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Zusammenfassung

Zentralisatoren in Gruppen sind wichtig fiir das Konjugationsproblem, eines der be-
kanntesten algorithmischen Probleme der Gruppentheorie. Ziel dieser Arbeit ist The-
orem dass viele Zentralisatoren in den Automorphismengruppen Aut(F),) und
Out(F,,) der freien Gruppe F,, die Endlichkeitseigenschaft VF erfiillen, also eine Unter-
gruppe G mit endlichem Index besitzen, die einen endlichen CW-Komplex als K (G, 1)-
Raum hat.

Ein Graph von Gruppen G besteht aus einem endlichen Graph I' mit Basispunkt v,
Eckengruppen G,, fiir jede Ecke w in I', Kantengruppen G, fiir jede orientierte Kante
e in I' und injektiven Gruppenhomomorphismen f. : Ge — Gr(c), wobei 7(e) der End-
punkt der Kante e ist. Wir bezeichnen mit e die Kante e mit umgekehrter Orientierung
und mit ¢(e) = 7(€) den Anfangspunkt von e. Die Kantengruppen erfiillen Gz = G,
sind also geometrischen (oder unorientierten) Kanten zugeordnet.

Das Fundamentalgruppoid m1(G) ist gegeben durch die Ecken von I' als Objekte.
Fiir jede Kante e haben wir einen Morphismus ¢, von t(e) nach 7(e). Jedes Element
g in der Eckengruppe G, definiert einen Morphismus von w nach w. Ein allgemeiner
Morphismus im Gruppoid 71 (G) ist eine formale Komposition dieser erzeugenden Mor-
phismen mit den Relationen tz = ¢, und t.f.(a)t;* = fe(a) fiir a € G.. Wir bezeich-
nen mit 71(G, v, w) die Menge der Morphismen von v nach w. Ferner schreiben wir
m1(G,v) = m1(G,v,v) fir die Fundamentalgruppe von G.

Ein Morphismus H : G — G’ von Graphen von Gruppen ist ein Tupel aus einem
Graphmorphismus Hr, Eckengruppenhomomorphismen H,, : G, — G}IF (w)? Kan-
tengruppenhomomorphismen H, : G, — G’Hr(e) und Elementen dp(e) € Gr(pp(e))-
Ein Morphismus H induziert einen Gruppoidmorphismus (eine natiirliche Transforma-
tion) Hy : m(G) — m1(G’). Auf den erzeugenden Morphismen ist H, definiert durch
H,(g) = Hyl(g) fir g € Gy und H.(te) = 61(€)tpy(e)dm(e)~'. Durch Einschréinken
erhalten wir einen Gruppenhomomorphismus 71(G,v) — m1(G’, Hr(v)) auf den Funda-
mentalgruppen.

Wir schreiben Aut(G) fiir die Automorphismengruppe von G und Aut’(G) fiir die
Untergruppe aller Automorphismen H mit Hr = 1. Ein Dehn-Twist auf G ist ein
Automorphismus D € Aut’(G), so dass alle D,, = 1, alle D, = 1 und ép(e) = fo(7e)
fiir Elemente ~, im Zentrum von G..

Wenn I' der Graph mit zwei Ecken v und w sowie einer geometrischen Kante e von
v nach w ist, dann ist 71 (G, v) isomorph zum amalgamierten freien Produkt G, *¢, Gy
beziiglich der Abbildungen fz : Ge — G, und f. : Go — G4. Sei D der durch v, und vz
definierte Dehn-Twist auf G. Der Gruppenautomorphismus D,, entspricht dann dem
Automorphismus von Gy, *¢, Gy, der G, punktweise fest lisst und g € G, auf z.gz;*
abbildet, wobei z. := 'ye'ygl € Ge.

Ein endliches Erzeugendensystem einer Gruppe G definiert eine Langenfunktion [ :
G — Np. Ein Automorphismus o € Aut(G) wéchst hochstens polynomiell vom Grad d,
wenn fiir jedes x € G die Lénge I(a’(z)) von oben durch ein Polynom vom Grad d in
j > 0 beschrinkt ist. Gibt es ein x € G, so dass die Linge [(a’(x)) auch von unten



durch ein solches Polynom beschrankt ist, so heifit a polynomiell wachsend vom Grad d.
Fiir duflere Automorphismenklassen definieren wir einen dhnlichen Wachstumsbegriff
mit Hilfe der zyklischen Lange von Konjugationsklassen. Das Wachstum von « ist
polynomiell vom Grad d genau dann, wenn das Wachstum jeder nicht-trivialen Potenz
von « polynomiell vom Grad d ist.

Wenn D ein Dehn-Twist auf G ist, dann wachsen der Automorphismus D,, und
seine duflere Automorphismenklasse polynomiell vom Grad 1, also linear. Umgekehrt
hat jeder linear wachsende Automorphismus einer freien Gruppe eine Potenz, die durch
einen Dehn-Twist gegeben ist. In dieser Arbeit verallgemeinern wir dies fiir polynomiell
wachsende Automorphismen héheren Grades wie folgt.

Ein héherer Graph von Gruppen G ist ein Paar aus einem (gewdhnlichen) Graph
von Gruppen G mit einer Gradfunktion deg, die jeder Kante des unterliegenden Graph
I" einen Grad zuordnet. Der Grad d von G ist der maximale Grad einer Kante. Wir
bezeichnen mit '™ den Untergraph von I' mit den gleichen Ecken wie I'. Eine Kante e
von I gehort zu (™) genau dann, wenn ihr Grad héchstens m ist. Durch Einschrénken
erhalten wir eine Filtrierung

COceWc.. . cedVcae? =g,

wobei G durch Einschriinken von G auf den Teilgraph I'™ entsteht.

Der wesentliche Unterschied zwischen gewohnlichen und héheren Graphen von Grup-
pen liegt in der Definition der Morphismen. In einem Morphismus H : G — G’ von
hoheren Graphen von Gruppen haben wir §g(e) € m (G(4e&(€)=1) Wir erlauben also,
dass dy7(e) tiber Kanten mit kleinerem Grad als e 1auft. Jeder Morphismus H : G — G/
induziert H™ : G — @™ durch Einschrinkung.

Ein hoherer Dehn-Twist ist ein Automorphismus D von G mit trivialer Operation auf
dem unterliegenden Graph, so dass D) ein Dehn-Twist eines gewohnlichen Graph von
Gruppen ist. Hohere Dehn-Twists wachsen polynomiell, wobei der Grad des Polynoms
hochstens der Grad des hoheren Graph von Gruppen ist. Umgekehrt kann fiir jeden
polynomiell wachsenden Automorphismus eine Potenz durch einen héheren Dehn-Twist
beschrieben werden (s. Proposition und . In Theorem zeigen wir, dass
der Zentralisator jedes hoheren Dehn-Twist-Automorphismus die Endlichkeitseigen-
schaft VF hat.

Im Allgemeinen kann der Wachstumsgrad eines Dehn-Twist-Automorphismus kleiner
sein als der Grad des hoheren Graph von Gruppen. In den Kapiteln [6] und [7] definieren
wir effiziente Dehn-Twists auf gewohnlichen Graphen von Gruppen und normalisierte
hohere Dehn-Twists auf hoheren Graphen von Gruppen, bei denen der polynomielle
Wachstumsgrad tatsachlich gleich dem maximalen Kantengrad ist. In Kapitel |8] zeigen
wir, dass jeder Dehn-Twist-Automorphismus einer freien Gruppe durch einen normali-
sierten hoheren Dehn-Twist reprasentiert werden kann.

Normalisierte hohere Dehn-Twists besitzen die wichtige Eigenschaft, dass jeder mit
ihnen kommutierende Automorphismus der Fundamentalgruppe durch einen Automor-
phismus desselben hoheren Graph von Gruppen repriasentiert wird. Auf diese Weise
benutzen wir in Kapitel die Automorphismengruppe des unterliegenden héheren



Graph von Gruppen, um Zentralisatoren in Out(F,,) und Aut(F},) zu verstehen und die
Endlichkeitseigenschaft VF zu zeigen.

Schliellich erklaren wir in Kapitel wie Informationen iiber Zentralisatoren die
Translationslingen in isometrischen CAT(0)-Wirkungen bestimmen. Theorem [14.2] be-
nutzt dabei die Abelianisierung des Zentralisators. Obwohl die Zentralisatoren oft
algorithmisch berechenbare endliche Prasentationen haben, ist es schwierig, die Abelia-
nisierung explizit auszurechnen. In Kapitel diskutieren wir Vereinfachungen der
Prasentationen im Spezialfall von Zentralisatoren von Rechts-Translationen pq ., die
ein Basiselement a von Fj, auf aw fiir ein gegebenes Element w € F;, abbilden und alle
anderen Basiselemente fest lassen.
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1 Introduction

1.1 Why studying centralisers?

Centralisers show up in many interesting aspects of geometric group theory. They are
closely related to the conjugacy problem, one of the most basic algorithmic questions
in group theory. For the outer automorphism group Out(F,) of the free group F,, a
solution of the conjugacy problem has been outlined by Lustig [25].

When we want to classify homomorphisms from any group G to another group G’,
then centralisers may be an important tool. For a fixed element g € G, a homomorphism
f : G — G’ induces a homomorphism Cg(g9) — Ce/(f(g)) on centralisers. A good
understanding of centralisers sometimes gives information to what elements a given g
can be mapped by some homomorphism f : G — G'.

Moreover, centralisers in G can force a group element g to have zero translation
length in every isometric action on a CAT(0) space. Information about these translation
lengths again gives rise to information about possible group homomorphisms f : G — G’
for two given groups G and G’ (cf. [2] for homomorphisms between mapping class groups
of surfaces).

There is a construction of classifying spaces E(G) for the family of virtually cyclic
groups in terms of classifying spaces E(G) for the family of finite groups. Important
groups in this construction are commensurators, which are closely related to centralisers
(cf. Section 3 of [15], Section 4 of [23], and Section 2 of [24]).

Apart from the centralisers studied in this thesis, centralisers of elements of finite
order are important to construct groups with finiteness property VF which do not
admit a finite-type universal proper G-space (cf. [20]). Centralisers of finite subgroups
in Aut(F,) also show up in work by McCool [28] about automorphism groups of finite
extensions of free groups.

1.2 OQOutline of this work

The main result of this thesis is Theorem showing that certain centralisers in
Out(F},) or Aut(F,) satisfy finiteness property VF, i.e. these centralisers have a finite
index subgroup with a finite classifying space.

A graph of groups G consists of a finite graph I' with basepoint v, vertex groups G,
for every vertex w of I', edge groups G, for every oriented edge e of I', and injective
group homomorphisms f : Ge — Gr(), where 7(e) denotes the terminal vertex of e.
The edge groups are required to satisfy Gg = G,, where € is the edge e with reversed
orientation. Thus edge groups can be thought of as being assigned to geometric (or
unoriented) edges.

The fundamental groupoid 71 (G) of G is the groupoid with objects being the vertices
of I'. Every edge e defines a morphism ¢, from the initial vertex ¢(e) = 7(€) to the
terminal vertex 7(e). An element g in the vertex group G,, is a morphism from w
to w. In general, a morphism in 71(G) is a formal composition of symbols ¢, and
elements in vertex groups subject to the relations tz = ¢! and t.f.(a)t;! = fs(a) for



a € G.. We denote the set of morphisms in m(G) from v to w by 71(G, v, w). We write
m1(G,v,v) = 71(G,v) and refer to it as the fundamental group of the graph of groups G.

The terminology “fundamental group” is motivated by the following topological sit-
uation of a graph of spaces shown in Figure Consider vertex spaces X,, and edge
spaces X, having the given groups Gy, and G, as fundamental groups. Let X be the
space obtained from the disjoint union of all X, and cylinders over the X, by attaching
the end of each cylinder over X to X by means of a map inducing f. on funda-
mental groups. Then the fundamental group of the topological space X is naturally
isomorphic to the (combinatorial) fundamental group of G.

Xe,
€9 '
v <> w
X, ‘ Xuw
€1
r ’
Xe,

Figure |l A graph of spaces.

A morphism H : G — G’ of graphs of groups is a tuple of a graph morphism Hr, vertex
group homomorphisms H,, : G, — GIHF(w)v edge group homomorphisms H, : G —
G}Ir(e), and elements 0y (e) € G (. (o)) Satisfying certain compatibility conditions. The
morphism H induces a morphism (or natural transformation) H, : m(G) — m(G").
On the generating morphisms it is given by H.(g) = Hy,(g) for g € G, and H,(t.) =
01 (€)tpr(ey0r(€) . The morphism H, of groupoids restricts to a group homomorphism
H,y : m(G,v) = m1(G', Hp(v)) of fundamental groups.

We denote the automorphism group of G by Aut(G), and we denote by Aut®(G) the
subgroup of all H € Aut(T") such that Hpr = 1p. A Dehn twist on G is an automorphism
D € Aut®(G) such that all D, =1, D, = 1, and dp(e) = f.(7.) for elements 7, in the
centre of G.. When all G, & Z, and we take ordinary cylinders in the above picture of
a graph of spaces, then D,, can be regarded as the automorphism induced on 7 (X)
by a topological (multiple) Dehn twist around the core curves of the cylinders.

For a better understanding, we now consider the following example. Let I' be a
graph with two vertices v and w and two edges e and € (determining one geometric
edge) with ¢(e) = v and 7(e) = w. For a graph of groups G with underlying graph T, the
fundamental group (G, v) is isomorphic to an amalgamated free product Gy, *g, Gy
with respect to fz : Go — G, and f. : Ge — Gy. If D is a Dehn twist on G given
by central elements v, and 7z in G, then D,, corresponds to the automorphism «
of Gy *g, Gy fixing G, pointwise and acting by a(g) = z.gz;! on g € Gy, where
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Re = 'Ye'Yg_l € Ge.

A finite generating set of any group GG determines a length function [ : G — Ny. An
automorphism a € Aut(G) grows at most polynomially of degree d if the length I(a (z))
can be bounded above by a polynomial of degree d in j for j > 0. The automorphism
o grows polynomially of degree d, if there is additionally an element x € G such
that I(a/(x)) is bounded below by a polynomial of degree d. Using cyclic lengths of
conjugacy classes, there is a similar notion of growth for the outer automorphism class
a € Out(F,) represented by a. Moreover, it is easily verified that the growth of « is
polynomial of degree d if and only if the growth of some non-trivial power is polynomial
of degree d.

When D is a Dehn twist on a graph of groups G, then D,, and its outer automorphism
class D grow at most polynomially of degree one, i.e. linearly. Conversely, it is known
that every linearly growing automorphism « € Aut(F,) or @ € Out(F,,) has a power
which is represented by a Dehn twist. In this thesis we extend this to polynomially
growing automorphisms of higher degree as follows.

A higher graph of groups G is a pair of an (ordinary) graph of groups G together
with a “degree function” deg assigning a positive integer called the degree to each edge
of the underlying graph. The degree d of G is the maximal value of its degree function.
A higher graph of groups G comes with a filtration

GO ccWc...celbcg? =g,

where the underlying graph '™ of G(™) is the subgraph consisting of all vertices of
I', but only those edges whose degree is at most m. The other structure of G(™) is
obtained from that of G by restriction.

The main difference between ordinary and higher graphs of groups lies in the defini-
tion of morphisms. In a morphism H : G — G’ of higher graphs of groups, the d-terms
are not forced to lie in single vertex groups, but dg(e) lies in 71 (Gde8€)=1)) 5o it is
allowed to go across edges of degree strictly less than deg(e) in the target graph of
groups. Every morphism H : G — G induces morphisms H(™ : G(™) — G'(™) by
restriction.

A higher Dehn twist is an automorphism D of G acting trivially on the underlying
graph such that DM is an (ordinary) Dehn twist of graphs of groups. Higher Dehn
twist automorphisms grow polynomially, and conversely, every polynomially growing
automorphism of a finitely generated free group has a power which can be represented
by a higher Dehn twist (cf. Proposition for Out(F,,) and Proposition for
Aut(F,)). Our main theorem is

Theorem [13.21L Whenever D is a higher Dehn twist on a higher graph of groups G
with finitely generated free fundamental group, then the centralisers C(Dy,) and C(D)
satisfy property VF.

This thesis is structured as follows. In Chapter [2| we make the definitions of higher
graphs of groups and the fundamental groupoid more precise. Chapter [3] discusses
how to compare higher graphs of groups with ordinary graphs of groups whose vertex
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groups again have a graph of groups decomposition. Chapter [4] defines several variants
of the growth of an automorphism of a finitely generated group. We then discuss that
higher Dehn twists always grow polynomially (cf. Proposition . Given an arbitrary
polynomially growing automorphism & € Out(F},), upper triangular relative train track
maps in the sense of Bestvina, Feighn, and Handel ([6], [7], and [§]) will allow us to
construct a Dehn twist representing a power of a.

Given an automorphism L of a higher graph of groups and elements 7,7’ in the
fundamental group of G, then we call n and 7’ L-conjugate if there is a § such that
n' = L.«(6)nd~!. In particular, 1-conjugate means conjugate in the ordinary sense. To
understand the symmetries of these L-conjugacy classes, we look at periodicity of the
bi-infinite expression

L2 La(m)n L () L2 ()

in Chapter

When D is a higher Dehn twist of a higher graph of groups of degree d, then D,,
and D grow at most polynomially of degree d. In Chapters |§| and |7} we discuss how to
bound the growth of automorphisms from below. We will define the class of normalised
higher Dehn twists in Section [7.4] and we show that they grow indeed polynomially of
the maximal possible degree.

Chapter [§shows that, for every higher Dehn twist D € Aut(G) with free fundamental
group m1(G,v), there is a normalised higher Dehn twist D' € Aut(G’) representing a
conjugate automorphism on fundamental groups. This is done by introducing a list of
moves (M1) to (M10) successively improving Dehn twist representatives which are not
normalised. In particular, this reduces the study of centralisers of higher Dehn twists to
the study of centralisers of normalised higher Dehn twists. This notion also generalises
the notion of efficient Dehn twists in [I3], which will be the special case of normalised
higher Dehn twists in degree one.

The main advantage of studying centralisers of normalised higher Dehn twist auto-
morphisms lies in the fact that every element in the centraliser is indeed represented
by an automorphism of the same higher graph of groups. This is shown in Chapter
and it allows us to study the centralisers by looking at the structure of the automor-
phism group of the higher graph of groups G. We will also have to understand which
automorphisms of a higher graph of groups act trivially on the fundamental group. We
study this in Chapter [9

In Chapter[11] we discuss subgroups Aut(F,,C) of Aut(F),) and Out(F,,C) of Out(F},)
fixing a given set C of conjugacy classes in F;,. These groups have already been studied
by McCool [26], [27], and we recall their basic definitions, which are needed in our
description of centralisers in Chapters [12] and

In Chapter 14 we discuss aspects of CAT(0) geometry. The connection to centralisers
is given by Theorem which gives information about translation lengths of isometric
actions of a group on a CAT(0) space. To apply it, we need a good understanding of
the abelianisations of centralisers.

We know that many centralisers have finiteness property VF, so they are finitely
presented. In [31], it is discussed that these finite presentations can even be computed

12



algorithmically in the case of (linearly growing) ordinary Dehn twist automorphisms.
Nevertheless, it is very hard to read off the abelianisation. In Chapter we discuss
how this can be done by hand in the special case of a right translation p, .. It requires
a simplification of the presentations given by McCool’s algorithm.
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2 Higher graphs of groups

In this chapter we introduce higher graphs of groups. They generalise the well-known
graphs of groups already defined in [3], [4], [13], [32], and others.

2.1 Definition of graphs of groups
Definition 2.1. A graph of groups is a tuple

G = (I, (Gu)wev(r): (Ge)ecE (), (fe)ecr(T))

where

e I' is a finite graph in the sense of Serre (cf. I §2.1 in [32]) with vertex set V(I
and edge set E(T"),

e all Gy, and G, are groups,

e for every edge e we have an injective group homomorphism fe : Ge — Gy (o),
where 7(e) denotes the terminal vertex of e,

o (G, = Gg for every edge e, where € is the edge e with reversed orientation.

We refer to the G, and G, as vertex and edge groups respectively. We call f. the
edge maps or attaching maps.

A pointed graph of groups is a pair (G, v) where v is a vertex of the underlying graph
T'of G.

A subset ET of E(T) is called orientation of T if, for every e € E(T'), exactly one of
e and € belongs to E*.

The initial vertex of an edge e is denoted by ¢(e) = 7(€).

2.2 Degree functions and the subgraphs '™

Definition 2.2. A higher graph of groups is a pair G = (G, deg) of a graph of groups
G =T, (Guw)w, (Ge)e, (fe)e) together with a function deg : E(I') — N~ {0} such that
deg(e) = deg(e), and G, is trivial whenever deg(e) > 2.

We call deg the degree function. Its value on an edge e is referred to as the degree of
the edge, and its maximal value

d = deg(G) := max{deg(e)le € E(I")}

is called the degree of G. If E(I"') = &, then we define deg(G) = 0.

For m > 0 let T(™ denote the subgraph of I' with V(I'™) = V(') and E(I'™)) =
{e € E(I)|deg(e) < m}. Let G™ be the graph of groups with underlying graph
'™ and the same vertex groups as in G. The edge groups are those G, such that
e € T and for those edges the maps f. are the same in both G and G™. We denote
by G(™ the higher graph of groups given by G(™ together with the degree function
deg|gpomy : E(T™) — N~ {0}
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2.3 The fundamental groupoid 7,(G)

Let G be a graph of groups, and F the group freely generated by symbols t., e € E(T).
The path group I1(G) of G is the quotient of the free product (*,cy(r)Gw) * F' by the
relations

te=1t.",
75efe(a)te_1 = fE(a)

for all e € E(I") and a € Ge.
We write elements in (*,ey(r)Gw) * F' as tuples, which we refer to as words. A
connected word is a word of the form

W= (905 tel)gla “e atek,pgk—l)tekvgk))

where the edges ey, ..., e form a connected path, go € G,(c,), 95 € GT(e]-) forl1 <j<k.
We often write ¢; instead of ;.
The element in II(G) represented by W is denoted by

(W = gotig1 - tkgs-

We denote by 71 (G, v, w) the set of elements in II(G) represented by connected words
whose underlying path initiates at v and terminates at w. We consider elements in
a vertex group G, as connected words (with £ = 0 in the above notation), and they
represent elements in w1 (G, w, w).

There are obvious concatenation maps

m1(G,u,v) X (G, v,w) = 71 (G,u,w),

which are clearly associative and have identity elements and inverses. The fundamental
groupoid m1(G) of G is the groupoid with object set V(I') and morphism sets 71 (G, v, w).
For simplicity, we write 71 (G, v) for m1(G, v,v) and refer to it as the fundamental group
of G at the basepoint v.

Remark 2.3. The terminology “fundamental group” is motivated by the following geo-
metric picture of a graph of spaces. For every vertex w of I' we take a space X, with a
fixed isomorphism 71(X,,) = Gy. If Gy, is free, then we may for instance take graphs
as vertex spaces such as those drawn by bold lines in Figure[I] Similarly, we take edge
spaces X, which are circles in the example of Figure We define the realisation X
of the graph of spaces to be the space obtained by attaching cylinders over the edge
spaces to the disjoint union of vertex spaces such that each attaching map Xe — X; )
induces the given f. on (topological) fundamental groups. Then the (combinatorial)
fundamental group of G coincides with the (topological) fundamental group of X.

For higher graphs of groups G = (G, deg), we define II(G) = II(G), m(G,v,w) =
71(G,v,w), and m1 (G, v) = 71 (G, v), so we do not take the degree function into account.

Whenever A is a subgraph of I', we can restrict the structure of the graph of groups G
on I" to A by disregarding the data outside A. We denote this new graph of groups over
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Figure 1: A graph of spaces.

A by G|a. Given two vertices v and w of A, there is an obvious injection 71 (G|a, v, w) —
m1(G,v,w). We usually consider m(G|a, v, w) as a subset of m1(G, v, w). In particular,
we identify w1 (G™, v, w) with a subset of 71 (G,v,w) for a higher graph of groups G.

2.4 Morphisms of higher graphs of groups

Let G be as above and G’ = (G', deg’), where G’ is a graph of groups with underlying
graph I vertex groups G, edge groups G-, and edge maps f/.

Definition 2.4. A morphism H : G — G’ is a tuple
H = (Hy, Hg, (Hw)wev(r), (He)ecrm), (0H(€))ecE(T))
such that
(1) Hy : V(I') - V(I") and Hg : E(T') — E(I"”) are functions,
(2) Hg(e) = Hg(e) for every edge e of T,
(3) deg'(Hg(e)) = deg(e) for every edge e of T,
(4) every Hy, : Gy — G’HV (w) is a group homomorphism,

5) every H. = Hz : G. — @, is a group homomorphism,
Hg(e)

(6) drr(e) € m (g€, Hy(7(e)), 7(HE(e))),

(7) HT(G)(fe(a)) = 6H(e)f}IE(e)(He(a))éH(e)_l for every edge e € E(I") with deg(e) = 1
and a € G,.

We denote the set of morphisms G — G’ of higher graphs of groups by Hom(G, G/).
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If deg( ) = 1, then dg(e) € 7 (G"Q, Hy(r(e)),7(Hg(e))). Since the underlying
graph I"(0) of G'(O) is discrete, this set is non-empty only if Hy (7(e)) = 7(Hg(e)). If all
edges of I'" have degree 1, then by (3), all edges of " have degree 1 as well. In this case,
our argument shows that Hy and Hg form a graph morphism Hy : I’ — I, and every
dp(e) lies in the single vertex group G’T(Hr(e)). We then call Hom(G, G') = Hom(G, G’)
the set of morphisms of (ordinary) graphs of groups from G to G'. This coincides with
the morphisms called 6® in Section 2.9 of [3] and Section 3.4 of [4].

We often write H instead of Hy or Hr when there is no risk of confusion.

We shall sometimes be looking at pointed higher graphs of groups (G, v), where v is a
specified base vertex in the underlying graph I' of G. Given two pointed higher graphs
of groups (G, v) and (G, v’), we define the pointed morphism set Hom(G, v, G’,v") to
be the set of all H € Hom(G, G’) such that H(v) = v'.

A morphism H : G — G’ induces a map H, : I[I(G) — II(G’) by

H.(g) = Hy(g) for g € Gy,

H*(te) = (5H(é)tH(e)5H(€)_l.
It is left to the reader to verify that the defining relators t.tz and t.f.(a)t, ! fz(a) !
II(G) are respected, so H, is well-defined.
Note that dx(€) € m1(G', H(w(e)),(H(e))), tae) € m(G',u(H(e)),7(H(e))), and
Su(e) ™t € m(G,r(H(e), H(r(e))), so we have H(t.) € m(G', H((e)), H(r(e))).
Since we also have H,(g) € G}{(w) for g € Gy, it follows that H, maps the set 7 (G, v, w)

represented by connected words to the set m (G, H(v), H(w)).
We get maps

71 : Hom(G, v, G',v") — Hom(71 (G, v), (G, "))

by sending H € Hom(G, v, G',v) to the restriction 71 (H) = H,, of H, to the funda-
mental group 71 (G, v).

2.5 The category of higher graphs of groups
Let G, G', and G” be three higher graphs of groups. We define a composition
Hom(G, G’) x Hom(G', G”) — Hom(G, G")

as follows: Given two morphisms H : G — G’ and H' : G' — G”, the composition
H'H : G — G" is defined by

(HIH) VHV7
(HIH) HEHE,
( H) —H/ Hw,

(HH). = H}{(e)He’
drr(e) = H,(0m(e))dm (Hr(e)).
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This composition is associative. It also has identity elements 1 : G — G given by
]lV = 1, ]lE = 1, ]1w = 1Gw, ]le = 1ch and 51(6) =1.

A morphism has an inverse if and only if Hy and Hg are bijections, and all H,, and
H. are isomorphisms. In this case we say that H is an equivalence of higher graphs
of groups, and G is equivalent to G’. If in addition G = G/, we refer to H as an
automorphism of G, and we denote the group of automorphisms by Aut(G).

The composition map restricts to a composition

Hom(G, v, G',v") x Hom(G',v', G",v") — Hom(G, v, G",v")

for pointed higher graphs of groups. An isomorphism (or equivalence) in the category

of pointed higher graphs of groups is the same as an equivalence of higher graphs of

groups which respects the basepoints. This way the automorphism group Aut(G,v)

becomes the subgroup of Aut(G) given by automorphisms H such that Hy (v) = v.
The forgetful functor H — (Hy, Hg) induces a group homomorphism

Aut(G) — Aut(V(T)) x Aut(E(T)),

whose kernel we denote by Aut’(G). Since T is finite, Aut’(G) has finite index in
Aut(G).

If the degree of G is 1, then the automorphism group Aut(G) in the present sense
is also denoted by Aut(G) and referred to as the automorphism group of the ordinary
graph of groups §G.

2.6 Outer homomorphism classes

Let G and H be any groups. Two homomorphisms f, f': G — H determine the same
outer homomorphism class f = f' if there is h € H such that f' = adj o f, that is
f'(z) = hf(z)h~! for all x € G. We denote the set of equivalence classes of Hom(G, H)
by OHom(G, H). Given a further group K, there is a well-defined composition

OHom(G, H) x OHom(H, K) — OHom(G, K).

We refer to an outer homomorphism class represented by an isomorphism as an outer
isomorphism class. The set of outer isomorphisms from G to itself is then the well-
known outer automorphism group

Out(G) = Aut(G)/Inn(G).

We now return to higher graphs of groups. Given H € Hom(G, G’) and fixed base-
points v and v’ of G and G’ respectively, we have

Hyy i (G, v) — m (G, H(v))

with possibly H(v) # v'. For every e € m(G',v', H(v)), we have ad.H,, : m(G,v) —
71(G’,v") mapping n € 71(G,v) to eH.(n)e~!. For two choices €, € € m1(G',v', H(v)),
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the group homomorphisms ad.H,, and ad.H,, differ by the inner automorphism
ady.-1, so we get a well-defined outer homomorphism class

H € OHom(m (G, v), 71 (G, "))

whenever the underlying graph I is connected. It can be checked that T =1 and
H'H = H'H whenever the composition H'H is defined.

On the automorphism groups, we now have group homomorphisms U : Aut(G) —
Out(m (G, v)) and V : Aut(G,v) — Aut(mi(G,v)) given by H — H and H — H,,
respectively. They are in general neither injective nor surjective. In Chapter [0 we will
see important elements in the kernels of these homomorphisms.

2.7 Reduced words

We now introduce some terminology for words in a graph of groups G.

Definition 2.5. A word W = (z,t1,91,...,9k—1, 1k, y) is called reduced if g; ¢ f;(Ge;)
whenever e; 1 =¢j for j, 1 <j<k-—1

When there is no risk of confusion, we sometimes say that ztig; ...ty is a reduced
expression although we mean the word (z,t1,g1,...,tk,y) by that.

Proposition 2.6 ([13], Proposition 3.6). If two reduced words W = (go,t1,91 - -, tk, gk)
and W' = (94,11, 915 - - -, ths» 95 ) Tepresent the same element of IL(G), then:

e k=F andt;=t, foralli=1,... k,

e there are h; € G, for all i, 1 <1 <k, such that

96 = 9o fer(h) ™,
9i = fei(hi)gi ferr(hi1) ™" for L<i < k—1,
9% = fer (M) G-

Every word W can be transformed to a reduced word representing the same element
in II(G) using the defining relations of this group. During this procedure, the number
of t-symbols strictly decreases in each step. Connected words are then transformed to
connected, reduced words.

From now on, we assume throughout that all words are connected.

Definition 2.7. For € € m1(G, u, w) we define the path length pl(e) to be the length k
of a reduced word W = (z,t1,91,...,9k—1, tk,y) such that |W| =e. If u = w, then we
define the cyclic path length as

ple(€) = min{pl(6e61)|§ € m1(G, v, u) for some v’ € V(T)}.
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Different reduced representatives W and W' of € have the same underlying path by
Proposition so pl(e) is well-defined.
We sometimes write

/
€ X €

for the concatenation €€’ to emphasize that pl(ee’) = pl(e) + pl(¢'). For two words
W = (z,t1,91,...,tg,y) and W' = (2, t], ¢,...,t,,,y) with 7(ex) = v(e]), we define
W s W' = (2,81, 015> te1s Go1, th, YT 81, 91 oo 1y G 1> trrs )

Thus we concatenate W and W’ and multiply (only) the entries in G (,) = Guer)
together. We call W an initial segment and W' a terminal segment of W x W'. The
lengths of different terminal segments are related as follows.

Lemma 2.8. Let W and W' be reduced words with |W| = |W'|, V' a terminal segment
of W, and V' a terminal segment of W'. Then

pUV'VTH) = [pl(IV]) = pl(JV'])]-

Proof. Let W = (go,t1,91, .-tk gx) and W' = (g, t1, 91, --,tk, g;). We denote the
lengths of the underlying paths of V' and V' by r and 7’ respectively. We may w.l.o.g.
assume 7’ > r. Then there are v € G (., ) and 2’ € G, _,) such that

e_
V= (:E) tk—r—‘rlv Gk—r+1,--- 3 gk)a
V/ = ($/7 tk—r’+lvg;g—r’+1) o 7t/€a g;c)

Let hq,...,h; be as in Proposition Then

V' = "ty i1 (fer ooy (hkfr’Jrl)gk:fr’+1fm(hkfr/+2)_l)tkfr/+2 ootk (fer (Pr) gr)
= m/fm(hk—r’—i-l)tk—r’+1gk—r’+1 kY,
so |[V/||V|7! = w/fm(hk_r/_trl)tk_rl+1gk_7./+1 oo tp—rgr_rx ! is a reduced expression
with underlying path of length 7’ — r. O
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3 Truncations and tree actions

3.1 Truncation of higher graphs of groups

Let G = (G,deg). Recall that the subgraph I'™ of the underlying graph T' of G
consists of all edges of degree at most m. By restriction we obtain a higher graph of
groups G(™) = (g<m>, deg). Every automorphism H of G restricts to an automorphism
H(m) = H’F(m) of G(m)

Definition 3.1. A pointed higher graph of groups (G, v) is truncatable at degree m if
there is a subset V,,, C V(I") such that

e cvery connected component of I'™) contains exactly one vertex in Vi,
e cvery edge e € E(I') with deg(e) > m has its terminal vertex 7(e) € V,,,
e the basepoint v € V,,.

If the underlying graph I' is connected, then the set V,,, is unique: Suppose m <
d = deg(G). For every component of (™) there is an edge e of degree bigger than m
with 7(e) in this component. This is then the unique vertex in V, of this connected
component of (™).

We denote by I'/ (™) the graph obtained from I' by collapsing each connected com-
ponent of T(™ to a vertex. Since T'™ contains all vertices of T', the vertices of
F/F(m) are in bijection with the connected components of T("™) so we may identify
V(I/TM)) = V,.

If G is truncatable at degree m, we define its truncation T™G to be the higher
graph of groups with underlying graph I'/I'™) and vertex groups m (G, w), where
we Vy = V(F/F(m)). The edge groups of TG are those edge groups G, of G such
that deg(e) > m + 1. The attaching maps are the compositions

Ge L5 Gy = (G, 7(e))

of the attaching maps of G and the inclusion of a basepoint vertex group of G to the
fundamental group. Finally, we define a new degree function degpmg : E(I'/T(™) — N
by degpng(e) = degg(e) — m.

If G is a graph of groups of degree d, then TG is a graph of groups of degree d —m,
and there is an obvious identification

m(G,v) =Z 1 (T"G,v).

Figure [2] shows the graphs of spaces according to two higher graphs of groups G and
G’. The cylinders are the vertex spaces together with the edge spaces in degree one.
In both G and G/, there are two edges of degree two. G is not truncatable at degree 1,
but G’ is.

Given a morphism H : G — G’ of higher graphs of groups truncatable at degree m,
there is an induced morphism T H : T™G — T™@G’. This assignment is functorial in
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Figure 2: G is not truncatable, but G’ is.

the sense that 7™1 = 1 and T (H'H) = (T™H')(T™H). Hence T™H is an equivalence
(or automorphism respectively) if H is.

We are often interested in higher graphs of groups whose truncations can be defined
in every degree:

Definition 3.2. A higher graph of groups (G, v) of degree d is called fully truncatable
if it is truncatable at every degree m with 1 < m < d — 1.

A fully truncatable higher graph of groups G of degree d > 2 may be regarded as an
ordinary graph of groups with trivial edge groups such that all its vertex groups have
the structure of a fully truncatable higher graph of groups of degree d — 1. This may
be called a “graph of graph of ... graph of groups”.

3.2 Truncation of words

Given a word W = (z,t1,91,...,tk—1, 9k—1, K, y) representing an element in m(G) in
a higher graph of groups of degree d, we define a truncation 79 'W as follows. Let
Ei = e;y,..., B = ¢;, be the edges of degree d among eq,...,e, such that 1 <41 <

oo < iy < k. Write

Oy = xt191 ... tii—19i1—1,
9]’ = gijtij+1gij+1 .. .tiHlflgin,l for1<j<il-1,
0 = gitiy+19i+1 - - - try.

Then we define
Td_IW = (Og,tEl,Hl, o atEle)-

If W is reduced, then T 1T is reduced in the following sense: Whenever E; 1 = E;
for some i, then 6; # 1. We say that T9~'W is reduced in the truncated sense.

If G is truncatable at degree d—1, then every §; is a (closed) element in the fundamen-
tal group of a connected component of G4~ Tt can be checked that |[W| = |T% W]
under the canonical identification of 1 (G) with 71 (T4 1G).

We note that a truncated reduced word is uniquely determined by the element it
represents if d > 2. This follows from Proposition together with the fact that edge
groups of degree d are trivial.
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3.3 Edge slide equivalences

To study automorphisms of higher graphs of groups and their centralisers, it will be
convenient to pass to truncations as defined in the last section. To build them, the
higher graph of groups must be truncatable. This turns out to be achieved easily:
Proposition will show that every higher graph of groups is in fact equivalent to
a fully truncatable one. The basic piece of building such an equivalence will be the
following construction.

Let G be a higher graph of groups with chosen edge e such that G, = 1. Define the
underlying graph I"” for a new higher graph of groups G’ as follows: The vertices and
edges of I are the same as those of I' with e and @ replaced by new ¢’ and ¢/. We set
deg(e’) = deg(e), t(e') = t(e), but 7(€’) is only required to lie in the same component
of I'(deg(e)=1) — p/(deg(€)=1) 55 7(¢). We put G!, =1, and all other edge groups, vertex
groups, and attaching maps for G’ are the same as those for G.

Let § € m(Gldee(©)=1) 7(e), 7(e')). There is a morphism H : G — G’ defined as
follows: On the underlying graph, e and € are mapped to ¢’ and €’ respectively, whereas
all vertices and other edges of I are mapped to those of I' called by the same name.
Define all vertex and edge group homomorphisms H,, and H; to be the identity on the
respective group. Let 0y (e) = 0 and dg(é) = 1 for é # e. This finishes the definition
of H, which is clearly an equivalence.

3.4 Building truncatable representatives

Proposition 3.3. Let (G,v) be a pointed higher graph of groups. Then there is an
equivalence (G,v) — (G',v") such that (G',v") is fully truncatable.

Proof. Choose a filtration V(I') = Vo D Vi1 D ... D V41 D V4 = {v} such that every
connected component of I'™) contains exactly one vertex of Vj,.

The proof will now be by induction on the number of (oriented) edges e such that
7(€) ¢ Vieg(e)—1- We refer to these edges as unfitting edges. If there is no unfitting
edge, then G is truncatable at every degree, and we take G’ = G.

Fix now an unfitting edge e, and define G’ as in Section with 7(¢/) being the
unique vertex in Vieg(e)—1 lying in the same component of r(deg(€)=1) 45 7(e). Then we
construct an equivalence from G’ to G as in Section and G’ has fewer unfitting
edges. This finishes the induction. O

We now use this to detect equivalences among morphisms inducing an isomorphism
on fundamental groups.

Lemma 3.4. If H : G — G’ is a morphism of connected higher graphs of groups such
that Hy, Hg, all H,, and Hy, are isomorphisms, then H is an equivalence.

Proof. Let d be the degree of G. As we may pre- and postcompose H with equivalences
of higher graphs of groups, there is no loss of generality in assuming that G and G’ are
fully truncatable.
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If d > 2 and we know the assertion for higher graphs of groups of degree at most
d—1, the truncation T4 'H : 741G — T% '@’ and the restriction H(¢~1 = H|p@-) -
G- 5 @D are equivalences on each connected component, and so H is an
equivalence. Therefore we assume d = 1.

We have to show that all vertex group homomorphisms H,, : G, — G’H(w) are
isomorphisms. Let w be any vertex of I'. For an arbitrary € € m1(G,v,w), we have
H,, = ad;li(E)H*UadE. As H,, is an isomorphism, it follows that H,,, is an isomorphism
as well. Therefore H,, = H.yl|q,, is injective.

To show surjectivity of H,,, pick ¢’ € G}I(w). We now choose a reduced expression
(Hew) Y (g") = gotig1...trgr € m(G,w). By Lemma 3.5 of [4], we have pl(¢’) =
pl((H:)71(g")), so k = 0. This shows that (H.,) *(¢') = g for some g € G,,. But then
Hy,(g9) = ¢, so Hy, is surjective. O

3.5 Bass-Serre Trees

Let G be an ordinary graph of groups with basepoint v. We now define the Bass-Serre

tree T' = (G, v) of G is the following graph, which is called the universal cover in [3]:
A vertex of T is a coset of the form dG,,, where 6 € m(G,v,w). Two vertices Gy,
and 6'G, are connected by an edge if the path length pl(§~1¢’) = 1, which is clearly
independent of the coset representatives  and ¢’. In general, the distance of §G,, and
§'Gyr is dr(8Gy, 8'Gyr) = pl(6718). Tt is not hard to check that this graph is indeed
a tree (cf. Theorem 1.17 of [3]).

The fundamental group 71(G,u) acts on this tree, where the action of € m(G,v)
is given by mapping 0G,, to ndG,,. The quotient of this action can be identified with
the underlying graph I' of G. The “translation lengths” in these action are related to
path lengths as follows.

—~—

Lemma 3.5. Let n € m(G,v) and T = (G, v) with distance function dr on the vertex
set V(T). Then

pl(n) = dp(Gy,nG,),

le = i dr(0Gw,n0Gy). O
ple(n) s 7( n6Gy)

A morphism H : G — G’ induces an equivariant map of the Bass-Serre trees. If H
respects the basepoints, then the associated map on Bass-Serre trees maps the vertex
G, to the vertex G!,.

When G carries a degree function, then this function can be naturally lifted to the
edges of the Bass Serre tree. A morphism H : G — G’ then induces a (topological)
map on Bass-Serre trees sending vertices to vertices and each edge of degree m across
exactly one edge of degree m and possibly edges of lower degree.

Remark 3.6. Collapsing each edge of degree at most a fixed m in the Bass Serre tree
corresponds to taking the Bass-Serre tree of the truncation T™G, if it exists. Even if
G is not truncatable of degree m, we will sometimes abuse the notation and refer to

24



the Bass-Serre tree of the truncation TG when we mean the tree for G with edges
of degree at most m collapsed. The vertices of this tree then correspond to elements
0 € m(G,v,u) subject to the equivalence relation identifying § € 71(G,v,u) with
8" € m(G,v,u) if and only if 6-16" € 71 (G, u,u'). We sometimes denote such an
equivalence class by 71(G™), u, e) or simply 1 (G™).

Remark 3.7. When H is a normalised higher Dehn twist D € Aut’(G) on a higher
graph of groups G of degree d as defined in Section [7.4] below, then the Bass-Serre tree
T of the truncation 741G has the following interpretation. When we view Outer space
as the space of isometric actions on metric simplicial trees endowed with the topology
given by length functions, then there is a boundary given by length functions which
are allowed to attain the value zero on non-trivial group elements. The action of D
on T extends to this compactification, and it has limit points at the boundary. They
correspond to equivariant metrics on the Bass-Serre tree T of T4 1G. In the case of
ordinary graphs of groups in degree one, Cohen and Lustig [12] have studied this in
terms of metric graphs of groups.
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4 Growth types

4.1 Definition of growth in Aut(G) and Out(G)

Let G be any group with finite generating set {z1,...,x,}. We denote by [, its length
function, that is

lz(g9) == min{k > O|g = x5 ...z} for some j; and ¢; € {£1}}. (1)
For conjugacy classes we have the cyclic length

lz.c(9) = min{l;(ygy )|y € G}.
If o« € Aut(G) and g € G, we define

gr(a,g) :Ng = No,  gr(e, 9)(j) = lu(a?(g)).

For the cyclic length we similarly have

grc(aag) : NO — N0> grc(a>g)(j) = ZJB,C(Qj(g))a

which also makes sense for @ € Out(G).
Considering two sets of generators {z1,...,z,} and {z/,...,2],} of G, there is a
constant C' > 0 such that

5190(9) <l (g) < Cla(g)

for all ¢ € G. We also say [, and [, are equivalent up to a multiplicative constant.
Hence gr,(a, g) and gr,/(«, g) can be mutually estimated up to a multiplicative con-
stant. The same argument applies to the cyclic growth functions gr, . and gr,/ .. Thus
the following definition is independent of the generating set of G.

Definition 4.1. A group element g € G grows at most polynomially of degree d under
iteration of @ € Aut(G) if gr(a,g) is bounded above by a polynomial of degree d.
The conjugacy class [g] grows at most polynomially of degree d under iteration of
a € Aut(G) (or & € Out(@)) if gr.(a, g) is bounded above by a polynomial of degree d.

g (or [g]) grows at least polynomially of degree d if gr(a, g) (or gr.(a, g) respectively)
is bounded below by a polynomial of degree d with positive leading coefficient. It grows
polynomially of degree d if it grows both at most and at least polynomially of degree
d.

a € Aut(G) is called polynomially growing of degree d, if every g € G grows at most
polynomially of degree d under iteration of ¢, and there is a g growing polynomially of
degree d. We similarly define polynomial growth for @ € Out(G) using the growth of
conjugacy classes.

We say that a function Ny — Ny grows polynomially of degree zero if it is bounded.
This does not agree with the above definition if it assumes the value 0 infinitely many
times. However, this turns out to be more practical for later purposes. Often we
can mutually estimate two growth functions up to an additive constant, and this new
definition of polynomial growth of degree zero will then be invariant under addition of
a bounded function.
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Lemma 4.2. Let g € G. If o, 3 € Aut(G) commute, then gr(a,g) and gr(a, B(g)) are
equivalent. Likewise, if @, € Out(G) commute, then gr.(a,[g]) and gr.(a, B([g])) are
equivalent up to a multiplicative constant. O

We sometimes refer to the present notion of length as basis length. We warn the reader
that this is not equivalent to the notion of path length introduced in Definition

4.2 Compatible groupoid generating sets

When we study basis lengths in the fundamental group 71 (G, v) of a graph of groups, the
following type of generating set will be convenient: We take a generating set consisting
of finite generating sets for all vertex groups G, together with the set of all symbols ¢,
for the edges e € E(I"). We call such a generating set compatible.

However, the generators are not elements of the fundamental group m(G,v), but
rather in the fundamental groupoid, that is their underlying paths are not necessarily
closed loops at the basepoint. The definition of the basis length in on page [26| also
makes sense for such groupoid generating sets when we only allow compositions defined
in the groupoid, i.e. those such that the terminal vertex of one factor coincides with
the initial vertex of the next factor.

It therefore makes sense to define the growth type of an element € € 71(G,u, w),
and, up to an estimate by a multiplicative constant, it does not depend on the (finite)
groupoid generating set.

In particular, when we choose a generating set consisting of a finite group generating
set for m1 (G, v) together with one element € € 71 (G, v, w) for every vertex w # v, then
it is clear that the two notions of basis length in 71 (G, v) in the group and the groupoid
setting coincide (up to a multiplicative constant). Indeed, the only composable expres-
sions in the groupoid m1(G) giving rise to an element in 71 (G, v) consist of generators
in 7(G,v) only.

4.3 Basis lengths of cosets

Let 0 € m(G,u,w), and let e and ¢’ be edges with 7(e) = u and ¢(¢) = w. Then we
define the basis length of the double coset fo(Ge)d fo(Ger) to be the minimum of the
basis lengths of its representatives:

1(fo(Ge)8 fr(Ger)) = min {I(fo(R)5 for(R))|h € Ge, B € G},

We now define the basis length | on 7;(G) using a compatible finite groupoid gener-
ating set as in Section[4.2] If e, ¢/, and €” are three edges as well as § € 71(G,7(e), t(¢'))
and 0" € m (G, 7(e'),1(e"))), then it is checked easily that

l(fe(Ge)((S * Ler 5/)f?(Ge”)) > l(fe(Ge)éf?(Ge’)) + l(fe’ (G,e)(s/f?(Ge”)) +1,

where * denotes that the direct concatenation of reduced words for the elements will
be reduced.
The following lemma follows directly from the definitions.
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Lemma 4.3. Let G be a graph of groups with finitely generated vertex groups and a
compatible groupoid generating set for m1(G) such that the length of fe(a) in G, is
not more than two bigger than the length of fe(a) in Gr(c) whenever a € Ge. Then:

(i) If 6 = got1g1 .. .txgr is a reduced expression with k > 1, then

k-1

{(8) = min (k +Ugofer(h) ™) + D 1fe; (hy)gj ferr(hjrn) ™) + l(fek(hk)gk)>,
j=1
where the minimum denoted miny, is taken over all tuples (hi, ..., hg) such that

hj S Gej.

(ii) If n = t1g1 ... tkgk is a cyclically reduced expression, then
k
le(n) = min (k -+ 2 1(fe, ()3 ferzr (i) ™)),
o ]:1
where the minimum denoted miny, is taken over all tuples (hi,...,hg+1) with

hj S Gej and hgy1 = hy.

i) If (to, g9o,t1,91,---,tk, Gk, tka1) 1S a reduced word and 6 = got19g1 ... tLgr, then
+
k
(feolGea)d ez (Ger)) = min (k4 2 1(fe, (h)gs ez (i) ™)),
. =0

where the minimum denoted miny, is taken over all tuples (ho,...,hkr1) with
hj S Gej. O
4.4 Cyclic and twisted reduction

Definition 4.4. For given L € Aut®(G), a word W = (x,t1, 41, .., gk_1, 1, y) is called
L-twistedly reduced if it is reduced, and at least one of the following holds true:

e k=0, or
b ek%a7or

o 60(€) ' Lu(y)z & fer(Ge)-

In the case L = 1, we say that W is cyclically reduced. The last bullet point then
simplifies to yz ¢ fer(Ge, ).

The following characterisation of L-twistedly reduced words follows immediately from
the definition:

Lemma 4.5. Let W be a closed reduced word. Let Z be a reduced word such that
|Z| = L.(|W]). Then W is L-twistedly reduced if and only if Z « W is reduced. O
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Given n € m1(G,u), a reduced word W representing 7 is L-twistedly reduced if and
only if the path length of L.(n)n is exactly twice the path length of 1. Since this is
independent of the representative W of 7, the following definition makes sense:

Definition 4.6. An element n € m(G,u) is called L-twistedly reduced if some (or
equivalently every) reduced word representing 7 is L-twistedly reduced. If L = 1, then
we also call n cyclically reduced.

We often study words of the form

W = (0r(e1),t1, 91, th—1, Gh—1, tks Gk) (2)

with t; := t.;, where k > 1. If the right hand side is reduced, then it is L-twistedly
reduced if and only if e, # €1 or 01(e7) ' Li(gx)dr(€1) ¢ fo(Ge,). Using Defini-
tion [2.4{(7), this is equivalent to saying that (¢4, gk, t1) is reduced.

Definition 4.7. Two elements n € m1(G,u) and 7' € m1(G,u’) are called L-conjugate

if there is an € € m (G, v/, u) such that = L.(e)n'e 1.

Let us now introduce an action of a morphism L : G — G’ on words rather than
elements in the fundamental groupoid of G. For W = (x,t¢,, 91, tey_ys Gh—1,tes, Y)
we define

L*(W) = (i.7tL(61)7gla ce 7tL(ek,1)7§k*17tL(ek)7g)?

where

= LL(el)(x)5L(?1)7
(e) " Lo(e;)(95)0L(Ej51) for 1 < j <k —1,

Moreover, we write

_ _ -1 1 _
w 1:<y 1,ta,gk_1,tm,...,gl ,ta,l‘ 1).

We clearly have |L,(W)| = L.(|W|) and [W~!| = |W|~L.

Returning to L € Aut®(G), the following proposition shows that every closed element
in the fundamental groupoid of G is L-conjugate to an L-twistedly reduced one in the
form or to an element in a single vertex group. The special case L = 1 is cyclic
reduction within an ordinary conjugacy class, and it corresponds to Lemma 2.7 in [4].

Proposition 4.8. Let W = (z,t1,91,---,tk—1,9k—1,tk,y) be a reduced word from v
tov. Then:

(i) There are reduced words V., W', and V' such that
e W=Vs«W=xV',
o [VI=L.(V')7,
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o W' is L-twistedly reduced,

o if k' := pl(|W']) > 1, then W' = (5p(€}),t}, 91, ths,gh) for some edges
€., € and some elements g; € Gr(er)-

(ii) k' is unique, and the decomposition is unique in the case that k' > 1.

(iii) The word W is L-twistedly reduced if and only if pl(|V'|) = 0 for some (or equiv-
alently every) such decomposition.

(iv) If W is another reduced word such that |W| = |W| and W =V « W' V' as in

(i), then
VI =VILi(2) 7,
W'| = Lu() W'z,
V| = 2|V

for some z € Gy, where u is the initial vertex of the underlying paths of W' and
w’.

Proof. Given any decomposition as in (i), the element L.(|W|)|WW]| is represented by
the reduced word L. (V) x L.(W') x W' % V'. Hence

PUL (W W) = pl(IV]) + 2pl(]W]) + pI(|V])
= pl(|W1) + pl(IW']), (3)

so the number %’ is uniquely defined by W. By Lemma |4.5|we see that W is L-twistedly
reduced if and only if pl(|[V|) = 0 and k' = k, so we see (iii).

We now show (i) and (ii). Suppose first that W is L-twistedly reduced. If k =
pl(]W]) = 0, the choice V.=V’ =1 and W' = W works. If £ > 1, then we have to
achieve that the leftmost entry of the word is 07(e7). This is the case if and only if
we choose V = 7, (e7) !, and V' = L1 (61 (e7)x~1). This is the desired uniqueness in
(ii).

The proof will now work by induction on k, and we can assume that W is not L-
twistedly reduced. By definition this means that k > 1, e, = ey, and 01,(e7) ' L. (y)x =
fer(h) for some h € G.,. We have a reduced decomposition W = U « W" x« U’ where

U= (xatla fe1 (h)_léL(el)_1)7
U, = (tk’y)7
W” = (5L(61)f61 (h)gla t27g2a e 7tk—lag/€—1)'

These words also satisfy

L.(JUN™" = Loy~ ') = Lu(y) "' (ED) 1161 (e1)
= afe(h) 'tié(er) " = atyfe, (B)1opler) Tt = U
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By induction we find reduced words Z, Z’, and W’ such that W"” = Z « W' x Z’ and
|Z| = L.(|Z')~!, and W' is as desired. This fits together to a decomposition

W=UxZ«xW'x2Z xU".

We now define V = UxZ and V' = Z'xU’. By construction, they satisfy W = V«W'xV’
and |V| = L.(]V’|)~!. This finishes the verification of (1) and (ii).

It remains to check (iv). The above calculation shows that the lengths of the
underlying paths of W' and W' coincide. Thus we have pl(|V’ |) = pl(|V']) as well. As
V' and V' are terminal segments of W and W, we have pl(|]V'V'~1|) = 0 by Lemma.,
so we put z = |V'V'~1|. Then clearly

“7/‘ = Z|V/’7
V| =L(V')™" = La(zlV') 7' = [V|La(2) 7Y,
W/ = [VITHWIV| 7! = Lo(2)[VITHW V|77 = La(2) W27,

as asserted. O

Definition 4.9. An element 1 € m1(G) is called L-local if there is a vertex u € V(I'),
an element € € 71(G,v,u), and z € G, such that n = L.(e)re~!. Otherwise, we say
that n is L-cyclic.

If n is L-local of positive path length, then it cannot be L-twistedly reduced. In
Proposition [4.8(1), the length k" of the underlying path of W’ is zero if and only if |W|
is L-local.

We now investigate the path lengths of powers of a fixed element in 71(G,v).

Lemma 4.10. Let G be any graph of groups and n € m1(G,v).
(i) If j € Z~A{0}, then pl(1) = (|j] — Dpl(n®) — (|j| = 2)pi(n).

(i) If n and 0’ lie in a common cyclic subgroup of ™ (G,v) as well as pl(n) > 1 and
pl(n') =0, then 0 = 1.

Proof. We may w.l.o.g. assume j > 1. Let W be a reduced word representing 7, and
write W = V*W’*V’ as in Proposition [4.8)(i) with L = 1. As [V| = |V’|7L, the reduced
word V * W' * V1 also represents . Then 7/ is represented by te reduced word

VW s o« W V7L
————

J times
whose underlying path has length

pl(?) = j - pl(IW']) + 2pl(|V])
= (5 = DEpl(IW']) + 2pl(IV])) = (5 — 2)(pL(|W']) + 2pl(|V]))
= (j — Dpl(n®) — (j — 2)pl(n).
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This proves (i).

To see (ii), let ¢ be a generator of the common cyclic subgroup of 7 and 7. As
pl(¢?) > pl(¢), part (i) implies that pl(¢7) grows monotonously with respect to |j|. If
we had 1’ # 1, then pl(n’) = 0 shows pl(¢) = 0. But then all powers of ¢ also have
path length zero. As n is a power of ( having positive path length, this is impossible.
Hence 0/ = 1. O

Lemma 4.11. If n € m1(G,v) is L-twistedly reduced and H € Aut(G) then H.(n) is
HLH ' -twistedly reduced.

Proof. As H, preserves the path lengths of elements in 71 (G), we have

PU(HLH™")«(Hu(n)Hs (1)) = pl(H. Ly (n)Hi (1)) = pl(L<(n)n) = 2pl(n)
= 2pl(H.(1)). L

4.5 Twisted reduction for higher graphs of groups

Given a word W representing an element in 7 (G, u), we have a truncated word
TdilW = (67 t1, 917 ceeytg—1, ek—la tk, 6/)
as in Section Recall that 7971 is reduced in the truncated sense if all §; # 1.

Definition 4.12. The truncated word 7% 'W is called L-twistedly reduced in the trun-
cated sense if it is closed, reduced in the truncated sense, and

e k=0, or
® Ck 7&6717 or
o 0r(e7) tLi(e)e # 1.

If the higher graph of groups G is truncatable at degree d — 1, then T4 'W is L-
twistedly reduced in the truncated sense if and only if it is 79! L-twistedly reduced
when considered as a word in 7%~ 1G. Note that, in this case, all 6; are closed elements
in 1 (G1), which define elements in the vertex groups of the truncation 7% 'G.

We call an element € (G, u) L-twistedly reduced if 79~ 1W is L-twistedly reduced
in the truncated sense for any word W representing 7. Here it is important to remember
the degree d of the higher graph of groups. If W is a word only involving edges of degree
at most d—1, then 791 is a truncated word of length zero, so it is always L-twistedly
reduced in the truncated sense as above. However, this does not say anything about
whether T4 2W is L4~ twistedly reduced in the truncated sense when we view W
as a word in G~
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4.6 The sequence A;(z, o)

Let o € Aut(G), j € Z, and x € G. We define A;(z, ) by the recursion formula
Ap(z,a) =1 and ‘
Ay i1(3,0) = o (2) A5 (2, 0). ()

Moreover, A(z,a) := a7 (Aj(z, @)). We can explicitly write

Y x)ad"2(z) ... a(z)z, if j >1,

Ay(,0) = {1, if j =0, (5)
(@)oo () ta ()Y, i g < -1,
ra N (z)... a7t (2), ifj>1,

A;(m,a) =<1, if 7 =0, (6)

a(z)ta? ()"t a7 (2)7h ifj < 1.

When « is understood, we sometimes write A;(x) and Aj(z).
Lemma 4.13.

(1) Ajii(z, ) = a(Aj(z, o))z for all j € Z,

(ii) Aj(,0) = a ' (A_j(@! a7,
Proof. 1f j =0, then A;(z) =z and Ay(z) = 1 prove (i).

Multiplying both sides of the assertion for j from the left by o/ (z), we obtain

oIt (2) Ajia (2) = a(o (2) A4 (2))a,

which can be equivalently rewritten as (i) for j+ 1 using the recursive formula . This
proves (i).

For (ii) we again use induction on j. If 7 = 0, then the assertion is trivial. Formula
(ii) for j is equivalent to

o (2) A5(z,0) = 0~} (@I (2)A_s (2L, a7 )),
which is equivalent to (ii) for j + 1 by . O

Remark 4.14. We sometimes use the following notational convention for composable
morphisms ...,9-2,9-1, 90,91, 92, - - . in any groupoid: When writing down a compo-
sition g;g;j+1...9k, then we mean 1 if £ = j — 1, and we mean g;_ll .. .g,;_&Qg,;_&l if
k < j — 2. This convention ensures that

(9z‘+1g¢+2 .. -9j)(9j+19j+2 .- ~9k) = Gi+19i+2 - - - Gk

independently of the relative order of i, j, k € Z.

Using Remark the formula for A;(x,«) can be written simply as A;(x, o) =
a7 Y (z)a?2(x) ... a(x)x, regardless whether j >0, j =0, or j < 0.

33



Lemma 4.15. If G is any finitely generated group, and x € G grows at most poly-
-1

nomially of degree d — 1 under iteration of a € Aut(G) and o™, then the basis
lengths of Aj(x,a) and Al(z, ) grow at most polynomially of degree d when j — oo or
j — —o0. ]

We are mostly interested in the case of free groups, and it follows from train track
theory that the growth types of an automorphism and its inverse coincide. However,
we will not use this fact, and the author does not know whether this holds true for
automorphisms of arbitrary finitely generated groups.

Lemma 4.16. Let G be any higher graph of groups, e an edge, and L € Aut®(G). Then
Li(te) = A;(0r(€), Lu)teA;(dr(e), Ly) "
for every j € Z.

Proof. The lemma is trivial for 7 = 0 because Ag(z) = 1 for every z. We now show
that the assertion for j is equivalent to the assertion for j + 1. Applying L, to the
assertion for j, we obtain

LIt (te) = La(A;(01(e)))0r(€)tedr (€)™ Lu(A; (3L (e))) "
Using Lemma [4.13|(i), this is the assertion for j 4 1. O

In the following lemma, we define basis lengths in the fundamental group of G again by
a finite groupoid generating set which is compatible with the graph of groups structure.

Lemma 4.17. Let G be a graph of groups with finitely generated vertexr groups and
trivial edge groups.

(i) Let W = (x,t1,91, -, tk—1,9k—1,tk,y) be a reduced word with k > 1. Then
WLL(W) = k + ULL(2) A;(8(e1))) + 1(A;(8(er)) " Li(y)) +

k—1
+ Z 1(A;(5(ea) ' Li(gi)Aj(6(eit1)))-

(ii) Assume that W = (x,t1,91,...,9k—1,tk,y) is cyclically reduced with k > 1 and
T(ex) = t(er). Then

(LI(W) = k + 1(A;(8(ex), L) " Li(ya) A;(3(e1), L)) +
k—1
+ D 1(A(5(eq), L) Li(9:) 45 (6(@1), L))

i=1

Proof. By Lemma we can easily compute reduced (or cyclically reduced) expres-
sions for LZ(|W|) in both (i) and (ii). Writing an element (or conjugacy class) as a
minimal product of generators in a compatible generating set is the same as finding
a reduced (or cyclically reduced) expression together with a decomposition for each
vertex group element in terms of a minimal number of generators of that vertex group.
This proves the assertion. O
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Remark 4.18. Estimates similar to Lemma [4.17] can also be obtained for higher graphs
of groups G and words (t1, 61, ...,t;,6;) reduced (or cyclically reduced) in the truncated
sense. If G is not truncatable at degree d—1, then 6; € m(GY, 7(e;), t(ei11)) is then
not necessarily closed. In this more general situation, the conclusions of Lemma
are still true.

4.7 Higher Dehn twists

We first define Dehn twists D € Aut(G) for an ordinary graph of groups G. The
terminology is motivated by the correspondence to graphs of spaces. If all edge groups
are infinite cyclic, the corresponding automorphism D,, of m1(G,v) is induced by a
(multiple) Dehn twist around the core curves of the edge cylinders in Figure (1| on
page [16]

For a group G, let Z(G) denote its centre.

Definition 4.19. Let G be a graph of groups. An automorphism D € Aut(G) is called
Dehn twist if Dyy = 1, Dg = 1, all D, = 1, all D, = 1, and there are elements
Ye € Z(Ge) such that dp(e) = fe(7e) for all edges e € E(T).

In fact, every collection of 7. € Z(G.) defines a Dehn twist. We often use the notation
Ze = VeVz ! and we refer to it as the twistor of the edge e. The set of Dehn twists forms
a subgroup of Aut®(G).

Definition 4.20. An automorphism D € Aut(G) is called higher Dehn twistif Dy = 1,
D =1, all D, =1, all D, = 1, and for every non-trivial edge group G. there is
Ye € Z(Ge) such that dp(e) = fe(7e)-

Note that we do not require anything about dp(e) for trivial G.. However, if G has
no trivial edge groups in degree 1, then D € Aut(G) is a higher Dehn twist if and
only if the restriction D|pq) is a Dehn twist (of ordinary graphs of groups) on each
connected component.

We now verify that higher Dehn twists have polynomial growth. Let G be a higher
graph of groups with basepoint v.

Proposition 4.21. Let D € Aut(G) be a higher Dehn twist. Then every element € €
m1(G, u, w) grows at most polynomial of degree deg(G) under iteration of D.. Moreover,
D grows at most polynomially of degree deg(G).

We need the following lemma:

Lemma 4.22. Let G be a connected graph of groups with finitely generated vertex
groups, and let H € Aut®(G). Suppose all vertex automorphisms H,, grow at most
polynomially of degree d — 1. Then H grows at most polynomially of degree d, and
every element in w1 (G,u,w) grows at most polynomially of degree d under iteration

of Hy.
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Proof. Every element in 71(G,u,w) can be written as a composition of elements in
vertex groups and letters t.. Elements in vertex groups grow at most polynomially
of degree d — 1 under iteration of H, by requirement. The growth of t. is bounded
above by a polynomial of degree d by Lemma and Lemma This proves the
statement about H,.

The growth of H is bounded above by the growth of H,,, which is a special case of
that of H,. O

Proof of Proposition[{.21. As before, it suffices to verify the case of D, on m (G, u, w).

The proof is by induction on d = deg(G). If d = 0, then the underlying graph I is
a point, and D = 1. Then the growth is clearly polynomial of degree zero. If d = 1,
then we have an ordinary Dehn twist with possibly trivial edges added. In particular
all D, = 1, and Lemma shows that the growth is at most linear.

Let now d > 2. If H : (G,v) — (G',v') is an equivalence such that G’ is fully
truncatable, then the growth types of D, and (HDH '), agree. By induction, all vertex
group homomorphisms of T9~'(HDH™!) grow at most polynomially of degree d — 1.
Then Lemma proves that (HDH™!), and hence D, grows at most polynomially
of degree d. O

We shall sometimes fix a group GG and consider different higher graphs of groups G
with fundamental group isomorphic to G.

Definition 4.23. If G is any group, then a higher Dehn twist representative for o €
Aut(G) (or @ € Out(@)) is a triple (G, D, p) where G is a higher graph of groups,
D € Aut’(G) is a higher Dehn twist, and p : G — (G, v) is an isomorphism such
that a = p~'D,yp (or & = p~*Dp respectively). a (or @) is called a higher Dehn twist
automorphism if it has a higher Dehn twist representative.

4.8 Train track representatives

Here we discuss how the notion of higher graph of groups automorphisms fits into
the setting of topological representatives and train tracks for Out(F),) developed by
Bestvina, Feighn, and Handel (cf. [6], [7], and [§] for example).

Fix the standard rose R, with n petals, and identify its fundamental group with F,.
An outer automorphism class @ € Out(F,,) is represented by a homotopy equivalence
h: R, = R,. A marked graph is a (finite) graph I' together with a (homotopy class
of a) homotopy equivalence g : R, — I referred to as the marking. & is said to be
represented by the homotopy equivalence f : I' — I' if the following diagram commutes
up to homotopy:

f

I'——T
gT Tg

The homotopy equivalence f is called a topological representative for & if f maps vertices
to vertices, and if the restriction of f to any edge is locally injective.
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We now compare this to higher graphs of groups G all of whose vertex and edge
groups are trivial. We can identify the fundamental groupoid of G with the fundamental
groupoid of the underlying graph I' here, so we do not distinguish between e and t..
An automorphism of G corresponds to a (topological) map f : I' — I' mapping each
edge e of degree i to an edge path f(e) of the form §y(€)Hg(e)dg(e) ! such that 65 (€)
and 6 (e) are edge paths in =1 and Hg(e) has degree i. It follows from Theorem
3.7 of [7] that every polynomially growing & € Out(F;,) has a topological representative
f: T — T of this form (sometimes called upper triangular).

As all vertex and edge groups of G are trivial, every H € Aut’(G) is a higher Dehn
twist. For an arbitrary choice of a basepoint u € I', this shows the following:

Proposition 4.24. For every polynomially growing & € Out(F,) there is a higher
graph of groups G, an automorphism H € Aut(G), and an outer isomorphism class
p: F, — m(G,u) such that @ = p~*Hp and HY is a higher Dehn twist for some
N > 1. O

The situation is completely analogous in the Aut case, where we have

Proposition 4.25. For every polynomially growing o € Aut(F),) there is a pointed
higher graph of groups (G,v), an automorphism H € Aut(G,v), and an isomorphism
p: Fy — 7 (G,v) such that « = p~'Hy,p and HY is a higher Dehn twist for some
N>1.

Proof. By Proposition there are a higher graph of groups G’, H' € Aut(G’), and an

Nl e~

isomorphism p’ : F,, = m1(G’, u) such that the outer automorphism class & = p/ H'p/,
and some power H'N with N > 1 is a higher Dehn twist.

Let T be the graph obtained from I by adding a new basepoint vertex v and two
oriented edges ey and ey with ¢(eg) = v and 7(ep) = u. Let G be the graph of groups
with underlying graph I" obtained from G’ by adding G, = 1 and G, = 1. Let d be the
degree of G/, and define deg(eg) = d + 1. Then G = (G, deg) becomes a higher graph
of groups of degree d + 1. The situation is illustrated by Figure [3]

,,,,,,,,,,,,,,,

G |
| " &

Figure 3: G and G’ in the proof of Proposition m

We now take H € Aut(G,v) given by the same data as the automorphism H’ along
with the following additional data: Let Hy(v) = v, Hp(eo) = eo, d5(@) = 1, and
d(eo) an arbitrary element in 71(G', Hy (u), u).

Let p : F,, — m1(G, v) be the isomorphism p’ composed with the isomorphism ady,,
m (G, u) — 71 (G, v). Since the underlying outer automorphism class represented by H’
is not affected by adding v and ey, we have that a = p_ladgﬁ*vp for some g € 71 (G, v).
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Let the automorphism H € Aut(G,v) be given by the same data as H except that
5p(eo0) = to g "tey07(€0). Note that ¢, g~ e, € m1 (G, u) can be viewed as an element
in 7 (G’,u) by canceling out all occurrences of te_olteo. Then H,, = adgﬁ*v = pap~t.

As H|g = H' and H'V is a higher Dehn twist, the automorphism H” is a higher

Dehn twist as well. O
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5 Periods

5.1 Asymptotic equivalence of sequences
Let G be an arbitrary graph of groups. Given elements €, ( € m1(G, v, w), the expression
pl(€) +pl(¢) — pl(e1¢) is twice the path length of a common initial segment of ¢ and (.

Definition 5.1. Let €1,€9,... and (3, (2,... be two sequences in 71(G,v,w). We say
that (e;); and ((;); are asymptotically equivalent if

pl(ej) + pl(¢;) — plle; ') = oo
for j — oo. They are partially asymptotically equivalent if there is a sequence (ju,)m

with j,, > 1 such that the subsequences (€;,,)m and ((j,, )m are asymptotically equiva-
lent.

Any two sequences (€;); and (¢;); in m1(G, v, w) are either partially asymptotically
equivalent, or the sequence

(pl(Ej) + pl(Cj) - pl(€;1Cj))j21
is bounded.

Lemma 5.2. Let (¢;); and ((j); be two sequences in m1(G,v,w) and §; € m1(G,v',v),
0; € m(G,w,w') such that pl(d;) and pl(0;) are bounded. Then (¢;); and ((j); are
asymptotically equivalent if and only if (d;€;6;); and (6;¢;0;); are asymptotically equiv-
alent.

Proof. There is the following estimate by the triangle inequality:
| (1(05¢165) + pL(3;¢3605) = PL(0; '€ 365) ) — (plles) +PU(G) = pl(e; ') )|
< 2pl(d;) + 4pl(0;).
Since the right hand side is a bounded sequence in j, we obtain the assertion. ]

Recall the notation
Ap(x) = Ap(x, L,) = LF"Y2)LF2(2) ... L.(2)z

given by on page

Corollary 5.3. Let 6 € m(G,w,v) and n,n" € m1(G,v). Then (A;j(n)); and (A;(1));
are asymptotically equivalent if and only if (A;(L.(8)nd~1)); and (A;(L.(8)n'671)); are
asymptotically equivalent.

Proof. Since A;(L.(6)8571) = Li(é)Aj(H)é_l for 6 € m(G,v), this is an immediate
consequence of Lemma [5.2 ]

The following lemma follows easily because graph of groups automorphisms preserve
path lengths of elements in the fundamental groupoid.

Lemma 5.4. Suppose (¢;); and ((;); are sequences in 71 (G,v,w), and H; € Aut®(G).
Then (e5); and ((;); are asymptotically equivalent (respectively partially asymptotically
equivalent) if and only if (Hj.(€;)); and (Hjx((5)); are. O
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5.2 Extending L-cyclic elements to bi-infinite sequences

We now fix an automorphism L € Aut’(G) of an ordinary graph of groups G. When

W = (5L(671)7t17917 e 7tk‘agk‘)

is a (connected) word with k£ > 1 and 7(ex) = t(e1), then it will be convenient to write
g; for any j € Z, possibly j < 0 or j > k. They are uniquely defined by the formula

Gi+k = L7y (01(ej)g;0L (1) ") (7)
and ej; = ej. This recursion is motivated by the following lemma.

Lemma 5.5.
(i) (tj,95,tj+1) is reduced if and only if (Ljik, 9j+k, Lj+k+1) 5.

(i) If W = (0p(e1),t1,91,---,tk, gk) is an L-twistedly reduced word with k > 1,
then W1 = (91;17,5;1’ ... ,gl_l,tl_l,éL(a)_l) is L™ 1-twistedly reduced, and the
sequence (g:})jez satisfies the recursion for the automorphism L~'.

Proof. The word (tj4k,gj+k,tj+k+1) is not reduced if and only if ej;; = € {p41 and
gj+k = fe;.i(h) for some h € Ge, . This condition is equivalent to e; = €j;1 and
L;(lej)((SL(ej)gj(SL(ejﬁ)) = fe;(h) for some h € G¢,. This can be equivalently rewritten
as ej = €j11 and g; = fe,(Le;(h)). Thus we obtain (i).

In (ii), the word W1 is clearly reduced. Lemma shows that the concatenation
L.(W) %W is reduced. As L;! maps reduced words to reduced words, W % L (W) is
also reduced. Then L;Y(W~1) x« W1 is reduced, so Lemma implies that W1 is
L~ !-twistedly reduced.

As d;-1(e) = L1 (01(e))~ !, the formula (7)) can be written as
gjrk = 61-1(e5) T LN (g;)61-1 (€551),
s0
gj_l = L*((SLfl(ej?)gj_ﬁké‘[/*l(ej)_lm

which is the desired recursion formula for (g:}) jez with respect to L. O

5.3 Periodicity of L-cyclic elements

Let W be a representing word for € m1(G,v). Recall that, by Proposition there
is a decomposition W = V « W' % V/ such that |[V| = L.(|V'|)~! and W’ is L-twistedly
reduced. Here we will be interested in the case that n is L-cyclic, so pl(n’) > 1. In this
case, Proposition allows us to achieve W' = (0p(e1),t1, 91, - - » tks Gk )-

In the following definition, we again use the convention to define g; for j <0 and
j>k.

Definition 5.6. Suppose W = (dr.(e1),t1,91, ..., tk, gx) is an L-twistedly reduced word
with £ > 1. An integer p is called period of W' if there are h; € G, satisfying
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® ¢jyp=ej and

o gitp = fe;(hj)gj ferz(hje) ™!

for all j € Z. We call W non-periodic if zero is its only period.
Lemma 5.7. The set of all periods of W forms a subgroup of 7Z.
Proof. If p is a period, then —p is a period as well.

If p and p’ are periods, then ey = €j1p = €j. If gjpp = fe,(hj)gj fer(hjr1) ™!
and gjyp = fe;(1})gj ferrr(R),q) 7", then

Jj+p+p = fej(hg‘-yp)gj—s-pfejﬁ( ;+p+1)_1
= Je; (h;+phj)gjf€jj(h;+p+lhj+1)71'

This shows that p + p’ is a period as well. ]

Definition 5.8. W =V x (§.(e1),t1,91,- - -, tk, gr) * V' is called non-bonding if there
is N > 0 such that, whenever we have an integer ¢ and elements h; € G, satisfying
gj = fej (hj)gjfejﬁ(hwrl)*l for all j with ¢ < j < ¢+ N, then all h; = 1.

If all edge groups are trivial, then every L-cyclic element is clearly non-bonding.
Lemma 5.9. Let W = (0(€1),t1,91,- - -, tk, gr) be non-bonding and g; € Gr(;) an-

other bi-infinite sequence satisfying the recursion formula . Let xj € Ge; forj > 1.
Assume that

95 = fe; (25)g) ferr (i)™ (8)
holds for every j > 1. Then there are x; for j < 0 such that holds true for all
J € Z. Moreover, xj ) = Le_jl(a:j) for all j € Z.

Proof. Since §jx = Ly (0r(e;)g;0L(€j41) 1), the formula (8] for j can be equivalently
written as
Gi+k = L (0n(e) fe; (27)95 ey (wjn) " or(Ea1) ™). (9)
On the other hand, since gj1x = L;1(81(ej)g;0L(€551)7), equation for j + k is
equivalent to
Gi+k = fe; (2500) L (O (e5) 9501 (€557) ™) Ferr(wjnsn) ™" (10)
The expressions @D and for j > 1 show that
dr(ej) fe; (21)9) ferar(2541) " or (1) ™
= Li(fe, (xj41))0r(€)950L(€571) ™ Lu(ferrr(jnsn))
= 01.(¢j)fe; (Le, (1)) 95 fezrr(Ley o (j041)) "o (Ei7n)
o
95 = fe; (0 Le; (2500)) 9 fermr (7 Loy (T 4k01)) !
for all j > 1. Since W is non-bonding, we conclude xj_lLej (xj4x) = 1 for all these j.
This shows that we can define z; € G, for all j € Z such that z;,4 = Le_jl(xj) for all

j € Z. Then the same calculation shows that @ and are equivalent. Hence
for j is equivalent to for j + k. This proves the lemma. O
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5.4 Iterating L, on L-twistedly reduced elements

Throughout this section, L € Aut®(G) is a fixed automorphism of an ordinary graph of
groups.

Lemma 5.10. Let n = dp(€1)t191 - -tggr be an L-twistedly reduced expression and
1,7 € Z. Then

(i) gi—gi = A;(5r(e:) " L) A5 (L. (EF71)),

(i) L' (tigi) = Ly'00(€) thyignsi Ly 'oL(€i71),

(iti) LL(tigi) = Aj (01 (@)t jhvig—sntid; (o (@) ™

(iv) LL(n) = Ajs1 (00 (0))t—jks19—jit1 - - - t—jrrg—iirn Ay (60, (@) 71,
(v) As(n) = dr(@)trgr - - - tirginA—_jr1(dn(er)) ™",

(vi) Aj(n) = A;(0r(€0))t—jktk+19—jktk+1 - - - kG-

Proof. (i) is proved by induction. The case j = 0 is clear because Ag(x) = 1 for every
x by on page We now multiply (i) for j on the left by d1(e;), on the right by
Sr(€71)~ ! and apply L, ! to obtain

L7 (0n(er)gi-judr(Eirn) ) = L' (0n(ei) Aj (6 (ei) ™" Li(g:) Ay (Or (1)) or(en) ™).

By (7) on page |40} the left hand side equals g;_(j_1)5. As L' (zA;(z)~1) = A;_1(z)~*
by Lemma i(i), we see that (i) for j is equivalent to (i) for j — 1. Then (i) follows
by induction.

To prove (iii), we isolate an expression for L(g;) in (i). When we multiply this on
the left with the formula for Li(t;) given by Lemma we obtain (iii). Assertion (ii)
is the special case j = —1 of (iii). ‘

Formula (iv) follows from (iii) because L(d1(e1))A;(dr(e1)) = A,41(01(e1)) by the
definition in on page '

'When we insert (iv) in each factor of A%(n) = L7 (n)... Ly (n) and Aj(n) =
LI () ... L,(n)n, we obtain (v) and (vi). For j < 0 these expressions have to be read
as described in Remark [4.14] O

For later reference, we now record an immediate consequence for the growth of the
basis length of the g;.

Lemma 5.11. Let all vertex automorphisms L., and their inverses grow at most poly-
nomially of degree d — 1. Then the basis length of g; grows at most polynomially of
degree d when j — to0.

Proof. By Lemma [5.10(i), we have

Givje = A_j(0r(e:) "Ly (9:) A (51 (8i1)).-
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Since the vertex automorphism Lf(lei) grows at most polynomially of degree d — 1, the
basis lengths of A_;(dr(e;)) and A_;(0r(€;51)) grow at most polynomially of degree d
by Lemma and L;” (gi) grows at most polynomially of degree d—1 when j — +oo.
Thus the basis length of g;; ;i grows at most polynomially of degree d. Since we have
this upper bound for the growth for all ¢ with 1 < ¢ < k, we get the desired upper
bound for the growth of g;. O

The following lemma will be needed in Section [5.6
Lemma 5.12. Let e be any edge of I', h € G, and j € Z. Then
A_j(01(e)) T LI (fe(LL(R))) = fe(h)A—;(51(e)) ™.

Proof. Since Ap(dr(e)) =1, the case j = 0 is clear.
Multiplying on the left by &1 (e), applying L; !, and replacing h by L. (h), the assertion
for j — 1 can be equivalently written as

L (0n(e) Ay (9r(e)) T L7 (fe(LL(R))))
= LN (60(e)fo L (M) A1 (51(e)) ).
By Lemma [4.13(i), this is equivalent to
A (0(e)) T L (fe(LL(R))) = L (La(fe(h)dL(e) A—ja (5 (€)) ")

and hence to the assertion for j. This proves the lemma inductively for all j € Z. [

5.5 Period fitting segments

Definition 5.13. Assume W = V x W' % V/ such that |V| = L,|V'|~! and W’
(6r(e1),t1,91,- .-, tk, gr) is L-twistedly reduced with k£ > 1 (cf. Proposition . A
period fitting segment of W is an element

n' = V|- dp(entigr . tigr fer(ha) - [V]
such that
o K >1,
e k' — k is a period of W',
o hj € Ge, are such that gj v = fe,(h;)gjtkfer(hjp1) " for all j € Z.

Lemma 5.14. Let W = (6p(e1),t1,91,- - -, tk, gx) be an L-twistedly reduced word, and
let x; € Ge; such that xj p = ngl(:rj) for all j € Z. Assume that the elements

g;j = fej(a;j)gjfejﬁ(a:jﬂ)*l also satisfy on page . Then a period fitting segment
of W is the same as a period fitting segment of

W = (5L(a)fa('rl)il7 tla glv cee 7tk7§kfa($k+1))'
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Proof. We rewrite W as
W = Lo(fer(L (1)) % (00(@0), b1, 01, - - sty i) * fer(Thgn)-
Let ¥ € Z and iLj € Gy satisty gjyu = fe, (ﬁj)gﬁkfﬁ(ﬁjﬂ)*l for all j. From this
we get,
gj+k" = fe] (fE]Jrk/) gg+k'fej+1($]+k'+1)
fej( y+k/ )gj—i-kfeJH( ]+1xj+k’+1)
= fe; (x ]—l—k’h Tjtrk)Gj+k (@ ]+k+1h]+1$3+k’+1)
= fe; (h)gjirfesmr(hjp) ",

where hj (= x h; Ttk A period fitting segment of W is now an element of the form

+k’

Lu(fer(wr41)) " oL@ 0G1 - - -t o fer () fer (1)
= 0r(e1) fer(21) " tgr - tw i fer (41 l1)
= dp(@Ntig1 -t g fegr (@ 1) fer(@wiaha)
=dr(@D)tigr - .t g fer ().
This is a period fitting segment of W, as claimed. Conversely, every period fitting

segment of W is of this form, and hence a period fitting segment of W by the same
calculation backwards. O

Proposition 5.15. Let W and W be two reduced words representing the same L-cyclic
element in m1(G). Suppose W is non-bonding. Then a period fitting segment of W is
the same as a period fitting segment of W.
Proof. We write W = Vs« W/« V' and W = V « W’ % V' as in Proposition Let
z € Gr(e,) be as in part (iv) of that proposition. We will show that period fitting
segments of W’ and L,(z)~! * W’ % z are the same. Then the general case follows by
multiplying the segments on the left by |V| and on the right by |V’|. Therefore we may
assume that W = (dp(e1),t1, 91, - - ., tg, gx) is L-twistedly reduced.

Since W represents the same element of 71(G), Proposition provides z; € G,
such that, writing

Gj o= fe;(@)gj e (@jr) (11)
for 1 < j <k, we have
W = (5L(671)fa<x1)717t17§17 cee 7tk7§kfa(xk+l))'

Note that x1,...,x; are uniquely determined by these formulas, and we may arrange
Thy1 = L;l (1’1)
By Lemma [5.10(v), there are y;, 7 € Gy, for every J > 1 such that

S(ENtgr - turgwys = Ay (W, Ly) = AL (W], L)
= AL (Lu(fer(mpp1) " 00 (@) 1031 - - tedi fer(Tre1))
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= Lo(fer(zr1)) A On @) tGr - - - twdi) Ly " (far(@t))
= 60@1) fer (1) " 101 - - -t kG kb,

where g; for j > k is defined by the convention on page This way we obtain z;
for all 7 > 1 such that they satisfy for all j > 1.

Since W is non-bonding, Lemma allows us to define x; for all j € Z such that
they satisfy xjip = ngl(xj) and (11)) for all j € Z. Lemma [5.14] now proves the
assertion. 0

Sometimes we will refer to period fitting segments of an element 7 in the fundamental
group of G when there are no bonding cyclic elements. By this we will mean a period
fitting segment of any reduced representative of n. Proposition shows that this
definition does not depend on the choice of the representative.

5.6 Iterating L, on period fitting segments

Throughout this section, ¥’ denotes an integer such that the difference ¥’ —k is a period
of n =dr(e1)t1g1 ... tkgr. We write

?7/ = 5L(?1)t1g1 - tk’gk’fa(hl)
denote a period fitting segment, where the h; € G, satisfy
skt = fe,(hi) givn forr(hiv1) ™" (12)
Let H; € G, be defined recursively by Hp = 1 and
Hjyy = L (hjry1)H;
for all j € Z. Recall the notation A;(z) introduced on page We define
Bj = A_j1(0p (1)) Ly (fer(Hj)). (13)
Lemma 5.16. In the above notation, we have By = 6 (e1)"t, By = f=r(h1), and
J+1 fel( Jk’Jrl) (5L<67)BJ>
forall j € Z.

Proof. Since Hy = 1, we have By = Ay(d1(e1))™! = ér(e1)~!. Also, Ag(6r(e1)) = 1
shows that By = fel(Hl) fer(h1).

To show the recursive formula, we compute

Bji1 = A_j(60(e1)) "L (farl ]+1))

= A (0p(e0)) Ly (fer (L, (R 1) L (fer(Hj))

= fer(hjrr 1) A (6z(en)) " L7 (fer(H;))

= fer(hjrr1) Ly (Op(@1) Ay (Sr(en) L7 (fer(Hy)))
= far(hjw1) Ly (O (en ) )5

where the third equality is by Lemma [5 This finishes the proof of the lemma. [
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Lemma 5.17.
(i) L' (') = Bj_ltjkurlgjk”rl bk ke Gk By
(it) Ai(n') = dr(€)tig1 .. tjwgjw B,

(ii) Aj(n') = A;(OL(€1))t—jhth+19—jk++1 - - - »
et k) +k 9k —k) kA 1 (0 (1)) LT (By).

Proof. (i) is clear for j = 0 because By = d1(e7)"! and By = fo(h1) by Lemma
Lemma ii) shows that

L7 (tig)) = L' (00(@) ™ tivngirn Ly (01(€57))
= L. (00(@)) fer(hi) tisw Ginr ferr(hisa ) Ly (01, (850)). (14)
We now have the following chain of equivalences:
(i) for j —1
& L) = LyN(Bj—1) 'L bk — w19k —w41 - - - tiw gjw ) Ly N (Bj)
L7(n) = L*_l(ijléL(?l)_l)fa(hjk’—k’+1)_1tjk’+lgjk’+1 .
o i Gtk fer (R 1) Ly (0L (€7) By).

By Lemma this is equivalent to (i) for j. This shows (i) for all integers j.
(ii) follows directly from (i), the formula (6]) on page and By = 6 (e7) "L
Finally we show (iii). We compute

A50) = LAY ) E LT Gnenti - g By).

Using Lemma [5.10[(iii), this can be rewritten as
Aj(n') = LI (0p(@0)) Aj-1 (0L(@0))Ejhs ks 19—k thr -
i) kG5 — )+ kA1 (O (e1)) T LN (By)

= A (0L (@t —jkrht19—jk+kt1 - - -
i) kG5 — )+ kA1 (O (e1)) T LT (By).

This finishes the proof of (iii). O

Later we will have to study how the basis length of B; grows when j — oo. This is
the content of the following lemma.

Lemma 5.18. Let B; be defined as in . Suppose that L., = 1, and that the vertex
automorphisms and their inverses grow at most polynomially of degree d — 1. Then the
basis length of B; grows at most polynomially of degree d when j — oo or j — —oo.
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Proof. For varying j € Z, the element hji41 can at most assume k different values
because hpi; = Le_il(hi) = h; for all i € Z such that ¢; = e;. Hence there is a
polynomial P of degree d— 1 such that the basis length of Ly ™ (fer(hiw 1)) is at most
P(3) for every i € Z.

Assume first j > 0. Since Hj = hg_1)p41---hary1h1, we can use the triangle
inequality for the basis length [ to see

|
—

UL (fer(Hy))) < ) UL (fer(haw+1)) < 5P (7).

%

Il
=)

Since the polynomial P has degree d — 1, this is an upper bound for I(L; 7! (fer(Hj)))
by a polynomial of degree d. If j < 0, then we use H; = hj_kl,Jrl e h:%k,ﬂh:}g,ﬂ to
obtain a similar estimate.

By Lemma the basis length of A_;1(dz(€71)) grows at most polynomially of
degree d, so the assertion follows by the definition and the triangle inequality. [

5.7 Asymptotic equivalence of A4;(n) and A;(7)

Proposition 5.19. Let n € m(G,v) be L-cyclic and non-bonding. Then the following
are equivalent:

(1) Aj(n,Ly) and Aj(n', L) are asymptotically equivalent,
(ii) Aj(n, Li) and A;j(1, L) are partially asymptotically equivalent,
(111) n' is a period fitting segment of n.

Proof. By Corollarywe may replace 17 and 1’ with L. (6)nd~! and L, (8)n'6~! respec-
tively. Therefore it is no loss of generality to assume an L-twistedly reduced expression
n=4or(entigr ... trgk-

The implication (i)=-(ii) is trivial.

We now show (ii)=-(iii). By Lemma the sequences A;(n) and A;(n') are par-
tially asymptotically equivalent if and only if the sequences A;- (n) =Ly J JrI(Aj (n)) and
Al(n') = L7 (A5 () are.

By Proposition i), we may write ' = € * 77 * L;1(€) such that 7 is L-twistedly
reduced. If we had pl(77) = 0, then the path length of A%(1) = eA’(77) L7 (¢) would
be bounded, and A’(n) and A’(n') would not be partially asymptotically equivalent.
Hence k' := pl(77) > 1, and Proposition allows us to write

0 =exdp(e)thg) .. thgh * L7 (e)7 . (15)
Lemma [5.10(v) yields reduced expressions

Al(n, L) = dp(e1)t1g1 - - - tingieA—j1 (0 (e1) ",
A5, L)L (€) = ex 0p(e)th gy - g A1 (0 (e)))
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They are partially asymptotically equivalent, so the underlying paths agree on initial
segments of unbounded length, which is only possible as follows: There are ¢ > 0 and
hi € Ge, such that €, = e;44 and t, = t;44 for all ¢ > 1. Furthermore, there are h; € G,
with

9i = ferrg(hivg)girqfomgrr(hitgrn) ™! (16)
for all 4 > 1, and

e =0r(en)t1g1 - - taggferr(harr) or(e]) " (17)

For i > g+ 1 we have

/ /
€itk! = €_q+k’ = €i—q = €i = Citk;

and
Jerpro (hisr)Git fery (i) ™!

(16) _ —_—_

- g7/;—q+k’ = L* 1(6L(e;—q)g;—q5L(€f’iiq+1) 1)

(e) - _ _ .

D L1 (61e) for (hi)gi frres(han) o0 (Em) )

= fei (L3 (ha)) LM (01 (€3) g0 (@i1) ™) ferr (L, (havn)) ™
Thus

v = Jer (i Lo, Y(hi))girk ferm (L (hign) ™ Pigar 1) (18)
for all i > ¢ + 1. By Lemma [5.9 we can find h; for all i € Z such that and
hivik =L, (h ) for all 4 E Z. Therefore k' — k is a period of 7.

Lemmal| [5.10[(ii) and (L7)) allow us to write

Lll(e):tkﬂgkﬂ AkrgGhrg Ly (00(8gi1)) Ly (forrr(hgs1) " toL(eh) ™)

=tk 19kt1 - - - thrqOhrqferr (L eql+1 (hgt1)) ™ (19)
Note that
(16) _
t/zg; ! ti—&—qfqu (hi+q)gi+qfei+q+1 (hi+q+1) !

= forrs(hivq)tirqGirafommt(hivqr1)
which implies
-1
1) -t G = ferr(hgr)tivqi+q - - - trrqh+a feror (P 1) ™ (20)
We now conclude that
(15) — _ _
n' . ex0r(e))thgy .. tgy * L 1(6) 1

. (Or(@D)t191 - - te9qferr(hgr1)” tor(e))” )5L( Dt -

1
g (fer (L €q+1(h‘I+1))gk+qtk+q gk+1 k+1)

20)

— — 1 ,-1 1 ,-1
et g1 - tr gk g e (Migir Loy (hat 1) Gt abirq -+ Iriati

(118) __ _ _
© Sp(en)tigr - .- tiwgw fer (bt Lo ().
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Comparing this to , we see that 7’ is a period fitting segment of 7.

Finally we check (iii)=-(i). If 5/’ is a period fitting segment of 1), we are in the situation
of Lemma which shows A’(n') = 0r(€1)t191 - - - tjkgjr Bj. We compare this to the
(reduced) expression for A’(n) in Lemma/|5.10(v), and we read off that A’(n) and A’ (n’)
are asymptotically equivalent for j — oc. O
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6 Pre-efficient Dehn twists

6.1 Efficient and pointedly efficient Dehn twists

Recall from Definition that a Dehn twist D € Aut’(G) is defined by elements
Ye € Z(Ge) such that dp(e) = fe(7e). We also recall the twistor z, = ’ye'ygl.

Cohen and Lustig give a notion of when a Dehn twist is efficient. This may be
thought of as when the graph of groups G that the Dehn twist is defined on is, in a
certain sense, optimal.

Definition 6.1. Let D be the Dehn twist given by (Ye)ecpr). Two edges e’ and €”
with common terminal vertex w are called

e positively bonded, if there are m,n > 1 such that fu(2]}) and fer(20,) are conju-
gate in Gy,

e negatively bonded, if there are m > 1 and n < —1 such that fo(2]}) and fer(20/)
are conjugate in Gy,.

Definition 6.2 (cf. Definition 6.2 in [L3]). A Dehn twist D given by (ve)eep(r) is
called efficient if

(1) T is minimal: If w has valence one and w = 7(e), then the edge map f.: G. — Gy,
is not surjective.

(2) There is no invisible vertex: There is no 2-valent vertex w such that both edge
maps fe;: Ge, — Gy are surjective, where 7(e1) = 7(e2) = w and e; # es.

(3) No unused edges: For every edge e, we have z, # 1, or equivalently vz # .
(4) No proper powers: If P € f.(G,) for some p # 0, then r € f.(G.).

(5) Whenever w = 7(e1) = 7(e2), then e; and ey are not positively bonded.

A Dehn twist D satisfying properties (3)—(5) is called pre-efficient.

Definition 6.3 ([31], Definition 6.3). Let D be a Dehn twist on a graph of groups G
with a chosen basepoint v. It is called pointedly efficient if

(1*) T is minimal away from the basepoint: if w # v has valence one and w = 7(e),
then the edge map f. is not surjective,

(2*) there is no invisible vertex away from the basepoint: There is no 2-valent vertex
w # v such that both edge maps f, are surjective, where 7(e1) = 7(e2) = w and

€1 7& €2,

and D is pre-efficient (conditions (3)—(5) of Definition are satisfied).
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Suppose that 71(G,v) is isomorphic to the free group F,,, and D is an efficient Dehn
twist on G. Then each edge and vertex group is a subgroup of F),, so is also free.
Condition (3) implies that each edge group has non-trivial centre, as z. € Z(Ge),
therefore each edge group is infinite cyclic. Conditions (1) and (4) imply that if w is a
valence one vertex, then G, is free of rank at least two. Similarly, conditions (2) and
(4) imply that if w is of valence two, then G, is free of rank at least two, and conditions
(3) and (5) imply that if w is a vertex of valence at least three then G, is also free of
rank at least two (cf. Lemma 6.4 of [I3] for more detail).

It follows from Section 7.3 of [13] that all vertex groups are finitely generated.

Definition 6.4. A subgroup H of a group G is called malnormal if, whenever g € G
and HNgHg ' # 1, then g € H.

For a pre-efficient Dehn twist on a graph of groups G with free fundamental group,
Definition (4) implies that f.(Ge) is malnormal in G for every edge e.

6.2 Non-periodicity for pre-efficient Dehn twists

Let D be a pre-efficient Dehn twist on G given by (7Ve)ce E(T), l.e. D satisfies properties
(3)-(5) of Definition We assume throughout the section that 71 (G,v) = F,,. Since
all 6p(e) = fe(7e) lie in the image of the corresponding edge group and all D) = 1,
Definition [4.4] shows that n = t1g1...txgx is D-twistedly reduced if and only if it is
cyclically reduced. We now assume this to be given.

We again use the notation t; = t.; and g; for every j € Z, possibly for j < 0 or

j > k. Here on page 40| becomes

tj—i—k: = tja
Gj+k = fe;(Ve,)9j frrr(ve) (21)

Recall that every ze = vevz i non-trivial by (3) of Definition Let a. € Ge 2 Z
be the unique generator such that z. = al¢ with n. > 0. As 2z = 2_ 1 this convention
implies az = agl and ngz = ne.

Moreover, we define n, to be the unique integer such that v, = aZ;. Since

fe= s = agtay ™ =
we have
Ne = N, + ni (22)
for all edges e. The formula becomes
9j+k = fej (a€j) Jgjfejﬁ(aej-u) AR (23)

Recall furthermore the notion of bonded edges given by Definition [6.1
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Lemma 6.5. Let D be a pre-efficient Dehn twist. Suppose e and €' are edges with
T(e) =u(e/) =w. Let g € Gy and r,1',s,s" € Z such that

felae) gfoae)® = fe(ae)” gfz(ac)”. (24)

If e # g, thenr+s =1"+4+5s". If e and ¢’ are not bonded, then r =1’ and s = 5.
Ife=¢, then g € fo(Ge) or (r,s) = (17, ¢).

Proof. We can w.l.o.g. assume that r’ = s’ = 0. Using a = a;l, we rewrite as
felae)" = gforlaz)®g ™ (25)

If r = s = 0, then we are done. If one of r and s is non-zero, then both are non-zero, and
e, e’ are bonded (either positively or negatively). If e # ¢/, they have to be negatively
bonded by Definition (5) Neither f.(ac) nor f(a) is a proper power. Thus we
have r + s = 0, as asserted.

If e = ¢ and (r,s) # (0,0), then (25) and malnormality of f.(Ge) in G, show
g € fe(Ge). o

Lemma 6.6. Let D be a pre-efficient Dehn twist. Suppose e1,..., e is a closed edge
path, k > 1, and ex1 = e1. Assume that e; and €11 are bonded for every j, 1 < j < k.
Then there are i # j with 1 < 14,5 < k such that e; = €11, ej = €j11.

Proof. Suppose first e; # e;11 for every j, 1 < j < k. Since we assume that each
such edge pair is bonded, but there are no positively bonded edges, e; and €;;7 are
negatively bonded for every j. As there are no proper powers, there exist gi1,..., gk
such that g; € Gr(,) and gjfejj(aejj)gj_l = fej(aej)_l. Since az = a_ !, this means

gjfejﬁ(aejﬂ)gj_l = fej (aej)'

We obtain
tjgjfejﬁ(aejﬂ )g{ltjl = tjfej (aej)t;1 = f@(aej)a
and hence
N fer(ae, )77_1 = fer(ae,),

where n = t1g91...txgx. Thus n lies in a common cyclic subgroup with fer(a,).
Lemma ii) implies fer(ae,) = 1, which is a contradiction.

We are left to rule out the case that e; = €;11 for exactly one j. By cyclic rotation of
the indices, we may assume that e, = e1, and that e; and €;37 are negatively bonded
for every j, 1 <j<k—1.

Assume ej,_j1 = ¢€; for some j,1 < j < k,asin Figure@ Then e;_; and e, _; 1 = e;
are negatively bonded, and e; and €;;1 are negatively bonded. This shows that ej_;
and €, are positively bonded, hence equal. As e, = €1, we see by induction on j that
er—j4+1 =¢; forall 7,1 < j < k.

If k£ is odd, then we obtain exr1 = €ry1, which is impossible. If k£ is even, then

2 2
ex =€k, which is a contradiction to the assumption that there is exactly one j with
2

¥

ej = €j+1. This finishes the proof of the assertion. O
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Ck—j+1 = €j

€j+1
Figure 4: Constellation of the edges in the proof of Lemma
Lemma 6.7. Assume that n = feg(Yer)t191 - . - tkgr is a cyclically reduced expression,
and q,Q € Z with Q — q > k. If we have mq, mgy1,...,mqg € Z with
gj = fej (aej)mjgjfejj(aej+1)_mj+l (26)

forallj, ¢ <j<Q—1, then mg=mgi1 =...=mg =0.

Proof. AsQ—q > k, Lemmaprovides some jo with ¢ < jo < @ —1 such that e;;, and
€jo+1 are either equal or not bonded. If they are equal, we have gj, ¢ fe; (G, ) because

6-70
(tjo» 9jo» tjo+1) is reduced. In either case, Lemma [6.5|shows that mj, = mj,11 = 0. The
formula now implies m; = 0 for all j with ¢ < j < Q. O

Lemma 6.8. Suppose n = fer(ver)tig1 ... tegr is a cyclically reduced expression for
n € m1(G,u). Assume that

tq9qtq+19q+1 - - - 1Q9Q = Tty—pYg—p - - - tQ—p9Q—pY (27)
for some p,q,Q € Z with Q —q>2k. Thenp=0 and x =y = 1.

Proof. We assume w.l.o.g. p > 0 in . Otherwise replace x, p, q, and @ with 71,
—p, ¢ — p, and @ — p respectively.

Since all G =2 Z generated by a., Proposition @ provides mgy, mg41,...,mg € Z
such that

T = fer(ae,)™ ™, (28)
9j—p = fe;(ac;)"™ g fezpa(ae; )™+ for ¢ <j < Q -1, (29)
9Q—-pY = fek (aek)ngQ' (30)

We multiply on the left by fe; (aej)n/ej and on the right by fe7(ae, H)"W_ Us-
ing and that e;_, = e, we get

9j+k—p = fej-Hc (aej+k )mjgj+kfm(a€j+k+1 )7mj+1 : (31)

After replacing j by j — k, this reads

9j—p = fej (aej )mj_kgjfejﬁ(aej+1 )_mj_k-H
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for g+ k < j <@ — 1. Together with , this becomes
05 = Je 0y Y0 gy )

for all j with ¢ +k <j <Q —1. As Q — ¢ > 2k, Lemma [6.7] implies that m; = m;_
for all j with ¢+ k <j < Q.

We now use the formula m; = m;_; to define m; for all j € Z. The above discussion
shows that this is consistent with the m; already defined. In the same way as we
proved , we now see that for j is equivalent to for j + k. It now follows
that the m; satisfy for every j € Z.

Observe that

e
@, @,

fej (aej)_pnej gjfejj(aejﬁ-l) = Yj—kp i aej)MjgjfejT(aejJ,-J_MjJrl (32)

for all j € Z, where
Mji=mj +mjp+mj—2p+ ... +Mj_(r-1)p-

Note that ;77 # e; or g; ¢ fe,(Ge,) because t;g;t;.1 is reduced. Comparing the
exponents in with Lemma we obtain

—p(néj + n’—) = Mj — Mj+1.

€j+1

Taking the sum over all j, 1 < j < p, and using on page as well as epy1 = eq,
we conclude

—P(Ney +Ney + -+ Ne,) = My — My
=(mi+mip+...+mi_g_1)p) — (Migp +mi+ ... +my__2))

= Mitp—kp — Mitp = 0.

Since all n.; are positive, we conclude p = 0. We now apply Lemma to and
conclude m; = 0 for all j € Z. By and , we conclude z =1 and y = 1. O

Recall the notion of a non-bonding cyclic element in Definition [5.8f We now show
the following.

Proposition 6.9. With respect to a pre-efficient Dehn twist D, every D-cyclic element
18 non-periodic and non-bonding.

Proof. Let @ — q > 2k. Suppose ej, = ¢; and gjyp = fe; (hj)gjfejj(hjﬂ)*l for all j
with ¢ < 7 < @. Then

tispGitp = fer(h)tigj ferr(hjpr) ™!
for these j, and hence

tatp9q+p - - - LQ+pIQ+p = fa(hq)tng e thQf€Q+1 (hQ—i-l)il-
By Lemma[6.§ we have p = 0 and hy = 1. This implies that all h; are trivial. O

o4



6.3 Cancellation bound at vertex groups with unbonded edges
Lemma 6.10. Let x, 2/, and g be elements in any finitely generated free group.

(i) If no positive power of x is a positive power of gx'g~!', then there are constants
A, B > 0 such that
I(z%gz'~") > A(a+b) — B

for all a,b > 0.

(ii) If x and gx'g~' do not lie in a common cyclic subgroup, then there are A, B > 0
such that

I(z%gz'~%) > Aa — B,

I(x%gz’'~%) > Ab— B.
Proof. Assertion (i) follows roughly because high powers of x and gz’g~! can only have
common initial segments of bounded length. More details are left to the reader.
In the situation of (ii), we can apply (i) to z and gz'~!g~' as well as to o~
gx'g~! to obtain, after possibly redefining A and B,

L and

l(z"g(z"™")") = A(a —b) - B,
I(z=)"%2’"%) > A(—a+b) — B.

Taking the sum of each of these estimates with (i), we obtain the two inequalities
in (ii). O]

6.4 Improving groupoid generating sets

The goal of this section is Corollary that, for every pre-efficient Dehn twist,
we can find a compatible finite groupoid generating set satisfying the requirement
of Lemma We need the following lemma, which involves the (basis) length with
respect to an infinite group generating set. Its proof is left to the reader.

Lemma 6.11. Let F be a free group with (not necessarily free) generators x1, ..., Tm,
Y1y, Yn. Denote byl the length with respect to the (infinite) generating set consisting
of r1,...,Tm and all powers of y1,...,Yn. If no power of z € F' is conjugate to a non-
trivial power of some y;, then I'(27) grows linearly in j. 0

For y € R let |y] and [y] be the unique integers such that

y—1<|yl <y<lyl<y+1

Proposition 6.12. If z1,...,x,, generate the free group F (not necessarily freely) and
Yi,.--,Yn € F are pairwise non-conjugate and no proper powers, then we have for
sufficiently large N that In(y!) = [%1 for1 <i<mn and j € Z, where ly is the length
with respect to x1,...,%m, and all yzij withl1 <i<nandl<j<N.
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Proof. Tt is clear that lN(yg) < {%1
Fix ¢ with 1 <14 < n, and let I} denote the length on F With respect to x1, ..., T, and
all powers of all y; with i’ # 1. Accordlng to Lemma choose N sufﬁmently large

such that I (yz) >N il Then no power yl can be ertten as a product of fewer than [li]

il :tl

elements of the forma: ot or yb with i # 4, |k| < N. Hence In( Z) > “iN'] O

Corollary 6.13. Let D € Aut®(G) be a pre-efficient Dehn twist such that 1(G,v) is
finitely generated free. Then there are finite generating sets of the verter groups G,
with length function l,, such that

Loy (f2(a)) = Lr(ey(fela))| < 2
for all a € Ge.

Proof. As three distinct edges with common terminal vertex are never pairwise bonded,
we can construct an orientation E+ C E(T') such that exactly one of e and ¢’ is in E+
whenever e and €’ are negatively bonded. We enlarge ET to a subset E' C F(T') such
that

e for every e € E(T") there is a unique ¢’ € E’ such that e and €’ are bonded,
e for every e € E(I'), at least one of e and € is in E'.

Let now X, be finite generating sets of the vertex groups G, such that there is g € X, ()
with gfe(ae)g' = fo(ae)~! whenever e and €’ are negatively bonded. We then apply
Proposition to find N > 1 such that I, (fe(ac)?) = [%] for e € E’, where the [,
are the length functions with respect to

Xl =Xy U {fe(a) |1 <k < Nyee B 7(e) = w}.

This implies by construction that

{%W —2 <l (fe(ae)’) < {%W +2

fore € E(T) W E' and j > 0. As e or € is in F’ for every e € E(T'), this proves the
assertion. O

Corollary allows us to define a compatible groupoid generating set for D satis-
fying the requirement of Lemma We now assume this for the rest of this chapter.

6.5 Lower growth bounds for pre-efficient Dehn twists

Throughout this section we fix a pre-efficient Dehn twist D € Aut’(G). We have
already seen in Proposition that elements in m(G,u,w) grow at most linearly
under iteration of D,. In this section we discuss several variants of the growth of D
which are bounded below by a linear function. All basis lengths are defined using a
compatible groupoid generating set as described in the last section.
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We shall look at reduced expressions of the form gotig; ...tx gr. Recall that, for a
pre-efficient Dehn twist, we have dp(e) = fo(7e) = fe(ae)™ with ne = n’ +nL. Thus

Di(tl) = fa(aei)ijn?itifei(a’ei)_jnei‘
We fix j € Z. For integers a, b, and s, we will abbreviate

a—jn/, —b—jni——
ls(a,b) = l(fes(aes) ! esgsfm(aesﬂ) - 5“)

Note that fe,(ac,) and gsfe=r7(e,,,) 'g; ' do not have positive powers in common
because D has no positively bonded edges. Then Lemma [6.10(i) shows that there are
Ag, Bs > 0 for every s € Z such that

ls(a,b) > As(—a + jnl, +b+jnes+1) B, (33)
for all a,b € Z.

Lemma 6.14. If got191 . . . trgx s a reduced expression and k > 1, then the basis length
I(DL(got191 - - - trgr)) grows linearly when j — +oc.

Proof. There are A, B > 0 such that
l(go fer(ae,)™™)
l(fek (aek) gk)

and such that ( . ) holds true with A;, = A and B = B when 1 < s < k — 1.
Lemma [4.3{i) allows us to write

Am — B, (34)

>
> —Am - B, (35)

l(Dl(gotlm - tkgk)) = H#Lin (k + l(gofa(aﬂ)—nu—jnq) n
k—1

+ l(fek(aek) k— ]nekgk) + le(ms,msﬂ))

s=1

We insert for 1 <s<k—1, (34), and to obtain

UD(gotrgn - trgr)) = min (b + Alms + jniz) = B+ A(=my + jnt,) = B+

N

-1

+ D (A(=my + i, + s + ) — B))
1

s

k
—mm(AjZn +ng) + k — (k+1)B>
7=1

=Aj(ne, +...+ne,) +k—(k+1)B

As k > 1 and all ne > 0, this is a lower bound for the growth by a linear function in j.
This is the desired behaviour for j — 4o00. For j — —oo, we apply the same arguments
to the pre-efficient Dehn twist D!, O
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Lemma 6.15. If t1g:1...txgx is a cyclically reduced expression with k > 1, then the
cyclic basis length l.(DL(t1g1 ... tkgr)) grows linearly when j — +oc.

Proof. For suitable A, B > 0 we may assume that A, = A and By = B in for
1 < s < k. Lemma [£.3(ii) yields

k
l(Di(tig1 ... tegr)) = nnllin (k + Z ls(ms,m5+1)>

s=1
‘) d / !/
> min ((—B + 1)k + AZ(—ms + jne, +msi1 —l—jnm))
e s=1
The minimum denoted by min,,, is always taken over all tuples (myq, ..., my) € ZF+1

such that mgq = my. In particular, all ms in the last sum cancel, and we obtain

k
le(Dl(t1g1 - - tegr)) = (=B + Dk + Aj Y (nl +niy)

s=1

We now use the formula on page and egy1 = e;. Then the estimate simplifies
to

lc(DZ(t1g1 cotkgr)) > (=B + 1)k + Aj(nel +...+ nek)

As D is pre-efficient, all n, are positive. Since k > 1, this is a lower bound for the
growth of the cyclic length by a linear function of positive slope with respect to j. This
together with the same argument for D~! proves the assertion. O

Lemma 6.16. If 0p(e1)t191 ... tkgx is a cyclically reduced expression with k > 1 and
k' > 2k + 1, then the basis length of the double coset

feo(Geg) Dilgot1g1 .- twgw ) farm (Gey )
grows linearly when j — £o0.

We assume that the g; satisfy on page

Proof. By Lemma there is r with 1 < r < k such that e, and &,17 are equal or
not bonded. For this r, neither f, (ae,) nor its inverse has a positive power in common
with g, fer(de, ., )9y . Lemma[6.10{ii) shows that there are A, B > 0 such that

lr(a,b) > A(b+ jng) — B, (36)
letr(a,b) > A(~a +jng, ) — B (37)

for a,b € Z. After possibly redefining A and B, we may assume that A, = A and
By =B in (33) when r+1 < s <r+4+k — 1. We write

L(]) = l(feo (Geo)Di (gotlgl R tk’gk’)fW<Gek/+1))
= 1(feo(Geo)go fer(aey) " Tt1 foy (ae,) ergs ...

—_am! i/
ce fek/ (aek/) e tk/fek/ (aek/) ey gk’fW(Gek/+1)) .
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Using Lemma [4.3(iii), we estimate

k'—1
L(]) = min 7z (l (feo (Geo)g()fﬁ(aq ]ni m1 + Z ls msams+1

M1,y My €

+Kﬁﬂ%mﬂ%wwﬂmhﬁﬂ@mﬁﬁ+y
k-1
> min Z ls(mg, msi1). (38)
©os=1

Recall that ¥’ > 2k +1 > k+r + 1, and we have arranged A; = A and Bs = B in
forr+1<s<r+k—1. We insert this together with and into to obtain

" k+’l"

LG) = min (D 1(mssmai))

S=T
> min (A(mys1 + jnt_ ) = B+ A(=mypr + jnl, ) = B+

k+r—1
+ Z ( —Mms +]n + Mgy +]nes+1)_B)>
s=r+1
k+r—1
= min (Aj Z (ng, +ng) — (k+ 1)B>
s s=r

=Aj(ne, +...+n¢,) — (k+1)B

Since all ne, are positive and A > 0, this is the desired lower bound for L(j) by a linear
function in j.

The element ! is D~!-twistedly reduced by Lemma [5.5| . (i1). We can now use a sim-
ilar argument to bound the growth of fe71(Ge,,,,) D« (gk,lt_1 .91 flg()_l)feo( o)
below by a linear function in j when j — co. This leads to a linear lower bound for

the coset basis length in the assertion for j — —oc. O

6.6 A;(n,D,) for pre-efficient Dehn twists

Lemma 6.17. Suppose we are given integers k' < k" and a,b € Z. Let D be a pre-
efficient Dehn twist, and let 1 = fer(Ver)tig1 - .- trgr be cyclically reduced. Then the
basis length of

feiwvat (Gejursan )9k +aritjn+at2gin+at2 - - - tiprrogin+ofemm(Ge i)
grows quadratically when j — oo.

Proof. The upper bound for the growth follows easily using the fact that i(g;) grows
linearly when j — £oo (cf. Lemma[5.11)).
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The length of the coset in consideration is bounded below by Zf&j)( )L’ (1), where

=r ]
r(j) = [5], s(j) := [ Z52) — 1, and

L' (6) := 1(fey (Gey ) aiks1taikr29aik+2 - - - LaikrakGaintak for(Gey ).

Since 7(j) and s(j) can be estimated by functions linear in j of different slopes, the
desired quadratic growth will follow when we have shown that L’'(i) grows (at least)
linearly for ¢ — 4oc.

We note that

taikrsGaik+s = A—1i(0p(€5)) T Dy ¥ (tegs) A—4i(0p(€st))
by Lemma [5.10iii) and
Gaiet1 = A_1i(6p(e1)) " g1 A_4(dp(e2))
by Lemma [5.10fi). Therefore
Gaik+1taik+294ik+2 - - - Laik+ak Gaik-+4k
= A_4i(0p(e1)) "Dy (g1taga - - - targar) A—4(Op (1))

As D is a Dehn twist, we have dp(e) € fe(Ge), and we obtain

L,(i) = l<D*_4i(f61 (Gel )glt292 .. ~t4kg4kfﬁ(Gel))) .
Lemma now shows that L'(i) grows at least linearly when i — 4o0. O

Lemma 6.18. Let D be a pre-efficient Dehn twist on G. If the cyclically reduced
expression 0 = fer(Ver)t191 - - - thgr € m1(G,u) has positive path length, then the basis
length [(A;(n, Dy)) grows quadratically when j — foc.

Proof. Tt is clear by Lemma that the growth can be at most quadratic, so we only
have to verify a lower bound. By Lemma m(vi), we have a reduced expression

Aj(n) = A;(00 (@)t —jkthr19—jktkt1 - - - thGk-
For j > 1 this implies
HA;(1) > 1(fey (Gey)g—jhtha1t—jkrh+29—jhthr2 - - - tegr fer(Gey))

By Lemma this length grows quadratically when 7 — oc.
If j < —1, then Remark [£.14] leads to

Aj(n) = Aj(éL(?l))g:;k+kt:}k+k = 'gl;iltlz—il-l‘

This yields
A1) 2 U fer (Gep)trr1grrt - - - tjirg)jiefer(Ger ),
which grows quadratically by Lemma [6.17 when j — —oc. O
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Proposition 6.19. Let D be a pre-efficient Dehn twist on G, and let n,n € m1(G,v).
Then Aj(n, D)t A;(1, D) grows quadratically when j — Fo0o if n # 1’ and at least
one of n and 0’ is D-cyclic. Otherwise it grows either linearly or is bounded.

Proof. Since Aj(n) and A;(n') grow at most quadratically, we get the upper bound for
the growth.

We first assume that both 1 and 1’ are D-local, so there are vertices u and u’ and
e € m(G,v,u), € € m(G,v,u), x € Gy, and 2’ € Gy such that n = D,(e)ze” ' and
7 = D.(¢)x’é=1. Then A;j(n)~tA;(n) = ex™7Di(e 1€ )a" € either grows linearly or is
bounded.

Assume now that exactly one of n and 7' is D-local, i’ say. As

Aj(Du(e)ne™ ) THA(Dile)n'e ) = eAy(m) A (o )e

we may replace 7 and 1’ with D,(€)ne~! and D, (€)n’e~! for some e. Therefore we can
assume that n = fer(ver)ti01 - .. trgr is cyclically reduced. The growth of A;(7’) is at
most linear, and the one of A;(n) is quadratic by Lemma Thus the assertion is
clear in that case.

We are left to show the proposition in the case that both n and n’ are D-cyclic. If n/
is a period fitting segment of n, Proposition shows n = 7/, and everything is clear.

If ' is not a period fitting segment of 1, we may again assume a cyclically reduced
expression 1 = fer(Ver)t1g1 - . . tegr- Since Aj(n) = fer(Ver)’t—jh+k+19—jk+k+1 - - - trGk
by Lemma [5.10|(vi), Proposition [5.19] shows that there is a constant C' such that a
reduced expression for A;(n)"1A;(n’) begins with g, 't .. .g:}k+ct:jlk+c. Hence its
basis length is bounded below by the one of the double coset

Jec (Gee)9—jktct—jhtrc+19—jktC+1 - - - thgr fer(Gey )

which grows quadratically by Lemma [6.17] when j7 — oo.
For j — —oo we use Lemma [4.13(ii), which says A;(¢, D.) = DY (A_;(¢7Y, DY)
for (=nor (=7". Asn~! and n’~! are D~ !-cyclic, the same arguments apply. O
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7 Prenormalised higher Dehn twists

7.1 Property (P)

Definition 7.1. An automorphism « of a finitely generated group G satisfies prop-
erty (P) if, for every z,y € G, there is an integer m(x,y) such that the element
Aj(z,a) ' Aj(y, «) grows polynomially of degree m(z,y) when j — oo or j — —oo.
An automorphism L € Aut’(G) of higher graphs of groups satisfies property (P) if Ly,
satisfies property (P) for every choice of basepoint w.

Lemma 7.2. If L € Aut®(G) satisfies property (P), then all Aj(é)_lLi(e)Aj((;’) with
5,0 € € m (G, u) grow polynomially of some degree when j — +00.

Proof. We have A; (&)Ll (€)A;(8") = A;(6) 1 A;j(L.(e)d’e )€, and the constant factor
€ does not change the growth. O

When G is any finitely generated group and x € G has infinite order such that the
subgroup (x) of G is distorted, then, by definition of subgroup distorsion, the growth
of the length of A;(z,1) = 27 is slower then linear, but it is unbounded. If G is a
Heisenberg group for instance, then we may realise that the length of 27 grows like j%
when j — oo. Thus the identity automorphism of G does not satisfy property (P).

It is well-known (cf. Theorem 6.2 of [22] for example) that automorphisms of
free groups either grow polynomially or exponentially. For a polynomially growing
a € Out(F,), every conjugacy class in F), grows polynomially of some integer degree
under iteration of @. From this fact, it can be deduced that polynomially growing
automorphisms of free groups always have property (P).

When building normalised higher Dehn twists of free groups, we will get a new
proof of property (P) for higher Dehn twist automorphisms. As some of the ingredient
lemmas will hold for more general graphs of groups, we will keep track of property (P)
although this is not necessary in the free group case.

Using compatible groupoid generating sets, the inclusion m (G™)) — 71(G) is an
isometric embedding for every m > 1. In particular:

Lemma 7.3. If the automorphism L € Aut’(G) satisfies property (P), then so does its
restriction L™ € Aut®(G™) for every m > 1. O

7.2 Lower growth bounds for trivial edge groups

Definition 7.4. Let L € Aut’(G). An element n € 71(G,u) grows dominantly of
degree d with respect to L., if the basis length of A;(n, L,) grows at least polynomially
of degree d + 1 when j — oo or j — —o0.

In the remainder of this section, G denotes an ordinary graph of groups with trivial
edge groups, and we fix L € Aut®(G).

By means of the following lemma, we can often reduce to the study of dominant
growth of L-twistedly reduced elements.
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Lemma 7.5. If all vertex group automorphisms Ly, grow at most polynomially of degree
d—1, and n € m1(G,u), € € m1(G,u,u), then n grows dominantly of degree d if and
only if Li(€)ne=t grows dominantly of degree d. O

For the rest of this section we assume that all vertex group automorphisms L,, and
inverses L' grow at most polynomially of degree d — 1 and that they have property

(P).
Lemma 7.6. Let n = 01(€1)t191 - - - tkgx be an L-twistedly reduced expression. Then:

(1) If there is an i with 1 < i < k such that g;—;, grows at least polynomially of degree
d when j — too, then n grows dominantly of degree d.

(1t) If all of 91—k, G2—jks - - - Gh—jk grow at most polynomially of degree d — 1 when
j — too, then n does not grow dominantly of degree d.

Proof. We will only study j — oo because j — —oo behaves similarly. Therefore we
assume j > 0. We will use the formula for A;(n) in Lemma [5.10[vi). Note that the
basis length of A;(d7(e1)) grows at most polynomially of degree d by Lemma
Therefore it remains to investigate the growth of t_ x4 k+19—jk+k+1 - - - tegr- As all edge
groups are trivial, using a compatible generating set reduces this to the growth of g;_j
for j — oo: If there is some ¢ such that [(g;—;i) grows at least polynomially of degree
d, then n will grow dominantly. If I(g;—;i) grows at most polynomially of degree d — 1
for every i, then n will not grow dominantly of degree d. O

Remark 7.7. The statement of Lemma [7.6 is also valid without the requirement of
property (P) for the vertex group automorphisms. However, if all vertex group au-
tomorphisms L,, satisfy property (P), then Lemma decides in all cases whether n
grows dominantly of degree d. For, Lemma (1) shows

gi—jk = A;(0r(e:))) " Li(g:) A; (Or(ei71))-

Property (P) and Lemma ensure that all g;_;; grow polynomially of some degree
when j — 4o0.

Corollary 7.8. If n = ér(e1)t1g1 ... trgr with k > 1 is L-twistedly reduced and does
not grow dominantly of degree d, then Aj(n, Ly) grows at most polynomially of degree
d when j — +o0. 0

Lemma 7.9. Let n = dp(e1)t1g1 .. .tkgr be L-twistedly reduced and have dominant
growth of degree d. Given integers a, b, and k' < k", the basis length of the element
Lk +at19jk 4at1 - - - Likr 4095k b grows polynomially of degree d + 1 when j — Foo.

Proof. We first consider j — oo. It is clear by Lemma and the linearly growing
path length that the growth cannot be faster than a polynomial of degree d + 1.

Since n grows dominantly, Lemma shows that there is some ¢ such that g;
grows polynomially of degree d when j — +o0.
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By Lemma the basis lengths of the elements #1941 - - tjk4a9jk/+a and
Uik 4195k +1 - - - tjkr 4595k b STOW at most polynomially of degree d. Therefore we may
assume a = b = 0. ‘

Let j' := [%] and j” := L%J We estimate

§7—1
Wik Giw+1 - - tierGinr) = WtinarGiest - - timwgire) =Y Uismi)-

m=j'

Since 1(g;+mr) grows polynomially of degree d with m — oo, and the number of sum-
mands grows linearly in j, we see that the basis length of 5/ 1941 ...tk gjrr grows
at least polynomially of degree d + 1.
For j — —oo, the convention in Remark asks us to study the basis length of
-1

—1,—1 -1 .
Yiptipr - i1 bjpr 1 and similar arguments apply. O

Lemma 7.10. Ifn € m1(G,v) is L-local, then Aj(n, L) grows at most polynomially of
degree d for j — +oo.
Proof. Let n = Ly(e)xe !, where x € G, and € € 71(G,v,u). Then

Aj(n, L) = Li(e)Aj(w)e".

Proposition @ bounds the length of the factor Ll(e) above by a polynomial of degree
d. By Lemma @, the length of the element Aj(x) does not grow faster than a
polynomial of degree d. Since the basis length I(e~!) is independent of j, we see that
Aj(n) grows at most polynomially of degree d. O

Proposition 7.11. Let n,n' € m(G,v). Then the basis length of A;(n, L) Y A;(n/, L)
grows polynomially of degree d +1 if n # 0’ and at least one of n and n' grows dom-
inantly of degree d. Otherwise the basis length of A;(n, L) A;(n', Ly) grows at most
polynomially of degree d when j — too.

For the proof we need the following lemma.
Lemma 7.12. Suppose n,n' € m(G,v). If either
(i) exactly one of n and n' grows dominantly of degree d, or
(i1) both n and n' grow dominantly and n # 17/,
then A;(n)~YA;(n') grows polynomially of degree d + 1 when j — Fo0.

Proof. Both A;(n) and A;(n') can grow at most polynomially of degree d + 1, so the
upper bound for the growth is clear.

If ) grows dominantly and 7’ does not, then the basis length of A;(n) grows polyno-
mially of degree d + 1, and the one of A;(n') grows slower. This proves (i).

We now prove (ii). Lemma and the relation

Aj(Li(e)ne ) THA (L)' e ™) = eAj(m) T A (n)e ™

64



allow us to L-conjugate n and n’ simultaneously. We may therefore assume that we
have an L-twistedly reduced expression n = dr,(€1)t191 - . - txgr-

Suppose first that 7 is not a period fitting segment of n. Then A;(n) and A;(n’)
are not partially asymptotically equivalent by Proposition [5.19, Using the reduced
expression for A;(n) in Lemma [5.10|vi), there is a constant C' € Z such that a re-
duced expression for A;(n)"1A;(n') begins with g,;ltlzlg,;_llt,;_ll . '9:]1‘k+ct:gl'k+o‘ By
Lemma this element grows polynomially of degree d+1. Thus A4;(n) "1 A4;(n’) grows
polynomially of degree d + 1 when j — +o0.

If o' is a period fitting segment of 7, we can write " in the form as in Section If
k = k', then n = 1/, and everything is clear. For notational convenience we now assume

k' > k. Combining Lemma [5.10(vi) and Lemma [5.17(iii), we obtain

Aim) T A () =t Grt - -t —y 1k 90—y 18 Ai—1 (00(e1)) T LT (By).

The basis length of this is bounded below by the one of tx11gk+1 -t —r) 9k —k)>
which grows polynomially of degree d + 1 by Lemma [7.9

We are left to investigate A_j(n)~tA_;(n') when j — oco. By Lemma (ii), we
have A_;(n, L.) = LyY(Aj(n~', L;1)). Moreover, n grows dominantly with respect to
L, if and only if ! does with respect to L;'. Then similar arguments work. O

Proof of Proposition|[7.11. As usual, the upper growth bound is clear. Lemma
tackles all cases except the one that neither n nor 1’ grows dominantly of degree d.

If  is L-local, Lemma shows that A;(n) grows at most polynomially of degree
d. If nis L-cyclic, Corollary together with property (P) for the vertex group
automorphisms shows that A;(n) grows at most polynomially of degree d. As none of
n and 1’ grows dominantly, this argument bounds the basis lengths of both A;(n) and
Aj;(n') above by polynomials of degree d. O

Proposition 7.13. If every L-cyclic element grows dominantly of degree d, then L
satisfies property (P).

Recall that we assume property (P) for the vertex group automorphisms. This propo-
sition will then help us to show property (P) inductively for higher Dehn twists.

Proof of Proposition[7.13. We have to show that A;(n)~1A;(n) always grows polyno-
mially of some degree when j — f+o0. In Lemma we have seen this for all relevant
cases except for the case of two L-local elements 1 and 7', which we now focus on:

Let n = L.(e)ze™! and 1 = L. (¢')2’¢~! for some vertices u and v/ with elements
e € m(G,v,u), € € m(G,v,u), x € Gy, and 2’ € G/. Then we have

Aj(n) Tt A () = eAj(x) T Li(e e ) Aj(al)e

As the constant factors € and ¢ ~1 do not affect the growth type, we have to show that
Aj(z) " Li(e ')A (2") grows polynomially of some (integer) degree. To this end, we
fix a reduced expression

e e = gotig1 - . - trg.
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This leads to a reduced expression
Aj(@) T LU ) A(y) = Go()tgr (i) - - -tk ()
with

9o(j) == Aj(2) " LL(g0) A (dL(e1)),
gi(4) = Aj(Or(eq)) ' Lig:) Aj (Or(en)) for 1 < i<k — 1,
r(3) == A;j(6z(er) " Li(gr) Aj (y)-
As all vertex group automorphisms have property (P), Lemma shows that the basis

lengths of §;(j) grow polynomially of some degree d; when j — +o0o. Therefore the
basis length of A;(n)"1A;(n’) grows polynomially of degree max; d;. O

7.3 Truncatable replacements

Definition 7.14. A truncatable replacement of D € Aut(G) is an automorphism of
the form HDH ! € Aut(G’), where H : (G,v) — (G’,v') is an equivalence such that
(G',v') is fully truncatable.

Lemma 7.15. Let H : G — G’ be an equivalence of ordinary graphs of groups and
D € Aut’(G) a Dehn twist. Then:

(i) HDH™! € Aut(G’) is a Dehn twist. The terms ~', and z., of HDH™' for edges
¢ € E(I") are given by 7}1(3) = H.(v.) and z}i(e) = H.(ze), where the 7. and z.
are the data of D.

(ii)) HDH~' is efficient (or pointedly efficient, or pre-efficient) if and only if D is.

Proof. Tt is clear that all vertex and edge group automorphisms of HDH ' are trivial.
Furthermore, dp(e) = fe(e) leads to

Supu-1(H(e)) = (HDH™Y).(551(e)) ™ H.(3p(€))3s(e)
= 8(e) ™ Hu(fo(3))1(€) = fiy(ey (He(e))

for e € E(T"). This finishes the proof of (i).

As H is an equivalence of ordinary graphs of groups, Hy and Hg form an underlying
graph isomorphism. It follows immediately from Definition [2.47) that the edge map
fl’q(e) of G’ is surjective if and only if the edge map f. of G is.

The formula for the twistors in (i) shows that HDH~! has unused edges if and only
if D has.

Moreover, Definition (7) shows that there are proper powers in HDH ™! if and
only if there are some in D.

From the relation

H*(fe(ze)) = 5H(€)fH(e) (Z}—I(e))(SH(e)_l7

we read off that e, e’ € E(I") are positively bonded if and only if H(e), H(e') € E(IV)
are. O
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Lemma 7.16. If H : G — G’ is an equivalence and D € Aut®(G) is a higher Dehn
twist, then HDH™" is a higher Dehn twist on G'.

Proof. Let 'y C T" be the subgraph with V(I'g) = V(I') and e € E(I'g) if and only if
Ge # 1. Define I'{j similarly. Then (HDH’l)]F{) = (H|r,)(D|r,)(H|r,)" . Since D|r,
is an ordinary Dehn twist and H|r, : G|r, — G'|r; an equivalence, Lemma shows
that (HDH_l)\F() is a Dehn twist, so HDH ™! is a higher Dehn twist. O

Lemma 7.17. Let H : G — G’ be an equivalence and n € m(G',u,w). Then:

(i) The growth of n under iteration of (HDH™'), and the growth of H;'(n) under
iteration of D, are equivalent up to a multiplicative constant.

(ii) If u=w, then Aj(n,(HDH™'),) = H.(A;(H ' (n), D.)).

(ii1) If u = w, then the growth of the conjugacy class [n] under iteration of HDH-!
and the growth of [H;1(n)] under iteration of D are equivalent. O

Remark 7.18. The conclusion of Proposition is also valid when D is a higher Dehn
twist on a higher graph of groups G of degree d such that D@1 satisfies property
(P). If G is truncatable at degree d — 1, then the vertex automorphisms of 74 D
grow at most polynomially of degree d — 1 by Proposition and all requirements
of Proposition [7.11] are clear. Otherwise we pick a truncatable replacement and apply
Lemma

7.4 Definition of prenormalised higher Dehn twists

Normalised higher Dehn twists will be a special case of prenormalised higher Dehn
twists, which we define by induction on the degree. A prenormalised higher Dehn twist
always comes with a set of vertices called clutching points. The precise definitions are
as follows.

By the degree of a higher Dehn twist D € Aut?(G) we always mean the degree of
the underlying higher graph of groups G.

Definition 7.19. A higher Dehn twist D € Aut’(G) of degree at most one is prenor-
malised if

e it has no trivial edge groups, and
e it is pre-efficient (satisfies properties (3)—(5) of Definition [6.2).

A clutching point of D is a vertex w € V(I') of valence one or two with only surjective
edge maps.

Recall from Definition [£.20] that a higher Dehn twist D of degree 1 is an ordinary
Dehn twist together with edges e such that Ge = 1 and possibly dp(e) # 1. If D is
prenormalised, it has no trivial edge groups, and we see that D is an ordinary Dehn
twist. We now come to the inductive definition in higher degree.
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Definition 7.20. A higher Dehn twist D € Aut’(G) of degree d > 2 is prenormalised
if

1) D1 = Dy is prenormalised,

)

2) for every edge e of degree d, exactly one of dp(e) and dp(€) is trivial,

3) all 6p(e) with deg(e) = d are D4~ D_twistedly reduced in the truncated sense,
)

(
(
(
(4) when deg(e) = d and Gy = 1, then dp(e) = 1,

(5) when deg(e) = d, ¢ € E(T'), and € € (G- 7(¢),7(¢')), then dp(e) #
D.(e)dp(e')e™t, or 6p(e) =ép(e/) =1, 0ore=¢,

(6) when deg(e) = d and dp(e) # 1, then A;(0p(e), D) grows polynomially of degree
d when j — +oo.

A clutching point of D is a 1-valent vertex w with Gy, = 1 or a clutching point of D@1
which is not the terminal vertex of an edge e of degree d with dp(e) = 1.

The most important special cases of prenormalised higher Dehn twists are those with
at most one clutching point:

Definition 7.21. A higher Dehn twist D € Aut(G) is called pointedly normalised if
the underlying graph I' is connected, and it has no clutching points away from the
basepoint v. The higher Dehn twist D is called normalised if I' is connected, and D
has no clutching points.

Note that the identity of any group is an efficient Dehn twist whose underlying graph
is a point, so Definition allows us to have some connected components which are
single points. This is exactly how clutching points in higher degree show up as 1-
valent trivial vertex groups in Definition when we connect such a point to other
components for the first time when building up the Dehn twist by its strata.

By Proposition the growth of the Dehn twist D™ of degree m is at most
polynomial of degree m. In (6), it is then always clear by Lemma that the growth
of Aj(0p(e), Dy) is bounded above by a polynomial of degree d.

7.5 Growth of prenormalised higher Dehn twists

Let G be a higher graph of groups such that 71 (G, u) is finitely generated free for every
ue V().

Proposition 7.22. For a prenormalised higher Dehn twist D on G we have:

(i) For every reduced word W = (x,t1,91,.--,tk,y) from u to w, the element |W|
grows polynomially under iteration of D, with degree equal to the maximum of all
deg(e;).
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(ii) For every reduced word W # 1 representing an element D-twistedly reduced in
the truncated sense in G such that max; deg(e;) = m, the basis length of
A;(|W|,Dy) grows polynomially of degree m + 1.

(i) For every cyclically reduced W = (t1, g1, -.,tk, gk) from u to u, the conjugacy
class of |W| grows polynomially under iteration of D with degree equal to the
mazimum of all deg(e;).

(iv) D satisfies property (P).
To prove Proposition by a certain induction argument, we need this lemma:

Lemma 7.23. Let G be a higher graph of groups of degree d > 1 such that Proposi-
tion (iii) holds true for G with the prenormalised higher Dehn twist D. Suppose
n,¢ € m1(G,u) such that n grows dominantly of degree d and D,(()n¢(~' = n. Then

¢=1.

Proof. Since D.(¢) = n¢n~!, the conjugacy class of ¢ does not grow under iteration of
D,. Using Proposition [7.22{iii), we see that ( = exe™!, where 2 € G, for some vertex
u' and € € m1(G,u,u’). Writing 7’ = D, ()" 'ne, we compute

W@~ = (Da(e) "' ne) (e e) (e T Dale)) = Dile) " 'n¢n ™ Dale)
= D.(e7'¢e) = Du(x) = =

Thus the elements « and 7' commute. As 71 (G, u) is free, z and 7’ lie in a common
cyclic subgroup.

As n grows dominantly of degree d, Lemma (applied to a truncatable replacement
of D) shows that 7’ does as well. In particular ' ¢ Gy, so pl(n') > 1. Lemma [4.10{(ii)
proves & = 1, whence ¢ = exe ! = 1. ]

Lemma 7.24. Let D € Aut’(G) be prenormalised of degree d and satisfying Propo-
sition . Suppose we are given D-twistedly reduced elements n € w1 (G,u) and
n' € m(G,u’) going across edges of degree d (if d > 1) as well as ¢ € m (G, u,u’).
If the basis length of Aj(n,D*)_lDl(C)Aj (', Dy) does not grow polynomially of degree
d+1 when j — oo, then n = Dy ()n'¢L.

Proof. Note that
Aj(n, Da) " DLUQ)A; (1, D) = Aj(n, Da) A (Do(Qn' ¢ D) - G

The constant factor ¢ does not contribute to the growth degree. As we assume Proposi-
tion iv), D satisfies property (P). Then D(@~1) satisfies property (P) by Lemma
if d > 2. If d = 1, then property (P) for D(®) =1 can be checked using that all vertex
groups are free. By Proposition (ii), both 1 and 1’ grow dominantly of degree d.

Proposition together with Remark now shows n = D, ()¢t O
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Proof of Proposition[7.23. We say that the proposition holds true in degree d if (i)—(iii)
are satisfied for words W going only across edges e; of degree at most d, and if (iv)
holds true in the case that G only has edges of degree at most d. It now suffices to
show inductively that the proposition holds true for all degrees d > 0.

If d = 0, then W lies in a single vertex group, and the growth is clearly polynomial of
degree zero in both cases (i) and (iii), and it is linear in (ii). Part (iv) is clear because
the identity automorphism of a free group satisfies property (P).

In the case d = 1 we have an ordinary pre-efficient Dehn twist. The growth in (i) is
linear by Lemma In (ii), we have quadratic growth by Lemma The growth
in (iii) is linear by Lemma[6.15] Moreover, property (P) is given by Proposition

We now assume that d > 2, and that the assertion has already been proved for
degree at most d — 1. We write T4 'W =: (0o, tg,, 01, ... ,tg,0;) for the truncation of
W (cf. Section [3.2). We now prove (i). By Lemma [£.17|i) and Remark we have
to investigate the length of X ;, X1 ;,..., X ; for j — £oo, where

Xo,; == D](60)A;(0p(EL)),
Xij=A;(0p(E;))” 1pi (0:)A;(0p( Eir1)) for1 <i<Il-—1,
Xl,j = AJ((SD(EZ)) 1D (91)

]
g
As we know property (P) for D@1 all sequences Xo,j,---,X1; grow polynomially of
some degrees. We have to show that at least one X; ; grows polynomially of degree d
for j — 4o0. If 6p(E1) or dp(E)) is non-trivial, it grows dominantly of degree d — 1,
and we are done. Assume now that §p(E1) = 1 and 6p(FE;) = 1.

As exactly one of dp(e) and dp(€) is trivial for every edge e of degree d, there
is some i, 1 < i < [ — 1, such that both 6p(E;) and 6p(E;y1) are non-trivial, so
both grow dominantly of degree d — 1. If the basis length of X;; does not grow
(at least) polynomially of degree d, Lemma shows 6p(F;) = Ds(0;)6p(Fiy1)0; .
Definition [7.20(5) shows E;11 = E;. As p(E;) grows dominantly of degree d — 1, and
5p(E;) = D.(0:;)p(E;)0; ", Lemma shows #; = 1. But this is a contradiction to
the fact that 791 is reduced in the truncated sense, whence (i).

Assertions (ii) and (iii) follow similarly. As every D-cyclic element going across
edges of degree d grows dominantly of degree d by (ii), property (P) for D follows from
Proposition (in a version for higher graphs of groups) and property (P) for D(¢=1),
so we also know (iv). O

We remark that Proposition as well as Lemmas and also hold true for
truncatable replacements HDH ! of prenormalised higher Dehn twists D.

7.6 Dehn twists in rank at most one

The goal of this section is to discuss prenormalised higher Dehn twists with trivial or
infinite cyclic fundamental group.
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Definition 7.25. A cylinder of length k is a graph of groups G with underlying graph
I' an interval with k edges e1,..., e such that 7(e;) = t(ejq1) for 1 < j <k —1, and
such that all vertex groups are infinite cyclic and all edge maps f. are isomorphisms.

The terminology “cylinder” is motivated by the corresponding graph of spaces shown
in Figure 5| If I' = {v} and G, = Z, then we call G a cylinder of length zero.

€1 €2 €k

Figure 5: A cylinder of length k.

A higher graph of groups G is called cylinder of length k if its underlying ordinary
graph of groups is a cylinder of length k. This forces all edges to have degree one
because there are no trivial edge groups.

Whenever D is a (higher) Dehn twist on a cylinder G (or G), then D, = 1 for every
choice of basepoint v.

If I is a point and G, = 1, then we sometimes refer to G or G as a point.

Definition 7.26. A graph of groups G is called mapping torus if the underlying graph
' is a (possibly subdivided) circle and all edge maps f. are surjective.

Lemma 7.27. Let G be a graph of groups with finitely generated vertex groups and
free fundamental group. Assume G is a mapping torus. Then all its vertex groups are
trivial.

Proof. As G is a mapping torus with finitely generated G,, the fundamental group is
isomorphic to a semidirect product G, x Z. A K(m(G,v),1)-space can be built as a
(topological) mapping torus over K (G, 1). It has Euler characteristic zero. Therefore
the rank of the free group 71(G, v) has to be one. O

Proposition 7.28. Suppose that all vertex groups G, of G are either infinite cyclic or
trivial. If G is connected and there is a prenormalised higher Dehn twist D € Aut®(G),
then G is either a point or a cylinder of some length k > 0.

Proof. The proof is by induction on the degree d of G. If d < 1, then D is a pre-efficient
Dehn twist on an ordinary graph of groups. If there is an edge e, then G, = Z. This
forces G () to be non-trivial, so G(.) = Z. By Definition (4)7 we know that there
are no proper powers, so every fe : Ge — Gy is an isomorphism. As there are no
positively bonded edges, all vertices have valence at most two. By Lemma the
graph I' is not a circle, hence it is an interval. This shows that G is a cylinder.

If d > 2, then we know by induction that G is a disjoint union of points and
cylinders. Whenever e is an edge of degree d with 7(e) lying in a cylinder component,
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then D41 acts trivially on dp(e). This is also true if Gr(e) = 1 is an isolated trivial
vertex group. Therefore A;j(0p(e)) = dp(e)?. Since the basis length of this element
cannot grow polynomially of degree d, Definition [7.206) shows dp(e) = 1. Similarly
§p(€) = 1, but his is a contradiction to Definition [7.20|2). Therefore G has no edge of
degree d. Since it is connected, it is of the desired form. O

Corollary 7.29. Let D be a prenormalised higher Dehn twist or a truncatable replace-
ment on a connected G.

(i) If m1(G,v) is trivial, then G is a point.
(ii) If m (G, v) 2 Z, then there is a k > 0 such that G is a cylinder of length k.

Proof. Assume first that D is a prenormalised higher Dehn twist. As all vertex groups
inject into the fundamental group m1(G,v), they have to be either trivial or infinite
cyclic. Then Proposition [7.28| gives rise to the desired conclusion.

If D is a truncatable replacement of a prenormalised higher Dehn twist, then G is
an ordinary graph of groups equivalent to a point or a cylinder. Arguments similar to
those in the proof of Lemma [7.15] show that G is a point or a cylinder. O
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8 Normalising moves for higher Dehn twists

In Theorem we will see that, for every higher Dehn twist automorphism of a free
group, we can find a representative (G, D, p) as in Definition such that D is nor-
malised. The idea of the proof will be to successively improve the representing higher
graph of groups by moves which we define in the present chapter.

8.1 Building equivalences inductively by degree

For the underlying graph I' of a higher graph of groups of degree d, we write
EYT) := {e € E(I)|deg(e) = d}.

Let 1 : w1 (G@D) = 71 (G be an equivalence of categories for higher graphs of
groups G and G’. More explicitly, this consists of the following data: First, we have a
function denoted vy : V(I') — V(I) such that every connected component of I"(¢~1)
contains at least one vertex in the image of vy,. Moreover, we have bijections

Yo : (G, u, w) = w1 (G, Yy (u), Yy (w))

compatible with concatenation of paths. An important example will be the case of H,
for an equivalence H : G — G’ of higher graphs of groups. Other examples will appear
in the subsequent sections.

Let ¢ : E4T) — E4I’) be a bijection such that ¢¥g(€) = 1¥g(e) and 7(Yg(e)) =
Yy (7(e)) for all edges e with deg(e) = d.

For every choice of basepoint v € V(T'), the maps ¢y and g induce isomorphisms
of fundamental groups, which we denote by

U 7 (G u) — o (G gy (u)),
bu: T (Cyu) — w1 (G, Py (w)).

They are given by 1y on elements in vertex groups and on edges of degree at most
d —1, and by te /> ty, () on edges e of degree d.

. . d—1 . . .
Sometimes we write 1, for wqﬁ ) when there is no risk of confusion.

Lemma 8.1. In the above notation, let D be a higher Dehn twist on G and D" a higher
Dehn twist on G'“=1Y) such that w&dil) o Diffl) = Do wq(fi*l) for every vertex u. Then

there is a higher Dehn twist D' on G’ such that ¥y 0 Dy, = D), 01, and p'4=b = pr.
We visualise the equivalences of fundamental groupoids in this lemma in terms of
the following diagrams:
(d-1)y ¥ (d—1) i /
m(GY) ——=m (G m1(G) —=m(G)
|
D, lD;’ lD* | D',

" " Y
m(GD) —— my (G/4-D) 71 (G) —= 7 (G)
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Proof of Lemma[8.1. We define dp/(¢g(e)) = vo(dp(e)) for edges e of degree d. The
other data is the same as for D”. Then D’ has the desired properties. O

8.2 A mapping cylinder construction

In this section we replace a trivial edge group in degree 1 by an infinite cyclic edge
group. Let D € Aut’(G) be a higher Dehn twist and e an edge such that G, = 1,
deg(e) =1, ép(e) =1, and dp(e) # 1.

Let G’ be the higher graph of groups with the same underlying graph I" as G, vertex
group G/ (¢) = Gu(e) * Z, edge group G, = Z. The attaching map f7 is the inclusion of
the new free factor Z, and f. maps the generator of G, to dp(e). The other data the
same as for G. Geometrically, this corresponds to pulling a cylinder along the edge e as
shown in Figure[6] There is a morphism H : G — G’ defined by the canonical inclusion
on each piece.

Figure 6: A mapping cylinder construction.

Define a higher Dehn twist D’ on G’ as follows: We take dp/(€) = H.(dp(€)) for
every edge ¢ € E(T") with deg(é) = 1. We then use Lemma inductively to extend
the definition of D’ on G'M to '@, GG, ..., G4 = @ such that D.H, = H,D,. In
particular, for any choice of basepoint, we have D,, = H,,D.,H_!.

8.3 Sliding edges within lower strata

Let G be a higher graph of groups with a distinguished edge e such that Ge = 1. In
Section we discussed how to modify the terminal vertex of this edge, and we defined
an equivalence H : G — G’. We re-use the notation of that section. Recall that we
obtained the new underlying graph I by replacing the edge e with another edge ¢/,
and we had the flexibility to choose an arbitrary dp(e) € w1 (Gde&©)=D 7(e) 7(¢')),
whereas the other dp(€) = 1.

We investigate how higher Dehn twists behave under conjugation by this equivalence
H.

Lemma 8.2. Let D € Aut®(G) be a higher Dehn twist. Then HDH™' € Aut®(G') is
a higher Dehn twist with

5D(é)7 Zf e 7& €, deg(é) < deg(e)a
5HDH—1(é) = D*((SH(G))_l(SD(e)(SH(e), if e = 6,,
H.(0p(e)), if deg(é) > deg(e).
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Proof. Tf deg(é) < deg(e), we have dp (&), 05 (€) € m (Gde8©)=1) so H, acts trivially
on them. If € # e, then 0y (€) = 1. Using this, the formulas for é;py-1(€) follow by a
straightforward calculation. O

8.4 Subdivision of edges

Fix an edge e in the higher graph of groups G. Let IV be the graph obtained by removing
the edges e and €, and adding new edges €', ¢/, ¢”, ¢’ with 1(e’) = 1(e), T(e") = 7(e),
and a new vertex 7(¢/) = 1(e”). Define deg(e’) = deg(e”) = deg(e). Let G’ be the higher
graph of groups with underlying graph I/, the new vertex group Gr(ery = Ge, new edge
groups G = Ger = Ge, the identity maps fo : G — Gy and fgr 1 Ger — Greny.
The other data of G’ is chosen to agree with that of G.

There are natural bijections ¢ : 7 (G, u,w) — 71 (G', u,w) for all vertices u and w.
They are given by t. — toter and fixing the other tz with é ¢ {e,e} as well as all
elements in vertex groups.

Given a higher Dehn twist D on G, we can define a new higher Dehn twist D’ on
G’ by 6pi(e') = 6p(€), 6pr(e') = 1 = dpi(€”), and épr(e”) = 6p(e). The other J-terms
of edges of degree at most deg(e) are the same as for D. This defines D’ on G’ (deg(e))
and the definition can be extended by Lemma to all of G’.

8.5 Folding edges with D-conjugate J-terms

Suppose we have D-conjugate non-trivial 6-terms ép(e) = D, (€)dp(e')e~!, where the
degree deg(e) = deg(e’) > 2. Assume that dp(€) = 1 and dp(e/) = 1. Consider an
edge slide equivalence H : G — G” with §y(e) = ¢~!. Then Lemma shows that
dupr-1(€) = dgpr-1(€’). In particular, 7(e) = 7(¢/) in G”.

We now define a new higher graph of groups G’. The underlying graph I' is obtained
from the underlying graph I'” of G” by folding the edges e and ¢’ as follows: The
vertices of IV are the same as those of ', but with ¢(e) and ¢(e’) identified. We denote
this new vertex of IV by u. Instead of ¢ and ¢/, we have one new edge ¢’ from u to
7(e) = 7(€¢/) in I” having the same degree as e and ¢’ in G”. The vertex groups of G’
are
G — {Gi’(e) * GZ’(e,), if v(e) # ¢(e) in T,

Gi'(e) * (c), if t(e) = u(e) in T”.

and G}, = Gl for w # u. Here ¢ denotes a new formal generator with (¢) = Z. The
non-trivial edge groups of G’ are the same as those of G”. Note that G and G, are
trivial because e and €’ have degree at least two. Therefore we have to put G/, = 1.
The attaching maps f. of G are those of G” composed with some obvious inclusions.

The higher graphs of groups G” and G’ are illustrated in Figures|7|and 8] To simplify
the picture, we depict the situation that e and e’ are the only edges of G”. The vertex
spaces are indicated by the thick lines, where the additional loop at G’ in Figure
corresponds to ¢ € Gl,.

There is a morphism C : G” — G’ given by the obvious folding map I/ — T" on
underlying graphs. On vertex groups, we define C), to be the identity if w is neither
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€/
o e// u
G// G/

Figure 7: Folding G” to G’ when c(e) # ¢(¢’).

e/
6// u
e
G// G/

Figure 8: Folding G” to G’ when c(e) = ¢(¢’).

t(e) nor «(€’). The vertex group morphisms C, ) : G’L’(e) — G, and Cyery Gi’(e,) -G,
are the inclusions of the free factors. On non-trivial edge groups G¥, the map Cs is the
identity. We put all 6c(€) = 1 except dc(e/) = c in the case that t(e) = t(e’) in T”.
This finishes the definition of the morphism C, and it can be checked that it induces
an isomorphism on fundamental groups.

We now define a higher Dehn twist D’ on G’ in the following way. If deg(é) < deg(e)
and € is neither €” nor €”, then we define 6p/(€) = Ci(Sgpg-1(€)). On the folded edge
e”, we define dp/(e”) = 1 and dpr(e”) = Cy(6gpr—1(e)). This finishes the definition
of D' on @/(42(€) Tt can be checked that, when restricting to G”(4¢8(¢)  we have
C.(HDH™ 1), = D.C,. We inductively use Lemma to define D’ on all of G’ such
that (CH).Ds = D, (CH)s.

8.6 Twisted reduction of j-terms

If the higher Dehn twist D on G has some dp(e) with deg(e) > 2 which is not D-
twistedly reduced in the truncated sense, then we show how to define an equivalence
H : G — @ such that the higher Dehn twist D’ := HDH~! on G’ has one more
twistedly reduced d-term as D has. Below we give the details of this construction
together with some additional features. We need the following lemma.
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Lemma 8.3. Let D € Aut®(G) be a prenormalised higher Dehn twist and n € 71(G,u).
Then n is D-conjugate to some n' € w1 (G, u') such that

o 7/ is D\ _cyclic and D™ -twistedly reduced in the truncated sense for some m,
e Gy #1lorny =1,
e ifm=1, thenn € Gy oru is not a clutching point of D.

Proof. Proposition (applied to the truncation T4 ! of a truncatable replacement)
provides a decomposition 7 = D,(e)n”e~! such that n” is D-twistedly reduced in the
truncated sense. If 7' does not go across edges of degree d, then we repeat this con-
struction to find 7" satisfying the first bullet point for some m, 1 < m < d. If n”
is contained in a single vertex group of G, then we take ' = n”, and we are done.
Therefore we may assume a reduced expression 1 = xt1g1 ...tp_19k_1try with & > 1.

If m =1, then the group G,(,) has to be non-trivial because G, = Z and the map
fer : Gey = Gyey) is injective. If some 7(e;) is not a clutching point of D, then we may
take ' = Dy(tj419j+1 - - - try)atig ... tjg;. If every 7(e;) is a clutching point, then all
fe; and fe; are surjective. As (t;,g;,tj41) for 1 <j < k—1and (¢, yz,t1) are reduced,
we have e; # €;51 for 1 < j < k, where e;q; := e;. We also observe that e; and
€j+1 are bonded for every j because G () is infinite cyclic. This is a contradiction to
Lemma Therefore we may achieve all desired properties for 7’ if it goes only across
edges of degree one.

Assume now m > 2. If some Gr(;) # 1, then ' = Di(tj119j41 .. - tey)xtign - . . tg;
works. If all G (.;) = 1, then Definition [7.20(4) implies dp(e1) = 1 = dp(e1), which is
a contradiction to Definition [7.20)2). O

Given a higher Dehn twist D € Aut’(G) and an edge e such that D(dee(¢)=1)
is prenormalised, then Lemma provides a decomposition dp(e) = Di(e)n'e !,
where 7/ is D(d°e(©)=D_twistedly reduced. If 7/ € (G481 4/} is not contained
in 71(G(de8(€)=2) /'), then we arrange G, # 1. If further deg(e) = 2, then we arrange
that u/ is not a clutching point of D). Let now H : G — @’ be the edge slide equiv-
alence with dy(e) = e. Lemma shows that dgpg-1(e) = 1, whereas the other
O-terms in degree at most deg(e) are unaffected.

8.7 The list of moves

The following moves will be the steps to build normalised higher Dehn twists in The-
orem Given a higher graph of groups G with a higher Dehn twist D, each of the
moves will define a new higher graph of groups G’ with a higher Dehn twist D’. We
will always assume that G is connected, and this will ensure that G’ in each move is
connected.

Recall the concept of positively and negatively bonded edges in Definition [6.1] as well
as invisible vertices and unused edges from Definition [6.2]

(M1) Remove a valence one vertex w with surjective edge map (regardless whether
Gy = 1 or not).
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(M2) Delete an invisible vertex w with G, = Z and negatively bonded edges.
(M3) Fold positively bonded edges with infinite cyclic edge groups.

(M4) Contract unused edges (form either amalgam or HNN extension, either G, # 1
with trivial twistor z, = 1 or G, = 1 with trivial -terms).

(M5) Adjoin a formal root to an edge group.
(M6) Apply the mapping cylinder construction (cf. Section .

(M7) Subdivide e with G. = 1 when both dp(e) and dp(€e) are non-trivial (cf. Sec-
tion .

(M8) D-conjugate a d-term and fold e with e’ when dp(e) and dp(e’) are non-trivial
and D-conjugate, and dp(€) and dp(e’) are trivial (cf. Section .

(M9) D-conjugate some dp(e) with deg(e) > 2 to make it D-twistedly reduced (cf.
Section - If pi(e) & G/T(E) and D(e8(€)=1) i prenormalised, then we achieve

that G, # 1, and that 7(e) is not a clutching point of D'M) when deg(e) = 2.

(M10) Lower the degree of an edge e and € when deg(e) > 2, dp(€) = 1, and dp(e) €
71 (GAe(©)=2) 7 (¢)).

The moves (M1) to (M5) specialise to those in Section 8.2 of [I3] when we restrict our
attention to Dehn twists of ordinary graphs of groups (with infinite cyclic edge groups
only). In general, the description in [13] defines our new Dehn twist D’ on edges of
degree 1, and we use Lemma to define D’ on edges of higher degree.

For each of the moves (M1) through (M10), there is a distinguished outer iso-
morphism class ¢ : 7 (G,v) — 7 (G',v') for any choice of basepoint v/ such that
D = {51312*1. In (M3) through (M10) we may choose v’ such that we get an isomor-
phism 9 : 71 (G, v) — 71 (G',v") with D, , = ¢D,,yp~'. In (M1) and (M2) this is also
the case if the removed vertex w is different from the basepoint v. When we study
higher Dehn twist automorphisms in Aut(m(G,v)), we will have to restrict the first
two moves to:

(M1*) Perform (M1) at a vertex w # v.

(M2*) Perform (M2) at a vertex w # v.

Proposition 8.4. If D is a higher Dehn twist on a connected G with finitely generated
free m1 (G, v) such that D is not normalised, then at least one of the moves (M1)-(M10)
is applicable. If D is not pointedly normalised, then one of (M1%*), (M2%*), (M3)-(M10)
1s applicable.
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Proof. Recall that all vertex and edge groups are free because they inject into the
fundamental group 71 (G, v), which is free. Since the twistors z, are central in G, they
are always trivial at free edge groups of rank at least 2. We can apply (M4) to remove
them. Therefore we may assume that all edge groups are either infinite cyclic or trivial.

Suppose first that D) is not prenormalised, so it violates one of the two bullet
points of Definition We first discuss how to get rid of trivial edge groups G, with
deg(e) = 1: If both dp(e) and dp(€) are trivial, then we contract the edge using (M4).
If they are both non-trivial, we may apply (MT7) to subdivide the edge. If exactly one
of 6p(e) and 6p(€) is trivial, then we apply (M6). We can now assume that DY) is an
ordinary Dehn twist.

If DM is not pre-efficient, then D) fails to satisfy one of the properties (3)—(5) of
Definition and one of the moves (M3)—(M5) can be carried out. Therefore we may
assume from now on that D) is prenormalised.

Suppose that D is not prenormalised. Then there is a unique m with 2 < m < d
such that D™= is prenormalised, but D™ is not. We now check for each condition
of Definition that, whenever D™ violates it, then we can apply a move.

If there is an edge e of degree m such that both dp(e) and dp(€) are trivial (or non-
trivial), then we may apply (M4) (or (M7) respectively). If some dp(e) with deg(e) =m
is not D-twistedly reduced in the truncated sense, then we may D-conjugate it using
(M9). If deg(e) = m, G = 1, and dp(e) # 1, then we may assume by (M10)
that dp(e) is D™ D-cyclic, and we can apply (M9) to move 7(e) to another vertex
with non-trivial vertex group. If two non-trivial p(e) and dp(€’) are D-conjugate and
violate Definition (5), then we assume that §p(€) and dp(e’) are trivial, and we
can carry out (M8). If e is an edge of degree m such that dp(e) # 1 and the growth of
Aj(6p(e), D,) is slower than polynomial of degree m, then Proposition [7.22(ii) proves
dp(e) € T (G"=2), and we may apply move (M10).

We now assume that D is prenormalised with connected underlying graph. We are
left to verify that we can apply one of the moves when there is at least one clutching
point w (different from the basepoint v in the pointed case).

Let w be a clutching point of D). If there is an edge e of degree at least 2 terminating
at w with dp(e) = 1, then w is not a clutching point of D. If dp(e) € G (), then we
may apply (M10). If dp(e) ¢ Gr(c), then we can apply move (M9) to move 7(e). If no
edge of degree at least 2 terminates at w, then we can apply (M1) or (M2) at w. In
the pointed case, this amounts to (M1*) or (M2*) because w # v.

Suppose now that m > 2, and w is a clutching point of D™ which is not a clutching
point of D=1 Then w is a 1-valent trivial vertex group in I'™). If there is an edge
e of degree deg(e) > m with 7(e) = w, there are two cases: If 0p(e) # 1, we can move
7(e) by means of (M9). If 6p(e) = 1, then w is not a clutching point of D, and there is
nothing to show. If there is no such edge e terminating at w, then w a 1-valent trivial
vertex group of all of D, and (M1) applies. In the pointed case we have assumed w # v,
so (M1*) applies then. O
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8.8 The semi-invariant A

To measure the failure of a higher Dehn twist D being normalised, we define a tuple
A(D) of 2d + 4 non-negative integers.
The components of A(D) are (in this order):

e the number of edges e such that G, is free of rank at least 2,

e the number of edges e with G, =1, dp(e) # 1, and dp(e) # 1,

e the number of edges of degree d,d — 1,...,2 (i.e. d — 1 numbers in this order),
e the number of edges e of degree 1 with G, =1,

e the number of edges e with G, # 1,

~

e the sum of all exponents of f.(a.) with G = (ae) = Z (counted without multiplic-
ity when fu(ae) = fe(ae)™), where the exponent of an element of a free group
is the largest p > 1 such that it is a p-th power,

e the sum of all twist exponents n, taken over all e with G, = Z,

e the number of edges with deg(e) = 2 such that dp(e) is not DM-twistedly reduced,
or dp(e) # 1 and 7(e) is a clutching point of D),

e the number of edges e with deg(e) = 3,...,d such that dp(e) is not D-twistedly
reduced in the truncated sense or based at a trivial vertex group G, with
dp(e) #1 (i.e. d — 2 numbers in this order).

Lemma 8.5. Let D be a higher Dehn twist, and suppose D' is obtained from D by one
of the moves (M1)-(M10). Then A(D') < A(D) with respect to the lexicographic order.

Proof. In moves (M1), (M2), (M4) an edge disappears, so one of the first d + 3 compo-
nents of A(D) decreases strictly, and none of these components increases.

When we apply (M3), the first d + 4 components of A(D) and A(D’) agree, and the
sum of all exponents n. decreases strictly. Note that the sum of all exponents of f.(a.)
is left invariant because we do not count multiplicities.

Move (M5) strictly decreases the sum of all exponents of f.(ae), and it leaves the
preceding components of A(D) invariant.

The mapping cylinder construction (M6) replaces an edge of degree one with trivial
edge group by an edge with infinite cyclic edge group, so the first d + 1 components of
A(D) are left invariant, whereas the (d 4+ 2)-nd component strictly decreases.

The subdivision move (M7) strictly decreases the second component of A(D), and it
does not affect the first one.

In move (M8), the D-conjugation does not affect the numbers of edges of each degree,
and the folding decreases one of these components of A(D).

Move (M9) only lowers one component of A(D) mentioned in the two last bullet
points, and the other components are unaffected.
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Lowering the degree of an edge reduces the number of edges of the old degree, and it
leaves the numbers of edges in higher degree invariant. This finishes the verification that
each of the moves (M1)—(M10) strictly decreases A(D) with respect to the lexicographic
order. O

8.9 Normalising higher Dehn twists of free groups

Theorem 8.6. Let D € Aut®(G,v) be a higher Dehn twist, where G is connected and
has a finitely generated free fundamental group. Then:

(i) There is a higher graph of groups (G',v") together with a higher Dehn twist D’
and an isomorphism p : w1 (G',v") — 71 (G, v) such that D" is pointedly normalised
and Dy, = pD’, ,p~ .

(i) There is a higher Dehn twist D" on some (G”,v") and an isomorphism p :
711 (G",v") — 71 (G,v) such that D" is normalised and D = pD"p~ 1.

Proof. We only prove (ii) because the arguments for (i) are similar.

If D is normalised, then we take p = 1 and D’ = D, and there is nothing to show.
Otherwise we proceed by induction on A(D), which can be done because the set of
tuples of 2d + 4 non-negative integers does not contain an infinite strictly descending
chain in the lexicographic order.

Suppose now that D is not normalised. Then Proposition 8.4 shows that there applies
at least one of the moves (M1)—(M10). This provides a higher Dehn twist D; on some
Gy such that D = 51Dy~ for some isomorphism p;. We have A(Dy) < A(D) by
Lemma We know by induction that there is a higher Dehn twist D’ on G’ such
that l/)\l = ;’b\’;’il for some isomorphism p’. Then D= p/l\p’b\’p/l\p’_l proves the
assertion. 0
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9 Automorphisms acting trivially on 7,

Let G be a higher graph of groups. We now study the groups

KA(G) = {H € Aut’(G)|H,, = 1},

KO(G) = {H € Aut’(G)|H = 1}.
For an ordinary graph of groups G we write KA(G) and KO(G). We first introduce
notation for some elements in these groups.

9.1 The automorphisms M (v,~) and K (e, h)

For any vertex w of the underlying graph I' of G and v € G,, the automorphism
M := M (w,~) is defined by

Mr =1,

M,=1,

M, — ad,, if u=w,
1, if u # w,

1 otherwise.

Ss(e) = {% if 7(e) = w,

If the vertex w is equal to the basepoint v, then M(v,7)« = ad,, and otherwise
M(wa ’7)*11 =1
Next we fix some edge e € E(I') and h € G.. We define K = K (e, h) € Aut(G) by
Kr =1,
Ks = ad;l, ife=eore=ce¢,
1 otherwise,
K,=1,
- s(h), ife=eore=e,
1 otherwise.

It is easily verified that (K (e, h)). = 1.

Lemma 9.1. Let G have no surjective edge map at the basepoint vertexr group G, and
n € m(G,v). If nGyn~t = Gy, then n € G,.

Proof. Choose a reduced word W = (go,t1,91,-..,tk,gx) representing n. We have to
show k£ = 0.

As fe, is not surjective, we find g € G, such that gkggk_l ¢ fer(Ge, ). Then

<907t17917 o 7tkvgkggk_17t];17 cee 791_17t1_179()_1)

is a reduced word going across 2k edges which represents ngn~!' € nG,n~! = G,. This
shows k = 0. O
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We now show which automorphisms of an ordinary graph of groups G act trivially on
the fundamental group. With slightly different requirements on G, this corresponds to
Proposition 3.4 of [31]. In a similar setting, the case of KO(G) has also been investigated
in Theorem 6.4 of [4].

Lemma 9.2. Suppose that, for every edge e, the normaliser of fe(Ge) in Gr(e) equals
fe(Ge). Then:

(i) KA(G) is generated by maps of the form M(w,~) with w # v and K (e, h).

(i) If there is additionally a vertex u such that no f. with 7(e) = u is surjective, then
KO(G) is generated by automorphisms of the form M (w,~y) and K (e, h).

Proof. We first verify the asserted generating set for K A(G). Let A be the subgroup
of Aut’(G) generated by all elements of the form M (w,~) (for w # v) and K (e, h). We
define a subgraph A(H) of T', which may be thought of as the subgraph of I where H
acts trivially. We say that a vertex w of I' belongs to A(H) if and only if H,, = 1. An
edge e is defined to belong to A(H) if and only if its initial and terminal vertices are
in A(H), and 0g(e) =1 =4dp(e).

As H,, = 1 the vertex group automorphism H, =1, so v € A(H). We define A(H)
to be the connected component of v in A(H).

Claim: If A(H) # T, then there is some H' € H.A such that A(H') strictly contains
A(H).

This claim will prove assertion (i): we can apply it inductively to find H, H', H", ...
such that A(H) C A(H') C A(H”) € .... Since T is finite, we will eventually get some
H € H.A such that A(H) =T.

By applying the compatibility condition in Definition (7), we see that if e € A(H),
then

fe(a) = I:[‘r(e)(fe(a)) = 5ﬁ(€)fe(ﬁe(a))5ﬁ(€)il = fe(ﬁ[e(a»

for a € G.. As f. is injective, we have H, = 1. Then A(ﬁ) =T ensures H = 1 and
H € A, as asserted.

To prove the claim, assume that A(H) # I'. Then, as I' is connected, there is some
edge e € I' \ A(H) with initial vertex u = ¢(e) lying in A(H). Let w = 7(e).

Let eq,...,er be an edge path from v to w in A(H). Let T := t., ...t.,. Recall
that H.(te,) = 65 (€)te,0m(e;)~!. Since each e; is an edge in A(H) C A(H), we have
or(ei) =1=406p(€). Hence H(te;,) =t., and H,(T)=T.

By Definition [2.4(7), we have

fe(a) = 0m(e) fe(He(a))dn (€)™

for a € Ge. As fe(Ge) is its own normaliser in G (), we have 6 (€) = fe(h) for some
h € G.. By injectivity of fe this implies H, = ad,:l. We define H' = HK (e, h)™!.
Then A(H') D A(H), H, =1, and dg/(€) = 1. We want to arrange e € A(H'). We
need to consider the case when w ¢ A(H) and the case when w € A(H).
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Assume first w ¢ A(H). For every g € G,, we have
Ttebyp (€)™ HL (0)0mr () T = HL(Ttegts ' T™Y) = Ttogt7 T,

so H! (g9) = dp(e)gdm(e)~t. We now define H” = H'M(w,dg:(e))~!, and we see
A(H) Cc A(H"”) and e € A(H").

If w e A(H), we choose an edge path €,..., e}, from w to v in the graph A(H). Let
"=t .. et - As for T, we have H.(T") =T'. Tt follows that

Ttebp(e) 1T = H. (Tt T") = Tt T,

so 6yr(e) =1 and e € A(H'). Therefore A(H') 2 A(H). This finishes the verification
of the above claim, which proves (i).

To obtain (ii), let H € KO(G). Then H=1and H,, = ad,, for some 7 € m1(G,u).
Lemma implies 7 € G,,. Then (HM (u,n) )4, = 1 and (i) prove assertion (ii). [

9.2 The automorphisms Z(F,~,)

In the following sections, we want to extend Lemma to higher graphs of groups G.
We need more generators Z(F,~,) and O(e,d), which we define now.

Let m > 1 and F a connected component of G("™). Moreover, we need an element Yu
in the centre of ﬂl(G(m),u). We write 7, := €pyuey' for every vertex w in F, where
€y € Wl(G(m), w,u). As 7, is central, 7, is independent of the choice of €,,.

Using this notation, we define Z = Z(F,~,) € Aut’(G) as follows:

Zr =1,
Z.=1,
Zy =1,

52(6) Yr(e), if deg(e) > m and 7(e) lies in I,
e) =
“ 1 otherwise.

It is straightforward to verify that Z(F,ve )« = ad,, if v lies in the connected component
F, and otherwise Z(F,ve)s«w = 1. We sometimes write Z (I, v,) for Z(F, ).

9.3 The automorphisms O(e, §)

Suppose e is an edge of G such that G, = 1 and ((e) is 1-valent in the stratum
G(deg(®)) | Given an arbitrary § € 7 (G489~ (e)), we define O = O(e, §) € Aut’(Q)
by Or=1,0: =1, O, = 1, and

0, if e =e,
do(€) = t.071t;t, if é £ e and 7(€) = i(e),
1 otherwise.

The reader can check that O(e, 6). = ad, ;1,-1 if v = 1(e) and O(e, §)+v, = 1 otherwise.
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9.4 The kernel of the restriction homomorphism

In this section G is any higher graph of groups of degree d > 2.

Lemma 9.3. If H € KO(G), then H|p € KO(F) for every connected component F of
GUD. If 7 (G v) # 1, then Hyy = ade for some ¢ € m (G~ v).

Proof. Pick a vertex u € F. Since H = 1, we have H,, = ad¢ for some ¢ € 7 (G,u). If
m1(F, ) is trivial, then H|p € KO(F) is clear, so we assume 71 (F,u) # 1. Then

71 (F,u) = Hyy(m1 (F,u)) = ¢y (F,u)¢ !
shows that ¢ € 7(IF,u). Then (H|g)« = ad¢ implies ﬂg =1. O

Lemma 9.4. Assume H € Aut®(G) with deg(G) = d and H?1) = 1. Let e and € be
edges of degree d and € € 71 (G4=V 7(e), 7(¢")). If either

(i) H € KO(G), there is at least one vertex u with 71 (G Y u) # 1, and none of
Gye) and Gyey is a 1-valent trivial vertex group, or

(ii) H € KA(G) and G (), G,(e) are allowed to be 1-valent trivial only at the basepoint
,U7

then Sy (e) = edp(e)e L.

Proof. As G is connected and has no 1-valent trivial non-basepoint vertex groups at
t(e) or i(e'), we can find a word W = (6p,t1,61,...,tk, 0k) reduced in the truncated
sense such that (t;,0;,t;11) = (te,€,t;) for some j, 1 < j < k— 1. In case (i) we
assume that W goes from u to u, where Wl(G(d*D, u) is non-trivial, and Lemma
shows H., = ad; for some ¢ € (G4 u). In the situation (ii), we assume that W
goes from the basepoint v to itself.

As H.(JW|) = ¢|W|¢™!, uniqueness of expressions reduced in the truncated sense
shows that

(CO0,t1,01, ... 5, 0kCY) = (B00p(€1), t1, 6m(e1) 10161 (€2), - . -, t, Orr(ex) '0k),
where ¢ =1 in (ii). We read off
e =0; = 0n(e;)” 0;0m(ej31) = dr(e) " edn(e’),
which is the assertion. O

Proposition 9.5. Every H € KO(G) with HY = 1 is a composition of auto-
morphisms Z(F,~.), where F is a connected component of GV, and O(e,d) with
deg(e) =d. If H € KA(G), then no Z(F,~,) with v € F and no O(e,§) with 1(e) = v
1s needed.
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Proof. We pick an arbitrary H € KO(G). We may assume 7 (G ) # 1 for some
vertex u because H = 1 otherwise.

We denote by I the subgraph of I" obtained by removing e, €, and (e) for a degree
d edge e whenever ((e) is 1-valent in T' and G,y = 1. We write G’ = G|p. As
H € KO(G), we have H|p» € KO(G').

If e € E(I') has degree d, then Lemma i) with e = ¢’ shows that dgy(e) is
central in 71 (G, 7(e)). Moreover, Lemma shows 6 (e') = e 10y (e)e whenever
the edge ¢ € E(I”) also has degree d and € € (G4 7(e), 7(¢')). We now write
H = HZ(F, 05 (e))"!, where F is the connected component of G(4=1 containing 7(e).
Then H@V = -1 =1 and

5o () = dp(e), ifdeg(e’) =d,7(e’) ¢F,
H 1, if deg(e’) =d,7(e’) € F.

Repeating this construction on all components of G4~ we find H' € Aut®(G) such
that H'|p» = 1 and H'H~! is a composition of automorphisms of type Z(F, ).

The only non-trivial data of H' is now all §g(e) such that G, is a 1-valent trivial
vertex group. Then H’ is the composition of automorphisms O(e,dp(e)). Therefore
H may be written in terms of the asserted generators. This finishes the proof of the
case KO(G).

The present argument also applies to the case H € KA(G) with a slightly different
definition of I'': We keep the basepoint v € I even if it carries a 1-valent trivial vertex
group with an edge of degree d. The rest of the proof works in the same way. O

9.5 The group Aut)(G)

Suppose we are given a connected higher graph of groups G and a finite set I. For
every element ¢ € I, we fix a vertex v;. We define the group

Aut)(G) = {(H, (6;)ier)|H € Aut’(G),8; € m1 (G, v;)},
where we suppress the v; from the notation. The group law is given by
(H, (8:)ier)(H', (6)ier) = (HH', (H«(6;)0)ier)-

We now define the “central conjugation subgroup” Z;(G) C Aut(G) to be the
subgroup of all tuples (1, (J;);) such that J; is central in 71 (G, v;) and 6; = eivjéje;jl for
all i,j € I, where ¢; ; € m1(G,v;,v;) is arbitrary. Then Z;(G) is a normal subgroup of
Aut)(G).

We further define

KA](G) = {(H, (5i)i61)‘H*v = l,H*(q) = eiéi_l fOI‘ €; S 71'1(@,’1),1}1')}, (39)

KO[(G) = {(H, (8:)ier)| H = 1, Hy(e) = §;ed; " for all € € m1 (G, vi,v;)}. (40)

A calculation using H,, = 1 shows that, in the definition of the group K Aj, the
condition H,(€;) = €6, L for some ¢; is equivalent to that condition for every element
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€; € m(G,v,v;). It can be checked that KA := KA;(G) and KOy := KO;(G) are
normal subgroups of Aut?(G) and KA; ¢ KOj.

Remark 9.6. If the underlying graph of G is a single point v with G, = G, then we
write Autz(G) for Aut)(G)/KA;r = Aut}(G) and Outz(G) for Aut?(G)/KO;. These
groups also appear in other work. In [5] they appear as Out(n, k) in the construction
of a bordification for outer space. In the context of automorphisms of hyperbolic
groups by Levitt [2I], they are called Aut% and PMCG?. Hatcher [I7] investigates
homological stability of Aut(F,,) using sphere systems in certain 3-manifolds, and our
group Out(F},) coincides with his 'y, |7/

The map KA; — Aut’(G) forgetting the §; induces an isomorphism
KA (G) 2 KA(G). (41)

Similarly, forgetting the terms §; of elements in KO;(G) induces the surjection in a
short exact sequence

1—Z;(G) - KOr(G) - KO(G) — 1. (42)

The elements in KO(G) introduced in the last sections lift to the following elements in
KO (G):

if 0; = w,
M(w”)/)[ = (M(wav)v (55‘/1))’ where (55\4 = {7’ L w
1 otherwise,
K (e, h)r = (K(e, h), (1)),
Vi f 7 ]F’
Z(F,7e)1 = (Z(F, ), (512))7 where 5iZ = {7 o LV .
1 otherwise,
ted 1Y, if v =
O(e,8)1 = (O(e, 0)1.(57)), where 60 = e ifvi=e),
1 otherwise.

These automorphisms lie in K A7(G) if they are lifts of automorphisms in K A(G).

If the degree of G is d > 2 and Fy,...,F; are the connected components of G(4—1,

we write

E, ={e€ E(')|deg(e) =d,7(e) € F,}

for 1 < r <. There is an isomorphism

l
Aut’(G) = EP Aut, (F,) (43)
r=1

given by restriction to the components: H is mapped to (H|r,, (dg(€))ecr, ) in the r-th
component. When G has no 1-valent trivial vertex groups with a degree d edge (away
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from the basepoint in ), then this isomorphism restricts to isomorphisms

l
KO(G) = P KOg, (F,), (44)
r=1
l
KA(G) = KAp, (F1) & (P KOg, (F,), (45)
r=2

where we assume that the basepoint v lies in F;.
We now study the groups KAy and KOy for a cylinder as in Definition [7.25]

Lemma 9.7. Let G be a cylinder of some length k > 0 with an arbitrary basepoint v
and I a finite set. Then:

(i) KO;(G) is generated by automorphisms of the type M (w,~)r and K(e, h);.

(ii)) KAr(G) is generated by automorphisms of the type M (w,~)r with w # v and
K(e,h)s.

Proof. We first assume I = @. We have m(G,v) = G, because there are no reduced
words from v to v with non-trivial underlying path. If H € Aut’(G) with H = 1,
then H,, = 1 because the inner automorphism group of m(G,v) is trivial. Hence
KO(G) = KA(G), and Lemma[9.2(i) proves that this group is generated by the desired
elements.

If I # @, then (ii) follows directly using the isomorphism . For (i), it remains
to show that all elements in the kernel Z;(G) in the short exact sequence can be
expressed in terms of the desired generators.

We denote the edges of the underlying graph I' by ej,...,e; and the vertices by
wo, . .., wy such that t(e;) = wj—1 and 7(e;) = w;. Moreover, we denote by b; a
generator of G, = Z and by h; a generator of G, = Z such that f. (h;) = b;
and fe-(h;) = bj—1. Then Z;(G) is infinite cyclic generated by the automorphism
(1, (bji))ier) , where the index j(i) is determined by v; = wj(;). The relation

(1, (b](z)» = M(’wo, bo)[M(’wl, bl)[ ce M(wk, bk)]K(el, hl)l_l ce K(ek, hk)[_l
finishes the proof. O

Corollary 9.8. Assume D € Aut’(G) is a prenormalised higher Dehn twist or a
truncatable replacement. Then every automorphism Z(F,~,) € Aut’(G) with F being a
connected component of G\ is a composition of some M(w,~) and K (e, h) with w
and e lying in F.

Proof. Z(F,~e) can be non-trivial only if the fundamental group of F = T, is infinite
cyclic. Then F is a cylinder by Corollary ii). Under the isomorphism , the au-
tomorphism Z(F,,~e) corresponds to an element in Zg, (F,) C KOg,(F,). Lemma
allows us to decompose this in terms of M (w,)g, and K(e, h)g,. On the left hand
side of ([4)), this corresponds to the desired decomposition of Z(Fy., va). O
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10 Preserving the graph of groups structure

10.1 Preserving cyclic path lengths

Bass and Jiang [4] use a slightly different notion of graph of groups morphisms. After
a careful translation of the definitions, Section 1.7 of [4] has the following consequence.

Proposition 10.1. Suppose all edge groups of G and G' are trivial, and there are no
1-valent trivial vertex groups. Let ¢ : m1(G,v) — m1(G’,v") be an isomorphism such that
the cyclic path length pl.(p(n)) = plc(n) for every element n € w1(G,v). Then there is a
graph of groups equivalence H : G — G' such that g/g = H as outer 1somorphism classes
m1(G,v) = m (G, ). O

We now want to rephrase Proposition in terms of vertex group conjugates in
the fundamental group of a graph of groups.

Definition 10.2. A subgroup A of 71(G,v) is a vertex group (or vertex group conju-
gate), if it is of the form A = 0G,0~! for some vertex u and some 6 € 71(G,v,u).

In the following we assume that G has no surjective edge maps at non-trivial vertex
groups, which will ensure that u and the coset G, are determined uniquely by A when
A#1.

Non-trivial vertex groups G, 0! correspond bijectively to vertices §G,, in the Bass-
Serre tree of G with non-trivial G,. These vertices span the whole Bass-Serre tree if
there are no 1-valent vertices with surjective edge maps.

By the distance of two non-trivial vertex groups G0~ ! and €G,e~! we mean the
path length of #~'e, which equals the distance of the vertices G, and €G,, in the
Bass-Serre tree.

Corollary 10.3. Let the isomorphism ¢ : m1(G,v) — m1(G',v') and its inverse ¢+
map non-trivial vertex groups to non-trivial vertex groups in a distance-preserving way.
If G and G' have trivial edge groups, mo I1-valent trivial vertex groups, and at least
one non-trivial vertex group, then the outer isomorphism class qg is represented by an
equivalence H : G — G’ of graphs of groups.

Proof. We denote by T'= (G,v) and T" = (G’,v’) the Bass-Serre trees of G and G'. Let
V(T) := {6G, € V(T)|Gy # 1}, and define V'(T”) similarly. Whenever G,, # 1 and
§ € m(G,v,u), then ¢(6G,6~ 1) = G 6"~ for unique v’ € V(I') and &' € 71(G', v, u').
We define o : V/(T) — V/(T') by a(dG,) = §'G. The same construction for ¢—1
leads to an inverse o', so « is bijective. As ¢ preserves the distances between vertex
group conjugates in m(G,v), we have dp(a(dGy),a(eGy)) = dr(6Gy, €Gy) for all
0Gy,€Gy € V'(T). Whenever n € m1(G,v), then a(ndG,) = ¢(n)a(6G,). As the
convex hull of V/(T') in T is all of T, the bijection a extends to a unique isometry
a : T — T such that a(n.z) = ¢(n)a(z) for every x € V(T) and n € m1(G,v). We
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compute by Lemma [3.5 that

Ple(p(n) = min dr(a’, p(n)z') = LLin dre(e(), o) (x))

= 1 d / == i d — lC .
in (o), a(nz)) i 7(x,nw) = ple(n)

Proposition leads to the desired conclusion. O

We shall also look at the more general situation of vertex group conjugates for higher
graphs of groups.

Definition 10.4. Given a higher graph of groups G of degree d, we call a subgroup
A of 71(G,v) a vertex group (conjugate) of the truncation 791G if it is of the form
A = 0m (G 4)9~! for some vertex u and some 6 € 71 (G, v, u).

Here we abuse the notation, and we do not always require that G is truncatable at
degree d — 1. We usually assume that G has no surjective edge maps at non-trivial
vertex groups. If A is non-trivial, then it determines the coset le(G(d_l)) uniquely.

By the distance of two non-trivial vertex group conjugates (G, 4)0~! and
em (G w)e™! we will mean the number of edges of degree d in an expression for
6~ 'e reduced in the truncated sense. It coincides with the distance of the vertices
01 (G4 u, 8) and er (G4 w,e) in the Bass-Serre tree of the truncation 741G

(cf. Remark [3.6).

10.2 Abstract automorphism representatives

We now need a criterion when a given isomorphism ¢ : 71 (G,v) — 71 (G, v") between
fundamental groups of connected higher graphs of groups is induced by a morphism of
higher graphs of groups. The goal of Proposition [10.5]is to reduce the higher graph of
groups case to knowledge about ordinary graphs of groups.

Suppose that the higher graphs of groups G and G’ both have degree d, and that
both are truncatable at degree d — 1. Let Vy_1 = {v1,...,u} and V] | = {v],..., v/}
be the sets of basepoints for the connected components F; and IE‘; of G~ and ¢/4~Y
respectively.

Recall that we denote by @ € OHom(G,G’) the outer homomorphism class repre-
sented by a homomorphism « : G — G’ of groups.

Proposition 10.5. Assume that both G and G’ are truncatable at degree d — 1. Let
¢ € OHom(m1(G,v), m(G',v")) be an outer isomorphism class such that

(i) ¢ = H' for some equivalence H' : T4~1G — TI-1¢/,

(i) for each homomorphism H, (G ) — ﬂl(G/(d*U,v;) (defined after

renumbering v, ...,v)), the outer isomorphism f/IZ = f{\] for some equivalence
H;:TF; — IF; of higher graphs of groups.
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Then there is an equivalence H : G — G’ such that H' = T"'H and H; = H|g,. In
particular gg =H.

Proof. Given H' and Hy, ..., H;, we start building H:G — G on G- by taking the

disjoint union of all H;. This defines H@~1. We define H(e) = H'(e) for deg(e) = d.
Since H' is a morphism of ordinary graphs of groups, H'(7(e)) and 7(H’(e)) coincide

in I/~ the underlying graph of 79 'G’. Therefore the vertices H(7(e)) and

7(H(e)) lie in the same connected component of the stratum I'“~1), and we define

7(e) € m(G"V, H(r(e)), 7(H(e))) arbitrarily.
~—1_
Replacing (b with the outer isomorphism class H <Z>, we may assume G = G/, all

H, ' =1, and & is represented by H' € Aut®(T41G). In this special case, we easily

construct H ¢ Aut’(G) as follows: We take H@ 1) to be the identity on G(*=1.
Whenever e is an edge of degree d, we define dp(e) to agree with dp/(e) under the
identification of 71 (G4~ 7(e)) with the vertex group of 7% 'G at 7(e). Then clearly
¢=H =H. O

10.3 Clusters of vertex group conjugates

We now consider a normalised or pointedly normalised higher Dehn twist D. Let
A C m (G, v) be a subgroup such that the conjugacy class of every element in A grows
at most polynomially of degree d—1 under iteration of D. Whenever (;5 € Out(m1(G,v))
commutes with D then by Lemma 4.2] the group ¢(A) is again of this type.

We now develop more 1nf0rmatlon for vertex group conjugates of T9 'G which is
invariant under automorphisms commuting with D.

Some of the following definitions make sense for arbitrary higher graphs of groups
G with any D € Aut’(G), but we are mainly interested in the case of a prenormalised
higher Dehn twist of a finitely generated free group.

For simplicity of notation, we shall sometimes write §m10~1 for Hﬂl(G(d_l),u)O_l
when 0 € 71 (G, v, u).

Definition 10.6. Two non-trivial vertex groups 010~ and eme ! are in a com-

mon cluster if there is a constant C' > 0 such that for every j > 0 there are non-
trivial go(j) € Wl(G(d*U u) and g.(j) € w1 (G w) such that the cyclic length
1e(Di(go(7)0 'ege()e10)) < C.

In other words, being in a common cluster means that the basis length of the
coset 71 (G@1)9~Lerr) (G4=D), which measures the distance (in basis length) between
Om10~! and emie™!, does not grow under iteration of the automorphism D,.

As the terminology suggests, a cluster C is a maximal collection of non-trivial vertex
groups of 741G which are pairwise in a common cluster.

Lemma 10.7. Let D be a prenormalised higher Dehn twist on G of degree d > 2. The
vertex groups 0m10~" and erie”! of T* G are in a common cluster if and only if either

e 07 e goes across at most one edge of degree d, or
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o 0 le = xteyte_,lz, where x and z lie in Wl(G(d*I)), the element y € G, and
dp(e) =dp(e) =1.

Proof. Suppose a reduced expression for §~'e contains a segment of the form t.(t. with
deg(e) = deg(e’) = d and ¢ € 71 (G@ Y, 7(e),¢(¢')). Then DL(6~'€) contains a segment
(te, Aj(6p(e))tDL(¢)Aj(6p(€’)),te) in a representing word reduced in the truncated
sense. If f710~" and erje~! are in a common cluster, then the basis length of

X = A;(6p(e)) ' DL(¢)A;(dp(¢)

has to be bounded when j — oco. By Lemma this is possible only if dp(e) =
D, (¢)dp(e)¢~1. Using Definition 5), we have 6p(e) =1 = dp(e/) or e = €. If we
had e = ¢/, then Lemma would show ¢ = 1, so the expression t.(t.s would not be
reduced. Therefore §p(e) and dp(€’) have to be trivial. Moreover, as the length of X;

is bounded, Proposition m(l) shows that ¢ has to lie in the vertex group G ().
If a reduced expression for 8~ 'e contains at least three edges of degree d, a segment
(te,C,ter, ¢, ter) say, then this argument leads to the contradiction 6p(€/) = 1 = dp(e’).
O

Given a vertex u and 0 € m1(G,v,u), we write

Co = {0gt. 'miteg 07 g € Gy, deg(e) = d, 7(e) = u,0p(e) =1} U (46)
U{0m 013\ {1}.

Lemma shows that Cy is contained in a cluster.

Whenever erie~ ! and €€/ ~! are in a common cluster, then it can be checked by
Lemma, that they are in some Cy, and the coset 0G, is uniquely determined.
Furthermore, every degree d edge e with 7(e) = u and dp(e) = 1 satisfies dp(€) # 1,
so gt tmiteg~1071 # 1. If Cy has at most one non-trivial group, then G, = 1 and u
has valence at most one (cf. Definition [7.20[4)). As this does not occur in normalised
higher Dehn twists, we have:

Proposition 10.8. If D € Aut’(G) is a normalised higher Dehn twist with free
m1(G,v) # 1, then the clusters are exactly the sets Cy. O

10.4 Central vertex groups in clusters

Definition 10.9. 67 (G w)0~1 is central in the cluster C if there is a non-trivial
g € Wl(G(d_l),u) such that for every vertex group emie~! € C, the vertex group
Og0teme 109710~ € C.

Lemma 10.10. If D is a normalised higher Dehn twist, then Om10~1 is central in the

cluster C if and only if 6~ 'e goes across (only) one edge of degree d for every other
-1
eme €C.
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Proof. As every cluster is of the form Cy for some u € V(T') and 6 € 71(G, u), it suffices
to show that #m0~1 is the only central vertex group in the cluster Cy (cf. )
Suppose first there is a non-trivial ¢’ € G,,. Then

(0907 (Ogt,  miteg ™ 071) (09 07) = 0(d'g)t. tmite(d'g) 107! € Co

shows that 767! is central in the cluster Cp.
If 6p(e) = 1, then dp(€) # 1, and we may pick any non-trivial ¢’ € 71 (G (e)).
Then

(Ogt: ' g'teg 07 (Om160 ") (0gt, g teg 077!
— Qgte—lg/teﬂ_lte—lg/—lteg—19—1

does not belong to the cluster Cy. Thus Ogt; 'mit.g~ 10~ is not central in Cy.

If G, = 1, then 0p(e) = 1 for every degree d edge e terminating at u. Therefore
6p(€) # 1 and 71 (G41, 4(e)) # 1. Similar calculations show that the cluster

Cop = {0t 71t 0|deg(e) = d, 7(e) = u}
has no central vertex group. O

Proposition 10.11. Let D € Aut®(G) and D' € Aut®(G’) be normalised higher Dehn
twists of degree d and ¢ : m (G, v) — w1 (G, v") an isomorphism such that $D¢~' = D'.
Then:

(i) For every vertex group 0m 0~ in T4=1G there is some ' € 71(G',v',u') such that
¢(97T19_1) = 9’7[‘19,_1.

(i) Two vertex groups 917r191_1 and 027r192_1 are in a common cluster if and only if
their images ¢(917r10fl) and ¢(02W1951) are. Thus every cluster C of G is mapped
to a unique cluster of G', which we denote by ¢(C).

(iii) The group Om10~ " is central in C if and only if p(0m10~1) is central in ¢(C).

() If ¢(61m107Y) = 0/m07 and ¢p(Oam1051) = 04m05 ", then reduced words for
01_192 and 0'1_19’2 contain the same number of edges of degree d.

Proof. (i) follows from Lemma because vertex group conjugates are the maximal
subgroups A such that the conjugacy class in A grows at most polynomially of degree
d—1.

To show (ii), let gi(j) and g2(j) be elements in 71(G@~V) such that the cyclic
basis length of D1(9191 ()67 *0292(4)05 ") is bounded when j — co. Then the cyclic
basis length of d(DL(0191(5)07 1 0292(5)05 1)), which is equal to the cyclic length of
D7 (4(0191(5)07 10292(5)05 1)), is also bounded. If we have ¢(61710; ) = 0710, and
G(Bam105 ") = 04m1057 1, there are unique ¢ (), g5(j) € 71 (G @1 < {1} such that

P(0191(7)07 ") = 0144 ()07,
B(0292(7)05 1) = 05,95 (5)05 "
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In particular, the cyclic length
(D (0191(7)07 ' 0593(7)05"))

is bounded when j — co. Thus #jm 6! and 07105 ' are in a common cluster, as
claimed. The converse implication follows by the same argument applied to ¢~ 1.

For the proof of (iii) we use the notation of Definition[10.9} Let ¢(8716~1) = 'm0’ 1.
There is a unique non-trivial ¢’ € 71 (G(*~1)) such that ¢(Agh~") = 0'¢g’¢’~!. Whenever
eme ! € C, then we write ¢(eme™!) = €me 1. By (ii), every vertex group of the
cluster ¢(C) is of this form. We have

0 g0t md 0 g0 = p(0gh teme t0g71071) € #(C).

Therefore 8'm16'~! is central in ¢(C). The converse follows by looking at ¢~!.
The proof of (iv) requires some technical preparation. A cluster sequence from
O1m10] L to Oom105 1is a sequence of non-trivial vertex group conjugates

—1 -1 —1
€0T1EY , E1TLEY ..., ETIE

such that ei_lmei__ll and emle;l are in a common cluster for every ¢, 1 < i < [. We
let \; = 1 if at least one of 61'7177'16;,11 and emlei_l is central in their common cluster.
Otherwise we set A; = 2. The length of the cluster sequence is now defined to be
A+ A

Using Lemma [10.7] and Lemma [10.10] it can be checked that the number of edges
of degree d appearing in a reduced word for 6, 19, agrees with the minimal length of
a cluster sequence from 6710] Lto 0105 1 As ¢ maps cluster sequences to cluster
sequences of the same length by (i), (i), and (iii), it follows that 676} contains at
most as many edges of degree d as 6 19y does. This together with the same argument
for ¢=1 proves (iv). O

10.5 Stabilisation of clusters

Fix a normalised higher Dehn twist D on G of degree d > 2 with finitely generated
free m1 (G, v) throughout this section. All connected components of D|p-1) are prenor-
malised, but not necessarily normalised. We now discuss how to modify D to D on
the same underlying graph such that all connected components of D|F(d—1) are indeed
normalised.

The higher graph of groups G for D is obtained as follows. We add new free factors
at the vertex groups:

Gy = Gy * (cc|deg(e) = d, T(e) = w,dp(e) = 1).
Here c. is a new formal free generator. In other words, we add to each vertex group of

G a free group of rank equal to the number of degree d edges e terminating there with
trivial J-term.
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The map f, for G is the composition G, = G, — Grie) — C_?.r(e) of the map f. for G
with the obvious inclusion map. The other data of G is the same as for G.

There is an inclusion (or stabilisation) morphism S : G — G and a projection
morphism P : G — G defined in the obvious way on all pieces. The higher Dehn twist
D on G is defined by the identity on the underlying graph, all vertex and edge groups,
and with d5(e) = S«(dp(e)) for every edge e.

Suppose we are now given two normalised higher Dehn twists D and D’ on G and G’
respectively, and let ¢ be an isomorphism such that the following diagram commutes
in the category of outer isomorphism classes:

71(G,v) —2 w1 (G, ) (47)

-

)Tm(G’,v’)

i

Translating the diagram to ordinary homomorphisms, there is ¢ € 71 (G’,v") such
that the following diagram commutes.

D/
m1(G,v) N (G v) —% 7 (G, 0) (48)
o)
1) ad¢

m1(G,v) —2= 1 (G, v)) —=m (G, )

By Proposition every cluster Cy of vertex groups in 79 'G defines a unique
coset 0G,, with 0 € m(G,v,u). For every edge e with deg(e) = d and dp(e) = 1,
we pick some 0. € m(G,v,7(e)). As ¢ maps the cluster Cg, to another cluster by
Proposition (ii), every such 6, uniquely determines a degree d edge e® of I (only
depending on e, but not on ) and 0., € 71 (G, v, 7(e?)) such that

p(0em 01) = 0L m oL,
(Ot Pyt 07 )_ oLt 1w1te¢e{;1,
Spr(e?) =

We now define the isomorphism ¢ : w1 (G, v) — 71 (G, v') to agree with ¢ on 71 (G, v)
and to satisfy
B(Oecetd, ) = Olcs0 . (49)

Lemma 10.12. The following diagram commutes:

—_ p

7Tﬂ@,u)—¢>771(@’,v’)i>7r1 G',v") (50)
.

= ¢ Aoy 2de
7T1(G,’U)4>7T1(G,’U)4>7T1
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Proof. As we require commutativity of , we already know commutativity of
when precomposing with the inclusion homomorphism Syt m(G,v) = 71 (G, v) It now
suffices to verify that both compositions in agree on all elements 6,c.0-", which
are defined whenever deg(e) = d and dp(e) = 1. Recall that §p/(e?) = 1.

We now look at the images of the vertex group conjugates 0716, and 0.t_ 1mit.0.1
under both compositions in (48]).

The vertex group 6.t, 'mt.0.1 is mapped to 92t6_¢17r1t6¢0é_1 by ¢ and then to the

e

vertex group D (9’)(5D/(e¢)t;¢lﬂlte¢5D/(e¢)_1D;(92)_1, which equals the vertex group
DL(0.)t_, "7t DL(OL)7Y, by D,

Followmg the other composition, f.t;'mit.0;! is first mapped to the vertex group
D.(0:)0p(e)t; tmitedp(e) 1Dy (0:) "t by D,. This equals D (0)t tmite Dy (0e) ! and is
mapped to (H(Dy(0e)0; )05t} mito0, ' (0 Ds(0e)1)¢ ™! by adc o ¢.

As commutes, these two expressions agree:

Di(00)t  mites DL(0,) ™" = CoH(Du(0e)07 )0ty miteo b d(0eDi(0e) )¢ (51)
Similarly, chasing the vertex group 6716, ! around leads to
D(0e)m1 DL(0c) " = CH(Da(0)0 1 )0em1 0. d(0e Du(B) )¢ (52)
Comparing and , we conclude
D (6;) = (o (Dx(0:)0; )0,

and hence

D (0)ceo D1 (00) ™" = CO(Di(0)02)0rceo0 (0 Di(Be) )¢

By definition of D’ and ¢, this can be rewritten as

D;(eéceﬂﬁg/eil) = C&(D*(He)ceD*(ee)il)Cila
hence
D (¢(Becet; )) (H(Ds(Oeccd )
This finishes the verification that commutes. O

Lemma 10.13. If deg(e) = d, ép(e) = 1, and H : G — G’ is an equivalence with

HD = D'H, then d5(c) G ey and Opr(H(e)) = 1.

Proof. For a given e € E(I") of degree d with dp(e) = 1, choose again 6 € m1(G, v, 7(e)).
Then the vertex groups 0t, 'mit.0~! and Occt, 'mitec; 107! are in a common cluster.
By Proposition ( i), their image vertex groups H,(0) H.(t;1)m H.(t.)H.(0)~* and
H.(0)H,(cet; 1)7T1H (tec; DY H,(6)~! are in a common cluster. As

H(tecet, ') = 65 (@)tge)dm(e) " Hee (Ce)5g(6)t1§1(e)5g(é)*17
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Lemma implies 655, (H(e)) = 1 and 65 (e)  Hy () (ce)dg(e) € G ii(r(e))» SO

H (55()) e Hy (551 (e) € Gy (53)

In the vertex group GT(e), the element c, is not conjugate to an element in any f./ (G.r)
with 7(e’) = 7(e). Looking at a reduced word for H, *(67(e)), we read off in that
H;'(65(e)) € Gr(e) and hence d(e) € G_!;?(T(e)) = G;(H(e))' O

Using the inclusion S and the projection P, we have:

Lemma 10.14. If the outer isomorphism class of ¢ is represented by an equivalence
H:G — G/, then H:=PHS : G — G' is an equivalence with H = ¢.

Proof. Clearly H= (E, and all edge group homomorphisms H, are isomorphisms. Then
Lemma [3.4] shows that H is indeed an equivalence of higher graphs of groups. O

10.6 Representing centralisers by abstract automorphisms

Let first G and G’ be ordinary graphs of groups.

Proposition 10.15 ([I3], Theorem 6.9(a)). If D is an efficient Dehn twist on G, D’
an efficient Dehn twist on G', and ¢ : w1 (G,v) — m(G',v") an isomorphism such that
D' = ¢D¢ !, then there is an equivalence H : G — G’ such that ¢ = H. O

The goal of this chapter is to extend this theorem to the following analogue for higher
graphs of groups.

Theorem 10.16. Let D € Aut®(G) and D' € Aut®(CQ') be normalised higher Dehn
twists and ¢ : 7 (G,v) — 7 (G',v") an isomorphism. If D = ¢Dp~L, then there
is an equivalence H : G — G such that H = ¢. Moreover, §p/(H(e)) = 1 and
on(e) € G’/T(H(e)) whenever deg(e) > 2 and dp(e) = 1.

Proof. Note that G and G’ have the same degree because D and D’ are conjugate, D
grows polynomially of degree deg(G), and D’ grows polynomially of degree deg(G’).
The proof is now by induction on this degree d. If d < 1, then we have efficient Dehn
twists on ordinary graphs of groups, and the assertion is exactly Proposition

If the degree d > 2, then we construct D € Aut®(G), D' € Aut’(G'), and ¢ :
71 (G,v) — m(G,v') as in Section All connected components of the restrictions
D=1 and D'@=1) are now normalised higher Dehn twists of degree d — 1.

The restrictions of ¢ to these components are well-defined outer isomorphism classes
m1(F,vp) = 71(¢(F), vgy(r)) for any choice of basepoints vp and vgr). By induction, they
are represented by equivalences Hy : F — ¢(IF) of graphs of groups of degree d — 1 such
that dp/(Hp(e)) = 1 and dp,(e) lies in a vertex group of G’ when 2 < deg(e) < d —1
and dp(e) = 1.

Let now J : G — G and J' : G’ — @ be equivalences such that G and G’ are
truncatable at degree d — 1. Then the outer isomorphism class of the restriction of
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(d-1) ig represented

J.$J ! to the fundamental group of each connected component of G
by a higher graph of groups equivalence.

By Proposition (iv), the outer isomorphism class of J/¢.J. ! maps vertex groups
of T91G to vertex groups of T 1@/ and preserves their distances (in terms of edges of
degree d). Since every normalised higher Dehn twist has at least one non-trivial vertex

group, Corollary shows that j’af s reEresented by an equivalence T4 1G —
T4 1@ Propositigp now shows that :f@j ~1 is represented by an equivalence
H :G — G’. Then ¢ is represented by the equivalence H = J~'HJ : G — G'.
Chasing the definitions, we have H|r = Hp for every connected component F of
GV, In particular, 5 (H(e)) = 1 and 65(e) lies in the vertex group G (fi(e)) When-
ever 0p(e) =1 and 2 < deg(e) < d — 1. By Lemma we also have this conclusion

for edges of degree d. B
Lemma |10.14f gives rise to the desired equivalence H = PHS : G — G'. Asdg(e) =1

and Jp(e) = 1 for every edge e, we have dy(e) = Pi(dg(e)), so it lies in Gr(ge))
whenever dp(e) = 1. Since D' = PD'S, we also have ép/(H(e)) = P.(6p(H(e))) = 1
for these edges e. O

There is the following analogue of Theorem [10.16[in the pointed case.

Theorem 10.17. Let D € Aut®(G) and D' € Aut®(G') be pointedly normalised higher
Dehn twists and ¢ : m1(G,v) — 71 (G',v') an isomorphism. If D, = ¢D.¢~1, then
there is an equivalence H : G — G’ with H(v) = v', Hyy = ¢. Moreover, dp:/(H(e)) =1
and dp(e) € GIT(H(e)) whenever deg(e) > 2 and dp(e) = 1.

Proof. We define G to be obtained from G by attaching an additional free factor (c) = Z
in the base vertex group G, := G, * {¢). The pointedly normalised higher Dehn twist
D now extends to a normalised higher Dehn twist D on G by defining D,(c) = ¢
and leaving all other data unchanged. Similarly, we attach a free factor (¢/) = Z
to G’ to obtain G’ along with a normalised higher Dehn twist D’. We extend ¢ to
¢ m(G,v) = (G, v) by ¢(c) = .

D, D', and ¢ satisfy the requirements of Theorem and we conclude that
the outer isomorphism class of ¢ is represented by an equivalence H : G — G’ with
Sp(H(e)) = 1 and dg(e) € G;(I—{(e)) whenever deg(e) > 2 and dp(e) = 1. There is
¢ € m (G, v, H(v)) such that ¢(n) = (H.(n)¢~! for all n € 11(G,v).

Within @;,, the element ¢’ is not conjugate to an element in the image of some
for with 7(e') = v/. Since we have H,(c) = (“té(c)¢ = ¢ * ¢ * (71, we conclude
2pl(¢) = pl(¢ICY) = pl(Hy(c)) = 0, s0 ¢ € G, and H(v) = v'. Replacing H with
M (v',¢)"'H, we can assume that ¢ =1 and H,, = ¢.

We now define H : G — G’ as the composition

G—G—G =6
of the inclusion morphism, H, and the projection homomorphism. It can be checked
that H., = ¢, and Lemma [3.4] ensures that H is an equivalence of higher graphs of

groups. The terms dp/(H(e)) and dy(e) are the images of 5, (H(e)) and §7(e) under
the projection morphism, so they are of the desired form whenever dp(e) = 1. O
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10.7 Centralisers in Out(m;(G,v)) versus Aut’(G)

When D is a prenormalised higher Dehn twist on G and H represents an element in
the centraliser of D, then it is a priori not clear whether H and D actually commute
in the abstract automorphism group Aut(G). This can indeed often be arranged.

Proposition 10.18. Suppose that D, H € AutAO(G), where D is a normalised higher
Dehn twist, and H, = 1 for every edge e. If D and H commute and op(e) € G
for 6p(e) = 1, then there is H' € Aut®(G) with coinciding with H of GM) such that
H'D = DH' and H = H. If Dy, and H,, commute and D is only required to be
pointedly normalised, then we may arrange H,, = H,,.

Proof. If the degree d of G is at most one, then we may take H' = H. As H, = 1,
Lemma shows that HD = DH. This finishes the proof for d < 1.

We now proceed by induction on d > 2. We apply the stabilisation construction in
Section to find a higher graph of groups G obtained by adding new free factors
freely generated by symbols ¢, to the vertex groups. Recall that the Dehn twist D is
given by the same data as D.

If we put ¢ = H,,, then the definition of ¢ in on page leads to ¢ = H,,, where
H € Aut®(G) is given by the same data as H on G and by H,(.y(ce) = dp(€)cedp(e) ™
on the new symbols ¢, in the vertex groups of G. Lemma then implies that the
outer automorphisms H and D commute.

By Lemma we conclude that (HDH'D™1)|zp € KO(F) for every connected
component F of G@=1 . As each D|r is a normalised higher Dehn twist, the induction
hypothesis allows us to define H” € Aut®(G(?~Y) such that (H”H~1)|r € KO(F) and
H" commutes with D@1 on every component F of G(@—1),

We now look at the isomorphism (44)) on page Since each forgetful homomorphism
KO (F) — KO(F) is surjective, we may construct H' € Aut’(G) with gt = g
and HH™' € KO(G). As H and D commute on G~ Proposition implies
that the commutator H’DH'~'D~1 is a composition of automorphisms Z(F,v,) with
m1(F,vp) = Z. Whenever deg(e) = d and 7(e) € F, then D, () = 1, so the basis length

of Aj(0p(e), Dy) = dp(e)? cannot grow dominantly of degree d. Thus dp(e) = 1 and
6H’DH’*1D*1(€) = (H’DH’*l)*((Sg,(e))*lég,(e) =1.

Hence H' and D commute.
Denote by H' € Aut’(G) the composition PH’S. Chasing the definitions, we see
H' = H. Moreover, H'P = PH' and DP = PD, so

H'D=HDPS=PHDS=PDH'S=DH'PS =DH'.

The pointed version is similar and left to the reader. O
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11 Relative automorphism groups

11.1 Whitehead automorphisms

Let F),, be the free group with basis ai,...,a,. There are two types of “standard”
elements in Aut(F),) called Whitehead automorphisms of type I and II.

A Whitehead automorphism of type I is an automorphism P € Aut(F,,) permuting
the set

-1 -1
L={ay,...,an,ay",...,qa,

of basis elements and inverses.
A Whitehead automorphism of type II is written as a symbol (A;a) where A is a
subset of L such that a € A and a=! ¢ A. On elements x € L, it is given by

x, if 2,271 ¢ Aor x =at!,

za, ifre Azt ¢ Az #a,
a 'z, ifzgAzrtecAz#al,

a lza, ifz,x71¢ A

(4;a)(z) =

Sometimes we refer to a as the operative factor of (A4;a).

The next proposition shows how to successively reduce the length of elements in a
free group by applying Whitehead automorphisms. For a tuple W = (wy,...,w)) of
elements in F},, we write

(w1) + ...+ l(wm),
c(wr) + .o+ le(wp).

o~ o~

For o € Aut(F,) we write o(W) = (a(w1),...,a(wp)). We call W minimal if
l(a(W)) > (W) for every a € Aut(F},). This Aut(F),)-action on p-tuples induces an
action of Out(F),,) on the set of p-tuples of conjugacy classes in F,,. We call a tuple
C = ([wi],..., [wp]) minimal if I.(a(C)) > I.(C) for all & € Out(F},).

Proposition 11.1. Let | e| denote either the cyclic length l. or the linear length | with
respect to the standard basis of Fy,. Let W = (wi,...,wp) € (Fn)P and o € Aut(F,)
such that |a(W)| is minimal. Then there are Whitehead automorphisms Th,..., Ty,
such that W, = (W) and

|W| = |Wo‘ > ’W1| > |W2‘ > > Wil = =Wy = |04(W)’
for some k, where W; :=T;T;_1 ... Ty (W) for 0 <i<m.

Proof. This is shown in [I§] for the cyclic length and p = 1. It is remarked in [I8] that
the same argument also works for the linear length as well as for arbitrary p. O
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11.2 The McCool complex

Fix a tuple C = ([wi],...,[wp]). We will frequently be interested in the subgroups
Aut(F,,C) and Out(F,,C) of Aut(F,) and Out(F,) given by those automorphisms
fixing each of wr,...,w, up to conjugacy. These two groups are related by a short

exact sequence
1 — Inn(F,) — Aut(F,,C) — Out(F,,C) — 1

because inner automorphisms are clearly a normal subgroup in Aut(F,,C).

We now recall a construction by McCool [27] how to algorithmically construct a finite
2-dimensional CW-complex K having Out(F,,C) as fundamental group. In particular,
these groups have algorithmically computable finite presentations. We refer to K as
the McCool complex for Out(Fy,,C).

The vertices of K are given by minimal tuples a(C), where o € Out(F,,). As all of
them have the same total cyclic length, there are only finitely many of them. There
is an oriented edge (V1, Vs, P) from V; to Vo whenever P € Out(F,,) is a Whitehead
automorphism such that P(V;) = V,. For every such edge, there is also an oriented
edge (Vo, Vi, P71), and these two oriented edges determine a 1-cell of K. We can now
assign to each combinatorial edge path a label by multiplying together the labels of the
edges. Along a loop of length at most 6 we attach a 2-cell in K whenever the labeling
function is 1 on this loop. This finishes the definition of the 2-complex K.

By construction, there is a homomorphism m(K,C) — Out(F,,C) given by evalu-
ating a combinatorial loop representing an element in the fundamental group at the
product of all its edge labels. It is shown in [27] that this is an isomorphism.

There is a similar complex for groups of the form Aut(F;,,ws,...,wy), the group of
automorphisms of F, fixing the elements wy, . .., w, genuinely (cf. Section 4(2) of [27]).

11.3 Rigid elements in free factors

We now construct elements w in a free group F' such that group Aut(F, [w]) is as small
as possible, namely the inner automorphism group only. This is roughly done by taking
sufficiently irregular words in the basis elements, which we call rigid elements. They
are defined as follows, and we will see their main property in Corollary

Definition 11.2. An element w in a free group F is called rigid if there is an iso-
morphism p : F — F,, such that no Whitehead automorphism of F,, of type I (except
the identity) fixes the conjugacy class of p(w), and every Whitehead automorphism of
type II (apart from the identity and inner automorphisms) strictly increases the cyclic
length of p(w).

When we want to emphasize p, we will sometimes say that w is rigid with respect to
the basis p~'(a1),...,p '(an) of F, where a1,...,a, is the standard basis of F,.

Proposition 11.3. Every finitely generated free group F contains a rigid element w.
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Proof. Without loss of generality, we can assume that we have the free group F;, with
basis a1, ...,a,. We claim that

wy = aY el aal L al (ara)N .. (a1an)N (agaz)V . (a2a0)N . (an_1an)Y
is rigid with respect to the standard basis for sufficiently large V.
Lemma 2 in [27] states that the tuple

Z = (a1,...,0p,Q1,...,0n,0102,...,010n, 203, ..., 020;, .. ., Gp—10y)

of cyclic words is minimal, and its (total) cyclic length is left minimal only by inner
automorphisms and permutations of generators.

Fix a Whitehead automorphism P of type II which is neither the identity nor an inner
automorphism. We now apply P to each letter in w. At each point in wy where two
consecutive N-th powers hit, at most two letters cancel. The remaining cancellation
corresponds to cyclic reduction of the pieces. Then

le(P(wn)) 2 le(wn) + N(le(P(Z)) = 1(Z)) = 2(2n + %(HQ —n))

>l.(wn)+ N — n?—3n > le(wn),

if we choose N > n? + 3n.
It can also be checked that no Whitehead automorphism P # 1 of type I fixes the
conjugacy class of wy. O

Definition 11.4. Let A be a subgroup of an arbitrary group G. An automorphism
a € Aut(G) (or a € Out(G)) fixes A up to uniform conjugacy if there is g € G such
that a(x) = gzg~! for all x € A.

Fixing a rigid element in a free factor up to conjugacy is the same as fixing the free
factor up to uniform conjugacy. More precisely, given k < n, we identify Fj, with the
free factor of F;, generated by ai,...,a, and we have:

Proposition 11.5. Let k < n and w € F, be rigid. If « € Aut(F},) is an automorphism
fixing the conjugacy class of w, then a fires Fy, up to uniform conjugacy.

The special case m = n of this proposition is the following:

Corollary 11.6. If w is a rigid element in F,, then Aut(F,,[w]) = Inn(F,) and
Out(F,, [w]) = 1. O

Proof of Proposition[11.5. We assume that the element w is rigid with respect to the
basis ¢(ay),...,¢(ar) for ¢ € Aut(Fy). Let ¢ := ¢+ 1 € Aut(F,). Then ¢~ (w) is
rigid with respect to the standard basis. Moreover fixing Fj up to uniform conjugacy
is independent of a basis of F}, so we may assume that w is rigid with respect to the
standard basis.

An automorphism fixing w up to conjugacy can be written as a composition of edge
labels along a loop in the McCool complex based at the vertex [w]. By means of

102



(A;a)oT =T o (T71(A); T~1(a)), we can always move factors T of type I to the left.
Over there, they can be multiplied, so we will assume that the loop contains at most
one factor of type I, and that this is at the very left. Therefore we have to investigate
the Whitehead automorphisms of type II for F;, which do not increase the cyclic length
of w.

By definition of being rigid, Whitehead automorphisms with operative factor a$ for

some 7 < k preserve the cyclic length of w if and only if they either fix ay,...,ax or
conjugate all of these basis elements by as.
An operative factor af with ¢ > k preserves the cyclic length if it either fixes ay, ..., ax

or conjugates all of them. Otherwise there would be letters a?ﬂ inserted in the image
of w which are not canceled out by cyclic reduction, and they would increase the cyclic
length of w.

In any case, Whitehead automorphisms of type II preserve w up to conjugacy, when-
ever they do not increase the cyclic length. This means that the loop based at [w] in the
McCool complex can be decomposed into loops of length 1 because it does not go across
other vertices. The automorphism of type I is therefore the identity. Thus Aut(F,, [w])
is generated by type Il automorphisms which either fix aq,...,a; or conjugate all of
them by the same element. O

11.4 Simultaneous conjugacy classes of partitioned tuples

Recall that o € Aut(F),, [wi], ..., [wn]) means that there are x1, ...,z € F, such that
a(w;) = xiwixi_l for 1 < i < m. We are often interested in the situation that some
of the z; are required to be equal. More precisely, for a tuple W = (wq,...,w;) and

x € F,, we write
W -1 _ —1 —1
aWaz™" = (zurz™ ", ..., zwx ).

Let Wy, ..., W, be tuples of elements in F;,, say W; = (w; 1,...,w;;,). We are interested
in

G = Aut(F,, (W), ..., [W,])
= {a = Aut(Fn)‘H:cl, cooxp € By ra(Wy) = $sz$;1}

If p = 1, this is the same as the group of automorphisms a which are the composi-
tion of an inner automorphism and an automorphism in Aut(F,,wi1,..., w1y, ), the
genuine stabiliser of elements in F;,. On the other hand, if each W; only contains
one element, W; = (w;;) with [; = 1 for every 4, then this group G is equal to
Aut(F,, [w11],...,[wp1]). In this sense, G is an interpolation between the stabilisers
of conjugacy classes respectively elements of a free group in McCool’s work.

The goal of this section is to show that these groups can “virtually” be reduced to
stabilisers of single conjugacy classes. More precisely:

Proposition 11.7. Let Wy,..., W, be tuples of elements in F,. Then there are el-
ements yi,...,yn € Iy such that the group Aut(F,, [Whl,...,[W,]) is a subgroup of
Aut(Fy, [y1], .., [yn]) of finite index.
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Guirardel has announced a proof for this statement more generally in toral relatively
hyperbolic groups instead of F},, and his proof even shows that we need not pass to a
finite index subgroup. As it is not written down yet, we give another proof here. We
use the following well-known theorem.

Theorem 11.8 (Marshall Hall’s theorem). If A is a finitely generated subgroup of F,,
then there is a subgroup B of F,, of finite index such that A is a free factor of B. [

The following lemma is an easy exercise left to the reader:
Lemma 11.9. Let G be a group and Hy, Hy subgroups of G. Let Hy be a finite index
subgroup of Hy and HY a finite index subgroup of Hy. Then Hi{ N HY is a finite index
subgroup of Hy N Hy. O

Proof of Proposition[11.7. As

Aut(Fy, [WAl,..., [Wp]) = (1) Aut(F,, [Wi)),
=1

Lemma reduces the statement to the special case p = 1. Let W = (x1,...,2;) and
A the subgroup of F), generated by x1,...,x;. Theorem provides a finite index
subgroup B C F,, such that A is a free factor in B. According to Proposition [11.3] we
now pick a rigid element w € A for the free factor A in B.

Since the group of all @ € Aut(F},) with «(B) = B has finite index in Aut(F},), the

group Aut(F,,, [w]) contains the finite index subgroup

{o € Aut(F,)|a(B) = B and a(w) = zwz ! for some x € F,.},
and this contains the finite index subgroup

{o € Aut(F,)|o(B) = B and a(w) = zwz ™" for some z € B}.
By Proposition the latter group equals

{a € Aut(Fn)’a(B) = B and a|4 = ad, for some z € B},

which is contained in

Aut(F,, [W]) = {a € Aut(F,)|ala = ad, for some z € F, }.

The last group, which is clearly contained in Aut(F,, [w]), has therefore finite index in
Aut(F,, [w]). O
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11.5 Natural free factors

Given a basis ai,...,a, € F, and a tuple W = (wi,...,wp) of elements in F,, we
denote by
GW) =G(wi,...,wp)

the free factor of F,, generated by all basis elements occurring in reduced words for
Wi,y ..., Wp.

Lemma 11.10. Let W = (wy,...,wp) with w; € F,, be minimal, and let k be the
number of basis elements involved in wi, ..., wy,. Then, for every a € Aut(F,), the
number of basis elements involved in a(wi),...,a(wy) is at least k. If it is exactly k,

then a(G(W)) = G(a(W)).

Proof. If for some Whitehead automorphism (A;a), the tuple (A;a)(V) involves more
basis elements than V' = (vy,...,vp), then the new basis element has to be a™l. But
then the length of (A4; a)(V) is strictly greater than that of V. Given any (not necessarily
minimal) tuple V', none of the steps in the length reducing sequence in Proposition m
increases the number of basis elements involved. Therefore a(WW) involves at least k
basis elements.

Assume now that W is minimal. If the numbers of basis elements in o(W) and
W agree, then every Whitehead automorphism in Proposition applied to a(W)
has to preserve the number of involved basis elements. It now suffices to show that
a(G(W)) = G(a(W)) in the case that « is a single Whitehead automorphism, and W
and a(W) involve the same number of basis elements. We shall look at several cases
for a0 separately.

If « is of type I, then it only permutes the letters, and the claim is clear.

We now assume that o = (4;a) is a type II Whitehead automorphism. If the letters
a® do not appear in w, ... , Wy, then each a(wj) is obtained by inserting letters a*!
into a reduced word for w;. But, as (W) is minimal, we actually have a(w;) = wj,
and none of the basis elements and inverses involved in the w; belongs to A \ {a}.
Then a(G(W)) = G(a(W)) is evident.

We are left to verify the claim in the case that & = (4;a), and a is involved in at
least one of the words w;. Here every letter occurring in some a(w;) also occurs in
some wj. We therefore obtain

G(a(W)) € G(W) = a(G(W)).

1

Applying the same argument to o™+, we obtain the opposite inclusion. ]

Proposition 11.11. Let W = (wy, ..., wy) be a tuple of elements in a finitely generated
free group F'. Then:

(i) There is a unique free factor B(W) of minimal rank containing wi, . .., wp.
(ii) For o € Aut(F},) we have B(a(W)) = a(B(W)).

We refer to B(W) as the natural free factor of the tuple W.
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Proof of Proposition[11.1], We may w.l.o.g. assume that F = F,. Note that (ii)
follows from (i): Both sides of (ii) contain a(w1), ..., a(wy), and both these free factors
have minimal rank subject to this condition. By the uniqueness part of (i) we conclude
(ii).

To show (i), we first have to construct a candidate for a free factor B(W). If W is
minimal, we define B(W) = G(W). It clearly contains all w;, and it has the desired
properties by Lemma [11.10

If W is not necessarily minimal, then we choose 5 € Aut(F,) such that S(W) is
minimal. We then define B(W) = 8=1(G(B(W))).

Whenever both W and «(W') are minimal, then we have G(a(W)) = a(G(W)) by
Lemma Thus, the definition of B(W') does not depend on the choice of 5. This
finishes the verification of the proposition. O

11.6 Relative stabilisation maps

Suppose we are given w € Fj. Given n > k, we can identify F} with a free factor of
F,, so w € F,. Later we will be interested in the relationship between Aut(Fy, [w])
and Aut(F,, [w]), i.e. the stabiliser of the conjugacy class of w, once viewed as element
in F} and once as element in F,. Using natural free factors as constructed in the last
section, we define a map

7 Aut(Fp, [w]) — Out(B(w), [w])

as follows: Given a € Aut(F,, [w]), there is v € F,, such that a(w) = vwv~!. We define
7(a) € Out(B(w)) to be the outer automorphism class of x — v~ ta(z)v.

If we use v/ with a(w) = v'wv'~! instead, then the two definitions of () differ
by the inner automorphism ad,-1,,. Note that v~'v' commutes with w, so it lies in
the free factor B(w). This shows that ad,-1,/ is an inner automorphism of B(w), and
() € Out(B(w)) does not depend on the choice of v.

It is clear that m(«) fixes the conjugacy class of w and that 7 is a group homomor-
phism.

We now show that 7 is surjective. This is the special case m = 0 of the following
more general statement:

Proposition 11.12. Let C = ([u1], ..., [um]), where ui,... ,uy € F, lie in a comple-
mentary free factor of w € F,,. Then m restricts to a surjection (called by the same
name) fitting into the short exact sequence

1 — Aut(F,,C,[B(w)]) = Aut(F,,C, [w]) — Out(B(w), [w]) — 1.

Here Aut(F,,C, [B(w)]) is the group of all f € Aut(F,) fixing the conjugacy classes
of uy, ..., uy, and fixing B(w) up to uniform conjugacy.

Proof. Tt is immediate from the definition that the kernel of 7 is as asserted. It remains
to show that 7 is surjective. To see this, choose any f € Aut(B(w),[w]). Define
a € Aut(F;,) by taking 8 on B(w) and the identity on a complementary free factor
containing uj, ..., uy,. Then 7(«) is the outer automorphism class 3. O
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11.7 Conjugacy classes of labeled graphs

Fix a group G. Let A be a graph together with a labeling function A : E(A) — G such
that A(€) = A(e)~! for every edge e. By multiplying the edge labels along a given edge
path, the labeling function A uniquely extends to functions

Armi(Au,w) - G

for all vertices v and w, which we call by the same name. So these give a morphism
of groupoids. Assume Vy C V(A) such that every connected component of A contains
exactly one vertex in V4.

Proposition 11.13. For an automorphism o € Aut(G) we have:

(i) If we have 6, € G for w € V(T') such that a(A(e)) = 0,y A(e)d _1 ) for every edge
e of I, then a coincides with ads, on A(mi(A,w)) for every w 6 V(A)

(i1) Given Ky, w € Vo, such that o agrees with ady,, on A(m1(A(w))) for each w € Vj,
there are unique o, € G for all w € V(A) such that

a(A(p)) = 6uA(P)6,," (54)
forp € (A, u,w) and 6y = Ky for w € Vj.

Proof. Since the edges of A generate the fundamental groupoid 71(A), we conclude
a(A(p)) = 6u\(p)d,! in (i) whenever p € 71 (A, u,w). Taking u = w, we get (i).

In (ii), we have to define d,, = Ky if w € Vp. Fix now a maximal forest F' in A.
If there is a vertex w’ of A such that d,, has not yet been defined, then we find an
edge e € E(A) such that d,( is defined, but . is not. then forces us to define
O-(e) = a(A(€)) 718,y A(e). This finishes the definition of all &,

We now know that is satisfied whenever p is a single edge of the forest F' or
p € m1(A, w) for some w € Vj. Since every path in the fundamental groupoid of A is a
composition of such p, we conclude on the entire fundamental groupoid. O

We summarise Proposition as follows. Given a € Aut(G), it is equivalent
whether we prescribe §,,, w € V(A) such that a(\(e)) = 5L(e))\(e)5;(1e) or Ky, w € V,
such that a conjugates \(my(A(w))) uniformly by k. We will use this extensively
in Chapter when we decompose centralisers of normalised higher Dehn twists into
“smaller” pieces.

11.8 Primitive elements

Recall that an element w in a finitely generated free group F' is called primitive if there
is a basis a1,...,a, € F such that w = a1. The following lemma will be needed in

Chapter

Lemma 11.14. Let A be a free factor of the finitely generated free group F' and w € A.
Then w is primitive in A if and only if it is primitive in F.
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Proof. We may assume w.l.o.g. that F' = F,, with basis a1,...,a, and A = F} =
(a,...,ax) for some k < n. If w is primitive in Fj, then it is also primitive in F),
because every basis of Fj, extends to a basis of Fj, by adding agy1,. .., an.

Assume conversely that w is primitive in F,. In particular, w is not a proper power
in Fy. Replacing w with 8(w) for some § € Aut(F}y) if necessary, we may assume that
w is minimal, so the length [(a(w)) > l(w) for every a € Aut(Fy).

If w is not primitive in Fy, then & > 2. As w is primitive in F},, Proposition [I1.1]shows
that there is a Whitehead automorphism (A;a$) with 1 < i <n and € € {£1} such that
I((A;af)(w)) < I(w). This is possible only if the operative factor a; is involved in w, so
1 <i < k. But then the Whitehead automorphism (A N {a}?, ..., afl ,a5) € Aut(Fy)
also reduces the length of w strictly. This is a contradiction to the assumption that w
is minimal in Fj, under the action of Aut(Fy). O
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12 Automorphisms fixing L-conjugacy classes

12.1 L-conjugacy classes of cyclic elements
Denote by G an ordinary graph of groups with a fixed automorphism L € Aut®(G).

Proposition 12.1. Let n = or(e1)t191 - .- tk—19k—1tkgr € m1(G,u) be an L-twistedly
reduced expression, and k > 1. Suppose § € 71(G,w,u) such that the element L. (5)nd~—*
is L-twistedly reduced as well. Then are unique v € Z and x € G, _ ) such that

Tt r419k—r+1 - - - kG, ifr > 1,
0=1<x, ifr=0,

1 ,-1 1 -1 1,1 ,
T e h—rthr—1 - Ipprlir, U7 <=1

and L,()nd~' = Ly(2)dp (@1 )t1—rg1—r - - thrGrpx L.

Using the convention in Remark we can write 0 = xtg_r419k—r+1 - - - tpgr inde-
pendently of the sign of r.

Proof of Proposition[12.1. Suppose 6 = gotigith ... g4ty is a reduced expression sat-
isfying the assumptions of the proposition. We argue by induction on I. For [ = 0 we
have y = z, and everything is clear.

For [ > 1 we have

Ly (8)n6~" = Lu(g)8r(e))th0r(eh) " ...
cotio10n(ely) T La(gi-1)Or(eptior(e) T L(y)dr (@ tigita ... (55)
ot getkgRy TG Tt g
As the right hand side begins with L.(g})dz(e})t) ... and terminates by ...t} g/,
it is not an L-twistedly reduced expression. But it represents an L-twistedly reduced
element, so it cannot be reduced. There are the following two cases:
Case 1: €] = ey and 1,(e]) ' L. (y)dL(€1) = fer(h) for some h € Ge,,
Case 2: €] = e, and gy~ ' = f., (h) for some h € G,,.
Note that Case 1 is equivalent to €] = ey and y = fer(L.!(h)). In that case we write
Y= g;—lfel (Le_ll(h))gk—i-l’ which implies

La(9) = Li(g1-1)(0r(e1) fe, (M0 (e1) ™) Ll ghr1)
= L.(gi-1)0z(e1) fe, (R)gndL(e2) ™",
where the last equality uses on page To simplify , we observe
Lu(g1-1)01.(e)ti0r.(€]) ™ Lu(y)dr (e1)t1912
= L.(g1-1)01(e1) fe, (M) g1t = L (§)dL(e2)t2

and

togry” T g T = tregtirn fe (L2 (R) g 16T = trgkte1 gk
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Then we read off in that L.(8)nd~' = L.(6)7d~", where 6 := ght\gith ... g) ot) 1§
zimd 7 :=0r(€2)t2g2 - . . tk119k+1. By induction on [, we have an expression of the form
0 =2tk_ry19k—ri1---tkr1gkr1 for some r € Z. Since we have

5 = 55 gk 1ty = gty fe (L5 (M) fer (L5 (1) = Sk k.

we obtain the desired formula for 4.

In Case 2 we again want to rewrite to define & and 7 (which are different from
those in Case 1). We have €] = e and y = fe, (h) " *gr. We define § = g, fer(h) ™1,
and we see

Lu(g1-1)0r(e)ti0L(e]) ' Lu(y)dr (€1)t191
= Lu(§) Lu(fer(h)) 0L (@)t () ™" Lu(fe, (R) ' Lu(gr)b. (1) 111
= L(§)0L(ex) fer(Le, (h))tk fey (Le,, (h) 7 61 (ex) ™" Lu(gr) 0 (€1)t191
= L.(§)0r(er)tidr(ex) " Li(gr)0L(€1)t101
= L.(9)dL(€0)togot191,

where the last equality uses the definition of gg by on page
Moreover, we have

th1Gh—1tegiy” g1t 71 = tem1Gr—1far(h) g1t 21 = teo1gr—1d 4]
This allows to simplify to Lu(6)nd~' = L.(8)76 " with & = gjthd} .. .g)_ot;_,y and
1 = 0r(€0)togo - - - tk—19k—1. We see by induction that 6 = @lk—ri19k—rt1- - th—19k—1
for some r € Z and some z. Since § = (5y*1g{ 1ty = 6 fer(R)tg fe, (R) " gi = Stygy, this
yields the asserted formula for §. O

Proposition 12.2. Let n = dr(e1)tig1 ... tkgr € m1(G,u) be an L-twistedly reduced
expression, § € m1(G,u), and let H € Aut*(G) commute with L. Then:

(i) H (n
Lo

€j

)= ( )nd 1 if and only if there arer € Z and hj € G, such that ejr = e;,
hj) = hjiy for all j € Z, and

S (h)gj—r fer(hjr1) om(e51) (56)
(Pt 1) th—r 419k —r+1 - - - Lk k-

H(c;)(gj) = dm(e;)

Je
0 =0p(er)fer

(ii) Equation for 1 < j <k implies forall j € Z.

Proof. Suppose H,(n) = L.(§)nd~—!. By Lemma H,(n) is again L-twistedly re-

duced, so Proposition provides € Z and x € G, ) such that
0=ty ri19k—ry1-- -tk (57)
L, (5)775_1 =L, (x)(SL(elfr)tlnglfr s tk—rgk—rx_l- (58)
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Note that
H..(61.(e))81(c) = Sz e) = 6p11(e) = Lu(3())3r(e) (59)
for every edge e. We define
g} = 0raleg) ™ H.(g)n (e557) (60)

and obtain

H.(n) = Hy(61(e1))0n (€0)t19] - - - teghdm (@)
= L.(61(e1))0r(€0)t1g) - - - trgiOm(en) " (61)
Since H.(n) = L«(8)nd—t, we can compare the right hand sides of and by

means of Proposition We see that e; = ej_,, and there are hq,...,h; such that
h; € Ge; and

L.(61(e1))8L(e1) = Lu(x)d(e1) fer(ha) ™", (62)
= fe; (hj)gj—r formr(hjzr) " for 1 < j <k —1, (63)
9108 (1) ™" = fo (hi)gr—ra ™" (64)

This leads to

! Ser (i) g—rx ™ 651 (1)

@ Ser (i) gr—r LT (L (011 (e1)) 01, (€7) fer (h) 0 (1) 1)~ 6 (E7)
= fe, (hi)gr—r L (5L(€1)fe1(h1) LSpen)™)

= fek(hk)gk Tfe1( (hl))

This is (63)) for j = k, where we use hj ), = L_ (h ) to define h; for j > k or j < O
Next we check that the gJ satisfy the same recursion formula as the g; in on

page [0}
LM (62(e5)g50L(€51) )
(0r(e)0m (e) Ha(gj)0m (€541)0L(€541) )

N(Lu(0m(es) Ha(01(e5)) Ha(95) Ha(O1(€5751)) ' L (0 (€577)))
= 0p(e;) " H L7 (61 (e5)g50L(€551) " )om (€551
S11(e5) " Hu(gj44)0m (€51) = g1

L
L

We equivalently rewrite as

LN (6n(ej)gion(e) ™) = L (0n(ej) fe; (hy)gj—r femr(hyen) "o (E) ),
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which is in turn equivalent to
Gy = Jes (Lg) (hg)) L (O (ej—r) gj—0r(€=rr1) ™) fei( Ly, (hj+1)) ™"
= f5j+k(hj+k)gj+k*TfW(hj+k+1)il'
This way we obtain for every j € Z. We conclude

(60) .
1.(95) D 811(e)g) 0 (e50)
(63) _ _
@ S11(e5) fe; (hi)gj—r fermr(hye1) om (E571) ",
which is the desired formula for H,(g;) for every j € Z. From we get
v = L, (Lie(0m(21))61 (e7) fer () Sr (1) 1) = 6 (en) fer (Ley! ().

Together with , this leads to the asserted formula for §.
We now show the “if” part of (i). Suppose 0 and H,(g;) for all j € Z are as in the
statement of the proposition. Since t; = t;_,, we have

H.(tj9;) = 61 (€5) fes(hj)tj—rgj—r ferrr(hjsr)  Om(E51) ",
and hence
H.(n) = H.(0r(e1))du (€1) fer(h1)t1—rg1—r - - -
oo G—r frm (o) m(gr) ™!
= (1) fer(h)t1—rG1—r - - thrGhr for(Pi1) " m (E1) 7
By Lemma [5.10[(iii), we have
Li(t;g;) = 6L(€)tj-rgj—rdL(€j51) ",
SO We see
L.(6) = Ly (61 (e1))01 (1) fer(Ley (Pies1))t1—rg1—r - - - togodr (€rs1) "
= 601 (@) fer(h)t1—rg1—r - - - togodr(€1) "

This shows H,.(n) = L.(0)né~!, as claimed.
We are left to prove (ii). Equation for a fixed value of j is equivalent to

L H((02(e5)9501(2571)))
= L, (Ho(01.(¢§))0m(€5) fe; (1) gj—r fezrr(hjsn)  Om(E551) ~ Hu(OL(E551)) ).
Using , we rewrite this as
H.(gj+k) = 6u(es) Ly (00(e5) fe; (hy)gj—r fermr(higr) ) om (E51) "
= 0p1(e5) fe; (Lo, (hy)) Ly ' (61(e5)g—r0r(€577) -
Serrr(Le ), (hjs) Yom(En) !
= 6m(€jik) fe;on (Mjsi) Gjh—r ermir (hjhr1)  0m (Eargn) -
This is for j + k. By induction we conclude (ii). O
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12.2 [-conjugacy classes of local elements

Proposition 12.3. Assume D is a pre-efficient Dehn twist. Fiz n,n € G, for some
u. Let 6 € m1(G,u) and H € Aut®(G). If

(i) H.(n) = D.(8)nd~1, and n =1 or n is not D-conjugate to 1, or
(ii) Hy(n) = énd~! and n # 1, or

(iii) Hi(n) = D«(0)nd~", Hi(n') = Du(d)1/'6~", and n # 17,

then 6 € Gy,.

In the special case n = 1, statement (i) reduces to the study of the fixed subgroup of
the Dehn twist automorphism D,,. This has been done in Lemma 6.5 of [13], but we
reprove this here in a more general setting.

Proof of Proposition[12.3 We start with proving (i) and (ii) simultaneously. Assume
H.(n) = Di(8)nd—!, where ¢ = 1 for (i) and ¢ = 0 for (ii). Clearly pl(D.(8)né~ ') =
pl(H.«(n)) = 0. Let § = got191-..tg—19k—1tky be a reduced expression. We have to
show k = pl(d) = 0.

We have

H.(n)got191 - - -tre—19k—1tkyn "
= gOtlfel (ael)qnel gi... tk*lfek_l (aek—1)qnek_1 gkfltkfek (aek>qneky7

an equality of two reduced expressions. If & > 1, then Proposition provides
mi,...,m € Z such that

go = H.(n)go fer(ae,)™ (65)
fe; (GEj)qnej+mjgj = gj feg(ae, )™ for 1 < j <k —1, (66)
i (@, )T en Ty = yn~ 1. (67)

Writing my41 := my, + gne,, we combine this to
_ —1 (69) 67) — _
mlgo ! ! Hy(n) ! Hy(y lfek;(a@k) MktLy)
= Hu(y)iléH(ek)fek (He, (aaf))imkﬂ6H(ek)71Hu(y)- (68)
Lemma applied to shows

mjp1 = mj + qne, (69)

gOfﬁ(ael )

for 1 < j7 <k —1 and by definition also for j = k. Using that no fe(a.) is a proper
power and He, (a,) = aeikl, we compare the exponents of both sides in to get
mi = :tmk_H.

If none of mq, ..., my is zero, then shows that e; and €;7 are negatively bonded
for1<j<k-—1,and shows that e, and €7 are bonded. This is a contradiction
to Lemma Hence m; = 0 for some 7, 1 <37 < k.
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For 1 < j <k —1 we compute

() . e —m |
D(t07) @ 11, ()™ (fo, (ae,) " ™ g fr(ae, )™

= fe;(ae;) " ti9; fesr(ae; )™
Using m; = 0, this leads to

Di(tigi .. . thy) = tigi - - - th19k—1 fer(ae,) " "t fer (ae, )" ry

167D _
= tigi - t_1gr_1tryn

so n = Di(tig;...tpy) " Y(tigi ... try) is Di-conjugate to 1. This finishes the proof of
(ii), and in (i) we only need n # 1. As all n, > 0 and ¢ = 1, formula shows

m1<m2<...<mk+1:j:m1,

so mq # 0. Then 1 # 1 follows from (65)), and we know (i).
Assertion (iii) follows from (ii) because H.(n~'n) = én~tn/6-1L. O

Lemma 12.4. Let G have degree d > 2. If n € 71(GU4=D w) ~ {1}, § € m (G, v/, u),
and ond~1 € m (G /), then 6 € m (GUD o/ u).

Proof. If a reduced word representing § goes across edges of degree d, then a reduced
word for 6nd~! does as well. O

Lemma 12.5. Suppose we are given G of degree d > 2 and a prenormalised higher
Dehn twist D € Aut®(G). Assume that n € 71(G@D ) and § € m(G,u) satisfy
D,(8)nd~ ' € 7 (G w). Suppose that either n = 1 or 1 is not D-conjugate to 1.
Then § € w1 (G u).

Proof. If n = 1 € Gy, then the requirements are D,,(d) = ¢. In particular, the basis
length of 6 does not grow under iteration of D,,. By Proposition (i)7 we conclude
§ € Gy Cm (G y),

We now assume that n is not D-conjugate to 1. Let § = 6gt10; ... tx0; be an expres-
sion reduced in the truncated sense (cf. Section . Then

D.(8)n0~" = Dy(00)5p (D)t - . . tipler) " Di(Ox)moy 1t " ... 07 7105 (70)
We have to show &k = 0. If £ > 1, then the right hand side of is not reduced in
the truncated sense, so Dy (604)n6; ' = dp(ex). Since 7 is not D-conjugate to 1, we have

6p(ek) # 1. Definition [7.20(2) shows dp(ex) = 1. But then D*(tka)nﬁ,;ltlzl =1 leads
to a contradiction. O
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12.3 Simultaneous D-conjugacy classes

In this section we collect some lemmas needed in the next chapter.

Lemma 12.6. Fiz an automorphism L € Aut’(G) of a higher graph of groups G
of degree d > 2. Assume that n # 1 € m1(GY9V u) and § € m (G, v, u). If both
Lo(8)nd~" and L.(0)n/6~" lie in w1 (G4 o), then § € m (G o/ u).

Proof. Since 6n '/~ € (G /) and 'y’ € m (G4 ) \ {1}, this follows
immediately from Lemma [12.4 O

Lemma 12.7. Let A C 71(G,v) be a finitely generated subgroup of the fundamental
group of any graph of groups G. Assume that, for every ( € A there is a vertex u(()
and €(¢) € m(G,v,u(C)) such that ¢ € €(()Gy)e(C)~". Then there is € € m(G,v,u)
for some vertex u such that A C €Gye L.

Proof. Suppose A is generated by p1,...,uny. If N =0 or N =1, then we may take
e =1 or € = €(uy) respectively, and we are done. We now proceed by induction on N.

If N > 2, the induction hypothesis provides vertices u and u' together with € €
m(G,v,u) and € € m(G,v,u) such that p},...,ply_, € Gy and iy € Gy, where
phi= e tpjefor1 <i < N—1land p'y := € Lune'. Assume e and € are chosen to satisfy
this condition such that the path length of e '€’ is minimal. Let e ‘¢’ = got191 . . . th gk
be a reduced expression. We have to show k& = 0.

By requirement, the element p;pn is conjugate to an element in a vertex group for
every i, 1 <i < N —1. Its conjugacy class equals [uje'€'1/y¢ " te], which is represented
by the word

(Mggoa i, 915tk gkug\fgk_17 tl;17 T ’91_17 t1_17 g()_l)

This cannot be cyclically reduced when k > 1. Thus either ngINg;;l € fe,(Ge,) or
9o 1thgo € fer(Ge,) for every i, 1 <i < N — 1.

If ngINg;;l = fe,(h) for some h € G,, then tkgku’]\,gk_lt,;l € Gye,)- If we had
chosen & = €'g; 't ! instead of ¢, the path length of € '& = got1gi . . . tg_195—1 would
be shorter than that of e '¢/. This is a contradiction to the choice of € and €.

If gy 'pigo = fer(hi) for some hy, ..., hx_; € G.,, then

tl_lgo_lefluieggtl = tl_lgo_luggotl € Gr(e))-

If we had taken € = egot; instead of €, then € '¢' = gitags ... tsgr would again have
shorter path length than e~!¢/, which is a contradiction to the minimality condition in
the choice of € and €. O

Recall truncatable replacements introduced in Definition

Proposition 12.8. Fiz a truncatable replacement D € Aut’(G) of a prenormalised
higher Dehn twist of degree d > 1 with free m1(G,v). Let n,u1,...,un € m1(G,v).
Then there are € € (G, v,u) for some w and ', iy, . .., py, € T (G, u) such that

(i) The coset Du(e)n'(py, -, )€t =npa, ..., ),
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(ii) ',y ... 0 Wy are D-twistedly reduced in the truncated sense,

(iii) either o', pi}, ..., phy € m (GO ) or, in reduced words for n',n'uwy, ..., Wy,
there is a common initial segment containing at least one edge of degree d.

Proof. Suppose first that there is a 1-cyclic element ¢ € (u1,...,un), i.e. a cyclically
reduced expression for the conjugacy class [(] goes across edges of degree d. Replacing
n with D, (¢')ne’=! and every p; with € u;e'=!, we replace ¢ with ¢/C¢/~1. This way we
may assume that ¢ is cyclically reduced itself and goes across edges of degree d.

For m > 0 we define n""(m) = D, ({)"n¢"™ and p!(m) = ("™ p;¢™. The cancellation
in D,(¢)™ - (n¢n~1)™ eliminates an unbounded number of edges of degree d only if
D.(¢) and n¢n~" lie in a common cyclic subgroup of 7 (G, v). If k > 1 is maximal such
that ¢ is a k-th power, then both D, (¢) and n{n~—! are k-th powers but no higher ones.
Thus D, (¢) = n¢tn~" and D2(¢) = nD.(n)¢D«(n)"'n~1, so the cyclic basis length of
the conjugacy class [(] stays bounded under iteration of D,. By Proposition (iii),
¢ is conjugate to an element in some vertex group. But this is a contradiction to the
assumption that ¢ goes across edges of degree d. Therefore the cancellation of the three
factors in D, (¢)™ - n - ("™ only affects a bounded number (independent of m) of edges
of degree d. If we choose m sufficiently large, ' = p"(m) and p = p}(m) satisfy the
conditions asserted in the proposition. This finishes the proof in the case that there is
at least one 1-cyclic (.

If every element in the subgroup (u1,...,unN) is conjugate to an element in the
stratum 71 (G(4~Y), then Lemma shows that there is € € m (G, v, u) such that

g,y € em (G u)et, (71)

Suppose € is chosen such that 1” = 7”(¢) := Dy(¢)"'ne has the minimal number of
edges of degree d among all possible choices of € satisfying . We further write
p! = e tpge € m (G ).

If a reduced word for " does not involve edges of degree d, then we may take ' = n”,
wi = !, and we are done.

Otherwise, let ¢ : Fiy — m1(G@ Y, u) be the homomorphism sending the i-th basis
element a; € Fiy to /. Let

77” = 90t101 NN tkak

with k& > 1 be an expression reduced in the truncated sense. The element n”:(x) is
D-twistedly reduced if and only if ey # €1 or 6p(e1) L Du(Oxt(x))00 & fer(Ge,). Hence
the set

R:={z¢€ FN|T]”L($) is not D-twistedly reduced. }

is either empty or a coset of a subgroup of Fly.

If R C Fy, then we find xg € F such that xg, xpa1,...,xpan ¢ R. In this case we
define ' = n"1(xg) and p, = p!. The elements o', n'y}, ..., 0y satisfy the desired
properties by construction.

If R = Fy, then

5D(a)_1D*(9kb(l‘))90 € fﬁ(Gm)
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for all + € Fy. This implies that 0, ' D.(c(2))0y € fer(Ge,) for all z € F,. We pick

ho,h1,...,hNn € Ge, such that

5p(e1) " Du(01)00 = fer(ho)
00 D (1))00 = 05 ' Di(1(a;))00 = fer(h;) for 1 <i < N.
We compute
i = 17D (dp(En)dy i Dy (Bodp(er) it
=t D (0p(e1) fer(hi)dp(e1) )t
= t1 " fer (D (ha))tr = fey (i)

and

1" := D.(t1) " '0p(en)by 'n" Dy (o6p(e1) )t

(172) e _ _ _ SN
dp(en)ty 05 " DM (Da(6k) " op (1) fer(ho)dp(e1) ')t
= 5D<61)01t292 .. .tkflekfltkfa<D;11(ho)>t1

= dp(e1)0itaby .. . tp_10k_1fe, (ho).

(72)

If we had chosen €D !(6ydp(e1) 1)t; instead of e, we would have got fewer edges of
degree d in i’ than in n”, which is a contradiction to the minimality assumption for

the choice of € with .

O]
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13 Description of centralisers

13.1 The groups C? and S?

Given a higher graph of groups G and L € Aut’(G), we define
Aut®)(G) = {H € Aut’(G)|H, = 1 for every edge e},
CoL) = {H € Awt'®)(G)|HL = LH},
C%(Lww) = {Hu|H € C°(L)},
C%L) = {H|H € C°(L)}.

Lemma 13.1.

(i) If D is a normalised higher Dehn twist on G, then CY(D) has finite index in
C(D).

(ii) If D is a pointedly normalised higher Dehn twist on G, then C°(Dy,) has finite
indez in C(D.y).
Proof. We write
C ={H € Aut(G)|HD = DH,5p(H(e)) = 1 and b5 (€) € Gy, When dp(e) =1}

and U : C — C (ﬁ) for the homomorphism H — H. By Theorem the map U is
surjective. As all Aut(G.) are finite, Aut¥)(G) has finite index in Aut’(G) and hence
in Aut(G). The subgroup 0 = CﬂAut( )(G) now has finite index in C, so U(C?) has
finite index in C'(D). But, by Proposition we have

U(C% c {H|H € Awt'®)(G),HD = DH} = C°(D).

This proves (i).
The proof of (ii) uses Theorem [10.17| instead of Theorem [10.16] The details are left
to the reader. O

Lemma also applies to truncatable replacements of (pointedly) normalised higher
Dehn twists.
Given closed elements 7; € 71(G,v;), we define

OVNL, (n:)ier) = {(H, (0;)) € Aut?(@)‘(H, (0;)) commutes with (L, (1;))
and H € Aut(E)(G)}.

We sometimes abbreviate this group by C?.
Recall the groups K A;(G) and KO;(G) defined in Section We have the quotient
groups
O (Luw, (m)i) = CP(L, (n:)) /(K A1(G) N CF),
CP(L, (m)s) = CF(L, () /(KOH(G) N CF).
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We warn the reader about the following abuse Q\f notation: When we replace L with
L' such that L = L/, then we have in general CY(L, (n;)) # CY(L, (1;)), but rather

CYUL, (m)) = CYUL, (1)),

where 1} € m1(G,v;) is such that (L, (n;)) (L, (n})) € KO;(G). A similar transforma-
tion formula holds true for CY(L.y, (1;)).
Suppose 7 is a partition of I, i.e. Z = {Iy,..., Iy} such that

I=15U...Uly.
Assume v; = vj whenever 4, j € I,,, for some m, 1 <m < M. We define

S%(L7 (772)) - C?(L’ ("71))

to be the subgroup which consists of all tuples (H, (0;)icr) such that ¢; = J; whenever
i,j € I, for some m. In other words, J; is constant when i ranges over a set of the
partition Z. When Z = {{i}|i € I} is the discrete partition, then SY = C.

We define further

S%(L*vv (771)) = S%(Lv (77@))/(5% N KAI)>
SUL, () = SUL, (1:))/ (SN KO).

Remark 13.2. When (H, (6;)ier) € SY(L, (n;)), then we sometimes write &, for the
value of all §; with i € I,,,. If we pick some 4y, € I,, then we have H,(¢) = D, (6,)(5,,!
for all ¢ € m;,,, (n; 'mili € In). If we have ());cp for a second index set I’ with partition
I’ ={Ii,...,I},} such that the cosets

i (05, i1 € Tn) = mfy (nfy 'nfli € I,)
for every m, then we obtain an isomorphism
S2(L, (mi)ier) = S (L, (n)ier)

sending (H, (0;)ier) to (H, (6});er) where 6, = ;, wheni € I],.

13.2 Generating sets for KO;(G) N C? and KA;(G)NCY

Recall the automorphisms M (w, ) and K (e, h) introduced in Section |9.1|and their lifts
M(w,~)r and K (e, h); defined in Section

Proposition 13.3. Let D € Aut’(G) be a prenormalised higher Dehn twist or trun-
catable replacement, and fix (n;)ier. Then:

(i) KOr(G)NCYUD, (n;)) is generated by automorphisms of the form M (w,~)r and
K(e, h)]
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(ii) KAr(G) N CYD,(n;)) is generated by automorphisms M (w,~); with w # v and
K(e,h);.

Proof. 1t is easily verified that all asserted generators commute with (D, (7;)), and they
lie indeed in the respective group.

We first prove (i) in the special case I = @, so let H € KO(G) N C°(D). Assume
that the degree of G is d = 1. If there is a vertex group of rank at least two, then
Lemma [0.2] proves the assertion. If all vertex groups are infinite cyclic, then G is a
cylinder by Proposition and the assertion is proved by Lemma [9.7,

We now assume still I = &, but d > 2. As H =1, Lemma shows H|r = 1 when-
ever F is a connected component of G@—1). By induction, H 4-1) can be expressed
in terms of the asserted generators on G(@—1. Since all these generators extend from
Aut®(GY) to all of Aut®(G), we may assume H (@1 =1, Proposition shows that
H is a composition of automorphisms Z(F,~,) and O(e,d). By Corollary the au-
tomorphisms Z(IF,~v,) can be expressed in terms of the desired generators. Composing
H with the inverses of these Z(F,~,), we may assume dp(e) = 1 whenever deg(e) = d
and G, () is not 1-valent trivial.

Let e be an arbitrary edge of degree d such that G, is 1-valent trivial in G. We
have to show dz(e) = 1. Since HD = DH and H*~Y = 1, we have

dp(e) = H(dp(e)) = Du(0u(e))dp(e)dn(e) ™.

As 0p(€) € m (GD y(e)) = 1, parts (2) and (6) of Definition imply that dp(e)
grows dominantly of degree d — 1. Lemma now proves dg(e) = 1. This finishes
the verification of (i) in the special case I = &@.

We now prove (i) for general I. The exact sequence on page [87| restricts to an
exact sequence

1— Z;(G)NCY - KO (G)NCY - KO(G) N C%D).

Since KO(G) N CY(D) is generated by elements of the form M (w,~) and K (e, h), the
group KO; N CY is generated by symbols M (w,7)r, K (e, h);, and a generating set for
Zr(G) N Y. By Lemma (i), the latter can be expressed in terms of M (w,~); and
K (e, h)s. This finishes the proof of (i).

Similar arguments apply to KAy in (ii). O

13.3 The rotation homomorphisms ev,

Let G be an ordinary graph of groups and L € Aut’(G). In the following, I has
only one element, and we write C? for C’f,). Given an L-twistedly reduced expression
n=0r(€1)t1g1 - .- txgr and (H,8) € CY(L,n), Proposition m(l) provides h; € G, and
r € Z such that

0 = om (@) fer(Pry1)th—ri1Gk—rs1 - - -t Gr- (73)

The integer r is uniquely determined by 4. For, if we had

0 = Ttg—r 1 Gh—rt1 - - - thGk = T tprr g1 Gk—r' 41 - - - LR G
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for some 7' < r and z,2" € G, _,), then

.
t t ==
Tl—r+19k—r+1 - - - Uk—r'Jk—r' T~ = 1,

but the path length of the left hand side is r — r/ > 0. This contradiction proves
uniqueness of r.

There is a map
ev, : CY(L,n) = 7Z

given by (H, ) — r, where r is the unique integer satisfying .
Lemma 13.4. ev, is a group homomorphism.

Proof. Let (H,6),(H',&") € CY(L,n). If H.(g;) is as stated in in Propositionm7
we have
H.(tj9;) = 0u (&) fe5(hj)tj 8+ Ferr(hysr) ~ 0u (E551)
Using
0" = 0 (€1) fer (M 1) th—r' 41 Gk—r'41 - - - tR Gk

we obtain

H.(8") = Hi (85 (€1))0m (€1) fer (Hey (hjoy1)3m (€1) ™ Hetimrr 19141 - - - tgk)
= 5HH’ (a)fa(Hq( ;H-l)hk’—r’—i—l)tk—r—r’-l—lgk’—r—r’—l—l cee
oo thr Gh—r for(har) M om(En)

When we multiply this on the right by
6 = op(e1) fer (Pt ) bk—r419k—r+1 - - - tk Gk,
this leads to
H.(0")0 = 0 (1) fer (He, (M 1) hbe—prp1 )bk —r/ 41 Ghmr—1/ 41 - - - LGk
We read off that ev,((H,d)(H',d")) =r+1" =ev.(H,0) +ev,(H', ). O

Given (n;)ier, let I¢ denote the subset of I of all ¢ such that n; is L-cyclic, i.e. not
L-conjugate to an element in some vertex group. By I' = I \ I° we denote the set of
all 7 such that n; is L-local. We assume that every n; is L-twistedly reduced.

For every i € I°, we have now defined a rotation homomorphism. All these fit
together to a rotation homomorphism

evy : OV, (n3)ier) — Z1°.
If I is endowed with a partition Z, then this restricts to a homomorphism
ev, : SUL, () — 2" (74)

We denote the kernels of these homomorphisms by C#(L, (n;)) and S(L, (n;)) respec-
tively.
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13.4 Hypothesis (S)
Let L € Aut’(G) be an automorphism of a higher graph of groups of degree d.

Definition 13.5. A tuple (L,Z, (n;)) satisfies hypothesis (i) if the following statements
hold true:

e Alln; € m(G,v;) are L-twistedly reduced in the truncated sense. They are of the
form 0r,(€;1)ti,19i,1 - - - tik, 9i.k, Whenever they go across edges of degree d.

e Ifi,7 € I,,, € Z, then either both n; and n; lie in wl(G(d*U ,V;), or their underlying
paths initiate with the same edge e; 1 = e; 1 of degree d.

e Whenever 7; is L-conjugate to 1 and i € I,,, then n; = 1 € G,, or there is ¢’ € I,
such that i/ 75 ;.

Lemma 13.6. Suppose D € AutO(G) is a truncatable replacement of a prenormalised
higher Dehn twist. For every (D,Z,(n;)), there is (D,Z',(n.)) satisfying hypothesis (S)
such that

SYUD, (n:)) = S%(D, (),
SH(Dsw, (1)) 22 S2(Ds, (0])),
SUD, (m)) = S%(D, ().

Proof. Given ¢; € m1(G,v},v;) for every i € I, there is an isomorphism

CP(D, (m)ier) — CL(D, (Dulei)mi€; Nier)

defined by (H, (6;)ier) + (H, (Hy(e;)ie; ier). If € = ey whenever 4,4’ € I, € T are
in the same partition set, then this isomorphism restricts to an isomorphism

SED, (m)ier) = SHD, (Du(es)mi€; icr)- (75)

Fix a partition set I, and i, € I,. When we replace (1;)icr,, With (7;)ic, such
that the cosets n;,, (ni_mlm\z' € Iy) and nj, (7 'njli € I.,) coincide, we only change SY
by isomorphism (cf. Remark . Proposiglion and an appropriate choice of ¢;
for i € I,,, in allow us to achieve that all 7}, ¢ € I] , are D-twistedly reduced in
the truncated sense and they initiate all with the same segment containing an edge of
degree d if they are not entirely in the stratum ﬂl(G(d*D). Thus we can arrange the
first and second bullet points of Definition [13.5

If n; = ny for all 4,7' € I, and this element is D-conjugate to 1, then the isomor-
phism allows us to achieve n; = 1 for all ¢ € I,,.

This leads to the first asserted isomorphism. Using the definitions in and
on page the reader can check that both the isomorphism in Remark and that
in map elements in K A7 to elements in K A; and elements in K O; to elements in

KOj. Therefore the first isomorphism in the assertion induces the other two. ]
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13.5 Explicit description of S;

In this section we summarise explicitly the data determining an element in S:(D, (n;)).
We first need a lemma following directly from the definitions.

Lemma 13.7. Let G be a graph of groups with infinite cyclic edge groups G = (ae).
A tuple H = ((Hw)wev(r)s (He)ecr(r)s (0r(€))ecrr)) with He = 1 for all e defines an
element in Aut®(G) if and only if Hy o) (fe(ae)) = dm(e)fe(ac)dm(e)™" for all edges
e. O

Assume now that D is a pre-efficient Dehn twist on G. Let (D,Z, (1;)) satisfy hypoth-
esis (S). Fix cyclically reduced expressions 1; = 6p(€;.1)ti,16i1 - - - ik, 9ik, for i € I€.

Lemma 13.8. The group S:(D, (n;)) for a pre-efficient Dehn twist D consists of all
tuples (H, (0;)icr) such that there are (automatically unique) h;; € Ge, ; for all i € I°
with

(i) H € Aut®) (@),

(i) Heie, y(9i5) = 0m(€i) fei; (hij)gij fersri(Pije1) om(@ijr1)~" for alli € I and
all j with 1 <j <k,

(111) hi ik, = hij for alli € I and j € Z,
(iv) 0; = 0 (€i1) ferz (i, 1) for all i € I°,
(v) 6; € Gy, with Hy(n;) = 5i77i5z'_1 forielI,
(vi) &6; = 0y fori,i' € I, € T.

Proof. Conditions (ii)—(iv) follow from Proposition In (ii) we only have to take
j with 1 < j < k; into account. Proposition m(n) then implies this condition for all
Jj € L.

For every i € I, uniqueness of h;,+1 follows from (iv), and all other h;; are then
unique by (ii).

We can assume &; € G,,, for i € I' in (v) because of Proposition M(i),(iii). O

If D is a truncatable replacement of a prenormalised higher Dehn twist of degree
d > 2, then C}(D, (n;)) can be described as follows. In the given D-twistedly reduced
expressions 7; = 0p(€;,1)ti19i1---tik Gik;, all elements g; ; are understood to be el-
ements in 71 (G@ V). They are closed because we assume that G is truncatable at
degree d — 1. We again assume hypothesis (S). Note that all h; ; = 1 because edge
groups in degree d are always trivial.

We denote by Fq,...,F; the connected components of G-, We shall write H, and
D, for the restrictions of H and D to F,.

Lemma 13.9. SX(D, (n;)) for a truncatable replacement D of a prenormalised higher
Dehn twist of degree d > 2 consists of all tuples (H, (0;);) such that
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(i) H € Aut'®)(@),

(ii) for every connected component F, of G~V | the automorphisms H, and D, com-
mute,

(iii) (H;)«(6p(€)) = (D)« (0 (e))p(e)dn(e)~! whenever deg(e) = d and 7(e) € F,,

(iv) (H:)«(gi;) = 6m(ei;)gii0m(@j11)~t for alli € I¢ and all j with 1 < j < k;,
where r is such that T(e; ;) € Fy,

(v) 6; =0 (€i1) for allie I°,
(vi) ; € m1(F,) with He(n;) = D*(éi)méi_l fori € I, where r is determined by v; € F,.,
(vii) 8y = 6; whenever i,i’ € I,,, C I'.

Proof. (iv) and (v) follow from Proposition [12.2] which also reduces (iv) from all j € Z
to 1 < j < k;. By Lemmas m amdl@l7 we can assume 0; € 71 (F,.,v;) for i € I in
(vi). When 4,4" € I, C I¢, then (v) implies §; = §;;. Therefore it suffices to require this
in the case I,,, C I' in (vii). O

13.6 The homomorphism evy,

We use the notation used in the previous sections. Assume that L = D is a pre-efficient
Dehn twist, so all edge groups are infinite cyclic. Fix an orientation ET C E(T).
Consider the group homomorphism

diag : @ Ge — @ Ge, ,

ecE+ iel€,
1<j<k;+1

mapping the summand G, by the identity to the summand G, ; if e;; = e or e;; =€
and trivially otherwise. We denote the cokernel of diag by P, which is a free abelian
group of finite rank.

Consider the function

evy, : C1(D, (m;)) — P (76)

sending (H, (6;);) to the collection of the h; ; given by Lemma in the components
of the target of diag.

Lemma 13.10. evy, is a homomorphism.

Proof. Pick (H,(&)),(H',(d!)) € Ct. By Lemma M(iv) applied to the discrete par-
tition Z of I, we have

0; = O (&i1) ferg (M g 41)
for i € I°. Recall that all edge group automorphisms H, = 1 by definition of C} C CY.
Hence

H.(67)6; = Ho (61 (€01))0m (€01) ferr(He, , (i gy 11))0m (€31) 10

= 0 m (€i1) ferz (Mi gy 11 Pk 41)-
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This shows that evy((H, (6;))(H',(d}))) and evy(H, (6;)) + evp(H', (0])) are both
W . 41hiki+1 on the component G, . Similar calculations using Lemma m(u)
show the same for the components G, ; with j # 1. O

Remark 13.11. Explicitly, S2(D, (n;)) consists of all tuples (H, (8;)ier) such that there
are he € G, for all edges e of I' such that he = hz and the conditions in Lemma [13.8
are satisfied for h;; = he,, and hg; = he, ;. In other words, we have h;; = hy j in
Lemma whenever e; ; = ey j» or e; j = €y jr.

By verification of the generators of KO;NCY in Proposition we know that KON
C}) is contained in the kernel of ev, and evy,. Therefore ev, induces a homomorphism

ev, : CY(D, (n;)) — ZI", (77)
whose kernel we denote by C}(ZA?, (n;)). On that kernel, we have a homomorphism
evy : CHD, (n;)) — P. (78)

Let C%(D, (n;)) be the kernel of evy, : C+(D, (n;)) — P, and define C?(D.,, (1;)) and
C%(D, (1;)) similarly. When [ is equipped with a partition Z, we also define corre-
sponding versions of S% and S%.

13.7 Relative centralisers in degree one

Definition 13.12. A relative centraliser is a group isomorphic to some S%(D.y, (1;))
or SX(D, (n;)), where D is (a truncatable replacement of) a prenormalised higher Dehn
twist on a finitely generated free group.

When J : G — G/ is an equivalence and D € Aut®(G), then there is an isomorphism
S2(D, (n;)) = Sz(JDI ™, (Ju(m:)))
given by (H, (6;)) + (JHJ L, (J.(8;))). This induces isomorphisms

S (D, (1)) 22 Sz((JDI ™), (Ju(m2))),
SUD, (m:)) = Sz(JDJI L, (Ju(ms)))

Therefore it is not important in Definition [13.12) whether we ask D to be a prenormalised
higher Dehn twist or a truncatable replacement.

In this section we assume deg(G) = 1. We have seen in Lemma[7.15|that truncatable
replacements of pre-efficient Dehn twists are pre-efficient Dehn twists.

Important elements in a relative centraliser are given by the group

LSCz(G) = {(Hv (6:)ier) € SY(D, (Uz))‘H =1,0;=1fori e IC}

of local self-conjugations.

The only non-trivial data of an element (H, (6;)) € LSCz(G) are the terms d;, i € I'.
When i € I, C I', the element §,, = ¢; has to commute with all nir, i € Ip,. Since
centralisers of subgroups of finitely generated free groups are always finitely generated
free, LSC7(G) is a free product of finitely many such free groups.
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Proposition 13.13. Let D € Aut%(G) be a pre-efficient Dehn twist together with a
partition T of I, and n; € m(G,v;) for i € I such that (D,Z,(n;)) satisfies hypothesis
(S). For every vertex w of I', there is then a finite set Cy, of conjugacy classes in Gy,
such that the image of each horizontal map in the following diagram has finite index in
the target group.

S%(D7 (771)) @wEV(F) AUt(GUM Cw)

| |

S2(Day, (1)) 2 Aut(Gly, o) © Dz, Out (G, Cuo)

C |

S%(Bv (m)) ®wEV(F) Out(Gwa Cw)

Here A is the homomorphism sending (H, (6;)icr) to (Hw)wev (). The kernels of A,

Asy, and A are direct products of finitely many finitely generated free groups. They are
generated by local self-conjugations and Dehn twists.

Proof. Recall that I¢ and I' are the sets of those i € I such that 7; is D-cyclic or
D-local respectively. Let Z = {I,...,Ip} be the underlying partition, and assume
I,CcI'for1<m< M and I,,, C I¢ for M' < m < M.

We use the description of Remark (cf. also Lemma [13.8). Together with
Lemma we see that an element of S2(D, (1;)) is encoded by a tuple

(Hw)wev(ry: (01(€)ecpr)s (9m)i<m<mr)
such that there are h, = hz € G, satisfying the conditions
e dy(e) € Gr for e € E(T),
o §;, €Gy, forie It
o Hye)(felae)) = dn(e)fe(ac)dm(e) ™,

i HT(eiJ)(gi,j) = (SH(ei,j)fei,j (h’e’i,j )gi,jfiei’ﬂl (hei7j+1)_16H(6i,j+1)_l for all i € I¢ and
all j with 1 <j <k,
o H.(n;) = 66t foric I, C I'.

We observe that, whenever 7,4’ € I,,, C I¢, then €iki+1 = €if ky+1 by hypothesis (S), so
hi k41 = hit g, +1, and Lemma m(iv) implies §; = J;.

Every K(ep,h); determines such a tuple, in which the only non-trivial components
are 0r(eg) = fe,(h) and dx(€g) = feg(h). As its vertex group automorphisms are
trivial, it lies in the kernel of

A S3(D, (m)) = P Aut(Gu).
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To understand the image of A, we may compose any tuple with the composition of all
K(e,h;1)[, e € ET. Therefore we may assume that all h, = 1. We have to find finite
sets C,, of conjugacy classes such that A corestricts to the top horizontal map in the
diagram of the assertion, and such that the image of A has finite index.

Given any vertex w € V(I'), we define the link graph A(w) to be the following labeled
graph. The set of its vertices is V(A(w)) = E, the set of edges of T terminating at
the given vertex w. There are the following labeled edges: For every e € V(A(w)) we
take a loop at e with label fe(a.). For every pair (i,j) such that i € I, 1 < j < k;,
and 7(e; j) = w, we define an edge in A(w) from e; ; to € ;1 with label g; ; (cf. Figure
[9). Let Vo(w) be a set of representative vertices for the connected components of A(w),
and write Vo = [ |,ey () Vo(w).

fei,j (aei,]’) fei,j+1 (aei,j+1)

9ij

€i,;j €ijt1

Figure 9: The link graph A(w) in the proof of Proposition |13.13

The third and fourth bullet points of the above list can be reformulated by Propo-
sition on the labeled graph A(w): For every e € Vp(w), the automorphism
H.) = Hy, has to act as ads, () on the finitely generated subgroup A(m(A(w),e))
of Gr(e), where A : 1 (A(w)) — Gy denotes the labeling function. This determines all
0 (e) with e ¢ Vp as well.

Hence SZ is given by tuples ((Hy)w, (6m(€))eevi, (6m)1<m<nr) with

o H,(¢)=0dg(e)dy(e)~! for e € Vo(w) and ¢ € A(m1(A(w),e)),
o Hy (n;) = 0mmi6;,t fori € Iy, 1 <m < M.

By Proposition there is a finite set C,, of conjugacy classes in each G,, such
that, if we corestrict A to Aut(Gy,Cy) in each summand of the target, then the image
of A has finite index.

The kernel of A is generated by all K(eg, h); and tuples

((Le, )wev (), (0m(€))ecvys (Om)1<m<nr)
such that
e iy (e) centralises \(m(A(w),e)) for every e € Vp(w),
e 0,, commutes with n; for i € I,,,, 1 <m < M’.

These elements define Dehn twists and local self-conjugations respectively.
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We have to show that we can define A, and A fitting into the commutative diagram
in the assertion. Then their images will also have finite index in the respective target
group.

By Proposition(ii), the kernel K A;NCY of the map S2(D, (1;)) — S2(Day, (1)) is
generated by the tuples corresponding to the K (eq, h)s, of which we know that they are
in the kernel of A, and M (w, )y for w # v. The latter are mapped to 1 € Aut(G,,Cy,)
for u # w and to ad, € Aut(G,,Cy) by A, so they are trivial in the target group for
A,p. This allows us to define Ay, as indicated in the diagram. The kernel of A, is the
kernel of A with the K (eg, ) divided out, so it is generated by Dehn twists and local
self-conjugations.

Similar arguments apply to A when we take automorphisms M (v, ) into account.

O

13.8 Centralisers of efficient Dehn twists

Suppose that D is an efficient (or pointedly . efficient) Dehn twist on G. The groups
CY%(D) and C°(D,,) have finite index in C(D) and C(D,,) by Lemma We now
discuss the spemal case I = @ in Proposition and its proof in more detaﬂ, which
will lead the to explicit short exact sequences and for C°(D) and C°(D,,)
respectively. These sequences have also been obtained in Theorems 5.10 and 6.7 of [31].

The rotation homomorphism ev, in on page and the homomorphism evy,
in on page have trivial target groups. Thus we have C?(D) = C%(D),
C3(D.) = CY(D.), and C3(D) = CY(D).

The link graph A(w) in the proof of Proposition is a disjoint union of circles,
one at each vertex e € E,, = V(A(w)) with label fe(ac). The sets of conjugacy classes
C, can be chosen as

= {[fe(ac)l|e € E(T), 7(e) = w} (79)

because A(m1(A(w),e)) = (fe(ae)). We only appeal to Proposition in the special
case of tuples of length one, so we need not pass to a subgroup of finite index. Hence
the maps A,, and A are surjective. We therefore have short exact sequences

1—DO(G) = C'(D) = P Out(Gy,Cu) = (80)
weV (T)
1 = DA(G) — C%(Duy) — Aut(Ga, Cy) (@ Out(Gu, Cu )) 1 (81)
wWHv

for some kernels DO(G) and DA(G). By Proposition these kernels are gener-
ated by Dehn twists because there are no local self-conjugations. Since I = &, items
(ii) through (vi) in Lemma are void, and the group of Dehn twists of G is en-
tirely contained in C?. Thus DO(G) and DA(G) are its images in Out(m1(G,v)) and
Aut(m1(G,v)) respectively. After adding an additional free factor Z at the basepoint
in the situation of DA(G), it can be deduced from Proposition 5.4 of [13] that these
kernels are free abelian of rank equal to the number of geometric edges of T'.
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13.9 Relative centralisers in higher degree

Let D € Aut’(G) be a truncatable replacement of a prenormalised higher Dehn twist.
Assume that we are given 7; € m(G,v;) for i € I as well as a partition Z of I. We
assume that this data fulfills hypothesis (S) in Definition m Recall that St is the
kernel of the rotation homomorphism ev, : S% A

We denote by Fy,...,F; the connected components of G , and we assume that
the basepoint v lies in Fy. For simplicity, we write D, for the restriction of D to F,.

(d-1)

Proposition 13.14. There are closed elements n; ., i € I}, with partitions I, of I} in
m1(F,) fitting into the commutative diagram

SHD, (1)) z ®._, S (Dr, (n],))

By

SHDao, () = S% ((D1)sv, (1;,.)) © B'—y 5% (Dy, (],)

oo}}

SL(D, (n:)) @', 5% (Dr, (0],,))

such that the horizontal homomorphisms are isomorphisms.

Proof. Roughly speaking, the homomorphism B is obtained by “extending” the iso-
morphism in on page E 87| to additional ;.

We use the descrlptlon of S Lin Lemma All g; j are closed elements in 7 (F,.) for
some r. In the partition Z, we assume that I LU.. .Ulyand 1€ = Ty U. . Uy
The elements in S} are described by tuples ((H, )1<r<l, (01 (€))deg(e)=d> (5m)1§m§M/)
such that

1) H,, D, € Aut’(F,) commute,

) (H:)«(0p(e)) = (Dr)«(0u(€))dp(e)dr (€)™ if deg(e) = d, 7(e) € Fy,
3) (Hr)e(9i4) = 0m(ei;)gi0m (Eijin)~" fori € I°UQS 1< j < ki,
)

4) 0 € w1 (GUD) satisfies H,(1;) = Dy(8,0)1:0;:" for i € Iy, 1 <m < M.

(
(2
(

(
We define the link graph A, to be the graph with

V(Ay) = {e € E(I)|deg(e) = d,7(e) € F,}

and an edge labeled g; ; from each e; ; to &_ 11 when 7(e; ;) € F,.

We claim that (2) for e = e;; is equivalent to (2) for ¢ = € ;1. By Proposi-
tion [12.2[(ii), item (3) of the above list for 1 < j < k; implies (3) for all j € Z. By
on page [40] the condition

H,.(6p(€")) = Dy (8u(€))p(e’)om ()"
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is equivalent to

Hy+(Dra(9i.3) ™' 0D(€)gi,j—k,) = Drs (011 (¢')) Drs(9i.3) ™ 6D (€)gi jr,Orr ()
(1) and (3) allow us to equivalently rewrite this as

Dr*Hr*(gi,j)ilHr*(5D(6))Hr*(gi,j—ki)
= DyeHyi(9i5) " D (81(€))0p(€)0r1 (€)™ Hrs(gi 1)

which simplifies to Hy+(6p(e)) = D (d1(€))6p(€)dp(e)~L. Thus (2) can be reduced to
the special case e € Vp(A,), where Vp(A,) C V(A,) is a set of representative vertices
for the connected components of A,.

Proposition [11.13] shows that (3) reduces to (Hy). = ads, ) on A(mi(Ar,e)) for
e e Vo(Ay).

On each component F,, the above data satisfying (1) through (4) therefore reduces
to tuples (Hra (5H(e))e€V0(AT)7 <5m)m) such that

o H, and D, commute,
o (Hy)«(6p(e)) = (Dr)«(dr(e))dn(e)dm(e) " if e € Vo(A,),

o (H,). acts as ady,, (o) on A(m1 (A, ) if e € Vo(A,),

o (Hy)o(n) = (Dy)o(Gn)midt 4 € Iy, 1 < m < M, and 1 € mi(F,).

Here the second and third bullet points can be rephrased to the requirement that
(H;)x simultaneously D,-conjugates

dp(e),dp(e)p(e), .- -, p(e)un(e)(€)

by dg(e) for every e € Vy(A,), where pi(e),. .., un(e) are generators for A(m(Ar,e)).
Hence the data on each component F, is encoded by SO;(DT, (n;,)) for some elements
77;,1« € m(F,), i € I, and a partition Z/. The isomorphism B is then given by restriction
to I, in the r-th summand.

To show that By, is well-defined, we use Proposition m The kernel KA;(G)NCY
of the map SH(D, (m;)) — SH(D.y, (1;)) is generated by automorphisms of the form
K (eg,h)r and M(w,v); with w # v. These elements are mapped to K(eg, ) and
M(w,v)r. by B. These images generate the kernel of the right hand map. Similar

arguments apply to B. O

13.10 Finiteness property VF

The goal of this section is Theorem [13.21] the main theorem of this thesis, which shows
that the centraliser of every higher Dehn twist automorphism in Out(F,) or Aut(F},)
satisfies finiteness property VF.

Definition 13.15. A group G has finiteness property F if there is a finite CW complex
which is a K(G, 1)-space. G has finiteness property VF if it has a subgroup H of finite
index which has property F.

We first need some elementary preparation.
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Lemma 13.16.

(i) If G satisfies property F, and G is a subgroup of finite index in G, then G°
satisfies property F.

(ii) If G° is a subgroup of G of finite index, then G satisfies VF if and only if G°
does.

(iii) If Gi,...,Gy satisfy F (or VF respectively), then so does @2:1 G;.
(iv) All finitely generated abelian groups have finiteness property VF.

Proof. In (i), a finite K (G, 1) space can be obtained as a covering space of a finite
K (G, 1) space with finitely many sheets.

In (ii), if H° has finite index in G° and property F, it also has finite index in G, so G
has property VF. Conversely, if H has finite index in G and satisfies property F, then
H® := H N G" has finite index in G°. As H? also has finite index in H, part (i) shows
that HY has property F, so G satisfies VF. This proves (ii).

If each X; is a finite K(Gj,1) space in (iii), then [[, X; is a finite K(G,1) space.
This proves (iii) for property F. For property VF, we use that € H; has finite index in
P G; when each H; has finite index in Gj.

As every finitely generated abelian group is a finite direct sum of cyclic groups, (iii)
reduces (iv) to the special case of cyclic groups. Using (ii), we only have to show
finiteness property VF for the trivial group and for Z. But these groups have finite
classifying spaces, namely a point and a circle respectively. ]

Proposition 13.17. If 1 - G’ — G — G"” — 1 is a short exact sequence of groups,
G’ has finiteness property F, and G" has finiteness property VF, then G has finiteness
property VF.

Proof. Let H” be a finite index subgroup of G” satisfying finiteness property F, and
denote its preimage in G by H. We then have a short exact sequence

1-G' - H—>H'—>1.

By Theorem 7.1.10 in [I6], we can construct a finite classifying space for H from finite
classifying spaces for G’ and H”. As H has finite index in GG, the group G has property
VF. O

Proposition 13.18. Suppose that in the short exact sequence 1 — G' 5 G 5 G" — 1,
the group G’ has finiteness property VF, and G" is finitely generated abelian. Then G
has finiteness property VF.

Proof. Suppose first that G” = Z. Let H' be a subgroup of some finite index d in G’
such that H' satisfies property F. Then the intersection K’ of all (finitely many) index
d subgroups of G’ also satisfies property F by Lemma, (1) Furthermore, the group
K’ is a characteristic subgroup of G’, i.e. it is left invariant by every automorphism of
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G'. Let now t € G be an element such that 7(t) generates G”. We denote by K the
subgroup of G generated by ¢ and ((K’). It has finite index in G and fits into a short

exact sequence
1K - K-G0 —1.

Proposition implies that K and hence G has property VF. This finishes the proof
for G" 2 Z.

By induction on m, we now prove the assertion in the case that G” = Z™. Let
A" 22 7 be a direct summand in G”, so G” /A" = Z™~!. The short exact sequences

1 =G =7 1A = A" =1,

17 YA -G —G"/A" =1,

and the induction hypothesis now prove the assertion for free abelian G”.
We now come to the general case. Let H” be a free abelian subgroup of G” of finite
index and H = 7~ !1(H"”) C G. We obtain a short exact sequence

1-G —-H—H"—>1.
Hence H satisfies VF, and Lemma [13.16(ii) implies VF for G as well. O

Proposition 13.19. If C is a finite set of conjugacy classes in F,, then Aut(F,,C)
and Out(F,,C) satisfy finiteness property VF.

Proof. This is shown in Corollary 6.1.4 of [I4] for Out(F},,C). As Inn(F,) = F,, (or
Inn(F7) = 1) has property F, the exact sequence

1 — Inn(F,) — Aut(F,,C) — Out(F,,C) — 1
and Proposition [13.17 show VF for Aut(F,,C) as well. O

Theorem 13.20. All relative centralisers have finiteness property VF.

Proof. We show by induction on d := deg(G) that S2(D.,, (1;)) and S%(ﬁ, (n:)) have
finiteness property VF whenever D is (a truncatable replacement of) a prenormalised
higher Dehn twist on G.

Let first d < 1. The homomorphisms A, and A in Proposition have kernels
which are direct products of finitely many free groups, hence ker(A,,) and ker(f/l\)
satisfy property F. The images of A,, and A have finite index in the direct sum of
finitely many groups of the form Out(G,Cy) or Aut(Gy,C,). By Proposition
and Lemma , we conclude that the images of A,, and A have finiteness property
VF. Proposition shows that S2(D.., (1;)) and S%(f), (n:)) satisfy VF whenever
(D, T, (m:)) satisties hypothesis (S) of Definition In the following, we exhibit the
arguments for S2(D, (1;)), which we simply denote by S%. The proof works in the same
way for SZ(Diy, (1)).

Recall that C? is defined to be the kernel of evy, : C} — P in on page and
S% = C’% 05’% is the kernel of the restricted homomorphism evy, : S% — P. The group P
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is finitely generated abelian. As any subgroup of a finitely generated abelian group is
finitely generated abelian, evh(S%) C P is finitely generated abelian. Proposition
shows that St has property VF.

The target group of the rotation homomorphism ev, in on page is finitely
generated abelian, so the image of ev, is. Proposition shows that S? satisfies VF.
By Lemma these groups S also satisfy VF if we do not require hypothesis (S).
This finishes the proof for d < 1.

We now prove inductively the assertion for d > 2. Suppose first that hypothesis
(S) is satisfied for S%(ﬁ, (n:)) or SH(Dyy, (m:)). By Proposition this group is a
direct sum of finitely many relative centralisers of degree d — 1. By induction and
Lemma (iii), we conclude that SH(D,,, (1;)) and S%(f), (n;)) have property VF.
As this is the kernel of ev, in (77)), and the image of that homomorphism is finitely
generated abelian, Proposition shows that S’% has property VF. By Lemma m
this also holds true without assuming (S). O

We are now in a position to deduce the main theorem of this thesis.

Theorem 13.21. Whenever D is a higher Dehn twist on a higher graph of groups G
with finitely generated free fundamental group, then the centralisers C(D.,) and C(D)
satisfy property VF.

Proof. If we have D = pD’p~! for two higher Dehn twists D € Aut’(G) and D’ €
Aut®(G'), then C(D) C(b\’ ). Therefore Theorem (ii) reduces the statement to
normalised D for C(D). Similarly, we can reduce to pointedly normalised D for C/(D,)
by Theorem (1)

Note that C°(D) is the relative centraliser with I = & and the empty partition Z in
Definition Therefore Theorem shows that it satisfies VF. By Lemma[13.1
it has finite index in C' (lA)), so Lemma ii) shows that C (IA)) satisfies property VF.
Similar arguments apply to C'(Dyy). O

Remark 13.22. When we have a finite set C of conjugacy classes in 71(G,v), then we
can also look at the group G of those (H, (;)icr) € S%(D, (n;)) such that H, fixes each
class in C. A refined version of the lemmas in this chapter can be used to show that
groups of the form G/(G N KA;) or G/(G N KOy) satisfy property VF when D is (a
truncatable replacement of) a prenormalised higher Dehn twist. This specialises to
Theorem when C = @.

When I = @, then we obtain that the intersections C(D,) N Aut(mi(G,v),C) and
C(D) N Out(m1 (G, v),C) satisfy VF for every higher Dehn twist D on G with finitely
generated free fundamental group.
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14 Isometric CAT(0) actions

In this chapter we discuss the translation length of an element ¢ in a group G acting
by isometries on a CAT(0) space. We first recall some definitions.

A CAT(0) space is a geodesic metric space X satisfying the CAT(0)-inequality for all
p,q,r € X: That is, for all geodesic triangles with vertices p,q,r € X and all x € [p, ¢]
and y € [p, 7], the euclidean comparison triangle with d(p, q) = d(p, q), d(p,7) = d(p, ),

d(q,7) = d(g,r), d(p,z) = d(p,x), d(p,y) = d(p,y), T € [p,dl, § € [p, 7] satisfies
d(z,y) < d(z,y). The situation is depicted in Figure
T T
X R2
y y
P x q p q

I

Figure 10: The CAT(0) inequality.

Taking g = r, it follows that there is a unique geodesic between p and ¢, which we
denote by [p, q].

A more precise definition of CAT(0) spaces can be found in Chapter I1.1 of [11].

Recall that X is called complete if every Cauchy sequence converges. The space X
is called proper if all closed balls B(z,r) are compact.

14.1 Translation lengths and centralisers

Definition 14.1. Let v : X — X be an isometry. Its translation length is
= inf d .
7l = inf d(z,~(z))

v is called

e clliptic, if |y| = 0 and the infimum is attained at some =z € X, i.e. z is a fixed
point of ~,

e hyperbolic, if |y| > 0 and the infimum is attained at some x € X,
e parabolic, if the infimum is not attained,
o semisimple, if it is either elliptic or hyperbolic.
Translation lengths are invariant under conjugation, i.e. |a| = |fa~!|. Moreover,

a is elliptic, parabolic, or hyperbolic respectively, if and only if Ba~! is. Similarly

o] = Ja™].
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If Q is any group and g € @, then we denote by [g] the class in the abelianisation
Hi(Q) = Q/[Q, Q) represented by g.

There is the following criterion for translation lengths using centralisers: Suppose
g € G has positive translation length for an action on a proper CAT(0) space X.
Then it can be shown that it fixes a point in the boundary of X. The action of the
centraliser C'(g) preserves the set of horospheres at this point, but it might shift them
by a certain length. This gives rise to a group homomorphism C(g) — R sending g to
the translation length |g| > 0. Since R is abelian and torsion-free, this is possible only
if [g] € H1(C(g)) has infinite order. This gives rise to the following theorem, which
has also appeared implicitly in the proof of Theorem 1 in [9].

Theorem 14.2 (Bridson, Karlsson, Margulis). Let G be any group and g € G. Assume
that [[g] has finite order in H1(C(g)). Then |g| = 0 whenever G acts by isometries on
a proper CAT(0) space. O

14.2 Orthogonal projections

A subset C of a geodesic metric space X is called conver if, for all x,y € C, the geodesic
segment [z,y] C C. The following proposition describes an orthogonal projection onto
convex subsets and is illustrated in Figure

Proposition 14.3. Let C' be a closed convex subset of a complete CAT(0)-space X .
Then:

(i) For every point x € X, there is a unique point mc(x) € C' such that the distance
d(z,mc(x)) = d(z,C) := infyec d(z, y).

(ii) The map o : X — X is 1-Lipschitz, i.e. d(nc(x), 7c(y)) < d(z,y).

(iii) If v is an isometry of X, then myc)yoy =yomc.

Figure 11: Orthogonal projection onto a convex set.

Proof. (i) and (ii) are Proposition 112.4(1) and Corollary 112.5(2) of [I1]. Part (iii) is
easy and left to the reader. O

135



In the following we are interested in the sets

Ac(y) == {z € X|d(z,7(2)) < |y| + €},

where v is an isometry of a complete CAT(0) space X and € > 0. Note that A.(y) # &
by definition of |v|.

Lemma 14.4. A () is convez.

Proof. For arbitrary points z,y € Ac(7), let ¢ : [0,1] — X be the unique geodesic
segment (parametrised proportionally to arclength) joining ¢(0) = x and ¢(1) = y. Then
v oc is the geodesic segment from y(z) to y(y). It is well-known (cf. Proposition 11.2.2
n [I1]) that the function ¢t — f(t) := d(c(t),yc(t)) is convex. Since f(0), f(1) < |v|+¢,
we have f(t) < |y| + e for all ¢ € [0,1]. Hence c(t) € Ac(y). O

Lemma 14.5. Let a and 8 be two commuting isometries of a complete CAT(0) space
X. Then the intersection Ac(a) N Ac(B) # &.

Proof. Pick z € Ac(a). It is easy to calculate that a(Ac(B)) = Ac(5). The desired
intersection point will be y := 74, (5)(7) € Ac(a) N Ac(B). Tt is in A(B) by definition.
By Proposition we have

d(y,ay) = d(ma ) (), ama g)(z)) = d(ma.(8)(), Ta.(8)(T))
<d(z,ar) < |af +e¢,

hence y € Ac(«). This proves the lemma. O

14.3 A parallelogram law

In this section we prove the following formula for translation lengths, which will also
restrict translation lengths in isometric CAT(0) actions.

Theorem 14.6 (Parallelogram Law). Any two commuting isometries o and B of a
complete CAT(0)-space X satisfy the formula

|aBI” + aB™ = 2(laf? + [BP).

In the case of semisimple isometries, the flat torus theorem provides an isometrically
embedded euclidean plane on which o and 8 act by translation. Then this formula is
simply the well-known parallelogram formula in euclidean space. As we don’t require
the isometries to be semisimple in our proof, we have to find an approximate version
of the parallelogram of translation vectors.

We first need the following lemma.

Lemma 14.7. Whenever v is an isometry of a CAT(0) space X, then || = 2|v].
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Proof. For x € X, we write m(x) for the midpoint of the geodesic segment [z,~y(x)].
Then m(y(x)) = y(m(x)). The triangle spanned by =, v(z), and +2(z) is illustrated by
Figure Using the CAT(0) inequality, we have

%d@,m)) > d(m(z),7(m(x))) > ]

for every x € X. Hence 1|72 > |9].
On the other hand,

d(z,7*(2)) < d(z,v(z)) + d(y(2),7*(2)) = 2d(z,7(x)).

Taking the infimum over all z € X, we see |y2| < 2|v|. O

Figure 12: The points z, m(z), v(z), y(m(x)), and ¥2(x) in the proof of Lemma m

Proof of Theorem[1].6, Let € > 0, and pick some z € A () N Ae(3), which exists by
Lemma The two comparison triangles of z, az, afz and z, Bz, afBz fit together
to a parallelogram, which is illustrated in Figure Let y € [z,afz] C X be the
midpoint and i the corresponding comparison point.

Bx

afx

8|

azx
Figure 13: A comparison parallelogram.

Using the CAT(0) inequality and elementary euclidean geometry, there is the follow-
ing estimate:

B! < d(aw, Bz) < d(y, ax) + d(y, Bz) < d(g,az) + d(7, Bz)
= d(az, Br) = (2d(z,@x)? + 2d(z, Br)? — d(z,afr)?)?
< (2(|a] + €)% + 2(18] + €)> — |af])?.

Tending ¢ — 0, this is one inequality of the theorem. The other one follows after
replacing o, 3 by af, af~! and using Lemma m O
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An infinite cyclic subgroup (y) C G of a finitely generated group G is called distorted
if L1(y™) — 0 for n — oo, where [ is the length in G with respect to a fixed finite
generating set. It is known that v then acts by translation length zero whenever G acts
by isometries on any metric space.

Therefore it is interesting to look for examples of groups G and v € G such that
Z = () C G is undistorted, but for every isometric action of G on a complete CAT(0)-
space X, the translation length |y| is zero. An example of this is the automorphism
group of the free group F,, on n generators:

Theorem 14.8 ([I], Theorem 1.1). In Aut(F,) and Out(F,), every infinite cyclic
subgroup is undistorted. L]

Fix a basis a, b1, ..., b, c1,...,c, of the free group Fy 441 and w € (by,...,b;). We
denote by pgw € Aut(Fy4k41) the automorphism sending a to aw and fixing all b; and
C;.

Theorem 14.9. If n > 2, then |pgw| = 0 whenever Aut(F,yr11) acts by isometries
on a complete CAT(0) space.

In the special case w = by, Theorem was shown by Bridson [10] under the
additional assumption that the action is by semisimple isometries. It was also shown
by Bridson for w = b; without using semisimplicity in the case n+k+ 1 > 6. We drop
here the semisimplicity assumption.

We will compute the abelianisation of the centraliser for some values of w explicitly
in Chapter and we will see [pgw] = 0 € H1(C(paw)). Then Theorem will
follow from Theorem [14.2] There is another proof using the parallelogram law, which
we give now:

Proof of Theorem [14.9: We define the automorphisms « and 3 of F, 141 by

a: ara, B = paw: @+ aw,
bi — bi, bi — bi,
C1 — 1w, c1 — C1,
co —> czw_l, Co > Co
and fixing cs, ..., c,. It can be computed that
af = pa,

-1 _
Pa,c1 ®Pa,ci = af,

-1 _ -1
pa,CQ APq,co = O‘ﬁ .

Hence o, o3, and a3~ ! act by isometries of the same translation length. Theorem
proves |B| = 0. O
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14.4 Application to group homomorphisms

The following is stated in [10]: Let 3, be an orientable surface of genus g > 2 with-
out boundary. There is an action of the mapping class group MCG(X,) on a com-
plete CAT(0) space (the completion of the Teichmiiller space endowed with the Weil-
Petersson metric) such that the elements acting with zero translation length are exactly
the roots of multitwists. Here v is called a root of multitwist if some power 7" is a
product of Dehn twists about disjoint simple closed curves. Since we can compose this
action with homomorphisms Aut(F;,,) = MCG(X,), Theorem has the following as

an immediate consequence:

Corollary 14.10. If n > 2 and paw are as above, then every group homomorphism
Aut(Fy i p41) = Mod(Xg) maps pa.w to a root of a multitwist. O

This corollary has already been known by Bridson using the fact that the above
action of Mod(X,) is by semisimple isometries.

We now show how Theorem gives information about linear representations of
Aut(Fy4x41). Let P(m,R) be the space of all symmetric, positive definite m x m-
matrices with real entries. In Chapter I1.10 of [I1], there is a construction of a Rieman-
nian metric of non-positive sectional curvature on the manifold P(m,R). In particular,
P(m,R) is a CAT(0) space. The general linear group GL(m,R) acts on P(m,R) by
isometries according to the formula g.A := gAg' for g € GL(m,R) and A € P(m,R).
It can be checked that every g € GL(m,R) with translation length |g| = 0 in this action
only has (complex) eigenvalues on the unit circle. As we can compose any homomor-
phism Aut(F,+x+1) — GL(m,R), Theorem implies:

Corollary 14.11. If n > 2, then in every linear representation Aut(F,ixy1) —
GL(m,R), all eigenvalues of the element p,., lie on the complex unit circle. O

14.5 Construction of positive translation lengths

The goal of this section is to show that pgp, Pgpep-1c-1, and pgp2.2 can act hyper-
bolically when Aut(F3) acts by isometries on a complete CAT(0) space. We know by
Theorernthat pap has to act by zero translation length in (not necessarily semisim-
ple) actions of Aut(F;,), n > 4. The elements pg pp-1.-1 and p, 2.2 have to act by zero
translation length for n > 5, but the author does not know whether there are actions
of Aut(Fy) with positive translation length.

If G is any group and H a subgroup of finite index d, then an isometric action of
H on a metric space X can be “induced up” to an action of G on the cartesian power
X® (cf. Section 2.1 of [10]). An element g € G acts by positive translation length (or
hyperbolically) on X¢ if some (or equivalently every) non-trivial power g™ € H acts
by positive translation length (or hyperbolically respectively) on X.

We now construct actions of Aut(F3) with positive translation length, where the one
for pep, is closely related to that in Section 6 of [10].

Write F3 = (a, b, c). Consider the index 2 subgroup freely generated by a, b, ¢, cac™?,
and cbc™!'. We denote by H its stabiliser in Aut(F3), which is a finite index subgroup
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because there are only finitely many index two subgroups in F3. The non-trivial Deck
transformation of the two-sheeted covering of the standard rose has a three dimensional
eigenspace of eigenvalue +1 in first homology with Q-coefficients, and a two dimensional
eigenspace of eigenvalue —1 with basis a—cac™!, b—cbc™!. Every element of H now acts
on this —1-eigenspace, giving rise to a homomorphism H — GL(2,Z). It can be checked
that pab, Papeb-1c-1, and p,p2.2 belong to H, and that their images in GL(2,Z) have
infinite order. Since GL(2,Z) is virtually free, we can construct an isometric CAT(0)
action such that every non-torsion element of GL(2,Z) acts hyperbolically. Hence we
get an action of H such that any of the three aforementioned p, ., acts hyperbolically.
Inducing the action of H to one of Aut(F3), we obtain the desired action.
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15 Simplifications of presentations

To apply Theorem to the translation lengths in some isometric CAT(0) action of
Aut(F,,) or Out(F,), we have to compute the abelianisation of the centraliser. Although
finite presentations can often be computed algorithmically (cf. [31] for the ordinary
Dehn twist case), it is far from being obvious to check the conditions of Theorem [14.2]
We will discuss the necessary simplifications of the presentations in this chapter for
the special case of right translations p, ., which includes the case of standard Nielsen
automorphisms.

15.1 Right translations as Dehn twists

Let T" be the graph with one vertex v and one loop e (that is two oriented edges e and
€). We define G, to be the free group with basis W, by,...,bg,c1,...,¢,. Let w be
any non-trivial element in the free group B generated by b1, ..., b, such that w is not
a proper power. We take GG, to be infinite cyclic with generator r, and we define the
attaching maps by fe(r) = w and fz(r) = W. We denote this graph of groups by G.

For the first glance, a notation by1,..., bk, might seem more convenient for the
basis elements ci,...,c,. However, we will often assume that B is the natural free
factor B(w), and this will only make sense in the present notation.

Since we only have one vertex here, every word representing an element in II(G) is
connected. Thus the fundamental group is m1(G,v) = II(G). It is generated by t. =: a,
W, and all b; and c;, subject to the relation awa™' = W. Hence it is free with basis
a,by,...,bg,c1,...,cn. Let p > 1. We define a Dehn twist D by 7. = 7P and 7z = 1.
Then dp(e) = fe(ve) = w™P and ép(€) = fe(ye) = 1. Then D,, is the right translation
p = pawr sending a to aw? and fixing the other basis elements of Fj, ;1.

It is easily checked that D is efficient, in particular pointedly efficient. The short
exact sequence (81)) on page for the centraliser now simplifies to

1= (p) = C%p) = Aut(G,,C,) — 1, (82)

where C, = {[W], [w]} by (79).

Note that this sequence is completely independent of p. From now on we always
assume p = 1, that is we are only considering right translations pg_,, such that w is not
a proper power.

To study the finite index subgroup C°(p) = C%(D,,) of C(p), we need the following
lemma.

Lemma 15.1. C%(p) = {H.,|H € Aut®(G), Hupp = pH,y,}.
Proof. By definition of C°(D,,) in Section we have
C%p) = {H«w|H € Aut’(G), HD = DH, H. = 1}.

The inclusion “C” of the assertion is clear. Conversely, let H € Aut’(G) such that
H,, and p = D,, commute. By Lemma [7.15(i), the elements 7, and . defining
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the Dehn twist HDH ! satisfy 7. = He(7.) and 7% = H.(ys) = 1, so we obtain
2=t = He(v2) ™! = He(2e). As Dy, = (HDH™1),,, Proposition 5.4 of [I3] shows
that the twistors of these Dehn twists coincide, so He(z.) = 2, = 2z, and H, = 1. Then
Lemma shows D = HDH ™', so H € C%p). This proves “D”". O

Recall that an element of a free group is called primitive if it is part of a basis.

Lemma 15.2. If w is primitive in B = (b, ..., by), then C°(p) is a subgroup of index
2 in C(p). Otherwise C°(p) = C(p).

Proof. As Aut(I') = Z/2 generated by the graph automorphism swapping e with e,
it follows that Aut’(G) has index at most two in Aut(G). Using the description in
Lemma it follows from Theorem that C°(p) has index at most two in C(p).
Any o € Aut(B) extends to @ € Aut(F,4x+1) by the identity on a and ¢y, ..., cp.
As apa,wa—l = Pa,a(w), the centralisers of pg . and pg () are isomorphic.
If w is primitive, then we have w.l.o.g. w = by =: b and k = 1. Consider the
automorphism 6 € C(p, ) given by

a t if z = a,
O(z) =< ab~ta"t, ifx=0,
Cis if £ =g¢.

It is not in C%(p,p) because 0(t.) = 0(a) ¢ Gut.G,.
Conversely, suppose that C%(p) € C(p). Then there is H € Aut(G) such that the
underlying graph automorphism swaps e with €. By Definition (7 ),

Hy(w) = Hy(fe(r)) = 5 (e) fe(He(r))or (e) ™" = d(e)W* o (e) ™.

The right hand side is primitive, which is possible only if the left hand side is. Therefore
w is primitive in G,,. Lemma shows that w is also primitive in the free factor B
of G,. O

15.2 Short exact sequences and presentations

Suppose we are given a short exact sequence
15AS5B5SC—1

of groups. Assume we have a finite presentation of the group A with generating set
X ={x1,..., 2} and set of relations R and a finite presentation of C' with generating
set Z = {z1,...,2m} and relations S. We fix Z1,..., Z,, such that 7(Z;) = z;. Taking
the union of t(X) = {u(x1),...,e(zn)} and Z = {Z1,...,%,} gives a generating set
for B.

We need three types of relations. We first have the relations in B given by R, the
set of relations in A. We call these the kernel relations.
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We may lift the set of relations S to a set of words S on Z in the obvious way. Each
element of S is mapped to the identity under m, so lies in t(A). For each element § € S
there is a word w; in ¢(A) such that ws = § in B. We call the set {ws = §|s € S} the
set of lifted relations.

Finally note that for € € {1,—1} the element Z5:(z;)Z; is mapped to 1 by m, so

wj je = Z51(x;)Z; “ in B for some word w j in t(A). We say the set of all such relations
is called the set of conjugation relations. The following is an exercise in combinatorial

group theory:

Proposition 15.3. B has a finite presentation given by the generating set 1(X) U Z
with the kernel relations, lifted relations, and conjugation relations. O

15.3 Centralisers of right translations

We will apply Proposition to the short exact sequence on page The set
Cy = {[W], [w]} consists of two conjugacy classes, one of which is the basis element W,

and the other lies in a complementary free factor. To compute the abelianisation of
C(p), we are interested in presentations which are reasonably small, so we should avoid
using the McCool complex for Aut(Gy,C,) directly.

We now discuss how to reduce the study of centralisers of arbitrary right translations
to those by rigid elements in a free factor. Recall that pg. and pg o) are conjugate
for every automorphism « € Aut(B). If w does not involve one of by, ..., b, we may
rename that symbol to ¢,4+1. This way we can assume that B is the natural free factor

B(w) described in Proposition [11.11

By Proposition we have a short exact sequence
1 — Aut(Gy, [W],[B]) = Aut(G,, [W], [w]) = Out(B, [w]) — 1 (83)

where the left hand term denotes the group of automorphisms of G, fixing W up to
conjugacy and B up to uniform conjugacy, i.e. acting on B as ad, for some x € G,,.

In our examples, we will compute a presentation of Out(B,[w]) by the McCool
complex. We assume that w is not a proper power and not primitive. Using the
sequence , we only have to put this together with the computations for rigid ele-
ments, where we deal with fixing free factors up to uniform conjugacy. This will lead
to a presentation for the middle term in and hence for C(paw) = C*(paw) by
on [T411

We can also compute C(pgq,) more directly in terms of the special case of rigid w
and Out(B, [w]). To this end, we put the short exact sequences together to the diagram
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C(Pa,B)

C(paw)

Out(B, [w]) —=1

1 —— Aut(Gy, [W], [B]) —= Aut(Gy, [W], [w]) —= Out(B, [w]) — 1

1 1

with exact rows and columns. Here
C(pa,s) = {f € Aut(Fri141)|f € C(paw), f fixes B up to uniform conjugacy. }.

Observe that the first two non-trivial columns coincide if w is rigid in the free factor B.

Exactness of the middle column follows from on page The left hand column
is then exact by construction. The bottom row is the exact sequence (83). Exactness
of the middle row follows by an easy diagram chase.

15.4 Stabilisers of conjugacy classes of rigid elements

In this section we state an important presentation, whose case k = 1 coincides with
k = 2 in Proposition 7.1 of [19]. Recall that, in our notation, k denotes the rank of the
free factor B.

In the following, we use the symbol P;; to denote the automorphism of either
Foiky1 = (a,by, ..., bg,c1,...,¢n) or Gy = (W,by,...,bg,c1,...,c,) which permutes
the basis elements ¢; and ¢;. Similarly, I; denotes the automorphism mapping ¢; to c;l
and fixing the other basis elements.

If y and z are elements of a fixed basis of a free group and e € {£1}, then (y¢; z)
is the automorphism fixing all basis elements different from y and sending y to yz if
e =1, and to 2z 'y if e = —1. Moreover, (y*;2) is the automorphism y — 2z~ 1yz fixing
the other basis elements. Furthermore

(bF;2) == (bF;2) ... (bf; z).
We sometimes identify the symbol b* with the set {by,... by, b7, .. .,b,;l} and W+

with {W,W=1}. We warn the reader that this notation does not follow McCool’s
convention z € A, 27! ¢ A whenever denoting an automorphism by (A4; z).
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Theorem 15.4. The following is a presentation for Aut(G,, [W],[B]), the group of
automorphisms of G, fixzing W up to conjugacy and the free factor B up to uniform
conjugacy:

Generators: P ;, I, (W*ib;), (Wh;e), (b5 W), (bF;b:), (6F;¢), (5 W), (c5;b)),
(¢5;¢5), whenever these symbols make sense with e € {£1}.

Relations: Forue € {W=,b%,¢cq, ... ,cn,cl_l, cos et} ze € {W by, .. bg,cry . Cn)

Z1.1 Relations in Aut(cy,...,c,)
71.2  (b5b)=1ifk=1

Z2 (ul;zl)(uQ;zg) = (U/2722)(U1,Zl) for 21 = 29 Or
(u1 U {Z1 PN (ugU{z'}) =
Z3.1 ( ) P]‘J(I/Vi Cl>

73.2 (bi, ) o _le(bi )

73.3  (Whie)l; = 1I; (Wi )

73.4 (b)) =14 (gi )

73.5  Pj; and I; commute with (b W), (b5 b)), (WE:by)

Z3.6 (c§; 2) Pj le(cl, z) for z=W orz =1,

Z3.7 (cj,z)I —I( ;2) for z=W orz =1,

ZhT (w69 2) (0 ¢5) = (w5 2)(c5:.2) for (us 2) # (bF;B)
such that all symbols denote generators or inverses

742 (WE 27 (W)W 29) = (u; 2) (u; W) (u; 27°) for (u; 2) # (b™56])

Z4.3 (52 (usbi) (055 2%) = (w3 29) (u; 03) (u; 27) for u # b
such that all symbols denote generators or inverses

7Z5.1 (b5 2) (b5 by) = (b5 b;) (b )forz:cj orz=W

252 (WO WEdl) = (W ) (e W)

753 (¢ 05 ) = (5 o0 (e 5)

]’l

Here we read compositions from right to left. We warn the reader that the arti-
cles [19], [26], and [27] use the opposite convention.

The proof of Proposition is lengthy and not needed elsewhere in this work.
Therefore we postpone it to Section We first exhibit a presentation for C%(pg )

in Corollary
For z € F,, 111 let 7y, be defined by

az, if x =a,
Yo(x) =< 27 bz, ifx =0,

Ci, if z = ¢.
For notational convenience, we sometimes write (7; z) instead of ~,.

Corollary 15.5. Let w € Fy, 41 be rigid in the free factor B of rank k > 2. Then a
presentation for C(pgw) is obtained in the following way: The generators are the same
as in Theorem with one additional generator p := pg.. When we write (a1 2)
instead of (W=;2) and -y, instead of (b™; z), then the relations are the following:
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e Relations in Theorem[15.]), except for adding p© in Z5.2:

(e W et e) = (a5 W) o g

e p commutes with all generators.

Proof. We apply Proposition to the central extension on page We first
have to lift the generators of Aut(G,,C,) to C°(p) = C(p). Since the surjection in the

short exact sequence is given by restriction to the vertex group G,, lifting means
extending automorphisms from G, to all of F,,1;11. The generators P, ;, I;, (c¢§; W),
(c5;b5), and (c§;¢j) are lifted to the elements of C(p) called by the same name. The
generators (W=; 2) and (b%; z) can be lifted to (a~'; 2) and 7. respectively.

A presentation for the right hand term Aut(G,, [W], [w]) of on page is given
by Theorem In the lifted relations for C'(p), the only possible changes after lifting
the generators are that powers of p could show up. A straightforward calculation shows
that these powers are as claimed: The only non-vanishing one is in relation Z5.2.

Finally, we have to add the conjugation relations, which prescribe how to move p
along other generators. As the extension is central, this amounts to saying that p
commutes with all other generators. O

Corollary 15.6. Let w be a rigid element in the free factor B of rank k > 2 in Fy1py1.
Then there are the following abelianisations:

;

72K+ ifn=0,
o Zk@(z/2)4’ ifn=1,
Hl (Aut(Gu, [W]7 [U}D) - (Z/2)2, an — 2’
Z/2, ifn =3,

72k+2 ifn=0,

LB e, =,

Hi(C(paw)) = (Z/2)2, ifn=2,

Z/2, ifn=3.

The class [p] € Hi(C(paw)) is one of the generators for n = 0, twice a generator of
the free summand in the case n =1, and [paw] = 0 when n > 2.

Remark 15.7. For later reference, we record some of the facts which will be clear from
the proof of Corollary

(i) When n = 0, the abelianisation H;(C(p)) is free abelian with basis [a=1;b;],
[h/Wﬂa [[/Ybi]]’ [[p]]

(ii) For n = 1, a basis of the free abelian summand is given by [c¢; W] and [c; b;].
Important relations are [yy,] = —2[c; b:], [a=1;b;] = 0, and [p] = 2[c; W].

(iii) In the case n > 2, we have [a~1;b;] = [,] = [c§; b:] = 0.
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Proof. 1t suffices to verify the assertion about Hq(C(paw)). The first abelianisation is
then obtained by taking the additional relation [p] = 0, for this is already true before
taking abelianisations (cf. Theorem and Corollary .

We have to abelianise the presentation in Corollary We first consider the case
n = 0, where there are no ¢;. The only generators are [a=1;b;], [yw], [w,], and [p].
All relations are void or trivial in the abelianisation, whence the assertion.

Next we consider n = 1: For simplicity we write ¢ := ¢y and I := I;. The generators of
C(p) are I, (a15b;), (a7 ¢), Yawa—15 Voi» Ver (¢ awa™t), (c5b;), and p. The relations
in Theorem and Corollary give rise to the following in the abelianisation:

71: 2[I] = 0, 73.3: 2[at; ¢] =0,
73.4: 2[v.] =0, 73.7: [c; awa™] = [¢; awa™],
73.7: [e;b] = [e7 Y0, Z4.1: [a=t 6] =0,
Z4.1: [Vawae-1] =0, 75.2: 2[e; awa™1] = [p],
75.3: 2[c; b5] + [w,] = 0.

All other relations are either trivial in the abelianisation, or they can be deduced
from this table. This proves the assertion in the case n = 1.

From now on we tackle n > 2: Recall that C(p) has the generators P, j, I, (a™1;b;),
(a™5¢0)s Yawa—1> Vois Veir (c53awa™t), (¢5:b5), (c§;¢), and p. Checking all relations, it
follows that there is a group homomorphism

H1(C(p)) = Hi(Aut(Fy))

sending the generators [P;;], [/;], and [cf;c;] to the corresponding generators in
Hy(Aut(F,)), and all other generators of Hi(C(p)) are mapped to zero. We claim
that this map is an isomorphism. To see this, we have to verify that all generators
mapped to zero already vanish in Hi(C(p)). Relation Z4.1 shows that all Ju;z] = 0
for (u;z) # 'ygi,(cf.;cj). Moreover, [vw,] = 0 by Z5.3 and [p] = 0 by Z5.2. This
proves Hi(C(p)) = Hi(Aut(F,)) for n > 2. By abelianising a presentation of Aut(F},)
(from [26], [29], or [30] for instance), the reader can check that this is as asserted. [

15.5 Computation strategy for centralisers of right translations

We now discuss how to obtain a presentation for C%(p,.,). As input, we need a finite
presentation for Out(B, [w]), where B = B(w) is the natural free factor of w. We
assume that the rank k£ of B is at least 2.

Before we spell out the strategy, we need some notational preparation: Some of the
generators will be (a=1;b;), v,, and (c§;b;). Sometimes we will write down a symbol
(u; x) for some x € B. This is an actual generator only if x = b; for some i. Otherwise,
this is meant to be an abbreviation for a product of some (u;b;) and their inverses,
according to the following
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Lemma 15.8. For z,y € B we have:
(i) (@ hz)(a™hy) = (a o),
(i) (chni ) (chny) = (chi wy),

(i15) YaYy = Vya

1 €

(iv) (u;z™Y) = (u;2)~ Y, where u =a=', u=c,, oru=",. O

Recall that we read compositions from right to left. Note that the composition order
of x and y is preserved in (i) and (ii), but reversed in (iii).

Strategy: We need a presentation of Out(B, [w]) as input. Using the presentation
in Corollary we apply Proposition to the middle row in the diagram on
page We lift the given generators of Out(B, [w]) to a1,...,q, € Aut(B) fixing w
genuinely, i.e. a;(w) = w. We extend each «a; to Aut(F,;x11) by setting a;(a) = a and
a;(c;) = ¢j. Then these a; commute with pg .. The presentation for C’O(p&w) is then
obtained as follows.

Generators: P, j, Ij, (a7:), (a715¢), Yawa-1s Vois Veir (€5 awa™t), (¢5305), (c5;¢)),

Pa,w, Xi-

Relations:

(i) Relations for C(pa,p) (cf. Corollary [15.5)),

€r

(ii) Lifted relations: for every relator af-ll ...a;" in the given presentation of the group

Out(B, [w]), there is a relation a5 ...af" f =1 for a unique f € C(pa,5),
(ili) aup = pou,

(iv) oy commutes with P; ;, I;, (@Y ¢)s ey YW (c5; W), (c5;¢5),

(v) ag o (u;b;) = (u;oq(b;))ay, where u = a™! or u = 7, or u = c§. (The meaning of

the abbreviation (u;q(b;)) is made precise by Lemma above.)

Ezxample 15.9. Let us consider the above strategy in the special case that w is rigid in
its natural free factor B. By Corollary the group Out(B, [w]) is trivial. We use
the empty presentation for it. Then the above strategy does not lead to any generators
a;, so the generating set is the same as in Corollary The relations given by the
strategy are no more than the ones in that corollary because all relations involving
some «; are void. Hence we recover exactly the presentation in Corollary

Remark 15.10. The element f € C(p, ) showing up in (ii) above is actually a power of
Ywp . To see this, recall that 3 := ;! ...oq is an inner automorphism on B and fixes
a and all ¢;. By our choice of the representatives «; of outer automorphism classes, we
know that all of them fix w € B. Hence S(w) = w as well. Therefore 3|p is conjugation
by an element in the centraliser of w € B, hence a power of w. Note that conjugation

by w on the free factor B is exactly the map v,p '
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15.6 Centraliser of a Nielsen automorphism

We now discuss the centraliser C(pa,p) of the standard Nielsen automorphism p = pgp :
a — ab. By Lemma the subgroup C°(p) has index two in C(p). An element in
C(p) ~ C%p) is given by

al, if x =a,
O(z) =< ab~tat, ifx =0,
Ciy if x = ¢;.

Theorem 15.11 ([31], Theorem 8.2). The centraliser of the Nielsen automorphism
p € Aut(F,) has the following presentation.:

Generators:

P ; for1<i,j<n—2andi#j,

I; for1<i<mn,

(cS52)  for1<i<n-—2,e==xl, andc; # 2z € {aba™1,b,c1,...,cn 2},
s for z € {aba™ Y, c1,...,ch 2},

(a™Y2) forz€{b,ci,...,cn2},

P,

6.

Relations: For every z,z; € {aba™1,b,c1,...,ch2} and u,u; € {ciﬁl, A cfiQ,afl,'y.}:
R1 Relations in Aut(F,_2) for {(c5;¢;), Pij, I},

R2 (u1; 21)(ug; 22) = (U2722)(U1,Zl) for uy # us and ziﬂ ¢ {uy,us},

R3.1 (a‘l )le = le( - Cl),

R3.2 (a Y¢))l; = Ii(a™Y; ]1),

R3.3 Ve; © 50 = Pj,l © Yeps

R34 ’}/chIj :Ijo%_jl,

R3.5 le, I; commute with (a=%;b) and Yape-1,

R3.6  (c; )P]l—P]l(chz) for z=aba™! or z =10,

R3.7T  (cj;2)L; = Lj(c; :2) for z =aba™! or z =10,

RLT (6 M) (e 2) (s c;w (w5 2)(cTs 2),

R4.2  (a= 279 (u;abat) (a7t 29) = (u; 29) (u;aba™1) (u; 27°),

R4.3 7 (u;0)9% = (u; 6)(% b)(u; 27°),
(c;™; (

R5.1 ab’a=1)(a~ 7’) al; )(c ab=¢a™1)pc,
R52 ( ] b)”)’q op= ,‘YC]( 3 b )

R6 p commutes with all generators,

R7  6*>=1,

RS.1 9oP,;=P,o0,
R8.2 Ool,=1;00,
R8.3 0o (cic) = (c5;
R8.4 0o(c;aba™t)
R8.5 fon., =(aYe )09

R8.6 0oy, = (a7 00,

3 )
=( )09,
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whenever the symbols involved denote generators or inverses.

Proof. Recall the short exact sequence on page m
1= (p) = C%p) = Aut(G,,C,) — 1.

To get a presentation for C°(p), we now use Proposition We have a generating
set for C(p) consisting of these lifted generators together with p, which is as asserted
in the present theorem. The lifted relations are R1 through R5, which have the same
numbers as the corresponding relations in Proposition [I5.4 A direct calculation shows
that p only shows up in R5. Since p is central, the conjugation relations are simply
the commutation rules R6. As the left hand term in this exact sequence is the infinite
cyclic group generated by p, there are no kernel relations.

To get a presentation for C(p), we apply Proposition to the short exact sequence

1—C%) — Clp) = Z/2 1,

arising from the fact that C%(p) has index 2 in C(p) and is therefore normal.

A generating set for C(p) is then given by § and our chosen generators of C%(p). The
relations are again R1 through R6 along with the lifted relation R7 and the conjugation
relations given by RS. O

We now study the abelianisation of C(p).

Corollary 15.12 ([31], Corollary 8.3). Let p € Aut(Fy,) be a Nielsen automorphism.

Then
ZQ@Z/Q, ifn =2,

Z®(Z)2)3, ifn=3,
(Z/2)37 an = 47
7)2®7)2, ifn>5.

Hi(C(p)) =

When n = 2, the class [p] is a generator of Z?, when n = 3 it is twice a generator of
Z, and otherwise [p] = 0.

Proof. We abelianise the presentation in Theorem We first restrict to the case
n = 2: the generators of C(p) in this case are ygp,-1, (a7';b), p and 6. The only
relations which occur and are non-trivial in the abelianisation are R7 and R&8.6, which
become 2[0] = 0 and [v,p0-1] + [(a~*;b)] = 0. This finishes the proof of the assertion
for n = 2.

Next we consider n = 3. For simplicity we write ¢ := ¢;. Here the generators of C(p)
are I := Iy, (c5aba™'), (¢ b), Yapa-1, Vs (a71;D), (a7 L5¢), p, and 6. By Theorem
we obtain the following relations:

RI1: 2[1] =0, R3.2: 2[a Y] =0,
R3.4: 2[v] =0, R3.7: [e;aba™'] = [¢ s aba™ 1],
R3.7: [e; 6] = [ 18], R4.1: [Vapa-1] = 0,

150



R4.1: [a=t;0] =0, R5.1: [p] = 2[c; aba™'],
R5.2: —[p] = 2[c; b], RT7: 2[6] =0,
R8.4: [e:b] = —[c; aba™1], R8.5: el = [a; ]

All other relations in H;(C(p)) either follow from the ones above or are trivial. It
follows that H;(C(p)) = Z @ (Z/2)? with the torsion part generated by [I], [v.], and
[0] and the torsion-free part generated by [(c;b)] with [p] = —2[(¢; b)].

For n > 4, by checking the relations R1-R8 one finds that there is a homomorphism

C(p) — H, (Aut(Fn_Q))

given by sending the elements (c;aba™1), (c§;b), 72, (a71;2), p and 0 to 0 and letting
the remaining generators of C(p) act on F,,_o = (c1,...,cp—2). We also have the
homomorphism

C(p) = C(p)/C°p) = Z/2

that takes every generator except 6 to 0. Combining these gives a surjective homomor-
phism
f:C(p) = Hi(Aut(F,—2)) ® C(p)/C°(p).

The relation R4.1 implies that [(u; z)] = 0 if there is a symbol ¢; different from both
u,z and their inverses. Hence any generator (u;z) not of the form (c§, ¢;) is trivial in
H1(C(p)). Furthermore, as [(c;;aba™!)] = 0, we have [p] = 0 by R5.1. It follows that
any non-trivial element of H;(C(p)) is non-trivial under the map f, and as im(f) is
abelian, we have im(f) = H;(C(p)). The observation

720 7)2, ifn=A4,

Hy(Aut(Fp—2)) = {Z/Q ifn>5

finishes the proof. O

15.7 Right translation by a commutator

Here we discuss the case w = blebl_le_ Lin the strategy on page m The natural
free factor B = (b1, bg) is of rank 2. For simplicity we write x := b; and y := be. In
view of on page we are interested in Out(Fy, [zyz~ty~1]). It is well-known
and easy to verify with the McCool complex that this group is equal to SOut(F3), the
index 2 subgroup of automorphisms whose abelianisation has determinant +1. The
abelianisation induces a homomorphism

Hy : SOut(Fg) — SL(?,Z)

In order to introduce some notation important for our computations, we now verify the
well-known fact that H; is an isomorphism. In [32], there is a presentation for SL(2,7Z):
There is an isomorphism

SL(2,Z) = Z/4 %7/, /6,
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where the generators of Z/4 and Z /6 are given by the matrices _01 (1)> and <_11 (1]>

respectively. Both these matrices have preimages in SOut(F»), hence the above map
H, is surjective. We choose the preimages <ym1 g) and <y$1 z> o (z;y). It is
easily calculated that, in Out(Fy), they satisfy all relations of Z/6 x5 Z/4. More-
over, using the McCool complex, SOut(Fy) is generated by these elements. Hence the
abelianisation map H; is an isomorphism.

We now apply the strategy on pagewith this presentation of Out(B, [by bgbflbg .
We lift the generators to Aut(B) by

Oy bll—>b2_1, ag: bll—>bll)2_1,
by > babiby !, by + baby byt

It is readily checked that a4 and ag fix the element blbgbflbg 1 We extend these maps
by the identity on a,cy, ..., ¢, to automorphisms of the free group Fj1x11 = Fp+s =
(a,bi,ba,c1,...,¢n), which we call by the same names.

We now compute the relations in (ii) of the strategy on page In the group
Out(B, [b1bab; *b5 '), we can reduce to the relators af and aZag® because the relation
al = 1 follows from them. A calculation shows that these relations become

4 —1,.-1 —1
Q= 7(,2 7{;1 T2 Vo1 P s
aj = of (85)
in C(pa7blb2b1—1b2—l).
Since the complete list of relations for this centraliser is quite long, we do not spell

it out completely. At this place, we only compute its abelianisation and describe the
class [p] in it.

Proposition 15.13. For p,, ;,-1,-1 € Aut(F,+3) we have

72, ifn =0,
N Z® (Z)2)%, ifn=1,
Hl(C(Pa,bleb;lbgl)) - (Z)2)? © Z/12, ifn =2,

Z/2®7/12,  ifn> 3.

The class [p] is 12 times a generator of the torsion-free summand whenn =0 orn =1,
and it 1s zero when n > 2.

Proof. By the strategy, the generators are those for H;(C/(pg,p)) in Corollarywith
[ea] and [og] added.

The relations (i) in the strategy on page lead to the same as in Corollary
The set of relations (ii) is given by , whose abelianised forms can be read as

[o] = =4[],
2] = 3[exe]. (86)
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The relations of type (iii) and (iv) are irrelevant here because they are only commuta-
tors.

The relations of (v) of the strategy for ag lead to [u;b1] = [u;b1] — [u;b2] and
[u; ba] = [u; b1], which annihilate all classes [u;b;]. After that, the relations (v) for ay
become trivial in the abelianisation.

We change the basis elements [ay] and [ag] to

Ay = o] = [as],
A2 = 2[[044]] — 3[[a6ﬂ.

Then the above relations show Az = 0 and [p] = —12A4;.

Summarising, we have

_ H1(C(pa,B)) ® (A1)
T Ipl 41241 = [a7 0] = [, ] = [ 06] = 0

H1(C(pa,w)) (87)

To understand the additional relations, we refer to Remark

If n = 0, the generators are [a™1; ], [Yw], [,], [p], and Ay subject to the relations
[p] = —12A; and [a=1;b;] = [v,] = 0, whence the asserted abelianisation.
In the case n = 1, Remark [15.7](ii) shows

Hy(C(pa,p)) = L° @ (Z/2)°,

where a basis of the free summand consists of [¢; W] and [c; b;] with [p] = 2[c; W],
[V, ] = —2[c; b4, [[a_l;bi]] = 0. Thus

sy s FSHULS

= (Z/2)® @ Z[[c; W], A1)/ (2[c; W] + 124, = 0).

We now write By = A; and By = [¢; W] + 6A1, so we have
H1(C(p)) = ((Z/2)* ® Z[B1, B2]) /(2B = 0) 2 Z & (Z,/2)".

Since [p] = —12By, it is 12 times a generator of the summand Z.
In the case n > 2, we know by Corollary and Remark that the classes
la=0:] = [w,] = [¢§;0:] = [p] =0, so shows

Hi(C(p)) = (H1(C(pa,B)) ® (A1))/(1241 = 0)
= H(C(pa,B)) ®Z/12.

This is the asserted abelianisation. O
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15.8 Right translation by a Klein bottle relator

Another example for the strategy on pageis about the right translation by w = b3b3.
Determining its centraliser is equivalent to finding the centraliser of right translations
by the more popular Klein bottle relator w’' = b1b2b1by I hecause these two elements
differ by an automorphism of B = (b1, b2). Note that this free factor is again the natural
free factor of w.

We first need a presentation for Out(B, [b?b3]):

Lemma 15.14. A presentation of Out(F, [#2y?]) is the infinite dihedral group with
generators 81 and Bo given by

Bi: x> zy?, Ba: x =y,

y—y y—a

~2 ~2
subject to the relations 51 =1 and B2 = 1.

Proof. Using the McCool complex, we prove that 31 and £ generate Out(Fy, [z%y?]).
Every loop at the basepoint [224%] can be homotoped to one containing only one edge
label which is a Whitehead automorphism of type one. We can assume that this edge
is the very last one of the loop.

In Out(Fy), the only non-trivial type II Whitehead automorphisms are (z;y)*! and
(y;2)*. As the permutation P, , swapping x with y is a one edge loop at the basepoint,
conjugation by this reduces us to finding all edge paths from the basepoint [12y?]
starting with a label (z;y)*!. They are depicted in the following diagram.

Ppy (y;)
Y (30) Y

[2%y?] < [zyay ]

I
Do

[z%y 2]

We read off that Out(Fy, [z2y?]) is generated by
Px,y = 627

(23 9)(y; 2) (23 9) "' = adyBi1 e,
Iyo(z;9)7% = Bi.

Therefore Out(Fy, [#2y?]) is generated by By and fs.
It remains to check the relations. Clearly 81 and (2 have order two. The reader can
check that (315> has infinite order, so there are no more relations. ]

We now use Lemma [15.14] as input for the strategy on page According to (ii)
of that strategy, we have to find oy, g € Aut(B) that fix w = b2b2 and differ from 3
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and fs in the lemma only by inner automorphisms. We choose

ar: by = b263bTL ag: by b2boby 2,
by = byby tbyt, by > by.

We again have to compute the relations (ii) of the algorithm. They are

2 2 —2_ -2
] =g =Yy, W, P (88)

As in Section [I5.7]for commutators, we restrict to an explicit calculation of the abelian-

isation H; (C’(pmb%bg)).

Proposition 15.15. Consider the right translation p, 22 € Aut(Fnyi3). Then

7 @ (2)2)3, ifn=0,
7Z.®(Z/2)% ifn=1,
(Z/2)%, ifn=2,
(Z.)2)3, if n > 3.

Hy(Clpgp2)) =

The class [p] is twice a generator of the torsion-free summand when n < 1. Otherwise
[o] =0.

Proof. Since we compute the abelianisation, we only have to take relation types (i),
(ii), and (v) of the strategy into account. As usual, relations (i) leave us with a direct
sum H1(C(pa,8)) ®Z[[on], [o2]], i-e. we add to the abelianisation of Corollary [15.6] the
summand Z? generated by the classes [;]. Relations (ii), which are in the present
situation, become

2[on] = 2[e2] = 2w, ] = 2[w.] + [o]-

The abelianised relations of type (v) corresponding to «; in the strategy reduce
to 2[u;b2] = 0. The map «ay produces the relation [u;b;] = [u;b2]. Therefore
H1(C(pag2z)) is obtained from Hi(C(pa,)) ® Z[[cu], [a2]] by dividing out the re-
lations

2[cu] = 2[az] = —2[,] — 2[w,] + o],
[u; b1] = [u; b2],
2[u; b2 = 0.

We transform the basis as follows: We introduce A; := [o;] — [a2]. Then we get

H;(C(pa,B)) ® Z[[cn], Ai]
241 =0, [p] = 2[aa], [u; b1] = [u; b2], 2[u; b:] =0

HI(C(Pa,w)) =

We can use Corollary and Remark to obtain the desired abelianisation. [
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15.9 Proof of Theorem [15.4]

We now derive the presentation for Aut(G,, [W], [B]) in Proposition Recall that
G, is freely generated by W,by,...,bg,c1,...,cpn, and B is the free factor (by,...,by).
We use the McCool complex K. By Proposition fixing the free factor B up to
uniform conjugacy is the same as fixing the conjugacy class of a rigid element w in this
factor.
The vertex set of the McCool complex is given by

Ko := {V minimal tuple|V = (P(W), P(w)) for some P € Aut(F,1x41)}
= {(V(W)v’y(w))h € Qn+k+1}.

Here €, 4(+1 denotes the group of permutations of {W,by,...,bg,c1,...,c,} and their
inverses. It follows from rigidity of w in B that we only obtain vertices by using these
permutations v € Q1 11.

In the above description of Ky, the vertices (v(W),v(w)) and (7' (W),~'(w)) are the
same if and only if the permutations v and 4 coincide on W and all b;.

The edges and 2-cells of the complex K are given as in Section The edges
give rise to the generators of our presentation: The P; ; generate the type I Whitehead
automorphisms which are a loop at the basepoint. The type II Whitehead automor-
phisms can be written as a composition of the generators in the assertion, or they do
not belong to K because they increase the cyclic length of (W, w).

The relations stated in the theorem are verified by calculation, which is a good
exercise for the reader.

In Section 4(1) of [27], it is remarked that the relations given by the 2-cells of K
follow from the relations R1 through R10 of [26]. Therefore it remains to show that
our relations Z1 to Z5 imply R1 to R10 of [26], which we will recall below. As in the
proof of Theorem 7.1 of [19], we only have to take loops at the basepoint (W, w) into
account. Therefore we only have to show that our relations imply R1 to R10 of [26]
when interpreted as relations at the basepoint (W, w) € Kj.

We remind the reader that McCool [26] reads compositions from left to right, whereas
we read them from right to left. Therefore the generators appear in the opposite order
in the relations.

When A and B are sets, then we write A+ B for AU B only if A and B are disjoint,
and we write A — B for A~ B only if B C A. We sometimes identify a letter z with
the set {z}.

We now start to verify R1 through R10. Relation R1 is used to identify inverses. R2
is already used to decompose more general symbols (A;a) as a product of generators.
In order to make this work, we need that (u1; z) and (ug; z) commute, which is included
in Z2 of Proposition [15.4

R3 states that (A;a) and (B;b) commute if A+ a~! and B + b~! are disjoint. This
relation follows from Z2.

R4 is (B;b)(A;a)(B;b) ™t = (A+ B—bja) for ANB=0,a !¢ Band b! € A
This follows from Z4.1 as in [19]: In our situation b = ¢ because b € A, b=! ¢ A, and
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a # b. We proceed by induction on the cardinality of B. The minimal case B = {b} is
trivial. Otherwise we choose some u € B — ¢ and calculate

(B;c§)(Asa)(B; e )
(B —u;c5)(A—c; % a)(u;cs)
)

I

i ¢; 5 a)(usc

( : V(B —u;c; )
2B~ u ) (A~ ¢ a)(wsa) (e a) (B — uici )
(B—w;¢5)(A+u;a)(B —u;c; )

= (A+ B~ a),

where the last equality follows by induction. Note that this argument still works for
u = Qi or u =W+,

R5 is the relation (A—a+a~1;b)(4;a) = (A—b+b"1;a) (bﬁl z> forbe A, b=t ¢ A

and a # b. This relation can only appear when a and b are c-symbols. In the minimal
case A = {a, b}, this relation R5 is included in Z1. In the general case we compute

(A—a+at;b)(A;a)
= (A= a;b)(a”;b)(b;a)(A - b;a)

L (A-ab)(ba) (bfl b) (A —b;a)

Z(A-—a;b) b ha)(A—a—b+b 5 <ba1 2)

= (A-b+b Ha)(A—a;b)(A—a—b+b Hbph ( a b)

b=l a
—@A-bro ey (% 0.
’ bl a

R6 is a commutation rule for edges of type I, which asserts T'(4;a)T~! = (T'(A); T(a))
for T of type I. This has already been eliminated during the reduction to edges at the
basepoint (W, w). The remaining relations are encoded in Z1 and Z3.

R7 is a set of relations for ,1x11. It has also been reduced to the basepoint, so it
is included in Z1.

RS states that (A;a) = (L —a"Ya)(L — A;a™ ') = (L — A;a7Y) (L — a~ Y5 a), where
L= {W*h blil, - ,bfl, cfl, ...,cE1} denotes the set of all letters. This follows from
R1 and R2.

R9 asserts that (L — b=1;b)(A;a)(L — b;b7 1) = (A;a), if b,b~! ¢ A. Here we have
a # b*!. We have several cases, depending on what a is.

)

First we assume a = ¢

(L—b"50)(A; ) (L —bsb )
= (L—b"50) (A ) (%0 )L —b—c; %07
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L= bhb) (A= b (e b (A ) (L~ b - b

=(L—=A=b"" =) b) (A ) (L —b—c; %5 b7
Al —A-pt- ¢ %5 b)(A; ) (A = & + b3 D) (53 D) (L —b— ¢ % b7 )
=(L-A-b"'- c;‘;;b)(A; c?)(L —A-b— 0]75;b_1)

3
(4;).

I

In the case a = W€ we calculate
(L=b""50) (A W)L —b;b7")
= (L=b"5b) (A W)Y WHb YL -W —-W —bb7 )
A2 (L= b b)) (WD) (A — W b5 b7 (A W) (A — W+ b;b)-
(L-W-W=t—bp 1
=(L-A-W = L) (AWNL-A-W—bb

2 (A;WO).

I

Next we tackle the case a = b5, b = b; for some ¢ # j. Note that the intersection
{or's b N A= (b5}, as b = b7 ¢ AL Then
(L= b5 b)) (A; b5) (L — bj; by 1)

= (L~ b0y (A ) (007 1) (L — B + b0

L—b710,) (%505 ) (A = b5 4057505 1) (A3 b5) (A — b + by; by) (L — b + b7 b57)
= (L — A+ —bF +b;0))(A;0) (L — A+b5 — b= + 01507

J 7
B 400).

Z4.3
=

For a = b5 and b = W, we have W+l ¢ A. In the following calculation we assume
ANbt = {b¢}:
(L =W L W) (A0)(L - W W)
= (L =W W) (A0 G5 W (L b =W W)
2L - WL W) O W) (A = B W W) (A5 (A — b+ W W)-
(L—bF—w; W)
= (L— A+ —b" — W LW) (A ) (L — A+ —b" —W; W)
= (4; ).
However, if ANbE = b* — b5, then (A4;55) = (A + b7 — b%;b;)(b%;b;). For relation R9
we then only need:
(L =W L W65 b5) (L — W W)
= (L= WL W) 565 (05 WL = b =W W)
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2L - WL W) s WY 6 (L - o - W W

= (L—b" =W L W)(b* 65 (L — b= — Wy W)
]; (bi be)

To finish the verification of R9, we have to investigate the case a = b and b = c;.
Recall c]il = b*! ¢ A. We again carry out the calculation separately for AN b+ = {65}

and AN Qi = Qi — b, . We only spell out the former one because the latter is very
similar to the previous paragraph.

(L - J, i) (A b)(L = ¢ji ;)
= (L —¢; e (Asb) (b5 ¢ )(L—bi—cj;cj‘l)
3L - e Y o) (0T e (A - b + D(ATBE) (A = b+ ¢jicj)-
-(L—bi—cj; 71)
= (L= A+b —b" —c; ' ¢)) (A0 (L — A+ b5 —b" —¢j5¢;7)
= (A4;05).

]’]

We finally deduce R10, which asserts that (L—b"1;b0)(A;a)(L—b;b~1) = (L—A;a71)
if b#a, b€ A, b~ ¢ A. The only occurrence of this relation is when b = .
For a = c;?, this follows as in [26]. For convenience, we repeat this argument in our
notation:

(L=b"Y0)(A;a)(L = b0~ ) (L — Aja™ )™}
=(L-b"5%b)(b;a)(A—b;a)(L—b;b" )L —-A—a"'4a;a)
B L — b Lb)(bia)(L — b b ) (A—bja)(L — A—a ' +a;a)
= (L=b"450)(b;a)(a; 0™ )L —b—a;b™ ') (L —a™! —bja)

I

b a !

> (L—b"5b)(bia)(asb ) (L —a ! —b L) (a b >

1=

(L—b"%0)

bya)(a; b ") > L—at—bb )
(

( (
(L b D) Bra) (@b ) (@S0~ bib )

a b
b at
a b
b a !
Z(L—b L)L —bb ) = 1.
We next deal with a = W":

(L = e S e) (A WL = ¢;67)

= (L= e e) (A= WG W (W5 )L = W* = i)
L - A= W WE W - WE = )

Z’Z

’L
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74.2,74.1 (L — € c)-

T 0

(W TN A = 6§+ 67 = W) (A — e W) (A = W),

(L= WE =7 )L = W= cE W) (e S W)
=L—-A-WT"T—c “4c;¢)(A—c; WL —A—-W"¢79)-
(L—-WT"T—=c; W)

(A — e W) (L — W7 — e W)
=(L—-AW™).

1T

Next we assume a = b}, b= cf and A Nyt = {07}

(L — ¢ 5 e)(As0))(L — ¢ ¢,)
=(L—c; %) (A—c b?)(cﬁ' b7 (b c; WL — I ;¢ )

() 1779

Z5.3 —€. € € —€ - —€. 7.~ €, ,—€
= (L—g¢ 'Cz‘)(A—Cﬁb?)@i?ci )(Qi;bjn)(ci ;bjn)(L_bi_ci;ci )

Z4.3,74.1 —€. e\ (pE. —€ € —e n. ,—€ €. 17 7. €
= T (L= 5e) g VA= e = b VA= b)) (A= b )
(050, (L = bF = e e YL = b5 — 7+ b0 (¢ 505 7)
}g’(L—A—l—cg—ci_ﬁ—i—b’]?—bi;cg)(A—cg;b?)(L—A—i—b?—bi;ci_e)-
n_ e pN

B3 LT
B (L - Asb)7).
If, however, ANbT = b* — bj_n, then we observe

(L —c; ) (Asb])(L — cfi ;)

7

= (L — ;% c5) (A= b* + b5 b (05507 (L — ¢ ¢79)

i 77
PRI — e ) (A — B 4+ 0L — o) (055 07)
= (L—A+b" = b6, ")(b5;0])

where the next to last equality follows from the previous paragraph. This finishes the
proof of Theorem [15.4]
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