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Diese Welt ist unergr̈undlich. Wir sind es auch, genau wie alle Wesen, die es
auf dieser Welt gibt.

Menschen sind wahrnehmende Wesen, aber die Welt, die sie wahrnehmen, ist
eine Illusion: eine Illusion geschaffen durch die Beschreibung, die ihnen seit
ihrer Geburt erz̈ahlt wurde.
Im Grunde ist jene Welt, die sie mit ihrer Vernuft aufrechterhalten m̈ochten,
eine Welt, geschaffen durch eine Beschreibung und deren dogmatische und
unumsẗoßliche Regeln, die ihre Vernuft zu akzeptieren und zu verteidigen gel-
ernt hat.

Don Juan Matus

Carlos Casterneda,Das Rad der Zeit
Fisher Taschenbuch Verlag, 1. Auflage (2007)
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Zusammenfassung

Im Rahmen eines relativistisch kovarianten Quarkmodells,werden die Auswirkungen von zwei neuen Quark-
wechselwirkungen auf die Massenspektren der leichten Baryonen sowie einer Vielzahl von Obsevablen, wie
elektroschwache Formfaktoren, Helizitätsamplituden, Zerfallsamplituden, magnetische Momente und Ladungs-
radien, untersucht. Das hierbei benutzte Quarkmodell basiert auf der sogenannten Bethe-Salpeter Gleichung,
mit der sich gebundene Zustände in der Quantenfeldtheoriebeschreiben lassen.

Nach einer kurzen Zusammenfassung der theoretischen Grundlagen des verwendeten Quarkmodells wer-
den die bisher veröffentlichten Ergebnisse diskutiert. Danach werden zwei verschiedene Ansätze für alternative
Wechselwirkungen eingeführt. Dies entspricht dem Hauptteil dieser Arbeit: Zusätzlich zu dem sogenannten
Confinement-Potential und der instanton-induzierten ’t Hooft Wechselwirkung wird eine neue Spin-Flavour-
abhängige Wechselwirkung eingeführt, die durch pseudoskalaren Meson-Austausch motiviert ist. Hierbei
nehmen wir an, dass pseudoskalare Oktett- und Singlett-Mesonen mit den Quarks über pseudoskalare Kopplung
wechselwirken. Hierfür nehmen wir ein kurzreichweitigesGauss-Potential an. Dies bedingt drei zusätzliche
Modellparameter: Die Oktett- und Singlett-Kopplungen sowie die Reichweite dieses Potentials. Es zeigt sich,
dass diese zusätzliche Spin-Flavour-abhängige Wechselwirkung, verglichen mit den bisherigen Ergebnissen,
eine bessere Beschreibung der baryonischen Massenspektren erlaubt. Es verbessert ebenso die Beschreibung
der elektromagnetischen Formfaktoren und Helizitätsamplituden sowie der anderen oben genannten Obser-
vablen. Eine weitere Wechselwirkung ergibt sich aus einer Modifikation der Spin-Abhängigkeit des Confine-
ment-Potentials, das durch weitere Spin-Spin- und Tensor-Terme ergänzt wird. Dieses modifizierte Confine-
ment-Potential wird in Kombination mit der instanton-induzierten ’t Hooft-Wechselwirkung wie auch mit
der neuen Spin-Flavour abhängigen Wechselwirkung verwendet. Obwohl den Ergebnissen der obigen neuen
Spin-Flavour abhängigen Wechselwirkung nicht überlegen, zeigte sich auch für Modelle mit modifiziertem
Confinement-Potential, verglichen mit den bisherigen Modellvarianten, eine Verbesserung in der Beschreibung
der Massenspektren und elektroschwachen Observablen.

Der Inhalt dieser Dissertation ist großteils in den folgenden Publikationen veröffentlicht worden:

• M. Ronniger und B. C. Metsch,Effects of a spin-flavour dependent interaction on the baryon mass
spectrum, Eur. Phys. J. A47, 162 (2011), [arXiv:hep-ph/1111.3835].

• M. Ronniger und B. C. Metsch,Effects of a spin-flavour dependent interaction on light-flavoured baryon
helicity amplitudes, Eur. Phys. J. A49, 8 (2013), [arXiv:hep-ph/1207.2640].
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Abstract

Within the framework of a relativistic covariant quark model the effects of two novel quark interactions on the
light-flavoured baryon mass spectra as well as on a multitudeof observables, such as electroweak form factors,
helicity amplitudes, decay amplitudes, magnetic moments and charge radii, are studied. This quark model is
based on the so-called Bethe-Salpeter equation, which describes bound-state systems in quantum field theory.

After a brief summary of the basic ingredients of the quark model, we discuss the results published so far.
Then we introduce two different forms for alternative interactions. This is the major subject of this thesis:
In addition to the so-called confinement potential and an instanton-induced ’t Hooft interaction a novel spin-
flavour dependent interaction motivated by pseudoscalar meson-exchange is introduced. Thereby we assume,
that pseudoscalar octet and singlet mesons interact with quarks via pseudoscalar coupling. Assuming a short-
range Gaussian potential in coordinate space, we introduceonly three additional model parameters: The octet
and singlet-coupling strength as well as the range of this interaction. It is found, that this additional spin-
flavour dependent interaction leads to a better descriptionof the light-flavoured baryon mass spectra than has
been obtained so far. It also improves the description of theelectroweak form factors and helicity amplitudes
as well as of the other observables mentioned above. A secondinteraction is studied, which corresponds
to a modification of the spin dependence of the confinement potential by introducing specific spin-spin and
tensor contributions. This modified confinement potential was used in combination with the instanton-induced
’t Hooft interaction and with the novel spin-flavour dependent interaction as well. Although not superior to
the results found with the new spin-flavour dependent interaction as mentioned above, also for models with a
modified confinement potential a, compared to the previous results, improved description of both the spectra
and electroweak observables was found.

The major part of this thesis can also be found in the following publications:

• M. Ronniger and B. C. Metsch,Effects of a spin-flavour dependent interaction on the baryon mass
spectrum, Eur. Phys. J. A47, 162 (2011) [arXiv:hep-ph/1111.3835].

• M. Ronniger and B. C. Metsch,Effects of a spin-flavour dependent interaction on light-flavoured baryon
helicity amplitudes, Eur. Phys. J. A49, 8 (2013) [arXiv:hep-ph/1207.2640].
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Chapter 1

Introduction

The description of the hadronic excitation spectrum remains a major challenge in strong interaction theory. In
particular, the physics of baryons in the low- and intermediate energy regime ofQuantumChromoDynamics is
not well understood due to the non-perturbative nature of QCD. Additionally, new data for baryon resonances
have been published in the last years. Besides new baryon resonances, new data for electromagnetic nucleon
form factors and helicity amplitudes are now available, which have been measured at the CB-ELSA experiment
in Bonn for instance and other experimental facilities likethe CEBAF at Jefferson Lab. From the theoretical
point of view two approaches exist to approximate QCD in the low energy regime:Chiral PerturbationTheory
and lattice QCD. Here, ChPT describes QCD in the framework ofan effectiveQuantumField Theory, which
preserves all symmetries, in particular the chiral symmetry of the original QCD-Lagrangian, but uses hadrons
as the relevant degrees of freedom instead of quarks and gluons and a systematic expansion in terms of small
masses and the momenta. This has been discussed by Leutwyler[1] for instance. By construction, it is not
applicable to the physics of excited baryons. The second approach in principle is anab initio calculation: it nu-
merically simulates QCD on a discrete space-time lattice. This leads to a enormous numerical effort, because all
appearing correlation functions and path-integrals have to be evaluated numerically in order to extract hadronic
properties. However, with increasing computing power, lattice QCD will be able to reproduce all hadronic
spectra in future, but presently, in spite of recent progress in unquenched lattice QCD, access to excited states is
still very limited [2,3]. Therefore, alternative approaches manageable with lessnumerical effort are presently
still relevant. In the past, theConstituentQuarkModel has been widely used to describe properties of excited
baryons. Such models should offer an efficient description of masses (resonance positions), static properties
such as magnetic moments, charge radii, electroweak amplitudes (form factors and helicity amplitudes) with
only a few model parameters. Furthermore, they can serve as aframework to judge, which resonances can
be considered exotic as well as a guideline in the search of new excited baryon states. Therefore, it presently
still seems worthwhile to improve upon constituent quark model descriptions, which in view of the light quark
masses (even taken as effective constituent masses) have tobe formulated in terms of relativistically covariant
equations of motion. About a decade ago such a quark model forbaryons has been formulated, see [4–7], on
the basis of an instantaneous formulation of the Bethe-Salpeter equation. In this model the quark interactions
reflect a string-like description of quark confinement through a confinement potential rising linearly with in-
terquark distances as well as a spin-flavour dependent interaction based on instanton effects: The latter explains
the major spin-dependent splittings in the baryon spectrum. Löring et al. [5–7] discussed two different models,
which differ by their confinement Dirac-structure (i.g. the spin dependence) and are simply called modelA and
B, respectively. A satisfactory description of the major features in the light-flavoured baryonic mass spectrum
could indeed be obtained. This also applies to the description of the electroweak nucleon form factors and
helicity amplitudes in case of the model version calledA. The prominent features, that can be accounted for
include

• the linear Regge trajectories with an universal slope for all flavours including states up to total angular
momenta ofJ = 15

2 and excitation energies up to 3 GeV, see [5,6];

• the low position of the so-called Roper-resonance in modelA and three other positive parity excited nu-
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Fig. 1.1: Discrepancies in the baryonic mass spectra: The left and right side of each column represents the
results obtained from modelA andB, respectively, of [5] in comparison with experimental data from the
Particle Data Group [8] (middle of each column), where lines indicates the resonance position (mass) with its
mass uncertainty represented by a shaded box. The rating of each resonance is indicated by stars according
to [8]. J andπ denotes the total angular momentum and parity, respectively. Deficiencies are indicates with a
box and question marks.

cleon states (N1/2+(1710), N3/2+(1720), N5/2+(1680)) well below all other states of this kind. These
can be largely accounted for by the instanton-induced force, the strength of which was chosen to repro-
duce the groundstate∆−N splitting [5,6];

• a plethora of electroweak properties, which can be explained within the framework of modelA without
introducing any additional parameters, see [9–14];

• a satisfactory description of the transverseS11(1535)-, D13(1520)-, S31(1620)- andD33(1700)-helicity
amplitudes for modelA.

Nevertheless, some specific discrepancies remain; most prominent are:

• the newly discoveredN1/2+(1880)-resonance (see [8, 15–17]) cannot be accurately accounted for by
both models as well as the negative parity stateN1/2−(1535), which is predicted too low, see Fig. 1.1;

• the conspicuously low position as well as the decay properties of the negative parityΛ1/2−(1405)-
resonance. The calculated mass of this state exceeds the experimental value by more than 100 MeV
in modelA and by more than 200 MeV in modelB;

• there is experimental evidence [8] for excited negative parity∆∗-resonances well below 2 GeV
(∆1/2−(1900), ∆3/2−(1940) and∆5/2−(1930)), which cannot be accounted for by the quark model
mentioned above, see Fig. 1.1, nor by any other constituent quark model we are aware of;

• the mass of the positive parity Roper-like∆3/2+(1600)-resonance, see also Fig. 1.1, the low value of
which with respect to other excited states of this kind cannot be traced back to instanton-induced effects,
since these are absent for flavour symmetric states;

• the Roper-like resonancesΛ1/2+(1600) andΣ1/2+(1660) are not satisfactorily reproduced by both mod-
els, see Fig. 1.1;
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• the position of theΣ3/2−(1580)-resonance as well as theJπ = 7
2
−

-stateΣ7/2−(2100), which cannot be
accounted for by both models, see Fig. 1.1;

• the description of the transverseP11(1440)-helicity amplitude within the framework of modelA, see [9],
does not account for the node found experimentally in novel data from Aznauryanet al.[18–20] from the
CLAS-collaboration at CEBAF. Furthermore, theS11(1535)-amplitude does not describe the minimum
in the data from Burkertet al. [21]. See also Figs. 4.14 and 4.19 for further information.

Furthermore, there are more resonances than can be found in Mertenet al. [9,10] for which helicity amplitudes
can be calculated. Also novel data on helicity amplitudes from Aznauryanet al. [18–20], can be used to
compare to theoretical calculations. In particular, therenow exists data for the longitudinal amplitudes of some
resonances, which have been measured in these experiments and can serve as a further test of the model.

Therefore, we want to explore whether the deficiencies mentioned above are inherent to the constituent
quark model itself or can be overcome by the introduction of an additional quark interaction, which improves
upon the issues mentioned above without deteriorating the excellent description of the majority of the other
states. In view of the fact, that the discrepancies mainly affect the∆-spectrum, this additional interaction is
likely to be flavour dependent. An obvious candidate in this respect would be a single pseudoscalar meson-
exchange potential as has been used as a basis of an effectivespin-flavour dependent quark interaction very
successfully by the Graz-group [22–30]. This model uses a so-called Goldstone-Boson exchange within a rel-
ativised constituent quark model. Furthermore, the model describes baryon states withJ ≤ 5

2 and electroweak
form factors quite well. In particular the electric neutronform factor can be accurately accounted for.

In the present thesis we shall investigate two different implementations of alternative interactions, which
are able to rectify at least partially the deficiencies mentioned above. The thesis is organised as follows: After
a detailed recapitulation of the ingredients and basic equations of our Bethe-Salpeter model in chapter 2 as pre-
sented by Löring, Merten, Kretzschmar and Haupt [4,7,9,10,12–14], we summarise in chapter 3 the numerical
results obtained so far on the light-flavoured baryon spectra for modelA andB, respectively. Subsequently we
introduce the new alternative interactions in chapter 4. Thereby, section 4.2 contains the results and discus-
sion of the baryon mass spectra, electroweak form factors and helicity amplitudes including a new spin-flavour
dependent interaction (see Ronnigeret al. [31,32]) in comparison to the older results obtained from Löringet
al. [5, 6]. In the subsequent section 4.3 we present the results of a modified confinement potential including
spin-spin and tensor interactions, before concluding witha summary in chapter 5.

A part of this work has been published in [31,32] (section 4.2). A synopsis of the major chapters is given
as follows:

Chapter 2: After a brief introduction, chapter 2 starts with the introduction of the six-point Green’s function
defined as the vacuum expectation value of the time-order product of three-fermion Heisenberg field operators
and their adjoint operators and its major contribution fromthe incoming and outgoing baryon-state in sec-
tion 2.2. Following the work of Löringet al. [4,7], the Bethe-Salpeter equation and its normalisation condition
are derived from the six-point Green’s function in section 2.3. Here, we show the underlying method how to
extract the Bethe-Salpeter equation from the Green’s function by defining the corresponding Bethe-Salpeter
amplitudes using a Laurent- and Taylor-expansion around a pole in the energy. Subsequent to this section, in
section 2.4, a reduction method of the Bethe-Salpeter equation to the instantaneous Salpeter equation is dis-
cussed. In particular, the free quark-propagator approximation enters within this reduction method together
with the instantaneous approximation itself. Here, also the Salpeter amplitudes are defined. Due to the projec-
tive structure of the Salpeter equation it is possible to rewrite the Salpeter equation in terms of an Hamiltonian
as shown in subsection 2.4.5. Consequently, the Salpeter equation corresponds to an eigenvalue problem in
which the Salpeter amplitudes enter as eigenvectors, whilethe eigenvalues correspond to the baryon masses.
In the next section 2.5, the calculation of current-matrix elements is discussed in order to calculate electroweak
nucleon form factors and helicity amplitudes. The calculation of current-matrix elements starts from a seven-
point Green’s function in the same manner as the Bethe-Salpeter equation has been derived from the six-point
Green’s function. The underlying concept has been worked out by Merten and Kretzschmaret al. [9, 10, 12]
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and allows the calculation of electroweak form factors and helicity amplitudes. It is summarised in section 2.6
and 2.7.

Chapter 3: Chapter 3 summarises the results for modelA andB, respectively. We start in section 3.2 with a
brief introduction to the different approaches for the confinement potential for these models before discussing
the major points for the implementation of the instanton-induced ’t Hooft interaction in section 3.3. Since the
one-gluon exchange offers an alternative to the instanton-induced ’t Hooft interaction, we have summarised
the basics of the one-gluon exchange in this section for the sake of completeness and without discussing the
results, which can be found in the thesis from U. Löring [7]. Subsequently, we begin the discussion of the light-
flavoured baryon spectra in section 3.5 with the determination of the optimal length scale for each resonance
and of the other parameters of the model. The chapter concludes with a brief overview on electroweak form
factors and helicity amplitudes from Merten and Kretzschmar et al. [9, 10, 12] in section 3.6, which will be
discussed in detail in the next chapter in comparison with the new spin-flavour dependent interaction.

Chapter 4: After a short introduction, we present the novel spin-flavour dependent interaction in section 4.2.
We start with the introduction of two interaction Lagrangians, which couple pseudoscalar mesons to quarks
via pseudoscalar- or pseudovector coupling. Here, we prefer the pseudoscalar quark-meson coupling, since
it has found to lead to the most favourable results. For the pseudoscalar coupled interaction, we substitute
the radial dependence of the corresponding Yukawa-potential in coordinate space by a short-range Gaussian
potential. Based on this new interaction a new model, calledmodelC, will be introduced. The effects of the
new interaction on the light-flavoured baryon spectra, electroweak form factors, helicity amplitudes, photon
couplings and∆(1232) ↔ N transition form factors will be discussed in the subsequentsubsections in detail.
Thereby, we compare additionally with the older predictions of modelA, which however were recalculated
with higher numerical accuracy. The discussion of the results starts with the determination of the optimal
length scale for each resonance and the parameters of modelC in subsection 4.2.1. In the next three subsequent
subsections we discuss the∆-, N - and hyperon-spectra. Here, we discuss also the nature of some newN -
resonances as presently available in the compilation by thePDG [8]. Subsequently, we show the results for
the electroweak form factors in subsection 4.2.5. These include the electric- and magnetic proton and neutron
form factors as well as the axial form factor. For completeness, we also present results for the ratio of the
electric- and magnetic proton form factor as well as for magnetic moments and charge radii. Thereby, the
magnetic moments and charge radii of the octet and decuplet hyperons were calculated with the method from
Haupt et al. [13, 14]. In the next subsection 4.2.6 we discuss in some detail the results for a multitude of
helicity amplitudes for modelA andC. Here, we extend the treatment of Mertenet al. [9,10] to more baryon
resonances and notably also to the longitudinal helicity amplitudes. Finally, the discussion of the effects of the
new spin-flavour dependent interaction closes with a listing of all calculated photon decay amplitudes and the
discussion of the∆(1232) ↔ N transition form factors in subsections 4.2.7 and 4.2.8, respectively.

In section 4.3 we propose an alternative form of a linear confinement potential, which includes spin-spin and
tensor interactions. The corresponding constituent quarkmodels with this form of the confinement potential are
called modelD andE . Thereby, modelD uses the new confinement potential in combination with the instanton-
induced ’t Hooft interaction, whereas modelE uses additionally the new spin-flavour dependent interaction of
modelC. In the following subsections we calculate again the baryonspectra, electroweak form factors, helicity
amplitudes, photon couplings and∆(1232) ↔ N transition form factors for modelD andE , respectively.
All results are compared to the results of modelA and C. In subsection 4.3.1 we discuss again the scale
dependencies of the baryon resonances and list all model parameters. Subsequently, we show all light-flavoured
baryon spectra before presenting the results of the electroweak form factors in subsection 4.3.5. For a selection
of baryon resonances, we display helicity amplitudes in subsection 4.3.6 for modelD andE . Again, we close
the discussion for the new modelsD andE with a listing of all calculated photon decay amplitudes andthe
∆(1232) ↔ N transition form factors. The chapter ends with a short summary.

Chapter 5: Chapter 5 contains a summary and outlook.



Chapter 2

The Bethe-Salpeter model for three fermions

2.1 Introduction

In the following chapter the fundamental ideas and conceptsof the relativistic Bethe-Baryon quark model based
on the Bethe-Salpeter equation, which had been already usedin order to describe baryonic bound-states, will
be discussed and summarised. The model was mainly developedand implemented by U. Löringet al. in 2001
and results were published in [4, 5] and [6] (see also the PhD thesis of U. Löring for more information [7]).
The calculation of form factors, helicity amplitudes and other strong-decay properties has been developed
by K. Kretzschmar, D. Mertenet al. [9] and S. Miguraet al. [33] (see also the PhD of K. Kretzschmar, D.
Merten and S. Migura, [12], [10] and [34]). In order to describe bound-state systems within the framework of
quantum field theory, the so-calledBethe-Salpeter equationis basic for the construction of a baryonic model,
which has the potential to describe excited spectra and electroweak properties of baryons in a unified manner.
We will start with introducing the six-point Green’s function, which describes baryonic bound-states in the
framework of QFT and then derive the Bethe-Salpeter equation and its normalisation condition subsequently.
Here, theBethe-Salpeter amplitudesfor three fermions will be introduced. This procedure can begeneralised
in principle to more than three particles. The Bethe-Salpeter equations are relativistically covariant integral
equations. Assuming, that all interactions are completelyinstantaneous, which means that retardation effects
can be neglected, it is possible to reduce the Bethe-Salpeter equation to the (instantaneous)Salpeter equation.
In doing so, the Bethe-Salpeter amplitudes are substitutedby the so-calledSalpeter amplitudes. Also the
Salpeter equation is relativistically covariant. In the non-relativistic limit the Salpeter equation gets equivalent
to the Pauli equation and the Salpeter amplitude then corresponds to the usual non-relativistic wave-function.
Finally, the Salpeter equation is reformulated as an eigenvalue equation, which then can be solved numerically.

2.2 The six-point Green’s function

The six-point Green’s function is the fundamental quantityfor the description of systems consisting of three
interacting particles in the framework of QFT. Thereby, thesix-point Green’s function is defined as the vacuum
expectation value of the time-ordered product of three-fermion Heisenberg field operatorsψi and their adjoint
operatorsψ̄i := ψi†γ0 as

Ga1,a2,a3;a′1,a
′
2,a

′
3
(x1, x2, x3;x

′
1, x

′
2, x

′
3)

:= −〈0|T ψ1
a1(x1)ψ

2
a2(x2)ψ

3
a3(x3)ψ̄

1
a′1
(x′1)ψ̄

2
a′2
(x′2)ψ̄

3
a′3
(x′3)|0〉 , (2.1)

whereai = (αi, fi, ci) denotes a multi-index, which collects the Dirac-, Flavour-and Colour-quantum num-
bersαi, fi, ci. The vacuum is denoted by|0〉 andT defines the usual time-ordering operator as defined in many
textbooks. Following any standard textbook about quantum field theory (e.g.[35]) the Green’s function can be

5
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expanded in perturbation theory as

G(x1, x2, x3;x
′
1, x

′
2, x

′
3) =

−1

〈0|T exp
(
−i
∫ +∞
−∞ dt ĤI(t)

)
|0〉

∞∑

k=1

(−i )k

k!

∫
d4y1 . . . d

4yk

× 〈0|Tψ1(x1)ψ
2(x2)ψ

3(x3)ψ̄
1(x′1)ψ̄

2(x′2)ψ̄
3(x′3)ĤI(y1) . . . ĤI(yk)|0〉 . (2.2)

Thereby,ĤI denotes the interaction Hamilton and̂HI the corresponding density, while the field operators are
given in the interaction picture. The sum within Eq. (2.2) generates a power series, which corresponds in
every order to a finite number of Feynman diagrams according to Wick’s theorem. In opposite to high energy
scattering processes, where in every interaction perturbation theory can be applied, this is not applicable to low
energy states. Here, poles within the total energy can occur. Such poles never arise from a finite set of Feynman
diagrams. Thus, the problem is to find a method which takes into account an infinite set of diagrams.

The problem can be solved by finding an integral equation withan iterative structure, which circumvents
the explicit summation within the Green’s function and effectively sums up an infinite set of Feynman dia-
grams. This leads to the so-called Bethe-Salpeter equation. We consider two possibilities for interactions in
systems of three fermions, while distinguishing three- andtwo-body interactions. The first one is denoted as
K

(3)
a1,a2,a3;a′1,a

′
2,a

′
3
(x1, x2, x3;x

′
1, x

′
2, x

′
3) and the second one asK(2)

a1,a2;a′1,a
′
2
(x1, x2;x

′
1, x

′
2) . The interactions

are generated byirreducible diagrams only, where irreducible means, that they cannot bedecomposed into
two smaller diagrams by cutting three or two fermion lines atonce. With the definition of the full fermion-
propagator

Si
F ai;a′i

(xi, x
′
i) :=〈0|T ψi

ai(xi)ψ̄
i
a′i
(x′i)|0〉 , (2.3)

Eq. (2.2) can be rewritten with three- and two-body interactions as a Dyson-Schwinger equation

Ga1,a2,a3;a′1,a
′
2,a

′
3
(x1, x2, x3;x

′
1, x

′
2, x

′
3) = S1

F a1;a′1
(x1, x

′
1)S

2
F a2;a′2

(x2, x
′
2)S

3
F a3;a′3

(x3, x
′
3)

− i
∫

d4y1 d4y2 d4y3 S
1
F a1;b1(x1, y1)S

2
F a2;b2(x2, y2)S

3
F a3;b3(x3, y3)

×
∫

d4y′1 d4y′2 d4y′3K
(3)
b1,b2,b3;b′1,b

′
2,b

′
3
(y1, y2, y3; y

′
1, y

′
2, y

′
3)Gb′1,b

′
2,b

′
3;a

′
1,a

′
2,a

′
3
(y′1, y

′
2, y

′
3;x

′
1, x

′
2, x

′
3)

− i
∑

cycl. perm.
(123)

∫
d4y1 d4y2 S

1
F a1;b1(x1, y1)S

2
F a2;b2(x2, y2)

×
∫

d4y′1d
4y′2K

(2)
b1,b2;b′1,b

′
2
(y1, y2; y

′
1, y

′
2)Gb′1,b

′
2,a3;a

′
1,a

′
2,a

′
3
(y′1, y

′
2, x3;x

′
1, x

′
2, x

′
3) . (2.4)

Introducing the inverse fermion-propagatorS−1
F as

∫
d4yi S

i
F ai;bi(xi, yi)S

i
F
−1
bi;a′i

(yi, x
′
i) = δai a′iδ

(4)(xi − x′i) (2.5)

allows the redefinition of the sum of two-body kernels in order to rewrite them as a three-body kernel

K̄
(2)
a1,a2,a3;a′1,a

′
2,a

′
3
(x1, x2, x3;x

′
1, x

′
2, x

′
3) :=

∑

cycl. perm. ((12)3)

K
(2)
a1,a2;a′1,a

′
2
(x1, x2;x

′
1, x

′
2)S

3
F
−1
a3;a′3

(x3, x
′
3) . (2.6)

With that definition a total interaction kernelK can be defined as

K := K(3) + K̄(2) , (2.7)

which includes the three- and two-body kernels as displayedin Fig. 2.1 . In order to simplify the notation the
product of the three (free) fermion propagators will be substituted by thefree Green’s functionG0 , which is
defined by

G0a1,a2,a3;a′1,a
′
2,a

′
3
(x1, x2, x3;x

′
1, x

′
2, x

′
3) := S1

F a1;a′1
(x1, x

′
1)S

2
F a2;a′2

(x2, x
′
2)S

3
F a3;a′3

(x3, x
′
3) . (2.8)
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=K +
∑

cycl. perm.

K(3) K(2)

b

S−1

F

=: K̄(2)

Fig. 2.1: Schematic representation of the total kernelK composed by three- and two-body kernels. The inter-
action kernels are displayed by the red rectangles. Free quarks are displayed as black arrows, which denotes
the quark-propagation.

Furthermore, it is useful to introduce a compact notation, since many integrals and summations occur within
the equations. Therefore, we define the symbolical compact notation for the integrals

[AB]a1,a2,a3;a′1,a′2,a′3(x1, x2, x3;x
′
1, x

′
2, x

′
3) :=

∫
dy1 dy2 dy3Aa1,a2,a3;b1,b2,b3(x1, x2, x3; y1, y2, y3)

×Bb1,b2,b3;a′1,a
′
2,a

′
3
(y1, y2, y3;x

′
1, x

′
2, x

′
3) , (2.9)

Thus, Eq. (2.4) can be rewritten compactly as

G = G0 − iG0KG, (2.10a)

G = G0 − iGK G0 , (2.10b)

where additionally all indices and spatial dependencies are suppressed. Eq. (2.10b) corresponds to the adjoint
form of Eq. (2.4). It can be proven, thatG is invariant under space-time translations, see thesis of Löring [7].

b

b

b

x1

x2

x3

bc
X η

ξ

Fig. 2.2: The Jacobi coordinates
for three particles.

Exploiting this symmetry it allows to use the centre-of-mass frame, where
the so-called Jacobi-coordinatesX, ξ andη can be introduced. A schematic
representation of the Jacobi-coordinates has been displayed in Fig. 2.2 .

X := 1
3 (x1 + x2 + x3) ,

ξ := x1 − x2 ,

η := 1
2 (x1 + x2 − 2x3) ,





⇔





x1 = X + 1
2ξ +

1
3η ,

x2 = X − 1
2ξ +

1
3η ,

x3 = X − 2
3η .

(2.11)

Since the manipulations of the Bethe-Salpeter equation aresimpler in mo-
mentum space it is useful to introduce Jacobi-coordinates in momentum
spaceP , pξ andpη as well

P := p1 + p2 + p3 ,

pξ :=
1
2 (p1 − p2) ,

pη := 1
3 (p1 + p2 − 2p3) ,





⇔





p1 =
1
3P + pξ +

1
2pη ,

p2 =
1
3P − pξ +

1
2pη ,

p3 =
1
3P − pη .

(2.12)

From the translation symmetry mentioned above it follows, that the total momentumP is conserved. After
performing a Fourier transformation, integrals of type

[FA](p1, p2, p3; p′1, p′2, p′3) =
∫

d4x1 d4x2 d4x3 ei (〈p1,x1〉+〈p2,x2〉+〈p3,x3〉)

×
∫

d4x′1 d4x′2 d4x′3 e−i (〈p′1,x′
1〉+〈p′2,x′

2〉+〈p′3,x′
3〉)A(x1, x2, x3;x

′
1, x

′
2, x

′
3)

:= (2π)4δ(4)(P − P ′)A(pξ , pη; p
′
ξ, p

′
η), (2.13)
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occur, where〈·, ·〉 denotes the Minkowski scalar product. All Fourier integrals, which occur in Eq. (2.10a)
or (2.10b) are of this type. SinceP is conserved, all quantities will be labelled with an extra subscriptP and
the Green’s function from Eq. (2.4) now reads in momentum space

GP (pξ, pη; p
′
ξ, p

′
η) =G0P (pξ, pη; p

′
ξ, p

′
η)− i

∫
d4p′′′ξ d4p′′′η d4p′′ξ d4p′′η

×G0P (pξ, pη; p
′′′
ξ , p

′′′
η )KP (p

′′′
ξ , p

′′′
η ; p

′′
ξ , p

′′
η)GP (p

′′
ξ , p

′′
η; p

′
ξ, p

′
η)

=S1
F (

1
3P + pξ +

1
2pη)S

2
F (

1
3P − pξ +

1
2pη)S

3
F (

1
3P − pη)

× (2π)4δ(4)(pξ − p′ξ) (2π)
4δ(4)(pη − p′η)

+ S1
F (

1
3P + pξ +

1
2pη)S

2
F (

1
3P − pξ +

1
2pη)S

3
F (

1
3P − pη)

× (−i )
∫

d4p′′ξ d4p′′ηKP (pξ, pη; p
′′
ξ , p

′′
η)GP (p

′′
ξ , p

′′
η; p

′
ξ, p

′
η) , (2.14)

with the definition of the free Green’s functionG0P in momentum space

G0P (pξ, pη; p
′
ξ, p

′
η) :=S

1
F (

1
3P + pξ +

1
2pη)S

2
F (

1
3P − pξ +

1
2pη)S

3
F (

1
3P − pη)

× (2π)4δ(4)(pξ − p′ξ) (2π)
4δ(4)(pη − p′η) . (2.15)

In doing so, the two-body part of the interaction kernelKP is given by

K̄
(2)
P,a1,a2,a3;a′1,a

′
2,a

′
3
(pξ, pη; p

′
ξ, p

′
η) =

∑

(ijk)=(123),
(231),(312)

K
(2)
2
3P+pηk ,ai,aj ;a

′
i,a

′
j

(pξk , p
′
ξk
)

× Sk
F
−1

ak;a
′
k
(13P − pηk) (2π)

4δ(4)(pηk − p′ηk) , (2.16)

where the additional numbering in the kernel subscripts labels different sets of Jacobi coordinates, transformed
via Talmi-Moshinski transformations

(
pξ

pη

)
:=

(
pξ3

pη3

)
=

(
−1

2 −3
4

1 −1
2

)(
pξ1

pη1

)
=

(
−1

2
3
4

1 −1
2

)(
pξ2

pη2

)
. (2.17)

Analogous to the definition made within Eq. (2.9), a shorter notation in momentum space can be introduced,
which suppresses all integrals and summations. Thus, Eq. (2.14) is written symbolically as

GP = G0P − iG0P KP GP , (2.18a)

GP = G0P − iGP KP G0P , (2.18b)

where the second equation again corresponds to the adjoint equation.

2.3 The Bethe-Salpeter equation and its normalisation condition

So far, we did not choose a particular time-ordering for the Green’s function and it describes scattering processes
as well as bound-states. Here, we are interested in three-fermion bound-states, that propagate forward in time.
In particular, we assume the existence of a bound-state withthe (positive) total massM defined as the invariant
massP̄ 2 = M2 with P̄ = (ωP ,P) andωP =

√
P2 +M2, which is an eigenstate of the total momentum

operator ˆ̄P :

P̂ |P̄ 〉 = P̄ |P̄ 〉 (2.19)

normalised as

〈P̄ |P̄ ′〉 =(2π)3 2ωPδ
(3)(P−P′) . (2.20)
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We thus consider the particular time-orderingmin(x01, x
0
2, x

0
3) > max(x′1

0, x′2
0, x′3

0), which separates the
initial- and final three-fermions states and can be written in terms of the Heaviyside-functionθ

θ(min(x01, x
0
2, x

0
3)−max(x′1

0
, x′2

0
, x′3

0
)) =

{
1 for min(x01, x

0
2, x

0
3) > max(x′1

0, x′2
0, x′3

0)

0 otherwise
. (2.21)

The crucial idea, in order to obtain the Bethe-Salpeter equation and its normalisation condition from the Green’s
function formalism, is an expansion of Eq. (2.18a) in the vicinity of P̄ , while isolating the given time-ordering
from above. Then, the Green’s function can be written as

GP̄ a1,a2,a3;a′1,a
′
2,a

′
3
(x1, x2, x3;x

′
1, x

′
2, x

′
3)

:= −〈0|T
{
ψ1
a1(x1)ψ

2
a2(x2)ψ

3
a3(x3)

}
T
{
ψ̄1
a′1
(x′1)ψ̄

2
a′2
(x′2)ψ̄

3
a′3
(x′3)

}
|0〉

× θ(min(x01, x
0
2, x

0
3)−max(x′1

0
, x′2

0
, x′3

0
))

+ other terms arising from different time-orderings

:= −
∫

d3P
(2π)32ωP

〈0|T{ψ1
a1(x1)ψ

2
a2(x2)ψ

3
a3(x3)}|P̄ 〉〈P̄ |T{ψ̄1

a′1
(x′1)ψ̄

2
a′2
(x′2)ψ̄

3
a′3
(x′3)}|0〉

× θ(min(x01, x
0
2, x

0
3)−max(x′1

0
, x′2

0
, x′3

0
))

+ other terms from diff. time-orderings and other intermediate states. (2.22)

The amplitudes, containing the time-ordered product of three fermion states and the state with total momentum
P̄ then are theBethe-Salpeter amplitudeand its adjoint, defined by

χP̄ a1a2a3(x1, x2, x3) :=〈0|T{ψ1
a1(x1)ψ

2
a2(x2)ψ

3
a3(x3)}|P̄ 〉, (2.23a)

χ̄P̄ a′1a
′
2a

′
3
(x′1, x

′
2, x

′
3) :=〈P̄ |T{ψ̄1

a′1
(x′1)ψ̄

2
a′2
(x′2)ψ̄

3
a′3
(x′3)}|0〉 , (2.23b)

respectively. In Jacobi-coordinates, the centre-of-massvariableX separates and the Bethe-Salpeter amplitudes
as introduced in Eq. (2.23a) and (2.23b) can be written in theform

χP̄ (x1, x2, x3) = e−i 〈P̄ ,X〉χP̄ (ξ, η)

=:e−i 〈P̄ ,X〉
∫

d4pξ
(2π)4

d4pη
(2π)4

e−i 〈pξ,ξ〉e−i 〈pη ,η〉χP̄ (pξ, pη) , (2.24a)

χ̄P̄ (x
′
1, x

′
2, x

′
3) = ei 〈P̄ ,X′〉χ̄P̄ (ξ

′, η′)

=:ei 〈P̄ ,X′〉
∫ d4p′ξ

(2π)4
d4p′η
(2π)4

ei 〈p′ξ,ξ′〉ei 〈p′η ,η′〉χ̄P̄ (p
′
ξ, p

′
η) . (2.24b)

The equations for the Bethe-Salpeter amplitude indeed reflect translational invariance and depend only on
internal coordinatesξ andη or pξ andpη in momentum space. For the Heaviyside-functionθ in Eq. (2.22) we
now write

θ(X0) = i
∫

dP 0

2π

e−i P 0X0

P 0 + i ǫ
(2.25)

and insert Eq. (2.24a) and (2.24b) in Eq. (2.22). Then, aftera Laurent-expansion around the poleP 0 = ωP, we
obtain in lowest order for the Green’s function

GP (pξ, pη; p
′
ξ, p

′
η) =

−i
2ωP

χP̄ (pξ, pη)χ̄P̄ (p
′
ξ, p

′
η)

P 0 − ωP + i ǫ
+ regular terms forP 0 → ωP . (2.26)

Eq. (2.26) can also be reformulated in its covariant form

GP (pξ, pη; p
′
ξ, p

′
η) =− i

χP̄ (pξ, pη)χ̄P̄ (p
′
ξ, p

′
η)

P 2 −M2 + i ǫ
+ regular terms forP 2 →M2 , (2.27)
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lim
P2 → M2

GP = χP̄

−i
P 2−M2+i ǫ

Baryon

χP̄

Fig. 2.3: The Green’s function in the vicinity of a three-fermion pole in lowest order of the Laurent-expansion.
The Bethe-Salpeter amplitudes are displayed by the green semidisks and the Green’s function by the red rect-
angles. Quarks are presented by black arrows, which denotesthe quark-propagation.

which has been displayed also schematically in Fig. 2.3 . Furthermore, Eqs. (2.18a) and (2.18b) can be rewritten
as

GP =G0P − iG0P KP GP , ⇔ (G−1
0P + iKP )GP =1 , (2.28a)

GP =G0P − iGP KP G0P , ⇔ GP (G
−1
0P + iKP ) =1 , (2.28b)

where the identity and the inverse-operators are defined by

1a1,a2,a3;a′1,a
′
2,a

′
3
(pξ, pη; p

′
ξ, p

′
η) :=δa1;a′1δa2;a′2δa2;a′2 (2π)

4δ(4)(pξ − p′ξ) (2π)
4δ(4)(pη − p′η) , (2.29a)

G0P G
−1
0P :=1 , (2.29b)

still using the compact notation of Eq. (2.9). From the righthand side form of Eqs. (2.28a) and (2.28b) the
definition of a pseudo-HamiltonianHP := G−1

0P + iKP is possible with the Green’s functionGP as the
corresponding resolvent

HP GP = GP HP = 1. (2.30)

In the vicinity of the bound-state|P̄ 〉 , the Bethe-Salpeter equation and its normalisation condition can be
evaluated from a Laurent- and Taylor-expansion of the Green’s functionGP and the pseudo-HamiltonianHP ,
respectively. Thereby, only terms in lowest order will be taken into account and Eq. (2.26) can be written in
form

GP (pξ, pη; p
′
ξ, p

′
η) =

−i
2ωP

χP̄ (pξ, pη)χ̄P̄ (p
′
ξ, p

′
η)

P 0 − ωP + iǫ
+

∂

∂P 0

(
P 0 − ωP

)
GP

∣∣∣∣
P 0=ωP

+O
(
P 0 − ωP

)
, (2.31)

while for the pseudo Hamiltonian simply

HP = HP̄ +
∂

∂P 0
HP

∣∣∣∣
P 0=ωP

(
P 0 − ωP

)
+O

(
(P 0 − ωP)

2
)

(2.32)

follows. Multiplying GP andHP with each other and using Eq. (2.30), the coefficients of the resulting expan-
sion can be compared order by order. From this, the Bethe-Salpeter equation and its normalisation condition
appear

HP̄ χP̄ χ̄P̄ =0 , (2.33a)

HP̄

[
∂

∂P 0

(
P 0 − ωP

)
GP

]

P 0=ωP

− i
2ωP

[
∂

∂P 0
HP̄

]

P 0=ωP

χP̄ χ̄P̄ = 1 . (2.33b)

From Eq. (2.33a) the Bethe-Salpeter equation and its adjoint

HP̄ χP̄ =0 , (2.34a)

χ̄P̄ HP̄ =0 , (2.34b)
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follow. According to the definitions of the pseudo Hamiltonian (2.28a) and (2.28b), Eqs. (2.34a) and (2.34b)
can also be written as

χP̄ =− iG0 P̄ KP̄ χP̄ , (2.35a)

χ̄P̄ =− i χ̄P̄ KP̄ G0 P̄ , (2.35b)

which are the so-calledBethe-Salpeter equations. The Bethe-Salpeter equation in the full notation then havethe
form of a relativistically covariant, homogeneous and eight-dimensional integral equation. The Bethe-Salpeter
equation is explicitly given by

χP̄ a1,a2,a3(pξ, pη) = S1
F a1;a′1

(13P + pξ +
1
2pη)S

2
F a2;a′2

(13P − pξ +
1
2pη)S

3
F a3;a′3

(13P − pη)

× (−i )
∫ d4p′ξ

(2π)4
d4p′η
(2π)4

K
(3)

P̄ a′1,a
′
2,a

′
3;a

′′
1 ,a

′′
2 ,a

′′
3
(pξ, pη; p

′
ξ, p

′
η)χP̄ a′′1 ,a

′′
2 ,a

′′
3
(p′ξ, p

′
η)

+ S1
F a1a′1

(13P + pξ +
1
2pη)S

2
F a2a′2

(13P − pξ +
1
2pη)

× (−i )
∫ d4p′ξ3

(2π)4
K

(2)
(

2
3 P̄+pη3

)

a′1,a
′
2;a

′′
1 ,a

′′
2

(pξ3 ; p
′
ξ3)χP̄ a′′1 ,a

′′
2 ,a3

(p′ξ3 , pη3)

+ S1
F a1a′1

(13P + pξ +
1
2pη)S

3
F a3a′3

(13P − pη)

× (−i )
∫ d4p′ξ2

(2π)4
K

(2)
(

2
3 P̄+pη2

)

a′1,a
′
2;a

′′
1 ,a

′′
2

(pξ2 ; p
′
ξ2)χP̄ a′′1 ,a

′′
2 ,a3

(−1
2p

′
ξ2 +

3
4pη2 ,−p

′
ξ2 − 1

2pη2)

+ S2
F a2a′2

(13P − pξ +
1
2pη)S

3
F a3a′3

(13P − pη)

× (−i )
∫ d4p′ξ1

(2π)4
K

(2)
(

2
3 P̄+pη1

)

a′1,a
′
2;a

′′
1 ,a

′′
2

(pξ1 ; p
′
ξ1)χP̄ a′′1 ,a

′′
2 ,a3

(−1
2p

′
ξ1 − 3

4pη1 , p
′
ξ1 − 1

2pη1) . (2.36)

We refer to Fig. 2.4 for a schematic representation of the Bethe-Salpeter equation.

χP̄ = −i K(3)

P̄
χP̄

+
∑

cycl. perm. 123

−i K(2)

P̄ χP̄

Fig. 2.4: A schematic representation of the Bethe-Salpeterequation. The Bethe-Salpeter amplitudes are dis-
played by the green semidisks and the interaction kernels bythe red rectangles. Quarks are presented by black
arrows.

Concerning the normalisation condition Eq. (2.33b) a multiplication withχ̄P̄ from the left with Eq. (2.34b)
leads to

−iχ̄P̄

[
∂

∂P 0
HP̄

]

P 0=ωP

χP̄ = 2ωP , (2.37)
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which can also be written in its full integral form as

− i
∫ d4p′ξ

(2π)4
d4p′η
(2π)4

∫
d4pξ
(2π)4

d4pη
(2π)4

χ̄P̄ (p
′
ξ, p

′
η)

[
∂

∂P 0

(
G−1

0 P̄
(p′ξ, p

′
η; pξ, pη) + iKP̄ (p

′
ξ, p

′
η ; pξ, pη)

)]

P 0=ωP

χP̄ (pξ, pη) = 2ωP , (2.38)

while the covariant form of the normalisation condition is given by

−i χ̄P̄

[
Pµ

∂

∂Pµ
HP

]

P=P̄

χP̄ = 2M2 , (2.39)

which is displayed schematically in Fig. 2.5 . Based on the Bethe-Salpeter equation the so-called Salpeter

χP̄ −i Pµ
∂

∂Pµ

(
b

b

b

S−1

F
⊗S−1

F
⊗S−1

F

+
∑

cycl. perm.

b

i K(2)

P̄

S−1

F

+ i K(3)

P̄

)

P = P̄

χP̄ = 2M 2

Fig. 2.5: A schematic representation of the normalisation condition of the Bethe-Salpeter equation. The Bethe-
Salpeter amplitudes are displayed by the green semidisks and the interaction kernels by the red rectangles.
Quarks are represented by black arrows, which denotes the quark-propagation.

equation can be derived by assuming instantaneous interactions. This is the topic of the subsequent section.

2.4 Reduction to the instantaneous Salpeter equation

In order to make the Bethe-Salpeter equation more tractablefor further studies we make some approximations,
which reduce the analytical (and numerical) effort. These approximations are itemised in the next subsections
and leads finally to the Salpeter equation as it has been worked out by Löringet al. [4, 7] for baryons and by
Münz and Resaget al. [36–45] for mesons. These approximations are partially motivatedby the success of
non-relativistic constituent quark models.

2.4.1 The free quark propagator approximation

The first model assumption is, that the full quark propagatorsSi
F can be replaced by free-form quark propaga-

tors:

Si
F (pi)

!
=

i
p/i −mi + i ǫ

. (2.40)

In doing so, we tacitly assume that some part of the quark self-energy can be subsumed in effective constituent
quark massesmi, which thus enters as free parameters in the model. This makes the Salpeter approach more
phenomenological, but it reduces the numerical and analytical effort drastically.

2.4.2 The instantaneous approximation

The second model assumption is, that all interaction kernels are assumed to be represented by instantaneous
potentialsV , which thus excludes retardation effects in general. The instantaneous approximation can be
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formulated in the centre-of-mass frameP = P̄ = (M, 0) as

K
(3)
P

(
pξ, pη; pξ

′, pη
′) ∣∣∣

P=P̄=(M,0)

!
=V (3)

(
pξ,pη ;pξ

′,pη
′) , (2.41a)

K
(2)
2
3
P+pηk

(
pξk ; pξk

′) ∣∣∣
P=P̄=(M,0)

!
=V (2)

(
pξk ;pξk

′) , (2.41b)

where the sub-indexk labels different sets of Jacobi coordinates in case of the two-body interaction kernelK(2).
Thereby, the instantaneous approximation preserves the covariance of the Bethe-Salpeter equation as shown by
Wallace and Mandelzweig [46]. In order to elucidate that, we follow the idea of Wallace and Mandelzweig by
decomposing the relative momentap within the interactions into space- and time-like components along and
perpendicular to the arbitrary space-time vectorP . Let p be one of the relative momenta, then it decomposes
into orthogonal and parallel componentsp⊥ andp‖ with respect to the direction ofP . The decomposition is
given by

p‖ =
〈p, P 〉
P 2

P , (2.42a)

p⊥ = p− 〈p, P 〉
P 2

P , (2.42b)

The crucial point is, thatp⊥ is definitely three-dimensional and the instantaneous approximation, which is
formulated in the centre-of-mass frame, can be reformulated in any other reference frame as

K
(3)
P

(
pξ, pη; pξ

′, pη
′) ∣∣∣

P=P̄

!
=V (3)

(
pξ⊥, pη⊥; pξ

′
⊥, pη

′
⊥
)
, (2.43a)

K
(2)
2
3
P+pηk

(
pξk ; pξk

′) ∣∣∣
P=P̄

!
=V (2)

(
pξk⊥; p

′
ξk⊥

)
. (2.43b)

Indeed, settingP = P̄ = (M,0) returns the instantaneous potentials Eqs. (2.41a) and (2.41b) in the centre-of-
mass frame. This thus preserves the formal covariance of theBethe-Salpeter equation.

2.4.3 The Salpeter equation

In this subsection, the Salpeter equation will be derived from the Bethe-Salpeter equation by taking into account
the previously introduced approximations. To outline the procedure we concentrate on the case without two-
body interactions. Starting point are the Bethe-Salpeter equations

χP̄ =− iG0 P̄ K
(3)

P̄
χP̄ , (2.44a)

χ̄P̄ =− i χ̄P̄ K
(3)

P̄
G0 P̄ . (2.44b)

Inserting the unretarded kernel of Eq. (2.41a) and integrating out all parallel componentsp‖ of the relative
momenta in the centre-of-mass frame,i.e. all energy dependencies (p0ξ andp0η), of the complete Bethe-Salpeter
equation, we obtain the Salpeter equation. To this end we define theSalpeter amplitudeand its adjoint

φM (pξ,pη) :=

∫ dp0ξ
2π

dp0η
2π

χP̄ ((p
0
ξ ,pξ), (p

0
η ,pη))

∣∣∣
P̄=(M,0)

, (2.45a)

φ̄M (pξ,pη) :=

∫ dp0ξ
2π

dp0η
2π

χ̄P̄ ((p
0
ξ ,pξ), (p

0
η ,pη))

∣∣∣
P̄=(M,0)

. (2.45b)

This leads to a reformulation of the Bethe-Salpeter equation, which can hence be rewritten as

χM =− iG0M V (3) φM , (2.46a)

χ̄M =− i φ̄M V (3)G0M . (2.46b)
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Note, that these equations allows the reconstruction of theoriginal Bethe-Salpeter amplitudes if the Salpeter
amplitudes are known and the interaction kernels includes no retardation effects. Furthermore, a common
definition of the so-calledvertex functionis useful, in the rest framēP = (M,0)

ΓM (pξ, pη) :=
[
G−1

0M χP̄

]
(pξ, pη) = −i

[
V (3) φM

]
(pξ,pη) ≡ ΓM (pξ,pη) , (2.47a)

Γ̄M (pξ, pη) :=Γ†
M (pξ, pη) γ0 ⊗ γ0 ⊗ γ0 ≡ Γ̄M (pξ,pη) , (2.47b)

which does not depend on the relative energies. The adjoint vertex function is likewise defined. In order to
reduce the Bethe-Salpeter equation by integrating out all remaining energiesp0ξ andp0η it is also useful to define
a energy-integrated short-notation

〈A〉(pξ ,pη;p
′
ξ ,p

′
η) :=

∫ dp0ξ
2π

dp0η
2π

∫ dp′ξ
0

2π

dp′η
0

2π
A(pξ, pη; p

′
ξ, p

′
η) . (2.48)

From the Bethe-Salpeter equation without two-body interactions according to Eq. (2.36) the Salpeter equation
can be written in the short-notation of Eq. (2.48) as

φM (pξ,pη) =

∫ dp0ξ
2π

dp0η
2π

χP̄ ((p
0
ξ ,pξ), (p

0
η ,pη))

∣∣∣
P̄=(M,0)

= −i
∫ dp0ξ

2π

dp0η
2π

∫ d4p′ξ
(2π)4

d4p′η
(2π)4

G0M (pξ, pη; p
′
ξ, p

′
η)
[
V (3)φM

]
(p′

ξ,p
′
η)

Eq. (2.48)
= −i

∫ d3p′ξ
(2π)3

d3p′η
(2π)3

〈G0M 〉(pξ,pη ;p
′
ξ,p

′
η)
[
V (3)φM

]
(p′

ξ,p
′
η)

Eq. (2.9)
= −i

[
〈G0M 〉V (3)φM

]
(pξ,pη) . (2.49)

For the evaluation of〈G0M 〉 = 〈S1
F ⊗ S2

F ⊗ S3
F 〉 the residue theorem will be used, where the Feynman

propagators involved are decomposed into positive- and negative energy parts. We thus define projectorsΛ±,
which projects on pure positive- or negative energies

Λ±
i (pi) :=

ωi(pi)1±Hi(pi)

2ωi(pi)
, (2.50)

whereωi(pi) :=
√

|pi|2 +m2
i andHi(pi) = γ0(γ · pi + mi) denotes the free Dirac-Hamiltonian. With

these projectors it is possible to decompose the fermion propagatorsSi
F (pi) for each particle into positive- and

negative energy parts

Si
F (pi) =

i
p/i −mi + i ǫ

= i

(
Λ+
i (pi)

p0i − ωi(pi) + i ǫ
+

Λ−
i (pi)

p0i + ωi(pi)− i ǫ

)
γ0 . (2.51)

This procedure has the advantage, that the pole position of〈G0M 〉 can be isolated in the energy variablesp0i ,
which will subsequently be integrated out with the residue theorem. Integrating out all energies withinG0M

yields

〈G0M 〉(pξ ,pη;p
′
ξ,p

′
η) =

i

[
Λ+
1 (p1)⊗ Λ+

2 (p2)⊗ Λ+
3 (p3)

M − Ω(p1,p2,p3) + i ǫ
+

Λ−
1 (p1)⊗ Λ−

2 (p2)⊗ Λ−
3 (p3)

M +Ω(p1,p2,p3)− i ǫ

]

× γ0 ⊗ γ0 ⊗ γ0 (2π)
3δ(3)(pξ − p′

ξ) (2π)
3δ(3)(pη − p′

η) , (2.52)

with the definitionΩ(p1,p2,p3) := ω1(p1) + ω2(p2) + ω3(p3). It is remarkable, that only projections on
pure positive- or pure negative energies appears, which will not be the case if we include two-body interactions.
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This property follows directly from the usage of the residuetheorem and the structure ofG0M . Based on this,
the Salpeter equation (2.49) for three-fermions can be formulated as

φM (pξ,pη) =

[
Λ+
1 (p1)⊗ Λ+

2 (p2)⊗ Λ+
3 (p3)

M −Ω(p1,p2,p3) + i ǫ
+

Λ−
1 (p1)⊗ Λ−

2 (p2)⊗ Λ−
3 (p3)

M +Ω(p1,p2,p3)− i ǫ

]

× γ0 ⊗ γ0 ⊗ γ0

∫ d3p′ξ
(2π)3

d3p′η
(2π)3

V (3)(pξ,pη ;p
′
ξ,p

′
η)φM (p′

ξ,p
′
η) . (2.53)

In order to solve the integral equation, it is useful to reformulate the equation in the form of an eigenvalue
problem, which allows a direct extraction of the massM as an eigenvalue. However, before performing such
a reformulation some properties, regarding the projectivestructure of the Salpeter equation, will be discussed
first.

2.4.4 The projective structure of the Salpeter equation

Since the action of a positive- or negative projector on the Salpeter equation (2.53) will be absorbed within the
projector structure in front of the integral, the Salpeter amplitudes are indeed eigenfunctions of the projectors

Λ± :=Λ+++ ± Λ−−− , Λ := Λ+ , (2.54a)

Λ±±± :=Λ±
1 ⊗ Λ±

2 ⊗ Λ±
3 . (2.54b)

This defines the so-calledprojected Salpeter amplitudes

φM =ΛφM ≡ φΛM = Λ+++φM + Λ−−−φM := φ+++
M + φ−−−

M (2.55a)

φ̄M =φ̄M Λ̄ ≡ φ̄ΛM = φ̄M Λ̄+++ + φ̄M Λ̄−−− := φ̄+++
M + φ̄−−−

M , (2.55b)

with the definition of the adjoint projected Salpeter amplitude φ̄M := γ0 ⊗ γ0 ⊗ γ0 φM γ0 ⊗ γ0 ⊗ γ0. The
important point is, that all amplitudes with mixed positive- and negative energy components such as,e.g.
φ++−, do not occur in the dynamical equations in case of pure three-body interactions as already argued in the
previous subsection. Furthermore, it is important to note,that only the projected part of the potential defined
by

V
(3)
Λ := Λ̄V (3)Λ , (2.56)

is relevant in the Salpeter equation, where the adjoint projector is defined as̄Λ := γ0 ⊗ γ0 ⊗ γ0Λγ0 ⊗ γ0 ⊗ γ0.
This leads to the definition of the so-calledresidual part

V̄
(3)
R := V (3) − V

(3)
Λ , (2.57)

containing all mixed energy parts, which here have no effectwhen considering only three-body interactions.
With the inclusion of two-body interactions a more complicated residual part occurs. This will be addressed
briefly in the next subsection.

2.4.5 The Hamiltonian formulation of the Salpeter equation

As already mentioned it is useful to reformulate the Salpeter equation as an eigenvalue problem in terms of a
HamiltonianH with eigenvalueM , which than can be solved numerically

HφM =MφM with ΛφM = φM . (2.58)

Again with pure three-body interactions, the Salpeter Hamiltonian can be defined as

[HφM ](pξ ,pη) =[H0φM ](pξ,pη)

+ Λ(pξ ,pη) γ0 ⊗ γ0 ⊗ γ0

∫ d3p′ξ
(2π)3

d3p′η
(2π)3

V (3)(pξ,pη;p
′
ξ,p

′
η)φM (p′

ξ,p
′
η) , (2.59)
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while H0 is defined as the free Hamiltonian in terms of single particleDirac-operators

H0(pξ,pη) := H1(p1)⊗ 1⊗ 1 + 1⊗H2(p2)⊗ 1 + 1⊗ 1⊗H3(p3) . (2.60)

Eq. (2.59) can be easily obtained from the Salpeter equation(2.53) by projecting the complete equation with
Λ+
i and/orΛ−

i , i = 1, 2, 3. This leads to

(M ∓ Ω)Λ±
i φM (pξ,pη) = Λ±±±γ0 ⊗ γ0 ⊗ γ0 [V

(3)φM ](pξ ,pη) ,

Eq. (2.50)⇒ (ωiM − ΩHi)φM (pξ,pη) = ωiΛγ0 ⊗ γ0 ⊗ γ0 [V
(3) φM ](pξ ,pη) ∀ i = 1, 2, 3 . (2.61)

Furthermore, adding up the contributions for eachi returns the Hamiltonian formulation of the Salpeter equation
as given by Eq. (2.59).

Considering two-particle interactions leads to mixed energy projectors within the Salpeter equation as
shown by Löringet al. [4, 7] and thus the residual part of the interaction does not vanish. Projecting the
complete Salpeter equation on pure positive and negative energy components withΛ±±± all mixed energy
projectors vanishes and the problem becomes solvable. Therefore, it is necessary to introduce the projected
Salpeter amplitude

φΛM := ΛφM (2.62)

before extracting Eq. (2.59) to include the two-body interactions

[HφΛM ](pξ,pη) =[H0φ
Λ
M ](pξ ,pη)

+ Λ+(pξ,pη) γ0 ⊗ γ0 ⊗ γ0

∫ d3p′ξ
(2π)3

d3p′η
(2π)3

V (3)(pξ,pη ;p
′
ξ,p

′
η)φ

Λ
M (p′

ξ,p
′
η)

+ Λ−(pξ,pη) γ0 ⊗ γ0 ⊗ 1

∫ d3p′ξ
(2π)3

V (2)(pξ;p
′
ξ)⊗ 1φΛM (p′

ξ ,pη)

+ corresponding quark interactions (23) and (31). (2.63)

The derivation of Eq. (2.63) can be found in the PhD thesis from U. Löring [7], which takes at least a longer
discussion and will be only briefly summarised here.

In course of the discussion it is useful to substituteGM by GM , which is defined as the resolvent of the
pseudo HamiltonianHR

M := G−1
0M + i V (3)

R + i K̄(2)
M as defined before in Eq. (2.30) by only including residual

interactions. We start from the full Bethe-Salpeter equation according to Eqs. (2.35a) and (2.35b)

χM =− iG0M

[
V

(3)
Λ + V

(3)
R + K̄(2)

]
χM , (2.64a)

χ̄M =− i χ̄M

[
V

(3)
Λ + V

(3)
R + K̄(2)

]
G0M , (2.64b)

and introduce a pseudo Hamiltonian, which fulfils

GMH
R
M =HR

MGM = 1 , (2.65a)

⇒ GM =G0M − iG0M

[
V

(3)
R + i K̄(2)

M

]
GM . (2.65b)

Using these definitions, the Bethe-Salpeter equation can bewritten as

χM =− i GM V
(3)
Λ χM = −iGM V

(3)
Λ φΛM . (2.66)

In the last step, the energiesp0ξ andp0η have been integrated out and the projected Salpeter equation can be
written as

φΛM =− i 〈GM 〉Λ V (3)
Λ φΛM , (2.67)
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while the Green’s function is given by

〈GM 〉Λ(pξ ,pη;p
′
ξ,p

′
η) = Λ(pξ ,pη)

∫ dp0ξ
2π

dp0η
2π

∫ dp′ξ
0

2π

dp′η
0

2π
GM (pξ, pη ; p

′
ξ, p

′
η)Λ̄(p

′
ξ,p

′
η) . (2.68)

Due to Eq. (2.65b),〈GM 〉Λ can be written as a Neumann series in powers of(V
(3)
R + K̄

(2)
M )

〈GM 〉Λ = 〈G0M 〉+ Λ〈G0M (−i )
[
V

(3)
R + K̄

(2)
M

]
G0M 〉Λ̄ + . . . . (2.69)

The expansion allows to classify reducible- and irreducible diagrams with respect to the free Salpeter propagator
〈G0M 〉, which corresponds to the introduction of an effective potential V eff

M by rewriting〈GM 〉Λ as

〈GM 〉Λ !
= 〈G0M 〉 − i Λ〈G0M 〉V eff

M 〈GM 〉Λ , (2.70)

where only the projected part ofV eff
M appears, which thus acts only on pure positive- and negativeenergy

components. With the conditions

V eff
M = Λ̄V eff

M = V eff
M Λ, 〈G0M 〉 = Λ〈G0M 〉Λ̄ , (2.71)

the projected Salpeter equation can be regained as

φΛM = −i 〈G0M 〉
[
V (3) + V eff

M

]
φΛM , (2.72)

and the effective potentialV eff
M can be expanded into a power series in the argumentV

(3)
R + K̄

(2)
M given by

V eff
M =

∞∑

i=1

V eff
M

(i)
. (2.73)

Cutting the series at orderk, thek-th order Salpeter equation is given by

φΛM
(k)

= −i 〈G0M 〉
[
V (3) + V eff

M
(k)
]
φΛM

(k)
. (2.74)

Only the Born-approximation (k = 1) has been taken into account in order to derive Eq. (2.63).

2.4.6 The normalisation condition of the Salpeter amplitudes

Based on the normalisation condition of the Bethe-Salpeteramplitudes from subsection 2.3 given in Eq. (2.37)

−i χ̄M

[
∂

∂MHM

]
χM = 2M , (2.75)

which includes the pseudo HamiltonianHM := G−1
0M + i V (3) + i K̄(2)

M = HR
M + i V (3)

Λ , the condition can be
rewritten as

i φ̄ΛMV
(3)ΛGM

[
∂

∂MHR
M

]
GM Λ̄V (3)φΛM = 2M , (2.76)

where the Salpeter amplitudes satisfy Eq. (2.66). Note, that V (3)
Λ in Eq. (2.76) does not depend onM .

With the definition of the resolvent according to Eq. (2.65a)it can be shown, that the derivative of the
pseudo Hamiltonian fulfils

GM

[
∂

∂MHR
M

]
GM = − ∂

∂M GM (2.77)
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and the normalisation condition then reads

−i φ̄ΛMV
(3)Λ

[
∂

∂M GM

]
Λ̄V (3)φΛM = 2M , (2.78)

where the integration over the Salpeter amplitudes now is six-dimensional in contrast to the eight-dimensional
integration of the original normalisation condition for the Bethe-Salpeter amplitudes. Consequently, all remain-
ing energies can be integrated out and Eq. (2.78) can be written as

−i φ̄ΛMV
(3)Λ

〈
∂

∂M GM

〉
Λ̄V (3)φΛM = 2M . (2.79)

The derivative can be transformed further via the relation

Λ
〈

∂
∂M GM

〉
Λ̄ = ∂

∂M

[
Λ 〈GM 〉 Λ̄

]
= ∂

∂M 〈GM 〉Λ = −〈GM 〉Λ ∂
∂M

[
h0M + iV eff

M

]
〈GM 〉Λ , (2.80)

whereh0M is defined by the condition〈GM 〉h0M = h0M 〈GM 〉 = Λ and can explicitly be written as

h0M (pξ,pη ;p
′
ξ,p

′
η) :=− iγ0 ⊗ γ0 ⊗ γ0[1M −H0] (2π)

3δ(3)(pξ − p′
ξ)(2π)

3δ(3)(pη − p′
η) . (2.81)

Inserting Eq. (2.80) in Eq. (2.79) then leads to

i φ̄ΛMV
(3) 〈GM 〉Λ ∂

∂M

[
h0M + iV eff

M

]
〈GM 〉Λ Λ̄V (3)φΛM =2M

⇔ −i φ̄ΛM
∂

∂M

[
h0M + iV eff

M

]
φΛM =2M , (2.82)

where in the last step the Salpeter equation (2.67) has been used in order to simplify the equation. The action
of the derivative reducesh0M in Eq. (2.82) to theδ-functions given in Eq. (2.81), which can be integrated out
and the normalisation condition finally results in

〈φΛM |φΛM 〉 − 〈φΛM |γ0 ⊗ γ0 ⊗ γ0
[

∂
∂M V eff

M

]
|φΛM 〉 = 2M . (2.83)

Consequently, there occurs an additional contribution to the normalisation condition compared to the case with

pure three-body interactions, which however vanishes in case of the Born approximationV eff
M ≃ V eff

M
(1)

. For
further details on this extensive calculation we refer to the PhD thesis from Löring [7]. Thus, finally we find

〈φΛM |φΛM 〉 ≃ 2M . (2.84)

Due to this simple relation, every Salpeter amplitude can normalised to unity by a factor 1√
2M

, whereM is the
mass of the corresponding baryon resonance.

2.5 Current-matrix elements

The study of electromagnetic form factors and helicity amplitudes for (excited states of) baryons is an ongoing
important challenge in hadron physics. Within the framework of the Bethe-Baryon model, discussed in the
previous sections, it is possible to calculate current-matrix elements given by the expression〈P̄ |jµO(0)|P̄ ′〉 ,
which allow the extraction of electromagnetic properties.The basic ideas on the relation between current-
matrix elements and the Bethe-Salpeter formalism can be found in Merten and Kretzschmaret al. [9, 10, 12].
Starting with the definition of the current

jµO(x) := : ψ̄(x)Oµψ(x) : , (2.85)

for an arbitrary current-operatorO it is possible to find a relation to the current-matrix elements. Below a
brief summary with the crucial steps in the derivation of current-matrix elements will be given according to the
derivation performed by Merten and Kretzschmaret al. [9, 10, 12]. The derivation runs similar to that of the
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Bethe-Salpeter equation, as outlined in section 2.3. In this case, we start from a seven-point Green’s function,
defined by

Gµ
a1,a2,a3;a′1,a

′
2,a

′
3
(x1, x2, x3;x;x

′
1, x

′
2, x

′
3)

:= −〈0|T
{
ψ1
a1(x1)ψ

2
a2(x2)ψ

3
a3(x3)j

µ
O(x)ψ̄

1
a′1
(x′1)ψ̄

2
a′2
(x′2)ψ̄

3
a′3
(x′3)

}
|0〉 . (2.86)

Here, we choose the time-orderingmin(x01, x
0
2, x

0
3) > x0 > max(x′1

0, x′2
0, x′3

0) and concentrate on pole
contributions as in Eq. (2.25). Introducing again a basis|P̄ 〉 in momentum space the current-matrix element
can be written as

〈P̄ |jµO(0)|P̄ ′〉 :=− χ̄P̄ K
µ
P̄ ,P̄ ′χP̄ ′

=−
∫

d4pξ
(2π)4

d4pη
(2π)4

d4p′ξ
(2π)4

d4p′η
(2π)4

χ̄P̄ (pξ, pη)K
µ
P̄ ,P̄ ′(pξ, pη; p

′
ξ, p

′
η)χP̄ ′(p′ξ, p

′
η) , (2.87)

by defining the so-called current-kernel including contributions up to first order contributions1 as given by

Kµ
P̄ ,P̄ ′ = K

µ(0)

P̄ ,P̄ ′ +K
µ(1)

P̄ ,P̄ ′ . (2.88)

The contributions itself are defined as

K
µ(0)

P̄ ,P̄ ′ =S
1
F
−1
(
1
3 P̄ + pξ +

1
2pη

)
⊗ S2

F
−1
(
1
3 P̄ − pξ +

1
2pη

)
⊗Oµ

× (2π)4δ(4)(pξ − p′ξ)(2π)
4δ(4)

(
2
3 (P̄ − P̄ ′) + pη − p′η

)

+ cycl. perm. (23) and (31) , (2.89)

and

K
µ(1)

P̄ ,P̄ ′ =iK(2)
2
3 P̄+pη

(pξ, p
′
ξ)⊗Oµ (2π)4δ(4)

(
2
3

(
P̄ − P̄ ′

)
+ pη − p′η

)

+ cycl. perm. (23) and (31). (2.90)

In Fig. 2.6 the equation for the current-matrix element of Eqs. (2.87), (2.89) and (2.90) is shown schematically.
In order to calculate current-matrix elements according toEq. (2.87), it is necessary to reconstruct the Bethe-
Salpeter amplitude from the Salpeter amplitude. Without two-body interactions the relation is given by the
Bethe-Salpeter equation itself (see Eq. (2.46a))

χM =− iG0M V (3) φM . (2.91)

However, including two-body interaction the situation is more complicated. Knowing the effective potential
Veff and the projected Salpeter amplitudeφΛM due to Eqs. (2.73) and (2.74), the Bethe-Salpeter amplitudecan
also be reconstructed exactly according to Eq. (2.66)

χM =− iGM V
(3)
Λ φΛM . (2.92)

A general problem appears at this point, since the projectedSalpeter amplitude is computed up tok-th order
φ
Λ, (k)
M and the Bethe-Salpeter amplitude, which is reconstructed by the approximated Salpeter amplitude, is no

longer an exact solution of the Bethe-Salpeter equation. Thus, in order to stay consistent order by order, there
is need for an approximation within the reconstruction formula, what is consistent with the above introduced
effective potential defined by Eq. (2.73). Therefore, we assume that the effective potential can be truncated at
thek-th order and can be written as

Veff
M

(k)
:=

k∑

i=1

V eff
M

(i)
. (2.93)

1The orders of thecurrent-kernel are labelled by their parenthesised numbers, which are not the bracketed numbers of the interaction
kernel itself labelling three- and two-body interactions.
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χ̄P̄

χP̄ ′

Kµ ≈ b
Oµ

χ̄P̄

χP̄ ′

+ b
Oµ

χ̄P̄

χP̄ ′

−i K(2) +
cycl.
perm.

Fig. 2.6: The schematic current-kernel in lowest order of the ladder-approximation. The Bethe-Salpeter ampli-
tudes are displayed by the green semidisks and the interaction kernels by the red rectangles. Free quarks are
displayed as black arrows, which denotes the quark-propagation, where the photon propagation is denoted by
the dashed lines.

Starting with the exact Bethe-Salpeter equation Eq. (2.91)and writing the potential adapted to the problem by
decomposing the kernel into the projected- and residual part we write

χM =− iG0M

[(
V

(3)
Λ +

k∑

i=1

V eff
M

(i)

)
+

(
K̄

(2)
M + V

(3)
R −

k∑

i=1

V eff
M

(i)

)]
φM . (2.94)

Then, following the PhD thesis of Merten [10], it is possible to rewrite Eq. (2.94) as

χM =− i GR,k
M

(
V

(3)
Λ +

k∑

i=1

V eff
M

(i)

)
φM , (2.95)

where the residual propagatorGR,k
M truncated atk-th order has been defined by

GR,k
M := G0M − iG0M

(
K̄

(2)
M + V

(3)
R −

k∑

i=1

V eff
M

(i)

)
GR,k
M . (2.96)

After integrating out all energy componentsp0ξ andp0η , the Salpeter equation can be reformulated as

φΛM =− i 〈GR,k
M 〉Λ

(
V

(3)
Λ +

k∑

i=1

V eff
M

(i)

)
φΛM , (2.97)

while the reduced and projectedk-th order Green’s function can be written as

〈GR,k
M 〉Λ = 〈G0M 〉 − i 〈G0M 〉

∞∑

i=k+1

V eff
M

(i)〈GR,k
M 〉Λ . (2.98)

After the first term〈G0M 〉, the corresponding Neumann series thus starts at(k + 1)-th order of the residual

partK̄(2)
M + V

(3)
R . Writing the propagatorGR,k

M similar to the effective kernelV eff
M in powers ofk and with the

definition

GR,k
M :=

∞∑

i=1

GR,k
M

(i)
(2.99)
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it is obvious, that
〈

k∑

i=1

GR,k
M

(i)

〉

Λ

= Λ

〈
k∑

i=1

GR,k
M

(i)

〉
Λ̄ = 〈G0M 〉 (2.100)

is fulfilled. Replacing the exact residual propagatorGR,k
M in the exact Bethe-Salpeter equation by the up tok-th

order approximated one, it is possible to obtain an approximation, which remains consistent with the Salpeter
equation (2.72) . Thus, thek-th order approximation of the Bethe-Salpeter amplitude isgiven by

χ
(k)
M =− i

k∑

i=1

GR,k
M

(i)


V (3)

Λ +

k∑

j=1

V eff
M

(j)


φ

(k)
M . (2.101)

In the further discussion it is also convenient to introducethek-th order truncated vertex function

Γ
(k)
M :=− i


V (3)

Λ +
k∑

j=1

V eff
M

(j)


φ

(k)
M . (2.102)

Then, the reconstruction formulae for the Bethe-Salpeter amplitude and its adjoint reduce to

χ
(k)
M =

k∑

i=1

GR,k
M

(i)
Γ
(k)
M , (2.103a)

χ̄
(k)
M =Γ̄

(k)
M

k∑

i=1

GR,k
M

(i)
, (2.103b)

where the adjoint vertex function ofk-th order is analogously defined as in Eq. (2.47b)

Γ̄
(k)
M :=Γ

(k)
M

†
γ0 ⊗ γ0 ⊗ γ0 . (2.104)

With Eqs. (2.87), (2.103a) and (2.103b) it is also convenient to introduce the effective current-kernelKµ
P̄ ,P̄ ′ by

〈P̄ |jµO(0)|P̄ ′〉 =− χ̄
(k)

P̄
Kµ

P̄ ,P̄ ′χ
(k)

P̄ ′ = −Γ̄
(k)

P̄
Kµ

P̄ ,P̄ ′Γ
(k)

P̄ ′ (2.105)

with the definition

Kµ
P̄ ,P̄ ′ :=

(
k∑

i=1

GR,k
M

(i)

)
Kµ

P̄ ,P̄ ′




k∑

j=1

GR,k
M

(j)


 . (2.106)

The effective current-kernel can also be expanded in powersof the residual-kernel

Kµ
P̄ ,P̄ ′ :=

k∑

i=1

Kµ (i)

P̄ ,P̄ ′ (2.107)

before truncating atk-th order. This leads to the approximated current-matrix element

〈P̄ |jµO(0)|P̄ ′〉 = −Γ̄
(k)

P̄

(
k∑

i=1

Kµ (i)

P̄ ,P̄ ′

)
Γ
(k)

P̄ ′ . (2.108)

Since the implementation of first order effects in the approximated current-matrix element (2.108) is very
complicated only lowest order contributions are taken intoaccount. Note, that the first order contributions
vanish in the static limit̄P = P̄ ′ = (M,0) due to the normalisation condition of the charge

Γ̄P̄K
0 (1)

P̄ ,P̄ ′ΓP̄ = 0 , (2.109)
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since the charge normalisation is completely absorbed within the normalisation condition of the Salpeter am-
plitudes in lowest order for the time-component of the electromagnetic current.

Neglecting first and higher order contributions in the effective current-kernel, this yields to the current-
matrix element approximated by only lowest order contributions. If the incoming baryon is calculated in its
rest-frameP̄ ′ = (M ′,0) ≡M ′ , the outgoing baryon is boosted byq := P̄ − P̄ ′ and the current-matrix element
is given by

〈P̄ |jµO(0)|P̄ ′〉 ≃ − Γ̄P̄ Kµ (0)

P̄ ,P̄ ′ ΓP̄ ′

=− 3

∫
d4pξ
(2π)4

d4pη
(2π)4

Γ̄P̄

(
pξ, pη − 2

3q
)
S1
F

(
1
3 P̄ + pξ +

1
2pη

)
⊗ S2

F

(
1
3 P̄ − pξ +

1
2pη

)

⊗ S3
F

(
1
3 P̄ − pη

)
OµS3

F

(
1
3 P̄

′ − p′η
)
ΓP̄ ′ (pξ,pη) , (2.110)

whereq denotes the momentum transfer. Thereby, the lowest order contribution of the effective current-kernel

Kµ (0)

P̄ ,P̄ ′(pξ, pη; p
′
ξ, p

′
η) =S

1
F

(
1
3 P̄ + pξ +

1
2pη

)
⊗S2

F

(
1
3 P̄ − pξ +

1
2pη

)
⊗S3

F

(
1
3 P̄ − pη

)
OµS3

F

(
1
3 P̄

′ − p′η
)

× (2π)4δ(4)(pξ − p′ξ)(2π)
4δ(4)

(
2
3(P̄ − P̄ ′) + pη − p′η

)

+ cycl. perm. (23) and (31), (2.111)

has been used. Furthermore, Eq. (2.110) involves an additional factor 3 as a result of the corresponding three
cyclic permutations of quark pairs as indicated in Eq. (2.111).

2.6 Electroweak form factors and charge radii of non-strange baryons

This section discusses the computation of electromagneticform factors and helicity amplitudes using the
current-matrix elements discussed in the previous section. Restricting to a final nucleon state|N, P̄f , λf 〉
with total momentumP̄f and helicityλf , the current-matrix element can be written as

〈N, P̄f , λf |jE,A
µ (a)(0)|B, P̄i, λi〉 , (2.112)

while B denotes an arbitrary initial baryon state with total momentum P̄i and helicityλi. jEµ andjAµa denote
the electromagnetic- and axial current-operators, respectively. These operators are defined by

jEµ (x) =: ψ̄(x)q̂γµψ(x) : and jAµa(x) =: ψ̄(x)γµγ5
τa
2 ψ(x) : , (2.113)

whereq̂ denotes the charge operator andτa the isospin Pauli matrices. The current-matrix element is related to
the form factors forB = N via

〈N, P̄f , λf |jE,A
µ (a)(0)|N, P̄i, λi〉 :=

e ūλ′(P̄ ′)

[
γµ
(
FN
1 (Q2) + FN

2 (Q2)
)
− P̄i,µ + P̄f,µ

2M
FN
2 (Q2)

]
uλ(P̄ ) , (2.114)

with the so-called Dirac and Pauli form factorsFN
1 (Q2) andFN

2 (Q2), which are scalar functions ofQ2 :=
−q2. Thereby,q defines the momentum transferq = P̄f − P̄i and the Dirac-spinoruλ(P̄ ) is normalised to
ūλ′(P̄ )uλ(P̄ ) = 2ωP̄ δλλ′ with ωP̄ :=

√
M2 +P2. The so-called electric and magnetic Sachs form factors

GN
E andGN

M are related to the above defined Dirac form factors via the linear combinations

GN
E (Q2) :=FN

1 (Q2)− Q2

4M2
FN
2 (Q2) , (2.115a)

GN
M (Q2) :=FN

1 (Q2) + FN
2 (Q2) . (2.115b)
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Furthermore, the electric and magnetic Sachs form factors are related to the static nucleon properties and the
charge in the static limit (Q2 = 0) by

Gp
E(0) =1, Gn

E(0) = 0 , (2.116a)

GN
M (0) =µp, Gn

M (0) = µn , (2.116b)

whereµp andµn are the magnetic moments of the proton and neutron. Below, wecompute the current-matrix
element in the rest frame of the excited initial baryon-state |B〉 with the massMi =MB and

P̄i ≡Mi =MB =




MB

0

0

0



, P̄f = P̄N =




ωP̄N

0

0

|k|




and q =




ωP̄N
−MB

0

0

|k|



, (2.117)

whereMf = MN denotes the nucleon mass andωf :=
√
M2

f + |k|2 for the final state|N〉 andk := PN .

Then, from kinematics we find for the momentum of the finial baryon state, which is defined as the nucleon

k2 = Q2 +
(M2

i −M2
f −Q2)2

4M2
i

. (2.118)

ForB = N the elastic electromagnetic form factors are then given by

GN
E (Q2) :=

〈N, P̄N ,
1
2 |jE0 (0)|N,MN ,

1
2〉√

4M2 +Q2
, (2.119a)

GN
M (Q2) :=

〈N, P̄N ,
1
2 |jE+ (0)|N,MN ,−1

2〉
2
√
Q2

. (2.119b)

Here

jE±(0) = jE1 (0)± i jE2 (0) , (2.120)

denotes the transverse electromagnetic current-operators in their spherical representation2. Likewise, the axial
form factor is defined by

GA(Q
2) =

〈p, P̄f ,
1
2 |jA1+(0) + i jA2+(0)|n,Mi,−1

2〉√
4M2 +Q2

, (2.121)

where the axial current-operator is defined byjAµ±(0) := jAµ 1(0) ± ijAµ 2(0) . Here, the axial coupling is given
by

gA := GA(0) . (2.122)

Finally, the mean-square radii for the nucleon are given by

〈r2〉 := −6
1

G(0)

dG(Q2)

dQ2

∣∣∣∣
Q2=0

. (2.123)

Since the neutron form factor vanishes atGn
E(0) ≈ 0, the squared electric neutron charge radius is slightly

differently defined by

〈r2〉nE := −6
dGn

E(Q
2)

dQ2

∣∣∣∣
Q2=0

. (2.124)

2Note, that in literature a pre-factor− 1√
2

is introduced in Eq. (2.120), seee.g.Tiatoret al. [47].



24 CHAPTER 2. THE BETHE-SALPETER MODEL FOR THREE FERMIONS

2.7 Helicity amplitudes and∆ ↔ N transition form factors

Apart from the electromagnetic properties of the groundstate nucleon such asµp, µn, 〈r2p〉, 〈r2n〉, ga it is very
interesting to study helicity amplitudes and transition form factors, in order to obtain further information about
the internal structure of nucleon and other (excited) baryon states. Following Warns, Tiator, Aznauryan and
Burkert et al. [47–49] the transverse and longitudinal helicity amplitudesAN

1/2, AN
3/2 andSN

1/2 are related to
current-matrix elements according to

AN
1
2
(Q2) =

ζ√
2
K
〈
B,MB ,

1
2

∣∣∣jE+(0)
∣∣∣N, P̄N ,−1

2

〉
, (2.125a)

AN
3
2
(Q2) =

ζ√
2
K
〈
B,MB ,

3
2

∣∣∣jE+(0)
∣∣∣N, P̄N ,

1
2

〉
, (2.125b)

SN
1
2

(Q2) =ζK
〈
B,MB ,

1
2

∣∣∣jE0 (0)
∣∣∣N, P̄N ,

1
2

〉
, (2.125c)

whereK :=
√

(π α)/(MN (M2
B −M2

N )) andα is the fine structure constant. Moreover,N denotes the ground-

state nucleon with four-momentum̄PN (see Eq. (2.117)) and is related to the momentum transferQ2 byk2 (see
Eq. (2.118)), whereξ denotes a phase of the decay amplitude. Note, that the pre-factorK includes already the
normalisation factor of the Salpeter amplitudes accordingto Eq. (2.84). The amplitudes atQ2 = 0 corre-
spond to the photon couplings also-called the photon decay amplitudes. In the literature many publications use
other definitions of the longitudinal amplitude,e.g. related to the third component of the current, which are
then denoted byLN

1/2 or CN
1/2. These redefined versions of the longitudinal amplitude arerelated via current-

conservation to the definition given in Eq. (2.125c): Due tokµjEµ = ωfj
E
0 − |k|jE3 = 0, the following relation

holds

SN
1
2
(Q2) :=

|k|
ωf
CN

1
2
(Q2) , (2.126)

whereωf :=
(M2

i −M2
f−Q2)

2Mi
andk2 = ω2

f+Q
2 defines the virtual-photon momentum as known from Eq. (2.118).

The notation has been adopted from Tiatoret al. [47] and is consistent with the notation of Warnset al. [48],
Aznauryanet al. [49] and the previous section. Note, that the pre-factor in Eqs.(2.125a) and (2.125b) involves
a factor− 1√

2
, which normally is absorbed in the definition of the spherical current-operatorjE± in Eq. (2.120).

In this thesis we will useSN
1/2 of Eq. (2.125c) in all further calculations. In most cases weshall fix the common

phaseζ such as to reproduce the sign of the proton decay amplitude reported in [8] . Furthermore, note that
〈p, P̄N ,

1
2 |jE0 (0)|p, MN ,

1
2 〉 is normalised to +1 atQ2 = 0.

According to Tiatoret al. [47], the transition form factors for∆3/2+(1232) electro-production, calledG∗
M

andG∗
E are defined as

G∗
M (Q2) =F (Q2)

(√
3AN

3
2
(Q2) +AN

1
2
(Q2)

)
, (2.127a)

G∗
E(Q

2) =F (Q2)

(
1√
3
AN

3
2

(Q2)−AN
1
2

(Q2)

)
, (2.127b)

whereF (Q2) is a kinematical pre-factor defined as

F (Q2) = −
√
MN

4πα

M2
∆ −M2

N

2M2
∆

MN

|k| , (2.128)

in the notation of Ashet al. [50], which reduces at the photon point to

F (Q2 = 0) = −
√

2M3
N

4πα

1

M2
∆ −M2

N

. (2.129)
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Furthermore, for the sake of completeness the Coulomb-transition form factor is given by

G∗
C(Q

2) = −2
M∆

|k| F (Q
2)
√
2SN

1
2
(Q2) , (2.130)

which is proportional to the longitudinal helicity amplitude for theP33(1232)-state.

2.8 Summary

In this chapter we discussed the fundamentals of the Bethe-Baryon model, which is based on the fully rela-
tivistic Bethe-Salpeter equation describing bound-statesystems in the framework of quantum field theory. In
section 2.2, we have followed the major steps of the calculations of Löringet al. [4, 7] by starting with the
derivation of the Bethe-Salpeter equation from the six-point Green’s function. The latter is given in terms of
the propagation of three free quarks and a three- and two-body interaction kernel. We focused on the three-body
interactions for simplicity. A specific time-ordering for the field operators allows the introduction of the three-
fermion Bethe-Salpeter amplitudes associated with a pole of the Green’s function in the total energy of the three
quark system. The Bethe-Salpeter equation and its normalisation condition then follows from a Laurent- and
Taylor-expansion of the Green’s function in the vicinity ofthe pole in the energy.

It is possible to reduce the Bethe-Salpeter equation to the Salpeter equation if the propagators, which are
involved in the free Green’s function, are of free form and ifthe interaction kernels are assumed to be instanta-
neous. Accordingly, constituent effective quark masses enter as free parameters in the model. By integration of
the energies, it is then possible to derive the Salpeter equation from the Bethe-Salpeter equation. The Salpeter
amplitude can be interpreted as an analogon of the usual wavefunction in non-relativistic quantum-mechanics.

We also discussed the calculation of electroweak observables, starting with the electroweak form factors and
the helicity amplitudes. All these observables are based oncurrent-matrix elements. The details of this method,
published already by Merten and Kretzschmaret al. [9,10,12], were briefly recapitulated in section 2.5. The
derivation of the current-matrix elements starts from the definition of a seven-point Green’s function for a
photon coupled to a three-quark system and runs analogouslyto the derivation of the Bethe-Salpeter equation.
The relations of the current-matrix elements to electroweak form factors, magnetic moments and charge radii
as well as to the helicity amplitudes and∆ ↔ N transition form factors are given in section 2.6 and 2.7.
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Chapter 3

Results of previous calculations

3.1 Introduction

This chapter recapitulates the major results of the work of Löring et al. [5–7] as well as of Merten and Kret-
zschmaret al. [9,10,12]. Furthermore, the interaction potentialsV (3) andV (2), see Eq. (2.63), will be specified
more precisely. These phenomenologically introduced potentials are the so-calledconfinement potentialand
the instanton-induced ’t Hooft interaction. For the confinement potential there exists many possibilities to im-
plement its Dirac-structure. Two Dirac-structures have been found, which reproduce the spectra quite well:
These were called modelA andB. Since the confinement potential itself is flavour independent, a further po-
tential based on an instanton-induced interaction had beenintroduced to account for the major spin-dependent
splittings of baryons. The instanton-induced force is flavour dependent and has a definite Dirac-structure. An
other candidate for a spin-dependent interaction, the so-called one-gluon exchange, has been discussed in the
PhD thesis from Löring [7] and will be briefly commented here.

3.2 The confinement potential

The confinement potential will be introduced phenomenologically by a linear rising potential, which leads to a
satisfactory description of the baryon spectra and the so-called Regge-trajectoriesM2 ∝ J , whereJ denotes
the total angular momentum of the baryon state. The interpretation of this empirical picture motivates a string-
like connection between quarks (flux-tubes) generated by gluonic interactions. There exists several types of
confinement potentials (see also Löringet al. [5, 7] or Carlsonet al. [51, 52] for more information), which
increase linearly with the inter-quark distance, whereas confinement is thus implemented by subjecting quarks
to a potential, supplemented by an appropriate three particle Dirac-structureΓ. Then, the potential contains two
parameters: the offseta and the slopeb and is assumed to be of the following form in coordinate space

V(3)(x1, x2, x3;x
′
1, x

′
2, x

′
3) =V

(3)
conf(x1,x2,x3) δ(x

0
1 − x02)δ(x

0
2 − x03)

× δ(4)(x1 − x′1)δ
(4)(x2 − x′2)δ

(4)(x3 − x′3) , (3.1)

with

V
(3)

conf(x1,x2,x3) =3 aΓo + b
∑

i<j

|xi − xj| Γs , (3.2)

whereΓo andΓs are suitably chosen Dirac-structures. According to [5–7], two different Dirac-structures have
been found, which reproduce the light-quark baryon spectraquite well. As mentioned in the introduction, the
different Dirac-structures label the corresponding models, called modelA andB. Tab. 3.1 summarises the
Dirac-structures used in these models. The prediction of the spectra is very sensitive to the choice of the Dirac-
structure. This choice depends additionally on other involved potentials, such as the instanton-induced ’t Hooft
interaction within modelA andB. For the one-gluon exchange alternative Dirac-structuresare more favourable
and can be found in the PhD thesis of Löring [7].
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Table 3.1: The confinement Dirac-structures as used in [5–7] for the so-called modelsA andB, which contains
the instanton-induced ’t Hooft force.

Model Γo (offset) Γs (slope)

A 1
4 (1⊗1⊗1+ 1⊗γ0⊗γ0 + cycl. perm.) 1

2 (−1⊗1⊗1+ 1⊗γ0⊗γ0 + cycl. perm.)

B 1
4 (1⊗1⊗1+ 1⊗γ0⊗γ0 + cycl. perm.) 1

4 (1⊗1⊗1+ 1⊗γ0⊗γ0 + cycl. perm.)

3.3 The instanton-induced interaction

The effect of instantons on quark-quark interactions have been firstly pointed out by ’t Hooft [53] for the
SU(2)-group. Accordingly, the instanton-induced interaction will be called ’t Hooft force in the following text.
The extension to theSUF (3)-group has been performed subsequently to ’t Hooft by Shifman et al. [54] in
which an effective Lagrangian for single instanton- and anti-instanton configurations was derived. Instantons
are solutions of the euclidean Yang-Mills equations with a given topological quantum numberQT , which is
also-called the topological charge. Thereby it turns out, thatQT can only take integer numbers. This important
condition characterises different vacua and thus instantons can be interpreted as tunnelling events between
these different vacua. Hence QCD sustains a complex vacuum structure within an enumerable infinite number
of topological inequivalent vacua. Each of these vacua can also be characterised by another topological number,
the so-calledwinding numberor “Chern-Simons“ numberNCS . Instanton- and anti-instantons are the simplest
building blocks with non-trivial structure, which communicates between such vacua with a topological charge
QT = 1 andQT = −1. However, by fulfillingQT = NCS−N ′

CS , see [7].
The details of the implementation of the instanton-induced’t Hooft force are given in [5, 7] and will be

recapitulated here very briefly. Instanton effects leads toan effective quark-quark interaction, which acts only
on quark pairs antisymmetric in flavour and can be written in coordinate space as

V(2)
Inst(x1, x2;x

′
1, x

′
2) = V

(2)
Inst(x1 − x2) δ(x

0
1 − x02) δ

(4)(x1 − x′1) δ
(4)(x2 − x′2) (3.3)

with

V
(2)

Inst(x) = −4v(x)
(
1⊗1+ γ5⊗γ5

)
PD
S12=0

(
gnn PF

A (nn) + gns PF
A (ns)

)
, (3.4)

wherePD
S12=0 is a projector on spin-singlet states andPF

A (f1f2) projects on flavour-antisymmetric quark pairs
with quark flavoursf1 andf2 . The two couplingsgnn andgns are in principle determined by integrals over
instanton densities, which can be calculatede.g. in an instanton gas approximation. Nevertheless, they are
treated as free parameters in the model. Furthermore, as it stands, the ’t Hooft force is a contact interaction and
v(x) is given as a delta-function in Eq. (3.4). In order to implement the interaction within the framework of
the Bethe-Baryon model it is necessary to regularisev(x), e.g.as a Gaussian potential with a specific effective
range in coordinate space

vλ(x) =
1

λ3 π
3
2

exp
(
− |x|2

λ2

)
. (3.5)

The effective range parameterλ is assumed to be equal for each quark-flavour and enters as an additional
parameter in the model.

3.4 The one-gluon exchange

Apart from the instanton-induced ’t Hooft force there exists another possibility in order to split nucleon- and
∆-states by the so-calledOne-Gluon Exchange. The corresponding one-gluon propagator is given by

Dµν(k
2) :=

−igµν
k2 + iǫ

. (3.6)
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Based on the OGE-propagator and the gluon-fermion vertex structure, the second-order matrix element of the
OGE can be extracted according to [7,55]

γµDµν(k
2)γν = 4π

(
γ0 ⊗ γ0
|k|2 +

(
γ · ⊗γ

)
−
(
γ · k̂

)
⊗
(
γ · k̂

)

k2 + iǫ

)
, (3.7)

in Coulomb gauge witĥk := k

|k| . The corresponding potential can be written in coordinate space as

V
(2)

OGE(x) = −2

3

αS

r

(
γ0 ⊗ γ0 +

1
2

(
γ · ⊗γ

)
− 1

2

(
γ · x̂

)
⊗
(
γ · x̂

))
(3.8)

which defines the OGE-potential. The direction of the position vector is denoted bŷx := x

r , r := |x|, while
αS is the strong running coupling constant, which is at|k|2 = 0 in momentum space usually given as a finite
value.

The OGE generates the∆ − N mass-splitting via its spin-dependent Dirac-structures,which are reflected
in Eq. (3.8) by the factors involving the Dirac-matricesγ. Hence, the mass-splitting mechanism differs from
the instanton-induced interaction as it is obvious in the previous section. The OGE has been investigated in [7]
in order to give a moderately satisfactory description of the full nucleon- and∆-spectrum. But in particular,
especially excited resonances cannot be reproduced,e.g.the mass of theN1/2−(1535)-state, which is predicted
much to low, as shown in [7].

3.5 Baryon spectra

Introducing the confinement potential and the instanton-induced ’t Hooft interactions within the Salpeter equa-
tion (2.62) leads to the prediction of mass spectra for modelA andB, which will be briefly discussed in this
section. We start with a discussion on the scale dependence of the mass spectra. The scale characterises the
finite basis in which the Salpeter equation is solved.

3.5.1 Scale dependence

Table 3.2: Optimal values of
the length scaleβ for various
baryons in modelA.

baryon 2J + 1 β [fm]

∆ ≥2 0.60

N 2 0.45

≥4 0.50

ΛΣ, Ξ, Ω ≥2 0.60

Solving the Salpeter equation according to Eqs. (2.62) and (2.63) yields to
an eigenvalue problem, which can be solved numerically. Forthis purpose,
the Salpeter amplitudes will be expanded within a large, butfinite basis of
harmonic oscillator states with oscillator quantum numbersN ≤ Nmax. The
harmonic oscillator basis is characterised by a specific oscillator length scale
β, which has to be chosen such, that for the baryon massM : ∂Mβ

∂β ≃ 0
holds. With an increasing number of oscillator shells the curvature ofMβ

in the vicinity of β̄ with ∂Mβ

∂β

∣∣
β=β̄

= 0 becomes smaller and the range of

values for the scale parameter with the property∂Mβ

∂β ≈ 0 increases. This
is demonstrated in Fig. 3.1 forNmax = 8 and 18 oscillator shells for model
A. For the total angular momentumJ a common value forβ is chosen.
This guarantees the orthogonality of the amplitudes. Tab. 3.1 summarises all (minimal) scale parametersβ,
which are chosen for all light-flavoured baryon states as theaverage of the ground- and first excited state. This
selection has been done by hand.

3.5.2 Model parameters

Still following the work of Löring et al. [5–7], the complete light-flavoured baryon mass spectra including
the∆-, N -, Λ-, Σ-, Ξ- andΩ-spectra, can be calculated by taking into account the confinement and instanton-
induced interactions from the previous sections 3.2 and 3.3, respectively. For the calculation of the mass spectra
it becomes necessary to determine the free parameters of theconfinement and of the instanton-induced ’t Hooft
forces as well as of the non-strange and strange quark masses, mn andms. A compilation of the parameters is



30 CHAPTER 3. RESULTS OF PREVIOUS CALCULATIONS

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  0.2  0.4  0.6  0.8  1

β [fm]

M
[M

eV
]

N
+

1/2
(939)

N
+

1/2
(1440)

Nmax = 8
Nmax = 20

N1/2+

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  0.2  0.4  0.6  0.8  1

β [fm]

M
[M

eV
]

∆+

3/2
(1232)

∆+

3/2
(1600)

Nmax = 8
Nmax = 18

∆3/2+

Fig. 3.1: Scale dependence for theN1/2(939, 1440)-states (right side) and for the∆3/2(1232, 1600)-states (left
side) for modelA. Different model spaces are used withinNmax = 8 andNmax = 18 (Nmax = 20) oscillator
shells, respectively. It is obvious, that the minima of the ground- and first excited states are not located exactly
at the sameβ. Nevertheless, suitable values forβ are atβ = 0.45 fm for theN1/2(939, 1440)-states and at
β = 0.6 fm for the∆3/2(1232, 1600)-states. Furthermore, the curvature reduces with increasing number of
oscillator shells.

Table 3.3: Model parameters for the current modelA in compari-
son to those of modelB, cited from [5–7].

parameter modelA modelB

masses non-strangemn [MeV] 330.0 300.0

strange ms [MeV] 670.0 620.0

confinement offset a [MeV] -744.0 -1086.0

slope b [MeV/fm] 440.0 1193.0

instanton
induced
interaction

nn-coupling gnn [MeV fm3] 136.0 89.6

ns-coupling gns [MeV fm3] 96.0 61.7

eff. range λ [fm] 0.4 0.4

Table 3.4: List of baryon resonances of
which the masses were used to determine
the model parameters in a least-squares
fit, where every resonance was attributed
a weight reciprocal to its uncertainty in its
position as given in [8]. Nominal masses
are given in MeV.

∆ N Λ

P33(1232) P11(939) P01(1116)

F37(1950)

H3 11(2420)

K3 15(2950)

given in Tab. 3.3 as used by Löringet al. [5,6]. The parameters in Tab. 3.3 have been determined by fitting the
confinement parameters on the Regge trajectory∆3/2+(1232), ∆7/2+(1950), ∆11/2+(1232) and∆16/2+(2950)
and the instanton-induced couplings at theN1/2+(939)- andΛ1/2+(1116)-resonances. The resonances, used
in the fit, are again summarised in Tab. 3.4. The resulting spectra are displayed in Figs. 3.2-3.6. Each column
corresponds to a spectrum characterised by the total angular momentumJ and parityπ. The predicted and
measured resonances are displayed by horizontal lines located at the value of the mass, while the uncertainties
of the experimental masses are represented as shaded boxes in the central part of each column. Furthermore, the
PDG-rating [56] is indicated by stars, where the left and right part of each column displays the results of model
A andB from Löring et al. [5]. The middle of each column shows the experimental data fromthe PDG [56]
of 2010 for comparison. Resonances, that cannot be accounted for, are indicated by round boxes and labelled
with question marks.

3.5.3 ∆- andΩ-spectra

We start with the discussion of the∆-spectrum, displayed in Fig. 3.2, from which it is evident, that most of the
groundstate masses are reproduced quite well with the exception of theJ = 1

2

+
- andJ = 5

2

−
-groundstate’s for
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both models. The∆-spectrum is determined by the non-strange mass and the confinement potential parameters
only. For excited resonances, as already mentioned in the introduction, some discrepancies in both mod-
els exists. Especially excited resonances with negative parity, e.g. the ∆1/2−(1910)-, ∆3/2−(1940)- and
∆5/2−(1930)-resonance as well as the positive parity Roper-like∆+

3/2(1600)-resonance are not reproduced.
These resonances are indicated by boxes and question marks in Fig. 3.2 and are the major motivation for the
introduction of a new interaction, which allows a satisfactory description in the framework of the Bethe-Baryon
model. Such a new interaction will be discussed in the next chapter. As it is obvious from Fig. 3.2, modelA
generates a slightly better description of the mass-splittings of the∆-spectrum than modelB.

The experimentalΩ-spectrum consists only of theΩ3/2+(1672)-resonance and depends only on the strange-
quark mass and the confinement potential. In fact the strange-quark mass was adjusted to this state after fixing
the confinement parameters via the Regge trajectory. A part of the Ω-spectrum withJ ≤ 7

2 is displayed
on the right side of Fig. 3.6. It turns out, that all excited resonances are predicted in the mass region above
& 2000MeV, supported by measurements ofΩ-baryons listed in the PDG [8].

Thus in modelA andB, which differ from each other only by their confinement Dirac-structures, most of
the resonances in the∆- andΩ-spectra are reproduced quite well.

3.5.4 N-spectrum

The nucleon-spectrum depends additionally on the parameters of the instanton-induced ’t Hooft force. Note,
that the confinement parameters are already fixed by the∆-Regge trajectory as mentioned in the previous sub-
section, this also holds for the non-strange and strange constituent quark mass. Fig. 3.3 displays the nucleon-
spectrum for modelA andB, respectively. Comparing both models with each other, it isconspicuous that
modelA can account for most of the excited resonances,e.g. even approximately for the Roper-resonance
N1/2+(1440), which is labelled with the box, whereas modelB does not. Furthermore, modelB cannot repro-

duce the mass-splittings of theJπ = 1
2

−
-states as well: In particular the mass of theN1/2−(1650)-resonance

is overestimated. A further discrepancy in both models is the mass of theN1/2−(1535)-resonance, which is
predicted too low. TheN1/2−(1535)-resonance offers a persistent problem in the Bethe-Baryonquark model
as also shown in the subsequent chapter 4, where a new spin-flavour dependent interaction will be introduced.
In general, modelA reproduces the nucleon-spectrum better than modelB, as it was also found from the
∆-spectrum.

3.5.5 Hyperon-spectra

The hyperon-spectra are displayed in Figs. 3.4, 3.5 and in the left part of Fig. 3.6 . Starting with the discussion
of theΛ-spectrum, modelA reproduces the mass-splitting much better then modelB just as for the nucleon and
∆-sector. ModelB does not reproduce the Roper-likeΛ1/2+(1600)- and theΛ1/2−(1405)-resonance as marked
by boxes. Concerning the latter Jido, Meißner, Oset and Hyodo et al. [57–59] interpreted this resonance as a
meson-baryon bound-state close to theK̄N -threshold, which thus cannot be described satisfactorilyas aq3-
bound-state in the Bethe-Baryon model.

Both models can account for most of the resonances in theΣ-spectrum as displayed in Fig. 3.5, where again
some discrepancies occur in the description of excited states, which are indicated partially by boxes. Apart from
the Roper-likeΣ1/2+(1660)-resonance two negative parity resonances,Σ3/2−(1580) andΣ7/2−(2100), cannot
be accounted for in the models also the two star ratedΣ3/2−(1580)-resonance poses a persistent problem in the
Bethe-Baryon model. Furthermore, modelB cannot account for any of the excitedΣ1/2+-resonances nor for
theΣ3/2+(1840)- andΣ1/2−(1620)-resonances. All other observedΣ-resonances can be reproduced very well
by modelB and in particular by modelA.

Finally, for theΞ-baryons there exist less data for a more detailed comparison with the experimental data.
Both models reproduce nicely all of the knownΞ-resonances, but differ in their predictions for excited states
as displayed on the left side of Fig. 3.6. Similar to theN -, Λ- andΣ-spectra, it can be concluded, that model
A accounts for the internal structure better than modelB. Within the framework of modelA a Roper-like
Ξ1/2+ -resonance is predicted around≈1870 MeV, while the lowerJπ = 1

2

−
-state should be located at around

≈1770 MeV.
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Thus modelA was favoured, since it reproduces most of the resonances better than modelB. In particular
modelA accounts for most of the Roper-like resonances in theΛ- andΣ-baryon sector with acceptable accuracy
(Λ1/2+(1600) andΣ1/2+(1660)), whereas modelB does not reproduce any of the Roper-like resonances. In
theΣ-baryon sector for instance, the Roper-like resonance is predicted at 1869 MeV by modelA and at 2102
MeV by modelB. Here, we favour the prediction of modelA. In the next chapter 4, a further extension of the
Bethe-Baryon model will be introduced and compared with a recalculated version of modelA by increasing
its numerical accuracy in order to reduce numerical uncertainties. This leads to a secondary and not directly
intended effect, since the increased numerical accuracy induces a readjustment of some of the parameters,
which shifts the resonance positions slightly, see sections 4.2.2, 4.2.3 and 4.2.4 in the next chapter for more
information.

3.6 Electroweak form factors, helicity amplitudes, photondecay amplitudes
and other static observables

The work of Merten and Kretzschmaret al. [9, 10, 12] studies electromagnetic form factors and helicity am-
plitudes as well as photon decay amplitudes in the frameworkof the Bethe-Baryon model. These studies were
exclusively made for modelA, since, as discussed above, it describes the nucleon- and∆-spectra better then
modelB. Furthermore, static observables, such as the magnetic moment and the charge radius have been ex-
tracted by Mertenet al. [9, 10] from extrapolations of the electromagnetic form factors to the photon point
at vanishing momentum transfer. An alternative method for the calculation of static observables has been de-
veloped from Hauptet al. [13, 14], which calculates the magnetic moments and charge radii directly without
extrapolating the form factors to the photon point. In the next chapter, all studies of Mertenet al. [9,10] will be
recalculated with a higher numerical accuracy and can be found in the figures to sections 4.2.5 and 4.2.6, where
also the results of a new approach, called modelC, will be discussed. The next chapter 4 shows calculations
of modelA for the baryon spectra, electroweak form factors, helicityamplitudes, photon decay amplitudes,
magnetic moments and charge radii. Such calculations can also be found in Mertenet al. [9,10] and Hauptet
al. [13,14], but with less numerical accuracy.

3.7 Summary

This chapter summarises and assesses the results of the Bethe-Baryon model on the light-flavoured baryon
spectra of Löringet al.[5–7]. It starts with the introduction of the two quark interactions used: The confinement
potential, which has been introduced phenomenologically as a linear rising potential with an offset- and a
slope parameter in order to confine quarks within a baryon (see section 3.2). For the Dirac-structure of the
confinement potential, Löringet al. [5] studied two different forms, which lead to reasonable results: model
A andB. The second interaction is based on instanton effects between quarks in QCD and is called the
instanton-induced ’t Hooft interaction. This force is derived as a two-body contact interaction and has been
regularised by a Gaussian potential in coordinate space. The interaction acts only on spin-singlet states and
flavour-antisymmetric quark pairs and thus is responsiblee.g. for the ∆ − N mass-splitting in the baryon
spectra. In section 3.5 we discussed the light-flavoured baryon spectra. After a brief discussion on the scale
dependencies, we recapitulate the results for the baryon spectra for modelA andB: The light-flavoured-spectra
are in general reproduced quite well by both models. However, there are some discrepancies in these spectra,
which cannot be described by either of the modelsA andB. Most prominent are here the three positions
of the∆∗-resonances around 1900 MeV (∆1/2−(1900), ∆3/2−(1940) and∆5/2−(1930)) and the Roper-like
∆3/2+(1600)-resonance in the∆-spectrum as well as that of the RoperN1/2+(1440)-resonance and of the
N1/2−(1535)-resonance in the nucleon-spectrum. Overall, modelA accounts better for the light-flavoured
baryon spectra than modelB as already concluded by Löringet al. [5–7]. Accordingly, Merten, Kretzschmar
and Hauptet al.[9,10,12–14] used modelA for the calculation of electroweak form factors, helicity amplitudes,
photon decay amplitudes, magnetic moments and charge radiias discussed in subsection 3.6. For these the
results, obtained with an increased numerical accuracy, are discussed in the next chapter 4.
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Chapter 4

Alternative interaction kernels in the
Bethe-Salpeter model

4.1 Introduction

As mentioned in the previous chapter, the Bethe-Baryon model does not account for all resonances within the
light-flavoured baryon spectra. There are still missing some resonances within the∆-baryon sector, which can-
not be reproduced by using a linear confinement potential. Furthermore, the well known Roper-like resonances
are not predicted very accurately by using an instanton-induced ’t Hooft force for the∆ − N mass-splitting.
This suggests the issue if an additional interaction can solve these problems. There exists many options to
introduce new interactions between quarks inside a baryon in the framework of the Bethe-Salpeter model. In
this chapter two possibilities will be discussed. The first one is based on the introduction of a new spin-flavour
dependent interaction motivated by pseudoscalar meson exchange, which indeed will be found to rectify some
of the problems in the baryon spectra mentioned before in section 3.5 in the previous chapter. The second
candidate will be a phenomenological modified version of theconfinement potential, which includes spin-spin
and tensor interactions. This leads to additional spin-spin and tensor contributions in the Dirac-structure of
the confinement potential. Finally, both interactions willbe combined, which leads to an additional model.
The discussion will start with the novel spin-flavour dependent interaction, which can be found in Ronnigeret
al. [31,32].

4.2 The spin-flavour dependent interaction

Assuming, that a part of the effective interaction

b b
gaγ

5λa

ga
2mγ

5γµ(ikµ)

} {
gbγ

5λb

gb
2mγ

5γν(−ikν)
kµ

Meson

Fig. 4.1: One-meson-exchange between two quarks. The
vertices are labelled with the corresponding couplings,
where the upper line shows the pseudoscalar- and the lower
line the pseudovector coupling.

between quarks in a baryon is mediated by ex-
change of pseudoscalar mesons,Ansatzesfor the
two different types of couplings for the fermion-
meson vertex can be studied: the pseudoscalar-
or pseudovector coupling. Here, we shall anal-
yse both possibilities. The coupling of spin-1

2
fermions to a pseudoscalar mesonic nonet in the
interaction Lagrange density is, in case of pseu-
doscalar coupling, given by

L(ps)
I = −i

8∑

a=0

ga ψ̄ γ
5 λa ψ φa , (4.1)

while with pseudovector coupling it is given by

L(pv)
I = −

8∑

a=0

ga
2m

ψ̄ γ5 γµ λa ψ ∂µφ
a . (4.2)
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Here,ψ represents a quark fields with massm, φa the pseudoscalar meson fields with massµa, while the
flavour index runs overa = π±, 0, η08 , η

0
1, K

±, K0, K̄0. The flavour dependence is represented by the usual
Gell-Mann matricesλa, a = 1, . . . , 8 andλ0 is proportional to the identity operator in flavour space normalised
to Tr(λ0λ0) = 2. For details on the corresponding interaction Hamiltonians to Eqs. (4.1) and (4.2), we refer to
appendix A and Caiaet al. [60].

We extract the mesonic potential within second-order from the scattering-matrix element corresponding to
the diagram of Fig. 4.1. As shown in appendix A the corresponding instantaneous potentials in momentum
space are given for pseudoscalar coupling by

V
(2)
(ps)(k) =

∑

a

g2a
[
λa ⊗ λa

] 1

|k|2 + µ2a

[
γ5 ⊗ γ5

]
(4.3)

and for pseudovector coupling as

V
(2)
(pv)(k) =

∑

a

g2a
4m2

[
λa ⊗ λa

] [ −1

|k|2 + µ2a

[(
γ5γ · k

)
⊗
(
γ5γ · k

)]
− 1

2

[
γ5γ0 ⊗ γ5γ0

]]

=
∑

a

g2a
4m2

[
λa ⊗ λa

] [ −|k|2
|k|2 + µ2a

[(
γ5γ · k̂

)
⊗
(
γ5γ · k̂

)]
− 1

2

[
γ5γ0 ⊗ γ5γ0

]]

=
∑

a

g2a
4m2

[
λa ⊗ λa

][
− 1

3

|k|2
|k|2 + µ2a

[(
γ5γ · ⊗γ5γ

)]
− 1

2

[
γ5γ0 ⊗ γ5γ0

]

+
1

3

|k|2
|k|2 + µ2a

[(
γ5γ · ⊗γ5γ

)
− 3
(
γ5γ · k̂

)
⊗
(
γ5γ · k̂

)]]
, (4.4)

respectively, wherêk := k

|k| is the direction of the momentum transferk and the first term in the second line of
Eq. (4.4) is the tensor interaction. The last step in Eq. (4.4) decomposes the tensor-like Dirac-structure of the
pseudovector coupled potential into tensors of rankr = 0 and2. Furthermore, there appear two contact terms
(in coordinate space) in Eq. (4.4), coming from the constantpart of the propagator

|k|2
|k|2 + µ2a

= 1− µ2a
|k|2 + µ2a

(4.5)

and from the constant term with Dirac-structure[γ5γ0 ⊗ γ5γ0]. Here, for further details we refer to Lêvy and
Brueckneret al. [61,62]

As it stands, the expression for the potential in the instantaneous approximation for pseudoscalar coupling
leads, after Fourier transformation, to a local Yukawa potential in coordinate space with the usual range de-
termined by the mass of the exchanged pseudoscalar meson. For pseudovector coupling the non-relativistic
approximation to the Fourier transform leads to the usual spin-spin contact interaction together with the usual
tensor force. In the simplest form adopted by the Graz group [22–24, 26–30] the latter was ignored, in addi-
tion the contact term was regularised by a Gaussian functionand the Yukawa terms were regularised to avoid
singularities at the origin. Also Eq. (4.3) can be rewrittenin coordinate space

V
(2)
(ps)(x) =

∑

a

g2a
4π

[
λa ⊗ λa

]exp(−µar)
r

[
γ5 ⊗ γ5

]
, (4.6)

with r := |x|, which describes a regular Yukawa potential. In view of these necessary approximations, we de-
cided to parametrise the new spin-flavour dependent interaction purely phenomenologically as a local potential
in coordinate space based on the pseudoscalar coupled meson-exchange as pointed out in the appendix A.1. In
its simple form it is given by

V (2)(x) =
∑

a

g2a [λa ⊗ λa] vλa(x)
[
γ5 ⊗ γ5

]
, (4.7)

where vλ(x) is of the same Gaussian form as given in Eq. (3.5). Other Dirac-structures, such as[
γ5γ · x̂⊗ γ5γ · x̂

]
were tried, but were found to be less effective.
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4.2.1 Model parameters

With the new spin-flavour dependent interaction a new determination of the length scale in the harmonic oscilla-
tor basis was used to fulfil the requirement∂Mβ

∂β = 0. Fig. 4.2 shows the length scale dependence of theN1/2+ -
and∆3/2+ -baryons for the ground- and first excited state. A summary ofthe resulting minimisingβ-values
for each sector is given in Tab. 4.1. Comparing the plots of model C with those of modelA (see Tab. 3.2 for
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Fig. 4.2: Scale dependence of the ground- and first excited states in modelC. On the left side we have displayed
theN1/2-nucleon resonances and on the right side the∆3/2-resonances. The optimal length scaleβ is chosen
close to the average of the positions of the minima of the ground- and first-excited state. ForN1/2-states we
chooseβ = 0.45 fm and for∆3/2-statesβ = 0.50 fm. All other baryon states have been investigated in the
same way. Their resulting values forβ are summarised in Tab. 4.1. The curves are calculated atNmax = 20 for
the nucleon andNmax = 18 for the∆-baryons.

Table 4.1: Optimal values of
the length scaleβ for various
baryons in modelC.

baryon 2J + 1 β [fm]

∆ 2, 4 0.50

6 0.55

≥8 0.60

N 2 0.45

≥4 0.50

Λ ,Σ ≥2 0.50

Ξ ≥2 0.45

Ω ≥2 0.40

comparison), it is obvious that the curves are different in particular for∆-
baryons. Thereby, the optimalβ-value is chosen close to the average of the
positions of the minima of the ground- and first excited state, which seems to
be a good compromise, when insisting on the computation of the complete
mass spectra for a givenJ with a single value ofβ.

The resulting baryon mass spectra were obtained by fitting the parame-
ters of the model,viz. the offseta and slopeb of the confinement potential,
the constituent quark massesmn = mu = md andms, the strengths of
the instanton-induced forcegnn andgns as well as the strengths of the ad-
ditional spin-flavour dependent interaction, given byg8 = ga, a = 1, ..., 8
andg0 for flavour octet and flavour singlet exchange (thus assumingSUF (3)
symmetry) to a selection of baryon resonances, see Tab. 4.2.The rangeλ
given to the instanton-induced force was kept to the value used in [5,6] and
is roughly in accordance with typical instanton sizes. The optimal value
for the range of the additional spin-flavour dependent interaction was found
to beλ8 = λ0 ≈ 0.25 fm and thus turned out to be of rather short range.
A comparison of the parameters, obtained with the parameters of modelA
of [5,6], is given in Tab. 4.3 (see also Ronnigeret al.[31,32] for calculations
with higher numerical accuracy for modelA). In further studies, after the publication by Ronnigeret al. [31],
an improved description of the baryon spectra and their formfactors was found, [32]. Here, in particular the
scale parametersβ were found be different from that one used in Ronnigeret al. [31]: These new values are
listed in Tab. 4.1. Accordingly, the parameters, as given inTab. 4.3, are slightly different from the values
from [31], which are listed in brackets. The parameters need some comments: In the original paper of Löringet
al. [5,6] the Dirac-structures (i.e. the spin dependence) of the confinement potential in modelA were taken to
beΓ0 =

1
4(1⊗1⊗1+γ0⊗γ0⊗1+cycl. perm.) andΓs =

1
2(−1⊗1⊗1+γ0⊗γ0⊗1+cycl. perm.) for the
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offset and slope, respectively, and were considered to be a three-body kernel. In the present model, including
the additional octet and singlet flavour exchange potential, we obtained the best results withΓ0 = 1 ⊗ 1 ⊗ 1

andΓs = γ0 ⊗ γ0 and treating the interaction corresponding to the latter term as a two-body interaction. This

Table 4.2: List of baryon resonances of which the masses
were used to determine the model parameters in a least-
squares fit, where every resonance was attributed a weight
reciprocal to its uncertainty in its position as given in [8].
Nominal masses are given in MeV.

∆ N Λ/Σ Ξ Ω

S31(1620) S11(1535) S21(1620) S11(1309)

S31(1900) S11(1650) S21(1750)

P31(1750) P11(939) P01(1116) P13(1530) P01(1672)

P31(1910) P11(1440) P21(1289)

P33(1232) P01(1600)

P33(1600) P21(1660)

P33(1920)

D33(1700) D13(1820)

D33(1940)

D35(1930)

F35(1905)

F35(2000)

F37(1950)

G37(2200)

G39(2400)

H39(2300)

H3 11(2420)

K3 15(2950)

Table 4.3: Model parameters for the current
modelC [31,32] in comparison to those of model
A of [5, 6]. Some of the parameters have been
slightly changed with respect to the original val-
ues (listed in brackets) of [5,6], since the calcu-
lation has been performed with higher numeri-
cal accuracy by taking more basis states in the
diagonalisation of the Salpeter Hamiltonian into
account, see also text. Note, that in compari-
son with Ronnigeret al. [31] (values listed in
brackets), a different set of parameters has been
chosen, which improves the description of the
baryon spectra and their form factors.

parameter C A

masses mn [MeV]
350.0

330.0[325.0]

ms [MeV]
625.0

670.0[600.0]

confine-
ment

a [MeV]
-370.8 -734.6

[-366.8] [-744.0]

b [MeV/fm]
208.4 453.6

[212.8] [440.0]

instanton-
induced
interac-
tion

gnn [MeVfm3]
317.9 130.3

[341.5] [136.0]

gns [MeVfm3]
260.0 81.8

[263.6] [96.0]
λ [fm] 0.4 0.4

octet
exchange

g28
4π [MeVfm3]

118.0
–[100.9]

singlet
exchange

g20
4π [MeVfm3]

1715.5
–[1897.4]

λ8 = λ0 [fm] 0.25 –

of course impedes a direct comparison of the corresponding parameters. Furthermore, it was found that the
strengths of the instanton-induced interaction are roughly tripled compared to the original values. Note, that
the additional flavour exchange interaction has the same spin-flavour dependence as parts of the instanton in-
teraction. The flavour singlet exchange could effectively also be considered as an other spin-dependent part of
the confinement potential. Possibly this explains the extraordinary large coupling in this case. In summary, it
thus must be conceded that the present treatment is phenomenological altogether and that here unfortunately
the relation to more fundamental QCD parameters, such as instanton couplings and string tension is lost. Nev-
ertheless, with only 10 parameters we consider the present treatment to be effective, especially in view of its
merits in the improved description of some resonances to be discussed below.

4.2.2 ∆- andΩ-spectrum

In Fig. 4.3 we compare the results from the present calculation (modelC) (right side of each column) with
experimental data from the Particle Data Group [8] (central in each column) and with the results from model
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Jπ Mass pos.410J [56] 210J [70] Jπ Mass pos.410J [56] 210J [70]

neg.410J [56] 210J [70] neg.410J [56] 210J [70]

1
2
−

1636 99.1 6.2 92.8 3
2
−

1959 98.7 65.0 33.8

0.9 0.6 0.3 1.3 0.7 0.5

1
2
−

1956 98.6 17.8 80.8 5
2
−

2022 99.1 90.1 8.9

1.4 0.9 0.5 0.9 0.5 0.4

1
2
−

2050 99.0 79.3 19.7 5
2
−

2132 99.3 14.5 84.8

1.0 0.5 0.5 0.7 0.2 0.4

3
2

−
1600 98.5 9.1 89.4 5

2

−
2161 99.2 88.8 10.4

1.5 0.7 0.7 0.8 0.3 0.5

3
2

−
1896 97.9 28.2 69.7

2.1 1.4 0.7

Table 4.4: Multiplet decomposition
of amplitudes of negative parity∆-
resonances. For each amplitude the
contribution to the Salpeter norm,
see [4] and Eq. (2.84) is given in
%, in each row the upper line and
the lower line give the positive and
negative energy contribution, respec-
tively. States are labelled by the
calculated mass andJπ denotes to-
tal angular momentum and parity,
2S+1FJ [D] label amplitudes with
spin S, flavour representation with
dimensionF , SU(6) representation
with dimensionD. The dominant
contribution is underlined.

A of [5] (left side in each column). The parameters used are listed in Tab. 4.3. The spectrum of the∆- (see
Fig. 4.3) andΩ- (see right panel of Fig. 4.7) resonances is determined by the confinement potential and the
new spin-flavour exchange interaction only, since the instanton-induced ’t Hooft interaction does not act on
flavour symmetric states. Concerning the positive parity resonances we see that in the present calculation we
can now indeed account for the low position of the∆3/2+(1600)-resonance. In addition the next excitations
in this channel now lie closer to 2000 MeV in better agreementwith experimental data, as is also the case for
the splitting of the two∆1/2+ -resonances. Note, however, that these states were included in the parameter fit.
Additionally there is support for a parity doublet∆3/2+(1920) and∆3/2−(1940) as argued in [63].

Likewise, we can now account for the excited negative parityresonances:∆1/2−(1900), ∆3/2−(1940) and
∆5/2− (1930) and even find two states in the∆3/2−-channel, which could correspond to the poorly established
∆3/2−(1940)-state. In view of the near degeneracy of the∆1/2− (1900), ∆3/2− (1940) and∆5/2−(1930)

states it is tempting to classify these in a non-relativistic scheme as a total spinS = 3
2 , total quark angular

momentumL = 1 multiplet which, because of total isospinI = 3
2 must then belong to a(56, 1−) multiplet,

which is lowered with respect to the bulk of the other negative parity states that in an oscillator classification
would be attributed to theN = 3 band. Obviously this is not supported by the calculations: As Tab. 4.4
shows, although the lowestJπ = 5

2
−

-resonance has a dominant component in this multiplet, the second excited

Jπ = 1
2
−
, 32

−
-resonances have dominant components in the(70, 1−) multiplet; indeed the third excited states

in these channels can be attributed to the(56, 1−) multiplet. Otherwise the description and in particular the
∆-Regge-trajectory are of a similar quality as in the original modelA. In Tab. 4.5 we have summarised the
calculation of∆-resonances.

Concerning theΩ-spectrum, see Fig. 4.7 (right panel), apart from the appearance of an excitedΩ3/2+-state
at 2014 MeV no spectacular changes in the predictions with respect to the original modelA were found. Note,
that the present model predicts, that this state is almost degenerated with the first negative parity statesΩ1/2−

at 2020 MeV andΩ3/2− at 1996 MeV.

4.2.3 N-spectrum

In Fig. 4.4 we present the results for the nucleon spectrum. As was the case for the∆-spectrum, comparing
to the results from the former modelA, we indeed obtain an improved description of the position ofthe first
excited state with the same quantum numbers as the groundstate, the so-called Roper-resonance, while at the
same time improving also on the position of the first excited negative parity resonancesJπ =

(
1
2

−
)1,
(
1
2

−)
2
,(

3
2

−)
1
,
(
3
2

−)
2

and
(
5
2

−)
1
. With the exception of theJπ = 5

2

+
-state, which compared to modelA is shifted
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Table 4.5: Comparison of experimental [8] and cal-
culated masses in MeV of∆-resonances. The corre-
sponding spectra are shown in Fig. 4.3 .

exp. error rating modelC

S31(1620) 1615-1675 **** 1636

S31(1900) 1850-1950 *** 1956

S31(2150) 2020-2250 * 2049/2121

P31(1750) 1708-1780 * 1765

P31(1910) 1870-1920 **** 1892

P33(1232) 1230-1234 **** 1231

P33(1600) 1550-1700 *** 1596

P33(1920) 1900-1970 *** 1899/1932

D33(1700) 1670-1770 **** 1600

D33(1940) 1840-2167 * 1895/1959

D35(1930) 1920-1970 *** 2022

F35(1905) 1870-1920 **** 1896

F35(2000) 1720-2325 * 1955

F37(1950) 1940-1960 **** 1934

F37(2390) 2250-2485 * many res.

G37(2200) 2120-2360 * 2123/2188

G39(2400) 2100-2518 ** 2220

H39(2300) 2137-2550 ** 2313

H3,11(2420) 2300-2500 **** 2363

I3,13(2750) 2550-2874 ** 2573

K3,15(2950) 2750-3090 ** 2712/2876

Table 4.6: Comparison of experimental [8] and cal-
culated masses in MeV ofN -resonances. The corre-
sponding spectra are shown in Fig. 4.4.

exp. error rating modelC

S11(1535) 1520-1555 **** 1475

S11(1650) 1640-1680 **** 1681

S11(1895) 1880-1910 ** 1839/1882

P11(939) 939-939 **** 950

P11(1440) 1430-1470 **** 1430

P11(1710) 1680-1740 *** 1712

P11(1880) 1915-1845 ** 1872

P11(2100) 1855-2200 * many res.

P13(1720) 1650-1750 **** 1690

P13(1900) 1862-1900 ** 1840

P13(2040) 2031-2065 * 2029/2045

D13(1520) 1515-1530 **** 1520

D13(1700) 1650-1750 *** 1686

D13(1875) 1855-1895 *** 1849/1921

D13(2120) 2080-2210 ** many res.

D15(1675) 1670-1685 **** 1678

D15(2060) 2045-2075 *** 1922/2017

F15(1680) 1675-1690 **** 1734

F15(1860) 1820-1960 ** 1933

F15(2000) 1816-2175 ** 1978/2062

F17(1990) 1855-2155 ** 1997

G17(2190) 2100-2200 **** 1980

G19(2250) 2170-2310 **** 2169

H19(2220) 2180-2310 **** 2159

I1,11(2600) 2550-2750 *** 2342

K1,13(2700) 2567-3100 ** 2510

upwards by approximately 50 MeV, the description of all known excited states is of a similar quality as that of
modelA. In particular the position of the lowestJπ = 7

2
−

-resonance is still underestimated by more than 100
MeV.

In the following, we compare the predictions obtained in model C for nucleon resonances withJ ≤ 5
2 and

masses larger than 1.8 GeV with new results obtained in the Bonn-Gatchina analyses as reported in [15–17]
and included in the new PDG [8], see also Tab. (4.6). The ratings of the new results are alsofrom the PDG [8]:
In particular in [8,16,17] a fourthJπ = 1

2

+
-state was found, calledN1/2+(1880) which could correspond



4.2.
T

H
E

S
P

IN
-F

LAV
O

U
R

D
E

P
E

N
D

E
N

T
IN

T
E

R
A

C
T

IO
N

45

π 1/2+ 3/2+ 5/2+ 7/2+ 9/2+ 11/2+ 13/2+ 15/2+ 1/2− 3/2− 5/2− 7/2− 9/2− 11/2− 13/2− 15/2−J

M
as

s 
[M

eV
]

1000

1500

2000

2500

3000

1829

1869

2233
2263

1750

  *

1910

****

1765

1892

2097

2197

1233

1773

1834

1912

1232

****

1600

***

1920

***

1231

1596

1899
1932

1860

1946

2258

2312

1905

****

2000

 **

1896

1955

2214
2246

1918

2297
2320

2376

1950

****

2390

  *

1934

2221

2293

2337 2349

2411

2464

2664

2300

 **

2313

2370

2437

2567

2399

27032708

2752

2420

**** 2363

2605
2638

2681

2735

2782

2820

2871

2660

2710

2766

2832

2777

2905

2950

 **

2712

2876

29332941

1620

2060

2100

2160

1620

****

1900

 **

2150

  *

1636

1956

2049

2121

1594

2048

21152128

1700

****

1940

  *

1600

1895

1959

2123
21392145
2168

2249

1930

***

2350

  *

2022

2132
2161

2244

2139

2197

2486

2530

2200

  *
2123

2188

2392

2443

2239

25582561
2586

2400

 **

2220

2475
24952507

2562

2607

2672

2717

2496

2546

2636

2695

2641

29062910
2928

2750

 **

2573

27992808
2830

2910
2945

2997

2814

2858

2934

Fig. 4.3: Comparison of the∆-Spectrum calculated within the present modelC (right side of each column) with experimental data from the Particle Data
Group [8] (central in each column) and with the results from modelA of [5] (left side in each column), note the caption to Fig. 3.2; Lines indicate the resonance
position (mass) with the mass uncertainty represented by a shaded box and the rating of [8] indicated by stars. The small numbers give the mass in MeV.J and
π denote total angular momentum and parity, respectively.
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Fig. 4.4: Comparison of theN -Spectrum calculated within the present modelC (right side of each column) with experimental data from the Particle Data
Group [8] (central in each column) and with the results from modelA of [5] (left side in each column). See also caption to Fig. 4.3.
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Fig. 4.5: Comparison of theΛ-Spectrum calculated within the present modelC (right side of each column) with experimental data from the Particle Data
Group [8] (central in each column) and with the results from modelA of [5] (left side in each column), see also caption to Fig. 4.3.
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Fig. 4.6: Comparison of theΣ-Spectrum calculated within the present modelC (right side of each column) with experimental data from the Particle Data
Group [8] (central in each column) and with the results from modelA of [5] (left side in each column), see also caption to Fig. 4.3.
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Fig. 4.7: Comparison of theΞ-Spectrum (first eight columns) and theΩ-Spectrum (rightmost eight columns) calculated within thepresent modelC (right side
of each column) with the experimental data from the ParticleData Group [8] (central in each column) and with the results from modelA of [5] (left side in each
column), see also caption to Fig. 4.3.
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to our calculated state at 1872 MeV. Furthermore the analysis in [15] contains twoJπ = 3
2
+

-states, called
N(1900)P13 andN3/2+(1975)

1, which might be identified with the modelC states calculated at 1840 MeV and

1947 MeV (or 1964 MeV), respectively. Concerning the negative parity states, in [8,16,17] a newJπ = 1
2

−
-

state was found (N1/2−(1895)), which could be identified with the calculated state at 1839MeV (or with that

at 1882 MeV). In addition, twoJπ = 3
2

−
states were found:N3/2−(1875) could correspond to the calculated

states at 1849 MeV (or at 1921 MeV) andN3/2−(2120) with one of the three states with calculated masses 2073

MeV, 2094 MeV and 2136 MeV. Furthermore aJ = 5
2
+

-state has been foundN5/2+(1860) in [8,17], which
could correspond to predicted state at 1933 MeV. The newN5/2−(2060)-state reported in [8,16,17] is closest to

the states calculated at 1922 MeV and at 2017 MeV. Finally, for Jπ = 5
2

+
the analysis is ambiguous: Although

a solution with a single pole around 2.1 GeV is not excluded, solutions with 2 poles, either an ill-defined pole in
the 1800-1950 MeV mass region and one at nearly 2.2 GeV or two close poles at approximately 2.0 GeV were
found and could correspond to the modelC states calculated at 1933 MeV and 1978 MeV. Note, that these new
resonances were not included in the parameter fit (see Tab. 4.2). An overview of the identification of nucleon
resonances is given in Tab. 4.6.

4.2.4 Hyperon-spectra

The resulting spectra for hyperon resonances,viz. theΛ-, Σ- andΞ-states are depicted in Figs. 4.5, 4.6 and 4.7,
respectively. Again we indeed find an improved description of the “Roper-like” resonancesΛ1/2+(1600) and
Σ3/2+(1660). Note, however, that both were used to determine the model parameters. Concerning the negative

parity resonances, although we do find an acceptable description of theΛ-resonances withJπ = 3
2

−
, 52

−

and 7
2

−
, also the new calculation cannot account for the low position of theΛ1/2−(1405)-resonance, which

now is 200 MeV below the calculated position. In our opinion this underlines the conclusion, that this state
cannot indeed be accounted for in terms of aq3 excitation alone and that its position is determined by a strong
coupling of a “bare”q3-state to meson-baryon decay channels due to the proximity of the K̄N -threshold, see
also ref. [57–59] for a description of this state in a chiral unitary approach.

Concerning theΞ-resonances, with respect to modelA of [6] mainly the prediction for the excited state
Ξ1/2+ at 1766 MeV is 100 MeV lower in modelC. To a lesser extend this also holds for the excitedΞ3/2+ ,
which is now predicted at 1887 MeV. The PDG [8] lists many baryon resonances in the hyperon sector for which
no quantum numbers are quoted. With the predictions of modelC we are able to suggest a classification for
some of these resonances based on their masses. It is plausible, that theΞ(1690) corresponds to the Roper-like
excitation at 1766 MeV of theJπ = 1

2
+

e.g.within the framework of modelC, mainly, because there is no other
low lying resonance within theΞ-spectrum of modelC, theΞ3/2+(1530)-resonance being already assigned.

Here, also the interpretation as aJπ = 1
2

−
groundstate could be possible, which lies slightly above the Roper-

like resonance at 1806 MeV. In addition to theΞ(1690)-resonance, the PDG lists also a resonanceΞ(1620),
but with a low one-star rating, which could also be interpreted as the Roper-like excitation as mentioned above.
Another candidate is theΩ(2250)-resonance. In theΩ-spectrum modelC predicts a clearly separated band of
states. For positive parity this band lies around≈ 2250 MeV and for negative parity at approximately≈ 2330
MeV. Thus, believing in the predictions of modelC, theΩ(2250)-resonance could have a positive parity.

4.2.5 Electroweak form factors of the nucleon

In Fig. 4.8 and 4.9 we display the electric proton and neutronelastic form factor, respectively, up to a momentum
transfer ofQ2 = 6.0GeV2. The black solid curve is the result of the present modelC, the black dashed curve
is the result obtained with the parameters of modelA, as in [9], albeit with a better numerical precision as
mentioned in section 3.5 in the previous chapter.

Although the electric form factor of the proton, see Fig. 4.8, as calculated with modelA in [9] fell too
steeply in comparison to experimental data, with the present interaction we find a much improved shape,
which yields a satisfactory description even up to momentumtransfers of6.0GeV2. Indeed, in contrast

1TheN3/2+ (1975)-resonance is not shown in Fig. 4.4, displaying PDG-data [8] only.



4.2. THE SPIN-FLAVOUR DEPENDENT INTERACTION 51

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3  4  5  6

Q2 [GeV2]

G
p E
(Q

2
)/
G

D
(Q

2
)

MMD [ 66]
Christy [64]
Qattan [65]

modelA
modelC

Fig. 4.8: The electric form factor of the proton di-
vided by the dipole formGD(Q

2), Eq. (4.7). MMD-
Data are taken from Mergellet al.[66], supplemented
by data from Christyet al.[64] and Qattanet al.[65] .
The solid black line represents the results from the
present modelC; the dashed black line those from
modelA of [9], albeit recalculated with higher nu-
merical precision. Red data points are taken from po-
larisation experiments and black ones are obtained by
Rosenbluth separation.

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  1  2  3  4  5  6

Q2 [GeV2]

G
n E
(Q

2
)

MMD [ 66]
[67–70,72]
[71,73–78]

modelA
modelC

Fig. 4.9: The electric form factor of the neu-
tron. MMD-Data are taken from the compilation of
Mergellet al.[66]. The solid black line represents the
results from the present modelC; the dashed black
line in the result from modelA of [9], albeit recal-
culated with higher numerical precision. Red data
points are taken from polarisation experiments and
black ones are obtained by Rosenbluth separation.

Table 4.7: Static properties of the nucleon. The values
in parentheses are as reported in [9], the values on top
of these are obtained within the same modelA, but with
higher numerical accuracy. The static values are extra-
polated from a dipole-shape-like fit.

modelAmodelC exp. ref.

µp[µN ]
2.76

2.62 2.793 [8]
[2.74]

µn[µN ]
-1.71

-1.63 -1.913 [8]
[-1.70]

√
〈r2〉pE [fm]

0.91
0.84 0.847 [66]

[0.82]

〈r2〉nE [fm]2
-0.20

-0.10
-0.123

[66]
[-0.11] ±0.004

√
〈r2〉pM [fm]

0.90
0.88 0.836 [66]

[0.91]

√
〈r2〉nM [fm]

0.84
0.75 0.85 [66]

[0.86]

gA
1.22

1.13
1.267

[8,79]
[1.21] ±0.0035

√
〈r2〉A[fm]

0.68
0.65

0.67
[80]

[0.62] ±0.01

to modelA, which mainly failed with respect to
the isovector part of the form factor, in the present
modelC, this form factor shows an almost perfect
dipole shape with the parametrisation

GD(Q
2) =

1

(1 +Q2/M2
V )

2
, (4.8)

taken from [66,79] with M2
V = 0.71GeV2.

The resulting electric neutron form factor, see
Fig. 4.9, has a maximum at approximately the ex-
perimental value ofQ2 ≈ 0.4 GeV2 with an ex-
cellent description of the experimental data. The
earlier calculation overestimated the data. How-
ever, the prediction of modelC is very similar to
the predictions of the Graz group [30] and [28] for
the Goldstone-Boson exchange quark models. The
corresponding charge radii are given in Tab. 4.7 and
can be extracted via

〈r2〉 :=− 6

G(0)

dG(Q2)

dQ2

∣∣∣∣
Q2=0

, (4.9a)

〈r2〉nE :=−6
dGn

E(Q
2)

dQ2

∣∣∣∣
Q2=0

, (4.9b)
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where the form factors were approximated with functions of the type

f(Q2) =
a

(1 + bQ2)c
, (4.10a)

fnE(Q
2) =

aQ2

(1 + bQ2)c
+ d , (4.10b)

by fitting their parametersa, b, c, d to the calculated values in the vicinity of the photon point.As for the form
factor the resulting squared charge radius of the neutron iscalculated close to the experiment value. The r.m.s.
proton radius is slightly smaller than the experimental value.

Table 4.8: Octet hyperon magnetic momentsµ for
modelA andC calculated as in [13, 14]. The values
are given in units ofµN .

hyp. modelA modelC PDG [8]

Λ -0.606 -0.578 -0.613±0.004

Σ+ 2.499 2.360 2.458±0.010

Σ0 0.743 0.712 -

Σ− -1.013 -0.937 -1.160±0.025

Ξ0 -1.325 -1.240 -1.250±0.014

Ξ− -0.533 -0.532 -0.651±0.0025

Table 4.9: Decuplet hyperon magnetic momentsµ for
modelA andC calculated as in [13, 14]. The values
are given in units ofµN .

hyp. modelA modelC PDG [8]

∆++ 7.906 6.846 3.7 to 7.5

∆+ 3.953 3.423 2.7+1.0
−1.3 ± 1.5± 3

∆0 0.0 0.0

∆− -3.953 -3.423

Σ∗+ 4.830 2.431

Σ∗0 0.702 0.215

Σ∗− -3.426 -1.981

Ξ∗0 1.720 0.464

Ξ∗− -2.949 -1.823

Ω− -1.698 -1.654 −2.02± 0.05

In Figs. 4.10 and 4.11 we display the magnetic proton- and neutron form factor up to a momentum transfer
of Q2 = 6.0GeV2, respectively. Again, the black solid curve is the result ofthe present modelC, the black
dashed curve is the result obtained with the parameters of model A, as in [9], albeit with a better numerical
precision as mentioned in section 3.5 in the previous chapter.

Whereas in the original calculation (modelA of [9]) the absolute value of these form factors dropped
slightly too fast as a function of the momentum transfer, in the present calculation we now find a very good
description even at the highest momentum transfers. Only atlow momentum transfer the values are too small
as is reflected by the rather small values for the various magnetic radii, see Tab. 4.7 and the too small values
of the calculated magnetic moments. Note, however, that theratio µp

µn
≈ 1.597 for modelC slightly changes

(previously µp

µn
≈ 1.605 for modelA) and is slightly larger than the experimental valueµp

µn
≈ 1.46; all values

are remarkably close to the non-relativistic constituent quark model valueµp

µn
= 3

2 . The magnetic moments of
flavour octet and decuplet baryons has been calculated according to the method outlined in [13,14]. The results
are compared to experimental values in Tab. 4.8 and 4.9, respectively. As a consequence of the better de-
scription of the momentum transfer dependencies in the individual form factors, we now also find an improved

description of the momentum transfer dependence of the formfactor ratio
µp Gp

E

Gp
M

(Q2), which has been the focus

on the discussion whether two-photon amplitudes are relevant for the discrepancy [84] found between recent
measurements based on polarisation data (red data points ofFig. 4.12) [85–87, 89–95] versus the traditional
Rosenbluth separation (black data points of Fig. 4.12), seee.g.[96–100]. Whereas in the original modelA this
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ratio fell much too steep, we now find in modelC a much better description of this quantity, see Fig. 4.12 fora
comparison with various data. Up toQ2 ≈ 3GeV2 we indeed find the observed linear dependence.
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Finally, the axial form factor, see Fig. 4.13, was already very well described in modelA of [9]. Although
falling slightly less steeply, the present calculation still gives a very satisfactory description of the data also at
higher momentum transfers in the same manner as in Glozman and Wagenbrunnet al. [111–113] also the value
of the axial coupling constant is too small, but of course much better than the non-relativistic constituent quark
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model resultgA = 5
3 . The axial form factor, presented in Fig. 4.13, is divided bythe axial dipole form

GA
D(Q

2) =
gA

(1 +Q2/M2
A)

2
, (4.11)

with the parametersMA = 1.014 ± 0.014GeV andgA = 1.267 taken from Bodeket al. [79].
In summary we find, that the new modelC, apart from some improvements in the description of the excita-

tion spectra at the expense of additional parameters of a phenomenologically introduced spin-flavour dependent
interaction does allow for a parameter-free description ofelectromagnetic groundstate properties of a similar
overall quality as has been obtained before, with some distinctive improvements on the momentum transfer
dependence of various form factors.

4.2.6 Helicity amplitudes

In the last decade new experiments were performed at the Jefferson-Laboratory in order to study helicity am-
plitudes up to6.0GeV2. These new experiments were designed to determine the helicity amplitudes for the
electro-excitation of theP11(1440)-, S11(1535)- andD13(1520)-resonances. The results can be found in Az-
nauryanet al. [18–20] and the MAID-analysis [114, 125]. In addition novel data for the longitudinalSN

1/2-
amplitudes were obtained.

We calculated the corresponding helicity amplitudes of these and other states on the basis of the Salpeter
amplitudes obtained in the novel modelC [31, 32]. As mentioned in section 3.6, the eigenvalue problem is
solved with higher numerical accuracy by an expansion into alarger basis, which presently includes all three-
particle harmonic oscillator states up to an excitation quantum numberNmax = 18, whereas previously [5,6,9]
the results for baryon masses and amplitudes in modelA were obtained withNmax = 12. For comparison and
to study the effects of the newly introduced phenomenological spin-flavour dependent interaction of modelC
we thus also recalculated the spectrum and the amplitudes for modelA within the same larger model space.
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Helicity amplitudes for nucleons

We now turn to the discussion ofN∗ ↔ N helicity amplitudes for each angular momentumJ and parityπ.

The J = 1

2
resonances: A comparison of calculated transverse and longitudinal helicity amplitudes with

experimental data for the electro-excitation of theS11(1535)-resonance is given in Figs. 4.14 and 4.15, respec-
tively. Whereas the value of the transverse amplitudes at the photon point (Q2 = 0), both for the proton and
the neutron, are accurately reproduced in particular by thenew modelC, in general the calculated transverse
amplitudes are too small by a factor of two; in comparison to the results from modelA the amplitudes of model
C decrease more slowly with increasing momentum transfer, inbetter agreement with the experimental data.
But, in particular the near constancy of the proton data for0 < Q2 < 1 GeV2 is not reflected by any of the
calculated results. For comparison we also plotted the results from the quark model calculation of the transverse
Ap

1/2-amplitude by Keister and Capstick [124] for Q2 . 3GeV2 and the fit obtained by Aznauryanet al. [49]
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and Tiatoret al. [47]. Contrary to this, the momentum transfer dependence of thecalculated longitudinal he-
licity amplitudes hardly bear any resemblance to what has been determined experimentally, in particular the
minimum found for the proton atQ2 ≈ 1.5GeV2 is not reproduced. Only the non-relativistic calculation of
Capstick and Keister [126] shows a pronounced minimum for the longitudinalS11(1535)-amplitude, however
this minimum is predicted at the wrong position.
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Also the calculated transverse proton helicity amplitudeAp
1/2 for the nextS11(1650)-resonance shows a

large disagreement with experimental data as shown in Fig. 4.16. This discrepancy was already found in the
previous calculation of Mertenet al. [9] and obviously is not resolved within modelC. Note, however, that the
neutron amplitudeAn

1/2 calculated at the photon point does correspond to the data from PDG [8], as illustrated

in Fig 4.16. The rather small longitudinalS11(1650)-amplitudeSN
1/2 seems to agree with the scarce medium
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Q2-data from the MAID-analysis of [114, 125], however for lowerQ2 the single data point of Aznauryanet
al. [19] seems to indicate a zero crossing of this amplitude not reproduced by either of the model calculations
of theSp

1/2-amplitude for theS11(1650)-resonance (see Fig. 4.17).

The third and fourthJπ = 1
2
−

-nucleon resonances are predicted in modelA at 1872MeV and1886MeV
and in modelC at 1839MeV and1882MeV, respectively. Indeed within the Bonn-Gatchina Analysis of the
CB-ELSA collaboration data [15,17] evidence for aJπ = 1

2
−

-nucleon resonance at1895MeV was found. As
can be seen from Fig. 4.18 the predicted transverse amplitudes for the third resonance are rather large in both
models and the calculated value at the photon point (Q2 = 0) is much larger than the experimental value quoted
in [15,17], but the value of the fourth resonance matches the PDG photon decay amplitude.

-40

-20

 0

 20

 40

 60

 80

 100

 0  1  2  3  4  5  6

Q2 [GeV2]

A
N 1
/
2
(Q

2
)
[1
0
−
3
G

eV
−
1
/
2
]

PDG [8], p
PDG [8], n

Aznauryan [19], p
MAID [ 114,125], p

Fit: Tiator [47], p

modelA, p
modelA, n

modelC, p
modelC, n

Fig. 4.24: Comparison of theP13(1720) transverse
helicity amplitudeAN

1/2 of proton and neutron calcu-
lated in modelC (solid and dashed-dotted line) and
modelA (dashed lines). Note, that for the data points
of the MAID-analysis by Tiatoret al. [125] no errors
are quoted. See also caption to Fig. 4.14.

-120

-100

-80

-60

-40

-20

 0

 20

 0  1  2  3  4  5  6

 

 
 
 
 
 
 

Q2 [GeV2]

A
N 3
/
2
(Q

2
)
[1
0
−
3
G

eV
−
1
/
2
]

PDG [8], p
PDG [8], n

Aznauryan [19], p
MAID [ 114,125], p

Fit: Tiator [47], p

modelA, p
modelA, n
modelC, p
modelC, n

Fig. 4.25: Comparison of theP13(1720) transverse
helicity amplitudeAN

3/2 of proton and neutron calcu-
lated in modelC (solid and dashed-dotted line) and
modelA (dashed lines). Note, that for the data points
of the MAID-analysis by Tiatoret al. [125] no errors
are quoted. See also caption to Fig. 4.14.

-60

-50

-40

-30

-20

-10

 0

 10

 20

 30

 0  1  2  3  4  5  6

Q2 [GeV2]

S
N 1
/
2
(Q

2
)
[1
0
−
3
G

eV
−
1
/
2
]

MAID [ 114,125], p
Fit: Tiator [47], p

modelA, p
modelA, n
modelC, p
modelC, n

Fig. 4.26: Comparison of theP13(1720) longitudinal
helicity amplitudeSN

1/2 of proton and neutron calcu-
lated in modelC (solid and dashed-dotted line) and
modelA (dashed lines). Note, that for the data points
of the MAID-analysis by Tiatoret al. [125] no errors
are quoted. See also caption to Fig. 4.14.
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The transverse and longitudinal helicity amplitudes of theRoper-resonanceP11(1440) are displayed in
Figs. 4.19 and 4.20, respectively. It is obvious, that the zero crossing found in the data atQ2 ≈ 0.5GeV2, see
Fig. 4.19, is not reproduced in the calculated curves, although theQ2-dependence of the positive values at higher
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momentum transfers can be accounted for in both models afterchanging the sign of the old prediction [9]. On
the other hand we do find a satisfactory description of the longitudinalSp

1/2-amplitude displayed in Fig. 4.20 in
particular in the new modelC.
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Helicity amplitudes of higher lying resonances in theP11-channel are only poorly studied in experiments.
Nevertheless, we shall discuss briefly theP11(1710)-helicity amplitude before treating the higher excitations
P11(1880) andP11(2100). For theP11(1710)-resonance only the photon decay amplitude is reported [8]. In
Figs. 4.21 and 4.22 we display our predictions for these amplitudes. The transverseAN

1/2-amplitude of modelC
matches the PDG-data at the photon point in contrast to modelA, which overestimates the proton- and neutron
amplitudes by a factor of two. On the other hand this would be in accordance with the larger value obtained by
Anisovichet al. [17], Ap

1/2 = (52 ± 15) × 10−3 GeV2. The prediction of the longitudinalSN
1/2-amplitudes is

given in Fig. 4.22.
Finally we present the results for the fourth and fifthJπ = 1

2

+
-nucleon state in Fig. 4.23, where we show

the transverse helicity amplitudes only. The corresponding masses predicted by modelA are1905MeV for the
fourth and1953MeV for the fifth state; for modelC the predicted masses are1872MeV and1968MeV, respec-
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tively. The two data at the photon point marked′′01′′ and ′′02′′ were obtained by the CB-ELSA collaboration
within the Bonn-Gatchina Analysis as reported in [15, 17] for theN1/2+(1880)-resonance. They correspond
to two different partial wave solutions in order to extract the corresponding baryon mass and helicity ampli-
tudes. The prediction for the fourth state lies between these values, the values found for the fifth state are much
smaller. This also applies for higherJπ = 1

2

+
-excitations not displayed here.

TheJ = 3

2
resonances: In Figs. 4.24 and 4.25 the transverse helicity amplitudes oftheP13(1720)-resonance

are displayed. Although a reasonable agreement with the data of Aznauryanet al. [19] and with the photon
decay amplitude is found for both models, the data from the MAID-analysis [114,125] indicate a sign change
for theAp

1/2-amplitude atQ2 ≈ 3GeV2 not reproduced by either model. In spite of not being able to account

at all for the largeAp
3/2-amplitude found experimentally, the longitudinal helicity amplitude as reported in the

MAID-analysis with exception of the value atQ2 ≈ 1GeV2 is reproduced by both models rather well, as
shown in Fig. 4.26.
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For the transverse helicity amplitudeAp
1/2 (see Fig. 4.27) of theD13(1520)-resonance we find a reasonable
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quantitative agreement with experimental data for low momentum transfers, while apart from the fact, that
in modelC the amplitude is too small by about a factor of two, theQ2-dependence is reproduced up toQ2 ≈
6GeV2. The minimum atQ2 ≈ 1GeV2 is clearly visible for modelA, whereas this feature is not so pronounced
in modelC. TheAp

3/2-amplitudes are displayed in Fig. 4.28; here both models underestimate the data by more
than a factor of three. Likewise the calculated neutronAn

1/2- andAn
3/2-amplitudes at the photon point are

too small. In particular for theAn
1/2-amplitude the predicted value close to zero is in contradiction to the

experimental value−59 ± 9 × 10−3GeV−1/2 from PDG [8]. Unfortunately, although theQ2-dependence
of the magnitude of the longitudinal amplitudeSp

1/2, see Fig. 4.29, would describe the experimental data of
Aznauryanet al. [18–20] and MAID [114] very well, the amplitude has the wrong sign. Note, that although, as
mentioned in section 2.7, the common phaseζ in the definition of the helicity amplitudes is not determined in
our framework, relative signs between the three helicity amplitudes are fixed.
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The transverse amplitudes for the nextJπ = 3
2

−
-nucleon resonance,i.e. D13(1700), are displayed in

Figs. 4.30 and 4.31. In contrast to the situation for theD13(1520)-resonance described above, here both
models are in accordance with the PDG-data [8] as well as with the data from Aznauryanet al. [19] for the
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A1/2-amplitude, whereas theA3/2-amplitude only reproduces the PDG-data [8] and not the data point from
Aznauryanet al. [19] at finite momentum transfer. The prediction for the longitudinalD13(1700)-amplitudes
is given in Fig. 4.32. The calculated amplitudes turn out to be rather small.

The J = 5

2
resonances: Although the transverseD15(1675)-helicity amplitudes at the photon point repro-

duce the experimental data from MAID [114, 125] and the PDG [8] rather well, as displayed in Figs. 4.33
and 4.34, both calculations cannot account for the apparentzero of the experimentalAp

1/2-amplitude atQ2 ≈
1.5GeV2. Furthermore, theAp

3/2-amplitude, displayed in Fig. 4.34 is severely underestimated in magnitude by
both models and modelC even yields the wrong sign. The transverse amplitudes for the neutron are predicted
to be negative, here the calculated value at the photon pointfor modelA is closer to the experimental value
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than for modelC. The longitudinal amplitudes are calculated to be very small for both models. There exists
only experimental data from the MAID-analysis [125], indicating that the experimental values are consistent
with zero (see Fig. 4.38).
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There also exist data for the helicity amplitudes of theF15(1680)-resonance. The comparison with the
calculated values is given in Figs. 4.36 and 4.37. In particular in modelC a reasonable description of the
Ap

1/2-amplitudes is found for the newer data from Aznauryanet al. [18,19] and MAID [114,125] both at the
photon point and for the values at higher momentum transfers. The calculated values in modelA are in better
accordance with the the older data from Burkertet al.[21], which are larger in magnitude. In contrast to this, the
Ap

3/2-amplitudes are again severely underestimated in magnitude, see Fig. 4.37. However, for the longitudinal

Sp
1/2-amplitude we observe a rather good agreement with the data as displayed in Fig. 4.38, the values obtained

in modelC being too small at lower momentum transfers.
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1/2 for proton and neutron cal-
culated in modelC (solid and dashed-dotted line) and
modelA (dashed lines). See also caption to Fig. 4.14.

The J = 7

2
resonances: For positive parity PDG [8]

lists the F17(1990)-resonance rated with two stars.
Both in modelA and in modelC we can relate this to
states with a calculated mass of 1954 MeV and 1997
MeV, respectively. The corresponding photon ampli-
tudes are very small, see Tab. 4.10. Otherwise, con-
cerning theJ = 7

2 resonances there exists only one
negative parity resonance with more than at least a three
star rating, theG17(2190). The corresponding predic-
tions for transverse and longitudinal helicity amplitudes
are shown in Figs. 4.39 and 4.40.

The J = 9

2
resonances: The transverse and longitu-

dinal helicity amplitudes of theJπ = 9
2

+
-resonance

G19(2250) are predicted to be very small as shown in
Figs. 4.41 and 4.42 and coincide with the estimate by
Anisovichet al. [17] for the transverse amplitudes. Ob-
viously, theAp

3/2-amplitude of modelC and the longi-

tudinal amplitudes of modelA are effectively zero. Although the resonance withJπ = 9
2

−
, H19(2220) has a
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four star rating by the PDG, only the proton photon decay amplitude has been estimated in [17]. The calculated
values are displayed in Fig. 4.43 and Fig. 4.44; the amplitudes turn out to be smaller in modelC than in model
A in better agreement with the estimate of [17].

The J = 11

2
resonances: Figs. 4.45 and 4.46 shows predictions of the transverse and longitudinal helicity

amplitudes for theJπ = 1
2

−
I1 11(2600)-resonances. So far no data available.

∆ ↔ N helicity amplitudes

We now turn to a discussion of the results for∆ ↔ N electro-excitation.
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The J = 1

2
resonances: We start the discussion with the positive parityS31(1620)-resonance. For the

S31(1620) transverse and longitudinal helicity amplitudes, depicted in Fig. 4.47, a wide variety of experi-
mental data at and near the photon point exists. The calculated values lie well within the region of experimental
data obtained due to the spread in partially contradictory experimental data, but an assessment of the quality
is hardly possible. The positive longitudinal amplitudeSN

1/2 in Fig. 4.47 as determined in [114,125] together

with the single data point from [19] suggest a sign change in the regionQ2 ≈ 0.7 − 1.0GeV2 not reproduced
by both calculations, this clearly needs more experimentalclarification.
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Note, that the values atQ2 = 0 of Anisovich et
al. [17], Ap

1/2 = 130+30
−60×10−3GeV−1/2 andAp

3/2 =

−150+25
−50 × 10−3GeV−1/2, are beyond the range dis-

played. See also caption to Fig. 4.14.

The next excitation in this channel is theS31(1900)-resonance; the corresponding transverse and longitudi-
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nal helicity amplitudes are displayed in Fig. 4.48. Here, weonly give the results for modelC, since the original
modelA does not describe a resonance in this region. The values at the photon point seems to be in better
agreement with the data from Crawfordet al. [92] than with the data from Awajiet al. [129] and Anisovichet
al. [17]. Note, that for bothS31-resonances we judiciously fixed the phaseζ in order to reproduce the sign of
the PDG value at the photon point, as has been mentioned above. Reversing the sign ofζ would in case of the
S31(1620)-resonance in fact better reproduce the data at larger momentum transfers.
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Fig. 4.55: Prediction of theP33(1920) longitudinal
helicity amplitudeSN

1/2 calculated in modelC (solid
and dashed-dotted line) and modelA (dashed lines).
See also caption to Fig. 4.14.

Also the lowest positive parity∆-resonance
P31(1750) is only reproduced in modelC as shown
in [31]. The calculation does not account for the large
value found by Penneret al. [130] at the photon point,
see Fig. 4.49. The longitudinal amplitude is predicted
to be negative for this resonance.

The helicity amplitudes for the next excited state,
P31(1910) are shown in Fig. 4.50. Note, that model
A does produce two nearby resonances at the position
of theP31(1910)-resonance, see [5,31]. The calculated
amplitudes for both resonances as well as the calculated
amplitude in modelC are very small and in rough agree-
ment with the experimental value found at the photon
point which has a large error. Again the assessment
cannot be conclusive. Also shown are the predictions
for the rather small longitudinal amplitudes.

The J = 3

2
resonances: We shall discuss the electro-

excitation of the ground-state∆-resonance,P33(1232)
in some more detail below; the transverse amplitudes are shown in Fig. 4.51, while Fig. 4.52 displays the results
for the longitudinal amplitude. With the exception of the low momentum transfer regionQ2 < 0.5GeV2 we
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observe a fair agreement with experimental data for the transverse amplitudeAN
1/2 for both models, which,

however, both show a minimum in the amplitudes forQ2 . 0.5GeV2 (which, in contradiction to data, also
persists in the magnetic transition form factor, see Fig. 4.64), whereas the data show a minimum of some
kinematical origin at much smaller momentum transfersQ2 . 0.1GeV2.
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Also the experimental data for theSN
1/2-helicity amplitude can be accounted for by the calculated curve for

modelC at the highest momentum transfers only, while the amplitudecalculated inA is much smaller. Note,
that more data is available for the magnetic transition formfactor, which is a linear combination of theAN

1/2-

andAN
3/2-amplitudes, see section 4.2.8.

The Roper-like excitation of the groundstate∆-resonance,P33(1600), is only described adequately in
modelC. The corresponding helicity amplitudesAN

1/2, AN
3/2 andSN

1/2 are displayed in Fig. 4.53. TheAN
1/2-

amplitude is calculated to be smaller than the decay amplitude quoted by the PDG [8] and [17]. Contrary to
this we find a rather largeAN

3/2-amplitude with a pronounced minimum aroundQ2 ≈ 0.75GeV2. However, in
this case, the value at the photon point is overestimated.
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For theP33(1920)-state with positive parity the helicity amplitudes are displayed in Figs. 4.54 and 4.55.
In [31] it is shown, that there exist several states around 1920 MeV, which correspond to the second and third
excited∆3/2+ -state and which are predicted at 1834 MeV and at 1912 MeV for modelA and at 1899 MeV
and at 1932 MeV for modelC, respectively. The transverse amplitudes are in general very small and match
the photon decay data of [63, 129, 130], whereas the data of Anisovichet al. [17] cannot be reproduced. The
predictions for the longitudinal amplitude as well as theAN

3/2-amplitude for the third excitation are effectively
zero.

We now turn to negative parity excited∆-resonances. For theD33(1700) transition amplitudes we find, that
the predictions of both models are rather close, as displayed in Figs. 4.56 and 4.57. Note, that the calculated
masses of theD33(1700)-resonance,viz. M = 1594MeV for modelA andM = 1600MeV for modelC, are
about100MeV lower than the experimental mass at approximately1700MeV. This of course affects the pre-
factors in Eqs. (2.125a) and (2.125b) leading to the conclusion that the current-matrix elements are calculated
to be too small. For the transverse amplitudeAN

1/2 only the single data point from Aznauryanet al. [19] is close
to the calculated curves. At the photon point the calculatedvalues also agree with the PDG-data [8]. In contrast,
the data from MAID [114,125] and Burkertet al. [21] cannot be accounted for. Similar observations are made
for theAN

3/2-amplitude. The longitudinalSN
1/2-amplitude has a sign opposite to the rare data from Aznauryan
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et al. [19] and MAID [114, 125] as shown in Fig. 4.57. Note, however, that the MAID-analysis of Tiatoret
al. [125] yields a vanishingSN

1/2-amplitude in contrast to the appreciable amplitudes foundin the calculations.
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Figs. 4.58 and 4.59 contain the prediction for the transverse and longitudinal helicity amplitudes of the
D33(1940) resonance in modelC. Note, that in this model two resonances with massesM = 1895MeV and
M = 1959MeV are predicted in this energy range, as shown in [31]. Accordingly, we have displayed two
alternative predictions for the helicity amplitudes. The results for the transverse amplitudes, see Fig. 4.58, for
both resonances are rather similar; the photon decay amplitudes measured by Hornet al. [63] and Awaji et
al. [129] are in conflict, the calculated values favour a small negative value at the photon point, which agrees
with the data from Awajiet al. [129]. In Fig. 4.59 we also show the corresponding longitudinal amplitudes.

The J = 5

2
resonances: In Fig. 4.60, we show theAN

1/2, AN
3/2 andSN

1/2 helicity amplitudes calculated in
modelC [31] for the D35(1930)-resonance. Also displayed is the PDG-data at the photon point [8], where
we find that the transverse amplitudes agree well with the experimental values. The longitudinal amplitude is
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found to be almost vanishing. Since modelA cannot account for a resonance in this energy region no results
are given in this case.

Both models are able to reproduce the lowestJπ = 5
2

+
∆-resonance with positive parity. The prediction of

the helicity amplitudes of theF35(1905)-resonance can be found in Fig. 4.61. Both models can accountvery
well for the PDG-data at the photon point for theA1/2 transverse amplitudes, but theA3/2-amplitude is found
with a sign opposite to that of the data. As for the previouslydiscussed resonance the results for the longitudinal
amplitudes turn out to be very small.

The J = 7

2
resonances: ForJ = 7

2 there exists only one four star resonance, theF37(1950). The predictions
of the corresponding transverse and longitudinal helicityamplitudes are shown in Fig. 4.62. Here, the predic-
tions of the transverse amplitudes are much too small in order to explain the experimental photon coupling.

TheJ = 11

2
resonances: Fig. 4.63 shows the prediction of the transverse and longitudinal helicity amplitudes

of the∆11/2+(2420)-resonance. The amplitudes found in modelC are slightly smaller than those in modelA.
In both cases the longitudinal amplitude virtually vanishes.

4.2.7 Photon couplings

In Tabs. 4.10 and 4.11 we have summarised the results for the photon decay amplitudes as partially already
discussed in subsections 4.2.6 and 4.2.6 for the helicity amplitudes. This tables also lists the available ex-
perimental data. Most of the decay amplitudes can be accounted for quite satisfactory. In general no large
differences between both models are found. For some amplitudes of resonances with higher angular momen-
tum no experimental data are available to our knowledge.

Table 4.10: Transverse photon couplings calculated forN → ∆ transitions in modelA andC in comparison
to experimental data. All calculated photon couplings weredetermined by calculating the helicity amplitudes
atQ2 = 10−4 GeV2 close to the photon point. A hyphen indicates, that data do not exist. All amplitudes are in
units of10−3GeV−1/2, all masses are given in MeV. Reference [130] does not quote errors.

State Mass ModelA ModelC Exp. Ref.
Rat. modelA modelC Ampl.

S31(1620) **** 1620 1636 A1/2 16.63 15.33 27±11 [8]
S31(1900) ** – 1956 A1/2 – -1.43 59±16/29±8/-4±16 [17]/ [129]/ [92]

P31(1750) * – 1765 A1/2 – 6.27 53 [130]
P31(1910) **** 1829/1869 1892 A1/2 2.38/0.69 1.98 3±14 [8]

P33(1232) **** 1233 1231 A1/2 -93.23 -68.08 -135±6 [8]
A3/2 -158.61 -122.08 -250±8 [8]

P33(1600) *** – 1596 A1/2 – -14.98 -23±20 [8]
A3/2 – -35.24 -9±21 [8]

P33(1920) *** 1834/1912 1899/1932 A1/2 20.89/1.79 14.89/11.90 130+30
−60/40±14/ [17]/ [129]/
22±8/-7 [63]/ [130]

A3/2 -18.56/-0.58 1.36/9.16 -115+25
−50/23±17/ [17]/ [129]/

42±12/-1 [63]/ [130]

D33(1700) **** 1594 1600 A1/2 64.99 63.39 104±15 [8]
A3/2 67.25 71.47 85±22 [8]

D33(1940) ** – 1895/1959 A1/2 – -16.86/-14.98 -36±58/160±40 [129]/ [63]
A3/2 – -12.56/-27.19 -31±12/110±30 [129]/ [63]

D35(1930) *** – 2022 A1/2 – -7.27 -9±28 [8]
A3/2 – -19.49 -18±28 [8]

F35(1905) **** 1860 1896 A1/2 18.46 12.42 26±11 [8]
A3/2 41.22 23.54 -45±20 [8]

F37(1950) **** 1918 1934 A1/2 -24.80 -14.22 -76±12 [8]
A3/2 -31.94 -18.62 -97±10 [8]

H39(2420) **** 2399 2363 A1/2 11.62 4.92 – –
A3/2 13.78 5.90 – –
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Table 4.11: Transverse photon couplings calculated forN ↔ N∗ transitions in modelA andC in comparison
to experimental data. All calculated photon couplings weredetermined by calculating the helicity amplitudes
atQ2 = 10−4 GeV2 close to the photon point. A hyphen indicates, that data do not exist. All amplitudes are in
units of10−3GeV−1/2, all masses are given in MeV. The references [130,131] do not quote errors.

State Mass ModelA ModelC Exp. Ref.
Rat. modelA modelC Ampl. p n p n p n

S11(1535) **** 1417 1475 A1/2 111.68 -74.75 85.93 -54.96 90±30 -46±27 [8]
S11(1650) **** 1618 1681 A1/2 2.55 -16.03 -4.56 -6.86 53±16 -15±21 [8]

S11(1895) ** 1872 1839
A1/2

43.36 -23.93 52.71 -29.01 12±6 – [17]1886 1882 38.95 -18.44 17.18 -8.27

P11(1440) **** 1498 1430 A1/2 33.51 -18.68 33.10 -17.43 -60±4 40±10 [8]
P11(1710) *** 1700 1712 A1/2 58.36 -30.59 30.95 -13.57 24±10 -2±14 [8]
P11(1880) ** 1905 1872 A1/2 24.35 -15.55 24.44 -11.87 14±3 – [17]

P13(1720) **** 1655 1690 A1/2 81.69 -33.06 50.28 -22.56 18±30 1±15 [8]
A3/2 -26.24 11.76 -17.10 2.69 -19±20 -29±61 [8]

P13(1900) *** 1859 1840 A1/2
5.06 3.17 2.31 5.17 26±15/-17 –/-16 [17]/ [130]1894 12.58 -14.53

A3/2
2.29 18.15 4.03 13.79 -65±30/31 –/-2 [17]/ [130]6.49 -14.90

D13(1520) **** 1453 1520 A1/2 -54.80 2.47 -39.39 0.65 -24±9 -59±9 [8]
A3/2 48.45 -52.27 32.80 -31.64 150±15 -139±11 [8]

D13(1700) *** 1573 1686 A1/2 -20.69 16.52 -10.16 10.65 -18±13 0±50 [8]
A3/2 -5.45 38.89 -7.08 26.42 -2±24 -3±44 [8]

D13(1875) *** 1896 1849
A1/2

49.87 -19.04 42.29 -13.71 18±10/-20±8 7±13 [17]/ [129]/ [8]/
1920 1921 1.62 -6.73 -3.72 -6.76 12/26±52 [130]/ [132]

A3/2
-20.86 13.11 -21.46 10.17 -9±5/17±11 -53±34 [17]/ [129]/ [8]/
-5.78 -2.38 0.64 -4.27 -10/128±57 [130]/ [132]

D15(1675) **** 1623 1678 A1/2 3.74 -25.80 6.16 -19.91 19±8 -43±12 [8]
A3/2 5.39 -36.41 -1.36 -22.98 15±9 -58±13 [8]

D15(2060) ** 1935 1922
A1/2

50.63 -28.09 26.71 -16.48 65±12 – [17]2063 2017 0.83 -14.53 2.74 -12.84

A3/2
-17.97 10.01 -8.99 2.06

55+15
−35 – [17]1.35 -20.16 -2.92 -17.67

F15(1680) **** 1695 1734 A1/2 -45.91 32.65 -29.98 22.25 -15±6 29±10 [8]
A3/2 42.16 -12.85 24.10 -6.95 133±12 -33±9 [8]

F15(1860) ** 1892 1933
A1/2

-9.86 -11.41 1.22 -13.86 20±12 – [17]1918 1978 -5.33 17.12 -5.41 4.31

A3/2
-0.41 -23.28 -0.60 -11.28 50±20 – [17]-5.34 6.48 -2.21 -2.67

F15(2000) ** 2082 1978
A1/2 -0.05 0.59 -5.41 4.31 35±15 – [17]2062 32.96 -21.35

A3/2 -0.02 0.61 -2.21 -2.70 50±14 – [17]-16.72 6.06

F17(1990) ** 1954 1997 A1/2 -2.98 -9.19 -3.94 -3.22 42±14/30±29 –/-1 [17]/ [129]
40 -69 [131]

A3/2 -3.96 -11.81 0.39 -5.88 58±12/86±60 –/-178 [17]/ [129]
4 -72 [131]

G17(2190) **** 1986 1980 A1/2 -27.72 8.47 -12.42 2.69 -65±8 – [17]
A3/2 19.04 -13.45 8.80 -6.48 35±17 – [17]

G19(2250) **** 2181 2169 A1/2 1.26 -11.16 2.18 -6.65 |Ap
1
2

| < 10 – [17]

A3/2 1.64 -13.70 -0.27 -6.54 |Ap
1
2

| < 10 – [17]

H19(2220) **** 2183 2159 A1/2 22.06 -13.65 10.63 -6.93 |Ap
1
2

| < 10 – [17]

A3/2 -17.40 7.04 -7.78 3.05 |Ap
1
2

| < 10 – [17]

I1,11(2600) *** 2394 2342 A1/2 14.06 -5.45 -5.56 -1.89 – – –
A3/2 -10.07 5.97 -4.07 2.46 – – –
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4.2.8 ∆(1232) ↔ N transition form factors

The∆ ↔ N electric and magnetic transition form factors between the ground-state nucleon and theP33(1232)-
state are related to the helicity amplitudes according to Eqs. (2.127a), (2.127b) and (2.130). In Fig. 4.64
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the calculated magnetic transition form factor divided
by thrice the standard dipole form factor is compared
to experimental data and analyses. This representation
enhances the discrepancies between the calculated and
experimental results: Although modelA still gives a
fair description at larger momentum transfers, albeit in
general too small, modelC yields too large values in this
regime. In both models the values at low momenta are
too small, a discrepancy which this calculation shares
with virtually all calculations within a constituent quark
model. Usually this is regarded to be an indication of
effects due to the coupling to pions. In Fig. 4.65 we
also present to corresponding electric transition form
factor. Only modelC agrees with the PDG-data [8] of
the MAID-analysis [114, 125], whereas modelA even
has the wrong sign. In modelA we recalculated the
form factor with a higher numerical accuracy than was
done by Mertenet al. in [9]. The Coulomb transition
form factor is displayed in Fig. 4.66. Although the cal-

culated result in modelC is significantly larger than in modelA, both are too small to account for the data from
the MAID-analysis [47,114,125].
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4.3 A modified quark-quark confinement potential

A possible modification of the description of confinement canbe achieved by another choice of its Dirac-
structure. On the basis of the Dirac-structure of the one-gluon exchange as used by Löringet al. [7] and
Murota [55], see also Eq. (3.8), we found the following confinement potential to yield satisfactory results.
Moreover, we introduce the confinement potential as a two-body interaction given by

V(2)(x1, x2;x
′
1, x

′
2) := Vconf (x)δ(x

0)δ(4)(x1 − x′1)δ
(4)(x2 − x′2) , (4.12)

with x := x1 − x2 and

Vconf (x) = ar
(
γ0 ⊗ γ0 − 1

3(γ · ⊗γ)− 1
2S12(x̂)

)
. (4.13)

Here,S12(x̂) represents a tensor of rank 2 and is defined asS12(x̂) :=
1
3 [γ ·⊗γ]−[(γ · x̂)⊗ (γ · x̂)]. Moreover,

we have definedr := |x| andx̂ := x

r .

4.3.1 Model parameters

The prescription of the modified confinement does not introduce new model parameters, because the Dirac-
structure of the linear potential is fixed by Eq. (4.13) and thus needs no further parameters. Additionally,
to the slope we have to choose the offset Dirac-structure andthe complete confinement involves finally two
parameters, where the offset Dirac-structure can be chosenjudiciously as before in modelA or C. The new
model will be called modelD and includes a confinement potential according to Eq. (4.13). Furthermore,
it is possible to include additionally the new spin-flavour dependent interaction from the previous section,
i.e. combining both approaches, this is called modelE . For the determination of the model parameters the
same compilation of resonances as for modelA and C have been used, these are summarised in Tab. 4.2.
The parameter values are listed in Tab. 4.12, where the valueof the slope parameter of the confinement have
the same magnitude for the modelsC, D andE . Here, the offset confinement Dirac-structure is chosen as
Γ0 = 1⊗ 1⊗ 1 for both models.

Table 4.12: Model parameters for the new modelsD andE within
the modified confinement potential. See also text and Tab. 3.3.

parameter modelD modelE

masses mn [MeV] 300.0 450.0

ms [MeV] 680.0 675.0

confinement a [MeV] -536.2 -376.6

b [MeV/fm] 220.8 190.0

instanton-induced
interaction

gnn [MeVfm3] 224.9 351.4

gns [MeVfm3] 148.1 284.2

λ [fm] 0.4 0.4

octet exchange g28
4π [MeVfm3] – 0.0

singlet exchange g20
4π [MeVfm3] – 2098.5

λ0 [fm] – 0.25

Table 4.13: Optimal values of the length
scaleβ for various baryons in the models
D andE .
baryon 2J + 1 β [fm]

modelD modelE
∆ 2 0.60 0.45

4 0.80 0.45
6, 8 0.80 0.55
≥10 0.80 0.60

N 2 0.60 0.45
≥4 0.80 0.50

Λ 2 0.55 0.45
≥4 0.60 0.50

Σ, Ξ 2, 4 0.50 0.40
≥6 0.50 0.45

Ω ≥2 0.80 0.40

Note, that the optimal octet-coupling for modelE turns out to be vanishing. Then, the singlet exchange con-
tribution can also be considered as a part of the confinement potential. Accordingly, modelD andE only differ
by an additional spin-dependent short-range contributionto the confinement potential. In this interpretation,
the confinement in modelE includes a repulsive short-range part (additionally to itslinear and constant part),
which has the Dirac-structureγ5 ⊗ γ5. For completeness, the scale dependence is shown in Fig. 4.67 for the
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Fig. 4.67: Scale dependence of the ground- and its first excited states shown for modelD andE , respectively.
On the left side we have displayed theN1/2 nucleon resonances and on the right side the∆3/2-resonances. The
optimalβ is chosen close to the average of the positions of the minima of the ground- and first excited states.
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N1/2- and∆3/2-states. The plots are calculated withNmax = 18 andNmax = 20 oscillator shells, respectively.
Tab. 4.13 summarises the optimal length scales used in the calculations of∆-, nucleon- and hyperon-spectra.

4.3.2 ∆- andΩ-spectrum

As in the discussion of modelA andC, we start with the discussion of the∆-spectra for modelD andE . They
are displayed in Fig. 4.68. On the left side of each column it can be verified, that, compared with the∆-spectra
shown in Fig. 3.2, modelD describes the states in similar fashion as modelA from Löring et al. [5–7], also
compare Tabs. 4.5 and 4.14. This property is surprising, because modelA andD have different confinement
Dirac-structures and consequently have different values for the parameters as is evident from a comparison of
Tabs. 4.3 and 4.15. In modelD, the∆3/2+(1600)-state as well as the three excited negative parity∆∗-states,
∆1/2−(1900), ∆3/2−(1940) and∆5/2−(1930), are not reproduced and the predictions of modelD are close to
those of modelA. Furthermore, the mass-splitting of the∆5/2+ -states close to 1900 MeV is slightly smaller
compared to that of modelA. Additionally, both states are shifted slightly downwards. In comparison to model
A andD, modelE reproduces the spectra much better, as did the previously discussed modelC. Most of
the∆-states can be reproduced by modelE : As in modelC and we can thus account for the∆1/2−(1900)-,
∆3/2−(1940)-, ∆5/2−(1930)- and∆3/2+(1600)-states as well. Partially, modelE even improves the prediction
of these states,e.g. theD33(1700)-groundstate, which was predicted too low in modelC and is now shifted
slightly upwards in the direction of the experimental mass.

In theΩ-spectrum, displayed on the right side in Fig. 4.72, we find also a very good agreement with the
singleΩ-resonance for both models. In the next subsection we will analyse theN -spectrum for modelD and
E .

4.3.3 N-spectrum

TheN -spectrum is indeed also well described by both models as shown in Fig. 4.69. The results for model
D are again very close to those of modelA. Some states are slightly shifted,e.g. the mass of the Roper-
resonanceN1/2+(1440) is now calculated too low, whereas in modelA it was calculated to high by nearly the

same amount. The nextJ = 1
2

+
-excitation, theN1/2+(1710), is predicted too low at1638MeV. However,

modelD predicts most of the negative parity states too low,e.g. theN1/2−(1535), is predicted at1375MeV.

This also holds for theJπ = 3
2

−
negative parity states,e.g.N3/2−(1520) andN3/2−(1700), which lie too low
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Table 4.14: Comparison of experimental [8] and calcu-
lated masses in MeV of∆-resonances for modelD and
E . The corresponding spectra are shown in Fig. 4.68.

exp. error rating modelD modelE
S31(1620) 1615-1675 **** 1568 1625
S31(1900) 1850-1950 *** – 1958
S31(2150) 2020-2250 * many res. 2036/2124

P31(1750) 1708-1780 * – 1772
P31(1910) 1870-1920 **** 1820/1851 1889
P33(1232) 1230-1234 **** 1234 1232
P33(1600) 1550-1700 *** – 1614
P33(1920) 1900-1970 *** 1810/1859 1906/1938

D33(1700) 1670-1770 **** 1556 1612
D33(1940) 1840-2167 * 1985 1919/1965
D35(1930) 1920-1970 *** – 2019

F35(1905) 1870-1920 **** 1858/1899 1912/1936
F35(2000) 1720-2325 * >2220 >2220
F37(1950) 1940-1960 **** 1925 1938
F37(2390) 2250-2485 * many res. many res.

G37(2200) 2120-2360 * 2134/2196 2125/2178
G39(2400) 2100-2518 ** 2258 2209/2462

H39(2300) 2137-2550 ** 2367/2419 2322/2349
H3,11(2420) 2300-2500 **** 2453 2363

I3,13(2750) 2550-2874 ** 2719 2564

K3,15(2950) 2750-3090 ** 2879 2718/2849

Table 4.15: Comparison of experimental [8] and calcu-
lated masses in MeV ofN -resonances for modelD and
E . The corresponding spectra are shown in Fig. 4.69.

exp. error rating modelD modelE
S11(1535) 1520-1555 **** 1375/1531 1482
S11(1650) 1640-1680 **** 1751 1658
S11(1895) 1880-1910 ** 1751/1831 1830/1897

P11(939) 939-939 **** 938 946
P11(1440) 1430-1470 **** 1397 1437
P11(1710) 1680-1740 *** 1638 1729
P11(1880) 1915-1845 ** 1822 1861
P11(2100) 1855-2200 * many res. many res.
P13(1720) 1650-1750 **** 1649 1677
P13(1900) 1862-1900 ** 1830/1842 1851/1919
P13(2040) 2031-2065 * 2000 1999/2021

D13(1520) 1515-1530 **** 1440 1513
D13(1700) 1650-1750 *** 1562 1704
D13(1875) 1855-1895 *** 1818/1881 1823/1927
D13(2120) 2080-2210 ** many res. many res.
D15(1675) 1670-1685 **** 1615 1690
D15(2060) 2045-2075 *** 1921/2033 1905/2009

F15(1680) 1675-1690 **** 1701 1708
F15(1860) 1820-1960 ** 1870/1899 1930
F15(2000) 1816-2175 ** 2036 1974/2036
F17(1990) 1855-2155 ** 1954 1990

G17(2190) 2100-2200 **** 1996/2137 1951/2135
G19(2250) 2170-2310 **** 2210 2167/2270

H19(2220) 2180-2310 **** 2217 2131

I1,11(2600) 2550-2750 *** 2440 2317/2515

K1,13(2700) 2567-3100 ** 2633 2490/2705

in modelD at 1440MeV and at1562MeV, respectively. For modelE most of the problems of modelD are
absent, as displayed in Fig. 4.69: The Roper- as well as theN1/2−(1535)-resonance are reproduced rather well
by modelE at 1437MeV and1482MeV. Likewise, theJ = 1

2 -excitations,N1/2+(1710) andN1/2−(1650),
are well reproduced, which leads to the conclusion, that model E even calculated the prediction of modelC, see
e.g. theN5/2+(1680)-state, which is now predicted closer to experiment. Massesof higher resonances with
J ≥ 7

2 are in general too low in modelE , analogous to modelC. Here, modelD underestimates the mass of

the negative parityJπ = 7
2

−
, 11

2

−
-states less than modelE . Additionally new states, which are reported in

the Bonn-Gatchina analyses from the CB-ELSA collaboration[15–17] and now already included in the new
PDG-data [8], are displayed in Fig. 4.69. ModelE accounts for most of them quite well just as modelC, see
e.g. the newN1/2+(1880)-resonance. In contrast, modelD cannot account for most of the newer resonances.
One example is again theN1/2+(1880)-resonance, which mass is predicted at 1822 MeV by modelD. In the
next subsection we will briefly discuss the results on the hyperon-spectra.

4.3.4 Hyperon-spectra

The results of modelD andE within the hyperon sector (Λ-, Σ- andΞ-baryons) are displayed in Figs. 4.70, 4.71
and 4.72. Beginning with theΛ-spectrum, displayed in Fig. 4.70, modelD andE reproduce the spectra as well
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as modelA andC. Especially, modelE describes the mass-splittings excellently compared to those of model
D, e.g.for theJπ = 1

2

+
Roper-like resonances the first excitationΛ1/2+(1600) is predicted at 1600 MeV.
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But, both models cannot account for the low lyingΛ1/2−(1405)-resonance, which again supports the
interpretation as a meson-baryon bound-state close theK̄N -threshold as already discussed in the previous

Table 4.16: Static properties of the nucleon for modelD and
E . The static values are extrapolated from a dipole-shape-
like fit due to Eqs. (4.8) and (4.11).

modelD modelE exp. ref.

µp[µN ] 2.856 2.632 2.793 [8]

µn[µN ] -1.756 -1.688 -1.913 [8]
√

〈r2〉pE [fm] 1.204 0.857 0.847 [66]

〈r2〉nE [fm]2 -0.367 -0.100 -0.123±0.004 [66]
√

〈r2〉pM [fm] 1.253 0.861 0.836 [66]
√

〈r2〉nM [fm] 1.195 0.836 0.850 [66]

gA 1.283 1.287 1.267±0.0035 [8,79]
√

〈r2〉A[fm] 1.042 0.701 0.67±0.01 [80]

subsection 4.2.4 for modelA and C. Further
discussions on the nature of theΛ1/2−(1405)-
resonance can be found in [57–59].

Concerning theΣ-spectrum, which is dis-
played in Fig. 4.71, again modelE allows a
better description of the resonances in partic-
ular for excited states. For theJπ = 1

2

+
-

states, modelD andE reproduces the first exci-
tation, i.e. the one star ratedΣ1/2+(1660)-state
however, without reproducing the second excita-
tion, theΣ1/2+(1770)-state. In opposite to that,
the older modelA predicts theΣ1/2+(1770)-
resonance, but not the first excitation. The third
excitation,Σ1/2+(1880), is also reproduced by
both models rather well. Furthermore, there is
no satisfactory description of theΣ3/2−(1580)-
resonance for both models. The scarce data of
theΞ-spectrum are satisfactorily reproduced by
both models, as shown in Fig. 4.72 on the left side.
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4.3.5 Electroweak form factors of the nucleon

The discussion of electroweak form factors for the modelsD andE starts again with the electric proton form
factor, which is displayed in Fig. 4.73. The electric protonform factor is divided by its dipole-shape, see
Eq. (4.7). Based on the fact that the baryon spectra, discussed in the previous subsections 4.3.2, 4.3.3, 4.3.4
for modelD andE , are very similar to that ones of modelA andC, respectively, one could expect that the
corresponding form factors of the modelsD andE should also be similar. This is substantiated by comparing
Fig. 4.73 with Fig. 4.8 of modelA andC, respectively. For the electric proton form factor we find anexcellent
description of modelE , whereas modelD does not describe the experimental data similar to modelA. In
particular, the electric proton form factor of modelD has an unphysical node as does modelA. In contrast to
modelD, modelE is consistent with the data and gives a satisfactory description of the electric proton form
factor up toQ2 = 6.0GeV2.

The electric neutron form factor, displayed in Fig. 4.74, isalso reproduced quite well by modelE albeit
that the data are slightly underestimated. The maximum agrees with the position of the maximum in the data,
but the curve shows a node aroundQ2 = 3.0GeV2 in contrast to the experiment. ModelD overestimates the
data by more than a factor 2 in the regionQ2 . 1GeV2 similar as modelA; the position of the maximum
is also predicted too low. Figs. 4.75 and 4.76 show the predictions of the magnetic proton and neutron form
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factor divided by their dipole-shapes (see Eq. (4.7)), respectively. For the proton, both models underestimate
the data. Only at the photon point, both models can reproducethe magnetic moments, see also Tab. 4.16 for
numerical values. The curve for modelD drops very fast, similar as modelA, which also decreases very fast
away from the photon point as displayed in Fig. 4.11. Furthermore, modelE cannot reproduce the magnetic
form factor as well as modelC. In case of the corresponding magnetic neutron form factor,modelE matches
the data quite well in opposite to modelD, which drops to fast again. Note, that modelE does not yield an
improved description of the magnetic neutron form factor, when compared with the results of modelC, shown
in Fig. 4.11.
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Table 4.17: Octet hyperon magnetic momentsµ for
modelD andE calculated as in [13,14]. The values
are given in units ofµN .

hyp. modelD modelE PDG [8]

Λ -0.583 -0.618 -0.613±0.004

Σ+ 2.673 2.360 2.458±0.010

Σ0 0.774 0.711 -

Σ− -1.126 -0.875 -1.160±0.025

Ξ0 -1.070 -0.914 -1.250±0.014

Ξ− -0.371 -0.408 -0.651±0.0025

Table 4.18: Decuplet hyperon magnetic momentsµ
for modelD andE calculated as in [13,14]. The val-
ues are given in units ofµN .

hyp. modelD modelE PDG [8]

∆++ 4.368 4.239 3.7 to 7.5

∆+ 2.184 2.119 2.7+1.0
−1.3 ± 1.5± 3

∆0 0.0 0.0

∆− -2.184 -2.119

Σ∗+ 2.815 2.411

Σ∗0 0.377 0.153

Σ∗− -2.062 -1.936

Ξ∗0 0.802 0.262

Ξ∗− -1.730 -1.823

Ω− -1.428 -1.294 −2.02 ± 0.05

Considering the ratio of
µpG

p
E

Gp
M

, as displayed in Fig. 4.77, modelE matches the data obtained from the

Rosenbluth separation [96–100] better than the data taken from polarisation experiments.Here, modelE leads
to results intermediate between the Rosenbluth separated and polarisation data as shown in Fig. 4.12. This
results for modelE can be traced back to corresponding magnetic proton form factor, which underestimates
the data. As expected from the magnetic and electric form factors (displayed in Figs. 4.73 and 4.75), modelD
underestimates the ratio of electric and magnetic proton form factors, again similar to the prediction of model
A. Thus, neither of the new models predicts the polarisation data [85–95] accurately.
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The axial form factor divided by its dipole-shape is shown inFig. 4.78, where the dipole-shape is given by
Eq. (4.11). As shown in Fig. 4.78, modelD cannot reproduce the data, whereas modelE matches the data in
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particular for higher momenta. In the vicinity ofQ2 = 0, both models reproduces the experiment value, but
modelD drops again very fast now in contrast to the modelA, which does account for the axial form factor.
The curves of modelC andE runs very close to each other.

Tab. 4.16 summarises the static properties extracted from the electroweak form factors by fitting them
according to Eqs. (4.8) and (4.11). It is obvious, that modelD overestimates most of the quantities in particular
the charge radii, which depend on the derivatives of the formfactors, see Eqs. (4.9a) and (4.9b). Nevertheless,
the magnetic moments and the axial coupling agree with the data reasonably. ModelE reproduces all static
quantities quite well and the magnetic moments being slightly too small in magnitude. The radii are reproduced
also close to the experiment and the results are similar to these shown in Tab. 4.7 for modelC. The magnetic
moments of the octet and decuplet hyperons are summarised inthe Tabs. 4.17 and 4.18. Most of the values
are close to the experiment [8], but there are still some mismatches,e.g. the values for theΞ-resonances in the
octet groundstate. Here, modelD reproduces the data better than modelE , which is surprising in view of the
other results obtained so far.

4.3.6 Some helicity amplitudes

The conclusions from the discussion of helicity amplitudesfor modelD andE are very similar to the discussion
for modelA andC, respectively. We therefore restrict the discussion on only a few baryon resonances in the
N - and∆-sector.

N∗ ↔ N helicity amplitudes

We now turn to the discussion ofN∗ ↔ N helicity amplitudes for each angular momentumJ and parityπ.

The J = 1

2
resonances: In Figs. 4.79 and 4.80 we show the transverse and longitudinal helicity amplitudes

of modelD andE for theN1/2−(1535) resonance. As expected, the helicity amplitudes of modelD andE
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are very similar to those of modelA andC, respectively, which were shown in Figs. 4.14 and 4.15. Here, the
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newer models yield curves, which are lower in magnitude thanfor modelA andC. Additionally, both curves
have a node in the transverse proton and neutron amplitudes aroundQ2 ≈ 3.0GeV2, while the longitudinal
amplitude only for modelD shows a node at roughlyQ2 ≈ 0.75GeV2. In particular, both models reproduce
the transverse amplitudes at the photon point quite well, but are too low at higher transition momenta transfers,
where modelD drops even faster than modelE .

For comparison, we also displayed the transverse amplitudeAp
1/2 calculated with the quark model from

Keister and Capstick [126] and a fit obtained from Aznauryanet al. [49] and Tiatoret al. [47]. The longitudinal
amplitudes are again far away from the experimental data as displayed in Fig. 4.80 similar to those of modelA
andC. The expected minimum in the data and the fit from Tiatoret al. [47] are not reflected by the calculations
in both models.

For theN1/2−(1650)-resonance, analogous to the modelsA andC (see Figs. 4.81 and 4.82), the newer
modelsD andE shows a large disagreement for the transverse helicity amplitude, while the neutron amplitude
matches the prediction of the PDG at the photon point. The longitudinal amplitudes, as displayed in Fig. 4.82,
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agrees with some values of the MAID-data [114, 125], but cannot reproduce the node expected from experi-
mental data. Here, modelE accounts for the single data point from Aznauryanet al. [19]. In opposite to model
A, modelD does not have a maximum anymore and decreases rapidly.

Analogous to the previous results of modelA andC for the transverseP11(1440)-helicity amplitude the
newer modelsD andE cannot account for the node in the amplitude, where modelD underestimates the data
more than modelA. Only modelE accounts for the data forQ2 & 1.5GeV2. For the longitudinal amplitude,
shown in Fig. 4.84, both models can account for the experimental data of Aznauryanet al. [18–20], where
modelA underestimates the data slightly and modelE fits quite well. Finally, the expected maximum in the
data is predicted too low in position by both models close toQ2 ≈ 0.25GeV2.
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The J = 3

2
resonances: For the J = 3

2 -resonances we restrict to a discussion of the well measured
N3/2−(1520)- andN3/2−(1700)-resonances. The transverse and longitudinal amplitudes of theN3/2−(1520)-
resonances are displayed in Figs. 4.85, 4.86 and 4.87. TheQ2-dependence of the transverseAp

1/2-amplitude
is not as well reproduced as in the previous modelsA andC (see Figs 4.27 and 4.28). The calculations of
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theAp
1/2-amplitude are too low by roughly a factor of 2 in magnitude for both models, when compared to the

experimental data. Also theAp
3/2-amplitude is underestimated for low momentaQ2 . 1GeV2. In contrast to

the modelsA, C andD, modelE yields the wrong sign and shows a smooth minimum close toQ2 = 0.2GeV2.
Furthermore, modelD andE underestimate the experimental values by more than a factor3 in magnitude. The
PDG value of the transverse neutron amplitudes at the photonpoint cannot be accounted for by both models.
The longitudinal amplitude is also not reproduced mainly, because the predictions of both models show the
wrong sign. If the sign of the longitudinal amplitudes wouldbe inverted, then both models would account for
the data quite well, where modelE would matches the data best.
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The helicity amplitudes of the next excitation,D13(1700), are shown in Figs. 4.88, 4.89 and 4.90, respec-
tively. Here, the transverse amplitudes of both models match the PDG-data [8] at the photon point. The single
data point of Aznauryanet al. [18,19] for theA1/2-amplitude is only approximately reproduced, whereas for
theA3/2-amplitude both models cannot account for the value of Aznauryanet al. [18,19]. For the longitudinal
amplitude no data are available.
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The J = 5

2
resonances: The transverse helicity amplitudes of theN5/2−(1675)-resonance are shown in

Figs. 4.91 and 4.92. As for modelsA andC, the modelsD andE reproduce the data of theAN
1/2-amplitude

(see Fig. 4.91) quite well, however, without describing theexpected node at roughlyQ2 ≈ 1.5GeV2. Here,
the photon decay amplitude from the PDG [8] is not reproduced satisfactorily by both models and is underes-
timated by nearly a factor of 2. This also applies to the PDG photon decay amplitude as well as MAID-data
for theAN

3/2-amplitude. Additionally, modelE has a different sign, compared with modelD. Only model
D matches the PDG-value roughly. The neutron decay amplitudes are also underestimated in magnitude by
roughly a factor 2 by both models as displayed in Figs. 4.91 and 4.92.

The predictions of theF15(1680) transverse helicity amplitudeAN
1/2 are in fair agreement with the data,

shown in the Fig. 4.94, whereas theAN
3/2-amplitudes, see Fig. 4.95, are underestimated in both models by

nearly a factor 3. Here, modelD andE give very similar results. In case of theAN
1/2-amplitude, both models

match the proton and neutron PDG photon decay amplitude, while they describe the remaining data forQ2 > 0
excellently. Only the older data from Burkertet al. [21] spreads around the curves with large errors. The
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longitudinal amplitude also shows a reasonable agreement with the experimental data for both models, as
displayed in Fig. 4.96. Here, modelE stays closer to the single experimental value of Aznauryanet al. [18,19]
atQ2 = 0.65GeV2, while modelD prefers the older data from Burkertet al. [21]. ForQ2 ≥ 1.5GeV2, both
models agree fairly with the experimental data of the MAID-analysis. Finally, the minimum in the fit of Tiator
et al. [47] is not reflected in the prediction of the models.

∆ ↔ N helicity amplitudes

We now turn to the discussion of∆ ↔ N helicity amplitudes for each angular momentumJ and parityπ.
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and the longitudinal helicity amplitudesAN

1/2 and

SN
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line) and modelD (dashed lines) with experimental
data from [8,19,21,114,125]. Note, that for the data
points of the MAID-analysis by Tiatoret al. [125] no
errors are quoted. See also caption to Fig. 4.79.

The J = 1

2
resonances: The discussion of∆ ↔ N

helicity amplitudes starts again with theS31(1620)-
amplitudes for modelD and E . Here, the transverse
and longitudinal amplitudes are shown in Fig. 4.97: the
transverse amplitude is predicted too low compared to
the MAID-data [114,125] and the data from Aznauryan
et al. [19]. Similar to the modelsA andC, modelsD
andE exhibit a node at roughlyQ2 = 0.3GeV2, which
is not seen in the data, if one excludes the data from
Burkertet al.[21]. The longitudinal amplitude of model
E matches the single data point of Aznauryanet al.[19].
The data of the longitudinal amplitude then suggests a
node aroundQ2 = 0.9GeV2, which is not reproduced
by the models. ModelD underestimates this data point
of Aznauryanet al. [19] by more than a factor of 4
in magnitude. Note, that the sign of theS31(1620)-
amplitudes has to be clarified experimentally as already
mentioned within the discussion of the previous models
A andC in section 4.2.6.

The J = 3

2
resonances: Fig. 4.98 shows the predic-

tion of theP33(1232) transverse amplitudes calculated
in modelD andE . TheAN

1/2-amplitude of modelE runs close to that of modelC (see Fig. 4.51) and fits the data

quite well, while the minimum is predicted close to the photon point at the expected position atQ2 ≈ 0.4GeV2.
Here, the magnitude of theAN

1/2-amplitude is predicted too low be nearly a factor 2, while modelD underesti-

mates the data by more than a factor 3. The position of the minimum for modelD is found roughly atQ2 = 0.
The situation for theAN

3/2-amplitude is similar to that of theAN
1/2-amplitude, whereas the position of the min-

ima of the transverse amplitudes coincides within both models. In subsection 4.3.8, theP33(1232) transverse
helicity amplitudes will again be used for the calculation of the electric and magnetic∆ ↔ N transition form
factor. In Fig. 4.99, we show theP33(1232) longitudinal amplitude in which only modelE gives an acceptable
prediction, while modelD yields almost vanishing results. Analogous to the previousmodelsA andC, both
models shows a maximum, which is not supported by the data.

Concerning the negative parityJπ = 3
2
−

-states, we only discuss theD33(1700) transverse and longitudinal
helicity amplitudes, which are displayed in Figs. 4.100 and4.101. The transverse amplitudes describe the data
quite well. Both models can also account for the amplitudes at the photon point satisfactorily. Since the data
of Burkert et al. [21] and the MAID-analysis [114, 125] spreads forQ2 ≤ 1.0GeV2, the newer models only
match with the single data point of Aznauryanet al. [19]. Nevertheless, the PDG photon decay amplitudes can
be accounted for by both models. At the photon point the data shows big fluctuations, which partially match
the calculated values. In Fig. 4.101 we show theD33(1700) longitudinal helicity amplitude for modelD andE .
The values of the MAID-data [125] are close to zero and include a non-vanishing value atQ2 = 1.0GeV2. It
is obvious, that both models then produce the wrong sign for the longitudinal amplitude. ModelD accounts for
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the MAID values close to zero. Note, that if the predicted amplitudes have opposite sign, they can reproduce
the single data point of Aznauryanet al. [19] as well the value atQ2 = 1.0GeV2 in the MAID-data at least in
magnitude.
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4.3.7 Photon couplings

Tables 4.19 and 4.20 summarise the calculations of the transverse photon decay amplitudes for modelD and
E . The calculated values were determined atQ2 = 10−4 GeV2, which gives a satisfactory approximation to
the photon point. Similar to the tables for modelA andC (see 4.10 and 4.11), the tables list the available
experimental data, which have already been displayed in thediscussion on helicity amplitudes in the previous
subsection 4.3.6. In general no large difference between the modelsA, C, D andE has been found.

Table 4.19: Transverse photon couplings calculated for∆ ↔ N transitions in modelD andE in comparison
to experimental data. All calculated photon couplings weredetermined by calculating the helicity amplitudes
atQ2 = 10−4 GeV2 close to the photon point. A hyphen indicates that experimental data does not exist. All
amplitudes are in units of10−3GeV−1/2, all masses are given in MeV.

State Mass ModelD ModelE Exp. Ref.
Rat. modelD modelE Ampl.

S31(1620) **** 1568 1625 A1/2 -8.52 -7.57 27±11 [8]
S31(1900) ** – 1932 A1/2 – 3.52 59±16/29±8/-4±16 [17]/ [129]/ [92]

P31(1750) * – 1764 A1/2 – 9.38 53 [130]
P31(1910) **** 1820/1851 1879 A1/2 7.09/11.49 0.56 3±14 [8]

P33(1232) **** 1234 1232 A1/2 -63.74 -72.27 -135±6 [8]
A3/2 -110.09 -130.69 -250±8 [8]

P33(1600) *** – 1609 A1/2 – -14.69 -23±20 [8]
A3/2 – -34.20 -9±21 [8]

P33(1920) *** 1810/1859 1896/1926 A1/2 -0.23/-0.68 2.96/3.31 130+30
−60/40±14/ [17]/ [129]/
22±8/-7 [63]/ [130]

A3/2 2.32/1.36 7.23/7.25 -115+25
−50/23±17/ [17]/ [129]/

42±12/-1 [63]/ [130]

D33(1700) **** 1556 1611 A1/2 62.19 57.58 104±15 [8]
A3/2 59.74 57.64 85±22 [8]

D33(1940) ** – 1895/1947 A1/2 29.00 -15.81/-15.74 -36±58/160±40 [129]/ [63]
A3/2 20.12 -4.77/-26.07 -31±12/110±30 [129]/ [63]

D35(1930) *** – 2009 A1/2 – -8.13 -9±28 [8]
A3/2 – -16.89 -18±28 [8]

F35(1905) **** 1858/1899 1915/1939 A1/2 -13.45/4.72 -9.95/4.66 26±11 [8]
A3/2 -30.06/-8.52 -20.23/-5.94 -45±20 [8]

F37(1950) **** 1925 1947 A1/2 -17.20 -13.07 -76±12 [8]
A3/2 22.13 -17.29 -97±10 [8]

H39(2420) **** 2453 2361 A1/2 7.43 4.19 – –
A3/2 8.79 4.80 – –
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Table 4.20: Transverse photon couplings calculated forN∗ ↔ N transitions in modelD andE in comparison
to experimental data. All calculated photon couplings weredetermined by calculating the helicity amplitudes
atQ2 = 10−4 GeV2 close to the photon point. A hyphen indicates that experimental data does not exist. All
amplitudes are in units of10−3GeV−1/2, all masses are given in MeV.

State Mass ModelD ModelE Exp. Ref.
Rat. modelD modelE Ampl. p n p n p n

S11(1535) **** 1375 1487 A1/2 83.71 -55.64 73.26 -44.31 90±30 -46±27 [8]
S11(1650) **** 1531 1658 A1/2 -2.85 -10.90 -4.66 -7.19 53±16 -15±21 [8]

S11(1895) ** 1751 1825
A1/2

0.70 1.86 0.02 -0.02 12±6 – [17]1831 1896 48.35 -25.57 6.96 -3.93

P11(1440) **** 1397 1439 A1/2 23.05 -12.53 44.57 -24.86 -60±4 40±10 [8]
P11(1710) *** 1638 1729 A1/2 19.87 -12.91 11.96 -8.07 24±10 -2±14 [8]
P11(1880) ** 1822 1859 A1/2 3.93 -2.85 6.54 -4.07 14±3 – [17]

P13(1720) **** 1649 1682 A1/2 61.84 -27.53 49.38 -23.37 18±30 1±15 [8]
A3/2 -13.91 5.62 -14.05 1.23 -19±20 -29±61 [8]

P13(1900) ***
1830

1845 A1/2

0.85 6.19
4.69 -8.89 26±15/-17 –/-16 [17]/ [130]1842 4.15 -1.90

1859 -2.16 0.70

A3/2
-3.92 0.02

-5.71 -12.92 -65±30/31 –/-2 [17]/ [130]-0.06 -0.27
1.12 -0.22

D13(1520) **** 1440 1520 A1/2 -49.30 5.81 -43.37 3.80 -24±9 -59±9 [8]
A3/2 28.48 -32.85 25.83 -22.10 150±15 -139±11 [8]

D13(1700) *** 1562 1658 A1/2 -7.84 9.91 -9.14 9.45 -18±13 0±50 [8]
A3/2 -7.13 34.18 -4.03 21.71 -2±24 -3±44 [8]

D13(1875) *** 1818 1820
A1/2

1.59 0.12 1.61 -0.32 18±10/-20±8 7±13 [17]/ [129]/ [8]/
1881 1930 -1.12 0.28 -0.44 0.15 12/26±52 [130]/ [132]

A3/2
0.82 -1.25 0.34 -0.55 -9±5/17±11 -53±34 [17]/ [129]/ [8]/
0.49 -0.94 0.32 0.02 -10/128±57 [130]/ [132]

D15(1675) **** 1615 1690 A1/2 3.39 -19.29 6.04 -19.41 19±8 -43±12 [8]
A3/2 5.05 -27.36 -1.69 -22.67 15±9 -58±13 [8]

D15(2060) ** 1921 1909
A1/2

35.36 -19.07 22.12 -13.04 67±15 – [17]2033 2002 -2.46 1.28 1.40 -0.61

A3/2
-8.55 5.26 -6.22 1.30 55±20 – [17]0.24 -0.18 -0.27 0.24

F15(1680) **** 1701 1715 A1/2 -42.54 28.61 -31.56 22.55 -15±6 29±10 [8]
A3/2 21.27 -5.89 19.77 -5.56 133±12 -33±9 [8]

F15(1860)
*– 1870 1930 A1/2

-42.54 28.61 -5.54 13.86 20±12 – [17]1899 0.09 -0.45

A3/2
-0.42 -13.81 2.30 6.64 50±20 – [17]0.02 -0.10

F15(2000)
*– 2036 1977

A1/2 -2.74 1.83 -0.16 -0.42 32±15 – [17]2037 -1.42 0.80

A3/2 0.45 -0.66 0.18 -0.68 50±14 – [17]0.43 -0.58

F17(1990) ** 1954 1992 A1/2 -2.40 -5.43 -3.80 -2.04 42±14/30±29 –/-1 [17]/ [129]
40 -69 [131]

A3/2 -3.30 -6.92 0.39 -4.41 58±12/86±60 –/-178 [17]/ [129]
4 -72 [131]

G17(2190) **** 1996 1955 A1/2 20.80 -6.05 10.53 -2.42 -65±8 – [17]
A3/2 -8.63 6.86 -6.06 4.29 35±17 – [17]

G19(2250) **** 2210 2163 A1/2 1.18 -7.35 1.95 -5.39 |Ap
1
2

| < 10 – –

A3/2 1.57 -9.07 -0.22 -5.20 |Ap
1
2

| < 10 – –

H19(2220) **** 2217 2132 A1/2 18.81 -11.70 8.99 -5.82 |Ap
1
2

| < 10 – [17]

A3/2 -8.70 3.23 -4.95 1.93 |Ap
1
2

| < 10 – [17]

I1,11(2600) *** 2440 2315 A1/2 10.84 -3.89 3.70 -1.14 – – –
A3/2 -4.66 3.05 -2.23 1.37 – – –
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4.3.8 ∆(1232) ↔ N transition form factors

Since the∆ ↔ N electric and magnetic transition form factor of the∆(1232) groundstate are related to
the helicity amplitudes via Eqs. (2.127a, 2.127b) and (2.130) they can be extracted from theP33(1232)-helicity
amplitudes, which are displayed in Figs. 4.98 and 4.99 for modelD andE . In Fig. 4.102, we show the magnetic
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transition form factor divided by thrice the standard
dipole form factor in order to emphasise discrepancies
between experimental and calculated values. The mag-
netic transition form factor of both models cannot ac-
count for the data as displayed in Fig. 4.102: the re-
sult of modelE is similar to these of modelC, see
also Fig. 4.64. ModelD underestimates the data com-
pletely, here in contrast to the related modelA (see also
Fig. 4.64 for comparison). In Fig. 4.103 we display the
electric transition form factor. For the electric transition
form factor we find a similar situation, where modelE
reproduces the MAID-data [114,125] quite well, if ex-
cluding the region in the vicinity of the photon point
Q2 . 0.5GeV2. ModelD gives a small negative pre-
diction for the electric transition form factor similar to
the result of modelA. Here, the MAID-data have been
calculated according to the Eqs. (2.127a) and (2.127b)
from the transverseP33(1232)-helicity amplitude data.
Fig. 4.104 shows the Coulomb transition form factor
calculated from the longitudinalP33(1232)-amplitude. Only modelE can roughly account for the momentum
dependence of the Coulomb transition form factor, whereas modelD is effectively zero.

4.4 Summary

The major objective was the study of alternative interaction kernels additional to the linear confinement poten-
tial and the instanton-induced ’t Hooft interaction withinthe framework of the Bethe-Baryon model. In this
chapter we have discussed two different approaches for new interactions: A spin-flavour dependent interac-
tion and a modified version of the linear confinement potential. Thus, this chapter contains the major results
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of this thesis and summarises the publications of Ronnigeret al. [31, 32] in its first part. Section 4.2 starts
with the introduction of the novel spin-flavour dependent interaction by introducing interaction Lagrangians
for pseudoscalar meson-exchange with pseudoscalar- and pseudovector coupling to fermions. From these La-
grangians we have extracted the second-order scattering matrix elements, which contains the corresponding
meson-exchange potentials. In both cases expressions for the potentials have been given in momentum space.
Subsequently, we have focused on the pseudoscalar coupled meson-exchange mainly, because it led to the best
results. In coordinate space, the Yukawa potential has beensubstituted by a Gaussian short-range potential
to improve the results. The model with this novel spin-flavour dependent interaction in combination with the
confinement potential and the instanton-induced ’t Hooft interaction is called modelC. In subsection 4.2.1
we discussed the model parameters for modelC and an improved version of modelA, whereas the latter has
been recalculated with increased numerical accuracy. Thushere, the model parameters of modelA are slightly
different compared to those of the previous chapter 3. Furthermore, the new modelC uses a different con-
finement Dirac-structure than modelA: it is given by a two-body interaction for the linear part with a simpler
Dirac-structure,γ0 ⊗ γ0. Note, that modelC introduces only three additional parameters compared to model
A: the octet- and singlet-coupling as well as the range of the Gaussian potential, which was chosen equal
for the meson octet- and singlet interaction. The octet-coupling was found to be consistently smaller than the
singlet-coupling; the latter can be interpreted as a short-range part of the confinement potential itself.

The first subsection of section 4.2 contains the discussion of the∆-,N - and hyperon-spectra, where we have
compared the results from the recalculated version of the older modelA with the novel modelC. Concerning
the∆-spectrum, we indeed found in general a much better description by the novel modelC. In particular,
modelC can account for the∆1/2+(1750)-, the Roper-like∆3/2+(1600)- and the three excited negative parity
∆∗-resonances around 1900 MeV (∆1/2−(1900), ∆3/2−(1940) and∆5/2−(1930)), whereas modelA cannot
describe these states, as already mentioned in the introduction 1 and chapter 3. Note, that modelC predicts
even two resonances for the∆3/2−(1940)-state close to the resonance position.

Also for the nucleon-spectrum we have found a satisfactory description by modelC, which improves again
on the results by modelA. The novel modelC reproduces the mass of the Roper-resonance in very good agree-
ment with the data, whereas modelA predicts the resonance too high by roughly 60 MeV. Furthermore, model
C improves the predictions of the masses for theN1/2−(1535)- andN1/2−(1650)-resonances as well as for the
N3/2−(1520)- andN3/2−(1700)-resonances. Here, modelA predicts all of these resonances too low. Only
for theN5/2+(1680)-resonance, the description in the new modelC is slightly worse then in modelA. With
this exception we conclude, that the novel modelC indeed yields to an improved description of the nucleon-
spectrum compared to the older modelA. Moreover, since 2012 there are more nucleon resonances available
in the compilation of the PDG [8] to which we can compare. These resonances are in particular: N1/2+(1880),
N1/2−(1895),N3/2+(2040),N3/2−(1875),N5/2+(1860) andN5/2−(2060). Here, both models can account for
the newN1/2+(1880)-state as well as for the new negative parityN1/2−(1895)- andN3/2−(1875)-resonances.

Also the hyperon sector,i.e. theΛ-,Σ- andΞ-baryons, is better described by modelC. In particular, modelC
can account for the Roper-like resonances,Λ1/2+(1600) andΣ1/2+(1660), whereas modelA cannot describe
the latter. However, both models cannot account for the low lying Λ1/2−(1405)-resonance. The prediction
of modelA is roughly 100 MeV too high, whereas for modelC the prediction is about approximately 200
MeV to high and lies in the vicinity of the nextJπ = 1

2
−

-excitationΛ1/2−(1670). As already mentioned in
subsection 3.5.5 of the previous chapter, this fortifies theinterpretation of this state not as aq3-state, but as a
meson-baryon molecule close thēKN -threshold as claimed by Jido, Oset, Meißner and Hyodoet al. [57–59],
which is supposed to be made out of at least five quarks and thuscannot be described in the three quark baryon
model as used here. The rest of theΛ-resonances can be reproduced by both models. In theΣ-spectrum, model
C cannot account for the one-star ratedΣ1/2+(1770)-resonance and the four-star ratedΣ3/2−(1580)-resonance
only. However, the latter resonance can also not be reproduced by modelA. Moreover, we were able to suggest
a classification for some resonances based on their masses. We relate theΞ(1690)-resonance to the Roper-like
excitation of theJπ = 1

2

+
-resonances,e.g.within the framework of modelC mainly, which is not classified in

the PDG [8] so far. Furthermore, theΩ(2250)-resonance should have positive parity based on the predictions
of modelC.

In subsection 4.2.5, we have discussed the calculation of the electroweak form factors, magnetic moments
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and charge radii for modelA andC. Here, the electroweak quantities are calculated in the framework of the
Bethe-Baryon model from the Salpeter amplitudes via the method from Merten and Kretzschmaret al.[9,10,12]
without introducing additional parameters. We have found,that the electric proton- and neutron form factors are
reproduced in excellent agreement with the data by modelC. For the electric neutron form factor, both models
predicts the correct position of the maximum in the data. Themagnetic proton and neutron form factors are also
better reproduced by modelC, than by modelA, which predicts them too low in magnitude. This also effects
the ratio of the electric and magnetic proton form factor. For the axial form factor both models are in agreement
with the data. The extrapolation of the electroweak form factors to the photon point allows the extraction of the
magnetic moments, charge radii and the axial coupling as well as the axial charge radius. According to Tab. 4.7,
the magnetic moments and charge radii of the nucleon are in general in good agreement with experimental data.
It was found, that modelA overestimates the electric charge radius in magnitude, whereas modelC reproduces
it quite well. Also the magnetic moments of the hyperon octetand decuplet, calculated via the static method
from Hauptet al. [13,14], agree quite well with the experimental data.

The discussion on the helicity amplitudes can be found in subsection 4.2.6. It shows the transverse and
longitudinal helicity amplitudes for most of the (at least three star-rated) resonances within the∆ and nucleon
sector as well as for some other resonances. Note, that new data on helicity amplitudes is available since
recent years from the CLAS-collaboration [18–20] and the MAID-analysis [114, 125]. We found reasonable
descriptions for the transverse and longitudinal helicityamplitudes for the resonances:S11(1535), P11(1440),
D13(1520), F15(1680), P33(1232) and theD33(1700). Our concluded values partially agree with the scarce ex-
perimental data of the remainingN - and∆-helicity amplitudes. Also photon decay amplitudes were extracted
from the calculated helicity amplitudes. The discussion onthe results from the novel modelC concludes with a
discussion of the∆(1232) ↔ N transition form factors. Here, we obtained reasonable results for the electric-
and Coulomb transitions form factors, whereas the magnetictransition form factor cannot be accounted for in
both models satisfactorily.

We also studied a modified version of the confinement potential with a spin-spin and tensor interaction,
which can of course be combined with the novel spin-flavour dependent interaction as it has been done in
section 4.3. This is supplemented by the confinement Dirac-structure for the offset chosen simply as the identity.
Combined with the instanton-induced ’t Hooft interaction we have called this modelD. It turns out, that model
D produces results similar to the previous modelA for the light-flavoured baryon spectra, which is amazing
since both models have completely different Dirac-structures for the slope and offset. Additionally to the
interactions of modelD, we have also introduced the new spin-flavour dependent interaction as discussed in
the previous section 4.2 of this chapter. The correspondingnew model has been called modelE and was
found to yield results similar to modelC. Thereby, the octet-coupling in modelE vanishes and the remaining
eta-singlet exchange could be interpreted as a short-rangepart of the confinement potential.

The discussion of the results for modelD andE starts with subsection 4.3.1 in which we have discussed the
model parameters in the same way as it has been done previously for modelA andC. Subsequent subsections
then contain the discussion of the baryon spectra. The results of modelD andE turned out to be very similar
to these of modelA andC, respectively. Small differences are found mainly in the nucleon-spectrum and
partially in theΛ- andΣ-spectra. Concerning the electroweak form factors discussed in subsection 4.3.5, we
could not find a similar good description of the electric neutron form factor in modelE , in contrast to the
excellent result found in modelC. This also applies to the axial form factor. In the discussion of helicity
amplitudes in subsection 4.3.6, we compared results for a selection of resonances to these of modelsA and
C. In particular modelE could not account for theAp

3/2-helicity amplitude of theD13(1520)-resonance, the
calculated amplitude has a wrong overall sign. Furthermore, modelD andE cannot account for the minimum in
theAp

1/2-helicity amplitude in contrast to modelA andC. In subsection 4.3.7 we have summarised the photon
decay amplitudes for modelD andE and concluded with the discussion of the∆(1232) ↔ N transition form
factors in subsection 4.3.8.
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Chapter 5

Summary and Outlook

The major objective of this thesis was the search for and study of additional quark-quark interactions within
the framework of a fully relativistic constituent quark model, which is based on the Bethe-Salpeter equation
in order to reproduce some experimentally observed resonances, which cannot be accounted for so far. The
quark model was originally formulated for mesons (see Münzand Resaget al. [36–45]) and then extended by
Löring et al.[4–7] to describe baryons. In both approaches a phenomenologically motivated linear confinement
potential and an instanton-induced ’t Hooft interaction was used to describe the complete light-flavoured meson-
and baryon mass spectra up to masses of 3 GeV (see PDG [8]). In this work, we focus on baryons and their
properties. Although the quark model produced a very satisfactory overall description of the light-flavoured
baryons, but it could not account for all of the light-flavoured baryon masses. In Löringet al. [4–7], two
different models, calledA andB, were introduced, which differ only in their confinement Dirac-structure.
It was found, that especially some specific excited states within the mass spectrum of the nucleon- and∆-
sector are not reproduced by these models. Within the hyperon-baryon sector also some disagreement with
the experimental data was observed. This motivated the search for additional interactions to be introduced in
the quark model of Löringet al. [4–7] in order to account for the above mentioned disagreements in the light-
flavoured baryon spectra. Indeed, two new interactions werefound, which are able to improve the description.
The firstansatzis motivated by pseudoscalar flavour exchange between quarks. This leads to a spin-flavour
dependent two-body interaction as discussed in chapter 4, see also in Ronnigeret al. [31]. The secondansatz
uses a modified confinement potential in which a different kind of Dirac-structure has been introduced by
including spin-spin and tensor interactions. This was found to lead to additional terms for the Dirac-structure
in the linear part of the confinement potential. For both approaches, many electroweak observables such as
electromagnetic- and axial form factors as well as helicityamplitudes have been calculated (see Mertenet
al. [9, 10] and Ronnigeret al. [32]). We want to emphasise that, no further parameters were introduced for
the calculation of electroweak observables: These were calculated directly from the Salpeter amplitudes of the
involved resonances, where the model parameters were fixed previously by the light-flavoured baryon spectra
as shown by Löring and Ronnigeret al. [4–7,31].

Chapter 2 contains a brief recapitulation of the basics of the Bethe-Baryon model; it summarises the proper-
ties and extensions of the quark model bye.g.Löring, Merten, Kretzschmar and Hauptet al. [4–7,9,10,12–14].
Here, on the basis of the relativistically covariant Bethe-Salpeter equation a constituent quark model is formu-
lated, which is numerically tractable. The discussion starts with the formulation of a six-point Greens-function
from which the Bethe-Salpeter equation can be deduced, which finally allows the calculation of bound-states
within the framework of a quantum field theoretical approach. In instantaneous (e.g. unretarded) approxi-
mation, the Bethe-Salpeter equation reduces to the so-called Salpeter equation under the additional assump-
tion, that the full quark-propagator can be approximated bya free form propagator with a constituent quark
mass assumed to absorb some self-energy effects. Finally, the Salpeter equation can be formulated via a
Hamilton-operator, which then allows the calculation of baryon bound-states and their Salpeter amplitudes
by solving an eigenvalue problem. For completeness, we havealso recapitulated some properties on the pro-
jective structure of the Salpeter equation in this chapter,which are of course important for the understanding
of the baryon model. Based on this, it is possible to calculate electroweak properties in the model such as

95
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the electromagnetic- and axial form factors, helicity amplitudes, photon decay amplitudes, magnetic moments
and charge radii. The methods for the extraction of such properties within the framework of the Bethe-Baryon
model have been summarised in the last sections of chapter 2 and follow the work of Merten, Kretzschmar and
Hauptet al. [9,10,12–14]. Thereby, all electroweak properties are based on the calculation of current-matrix
elements.

The existing results of the Bethe-Baryon modelA andB as originally introduced by Löeringet al.[4–7], on
the baryon spectra are summarised in the subsequent chapter3: Both models use a linear confinement potential,
but differ in their Dirac-structures. Furthermore, both models use the instanton-induced ’t Hooft interaction for
the∆ − N mass-splitting. The models reproduce the light-flavoured baryon spectra satisfactorily, but some
states could not be accounted for: ModelA gives a better description of the spectra than modelB. Both models
cannot reproduce all of the excited baryon states as mentioned already in the introduction. In particular the
RoperN1/2+(1440)-resonance and Roper-like∆3/2+(1600)-, Λ1/2+(1600)-, Σ1/2+(1660)-resonances as well
as the three excited negative parity states∆1/2−(1900), ∆3/2−(1940) and∆5/2−(1930) cannot be accounted
for in both models. This motivated the introduction of new interactions within the Bethe-Baryon model in order
to find a satisfactory description of these states.

In the first part of chapter 4 (section 4.2), we have introduced a novel spin-flavour dependent interaction
motivated by pseudoscalar meson-exchange with pseudoscalar- and/or pseudovector coupling for the meson-
octet and singlet and discussed the implementation of this new interaction within the framework of the Bethe-
Baryon model. Subsequently, we focus on the pseudoscalar coupled meson-exchange only and substituted the
radial dependence of the Yukawa-potential by a Gaussian short-range interaction, which eventually was found
to lead to the best results. In combination with the linear confinement potential and the instanton-induced ’t
Hooft interaction thus a new model has been constructed, called modelC. It uses a different confinement Dirac-
structure than that one of modelA. The major difference between these Dirac-structures is, that modelC uses
a simpler two-body interaction instead of a three-body interaction as used in modelA. Moreover, modelC
introduces three additional parameters: the range of the Gaussian potential and the octet- and singlet-coupling
for the spin-flavour exchange interaction. Here it is important to mention, that the singlet-coupling dominates
the octet-coupling by nearly a factor 18. This suggests the interpretation, of the flavour-independent singlet
exchange as a part of the confinement potential. Furthermore, we have demonstrated, that by introducing
this additional spin-flavour dependent interaction, parametrised with a Gaussian radial dependence with an
universal range and two couplings for flavour-octet and flavour-singlet exchange, it is possible to improve the
baryonic excitation spectra, electroweak form factors andhelicity amplitudes simultaneously (see Ronnigeret
al. [31,32]1). The results for modelC are very similar to the predictions of the Graz group [22–30]. Although the
overall agreement of calculated and experimental helicitydata in both versionsA andC of the relativistic quark
models are of similar quality, the new modelC apart from accounting better for the baryon mass spectrum also
does improve on specific other observables, in particular onthe groundstate form factors. The improvements
can also be found in Ronnigeret al. [31,32] and include:

• A better description of the position of the excited negativeparity states slightly below2 GeV in the
∆-spectrum: The∆1/2−(1900)-, ∆3/2−(1940)- and∆5/2−(1930)-resonances;

• A better description of the position of the first scalar, isoscalar excitation of the groundstate in all light-
flavour sectors: The∆1/2+(1750)-, ∆3/2+(1600)-, N1/2+(1440)-, N1/2−(1535)-, Λ1/2+(1600)- and
Σ1/2+(1660)-resonances;

• An improved description of the momentum dependence of electromagnetic form factors of groundstates
without the introduction of any additional parameters. Here, in particular the description of the electric
neutron form factor has been improved in modelC. The result are in agreement with the predictions from
Plessaset al. [30] for the Goldstone-Boson exchange model (GBE);

In case of the helicity amplitudes the calculated results have been compared to experimental data as far as
available for resonances with a three or four star rating according to the PDG [8]. The experimental data

1Note, that the results within [31] are slightly different to the results discussed in chapter4, since an improved parameter set has
been found for modelC, as already mentioned in [32].
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include the couplings at the photon point from PDG [8] and [17] as well as recent determinations of transverse
and longitudinal amplitudes as reported by Aznauryan [18–20, 49] and in the MAID-analysis [114, 125], see
also [47] . The results for the helicity amplitudes of nucleon resonances (see also Ronnigeret al. [32]) can be
summarised as follows:

• A satisfactory description of data for theS11(1535)-, P11(1440)-,D13(1520)- andF15(1680)-resonances
was found. Exceptions are: A node in the transverseP11(1440)-amplitude as found experimentally
was not reproduced by the calculations; we also do not find theobserved minimum in the longitudi-
nal S11(1535)-amplitude and the calculations underestimate the transverse S11(1650) as well as the
longitudinalF15(1680)-amplitude for low momentum transfers. Also the amplitudesof theD13(1520)-
resonances are slightly too small in modelC. Furthermore, predictions of helicity amplitudes are given
for higher excited resonances for both models. Some of thesewere recently found by [15–17], e.g. for
theN1/2+(1880)- andN1/2−(1895)-resonance;

• There exists agreement with the scarce data for theS31(1620)-helicity amplitude if we disregard two data
points for the longitudinal amplitude. There is an indication for a sign disagreement between the data of
Aznauryanet al. [19] and that for the MAID-analysis [114,125] or alternatively a node in the amplitude
exists, which is not reproduced by both models in this case;

• TheP33(1232)-helicity amplitudes are generally too small in magnitude in both models, slightly more
so in modelC. For the longitudinal amplitude in particular we find a maximum in the theoretical curves
for which there exists no experimental evidence;

• Predictions of the negative parity excited∆∗(1900, 1940, 1930)-helicity amplitudes can be made in
modelC. The position of these states could not be reproduced in the original modelA and was the
main motivation to supplement the dynamics of the model by anadditional short-ranged spin-flavour
dependent interaction. It is rewarding, that the calculated photon decay amplitudes agree reasonably well
with the PDG-data [8] for these three resonances.

Some discrepancies remain, both in modelC as well as in modelA:

• The description of theN5/2+(1680)- andΛ3/2−(1520)-resonance, which is predicted slightly too high
by modelC and thus cannot accounted for with the same accuracy as in model A. Furthermore, both
models cannot account for the position of theΣ3/2−(1580)-resonance;

• The description of theΛ1/2−(1405)-resonance, where the mass value of the groundstate of modelC
agrees approximately with theΛ1/2−(1670)-resonance, which supports the statement, that the
Λ1/2−(1405)-state cannot be described as a three-quark system. The samecharacteristics are less distinc-
tive within modelA, which calculates the resonance approximately 100 MeV too high. In our opinion,
this underlines the conclusion, that theΛ1/2−(1405)-resonance, which is close to thēKN -threshold, is
largely dominated by meson-baryon molecule components as stipulated bye.g.Jido, Oset, Meißner and
Hyodoet al. [57–59] in a chiral unitary approach;

• The low ratedΣ1/2+(1770)-resonance cannot be reproduced within modelC, in contrast to modelA;

• Static properties are slightly better reproduced in modelA. This also applies to electroweak form factors
in the vicinity of the photon point.

It must be conceded, that the additional spin-flavour dependent interaction was introduced in modelC purely
phenomenologically and required a drastic modification of the parametrisation of confinement and the other
flavour dependent interaction of the original modelA, which had a form as inferred from instanton effects. In
spite of this, with only 10 parameters in total we still consider the new modelC to be an effective description of
the multitude of resonances found for baryons made out of light flavoured quarks. Moreover, we have classified
some resonance in the PDG [8] based on their masses in modelC, e.g. theΞ(1690)-resonance as aJπ = 1

2

+

Roper-like excitation. In case of the helicity amplitudes we presented predictions for helicity amplitudes of
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some lower rated resonances, such asP31(1750)- andD33(1940)-resonance as well as predictions to some
photon decay amplitudes analysed by the CB-ELSA collaboration et al. [17]. The corresponding photon decay
amplitude data from the CB-ELSA collaboration are presently mostly included in the new PDG-data [8] and
generally well described by modelsA andC. For the magnetic form factor of the∆(1232) ↔ N transition
we have found that both models cannot accurately account forthe data. Furthermore, for the electric transition
form factor modelA even produces a wrong sign compared to the MAID-data. The momentum dependence
of the Coulomb transition form factor is well described by model C, but not by modelA, which yields almost
vanishing values in this case.

In the second part of chapter 4 (section 4.3) a new version forthe Dirac-structure of the linear confinement
potential with additional spin-spin and tensor contributions was introduced and discussed. This procedure in-
troduces no additional parameters. The modified confinementstructure enters as a two-body interaction and can
be combined with the previous introduced spin-flavour dependent short-range interaction. The corresponding
models are called modelD andE , where modelE includes additionally the spin-flavour dependent short-range
interaction. Here, in modelE the strength of the octet-coupling practically vanishes, which means, that the
flavour independent eta-singlet part can be interpreted as apart of the confinement potential. Thus, in modelE ,
there is no additional flavour dependent part. The predictions of modelD, which includes the confinement and
the instanton-induced ’t Hooft force, are very similar to those of modelA, although the latter uses a completely
different confinement Dirac-structure. This feature is amazing, because the choice of the Dirac-structure in
general has a very strong influence on the baryon spectra. In combination with the (spin-)flavour dependent
short-range interaction, the description of the light-flavoured baryon spectra is slightly improved in modelE ,
if compared to modelC. It can be observed, that the modelsD andE are very similar in their predictions to
modelsA andC, respectively. Thus, most of the conclusions for modelA andC also hold for modelD andE ,
respectively. Nevertheless, there are some exceptions:

• Model E , compared with modelC, accounts slightly better for theN1/2−(1535)- andN5/2+(1680)-
resonances;

• Model D cannot account for theN1/2−(1535)-resonance, which is predicted too low by roughly 160

MeV. Otherwise this induces a likewise very low lyingJπ = 1
2

−
-resonance in theΛ-baryon sector close

to Λ1/2−(1405)-resonance in opposite to the other modelsA, B, C andE , which cannot reproduced the
Λ1/2−(1405)-resonance;

• The electric neutron form factor is underestimated in modelE by nearly a factor two, whereas modelC
can account for it accurately;

• The axial form factor of the nucleon for modelD is much too small, in contrast to the prediction of model
A, which reproduces the axial form factor satisfactorily;

• In case of modelE , theAp
3/2-helicity amplitude of theD13(1520)-resonance has a wrong overall sign.

For theAp
1/2-amplitude, modelD andE cannot account for the minima within the data.

Model D in general does not improve the predictions of modelA. Although, modelE improves the baryon
spectra slightly compared with the corresponding modelC, but it cannot reproduce the electroweak properties
and helicity amplitudes with the same quality. In conclusion, we prefer modelC, which leads to the best results
for the baryon spectra and electroweak observables. The results on the mass spectrum of modelC could also be
used to make some assignments of hyperon-resonances as mentioned in chapter 4. Here,e.g.we have classified
Ξ(1690)-resonance as aJπ = 1

2

+
Roper-like excitation based on its mass in modelC, not assigned in the

PDG [8] so far. Moreover, theΩ(2250)-resonance should have a positive parity.
Previous extensions of the Bethe-Baryon model (versionA), which have not been mentioned in this thesis

so far, were calculations of charmed-flavoured baryons, semileptonic- and strong two-body decays. The results
have been published by Miguraet al. [33, 34, 137] and Metsch [138]. With respect to the novel modelsC,
D and E , the calculation of these observables still remain to be done, but should in principle be feasible.
Moreover, an extension to bottom-flavoured baryons should be also possible for the modelsA, C, D andE



99

and it seems rewarding to repeat the calculation of heavy-flavoured baryons with these versions of the model.
Since the dynamics of modelD is very similar to that of modelA, the calculations for modelD should be
straightforward. However, in the case of modelC and E , it could be necessary to extend the spin-flavour
dependent interaction to the heavy-flavoured baryon sector. This ansatzcan be indeed motivated by a heavy-
flavoured meson-exchange similar to theansatzmade for modelC andE within the light-flavoured baryon
sector. Possibly, this extension introduces additional parameters in the spin-flavour dependent interaction on
the heavy-baryon sector. Without introducing any additional parameters and other interactions, it is possible to
recalculate most of the semileptonic- and strong-two-bodydecays in the framework of the novel modelsC, D
andE . These calculations still remain to be done.

Constituent quark models played a major role in the classification of the hadronic excitation spectrum. It
is expected, that in the future lattice QCD will play a more important role in this respect. Compared with
the underlying Bethe-Baryon model, which (although based on the relativistically covariant Bethe-Salpeter
equation in view of its simplifying assumptions) still is a model, lattice QCD is a numerical simulation of QCD
itself. In praxis lattice QCD is extremely expensive in computing power compared to quark models like the
Bethe-Baryon model, which are very economical in their use of computational resources. The recent program
of lattice QCD includes in particular a description of many states in the hadron spectrum, which are extracted
from the numerical calculation of two-point correlation functions. The present model calculations give hints
to states, which cannot be described asq3-states. Such resonances are for instance theΛ1/2−(1405)- and
Σ3/2−(1580)-resonances, which are not accounted for by the Bethe-Baryon model. Therefore, it could be very
interesting to investigate, whether such states can be accounted for in lattice QCD. Note,e.g. that the nature
of theΛ1/2−(1405)-resonance is an open field of research within lattice QCD, see e.g. Takahashi, Huey-Wen
and Edwardset al. [2, 3, 139]. As it stands, the Bethe-Baryon model gives a very satisfactory description for
light-flavoured baryon excitations and allows the identification of exotic states. As such it could support future
investigations in lattice QCD.
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Appendix A

The one-meson-exchange contribution to the
interaction between two spin1

2
-fermions

The one-meson-exchange can be derived by a standard application of the Feynman rules from the underly-
ing Lagrangians given in section 4.2 by Eqs. (4.1) and (4.2).Following Caiaet al. [60], the corresponding
interaction Hamiltonians are given by

H(ps)
I = −L(ps)

I , (A.1)

and

H(pv)
I = −L(pv)

I +
1

2

8∑

a=0

g2a
4m2

(λaλa)(ψ̄γ
5γ0ψ)(ψ̄γ5γ0ψ) , (A.2)

via Legendre transformation for pseudoscalar- and pseudovector coupling, respectively. According to Fig. 4.1,
the second-order scattering-matrix elementM(2) can be written in the CM-system for pseudoscalar and pseu-
dovector coupled mesons as

iM(2)
(ps)(k0,k) =

∑

a,b

g2a

[
ψ̄(p′)(−iγ5)λa ψ(p)Dab(k0,k)ψ̄(−p′)(−iγ5)λbψ(−p)

]

=: −
∑

a,b

g2aD
ab(k0,k)

[
λa γ5

]
⊗
[
λb γ5

]

=: i[ψ̄(−p′)⊗ ψ̄(p′)]V(ps)(k0,k)[ψ(−p)⊗ψ(p)] (A.3)

and

i M(2)
(pv)(k0,k) =

∑

a,b

g2a
4m2

[
ψ̄(p′)γ5γµ(−ikµ)λaψ(p)D

ab(k0,k)ψ̄(−p′)γ5γν(−i(−kν))λbψ(−p)

]

−i
∑

a

g2a
4m2

[
ψ̄(p′)γ5γ0λaψ(p) ψ̄(−p′)γ5γ0λaψ(−p)

]

=
∑

a,b

g2a
4m2

[
Dab(k0,k) kµkν

[
λaγ5γµ

]
⊗
[
λbγ5γν

]
− 1

2 iδab
[
λaγ5γ0

]
⊗
[
λbγ5γ0

]]

:= i [ψ̄(−p′)⊗ ψ̄(p′)]V(pv)(k0,k)[ψ(−p) ⊗ ψ(p)] , (A.4)

respectively. Here, calculating the corresponding interaction Hamiltonian (see Eq. (A.2) and Eq. (A6) in ap-
pendix A of Caiaet al.[60], for further information), a contact term within the pseudovector coupled scattering-
matrix element in Eq. (A.4) appears by applying the Legendretransformation. This is not the case for the pseu-
doscalar coupled interaction. The potentials are defined via the second-order matrix elementM(2) by isolating
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the quark fieldsψ andψ̄. Here, the meson propagator is given by

Dab(k0,k) =
iδab

k20 − |k|2 − µ2a
, (A.5)

wherekµ := p′µ − pµ indicates the momentum transfer. Since the Salpeter equation deals only with instanta-
neous interactions, the meson propagator must be independent onk0. This is achieved by puttingk0 = 0.

A.1 The instantaneous approximation

In instantaneous approximation the 0-th component ofk is set to zero:k0 = 0. From Eqs. (A.3) and (A.4) the
corresponding potentials in momentum space can be extracted as

V
(2)
(ps)(k) =

∑

a

g2a
[
λa ⊗ λa

] 1

|k|2 + µ2a

[
γ5 ⊗ γ5

]
(A.6)

for pseudoscalar coupling and as

V
(2)
(pv)(k) =

∑

a

g2a
4m2

[λa ⊗ λa]

[ −1

|k|2 + µ2a

[(
γ5γ · k

)
⊗
(
γ5γ · k

)]
− 1

2
γ5γ0 ⊗ γ5γ0

]

=
∑

a

g2a
4m2

[λa ⊗ λa]

[ −|k|2
|k|2 + µ2a

[(
γ5γ · k̂

)
⊗
(
γ5γ · k̂

)]
− 1

2
γ5γ0 ⊗ γ5γ0

]
(A.7)

for pseudovector coupling, respectively, wherek̂ := k

|k| is the direction ofk. In principle, both potentials
can be Fourier transformed into coordinate space. This is not strictly necessary, since they can be calculated
directly in momentum space in the Bethe-Baryon model. Models, based on Eqs. (A.6) or (A.7) have been
tested, but were shown to be inadequate to explain the baryonspectra. We therefore pursued the following
phenomenological approach: A Fourier transformation of the pseudoscalar coupled model leads to a Yukawa
potential in coordinate space

V
(2)
(ps)(r) =

∑
a g

2
a

[
λa⊗λa

]e−µa|r|
4π|r|

[
γ5⊗γ5

]
. (A.8)

We ad hocreplace the radial dependence of the Yukawa potential by a Gaussian function and thus obtain for
the spin-flavour dependent interaction the form

V
(2)
(ps)(r)

!≈ V
(2)
(C) (r) :=

∑
a g̃

2
a

[
λa⊗λa

]
1

λ3
a π

3
2

e
− |r|2

λ2a

[
γ5⊗γ5

]
. (A.9)

The model, with the additional interaction according to Eq.(A.9), will be called modelC and is discussed in
section 4.2. Furthermore, this spin-flavour dependent interaction has been also used in combination with a
modified confinement potential (modelE) as discussed in section 4.3.

In case of pseudovector-coupling, potential (A.7) can be formulated in coordinate space as found in the
publications of Lêvy and Brueckneret al. [61, 62]. Moreover, the Graz group [22–30] uses a similar pseu-
dovector potential in the Goldstone-Boson exchange model,but neglect the spin-spin and tensor contributions.
As already mentioned: In Bethe-Baryon model, we do not founda satisfactory description on the basis of
potential (A.7) for the light-flavoured baryon spectra.

A.2 Flavour-matrix elements

The meson-exchange is a two-body interaction and the corresponding meson-exchange flavour-operators are∑3
a=1 λ

a(1) ⊗ λa(2), λ8(1) ⊗ λ8(2) and
∑7

a=4 λ
a(1) ⊗ λa(2) representing a pion-, eta-octet- and kaon-like

exchange. Here,λa, a = 1, .., 8 denote the generators of theSUF (3) flavour-group. The flavour-matrix



A.2. FLAVOUR-MATRIX ELEMENTS 103

elements to the operators can be evaluated with theCasimiroperators and the generators of theCartan algebra.
According to de Swart [140] they are defined by

C :=1
4

8∑

a=1

λ2a and I2 :=1
4

3∑

a=1

λ2a , (A.10)

I3 :=
1
2λ3 and M :=1

2λ8 , (A.11)

which leads to corresponding flavour-operators of the meson-exchange

Pion:
3∑

a=1

λa(1) ⊗ λa(2) = 2
(
I2(12)− I2(1)− I2(2)

)
, (A.12a)

Eta-octet: λ8(1)⊗ λ8(2) = 2
(
M2(12)−M2(1)−M2(2)

)
, (A.12b)

Kaon:
7∑

a=4

λa(1) ⊗ λa(2) =
8∑

a=1

λa(1)⊗ λa(2)− λ8(1)⊗ λ8(2) −
3∑

a=1

λa(1)⊗ λa(2) , (A.12c)

Eta-singlet: λ0(1)⊗ λ0(2) =
2
31⊗ 1 , (A.12d)

with

8∑

a=1

λa(1) ⊗ λa(2) =2
(
C(12)2 − C(1)2 − C(2)2

)
(A.13)

and the definitions

I(12) :=I(1)⊗ 1(2) + 1(1)⊗ I(2) , (A.14a)

M(12) :=M(1)⊗ 1(2) + 1(1)⊗M(2) , (A.14b)

C(12) :=C(1)⊗ 1(2) + 1(1)⊗ C(2) . (A.14c)

Note, thatλ0 for the eta-singlet exchange is normalised to tr(λ0λ0) = 2.

I12 = 1

S∗ = 0

I12 = 1

2

S∗ = −1

I12 = 0

S∗ = −2

3̄ + 6

nn

ns

ss

Y

I3

Fig. A.1: The schematic representation of the decom-
position of3⊗ 3 according to Eq. (A.16).

Fig. A.2: Summary of the flavour-matrix elements
Eq. (A.15) for states in Fig. A.1 and .

exchange 6 3̄
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2
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η8
1
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3
4
3

1
3 -23
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singlet η1
2
3

2
3

2
3

2
3

1
6

Let A(12) be a two-particle operator acting on the (12)-quark-pair ofthe three-quark state, which stands
for one of the three meson-exchange flavour-operators, given by Eqs. (A.12a), (A.12b), (A.12c) and (A.12d).
Then, the corresponding flavour-matrix elements are given by

〈[
f ′1f

′
2

]I′12,S∗
12

∣∣∣∣A(12)
∣∣∣∣ [f1f2]

I12,S∗
12

〉
. (A.15)

Here,fi, f ′i andi = 1, 2, 3 label the flavour content(u, d, s) of the coupled states with quantum numbersI12
andS∗

12.
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The product of two fundamental triplet representations decomposes into a sextet and anti-triplet

3⊗ 3 = 6⊕ 3̄ , (A.16)

see Fig. A.1. In [140], theSUF (3) irreducible representations are denoted byD(p, q). For the simplest irreps

we have3 ∧
= D(1, 0), 3̄ ∧

= D(0, 1) and6 ∧
= D(2, 0). The eigenvaluec for the Casimir operatorC on a state of

the representationD(p, q) is then given by

c =
(
1
3

(
p2 + pq + q2

)
+ p+ q

)
. (A.17)

If φh is the highest-weight state, the generators of the Cartan algebra have eigenvalues

I3φh =1
2(p + q)φh and Mφh = 1√

12
(p− q)φh . (A.18a)

The flavour-matrix elements can be calculated for the sextetand anti-triplet representations separately starting
from the highest-weight state of the corresponding representation via ladder-operators, which are defined in de
Swart [140]. This leads to the flavour-matrix elements summarised in Tab. A.2.
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[4] U. Löring, K. Kretzschmar, B. C. Metsch, H. R. Petry, Eur. Phys. J.A10, 309 (2001) [arXiv:hep-
ph/0103287].
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