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Abstract

Hair is a relevant characteristic of virtual characters, therefore the modeling
of plausible facial hair and hairstyles is an essential step in the generation
of computer generated (CG) avatars. However, the inherent geometric com-
plexity of hair together with the huge number of filaments of an average
human head make the task of modeling hairstyles a very challenging one. To
date this is commonly a manual process which requires artist skills or very
specialized and costly acquisition software.

In this work we present an image-based approach to model facial hair
(beard and eyebrows) and (head) hairstyles. Since facial hair is usually
much shorter than the average head hair two different methods are pre-
sented, adapted to the characteristics of the hair to be modeled. Facial hair
is modeled using data extracted from facial texture images and missing infor-
mation is inferred by means of a database-driven prior model. Our hairstyle
reconstruction technique employs images of the hair to be modeled taken
with a thermal camera. The major advantage of our thermal image-based
method over conventional image-based techniques lies on the fact that dur-
ing data capture the hairstyle is “lit from the inside”: the thermal camera
captures heat irradiated by the head and actively re-emitted by the hair fil-
aments almost isotropically. Following this approach we can avoid several
issues of conventional image-based techniques, like shadowing or anisotropy
in reflectance.

The presented technique requires minimal user interaction and a simple
acquisition setup. Several challenging examples demonstrate the potential of

the proposed approach.
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Introduction

Over the last years we have seen how the computing power of graphic work-
stations have increased considerably. These improvements in hardware have
made possible the generation of every time more realistic computer-generated
(CG) environments to the point that sometimes is really hard to discern
whether a displayed content is computer generated or not. Because of the
influence of hair in the overall appearance of virtual avatars, hair model-
ing plays a very relevant role during generation of computer-generated (CG)
humans.

Hair modeling is, nevertheless, a very challenging task. During our life
we see thousands of different real hairstyles and our brain can recognize
them quite well, hence “fooling” it with CG hair is not that easy. On the
other hand, a typical hairstyle has over 100000 filaments, long and thin struc-
tures with complicated photometric and geometric properties. Moreover, the
complex way the filaments interact with each other and with the exterior en-

vironment has a direct impact in the hairstyle’s final appearance and makes
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the modeling task even more difficult. Therefore the development of efficient
approaches to model human hair is still necessary, despite the advances in
graphic hardware.

In this work an approach for modeling facial hair (beards and eyebrows)
and (head) hairstyles is presented. Our approach is image-based, meaning
that the resultant hair geometry is generated using as input information
collected from images. Following this approach the user interaction in the
modeling pipeline is minimized and the results can be directly validated
against the input data. The information required to model facial hair is
extracted from facial texture images [PKAT09] (Figure 1.1) and improved
with a database-driven prior model. The output of this approach is a set
of hair filaments, represented by interconnected rigid segments, reproducing

the modeled facial hair.

Figure 1.1: Facial texture images used as input in our facial hair generation
technique.

The input of the hairstyle modeling pipeline is a set of images taken with a

thermographic camera. A thermographic —or infrared— camera is a capturing
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device that detects radiation in the infrared range of the electromagnetic
spectrum (0.75 pum—14 um) and forms an image —also called thermogram-—
from that radiation. Using a thermographic camera we are able to measure
the heat —in form of electromagnetic radiation— emitted by the human head
and actively re-emitted in a diffuse way by the hair filaments, thus bypassing
common problems of conventional image-based reconstruction approaches,
like shadowing or directional highlights (Figure 1.2). The resultant hair
geometry is represented by a set of geometric curves resembling the shape of

the reconstructed filaments.

Figure 1.2: Comparison between conventional and thermal, color coded images.

1.1 Properties of Human Hair

Hair is a filamentous appendage that grows from large cavities called follicles
located in the dermis. It is primarily composed of protein, mainly keratin,
and grows in humans over a large percentage of the body surface. Hair is
characteristic of all mammals and provides protective, sensory and sexual

attractiveness function.
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Figure 1.3: Left: Hair filament seen through a scanning electron microscope.
Source: University College Cork, Ireland. Right: Cross section of a hair fiber.

Hair filaments are composed of three concentric structures (Figure 1.3).
The outermost layer is the cuticle, a thick protective covering made up of 6 to
8 layers of flat overlapping structures like tiles on a roof. The cuticle surround
the cortex, which accounts for 90% of the filament’s weight. This structure
is responsible for the physical properties —shape, curliness, elasticty— of hair.
Moreover, cortical cells contains melanin, the pigment responsible for the
color of the hair. Surrounded by the cortex and located near the center of
the fiber is the medulla, composed by loosely connected keratinized cells.

The diameter of human hair filaments varies from 50 wm to 100 um.

Regardless of location, hair fibers grow in a cyclical manner consisting in
three distinct phases: anagen phase (growing stage) which lasts from two to
six years, catagen phase (transition stage) lasting only 1-2 weeks and telogen
phase (resting stage) which lasts for 5 to 6 weeks [Rob02]. The shape of
the follicle where the filament grows determines the shape of the cortex,
and the shape of the cortex is related to the curliness of the hair fiber.
Straight filaments have a rather round cross section whereas wavy or curly
hair have generally an oval or irregular cross section. According to its degree
of curliness (or curl pattern), hair can be classified as straight, wavy, curly
or kinky (Figure 1.4).


http://www.ucc.ie/en/emf/gallery/
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Figure 1.4: Hairstyles with different degree of curliness. From left to right, top
to bottom: straight, wavy, curly and kinky hair.

1.2 Related Work

1.2.1 Image-Based Modeling

Three-dimensional (3D) reconstruction is an area in computer graphics and

computer vision that deals with the computation of shape and appearance of
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real world objects. Approaches for 3D reconstruction usually rely on physical
techniques like laser scanners or structured light to collect data and generate a
usable geometrical model [BR02, GAVN11, FE08, PKAT09]. Although quite
accurate, such reconstruction techniques have limitations: color information
must be provided by an extra capturing device. Moreover, such devices
cannot capture the shape of hair due to its reflection properties.
Image-based Modelling is a passive 3D modelling approach in which the
object’s shape is reconstructed using information extracted from multiple
images [HZ04]. An image is essentially the projection of a 3D scene onto
a 2D plane and during reconstruction the the spatial location of all objects
in the scene is computed. This computation is accomplished in such a way
that the projection of the reconstructed objects conforms with the original

images.

1.2.2 Thermal Imaging

According to the Black Body Radiation Law all objects with temperature
above absolute zero emit infrared radiation. The amount of radiation emitted
by a body increases with its temperature, therefore thermal cameras can be
used to detect temperature variations. Moreover, thermograms can depict
a scene without illumination, since the measured radiation comes from the
captured objects. Due to these properties, thermal imaging is used in several
fields, going from military or surveillance to building inspection, medicine or
process monitoring [Brol2, Rob12, Mer12, AKNT11].

In computer vision several thermography-based approaches have been
proposed recently: Cardone et al. [CIIP12] propose a methodology to accu-
rately project temperature maps on 3D objects. The technique proposed by
Filipe and Alexandre [Fil10] performs an automatic segmentation of thermal
face images. Bilodeau et al. [BTL"11] present an approach to measure the
temperature of moving objects in a non-invasive way using thermographs.
Yang and Chen [YC11] propose a method to obtain the 3D surface tem-
perature distribution of an object using a thermal imaging system based

on structured light. In an attempt to speed up existing building inspection
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techniques, Lagiiela et al. [LAGJT12] presented a relative simple and inter-
active procedure to fuse visual and thermal images of buildings. Luhmann
et al. [LOPR10] presents an overview of different thermal image sensors and
proposes a technique for the geometric calibration of thermographic cam-
eras. Stennett and Harris [SH| analyse the performance of two conventional

image-based 3D computer vision systems when using thermal data.

1.2.3 Hair Modeling

Since the pioneering work presented by Anjyo et al. [AUK92] modeled hair
filaments as cantilever beams many other approaches have been developed
to generate plausible hairstyles. Simulating each hair filament independently
can be very complicated and time-consuming. Fortunately, adjacent hair
strands tend to form wisps and behave in a similar way [WS92]. Considering
that, hairstyles have been modeled by wisp models [CK05], characterizing
each wisp by a guide strand. The wisp information has been coded in surfaces
[KNO0O], has been arranged in multi-resolution models in which a hierarchy
of generalized cylinders is implemented [KN02] or in a level-of-detail model
that includes individual strands, hair clusters and hair strips representing the
whole hairstyle [WLL*03]. All these techniques require considerable manual
work, therefore the generation of a plausible hairstyle requires both time and
skills from the user: a good example is “Hair Meshes”, an interactive tool
presented by Yuksel et al. [YSKO09].

Other approaches predict the shape of hair filaments based on physical
models. Among the contributions to this sub-area are the works of Hadap
and Magnenat-Thalmann [HMTO00] in which the hair filaments are modeled
as streamlines of a fluid flow, or Bando et al. [BCNO03] where the hairstyle
is characterized using particles sampled within the hair volume. Bertails et
al. [BAQT05] propose a mechanical model based on the Cosserat equations
while the approach of Sobottka et al. [SKWO06] generate hairstyles by fitting
the hair geometry into a hair volume obtained from surface scans.

Image-based approaches attempt to reconstruct a hairstyle based on in-

formation extracted from different views of a hair model. These techniques
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neither require major user interaction nor involve the simulation of extremely
complex physical models. Grabli et al. [GSMLO02] estimated the orientation
of hair strands by analysis of the hair model under varying illumination and
Paris et al. [PBnS04] improved this approach by capturing the model from
4 fixed viewpoints, being thus able to compute a 3D orientation vector field
of the whole hairstyle. The work of Wei et al. [WOQS05] was the first at-
tempt to reconstruct a hairstyle in out-of-lab conditions, employing only a
hand-held camera. Using a hand-held camera and available light simplifies
considerably the acquisition setup, however lot of information of the hair
model gets lost, since the computed orientation information is projected on
the model’s visual hull. Paris et al. [PCK™08] proposed a pipeline based on
dome-like capture setup, consisting in 16 cameras, 150 LED light sources and
3 DLP projectors. Although the proposed technique is able to reconstruct
a hairstyle down to the filament level, the extremely complex acquisition
setup represents a major drawback. Another approach to model hair fibers,
however only suitable for small hair tresses, was presented by Jakob et al.
[JMMO09]. The input of this technique are macro photographs of the hair
wisp taken with a very shallow depth of field, allowing to isolate the hair

filaments.

1.3 Structure of the document

The remainder of this work is organized as follows: In Chapter 2 we describe
our facial hair modeling technique, introducing our color-and-frequency-
based hair region segmentation algorithm. We also show how we infer miss-
ing data based on statistical models derived from a database of facial texture
images. Chapter 3 describes our thermal-based approach for hairstyle recon-
struction, showing how the issues related to the use of conventional images
are avoided by the use of thermograms. Finally we close the thesis with

conclusions and some proposals for future research.



Facial Hair Modeling

The approach presented in this chapter models facial hair —beards and
eyebrows— using information extracted from facial texture images. A prior
model built upon a database of facial hair distributions helps to improve
the quality of the synthesized hair geometry in cases where the information

extracted from the input data is not accurate enough.

2.1 Introduction

The presence of plausible facial hair brings lot of realism to virtual avatars.
Due to its important role in the creation of CG-generated characters and its
high degree of complexity, hair simulation has been analyzed several times
from different perspectives [WBK™07, HCL*07, BHCT08, BBNT12]. Despite
being closely related to the more researched field of hairstyle modeling, fa-
cial hair modeling has not received much attention. Although at first glance

seems to be relatively simple —specially if compared with hairstyle modeling—

9
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the automatic image-based modeling of beards and eyebrows is a very chal-
lenging task, as all information required for facial hair synthesis has to be

automatically extracted from the texture images.

Figure 2.1: Top row: Sequence of images used for the generation of the facial
texture. Bottom image: Generated facial texture following the approach presented
in [PKA109].

Facial hair has, however, a major advantage over hairstyles: facial hair
filaments are typically shorter —and hence easier to model- than hairstyle
filaments and usually grow forming a layer parallel to the face. Moreover,

as they are not stylized, facial hair has a predominant direction without
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complicated orientation patterns that often appear in hairstyles. Based on
that, the problem of modeling facial hair can be reduced to the localization
of the hair regions on the texture images and the computation of the local
image orientation in those regions.

Since the input data of our approach consists of registered texture images
and their corresponding head models (Figure 2.2), the information character-
izing the facial hair is transferred from the images to the models following a
one-to-one correspondence between the texture and model coordinates. An-
other advantage of our approach is that, since we have the head mesh, we
do not have to infer the position of the chin or other regions occluded by the

facial hair.

2.1.1 Overview

Our pipeline has two stages: “feature analysis” and “geometry synthesis”
(Figure 2.2). In the “feature analysis” stage features are extracted pixel-
wise from the texture image of the input model S using image processing
techniques. These features will help us to estimate the location of hair in
the image, together with its corresponding 2D orientation. This stage is
also applied to a database of texture images from different individuals —as a
pre-processing step— to estimate a statistical prior representing the a-priory
likelihood of hair distribution in the texture images. The prior information
is used to improve the results of the “feature analysis” step in case that the
input information is missing or unreliable.

During “geometry synthesis” the extracted features are transferred from
the texture image space to the head model space and used to synthesize hair
geometry on the target head model 1. The texture images are registered
with the head models, meaning that we have a bijection between the two-
dimensional image space and the three-dimensional model space. This one-
to-one correspondence is key in this step, allowing a simple mapping of the
features. The facial hair geometry is generated as a group of connected 3-D
filaments employing a “particle shooting” method.

The main contributions of the presented approach are
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INPUT (texture images + 3D head model) I

FEATURE ANALYSIS
FEATURES EXTRACTION
probability orientation
map map
IMAGE
STATISTICAL MODEL |<— TEXTURE
DATABASE
improved improved
probability orientation
map map
number of maximum
filaments N hair length L
GEOMETRY SYNTHESIS

OUTPUT (3D geometry)

Figure 2.2: Workflow of the facial hair transfer process.

e A novel measure estimating the probability of a pixel to belong to either
skin or hair. This measure is inferred from statistics of the texture
image of a source model S. The new approach works fully automated
and is robust with respect to color tone variations of both skin and

hair.

e A method for estimating 2D strand orientation as well as hair density

in texture space.

e A statistical prior based on features of over 70 individuals that im-
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proves the plausibility of results even in difficult cases with missing or

incomplete texture information.

2.1.2 Related Work

As already mentioned, facial hair is characterized by its location and local
orientation in the texture images. Therefore the quality of our results is
closely related to the accuracy of the segmented hair region, the extracted

image orientation and estimated hair length.

Hair-Skin Segmentation The extraction of the hair regions on the input
images account for the most important part of the problem to solve, since
all information required to synthesize a plausible facial hair geometry is ex-
tracted from those regions. Due to its relevance, detection of hair and skin
regions on facial images has been discussed several times from different view-
points, as solutions to this problem play a fundamental role in a wide range
of applications that go from face detection and gesture analysis to human
computer interaction.

The partitioning of the input images into hair and skin regions can be
seen as a typical segmentation problem. By modeling an image as a piecewise
smooth function, the segmentation problem consist in computing the parti-
tion of the image domain in a set of pixels or segments such that the function
behaves smoothly within each segment and shows discontinuities across the
segment boundaries. Following this definition the segmentation of an image
reduces to the computation of an optimal approximation of the original func-
tion by a set of piecewise smooth functions defined on the different segments.
This optimal combination can be obtained by minimizing the Mumford-Shah
functional [MS89]. Many different solutions have been proposed for the prob-
lem of image segmentation, going from clustering algorithms [L.1o06] to graph
cut-based techniques [BV06] or level set methods [MSV95].

The majority of hair and skin detection techniques on images are based
on color information and the two main problems to solve are the selection of

a suitable color space and the modeling of the skin color distribution. Among
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the most widely proposed color spaces are the RGB —the most commonly
used format to represent color information— and its normalized version rgb.
Perceptual color spaces like HSI or HSL, where color is expressed as a
combination of hue (H), saturation (S) and intensity (I), are also frequently
used. Perceptually uniform color spaces, such as CIELab or CIELuv, have
the convenient property that perceptive differences between two colors are
equally reflected in the color representation [Poy97], but nonlinear transforms
involved in the conversion to and from RGB represent a drawback.

The distribution of the of the skin (hair) color can be specified explicitly
be means of constraints [KPS03] or modeled using parametric or nonparamet-
ric models. In parametric models, like Gaussian classifiers or elliptical
boundary models, the color distribution used to compute the probability
for a pixel to belong to the skin (hair) region is modeled explicitly, whereas
in nonparametric models, such as histogram models or Bayes classifiers,
the probability is estimated by comparing its color with color information
extracted from training data.

The work presented by Phung et al. [PBCO05] presents a comparative
study of different color representations and classification algorithms for pix-
elwise skin segmentation. The algorithms are evaluated on a database of 4000
color images together with manually generated ground-truths. Gasparini and
Schettini [GS06] propose a method in which a genetic algorithm is employed
to explicitly specify the skin distribution in different color spaces. The per-
formance of the algorithm is tested using a large and heterogeneous skin
database [JR99]. The approach presented by Mohr and Zachmann [MZ07]
detects skin regions using three dimensional Gaussians that represent the
color distribution on homogeneous regions, detected combining color and
edge information. Finally, the technique proposed by Sun [Sunl0] combines
color models built from training images to detect skin pixels in unknown
images. These detected pixels adapt the color model to the unknown im-
age, improving thus the segmentation results. Several comprehensive stud-
ies about color-based segmentation have been published in the last years

[VSA03, KMBO07, KHSB12].

Other approaches combine color with additional information to obtain an
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accurate segmentation. Phung et al. [PBCO03] proposes an approach in which
the boundaries of potential skin regions detected using a Bayesian model are
refined using edge information. Ruiz-del-Solar and Verschae [SV04] also ex-
ploit the homogeneity of the skin regions and skin is detected as the result of
a diffusion process. Yacoob and Davis [YD06] assume that the faces are in
frontal view and combines face recognition techniques with skin color mod-
eling to automatically extract and characterize the hair region from images.
The performance of this approach is tested on a dataset of 524 subjects and
3100 images of the AR dataset [MB98]. Rousset and Coulon [RCO8] propose
a method to extract the hair mask detecting automatically the head region
in the image and analysing the color and frequency information around it.
The results are evaluated by comparing them with semi-manually segmented
images. Lee et al. [LASGOS8| propose a probabilistic hair and face segmenta-
tion algorithm that uses a Gaussian Mixture Model (GMM) combining color

and position information of face and hair regions.

Local Image Orientation Over the last years several approaches that
estimate the local orientation of an image have been presented. Freeman and
Adelson [FA91] presented the “steerable filter”, a class of filters synthesized as
a linear combination of “basis filters” that can be “steered” to any arbitrary
direction and the maximum of its response as a function of the angle denotes
the predominant orientation. Several basis sets as well as their corresponding
Hilbert transforms can be found in [FA91]. However, this kind of filters
suffer from m-periodicity, as the directional derivatives of Gaussians used
to synthesize them are symmetric or antisymmetric. To avoid this issue
Simoncelli and Farid [SF96] proposed a new class of asymmetric steerable
filters.

Feng and Milanfar [FMO02] presented an approach in which local orienta-
tion is estimated using Principal Component Analysis (PCA) in a multi-scale
fashion to improve its robustness to noise. Local image orientation can be
also be estimated using structure tensors. Structure tensors —also called
second moment matrices— are matrices whose eigenvalues and eigenvectors

describe the local orientation of the image, therefore perfectly suited for tasks
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involving orientation analysis. Brox et al. [BWBMOG6] proposes a nonlinear
variation of structure tensors that can be used to estimate image orientation,
whereas Kothe [Kot03] presented the boundary tensors, also a variation of
the structure tensors.

We follow the approach proposed by Freeman and Adelson [FA91] and

compute the local orientation in the hair regions using “steerable filters”.

2.2 Feature Analysis

Figure 2.3: Example of facial texture image from an input model.

In order to successfully characterize the facial hair on the input model
S, we need to know the location of hair on the face and the direction in
which it grows. To obtain this information we find the “hair regions” on the

the texture images and then calculate the 2D image orientation on them.
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Since all the subsequent steps depend on an accurate extraction of the hair
regions, an efficient and robust technique to detect them on the texture
images is indispensable. This technique should also be able to overcome
issues like unbalanced illumination —causing shadows or highlights— and has
to be invariant to different skin and hair colors.

For our estimation purposes, we distinguish two regions: a hair region and
a skin region, where every pixel in the image belongs either to the former or
to the latter. The type of images we are working with (Figure 2.3), where no
background or other distracting elements are present, makes this assumption
possible. Following this idealized consideration we then calculate for every
texel £(; j) the probability p}(fafg that it belongs to the hair region. The resulting
probability chart characterizes the facial hair distribution that we are looking

for.

2.2.1 Discriminating Skin and Hair —Feature Set

Figure 2.4: Purely color-based segmentation techniques fail if hair and skin have
similar tonality.

Color is the simplest and most intuitive way to check whether a texel
belongs to the hair or to the skin region. The downside of this approach
is that techniques based solely on the texel’s color lack of robustness, due
to the drastic effect that disturbing illumination effects like shadowing and

highlights have on a texel’s tonality [KMBO07]. Moreover, purely color-based
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segmentation techniques fail in cases where skin and hair have rather similar

colors (Figure 2.4). Therefore, to improve the robustness of the segmentation

not only color but other features have to be taken in to consideration.

4

h

Figure 2.5: Feature vector calculated on a texel basis.

To overcome this issue, our method is based on a feature vector calculated
for each texel (Figure 2.5). Analyzing every imaginable (or combination of)
feature(s) means costly computation of meaningless and sometimes redun-
dant information. Therefore we consider only those features meaningful for
our segmentation purposes and that don’t overlap within each other (Fig-

ure 2.6). The selected components are:

e Luminance L -as the sum of the red, green and blue channels- charac-

terize the brightness (as energy) of a texel (Figure 2.6(b)).

e R-G and R-B represent the difference of the red channel with the
green and the blue one, respectively. These differences not only reduce
the effect of specular skin highlights but also relate the green and blue
components to the red one. The red component is dominant in hair
regions due to the presence of blood flows in the dermis, independent
of skin color (Figure 2.6(c) and 2.6(d)).
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e The absolute value of the local texture gradient g helps to discriminate
between rather smooth (“low frequency”) skin and less homogeneous

(“high frequency”) hair regions (Figure 2.6(e)).

e “strength of orientation” o in the texel. Hair regions tend to have a

predominant growth direction, at least on a texel scale (Figure 2.6(f)).

(a) Original image (b) Luminance (¢) Red-Green difference

(d) Red-Blue difference (e) Module of gradient (f) Orientation’s strength

Figure 2.6: Separated view of the components of the feature vector.

2.2.2 Discriminating Skin and Hair —An Iterative Ap-

proach

We now use the above introduced feature vector to compute pl(fafr) To do
that we assume that the typical characteristics of both hair and skin can be
sufficiently well characterized by small “exemplary” learning regions in the

texture of S and proceed iteratively as follows.
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1. Two square blocks —one for skin and another for hair— are selected

randomly in the texture image.

2. A group of histograms, one per feature, is generated for each block us-
ing the information stored in the texel-calculated feature vector (Fig-
ure 2.7).

(i.4)

3. A Bayesian estimator calculate p; i~ using the generated histograms.

4. A measure that estimates the quality of the block’s selection is com-

puted.

After the above described procedure is repeated an user-defined number
of times, the best result with respect to the computed measure is kept. This
approach is explained in detail in the following section

(.3

hair

Calculating p

Let H and S denote the randomly selected learning regions for skin and hair
and ‘ﬁ ‘ and ‘5 ‘ their corresponding cardinalities.

We start by computing an initial estimate uffaff (uifg) for the probability
of a texel ¢(; j) for belonging to hair (skin) region, according to our feature set
X = {x}, with k indexed over the features {L, R — G, R — B, g,0}. These
estimators will be used in a subsequent step to calculate the final probability
values (equation 2.6).

The computation of these estimators is not straightforward. The fea-
ture vectors X *7) are multidimensional and dealing with them in a direct
manner is unpractical due to the order of magnitude times feature space
samples (provided by the two skin and hair learning regions) required to ob-
tain meaningful statistical results. Therefore all statistic are first computed

independently for each of the components xgj ) taking a Bayesian estimation

approach and then combined to finally obtain the posterior probability pffafr) :
Suppressing the (4, j)-dependence and using Bayes formula the following

holds: :

P(hair Nz = hY)

k — P(hai = h") =
Phair ( air ’ Tk k) P(l'k — hZ)

(2.1)
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where hj is denoting the n-th bin in the corresponding xj-histogram 7.
Substituting with ’ﬁ ) and ‘g ‘ yields

[ o=t
i |HUS|
R — — 2.2
Hhair ’H(zkth)US(mkzhg)’ ( )
|HUS|

and after eliminating denominators we arrive at

‘H($k=hﬁ)

Iuﬁair — 1= ~ (23)
)H(zk:hz) U San=np)

The probability estimates pf,. are then combined by the following
weighted average heuristic taking into account the spread of the histograms
hki

QL = Zgig (2.4)

Uhair k

:uhalr
Hhair = E
o

O-halr

Here, o, is denoting the normalized standard deviations' of the his-
tograms hy.

Although this simplistic approach is optimal for combining Gaussian
probability densities only, it works surprisingly well in our case. An ex-

pression for pf . can be derived similarly

(4,4)
skin

The results of applying (2.5) ,uhalr and gy’ contain complementary in-
formation about the distribution of facial hair. Ideally, the two values should

sum up to one, for each texel ¢; ;). Considering this property the probability
(4,5) (4.3)

estimates can be improved further by combining s, =" and pg. according to:
pg;r \/luhalr NS&Q ) (2 6)

IThe standard deviations are normalized by the range of feature values present in the
texture of the source S.
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(e) o
Figure 2.7: Typical histograms hj for each of the feature set components xy,

derived from the selected hair(green) and skin(blue) regions. Please note their
difference in distribution.

psk’lsz \/Mskln :uhe;?) (2 7)

The probabilities p]([fafr) are used to characterize the distribution of facial

hair.

A Quality Measure for Classification

The sequence of steps described above is repeated an user defined number
(@) o

hair

n of times and in each iteration & € {1,..,n} the probabilities p
computed according to the selection of hair and skin learning regions. The

only constraint to the random learning regions selection process is that the
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Shal o D Tt )

(a) Bad selection (b) Good selection

Figure 2.8: Resultant probability maps. Randomly selected learn regions are
marked in red and blue.

chosen regions lie completely inside the texture image. From the two regions,
the one with the lowest gradient g, averaged over all its texels, is declared as
hypothetical “skin”. To identify the optimal selection a simple but efficient
heuristic is used, calculating for each selected pair of regions the distance
between texels marked as “hair” and their “skin” counterparts.

Assuming that a selection is suitable if a clear classification (as either hair

k

or skin) is possible, the quality measure m” is computed as follows:

m = " max(pi) pi)- (2.8)
i,J

The value mype is given for the iteration (i.e. the pair of regions) that

maximizes the separation of assumed skin and hair texels (Figure 2.8):
Mpest = max(ml, ,m"). (2.9)

For all our tests n = 2048 was used. This number was not selected randomly
but is an optimal trade-off between the size of the learning regions, the size

of the texture images and the run-time of the algorithm.

2.2.3 Estimating the Growth Direction of Hair

After the location of the facial hair has been estimated, the next step is to
calculate the direction in which these hairs grow. For that we compute a 2-D

vector field (€2) over the texture image that represents the hair’s predominant
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growth direction (Figure 2.9).

Figure 2.9: Orientation information (right) extracted from a beard image (left).
The confidence of the orientation information (middle) is measured according to
the response of the orientation filter.

In order to achieve this we use the “steerable filters” method, as proposed
by Freeman and Adelson [FA91, Fre92]. Following this approach a filter is
defined by a kernel K designed to detect an z-aligned orientation. To test
an arbitrary rotation in pixel (i, j) the convolution of Ky —K rotated by 6—
is computed. The “oriented energy” of the convolution, used to characterize

the strength of orientation, is given by:
Ey(0,1,5) = [G3(i, )” + [H3 (i, )] (2.10)

where (G4 is the second derivative of a bi-dimensional Gaussian function and

H, is its corresponding Hilbert transform.

Dividing the interval [—7/2,7/2) in equally spaced angles and testing the
filter for each of these angles yields a “response curve” for each texel ¢(; ). The
maximum of the response curve indicates the predominant orientation Q7

and its confidence w7 is computed as the inverse of the curve’s variance
[PBnS04].

In the following py.;; and §2 will be summarized by a vector I' that contains

all information extracted from S:

Phair

I = (2.11)
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2.3 Generation of a Statistical Prior

After extracting the hair region and estimating its orientation we have in
I' all the information needed to synthesize facial hair. Still, sometimes the
collected data is not sufficient to perform the synthesis of facial hair. Texture
images can be noisy or have overshadowed areas. Moreover, in some cases the
texture generation algorithm [PKA™(09] cannot solve discontinuities between
image patches. These issues have a direct negative impact in the reliability
of the estimated probability map and orientation vector field. In those cases
I' may be improved by taking into account statistical information about
Prair and 2 obtained from many individuals. For that, a statistical prior is
computed from a database of registered texture images Iy, k € {1,..,n} from
reliable models (Figure 2.10).

We start by computing the corresponding I'y distributions from the

database texture images and combining them to a “prior” I’ by weighting

averaging:
= ﬁhair
I' = _ 2.12
[ - ] 212
with .
— k k
Phair = <1 MpestPhair (213)
Zk mﬁest zk: ’
and

Q) = Zwk Doy (2.14)
Zk wkz Pl

Please note that the weights for py.;,, —which are constant for all texels of
I— are given by the optimal quality measure used for hair/skin classification.
Thus, results pf,;. with a clear separation of skin and hair regions tend to
influence the final result of pya;,.

In contrast to Phair the weights for Q%9 are computed on a local basis.
Here we use w™) that characterize the confidence of the image orientation
in a local way, implying that strongly oriented pixels are most relevant to
the prior.

The generated T is used to improve the already estimated distributions
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Figure 2.10: A “prior” is used to improve the estimated facial hair distribution
Phair Of & target T in case of missing or incomplete information as well as to avoid
“false positive” hair texels. This prior (rightmost image) is based on a database
of over 70 individuals and statistically combines relevant features present in the
dataset. In each texture the red and blue blue blocks indicate the best pair of
“learning regions” found by our iterative optimization process.

I';, in a local fashion.

The goal of improving I'y, is to accentuate the separation between the hair
and skin texels while keeping relevant detail of the originals and completing
regions that are not well classified as either skin or hair. Intuitively, this
means that regions of high uncertainty are enhanced with prior data whereas

texels that have been clearly identified as skin or hair are nearly preserved.

This objective is achieved by applying the prior as follows:

po = min(Phair - Phairs Drair)
P = max(phair;Vphair'phair)

_ {po 1—po>m

2.15
P1 otherwise ( )

’
Phair

Using two different expressions py and p; allows for accentuating the
difference between skin and hair which is especially important for avoiding

“false positive” hair regions (Figure 2.11).

To improve the orientation map we follow a different approach, because
the goal is to improve the angle measurement. Therefore, from the estimated

angle (2x(7,7)) and the combined one (€2(7,j)) we select the one with the

largest confidence value.
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i . " \ ‘@ 3 ‘" % X

Figure 2.11: Combining the original probability distribution ppa; (leftmost im-
age) with the prior (middle image). This operation allows for a much clearer
separation of skin and hair ensuring that all features of the original probability
map are also present in the resultant chart (rightmost image).

2.4 Facial Hair Synthesis

After improving I' we know accurately where and in which direction the
facial hair grows. To be able to synthesize the hair geometry, we first have
to transfer all the information extracted from the two-dimensional image
space to the three-dimensional model space. Since the texture images are
registered, a direct correspondence between image- and model-coordinates
can be established. Therefore the transfer of information to the model’s

surface is very simple.

2.4.1 Distributing Hair Roots

The first step of the synthesis stage involves the computation of the filament
root locations. Following a direct approach we take advantage of the size of
the texture image T" and count the hair roots on the extracted hair region,
whereas an indirect approach estimates the location of the roots using the
probability map ppai..

To count the hair roots we start by delimiting the facial hair region on
the texture image using graph cut [BK04] based on the probability chart. We
then apply a blob detector, adapted to the projected size of the roots in the
images, to detect the hair roots in the delimited region. An advantage of this
alternative is that we are actually generating hair exactly where T' should
have it. However this approach fails in many cases. Although the resolution
of the texture image allow us to detect structures with the size of the roots,

the technique works only in fresh shaved models and even in those cases the
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inherent distortion of the textures due to the form of the head causes the

approach to fail.

To avoid these issue we estimate the location of the roots based on the
probability map. Let n be a user defined parameter specifying the number
of filaments to be synthesized, a 2D sampler distributes n samples using pyair
as probability density function (pdf). These samples are then projected from
image space to model space. For the i-th filament the resulting 3-D position

of its corresponding root is denoted P.

2.4.2 Generation of Filaments

The hair filaments are generated using a “particle shooting” approach: the
shape of the filament is described by the trajectory of a “projectile” that is
“shot” from the hair root ]31 with an initial spatial orientation 61. Based
on the one-to-one correspondence between image and model coordinates, the
initial orientations are calculated by projecting €2 onto 7”s head model and
computing for each 2-D image orientation vector a 3-D vector parallel to the
head surface, originated on the corresponding head model vertex. Having
a spatial orientation for each vertex, we calculate for each root position P
its underlying triangle in the head model triangle mesh and obtain O, by
interpolation of the orientation in the triangle vertices. To further improve

the results we add a gentle pseudo gravity force ﬁ].

In order to obtain plausible results we also take filament-filament as
well as filament-head model collisions into consideration during the filament
growth phase. Collisions are detected by a grid based approach [THM™*03].
The filaments are generated starting at the roots by an iterative synthe-
sis process, extended in each iteration according to the particle trajectories.
Collisions are avoided by separating filaments that are in contact. Thanks
to the way the filaments are generated (all grow at the same time) we can
resolve collisions simultaneously for all filaments within a certain predefined

neighborhood.
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Generation of Eyebrows

Eyebrow filaments are generated differently because they tend to be more
aligned. For that reason no particle shooting is applied. Instead the 2D
orientation field €2 is used directly as filaments growth direction. Starting
at the 2-D root location in texture space the filaments are tracked through
Q). The resulting trajectories are then converted to 3-D model space and are

terminated as they reach a predefined maximum length.

2.4.3 Rendering

The realistic visualization of the resultant geometry is the last step of the
modeling process. In order to achieve physically-plausible results the hair
shading framework proposed by Zinke and Weber [ZW07] was used. It is
important to note that believable results are obtained only if the rendered
hair exhibits similar detail as the textures mapped onto the 3D head models.
This is obtained by adapting the filter width used for image reconstruction
(as final part of the rendering pipeline) to the size of projected texels in image

space.

2.5 Results

Figure 2.12 illustrates through a simple example the different stages of our
pipeline, whereas Figures 2.13 and 2.14 show two applications of our ap-

proach.

Beard Transfer In Figure 2.13 facial hair is characterized from different
sources (topmost row) and transferred to several hairless targets (leftmost
column). The combination of our approach with techniques like Morphable
Head Model [BV99] yields very pleasing results, since the addition of facial
hair increases considerably the level of realism of the synthesized 3-D faces.
By combining both techniques the question of “how Beethoven would look

like with my beard and my eyebrows ?” can be answered.
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Figure 2.12: Stages of the facial hair generation process. Starting with the
3D head model and texture images as input data (first and second images from
left), the facial hair region is estimated using a probability map (middle image), the
hair filaments are generated with their corresponding distributions and orientations
(fourth image from left) and finally a photo-realistic image is rendered (last image).

Prior-based Facial hair generation As shown in Figure 2.14 our ap-
proach generates plausible beards on (nearly) completely shaved individuals
(leftmost column). Taking advantage of the statistical prior in conjunction
with the texture images we are able to synthesize believable results (right-
most column) even in very challenging cases. The resulting hair distribution
is very consistent with original regions which are hardly visible in the texture
images. For comparison purposes also the pure prior was transfered to the
models (middle column).

Not only the generation of realistic virtual avatars but also other fields
benefit from our approach: based on a photo of a shaved person and the
Morphable Head Model our technique can be used to infer how this person
would look like if he had a beard or mustache. This application can be very
useful in fields like criminal sciences.

The most obvious limitation of our approach is that it is based on the
assumption that a mapping between the 2-D texture space and the 3-D model
space is known. That restricts our input data to registered texture images.
Other limitation is that the textures in the database must be similar in order
for the prior to be constructed in a meaningful way.

Feature detection is the most time-consuming step of the whole process.
With an Intel Core 2 Duo CPU (E8500 @ 3.16 GHz, using a single core),
it takes around 45 seconds to process one model. This feature detection is
required also for each of the models that are used to build the statistical prior.

However, since the prior is computed only once and remains unchanged for
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all subsequent analysis, its cost (50 minutes of pre-computation our case) is
usually not a limiting factor.

The other time consuming step is the geometry synthesis, whose runtime
depends strongly on the number of filament to be generated. All of our
examples have 11000 filaments with 10 mm maximal length each. With

these parameters the hair geometry is generated in 25 seconds.

2.6 Conclusions

We have presented a technique that successfully extracts the geometric in-
formation of facial hair out of registered 2D textures and uses it for different
synthesis tasks on (morphable) 3D-head models (Figures 2.13 and 2.14).

As for the existing approach a very simple heuristic was used to determine
the length of a filament. An interesting topic of future work would be to infer
this length directly using more sophisticated texture space analysis as well
as database statistics.

We did not attempt to extract “hair color” information from the images.
Notice that “hair color” is a concept that must be defined carefully on the
fiber level, e.g. as the parameters of a BCSDF scattering model [ZW07,
ZRL*09].

Zinke et al. [ZRLT09] present a practical approach for the acquisition
of hair color (the parameters of the BCSDF of an average fiber) of scalp
hair out of images. This approach requires that a hair strand is wrapped
around a cylinder to have a well defined hair geometry with “good” properties
for solving the inverse rendering problem. Whereas this approach is not
directly applicable to facial hair, the more regular geometric properties of
facial hair with respect to scalp hair makes it plausible that this approach
can be adapted to the problem of BCSDF estimation of facial hair fibers.

The ultimate goal of our future work is aimed to extend our technique
to the development of an approach that allows the modeling of complete

hairstyles using qualitative information retrieved from images.
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Figure 2.13: Beard transfer. Two different sources (topmost row) are used to
synthesize beards on four different targets (leftmost column). Beethovens’s foto
courtesy of Beethoven-Haus Bonn.
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Figure 2.14: Applying our method to shaved individuals (first column). Re-
sults obtained by using exclusively information from our statistical prior (middle
row) and the final results also taking into account the specific characteristics of
individuals according to the full pipeline (rightmost row).






Thermal-Based Hairstyle Modeling

In this chapter we describe an approach to model fiber-based hairstyles us-
ing thermal images (thermograms). Our reconstruction technique takes as
input a sequence of images obtained with an hand-held thermal camera and

synthesizes a fiber-based hair geometry that resembles the captured hairstyle.

3.1 Introduction

Because of its influence on the human appearance, plausible hair plays a
crucial role in the creation of digital avatars. Therefore the development of
robust and efficient techniques for the generation of realistic hairstyles is still
a relevant topic in the computer graphic community, despite being treated
several times in the past [AUK92, WBK"07, HCL*07, BHCT08].

Modeling human hairstyles, however, is a very challenging task. The
human brain is extremely well trained in recognizing hair under different

conditions, therefore even slightest errors may lead to visually unconvincing

35
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results. On the other hand the geometrical complexity of hair is a serious is-
sue. A typical human hairstyle consists of approximately 100000-150000 long
and thin filaments, whose shape is a result of complex fiber-fiber interactions
and the effect of cosmetic products.

Therefore, the majority of hairstyle modeling techniques published to
date rely on manual work, requiring special skills from the user to obtain
satisfactory results [KN00, KN02, WLLT03, YSK09]. In order to reduce
the degree of manual work, some approaches generate hairstyles with the
help of physical models describing the behavior of hair strands [HMTO0O,
BAQT05, CK05, SKWO06]. Instead of synthesizing new hairstyles, image-
based techniques attempt to reproduce existing hairstyles using information
extracted from images [PBnS04, WOQS05, PCK™08, JMMO09].

Although generally simpler and less interaction dependent than other ap-
proaches, image-based techniques are not exempted from limitations: While
some require a very complex acquisition setup with controlled lighting con-
ditions and multiple cameras [PCK™08], other require substantial manual
pre-processing, e.g. for hair-skin segmentation, to obtain acceptable results
[(WOQS05]. Moreover, they are likely to give unreliable results in cases where
global optical effects —e.g. self-shadowing or strong multiple scattering— can-
not be correlated with local shape. The fact that classical image-based ap-
proaches can only image the surface of a hair volume but give no insight
about the inner volumetric structure represents another limitation.

Following previous image-based work and attempting to overcome the
above mentioned limitations we present in this chapter a novel, fast and
more robust approach for reconstructing a given hairstyle from video streams
taken with an infrared camera. The key idea is to use far infrared imaging
to overcome most of the issues related to the visual range. Compared to

classical imaging, far infrared imaging has several advantages (Figure 3.1):

e With the head acting as “light source” illumination-related issues, such

as shadowing, are avoided.

e As heat is irradiated from the head almost isotropically, the captured

temperatures in the hairstyle surface are viewpoint independent.
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Figure 3.1: Conventional and thermal images of a model wearing a wig. The
thermal images show hairstyle features not clearly visible on the conventional im-
ages due to poor illumination or shadowing.

e The hair-skin segmentation becomes a trivial task, based on the tem-

perature distribution of the captured scene.

e A dedicated photo-consistency-based approach can be used for cap-
turing full hairstyles under arbitrary lighting conditions using a single

hand-held thermal video camera.

To improve the accuracy and computational efficiency of the reconstruc-
tion process we extend existing state-of-the-art techniques along several lines.
Besides an extremely simple data acquisition setup, the main contributions

of our hairstyle reconstruction pipeline are:

e The reconstruction of the hairstyle boundary based on photo-
consistency is accelerated by at least one order of magnitude thanks
to the local relationship between temperature and distance to the skin.
This enables us to increase the resolution of the reconstructed bound-

ary.

e Local image orientation is computed using a multi-scale orientation

analysis approach. The accuracy of the extracted information leads to
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a more robust estimation of local hair orientation, a key component for

synthesis of the hair geometry.

e Opposed to previous methods in which hair is generated starting at
the scalp, filaments in our approach are synthesized starting at the
most reliable regions of the hairstyle boundary. Moreover, we pro-
pose a novel two step approach for synthesizing individual hair strands
where more reliable data is considered first and smoothness and curva-
ture constraints help to recover continuous strands. This latter step is

extremely useful when modeling curly hair.

In the following sections we provide a summary of state-of-the-art tech-
niques for hair modeling as well as a description of the theory behind our

approach and a detailed description of every step in our pipeline.

3.2 Related Work

According to Ward et al. [WBK™07] hair modeling techniques can be classi-
fied with respect to required input as either geometry-based, physically-based

or image-based.

3.2.1 Geometry-Based Hair Modeling

Approaches under this category use geometric features (e.g. curves) to rep-
resent hairstyles and are highly dependent of user interaction. An average
hairstyle has more than 100000 hair filaments and modeling each one of the
hair fibers separately is an extremely tedious and time consuming task. For-
tunately, adjacent hair strands tend to form wisps and behave in a similar
way [WS92]. Following this idea, only a set of hair strands (“guide strands”)
are modeled by hand, while the rest of the filaments is generated by interpo-
lation techniques. The information defining a hairstyle is usually coded in a
level-of-detail (LOD) structure to further simplify the modeling process.

A common approach to reduce the number of objects needed to model a

section of hair is to represent groups of strands by two-dimensional parametric
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surfaces [KNOO, LH03, NT04]. These “hair strips” are characterized by a
location on the scalp, orientation and a group of weighted knots defining
the hair shape. Hairstyles can be modeled with relative ease by specifying
control curves and connecting its control points to create hair strips. The
flat representation of the strip, however, limits the types of hairstyles that
can be modeled.

To alleviate this issue, Liang and Huang [LH03] warped the 2D surfaces to
U-shaped meshes, giving thus more volume to the hair. The U-shapes are ob-
tained by connecting the vertices of the hair strip with its projections on the
scalp. Kim and Neumann [KNOO] proposed a method in which hair strips gen-
erated from parametric surfaces are offset along its normal direction, forming
a “Thin Shell Volume” (TSV). Hair filaments are then generated inside the
volume. The approach followed by Noble and Tang [NT04] fills a volume of
parametric surfaces defining the shape of the hairstyle with clumps of hair
geometry created from profile curves extruded along the length of key hairs.

A comprehensive and highly interactive tool for hairstyle modeling using
polygonal surfaces was presented by Yuksel et al. [YSK09]. With the help of
“Hair Meshes” users can directly control of the overall shape of the hairstyle,
being thus able to accurately model any desired shape.

Some approaches describe the volume surrounding a guide strand by wisps
or generalized cylinders [CSDI99, XY01, PBL04, CKO05]. This intuitive repre-
sentation of a group of hair strands reduces the number of parameters needed
to model a hairstyle, as strands are grouped around a space curve acting as
centerline of the generalized cylinder, or cluster. The shape and position of
the centerline as well as the distribution and shape of the strands inside the
cylinder are controlled interactively.

Chen et al. [CSDI99] present a system to generate hairstyles based on
a trigonal wisp model and the shape of the hair filaments inside the wisp
is determined by a 2D distribution map in every cross-section of the wisp.
The approach followed Xu and Yang [XYO01] develops an interactive hair-
design system based on a cluster hair model in which filaments are gener-
ated according to a distribution map swept along the axis curve defining the

shape of the generalized cylinder. The axis curves are generated interactively
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and the distribution maps are generated randomly at the base cross-section
of the cylinder. Patrick et al. [PBL04| classify african hairstyles in curly,
straightened or braid and twists. While curly hair is modeled using implicit
methods, the latter two are modeled using a cluster method by specifying
position and shape of control hairs. Hairstyles generated by the technique
presented by Choe and Ko [CKO05] are based on a statistical wisp model and
a pseudo-physical deformation solver that accounts for the effects of gravity
and collisions in a simplified way.

Considering the fact that in a human hairstyle adjacent hair strands tend
to form clusters at different scales, Kim and Neuman [KN02| presented a
Multi-resolution Hair Modeling (MHM) system. Following this approach a
hairstyle is modeled using a hierarchy of generalized cylinders where coarser
levels describe the overall appearance of the hairstyle and finer levels rep-
resent individual hair strands. On the other hand, Ward et al. [WLL"03]
model hair using level-of-detail representations. Hair structures can be clas-
sified as either individual strands, hair clusters or hair strips, and a hierarchy
of subdivision curves or surface representing the structures is used to model
the hairstyle.

Due to its high degree of user interaction, all the above mentioned ap-
proaches can only be meaningfully used by highly skilled 3D artists, and even

in those cases the modeling process can be very tedious and time consuming.

3.2.2 Physically-Based Hair Modeling

Approaches under this category attempt to model a hairstyle according to
the hair’s physical properties, or try to recreate the features of a hairstyle by
parameterizing hair volumes. Physically-based modeling techniques require
less information regarding the hairstyle to be modeled and are less dependent
on user interaction than its geometric-based counterparts.

In the work of Anjyo et al. [AUK92] hair filaments are modeled as can-
tilever beams —straight beams fixed at one end— as hairs are anchored at the
scalp and have the other end free. The rest position of the filaments is calcu-

lated by simulating the statics of a cantilever beam, where gravity is the main
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source of hair bending, and accounting for collision detection between hairs
and the head. Cutting operations and final adjustments based on additional
forces are used to give a realistic appearance to the filaments.

Based on the visual similarities between human hair and fluid flows,
Hadap and Magnenat-Thalmann [HMTO00] present a styling tool in which
hair strands are modeled as streamlines of a stable fluid flow. By manually
placing flow elements —sink, vortices and sources— large scale properties as
well as fine details of the hairstyle can be controlled.

Bertails et al. [BAQ™05] propose a technique closely related to the me-
chanics of hair fibers. Here the static behavior of hair fibers is modeled based
on the Kirchhoff model for static Cosserat rods, which accounts for the main
features of hair, such as natural curliness or ellipticity. The equilibrium shape
of the hairstyle is computed by energy minimization. Wither et al. [WBCO07]
uses a similar technique to model hairstyles based on user-defined sketches.

The mechanical model presented by Sobottka et al. [SKWO06] is based on
the Cosserat rods as well. This approach searches for the “optimal” force-
torque combination that deforms the hair filament in such a way that it
conforms to a given hairstyle boundary (“hull” shape) and additional hair
density information, using physically accurate parameters and accounting for
hair-hair collision response.

Hairstyles and vector fields have in common that they are volumetric data
and have a clear orientation at specific points. Considering that, Yu [Yu0l]
uses static vector fields to model hairstyles. A global field is generated by
superimposing procedurally defined vector field primitives that have local
influence. An initial hair model is extracted from the superimposed vector
field by tracing their field lines and random curliness can be added to the
model by a parametric hair offset function.

Fu et al. [FWTQO07] propose a method in which a hairstyle is modeled by
3D style curves inside the hairstyle bounding volume. The style curves are
created interactively via drawing free-form strokes and a discrete vector field
is generated within the bounding volume, in which boundary constraints
are derived from the sketched curves. Hair filaments are then synthesized

following the generated vector field, starting from a given scalp region.
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Choe et al. [CKO05] also uses a vector field to compute the final position
of the hairs. Their hair deformation solver traits hair as a continuum and
computes the global position of the strands according to an unified force field
accounting for gravity and styling operations, such as ponytails or hairpins.
An additional density field is used to handle collision detection.

Physically-based modeling techniques are not so dependent on user inter-
action and therefore easier to use by the final user. However, this reduction
of user interaction can be seen as a limitation, as the control of the user
over the resulting hairstyle is limited as well. Another limitation of such
approaches is that, being physically-based, they generally rely on a set of

parameters whose fine tuning can be very complex.

3.2.3 Image-Based Hair Modeling

Conventional image-based techniques recreate hair geometry based on pic-
tures taken from the hairstyle to be modeled. Opposed to geometric- or
physically-based approaches, image-based techniques require minimal user
interaction, since all required information is extracted from the images. This
can be seen as an advantage, since no special skills are needed to model a
hairstyle, or as a drawback due to the lack of freedom the user has during
the modeling process.

The first attempt to model a hairstyle from images was presented by
Kong and Nakajima [KN98]. In their approach the 3D hairstyle volume
is computed from photos of the subject’s hair taken at various viewpoints.
Filaments inside the volume are generated following a heuristic that does
not necessarily reproduce the shape of the captured hair but gives pleasant
results when modeling simple hairstyles.

In the approach proposed by Grabli et al. [GSMLO02] the hair is analyzed
from a fixed viewpoint under varying illumination conditions to estimate the
orientation of the hairstyle surface. Fixing the viewpoint allows to work
with perfectly registered images, but at the same time drastically limits the
quality of the reconstruction as only part of the hairstyle is visible.

Following a similar idea, Paris et al. [PBnS04] extended the experiment
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incorporating four fixed viewpoints and many known lighting directions to
create a full hair model. First the hair shape is approximated using a visual
hull computed from manually segmented images into hair and non-hair re-
gions. Subsequently, an orientation vector field of hair strands is calculated
by testing different filters on a given 2D location and selecting the one giv-
ing the most reliable response for that location. To obtain 3D directions a
dedicated shape from shading approach is taken. Finally, hair growth starts
at the scalp using explicit numerical integration with a force field computed
from interpolated orientations. This growth stops when filaments reach the
boundary of the visual hull.

Wei et al. [WOQS05] presented the first attempt to reconstruct a
hairstyle using a handheld camera under unconstrained illumination con-
ditions, demonstrating that it was possible to accomplish the task without
need of a complicated setup, only by exploiting the geometry constraints of
multi-view reconstruction. Like Paris et al. [PBnS04], the reconstruction is
based on a visual hull of the hairstyle computed using manually segmented
silhouettes. Since they are based on visual hull, both the methods of Paris
et al. [PBnS04] and Wei et al. [WOQS05] suffer from general limitations.
They rely on visual hull, therefore concavities cannot be modeled correctly
and massive user interaction is required to segment hair and non hair regions.
This is especially true for Wei et al. where no corrective (such as shape from
shading) is available.

A more sophisticated approach to really reconstruct a hairstyle down to
the hair filament level was proposed by Paris et al. [PCKT08]. The acquisi-
tion setup consists of a dome-like structure containing 3 DLP (Digital Light
Processing) projectors, 16 Basler cameras and 150 LED light sources. The
projectors and cameras are calibrated and the position of the light sources
is known. Based on triangulation from structured lighting both shape and
shading are acquired. Although the results are impressive, the hardware re-
quirements, the time for acquisition as well as the computational costs are
extremely high.

Another technique to reconstruct hair with filament-level accuracy, how-

ever in a considerably smaller scale, was presented by Jakob et al. [JMMO09].



44 CHAPTER 3. THERMAL-BASED HAIRSTYLE MODELING

Several macro photos from a hair strand are taken with a very shallow depth
of field, sweeping the plane of focus through the hair volume. The shallow
depth of field reduces occlusion and isolates the visible filaments lying on the
focus plane. The 3D position of the visible fibers can be computed in every
frame from the known camera pose and intrinsic parameters. The results are
promising, but such an approach is only suitable for the reconstruction of
detached hair strands.

Wang et al. [WYZG09] proposes an approach to model a hairstyle with
a statistically similar spatial arrangement of strands and geometric details
of a given input hair geometry. A 2D feature map characterizing the input
hairstyle is calculated and from it an output feature map is generated using
texture synthesis techniques. The output hairstyle is then generated accord-
ing to the information coded in the generated feature map. This technique
can run completely automated, however user-controlled editing of the resul-
tant hairstyles can be accomplished by manipulating the 2D feature map.

By nature, all methods presented so far are prone to stability issues re-
lated to global optical effects such as self-shadowing and multiple scattering.
From a conceptual point of view our approach is closely related to both Wei
et al. [WOQS05] and Paris et al. [PBnS04]. However, using thermal imaging
most of the limitations related to those approaches —manual segmentation of
the hair region, inaccurate visual hull representation of the hairstyle volume,
or global illumination effects— can be avoided. This way a more robust re-
construction approach with virtually no illumination constraints is possible

using a single hand-held device.

3.3 Thermal Imaging

Thermographic cameras are imaging devices that capture radiation in the far-
infrared range of the electromagnetic spectrum (7500nm-14000nm), opposed
to conventional cameras that capture radiation in the visible range (400nm-—
750nm).

According to the technology of its detector, thermal cameras can be clas-

sified broadly in two types: those using cooled quantum detectors and those
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using uncooled thermal detectors. Quantum detectors are based on an in-
ner photo-electric effect according which electrons are set free between two
layers of a semi-conductor device [Nol07]. Quantum detectors are very sen-
sitive, approaching a Noise-equivalent temperature (NET) of about 10mK.
This high sensitivity allows the use of lenses with higher F-number!, making
lenses with longer focal lenses both smaller and cheaper. However, cameras
based on this type of detectors require an external cooling system and the
cooling process is both time and energy consuming.

Uncooled thermal detectors work under the principle that the sensor’s
electrical properties —resistance, voltage or current— change when heated by
infrared radiation [BAF07]. These changes can be measured and transformed
to intensity values. Thermal detectors are mostly based on pyroelectric ma-
terials of microbolometer technology and are less sensitive than quantum
detectors, with NET values ranging from 80 mK to 200 mK. Nevertheless,
they do not require any cooling system and are thus considerably less expen-

sive than the quantum detectors.
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Figure 3.2: Black-body radiation curve for different temperatures. The frequency
and intensity of the curve’s peak increase with the temperature, implicitly meaning
that more radiation.

According the black body radiation law, every object with temperature

above the absolute zero emits electromagnetic radiation [DB96] (Figure 3.2).

IRatio of the lens’s focal length to the diameter of its entrance pupil.
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The Planck Law defines the spectral emission E of an object as function of

its temperature 7" and wavelength A [WZ85]:

2hc? 1

EAT) = =5 o /rmpr) _ 1

(3.1)
where

h= 6.625-10"%" erg-sec (Planck constant)
kg = 1.38-107'% erg/K (Boltzmann constant)
c= 3-10' cm/sec (speed of light)

Extremals in the specific spectral distribution can be computed from the

Wien’s Displacement Law based on the object’s temperature 7"

b
Mras = - (3.2)

where

b= 2897768.5-107 nm - K (Wien’s displacement constant)

Modern thermal cameras equipped with an focal plane array (FPA) of
microbolometers detect these peaks in the far infrared range of the electro-

magnetic spectrum.

3.3.1 Heat transfer through the hairstyle

In our approach the hairstyle is treated as an homogeneous medium with the
head and outer environment as inner and outer boundary respectively. Due to
the difference of temperature between the three different mediums —the typ-
ical temperature range of a human head is 35.5°C to 37.5°C [SLFW02] and
in all experiments the environment temperature was kept well below 20 °C—
heat transfer takes place between the head and the environment through the
hair.

During this process the heat isotropically emitted by the head is absorbed

by the hair filaments. Hair fibers are primarily composed by keratin proteins
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with high emissivity in the infrared range [LS83, PROT02], hence the frac-
tion of reflected radiation can be neglected. Assuming a state of thermal
equilibrium the temperature of the hairstyle remains constant during the
data acquisition, meaning that the filaments re-emit all incoming thermal
radiation. The temperature distribution captured by the thermal camera
represents the amount of irradiated energy that reaches the boundary of the
hairstyle volume.

The nearly isotropic way that heat is transported through the hairstyle
constitutes a major advantage of thermal-based modeling techniques over
their conventional image-based counterparts as complicated hair reflectance,
such as directional highlights and multiple scattering, can be avoided. More-
over, the temperature of hair strands locally hints about its distance to the
head. Consequently, discontinuities in the temperature distribution indicate

spatial discontinuities along the hairstyle boundary.

3.4 Overview

Our pipeline takes as input a video stream of thermal images from a hairstyle
and generates a hair geometry reproducing the original hairstyle (Figure 3.3).

It has five main stages:

e Camera registration: The extrinsic camera parameters are calcu-

lated using a sparse bundle adjustment approach.

e Hair region segmentation: The hair region is extracted from the
input images. The resulting silhouettes are then used for roughly ap-

proximating the hair volume by its visual hull.

e Hairstyle boundary reconstruction: The hair volume gets refined
by identifying voxels belonging to the boundary of the hairstyle using
photo-consistency. The local relationship between temperature and
distance to the head is used to further accelerate the reconstruction

process by one order of magnitude.
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THERMAL IMAGES (input)

I I

SEGMENTATION REGISTRATION
HAIR REGION CAMERA PARAMETERS

PHOTO-CONSISTENCY
3D ORIENTATION ESTIMATION

HAIRSTYLE BOUNDARY + ORIENTATION VECTOR FIELD

I
STRAND SYNTHESIS

HAIRSTYLE GEOMETRY (output)

Figure 3.3: Diagram showing the different stages of our thermal-based recon-
struction pipeline.

e Hairstyle boundary characterization: Both an orientation vector
field and a temperature scalar field are generated along the surface of
the hairstyle. Local image orientation used to compute the orientation
field is obtained through multi-scale analysis for orientation on the

thermograms.

e Hair strands generation: Strands are synthesized starting at surface
voxels and follow the orientation field. A second step refines the shape
of the synthesized hair geometry employing smoothness and curvature

constraints.
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3.4.1 Camera Registration

The camera pose of the thermal images is estimated using a bundle adjust-
ment technique [SSS08]. Given a set of uncalibrated images depicting an
object from different viewpoints (Figure 3.4), bundle adjustment techniques
simultaneously compute the 3D coordinates of the scene geometry as well
as the pose of the cameras employed to acquire the images (Figure 3.5) by
minimizing the reprojection error between the locations of observed and pre-
dicted image points [TMHF00]. This error can also be used to measure the

accuracy of the registration process.

Figure 3.4: Several frames of the input sequence depicting the captured hairstyle
from different angles.

As the heat is emitted isotropically from the hairstyle, the captured
temperature values are nearly independent of the viewpoint. Therefore,
local features are preserved across different frames while highlights and
other direction-dependent optical effects that may affect the calibration are

avoided.
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Figure 3.5: Results of the camera registration process following the approach
proposed by Snavely et al [SSS08]. Points around the sparse head mesh denote
the estimated position and orientation of the cameras.

3.4.2 Hair Region Segmentation

The extraction of the hair region from the thermal images is a very impor-
tant step in our approach, as an accurate representation of the hair region
is required for the successful estimation and characterization of the hairstyle
volume. This can be a very challenging task for acquisition setups using
images taken in the visual range, especially if using low resolution images,
therefore to date all image-based approaches rely on some degree of interac-
tion to accomplish this task.

In our approach the hair region is extracted in a simple, automated and
very accurate way, using the temperature values directly. As the skin tem-
perature on humans lies over 35°C [SLEFW02] and the room temperature was
kept at 17°C during data acquisition, areas in the image can be classified
as background, skin and hair regions using simple thresholding (Figure 3.6).
The hair region was assumed to be in the range of 20°C to 30°C for all
our examples. A Level Set Method (LSM)-like shape recovering technique
[MS98] helps to regularize the computed silhouettes and eliminate spurious

texels in the resultant binary images (Figure 3.7).
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Figure 3.6: The hair region (gray area on the right image) is easily extracted
from the thermal images (left image) using two predefined temperature thresholds.

Figure 3.7: Extracted foreground from the input sequence using our threshold-
based approach.

3.4.3 Hairstyle Boundary Reconstruction

The next step of our approach involves the reconstruction of the hairstyle
volume, using the estimated parameters of the cameras employed to acquire
the thermal images as well as the extracted hair regions. This step is a
cornerstone of our approach, since the generation of the hair geometry —
our ultimate goal— is based on information extracted from the input data
and projected over the reconstructed volume. More precisely, to reconstruct

the hairstyle volume we estimate its boundary, a set of voxels resembling
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the surface which is computed by means of photo-consistency [SD97]. Since
the captured temperatures are nearly viewpoint independent, a consistency
measure based on temperature works exceptionally well.

To improve its performance, the reconstruction process is divided in four

steps:

e A visual hull of the model is computed using the extracted hair regions

and the camera parameters.

e The hairstyle boundary is coarsely approximated by computing the
depth of a sparse set of image samples using conventional photo-
consistency assuming that the actual surface is bounded by the visual

hull.

e The hair regions are densely sampled with sub-pixel accuracy and their
depth is computed taking advantage of a local relationship between
temperature and distance to the head. Thanks to this relationship the
surface region is restricted to a thin layer based on the position of the
sparse sampling. Considering only depths within this layer the effi-

ciency of the photo-consistency is increased by one order of magnitude.

e The shape of the resultant surface is improved considering photo-
consistency and monotony between temperature and distance to the

camera among neighboring samples.

Visual Hull as initial approximation of the hairstyle volume. The
visual hull [Lau94] is a geometric approximation of an object computed from
projected silhouettes. Its computation is very fast, but by definition it cannot
represent concavities and fails to capture complex geometric features, such
as curls (Figure 3.8). However, we compute the visual hull as a bounding

volume for the hair that is used to speedup subsequent reconstruction steps.

Refining the hairstyle volume using photo-consistency. A voxel is

considered to be photo-consistent if its temperature appears to be similar
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Figure 3.8: Comparison between a model’s visual hull and the reconstructed
surface, color coded according to its temperature.

to all cameras that can see it. Using photo-consistency as a measure we
decide whether a voxel inside the visual hull volume belongs to the hairstyle
boundary or not.

The basic idea is to compute photo-consistency along camera rays inside
the boundaries of the visual hull, where a maximum indicates an intersection
with the hairstyle’s surface. Reconstruction based on thermal images is par-
ticularly reliable, since the projections of surface voxels are free of directional
artifacts because heat is emitted nearly isotropically.

Visibility is a critical factor influencing photo-consistency. Since in our
approach no visibility information of voxels is available, we base on the
method proposed by Vogiatzis et al.[VHETCO07] that does not require any
explicit visibility information.

The major drawback of this method is its computational cost, caused by
the high number of considered cameras and the amount of samples required

to faithfully reconstruct the hairstyle surface. We avoid this bottleneck by
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analyzing the temperature distribution over the hair region.

IMAGE PLANE

[ searcH ravs | | SPARSE SURFACE SAMPLES |
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&

Figure 3.9: How the accelerated photo-consistency works. The search interval
(bold red segment) for intersection with the surface along the camera ray (dotted
red line) of the dense samples is constrained by the depths of the sparse samples
(blue dots).

Accelerating photo-consistency. A coarse approximation of the
hairstyle boundary is obtained by computing the depth of a sparse set of
image samples using conventional photo-consistency. A finer boundary ap-
proximation is estimated by densely sampling the hair regions with sub-pixel
accuracy. The depths of these samples are efficiently computed based on the
sparse samples and using a heuristic that correlates temperature and distance
to the camera of points at the hairstyle boundary (Figure 3.9).

This heuristic is based on the assumption that —locally— warmer points are
nearer to the head than colder ones, motivated by the idea that for neighbor-
ing boundary points the difference in heat transport and thus temperature is
dominated by the distance to the head. This means that for small boundary
patches located between the head (heat source) and the camera a similar
relationship can be expected for the camera: the lower the temperature the
closer to the camera.

To estimate the depth of the dense samples a 3D kD-tree is built, in-
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corporating both 2D position in image space and temperature of the sparse

samples. Using this information we process the dense samples as follows:

e A knn search is performed for each dense sample with temperature ¢

to retrieve its nearest neighbors.

e Let di, and dp,., be the depth values of the sparse samples with min-
imum (¢y;,) and maximum (f,.c) temperature among the retrieved
neighbors. Depth is computed using conventional photo-consistency
along the interval [duyin, dmax] if tmin < ts < tmax, otherwise only one
of the interval bounds is valid, depending on whether t, < t,;, or

ts > tmax-

Figure 3.10: A surface patch (white rectangle at left top image) reconstructed
using conventional photo-consistency (right top image) and by our accelerated
approach (right bottom image) based on sparse sampling (left bottom image).
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The described process is based on the local monotony of distance with
respect to temperature. Strictly speaking, this monotony holds only for
samples near the center of projection, if the viewing direction is aligned
with the normal of the heat emitting surface. However, depth tends to vary
very rapidly in convex areas near the silhouette, meaning that the computed
intervals are less tight. In addition, the search intervals are not bounded
at all if the monotonicity condition is not satisfied. This simple heuristic
reduces considerably the computational cost of the reconstruction process

and accelerates it in more than one order of magnitude (Figure 3.10).
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Figure 3.11: Depth estimation of an image sample. The intersection of the
sample ray with the hairstyle boundary is computed based on normalized cross-
correlation (NCC) between the image sample and the projection of discrete steps
along the ray on neighboring cameras. In the example shown the boundary is
located between steps 40 and 50.

Improving the hairstyle surface A final refining step is performed to
further improve the reconstructed surface. Due to the rather low resolution
of the thermal images, the dense sampling during surface reconstruction and
the small distance between the cameras considered in our pipeline, the depth

of some image samples cannot be accurately computed. In such cases there is



3.4. OVERVIEW 57

no clear peak among the photo-consistency values around the actual hairstyle
boundary (Figure 3.11).

Since, according to our consistency-based measure, the surface inter-
section could be anywhere along this uncertainty interval we base on the
monotony of distance with respect to temperature to accurately locate it.
More precisely, an optimization process estimates the sample’s depth consid-
ering photo-consistency and local temperature-distance-monotony. Let s; be
an image sample with computed depth d;, temperature t;, photo-consistency
¢(si) and N(s;) be the set of neighboring samples in a fixed-size neighbor-
hood. The exact depth d,,; is computed according to the function

d',,; = argmin(exp(—p )+ D> ((d<d)A <) (33)

di JEN(s)

where 1 = 0.5 is a constant decay factor. The first term of the function
accounts for the photo-consistency of the sample whereas the second term
controls the temperature-distance relationship between the sample and its

neighbors, evaluating to zero if the monotony condition is fulfilled.
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Figure 3.12: Evaluation of the cost function (Eq. 3.3) as a function of the number
of iterations during monotony-based optimization for a surface patch. The blue line
indicates the energy of the computed displacement configurations (states) whereas
the red line shows the energy of the accepted states.

During optimization only depth values within the sample’s uncertainty
interval are considered. Since these depths represent discrete steps along the

sample’s image ray, the minimization of equation 3.3 can be treated as a
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typical combinatorial problem. Since an exhaustive evaluation of all possible
combination is unfeasible, we compute the optimum sample’s depth values

by means of a simulated annealing approach [BT93] (Figure 3.12).

After performing this process for each of the cameras a volumetric repre-

sentation of the hairstyle is obtained (Figure 3.13).

Figure 3.13: Reconstructed hairstyle boundary, color coded according to its
temperature.
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3.4.4 Hairstyle Boundary Characterization

Information regarding location, length and orientation of the hair filaments
within the hairstyle boundary is required for the successfully generation of
hair geometry inside the reconstructed volume. Since the synthesized ge-
ometry should resemble the captured hairstyle the necessary information is
extracted from the input thermal images and projected onto the hairstyle
volume boundary.

Since our hair geometry synthesis is based on temperature and spatial ori-
entation, temperature and image orientation information are extracted from
the input thermograms and combined to generate a temperature scalar field
and an orientation vector field along the hairstyle surface. More specifically,
surface voxels are back-projected to the images considering occlusion using
the visibility information obtained during reconstruction of the hair surface.
The temperature on the voxels is computed by averaging the projection val-
ues on the thermal images and its local spatial orientation is estimated based

on the local image orientation at the projections.

Calculating the image orientation. The local orientation of the thermal
images is calculated using steerable filters [Fre92|. A steerable filter is defined
by a convolution kernel K synthesized as a linear combination of a set of basis
filters that can be rotated arbitrarily. Let I be the image being analyzed, the
convolution of Ky —K rotated by an angle §— with I at (z,y) produces a score
F(0). The predominant orientation 8 at (z,v) is then § = argmax(F(#)) and
the corresponding score F(f) is taken as the pixel’s orientation strength.
The image orientation extraction is performed in a multi-scale fashion
to improve the robustness of the collected data (Figure 3.14). The image is
smoothed several times using a Gaussian Smoothing Filter with increasing
kernel size and the results of this operation are stored as layers of a tensor
of order 3. Orientation information is then extracted from each one of the
layers, meaning that for every image pixel a vector of 2D structures storing
predominant orientation and strength is obtained. The structure with the

maximum orientation strength along the vector is selected as the local ori-
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entation of the pixel. This multi-scale approach assures that the resultant

orientation information is not influenced by high frequency, nonrepresenta-

tive structures that may be present in the image.

Figure 3.14: Results of the orientation analysis. From left to right: original
thermogram, response of the orientation filter applied to the hair region and com-
bination of the responses of the orientation filter at different scales.

Triangulating orientation. As already mentioned, the orientation vec-
tor field on the surface of the hairstyle is computed by projecting the surface
voxels on the images where they are visible and combining the local orien-
tation information at their projections. More precisely, the voxel’s spatial
orientation is computed by solving a linear equation system in least square
sense like done by Wei et al. [WOQS05], as it has to be consistent with their

projections.

Let v be a surface voxel with spatial orientation dy and vis(v) the set of
images where v is visible. For each image I; where I; € vis(v) we have two

equations:

dy -7 =0 (3.4a)

—

dy - fly; =0 (3.4Db)

where 77; is the normal of the image plane and 7, ; is the normal of the plane
spawned by 7; and the backprojection of v’s image orientation on I;’s image

plane.
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The spatial orientation d,, is estimated by minimizing the function

> ((dv-h)? + (dy iy )?), subject to ||dy =1 (3.5)

I;cvis(v)

whose solution is the vector associated to the smallest singular value of the
coefficient matrix related to the equation system (Figure 3.15 right).

The inverse of the error between the projection of the estimated 3D ori-
entation and the original image orientation is used to measure the reliability
(ry) of the estimation (Figure 3.15 left). This measure will be used in the

subsequent synthesis of hair strands.

Figure 3.15: Resultant volumetric orientation field. The spatial orientations are
color coded according to r (left image) and spatial angle (right image).

3.4.5 Hair Strands Synthesis

The final step of the reconstruction pipeline involves the generation of the

hair strands. In contrast to prior approaches who start growing at the scalp
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[PBnS04, WOQS05, PCKT08, WYZG09], filaments start to grow in the most
reliable regions of the boundary —characterized by r,— and follow the orienta-
tion vector field as long as consistent orientation and temperature information
is available. Subsequently the shape of the filaments is refined to improve its

appearance and finally hair segments are joined at loose ends.

Growing the filaments along the surface. The filaments grow by taking
N evenly distributed samples on the boundary of the hairstyle as “seed”
voxels. Starting at the seeds a strand segment is formed by bidirectional
explicit numerical integration along the orientation field similar to [PBnS04,
WOQS05, PCKT08]. However, using local filtering of orientations preferring
smooth temperature gradients and high orientation reliability r, help to guide
the synthesis by reducing the weight of implausible data. Let penq be the
position of the filament’s end venq and N (penq) be the list of the neighboring

voxels. The direction d;ew of the new segment computes as:

Cfnew - Z Wy - J:/ (36>

VEN (Pena)

The weights w are computed based on the position of the neighbors p,, its

temperature ¢, and orientation reliability r, as follows:

1 1
’pend - pvl ’tend - tv

wy | “Ty) (3.7)
The position phey 0f the new filament vertex v,e, is computed based on d;ew
through explicit numerical integration.

A filament grows as long as the new generated vertex lies on the bound-
ary of the hairstyle and its orientation and temperature are consistent with
the orientation and temperature at the filament’s end. More precisely, let
dast; Otmp and gy be distance, temperature and orientation thresholds. The
filament’s growth phase stops if at least one of the following conditions is not
satisfied:

® |Dnew — Pnear| < dast Where ppear is the position of the nearest boundary
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voxel.

Jnew . Q(pnew)
|dncw| |Q(pHCW)|

< Ogir Wwhere Q(pyey) is the orientation field evaluated at

pnew-

® |thew — tend| < Otmp Where they and tenq are the temperatures at vpew

and venq respectively.

To check whether a vertex is valid or not we first consider a 5 x 5 x 5 around
the respective voxel. If no surface voxel is found we assume vy, to lie outside
of the hair volume and stop integration. Accordingly, we choose dgsy = 2.5+ A
where A is the extent of a voxel.

Moreover, we stop growing if temperature or orientation vary rapidly,
to avoid growth across depth and orientation discontinuities. Considering
typical temperature and orientation variation for adjacent pixels along a
strand we set dymp = 1K and dgiy = cos(10°). In a subsequent step we
attempt to join the created filament segments at their end points. This is
especially useful to “bridge gaps” where wisps cross.

Finally, each filament F; is converted to a cubic spline representation
computed from a set of control points x! = x; obtained by sub-sampling
every 16-th vertex of the filament curve. This gives a compressed, analytical
and smooth representation of the filament, used for subsequent curvature-

based regularization.

Regularization using curvature constraints. Due to the image-based
nature of our hair volume characterization technique (see section 3.4.4) spa-
tial orientation is computed only for visible boundary voxels. This means
that important information regarding the hair topology in areas inside the
volume not directly visible to the cameras is missing. The absence of ori-
entation information inside the hairstyle is a serious limitation as occluded
filament sections cannot be reconstructed. This limitation is critical when
modeling curly hair, where strands are quite frequently occluded by other
strands and the —along the hairstyle boundary— estimated orientation field

sometimes does not accurately reproduces the shape of the filament. The
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latter leads to hair strands having a rather unrealistic appearance despite

faithfully following the orientation field.

m——Original
m— optimized

curvature
N

| | |
0 1000 2000 3000 4000 5000 6000
arclength

Figure 3.16: Performing curvature-based regularization on a spatial curve. Top:
perspective view of a sinusoid (red line) and the resulting helix (blue line) after
curvature-based regularization. Bottom: Plot of curvature vs. arclength before
and after optimization.

To solve this problem and improve the appearance of the synthesized
hair strands we take advantage of model-based regularization. According to
[BACT06] the equilibrium shape of hair filaments can be well approximated
by piecewise helical rods. Since using a physically-based model directly on a
per filament basis is not practical we make the simplifying assumption that
the curvature remains constant along the filament segments. According to
that we attempt to minimize variations of the curvature along the filament
while at the same time matching orientation and temperature values available
at the hairstyle boundary.

Let pé be the position and T;', /-ié» the analytically computed tangent and
curvature values at the control points z; of the spline representing the i-th

filament. The shape of the filament is then refined by “sliding” x; along the
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viewing ray of a reference camera according to:

N X . -
i . 0K . T Q(ph)
Z pest — arnginln(Z(a—jJ + SlIl(&I‘CCOS( |sz| ) |Q(p_z)|

J

) (3.8)
j=1

where z; denotes the depth of x; along the camera’s viewing ray and pz
is the projection of p; on ().

The first term of the function represents the derivative of the filament’s
curvature whereas the second term accounts for the angle between the tan-
gent of the filament and the computed orientation vector field. The reference
camera is selected among the cameras where x; is visible as the one in which
the distance between the imaged x} and its principal point is minimal.

The optimization problem described by equation 3.8 is solved with the
help of a conjugate directions method [Pow64], perfectly suited since the
partial derivatives of our objective function cannot be computed analytically.
Figure 3.16 shows the results of the regularization on a synthesized filament
whose projection is a sinusoid whereas in Figure 3.17 the results of the process
in a synthesized hairstyle can be seen. While before optimization ( 3.17 left)
the generated filaments show some degree of clumpiness and lack of depth,

after optimization ( 3.17 right) these artifacts are corrected in a great extent.

Joining loose ends and connecting the filaments to the scalp. Dur-
ing strand generation the growth phase of certain segments was aborted due
to the consistency constraints. However, some of these segments may be
part of longer hair strands having ambiguities along the orientation paths,
e.g. hair crossings. To solve this issue we build a 6D kD-tree with position
and orientation of all filament ends and attempt to connect the loose ends

as follows:

e A knn search is performed for every segment end e according to its

position p, and orientation d,.

e For each retrieved neighbor e; an interpolation spline connecting it with

e is computed. Let x; be the spline’s average curvature, we keep Kyin =
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Figure 3.17: Effect of curvature-based regularization on a wavy hairstyle. Lack
of depth and clumpiness present before regularization (left image) are corrected in
the resultant geometry (righ image).

min(k;) and ey, = argmin, (#;) as the candidate to be connected with

e.

e The segments are joined only if Ky < min(ke, Kopt), where k. and
Kopt are the average curvatures of the segments containing e and ep
(Figure 3.18).

Following this procedure only segments with smooth connection curves are
joined.

A cubic spline representing the new filament is computed for every pair
of connected segments and the end’s combination is removed from the list
of potential connections to avoid repetitions. After finishing the process,
filaments whose length lies outside two standards deviations of the average
length are considered as loose segments and removed from the hair geometry.

Finally, the resultant filaments are connected to a user-defined ellipsoid
approximating the head. To that end, we compute a spline connecting the

filament’s end with the centroid of the ellipsoid.
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Figure 3.18: Segments are joined by a connecting interpolation spline. The
optimum connection (white line) is selected among the splines (grey lines) linking
a given segment (green line) with its neighbors (cyan lines) considering curvature.
The two linked segments form a new filament.

3.5 Discussion and Results

To test the effectiveness of our approach different hairstyles —varying in hair
length and degree of curliness— have been reconstructed (Figure 3.19). The
rather low resolution of the thermal camera (384 x 288 pixels) prevents
us from obtaining information at filament level. Nevertheless, geometrical
features generate distinctive temperature variations which are faithfully cap-
tured by the thermal cameras, even if they are hardly, if at all, visible —due
to shadowing or poor lighting— when using conventional imaging techniques.
The comparison given in row 1 and 2 of Figure 3.19 illustrates that thermal
images are better suited to reveal characteristic geometrical features than
conventional images.

The input data was captured with a VarioCAM® thermal camera (Fig-
ure 3.20) and all hairstyles were reconstructed using a Core i5 @2.6 GHz
CPU arquitecture. Average run-times for the different stages of our method
(reconstruction from 300 images, generation of 100000 filaments) are given in

Table 3.1. Moreover, Table 3.2 shows some statistical information extracted
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from the synthesized hair geometries.

Surface Reconstruction Filament Generation
Sparse Dense Generation | Regularization
50 min. 50 min. 12 min. 60 min.

Table 3.1: Average runtimes of the different stages of our pipeline for a hairstyle
with 100000 filaments, reconstructed from 300 images. Please note that surfaces
are reconstructed based on 1000 sparse samples (column 1) and 10000 dense sam-
ples (column 2) per image respectively.

Hairstyle Length | Curvature
long straight 105 0.0048
short curly 35 0.0088
short straight 66 0.0031

Table 3.2: Average length and curvature of the generated hairstyles, computed
from the spline representation of the filaments.

Along the different stages of our approach several issues had to faced:

Geometric camera calibration The simplicity of our hand-held-based
acquisition step is one of the assets of our approach. Nevertheless, since the
pose of the cameras is approximated using a structure from motion technique,
an analysis of the re-projection error is imperative. By taking this error as
a measure of the camera pose’s reliability we counter the negative effect
of working with approximated camera positions opposed to more complex,

calibrated data acquisition setups.

Hair region segmentation Although the segmentation based on temper-
ature is fast and extremely simple in general, there are still challenges that

need to be taken into consideration when using our method:

e For hairstyles having a large volume the boundary is often hardly visible
due to little temperature differences with the background. In such cases
more images and a lower room temperature is required to obtain reliable

results.
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Figure 3.19: Results of our hairstyle reconstruction approach. In the first and
second rows conventional and thermal pictures of our models can be seen. The
third and fourth rows show the reconstructed hairstyle boundaries and the gener-
ated hair geometries rendered with ambient occlusion.
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e Occasionally, facial areas that exhibit a lower surface temperature —
such as the nose— are treated as part of the hair region. In this case
the boundary reconstruction step is likely to generate more than one
connected component. Simply considering only the biggest connected

component has proven to be quite effective for all hairstyles.

Figure 3.20: Thermal camera VarioCAM®© hr Research used for data acquisition.

Hair volume reconstruction The performance of image-based recon-
struction approaches is strongly influenced by the (lack of) visibility infor-
mation, since this plays an essential role in the triangulation of the object
boundary. In order to compute the visibility information we attempted to
track pixels belonging to the hair region along the thrermograms using a
technique based on optical flow [FWO06]. However in regions of low contrast
no precise pixel translation could be computed between consecutive images.
The large aperture of the attached lens results in a very shallow depth of
field, and due to the convexity of the human head large areas of the hairstyle
lie outside the depth of field and appear blurred in the image. Therefore no
consistent visibility information could be generated based on pixel tracking,
leading us us to follow the idea presented by Vogiatzis et al. [VHETC07] in

which no visibility information is required.
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The accuracy of the accelerated photo-consistency could be improved
using a dynamic approach. A Delaunay triangulation A is computed for the

sparse image samples. The dense samples are then processed as follows:

e A search is performed in A for each dense sample s with temperature

ts to find the containing triangle A,.

e Let dpyi, and dpa, be the depth values of the A,’s vertices with minimum
(tmin) and maximum (fy,,) temperature. Depth is computed using
conventional photo-consistency along the interval [dmin, dmax| if tmin <
ts < tmax, otherwise only one of the interval bounds is valid, depending
whether t5 < i Or tg > tmax (Figure 3.9).

e s is added to A.

The main advantage against our technique lies on the constant refinement of
A. However, computing a triangulation for a constantly increasing point set

regularly is too costly to outperform our original approach.

Hair strands generation The main goal of the filament regularization
step is to improve its visual appearance while remaining consistent with the
orientation vector field. To achieve this the valid positions of the filament
control points are constrained to lie along a “slide direction”, computed ac-
cording to the location of the cameras in which the control point is visible.

Different approaches to determine the slide direction were tested, ranging
from combining the point’s lines of sight of the visible cameras to selecting
a reference camera for the whole filament and setting as slide direction the
corresponding lines of sight. The best results were obtained by setting for
each control point as slide direction the line of sight of the most central
camera, where this “centrality” is measured as the distance between the the
image projection of the control point and the image’s central point.

Some other issues can be seen in the final renderings (Figure 3.21): Hair
models may suffer from unrealistic “clumping” of strands —as the spatial

resolution of the thermal camera prevents capturing finer detail. Notice,
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however, that the filament regularization step eliminates this artifact to some
extent.

Because of the way data was captured —one 360 ° turn at constant height
around the hairstyle- some regions are far from the center of projection (or
not even visible). Points located at those regions cannot be faithfully recon-
structed, since photo-consistency tends to be unstable in such cases, which
can even lead to hairless spots due to the lack of boundary information.
Similarly, for long hair, areas below the shoulders have not been captured
during data acquisition. Please note, however, that this issue can be greatly
reduced by including additional viewing angles. Finally, the shape of long or
extremely voluminous hairstyles tends to be less constrained by the shape of
the underlying head /body parts making both hair-skin temperature segmen-
tation and feature extraction more challenging.

Despite limitations, we believe that our thermal based approach provides
an alternative technique with which promising results can be obtained rela-
tive simple and easy. The results of our approach can be seen in Figure 3.21,
where different views of the synthesized hair geometries have been visualized
using a physically accurate rendering system, including shadowing and global

illumination.

3.6 Conclusions

The advantages of using thermal data as input can be seen in almost every
stage of our approach. Based on the temperature information we accomplish
the segmentation of the hair region in a simple, relatively fast and robust way.
Moreover, the use of accelerated photo-consistency allows for the reconstruc-
tion of complex hair shapes without any constraints regarding lighting, even
from the lower resolution images provided by cost effective thermal video
cameras. In the future we would like to explore methods that combine com-
plementary strength of optical and thermal imaging to capture both high

resolution shape and reflectance at the same time.
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Figure 3.21: Final renderings of the reconstructed hairstyles.






Conclusions and Future Work

We have illustrated how facial hair can be easily transferred between differ-
ent models following the approach described in chapter 2. Moreover, with
the help of the database-driven prior the semblance of the facial hair from a
shaven subject can be estimated. This can be very useful in fields like crim-
inology, where the appearance of a bearded subject can be inferred from a
shaven picture, combining our approach with the “Morphable Head Model”
[PKA109].

Enhancing the facial texture database with subjects of different races
would increase the accuracy of our technique, since the generated prior would
be more general. Moreover, it would be interesting to analyse the impact of
different characterizations of the skin (and hair) pixels as well as different
ways of computing the probability map along the facial texture image on the
performance of our method.

As shown in chapter 3, the use of thermal imaging allow us to improve

almost every step in the hairstyle reconstruction pipeline and to obtain results

7
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comparable to other reconstruction approaches with a much more complex

acquisition setup. The main advantages are

e Considerably simpler and faster data acquisition: No dedicated illumi-

nation, only a hand-held camera is required.

e Extremely simple and robust hair region segmentation: Our
temperature-based segmentation technique outperforms all other pro-
posed methods for the extraction of the hair region (done mostly man-

ually).

e Accelerated surface reconstruction by means of temperature-based
photo-consistency: The temperature distribution along the hairstyle
surface, result of the heat emitted by the head and re-emitted by the
hairs, help us to avoid illumination issues —like self-shadowing, direc-
tional reflectance, highlights— that have a negative impact in the re-

construction process.

Even more satisfactory results should be obtained if the thermal data can
be combined with conventional image data, taking advantage of both types
of information. The color of the hair filaments can be computed from the
conventional images, giving thus more realism to the generated hair geome-
try. Moreover, the resolution of conventional cameras —currently at least one
order of magnitude higher than the resolution of thermal cameras— allows to
capture more detail from the modeled hair. Finally, the reflectance informa-
tion of the hair fibers, obtained from conventional imaging and external light
sources, gives even more information regarding the shape of the hairstyle.
Even if a local relationship can be established based on the monotony
between the temperature at the hairstyle surface and its distance to the
scalp, we have no information regarding the position (and shape) of the
scalp except for some sparse spots in the thermal images where —according
to the measured temperature— the scalp is visible. It would be interesting
to investigate whether it is possible to estimate the shape and position of
the scalp based on the body temperature —measured by capturing the face

of the model- assuming that the scalp surface can be computed by solving a
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boundary-value problem in which heat is emitted from an unknown surface
at a constant rate and travels trough a homogeneous medium until it reaches

the outermost boundary —the reconstructed hairstyle surface.
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