. with a different number of independent parameters. We will formulate the
description length ΦL for L regions of arbitrary surface type, before discussing
the HFC segmentation for different groups of surface types.

The description length ΦL for V vertices and L regions is

ΦL = 2V lb
r

ε
+

V∑

v=1
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1

2 ln 2
· v

2
v

σ2
+ lb
√
2π

σ

ε
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+
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νŝl lb
r

ε
+ V lbL . (5.9)

Depending on the surface class ŝl of a region l, the parameters θl have νŝl degrees
of freedom. Whenever re-computing surface parameters after merge or diffusion
operations, we evaluate the description length for each surface class sl and choose
the class ŝl with minimum description length. The search over all classes sl can
be done independently for each surface l, thus the computational complexity
only multiplies with the number of possible surface classes S.

5.4.1 Planar surfaces

The simplest extension of our MDL-based HFC is to not only evaluate planes,
but to distinguish the classes g-plane, h-plane and v-plane. If a plane can be
parametrized as v-plane, one less degree of freedom needs to be stored. And if
we only need to store the height of a h-plane, we save two degrees of freedom.

Choosing a more specific model usually results in larger residuals, since a more
general plane approximates the corresponding points better. The description
length considers both parts, residuals and model complexity, yielding a trade-off
depending on the assumed point uncertainty σ. As indicated for a small example
in Fig. 5.5 the minimum description length is achieved with a h-plane on top
and bottom and a v-plane for each of the four vertical regions.

Consequently, we not only obtain a surface segmentation, but locally optimal
surface classes as well. The difference of the resulting segmentation, however, is
marginal compared to using g-plane only. For large data sets one might restrict
oneself to g-plane in favor of lower computing times. Applying MDL-based
HFC with different surface types becomes practically relevant with quadratic
surfaces, as we will show in the following section.

5.4.2 Quadratic surfaces

For objects that consist of piece-wise quadratic surfaces, also known as quadrics,
we obtain a large benefit when not only using the g-plane surface class but
also sphere, g-cylinder, v-cylinder and v-cone. The implementation in
the proposed MDL-based HFC is trivial.
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(a) g-plane only

h-plane

v-plane

v-plane

(b) h-plane, v-plane and g-plane

Figure 5.5: MDL-based HFC with different classes of planes on a synthetically
generated 20-sphere with V = 1000 vertices and σ = 1 % Gaussian noise w.r.t. the
coordinate range. While the MDL-based HFC already correctly segments the surface
into planes in (a), it automatically chooses more specific primitive types like v-plane

or h-plane in (b). The resulting segmentation not only contains a labeling l, but
surface classes sl for each region l as well.

As for g-plane, h-plane and v-plane we only need to implement routines
for each primitive that yield parameters θl, residuals v and degrees of freedom
νsl of a best fitting primitive of class sl. Appendix A.1 lists direct solutions for
determining parameters for all primitive types introduced in Tab. 3.1.

Fig. 5.6 shows the example of a synthetic object being segmented into the
four parts it was constructed from. In contrast to the previous results in Fig. 4.9
obtained with DijkstraFPS, an oversegmentation is avoided. Instead of relying on
local distances between adjacent vertices we now consider residuals to primitives
fitted through many points.

(a) g-plane only

g-plane

v-cone

v-cylinder

sphere

(b) g-plane, sphere, v-cylinder and v-cone

Figure 5.6: MDL-based HFC with quadratic surfaces on a synthetically generated
mesh with V = 1000 vertices and σ = 0.1 % Gaussian noise w.r.t. the object diameter.
In contrast to the DijkstraFPS surface segmentation (Chapter 4) the MDL-based HFC
can explicitly model more complex surfaces like quadrics, which yields the very intuitive
segmentation in (b), in contrast to the oversegmentation in (a).



88 CHAPTER 5. DESCRIPTION LENGTH MINIMIZING . . .

With the current formulation we can treat all parametrized surfaces listed in
Tab. 3.1. The following section will introduce one last type of surfaces relevant
to this thesis, namely freeform surfaces.

5.4.3 Freeform surfaces

As described in Section 2.4.1, we can formulate the description length for a set
of points even without any model. Therefore, it is possible to model freeform
surfaces, i.e. a parameterless surface represented by the original surface mesh.

All V̄ vertices on such a surface will be treated like outliers (Förstner, 1989),
suggesting a description length of
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(5.10)
with νfreeform = 0 degrees of freedom for freeform surfaces and the sum
over residuals

∑

v only for inliers v. I.e. the off-plane location for a vertex on a
freeform surface is encoded like its in-plane location with r

ε bits per coordinate.
An example for a segmentation involving a freeform surface is shown in

Fig. 5.7. Since the area on top cannot be efficiently described with planes, it
is automatically recognized as freeform surface. Note that the MDL-based
HFC approach always merges adjacent freeform surfaces, since there are no
residuals that could increase, but the boundary length is reduced.

(a) g-plane only

freeform

g-plane

g-plane

(b) g-plane and freeform

Figure 5.7: MDL-based HFC with freeform surfaces on a synthetically generated
mesh with V ≈ 2000 vertices and σ = 1 % Gaussian noise w.r.t. the cube’s edge length.
It is possible to include surfaces without any parameters treating all their vertices as
outliers. While the MDL-based HFC segmentation without freeform surfaces tries to
find an optimal segmentation into planar regions (a), it yields one large region on top
when allowing freeform surfaces (b).

With the merge and diffusion operations and the variety of surface types we
can precisely segment man-made surface structures, even with non-planar regions.
The MDL model selection strategy does not only guide the different operations
within the segmentation process, but yields an automatic stopping criterion as
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well. The only drawback, the large computational costs in the beginning for
aggregating vertices to small regions, make the approach intractable for large
data sets. Therefore, we will use DijkstraFPS as an initialization in the following
section.

5.5 Combination of MDL-based HFC and Dijk-

straFPS

In comparison to the previously discussed DijkstraFPS surface segmentation
(Chapter 4) the MDL-based HFC segmentation is more flexible in terms of other
surface classes than planes. But it is rather expensive to compute for large data
sets, especially at the beginning when starting with a large number of regions L
all containing one vertex only (Fig. 5.2). Therefore, we propose to combine the
less powerful DijkstraFPS segmentation as an initialization with the MDL-based
refinement.

As shown in Fig. 5.8a DijkstraFPS with its automatic stopping criterion yields
a strong oversegmentation, since it assumes all regions to be describable with
planes. The MDL-based HFC approach yields visually pleasing results, but takes
several minutes and 1007 iterations, most time spent in the beginning merging
tiny regions (Fig. 5.8b). The combination of DijkstraFPS and MDL-based HFC
yields almost the same result, but is computed much faster with only 104 HFC
iterations (Fig. 5.8c).

(a) DijkstraFPS: 2.0 sec (b) MDL-based HFC:
7.4 min

(c) DijkstraFPS +
MDL-based HFC: 8.6 sec

Figure 5.8: Combination of DijkstraFPS and MDL-based HFC on a synthetically
generated mesh with V = 1000 vertices and σ = 0.1 % Gaussian noise w.r.t. the object
diameter. DijkstraFPS is designed for piece-wise planar surfaces, thus yields 103 planar
regions rather than one of the four quadratic surfaces (a). It is, however, well suited
as an initialization for the MDL-based HFC segmentation (c), which itself is rather
expensive to compute when initialized with one region per vertex (b).

This concludes the second step of our reconstruction framework for man-made
surfaces. Together with the low-level pre-segmentation from the previous chapter
we obtain a fast, accurate and flexible surface segmentation. Until now we only
introduced model knowledge in form of available surface types. In the following
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chapter about the high-level reconstruction step we will derive a model-driven
classification as well as a constraint parameter estimation.



CHAPTER 6

Surface model reconstruction

In this chapter we will classify both the type of each surface region as
well as each relation between adjacent pairs of regions. This global clas-
sification will take into account data-driven residuals of fitted primitives
as well as model-driven parameter distributions and prior probabilities.
E.g. an almost horizontal plane might be classified as h-plane if the
slope is within a certain range, despite its normal vector significantly
deviating from the vertical direction. Later we will make use of the
determined surface and relation classes within a constraint parameter
estimation. At the expense of slightly larger residuals we will introduce
constraints to obtain an idealized, model-driven surface structure.
First we will represent the surface structure as a factor graph. After
defining all factors involved, we will infer the most probable configuration
and conclude the reconstruction with a constraint parameter estimation.

6.1 Factor graph of surface structures . . . . . . . . . . . 91
6.2 Unary factors . . . . . . . . . . . . . . . . . . . . 93

6.2.1 Likelihood of points given the parametrization . . . . . . 94
6.2.2 Parameter distribution given a surface class . . . . . . . 95
6.2.3 Surface priors . . . . . . . . . . . . . . . . . . 97

6.3 Ternary factors . . . . . . . . . . . . . . . . . . . 98
6.3.1 Joint parameter distribution given a relation class . . . . . 99
6.3.2 Relation priors. . . . . . . . . . . . . . . . . . 101

6.4 Classification using the max-sum algorithm . . . . . . . 101
6.5 Surface parameter estimation . . . . . . . . . . . . . 103

6.1 Factor graph of surface structures

The surface segmentation obtained in the previous chapters contains an un-
derlying topological structure, i.e. a number of surface regions with pair-wise

91
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adjacencies, which we will explicitly represent using a special representation
for graphical models, namely factor graphs, as discussed in Section 2.5. While
variable nodes represent regions and inter-regional relations, factor nodes repre-
sent dependencies in between. This section will present the factor graph used
for man-made surface structures and divide the joint probability into factors
assigned to each factor node.

As shown in the factor graph in Fig. 6.1, we model two types of variables:

Surface regions Each surface region l is represented by one variable node.
Possible surface classes are given in Tab. 3.1. The probability of a surface
class being assigned to a region depends on the residuals of all corresponding
points to the best fitting primitive of that type, a restricted parameter
distribution and a prior probability.

Relations Each relation k, i.e. a pair of adjacent surface regions, is represented
by a node. Possible relation classes are given in Tab. 3.2. The probability
of a relation between two surface regions depends on the fulfillment of
certain constraints and a prior probability.

Both variables, surfaces and relations, depend on unary factors fl and ternary
factors fk.

fk

sl sl′

rk

fl fl′

Figure 6.1: Factor graph of adjacent surfaces l and l′ with relation k. Variable nodes
are indicated by red circles; factor nodes are depicted as blue squares. Unary factors
fl and fl′ as well as ternary factors fk influence the joint probability P (s, r) of one
configuration of surfaces and relations (s, r). As indicated with the faded variable and
factor nodes, the graph is usually larger than only two surfaces and one relation. In
fact, its topology corresponds to the adjacency relations of all L surface regions.

The joint probability of one configuration with all surfaces s and relations r
is proportional to the product over all factors. According to the factor graph
defined in Fig. 6.1, we obtain

P (s, r) ∝
∏

l=1...L

fl(sl,Xl) ·
∏

k=1...K

fk(rk, sl, sl′ ,Xl,Xl′) (6.1)

with the surface region indices l = l(k) and l′ = l′(k) in the second term
depending on the current relation index k. On the one hand (6.1) is the product
of factors for each surface sl given the corresponding set of points Xl. A set
of surface classes s that well approximate the underlying data points should
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yield a large probability. On the other hand the joint probability depends on
the product of factors for each relation rk given the surface classes sl and sl′

of the two adjacent surfaces and their points Xl and Xl′ . We will choose the
factors to approximate conditional probabilities with three components for the
unary factors fl and two components for the ternary factors fk. Tab. 6.1 gives
an overview of the individual terms.

Table 6.1: Components of unary and ternary factors. The factors depend on up to
three different terms: the likelihood of the points given the surface parameters, the
parameter distribution given the surface and relation class as well as prior probabilities.

Unary factors fl Ternary factors fk

Likelihood F-testing variance factor σ̂2
0

of estimated primitive
(Section 6.2.1)

—

Distribution orientation θn, radius θr,
opening angle θα
(Section 6.2.2)

angle δ between two related
parameter vectors
(Section 6.3.1)

Prior prior probability of surface
classes
(Section 6.2.3)

prior probability of relations
given two adjacent regions
(Section 6.3.2)

In the following Sections 6.2 and 6.3 we will derive a formulation for both
types of factors. Thereafter, in Section 6.4 we will search for a configuration of
surface and relation classes

(ŝ, r̂) = argmax
s,r

P (s, r) (6.2)

that maximizes the joint probability P (s, r).

6.2 Unary factors

We propose factors fl(sl,Xl) approximating the conditional probabilities P (sl |
Xl) of a region l being describable with a primitive of class sl given the points
Xl belonging to that region. So far we already determined the primitive that
minimizes the description length for this region in Chapter 5. Now, however, we
have to reconsider all other classes, since together with adjacent regions l′ and
relations k in between they can lead to a larger overall probability P (s, r).

In the following we will split the probability P (sl | Xl) into three terms:
likelihood, parameter distribution and surface prior. Afterwards we will define
factors for each of the three terms.

Bayes’ theorem allows us to rewrite the posterior probability P (sl | Xl) with
likelihood p(Xl | sl) and prior probability P (sl):

P (sl | Xl) ∝ p(Xl | sl)P (sl) . (6.3)

The likelihood p(Xl | sl) can be rewritten using the marginal likelihood

p(Xl | sl) =
∫

θl

p(Xl | θl)p(θl | sl) dθl (6.4)
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and approximated following the argumentation of Minka (2001, pg. 44): “A prac-
tical substitute is to use a single value of [the parameters θl] which approximates
the predictive distribution as well as possible.” We obtain

P (sl | Xl) ≈
1

Z
p(Xl | θ̂l)p(θ̂l | sl)P (sl) (6.5)

with the partition function Z and the maximum-likelihood estimation of the
surface parameters θ̂l given the points Xl and the surface class sl.

Thus, we define the factor fl(sl,Xl) as product of three potentials

fl(sl,Xl) := φl(Xl, θ̂l)
︸ ︷︷ ︸

likelihood

φl(θ̂l, sl)
︸ ︷︷ ︸

distribution

φl(sl)
︸ ︷︷ ︸

prior

. (6.6)

Using potentials φ rather than probabilities P or probability densities p allows
us to choose the normalization more flexibly, which will be advantageous for
the second term in Section 6.2.2. We will formulate the three potentials in the
following sections.

6.2.1 Likelihood of points given the parametrization

The first potential φl(Xl, θ̂l) ∝ p(Xl | θ̂l) in (6.6) represents the likelihood of the

points Xl given the estimated parameter vector θ̂l. We will compute its value
evaluating the estimated variance coefficient σ̂2

0 .
Like during the MDL-based HFC in Chapter 5 we again obtain approximate

solutions using the formulas in Appendix A.1. Now we subsequently perform a
least-squares estimation of the surface parameters θ in a Gauss-Helmert model
with homogeneous parameter vectors (Section 2.3.2) in order to obtain a full
covariance matrix Σθθ and an estimated variance coefficient σ̂2

0 .
The latter represents the inner consistency of the observed points Xl with

the underlying model θl, i.e. the fitted primitive of type sl. Under the null
hypothesis “The empirical variance coefficient is equal to the theoretical variance
coefficient”H0 : E(σ̂2

0) = σ2
0 the quotient σ̂2

0

/
σ2
0 follows a Fisher distribution:

σ̂2
0

σ2
0

∣
∣
∣
∣
H0 ∼ F (R,∞) . (6.7)

The redundancy R = G − U of the estimation σ̂0 depends on the number of
constraints G and the number of unknown parameters U . The apriori variance
coefficient is σ2

0 = 1 throughout this thesis. Theoretically its redundancy is
∞. Practically, however, this is too large to reflect realistic prior information.
Instead, the apriori variance σ2

0 is uncertain as well with a prespecified variance
σ2
σ0

corresponding to the redundancy (Koch, 1997, p. 259)

R0 =

⌈

1

2σσ2
0

⌉

. (6.8)

Therefore, we choose the test statistic

q =
σ̂2
0

σ2
0

∣
∣
∣
∣
H0 ∼ F (R,R0) . (6.9)
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For the potential φl(Xl, θ̂l) representing the likelihood p(Xl | θ̂l) we choose

φl(Xl, θ̂l) := 1− F (q,R,R0) (6.10)

using the cumulative Fisher distribution function F , as by definition

P (q | H0) = F (q,R,R0) . (6.11)

Fig. 6.2 shows the potential φl(Xl, θ̂l) depending on the test statistic σ̂2
0/σ

2
0 .

0 1 2
0

0.5

1

σ̂2
0/σ

2
0

φ
l(
X l

,θ
l)

Figure 6.2: Potential φ(Xl,θl) representing the likelihood of the data points Xl of
region l depending on the estimated variance coefficient σ̂2

0 . This plot shows the
potential for redundancies R = R0 = 100.

Outliers are usually removed during the iterative parameter estimation process.
In order to consider the number of detected outliers for computing the likelihood,
we count them like inliers but with residuals set to 3σ. This way the likelihood
slightly decreases with each outlier.

The likelihood for freeform surfaces will always be 1, since they yield
no residuals. In order to avoid all surfaces being classified as such freeform

surface, we will assign them a low prior probability in Section 6.2.3.

This data-driven likelihood term represents the proximity of the estimated
surface primitive w.r.t. the corresponding points. The second term presented in
the following section will control the parameter distribution to avoid degenerated
primitives and to support less complex surface types.

6.2.2 Parameter distribution given a surface class

The second potential φl(θ̂l, sl) ∝ p(θ̂l | sl) in (6.6) represents the parameter
distribution conditioned on the surface class sl. We define this distribution to
suppress degenerated surfaces such as a horizontal or vertical g-plane, a flat
sphere or cylinder due to huge radii and a cylinder-shaped or flat cone due to
an opening angle of 0◦ or 180◦. Therefore, we divide the parameter space into
acceptance and rejection intervals smoothed with the estimated variance of the
surface parameters. After describing the chosen parameter distribution for each
of these three degenerated scenarios we will discuss how to proceed if none or
multiple of them apply.

Orientation of general primitives. A g-plane will always approximate
the points better than a h-plane or v-plane, although its normal vector θn

might be very close to horizontal or vertical. The same argumentation holds for
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a g-cylinder. In order to penalize normal vectors θn close to the vertical axis
or close to the horizontal plane, we define the potential as

φl(θl, sl) := Φ

(
min(z, |90◦ − z|, 180◦ − z)− tz

σz

)

(6.12)

for sl ∈ {g-plane,g-cylinder}

with the zenith distance z = arccos(θnz
) and the cumulative distribution function

of the standard normal distribution Φ(x) =
∫

x
1
2π e

− 1
2
x2

dx. Note that this
restrictive parameter distribution should only be applied if the more specialized
primitives, e.g. h-plane and v-plane, are within the set of available primitives.
Fig. 6.3 visualizes the distribution of the zenith distance z and the resulting
density function of the normal direction exaggerated in height over the unit
sphere.

0◦ 90◦ 180◦
0

1

zenith distance z

φ
l(
θ
l,
s l
)

Figure 6.3: Parameter distribution p(z | sl) ∝ φl(θl, sl) for the zenith distance z for
surfaces sl ∈ {g-plane,g-cylinder} and resulting distribution of the normal direction
θn with an angular threshold tz = 5◦ and a variance σz = 1◦.

Radius of spheres and cylinders. A sphere or g-cylinder will always
approximate the points better than a g-plane, even tough its radius θr might
be huge. We support radii smaller than a threshold tr and thus define the
distribution potential

φl(θl, sl) := 1− Φ

(
θr − tr
σr

)

(6.13)

for sl ∈ {v-cylinder,g-cylinder, sphere} .

Fig. 6.4 visualizes the distribution of the radius θr.
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Figure 6.4: Parameter distribution p(θr | sl) ∝ φl(θl, sl) for the radius θr of surfaces
sl ∈ {v-cylinder,g-cylinder, sphere} with a threshold tr = 100 and a variance
σr = 10.
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Opening angle of cones. A v-cone with an opening angle α close to 180◦

will always approximate planar points slightly better than a h-plane. Similarly,
cylindrically arranged points will always be better approximated by a v-cone

with an opening angle of α ≈ 0◦ than by a v-cylinder. Thus, we restrict the
opening angle α = α(θA) = 2 arctan(

√
θA) to be greater than a threshold tα and

smaller than 180◦ − tα by defining the distribution potential for as

φl(θl, sl) := Φ

(
min(α, 180◦ − α)− tα

σα

)

(6.14)

for sl = v-cone .

Fig. 6.5 visualizes the distribution of the opening angle α.
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Figure 6.5: Parameter distribution p(α | sl) ∝ φl(θl, sl) for the opening angle
α = α(θA) of surfaces sl = v-cone with an angular threshold tα = 5◦ and a variance
σα = 1◦.

Normalization of mixed and default potentials. For surface classes af-
fected by more than one distribution, like the g-cylinder with a distribution
potential for both the normal vector and the radius, we simply multiply both
potentials. For surface classes not mentioned above we set the potential to one:

φl(θl | sl) := 1 . (6.15)

This way all potentials are normalized such that for parameters within the
acceptance interval the potential is one, thus does not affect the probability
P (sl | Xl).

This section introduced several control parameters with clear semantics,
which are necessary to describe the assumed surface model. The range for, e.g.,
normal vectors tz might be differently chosen for high-precision engine parts
than for medievally building facades.

One last term remains for computing unary factors. In case we know about
the frequency of certain surface classes, e.g. learned from training data sets, we
can incorporate prior probabilities.

6.2.3 Surface priors

The last term φl(sl) ∝ P (sl) in (6.6) allows to support or to suppress certain
surface classes. The prior could represent the model complexity as in MDL-based
approaches or can be learned by analyzing large data sets with a large number
of labeled surface regions.
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Within our experiments we equally weighted all surface classes but the
freeform class by defining the prior potential as

φl(sl) :=

{

0.01 if sl = freeform

1 else
. (6.16)

The low prior probability for freeform surfaces will prevent the classifica-
tion from only yielding freeform surfaces, although they have likelihood and
distribution potentials of one due to the lack of residuals and parameters.

With likelihood, parameter distribution and prior probability, we have for-
mulated all three components of the unary surface factors fl defined in (6.6).
Similarly, the following section will formulate the two components of the ternary
relation factors fk.

6.3 Ternary factors

In analogy to the unary factors for surfaces (6.3) we can formulate the ternary
factors fk(rk, sl, sl′ ,Xl,Xl′) approximating the conditional probability P (rk |
sl, sl′ ,Xl,Xl′) for a relation k being of relation class rk given the surface classes
sl and sl′ of the two adjacent regions l and l′ and the corresponding points Xl

and Xl′ . Rewriting the conditional probability using Bayes’ theorem we obtain

P (rk | sl, sl′ ,Xl,Xl′) =
p(Xl,Xl′ | rk, sl, sl′)P (rk | sl, sl′)

p(Xl,Xl′ |sl, sl′)
. (6.17)

We rewrite the likelihoods p(Xl,Xl′ | rk, sl, sl′) and p(Xl,Xl′ |sl, sl′) using the
marginal likelihood and obtain

P (rk | sl, sl′ ,Xl,Xl′) =
∫

θl′

∫

θl
p(Xl,Xl′ | θl,θl′)p(θl,θl′ | rk, sl, sl′) dθl dθl′P (rk | sl, sl′)
∫

θl′

∫

θl
p(Xl,Xl′ | θl,θl′)p(θl,θl′ | sl, sl′) dθl dθl′

(6.18)

with the maximum-likelihood estimations θ̂l and θ̂l′ given the points Xl and Xl′

and the classes sl, sl′ and rk. The integrals are approximated following the very
same argumentation of Minka (2001, pg. 44):

P (rk | sl, sl′ ,Xl,Xl′) ≈
p(Xl,Xl′ | θ̂l, θ̂l′)p(θ̂l, θ̂l′ | rk, sl, sl′)P (rk | sl, sl′)

p(Xl,Xl′ | θ̂l, θ̂l′)p(θ̂l, θ̂l′ | sl, sl′)
.

(6.19)
Canceling out equal terms in the nominator and denominator yields

P (rk | sl, sl′ ,Xl,Xl′) ≈
p(θ̂l, θ̂l′ | rk, sl, sl′)
p(θ̂l, θ̂l′ | sl, sl′)

P (rk | sl, sl′) . (6.20)

Although the quotient still depends on the surface classes sl and sl′ , we define
the factor fk(rk, sl, sl′ ,Xl,Xl′) as product of the two following potentials

fk(rk, sl, sl′ ,Xl,Xl′) := φk(θ̂l, θ̂l′ , rk)
︸ ︷︷ ︸

distribution

φk(rk, sl, sl′)
︸ ︷︷ ︸

prior

. (6.21)
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The first potential only depends on the surface parameters θl and θl′ and their
relation rk. The second one does not depend on any data or parameters, but
solely reflects the prior probability of a relation rk given the surface classes sl
and sl′ . We will formulate the two individual terms in the following sections.

6.3.1 Joint parameter distribution given a relation class

Most relations listed in Tab. 3.2 involve a constraint on both adjacent surfaces.
The constraint is either an orthogonality ⊥, a parallelism ‖ or an equality =.
Similarly to the distributions in Section 6.3.1 we would like to specify acceptance
and rejection intervals for a contradiction measure δ smoothed with its estimated
variance σδ, yielding the first potential φk(θ̂l, θ̂l′ , rk) of the ternary factor (6.21).
Some relations, e.g. the identity of two g-plane surfaces, involve both angular
and translatory differences. After discussing a strict combination of both of
them into one contradiction measure δ, we will propose an approximation and
demonstrate its validity under certain conditions.

Angular and translatory differences 6 (θn,θ
′
n) and |θd − θ′d| can not be added

or multiplied directly. A correct combination would be to, e.g., normalize w.r.t.
the uncertainties σ 6 and σd, yielding the Mahalanobis distance (Mahalanobis,
1936)

δ =

√
(

6 (θn,θ
′
n)

σ 6

)2

+

(
θd − θ′d

σd

)2

. (6.22)

Alternatively, we can take the Mahalanobis distance of the reduced parameter
vectors θr and θ′

r (Förstner, 2012)

δ =

√
(
θr − θ′

r

)T (
Σθrθr +Σθ′

rθ
′

r

)−1 (
θr − θ′

r

)
. (6.23)

Since both alternatives yield a dimensionless contradiction δ, the choice of a
suitable threshold tδ is non-intuitive. Furthermore, this approach would require
different contradiction measures for equalities, parallelisms and orthogonalities
as well as for the combination with different primitive types.

Therefore, we propose a uniform approach for all three types of constraints
based on the angle between homogeneous parameter vectors. As we will demon-
strate shortly, this angle is a reasonable approximation for the case of conditioned
data, i.e. primitives in a maximum coordinate range of [−1, 1]. The proposed
approach simplifies the implementation of additional relation and surface classes
and yields a single intuitive sensitivity threshold tδ for inter-surface relations.

Augmenting the two vectors of an equality with a homogeneous part θ :=
[
θ
1

]
the equality relation can be expressed as parallelism, which relates to an

angle 6 (θ,θ′) ∈ {0◦, 180◦}. Since orthogonality yields a very similar equation
6 (θ,θ′) = 90◦, all constraints mentioned in Tab. 3.2 lead to a contradiction angle
δ = 6 (θ,θ′) or δ = 90◦ − 6 (θ,θ′) with its corresponding variance σδ, obtained
via error propagation of the covariance matrices Σθlθl and Σθl′θl′ obtained from
the least-squares estimation in Section 6.2.
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Similarly to angular thresholds in Sections 6.2.2 we now introduce a threshold
tδ for relations between adjacent surfaces. We define the joint distribution
potential as

φk(θ̂l, θ̂l′ , rk) := 1− Φ

(
min(δ, 180◦ − δ)− tδ

σδ

)

(6.24)

for rk 6= arbit .

For relations that do not induce a constraint we define the potential to be
φk(θ̂l, θ̂l′ , rk) := 1. Fig. 6.6 visualizes the distribution of the contradiction angle
δ.

0◦ 180◦
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contradiction angle δ

φ
k
(θ̂
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θ̂
l′
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)

Figure 6.6: Parameter distribution p(δ|rk) ∝ φk(θl,θl′ , rk) for relations rk 6= arbit

inducing a contradiction angle δ = δ(θ,θ′) between two adjacent surface regions with
a threshold tδ = 5◦ and a variance σδ = 1◦.

Fig. 6.7 shows different pairs of primitives all with a contradiction angle
δ = 5◦ for the ident relation. Under the assumption of a conditioned surface
mesh, i.e. being translated and scaled to the unit bounding box in a preprocessing
step, the single threshold tδ is a reasonable choice to keep the number of control
parameters small. Either way, the above-mentioned alternative formulations are
possible as well. The specific choice of the contradiction δ does not affect the
overall reconstruction framework.

−1 0 +1

(a)

−1 0 +1

(b)

−1 0 +1

(c)

−1 0 +1

(d)

Figure 6.7: Impact of rotation and translation on the contradiction angle δ. In each
of the four examples we synthetically generate a pair of v-plane surfaces. While they
are placed close to the origin, i.e. θ = [1, 0, 0]T, in (a) and (c), they are in the margins
of the unit bounding box, i.e. θ = [1, 0, 1]T, in (b) and (d). One plane of each pair is
either rotated by 5.0◦ (a) or 7.1◦ (b) or translated by 0.088 (c) or 0.161 (d). All four
transformations yield a contradiction angle of δ = 5◦.
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After defining this term based on the parameter vectors of two adjacent surface
regions, one last term remains. It will allow us to incorporate prior probabilities
for relation classes, possibly learned from training data sets. More importantly
we will use it to suppress topologically impossible or unlikely combinations of
adjacent surface types and their corresponding relation.

6.3.2 Relation priors

The second term φk(rk, sl, sl′) ∝ P (rk | sl, sl′) of the ternary factor (6.21)
represents the probability of a relation rk given the two adjacent surface classes
sl and sl′ . Therefore, it holds both the prior probability of the relation itself as
well as the probability of the whole combination involving all three variables.
We will make use of both aspects.

All allowed combinations of adjacent surface classes sl and sl′ as well as their
relation rk are listed in Tab. 3.2. We assign equal prior probability to all these
combinations. All other combinations have zero prior probability.

Furthermore, we use the prior term to suppress the non-restrictive relation ar-

bit. Otherwise its probability will always be largest, since there is no restriction
for the parameters θl and θl′ induced by the arbit relation.

This leads to the prior term

φk(rk, sl, sl′) :=







{

0.01 if rk = arbit

1 else
if (rk, sl, sl′) in Tab. 3.2

0 else

. (6.25)

As indicated above, this term can be learned from labeled training data sets.

Together with the joint parameter distribution described in the previous
section, this prior term concludes the ternary factor fk. It will make the crucial
difference between a local and a global classification, since it links the classification
of adjacent surfaces.

Now we have collected all necessary terms to compute the unary and ternary
factors in the factor graph (Fig. 6.1). We will proceed with solving for an optimal
configuration (ŝ, r̂) of surface and relation classes, before determining surface
parameters in a global, constraint parameter estimation.

6.4 Classification using the max-sum algorithm

We are interested in the most likely configuration of surfaces and relations,
maximizing the joint probability P (s, r). As described in Section 2.5 we infer an
approximation using the max-sum algorithm with loopy belief propagation (Frey
and MacKay, 1998), which is based on exchanging messages between nodes of
the factor graph.

Our graphical model with all messages involved in the belief propagation is
shown in Fig. 6.8. Note that each factor f ′

k has exactly three neighboring variable
nodes, sl, sl′ and rk, but a surface variable sl can have multiple neighboring
factors fk, one for each adjacent surface region.
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fk

sl sl′

rk

fl fl′

Figure 6.8: Factor graph with all messages involved. The factor graph from Fig. 6.1
is split into two groups of edges: The two red arrows between factor fl and surface
sl indicate messages that need to be updated for each surface l. The six blue arrows
from and to factor fk represent messages for each relation k. This way each message is
processed exactly once with a loop over l and a loop over k.

Although the messages between sl and fk as well as between sl′ and fk are
symmetrical, it is convenient to derive and to implement update formulas for
both of them. This way we have exactly two messages for each region l (red
arrows in Fig. 6.8) and six messages for each relation k (blue arrows in Fig. 6.8).

Since our graph has no chain or tree structure, the max-sum algorithm, as
described in Section 2.5, needs to be iteratively called until it converges to the
desired solution. The messages are initialized according to (2.82) and (2.83)
and updated after a predefined message passing schedule with formulas (2.80)
and (2.81). For the bipartite factor graph an intuitive schedule is to update all
messages from factor to variable nodes first, followed by updates for messages
from variable to factor nodes. We further group these messages according to the
type of factor involved, either a surface factor fl or a relation factor fk. For the
sake of readability, we will omit the arguments Xl and Xl′ for the factors fl and
fk.

Message updates for each surface region l. First we define the two mes-
sages involved with each surface region l represented with red arrows in Fig. 6.8.
The message sent from a surface factor fl is

µfl→sl(sl) = log fl(sl) (6.26)

with the unary factors fl from (6.6). The message back is

µsl→fl(sl) =
∑

fk∈ne(sl)

µfk→sl(sl) (6.27)

with the sum over all ternary nodes fk ∈ ne(sl) depending on the surface variable
sl.
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Message updates for each relation k. Now we define the six messages
involved with each relation k between adjacent surfaces l and l′ represented with
blue arrows in Fig. 6.8. The three messages sent from fk are

µfk→sl(sl) = max
sl′ ,rk

(
log fk(rk, sl, sl′) + µsl′→fk(sl′) + µrk→fk(rk)

)
, (6.28)

µfk→sl′ (sl′) = max
sl,rk

(log fk(rk, sl, sl′) + µsl→fk(sl) + µrk→fk(rk)) , (6.29)

µfk→rk(rk) = max
sl,sl′

(
log fk(rk, sl, sl′) + µsl→fk(sl) + µsl′→fk(sl′)

)
(6.30)

with the ternary factors fk from (6.21). The messages back to fk are

µsl→fk(sl) = µfsl→sl(sl) +
∑

fk′∈ne(sl)\fk

µfk′→sl(sl) , (6.31)

µsl′→fk(sl′) = µfs
l′
→sl′ (sl′) +

∑

fk′∈ne(sl′ )\fk

µfk′→sl′ (sl′) , (6.32)

µrk→fk(rk) = 0 (6.33)

with sums over all other ternary factor nodes fk′ ∈ ne(sl′) \ fk depending on the
surface variable sl. The message from rk is an empty sum, thus this message is
always zero.

For all experiments within this thesis we use the Probabilistic Graphical
Model Library from Andres et al. (2008). Results of the max-sum inference on
a small test object are given in Fig. 6.9. Although many unary surface factors
already point to the correct surface class before performing belief propagation,
the classification for the two surfaces on top is significantly improved. While
the planar surface is most likely a sphere according to its unary factor, it is
correctly classified as h-plane after inference.

This classification represents the most probable configuration of the observed
surface structure given the original surface mesh as well as model knowledge
about man-made surfaces. Using the inferred surface classes and inter-surface
constraints induced by the inferred relation classes we will estimate an idealized
surface model in the following section.

6.5 Surface parameter estimation

In Section 6.2.1 we individually estimated surface parameters θl for all surface
regions l and for all possible surface types sl. The classification in Section 6.4
yields the most probable configuration of surface types ŝ, which allows us to
select an optimal parametrization θl for each surface l among all possible types sl.
Additionally the classification yields corresponding relation types rk for all pairs
of adjacent surface regions (l, l′), which possibly induce constraints (Tab. 3.2).
Starting from the locally estimated parameters θl we now need to find a global
parametrization that fulfills those constraints.

We formulate this estimation problem in terms of the model with constraints
between observations only (Section 2.3.4). The previously estimated surface
parameters θl and their covariance matrices Σθθ are treated as observations
y with constraints g(y). As described in Section 2.3.3 we need to reduce
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61.7 % sphere

22.5 % v-cone

15.8 % h-plane

0.1 % g-plane


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99.4 % v-cone

0.6 % sphere
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100 % v-cylinder

100 % sphere

100 % ortho

100 % collin

100 % collin

Figure 6.9: Results of the max-sum inference on a synthetically generated mesh with
V = 2000 vertices and σ = 0.5 % Gaussian noise w.r.t. the object diameter. Each
surface l and relation r is annotated with possible classes, i.e. classes with non-zero
probability. The numbers for surface classes sl on the left-hand side represent unary
factors fl normalized to

∑

sl
fl(sl) = 100 %. The numbers on the right-hand side

represent marginal probabilities P (rk) for relation classes rk. Especially the small
region on top is not yet perfectly recognized as h-plane. Also the region below has
a small chance for being recognized as a sphere instead of v-cone. The underlined
class names are the classification results after inference with the max-sum algorithm.
Thus, all surfaces and relations are correctly classified.

homogeneous parameter vectors to their null space with the transformation
matrix J given in Tab. 3.1, in order to avoid singularities when inverting their
covariance matrices.

Fig. 6.10 shows the example of a small synthetic cube being segmented, classi-
fied and reconstructed using the described parameter estimation with constrained
observations. Although visually poorly recognizable, the surfaces’ locations im-
prove significantly when introducing pair-wise constraints and performing a joint
estimation. The intersection angles between the four vertical planes are off by
up to 4.7◦ w.r.t. the right angle. The joint estimation yields perfect right angles.
The other eight intersection angles are already 90◦ due to the involved surface
types h-plane and v-plane, which only allow the relation ortho, but do not
require an additional constraint.

Note that the constraints inferred in the previous section could contain
redundancies or logical contradictions. E.g., the four vertical planes of a cube
lead to four orthogonalities, while one of them is redundant due to the fixed
sum of interior angles. On the other hand, a large number of cylindrically
aligned planes might yield ident relations only, which is topologically impossible
without collapsing the cylindrical shape to a single plane. The consistency and
redundancy of inter-regional constraints is, however, out of scope of this thesis.
The interested reader is kindly referred to the literature on topological constraints
in polyhedral object models, like e.g. the approach from Loch-Dehbi and Plümer
(2009, 2011) based on symbolic geometric reasoning with so-called Wu’s method.
An alternative approach for detecting contradictions would be to introduce soft
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(a) Segmented mesh (b) Individual estimation (c) Joint estimation

Figure 6.10: Joint parameter estimation with constraints on a synthetically generated
cube with V = 200 vertices and σ = 5 % Gaussian noise w.r.t. the coordinate range.
Although the original synthetic mesh is of very poor accuracy and low density, the
surfaces and relations are correctly classified as h-plane and v-plane being ortho.
Visually the joint estimation with constraints has no big impact. But the pair-wise
intersection angles are significantly improved from 86.3◦ to 94.7◦ before and exactly
90.0◦ after the joint estimation.

constraints and to downweight constraints with large residuals, similarly to the
outlier re-weighting scheme described in Section 2.3.5.

The classification and constraint estimation of an idealized surface model
concludes the third and final step of the proposed reconstruction framework
for man-made surfaces. The following chapter will analyze its performance on
various synthetic and real-world data sets.





CHAPTER 7

Empirical evaluation

The previous chapters presented the individual processing steps of the
proposed reconstruction framework. We will now demonstrate its ap-
plication to various types of triangulated point clouds. After a general
demonstration on a small example mesh we analyze the performance
w.r.t. different criteria specified in Section 3.1.4 on synthetically gener-
ated meshes. Later we investigate how well these findings transfer to
real data sets.
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7.1 Demonstration of the complete algorithm

We start with a demonstration of all three processing steps on a visually re-
constructed desktop scene, before analyzing different aspects of the proposed
reconstruction framework. This involves the point cloud reconstruction and
triangulation, DijkstraFPS pre-segmentation and MDL-based HFC refinement
as well as surface classification and constraint parameter estimation.

For this demonstration as well as throughout the remainder of this chapter –
when not otherwise indicated – we use the following setup of control parameters
(Tab. 7.1): The primitive normals with zenith angle of less than tz = 1◦ are
considered being vertical, cones need to have an opening angle of at least tα = 5◦

and radii need to be smaller than tr = 100 times the maximum coordinate range.
The angular tolerance for adjacent parameters is tδ = 1◦. All surfaces types
have a uniform prior, except for freeform surfaces and arbit relations with a
prior which is 100 times smaller: P (freeform) = P (arbit) = 0.01 · P (others).
Furthermore, to obtain more robust results, we usually restrict the set of surface
primitives to the ones actually being present in the given surface structure. In
the following example, which obviously consists of piece-wise planar surfaces, we
only allow for different types of planes.

Table 7.1: Default values for model parameters. When not otherwise indicated, the
control and model parameters of the proposed reconstruction framework are set to
the default values given in this table. The set of surface types is usually specified
depending on the expected surface structure, i.e. planar regions only or with quadrics
or freeform surfaces as well.

Parameter Symbol Default value

Tolerance for zenith distances tz 1◦

Minimum opening angle tα 5◦

Maximum radius tr 100× max. coordinate range
Tolerance for angular deviation tδ 1◦

Surface priors P (sl) ∝
{

0.01 for sl = freeform

1 else

Relation priors P (rk) ∝
{

0.01 for rk = arbit

1 else

Set of surfaces types depending on data set

Fig. 7.1 shows intermediate steps and the final result of the proposed recon-
struction framework for a small desktop scene with five Bricks arranged on
a horizontal turntable. The 3D point cloud with V = 6713 vertices (Fig. 7.1b)
was computed from 72 images using the structure-from-motion system Bundler
(Snavely et al., 2006), the dense patch-based multi-view stereo reconstruction
PMVS2 (Furukawa and Ponce, 2010) and the Poisson surface reconstruction
(Kazhdan et al., 2006) to obtain a triangular mesh. Note that sharp edges tend
to get smoothed due to this specific surface reconstruction.

We assume a coordinate uncertainty of σ = 0.15 % w.r.t. the maximum
coordinate range. As verified at the end of the reconstruction procedure, this
value yields estimated variance coefficients close to one σ̂2

0 ≈ 1 for most surface
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(a) One out of 72 images (b) Reconstructed point cloud

(c) DijkstraFPS pre-segmentation (d) MDL-based HFC segmentation

(e) Classification (f) Constraint parameter estimation

h-plane
v-plane
g-plane
ortho
arbit

Figure 7.1: Reconstruction of the multi-view stereo mesh Bricks with V = 6713
vertices. From 72 images (a) we reconstruct a dense 3D point cloud (b) with a structure-
from-motion approach and a patch-based multi-view stereo reconstruction system. After
deriving a triangulated mesh, we apply the DijkstraFPS pre-segmentation (c) yielding
quite some oversegmentation. The MDL-based HFC refinement merges several pairs of
adjacent regions and slightly moves the segmentation boundaries to better approximate
the object edges (d). The HFC is based on fitting primitives, which are shown as gray
plane segments. A classification (e) and constraint parameter estimation (f) yield the
final surface structure augmented with surface and relation classes as well as accurate
surface parameters.
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regions, thus well represents the noise contained in the data. We apply our Dijk-
straFPS surface segmentation with its automatic stopping criterion as described
in Chapter 4. After obtaining a minimum description length at 74 regions during
the incremental segmentation step, the number of regions is reduced to 43 during
the decremental segmentation step (Fig. 7.1c). The whole process takes about 6.9
seconds. Although all surface parts might be describable with planes, the surface
remains oversegmented and cannot be further simplified within the DijkstraFPS
scheme.

A subsequent segmentation using the MDL-based HFC (Chapter 5) is better
suited at this mid-level reconstruction stage. Its optimization involves coordinate
residuals as well as model complexity and allows to merge adjacent regions and
to diffuse boundary vertices. It yields the intuitive segmentation with 24 regions
and its corresponding surface primitives: 5× 3 = 15 for the cuboids, 4× 2 = 8
for the triangular prisms and 1 for the ground plane (Fig. 7.1d). Due to the
initialization with the DijkstraFPS result, the HFC is performed in 1.1 seconds
only.

The global classification (Section 6.4) yields surfaces and relations depicted in
Fig. 7.1e. While the used max-sum algorithm itself converges after 14 iterations,
the whole classification takes about 2.2 seconds and spends most computing
time for robustly estimating parameters for each region and each possible surface
class. All surface classes are correctly determined, i.e. all regions are classified as
h-plane (5 regions), v-plane (17 regions) or g-plane (2 regions), respectively.
The relations, however, only partly correspond to the intuitive expectation. While
relations between h-plane and v-plane are only allowed to be ortho (Tab. 3.2),
some relations between two v-plane regions – also practically orthogonal – are
classified as arbit, e.g. the blue vertical edge of the left triangular prism or the
ridge edge of the other one. A narrow inspection unveils: Due to smoothed edges
and bumpy faces caused by the initial surface triangulation the segmentation is
not always accurate and the reconstructed cutting angles overly deviate from
90◦.

Many detected relations – up to, e.g., arbit – act as constraints in a final
parameter estimation (Section 6.5). The resulting surface primitives, obtained
after 0.6 seconds and clipped at adjacent primitives, are shown in Fig. 7.1f.
Sometimes erroneous classification results are compensated by the object’s
redundancy as for the long cuboid on the right: While one edge is supposed to
be arbit, the other three right angles enforce the forth one to be 90◦ as well.
In other cases, like for the small cube, only two edges are recognized as ortho,
thus one v-plane is slightly rotated.

After demonstrating the overall procedure on one example data set, we will
focus on more detailed aspects in the following sections. First we will restrict
ourselves to synthetic surface meshes, before applying the proposed framework
to other real-world data sets.

7.2 Experiments with synthetic data

In this section we will investigate the performance of the proposed reconstruc-
tion framework on synthetically generated surface meshes. We take up again
the criteria stated in Section 3.1.4 and analyze them individually in terms of
correctness of the resulting surface structure.
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7.2.1 Accuracy of surface parameters

In this experiment we analyze the accuracy of reconstructed surface parameters.
We use synthetic data in order to be able to compare the estimation with ground
truth information.

We generate two meshes, a sphere and a h-plane, with V = 1000 vertices
each and add synthetic Gaussian noise with increasing variance. After applying
the proposed reconstruction framework we obtain a segmentation, which is
trivial for these examples, and estimated surface parameters. Fig. 7.2 shows the
estimated radius θr and distance to the origin θd, respectively. As indicated by
the shaded 3σ̂ confidence interval, the estimation does not significantly deviate
from the ground truth values at θ̃r = 1 and θ̃d = 1. Furthermore, the empirical
accuracy of, e.g., σ̂θd = 0.01 = 1 % of the radius at a noise level of σ = 30 %
w.r.t. the radius confirms the theoretical expectation, since error propagation for
the distance to the origin θd = 1

V

∑
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σθd =
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Figure 7.2: Reconstruction accuracy of synthetically generated meshes with V = 1000
vertices each and increasing Gaussian noise given relatively w.r.t. to the object radius.
The black curve represents the estimated radius θr (a) and the estimated distance to
the origin θd (b). The shaded area is the 3σ̂ confidence interval using the empirical
variances σ̂2

θr
and σ̂2

θd
, respectively. In both cases the estimation does not significantly

deviate from the true values indicated by the thin horizontal line and confirms the
expected accuracy obtained via error propagation.

We could, of course, analyze the reconstruction for many more types of
surface primitives. We will, however, restrict ourselves to these two examples,
since they confirm our expectations and the results are easily transferable to
other scenarios. In Section 7.3.1 we will perform another accuracy analysis to
verify the results on real data sets.



112 CHAPTER 7. EMPIRICAL EVALUATION

7.2.2 Sensitivity w.r.t. various data properties

The following section investigates the sensitivity of the proposed reconstruction
framework w.r.t. properties of the input data. This involves the presence of noise
and outliers, systematic model violations as well as poor sampling density.

For simplicity we restrict the reconstruction to planar primitives throughout
this section. Furthermore, in order to focus on the segmentation, classification
and parameter estimation, we assume the correct triangulation to be given. This
is usually not the case for real applications, especially in the presence of large
amounts of noise and outliers, as in the following experiments.

7.2.2.1 Noise

In this experiment we want to determine the sensitivity to noise on a small
example data set. All three steps of the reconstruction framework are designed
for noisy surface meshes. At a certain signal-to-noise ratio, however, the recon-
struction will fail.

Fig. 7.3 shows the example mesh used in this experiment. The points are
disturbed with Gaussian noise of increasing variance. The reconstructed surface
structure is indicated by a black wireframe. With 10 % noise w.r.t. the coordinate
range the cube is still correctly reconstructed. Only at a noise level of 12.5 %
the surface model collapses to the topologically impossible configuration of
two arbitrarily related planes, which causes an invalid wireframe rendering in
Fig. 7.3e.

(a) σ = 1 % (b) σ = 2.5 % (c) σ = 5 % (d) σ = 10 % (e) σ = 12.5 %

Figure 7.3: Sensitivity analysis w.r.t. noise on a synthetically generated cube with
V = 1000 vertices and increasing Gaussian noise. The surface structure, shown as
black wireframe, is correctly reconstructed for noise levels up to σ = 10 % w.r.t.
the coordinate range (d), until the reconstruction fails at σ ≥ 12.5 % (e). Despite
the simplicity of this example, it proves robustness of the proposed reconstruction
framework to quite some random noise.

The maximum amount of noise, here 10 %, depends on many factors like
the complexity of the surface structure or the number of vertices V . For, e.g.,
V = 100, the reconstruction fails for σ ≥ 10 %. With V = 10 000 vertices it only
fails at σ ≥ 12.5 %.

Note that the mesh is generated on the original noise-free point cloud. With
10 % or 12.5 % Gaussian noise the surface triangulation would certainly fail.
Although this example is a highly simplified scenario, it clearly demonstrates
robustness to noisy point coordinates.
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7.2.2.2 Outliers

Besides small random noise we need to analyze random outliers and their impact
on the reconstruction process. Therefore, we use the very same synthetic surface
mesh from Fig. 7.3 and perturb it with an increasing amount of outliers, i.e.
points with large deviations, 25 % of the coordinate range in our case (Fig. 7.4).
Only with 20 % outliers the reconstruction yields an oversegmentation of L = 12
regions with a topologically impossible classification and parameter estimation,
best visible as an artefact on the top right edge.

(a) 0 % (b) 5 % (c) 10 % (d) 15 % (e) 20 %

Figure 7.4: Sensitivity analysis w.r.t. outliers on a synthetically generated cube
with V = 1000 vertices, σ = 1 % Gaussian noise w.r.t. the coordinate range and an
increasing percentage of outliers. The outliers are randomly sampled and perturbed by
a shift of 25 % into normal direction. The reconstructed surface model is shown as
black wireframe. With an amount of 15 % outliers the surface structure is still correctly
recognized.

We conclude that the proposed surface reconstruction framework is robust
to small random noise as well as a considerable proportion of outliers. The next
experiment will cover another practically relevant issue, namely surface meshes
that are not exactly describable by the surface model of this thesis.

7.2.2.3 Model violation

In practical applications we often need to deal with meshes that systematically
deviate from the assumption of piece-wise planar or quadratic surfaces. In
this experiment we simulate such a model violation by reconstructing a cube
with round edges. Although the roundness of object edges cannot be efficiently
represented with the proposed model for man-made surface structures, we would
expect the reconstruction to yield a simplified, idealized cubical surface model.

Fig. 7.5 shows the synthetic surface meshes used in this experiment. The cube
with smoothed edges is generated as a generalized sphere with non-Euclidean
norm. Despite the systematical deviation from the model assumption, i.e. the
surface being a compound of piece-wise planar regions, the cube is correctly
reconstructed even when given the mesh of a 4-norm sphere. Only the standard
2-norm sphere yields a different result, which is little surprising considering the
rotationally symmetric shape without any visible edges.

As shown by this experiment, the reconstruction framework is able to over-
come small model violations in favor of a clean reconstruction with a reasonable
trade-off between approximation accuracy and model complexity. Restricting the
reconstruction to planar surface primitives only is, of course, an important hint
for the MDL-based HFC and the subsequent classification. Including a larger
number of primitive types would certainly result in larger reconstruction errors.
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(a) 10-norm (b) 8-norm (c) 6-norm (d) 4-norm (e) 2-norm

Figure 7.5: Sensitivity analysis w.r.t. model violation on a synthetically generated
cube with V = 1000 vertices, σ = 2.5 % Gaussian noise w.r.t. the coordinate range and
increasingly smoothed edges. To achieve different amounts of smoothing, the mesh is
generated as a generalized sphere with non-Euclidean norm. Note that we only allow
planar primitive types in this section. Despite the systematic model violation close to
the region boundaries, the cube is correctly reconstructed. Only when applying the
procedure to a Euclidean sphere (e) the reconstruction with planar primitive types
does not recognize a cube.

We will investigate this effect in Section 7.2.3 and continue with a fourth data
property: the sampling density.

7.2.2.4 Sampling density

An important data property is the density of the given surface sampling. We want
to investigate this aspect empirically, since it can be expected to significantly
effect the reconstruction quality.

We analyze two scenarios: First, we generate and reconstruct a piece-wise
planar surface with increasing undulation frequency but a constant number
of vertices per region (Fig. 7.6a). Second, the undulation is constant and the
number of vertices per region decreases (Fig. 7.6b). The points are sampled using
a mesh generator from Persson and Strang (2004) such that the rectangular
region is covered with exponentially increasing or decreasing point density.

One might expect problems at a high undulation frequency as well as at
low vertex density. The planes covered by very few vertices are indeed not
correctly segmented. Several regions are merged to one large plane, which is
not the expected surface structure. Strong undulations, however, do not cause
any reconstruction problems. Since the triangular structure is given, the large
slope angles do not hinder the segmentation and thus can be reconstructed
correctly. In fact, acute angles even support the segmentation via curvature-
adaptive distance transforms, because region boundaries involve large angles
between vertex normals. In case the triangular mesh is not given, however,
the strong undulation together with limited sampling density would impede
the point cloud triangulation, since most methods require a certain sampling
density. Fig. 7.7 shows the point cloud from Fig. 7.6a triangulated with the
algorithm from Amenta et al. (2000). Especially in areas with strong undulation
the method fails due to the limited point density.

In Section 3.1.2 we introduced the concept of local feature size, the distance
of surface points to the medial axis. The increasing undulation in Fig. 7.6a leads
to a decreasing local feature size lfs→ 0, since the medial axis approaches or even
touches the surface. Consequently, the point cloud is an ǫ-sample with a very
large value ǫ → ∞. Nevertheless, the reconstruction is correct, suggesting an
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(a) Increasing slopes from 20◦ to 70◦, ≈ 16 vertices per region

(b) Constant undulation of 45◦, 58 down to 8 or less vertices per region

Figure 7.6: Sensitivity analysis w.r.t. sampling density on synthetically generated
meshes with σ = 0.1 % Gaussian noise w.r.t. the maximum coordinate range. In the
first experiment (a) the slope of the planes increases from 20◦ to 70◦, while the number
of vertices per plane remains constant. Even with very acute intersection angles the
surface structure is correctly reconstructed. The second experiment (b) preserves a
constant slope, but gradually decreases the sampling density from 58 down to 8 or less
vertices per region. Somewhere in the middle the sampling density gets to low for the
segmentation to succeed, causing the remaining planes to be partly merged.

Figure 7.7: Triangulation of the sparsely sampled surface from Fig. 7.6a with the
algorithm from Amenta et al. (2000). Especially on the right-hand side the sampling
density is to low for a correct triangulation.

independence of the reconstruction procedure w.r.t. the local feature size as well
as the sampling density – given a correct surface triangulation. Triangulation
algorithms, however, depend on densely sampled surfaces; therefore it remains
an important criterion for reconstructing man-made surface structures.

As shown by the experiments in this section, the proposed reconstruction
framework is robust to many defects of the given data. It is especially designed
for noisy point clouds and can handle a considerable proportion of outliers. Small
model violations can be overcome and a reconstruction is possible even with
rather low sampling density, as long as the given triangulation is correct.

7.2.3 Sensitivity w.r.t. model assumptions

The proposed model for man-made surface structures was previously defined
in Section 3.2.1. It contains multiple control parameters to guide the surface
classification. Furthermore, there is the possibility to restrict or to extend the
set of surfaces and relations. In this section we analyze both the sensitivity of
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the reconstruction w.r.t. the setting of the control parameters as well as the
impact of a smaller or larger set of surface classes.

7.2.3.1 Control parameters

The classification in Chapter 6 based on unary and ternary factors depends on
prespecified control parameters to restrict the distribution of certain surface
parameters: tz for the zenith angle of a g-plane or a g-cylinder, tα for
the opening angle of a v-cone, tr for the radius of a sphere, g-cylinder or
v-cylinder and tδ for the contradiction angle between two adjacent surface pa-
rameters. Furthermore, we can specify prior probabilities, e.g. for the freeform
surface class.

Fig. 7.8 demonstrates the sensitivity of the reconstruction process w.r.t. four
of these control parameters. In each experiment we increase the noise σ of a
synthetically generated horizontal disk and observe the possible range of the
respective control parameter, whose minimum or maximum value is found with
a branch-and-bound optimization scheme.

The resulting plots can be interpreted as follows: A horizontal, circular disk
with σ = 1 % Gaussian noise w.r.t. its diameter is recognized as h-plane if the
threshold is tz ≥ 0.12◦. Otherwise the estimated normal vector θn of a g-plane

is too far from the vertical direction w.r.t. the threshold tz, thus yielding a
classification of the horizontal disk as g-plane. Similarly, in order not to be
classified as v-cone or sphere, the opening angle for cones α needs to be
restricted to tα ≥ 2.6◦ and the radii need to be restricted to tr ≤ 325 times the
disk radius. Last but not least we observe the possible range for the prior of
freeform surfaces to be independent of the underlying noise level: A value of
P (freeform) ≤ 48.8 % w.r.t. the priors of all other surface classes yields the
correct reconstruction as h-plane in this example.

Consequently, the default parameters tz = 1◦, tα = 5◦, tr = 100 % and
P (freeform) = 1 % used throughout this chapter (Tab. 7.1), would yield
correct results for σ ≤ 2 % noise w.r.t. the size of a surface primitive, which is
a reasonable assumption for most acquisition methods. Note that the linear or
hyperbolic dependencies between noise σ and minimum or maximum threshold
also depend on surface properties like size and sampling density. They could
also be derived algebraically via statistical error propagation.

7.2.3.2 Set of surface classes

In Tab. 3.1 we defined eight surface classes: three types of planes, four quadrics
and a parameterless freeform surface. As mentioned earlier, this list can be
easily extended with other, possibly application-specific primitives like general
cones, other quadratic surfaces or tori. The list can be restricted to a subset of
primitives as well, e.g. when the surface is known to be piece-wise planar. In
this experiment we investigate, whether additional, unnecessary surface classes
negatively affect the reconstruction.

Fig. 7.9 shows a synthetically generated cube with σ = 5 % Gaussian noise
w.r.t. its edge length. While we only allow the surface classes h-plane and
v-plane in the first experiment, we progressively add more classes in each of
the following experiments. Due to the particularly large noise level, the cubical
surface structure is not correctly recognized if cylinders are among the set of
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Figure 7.8: Sensitivity analysis w.r.t. control parameters on a synthetically generated
disk of circular shape with V = 1000 vertices, radius 1 and increasing Gaussian noise
σ. The shaded areas represent possible values of the respective control parameters for
the disk to be reconstructed correctly as h-plane and not as g-plane (a), v-cone (b),
sphere (c) or freeform surface (d). For a realistic noise assumption of σ ≤ 2 % w.r.t.
the coordinate range, the default values of the control parameters used in this chapter
yield correct results. Small deviations do not affect the reconstruction negatively.
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surface classes. For smaller noise variances σ ≤ 4 %, however, the reconstruction
succeeds throughout all five experiments.

(a) h-plane

+ v-plane

(b) + g-plane (c) + sphere (d) + v-cone

+ v-cylinder

(e) + freeform

+ g-cylinder

Figure 7.9: Sensitivity analysis w.r.t. the set of surface classes on a synthetically
generated cube with V = 1000 vertices and σ = 5 % Gaussian noise w.r.t. to the
coordinate range. In (a) we allow h-plane and v-plane only and add g-plane in
(b), sphere in (c), v-cylinder as well as v-cone in (d) and g-cylinder as well
as freeform in (e). With altogether four classes in (c) the reconstruction is still
correct. Adding the v-cylinder class in (d) causes the four vertical faces to be merged,
which does not comply with the ground truth surface structure. Note that we chose a
particularly large noise level σ; a more accurate mesh with σ ≤ 4 % leads to correct
results.

The obtained results suggest that the set of possible surface classes does not
have to be specifically tailored to the given data set. With reasonable small
noise and the other data requirements met, the reconstruction succeeds. Of
course, here the large angles between the faces support the distinction between
planes and cylinders. In case the regions and their mutual angles would be
smaller, misclassifications would increase. Under difficult conditions it thus can
be advantageous to restrict the model to those surface classes that are actually
present in the data, e.g. if one knows the scene is a suburban area where the
type of buildings does not vary too much.

As shown in this section, the proposed reconstruction is not very sensitive to
model assumptions like the predefined value of control parameters or the given
set of surface classes. Therefore, the default values can be retained unchanged
in most cases. The clear semantics of these model parameters, however, allow
their application-specific tuning.

7.2.4 Computational complexity

After evaluating correctness, accuracy and sensitivity of the reconstruction
framework, we are interested in its computational complexity. Therefore, we
generate synthetic cubes with increasing number of vertices V and measure the
computing times for each major processing step.

The results are presented in Fig. 7.10. In this experiment most time is
spent during DijkstraFPS. For a constant number of regions L, the theoretical
complexity of this step is linearithmic O(V log V ) with the number of vertices V ,
which approximately corresponds to the empirical result.

The classification is the second most expensive processing step, while most
of its computing time is spent for estimating primitives for all L regions and all
S possible surface classes. Building the normal equation matrices depends on
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the number of vertices V , while the inference with the max-sum algorithm only
depends on the surface structure.

The MDL-based HFC segmentation and the final constraint parameter es-
timation use almost constant computing times, since they mainly depend on
the number of regions L. For large meshes, however, the number of possible
diffusion operations of boundary vertices increases, which need to be evaluated
in each HFC iteration. Thus, its computing time grows as well.

For the largest mesh in this experiment with V = 100 000 vertices the
reconstruction took 62.5 seconds for the DijkstraFPS pre-segmentation, 4.1
seconds for the MDL-based HFC refinement, 8.6 seconds for the classification
and 0.1 seconds for the final parameter estimation. Thus, the surface model is
reconstructed in about 75 seconds.
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Figure 7.10: Computing times for synthetically generated cubes with σ = 0.5 %
Gaussian noise w.r.t. the object size and an increasing number of vertices V . The
experiment is carried out with a Matlab implementation on a 64-bit Linux machine
with a 2 × 3.0 GHz CPU and 8 GB RAM. Times for the four major processing
steps DijkstraFPS pre-segmentation, MDL-based HFC refinement, classification and
constraint parameter estimation are stacked from top to bottom. Most computing
time is spent for the pre-segmentation and the classification. Overall we observe a
linearithmic complexity O(V log V ). The largest mesh with V = 100 000 vertices is
reconstructed in 75 seconds.

Since every reconstruction approach involving all V 3D points has at least
linear complexity O(V ), the observed linearithmic complexity O(V log V ) is close
to optimal. A more efficient implementation, especially of Dijkstra’s algorithm
and the local parameter estimation within the surface classification would further
improve the timing results.

The reconstruction of carefully designed synthetic meshes helped us to analyze
specific properties of the proposed reconstruction framework. In real-world
scenarios, however, we often have to deal with the combination of different data
defects. Therefore, the following section will address the reconstruction of real
data sets and investigate how well the previous findings apply.
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7.3 Experiments with real data

Real data sets usually contain a variety of defects that hamper a correct re-
construction. In this section we focus on the reconstruction of real meshed
point clouds captured with different acquisition techniques. We evaluate the
accuracy of the resulting surface model, demonstrate the effect of different model
parameters and present computing times for all experiments on real data sets.

7.3.1 Accuracy analysis on calibration objects

In contrast to the accuracy evaluation in Section 7.2.1 we will analyze the
reconstruction of two real test objects in this section. Both point clouds, a Ball

and a Cone, are captured using a high-precision laser scanning arm. Since
we are interested in the accuracy of estimated surface parameters and not in
the topology of the surface structure, we skip the triangulation as well as the
segmentation and simply label all points as being member of one single region
L = 1. After reconstructing the original point clouds with up to 1 million points,
we repeat the experiment on downsampled point clouds with 10 000 points.

As shown in Tab. 7.2, the radius of the Ball is estimated with an accuracy of
0.14 µm. After downsampling the point cloud by a factor ≈ 100, the accuracy is
1.4 µm, which perfectly conforms to the theoretical variance propagation. Apart
from that, the inlier ratio remains almost constant.

Table 7.2: Reconstruction accuracy of a laser scanned Ball. With the original
point cloud of about 1 million points the radius θr is estimated with an accuracy
of σθr = 0.14 µm. In conformance with theoretical considerations the uncertainty

increases by a factor
√

1 057 824

10 000
≈ 10 when reconstructing a point cloud with only

10 000 randomly selected points. The percentage of inliers remains constant.

Number of points V 1 057 824 10 000
Point uncertainty σ 0.1 mm 0.1 mm

Radius θ̂r 80.104 78 mm 80.106 72 mm
Uncertainty σθr 0.000 14 mm 0.001 38 mm
Variance coefficient σ̂0 1.19 0.93
Inlier ratio 98.26 % 98.28 %

The result for the Cone shown in Tab. 7.3 is similar. The opening angle is
estimated with an accuracy of 0.000 21◦. After downsampling the point cloud by
a factor ≈ 46, the accuracy is about

√
46 = 6.7 times larger, namely 0.001 40◦.

Again, the inlier ratio remains almost constant.
As already discussed in Section 7.2.1, individual surface regions can be

accurately reconstructed. The empirically obtained accuracies conform to the
theoretical derivations. Of course the parameter estimation depends on a correct
segmentation, which we assumed to be given in these two experiments.

Unfortunately, there is no sufficiently accurate ground truth parametrization
available for these calibration objects. Nevertheless, this experiment demon-
strates that we can use the proposed framework to analyze properties of geometric
objects like point residuals w.r.t. to a best fitting geometric primitive and the
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Table 7.3: Reconstruction accuracy of a laser scanned Cone. With the original point
cloud of about 0.46 million points the opening angle α = α(θA) is estimated with
an accuracy of σα = 0.000 21◦. In conformance with theoretical considerations the

uncertainty increases by a factor
√

456 064

10 000
≈ 6.7 when reconstructing a point cloud

with only 10 000 randomly selected points. The percentage of inliers remains almost
constant.

Number of points V 456 064 10 000
Point uncertainty σ 0.1 mm 0.1 mm

Opening angle α̂ = α(θ̂A) 39.983 25◦ 39.986 26◦

Uncertainty σα 0.000 21◦ 0.001 40◦

Variance coefficient σ̂0 0.47 0.47
Inlier ratio 99.90 % 99.85 %

corresponding inlier ratio: While the Ball with full resolution yields point
uncertainties of σ̂ = σ̂0 · σ = 0.12 mm with 1.74 % outliers, the Cone seems to
be more accurately manufactured with σ̂ = σ̂0σ = 0.05 mm and 0.10 % outliers.

7.3.2 Flexibility w.r.t. different acquisition techniques

The goal of this thesis is to provide a reconstruction procedure for man-made
surfaces independent of the acquisition technique used for capturing the input
data. Therefore, this section demonstrates the application to different types
of data sets. This involves two examples of noise-free CAD meshes, two multi-
view stereo reconstructions, a 2.5D surface mesh captured via structured light
projection and two terrestrial laser scans.

7.3.2.1 CAD meshes

Meshes created via computer aided design (CAD) are usually a compound of
noise-free, parametrized surface parts. Strictly speaking they are synthetically
generated, thus should have been addressed earlier in Section 7.2. Since we,
however, did not design them ourselves to fulfill certain requirement but obtained
them from publicly available sources, we classify them as real data sets. We
will discuss two data sets obtained from the AIM@SHAPE Shape Repository
(shapes.aimatshape.net): one rather trivial example called Double Torus

and the popular but more complex surface structure called Fan Disk.
The reconstruction of the simple Double Torus is shown in Fig. 7.11. The

points are completely free of random noise and perfectly sample the planar
surface primitives. Nevertheless, we assume a noise level of σ = 0.1 % w.r.t.
to the maximum coordinate range to avoid divisions by zero when evaluating
description lengths and singular covariance matrices when estimating surface
parameters. The simple surface structure of horizontal and vertical planes is
almost perfectly segmented during the first processing step, the DijkstraFPS
pre-segmentation. Only one oversegmented region on the left-hand side needs to
be merged by the MDL-based HFC refinement. Due to the lack of data noise,
the classification and final parameter estimation is trivial.

Note that the curvy boundaries are caused by the different point semantics
in this data set: As discussed in the context of Fig. 3.2, we assume a point

shapes.aimatshape.net


122 CHAPTER 7. EMPIRICAL EVALUATION

(a) DijkstraFPS pre-segmentation (b) MDL-based HFC segmentation

(c) Classification (d) Constraint parameter estimation

h-plane
v-plane
ortho

Figure 7.11: Reconstruction of the Double Torus CAD data set with V = 2686
vertices. Although the points are free of noise, we assume a noise level of σ = 0.1 % w.r.t.
to the maximum coordinate range to avoid numerical problems. The surface structure
is almost perfectly segmented during the DijkstraFPS pre-segmentation step (a). The
small oversegmentation is removed by the MDL-based HFC refinement (b). Given
the perfect segmentation and the surface structure with planar primitives only, the
final classification and reconstruction is trivial (c, d). Data set from the AIM@SHAPE
Shape Repository (shapes.aimatshape.net).

to correspond to exactly one surface region. In this example, however, some
points lie on the boundary between two adjacent regions. Since the segmentation
boundary passes through triangles and not through vertices, it is curved but
correct.

A more complex example is given in Fig. 7.12. Again, we assume a non-zero
noise level of σ = 0.2 % w.r.t. to the maximum coordinate range. Besides the
suppression of numerical problems, we need to account for small deviations of the
given mesh w.r.t. our model of man-made surface structures: The Fan Disk is a
small section of a larger, rotationally symmetric object. Therefore, the vertically
appearing planes are actually slanted and rounded object edges on top are no
cylinders but tori. Considering these deviations from our model for man-made
surface structures, the reconstruction is entirely satisfactory.

In this example we observe pairs of adjacent surface classes that might be
added to the list of possible combinations in Tab. 3.2: Since the g-plane between
the v-plane and the upper g-cylinder is actually curved due to the rotational
symmetry, it should be reconstructed as sphere with a very large radius θr.
Besides the corresponding threshold tr to be adjusted, we would need to add

shapes.aimatshape.net
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(a) DijkstraFPS pre-segmentation (b) MDL-based HFC segmentation

(c) Classification (d) Constraint parameter estimation

g-cylinder
v-plane
g-plane
ortho
arbit

Figure 7.12: Reconstruction of the Fan Disk CAD data set with V = 25 894 vertices.
To avoid numerical problems and to account for small model deviations we assume a
noise level of σ = 0.2 % w.r.t. the maximum coordinate range. While the DijkstraFPS
pre-segmentation oversegments the curved surface regions due to the curvature-adaptive
distance metric (a), the primitive fitting approach of the MDL-based HFC refinement
yields a reasonable segmentation (b). The final classification and parameter estimation
is adequate given the limited set of surface primitives (c, d). Data set from the
AIM@SHAPE Shape Repository (shapes.aimatshape.net).

arbit relations for cylinders and planes adjacent to a sphere. In this thesis we
will stick to the current set of combinations and leave the extension of Tab. 3.2
up to future work.

Another problem we observe with this data set arises from the direct solutions
for fitting cylinders and cones defined in Appendix A.1. Given a small section
of a large cylinder or cone, the initial solution for a subsequent parameter
estimation is often far off the correct solution, possibly leading to a diverging
estimation process. An alternative solution based on fitting graph surfaces like
in Section 2.1.2.2 might be better suited for such cases. Making use of vertex
normals might as well be a promising approach for initializing surface parameters
more robustly. This is, however, out of scope of this thesis.

Although some weakly curved regions of the Fan Disk example are ap-
proximated by planes, the reconstruction of both CAD models was successful.
Furthermore, the proposed model for man-made surface structures is flexible

shapes.aimatshape.net


124 CHAPTER 7. EMPIRICAL EVALUATION

enough to be adjusted to more complex data sets. We will continue with visually
reconstructed meshes of real objects.

7.3.2.2 Multi-view stereo point clouds

An emerging acquisition technique for reconstructing terrestrial 3D point clouds
is the multi-view stereo approach. In addition to the example in Section 7.1
we will reconstruct two such data sets in this section: While the first one
is a Concrete Block intuitively describable as a piece-wise planar surface
structure, the second one, a decorative Facade, can only be approximated as
such. Both point clouds were derived using the structure-from-motion system
Bundler (Snavely et al., 2006) and the dense patch-based multi-view stereo
reconstruction PMVS2 (Furukawa and Ponce, 2010). The triangular mesh is
generated using the Poisson surface reconstruction from Kazhdan and Hoppe
(2013).

Fig. 7.13 shows the reconstruction of the Concrete Block. We assume
the vertices to be disturbed by random Gaussian noise with σ = 0.3 % standard
deviation w.r.t. the length of the block, which is about 4 mm in reality and
slightly larger than the possible accuracy of a multi-view stereo reconstruction.
After obtaining a clear oversegmentation by the DijkstraFPS pre-segmentation,
the MDL-based HFC correctly refines the segmentation and yields four vertical
and one horizontal regions and eight little hats consisting of four regions each.

The final reconstruction is satisfactory, although the flattened tip of each
hat is missing. This is because the structure-from-motion system Bundler in
combination with the dense point cloud reconstruction PMVS2 creates a number
of holes on top of the point cloud – visible as dark spots in Fig. 7.13b –, which
probably was observed by too few camera views or with too shallow viewing
angles. These holes result in a quite bumpy Poisson surface, misleading the
reconstruction of a more accurate surface structure.

One might argue that the noise σ is overestimated and therefore many details
get lost. When decreasing the noise level, some more detailed object edges are
correctly covered with additional segmentation boundaries. Others are missing,
especially where the sampling density is too small to yield sufficiently sharp
edges. This imbalance results in a topologically unreasonable configuration and
a worthless reconstruction.

The second example for multi-view stereo reconstructions is presented in
Fig. 7.14. Since windows are partly transparent partly reflective, they cause
many artifacts in form of outliers and tails towards the inside of the building. As
argued in Section 3.1.3, methods for interpreting facades based on images and/or
point clouds exist, allowing to detect doors, windows, balconies and similar
structures. Therefore, we preprocess the point cloud by manually removing all
windows and the door before reconstructing the Poisson surface.

For reconstructing the surface structure we use the less restrictive threshold
tz = 5◦ for the zenith angle of planes, since we expect the amount of stucco and
decorative elements to perturb the parameters of vertical planes. Furthermore,
we restrict the reconstruction to planar primitives only, since apparently there
are no relevant quadrics within the given point cloud. Allowing the use of all
eight surface classes would introduce unnecessary ambiguities and topological
inconsistencies.
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(a) One out of 62 images (b) Reconstructed point cloud

(c) DijkstraFPS pre-segmentation (d) MDL-based HFC segmentation

(e) Classification (f) Constraint parameter estimation

h-plane
v-plane
g-plane
ortho
arbit

Figure 7.13: Reconstruction of the multi-view stereo mesh Concrete Block with
V = 108 650 vertices. A noise assumption of σ = 0.3 % w.r.t. to the length of the block
yields the depicted result. Unfortunately, the structure-from-motion reconstruction
yields several holes on top of the point cloud, which causes bumps and dents on and
around the eight little hats (b). Therefore, the segmentation fails to preserve the
horizontal planes on top of each hat (c, d), leading to the reconstruction of eight
pyramids instead of eight frustums (f).
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(a) One out of 144 images (b) Reconstructed point cloud

(c) DijkstraFPS pre-segmentation (d) MDL-based HFC segmentation

(e) Classification (f) Constraint parameter estimation

g-plane
v-plane
ident
arbit
ortho

Figure 7.14: Reconstruction of the multi-view stereo mesh Facade with V = 44 184
vertices. We use a more relaxed threshold tz = 5◦ for the zenith angle of planes as well
as a noise level of σ = 5 cm, which is about 0.1 % of the maximum coordinate range.
Windows were cut out before starting the reconstruction procedure. Some areas are
successfully reconstructed with planes, others do not well correspond to our model of
man-made surface structures. Especially the entrance and the roof edge are to complex
considering the available point density.
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In most areas the resulting surface structure is a reasonable approximation.
Some regions, however, are oversegmented, while others, especially around the
entrance and the roof edge, do not correctly represent the true surface. The
point density of the latter object parts is too small for an accurate reconstruction
within the proposed framework. It is even doubtful that humans are able to
provide a reasonable piece-wise planar reconstruction of the given point cloud,
considering the many holes and ambiguous details.

The data sets presented in this section were in principle successfully recon-
structed. Locally, however, both suffer from too small sampling density w.r.t.
the size of small object parts. While this defect could be easily resolved for the
Concrete Block by capturing additional images, we will not be able to avoid
the problem for the Facade data set: Although additional images will increase
the point density and unveil new object details, these details are usually not
describable with our simple surface model and its limited set of primitive types.

Thus, the proposed reconstruction framework is applicable for levels of detail,
where an efficient description with piece-wise planar or quadric surface regions
is possible. It is not suited to approximate meshes with low point density,
i.e. few points per surface region. In such cases the probability of topological
inconsistencies increases as shown in Fig. 7.6b, which is currently not taken care
of.

7.3.2.3 Structured-light reconstruction

After reconstructing two surface meshes generated with the passive multi-view
stereo approach, this section gives an example for an active depth sensor based
on projecting structured light. We use a recently popularized low-cost sensor,
namely the Microsoft Kinect depth camera. It is based on projecting a known
pattern of infrared light onto the target object and observing the object with an
infrared camera. Camera and projector are embedded in a small camera rig with
a basis of 7.5 cm. For each pixel the disparity and the intersected 3D location
is computed in real-time. After connecting these 3D points according to their
horizontal, vertical and diagonal adjacencies within the image grid, we obtain a
2.5D triangular mesh.

Fig. 7.15 shows the Kinect data set. It represents a small desktop scene
with a ground plane and multiple objects conformable to our assumptions about
man-made objects.

Before starting to reconstruct the surface structure, we preprocess the mesh:
First we remove long triangular edges that occur when the foreground object
partly occludes the background. We cut out the region of interest, select the
largest connected component and restore the vertical direction, in our case
using the horizontal ground surface. In order to suppress discretization effects,
caused by propagating the integer disparities to discrete depth values, we apply
Laplacian smoothing and subsequently a feature preserving two-step smoothing,
both operations being part of the 3D mesh processing software system MeshLab.

As expected for partly curved surfaces, the DijkstraFPS pre-segmentation
oversegments the surface. In the middle, however, the bucket and the ground
surface share a common region. Both deficiencies are corrected by the MDL-
based HCF refinement. Especially for the undersegmented region in the middle,
the diffusion operations pay off, since a correct segmentation cannot be reached
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with merge operations alone. For the classification step we use more relaxed
thresholds for both the zenith angle of planes tz = 5◦ as well as the contradiction
angle tδ = 5◦ between adjacent surface parameters. This causes vertical regions
more likely to be classified as v-plane and adjacent regions more likely to
be ident, like the individual regions on the bucket. Note that the bucket is
actually cone-shaped with a too small opening angle α and therefore classified
as v-cylinder. Furthermore, the rim of the bucket has indeed a larger radius
than the remaining surface; the adjacency of two different v-cylinder surfaces,
however, is not supported by our current model for man-made surfaces.

In this single-view example the captured objects are only partly reconstructed:
Two vertical regions of the large box are not observed and consequently not
contained in the final surface structure. The cylindrical bucket, however, is
sufficiently defined by the region facing the camera. Combining multiple views
via so-called mesh zippering would further stabilize the reconstruction.

This section demonstrated the applicability of the proposed reconstruction
framework to structured-light reconstructions. For the experimental evaluation
we made use of the low-cost Kinect depth camera, which suffers from discretiza-
tion effects and is limited to small indoor scenarios. In the following section we
will use a more elaborate sensor in terms of accuracy, density and applicability.

7.3.2.4 Terrestrial laser scan

The data set used in this section is captured with a terrestrial laser scanner from
multiple view points around a small building. The original point cloud with
4.4 million points is the basis for the reconstructed Poisson surface shown in
Fig. 7.16. Note that a larger reconstruction depth in form of a finer voxel grid
for the Poisson surface reconstruction does not further improve the surface mesh,
since many small details are smoothed away due to unstable vertex normals.
Therefore, we use the mesh with V = 195 154 vertices as an approximation of
the original data points.

To take the rough roofing tiles into account, we use a noise level of σ = 5 cm,
which is significantly larger than the actual precision of the laser scanner. Due to
the large noise level many windows and doors are merged with the surrounding
wall. Three of them are correctly segmented; but their indentation is too small
for a 3D reconstruction with frames being represented by individual regions.
Instead, they are classified as ident to the wall. Introducing a parallel relation
could account for such indented regions. The resulting surface structure would,
however, no longer be a watertight compound of planes.

While a terrestrial laser scanner yields the most accurate points with largest
density, the inconvenient registration of additional view points makes it difficult
to fully capture a surface without occlusions. This causes the largest defect
of the resulting reconstruction: The low viewing positions on street level lead
to large occlusions on top of the roof and behind the dormers. Therefore, we
obtain a bumpy Poisson surface which misleads the segmentation and finally the
determination of the surface structure.

The basic shape of the building and the vertical dormer elements, however,
are correctly reconstructed. With a better sampling on top we would certainly
obtain a topologically consistent, watertight surface model.
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(a) Captured desktop scene

(b) DijkstraFPS pre-segmentation (c) MDL-based HFC segmentation

(d) Classification (e) Constraint parameter estimation
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Figure 7.15: Reconstruction of the Kinect data set with V = 137 487 vertices. We
assume a Gaussian noise of around σ = 2 mm, which is about 0.2 % of the maximum
coordinate range. The oversegmentation obtained with DijkstraFPS (b) is mostly
removed with the MDL-based HFC refinement (c). To suppress unimportant details
like the small inclination of vertical planes and the slightly wider rim of the bucket, we
loosen the thresholds for the zenith angle tz = 5◦ and the contradiction angle tδ = 5◦,
leading to an almost perfect classification (d). One tiny mistake, however, remains in
the final estimation (e): The small rectangular prism is undersegmented, causing it to
be reconstructed as a v-cylinder and not as a compound of three planes.
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(a) Original terrestrial laser scan

(b) DijkstraFPS pre-segmentation (c) MDL-based HFC segmentation

(d) Classification (e) Constraint parameter estimation
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Figure 7.16: Reconstruction of the Building laser scan with V = 195 154 vertices.
Although a terrestrial laser scanner is able to capture points with higher precision,
we choose a noise level of σ = 5 cm, about 0.25 % of the maximum coordinate range,
to account for the roughness of the roofing tiles and other minor elements. Like
with the Facade data set in Fig. 7.14, the doors and windows cannot be completely
reconstructed and might be removed within a preprocessing step. Some of them are
even reconstructed as separate regions based on their indentation. A parallel relation
would be required to avoid them to be merged with the surrounding wall, since the
orthogonal planes of the frames are missing. The poor sampling on top of the roof and
behind the dormers causes a very bumpy Poisson surface and thus prevents the roof to
be reconstructed correctly.
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7.3.2.5 Laser scanning arm

As a final acquisition technique we evaluate a surface mesh captured using a
high-precision Romer Infinite 2.0 measuring arm with a Perceptron ScanWorks
V5 triangulation laser scanner attached. With this setup it is possible to reach a
resolution of about 0.015 mm and 0.045 mm accuracy within a range of 1.4 m
radius.

The object, a small paper house with a footprint of about 12 cm× 9 cm as
previously shown in Fig. 1.1, originally consists of about 600 000 triangulated
3D points. In order to speed up the reconstruction and sensitivity analysis
in the following section, the mesh is downsampled using quadric edge collapse
decimation. This operation, a variant of the approach from Garland and Heckbert
(1997), is contained in the mesh processing software system MeshLab and creates
a simplified mesh with V = 50 854 vertices shown in Fig. 7.17.

To account for small deviations from perfect planes, we choose a point
uncertainty of σ = 0.4 mm. The combined segmentation with DijkstraFPS and
MDL-based HFC yields perfectly segmented surface regions. Subsequently, the
global surface classification yields visually reasonable results. Only two of the
slanted roof edges might be expected being ortho, but are classified as arbit.
The redundancy contained in the surface structure, however, enforces the roof
surfaces to be orthogonal to the front and back wall.

This example illustrates the deficiency of the reconstruction method men-
tioned in Section 6.5: The classification yields a topologically inconsistent con-
figuration. Since front and back wall of the object are parallel, the ortho and
arbit relations with the roof plane contradict each other. Here the orthogonality
constraint simply overrules the arbit relation. In other cases such inconsistencies
can cause significant defects in the final reconstruction.

As demonstrated in this section, the proposed reconstruction framework
is flexible enough to be applied to various kinds of surface meshes. Problems
occurred, where a low sampling density led to inaccurate triangulations or
where the true surface is not describable with our model for man-made surface
structures.

7.3.3 Sensitivity w.r.t. model assumptions

For synthetic meshes we analyzed the sensitivity w.r.t. control parameters and
the set of surface classes in Section 7.2.3. Now we are interested in the effects
on real data sets. Therefore, we reconstruct the Paper House from Fig. 7.17
again, but with different model assumptions.

Fig. 7.18 shows the reconstruction results with six different parameter settings.
Since most control parameters mainly affect the classification, we focus on the
visualization of obtained surface and relation classes. Aside from the default
parameters we try to use a smaller noise level σ, a smaller parameter tz controlling
the zenith distance of normal vectors, a larger tolerance tδ for the difference
between adjacent parameter vectors, a larger prior probability for arbitrarily
related surfaces P (arbit) as well as reconstructing the surface with all primitive
types instead of only planes.
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(a) Captured object (b) 3D point cloud

(c) DijkstraFPS pre-segmentation (d) MDL-based HFC segmentation

(e) Classification (f) Constraint parameter estimation
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Figure 7.17: Reconstruction of the Paper House laser scan with V = 50 854 vertices
and an assumed point uncertainty of σ = 0.4 mm. The DijkstraFPS pre-segmentation
yields an almost perfect segmentation with only the ground plane being split into
two regions (c). This defect is corrected by the MDL-based HFC refinement (d).
Apparently the object is not built accurately enough such that all four slanted roof
edges are classified as being ortho; two of them seem to be arbit (e). But for all
other surfaces and relations the classification is visually correct and the redundancy
leads to orthogonalities at the two mentioned arbit relations as well (f).
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(a) default (b) σ = 0.1 % (c) tz = 0.2◦

(d) tδ = 10◦ (e) P (arbit) = 100 % (f) All primitive types

h-plane
v-plane
g-plane
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Figure 7.18: Sensitivity analysis with the Paper House laser scan. The surface
mesh from Fig. 7.17 is reconstructed with different model parameters: Compared to
the default parameters σ = 0.2 %, tz = 1◦, tδ = 1◦ and P (arbit) = 1 % with planar
primitives only (a), we decrease the noise level σ (b), decrease the zenith angle tolerance
tz (c), increase the tolerance tδ for angular deviations between adjacent parameter
vectors (d), increase the prior probability P (arbit) for arbitrarily related surfaces (e)
and reconstruct the surface with all eight primitive types. We can conclude from this
experiment that adjusting the control parameters reasonably affects the level of detail
and the amount of simplification of the resulting surface model.

Noise level σ. The assumed noise level σ controls the level of detail of the
resulting reconstruction. A value of σ = 0.1 %, half as much as in Fig. 7.17,
yields many surface parts being split into multiple regions, some of them later
being classified as ident (Fig. 7.18b). This reconstruction is reasonable for such
a low noise assumption, since the object parts built from paper are not perfectly
planar. Thus, the noise level σ is a useful parameter to control the level of detail
of the reconstructed surface model.

Threshold on the zenith distance tz. The parameter tz controls the devia-
tion of a normal vector’s zenith distance from the vertical or horizontal direction.
Allowing a g-plane to have zenith distances of tz = 0.2◦ or smaller leads to all
planes being classified as g-plane rather than h-plane or v-plane (Fig. 7.18c).
Note that identified ortho relations amplify this effect: If the ground plane is
slightly slanted with large probability and it is ortho to a vertical wall, then
the wall will certainly not be classified as v-plane. Apparently the threshold
tz is an important parameter for controlling the amount of simplification of the
idealized surface model.

Threshold on the difference between adjacent parameters tδ. Con-
straints between two adjacent parameters are either formulated as equality,
orthogonality or parallelism. The angular deviation from this relation is con-



134 CHAPTER 7. EMPIRICAL EVALUATION

trolled by the parameter tδ. Increasing the value to tδ = 10◦ not only yields
the previously missing ortho relations at the slanted roof edges, but an ortho

ridge as well (Fig. 7.18d). As shown in Fig. 1.1c, the ridge angle of 96.2◦ actually
deviates from a right angle significantly. Thus, the parameter tδ yields another
possibility to control the simplification of the idealized model compared to the
real, data-driven model.

Prior probability for arbitrarily related surfaces P (arbit). In order to
use restrictive relations like ortho or ident in favor of non-restrictive arbit

relations, we usually use a smaller prior probability P (arbit). If not doing so,
as in Fig. 7.18e, the ortho relation is less likely to occur in the final surface
structure. On the left side of the object the relation between ground plane and
vertical wall seems to support the v-plane classification of the wall with default
parameters, since it becomes a g-plane when setting equal prior probabilities
for all relations. Thus, the prior probabilities affect the reconstruction as well
and might be particularly useful if learned from training data sets.

Set of primitive types. Last but not least, we modify the set of surface
primitives that can be used for the surface model reconstruction. While it
is favorable to restrict this set to expected primitives, in some cases such an
expectation might not be available. When including quadrics and parameterless
freeform surfaces for reconstructing the piece-wise planar Paper House,
one part of the roof is classified as freeform surface (Fig. 7.18e). Within
the specified noise and model assumption, this is supposedly the most likely
configuration of surface and relation classes. This reconstruction is indeed correct
and complies with the declared assumption that freeform surfaces are present
in the data.

As shown in this section, the different adjustable parameters of the proposed
model for man-made surface structures allow to control both the level of detail as
well as the amount of simplification during the reconstruction procedure. Most
parameters affect the classification and therefore the idealized surface model
only. The noise assumption σ, however, has impact on all three major processing
steps.

7.3.4 Computational complexity

In Section 7.2.4 we analyzed the computing times for four major processing steps:
the DijkstraFPS pre-segmentation, the MDL-based HFC refinement, the global
surface classification as well as the constraint parameter estimation. Clearly
most of the time was spent for the pre-segmentation. In the following we will
investigate, how well these findings transfer to real data sets.

Tab. 7.4 lists the computing times for all data sets processed throughout
Sections 7.1 and 7.3. Some data sets like Bricks and Paper House indeed
yield the same time pattern. Others, however, like Facade and Building take
nearly as much time for the MDL-based HFC refinement as for the DijkstraFPS
pre-segmentation. For the Fan Disk data set the refinement takes even four
times as long. The effect is caused if the surface does not fully comply with
the model for man-made surfaces, is heavily disturbed by noise and outliers
or contains bad sampling and holes. Then the pre-segmentation might fail to
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yield a correct and complete segmentation, causing significantly more iterations
for the HFC refinement to converge. Especially the boundary vertex diffusion
is expensive for moving boundaries over large distances to replace a missing
boundary from the pre-segmentation. With the Fan Disk data set there is
the additional problem of very flat quadrics, for which the initializations in
Appendix A.1 yield unstable results. This further slows down the convergence
or even causes oscillations.

Table 7.4: Computing times for all real data sets from Sections 7.1 and 7.3. The
numbers indicate minutes and seconds required for each of the four major process-
ing steps: DijkstraFPS pre-segmentation, MDL-based HFC refinement, classification
and constraint parameter estimation. The computation is performed with a Matlab
implementation on a 64-bit Linux machine with a 2× 3.0 GHz CPU and 8 GB RAM.

Data set Fig. V FPS HFC Class. Est. Total

Bricks 7.1 6 713 0:06.9 0:01.1 0:02.2 0:00.6 0:10.8
D. Torus 7.11 2 686 0:01.7 0:01.2 0:00.7 0:00.1 0:03.7
Fan Disk 7.12 25 894 0:33.8 2:00.3 0:08.0 0:00.5 2:42.6
C. Block 7.13 108 650 2:59.3 0:44.0 0:15.2 0:00.2 5:58.7
Facade 7.14 44 184 1:06.8 0:53.7 0:05.6 0:00.5 2:06.6
Kinect 7.15 137 487 3:09.7 1:16.3 0:33.5 0:00.1 4:59.6
Building 7.16 195 154 5:44.3 5:18.3 0:31.3 0:00.2 11:34.1
P. House 7.17 50 854 2:00.3 0:08.5 0:06.3 0:00.1 2:15.2

Aside from a slower convergence of the HFC refinement we observe larger
computing times for the surface classification. This processing step involves the
local parameter estimation for each surface region. Therefore, it depends on the
number of vertices V , the number of regions L as well as the number of surface
and relation classes S and R.

The total computing time of several minutes for data sets with up to V ≈
200 000 vertices is satisfactory. Nevertheless, the current implementation –
especially of the first processing steps DijkstraFPS and MDL-based HFC – does
hold potential for improvements. The use of parallel computing hardware like
graphics processing units might be a promising approach to speed up both
segmentation algorithms.

This concludes the experimental evaluation on real data sets. Most findings
from the previous section are confirmed. Some data artefacts, however, as they
only appear with real triangulations of complex surfaces, lead to unexpected
results and increased computing times.

For many real-world data sets the point uncertainty σ needed to be chosen
significantly larger than the sensor noise in order to take into account the object
noise. The latter involves all deviations from geometrical primitives that we are
not able or not willing to reconstruct. The reconstructable level of detail depends
on the point density – or more specifically: on the number of points per surface
region. Underestimating the noise and thus increasing the level of detail not
only causes problems at poorly sampled areas. Often it affects surrounding, well
sampled regions as well. Therefore, we need to choose a rather large uncertainty
σ for data sets that do not fully comply with our model for man-made surface
structures.



136 CHAPTER 7. EMPIRICAL EVALUATION

This chapter demonstrated the proposed reconstruction framework on various
types of data sets and analyzed the performance w.r.t. prespecified criteria on
both synthetic and real surface meshes. We conclude this thesis with a summary
and an outlook on future work.



CHAPTER 8

Conclusion

This work proposed a reconstruction framework for man-made surfaces.
Industrial production control and building reconstruction for 3D city
models are possible application areas.
Given a noisy triangulated point cloud, the reconstruction procedure
determines the underlying 3D structure. This includes a partitioning
into planar, quadratic and freeform regions. The proposed two-step
segmentation approach is free of control parameters and mainly data-
driven based on the MDL model selection strategy. To infer the most
probable configuration of watertightly connected surface types and inter-
regional relations, we represent the preliminary surface structure as
graphical model. We incorporate data-driven likelihood factors as well as
model-driven parameter distributions and prior probabilities. Constraints
induced by the global classification guide a final estimation procedure to
obtain an accurate surface parametrization.

8.1 Summary . . . . . . . . . . . . . . . . . . . . . 137
8.2 Outlook . . . . . . . . . . . . . . . . . . . . . . 139

8.1 Summary

Goal of this thesis was to reconstruct surface structures of man-made objects
given a triangulated point cloud with a corresponding uncertainty information.
In the following we will summarize the proposed surface model, the proposed
reconstruction framework as well as the experimental evaluation.

The proposed framework is designed for reconstructing man-made surfaces.
These are defined as a compound of geometric primitives. We introduced eight
possible primitives: three types of planes, four quadrics and a non-parametric
freeform surface. Furthermore, we defined five inter-regional relations with
corresponding constraints on the two adjacent surface parametrizations. These
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constraints guide the surface classification as well as the subsequent parameter
estimation.

The reconstruction procedure consists of three processing steps. DijkstraFPS
(Chapter 4), a data-driven low-level pre-segmentation based on farthest point
sampling and a curvature-adaptive distance transform with Dijkstra’s algorithm,
yields a fast segmentation into planar regions. Using an incremental-decremental
strategy we obtain robust results even on noisy surface meshes. Given an estimate
of the underlying data noise, the algorithm automatically stops at an optimal
number of regions without the need for any control parameters.

The pre-segmentation is refined within a mid-level hierarchical face clustering
(HFC, Chapter 5) based on the MDL model selection strategy. It considers dif-
ferent types of primitives, which are fitted into the data points. By hierarchically
merging adjacent regions the overall description length is minimized. Thus, it
yields an optimal trade-off between approximation error and model complexity
according to an assumed point uncertainty. Additionally we introduced a diffu-
sion operation for relabeling boundary vertices, which significantly improves the
resulting segmentation boundaries.

Finally, a global classification using a graphical model representation yields
the most probable configuration of surfaces and inter-surface relations (Chapter 6).
The latter induce constraints on a joint parameter estimation. This model-driven
high-level processing step consistently combines the data points with model
knowledge about man-made surfaces: Factors of the graphical model involve
the likelihood, knowledge about surface parameter distributions as well as prior
probabilities of surface and relation classes. It leads to a simplification of the
real, data-driven surface model towards an ideal parametrization in accordance
with the classification result.

We analyzed the performance of the proposed reconstruction method based
on several previously defined evaluation criteria in Chapter 7. Besides correctness
and accuracy of the surface structure we demanded insensibility w.r.t. noise
and outliers, clear semantics of involved control parameters, a reasonable com-
putational complexity and flexibility w.r.t. different acquisition methods and
scenarios. While most quantitative evaluations were performed on synthetically
generated meshes, we processed several real data sets of different type and scope
as well. We achieved the following results:

• The experiments showed that our reconstruction method succeeds with
up to 10 % Gaussian noise w.r.t. the size of each primitive, 15 % outliers
and with surfaces violating the assumed model to a certain extend. The
obtained accuracies correspond to the theoretical expectations.

• Sampling density in terms of local feature size is essential for most trian-
gulation algorithms, which are required for preprocessing unordered point
clouds, but turned out to play a secondary role for reconstructing the
surface structure.

• The effect of control parameters is semantically clear and reflects the
results obtained via statistical error propagation. For realistic amounts of
Gaussian noise the reconstruction is insensitive w.r.t. extending the set of
surface classes. For complex meshes, however, it is advisable to match the
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possible classes to the ones expected to be present in the respective data
set.

• The computational complexity is linearithmic O(V log V ) with V being the
number of vertices. For meshes that do not well comply with the model for
man-made surfaces, the DijkstraFPS pre-segmentation might yield poor
results with some missing region boundaries, which is corrected via vertex
diffusion within the MDL-based HFC refinement. This extra effort can
drastically slow down the convergence or cause oscillations.

• Experiments on popular CAD meshes, terrestrial multi-view stereo recon-
structions, structured-light reconstructions of a small desktop scene as well
as terrestrial and desktop laser scans demonstrate the flexibility of the
proposed approach w.r.t. different acquisition techniques. Difficulties occur
where the topology is not clearly defined by the given triangulation, e.g.
due to very sparse sampling, blurred object edges and large proportions of
non-parametric freeform surface regions.

Thus, the proposed reconstruction framework is an accurate, robust and
computationally tractable approach to determine an underlying surface structure
from triangulated point clouds of man-made objects. Nevertheless, there is
potential for improvement, which we will briefly outline in the following section.

8.2 Outlook

Although the proposed method shows promising results throughout our experi-
ments, several aspects give rise for future work. After collecting minor, rather
trivial suggestions for improvement, we add more profound initiations for further
research.

The list of surfaces and inter-surface relations proposed in this thesis is rather
limited. It can be easily extended with additional primitive types like other
types of quadrics or tori. Additional combinations of adjacent surfaces and their
corresponding relation are possible as well and are to be chosen depending on the
respective application. Common relations not yet defined within this work might
be a plane tangent to a cylinder or a sphere touching the ground plane. When
giving up the requirement of adjacent regions to be watertightly connected, one
might introduce parallel related planes, e.g. for indented facade elements.

The defined primitive types require direct solutions for determining initial
parameters as well as a functional model for a possibly iterative parameter
estimation. The direct solutions for cylinders and cones yield unstable results for
flat surface regions representing small sections of the rotational primitive. An
alternative solution based on determining a graph surface within a local tangent
coordinate system might be used in such cases.

For all experiments on real data we manually specified the noise level to
control the level of detail depending on the expected coordinate accuracy. This
control parameter could be automatically determined from the given point cloud
by robustly estimating the average residual w.r.t. local tangent planes.

The computational complexity is shown to be linearithmic O(V log V ) with
the number of data points V , but could be further reduced using more efficient
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implementations for the individual reconstruction steps. There are, e.g., fast and
even parallel versions of distance transforms, which would significantly speed up
the pre-segmentation process. Incremental parameter updates could accelerate
the merge and diffusion operations during the hierarchical face clustering (HFC).
Last but not least, large meshes could be split into multiple blocks to reduce the
required computing time and memory consumption. For the application of city
models this could be guided by a prior large-scale building detection.

So far we assumed a surface mesh to be given. Alternatively, we generated
the triangulation ourselves with common algorithms within a preprocessing step.
A more advanced approach might be to integrate the triangulation with the de-
termination of the surface structure. For, e.g., the Poisson surface reconstruction
one might keep a correspondence between original 3D points and the resulting
mesh vertices. While the segmentation is performed on the triangular mesh,
which only approximates the original points, the classification and estimation
could incorporate the original points.

For the relatively small data sets with up to V ≈ 200 000 data points used in
this thesis we specified all control parameters based on manual inspections of the
given surface mesh and knowledge about the acquired object. For reconstructing
many large data sets of similar type, e.g. in the field of 3D city models, one might
learn these parameters from annotated data. Existing city models could serve as
training data and newly captured test areas were automatically reconstructed.

Another approach to improve the applicability is to combine the proposed
framework with higher-level application-specific semantics, like door and window
detection or grammars for roof structures. The detection of repetitive structures
and verifying the topological consistency of detected inter-regional constrains
would further stabilize the result.

Altogether, the proposed reconstruction framework is a powerful strategy
for recognizing geometric structures in 3D point clouds of man-made surfaces.
Several aspects like improving computing time and scalability as well as extending
the provided surface model reveal potential for future research.



APPENDIXA

Gauss-Helmert model for estimating surface primitives

In Tab. 3.1 we defined eight types of surface primitives that are used for
fitting primitives in Chapters 5 and 6. This appendix collects relevant for-
mulas for deriving primitive parameters given a set of 3D points. First it
presents direct solutions for approximate initializations. Furthermore, it
yields the derivatives of the functional model, i.e. the incidence constraint
between points and surface, w.r.t. observations and unknown parameters
used for iteratively updating the estimation within a Gauss-Helmert
model.

A.1 Initialization . . . . . . . . . . . . . . . . . . . . 141

A.2 Derivatives of the functional model . . . . . . . . . . . 143

A.1 Initialization

This section lists direct solutions for each primitive in Tab. 3.1. The solutions
are either based on a singular value decomposition (SVD)

UDV
T SVD

= M (A.1)

yielding a matrix

V =






v1,1 v1,2 · · ·
v2,1 v2,2 · · ·
...

...
. . .




 (A.2)

or based on the Moore-Penrose pseudoinverse

M
+ = (MT

M)−1
M

T (A.3)
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using a matrix M with one row per vertex v = 1, . . . , V :

M =













mT

1

mT

2
...

mT

v
...

mT

V













. (A.4)

Horizontal plane

θ =
1

V

∑

v

Xv,z (A.5)

Vertical plane

mT

v =
[
Xv,x Xv,y 1

]
(A.6)

UDV
T SVD

= M (A.7)

θ =
1√

v1,3 + v2,3





v1,3
v2,3
v3,3



 (A.8)

General plane

mT

v =
[
Xv,x Xv,y Xv,z 1

]
(A.9)

UDV
T SVD

= M (A.10)

θ =
1√

v1,4 + v2,4 + v3,4







v1,4
v2,4
v3,4
v4,4







(A.11)

Vertical cylinder

mT

v =
[

−2Xv,x −2Xv,y 1
√

X2
v,x +X2

v,y +X2
v,z

]

(A.12)

UDV
T SVD

= M (A.13)

θ =
1

v4,4






v1,4
v2,4√

v21,4 + v22,4 − v3,4




 (A.14)
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General cylinder

As a direct solution for the g-cylinder we use the minimal five-point solution
from Beder and Förstner (2006). The authors formulate algebraic constraints
on the general quadric and obtain sixth order polynomials, which are solved
using 2D-Bernstein polynomials. The interested reader is referred to the original
publication for further details.

Vertical cone

mT

v =
[
X2

v,z 2Xv,x 2Xv,y 2Xv,z −1
]

(A.15)

bv =
√

X2
v,x +X2

v,y (A.16)

q = M
+b (A.17)

θ =







q2
q3

−q4/q1
q1







if q1 > 0 and q22 + q23 − q5 > 0 (A.18)

Sphere

mT

v =
[

−2Xv,x −2Xv,y −2Xv,z 1
√

X2
v,x +X2

v,y +X2
v,z

]

(A.19)

UDV
T SVD

= M (A.20)

θ =
1

v5,5








v1,5
v2,5
v3,5√

v21,5 + v22,5 + v23,5 − v4,5








(A.21)

Freeform primitive

The parameterless freeform surface does not require any initialization.

A.2 Derivatives of the functional model

In order to use a Gauss-Helmert model to find parameters θ that minimize
the sum of squared distances to all points {Xv} with v = 1, . . . , V , we need
derivatives of the functional model g(y,p) = 0 w.r.t. unknown parameters p = θ

A =
∂g(y,p)

∂p
=













aT

1

aT

2
...
aT

v
...

aT

V













(A.22)
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and w.r.t. observed point coordinates y = [Xv]

B
T =

∂g(y,p)

∂y
=














bT1
bT2

. . .

bTv
. . .

bTV














. (A.23)

In the following we will collect these derivatives for each type of surface primitive
relevant to this thesis (Tab. 3.1). For a more compact representation we introduce

∆Xv = Xv − θc (A.24)

as the coordinate differences between an observed point Xv and the primitive
center θc as well as the 3D and 2D radii rv and rv′ , respectively:

rv =
√

∆Xv,x +∆Xv,y +∆Xv,z , (A.25)

r′v =
√

∆Xv,x +∆Xv,y . (A.26)

Horizontal plane

av = −1 (A.27)

bTv =
[
0 0 1

]
(A.28)

Vertical plane

aT

v =
[
Xv,x Xv,y −1

]
(A.29)

bTv =
[
θnx

θny
0
]

(A.30)

General plane

aT

v =
[
Xv,x Xv,y Xv,z −1

]
(A.31)

bTv =
[
θnx

θny
θnz

0
]

(A.32)

Vertical cylinder

aT
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[
−∆Xv,x

r′v

−∆Xv,y

r′v
−1
]

(A.33)

bTv =
[
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r′v

∆Xv,y

r′v

]

(A.34)
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General cylinder
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|θLh ||θLh
×Xv+θL0 | −

|θLh
×Xv+θL0 |
∣

∣

∣
θ3

Lh

∣

∣

∣

θLh

θLh
×Xv+θL0

|θLh ||θLh
×Xv+θL0 |
−1








T

(A.35)

bTv =

(
(θLh

×Xv + θL0
)× θLh

|θLh
||θLh

×Xv + θL0
|

)T

(A.36)

Vertical cone

aT
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1√

θA + 1

[
∆Xv,x

rv

∆Xv,y

rv
sgn (∆Xv,z)

√
θA

√
θA|∆Xv,z|−r′v

2(θA+1) − |∆Xv,z|
2
√
θA

]

(A.37)

bTv =
1√

θA + 1

[
∆Xv,x

r′v

∆Xv,y

r′v
sgn (−∆Xv,z)

√
θA
]

(A.38)

Sphere

aT

v = − 1

rv

[
∆Xv,x ∆Xv,y ∆Xv,z rv

]
(A.39)

bTv =
1

rv

[
∆Xv,x ∆Xv,y ∆Xv,z

]
(A.40)

Freeform primitive

The derivatives of the parameterless freeform surface are empty matrices.
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reconstruction using a structural description based on a formal grammar. In
XXIst ISPRS Congress Technical Commission III. 20

Minka, T. P. (2001). A family of algorithms for approximate Bayesian inference.
Ph. D. thesis, Department of Electrical Engineering and Computer Science,
Massechusetts Institute of Technology. 94, 98

Moenning, C. and N. A. Dodgson (2003a). Fast marching farthest point sampling.
In Eurographics. 16, 64, 66

Moenning, C. and N. A. Dodgson (2003b, May). Fast marching farthest point
sampling for point clouds and implicit surfaces. Technical Report 565, Univer-
sity of Camebridge, Computer Laboratory. 16, 64, 66

Müller, P., G. Zeng, P. Wonka, and L. V. Gool (2007, July). Image-based
procedural modeling of facades. ACM Transactions on Graphics 26 (3), 85:1–
85:10. 55

Ohtake, Y., A. Belyaev, and A. Pasko (2001). Dynamic meshes for accurate
polygonization of implicit surfaces with sharp features. In Proceedings Inter-
national Conference on Shape Modeling and Applications, pp. 74–81. IEEE
Computer Society. 29

O’Rourke, J., H. Booth, and R. Washington (1987, August). Connect-the-dots:
A new heuristic. Computer Vision, Graphics, and Image Processing 39 (2),
258–266. 27

Page, D. L. (2003, May). Part Decomposition of 3D Surfaces. Ph. D. thesis, The
University of Tennessee, Knoxville. 19

Page, D. L., A. F. Koschan, and M. A. Abidi (2003, June). Perception-based
3d triangle mesh segmentation using fast marching watersheds. In IEEE
Conference on Computer Vision and Pattern Recognition, pp. 27–32. 19

Pan, H.-P. (1994, April). Two-level global optimization for image segmentation.
ISPRS Journal of Photogrammetry and Remote Sensing 49 (2), 21–32. 85

Pan, H.-P. and W. Förstner (1994). Generalization of linear patterns based on
mdl criterion. Technical report, Institute of Photogrammetry, University of
Bonn. 17



BIBLIOGRAPHY 161

Pan, Q., G. Reitmayr, and T. Drummond (2009, September). Proforma: Prob-
abilistic feature-based on-line rapid model acquisition. In British Machine
Vision Conference. 28

Pearl, J. (1982). Reverend bayes on inference engines: A distributed hierarchical
approach. In Proceedings of the American Association of Artificial Intelligence
National Conference on AI. 45

Persson, P.-O. and G. Strang (2004, June). A simple mesh generator in matlab.
SIAM Review 46 (2), 329–345. 114

Peternell, M. and T. Steiner (2004). Reconstruction of piecewise planar objects
from point clouds. Computer-Aided Design 36 (4), 333–342. 21
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