
Free Theorems in Languages
with Real-World

Programming Features

Dissertation
zur

Erlangung des Doktorgrades (Dr.rer.nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Daniel Seidel

aus
Marienberg

Bonn 2013

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Rheinischen Friedrich-Wilhelms-Universität Bonn.

Erstgutachter: Jun.-Prof. Dr. Janis Voigtländer, Bonn
Zweitgutachter: Prof. Dr. Manfred Schmidt-Schauß, Frankfurt
Tag der Promotion: 9. Oktober 2013
Erscheinungsjahr: 2013

Abstract

Free theorems, type-based assertions about functions, have become a prominent reasoning tool in
functional programming languages. But their correct application requires a lot of care. Restrictions
arise due to features present in implemented such languages, but not in the language free theorems
were originally investigated in.

This thesis advances the formal theory behind free theorems w.r.t. the application of such theorems
in non-strict functional languages such as Haskell. In particular, the impact of general recursion
and forced strict evaluation is investigated. As formal ground, we employ different lambda calculi
equipped with a denotational semantics.

For a language with general recursion, we develop and implement a counterexample generator
that tells if and why restrictions on a certain free theorem arise due to general recursion. If a
restriction is necessary, the generator provides a counterexample to the unrestricted free theorem. If
not, the generator terminates without returning a counterexample. Thus, we may on the one hand
enhance the understanding of restrictions and on the other hand point to cases where restrictions
are superfluous.

For a language with a strictness primitive, we develop a refined type system that allows to localize
the impact of forced strict evaluation. Refined typing results in stronger free theorems and therefore
increases the value of the theorems. Moreover, we provide a generator for such stronger theorems.

Lastly, we broaden the view on the kind of assertions free theorems provide. For a very simple,
strict evaluated, calculus, we enrich free theorems by (runtime) efficiency assertions. We apply the
theory to several toy examples. Finally, we investigate the performance gain of the foldr/build
program transformation. The latter investigation exemplifies the main application of our theory:
Free theorems may not only ensure semantic correctness of program transformations, they may
also ensure that a program transformation speeds up a program.

Überblick

Freie Theoreme sind typbasierte Aussagen über Funktionen. Sie dienen als beliebtes Hilfsmittel
für gleichungsbasiertes Schließen in funktionalen Sprachen. Jedoch erfordert ihre korrekte Ver-
wendung viel Sorgfalt. Bestimmte Sprachkonstrukte in praxisorientierten Programmiersprachen
beschränken freie Theoreme. Anfängliche theoretische Arbeiten diskutieren diese Einschränkun-
gen nicht oder nur teilweise, da sie nur einen reduzierten Sprachumfang betrachten.

In dieser Arbeit wird die Theorie freier Theoreme weiterentwickelt. Im Vordergrund steht die
Verbesserung der Anwendbarkeit solcher Theoreme in praxisorientierten, „nicht-strikt” auswer-
tenden, funktionalen Programmiersprachen, wie Haskell. Dazu ist eine Erweiterung des formalen
Fundaments notwendig. Insbesondere werden die Auswirkungen von allgemeiner Rekursion
und selektiv strikter Auswertung untersucht. Als Ausgangspunkt für die Untersuchungen dient
jeweils ein mit einer denotationellen Semantik ausgestattetes Lambda-Kalkül.

Im Falle allgemeiner Rekursion wird ein Gegenbeispielgenerator entwickelt und implementiert.
Ziel ist es zu zeigen ob und warum allgemeine Rekursion bestimmte Einschränkungen verursacht.
Wird die Notwendigkeit einer Einschränkung festgestellt, liefert der Generator ein Gegenbeispiel
zum unbeschränkten Theorem. Sonst terminiert er ohne ein Beispiel zu liefern. Auf der einen Seite
erhöht der Generator somit das Verständnis für Beschränkungen. Auf der anderen Seite deutet er
an, dass Beschränkungen teils überflüssig sind.

Bezüglich selektiv strikter Auswertung wird in dieser Arbeit ein verfeinertes Typsystem entwickelt,
das den Einfluss solcher vom Programmierer erzwungener Auswertung auf freie Theoreme lokal
begrenzt. Verfeinerte Typen ermöglichen stärkere, und somit für die Anwendung wertvollere, freie
Theoreme. Durch einen online verfügbaren Generator stehen die Theoreme faktisch aufwandsfrei
zur Verfügung.

Abschließend wird der Blick auf die Art von Aussagen, die freie Theoreme liefern können, er-
weitert. Für ein sehr einfaches, strikt auswertendes, Kalkül werden freie Theoreme mit Aussagen
über Programmeffizienz bzgl. der Laufzeit angereichert. Die Anwendbarkeit der Theorie wird
an einigen sehr einfachen Beispielen verifiziert. Danach wird die Auswirkung der foldr/build-
Programmtransformation auf die Programmlaufzeit betrachtet. Diese Betrachtung steckt das
Anwendungsziel ab: Freie Theoreme sollen nicht nur die semantische Korrektheit von Programm-
transformationen verifizieren, sie sollen außerdem zeigen, wann Transformationen die Performanz
eines Programms erhöhen.

i

Contents

I Introduction and Background 1
1 Introduction 3

1.1 The Power of Types . 3
1.2 Real World Problems . 5
1.3 The Contributions of the Thesis 8
1.4 The Structure of the Thesis . 9

2 The Formal Background of Free Theorems 11
2.1 Free Theorems for the Simply Typed Lambda Calculus 11

2.1.1 Definition of the Simply Typed Lambda Calculus 11
2.1.2 Relational Parametricity and Free Theorems 21

2.2 Adding General Recursion . 26
2.2.1 Changes to the Calculus 26
2.2.2 Changes to the Parametricity Results 32

2.3 Adding Selective Strictness . 34
2.3.1 Changes to the Calculus 35
2.3.2 Changes to the Parametricity Results 37

2.4 Explicit Type Abstraction and Instantiation 40

3 State of the Art 43
3.1 Theoretical Developments of Free Theorems 43

3.1.1 Results Building on a Standard Denotational Semantics . 44
3.1.2 Results Building on an Operational Semantics 47
3.1.3 Formalization of Parametricity in Pure Type Systems . . 50

3.2 Applications of Free Theorems 51

II New Results 53
4 Exemplifying the Necessity of Strictness Conditions 57

4.1 The Calculus . 60
4.2 Refined Typing . 61
4.3 An Alternative System of Typing Rules 66
4.4 Terms that Give Rise to Counterexamples 69

4.4.1 Term Generation via TermFind: Strategy and Definition 69
4.4.2 Detailed Explanations on the Design of TermFind 74
4.4.3 Properties of TermFind . 80

4.5 Generation of Complete Counterexamples 84

ii Contents

4.5.1 Choosing Type and Relation Environments 88
4.5.2 Requirements for Term Environments 89
4.5.3 Restrictions to TermFind 94
4.5.4 Creating Extra Information — Concrete Constructions . 95
4.5.5 Correctness of ExFind . 105
4.5.6 A Closer Look on Completeness 107
4.5.7 The Implementation of ExFind 110

4.6 Summary . 111
4.7 Outlook . 113

5 Taming Selective Strictness 115
5.1 Motivation for a Refined Type System 117
5.2 A Refined Type System . 120

5.2.1 A Former Refinement Approach 120
5.2.2 The New Approach . 121

5.3 Improvement of the Algorithmic Properties 128
5.3.1 Guarantee of Termination 129
5.3.2 Allowing Non-Refined Input 131
5.3.3 Finding Optimal Annotations 136

5.4 The Implemented Algorithm . 139
5.5 Summary . 140
5.6 Outlook . 142

6 Looking at Quantitative Aspects 145
6.1 The Calculus . 148
6.2 An Instrumented Semantics for Counting Costs 150
6.3 Parametricity Theory Involving Costs 153
6.4 The Parametricity Theory at Work 159

6.4.1 Simple Examples . 162
6.4.2 Considering foldr / build 167

6.5 Summary . 175
6.6 Outlook . 176

III Conclusion 177
7 Conclusion 179

7.1 Consideration of Programming Features 179
7.2 Parametricity Enables Efficiency Assertions 181

IV Appendix 183
A Proofs 185

A.1 Proofs from Chapter 4 . 185
A.2 Proofs from Chapter 5 . 194
A.3 Proofs from Chapter 6 . 205

Bibliography 215

Index 225

iii

Figures

2.1 Type and term syntax of λα . 13
2.2 Typing rules of λα . 16
2.3 Type semantics of λα . 18
2.4 Term semantics of λα . 18
2.5 Logical relation for λα . 22
2.6 Type and term syntax of λαfix . 27
2.7 Typing rules of λαfix . 27
2.8 Type semantics of λαfix . 31
2.9 Term semantics of λαfix . 31
2.10 Logical relation for λαfix . 33
2.11 Type and term syntax of λαseq . 36
2.12 Typing rules of λαseq . 36
2.13 Type semantics of λαseq . 36
2.14 Term semantics of λαseq . 37
2.15 Logical relation for λαseq . 38

4.1 Type and term syntax of λα
fix+ and λαfix∗ 60

4.2 Type semantics of λα
fix+ and λαfix∗ 61

4.3 Term semantics of λα
fix+ and λαfix∗ 61

4.4 Logical relation for λα
fix+ and λαfix∗ 61

4.5 Class membership rules for Pointed in λαfix∗ 62
4.6 Typing rules of λαfix∗ . 64
4.7 Term search rule system . 67
4.8 Phase I rules of TermFind . 72
4.9 Phase II rules of TermFind . 73
4.10 Phase III rules of TermFind . 73
4.11 An example run for TermFind . 84
4.12 ExFind’s output for Example 16 as presented by the web interface 87
4.13 The constructions of ExFind for input (α, β∗, (α→ β)→ [β]) . . 91
4.14 The output of the web interface for ExFind 112

5.1 Visualization of the function foldl 116
5.2 Different versions of foldl . 117
5.3 Annotated type syntax of λαseq∗ 123
5.4 Refined typing rules of λαseq∗ . 123

iv Figures

5.5 Class membership rules for Seqable in λαseq∗ and λαseq+ 123
5.6 Subtyping rules of λαseq∗ . 124
5.7 Logical relation for λαseq∗ . 126
5.8 Different foldl -versions in λαseq-syntax 128
5.9 Typing rules of λαseq+ . 131
5.10 Schematic overview of the final algorithm for refined typing . . 132
5.11 Conditional typing rules of λα

seqC
. 134

5.12 Conditional class membership rules for Seqable in λα
seqC

. 134
5.13 Conditional subtyping rules of λα

seqC
. 134

5.14 Conditional equality rules of λα
seqC

. 135
5.15 Example derivation with the typing rules of λα

seqC
. 138

5.16 Syntax of the implementation of the type refinement algorithm 140
5.17 Output of the web interface for foldl ′′ 141

6.1 Comparison of evaluation costs under different evaluation strate-
gies . 147

6.2 Type and term syntax of λαfold . 149
6.3 Typing rules of λαfold . 149
6.4 Type semantics of λαfold . 149
6.5 Term semantics of λαfold . 150
6.6 Logical relation for λαfold . 150
6.7 Instrumented type semantics with embedded costs 151
6.8 Instrumented term semantics with costs 152
6.9 Logical relation with embedded costs 154
6.10 Fully cost-lifted logical relation 159

7.1 Investigation of program features 181

v

Acknowledgments

I am deeply grateful for all the help I received while I was working on my thesis. Firstly I want
to express my gratitude to my supervisor Janis Voigtländer. During the last five years he was the
principal supporter of my work. He never lost patience when writing took longer than expected, was
always a good contact for questions and discussion, and did the best to provide me continuously with
new work contracts. Secondly I want to thank Manfred Schmidt-Schauß who accepted to read and
review this book.

My research was mainly funded by the Deutsche Forschungsgemeinschaft (DFG). For seven month I
also received a studentship from the Rheinische Friedrich-Wilhelms-Universität Bonn. Thanks for the
financial support.

During my time as researcher I won a good friend, Jan Christiansen. We had fruitful discussions, joint
research projects, and a lot of fun. Thanks for the time we spent together and for your serious support
of my thesis! I hope our friendship persists.

I am also much obliged to Jens Behley and Jenny Balfer, who made work feel like home. For requests
for coffee, technical questions, personal counsel and for each impression that had to be shared: Your
office was the right place to go.

Special thanks go to my parents Reinhard and Birgit Seidel. To this day they show lively interest on
how I proceed and they always provide a good place to stay when I come “home”.

Moreover, I want to thank God for his guidance and all the gifts he gave to me, the ways he opened
up and the shelter I found in him. I never thought that happiness lies in Bonn.

Finally, I devote this work to my grandfather Heinz Seidel. He passed away peacefully last summer
at the age of ninety-seven. It was a joy spending time with him. Our conversations were always a
pleasant mixture of topics of current events, touching stories of his life and funny poems. I am grateful
for all the things I could learn from him and the mental guidance he provided. He always asked if I
finished the thesis. Yes grandfather, now I did.

1

Part I

Introduction and Background

3

Chapter 1

Introduction

1.1 The Power of Types

Types in programming languages are a long, successful story. Pierce (2002)
defines a type system as follows: “A type system is a tractable syntactic method
for proving the absence of certain program behaviors by classifying phrases according
to the kinds of values they compute.” This definition is by purpose very general.
Type systems are beneficial in many respects: We can statically detect errors,
achieve abstraction via well defined interfaces and use type annotations as
program documentation. Moreover, the original reason types were introduced
in programming languages (Fortran in the 1950s) was to enhance efficiency. The
distinction between integers and floating point numbers allowed for specialized
efficient representation of different number types.

The reason for these many benefits is the restriction a type puts on the possible
semantic meanings of a phrase in a program: Type systems are good to prove

“the absence of certain program behaviors”. Via typing rules phrases are separated
into typeable ones — which are again separated by the type they are typeable to
— and untypeable ones. We are only interested in typeable phrases. Thus we can
think of the typing rules as a mechanism to sort out “senseless” phrases, like the
addition of a number and an empty list, 1+[], by making them untypeable. But
we can also use typing rules to eliminate possibly meaningful but unwanted
phrases, e.g. lists with entries of different type, as [1, []]. Furthermore, for
typeable phrases the type already provides information about the phrase.
Looking at functional programming languages with a type system supporting
parametric polymorphism, such as ML (Milner et al., 1997), Clean (Plasmeijer
and van Eekelen, 2002) or Haskell (Haskell, 2010), this holds in a very nontrivial
way.

4 1 Introduction

In functional programming languages one treats a program as the combination
of mathematical functions. This treatment in particular implies the distinguishing
feature of referential transparency, i.e., the result of a function does only depend
on the function’s arguments.referential

transparency
Hence, at least in the pure core of functional

languages, side effects (such as state, I/O, mutable data structures) are not
allowed.side effects

Parametric polymorphism means that a function acts on inputs of several
types or even any possible type in the same, uniform way.1 The simplest such
polymorphic function is the identity function, id . It takes a value of arbitrary
type and — whatever type it was — returns its argument unchanged. That
genericity in the type can be expressed via type variables as parameter types
in a function’s type signature and a way to replace the variables by concrete
types, i.e., instantiate the polymorphic function. Thus, we can annotate id
with a type writing id :: α → α, where “::” is read as “has type” and α is a
type variable. We leave type instantiation implicit for the moment.parametric

polymorphism
Given id ,

obviously every function g ::τ1 → τ2 with arbitrary argument type τ1 and result
type τ2 satisfies id ◦ g = g ◦ id , where ◦ is function composition. Curiously
— leaving nontermination aside — id is (seen as semantic function) the only
function of type α → α. Since neither a value belongs to every type nor an
operation is defined for every type, a function of type α → α must return
its input unchanged.2 Therefore, we can also state that for every function
f ::α→ α, all types τ1, τ2 and all functions g :: τ1 → τ2 the equality f ◦ g = g ◦ f
holds. But not enough, even for more complex types we get similar statements.
Consider the type [τ], the type of lists with elements of type τ , and the function
map :: (α → β) → [α] → [β]3 that takes a function and a list, and applies
the function to every single element in the list. In Haskell, map could be
implemented via pattern matching as

map :: (α→ β)→ [α]→ [β]
map g [] = []
map g (x : xs) = (g x) : (map g xs)

Having map and a list type, by free theorems we get that for every function
f ::[α]→ [α], all types τ1, τ2 and functions g ::τ1 → τ2 it holds that f ◦(map g) =
(map g) ◦ f .

The presented statements about functions arise as specializations of free theorems
(Wadler, 1989). Free theorems rely on the theory of relational parametricity
(Reynolds, 1983) and were originally explored in the polymorphic lambda
calculus (Girard, 1972; Reynolds, 1974). Since the pure core of typed functional
programming languages4 resembles the polymorphic lambda calculus, free

1Note that parametric polymorphism is different from ad hoc polymorphismad hoc polymorphism where the function’s
behavior is dependent on the concrete type instantiation (Strachey, 2000, Section 3.6.4).

2Contrarily, ad hoc polymorphism would of course allow for different functions as well because
the function’s behavior can rely on the input’s type.

3The→ is right-associative, i.e., (α → β) → [α] → [β] is equivalent to (α → β) → ([α] →
[β]).

4There are also untyped functional programming languages, such as the Lisp (McCarthy, 1960)

1.2 Real World Problems 5

theorems can be applied to derive statements about programs in functional
programming languages as well. But a requirement is that we can distinguish
by type if we consider a pure function or some function using an impure feature
that forbids reasoning via free theorems, or at least complicates it. And that’s
where we experience problems in real world programming languages.

1.2 Real World Problems

In this thesis we concentrate on how free theorems fare in implemented func-
tional programming languages. In particular, we consider features present
in the functional programming language Haskell, and not observable from
types. Moreover, we try to increase the information free theorems provide. We
extend them to incorporate relative assertions about costs of program parts
that yield the same results. In Haskell the following features, whose usage is
not observable from the type, extend the polymorphic lambda calculus. First,
Haskell allows for general recursion and, therefore, nontermination. Second,
Haskell provides a way to influence the evaluation strategy. By default Haskell
evaluates non-strict (i.e., it evaluates expressions only if necessary to go on with
the overall computation). But we can force Haskell to evaluate expressions
at an arbitrarily chosen point, even if not needed to proceed with the overall
computation: The polymorphically typed primitive seq ::α→ β → β evaluates
its first argument and returns the second argument only if this evaluation
succeeds, i.e., is non-erroneous and terminating. Both features are very useful:
general recursion really extends the expressiveness and selective strict evalua-
tion can improve efficiency if employed properly. Unfortunately, both features
also constrain the power of free theorems. They enforce side conditions.

Let us briefly validate the need of restrictions on an example from above. We
assert the following statement as verified by a free theorem:

∀f :: [α]→ [α], τ1, τ2 types, g :: τ1 → τ2, xs :: [τ1].

f (map g xs) = map g (f xs)
(1.1)

By general recursion, embodied via the fixpoint primitive fix :: (α→ α)→ α,
we can generate a nonterminating expression (short, ⊥) of arbitrary type when
taking the fixpoint of the identity function. If now, assuming the base type
Nat of natural numbers is present, in (1.1) we choose f = λxs.[⊥], i.e., the
constant function to a list with only ⊥ as entry, and we furthermore choose
τ1 = τ2 = Nat and g = λx .42, i.e., the constant function to 42, then the theorem
states for every xs :: [Nat] that [⊥] is equal to [42]. In detail, for the left-hand

with its most known dialects Common Lisp (Graham, 1997) and Scheme (Dybvig, 2003). For them,
the untyped lambda calculus resembles the core of the language.

6 1 Introduction

side of the theorem’s statement we have

f (map g xs)

= { insert definition of f }
(λxs.[⊥]) (map g xs)

= { apply λxs.[⊥] to map g xs }
[⊥]

And for the right-hand side we have

map g (f xs)

= { insert definition of f }
map g ((λxs.[⊥]) xs)

= { apply λxs.[⊥] to xs }
map g [⊥]

= { insert definition of g }
map (λx .42) [⊥]

= { apply definition of map, i.e., map g into the list }
[(λx .42) ⊥]

= { apply λx .42 to ⊥ }
[42]

The statement is obviously wrong. To regain a valid theorem we need to restrict
g to range only over strict functions, i.e., we require g x = ⊥ if x = ⊥. This
restriction was already recognized by Wadler (1989, Section 7). If seq can be
employed in f the theorem can break again. Consider for instance the partially
defined function f = λ[x].seq x [x]. It is only defined for one element lists as
input and returns its input if the element in the list is not ⊥, if so it returns ⊥.
If moreover we choose types τ1 = τ2 = Nat and g = λx .⊥, the theorem yields
for every xs = [y] with y 6= ⊥ that ⊥ is equal to [⊥]. In detail, for the left-hand
side of the theorem we have

f (map g xs)

= { insert definitions f and g and take xs = [y] }
(λ[x].seq x [x]) (map (λx .⊥) [y])

= {map λx .⊥ into [y] and apply it to y }
(λ[x].seq x [x]) [⊥]

= { apply λ[x].seq x [x] to [⊥] }
seq ⊥ [⊥]

= { definition of seq }
⊥

1.2 Real World Problems 7

And for the right-hand side we have

map g (f xs)

= { insert definitions f and g and take xs = [y] }
map (λx .⊥) ((λ[x].seq x [x]) [y])

= { apply λ[x].seq x [x] to [y] with y 6= ⊥ }
map (λx .⊥) [y]

= { apply definition of map }
[(λx .⊥) y]

= { apply λx .⊥ to y }
[⊥]

The statement is again wrong. Counterexamples to the free theorem, as the just
given one, that arise through the use of seq are ruled out by restricting g to be
total, i.e., g x = ⊥ only if x = ⊥, as proven by Johann and Voigtländer (2004).

What becomes apparent from the above — even though artificial — examples
is that to safely use free theorems the effects of programming features must be
explored diligently. The investigation of a new feature, say F , can take place in
four phases.

First, an intuition about what problems F causes w.r.t. free theorems is desir-
able. Therefore, we look for counterexamples, as the ones above. Hence, the
first phase will be to manually search for counterexamples to the “naive” versions
of free theorems that do not consider any influence of F . These counterexam-
ples hopefully yield necessary extra conditions to regain correct free theorems
in the extended setting.

Second, a formal proof has to be made ensuring that the discovered conditions
are sufficient to regain free theorems. We need, as elaborated later, a proof of
the parametricity theorem w.r.t. a logical relation that is restricted according to
the investigated setting. The parametricity theorem, first stated by Reynolds
(1983), is the basis to derive free theorems.

At the end of phase two we are able to derive correct free theorems even in the
presence of the new feature F . Now we could announce success because free
theorems are available in the extended calculus. But the price is still high. The
new conditions on the theorems may often be superfluous for special instances
of a theorem. Hence, we move on to phase three to remedy that situation.

In the third phase we localize the influence of F by a refined type system. If it
is ensured that a polymorphic function f we want to apply the free theorem
to does not use the new feature F , the newly introduced restrictions may be
unnecessary. Hence, we would benefit, in the sense of stronger free theorems,
if functions having currently the same type but differing in the use of F could
yield differently restricted free theorems. Since free theorems only rely on

8 1 Introduction

the type of a function, the use of F must be reflected in the type somehow.
Therefore, the only way is a refined type system where the use of F leaves a
mark in the type and thus functions employing F can be distinguished from
the ones that do not and allow for more liberal free theorems.

In a last phase, the focus is on the automatic generation of counterexamples to the
naive free theorems that are not adjusted to F . This automatic search, if imple-
mented as a tool, can help to properly understand effects arising from the new
features, in particular, it may help people applying free theorems. Furthermore,
there are types where the restrictions introduced due to F are never necessary,
even if the refined type tells us so. If the automatic counterexample search is
complete and returns without a counterexample, such types are identified.

An overview of the current development in the theory of free theorems w.r.t.
additional language features, as well as of applications of the theorems, is given
in Chapter 3.

1.3 The Contributions of the Thesis

In this thesis we will push the development of the theory of free theorems
further w.r.t. different language features:

• In Chapter 4 we consider the feature of general recursion and develop an
algorithm to automatically generate counterexamples to free theorems
that lack a strictness restriction — a restriction that arises if a calculus is
enriched with general recursion.

• In Chapter 5 we localize the impact of selective strictness on free theorems.
Therefor, we develop a refined type system to track whether a subterm of
a term is forced to be strictly evaluated by a strictness primitive or not.
If not, totality restrictions in the free theorem’s assertion may safely be
dropped.

The last chapter highlights a completely different aspect of free theorems,
orthogonal to the described adaptation to new language features:

• In Chapter 6 we investigate quantitative aspects of free theorems. Free
theorems state program equivalences and are a successfully applied rea-
soning tool, in particular for the verification of program transformations
(see Section 3.2). For program transformations it is beneficial to know
which one of two semantically equivalent programs is more efficient, e.g.
needs fewer evaluation steps. We enrich the theory of parametricity thus,
that a free theorem tells not only that two program parts are semanti-
cally equivalent, but also how the two parts differ in their (runtime) cost
behavior.

1.4 The Structure of the Thesis 9

1.4 The Structure of the Thesis

The thesis is structured in three parts. The first part contains this introduction.
Furthermore, a formal introduction, Chapter 2, is included. It is meant to make
the thesis self-contained. Chapter 2 does not only introduce the theory behind
free theorems and the adaptations necessary when we extend (a sublanguage
of) the polymorphic lambda calculus by general recursion and forced strict
evaluation, it also explains most of the notation used in the thesis. Chapter 3
surveys related work.

The second part of the thesis presents original results. All the results are already
published and at the beginning of each chapter we cite the corresponding
publications via footnotes.

Each chapter comes with its own summary and outlook sections. Nevertheless,
we close the thesis by Part III with a conclusion for the whole work.

11

Chapter 2

The Formal Background of
Free Theorems

In this chapter we introduce the formal background behind free theorems.
For this purpose, in Section 2.1 we set up a simply typed lambda calculus
(Church, 1940; Curry and Feys, 1958) with type variables, base type Nat and
lists as algebraic data type. We call the calculus λα and will use it with vari-
ous alterations as the formal language for our investigations. As semantics,
we employ a denotational semantics. Furthermore, we state the abstraction
or parametricity theorem (Reynolds, 1983) for λα and derive free theorems
from it. In Section 2.2 we add general recursion to λα and discuss the major
changes. The adjustments that are necessary if selective strictness is added
are considered in Section 2.3. In Section 2.4 we explain the choice of the type
system we consider and address the extension to explicit type abstraction and
instantiation.

The chapter also introduces notation and provides a lot of explanation on it
that is not repeated later on when similar notation is used.

2.1 Free Theorems for the Simply Typed Lambda
Calculus

2.1.1 Definition of the Simply Typed Lambda Calculus

“Underlying the formal calculi which we shall develop is the concept of a function as it
appears in various branches of mathematics, either under that name or under

synonymous names, ‘operation’ or ‘transformation’.”
Church (1941)

12 2 The Formal Background of Free Theorems

A lambda calculus (also written λ-calculus) is a mathematical calculus that
formalizes the concept of functions. The terms of the pure untyped lambda
calculus are established only out of variables, and two ways to form terms out
of others. The first way is abstraction, called λ-abstraction, and the second way
application of one term to another. An abstraction is written as λx .t where x is
a variable and t an arbitrary term. By λx .t the occurrences of the variable x in
t are bound. We regard λx .t as an anonymous function that takes a parameter
x that might be needed to evaluate the function body t . When we apply a term
λx .t to a term t ′, written as (λx .t) t ′, we can evaluate the application to t with
all occurrences of x in t (that are not under the scope of another binder of x ,
i.e., another λx) substituted by t ′. Also x y states a valid application, but
we cannot evaluate it further.

EXAMPLE 1 We can encode data types in the pure untyped lambda calculus. For example,
the terms λx .λy .x and λx .λy .y are possible encodings of the Boolean values
True and False .1

For these encodings, the term

λm.λn.m n m

represents the logical and .2 If we apply it to the representation of True, it
yields a λ-abstraction that, if applied to another term t , simply returns t .
If we apply it to the representation of False it yields the representation of
False when applied to a second term. Thus, λm.λn.m n m corresponds to
the following Haskell implementation of and :

and :: Bool → Bool → Bool
and True x = x
and False x = False

Let us validate the correspondence for the application of and to True as first
argument. For the representations we get

(λm.λn.m n m) (λx .λy .x)

= { application of (λm.λn.m n m) to (λx .λy .x) }
λn.(λx .λy .x) n (λx .λy .x)

= { application of (λx .λy .x) to n }
λn.(λy .n) (λx .λy .x)

= { application of (λy .n) to (λx .λy .x) }
λn.n

which is exactly what we intended.

1λ-abstraction expands as far to the right as possible, e.g. λx .λy.x is equal to λx .(λy.x).
2Application is left-associative, so λm.λn.m n m is equivalent to λm.λn.(m n) m .

2.1 Free Theorems for the Simply Typed Lambda Calculus 13

τ ::= α type variable
| τ → τ function type
| Nat number type
| [τ] list type

t ::= x variable
| λx :: τ.t abstraction
| t t application
| n natural number
| t + t addition of naturals
| case t of {0→ t ; → t } case expression for naturals
| []τ empty list
| t : t list constructor
| case t of {[]→ t ; x : x → t } case expression for lists

Figure 2.1: Type and term syntax of λα

Concerning computational strength the untyped λ-calculus is Turing-complete.3

For an overview of the calculus, see Barendregt (1992, Section 2) or Pierce (2002,
Chapter 5).

Because we are aiming at type based reasoning, we are not interested in the
untyped lambda calculus, but in a typed version. That means, besides terms,
we have a set of types. These types can be assigned to terms by typing rules,
as we will see later on. Here, we define a simply typed lambda calculus with
type variables, natural numbers and lists. We call it λα λα. The syntax definitions
are presented in a style similar to the Backus-Naur-Form (BNF). In contrast
to the original BNF, we do not enclose non-terminals in triangular brackets.
The distinction between terminals and non-terminals is only implicit. Non-
terminals are the symbols that either appear on a left-hand side of a definition
or are defined to range over a certain set of other symbols. All symbols that
are neither non-terminals nor belong to the BNF metalanguage (i.e., “::=” and
“|”) are terminals. Type and term syntax of λα are given in Figure 2.1, where α
ranges over a countable set of type variabletype variables, x over a disjoint countable set of
term variables term variableand n over the natural numbers.

A variable can occur bound or unbound in a term.4

DEFINITION 1
(unbound occurrence
of a term variable,
UV(·))

We define the set of term variables that occur unbound in a term t , UV(t),
inductively by

UV(x) = {x}
3Note that the simply typed lambda calculus that we introduce next is not Turing-complete

because type constraints prohibit general recursion.
4Often, unbound occurrences of variables are also called free occurrences of variables.

14 2 The Formal Background of Free Theorems

UV(λx :: τ.t) = UV(t) \ {x}
UV(t1 t2) = UV(t1 + t2) = UV(t1 : t2) = UV(t1) ∪UV(t2)

UV(n) = UV([]τ) = ∅
UV(case t of {0→ t1; → t2}) = UV(t) ∪UV(t1) ∪UV(t2)

UV(case t of { []→ t1; x : xs → t2}) = UV(t) ∪UV(t1)

∪ (UV(t2) \ {x , xs})

We say x occurs unbound in t if x ∈ UV(t).

DEFINITION 2
(bound occurrence of a
term variable, BV(·))

We define the set of term variables that occur bound in a term t , BV(t), induc-
tively by

BV(x) = ∅
BV(λx :: τ.t) = BV(t) ∪ {x}

BV(t1 t2) = BV(t1 + t2) = BV(t1 : t2) = BV(t1) ∪ BV(t2)

BV(n) = BV([]τ) = ∅
BV(case t of {0→ t1; → t2}) = BV(t) ∪ BV(t1) ∪ BV(t2)

BV(case t of {[]→ t1; x : xs → t2}) = BV(t) ∪ BV(t1) ∪ BV(t2) ∪ {x , xs}

We say x occurs bound in t if x ∈ BV(t).

Note that a variable can at the same time occur unbound and bound in a term.
The definitions should become quite clear by the following example.

EXAMPLE 2
(unbound / bound oc-
currences of variables)

λx :: Nat .(x + 5) x occurs bound
λx :: Nat .(y + 5) x occurs bound and y occurs unbound

(λx :: Nat .5) x x occurs unbound and bound
x (λx :: Nat .(x + 5)) x occurs unbound and bound

In general, the distinction between unbound and bound occurrences of vari-
ables is also reasonable on the type level. However, since we regard only calculi
without explicit type abstraction and instantiation (more details are found in
Section 2.4), type variables cannot occur bound in our calculi. To emphasize
that fact we state the following definition.

DEFINITION 3
((unbound occurrence
of a) type variable,
UTV(·))

The set of type variables (that occur unbound) in a type τ is denoted by
UTV(τ).

The second part of the calculus’ definition is a set of typing rules, describing
how to assign types to terms. Typing rules separate terms into typeable and

2.1 Free Theorems for the Simply Typed Lambda Calculus 15

untypeable terms, where we are only interested in the typeable ones. We can
think of the typing rules typing rulesas a mechanism to sort out “senseless” terms, like
1 + [], or to eliminate possibly meaningful but unwanted terms, e.g. [1, []].

Via typing rules, we define if a typing judgment is valid. A typing judgment
has the form Γ ` t :: τ , telling that the term t is typeable to type τ under the
typing context Γ. A typing context typing judgmentΓ is the union of a set of type variables, ΓT,
referred to as type context typing context (Γ), and a set of term variables with associated type, ΓV,
referred to as term context type context (ΓT). In the term context the same variable is not allowed
to appear twice, even if associated to different types. term context (ΓV)

CONVENTION 1
(Γ = ΓT ∪ ΓV)

Let Γ be a typing context. We implicitly assume that Γ is the union of the
type context ΓT and term context ΓV, and hence use ΓT and ΓV freely without
stating the connection to Γ.

For every typing context Γ we write Γ, x :: τ to denote the typing context
Γ ∪ {x :: τ }. If Γ is empty we simply write x :: τ . To guarantee consistency, we
forbid to add x :: τ to a typing context Γ whenever (x :: τ ′) ∈ Γ for some τ ′ 6= τ .
We can also take the union of two term or typing contexts, but only gain a new
term or typing context if the contexts are compatible in the following way.

DEFINITION 4
(compatible
term/typing contexts)

Two term contexts ΓV, Γ′V are compatible if for every (x ::τ) ∈ ΓV and τ ′ 6= τ , it
holds that (x :: τ ′) 6∈ Γ′V . The notion extends canonically to typing contexts.

Concerning the typing rules discussed below, the compatibility restriction does
not impose a problem. We can rename bound occurrences of variables without
altering the (still to be defined) meaning of a term. The renaming is known
as α-conversion and formally introduced in Lemma 2. In the following we
identify terms up to α-conversion. Furthermore, we write α,Γ to denote the
typing context Γ ∪ {α}, and if Γ is empty we simply write α.

The typing rules for λα are given in Figure 2.2. They consist of axioms axiom, i.e., typ-
ing judgments like (VAR) and (NIL) that are satisfied without any precondition,
and rules of the form

premise1 . . . premisen
conclusion

that tell: If all n premises are fulfilled, then the conclusion holds. For example,
the rule (APP) states the following: If we have a term t1 typeable to τ1 → τ2
under typing context Γ and a term t2 typeable to τ1 under the same context Γ,
then the term t1 t2 (which is the application of t1 to t2) is typeable to τ2 under Γ.
A derivation for a typing judgment, called type derivation type derivation, is a tree of instances
of typing rules where the root is the rule that actually yields the considered
typing judgment and all leaves are axioms. As an example, we present the type
derivation for ` (λx ::Nat .(x + x)) 5 ::Nat , stating that without any contextual

16 2 The Formal Background of Free Theorems

Γ, x :: τ ` x :: τ (VAR) Γ ` []τ :: [τ] (NIL) Γ ` n :: Nat (NAT)

Γ ` t1 :: τ Γ ` t2 :: [τ]
(CONS)

Γ ` (t1 : t2) :: [τ]

Γ ` t1 :: Nat Γ ` t2 :: Nat (SUM)
Γ ` (t1 + t2) :: Nat

Γ, x :: τ1 ` t :: τ2 (ABS)
Γ ` (λx :: τ1.t) :: τ1 → τ2

Γ ` t1 :: τ1 → τ2 Γ ` t2 :: τ1 (APP)
Γ ` (t1 t2) :: τ2

Γ ` t :: [τ1] Γ ` t1 :: τ Γ, x1 :: τ1, x2 :: [τ1] ` t2 :: τ
(LCASE)

Γ ` (case t of {[]→ t1;x1 : x2 → t2}) :: τ

Γ ` t :: Nat Γ ` t1 :: τ Γ ` t2 :: τ (NCASE)
Γ ` (case t of {0→ t1; → t2}) :: τ

Figure 2.2: Typing rules of λα

knowledge about types, the function application of λx :: Nat .(x + x) to 5 is
typeable to Nat .

EXAMPLE 3
(type derivation)

x :: Nat ` x :: Nat x :: Nat ` x :: Nat
x :: Nat ` (x + x) :: Nat

` (λx :: Nat .(x + x)) :: Nat → Nat ` 5 :: Nat

` ((λx :: Nat .(x + x)) 5) :: Nat

The reader may have noticed that we define typing contexts to contain type
variables, but we do not use them at all in the typing rules. In fact, it is not
necessary to keep track of type variables in the typing context, but it will come
in handy later on when we state the parametricity theorem (Theorem 1) to
know which type variables are present in a typing judgment. Thus, if t is
typeable to τ under a typing context Γ, then all type variables appearing in a
type that is associated to a term variable in Γ, in a type annotation in t , or in τ
must be in ΓT. Finally, we end up with the following definition of a valid typing
judgment.

DEFINITION 5
(valid typing judg-
ment)

We say a typing judgment Γ ` t :: τ is valid5 (or in other words t is typeable
to τ under the typing context Γ) in λα, if

• there exists a type derivation for Γ ` t :: τ and

• all type variables that occur in a type annotation of a variable in ΓV, a
type annotation in t , or in τ are in ΓT.

5Validity of a typing judgment is always w.r.t. a system of typing rules and hence specific to a
calculus. Be aware of that fact later on, when we have different calculi and compare typeability.

2.1 Free Theorems for the Simply Typed Lambda Calculus 17

CONVENTION 2When we are not interested in type variables, we write t :: τ if there exists Γ
with ΓV = ∅ and Γ ` t :: τ is valid.

To find a type derivation for a given term t under a typing context Γ it is
essential that all term variables that occur unbound in t appear in Γ. If so, we
say t is closed under Γ.

DEFINITION 6
(closed term)

A term t is closed under a term context ΓV if for every x ∈ UV(t) there exists τ
such that (x :: τ) ∈ ΓV. If t is closed under the empty term context, i.e., all
variables occur only bound in t , it is called closed.

A similar definition can be given for types. Closed types in our calculi are also
called monotypemonotypes since they contain no type variables at all.

DEFINITION 7
(closed type)

A type τ is closed under a type context (or any set of type variables) ΓT if
ΓT ⊇ UTV(τ). If t is closed under the empty context, it is called closed.

A last hint concerning type annotations is in order. In contrast to Haskell, in
all λ-abstractions it is mandatory to annotate the variable whose occurrences
get bound by a type. That is, we have to write λx :: τ.t instead of λx .t . Also
the empty list has to be annotated by a type in λα, i.e., we write []τ instead
of only []. The different styles, whether to enforce explicit type annotations
or not, are known as Church / Curry styleChurch and Curry style. The choice of a language with
explicit type annotations (Church style) saves us from type inference in the way
that the typing rules in Figure 2.2 enjoy the weak subformula

property
weak subformula property w.r.t. type

reconstruction. That is, we can easily deduce the type of any typeable term
or recognize ill-typed terms by simply applying the typing rules backwards
without having to guess some type at any stage.

Ultimately, concerning the syntax, let us point out some conventions we will
apply throughout this thesis to reduce the number of parentheses.

CONVENTION 3
(operator precedence)

Convention Example

function application is left-associative f x y = (f x) y

the body of a function abstraction ex-
tends to the right as far as possible λx .λy .y x = λx .(λy .(y x))

“:” is right-associative 1 : 2 : []Nat = 1 : (2 : []Nat)

function application binds stronger than
“+”, and “+” stronger than “:” f 1+2:[]Nat = ((f 1)+2):[]Nat

18 2 The Formal Background of Free Theorems

JαKθ = θ(α) J[τ]Kθ = {[a1, . . . ,an] | n ∈ N ∧ ∀i ∈ {1, . . . , n}. ai ∈ JτKθ}
JNatKθ = N Jτ1 → τ2Kθ = {f : Jτ1Kθ → Jτ2Kθ}

Figure 2.3: Type semantics of λα

JxKσ = σ(x)

JnKσ = n

Jt1 + t2Kσ = Jt1Kσ + Jt2Kσ
J[]τ Kσ = []

Jt1 : t2Kσ = Jt1Kσ : Jt2Kσ
Jλx :: τ.tKσ = λa.JtKσ[x 7→a]

Jt1 t2Kσ = Jt1Kσ Jt2Kσ

Jcase t of {0→ t1; → t2}Kσ ={
Jt1Kσ if JtKσ = 0

Jt2Kσ otherwise

Jcase t of {[]→ t1;x1 : x2 → t2}Kσ ={
Jt1Kσ if JtKσ = []

Jt2Kσ[x1 7→a,x2 7→b] if JtKσ = a : b

Figure 2.4: Term semantics of λα

So far we have presented the complete syntax for λα and we can distinguish
between “senseful” and “senseless” terms via typing rules. The final thing
missing to complete the calculus is a semantics. We have to assign meaning to
terms, at least to the ones proclaimed “senseful”, i.e., the typeable ones.

In general, there are three different kinds of semantics:axiomatic /
operational /
denotational
semantics

axiomatic, operational
and denotational. A short overview is found in the books of Pierce (2002) and
Mitchell (1996). We concentrate on denotational semantics. It assigns to every
term and type directly a meaning, i.e., a mathematical object.

The standard denotational semantics for λα is given in Figures 2.3 and 2.4 for
types and terms, respectively.

Let us discuss the denotational semantics for types first. We interpret types
as sets. Type Nat is interpreted as the set N of natural numbers including
zero and function types are interpreted as the set of functions between two
sets. List types are interpreted as the free monoid over the interpretation of
the list’s element type. The neutral element we denote by [], and by : we
denote the binary operation. Thus, the semantic interpretation of a list has
the form a1 : . . . : an : []. For type variables we can choose any set we like as
interpretation. The choice we take is described by thetype environment (θ) type environment θ that is a
partial map from type variables to sets. Two comments are in order concerning
notation. First, throughout the thesis we distinguish syntax and semantics by
different fonts. While f is a term (of function type), f is a semantic object (a
mathematical function). Second, the list notation [a1, . . . ,an][a1, . . . ,an] is a shorthand for
a1 : . . . : an : []. A similar abbreviation is applied on the syntactic level.

The term semantics maps terms to elements of the sets that types are mapped
to. All syntactic operation symbols are mapped to mathematical operations.

2.1 Free Theorems for the Simply Typed Lambda Calculus 19

Thus, the syntactic “+” becomes the usual “+” operation on the naturals and
the syntactic “:” becomes a semantic one. Case expressions are translated into
different objects depending on the scrutinee’s semantics. Syntactic numbers
become natural numbers, λ-abstractions become mathematical functions and
application becomes standard mathematical function application which is, as
on the syntactic level, denoted by juxtaposition (i.e., by f a instead of f(a)).
Note also that mathematical functions are written similar to λ-abstractions,
only with a slightly different lambda symbol. That is, we write λa.t instead of
f a = t for all a, where t can depend on a. The term environment (σ)term environment σ in Figure 2.4
is a partial map from term variables to semantic values. It stores the values
of variables that occur unbound. In particular, it stores the values of function
arguments when evaluating the function body, as well as head and tail of lists
when evaluating the second alternative of a case expression over lists. For
environments, we employ the following notation: We write ∅ for the empty
environment, and for any environment κ, κ[x1 7→ a1, . . . , xn 7→ an] denotes
κ extended by the entries a1, . . . ,an for the variables x1, . . . , xn, respectively.
If an xi is already in the domain of κ, the entry for xi is overwritten. When
extending the empty environment, we omit ∅. To denote the domain of an
environment κ, we write dom(·)dom(κ). In the sequel we employ dom(·) to refer to
the domain of arbitrary (mathematical) functions.

To make sure that the denotational semantics is well-defined, we have to guar-
antee that the semantics of a term of type τ is an element of the type semantics
of τ . Otherwise our mathematical interpretations are not well-defined. It
could for example happen that we add values that are not natural numbers.
Fortunately, the just given semantics satisfies the type restriction.

LEMMA 1If Γ ` t :: τ valid in λα, then for all θ and σ with

• ΓT ⊆ dom(θ) and

• (x :: τ ′) ∈ ΓV ⇒ σ(x) ∈ Jτ ′Kθ

we have JtKσ ∈ JτKθ.

Proof. Induction over the type derivation.

As the last point in this subsection, we discuss operations on terms in λα that
do not change the semantics of the term. To state these operations, we need
syntactic substitution of term variables by terms. It is defined as follows.

DEFINITION 8
(Substitution)

Let t , t ′ terms and x a term variable. The substitution of x in t by t ′, written
t[t ′/x], is the syntactical replacement of all unbound occurrences of x in t
by t ′.

20 2 The Formal Background of Free Theorems

Be aware that substitution, as just defined, iscapture avoiding capture avoiding, i.e., bound occur-
rences of variables — either bound via λ-abstraction or in a case expression for
lists — are not substituted.

Finally, we can state two equivalences that hold in λα, and also in any of the
following λ-calculi.

LEMMA 2 In λα the following equivalences hold for every appropriate σ

Jλx :: τ.tKσ = Jλy :: τ.t[y/x]Kσ if y 6∈ UV(t) ∪ BV(t) (α-conversion)
J(λx :: τ.t1) t2Kσ = Jt1[t2/x]Kσ (β-conversion)

CONVENTION 4
(≡)

In the following we write t ≡ t ′ to denote that JtKσ = Jt ′Kσ (under each
appropriate term environment σ).

Intuitively clear, but worth to be formally defined, the replacement of a subterm
of a term with a semantically equivalent term does not alter the semantics of
the overall term. To state that result formally, we define context and subterm.
Informally, a context is a term with a hole6. Formally, it is defined as follows.

DEFINITION 9
(context)

A context C[] is a function from terms to terms that is defined via

C[] ::= []

| λx :: τ.C[]
| C[] t
| t C[]
| C[] + t

| t + C[]
| case C[] of {0→ t ; → t }
| case t of {0→ C[]; → t }
| case t of {0→ t ; → C[]}
| C[] : t

| t : C[]
| case C[] of {[]→ t ; x : x → t }
| case t of { []→ C[]; x : x → t }
| case t of { []→ t ; x : x → C[]}

where t ranges over the terms and x over the term variables. The application
of a context C[] to a term t is denoted by C[t] and yields the context C[] with
[] replaced by t , i.e., a term.

6A context may also have many holes, but we only regard one hole contexts.

2.1 Free Theorems for the Simply Typed Lambda Calculus 21

DEFINITION 10
(subterm)

A term t ′ is a subterm of term t , if there exists a context C[], such that
C[t ′] = t .

LEMMA 3For every context C[] and terms t , t ′ with t ≡ t ′, we have C[t] ≡ C[t ′].

Proof. Lemma 3 is a direct consequence of the definition of the denotational
semantics.

The next lemma considers another useful property of substitution that carries
over to all calculi considered in the following.

LEMMA 4Let Γ, x ::τ ′ ` t ::τ and Γ′ ` t ′::τ ′with Γ′ = Γ, x1::τ1, . . . , xn::τn. Furthermore,
let θ, σ and σ′ be given with

• ΓT ⊆ dom(θ),

• ∀(x :: τ) ∈ ΓV. σ(x) ∈ JτKθ, and

• σ′ = σ[x1 7→ a1, . . . , xn 7→ an] with a1 ∈ Jτ1Kθ, . . . ,an ∈ JτnKθ,

then
JtKσ[x 7→Jt′Kσ′] = Jt[t ′/x]Kσ′

Proof. Induction over the structure of t .

2.1.2 Relational Parametricity and Free Theorems

“We explore the thesis that type structure is a syntactic discipline for maintaining
levels of abstraction”

Reynolds (1983)

We aim for theorems about functions only gained from the functions’ type.
The theory that enables such theorems is called relational parametricity and
was developed by Reynolds (1974, 1983) out of an algebraic view on types.
Different implementations of primitive data types should be exchangeable
without changing the overall meaning of a program as long as we can establish
homomorphisms between these implementations of the data type. For example,
it does not matter how exactly integers are implemented. Consider that we have
two machines that use different implementations of integers. Now, on both
machines, we implement a function f taking an integer as input and yielding an
integer as output. Running the function we expect that for machine dependent
representations i ′ and i ′′ of the same integer i , the different implementations

22 2 The Formal Background of Free Theorems

∆α,ρ = ρ(α)

∆Nat,ρ = idN

∆[τ],ρ = {([a1, . . . ,an], [b1, . . . ,bn]) | n ∈ N ∧ ∀i ∈ {1, . . . , n}. (ai,bi) ∈ ∆τ,ρ}
∆τ1→τ2,ρ = {(f ,g) | ∀(a,b) ∈ ∆τ1,ρ. (f a,g b) ∈ ∆τ2,ρ}

Figure 2.5: Logical relation for λα

of our function will yield representations o′ and o′′ that are representations of
a unique integer o. If they do so, the two implementations of f , say f ′ and f ′′,
are also different representations of the same function.

Driven by the view of data types as an abstraction over concrete implemen-
tations or representations, Reynolds (1974) formulates a concrete notion of
“representation” that he extends in a later paper (Reynolds, 1983) to relations.
In particular, he establishes the abstraction or parametricity theorem that gen-
eralizes the representation theorem gained in 1974. We explain the abstraction
theorem driven by an intuition about representation. Consider the calculus
λα and its type semantics. We can view the interpretation of a type variable α
by θ as choosing a representation for the abstract data type α. Now, exploring
α as an abstract type, α has no operation nor constant at all, it has an empty
interface. Thus, a representation of type α can be completely arbitrary and we
can also arbitrarily choose a mapping between two interpretations of α. We
formalize that insight by a relational type interpretation. For type variables we
define a relational environment ρrelational

environment (ρ)
that maps type variables to relations between

two different interpretations of the type variable. We can intuitively interpret
“related” as “representing the same thing”. With the same intuition, we can
extend the relational type interpretation to arbitrary types in λα. The relational
interpretation of Nat becomes the identity relation on N. For functions, we use
extensionality as criterion for relatedness, i.e., two functions are related if for
related inputs they yield related outputs — that is what we expected for f ′ and
f ′′ above. Lists are related if they have the same length and all corresponding
elements are related. The formal definition of the relational interpretation,
also called logical relation7, is given in Figure 2.5 and, if our intuition is right,
it should satisfy the following property: Consider a term t with a possibly
polymorphic type. If we take two different interpretations of type variables,
fixed by the type environments θ1 and θ2, and if we choose relations between
these different interpretations, characterized by a suitable environment ρ, then
for every choice of related (w.r.t. ρ) interpretations for term variables that occur
unbound in t , the interpretations of t should be related as well. This property
is called parametricity or abstraction theorem.Rel / Rel(S1, S2) We denote the set of relations
between two sets S1 and S2 by Rel(S1, S2) and the collection of all relations
between two arbitrary sets by Rel .

7 A family of relations inductively defined over the type structure is called logical relation if
the function lifting is defined as for ∆·,· (Plotkin, 1973; Plotkin et al., 2000; Honsell and Sannella,
2002). We will keep the notion a bit sloppy, as mostly done in literature, and also call the family of
relations logical if the function lifting is defined slightly differently.

2.1 Free Theorems for the Simply Typed Lambda Calculus 23

THEOREM 1
(Parametricity Theo-
rem for λα, Reynolds
(1983))

If Γ ` t :: τ valid in λα, then for every θ1, θ2, ρ, σ1, σ2 such that

• for every α occurring in Γ, ρ(α) ∈ Rel(θ1(α), θ2(α)), and

• for every x :: τ ′ occurring in Γ, (σ1(x), σ2(x)) ∈ ∆τ ′,ρ,

we have (JtKσ1
, JtKσ2

) ∈ ∆τ,ρ.

A main task throughout this thesis is to restate the parametricity theorem
appropriately adjusted in different language settings. Therefore, we present the
proof for Theorem 1 completely, although much of it is straightforward. When
we extend the λ-calculus, we only fix the proof. That is, we use the following
proof as a kind of basis for all upcoming proofs of parametricity theorems.

Proof (Theorem 1). The proof is accomplished by induction on the structure of
the type derivation of a term. That is, we regard only the rule at the root
of a type derivation, assume all premises satisfy the parametricity theorem
(by the induction hypothesis), and prove that the conclusion does as well.
The induction is well-founded because every typeable term has a finite type
derivation. Hence, we do a case distinction over all typing rules. For all cases
the names of variables, terms and types refer to the names in the typing rules
shown in Figure 2.2.

(VAR)

(JxKσ1
, JxKσ2

) ∈ ∆τ,ρ

⇔ { term semantics }
(σ1(x), σ2(x)) ∈ ∆τ,ρ

The last statement holds by the conditions of Theorem 1.

(NIL)

(J[]τ Kσ1
, J[]τ Kσ2

) ∈ ∆[τ],ρ

⇔ { term semantics }
([], []) ∈ ∆[τ],ρ

The last statement holds by the definition of the logical relation for list types.

(NAT)

(JnKσ1 , JnKσ2) ∈ ∆Nat,ρ

⇔ { term semantics }
(n,n) ∈ ∆Nat,ρ

The last statement holds by the definition of the logical relation for type Nat .

24 2 The Formal Background of Free Theorems

(CONS)

(Jt1 : t2Kσ1 , Jt1 : t2Kσ2) ∈ ∆[τ],ρ

⇔ { term semantics }
(Jt1Kσ1 : Jt2Kσ1 , Jt1Kσ2 : Jt2Kσ2) ∈ ∆[τ],ρ

⇔ { logical relation for list types }
(Jt1Kσ1

, Jt1Kσ2
) ∈ ∆τ,ρ ∧ (Jt2Kσ1

, Jt2Kσ2
) ∈ ∆[τ],ρ

The last statement holds by the induction hypotheses.

(SUM)

(Jt1 + t2Kσ1
, Jt1 + t2Kσ2

) ∈ ∆Nat,ρ

⇔ { term semantics }
(Jt1Kσ1 + Jt2Kσ1 , Jt1Kσ2 + Jt2Kσ2) ∈ ∆Nat,ρ

⇐ { logical relation for Nat }
(Jt1Kσ1

, Jt1Kσ2
) ∈ ∆Nat,ρ ∧ (Jt2Kσ1

, Jt2Kσ2
) ∈ ∆Nat,ρ

The last statement holds by the induction hypotheses.

(LCASE)

By the first premise in (LCASE) we have (JtKσ1
, JtKσ2

) ∈ ∆[τ1],ρ, i.e., by the
lifting of the logical relation for lists, either

(a) JtKσ1 = JtKσ2 = [], or

(b) JtKσ1 = a : b and JtKσ2 = c : d with
(i) (a, c) ∈ ∆τ1,ρ and (ii) (b,d) ∈ ∆[τ1],ρ.

In case (a) we reason as follows.

(Jcase t of {[]→ t1;x1 : x2 → t2}Kσ1
,

Jcase t of {[]→ t1;x1 : x2 → t2}Kσ2) ∈ ∆τ,ρ

⇔ { term semantics under conditions of case (a) }
(Jt1Kσ1 , Jt1Kσ2) ∈ ∆τ,ρ

The last statement holds by the induction hypothesis for the second premise,
i.e., by the induction hypothesis for Γ ` t1 :: τ .
In case (b) we reason as follows.

(Jcase t of {[]→ t1;x1 : x2 → t2}Kσ1 ,

Jcase t of {[]→ t1;x1 : x2 → t2}Kσ2
) ∈ ∆τ,ρ

⇔ { term semantics under conditions of case (b) }
(Jt2Kσ1[x1 7→a,x2 7→b], Jt2Kσ2[x1 7→c,x2 7→d]) ∈ ∆τ,ρ

The last statement holds by the induction hypothesis for the third premise.
The extended Γ, σ1 and σ2 meet the conditions of Theorem 1 by (i) and (ii).

2.1 Free Theorems for the Simply Typed Lambda Calculus 25

(NCASE)

Similar to (LCASE).

(ABS)

(Jλx :: τ1.tKσ1
, Jλx :: τ1.tKσ2

) ∈ ∆τ1→τ2,ρ
⇔ { term semantics }

(λa.JtKσ1[x 7→a], λb.JtKσ2[x 7→b]) ∈ ∆τ1→τ2,ρ
⇔ { logical relation for function types }
∀(a,b) ∈ ∆τ1,ρ. (JtKσ1[x 7→a], JtKσ2[x 7→b]) ∈ ∆τ2,ρ

The last statement holds by the induction hypothesis.

(APP)

(Jt1 t2Kσ1
, Jt1 t2Kσ2

) ∈ ∆τ2,ρ

⇔ { term semantics }
(Jt1Kσ1

Jt2Kσ1
, Jt1Kσ2

Jt2Kσ2
) ∈ ∆τ2,ρ

⇐ { choose a = Jt2Kσ1 and b = Jt2Kσ2 }
(Jt2Kσ1

, Jt2Kσ2
) ∈ ∆τ1,ρ ∧

∀(a,b) ∈ ∆τ1,ρ. (Jt1Kσ1
a, Jt1Kσ2

b) ∈ ∆τ2,ρ

⇔ { logical relation for function types }
(Jt2Kσ1

, Jt2Kσ2
) ∈ ∆τ1,ρ ∧ (Jt1Kσ1

, Jt1Kσ2
) ∈ ∆τ1→τ2,ρ

The last statement holds by the induction hypotheses.

The way from the parametricity theorem to free theorems has been explored by
Wadler (1989). As he states, his main contribution is “to suggest that parametricity
also has ‘specific’ applications: it says interesting things about particular functions
with particular types.” Before, parametricity had only been used to get “general”
assertions about implementations or models of lambda calculi (Wadler, 1989).
“Specific” statements are derived by unfolding the logical relation and maybe
specializing it. We exemplify the procedure by deriving statement (1.1) that
was presented in the introduction (page 5).

EXAMPLE 4
(derivation of a func-
tional free theorem)

Let α ` f :: [α]→ [α], then Theorem 1 states

∀S1, S2 sets,R ∈ Rel(S1, S2). (Jf K∅, Jf K∅) ∈ ∆[α]→[α],[α 7→R]

By the definition of the logical relation for function types we obtain

∀S1, S2 sets,R ∈ Rel(S1, S2), (x,y) ∈ ∆[α],[α 7→R].

(Jf K∅ x, Jf K∅ y) ∈ ∆[α],[α 7→R]

26 2 The Formal Background of Free Theorems

and specializing S1 to Jτ1K∅, S2 to Jτ2K∅, and R to (the graph of) JgK∅ with
g :: τ1 → τ2, we get

∀τ1, τ2 types, g :: τ1 → τ2, (x,y) ∈ ∆[α],[α 7→JgK∅].

(Jf K∅ x, Jf K∅ y) ∈ ∆[α],[α7→JgK∅]

Unfolding the list lifting (plus term semantics definition) we obtain

∆[α],[α7→JgK∅] = {([x1, . . . ,xn], [JgK∅ x1, . . . , JgK∅ xn]) |
n ∈ N ∧ ∀i ∈ {1, . . . , n}. xi ∈ Jτ1K∅}

= {(xs, Jmap gK∅ xs) | xs ∈ J[τ1]K}

If we apply that equivalence twice (plus term semantics definition) we get

∀τ1, τ2 types, g :: τ1 → τ2, xs :: [τ1]. Jmap g (f xs)K∅ = Jf (map g xs)K∅

which is statement (1.1) from the introduction where it was left implicit that
we mean semantic equivalence.

We can derive similar theorems for every possible (polymorphic) type. Wadler
(1989) was optimistic about the applications of such theorems. And as the
many applications briefly mentioned in Section 3.2 attest, he was right. How-
ever, mostly these theorems are not used in a language that resembles the
polymorphic lambda calculus, nor our even simpler language λα. Concerning
programming languages, the feature necessary to achieve Turing-completeness
is general recursion. Unfortunately, neither λα nor the polymorphic lambda
calculus provide general recursion. Adding it to λα (and also to the polymor-
phic lambda calculus) has a serious impact on the semantics and weakens free
theorems. Nevertheless, we have to deal with general recursion to handle real
world programming languages, and, thus, the next section describes how we
can add it to λα and what happens then to parametricity.

2.2 Adding General Recursion

In Subsection 2.2.1, we explore how to integrate general recursion into λα, set-
ting up the calculus λαfix. Subsection 2.2.2 describes the necessary adjustments
in the relational type interpretation to reestablish a parametricity theorem.

2.2.1 Changes to the Calculus

General recursion is not expressible in λα and needs to be explicitly added via
a primitive. We extend the term syntax by fix t and the typing rules given in
Figure 2.2 by

Γ ` t :: τ → τ (FIX)
Γ ` fix t :: τ

We call the resulting calculus λαfixλαfix . For later reference, the extensions to syntax
and typing rules are given in Figures 2.6 and 2.7. As the semantics of fix t

2.2 Adding General Recursion 27

τ ::= . . .
t ::= . . .

| fix t fixpoint primitive

Figure 2.6: Type and term syntax of λαfix, extended from Figure 2.1

Γ ` t :: τ → τ (FIX)
Γ ` fix t :: τ

Figure 2.7: Typing rules of λαfix, extended from Figure 2.2

we choose the fixpoint of the function t = JtKσ ∈ Jτ → τKθ.8 The idea behind
the calculation of the fixpoint is as follows. A recursively defined function
f ∈ JτKθ is a function that calls itself. We can abstract over the recursive call
and express f as an application of t to f . That means f is a fixpoint of t, i.e.,
t f = f . However, we still do not know f in a non self-referring way and hence
on the first sight the equivalence t f = f seems useless. But, it really tells us
something interesting, namely that f is a fixpoint of t. That is, when we start
with a function different from f as input to t and apply t often enough to that
input, we may get f . Thus, we may define the semantics of fix t as follows:
Choose an appropriate initial input to t and apply t over and over again till a
fixpoint is reached. But, immediately two (though related) questions arise.

1. What to take as the initial input to t?

2. What fixpoint shall we select if there exists more than one?

To formally answer these questions major changes to the denotational semantics
are necessary. The required formal background is the subject of domain theory.
Abramsky and Jung (1994) provide an overview of the topic. Here, we discuss
only briefly the important results.

The fundamental semantic change is to treat a type no longer as a set, but
as a pointed complete partial order (pcpo). Knowledge about a value, or
definedness, is modeled semantically by the order in the respective pcpo,
called definedness order v. definedness order

DEFINITION 11
((pointed) complete
partial order, (p)cpo)

Let S a set andv a partial order on S. We say the partially ordered set, short
poset, D = (S,v) is complete (a cpo) if for every chain9 C ⊆ D there exists a
supremum s in D, denoted as s =

⊔
c∈C c. D is pointed if there exists a least

element. We abbreviate pointed complete partial order as pcpo.

8In most cases, though other uses are possible, τ will be a function type τ1 → τ2, i.e., we define
a recursive function f ∈ Jτ1 → τ2Kθ via the fixpoint f = Jfix tKθ .

9A chain is a totally ordered subset of a partially ordered set. We write C ⊆ D if D = (S,v)
and C = (S′,v|S′) with S′ ⊆ S.

28 2 The Formal Background of Free Theorems

CONVENTION 5
(⊥)

For every pcpo we denote the least element by ⊥.

When interpreting types as pcpos, we can provide an appropriate definition
for the semantics of fix t .10

Jfix tKσ =
⊔
n>0

((JtKσ)n ⊥) (2.1)

Say, we want to define a function f recursively. Then this is achieved by an
appropriate t whose least fixpoint is f . Starting with the completely unde-
fined function ⊥ as argument to t , with every application of t the function
becomes more (at least not less) defined and finally the supremum yields
the least fixpoint of t and hence our recursive function. That the supremum⊔
n>0 (JtKσ)n ⊥ always exists and characterizes the least fixpoint of t is guar-

anteed by our choice of pcpos as structure for type interpretation (Abramsky
and Jung, 1994).

A new semantic equivalence arising from the interpretation of fix t as a fixpoint
of t is the following

LEMMA 5
(unrolling)

For every t :: τ → τ ,

fix t ≡ t (fix t) (unrolling)

EXAMPLE 5
(definition of map)

Let us exemplify the usage of fix by defining a recursive function (via the
semantics of) map :: (α → β) → [α] → [β] that applies a function (its first
argument) to each element in a list (given as second argument):

map = λf :: α→ β.

fix (λm :: [α]→ [β].λxs :: [α].

case xs of { []→ []β ; y : ys → f y : m ys })

Being precise, the recursive function is not directly (the semantic interpreta-
tion of) map, but (the interpretation of) map f for some given f .11 What hap-
pens on the semantic level when the fixpoint is evaluated can be simulated
via equational reasoning with the rules from Lemmas 2, 3 and 5. During
the reasoning we abbreviate λm :: [α] → [β].λxs :: [α].case xs of { [] →
[]β ; y : ys → f y : m ys } by t .

map f

≡ { definition of map and β-conversion }
fix t

10The exponent n means that JtKσ is applied n times, e.g. ((JtKσ)3 ⊥) = JtKσ (JtKσ (JtKσ ⊥)).

2.2 Adding General Recursion 29

≡ { unrolling and definition of t }
(λm :: [α]→ [β].λxs :: [α].

case xs of { []→ []β ; y : ys → f y : m ys }) (fix t)

≡ { β-conversion }
λxs :: [α].case xs of {[]→ []β ; y : ys → f y : (fix t) ys }
≡ { unroll fix t again, α- and β-conversion }
λxs :: [α].case xs of {

[]→ []β ;

y : ys → f y : case ys of { []→ []β ; z : zs → f z : (fix t) zs }}
≡ { repeat last step }
. . .

We unroll the fixpoint more and more and that way obtain a more and
more explicit description of map f . In the beginning we only know that
it is defined via the fixpoint, i.e., via itself. After one unrolling step, we
know that for the empty list as input it yields the empty list as output —
independently of fix t . One more unrolling step and we know how it is
defined for singleton lists independently of fix t . Hence, step by step we
gain a description of a function that maps f into arbitrary long lists and that
is not defined in terms of itself anymore. That function is the fixpoint fix t .

EXAMPLE 6
(application of map)

If we apply map12 to concrete terms, say λx :: Nat .x + 1 and a list 1 : 2 :
[]Nat evaluation (stated as a sequence of equational reasoning steps and
thus more in an operational way, but in line with explicitly employing our
denotational semantics) proceeds as follows, where we abbreviate λm ::
[Nat] → [Nat].λxs :: [Nat].case xs of { [] → []Nat ; y : ys → (λx .x + 1) y :
m ys }) by t .

map (λx .x + 1) (1 : 2 : []Nat)

≡ { definition of map, β-conversion and definition of t }
fix t (1 : 2 : []Nat)

≡ { unrolling }
(λm :: [Nat]→ [Nat].λxs :: [Nat].

case xs of { []→ []Nat ; y : ys → (λx .x + 1) y : m ys })
(fix t) (1 : 2 : []Nat)

≡ { β-conversion (twice) }
case 1 : 2 : []Nat of { []→ []Nat ; y : ys → (λx .x + 1) y : (fix t) ys }
≡ { evaluate case expression }
(λx .x + 1) 1 : (fix t) (2 : []Nat)

≡ { β-conversion }
2 : (fix t) (2 : []Nat)

11It would also be possible to directly write map as map′ = fix t for an appropriate t .

30 2 The Formal Background of Free Theorems

≡ { unrolling }
2 : (λm :: [Nat]→ [Nat].λxs :: [Nat].

case xs of { []→ []Nat ; y : ys → (λx .(x + 1)) y : m ys })
(fix t) (2 : []Nat)

≡ { β-conversion (twice) }
2 : case 2 : []Nat of {[]→ []Nat ; y : ys → (λx .x + 1) y : (fix t) ys }
≡ { evaluate case expression }
2 : (λx .x + 1) 2 : (fix t) []Nat

≡ { β-conversion }
2 : 3 : (fix t) []Nat

≡ { unrolling }
2 : 3 : (λm :: [Nat]→ [Nat].λxs :: [Nat].

case xs of { []→ []Nat ; y : ys → (λx .x + 1) y : m ys })
(fix t) []Nat

≡ { β-conversion (twice) }
2 : 3 : case []Nat of { []→ []Nat ; y : ys → (λx .x + 1) y : (fix t) ys }
≡ { evaluate case expression }
2 : 3 : []Nat

Note in particular, that there is no need to evaluate the fixpoint completely.
Evaluation stops as soon as the current approximation can handle the con-
crete list that is given as argument.

As already said, to allow for the just given fixpoint interpretation, we have
to adjust the type semantics, in particular to switch from sets to pcpos. The
adjusted type semantics, with θ now mapping from type variables to pcpos,
is presented in Figure 2.8. There, N is regarded as discretely ordered and (·)⊥(·)⊥
takes a partially ordered set, adds a least element ⊥, and otherwise leaves the
ordering unchanged. The least fixpoint of a function f is denoted by lfp(f)lfp .
Note that, in contrast to the list semantics in λα, the definition via the least
fixpoint provides for infinite lists. These can arise as semantics of a recursive
definition of a list. It is worth noting that indeed the least fixpoint suffices to
capture infinite lists. The set without infinite lists, which would be the least
fixpoint w.r.t. sets, is not a pcpo. The function space is restricted to monotone
and continuous functions13, ordered point-wise. The restrictions guarantee the
function space to constitute a pcpo. Lifting is not necessary since there already
is a least function, i.e., the one that takes every input to the undefined value.

12We changed the type of map to (Nat → Nat) → [Nat] → [Nat] because otherwise we
encounter type problems. How these problems are solved without changing map’s type in the
first place is explained in Section 2.4.

13The restriction is equivalent to Scott-continuity (cf. Abramsky and Jung (1994, Defini-
tion 2.1.17)). Furthermore, we silently employed continuity of functions already for JtKσ when
explaining the definition in (2.1) on page 28.

2.2 Adding General Recursion 31

JαKfix
θ = θ(α) J[τ]Kfix

θ = lfp(λS. ({[]} ∪ {a : b | a ∈ JτKfix
θ ,b ∈ S})⊥)

JNatKfix
θ = N⊥ Jτ1 → τ2Kfix

θ = {f : Jτ1Kfix
θ → Jτ2Kfix

θ }

Figure 2.8: Type semantics of λαfix

JxKfix
σ = σ(x)

JnKfix
σ = n

Jt1 + t2Kfix
σ =

Jt1Kfix
σ + Jt2Kfix

σ if Jt1Kfix
σ 6= ⊥

∧ Jt2Kfix
σ 6= ⊥

⊥ otherwise
J[]τ Kfix

σ = []

Jt1 : t2Kfix
σ = Jt1Kfix

σ : Jt2Kfix
σ

Jλx :: τ.tKfix
σ = λa.JtKfix

σ[x 7→a]

Jt1 t2Kfix
σ = Jt1Kfix

σ Jt2Kfix
σ

Jcase t of {0→ t1; → t2}Kfix
σ =

Jt1Kfix
σ if JtKfix

σ = 0

Jt2Kfix
σ if JtKfix

σ ∈ N \ {0}
⊥ if JtKfix

σ = ⊥

Jcase t of { []→ t1;x1 : x2 → t2}Kfix
σ =

Jt1Kfix
σ if JtKfix

σ = []

Jt2Kfix
σ[x1 7→a,x2 7→b] if JtKfix

σ = a : b

⊥ if JtKfix
σ = ⊥

Jfix tKfix
σ =

⊔
n>0 ((JtKfix

σ)n ⊥)

Figure 2.9: Term semantics of λαfix

Concerning the term semantics, besides adding the semantic interpretation
for fix t , the semantics of case expressions and of addition has to be altered:
The scrutinee of any case expression can evaluate to ⊥, as for example the
expression fix (λx :: τ.x) will do. In this case the semantics of the whole case
expression is ⊥. Regarding addition, the summands may evaluate to ⊥. If one
of them does so, the whole sum evaluates to ⊥. Figure 2.9 shows the complete
term semantics. To distinguish the semantics of λα from the one of λαfix we add
the superscript fix to the semantic function, for types and also for terms.14

Finally, we need to ensure that the altered semantics is still well-defined, i.e.,
that the semantics of each term of type τ is an element of the semantics of τ .

LEMMA 6If Γ ` t :: τ valid in λαfix, then for all θ and σ with

• ΓT ⊆ dom(θ) and

• (x :: τ ′) ∈ ΓV ⇒ σ(x) ∈ Jτ ′Kfix
θ

we have JtKfix
σ ∈ JτKfix

θ .

Proof. Induction over the type derivation. Special care has to be taken concern-
ing continuity.

14In statement (2.1) we omitted the superscript of the semantic function to avoid confusion.

32 2 The Formal Background of Free Theorems

2.2.2 Changes to the Parametricity Results

Since the expressiveness of λαfix has increased compared to λα we expect also
changes to the parametricity results gained in Section 2.1.2. In particular that
for every type we have a least element in the interpretation, the completely
undefined value, gives rise to changes, as was already observed by Wadler
(1989). If we reconsider our intuition about parametricity, the main idea was
to regard a completely polymorphic type (i.e., a type variable) as an abstract
data type with an empty interface. That intuition does not hold anymore.
The completely undefined value ⊥ is present in the semantic interpretation
of each type and for each type τ the term fix (λx :: τ.x), in the following
abbreviated as ⊥τ⊥τ , is interpreted as ⊥. Hence, there is a constant present for
every type and consequently the completely polymorphic type has a non-
empty interface. Intuitively, the logical relation now has to respect the interface.
It has to relate⊥ from one interpretation to⊥ from the other, i.e., has to be strict.
This restriction of the logical relation helps us to reestablish the parametricity
theorem. However, another restriction is necessary. If two chains of values are
related element-wise, then also the suprema of these chains should be related.
That property is called continuity. The necessity of continuity arises from the
interpretation of fixpoints. The semantics of fix t in two different environments
is a pair of suprema of element-wise related chains, and of course we want the
two interpretations of fix t to be related.

The adjusted logical relation is given in Figure 2.10. As just discussed, ρ maps
to strict and continuous relations between pcpos.

DEFINITION 12
(strict relation)

A relationR between two pcpos is strict if (⊥,⊥) ∈ R.

DEFINITION 13
(continuous relation)

A relation R between two cpos (D1,v1), (D2,v2) is continuous if for all
chains C1 ⊆ D1 and C2 ⊆ D2 whose elements are pairwise related byR the
suprema of these chains are also related byR.

Without the continuity and the strictness restriction, the parametricity theorem
for λαfix fails.Rel⊥/Rel⊥(D1, D2) In the following, we denote by Rel⊥(D1, D2) the set of strict and
continuous relations between the pcpos D1 and D2 and by Rel⊥ the collection
of all such relations between two arbitrary pcpos. The second main adjustment
to the logical relation is the lifting for lists. We have to allow for infinite lists.
The adjustment is similar to the one for the standard type interpretation.

With the altered logical relation we restate the parametricity theorem. To prove
it, it is essential that strictness and continuity propagate through the whole
logical relation.

2.2 Adding General Recursion 33

∆fix
α,ρ = ρ(α)

∆fix
Nat,ρ = idN⊥

∆fix
[τ],ρ = lfp(λR. {(⊥,⊥), ([], [])} ∪ {(a : as,b : bs) | (a,b) ∈ ∆fix

τ,ρ ∧ (as,bs) ∈ R})
∆fix
τ1→τ2,ρ = {(f ,g) | ∀(a,b) ∈ ∆fix

τ1,ρ. (f a,g b) ∈ ∆fix
τ2,ρ}

Figure 2.10: Logical relation for λαfix

LEMMA 7If ρ maps into Rel⊥, then ∆fix
τ,ρ ∈ Rel⊥ for all τ closed under dom(ρ).

Proof. The proof proceeds by structural induction on the type τ .

THEOREM 2
(Parametricity Theo-
rem for λαfix, Wadler
(1989))

If Γ ` t :: τ valid in λαfix, then for every θ1, θ2, ρ, σ1, σ2 such that

• for every α occurring in Γ, ρ(α) ∈ Rel⊥(θ1(α), θ2(α)), and

• for every x :: τ ′ occurring in Γ, (σ1(x), σ2(x)) ∈ ∆fix

τ ′,ρ,

we have (JtKfix
σ1
, JtKfix

σ2
) ∈ ∆fix

τ,ρ.

Proof. We only point out differences to the proof of Theorem 1. Of course, we
have (FIX) as an extra case:

(FIX)

(Jfix tKfix
σ1
, Jfix tKfix

σ2
) ∈ ∆fix

τ,ρ

⇔ { term semantics }
(
⊔
n>0 ((JtKfix

σ1
)n ⊥),

⊔
n>0 ((JtKfix

σ2
)n ⊥)) ∈ ∆fix

τ,ρ

⇐
{

continuity of ∆fix
τ,ρ (Lemma 7)

}
∀n ∈ N. ((JtKfix

σ1
)n ⊥, (JtKfix

σ2
)n ⊥) ∈ ∆fix

τ,ρ

⇐
{

strictness of ∆fix
τ,ρ (Lemma 7) and logical relation for functions

}
∀(a,b) ∈ ∆fix

τ,ρ. (JtKfix
σ1

a, JtKfix
σ2

b) ∈ ∆fix
τ,ρ

⇔ { logical relation for functions }
(JtKfix

σ1
, JtKfix

σ2
) ∈ ∆fix

τ→τ,ρ

Additionally for (LCASE) and (NCASE) changes are required. Both times an
extra subcase with JtKfix

σ1
= JtKfix

σ2
= ⊥ arises. It is proved immediately by

strictness of the logical relation (Lemma 7). Similarly, an extra subcase arises
for (SUM). All other cases remain unchanged, except that ∆·,· is replaced by
∆fix
·,· .

34 2 The Formal Background of Free Theorems

Before we close the section, we examine how the changes on the parametricity
theorem affect free theorems. Therefore we regard Example 4 again, but now
w.r.t. Theorem 2.

EXAMPLE 7
(derivation of a func-
tional free theorem)

Let α ` f :: [α]→ [α], then Theorem 2 states

∀S1, S2 sets,R ∈ Rel⊥(S1, S2). (Jf K∅, Jf K∅) ∈ ∆fix

[α]→[α],[α7→R]

By the definition of the logical relation for function types we obtain

∀S1, S2 sets,R ∈ Rel⊥(S1, S2), (x,y) ∈ ∆fix

[α],[α7→R].

(Jf K∅ x, Jf K∅ y) ∈ ∆fix

[α],[α 7→R]

and specializing S1 to Jτ1K∅, S2 to Jτ2K∅, and R to (the graph of) a strict
function JgK∅ with g :: τ1 → τ2, we get

∀τ1, τ2 types, g :: τ1 → τ2 strict, (x,y) ∈ ∆fix

[α],[α 7→JgK∅].

(Jf K∅ x, Jf K∅ y) ∈ ∆fix

[α],[α7→JgK∅]

Note that JgK∅ really has to be strict. Otherwise its graph is not in Rel⊥.
Continuity is guaranteed anyway, because each term of function type is
semantically interpreted as a continuous function (see Lemma 6 and the
semantic interpretation of function types).

Unfolding the list lifting (plus term semantics definition) we obtain

∆fix

[α],[α7→JgK∅] = lfp(λR. {(⊥,⊥), ([], [])} ∪ {(x : xs, JgK∅ x : ys) |
(xs,ys) ∈ R})

= {(xs, Jmap gK∅ xs) | xs ∈ J[τ1]K}

If we apply that equivalence twice (plus term semantics definition) we get

∀τ1, τ2 types, g :: τ1 → τ2 strict, xs :: [τ1]. Jmap g (f xs)K∅ = Jf (map g xs)K∅

which, besides the additional strictness restriction, is statement (1.1) from the
introduction where it was left implicit that we mean semantic equivalence.

2.3 Adding Selective Strictness

In Subsection 2.3.1 we explain the difference between strict and non-strict
evaluation and show how we can enrich the calculus λαfix with a strict let
expression. The enriched calculus is called λαseq. The adjustments to the theory
of parametricity that are caused by the possibility of strict evaluation are
described in Subsection 2.3.2.

2.3 Adding Selective Strictness 35

For motivation why selective strictness is a useful feature we refer to Hudak
et al. (2007, Section 10.3) and the introduction of Chapter 5 in this thesis.

2.3.1 Changes to the Calculus

For all calculi up to now, the given semantics corresponds to non-strict evaluationnon-strict evalu-
ation. The general description for non-strict evaluation is that terms are only
evaluated when necessary to go on with the overall computation. This property
is not found directly in the denotational semantics, because it is too high level
to capture non-strict evaluation the way just described. The description is
fitting for a rewrite system, in which terms are rewritten to normal forms that
then are considered as their semantics. In the denotational semantics, non-strict
evaluation is realized by treating the undefined value ⊥ the same way as all
other values. In particular, our semantics allows for functions that get ⊥ as
argument and do not return ⊥, but yield more defined values. Furthermore,
the semantics allows for partially defined lists. In a strict calculus both would
not be allowed. Strict evaluation strict evaluationmeans that arguments to functions and con-
structors are completely evaluated before the function result or the constructed
data structure is returned. If the evaluation fails, as is indicated by ⊥, the result
of the whole application is undefined, i.e., ⊥.

Haskell, in general evaluating non-strict, supplies the programmer with the
possibility to force strict evaluation. It provides the primitive seq :: α→ β → β
that forces its first argument to be evaluated to weak head normal form15

and, only if successful, returns the second argument, otherwise the result is
undefined. In pseudo code, we can specify seq as follows:

seq :: α→ β → β
seq ⊥ = ⊥
seq x = x

Haskell also provides other ways to force strictness, e.g. via strict function
application $! or strict constructors. However, all these constructs can be
simulated by seq and seq itself can be simulated by a strict let expression as
we add it to the calculus λαfix.16 The syntax of the let expression is shown in
Figure 2.11. The typing rule added to λαfix due to the strict let expression is
given in Figure 2.12. The intention behind the expression let! x = t1 in t2 is to
test if the term t1 assigned to the variable x is ⊥, and if so interpret the whole
let expression as undefined, but otherwise employ the value assigned to x in
the evaluation of t2. We call the extended calculus λαseq λαseq. The following example
should clarify the intended semantics of a strict let expression.

15The notion weak head normal form means to rewrite a term until it is a constant of a base
type, a constructor (with possibly unevaluated arguments) or a term of the form λx .t . In the
denotational semantics evaluation to weak head normal form corresponds to a check if a value is
completely undefined, i.e., is ⊥.

16We can define seq t1 t2 = let! x = t1 in t2 where x is fresh.

36 2 The Formal Background of Free Theorems

τ ::= . . .
t ::= . . .

| let! x = t in t strict let expression

Figure 2.11: Type and term syntax of λαseq, extended from Figure 2.6

Γ ` t1 :: τ1 Γ, x :: τ1 ` t2 :: τ2 (SLET)
Γ ` (let! x = t1 in t2) :: τ2

Figure 2.12: Typing rules of λαseq, extended from Figure 2.7

JαKseq
θ = θ(α) J[τ]Kseq

θ = lfp(λS. ({[]} ∪ {a : b | a ∈ JτKseq
θ ,b ∈ S})⊥)

JNatKseq
θ = N⊥ Jτ1 → τ2Kseq

θ = ({f : Jτ1Kseq
θ → Jτ2Kseq

θ })⊥

Figure 2.13: Type semantics of λαseq

EXAMPLE 8
(strict let expression)

We aim for the following behavior of the strict let expression:

Jlet! x = 0 in 5Kseq

∅ = 5

Jlet! x = ⊥Nat→Nat in 5Kseq

∅ = ⊥
Jlet! x = (λy :: Nat .⊥Nat) in 5Kseq

∅ = 5

The first line should be clear. In the second line, the undefined value as-
signed to x forces the overall expression to be undefined, even though x
is not required to evaluate 5. To allow for the result of the last line, our
semantic interpretation of functions needs to be changed. The constant
function to⊥ that is assigned to x behaves differently from⊥ in the function
space. Up to now the terms λx :: Nat .⊥Nat and ⊥Nat→Nat were mapped to
the same semantic function, but λx :: Nat .⊥Nat is a weak head normal form,
while ⊥Nat→Nat is not and cannot be evaluated to weak head normal form.

As shown in Example 8 the terms λx :: τ1.⊥τ2 and ⊥τ1→τ2 are distinguishable
w.r.t. their evaluation behavior when we introduce forced strict evaluation
as intended. Hence, the terms must have different semantic interpretations.
In λαfix both are indistinguishable and interpreted as the least value of the
function space, i.e., the constant function to the least value of the result type.
We only denoted this function by ⊥, but it was a real function, e.g. λx.⊥ in
JNat → NatKfix

∅ . Regarding strict evaluation, we lift the function space to
distinguish the constant function to the least value of result type and a newly
added, even less defined, value. The adjusted type semantics is shown in
Figure 2.13. The function space remains as in λαfix ordered point-wise and
restricted to monotone and continuous functions. It is only enriched with a
new least element ⊥.

2.3 Adding Selective Strictness 37

altered semantics: extension of the semantics:

Jt1 t2Kseq
σ = Jt1Kseq

σ $ Jt2Kseq
σ

Jfix tKseq
σ =

⊔
n>0 ((JtKseq

σ $)n ⊥)
Jlet! x = t1 in t2Kseq

σ =

{
Jt2Kseq

σ[x 7→a] if Jt1Kseq
σ = a 6= ⊥

⊥ if Jt1Kseq
σ = ⊥

For all unmentioned cases only replace J·Kfix
· by J·Kseq

· .

Figure 2.14: Term semantics of λαseq, changed and extended from Figure 2.9

The term semantics of λαseq also differs from the one of λαfix. In particular,
function application has changed. The artificial least element added to the
function space is not a mathematical function at all, hence we cannot apply it
to a value. The problem is solved by a new operator for function application, $.

DEFINITION 14
(Operator $)

Let D1, D2 pcpos, f ∈ (D1 → D2)⊥ and x ∈ D1. We define

f $ x =

{
f x if f 6= ⊥
⊥ otherwise

The semantic changes for terms compared to λαfix are given in Figure 2.14.

Again, we need to ensure that the altered semantics is well-defined.

LEMMA 8If Γ ` t :: τ valid in λαseq, then for all θ and σ with

• ΓT ⊆ dom(θ) and

• (x :: τ ′) ∈ ΓV ⇒ σ(x) ∈ Jτ ′Kseq

θ

we have JtKseq
σ ∈ JτKseq

θ .

Proof. Induction over the type derivation. Special care has to be taken concern-
ing continuity.

2.3.2 Changes to the Parametricity Results

By the new feature added to the calculus, we can test for every type if a term
evaluates to ⊥. Hence, stressing our view on polymorphic types as abstract
data types, the completely polymorphic type provides a new operation in its
interface: a definedness check. In contrast to the introduction of fix, we can now
check a property of a value of polymorphic type instead of producing a value.
As a consequence a new restriction, called bottom-reflectingness, is required to

38 2 The Formal Background of Free Theorems

∆seq
τ1→τ2,ρ = {(f ,g) | f = ⊥ iff g = ⊥, ∀(a,b) ∈ ∆seq

τ1,ρ. (f $ a,g $ b) ∈ ∆seq
τ2,ρ}

For all unmentioned cases only replace ∆fix
·,· by ∆seq

·,· .

Figure 2.15: Logical relation for λαseq, altered from Figure 2.10

guarantee parametricity results. The intuition behind the additional restriction
is quite simple: To guarantee the parametricity theorem, the logical relation has
to respect the interface of the polymorphic type when relating values. Since
now a polymorphic function can check if its polymorphic input is undefined
or not, the logical relation may relate ⊥ to ⊥, but never to a non-⊥ value.

DEFINITION 15
(bottom-reflectingness)

A relationR between two pcpos is bottom-reflecting if

(x,y) ∈ R ⇒ (x = ⊥ ⇔ y = ⊥)

Unfortunately, it is not sufficient to require type variables to be mapped to
bottom-reflecting (and strict and continuous) relations to guarantee the logical
relation, as defined in Figure 2.10, to be bottom-reflecting on every type. The
lifting for function types must be adjusted as well (and in a more fundamental
way than by inserting only the new function application symbol $). The relation
∆fix
τ1→τ2,ρ relates all functions that yield related results for related arguments.

With Jτ1 → τ2Kseq

θ as function space, in particular λx.⊥ and ⊥ would be related,
i.e., ∆fix

τ1→τ2,ρ is not bottom-reflecting w.r.t. the type semantics of λαseq and we
have to explicitly enforce bottom-reflectingness of the relation for function
types. The appropriately adjusted logical relation for λαseq is presented in
Figure 2.15.

With the new definition the logical relation is bottom-reflecting, strict and con-
tinuous, if ρ maps to bottom-reflecting, strict and continuous relations. For two
pcpos D1 and D2 we denote the bottom-reflecting, strict and continuous rela-
tions between D1 and D2 by Rel>(D1, D2), and the collection of Rel>(D1, D2)

over all pcpos D1 and D2 by Rel>Rel>/Rel>(D1, D2) . That the lemma below holds only with
the extra bottom-reflectingness condition on the logical relation’s lifting for
function types was observed by Johann and Voigtländer (2004).

LEMMA 9 If ρ maps into Rel>, then ∆seq
τ,ρ ∈ Rel> for all τ closed under dom(ρ).

Proof. Induction on the structure of τ .

The new logical relation allows to prove the following parametricity theorem.

2.3 Adding Selective Strictness 39

THEOREM 3
(Parametricity Theo-
rem for λαseq, Johann
and Voigtländer (2004))

If Γ ` t :: τ valid in λαseq, then for every θ1, θ2, ρ, σ1, σ2 such that

• for every α occurring in Γ, ρ(α) ∈ Rel>(θ1(α), θ2(α)), and

• for every x :: τ ′ occurring in Γ, (σ1(x), σ2(x)) ∈ ∆seq

τ ′,ρ,

we have (JtKseq
σ1
, JtKseq

σ2
) ∈ ∆seq

τ,ρ.

Proof. We only point out differences to the proof of Theorem 2. Of course, we
have (SLET) as extra case:

(SLET)

By the first premise of (SLET) we have (Jt1Kseq
σ1
, Jt1Kseq

σ2
) ∈ ∆seq

τ1,ρ and by ∆seq
τ1,ρ

bottom-reflecting (Lemma 9) we have either

(a) Jt1Kseq
σ1

= Jt1Kseq
σ2

= ⊥, or

(b) Jt1Kseq
σ1

= a 6= ⊥ and Jt1Kseq
σ2

= b 6= ⊥.

In case (a) we reason as follows.

(Jlet! x = t1 in t2Kseq
σ1
, Jlet! x = t1 in t2Kseq

σ2
) ∈ ∆seq

τ,ρ

⇔ { term semantics and (a) }
(⊥,⊥) ∈ ∆seq

τ,ρ

The last statement holds by ∆seq
τ,ρ strict (Lemma 9).

In case (b) we reason as follows.

(Jlet! x = t1 in t2Kseq
σ1
, Jlet! x = t1 in t2Kseq

σ2
) ∈ ∆seq

τ,ρ

⇔ { term semantics and (b) }
(Jt2Kseq

σ1[x 7→a], Jt2K
seq

σ2[x 7→b]) ∈ ∆seq
τ,ρ

The last statement holds by the induction hypothesis of the second premise
and (a,b) ∈ ∆seq

τ1,ρ by (b).

The remaining cases are nearly identical as in the proof of Theorem 2. Only
cases involving function types require tiny changes. All these changes are
straightforward and we omit stating them here explicitly.

The changes in the parametricity theorem of course also change free theorems.
In particular, the bottom-reflectingness restriction on relations has to carry
over to the functions that are instantiated for the relations, i.e., these functions
have to yield a non-⊥ value for each non-⊥ input. Functions that satisfy this
property are called total total function. We again exemplify the changes to free theorems by
an adaptation of Example 4, now using Theorem 3.

40 2 The Formal Background of Free Theorems

EXAMPLE 9
(derivation of a func-
tional free theorem)

Let α ` f :: [α]→ [α], then Theorem 3 states

∀S1, S2 sets,R ∈ Rel>(S1, S2). (Jf K∅, Jf K∅) ∈ ∆seq

[α]→[α],[α7→R]

By the definition of the logical relation for function types we obtain

∀S1, S2 sets,R ∈ Rel>(S1, S2), (x,y) ∈ ∆seq

[α],[α7→R].

(Jf K∅ x, Jf K∅ y) ∈ ∆seq

[α],[α 7→R]

and specializing S1 to Jτ1K∅, S2 to Jτ2K∅, andR to (the graph of) a strict and
total function JgK∅ with g :: τ1 → τ2, we get

∀τ1, τ2 types, g :: τ1 → τ2 strict and total, (x,y) ∈ ∆seq

[α],[α7→JgK∅]
.

(Jf K∅ x, Jf K∅ y) ∈ ∆seq

[α],[α 7→JgK∅]

Note that JgK∅ really has to be strict and total. Otherwise its graph is not in
Rel>, in particular not strict and bottom-reflecting.

Unfolding the list lifting (plus term semantics definition) we obtain

∆seq

[α],[α 7→JgK∅]
= lfp(λR. {(⊥,⊥), ([], [])} ∪ {(x : xs, JgK∅ x : ys) |

(xs,ys) ∈ R})
= {(xs, Jmap gK∅ xs) | xs ∈ J[τ1]K}

If we apply that equivalence twice (plus term semantics definition) we get

∀τ1, τ2 types, g :: τ1 → τ2 strict and total, xs :: [τ1].

Jmap g (f xs)K∅ = Jf (map g xs)K∅

which, besides the additional strictness and totality restriction, is statement
(1.1) from the introduction where it was left implicit that we mean semantic
equivalence.

2.4 Explicit Type Abstraction and Instantiation

The calculi presented so far do not allow for explicit type abstraction and
instantiation as the polymorphic λ-calculus investigated by Wadler (1989) does.
Adding abstraction and instantiation syntax for terms and ∀-quantifiers to the
type syntax would be possible for some of our investigations. However, for this
thesis, we refrain from that generalization because it is either straightforward
or not possible for the respective problems we investigate.17 Hence, we only
point out when an extension of the calculus is possible and when not.

17Just as side note, a maybe not so obvious problem: In Section 2.1 the extension to explicit
type abstraction and instantiations would render the interpretation of types as sets impossible
(Reynolds, 1984).

2.4 Explicit Type Abstraction and Instantiation 41

Nevertheless, the handling of type instantiation is essential to correctly state
free theorems the way we want. For example, consider statement (1.1) from the
introduction and the various versions of it that are derived in the Examples 4,
7 and 9. Intuitively, everything works fine. But a technical detail is swept
under the carpet: Function f has the polymorphic type [α]→ [α] and we apply
it to arguments of monotypes (types [τ1] and [τ2]). Hence the applications
of f are not typeable in our calculi. Hence, regarding the semantics of those
applications is formally incorrect. But: “morally” it is correct. Function f can
be typed differently, in particular the type variable α can be substituted by any
other type without affecting the semantics of f . The semantic interpretation of
terms in the calculi do not rely on type information.

To get statements that are formally correct, we might try to type f differently
right from the beginning — but then we lose the parametricity results that
rely on polymorphism. But, we also achieve formally correct statements if we
introduce a mechanism for substituting type variables by monotypes monotype, i.e., types
without type variables.18 The mechanism is introduced by the next definition
and its correctness is verified by the following lemma.

DEFINITION 16
(type substitution)

Let τ type and τ ′ monotype, t term and α type variable. Then τ [τ ′/α]
and t[τ ′/α] denote the substitution, i.e., syntactical replacement, of the type
variable α by τ ′ in τ and in (the type annotations of) t , respectively.
The definition extends to typing contexts the following way. For a typing
context Γ the typing context Γ[τ ′/α] includes the same type variables as Γ
except for α, and (x :: τ) ∈ Γ⇔ (x :: τ[τ ′/α]) ∈ Γ[τ ′/α].

The substitution of type variables satisfies the following lemma.

LEMMA 10Let Γ ` t :: τ valid, α type variable, τ ′ monotype and dom(θ) ⊇ ΓT \ {α}. We
have

• JτK·θ[α 7→Jτ ′K·∅]
= Jτ [τ ′/α]K·θ

• (JtK·σ ∈ JτK·θ[α 7→Jτ ′K·∅]
)⇒ (JtK·σ = Jt[τ ′/α]K·σ)

with J·K··, either J·K·, J·Kfix
· or J·Kseq

· .

Proof. The first assertion is (for each calculus) proved by induction on the
structure of τ while the second assertion is (again for each calculus) proved by
induction on the structure of t .

18The requirement of monotypes is not necessary, but sufficient for our purposes.

42 2 The Formal Background of Free Theorems

The well-typed replacement of (1.1) from the introduction is

∀ f :: [α]→ [α], τ1, τ2 types, g :: τ1 → τ2, xs :: τ1.

f [τ2/α] (map[τ1/α, τ2/β] g xs) ≡ map[τ1/α, τ2/β] g (f [τ1/α] xs)

Via the substitution of type variables, we cover polymorphism already by the
simply typed λ-calculus. Of course, we do not cover arbitrary type quantifica-
tion as the polymorphic λ-calculus regarded by Reynolds (1983) and Wadler
(1989), but at least so called prenex or rank-1 polymorphism (where type
quantifiers are, or can be brought, always in front of a term’s type and, as a
consequence, all arguments to terms of function type must already be instanti-
ated to monotypes), as also standard in Haskell 98 (Peyton Jones, 2003) and
Haskell 2010 (Haskell, 2010)19.

In the remaining chapters, we often omit the explicit instantiation of types
because the concrete instantiations are usually clear from the context.

19GHC 7.6.3 (and also earlier versions) provide extensions to arbitrary-rank polymorphism, the
most general extension is activated by the flag -XRankNTypes (GHC Team, 2013, Section 7.12.5).

43

Chapter 3

State of the Art

We give an overview of the formal development and the applications of the
theory of parametricity and free theorems. The original results in the PhD
thesis (presented in Part II) are excluded.

In the last few years the theory of parametricity has been adjusted to various
settings and applied there. Hence, there are plenty of papers and we do not
claim the provided overview to be complete. Nevertheless, we want to broaden
our view further than to the work directly relevant to the investigations that
are original in this thesis. Thus, we look at results that show development and
application of the theory of parametricity in manifold settings.

In Section 3.1 we review the theoretical developments of free theorems, while
in Section 3.2 we talk about applications.

3.1 Theoretical Developments of Free Theorems

We structure this section by the technical machinery that is employed in the
referenced publications. Closest related to the research original in this thesis
are works based on a denotational semantics. In particular, works that consider
a non-strict language are of interest. All referenced works that are based
on a denotational semantics do consider a non-strict setting.1 Among those
references, we consider the seminal publications on the whole topic of relational
parametricity. These papers are discussed in Subsection 3.1.1. To broaden our
view, we also regard results based on operational semantics (Subsection 3.1.2),
as well as on pure type systems (Subsection 3.1.3).

1If the evaluation strategy is of interest at all, which is not the case if all programs terminate
and if no other error or failure can occur, e.g. in System F.

44 3 State of the Art

Not all of the referenced works focus directly on free theorems, especially when
it comes to the investigation of strict languages in an operational setting. The
link to free theorems is the logical relation and a corresponding parametricity
theorem that directly allows to establish free theorems. But most of the works
aim for a logical relation not to derive free theorems, but to define an alternative
notion of equivalence, easier to handle than the standard (and easy to define)
notions of contextual or observational equivalence. In such references, free the-
orems are more a byproduct than the focus and the logical relation is proved to
satisfy an even stronger property than the parametricity theorem we establish:
It holds not only that the semantics of each term is related to itself, but also that
only semantically equivalent terms are related. The second direction would be
desirable in general but it is at least difficult, if not impossible, to establish it
in a denotational semantics. For an explanation, see for example (Voigtländer
and Johann, 2007), where an operational semantics is employed mainly to get
grip on the second direction of the above assertion.

3.1.1 Results Building on a Standard Denotational Semantics

The formalization of parametricity goes back to John C. Reynolds. Reynolds
(1974) considers the polymorphic λ-calculus (i.e., a calculus similar to the one
presented in Section 2.1 but with explicit type abstraction and instantiation
and without any lists and Nat) as illustrative language for his work. He
explores a way to formalize representation independence. That is, as already
described in Section 2.1.2, that the concrete implementation of a data type is
irrelevant as long as it satisfies certain conditions on its interface. This should
hold for base types as well as for user defined types, where we can see the
implementation as an “inner” region that is not accessible in a program, and
the interface as the “outer” region, that is accessible and the only connection
to the “inner” part. Representation independence now means that the “inner”
part of the data type might change without affecting the overall program as
long as the behavior “visible” via the interface remains static. To formalize
when two type interpretations are interchangeable he regards a denotational
semantics and defines a set of representations between two interpretations
(each a tuple of functions, from one interpretation to the other and back)
that guarantee the visible behavior to remain static when switching from one
representation to the other. As we lift the relation between base types for
composed types like the function type, he lifts the set of representations. In
the end, he gains the so-called representation theorem, a theorem that differs
from the parametricity theorem (as for example Theorem 1) mainly in the way
that it quantifies over a set of representations instead of relations. Interestingly,
the idea of abstraction via types does in the first place not directly focus on
polymorphic types in the programming language itself. Instead, the initial
idea is that even each base or monomorphic user defined type leaves space for
different concrete implementations up to a certain point, i.e., up to changing the
“external behavior”. Thus each type is regarded as an abstract type. Despite
that fact, it is worth noting that Reynolds (1974) invented the λ-calculus with
explicit abstraction and instantiation of types. Since, independently and with

http://en.wikipedia.org/wiki/John_C._Reynolds

3.1 Theoretical Developments of Free Theorems 45

substantially different motivation, Girard (1972) developed the same calculus,
it is not only known as polymorphic λ-calculus or System F, but also as Girard-
Reynolds calculus. Another name is second order λ-calculus because of the
connection to second order intuitionistic logic.

Reynolds (1983) extended his results on representation independence, finally
stating the abstraction theorem, or, as we introduced it (Theorem 1, Section 1),
parametricity theorem. In Section 6 he proves that the switch from repre-
sentations to relations is a generalization and in Section 8 he focuses on the
characterization of polymorphic functions via the abstraction theorem, finding
the following essential link:

“The abstraction theorem guarantees that, in an environment in which all polymorphic
functions are parametric, the meaning of any ordinary expression will be parametric.”

Reynolds (1983, Section 8)

Following the development from Reynolds’ papers to free theorems, we directly
reach the eponymous paper for free theorems: “Theorems for Free!” (Wadler,
1989). Wadler’s basic insight was that Reynolds’ abstraction theorem allows
the derivation of useful statements about polymorphic functions, independent
of the concrete function definition, only relying on the function’s type. So
Wadler calls his main contribution to recognize that parametricity2 “has ‘specific’
applications: it says interesting things about particular functions with particular
types.” Independently, de Bruin (1989) observed the same kind of applications.

Wadler (1989) investigated the polymorphic λ-calculus and also explained
how type classes (Wadler and Blott, 1989) can be handled. In the last section
(Section 7) of his paper he additionally considered the restrictions that arise
when a fixpoint primitive, like the function fix in Section 2.2, is added. Such
kind of restrictions that arise through various programming features are exactly
what we deal with in this thesis.

While Wadler (1989) considers the influence of general recursion only globally
(as we do in Section 2.2), Launchbury and Paterson (1996) localized the influ-
ence by the distinction between pointed and unpointed types. Thereby, they
potentially reduce the arising restrictions on free theorems, depending on the
concrete use of general recursion.

Effects on parametricity results due to a strictness primitive that allows the
programmer to influence the evaluation strategy have been noticed already
when the strictness primitive seq was added to Haskell (version 1.3) (Peterson
et al., 1996). To make the necessity of additional restrictions observable by the
type, the type class Eval was introduced. It should track (problematic) uses of
seq. In their paper about the history of Haskell, Hudak et al. (2007, Section 10.3)

2Wadler mentions that the notion “parametricity” is taken from Bainbridge et al. (1990) and
Freyd et al. (1988).

46 3 State of the Art

explain how and why seq was introduced into Haskell, and how and why
its type changed. The type class Eval is not part of the Haskell 98 standard
(Peyton Jones, 2003) (and also of later standards) anymore. It was removed
because it complicated program optimization: Adding seq usually caused
many changes in type signatures. Besides that practical disadvantage, the type
class was also not suitable to appropriately restrict free theorems w.r.t. forced
strict evaluation. Appropriate restrictions were for the first time presented
by Johann and Voigtländer (2004). The authors set up an inequational logical
relation, stating only that one side of a free theorem is less or equally defined
than the other side. One-sided assertions require less extra-conditions and
can be combined to establish equational statements. To achieve inequational
theorems, the chosen relations differ from the ones given in Section 2.3 of
this thesis. A key property enforced for the relations is left-closedness: A
binary relation R between two posets is left-closed iff (x,y) ∈ R implies for
all x′ v y that (x′,y) ∈ R. Concerning equational statements, that are easily
derivable from the inequational ones, the theory matches the results presented
in Section 2.3. The paper also considers the influence of seq on program
transformations proposed for Haskell and relying on free theorems. A more
comprehensive version of the conference paper of 2004 has been published in
Fundamenta Informaticae in 2006 (Johann and Voigtländer, 2006).

Besides the just explained features, several others have been explored con-
cerning their influence on parametricity and hence on free theorems. For lazy
languages, research mainly focuses on the exact modeling of features present
in the programming language Haskell. Thus, Stenger and Voigtländer (2009)
consider free theorems when errors have to be preserved according to Haskell’s
imprecise error semantics (Peyton Jones et al., 1999). They extend a calculus
with selective strict evaluation, like the one presented in Section 2.3, such that
different errors can be raised. According to the imprecise error semantics,
errors can accumulate. The main difference compared to (Johann and Voigtlän-
der, 2004) is the replacement of strictness by a notion of error-strictness and
the replacement of bottom-reflection by a suitable notion of error-reflection. To
guarantee these properties for the logical relation, also slight adjustments of
the relational liftings are necessary.

Not a new theoretical development, but a good tool when applying free theo-
rems is provided by Böhme (2007). He developed a generator for free theorems.
It enables the automatic generation of equational or inequational free theorems
in different language settings (with/without general recursion and/or selective
strict evaluation). The generator is available at http://www-ps.iai.uni-bonn.de/
ft .

Type constructor classes were considered informally by Voigtländer (2009b).
The results are w.r.t. a calculus without selective strictness and differentiated
error handling. They are accentuated by a lot of examples.

http://www-ps.iai.uni-bonn.de/ft
http://www-ps.iai.uni-bonn.de/ft

3.1 Theoretical Developments of Free Theorems 47

As far as we know, previously to the results presented in this thesis, and the
corresponding publications, there have been no attempts to equip free theorems
with information about evaluation costs.

3.1.2 Results Building on an Operational Semantics

Results for Non-Strict Languages

Pitts (2000) considered the polymorphic λ-calculus extended with a fixpoint
primitive and lists. In his work he establishes a syntactic logical relation, i.e., a
relation between terms, that he shows to coincide with observational equiva-
lence (his Theorem 4.15). Furthermore, he clarifies the relation to other defini-
tions of equivalence, in particular contextual equivalence, Kleene equivalence
and ciu equivalence (closed instantiations of uses). Specifying the evaluation
of a program via evaluation frames nested in each other via a frame stack
and giving rules how terms under a certain stack are to be evaluated, his key
technical contribution is the notion of >>-closure. In Pitts’ work the notion is
central to restrict the logical relation in the appropriate way to handle fixpoints.
As also apparent in the denotational setting presented in Section 2.2, the logical
relation must satisfy certain properties. While in the denotational setting we
enforced strictness and continuity, together called admissibility, on each type,
Pitts (2000) uses >>-closedness to guarantee admissibility. In contrast to our
denotational investigations, Pitts (2000) establishes a stronger result: He proves
not only that any two observationally equivalent terms are related, he also
proves that only such terms are related (while we only prove that terms with the
same denotational semantics are related). Thus, his result is even stronger than
the parametricity theorems we establish, and of course can, as Pitts already
states, be employed to establish free theorems.

Based on Pitts’ work Voigtländer and Johann (2007) transfer their results from
Johann and Voigtländer (2004, 2006) to an operational setting. They reach a
stronger result than in the denotational setting in the way that they prove
coincidence between observational equivalence and relatedness via the logical
relation. The addition of selective strictness to the calculus used by Pitts (2000)
leads (as expected from the denotational results) to a further restriction on
the logical relation: It has to be convergence-preserving. Generalizing Pitts’
work, Voigtländer and Johann (2007) start their investigations with a notion
of observational approximation instead of equivalence and build up relations
that lead to approximation statements.

How to gain formal parametricity results in an operational setting with general
recursion, selective strictness and different errors is presented by Johann and
Voigtländer (2009). The logical relation is adjustable via a parameter to fit for
different, language specific, error handlings.

48 3 State of the Art

Results for Strict Languages

The works concerning strict languages consider various features, mainly in-
spired by the ones available in strict functional programming languages like
ML and its different dialects. The main focus is on state and control effects.
As already mentioned, the works do not directly aim for free theorems in the
different settings, rather the main interest is to establish an easy to handle
notion of “semantic equivalence”. But of course the achieved logical relations
allow to establish free theorems.

Before we point to several recent works, we clarify two problems arising from
different language extensions, that lead to special kinds of logical relations.
The first problem is well-foundedness of the logical relation’s definition in
the presence of general recursive types. Relational interpretations become
cyclic and therefore difficult to define inductively. Step-indexed logical relations
are an appropriate solution to this problem. The idea of step-indexing stems
from Appel and McAllester (2001) to get recursive types under control and
is motivated as follows. We can observe if a term keeps a property if it is
evaluated step-wise. The step-index indicates how far we track its behavior.
For a binary step-indexed logical relation this means that two terms related by
the k-indexed relation “look” related for up to k evaluation steps. Obviously,
they are related if so for all k ∈ N and thus step-indexing provides a clear and
well-founded induction scheme.

The second problem awaiting a solution is state. Clearly, state is not an internal
property of a term but an external configuration, a term’s evaluation may
depend on — and consequently also the equivalence of different terms may
depend on. Thus, one has to consider all relevant states terms are evaluated in.
Particularly interesting are state invariants, arising from local states. Keeping
those invariants is essential to identify semantically equivalent terms. As an
example3, consider the terms

e1 = let x = ref 1 in (λf → (f (); !x))
e2 = λf → (f (); 1)

where x is a reference cell, filled with 1 by the call ref 1, ; is the sequence
operator and by the prefix operator ! the value stored in a reference cell is
accessed. To show that both terms of type (()→ ())→ Nat are equivalent, it
is essential that f cannot alter the content of the reference cell x , i.e., that we
assume the “x maps to 1” as an invariant.

A work by Dreyer et al. (2012)4 considers an ML-like language with iso-
recursive types, abstract types, general references (state) and call/cc (control).
A fully abstract step-indexed Kripke logical relation is defined, and can more-
over be adjusted to restrictions of the full language, namely to a language with
first-order state only and/or a language without call/cc. The technical main

3The example is taken from Dreyer et al. (2012).
4A much shorter conference version appeared at ICFP 2010 (Dreyer et al., 2010a).

3.1 Theoretical Developments of Free Theorems 49

contribution of the paper is the use of state transition systems that express the
evolution of state over time.

Beside the state transition systems for modeling and the very systematic consid-
eration that allows enabling or disabling features such as higher order state or
control, the other ideas presented by Dreyer et al. (2012) were already present
earlier in papers. In particular, Dreyer et al. (2012) build on the work of Ahmed
et al. (2009), who were the first to consider a language that combines existential
types and local state. In their work, the use of a step-indexed Kripke logical
relation is the new key technical feature. A remarkable advantage of their new
technical treatment, combining a possible world model (Kripke relations) with
step-indexing, manifests in the ability to handle arbitrary mutable references,
particularly, higher-order references. Preceding works (that we will not discuss
here) either completely exclude higher-order references (Benton and Leperchey,
2005; Pitts and Stark, 1998; Reddy and Yang, 2003), or enforce a highly stylized
form of local parameters that store relations have to be expressible in (Bohr
and Birkedal, 2006).

The idea of step-indexing provides for the design of appropriate logical rela-
tions in many settings and is an easy to understand concept. But it also results
in annoying proof-blurring index handling, that is only owed to the technique.
Dreyer et al. (2010b) set out to remedy the technical deficiencies by still build-
ing on step-indexing to set up the logical relation, but eliminating step-index
caused overhead in proofs employing the relation designed. They propose a
logic, called LADR, for equational reasoning about higher-order programs. As
features, they consider existential type abstraction, general recursive types, and
higher-order mutable state. The work directly builds on the works of Ahmed
et al. (2009) and Dreyer et al. (2009), where the first one provides (up to some
minor changes) the logical relation considered, and the second work forms the
basis for building up a logic to reason about the logical relation — without
being concerned about step-indices.

Another direction in research about parametricity sets out to investigate para-
metricity in dynamically typed languages, or mixed statically and dynamically
typed languages.

Ahmed et al. (2011) formulate a strict-evaluating polymorphic lambda calculus
where relational parametricity is enforced by a kind of dynamic sealing. The
focus is on combining typed and untyped program parts, where “untyped” is
represented by “typeable to the dynamic type”, a type everything is typeable
to. Instead of type instantiation, the calculus keeps type bindings locally
and programs with type mismatches quit the evaluation by blaming the type
mismatch. The fact that type errors are blamed combined with sealing by
explicitly kept type bindings, restores relational parametricity, as is shown by
examples. A result about relational parametricity is not explicitly stated, but
announced as forthcoming and characterized as an adaptation of a result by
Matthews and Ahmed (2008).

50 3 State of the Art

Matthews and Ahmed (2008) regard a multi-language system: They combine
System F (they call ML) and an untyped call-by-value λ-calculus (they call
Scheme). Via boundaries, one calculus embeds the other and vice versa. To
support parametric polymorphism, they dynamically seal values that are poly-
morphic in ML when they cross the boundary to Scheme. ML then unseals the
value calculated by Scheme when it crosses back the boundary, or, if unsealing
fails, returns an error. In the end, the role of ML is reduced in the way that
only the ML type system is employed to make up contracts that pure Scheme
programs comply with.

Starting with a single, nonparametric language — System F extended by dy-
namic type generation and a type cast — Neis et al. (2009) set up logical
relations that allow to derive parametricity results even in the nonparametric
setting. The work is closely related to Matthews and Ahmed (2008), but techni-
cally dynamic type generation takes over the role of dynamic sealing. A new
concept are polarized logical relations. The idea is to distinguish if a term’s
behavior or its usage is parametric. The distinction allows to handle subtle
cases, for example when two implementations of an abstract data type should
be proved equivalent (Neis et al., 2009, Section 8).

Notice that Neis et al. (2009) consider a calculus where the evaluation strategy
is not of interest, hence we could have referred to their work also as a work for
lazy languages.

3.1.3 Formalization of Parametricity in Pure Type Systems

An interesting series of papers about parametricity has been published within
the scope of Jean-Philippe Bernardy’s PhD thesis (Bernardy, 2011). He (and his
co-authors) employ pure type systems (PTSs) (Barendregt, 1992, Section 5.2)
not only as a framework to express typed lambda calculi in a unified way, but
also to formalize parametricity statements and their proofs in such PTSs. The
formalization becomes possible by the propositions-as-types (and proofs-as-
terms) interpretation. In essence, Bernardy formalizes a λ-calculus in a (source)
PTS and defines a corresponding (target) PTS where all terms5 of the source
PTS have a relational image. The target PTS is viewed as a logic in which the
parametricity statements valid in the source PTS are formalized. To formalize
parametricity results in a logic is not a new idea (e.g. Plotkin and Abadi (1993)),
but the uniform formalization of the calculus and the corresponding parametri-
city results via PTSs is original. Moreover, the framework characteristics of the
approach is remarkable. Bernardy (2011) can handle different λ-calculi, such as
the simply typed λ-calculus, System F, or the calculus of constructions (i.e., a
calculus with dependent types), simply by parametrizing his theory. Also the
enrichment of a calculus with data types, the consideration of type classes and
(at the same time) of type constructors is possible.

5Since PTSs blur the distinction between terms and types, by terms we also mean types here.

3.2 Applications of Free Theorems 51

We have not classified Bernardy’s work by a strategy of evaluation (i.e., strict or
non-strict). What Bernardy fails to handle are calculi that allow for nontermina-
tion (for example via fix) or for strictness annotations (like seq). Consequently,
in the calculi he can handle, the strategy of evaluation is not of interest con-
cerning parametricity results.

3.2 Applications of Free Theorems

Parametricity has various applications. In contrast to the theoretical develop-
ments, here we only concentrate on applications of free theorems.

An essential use of free theorems is to develop program transformation rules
and prove their correctness. The most classical such rule is the foldr / build
rule, also known as short-cut deforestation or short-cut fusion, described by
Gill et al. (1993). The rule is used to eliminate the creation and consumption
of intermediate lists that arise when a function yielding a list is composed
with a function taking a list as argument. The rule is implemented in the GHC
(Glasgow Haskell Compiler) as an optimization rule. Its correctness in sublan-
guages of Haskell is proved via free theorems. But also its incorrectness in “real”
Haskell due to the possible use of seq is shown. There are manifolds of general-
izations and variations of similar rules that allow to remove intermediate data
structures. For example, Johann (2002) proves and generalizes the foldr / build -
rule in a setting with general recursion (but without selective strictness). In a
similar setting Johann (2005) provides a principled approach how to prove the
correctness of free theorem based program transformations, always w.r.t. the
operational semantics given by Pitts (2000). Other fusion laws relying on free
theorems are presented by Svenningsson (2002) (handling accumulating param-
eters in consumers and zip-like functions), Fernandes et al. (2007) (handling
circular programs) and Voigtländer (2002, 2008a,c,d) (removing concatenate,
map and reverse; proving correctness of the destroy / build -rule; considering
and improving different fusion rules taking selective strict evaluation into
account; a program transformation concerning free monads).

Also in other areas free theorems come in helpful. In analogy to Knuth’s
0-1-principle (Knuth, 1973), Voigtländer (2008b) proves that algorithms for
parallel prefix computation can be tested correct by only checking them for
a three-valued type, whereas Voigtländer (2009a) uses free theorems for the
automatic generation of a (provably well-behaved) put-function w.r.t. a given
get-function in a database like setting where get provides a view out of the
source database and put reembeds the possibly manipulated view. Moreover,
the characterization of polymorphic functions via a monomorphic instance as
done by Bernardy et al. (2010) (and as also part of the PhD thesis of Bernardy
(2011)) relies heavily on parametricity results. Bernardy transforms the type
of the polymorphic function to test into a canonical testing type, splitting
the arguments in the ones that might be employed to construct elements of
unknown type (represented as a type variable) and those able to observe

52 3 State of the Art

elements of the unknown type, as well as a result type. All three parts are
represented via a functor working on the type variable, and in particular for
every type instantiated for α the constructive part of the arguments forms an
(F-)algebra F α→ α. For testing, the initial algebra with the type component
µF is chosen and hence the polymorphic type is fixed. With the new framework
the results of Knuth (1973) and Voigtländer (2008b) are recapitulated and by
example it is also argued on the ability to restrict inputs such that they satisfy
certain non-trivial properties, e.g. restrict functions to be associative. More
explicit than Bernardy et al. (2010), Christiansen and Seidel (2011) apply free
theorems to find an appropriate set of monomorphic inputs to test polymorphic
functions for minimal strictness. The difference between the work of Bernardy
et al. (2010) and the paper of Christiansen and Seidel (2011) is that the latter
considers nontermination and selective strictness, whereas the first does not.

As another field of application, free theorems can be employed to prove that
the functions between the abstract, container-like, representation of lists given
by Bundy and Richardson (1999) correspond to the polymorphic functions
on the usual list representation. The container-like representation splits up a
list into shape and content, and functions on that representation never touch
an element of the content. The correspondence is also gained via category
theoretic reasoning by Prince et al. (2008), which shows the close connection be-
tween the notion of naturality in category theory and the notion of parametric
polymorphism. Seidel and Voigtländer (2012) extend the container-like repre-
sentation from Bundy and Richardson (1999) to allow for element tests on the
container structure. They apply free theorems for polymorphic functions with
type class constraints to prove that functions on the extended container-like
representation coincide with the respective type class restricted polymorphic
functions.

As a last application, we want to mention the work of Oliveira et al. (2010).
They employ the results of Voigtländer (2009b) to prove properties of so called
“harmless advice” in their model of advice. By their model they provide
for Haskell the mechanism of advise that is widely used in aspect-oriented
programming.

53

Part II

New Results

55

The main focus of this thesis is the investigation of the interplay of free theorems
and programming features of real world functional programming languages.

In essence, a typed functional programming language can be considered as a
typed λ-calculus with possibly some extra features and a lot of syntactic sugar.
So can Haskell (Peyton Jones, 2003), as an example for a real world, general
purpose programming language.

A second focus of this thesis are quantitative aspects of free theorems. We
consider in which way free theorems can be enriched by assertions about
efficiency. This is done in a very simple setting and will leave many directions
for exploration.

As formal setting we employ appropriate extensions of the simply typed λ-
calculus with type variables, equipped with a denotational semantics in the
style already introduced in Chapter 2.

We do not consider operational semantics. Though it is common, it clutters
things more than we might benefit. Nevertheless, free theorems can be de-
veloped over an operational semantics as well, and we think that at least for
further exploration of quantitative aspects a switch to an operational semantics
might have benefits in the sense of more realistic runtime or space assertions.
For the development of free theorems w.r.t. operational semantics, see the
works of Pitts (2000) or Voigtländer and Johann (2007) for example.

57

Chapter 4

Exemplifying the Necessity of
Strictness Conditions

1 Concerning general recursion, effects on relational parametricity and hence
free theorems have already been explored in detail. It has been shown that the
logical relation is to be built up over strict, and not arbitrary, relations for type
variables and the restriction has also been partly relaxed by localization of the
influence of general recursion via a refined type system (cf. Section 3.1). An
interesting point that remains to be investigated is the automatic generation of
counterexamples to (insufficiently restricted) free theorems.

As motivation for the investigation we regard that strictness conditions are
always sufficient, but not always necessary, even if lessened by the refined
type system that localizes the influence of general recursion. For example,
consider the type [α] → Nat . The free theorem, specialized to functions and
aware of general recursion, yields that for all f :: [α] → Nat , all types τ1, τ2
and every strict function g :: τ1 → τ2 the equality f ◦ (map g) ≡ f holds. But,
even when we neglect the strictness condition on g we will not find f , τ1, τ2
and (non-strict) g such that the theorem breaks. So, aware of the necessity of
strictness conditions in general (cf. statement (1.1) from the introduction) and
at the same time experiencing the conditions unnecessary for some types, the
question arises: For which types are certain strictness conditions superfluous?
And also: Why not for others? An appropriate answer to these questions is
provided by an algorithm that, given a type and information about which
strictness conditions to check, either generates an instance of a free theorem
that is wrong (ultimately caused by the violation of one of the considered
strictness conditions), or returns without such a counterexample, stating that
the considered strictness conditions are superfluous.

1Some of the results have been published in (Seidel and Voigtländer, 2010). Some are only
found in (Seidel and Voigtländer, 2009b)

58 4 Exemplifying the Necessity of Strictness Conditions

Because the instantiation of a free theorem includes several choices of functions
and types (cf. statement (1.1) on page 5), an algorithm for counterexample
generation needs to perform several tasks. The first and maybe most interesting
one is to find a term of the (polymorphic) type we investigate, such that the
term gives rise to a counterexample caused by the violation of a strictness
restriction. To find a respective term we have to answer two questions:

• How to find a term of a given type in general?

• How to decide if a term might give rise to a counterexample?

Let us tackle the second question first. Assume we can find a term of a given
type. How do we know that it gives rise to a counterexample? The refined
type system presented by Launchbury and Paterson (1996) provides a way to
identify terms that will definitely not give rise to a counterexample. The refined
type system tracks the use of fix and thus every possibility to break the free
theorem that lacks strictness conditions. Particularly interesting for us, from the
refined type we can read off which strictness conditions can safely be dropped
in a free theorem. That means, we can look for terms that are only typeable to
refined types that do not allow to drop all strictness conditions. These are good
candidates for counterexamples, while for other terms the unrestricted free
theorems definitely hold. We present the refined type system in Section 4.2.

Consider now the first question: How to find a term of a given type in general?
By brute force, we could try to employ QuickCheck (Claessen and Hughes,
2000) for random or SmallCheck (Runciman et al., 2008) for exhaustive term
generation. But, because we already have quite specific type constraints on
the terms we look for, and moreover whole counterexamples consist of several
terms that are specially related to each other, a successful QuickCheck search
would require rather elaborated generators to prevent an exploding number of
test cases necessary to find a counterexample. Since elaborated generators only
wrap an advanced search strategy, we can also throw away the QuickCheck
idea and define a concrete term search directly.2 The basic idea to find a concrete
term directly is to apply the typing rules backwards (i.e., from bottom to top as
done for type inference as well, but now without knowing the term in advance).
Unfortunately, with the standard set of typing rules (also for the refined type
system of Launchbury and Paterson (1996)) the approach fails. We observe the
problem regarding the rule (APP) (cf. Figure 2.2 on page 16):

Γ ` t1 :: τ1 → τ2 Γ ` t2 :: τ1 (APP)
Γ ` (t1 t2) :: τ2

Here, applying (APP) backwards to derive a term for given type and context,
we need to invent a type τ1 and there is no hint how to do so. Moreover, we
can repeatedly apply (APP) the often we want and hence have no guarantee
for termination for any term search algorithm using (APP). Consequently, the
standard typing rules are not suitable for term generation.

2However, we used QuickCheck (Claessen and Hughes, 2000) to test the implementation of our
counterexample generator.

59

To remedy that situation, results from intuitionistic logic will help. The Curry-
Howard isomorphism (Curry and Feys, 1958; Howard, 1980) states a close
relationship between intuitionistic logic and the typed λ-calculus. In particular,
types correspond to formulas and provability of a formula to type inhabitation.
Loosely speaking, if we cut out the terms in the typing rules, we end up
with the natural deduction rules for intuitionistic logic. There are several
corresponding logic/calculi pairs, related via the Curry-Howard isomorphism3.
We are interested in the pair of propositional intuitionistic logic and the simply
typed λ-calculus (with type variables). For propositional intuitionistic logic
Dyckhoff (1992) provides a sequent calculus for proof search, called LJT4, that
is guaranteed to terminate. Decorating the rules with appropriate λ-terms
and regarding formulas as types, we obtain a term generator. Furthermore,
Corbineau (2004) extends Dyckhoff’s work to include inductive constructions
and therefore, on the λ-calculus side, allows for algebraic data types.

Exploiting the work of Corbineau (2004) we end up with a term generator for
the simply typed lambda calculus with type variables, various algebraic data
types and base types. Similarly, Augustsson (2009) implemented a term gener-
ator for (a subset of) Haskell. To proceed to the generation of terms suitable for
counterexamples, several adaptations to the “translated” rules are necessary.
First, we have to incorporate general recursion. Of course, our intention is not
to add the typing rule (FIX) here. It would — going back to the logical side —
make the logic inconsistent, for we could derive every statement. That is, seen
in the calculus, the term fix idτ is an inhabitant of every type τ . Hence, we
need to carefully restrict the introduction of fix during term generation. We
present the translation of the original rule system of Corbineau (2004) to a term
generator for a λ-calculus without fix in Section 4.3. In Section 4.4 we describe
the necessary adaptations to the original term generator to yield terms that
are potentially suitable for a counterexample to a free theorem with missing
strictness conditions. The final algorithm we call TermFindTermFind.

Regarding Statement (1.1) from the introduction (page 5) TermFind constructs
the term λx :: [α].[⊥α] that we (up to α-conversion) already chose in the intro-
duction. But we are still missing instances for τ1, τ2, g and xs . To generate these
instances, we define a second algorithm, called ExFindExFind. It mainly employs
the rules of TermFind and extends them with extra constructions. The most
challenging task is to construct the function arguments. The construction takes
place on the fly during the generation of f , but (not for statement (1.1) from
the introduction, but in general) it causes serious difficulties when we try to
extend one of the TermFind-rules. Therefore we simplify this rule in ExFind,
unfortunately losing completeness. Nevertheless, for many types ExFind still
produces counterexamples and moreover the problematic cases can be charac-
terized. The way from TermFind to complete counterexample generation via
the algorithm ExFind, and the problems, are discussed in Section 4.5.

3Depending on the logic/calculus pair one also speaks of Girard-Reynolds isomorphism, or
simply types-as-formulae isomorphism.

4The calculus is adopted from Gentzen’s LJ calculus.

60 4 Exemplifying the Necessity of Strictness Conditions

τ ::= . . .

| () unit type
| (τ, τ) product type
| Either τ τ sum type

t ::= . . .

| () empty tuple
| case t of {()→ t } case expression for the unit type
| (t , t) tuple
| case t of {(x , x)→ t } case expression for products
| Leftτ t left value of a sum
| Rightτ t right value of a sum
| case t of {Left x → t ; Right x → t } case expression for sums

Figure 4.1: Type and term syntax of λα
fix+ and λαfix∗ , extended from Figure 2.6

To get an impression of the results ExFind provides: For Statement (1.1) it yields
the already mentioned term λx :: [α].[⊥α], instantiates τ1 and τ2 to the unit
type (), specializes g to λx :: ().() and xs to [()]. The concrete output presented
by its implementation’s web interface is shown in Figure 4.14 (page 112).

Section 4.6 summarizes the results and Section 4.7 discusses further research
directions.

4.1 The Calculus

For counterexample search, we enrich the calculus λαfix, introduced in Sec-
tion 2.2, by a sum, a product and a unit type. The extended calculus covers
thus the most basic data types. In this section we point out only the changes
compared to λαfix. Since there are no alterations to λαfix, only extensions, we keep
the name of the semantic function and the name of the logical relation. We
call the extended calculus λα

fix+λα
fix+ . Additional syntax of λα

fix+ compared to λαfix is
given in Figure 4.1. Note the type annotations at Left and Right constructors.
They state the type of the complementary alternative, e.g. Left() 0 has type
Either Nat ().

Concerning typing, we do not explicitly state the additional rules. The ones
from Figures 2.2 and 2.7 remain unchanged and for the new term constructs it
is straightforward to add rules. Moreover, the rules can be reconstructed by
removing all Pointed restrictions from the refined typing rules (Figure 4.6) that
we discuss in Section 4.2. Additional definitions of type and term semantics
compared to λαfix are shown in Figures 4.2 and 4.3. The additional liftings of the
logical relation are given in Figure 4.4.

4.2 Refined Typing 61

J()Kfix
θ = {()}⊥

J(τ1, τ2)Kfix
θ = {(a,b) | a ∈ Jτ1Kfix

θ ,b ∈ Jτ2Kfix
θ }⊥

JEither τ1 τ2Kfix
θ = ({Left a | a ∈ Jτ1Kfix

θ } ∪ {Right a | a ∈ Jτ2Kfix
θ })⊥

Figure 4.2: Type semantics of λα
fix+ and λαfix∗ , extended from Figure 2.8

J()Kfix
σ = ()

J(t1, t2)Kfix
σ = (Jt1Kfix

σ , Jt2Kfix
σ)

JLeftτ tKfix
σ = Left JtKfix

σ

JRightτ tKfix
σ = Right JtKfix

σ

Jcase t of {()→ t1}Kfix
σ ={

Jt1Kfix
σ if JtKfix

σ = ()

⊥ if JtKfix
σ = ⊥

Jcase t of {(x1, x2)→ t1}Kfix
σ ={

Jt1Kfix
σ[x1 7→a,x2 7→b] if JtKfix

σ = (a,b)

⊥ if JtKfix
σ = ⊥

Jcase t of {Left→ t1; Right→ t2}Kfix
σ =

Jt1Kfix
σ[x1 7→a] if JtKfix

σ = Left a

Jt2Kfix
σ[x2 7→a] if JtKfix

σ = Right a

⊥ if JtKfix
σ = ⊥

Figure 4.3: Term semantics of λα
fix+ and λαfix∗ , extended from Figure 2.9

∆fix
(),ρ = id ({()})⊥

∆fix
(τ1,τ2),ρ

= {(⊥,⊥)} ∪ {((a,b), (c,d)) | (a, c) ∈ ∆fix
τ1,ρ ∧ (b,d) ∈ ∆fix

τ2,ρ}
∆fix

Either τ1 τ2,ρ
= {(⊥,⊥)} ∪ {(Left x,Left y) | (x,y) ∈ ∆fix

τ1,ρ} ∪ {(Right x,Right y) | (x,y) ∈ ∆fix
τ2,ρ}

Figure 4.4: Logical relation for λα
fix+ and λαfix∗ , extended from Figure 2.10

4.2 Refined Typing

The idea of Launchbury and Paterson (1996) is to track the occurrences of fix in
a term via the type system. When we compare the semantics of λα (Section 2.1)
and λαfix (Section 2.2), we observe that the introduction of fix causes significant
semantic changes. In particular, we switch from sets to pcpos as semantic
domains for the type interpretation. The alteration also influences the logical
relation (cf. Figures 2.5 and 2.10) and consequently alters the parametricity
theorem by forcing ρ to map to strict and continuous relations.

Closer examination of the proof of Theorem 2 reveals where the additional
conditions to gain parametricity arise. Strictness of the logical relation is
only forced in the proof cases for case-expressions, for (SUM) and for (FIX).
Regarding (FIX), also continuity of the logical relation is employed. But besides
in the just mentioned proof cases, no extra conditions compared to the proof of
Theorem 1 are necessary.

Hence, since the proof cases resemble the structure of terms, the idea is to allow
the logical relation to be nonstrict for (refined) types of which no problematic

62 4 Exemplifying the Necessity of Strictness Conditions

ΓT ` () ∈ Pointed (CP-BRACE) ΓT ` Nat ∈ Pointed (CP-NAT) ΓT ` [τ] ∈ Pointed (CP-LIST)

ΓT ` (τ1, τ2) ∈ Pointed (CP-PAIR) ΓT ` Either τ1 τ2 ∈ Pointed (CP-EITHER)

α∗ ∈ ΓT (CP-VAR)
ΓT ` α ∈ Pointed

ΓT ` τ2 ∈ Pointed
(CP-ARROW)

ΓT ` τ1 → τ2 ∈ Pointed

Figure 4.5: Class membership rules for Pointed in λαfix∗

terms are present and thus avoid strictness conditions when proving the para-
metricity theorem. We do not reconsider the continuity condition because the
imposed restrictions are mostly unimportant in applications of free theorems5.

Types on which the logical relation does not have to be strict need not necessar-
ily be interpreted as pcpos. In particular they need not to be pointed. It suffices
if they are cpos. Referring to that difference, we set up a type classPointed Pointed in
the way Launchbury and Paterson (1996) do. The semantics of types in Pointed
must be interpreted as pcpos and the relational interpretation must be strict.
Types not in the type class may be interpreted as unpointed cpos and their
relational interpretation can be nonstrict.

CONVENTION 6
(pointed / unpointed)

Types in Pointed we call pointed, all other types we call unpointed.

Concerning type variables, we have to decide if they shall be pointed or not.
If pointed, we allow them only to be interpreted by pcpos and to have a strict
relational interpretation. To distinguish the two kinds of type variables, we
annotate the pointed ones by ∗ in the typing context, e.g. α, β∗ means that β is
forced to have a strict relational interpretation, but the standard type interpreta-
tion for α does not even have to be a pcpo and its relational interpretation can
be an arbitrary continuous relation. For cpos D1 and D2, we denote the set of
continuous relations between D1 and D2 by Rel∞(D1, D2)Rel∞/Rel∞(D1, D2) . Furthermore, we
denote the collection of continuous relations over two arbitrary cpos by Rel∞.

If the decision for type variables is fixed, class membership in Pointed propa-
gates through all types as given by the class membership rules in Figure 4.5.
Note that the rules are dependent only on the type context ΓT and not on the
whole typing context Γ, and that all algebraic data types, and also Nat , are
directly in Pointed without any precondition6. The only propagation of the
choice for type variables takes place for functions via the rule (CP-ARROW). The
rule corresponds to the fact that the relational interpretation of functions is
only strict if the interpretation of the result type is, as visible from the function

5If we consider the semantics of functions of our λ-calculus as choice for the logical relation for
type variables, their graphs are continuous relations anyway.

6It is not necessary that base types and algebraic data types are pointed by default. See the
work of Launchbury and Paterson (1996) for their results about boxing and unboxing.

4.2 Refined Typing 63

lifting of the logical relation (Figure 2.10), considering that the least element on
function level is the constant function to ⊥.

We prove that for all types the relational interpretation is continuous and that
for pointed types this interpretation is additionally strict, i.e., that the type class
restriction captures the underlying intuition.

LEMMA 11If ρ maps into Rel∞ then ∆fix
τ,ρ ∈ Rel∞ for all τ closed under dom(ρ).

Proof. Induction on the structure of τ , employing the definition of the logical
relation.

LEMMA 12If ΓT ` τ ∈ Pointed valid and

• for every α occurring in ΓT, ρ(α) ∈ Rel∞ as well as

• for every α∗ occurring in ΓT, ρ(α) ∈ Rel⊥,

then ∆fix
τ,ρ strict and continuous.

Proof. Continuity is guaranteed by Lemma 11. Strictness is proved via induc-
tion on the depth of the derivation tree for ΓT ` τ ∈ Pointed, employing the
definition of the logical relation.

To allow for an enhanced parametricity theorem compared to the calculus
with standard types, we adjust the typing rules such that the rules, where the
proof cases for Theorem 2 enforce strictness conditions, enforce pointedness
of types. We call the resulting calculus λαfix∗ λα

fix∗. All typing rules of λαfix∗ are given
in Figure 4.6. Rules with a Pointed restriction as premise, i.e., the ones altered
compared to Figures 2.2 and 2.7, are annotated with ′ in their name.

In the sense of typeability of terms the calculi λα
fix+ and λαfix∗ are equivalent.

THEOREM 4
(Launchbury and Pa-
terson (1996))

Whenever Γ ` t :: τ valid in λα
fix+ , then Γ∗ ` t :: τ valid in λαfix∗ , where Γ∗ is

Γ with all type variables in ΓT annotated by ∗.
Conversely, if Γ ` t :: τ valid in λαfix∗ , then Γ′ ` t :: τ valid in λα

fix+ , where Γ′

is Γ with all ∗-annotations at type variables removed.

Although, the same terms are typeable, the refined typing rules allow for a
stronger parametricity theorem than the one we can prove in λα

fix+ . Strictness
conditions on relations can partly be removed.

64 4 Exemplifying the Necessity of Strictness Conditions

Γ, x :: τ ` x :: τ (VAR) Γ ` []τ :: [τ] (NIL) Γ ` n :: Nat (NAT) Γ ` () :: () (UNIT)

Γ ` t1 :: Nat Γ ` t2 :: Nat (SUM)
Γ ` (t1 + t2) :: Nat

Γ ` t1 :: τ Γ ` t2 :: [τ]
(CONS)

Γ ` (t1 : t2) :: [τ]

ΓT ` τ ∈ Pointed Γ ` t :: [τ1] Γ ` t1 :: τ Γ, x1 :: τ1, x2 :: [τ1] ` t2 :: τ
(LCASE’)

Γ ` (case t of { []→ t1;x1 : x2 → t2}) :: τ

ΓT ` τ ∈ Pointed Γ ` t :: () Γ ` t1 :: τ
(UCASE’)

Γ ` (case t of {()→ t1}) :: τ

ΓT ` τ ∈ Pointed Γ ` t :: Nat Γ ` t1 :: τ Γ ` t2 :: τ
(NCASE’)

Γ ` (case t of {0→ t1; → t2}) :: τ

ΓT ` τ ∈ Pointed Γ ` t :: Either τ1 τ2 Γ, x :: τ1 ` t1 :: τ Γ, x :: τ2 ` t2 :: τ
(ECASE’)

Γ ` (case t of {Left x → t1; Right x → t2}) :: τ

ΓT ` τ ∈ Pointed Γ ` t :: (τ1, τ2) Γ, x1 :: τ1, x2 :: τ2 ` t1 :: τ
(PCASE’)

Γ ` (case t of {(x1, x2)→ t1}) :: τ

Γ, x :: τ1 ` t :: τ2 (ABS)
Γ ` (λx :: τ1.t) :: τ1 → τ2

Γ ` t1 :: τ1 → τ2 Γ ` t2 :: τ1 (APP)
Γ ` (t1 t2) :: τ2

ΓT ` τ ∈ Pointed Γ ` t :: τ → τ
(FIX’)

Γ ` fix t :: τ

Γ ` t1 :: τ1 Γ ` t2 :: τ2 (PAIR)
Γ ` (t1, t2) :: (τ1, τ2)

Γ ` t :: τ1 (LEFT)
Γ ` Leftτ2 t :: Either τ1 τ2

Γ ` t :: τ2 (RIGHT)
Γ ` Rightτ1 t :: Either τ1 τ2

Figure 4.6: Typing rules of λαfix∗

THEOREM 5
(Parametricity Theo-
rem for λα

fix∗ , Launch-
bury and Paterson
(1996))

If Γ ` t :: τ valid in λαfix∗ , then for every θ1, θ2, ρ, σ1, σ2 such that

• for every α occurring in ΓT, ρ(α) ∈ Rel∞(θ1(α), θ2(α)),

• for every α∗ occurring in ΓT, ρ(α) ∈ Rel⊥(θ1(α), θ2(α)), and

• for every x :: τ ′ occurring in ΓV, (σ1(x), σ2(x)) ∈ ∆fix

τ ′,ρ ,

we have (JtKσ1 , JtKσ2) ∈ ∆fix
τ,ρ.

Proof. The proof is similar to the one of Theorem 2. Strictness conditions are
guaranteed by pointedness of types whenever needed.

4.2 Refined Typing 65

EXAMPLE 10
(type derivation in
λα

fix∗)

Let us exemplify the new strength gained by refined typing. First, we
reconsider the function from the introduction where the free theorem breaks
if the strictness condition is dropped. The function is

f :: [α]→ [α] with f = λxs :: [α].[⊥α]

When we type it by the rules from Figure 4.6, it is necessary to annotate
α in Γ by ∗, i.e., to force the relational interpretation of α to be strict. The
complete type derivation for f is as follows, where Γ = α∗, xs :: [α].

α∗ ` α ∈ Pointed

Γ, x :: α ` x :: α

Γ ` (λx :: α.x) :: α→ α

Γ ` (fix (λx :: α.x)) :: α Γ ` []α :: [α]

Γ ` (⊥α : []α) :: [α]

α∗ ` (λxs :: [α].[⊥α]) :: [α]→ [α]

Summarized, we get α∗ ` f :: [α]→ [α] valid, but not α ` f :: [α]→ [α]. In
the just given example, we won nothing compared to the free theorem w.r.t.
standard typing, because the strictness condition was really necessary.

In contrast, for the length function l :: [α]→ Nat with

l = fix (λl ′ :: [α]→ Nat .λxs :: [α].case xs of {[]→ 0; x : xs → 1 + l ′ xs })

we get the valid typing judgments α ` l :: [α]→ Nat and α∗ ` l :: [α]→ Nat .
That is, we do not need to annotate α and hence can safely drop the strictness
condition on ρ(α) concerning the parametricity theorem (Theorem 5) and
consequently the strictness condition on the free theorem.

Contributing to our overall goal, refined typing helps to narrow down the
search space for terms suitable for counterexamples. If we search for a function
with standard type f :: [α]→ [α], it can only give rise to a counterexample to
the free theorem with dropped strictness restriction if in the refined system
α∗ ` f :: [α]→ [α] is valid7, but not α ` f :: [α]→ [α].

The immediate idea, how to search for suitable functions f , is to use the refined
typing rules backwards and focus on an application of (FIX’) to create a term of
a type that is unpointed iff a certain type variable in Γ is not ∗-annotated.

Unfortunately, as already mentioned in the beginning of this chapter, the rule
system in Figure 4.6 is not suitable for term construction. It lacks (at least a
weak kind of) a subformula property, i.e., the property that whenever we use
the typing rules backwards to search a way to construct a term, we can predict
the rule applications necessary to complete the search. Hence, we have to find
an appropriate replacement for the typing rules.

7By Theorem 4 this typing judgment must always be valid.

66 4 Exemplifying the Necessity of Strictness Conditions

4.3 An Alternative System of Typing Rules

The problematic part of the typing rules in Figure 4.6 is the rule (APP). Inter-
preted on the logical side (with terms and Γ omitted), the rule corresponds to
modus ponens. As Dyckhoff (1992) shows for the intuitionistic propositional
calculus, the rule can be replaced by several other rules to obtain a (w.r.t. the
provable formulas) equivalent rule system that enjoys better algorithmic prop-
erties concerning proof search. In particular, the altered rule system features a
weak form of the subformula property that ensures termination. Corbineau
(2004) extends the results of Dyckhoff (1992) and achieves a rule system suitable
for proof search in first-order intuitionistic logic. We are not interested in the
first-order extension because we regard only the simply typed λ-calculus with
type variables that corresponds to the propositional intuitionistic logic, but
we are interested in his additional extension to inductive definitions. They
correspond to algebraic data types in the λ-calculus.

The transliteration from Corbineau’s rule system to the λ-calculus gives a
system of typing rules that is, w.r.t. type inhabitation, equivalent to the original
rule system of λα

fix+ without fix. That the logic corresponds to a λ-calculus
without general recursion is perspicuous when we consider the transliteration
of (FIX) to the logical side. The rule corresponds to (A⇒ A)⇒ A and therefore
would make any logic inconsistent in the sense that we can derive every
statement. Back on the λ-calculus side inconsistency corresponds to the fact
that every type is inhabited when fix is allowed.

For our purpose of counterexample generation the directly translated term
generator is not sufficient. Terms generated do never lead to counterexamples.
In particular, they do not contain fix and hence cannot break the free theorem
that lacks only the restrictions enforced by general recursion. Therefore, we
must inject fix into the generated terms somehow. More precisely, we need
to explore every possible way to inject fix such that for the constructed term
an insufficiently restricted free theorem might break. The adjustment of the
rules is the topic of the next section. In this section, we only discuss briefly the
transliteration of the rules from Corbineau (2004). The transliterated rules are
given in Figure 4.7.

CONVENTION 7
(abbreviations)

In Figure 4.7 (and also later on) the following abbreviations are employed.

fst p = case p of {(x , y)→ x }
snd p = case p of {(x , y)→ y }

curry(τ1,τ2) f = λx :: τ1.λy :: τ2.f (x , y)

Since we are only interested in one term of each type (that for the adjusted
rules later on is a term that might break the unrestricted free theorem), we can
restrict the search space for terms. It suffices if we are able to find one term

4.3 An Alternative System of Typing Rules 67

Γ, x :: τ ` x :: τ (VAR) Γ ` []τ :: [τ] (NIL) Γ ` 0 :: Nat (NAT) Γ ` () :: () (UNIT)

Γ ` t1 :: τ (LDROP)
Γ, l :: [τ] ` t1 :: τ

Γ ` t :: τ (NDROP)
Γ, x :: Nat ` t :: τ

Γ ` t :: τ (UDROP)
Γ, x :: () ` t :: τ

Γ, x :: τ1 ` t :: τ2 (ABS)
Γ ` (λx :: τ1.t) :: τ1 → τ2

Γ, x :: τ1, y :: τ2 ` t1 :: τ
(APP’)

Γ, x :: τ1, f :: τ1 → τ2 ` t[f x/y] :: τ

Γ, x :: τ2 ` t :: τ
(WRAP→)

Γ, f :: [τ1]→ τ2 ` t[f []τ1/x] :: τ

Γ, x :: τ1, g :: τ2 → τ3 ` t1 :: τ2 Γ, y :: τ3 ` t2 :: τ
(ARROW→)

Γ, f :: (τ1 → τ2)→ τ3 ` t2[f (λx :: τ1.t1[λz :: τ2.f (λu :: τ1.z)/g])/y] :: τ

Γ, y :: τ1 ` t :: τ
(NAPP)

Γ, f :: Nat → τ1 ` t[f 0/y] :: τ

Γ, y :: τ1 ` t :: τ
(UAPP)

Γ, f :: ()→ τ1 ` t[f ()/y] :: τ

Γ ` t1 :: τ1 Γ ` t2 :: τ2 (PAIR)
Γ ` (t1, t2) :: (τ1, τ2)

Γ, x :: τ1, y :: τ2 ` t :: τ
(PROJ)

Γ, p :: (τ1, τ2) ` t[fst p/x , snd p/y] :: τ

Γ, g :: τ1 → τ2 → τ3 ` t :: τ
(PAIR→)

Γ, f :: (τ1, τ2)→ τ3 ` t[curry(τ1,τ2)
f /g] :: τ

Γ ` t :: τ1 (LEFT)
Γ ` Leftτ2 t :: Either τ1 τ2

Γ ` t :: τ2 (RIGHT)
Γ ` Rightτ1 t :: Either τ1 τ2

Γ, x :: τ1 ` t1 :: τ Γ, x :: τ2 ` t2 :: τ
(DIST)

Γ, e :: Either τ1 τ2 ` case e of {Left x → t1; Right x → t2} :: τ

Γ, g :: τ1 → τ3, h :: τ2 → τ3 ` t :: τ
(EITHER→)

Γ, f :: Either τ1 τ2 → τ3 ` t[λx :: τ1.f (Leftτ2 x)/g , λy :: τ2.f (Rightτ1 y)/h] :: τ

Figure 4.7: Term search rule system

of a type if there exists a term, and if we do not lose this property when we
adjust the rules in the next section. In particular, for a list we can always take
the empty list, and each natural number we set to 0. Since we start out from
the rules of Corbineau (2004) and only cut down some rules, the correctness
proof of the rules from Corbineau (2004) carries over to our rule system. That
is, whenever t is typeable to τ under Γ via the rules in Figure 4.7, then it is also
typeable to τ under the same Γ via the original typing rules. Also, we claim
the system presented in Figure 4.7 to be complete in the following sense.

CLAIM 1
(completeness)

For every type τ for which there exists a term t and context Γ with Γ ` t :: τ
valid via the original typing rules of λα

fix+ , there exists t ′ with Γ ` t ′ :: τ valid
via the rules in Figure 4.7.

68 4 Exemplifying the Necessity of Strictness Conditions

Note that the just given notion of completeness does not imply that every
term typeable under the original rule system is typeable under the altered
one. This is not the case. But, whenever a type is inhabited w.r.t. the original
rule system, it is inhabited w.r.t. the altered rules as well. Only if this claim is
correct, the term construction described in the next section that leads to the
algorithm TermFind is complete in the sense that whenever we might find a
counterexample to a free theorem, then TermFind generates a term.

The application of the rule system in Figure 4.7 as a term construction algo-
rithm, i.e., employment of the rules (with Γ and τ as input) backwards until
a type derivation is found and the construction of a term t along the found
derivation, forces backtracking. In particular, the rules (LEFT) and (RIGHT) are
in competition and if the first premise in the rule (ARROW→) fails, backtracking
is also necessary (Corbineau, 2004). A discussion of a suitable (in the sense of
an efficient algorithm) priority list for the rules when employing them for term
construction is given by Corbineau (2004, Section 4). We omit a discussion here,
but are geared to the priority list of Corbineau (2004) when prioritizing the
rules of the adapted algorithm for counterexample search in the next section.

We close this section by an example on how terms of a given type are con-
structed via the just presented rules system.

EXAMPLE 11 We consider the typing judgment

α, β, γ ` t :: ((α→ (β,Nat))→ γ)→ (α→ β)→ γ

The task is to construct t , such that the judgment is valid in λα
fix+ .

Guided by the term structure, we generate the following derivation tree for
the typing judgment. The tree is constructed from the root to the leaves. For
brevity, we omit the type variables in the typing context and summarize
term variables in the context if they are not of interest for the construction.
To do so, we set Γ1 = h :: (β,Nat) → γ, Γ2 = Γ1, x :: α, Γ3 = Γ2, y :: β and
Γ4 = g :: (α→ β). Furthermore, the rule name (A→) abbreviates (ARROW→).

(VAR)
Γ2, y :: β ` t5 :: β

(NAT)
Γ3 ` t′5 :: Nat

(PAIR)
Γ2, y :: β ` t4 :: (β,Nat)

(APP’)
Γ1, x :: α, g :: (α→ β) ` t3 :: (β,Nat)

(VAR)
Γ4, z :: γ ` t′3 :: γ

(A→)
f :: ((α→ (β,Nat))→ γ), g :: (α→ β) ` t2 :: γ

(ABS)
f :: ((α→ (β,Nat))→ γ) ` t1 :: (α→ β)→ γ

(ABS)∅ ` t :: ((α→ (β,Nat))→ γ)→ (α→ β)→ γ

The terms t , t1 . . . t5, etc. are unknown while building the tree. We construct
them starting at the leaves of the tree, following the typing rules’ instructions
on how to construct the terms in the conclusion with the help of the premises.

4.4 Terms that Give Rise to Counterexamples 69

Hence we get:

t5 = y t′5 = 0 t4 = (y , 0) t3 = (g x , 0) t′3 = z

t2 = f (λx :: α.(g x , 0)) t1 = λg :: α→ β.f (λx :: α.(g x , 0))

And finally we obtain, the term t we searched for:

t = λf :: (α→ (β,Nat))→ γ.λg :: α→ β.f (λx :: α.(g x , 0))

4.4 Terms that Give Rise to Counterexamples

As already mentioned, to enable counterexample search the typing rule system
presented in Section 4.3 (Figure 4.7) has to be adjusted. In particular, we
need a rule to introduce fix at places where it enforces an additional strictness
condition on the free theorem under investigation to make it correct. We call
such a use of fix harmful harmful. Regarding our insights from Section 4.2 we can reduce
the search space for terms with a harmful application of fix significantly. Say,
in λα

fix+ , we have a typing context Γ not containing the type variable α and a
type τ . We search for a term t with α,Γ ` t :: τ valid in λα

fix+ that breaks the
corresponding instance of the parametricity theorem (and the free theorem) if
the relation (or function in the specialized free theorem) ρ(α) is not required to
be strict. By Theorem 5, which incorporates the knowledge of refined typing,
we know that for t the typing judgment α∗,Γ ` t :: τ must, but the typing
judgment α,Γ ` t :: τ must not be valid in λαfix∗ .

4.4.1 Term Generation via TermFind: Strategy and Definition

How can we, in an algorithmic way, find terms with α∗,Γ ` t :: τ , but not
α,Γ ` t :: τ valid in λαfix∗? Regarding the typing rules of λαfix∗ presented in
Figure 4.6 the most direct way is to introduce fix t ′ of type τ where τ is pointed
if and only if α is annotated by ∗ in the typing context. Hence, our main idea
for the term find algorithm is represented by the following rule where ⊥τ , as
already defined, is the term fix idτ .

ΓT ` τ 6∈ Pointed
(BOTTOM)

Γ
 ⊥τ :: τ

The property ΓT ` τ 6∈ PointedΓT ` τ 6∈ Pointed is defined via the class membership rules for
Pointed shown in Figure 4.5. It is fulfilled iff ΓT ` τ ∈ Pointed is not derivable.

Note that we exchanged `, employed in the typing judgments up to now, by

,
◦,
′for a typing judgment made by the algorithm we are going to design. That
way, we distinguish the typing judgments made by different systems of typing
rules. Later on, we introduce also the symbols
◦ and
′, but do not comment
on them any further.

Let us, regarding rule (BOTTOM), explain input and output of the term find
algorithm we are going to design, in the following called TermFind TermFind. We search

70 4 Exemplifying the Necessity of Strictness Conditions

for terms of a given type, and in general for such terms that are closed under
a given typing context. Initially, the typing context might be a type context
containing the type variables occurring in the given type. But during the term
search also term variables with type annotation can be present. Thus, a typing
context Γ and a type τ are the input to TermFind. A pair of such a type and
typing context is called external input to TermFind. Internally TermFind adds
annotations to term variables in typing contexts, thus we distinguish between
external and internal input. Since we utilize the refined typing in the style of
Section 4.2, by typing context and type we refer to the respective definitions in
the calculus λαfix∗ .

DEFINITION 17
(external input)

A tuple Iext = (Γ; τ) with Γ a typing context as in λαfix∗ and τ a type closed
under Γ is called external input.

As output we construct, if possible, a term t typeable to τ not under the given
typing context Γ but under Γ∗Γ∗ , i.e., Γ with all type variables ∗-annotated.8

Hence TermFind — if successful — returns a term t with Γ ` t :: τ invalid in
λαfix∗ , but Γ∗ ` t :: τ valid. For example, having successfully applied (BOTTOM)
for a given type τ and typing context Γ as input, TermFind will return the term
⊥τ as output.

Note that the use of the refined type system allows fine-grained analysis of
strictness conditions. If we annotate a type variable in the typing context of the
input by ∗, we take for granted that the relational interpretation for the variable
will be strict, as reflected in the membership rules for type class Pointed. Only
for type variables without a ∗-annotation, it is tested if relaxing the strictness
condition on the relational interpretation of these type variables might lead to
a counterexample for the, then insufficiently restricted, parametricity theorem.

Alike the rule (BOTTOM) that arises as alteration of the rule (FIX’) from Figure 4.6,
we could alter other rules from Figure 4.6 that enforce pointedness conditions
on a type. But it is unnecessary to regard alterations of these rules because
for every type τ and context Γ with τ unpointed under Γ we can immediately
apply (BOTTOM) to obtain a term t such that Γ ` t :: τ is not derivable, i.e., valid,
in λαfix∗ , but Γ∗ ` t :: τ is.

Unfortunately, the introduction of ⊥τ ′ on an unpointed type τ ′, which we
call locally harmfullocally harmful use of fix, is not always sufficient to generate the intended
counterexample for an external input (Γ; τ). Locally, for type τ ′ and the respec-
tive context, the parametricity theorem breaks but it is not guaranteed that
employing (BOTTOM) during term search on a type τ ′ implies that we generate
a counterexample for the type and context given as input. The impossibility
to always propagate a local breach of the parametricity theorem to a breach
of the parametricity theorem on the overall type implies that not every term t

8In the remainder of this Chapter for a given typing context Γ, the typing context Γ∗ always
denotes Γ with all type variables ∗-annotated.

4.4 Terms that Give Rise to Counterexamples 71

typeable to τ under Γ∗, but not under Γ, is suitable for a counterexample. Each
term with a locally harmful use of fix cannot be typed under Γ in λαfix∗ , even
if it does not give rise to a counterexample to the parametricity theorem with
missing strictness conditions at all. To illustrate how such a term looks like,
here are two examples.

EXAMPLE 12The terms

(λx :: α.0) ⊥α and case [⊥α] of {[]→ 0; x : xs → 0}

are of type Nat under typing context Γ = α∗ and not typeable under Γ = α in
λαfix∗ . Nevertheless, both are semantically equivalent to the very benign term
0 and hence will never enforce a strictness condition for ρ(α) in the statement
of the parametricity theorem and thus on the free theorem. Consequently,
both terms never give rise to a counterexample, regardless of the locally
harmful ⊥α.

We can describe the strategy for term search in TermFind by two aims:

• Introduce ⊥τ whenever τ is unpointed, to provoke a local disrelation9,
i.e., a breach concerning the parametricity theorem.

• Ensure that the provoked local disrelation is propagated to the final term.

Of course, an additional main goal when designing the algorithm is to guar-
antee termination and efficiency. To obtain these algorithmic properties, we
start out from the rules of the always terminating term construction algorithm
presented in Section 4.3 and alter them w.r.t. the just described strategy where
the primary way to introduce a local disrelation, i.e., a locally harmful fix, is
the extra rule (BOTTOM). The strategy-guided alteration of the rule system from
Section 4.3 yields the algorithm TermFind that has several phases. The rules
for the different phases are shown in Figures 4.8, 4.9 and 4.10. As we prove
later on, even with full backtracking the algorithm terminates. Nevertheless,
for efficiency reasons we propose an order of application on the rules that
reduces backtracking. The order is inspired by the one given by Corbineau
(2004, Section 4) for (the more general version of) the algorithm from Section 4.3.
It is reflected in the way the rules are arranged in the figures. Rules further up
have higher precedence. As visible from the figures, backtracking is reduced
by the proposed order of rules.

CONVENTION 8
(abbreviations)

Presenting the rules of TermFind, we employ the following abbreviations.

headτ l = case l of { []→ ⊥τ ; x : _→ x }
fromLeftτ e = case e of {Left x → x ; Right x → ⊥τ }

fromRightτ e = case e of {Left x → ⊥τ ; Right x → x }
9By disrelation we mean that there exist related environments under which the semantics of the

term under consideration is not related to itself.

72 4 Exemplifying the Necessity of Strictness Conditions

ΓT ` τ 6∈ Pointed
(BOTTOM)

Γ
 ⊥τ :: τ

ΓT ` τ1 6∈ Pointed Γ
 t :: τ
(UPDROP)

Γ, x :: τ1
 t :: τ

Γ
 t :: τ (NDROP)
Γ, x :: Nat
 t :: τ

Γ
 t :: τ (UDROP)
Γ, x :: ()
 t :: τ

Γ, x :: τ1
 t :: τ2 (ABS)
Γ
 (λx :: τ1.t) :: τ1 → τ2

ΓT ` τ2 ∈ Pointed Γ, g :: τ1 → τ2
 t :: τ
(WRAP→’)

Γ, f :: [τ1]→ τ2
 t[λy :: τ1.f (y : []τ1)/g] :: τ

Γ, h :: τ1
 t :: τ
(HEAD)

Γ, l :: [τ1]
 t[(headτ1 l)/h] :: τ

ΓT ` τ3 ∈ Pointed Γ, g :: τ1 → τ2 → τ3
 t :: τ
(PAIR→)

Γ, f :: (τ1, τ2)→ τ3
 t[curry(τ1,τ2)
f /g] :: τ

Γ, x :: τ1, y :: τ2
 t :: τ
(PROJ)

Γ, p :: (τ1, τ2)
 t[fst p/x , snd p/y] :: τ

ΓT ` τ3 ∈ Pointed Γ, g :: τ1 → τ3, h :: τ2 → τ3
 t :: τ
(EITHER→)

Γ, f :: Either τ1 τ2 → τ3
 t[λx :: τ1.f (Leftτ2 x)/g , λy :: τ2.f (Rightτ1 y)/h] :: τ

backtracking only necessary below

Γ, x :: τ1
 t :: τ
(DIST1)

Γ, e :: Either τ1 τ2
 t[fromLeftτ2 e/x] :: τ

Γ, x :: τ2
 t :: τ
(DIST2)

Γ, e :: Either τ1 τ2
 t[fromRightτ1 e/x] :: τ

ΓT ` τ1 6∈ Pointed Γ, y◦ :: τ2
◦ t :: τ
(BOTTOM→’)

Γ, f :: τ1 → τ2
 t[f ⊥τ1/y] :: τ

ΓT ` τ2, τ3 ∈ Pointed Γ,w :: τ1, g :: τ2 → τ3
 t1 :: τ2 Γ, y◦ :: τ3
◦ t2 :: τ
(ARROW→’)

Γ, f :: (τ1 → τ2)→ τ3
 t2[f (λx :: τ1.t1[λz :: τ2.f (λu :: τ1.z)/g , x/w])/y] :: τ

Γ
 t :: τ (WRAP)
Γ
 t : []τ :: [τ]

Γ
 t :: τ1 (PAIR1)
Γ
 (t ,⊥τ2) :: (τ1, τ2)

Γ
 t :: τ2 (PAIR2)
Γ
 (⊥τ1 , t) :: (τ1, τ2)

Γ
 t :: τ1 (LEFT)
Γ
 Leftτ2 t :: Either τ1 τ2

Γ
 t :: τ2 (RIGHT)
Γ
 Rightτ1 t :: Either τ1 τ2

Γ, y :: τ2
 t :: τ
(BOTTOM→)

Γ, f :: τ1 → τ2
 t[f ⊥τ1/y] :: τ

Figure 4.8: Phase I rules of TermFind

4.4 Terms that Give Rise to Counterexamples 73

Γ, x◦ :: τ
◦ x :: τ (VAR◦)

Γ, y◦ :: τ2
◦ t :: τ
(BOTTOM→◦)

Γ, f ◦ :: τ1 → τ2
◦ t[f ⊥τ1/y] :: τ

ΓT ` τ2 ∈ Pointed Γ, x◦ :: τ1, y
◦ :: τ2
◦ t :: τ

(APP’◦)
Γ, x◦ :: τ1, f :: τ1 → τ2
◦ t[f x/y] :: τ

backtracking only necessary below

ΓV
′ t :: τ
(NAT◦)

Γ, x◦ :: Nat
◦ case x of {0→ t } :: τ

ΓV
′ t :: τ
(UNIT◦)

Γ, x◦ :: ()
◦ case x of {()→ t } :: τ

ΓV
′ t :: τ
(LIST◦)

Γ, l◦ :: [τ1]
◦ case l of { [x]→ t } :: τ

ΓV
′ t :: τ
(PAIR◦)

Γ, p◦ :: (τ1, τ2)
◦ case p of {(x , y)→ t } :: τ

ΓV
′ t :: τ
(EITHER◦)

Γ, e◦ :: Either τ1 τ2
◦ case e of {Left x → t } :: τ

Γ, h◦ :: τ1
◦ t :: τ
(HEAD◦)

Γ, l◦ :: [τ1]
◦ t[headτ1 l/h] :: τ

Γ, x◦ :: τ1, y
◦ :: τ2
◦ t :: τ

(PROJ◦)
Γ, p◦ :: (τ1, τ2)
◦ t[fst p/x , snd p/y] :: τ

Γ, x◦ :: τ1
◦ t :: τ
(DIST◦1)

Γ, e◦ :: Either τ1 τ2
◦ t[fromLeftτ2 e/x] :: τ

Γ, x◦ :: τ2
◦ t :: τ
(DIST◦2)

Γ, e◦ :: Either τ1 τ2
◦ t[fromRightτ1 e/x] :: τ

Figure 4.9: Phase II rules of TermFind

ΓV, x :: τ
′ x :: τ (VAR’) ΓV
′ 0 :: Nat (NAT’) ΓV
′ () :: () (UNIT’) ΓV
′ [⊥τ] :: [τ] (LIST’)

ΓV
′ (⊥τ1 ,⊥τ2) :: (τ1, τ2) (PAIR’) ΓV
′ Leftτ2 ⊥τ1 :: Either τ1 τ2 (EITHER’)

Figure 4.10: Phase III rules of TermFind

74 4 Exemplifying the Necessity of Strictness Conditions

All three are used on the semantic level later on, then written without type
annotations. Additionally, in case expressions we omit branches that yield
the undefined value (⊥τ). In particular we write

case l of {[x]→ t }
case e of {Left x → t }
case e of {Right x → t }
case i of {0→ t }

where the first shortened case expression yields a defined value only for
singleton lists.

In (ARROW→’) we write ΓT ` τ2, τ3 ∈ Pointed instead of two separate
premises stating τ2 pointed and τ3 pointed, respectively. The abbreviations
are also employed later on, in other places than the rules of TermFind.

4.4.2 Detailed Explanations on the Design of TermFind

Before we describe the alterations to the rules from Section 4.3, let us clarify
guidelines for the transformation that arise from the term search strategy just
described.

• Firstly, when TermFind terminates, we never return a term where no
⊥τ with τ unpointed is injected, i.e., where not a single, at least locally,
harmful fix is injected. Returning such a term would immediately ren-
der our algorithm incorrect in the sense that the refined type system
of λαfix∗ would tell that the strictness condition we want to prove neces-
sary is superfluous regarding the free theorem for the concrete term we
constructed.

• Secondly, we ensure not to miss any opportunity to insert ⊥τ for un-
pointed τ when we can propagate the thus enforced local disrelation.

• Thirdly, we try to keep the algorithm efficient. In particular, besides
choosing a reasonable order of rules, we avoid unnecessary construction
steps and unnecessarily big contexts. To avoid unnecessary construction
steps, we freely employ ⊥τ also on pointed types whenever we want
to cut a search branch. For example, if we search for a pair we simply
insert ⊥τ of appropriate type in the second component if we injected a
harmful fix already in the first component. To gain small typing contexts,
we decide to remove variables in the context that do not provide any
additional possibilities to find a term. That handling is already present in
the rule system presented in Section 4.3 via the rules that drop variables
from the context, i.e., (NDROP), (UDROP) and (LDROP) (cf. Figure 4.7).

Having given the guidelines for the transformation of the fix-free term gen-
erator from Section 4.3 into a generator that yields terms that are probably10

10In fact, not all terms we construct will be suitable to generate counterexamples. But more on
this later (Section 4.5.6, in particular Example 21).

4.4 Terms that Give Rise to Counterexamples 75

suitable for counterexample generation, we describe the transformation in
detail. First of all, as already mentioned, we are interested in inserting ⊥τ for τ
unpointed. The primary way to do so is the rule (BOTTOM), hence it is also the
first rule we employ in TermFind. The remaining rules arise as adaptations of
the rules from Figure 4.7. We discuss how the individual rules of the fix-free
term generator shown in Figure 4.7 translate into the rules of TermFind. The
axioms (VAR), (NIL), (UNIT) and (NAT) cannot be applied directly in TermFind
because the constructed terms do not involve fix at all and thus will not serve
as part of a counterexample. Hence, all four axioms are not part of (at least
the first phase of) TermFind. But, are there adapted versions that we can em-
ploy in TermFind? Indeed, an adaptation of the rule (NIL) will help to find
counterexamples. The general term search algorithm in Section 4.3 introduces
empty lists whenever possible, which is reasonable because it searches only
for some arbitrary term. Rethinking that design in the light of our new task of
counterexample generation, empty lists are an unsatisfactory choice. We lose
possibilities to insert terms of the list element type into the overall term and
hence may miss the possibility to inject ⊥τ for τ unpointed. The solution is a
switch to non-empty lists, in particular to singleton lists. We replace (NIL) by

Γ
 t :: τ (WRAP)
Γ
 t : []τ :: [τ]

The rule reduces the search for a term of list type to the search for a term of the
list’s element type. The choice of singleton lists appears reasonable because
for lists with more elements we only duplicate possibilities to insert a harmful
fix. In contrast to (NIL), the rules (VAR), (UNIT) and (NAT) cannot be changed
similarly. There is no possibility to inject a harmful fix via a variable, via () or
via a natural number.

The drop rules (NDROP) and (UDROP) from the fix-free term generator, we take
over unchanged. We can directly place constants instead of the variables if term
generation requires a natural number or a term of unit type, so variables of such
types are superfluous in the context. Additionally, whenever we encounter
a variable of unpointed type in the typing context, we can remove it safely,
which is expressed by the new rule (UPDROP) in Figure 4.8. Since we are
interested in the introduction of ⊥τ for τ unpointed, we always prefer injecting
the undefined value instead of the variable from the typing context into our
term. Care has to be taken concerning the rule (LDROP). By a switch from
empty to nonempty lists we can pull out an element of the list that might be
useful for counterexample search. Hence, we replace (LDROP) by

Γ, h :: τ1
 t :: τ
(HEAD)

Γ, l :: [τ1]
 t[(headτ1 l)/h] :: τ

The rule (ABS) is taken over directly. If we cannot insert a harmful ⊥τ for the
type τ = τ1 → τ2 via (BOTTOM), we decompose the function type, which on the
one hand allows us to further decompose τ2 if possible, or on the other hand to
employ the newly gained context information, i.e., that a variable of type τ1 is
in the typing context.

76 4 Exemplifying the Necessity of Strictness Conditions

The rule (APP’) gives rise to two different rules. We ease the conditions of the
rule and do not require a variable x :: τ1 as argument for f :: τ1 → τ2 in the
typing context. We simply employ ⊥τ1 as argument. That handling directly
yields the rule

Γ, y :: τ2
 t :: τ
(BOTTOM→)

Γ, f :: τ1 → τ2
 t[f ⊥τ1/y] :: τ

If we know that τ1 is unpointed then the rule already injects a harmful fix.
That is, for this case it suffices to guarantee f ⊥τ1 is really part of the finally
generated term. Hence, it suffices to ensure the presence of y in t in the premise
of (BOTTOM→). This task is handled by a second rule system (phase II) of
TermFind. The system is presented in Figure 4.9. We discuss the rules of phase
II later on. The rule to enter phase II in the just described case is

ΓT ` τ1 6∈ Pointed Γ, y◦ :: τ2
◦ t :: τ
(BOTTOM→’)

Γ, f :: τ1 → τ2
 t[f ⊥τ1/y] :: τ

where the ◦-annotation at the term variable y expresses that y must be used
somewhere in t . Of course, we prefer (BOTTOM→’) to (BOTTOM→), because it is
the more direct way to a term possibly yielding a counterexample.

In the light of rule (BOTTOM→), the rules (NAPP) and (UAPP) from the original
term generator are superfluous. Their conclusions are special cases of the
conclusion of (BOTTOM→) and the premises are identical.11

For the rule (WRAP→) the situation looks the same as for (NAPP) and (UAPP),
but it is different. We chose to switch from empty lists as default to singleton
lists. The switch alters rule (WRAP→) to

ΓT ` τ2 ∈ Pointed Γ, g :: τ1 → τ2
 t :: τ
(WRAP→’)

Γ, f :: [τ1]→ τ2
 t[λy :: τ1.f (y : []τ1)/g] :: τ

and (WRAP→’) has a slightly more general premise than (WRAP→). Thus, it
is not subsumed by (BOTTOM→). The generalization consists of the function
g :: τ1 → τ2 in the premise instead of a value y :: τ2. The pointedness restriction
is not a limitation at all because term variables of unpointed type, as already
explained when we described (UPDROP), will not enable us to find more suit-
able terms for counterexample generation, and if τ2 is unpointed, so is τ1 → τ2
and hence f is useless for our term search. We add pointedness restrictions
only where necessary later on for counterexample generation via the algorithm
ExFind, described in Section 4.5. There, some constructions for term envi-
ronment entries require pointedness. We could add even more pointedness
restrictions, e.g. at (DIST1) and (DIST2).

Because of the more general premise, also the rules (ARROW→), (PAIR→) and
(EITHER→) are not subsumed by (BOTTOM→). The (ARROW→) rule requires

11Keep in mind that we use the rules backwards to search terms, i.e., the roles of premise and
conclusion are switched and thus (BOTTOM→) really subsumes the two other rules.

4.4 Terms that Give Rise to Counterexamples 77

a slight change when translated to the algorithm for counterexample search.
The original version does not guarantee that the constructed term contains
a harmful fix, even if t1 in the first premise of (ARROW→) does. The term
t1 is only used in t2 if y is present in t2 in the second premise of (ARROW→).
Consequently, to guarantee the use of y in t2 we alter the second premise of
(ARROW→) to a call to phase II of TermFind. The resulting rule (ARROW→’) is

ΓT ` τ2, τ3 ∈ Pointed Γ,w :: τ1, g :: τ2 → τ3
 t1 :: τ2 Γ, y◦ :: τ3
◦ t2 :: τ

Γ, f :: (τ1 → τ2)→ τ3
 t2[f (λx :: τ1.t1[λz :: τ2.f (λu :: τ1.z)/g , x/w])/y] :: τ

where we additionally enforce two pointedness restrictions. Let us recheck that
we did not weaken the rule in a way such that we lose terms. First, consider
there is a term t2 that does not introduce the harmful fix via the substitution
of y , but still is suitable for a counterexample, i.e., a term where the second
premise of (ARROW→) introduces the harmful fix. That case is covered by the
rule (BOTTOM→). Second, consider the pointedness conditions we added. If τ2
is unpointed, so is τ1 → τ2 (cf. class membership rules for Pointed, Figure 4.5)
and hence the case is covered by rule (BOTTOM→’). Pointedness of τ3 we already
explained to be not a real restriction when elaborating on rule (UPDROP).

The rules (PAIR→) and (EITHER→) carry over unchanged, except for the point-
edness checks. But these we know (see the discussion for (UPDROP)) not to
prevent us from finding suitable terms.

The remaining rules to consider are (PAIR), (PROJ), (LEFT), (RIGHT) and (DIST).
The rules (PROJ), (LEFT) and (RIGHT) are taken over unchanged. The rules (PAIR)
and (DIST) can be enhanced in terms of more relaxed premises. For (PAIR) we
can split the rule into

Γ
 t :: τ1 (PAIR1)
Γ
 (t ,⊥τ2) :: (τ1, τ2)

Γ
 t :: τ2 (PAIR2)
Γ
 (⊥τ1 , t) :: (τ1, τ2)

Each rule requires exactly one of the two premises of (PAIR). The idea is
to search for a harmful fix only in one component of a pair, because this is
sufficient for a counterexample. Consequently, we set the other component
to ⊥τ of appropriate type τ and thus abandon the search for a place to insert
a harmful fix in that component. By similar considerations, we split the rule
(DIST) into

Γ, x :: τ1
 t :: τ
(DIST1)

Γ, e :: Either τ1 τ2
 t[fromLeftτ2 e/x] :: τ

Γ, y :: τ2
 t :: τ
(DIST2)

Γ, e :: Either τ1 τ2
 t[fromRightτ1 e/y] :: τ

Again, both rules have only one premise of the original rule (DIST). This
way, we ensure not to enforce multiple insertions of harmful fix to generate a
counterexample.

78 4 Exemplifying the Necessity of Strictness Conditions

Having completed the description of the first phase of TermFind we move on
to explain phase II. As already stated, the essential task of phase II is to ensure
a relevant use of a ◦-annotated term variable in the term that is constructed
during that phase, i.e., a use such that the value of the variable really influences
the semantics of the whole term.

EXAMPLE 13
(relevant use of a vari-
able)

Consider the following terms, typeable to Nat under the context x :: Nat :

case x of {0→ 3} and case x of {0→ ⊥Nat }

In the first term the use of x is relevant, in the second it is not.

In principle, phase II could be another translation of the rules from Figure 4.7
in Section 4.3, but driven by a different strategy. Fortunately, we can reduce
the effort. We can avoid all rules that decompose the type of the resulting
term. All decomposition does already take place in the first phase. Moreover, it
suffices to enter phase II with the type of the resulting term not a function type.
Additionally, it is not necessary to manipulate term variables in the typing
context that are not annotated by ◦. These manipulations can take place in
the first phase as well. Hence, the rules of phase II reduce to rules that either
manipulate ◦-annotated variables in the typing context or inject such variables
in the term that we generate.

The most direct way phase II can succeed is to return a ◦-annotated variable
directly as produced term. Of course, immediate success is only possible if a
respective ◦-annotated variable of the result type exists, which is expressed via
the rule

Γ, x◦ :: τ
◦ x :: τ (VAR◦)

If we cannot succeed directly, we manipulate the ◦-annotated variables in
the same way we did for unannotated variables in phase I. That is, we take
over the rules (BOTTOM→), (HEAD), (PROJ), (DIST1) and (DIST2), altering them
to work with ◦-annotated variables. The adjusted rules are named like the
original ones, up to an additional ◦-symbol. We do not take over rules (PAIR→),
(EITHER→) and alike. Though their adjusted versions would produce new
◦-annotated variables, they are subsumed by the rule (BOTTOM→◦), the ad-
justment of (BOTTOM→). The reason is as follows: The only benefit the just
mentioned rules have compared to (BOTTOM→) in phase I is that they produce
new typing context entries of function type, where (BOTTOM→) would produce
directly entries of the result type of these new entries. Since the only way to
inject ◦-annotated variables of function type into the term constructed by phase
II is to apply them to some argument, the rule (BOTTOM→◦) subsumes all, on
the first sight reasonable, translations of (PAIR→) etc. 12

12Keep in mind that the type of the term constructed in phase II is never a function type, hence
also rule (VAR◦) never fires for x◦ of function type.

4.4 Terms that Give Rise to Counterexamples 79

It seems the rules of phase II just described are already sufficient for an ex-
haustive search, but we missed one option to insert ◦-annotated variables into
the term constructed by phase II. Like the strategy of “injecting a harmful fix
whenever possible” in phase I required a switch from empty lists to singleton
lists when adjusting the rules from the original term generator from Section 4.3,
the “insert a ◦-annotated variable whenever possible”-strategy of phase II re-
quires the consideration of a broader range of terms. In particular, we need to
consider case expressions, as apparent already from Example 13, page 78. We
can inject a ◦-annotated variable as the scrutinee of a case expression whenever
the variable has the respective type to do so. Therefore, we enrich phase II with
the rules (NAT◦), (UNIT◦), (LIST◦), (PAIR◦), (EITHER◦) that try to introduce the
respective case expressions.

The case expressions that we introduce must fulfill one condition, as also
apparent from Example 13: At least one alternative of the case statement must
be semantically different from ⊥. Otherwise the whole case expression is,
independent of the scrutinee, semantically equivalent to the ⊥ and hence the
use of a variable as scrutinee is not relevant. Thus, to successfully create a
whole case expression, we must find a term that is semantically different from
⊥ and returned for an alternative of the case expression. To find an at least
partly defined term, we employ phase III of TermFind. As τ is never a function
type (since we are in phase II), we concentrate on finding terms for all other
types. This is done by the rules of phase III, shown in Figure 4.10. We simply
employ a constructor of the particular type we search for to generate a term of
at least partially defined value (for at least one possible semantic interpretation
of type variables), or employ a term variable present in the context. The rule
(VAR’) is necessary if for example τ is a type variable, which might happen as
we allow ∗-annotated type variables and hence have type variables of pointed
type.

Now that we described the idea behind the rules of TermFind completely, let
us regard an example.

EXAMPLE 14Consider the type ((Nat → [α]) → Either Nat β) → [Nat]. We are only
interested in the strictness condition arising from the type variable α. Thus
we feed the external input (α, β∗; ((Nat → [α])→ Either Nat β)→ [Nat])
to TermFind.

TermFind generates

t = λf :: (Nat → [α])→ Either Nat β.
case f (λx :: Nat .[⊥α]) of {Left y → [⊥Nat]}

It can be derived as follows13 where we abbreviate (Nat → [α]) by τ1,
Either Nat β by τ2 and case f (λx :: Nat .[⊥α]) of {Left y → [⊥Nat]} by t1.

80 4 Exemplifying the Necessity of Strictness Conditions

(1) (2) (3)
(ARROW→’)

α, β∗, f :: τ1 → τ2
 t1 :: [Nat]
(ABS)

α, β∗
 λf :: τ1 → τ2.t1 :: (τ1 → τ2)→ [Nat]

For (1) we have to show α, β∗ ` [α], τ2 ∈ Pointed, which is directly by the
rules (CP-LIST) and (CP-EITHER). The premise (2) is a placeholder for the
derivation

α, β∗ ` α 6∈ Pointed
(BOTTOM)

α, β∗,w :: Nat , g :: [α]→ τ2
 ⊥α :: α
(WRAP)

α, β∗,w :: Nat , g :: [α]→ τ2
 [⊥α] :: [α]

where pointedness of α is not derivable and hence the unpointedness condi-
tion holds. Premise (3) is a placeholder for

(LIST’)
z◦ :: τ2
′ [⊥Nat] :: [Nat]

(EITHER◦)
α, β∗, z◦ :: τ2
◦ case z of {Left y → [⊥Nat]} :: [Nat]

The reader may ask, if, and if then how, our algorithm avoids to create false
positives in the style of Example 12, page 71. The first false positive is ruled
out because we never generate a term that consists of a function application,
except we apply a term variable of function type. The term variable can
always be interpreted as a non-constant function, thus the applications we
allow are really different from the one in Example 12. Note also that function
applications where the function is not a variable cannot provide for additional
terms that are suitable for counterexample generation because we can directly
apply β-conversion and obtain a semantically equivalent term without function
application. False positives as the second one in Example 12 are not created in
general, because we completely omit rules that wrap terms into a constructor
to use them as a scrutinee of a case expression. The restriction does not limit
the ability to find terms suitable for counterexample generation. Assume, we
could inject a harmful fix or a ◦-annotated term variable in a scrutinee of a
case expression, but not directly in one of its branches. Then, in one of the
alternatives of the case expression, the fix or the ◦-annotated variable must
be employed to force its evaluation. But if so, we can directly omit the case
expression and only construct the one important alternative.

4.4.3 Properties of TermFind

We came from a term generator that created a term for every inhabited type
and rewrote that generator to a generator for terms that are likely to be suitable
for counterexample generation. We applied an “introduce and propagate a
harmful fix whenever possible”-strategy to modify the generator. Based on

13We omitted redundant rule applications that would arise if we strictly follow the rule’s
precedence.

4.4 Terms that Give Rise to Counterexamples 81

this strategy, we claim that TermFind is complete in the sense that there is
no counterexample to the free theorem for given input (Γ; τ), i.e., for the free
theorem of type τ with missing strictness conditions for type variables without
∗-annotation in Γ, if TermFind returns without a term.

CLAIM 2
(completeness)

If TermFind cannot construct a term for some external input, then the tested
strictness conditions can safely be dropped from the parametricity theorem.

We do not prove completeness, but we prove a correctness result in the sense
that we find terms where at least λαfix∗ would enforce strictness conditions on
the parametricity theorem. Moreover, we prove termination of TermFind. But
first, we remark on a detail of TermFind: Phase I operates on another kind of
typing contexts than phase II, in particular the term variables in the context
given to phase II can be ◦-annotated. Hence, additionally to the already defined
external input, we specify an internal input.

DEFINITION 18
(internal input)

A tuple Iint = (Γ; τ), where compared to an external input term variables
in ΓV can be ◦-annotated, is called internal input.

Note that every external input is also an internal input.

By the following theorem we state correctness of TermFind in the sense of
typeability of the results in λαfix∗ .

THEOREM 6
(correctness)

If TermFind returns a term t for the external input (Γ; τ) then t is typeable
to τ under Γ∗ in λαfix∗ , but not under Γ.

Proof. The proof splits into two parts. First we show that Γ ` t :: τ is not valid
in λαfix∗ . Therefor, we prove that every term t returned by TermFind contains
a subterm ⊥τ ′ with ΓT ` τ ′ 6∈ Pointed. If this is the case, we have immediately
that Γ ` t :: τ is not valid in λαfix∗ . In λαfix∗ we must employ (FIX) to introduce
⊥τ ′ , and its use is only allowed if τ ′ is pointed. We show that whenever
TermFind terminates successfully, it employs (BOTTOM) or (BOTTOM→’) that
both introduce ⊥τ ′ for τ ′ unpointed. Once introduced in the term generated by
TermFind, ⊥τ ′ is propagated by each rule of the first phase of the algorithm.

The second part of the proof is to show that Γ∗ ` t :: τ is valid in λαfix∗ . We
relate every rule of TermFind to a rule or a rule sequence of the typing rules
of λαfix∗ that performs the identical term transformation under the assumption
that all types are pointed, which is immediate because each type variable in
the context is ∗-annotated at each step of the derivation.

A more detailed version of the proof is found in Appendix A.1.

82 4 Exemplifying the Necessity of Strictness Conditions

EXAMPLE 15 Example 14 shows that for input (α, β∗; ((Nat → [α]) → Either Nat β) →
[Nat]) TermFind produces the term

t = λf :: (Nat → [α])→ Either Nat β.
case f (λx :: Nat .[⊥α]) of {Left y → [⊥Nat]}

To exemplify the statement of Theorem 6, we (partly) show the type deriva-
tion for α∗, β∗ ` t :: ((Nat → [α]) → Either Nat β) → [Nat] in λαfix∗ . The
respective rules are found in Figure 4.6. We also discuss why a deriva-
tion of the typing judgment under context α, β∗ is impossible. As in
Example 14, we abbreviate (Nat → [α]) by τ1, Either Nat β by τ2 and
case g (λx :: Nat .[⊥α]) of {Left y → [⊥Nat]} by t1.

The derivation is as follows:

(1) (2) (3) (4)
(ECASE’)

α∗, β∗, f :: τ1 → τ2 ` t1 :: [Nat]
(ABS)

α∗, β∗ ` t :: (τ1 → τ2)→ [Nat]

We substitute (1) by α∗, β∗ ` [Nat] ∈ Pointed, which is derivable directly by
(CP-LIST), and (2) by the derivation

(2.1)

(2.2)
(NIL)

α∗, β∗, f :: τ1 → τ2, x :: Nat ` []α :: [α]
(CONS)

α∗, β∗, f :: τ1 → τ2, x :: Nat ` [⊥α] :: [α]
(ABS)

α∗, β∗, f :: τ1 → τ2 ` λx :: Nat .[⊥α] :: τ1 (APP)
α∗, β∗, f :: τ1 → τ2 ` f (λx :: Nat .[⊥α]) :: Either Nat β

where premise (2.1) is

(VAR)
α∗, β∗, f :: τ1 → τ2 ` f :: τ1 → τ2

and premise (2.2), with f :: τ1 → τ2, x ::Nat omitted in the typing context, is

α∗ ∈ α∗, β∗
(CP-VAR)

α∗, β∗ ` α ∈ Pointed

(VAR)
α∗, β∗, z :: α ` z :: α

(ABS)
α∗, β∗ ` λz :: α.z :: α→ α

(FIX’)
α∗, β∗ ` fix (λz :: α.z) :: α

We omit the rather uninteresting derivations (3) and (4). The most important
point in the derivation is the application of (CP-VAR) in derivation (2.2). It
directly relies on α∗ being an element of the type context. Hence, under
the context we fed to TermFind, i.e., the context with α not ∗-annotated, the
term found by TermFind is not typeable in λαfix∗ .

4.4 Terms that Give Rise to Counterexamples 83

Note, that the above correctness result does not imply correctness in the sense
that every term found by TermFind is suitable to create a counterexample to a
free theorem with a missing strictness condition. Even though we avoid the
generation of false positives alike the ones presented in Example 12, there are
other difficulties when creating whole counterexamples. We provide detailed
discussion on the generation of whole counterexamples in the next section.

From Theorem 6 and Theorem 4 it follows immediately that the terms found
by TermFind are typeable in λα

fix+ , the calculus without refined typing.

COROLLARY 1If TermFind returns a term t for the external input (Γ; τ) then t is typeable
to τ under Γ′ in λα

fix+ , where Γ′ is Γ with all ∗-annotations removed.

Concerning termination, we prove that TermFind always terminates for every
possible external input and even if used with an arbitrary rule order and full
backtracking.

THEOREM 7
(termination)

TermFind terminates for every external input.

Proof. To state the termination of TermFind we introduce a termination order
that decreases with every (backward) rule application during the construction
of the derivation tree and thus reaches its least element after finitely many rule
applications.

A detailed proof is given in Appendix A.1.

Finally, with TermFind we gained an algorithm that we claim to be complete in
the sense of finding a term whenever a counterexample to an unsatisfactorily
restricted free theorem w.r.t. the given input type and context exists, and that
is also proved correct in the sense of Theorem 6. Furthermore, TermFind
terminates for every input. But, it does not create whole counterexamples, as
was our original goal. Reconsider the free theorem for type [α] → [α] from
the introduction. It states that for every function f :: [α]→ [α], all types τ1, τ2,
functions g :: τ1 → τ2 and lists xs :: [τ1], we have f (map g xs) ≡ map g (f xs).
We proved the additional restriction that g must be strict by choosing f =
λx :: [α].[⊥α], and appropriate τ1, τ2, g and xs . TermFind will yield at most
a suitable function f . Hence, we have to extend the algorithm. Before we do
so in the next section, let us round up the description of TermFind showing
how TermFind actually works for the small example from the introduction. We
schematically show a run to calculate a function f :: [α] → [α] that enforces
strictness of the just mentioned function g , i.e., strictness of the relation assigned
to α in the parametricity theorem. Therefor, we start TermFind with input
(α, [α]→ [α]). The complete run is shown in Figure 4.11.

84 4 Exemplifying the Necessity of Strictness Conditions

α ⊢ α 6∈ Pointed

α, xs :: [α]
 t2 :: α t2 = ⊥α

α, xs :: [α]
 t1 :: [α] t1 = [⊥α]

α
 t0 :: [α] → [α] t0 = λx :: [α].[⊥α]

(Bottom)

(Wrap)

(Abs)

Figure 4.11: An example run for TermFind

As we see, TermFind generates exactly the function f we chose manually in
the introduction. Instead of just giving a type derivation as in Example 14,
Figure 4.11 highlights schematically how TermFind works: It first searches for
a derivation tree for a term of the given type under the given context, and
then constructs the output term along the found derivation tree. That is, all
rules are first applied backwards for term search and then forwards for term
construction.

4.5 Generation of Complete Counterexamples

As discussed at the end of the last section, TermFind does not produce complete
counterexamples to free theorems that lack a strictness condition. In this section
we present an alteration of TermFind, called ExFindExFind . It produces complete
counterexamples to such insufficiently restricted free theorems.

Let us examine the task in detail, again exemplified regarding the type [α]→
[α] and the context Γ = α. As free theorems arise via exploration of the
parametricity theorem, the generated counterexample must also invalidate the
parametricity theorem. In λα

fix+ the theorem (Theorem 2) states that for every
function f with α ` f :: [α]→ [α], it holds that (JfKfix

∅ , JfKfix
∅) ∈ ∆fix

[α]→[α],[α7→R]

whenever D1, D2 are pcpos andR ∈ Rel⊥(D1, D2). We want to show that the
theorem does not hold if we relax the condition onR toR ∈ Rel∞(D1, D2), i.e.,
allow nonstrict relations. Therefor, we can employ the function f that TermFind
creates, but furthermore we need instances for D1, D2 and a concrete, of course
nonstrict, relationR ∈ Rel∞(D1, D2) such that (JfKfix

∅ , JfKfix
∅) 6∈ ∆fix

[α]→[α],[α7→R].
Concerning the specialization of relations to functions and of pcpos to the
semantics of types, as we employ it for functional free theorems, we search for
types τ1 and τ2 and a (nonstrict) function g :: τ1 → τ2, such that (JfKfix

∅], JfKfix
∅]) 6∈

∆fix

[α]→[α],[α 7→JgKfix
∅]

.14

If we find suitable τ1, τ2 and g , we gain a counterexample to the parametricity

14We regard JgKfix
∅ as the function’s graph.

4.5 Generation of Complete Counterexamples 85

theorem, but it is not obvious why exactly it is a counterexample. In particular,
we cannot read off why the two semantic interpretations of f are not related by
the logical relation.

For type [α]→ [α] and the term f = λx :: [α].[⊥α] it is not hard to find τ1, τ2
and g :: τ1 → τ2, such that (JfKfix

∅ , JfKfix
∅) 6∈ ∆fix

[α]→[α],[α7→JgKfix
∅]

. We might choose

τ1 = τ2 = () and g = λx :: ().(). Then, for [⊥()] as input, the free theorem states
map g (f [⊥()]) ≡ f (map g [⊥()]) which is equal to the obviously wrong
assertion [()] ≡ [⊥()].

For more complicated types it becomes less obvious to decide whether the
parametricity theorem holds without additional strictness conditions or not.

EXAMPLE 16Consider Example 14 again. For (α, β∗; ((Nat → [α]) → Either Nat β) →
[Nat]) as input TermFind constructs the term

t = λf :: (Nat → [α])→ Either Nat β.
case f (λx :: Nat .[⊥α]) of {Left y → [⊥Nat]}

Employing t we want to show that in the parametricity theorem for the
above type the strictness condition on the relational interpretation of α
is necessary. In particular, we want to prove by a counterexample that
Theorem 5, the parametricity theorem for λαfix∗ does not hold for α, β∗ `
t :: ((Nat → [α]) → Either Nat β) → [Nat]. TermFind does not guarantee
that t is suitable for a counterexample to this theorem. It only states that we
cannot disqualify t as a candidate by refined typing.

Hence, we are not done when t is found. We need to choose cpos Dα
1 , D

α
2 ,

pcpos Dβ
1 , D

β
2 , and relationsRα ∈ Rel∞(Dα

1 , D
α
2) andRβ ∈ Rel⊥(Dβ

1 , D
β
2),

such that

(JtKfix
∅ , JtK

fix
∅) 6∈ ∆fix

((Nat→[α])→Either Nat β)→[Nat],[α7→Rα,β 7→Rβ]

Since, in the end, we aim for a counterexample to the functional free theorem
that is based on the parametricity theorem, we actually search for τ1, τ2, τ ′1,
τ ′2, g :: τ1 → τ2 and h :: τ ′1 → τ ′2 such that

(JtKfix
∅ , JtK

fix
∅) 6∈ ∆fix

((Nat→[α])→Either Nat β)→[Nat],[α7→JgKfix
∅ ,β 7→JhKfix

∅]

One suitable choice is τ1 = τ2 = τ ′1 = τ ′2 = (), g = λx :: ().() and h = id ().

But, even knowing the concrete choices above, it is hard to see that we
state a counterexample to the parametricity theorem. Furthermore, we
created not yet a complete (or more precisely completely instantiated)
counterexample to a free theorem: We need to unfold the logical relation

86 4 Exemplifying the Necessity of Strictness Conditions

and find out why the parametricity theorem breaks. Regarding our ex-
ample, unfolding requires to find even more concrete terms. We search
(p, q) ∈ ∆fix

(Nat→[α])→Either Nat β,[α7→JgKfix
∅ ,β 7→JhKfix

∅]
such that

(Jt pKfix
∅ , Jt qKfix

∅) 6∈ ∆fix

[Nat],[α7→JgKfix
∅ ,β 7→JhKfix

∅]

or, written simpler, we search for p :: (Nat → [()]) → Either Nat () and
q :: (Nat → [()]) → Either Nat (), related as just specified, such that
t p 6≡ t q .

Possible choices, retaining the type and function instantiations from above,
are:

p = λx :: Nat → [()].case x 0 of { [y]→ Left 0}
q = λx :: Nat → [()].case x 0 of {[y]→ case y of {()→ Left 0}}

We get t p ≡ [⊥Nat] 6≡ ⊥[Nat] ≡ t q .

In this section we describe how to automatically gain all required instan-
tiations and terms for a complete counterexample to a free theorem with
missing strictness condition. We define the algorithm ExFind. Its output for
this example is shown in Figure 4.12.

Example 16 demonstrates that additionally to the term found by TermFind ex-
tra information is necessary to create whole counterexamples to free theorems.
Part of the information is why the free theorem breaks. To gain this information
we must consider the liftings of the logical relation (cf. Figures 2.10 and 4.4):

• For functions, we need to find arguments related by the logical relation
that yield unrelated results.

• For unrelated lists, we need to know if they have different size or if there
are unrelated elements.

• For pairs, we need to know which component is unrelated.

• . . .

Tracing back the origin why the interpretations of f are unrelated serves two
goals. On the one hand it yields the last ingredient for a counterexample
to a free theorem, for example for type [α] → [α] the argument to be given
to f . On the other hand it provides even more information, allowing us to
understand in detail why the counterexample really is a counterexample, i.e.,
why the interpretations of the found term are not related by the logical relation.
Additionally, as we see later on, internally in ExFind the information has even
another purpose.

Summarized, regarding the parametricity theorem (Theorem 2) and the above
discussion, the algorithm ExFind, compared to TermFind, has to fulfill the

14The web interface is available at http://www-ps.iai.uni-bonn.de/cgi-bin/exfind.cgi

http://www-ps.iai.uni-bonn.de/cgi-bin/exfind.cgi

4.5 Generation of Complete Counterexamples 87

Figure 4.12: ExFind’s output for Example 16 as presented by the web interface14

following additional tasks:

• provide concrete type and relation environments θ1, θ2 and ρ,

• construct term environments σ1 and σ2,

• trace back the original breaking point of the parametricity theorem.

We design ExFind as an adaptation of TermFind such that in every step of
term construction it provides a complete counterexample to the parametricity
theorem (and also to the free theorem) for the respective typing judgment at
the current step of TermFind.15 Thus, we regard ExFind as an algorithm that
searches for a suitable term for a counterexample by applying the rules of
TermFind backwards, and then builds up not only the term defined by the
derivation tree of TermFind, but additionally gathers all the other information
necessary for a counterexample when applying the rules forwards. Hence,
we enrich the rules of TermFind with additional constructions, in particular
for term environments and tracing information. The type environments and
the relation environment can be set in advance because they only depend

15This holds at least for phase I. The situation is a bit different in phases II and III, because of
◦-annotated term variables.

88 4 Exemplifying the Necessity of Strictness Conditions

on the type variables in the typing context and these never change during a
run of TermFind (and thus ExFind). Construction of term environments is
more involved and we will require the simplification of a rule of TermFind,
as well as tracking of additional information. In the end, this leads to less
counterexamples constructed by ExFind than terms found by TermFind.

The remainder of the section is structured as follows:

• We explain the choice of type and relation environments (Subsection 4.5.1),

• investigate requirements on the other extra constructions (Subsection 4.5.2),

• motivate why we restrict term search of TermFind (Subsection 4.5.3),

• provide a detailed description of ExFind (Subsection 4.5.4),

• sketch a correctness proof (Subsection 4.5.5),

• discuss the incompleteness (Subsection 4.5.6),

• and point to an existing implementation of ExFind (Subsection 4.5.7).

4.5.1 Choosing Type and Relation Environments

First, we consider the choice of type and relation environments. The choice
for the type environments and the relation environment is only dependent
on the type variables in the type context ΓT. Since ΓT is never changed by the
rules of TermFind, and hence by the rules of ExFind, we can choose type and
relation environments once and for all, such that they are suitable as part of a
counterexample at each step of counterexample generation via ExFind.

A suitable semantic interpretation of type variables via the type environments
θ1 and θ2 is obtained by two considerations. First, for every type variable
in the domain of θ1 and θ2 there should be a strict and a nonstrict relation
between its type interpretations. The smallest (in terms of elements in the
semantic domain) such interpretation is the semantics of the unit type: J()Kfix

∅ =
{⊥, ()}. The corresponding strict relation is (the graph of) the identity function
Jλx :: ().xKfix

∅ and the nonstrict relation is (the graph of) the constant function
Jλx :: ().()Kfix

∅ . Second, each semantic interpretation with more values does not
increase the number of counterexamples we can find. On the one hand, the
concrete type instantiation for a type variable α is completely unknown to the
term t that gives rise to the counterexample and hence it cannot contain a term
of type α that evaluates to any value semantically different from ⊥; and on
the other hand, t can also not distinguish between different values of the type
instantiated for α. Hence, different inputs as argument will not influence the
behavior of t and consequently not provide new ways to break free theorems.
Thus, mapping all type variables to J()Kfix

∅ by θ1 and θ2 is a reasonable choice.

Next, we fix the relational interpretation of type variables, i.e., the environment
ρ. We distinguish two kinds of type variables: As for TermFind, an external
input to ExFind consists of a pair (Γ; τ) where in ΓT each individual type
variable is ∗-annotated or not. For annotated variables αwe accept the strictness

4.5 Generation of Complete Counterexamples 89

condition on ρ(α) and hence map it to a strict relation, more precisely to the
identity relation. For unannotated variables we choose the nonstrict relation
that is defined by Jλx :: ().()Kfix

∅ . For those variables we want to show that
ignorance of the strictness condition is harmful. We call the just described
choice of environments minimal and summarize it by the following definition.

DEFINITION 19
(minimal environ-
ments)

For a given type context ΓT (with possibly ∗-annotated type variables) the
minimal relation environment ρ is the map from the set of type variables in ΓT

to the set of binary relations over the pcpo J()Kfix
∅ that maps each ∗-annotated

type variable in ΓT to (the graph of) the identity function Jλx :: ().xKfix
∅ and

each unannotated type variable in ΓT to (the graph of) the constant function
Jλx :: ().()Kfix

∅ . The type environments θ1 and θ2 are minimal if they take each
type variable in ΓT to J()Kfix

∅ .

CONVENTION 9
(∆fix
τ and JτKfix)

For the rest of the chapter we take type and relational environments all
to be minimal and denote ∆fix

τ,ρ with ρ minimal by ∆fix
τ . Since for minimal

environments θ1 and θ2 are equal, we define JτKfix = JτKfix
θ1

= JτKfix
θ2

.

4.5.2 Requirements for Term Environments

The requirements for term environments are best understood by a preview on
a run of ExFind as given by the following example. Analyzing and discussing
the strategy of ExFind, the requirements become apparent.

EXAMPLE 17Consider the example illustrated in Figure 4.13. The graphic shows a run
of ExFind for the input (α, β∗, (α → β) → [β]). The first two columns
correspond to a run of TermFind for the same input (cf. Figure 4.11).

The third column shows the term environment entries constructed by
ExFind. In the lower three rows column two and three together state a
counterexample to the parametricity theorem’s assertion for the typing judg-
ment in the first column (w.r.t. minimal type and relation environment).
Row two (also three) reveals the requirements for the construction of term
environment entries: To make columns two and three in row two a coun-
terexample to the parametricity theorem three requirements have to be
met:

1. The interpretations of f must be related (to meet the conditions of the
theorem).

2. The interpretations of f ⊥α must not be related (to have a counterex-
ample).

3. The interpretations of ⊥α must not be related (as a consequence of 1
and 2).

90 4 Exemplifying the Necessity of Strictness Conditions

To meet requirement 3 we ensure that the relational interpretation of α
is nonstrict. To meet the first two requirements, the interpretations of f
have to be designed carefully. Concerning the interpretations of f ’s result
type, we need a pair of related values and a pair of unrelated values, such
that the interpretations of f can map potentially related inputs to related
outputs and definitely unrelated inputs, in particular the interpretations of
⊥α, to unrelated outputs. The related and the unrelated pair of values are
generated in the first row as interpretations for x . Figure 4.13 shows only
the related pair (σ1(x), σ2(x)). The unrelated pair is given implicitly. It is
(in general, not only in the example) the pair (σ1(x),⊥). The environment
entries for x in the first row and the fact that (σ1(x),⊥) is not in the logical
relation are employed in the design of the interpretations for f .

Now take a closer look at the first row. It presents a state in the second
phase of ExFind (and also TermFind). TermFind’s goal is to employ the
◦-annotated variable x somehow, and ExFind additionally searches for
a related and an unrelated pair of interpretations for this x . As already
explained, the interpretations are needed to design the interpretations of f
when x is replaced. In the row itself columns two and three do not state a
counterexample to the parametricity theorem for the typing judgment in
column one. That is because of the different task of ExFind’s second phase.

Last but not least consider row four. Columns two and three, again under
minimal type/relation environments, state a complete counterexample to
the parametricity theorem. Nonetheless, concerning a counterexample to
the free theorem we lost information (regarding only column two and three).
The free theorem for the example (functional and already instantiated with
minimal environments) looks as follows:

For all related g ::()→ () and h ::()→ (), i.e., g and h with g ≡ λy ::().h ((λx ::
().()) y) we have

t0 g ≡ t0 h

Going from row three to four, we lose the term environment entries that
provide suitable choices for g and h to set up a counterexample. An extra
construction shown in column four remembers these entries. It is called
disrelator. The disrelator $ tracks the information why the parametricity
theorem does not hold. It is a tuple, with the first component the type
on whose interpretation the counterexample is built (the point where the
parametricity theorem originally breaks), and in the second component it
logs how to navigate through all liftings of the logical relation to the original
breach of it. In particular, going from row three to four, the disrelator stores
the interpretations for f . Going from row two to three it stores the pair
(head,head). This entry allows to uncover that the term constructed in row
two wraps the term from row one in a list. The entry states that the results of
the interpretations of f applied to ⊥ are not related because the heads of the
resulting lists are not related. In other words, it states that the list wrapping
has to be undone to reveal the original breach of the logical relation.

4.5 Generation of Complete Counterexamples 91

α, β∗, x◦ :: β
◦ t3 :: β t3 = x σ1 = {x 7→ ()}, σ2 = {x 7→ ()} ̟ = (β, [])

α, β∗, f :: α → β
 t2 :: β t2 = f ⊥α σ1 = {f 7→ λx.()}, σ2 = {f 7→ λx.case x of {() → ()}} ̟ = (β, [])

α, β∗, f :: α → β
 t1 :: [β] t1 = [f ⊥α] σ1 = {f 7→ λx.()}, σ2 = {f 7→ λx.case x of {() → ()}} ̟ = (β, [(head,head)])

α, β∗
 t0 :: (α → β) → [β] t0 = λf :: α → β.[f ⊥α] σ1 = ∅, σ2 = ∅ ̟ = (β, [(λt.t (λx.()), λt.t (λx.case x of {() → ()})), (head,head)])

(VAR
◦)

(BOTTOM→’)

(WRAP)

(ABS)

Figure 4.13: The constructions of ExFind for input (α, β∗, (α→ β)→ [β])

As final remark, note that for stating the counterexample we set g to λx ::().()
and h to λx :: ().case x of {() → ()}, whose semantic interpretations
correspond to the values generated in the term environments and stored
in the disrelator. Hence, it is necessary that each of these entries is the
semantics of a term. Since the environment entries for f are generated
from entries of the function’s result type, the requirement is necessary for
variables of each type (and not only for function types). That we meet
it is not immediately clear because there are semantic values that do not
correspond to the semantics of a term.

From Example 17 we can observe the strategy of ExFind. It is closely tied
to the “introduce-and-propagate”-strategy of TermFind. Where TermFind
introduces a local disrelation, ExFind generates, based on that disrelation,
a counterexample to the parametricity theorem for the current type. Then
ExFind, alike the propagation in TermFind, lifts the example step by step
to a counterexample to the parametricity theorem of the input type. As for
TermFind, phase II has a special role. We enter the phase always adding
a ◦-annotated variable that is later replaced by an application of a function
f to a term for which we have ensured unrelated semantic interpretations
(under the assumption that unpointed types must have nonstrict relational
interpretations). Thus, for phase II, ExFind in particular has to create sufficient
information about the ◦-annotated variable to employ it for the construction of
interpretations of f , which shall be related but yield unrelated values for the
unrelated input. This information is a pair of related interpretations and a pair
of unrelated interpretations for the variable.

To create counterexamples the way just described three restrictions are neces-
sary (at each step of the counterexample generation):

1. For each term variable x :: τ in the term context we need related semantic
interpretations, i.e., interpretations related by ∆fix

τ .

2. For each ◦-annotated term variable x :: τ in the term context we need
unrelated semantic interpretations, i.e., interpretations not related by
∆fix
τ .

3. The interpretations of ⊥τ must not be related for τ unpointed, i.e., un-
pointed types have nonstrict relational interpretations.

92 4 Exemplifying the Necessity of Strictness Conditions

Whether we meet requirement 3, or not, depends on the concrete choices of
type/relation environments. For our choice of minimal environments we meet
it, as stated by the next lemma. The lemma also states that pointed types have
strict relational interpretations (as direct consequence of Lemma 12).

LEMMA 13
(properties of minimal
environments)

Let ΓT a type context with possibly ∗-annotated type variables. If τ is closed
under ΓT, then

(⊥,⊥) ∈ ∆fix

τ if ΓT ` τ ∈ Pointed (1)
(⊥,⊥) 6∈ ∆fix

τ if ΓT ` τ 6∈ Pointed (2)

Proof. Induction on the structure of τ , employing the definition of the logical
relation and the definition of minimal environments.

Requirements 1 and 2 can be summarized by a single requirement: For each
type τ we must be able to construct values x and y with (x,y) ∈ ∆fix

τ and
also values x′ and y′ with (x′,y′) ∈ JτKfix × JτKfix and (x′,y′) 6∈ ∆fix

τ . The
construction of such values is described in the next definition. The subsequent
lemma states that the constructed values are sufficient to establish the required
related/unrelated pair for each type.

DEFINITION 20
(plus-value)

Let ΓT a type context and τ a type closed under ΓT. The value p+
τ is called

plus-value of type τ and recursively defined over the structure of τ by

p+
α = () p+

Nat = 0 p+
() = () p+

[τ] = [p+
τ]

p+
(τ1,τ2) = (p+

τ1 ,p
+
τ2) p+

Either τ1 τ2
= Left p+

τ1 p+
τ1→τ2 = λx.p+

τ2

LEMMA 14
(properties of minimal
environments)

Let ΓT a type context with possibly ∗-annotated type variables. If τ is closed
under ΓT, then

(p+
τ ,p

+
τ) ∈ ∆fix

τ (1)
(p+
τ ,⊥) 6∈ ∆fix

τ (2)

Proof. Induction on the structure of τ , employing the definition of the logical
relation, the definition of minimal environments and Definition 20.

The requirements on term environment entries that we just identified and
showed to be met easily are necessary but not yet sufficient to lift counterex-
amples in general. Knowing an arbitrary pair of related or unrelated values
is not always enough. We already notice that further restrictions on term
environments are necessary when we construct appropriate entries for f in

4.5 Generation of Complete Counterexamples 93

Example 17. We cannot simply take plus-values as entries for f . The values
need to fulfill a kind of “disrelation propagation”-property, depending on the
actual appearance of the term variable in the term we generate. The required
property is best illustrated by another example for a type involving Either .

EXAMPLE 18Consider the input (α;Either Int (α → Int) → Int). TermFind, and also
ExFind, will use the rules (ABS), (DIST2), (BOTTOM→’) and (VAR◦). The con-
crete instance of (DIST2), as TermFind creates it, looks as follows:

α, f :: α→ Nat
 f ⊥α :: Nat
(DIST2)

α, e :: Either Nat (α→ Nat)
 fromRightNat e ⊥α :: Nat

Now, for ExFind a task is to find related environment entries e1 and e2 for
e , that ensure

(JfromRightNat e ⊥αKfix
[e 7→e1], JfromRightNat e ⊥αKfix

[e 7→e2]) 6∈ ∆fix

Nat (4.1)

i.e., that the term in the conclusion of (DIST2) and the choices for the environ-
ment entries for e establish a counterexample to the parametricity theorem
for type Nat and typing context α, e :: Either Nat (α→ Nat).

Obviously, we cannot choose plus-values of type Either Nat (α → Nat)
as environment entries for e. They are Left -values and hence the pair in
(4.1) would be (⊥,⊥) ∈ ∆fix

Nat . To find appropriate entries, we use the ones
from the premise of the rule. For these we already know (if ExFind works
according to our strategy) that, with the constructed term in the premise,
they establish a counterexample to the parametricity theorem that fits to
the premise. Thus, we employ the environment entries for f in the premise
and modify them appropriately. For (DIST2), led by the way the rule alters
the constructed term, we wrap the entries as Right-values. Hence, we set
e1 = Right f1 and e2 = Right f2, if f1 and f2 are the respective environment
entries for f in the premise.

Note that it is really necessary to rely on the entries for f in the premise.
They already were designed such that their results are unrelated if both are
applied to ⊥. And this is essential to obtain a counterexample.

As it is essential in Example 18 to generate new entries in the term environments
of the conclusion of the rule with the help of the entries from the premise, it is
always essential when appearances of a term variable in the premise’s term are
(in the conclusion) replaced by a term containing a new term variable.

Before we go into the details of environment construction in Subsection 4.5.4,
we consider a general problem of the construction approach that forces us to
simplify the rule (ARROW→’) and thereby restrict the search space.

94 4 Exemplifying the Necessity of Strictness Conditions

4.5.3 Restrictions to TermFind

Reconsider rule (ARROW→’):

ΓT ` τ2, τ3 ∈ Pointed Γ,w :: τ1, g :: τ2 → τ3
 t1 :: τ2 Γ, y◦ :: τ3
◦ t2 :: τ

Γ, f :: (τ1 → τ2)→ τ3
 t2[f (λx :: τ1.t1[λz :: τ2.f (λu :: τ1.z)/g , x/w])/y] :: τ

Unfortunately, for this rule we encounter situations where it is impossible to
enrich it the way that the conclusion states a counterexample (to the respective
free theorem for the conclusion’s type and context), even if the premises do
(w.r.t. their respective types and contexts). In these situations TermFind creates
a term that does not give rise to a counterexample.16 ExFind can only abort in
such situations, telling it cannot find a counterexample.

The reason for such a situation is that (ARROW→’) has two premises where
term variables in the typing contexts may overlap and consequently ExFind
may create different term environment entries for the same term variable. As
Example 18 and the surrounding discussion in Subsection 4.5.2 clarify, term
environment entries must comply to certain conditions. These conditions can
be incompatible concerning the environments created in the different premises
of (ARROW→’). For example, a variable can be mapped to a Left-value in an
environment of one premise, but in the corresponding environment in the other
premise it is mapped to a Right-value. Both choices can be essential. In such sit-
uations the environments cannot be merged to generate a counterexample w.r.t.
the conclusion of (ARROW→’). We solve the problem by checking compatibility
of two different values assigned to the same variable. The compatibility check
requires us to track the history of a value assignment to a variable. ExFind
keeps track of such histories via a history environment. The concrete handling is
given in the next subsection.

But the rule (ARROW→’) poses another problem. The function f that is only
present in the typing context of the conclusion may be employed twice in
the term constructed in the conclusion. To establish a counterexample for
the conclusion of (ARROW→’), f may need to meet different conditions for
the different occurrences. To design a function f that satisfies the different
conditions is not an easy task and we bypass it by a simplification of (ARROW→’).
We remove g :: τ2 → τ3 from the second premise and obtain, as a replacement
for (ARROW→’), the rule

ΓT ` τ2, τ3 ∈ Pointed Γ,w :: τ1
 t1 :: τ2 Γ, y◦ :: τ3
◦ t2 :: τ
(ARROW→∗)

Γ, f :: (τ1 → τ2)→ τ3
 t2[f (λx :: τ1.t1[x/w])/y] :: τ

with only one occurrence of f in the conclusion. The simplification (that g is
omitted in the first premise) eases construction of environment entries for f .
Unfortunately, we lose counterexamples by this simplification.

16As we discuss in Subsection 4.5.6 that does not necessarily mean that there is no counterexam-
ple.

4.5 Generation of Complete Counterexamples 95

A more detailed discussion on the necessity of the simplification and examples
why the history environment is essential are given in Subsection 4.5.6.

Besides changing (ARROW→’) to (ARROW→∗) we take over the rules of TermFind
unchanged. Having fixed the rule set of ExFind, we take a closer look on how
to precisely extend the rules with extra constructions.

4.5.4 Creating Extra Information — Concrete Constructions

Up to now, we informally argued about the requirements on the extra con-
structions of ExFind and we fixed the concrete rule set for the algorithm. In
this subsection we formally describe ExFind. In the first part we formalize
the requirements on its constructions, in the second part we define auxiliary
constructions and in part three we provide a complete formalization of ExFind.

Formal Requirements on the Extra Constructions

First, we characterize the term environments constructed by ExFind. As al-
ready acknowledged in Example 17, in rules where variables are replaced by a
function application in the conclusion (i.e., the rules (APP’◦), (ARROW→∗) and
(BOTTOM→◦)), we have to know a pair of related and a pair of unrelated values
for the variable that gets replaced. Both usually must satisfy extra conditions
that are specified by the variable’s use in the term in the premise. As also
noticed, we provide these pairs of values via the term environments: σ1, σ2

and the extra condition that for each ◦-annotated term variable (x◦ :: τ) ∈ ΓV

we have (σ1(x),⊥) 6∈ ∆fix
τ .

The conditions are summarized in the following definition.

DEFINITION 21
(result environment)

The tuple (σ1, σ2) of term environments is called a result environment w.r.t.
typing context Γ, such as it appears in the internal input to ExFind, if the
domain of the term environments is the set of term variables in ΓV and for
every x associated with type τ ′ in ΓV it holds that:

• (σ1(x), σ2(x)) ∈ ∆fix

τ ′ and

• (σ1(x),⊥) 6∈ ∆fix

τ ′ , if x annotated by ◦ in ΓV.

To ease notation, we define the operation (·)⊥ for term environments.

DEFINITION 22
(σ⊥)

Let ΓV a term context with possibly ◦-annotated variables and σ a term
environment with the variables in ΓV as domain. Then

σ⊥ = σ[xn 7→ ⊥]

where xn are the ◦-annotated variables in ΓV.

96 4 Exemplifying the Necessity of Strictness Conditions

With respect to the just described result environments, the term produced by
ExFind should fulfill the following definition (to serve as part of a counterex-
ample to the parametricity theorem).

DEFINITION 23
(result term)

The term t is a result term w.r.t. the internal input Iint = (Γ; τ) and a respec-
tive result environment (σ1, σ2), if (JtKfix

σ1
, JtKfix

σ⊥2
) 6∈ ∆fix

τ .

For technical reasons, we require for terms generated by the second phase of
ExFind an even stronger condition.

DEFINITION 24
(strong result term)

A result term t w.r.t. an internal input and a respective result environment
(σ1, σ2) is called strong if JtKfix

σ⊥2
= ⊥.

Auxiliary Constructions

We characterized how the term environments should behave w.r.t. each other
and also w.r.t. the term ExFind creates. But, the description is still not sufficient
to give construction rules for the environments. Two extra constructions are
necessary. First, we have to trace back where exactly the disrelation, breaking
the parametricity theorem, was injected. Here the disrelator, already described
in Example 17 comes in — but with a slightly different motivation. During the
construction of the term environments it is necessary to find suitable entries for
f :: (τ1 → τ2)→ τ3 in the conclusion of (ARROW→∗). That means, two related
interpretations σ1(f) and σ2(f) of f that yield unrelated values for two specific
unrelated inputs, i.e., for the semantic interpretations of λx :: τ1.t1[x/w] (cf. rule
(ARROW→∗)). The construction requires information about why the semantic
interpretations of λx :: τ1.t1[x/w] are not related by the logical relation.

We describe the “why”-information by a disrelator. It consists of the type where
the logical relation was originally broken and a series of, by the logical relation
related, semantic function pairs that disassemble the actual unrelated values
to values of the type the disrelation goes back to. In other words, the function
pairs undo liftings of the logical relation.

DEFINITION 25
(disrelator)

Let ΓT a type context in λαfix∗ , τ, τ ′ types closed under ΓT and (t1, t2) ∈
JτKfix × JτKfix. The pair $ = (τ ′, l) with l = [(v1,v

′
1), . . . , (vn,v

′
n)] and each

(vi,v
′
i) out of {(head,head), (fst, fst), (snd, snd), (fromLeft, fromLeft),

(fromRight, fromRight), (λu.u w, λu.u w′)}, where (w,w′) ∈ ∆fix

τ ′′ for
appropriate τ ′′, is called a disrelator of (t1, t2) if

(vn(. . . (v1 t1)),v′n(. . . (v′1 t2))) = (tτ ′ ,⊥) 6∈ ∆fix

τ ′

with tτ ′ a constant function or ⊥ if τ ′ is an arrow type.

4.5 Generation of Complete Counterexamples 97

EXAMPLE 19For the value pair

(t1, t2) = (λx.case x of {0→ Left 0}, λx.case x of {0→ Left ⊥})

that is an element of JNat → NatKfix×JNat → NatKfix under the empty context
ΓT = ∅, the pair

([(λu.u 0, λu.u 0), (fromLeft, fromLeft)],Nat)

forms a disrelator. Applying it yields:

(fromLeft ((λu.u 0) (λx.case x of {0→ Left 0}))
, fromLeft ((λu.u 0) (λx.case x of {0→ Left ⊥})))

= (fromLeft ((λx.case x of {0→ Left 0}) 0)
, fromLeft ((λx.case x of {0→ Left ⊥}) 0))

= (fromLeft (Left 0), fromLeft (Left ⊥))

= (0,⊥) 6∈ ∆fix

Nat = idN⊥

Note that the formal definition of disrelator is even stronger than the informal
description above. The definition forces the initial disrelation uncovered by
the disrelator to be of a special structure. This structure will be guaranteed by
the constructions of ExFind and necessary for the proof of Lemma 15 (stated
further below).

The next definition describes how to generate functions of arbitrary argument
and result type, that are related by the logical relation but yield unrelated
results for two unrelated inputs t1 and t2 whose disrelation is described by a
disrelator $.

CONVENTION 10We employ the syntax of case expressions also on the semantic level.

DEFINITION 26Let ΓT a type context in λαfix∗ , τ , τ ′ types closed under ΓT and τ ′ pointed under
ΓT. Furthermore, let (t′1, t

′
2) ∈ ∆fix

τ ′ and $ = (τ ′′, l) a disrelator for some pair
(t1, t2) ∈ JτKfix × JτKfix. The pair (g1(t′1),g2(t′2))ΓT,τ

$, abbreviated by (g1,g2)
if all parameters are clear from the context, is defined recursively over the
structure of τ and the disrelator as follows. The variable i ranges over 1 and
2, and α is a type variable.

τ = α and pointed
τ = ()

gi = λz.case z of {()→ t′i}

τ = α and unpointed g1 = λz.t′1, g2 = λz.case z of {()→ t′2}

τ = Nat gi = λz.case z of {0→ t′i}

98 4 Exemplifying the Necessity of Strictness Conditions

τ = [τ1] and l = [] gi = λz.case z of {[x]→ t′i}

τ = [τ1] and
l = (v,v′) : l′

gi = λz.case z of {[x]→ hi x}
with (h1,h2) = (g1(t′1),g2(t′2))ΓT,τ1

(τ ′′,l′)

τ = (τ1, τ2) and l = [] gi = λz.case z of {(x,y)→ t′i}

τ = (τ1, τ2) and
l = (v,v′) : l′

gi = λz.case z of {(x,y)→ hki
x y}

with (hk1 ,hk2) ={
(λx.λy.k1 y, λx.λy.k2 y) if v = snd

(g1(k1),g2(k2))ΓT,τ1
(τ ′′,l′) otherwise

and (k1,k2) ={
(λx.t′1, λx.t′2) if v = fst

(g1(t′1),g2(t′2))ΓT,τ2
(τ ′′,l′) otherwise

τ = Either τ1 τ2 and
l = []

gi = λz.case z of {Left x → t′i; Right x → t′i}

τ = Either τ1 τ2 and
l = (v,v) : l′ with
v = fromLeft

gi = λz.case z of {Left x → hi x}
with (h1,h2) = (g1(t′1),g2(t′2))ΓT,τ1

(τ ′′,l′)

τ = Either τ1 τ2 and
l = (v,v) : l′ with
v = fromRight

gi = λz.case z of {Right x → hi x}
with (h1,h2) = (g1(t′1),g2(t′2))ΓT,τ2

(τ ′′,l′)

τ = τ1 → τ2 and
l = []

g1 = λz.h1 (z p+
τ1), g2 = λz.h2 (z p+

τ1)

with (h1,h2) = (g1(t′1),g2(t′2))ΓT,τ2
(τ ′′,[])

τ = τ1 → τ2 and
l = (v,v′) : l′

g1 = λz.h1 (v z), g2 = λz.h2 (v′ z)

with (h1,h2) = (g1(t′1),g2(t′2))ΓT,τ2
(τ ′′,l′)

Definition 26 satisfies the properties we require for a pair (g1,g2).

LEMMA 15 Let ΓT a type context in λαfix∗ , τ , τ ′ types closed under ΓT and τ ′ pointed under
ΓT. Furthermore, let (t′1, t

′
2) ∈ ∆fix

τ ′ and $ = (τ ′′, l) a disrelator for some pair
(t1, t2) ∈ JτKfix × JτKfix. Then the construction from Definition 26 returns a
pair (g1,g2) = (g1(t′1),g2(t′2))ΓT,τ

$ with

(g1,g2) ∈ ∆fix

τ→τ ′ and (g1 t1,g2 t2) = (t′1,⊥) .

The proof is given in Appendix A. To provide an intuition about the con-
struction, we consider the construction for the environment entries for f in
Example 16.

4.5 Generation of Complete Counterexamples 99

EXAMPLE 20Let us first describe a situation where the construction from Definition 26 is
employed. In Example 16 ExFind applies rule (ARROW→∗). During the rule’s
application, the environment entries for f are constructed, i.e., the semantic
interpretations of p and q (see Example 16). The concrete construction
is described in Definition 30. We only point to the use of Definition 26.
It enables us to construct a pair of related functions that yield unrelated
results for (a special pair of) unrelated inputs. This is necessary to propagate
the disrelation we introduced via the first premise of (ARROW→∗). In the
concrete example we construct a pair of functions (h1,h2) as

(h1,h2) = (g1(Left 0),g2(Left 0))
α,β∗,[α]
(α,[(head,head)])

In particular the entities in Definition 26 are specialized as:

• ΓT = α, β∗

• τ = [α], τ ′ = Either Nat β, τ ′′ = α,

• (t′1, t
′
2) = (Left 0,Left 0) ∈ ∆fix

Either Nat β and

• $ = (α, [(head,head)]) as a disrelator for

• (t1, t2) = ([⊥], [⊥]) ∈ J[α]Kfix × J[α]Kfix.

By Lemma 15, the pair (h1,h2) will satisfy (h1,h2) ∈ ∆fix

[α]→Either Nat β and
(h1 [⊥],h2 [⊥]) = (Left 0,⊥).

For every application of the construction in Definition 26 that ExFind per-
forms, it is guaranteed that (using notation of Lemma 15) (t′1,⊥) 6∈ ∆fix

τ ′

holds. In this particular example, we have (Left 0,⊥) 6∈ ∆fix

Either Nat β . The
components of (Left 0,Left 0) are the environment entries of the ◦-annotated
term variable in the second premise of (ARROW→∗), and for these — by the
definition of result environment (Definition 21) as one will be constructed
for this premise — it is guaranteed that the entry of the first environment is
not related to ⊥.

Let us investigate the construction of (h1,h2) for this example. Construction
starts with the case for list types and a non-empty list as second component
of the disrelator. Hence, we define

(h1,h2) = (λz.case z of {[x]→ h′1 x}, λz.case z of {[x]→ h′2 x})

where
(h′1,h

′
2) = (g1(Left 0),g2(Left 0))α,β

∗,α
(α,[])

The tuple (head,head) in the disrelator tells that t1 and t2 are both sin-
gleton (as outcome of our constructions) lists. Hence for all non-singleton
lists as input the function’s output can (and if inputs are related it must) be
related. Related outputs are (⊥,⊥) since τ ′ is pointed. Consequently, we can
and do construct a pair of functions that both yield ⊥ for all non-singleton

100 4 Exemplifying the Necessity of Strictness Conditions

lists. The behavior of h1 and h2 on singleton lists is defined via a recursive
call to the construction of Definition 26. We define the functions as given
in Definition 26 for the case where τ is the element type of the list, in the
example a type variable that is unpointed. We get

(h′1,h
′
2) = (λz′.t′1, λz′.case z′ of {()→ t′2})

The functions yield unrelated values exactly when the input to the second
function is ⊥. Since there is no pair (x,⊥) ∈ ∆fix

α , it holds that (h′1,h
′
2) ∈

∆fix

α→Either Nat β and as well that (h′1 ⊥,h′2 ⊥) = (Left 0,⊥) 6∈ ∆fix

Either Nat β .
Consequently, we have

(h1,h2) ∈ ∆fix

[α]→Either Nat β

and
(h1 [⊥],h′2 [⊥]) = (Left 0,⊥) 6∈ ∆fix

Either Nat β

as required.

The last auxiliary construction missing to create the term environments is a
history environment. Consider again the rule (ARROW→∗). It has (besides the
pointedness checks) two premises whose typing contexts, and in particular
term contexts, may overlap. Hence, for each premise we have constructed
entries for the term environments, such that these form a result environment.
To construct a result environment for the conclusion, we need to take over
the term environment entries from the premises. But, if these environments’
domains overlap, which entry shall we take if we have different entries for
the same variable? In the conclusion of (ARROW→∗) the terms constructed by
the different premises (terms t1 and t2) are both present and may both contain
the same free term variable, say z , but force different value assignments to z
in the term environments to propagate a disrelation. For example, consider
z :: Either τ1 τ2. And consider t1 employs fromLeftτ2 z whereas t2 employs
fromRightτ1 z to guarantee their semantic interpretation different from ⊥ as
might be essential to generate a counterexample (cf. Example 18). In such a case,
we cannot find suitable entries for z in the term environments of the conclusion
of (ARROW→∗) because z needs to be interpreted as Left- and Right-value at
the same time. The initial disrelation cannot be propagated and hence we need
to abort the algorithm, returning without a counterexample.

To check whether we have to abort ExFind when merging term environments
at the rule (ARROW→∗), we create a history environment that tracks the us-
age of term variables and serves as primary information for an algorithm
mergeEnv, described in Definition 29, that either tells that we have to abort
ExFind because the term environments of the premises are incompatible, or
returns successfully merged term environments that form a suitable result
environment w.r.t. the conclusion of (ARROW→∗). The history of a variable and
the history environment are defined as follows.

4.5 Generation of Complete Counterexamples 101

DEFINITION 27
(history)

A history is defined inductively via

h ::= Branch x h | Split x h h | Leaf

where x ranges over the history tags

WrapTo Head PairTo Proj EitherTo
BottomTo′ ArrowTo∗ Dist1 Dist2 BottomTo

The set of histories H is partially ordered by 6H , defined as

(6H) = lfp(λR. {(Leaf, h) | ∀h ∈ H}
∪ {(Branch x h,Branch y h′) | x = y ∧ (h, h′) ∈ R}
∪ {(Split x h1 h2,Split y h

′
1 h
′
2)

| x = y ∧ (h1, h
′
1) ∈ R ∧ (h2, h

′
2) ∈ R})

DEFINITION 28
(history environment)

Let ΓV a term context. A map η that takes each term variable in ΓV to a history
is called history environment w.r.t. ΓV.

Concerning the example stated above the last two definitions, the history en-
vironments for the two different premises would yield Branch Dist1 h1 and
Branch Dist2 h2 for z , respectively, with h1 and h2 histories. We can tell incom-
patibility by the differing history tags Dist1 and Dist2. The naming of the tags is
due to the rules they arise from, e.g. the (extended) rule (DIST1) sets the history
of e :: Either τ1 τ2 in the conclusion of the rule to Branch Dist1 h where h is the
history of x in the premise of (DIST1). The extension of the history tells that the
values for e must be Left-values, because fromLeft is applied to them. Note
that the same history tag is added by the rule (DIST◦1), so the names of tags
do match rule names only up to a ◦-annotation. An exception to the naming
convention is BottomTo′ which is not only introduced by (BOTTOM→’), but also
by (APP’◦). Whenever the value a term variable is mapped to is arbitrary up to
fulfilling the requirements of a result environment, the variable has history Leaf.
The precise construction of history environments is presented in Definition 30,
along with the construction of result environment and disrelator.

The intention behind history tags in mind, we get a definition for the algorithm
mergeEnv that checks compatibility of histories.

DEFINITION 29
(mergeEnv)

Let σ′1 σ′2 term environments and η′ history environment, each with domain
V ′. Let σ′′1 , σ′′2 term environments and η′′ history environment, each with do-
main V ′′. If for each x ∈ V ′∩V ′′ we have η′(x) 6H η′′(x) or η′′(x) 6H η′(x),
then for ((σ′1, σ

′
2), η′) and ((σ′1, σ

′
2), η′) as input, the algorithm mergeEnv re-

102 4 Exemplifying the Necessity of Strictness Conditions

turns the environments (σ1, σ2) and η with domain V = V ′ ∪V ′′ and entries

κ(x) =

{
κ′(x) if x ∈ V ′ \ V ′′ ∨ η′′ 6H η′

κ′′(x) otherwise

for κ ∈ {σ1, σ2, η}.

If not all η′(x) and η′′(x) are comparable, then for the same input mergeEnv
returns a failure.

The Formal Description of ExFind

Finally, we are ready for the precise definition of the construction of the result
environment, the disrelator and the history environment. After we provided
the construction, we explain the intention behind the different steps briefly.

DEFINITION 30
(ExFind)

The rules of TermFind, shown in Figures 4.8, 4.9 and 4.10, with (ARROW→’)
in Figure 4.8 replaced by (ARROW→∗), shown on page 94, and extended by
the following constructions for result environments, disrelator and history
environment, form the algorithm ExFind.

To describe the rules’ extensions, we employ the names of types and vari-
ables from the rules’ definitions, as shown in Figures 4.8, 4.9, 4.10 and on
page 94 ((ARROW→∗)) but we assume all newly introduced variable names
to be fresh.

Furthermore, by µ µ′ we denote the update of a (term or history) environ-
ment µ by an environment µ′ with disjoint domain, such that µ is extended
by the entries of µ′ and afterward the environment’s domain is reduced to
the set of term variables appearing in the typing context of the current rule’s
conclusion. Except for the constructions for (ARROW→∗), all environment
names identify the environments of the premise, that are updated to gain
suitable environments for the conclusion. For (ARROW→∗) the result and
history environments given to mergeEnv are indexed by the premises they
arise from, i.e., by 1 or 2, and the environments that become updated are
the ones returned by mergeEnv. By σi we generalize over the environments
σ1 and σ2. Furthermore, updates where we only remove entries from the
environments are omitted.

The update of a disrelator is denoted by $ → $′, meaning that employing
the disrelator$ of the premise, we create the disrelator$′ for the conclusion
of a rule. For the rule (ARROW→∗) the disrelator of the first premise (that is
not a pointedness check) is denoted by $1.

4.5 Generation of Complete Counterexamples 103

(VAR◦)
(VAR’)

σi = {z 7→ p+
τ ′ | (z :: τ ′) ∈ Γ}

∪ {z 7→ p+
τ ′ | (z ◦ :: τ ′) ∈ Γ} ∪ {x 7→ p+

τ }
$ = (τ, [])
η = {z 7→ Leaf | (z :: τ ′) ∈ Γ}
∪ {z 7→ Leaf | (z◦ :: τ ′) ∈ Γ} ∪ {x 7→ Leaf}

(NAT’)
(UNIT’)
(LIST’)
(PAIR’)
(EITHER’)

σi = {z 7→ p+
τ ′ | (z :: τ ′) ∈ Γ}

∪ {z 7→ p+
τ ′ | (z ◦ :: τ ′) ∈ Γ}

$ = (τ, [])
η = {z 7→ Leaf | (z :: τ ′) ∈ Γ}
∪ {z 7→ Leaf | (z◦ :: τ ′) ∈ Γ}

(BOTTOM→◦)
(BOTTOM→)

σi {f 7→ λx.σi(y)}
η {f 7→ Branch BottomTo η(y)}

(APP’◦)
(BOTTOM→’)

σi {f 7→ hi}
with (h1,h2) = (g1(σ1(y)),g2(σ2(y)))Γ,τ1

(τ1,[])

η {f 7→ Branch BottomTo′ η(y)}
(NAT◦)
(NDROP)

σi {x 7→ p+
Nat}

η {x 7→ Leaf}

(UNIT◦)
(UDROP)

σi {x 7→ p+
()}

η {x 7→ Leaf}

(LIST◦)
σi {l 7→ p+

[τ1]}
η {l 7→ Leaf}

(PAIR◦)
σi {p 7→ p+

(τ1,τ2)}
η {p 7→ Leaf}

(EITHER◦)
σi {e → p+

Either τ1 τ2
}

η {e 7→ Leaf}

(HEAD◦)
(HEAD)

σi {l 7→ [σi(h)]}
η {l 7→ Branch Head η(h)}

(PROJ◦)
σi {p 7→ (σi(x), σi(y))}
η {p 7→ Split Proj η(x) η(y)}

(DIST◦1)
(DIST1)

σi {e 7→ Left σi(x)}
η {e 7→ Branch Dist1 η(x)}

(DIST◦2)
(DIST2)

σi {e 7→ Right σi(x)}
η {e 7→ Branch Dist2 η(x)}

(BOTTOM)
σi = {z 7→ p+

τ ′ | (z :: τ ′) ∈ Γ}
$ = (τ, [])
η = {z 7→ Leaf | (z :: τ ′) ∈ Γ}

104 4 Exemplifying the Necessity of Strictness Conditions

(UPDROP)
σi {x 7→ p+

τ1}
η {x 7→ Leaf}

(WRAP→’)
σi {f 7→ λl.case l of {[x]→ σi(g) x}}
η {f 7→ Branch WrapTo η(g)}

(PAIR→)
σi {f 7→ λp.case p of {(x,y)→ σi(g) x y}}
η {f 7→ Branch PairTo η(g)}

(PROJ)
σi {p 7→ (σi(x), σi(y))}
η {p 7→ Split Proj η(x) η(y)}

(ABS) (τ$, l) → (τ$, (λu.u (σ1(x)), λu.u (σ2(x))) : l)

(WRAP) (τ$, l) → (τ$, (head,head) : l)

(EITHER→)
σi {f 7→ λe.case e of

{Left x→ σi(g) x; Right x→ σi(h) x}}
η {f 7→ Split EitherTo η(g) η(h)}

(PAIR1) (τ$, l) → (τ$, (fst, fst) : l)

(PAIR2) (τ$, l) → (τ$, (snd, snd) : l)

(LEFT) (τ$, l) → (τ$, (fromLeft, fromLeft) : l)

(RIGHT) (τ$, l) → (τ$, (fromRight, fromRight) : l)

(ARROW→∗)

If mergeEnv (ξ1, η1) (ξ2, η2) returns ((σ1, σ2), η) then
σi {f 7→ λu.hi (u σi(w))}

with (h1,h2) = (g1(σ1(y)),g2(σ2(y)))Γ,τ2
($1)

$ → (τ, [])
η {f 7→ Split ArrowTo∗ η(x) η(y)}

otherwise abort ExFind.

The constructions in Definition 30 work similarly for most cases. In particular,
if a new variable appears somewhere in the typing context and is not a replace-
ment for some variable in the context of the rule’s premise, e.g. as for the rule
(UPDROP) or for all axioms, we only need to ensure that for each variable the
term environment entry in σ1 is related to the one in σ2 and that the entries in
σ1 are not related to ⊥ for ◦-annotated variables. Since we choose plus-values
as environment entries the conditions are fulfilled by Lemma 14 (1) and (2).

4.5 Generation of Complete Counterexamples 105

If a variable in the typing context arises as a substitute for a variable in the
context of the rule’s premise, we choose its value based on the term environ-
ment entries of the substituted variable. In such cases the history of a term
variable comes in. Originally, newly created variables (that are not a substitute
for another variable) have history Leaf. Whenever an entry for a new variable is
generated using the entry of another variable, the way of generation is tracked
in the variable’s history. Given that explanation, the updates of the history
environment are very natural. For example for (HEAD), the history of h in the
premise, η(h), is extended to Branch Head η(h), pointing out that the generated
term will employ the head of the list and that the values of that head in the dif-
ferent environments may be important to obtain a suitable counterexample to
the parametricity theorem. While for variables of list type there is no (top level)
way to conflict, the situation is different for variables of type Either τ1 τ2. For
them, as already mentioned, choices as Left- or Right-values may be essential.
These choices are expressed via the history tags Dist1 and Dist2, respectively.
The auxiliary algorithm mergeEnv (Definition 29) identifies the incompatibility
between tags Dist1 and Dist2 and fails in such a conflicting case when called for
the extra constructions of rule (ARROW→∗). The constructions for (ARROW→∗)
also involve the second auxiliary algorithm, presented in Definition 26. Re-
garding (ARROW→∗), the first premise tells that t1 is not related to itself for a
certain choice of related values for w , i.e., in the conclusion the semantics of
λx :: τ1.t1[x/w] (in the different environments) are not related if applied to the
choices for w from the premise. In the extra construction for the entries of f in
rule (ARROW→∗), we design f such that its argument is applied to the values
assigned to w in the environments of the first premise (that is not a pointed-
ness restriction). This way, if f is applied to λx :: τ1.t1[x/w], we generate the
unrelated interpretations of t1 from the first premise. Via the related functions
(h1,h2) we guarantee to preserve the disrelation (see Definition 30 for the rule
(ARROW→∗) and Lemma 15).

The construction of (h1,h2) depends on the term t1 via the disrelator of the
first premise. The disrelator is initialized at the axioms and reinitialized for
the rule (ARROW→∗), telling that the parametricity theorem breaks because the
constructed term’s interpretations directly violate the conditions for relatedness.
Here directly means to violate the definition for the current type, and this
not by a violation for a (structural) subtype. Whenever the interpretations
of the constructed term are unrelated essentially because requirements for a
(structural) subtype are not met, the disrelator tells so. In the rule (HEAD) for
example, the disrelator is updated and tells that the original disrelation arises
on the elements of the list. Most importantly, for the rule (ABS) the disrelator
tracks what related arguments must be given to a pair of functions to uncover
that these functions are unrelated.

4.5.5 Correctness of ExFind

The following results verify the correctness of the constructions presented in
Definition 30. That is, we prove that the constructed environments are result

106 4 Exemplifying the Necessity of Strictness Conditions

environments w.r.t. the given typing context and type, and that ExFind returns
also a respective result term. We first give results for the second phase, and
then extend them to the overall algorithm. The second phase constructs a
strong result term, which is important for the correctness proof of the whole
algorithm. We only state lemmas to structure a possible proof. The proofs
of the respective lemmas proceed on the depth of the derivation tree and are
found in Appendix A.1.

LEMMA 16 For every internal input Iint, the second phase of ExFind, if it returns a
term, constructs a result environment w.r.t. Iint.

LEMMA 17 If, for an internal input Iint, the second phase of ExFind returns a term,
then it is a strong result term w.r.t. the input and the result environment
returned with it.

LEMMA 18 For all external inputs Iext

• the term environments (σ1, σ2) constructed by ExFind form a result
environment w.r.t. Iext,

• the returned term t is a respective result term and

• the returned $ a disrelator for (JtKfix
σ1
, JtKfix

σ2
).

By the definitions of result environment and result term, Lemma 18 implies
that ExFind really creates counterexamples to the parametricity theorem. We
highlight this fact by restating the lemma’s assertion more explicitly via the
following theorem.

THEOREM 8
(correctness of ExFind)

If ExFind returns a term t and a result environment ξ = (σ1, σ2) for an
external input Iext = (Γ; τ), then

Γ′ ` t :: τ

in λα
fix+ where Γ′ is Γ with all ∗-annotations removed, and

(JtKfix
σ1
, JtKfix

σ2
) 6∈ ∆fix

τ

Additionally to the assertion of Theorem 8, we can extract all function argu-
ments we may need when we derive a free theorem out of the parametricity
theorem from the disrelator returned by ExFind. We will not separately state
that result, for it follows immediately from the definition of a disrelator.

4.5 Generation of Complete Counterexamples 107

4.5.6 A Closer Look on Completeness

On the way from TermFind to ExFind we reduced the set of inputs for which a
term is generated. Thereby, the completeness claim that the algorithm yields a
term whenever a counterexample to the parametricity theorem (due to a certain
missing strictness condition) exists, becomes unsustainable. The alterations to
TermFind that reduce the possibilities to generate terms are the replacement of
(ARROW→’) by (ARROW→∗) and the mergeEnv check at (ARROW→∗).

Unfortunately, the restriction (of (ARROW→’) to (ARROW→∗)) prevents us from
finding counterexamples for some types.

EXAMPLE 21Consider the following external input

(α, β∗; ((Nat → β)→ [α→ β])→ Nat)

It says that we test the strictness restriction for α, but take the one for β as
given. TermFind, employing (ARROW→’) in the derivation, yields the term

t = λf :: (Nat → β)→ [α→ β].
case f (λx :: Nat .(headα→β ((λz :: β.f (λu :: Nat .z)) ⊥β) ⊥α)

of {[y]→ 0}

that simplifies to the semantically equivalent term

t = λf :: (Nat → β)→ [α→ β].
case f (λx :: Nat .(headα→β (f ⊥Nat→β) ⊥α)) of {[y]→ 0}

We can choose minimal environments and the functions

f = λh :: Nat → ().(λx :: ().()) : (case h 0 of {()→ []})
f ′ = λh :: Nat → ().(λx :: ().case x of {()→ ()})

: (case h 0 of {()→ []})

and get (JfKfix
∅ , Jf

′Kfix
∅) ∈ ∆fix

(Nat→β)→[α→β], as well as Jt f Kfix
∅ = 0 and Jt f ′Kfix

∅ =

⊥, i.e., we have a counterexample to the free theorem and thus to the
parametricity theorem for type ((Nat → β) → [α → β]) → Nat . The
example is only found by TermFind, but not by ExFind.

Seidel and Voigtländer (2009b) wrongly count the above counterexample as a
false positive of TermFind, excluded via the restriction to (ARROW→∗).17 At the
moment, no false positive generated by TermFind and excluded in ExFind due
to the restriction of (ARROW→’) to (ARROW→∗) is known. Hence, we argue that
the restriction might not be necessary, but omitting it causes at least technical
difficulties. Further investigation might be a topic for future research.

17Seidel and Voigtländer (2010, Section 6) do not discuss the example, but (wrongly?) assert that
a false positive exists.

108 4 Exemplifying the Necessity of Strictness Conditions

The compatibility check via mergeEnv indeed rules out false positives.

EXAMPLE 22 Consider the external input

(α, β∗, γ∗, δ∗; (γ → Either (α→ β) (γ → δ))→ ((Nat → β)→ γ)→ δ)

TermFind generates term

t = λf :: γ → Either (α→ β) (γ → δ).λg :: (Nat → β)→ γ.
fromRightγ→δ (f (g (λx :: Nat .(fromLeftα→β (f ⊥γ) ⊥α)))) ⊥γ

We will not find type interpretations and (f , f ′) ∈ ∆fix

γ→Either (α→β) (γ→δ),ρ
such that we gain a counterexample. We prove that no suitable pair (f , f ′)
exists by a case distinction on the possible behaviors of the two functions on
⊥. In particular, we consider the following three cases

(a) f ⊥ = ⊥ and f ′ ⊥ = ⊥
(b) f ⊥ = Left x and f ′ ⊥ = Left y with (x,y) ∈ ∆fix

α→β,ρ
(c) f ⊥ = Right x and f ′ ⊥ = Right y with (x,y) ∈ ∆fix

γ→δ,ρ

Different behavior of f and f ′ on ⊥ than described by the above cases
immediately implies (f , f ′) 6∈ ∆fix

γ→Either (α→β) (γ→δ),ρ (independently of the
interpretation of type variables).

We consider case (a) first and get

(JtKfix
∅ f , JtKfix

∅ f ′) = (λg.fromRight (f (g ⊥)) ⊥, λg.fromRight (f ′ (g ⊥)) ⊥)

The pair is in ∆fix

((Nat→β)→γ)→δ,ρ independently of the concrete ρ: The ⊥s
given to g as argument are related because Nat → β is pointed, and hence
the results of g ⊥ for related choices for g are related. Now, f and f ′

are related, and thus relatedness propagates. Equally the application of
fromRight, as it is related to itself, preserves relatedness. Consequently,
we cannot break the parametricity theorem.

For case (b) continuity of functions forces f and f ′ to yield Left -values
for every input. Hence, the application of fromRight yields ⊥ in
JtKfix
∅ f and JtKfix

∅ f ′, respectively, and we get (JtKfix
∅ f , JtKfix

∅ f ′) = (⊥,⊥) ∈
∆fix

((Nat→β)→γ)→δ,ρ.

Case (c) is similar to case (b) with left and right switched.

Unfortunately, a term generated by TermFind sometimes does not give rise
to a counterexample even if a slight change to it allows for such an example.
In such situations ExFind cannot yield a counterexample. We point out two
reasons for such situations and illustrate them by slight changes to Example 22.

4.5 Generation of Complete Counterexamples 109

One reason that the terms generated by TermFind are sometimes not suitable
for counterexample generation is that TermFind injects ⊥τ into the term it
constructs, even if other choices are possible. For example it uses ⊥Nat where
it could introduce 0, 1, or alike terms. Thereby, TermFind may fail to produce a
suitable term, as the following example shows.

EXAMPLE 23Consider Example 22 with γ replaced by Nat , i.e., the input

(α, β∗, δ∗;
(Nat → Either (α→ β) (Nat → δ))→ ((Nat → β)→ Nat)→ δ)

Up to type annotations, TermFind generates the term from Example 22:

t = λf :: Nat → Either (α→ β) (Nat → δ).λg :: (Nat → β)→ Nat .
fromRightNat→δ

(f (g (λx :: Nat .(fromLeftα→β (f ⊥Nat) ⊥α)))) ⊥Nat

But if we replace ⊥Nat by 0 we gain a counterexample. We can choose:

f = λx.case x of {0→ Left λy.(); → Right λy.()}
f ′ = λx.case x of {0→ Left λy.case y of {()→ ()};

→ Right λy.()}
g = g′ = λx.case x ⊥ of {()→ 1}

A second reason why the generation of suitable terms fails is the restriction to
singleton lists. Lists with more than one element would allow to get multiple
variables of element type in the typing context. In turn, we could merge more
environments via mergeEnv because we could employ different variables in the
different environments. The next example, again just a slight modification of
Example 22, illustrates the advantage.

EXAMPLE 24Consider the external input

(α, β∗, γ∗, δ∗; [γ → Either (α→ β) (γ → δ)]→ ((Nat → β)→ γ)→ δ)

TermFind generates the term

t = λl :: [τ].λg :: (Nat → β)→ γ.
fromRightγ→δ (headτ l

(g (λx :: Nat .fromLeftα→β (headτ l ⊥γ) ⊥α))) ⊥γ

where τ = γ → Either (α→ β) (γ → δ).

Compared to Example 22 we essentially replaced f by headτ l in the term
and, hence, the term is still not suitable for counterexample generation.
But, we can replace one appearance of headτ l by headτ (tailτ l), where

110 4 Exemplifying the Necessity of Strictness Conditions

tailτ = λxs :: [τ].case xs of { [] → ⊥[τ]; (y : ys) → ys }, to allow for a
counterexample. The manipulated term

t = λl :: [τ].λg :: (Nat → β)→ γ.
fromRightγ→δ (headτ (tailτ l)

(g (λx :: Nat .fromLeftα→β (headτ l ⊥γ) ⊥α))) ⊥γ

minimal environments and

l = [λx.Left (λy.()), λx.Right (λy.case x of {()→ ()})]
l′ = [λx.Left (λy.case y of {()→ ()})

, λx.Right (λy.case x of {()→ ()})]
g = g′ = λh.case h 0 of {()→ ()}

establish such an example.

Summing up the results of the completeness discussion, we encountered three
different reasons why we lose counterexamples in ExFind where TermFind
yields a term:

• the restriction of (ARROW→’) to (ARROW→∗),
• the introduction of ⊥τ for types where terms that evaluate to non-⊥

values are available and

• the lack of lists with multiple elements.

All three problems only appear if the (ARROW→’) rule is applied in TermFind.
Hence, since (ARROW→’) is only needed in TermFind if (ARROW→∗) is applied
in ExFind, we claim (based on the completeness claim for TermFind) that
whenever ExFind returns without a counterexample for a given input Iext and
never employs (ARROW→∗) during the counterexample search, then there exists
no counterexample for the input Iext.

4.5.7 The Implementation of ExFind

ExFind is implemented and can be used via a web interface at http://www-
ps.iai.uni-bonn.de/cgi-bin/exfind.cgi . The source code of the implementation
is available for download at Hackage: http://hackage.haskell.org/package/
free-theorems-counterexamples-0.3.1.0 . Figure 4.14 shows the web interface
with the output for type [α]→ [α]. First, the sufficiently restricted free theorem
is presented and afterward the necessity of a strictness condition is shown.
Therefore, a counterexample to the insufficiently restricted theorem is presented
the following way:

• The term f that gives rise to the counterexample is shown.

• The choice of the minimal environments is given.

• The term f is employed in a context that discloses the breach of the logical
relation.

http://www-ps.iai.uni-bonn.de/cgi-bin/exfind.cgi
http://www-ps.iai.uni-bonn.de/cgi-bin/exfind.cgi
http://hackage.haskell.org/package/free-theorems-counterexamples-0.3.1.0
http://hackage.haskell.org/package/free-theorems-counterexamples-0.3.1.0

4.6 Summary 111

The context is built from the disrelator and comprises the arguments given to f
to disprove the insufficiently restricted free theorem.

Regarding examples with more than one type variable, we can restrict the coun-
terexample search to examples that arise due to a specific strictness restriction.
Therefor, we only prepend type variables we do not want to investigate the
strictness condition for. For example, for the input α β.((α, γ)→ β)→ β only
the strictness condition on the relation chosen for γ is considered.

4.6 Summary

Our aim was to set up an algorithm that checks for a given type τ if certain
strictness conditions imposed on the free theorem for τ in the calculus λα

fix+ are
necessary or superfluous. In the end, we designed two algorithms, TermFind
and ExFind.

TermFind is meant to construct terms that are likely to break the free theorem
for the given type if one of the considered strictness conditions (given via
the unannotated type variables in the typing context) is missing. For the
design of TermFind we employed an alternative system of typing rules for λα

fix+

without fix, because we found the original one unsuitable w.r.t. its algorithmic
properties. The alternative rule system is a translation of a sequent calculus
for proof search in intuitionistic logic that was established by Corbineau (2004).
Translation of the rules yields a term search algorithm for fix-free terms that is
complete in the way that it generates a term for every inhabited type.

In order to construct terms suitable for the generation of counterexamples to
free theorems, adjustments to the rule system translated from Corbineau (2004)
were necessary. Essentially, we searched for possibilities to introduce fix in
the constructed term in a way that it enforces one of the strictness conditions
in question. To (roughly) figure out where to insert fix, we employed the
refined type system of Launchbury and Paterson (1996). The adaptation of
the rule system translated from Corbineau (2004) resulted in TermFind and
was driven by a worst-case strategy: We injected fix wherever it enforced one
of the strictness conditions under consideration locally (i.e., for the current
type) and with the possibility to propagate the enforcement to the type that
was given as input to the algorithm. For the resulting algorithm TermFind we
claim completeness in the way that whenever it returns without a term for a
given external input, the considered strictness conditions for the input type
are superfluous. We base the claim on the completeness of the rule system
by Corbineau (2004) and the way we translated and manipulated his system.
TermFind is correct in the way that whenever it returns a term, the refined type
system enforces at least one of the considered strictness conditions. That notion
of correctness does not imply that all terms found by TermFind are really
suitable for counterexample generation, as exemplified in Subsection 4.5.6.
Furthermore, we proved termination of TermFind for all external inputs.

112 4 Exemplifying the Necessity of Strictness Conditions

Figure 4.14: The output of the web interface for ExFind

4.7 Outlook 113

The algorithm ExFind produces complete counterexamples to free theorems.
It is proved correct and terminates for every external input. ExFind mainly
extends the rules of TermFind by extra constructions sufficient to establish com-
plete counterexamples. Unfortunately, to manage all extra constructions, the
rule (ARROW→’) from TermFind is simplified to (ARROW→∗) and additionally
ExFind aborts under certain conditions at rule (ARROW→∗) because it cannot
always construct suitable term environments. The changes render ExFind
provably incomplete, but at least the second change is necessary to exclude
false positives, and thus to get a (provably) correct algorithm.

ExFind is implemented and can be used online via a web interface at http://
www-ps.iai.uni-bonn.de/cgi-bin/exfind.cgi . The source code is available at:
http://hackage.haskell.org/package/free-theorems-counterexamples-0.3.1.0 .

4.7 Outlook

Concerning counterexample generation to free theorems with missing strictness
restrictions in a calculus with general recursion, the generator ExFind may be
improved in several ways:

• We can try to replace (ARROW→∗) by the rule (ARROW→’) enriched with
the respective extra constructions as described in Definition 30. The
primary problem will be the generation of suitable term environment
entries for f in the conclusion of (ARROW→∗).

• We can distinguish types with differently many values, such that we can
use different, differently and incomparably defined, inputs for a function
if it is called several times. The new feature will facilitate examples like
Example 23. But, the distinction of the different values will complicate
the generation of term environments.

• We may add a special treatment for variables in the typing context that
represent elements from a list, because of these we have an arbitrary num-
ber of independent copies present, and hence can treat them differently
w.r.t. merging of environments. In particular, we could give different
copies to the premises of (ARROW→∗). The change would enable us to
generate the counterexample in Example 24.

The second and the third suggestion for enhancement of ExFind imply that
ExFind must create a slightly different term than TermFind does. It is not a
compulsory enhancement, if we force TermFind to create also different terms.
It does not build complete (or, more precisely, completely instantiated) coun-
terexamples anyway, and thus it suffices if just a term is found, when a coun-
terexample exists. But still, concerning TermFind there are reasonable goals for
further investigations. First, we may try to prove that TermFind is complete,
and second we may consider the gap between (the possibly improved version
of) ExFind and TermFind a bit closer. Example 22 suggests that TermFind is
incorrect. It returns a term for an input that does not serve as the base for a
counterexample and also slight modifications, as suggested as improvements

http://www-ps.iai.uni-bonn.de/cgi-bin/exfind.cgi
http://www-ps.iai.uni-bonn.de/cgi-bin/exfind.cgi
http://hackage.haskell.org/package/free-theorems-counterexamples-0.3.1.0

114 4 Exemplifying the Necessity of Strictness Conditions

for ExFind, do not allow for a counterexample. For the tested input, there
seems to exist no counterexample to the respective free theorem and hence
TermFind seems to be incorrect in the way that it finds terms for inputs that do
not allow for a counterexample.

The “perfect”, but seemingly difficult or unachievable result we could head
for is to close the gap between TermFind and ExFind, and establish a complete
and correct counterexample generator.

Aside of testing the necessity of strictness restrictions in a calculus with general
recursion, we could also examine a counterexample generator that exemplifies
the necessity of totality restrictions in a calculus with selective strictness. For
that investigation the refined type system developed in the next chapter might
be employed.

115

Chapter 5

Taming Selective Strictness

1 As already mentioned (cf. Section 1.2 and 2.3.1), Haskell provides the ability
to enforce strict evaluation, e.g. via the strictness primitive seq that is powerful
enough to simulate all other strictness annotations available in Haskell. To illus-
trate the usefulness and the problems of selective strictness we present four dif-
ferent versions of the Haskell function foldl . All of them take a binary function
c, an initial argument n and a list as arguments (all appropriately typed). The
functions consume the list from left to right, calculating (c (. . . (c n x1) . . .) xn)
for c, n and [x1, . . . , xn] as input, return n for the empty list as input and ⊥ for
lists of the form x1 : . . . : xn : ⊥ as well as for infinite lists (where for infinite
lists depending on the version of foldl and the definedness of its arguments,
the calculation either yields a finite failure or does not terminate). Figure 5.1
illustrates how foldl transforms a list.2

Haskell provides two versions of foldl , the standard function foldl and a strict
version foldl ′3. We show possible implementations in the upper row of Fig-
ure 5.2. Let us exemplify the benefit of strict evaluation by the implementation
of a sum function.

EXAMPLE 25
(benefit of strict evalua-
tion)

Consider the functions

sum = foldl (+) 0 and sum ′ = foldl ′ (+) 0

Both sum up the elements of a list, but evaluation proceeds differently. For
example, compare the evaluation of both functions when applied to [1, 2]:

1Results have been published in Seidel and Voigtländer (2009a, 2011a) and are also found in the
technical report Seidel and Voigtländer (2009c).

2The illustration fits all versions of foldl we consider during this chapter, as long as all argu-
ments are total. When failure comes in, the functions sometimes differ in the definedness of their
results.

3The function foldl ′ is found in the module Data.List, while foldl is present via the Prelude.

116 5 Taming Selective Strictness

foldl c n

:

t1 :

t2

tn []

=

c

tn

c

t2c

t1n

Figure 5.1: Visualization of the function foldl (for lists with total spine, i.e., of form x1 : . . . : xn : [])

sum [1, 2] sum ′ [1, 2]

≡ foldl (+) 0 [1, 2] ≡ foldl ′ (+) 0 [1, 2]

≡ let n ′ = 0 + 1 in

seq n ′ (foldl ′ (+) n ′ [2])

≡ foldl (+) (0 + 1) [2] ≡ foldl ′ (+) 1 [2]

≡ let n ′ = 1 + 2 in

seq n ′ (foldl ′ (+) n ′ [])

≡ foldl (+) ((0 + 1) + 2) [] ≡ foldl ′ (+) 3 []

≡ (0 + 1) + 2

≡ 1 + 2

≡ 3 ≡ 3

We observe that sum does not evaluate the addition until all elements of the
list have been consumed. Thus, the unevaluated sum must be stored until
the list is completely consumed. Consequently we unnecessarily allocate
memory linear in the list length. In contrast, sum ′ starts to calculate the
sum immediately when two summands are available and thus needs only
constant space to manage the addition. Hence, sum ′ is more efficient w.r.t.
memory usage, and as a consequence very likely also w.r.t. runtime.

Example 25 shows the benefit of strict evaluation, but from Section 2.3 we
already know its negative influence on parametricity results. In this chapter,
we develop a refined type system to reduce the restrictions that forced strict
evaluation enforces on the parametricity theorem and hence on free theorems.
Section 5.1 provides motivation for refined typing, while Section 5.2 introduces
a refined type system for λαseq

4. Finally, we aim for a retyping algorithm that
takes a term with standard type annotations as in λαseq and returns the term with
the best possible refined type annotations, as well as the best possible refined
type(s) of that term. Here “best” refers to “yielding a minimally restricted

4The calculus λαseq is introduced in Section 2.3.

5.1 Motivation for a Refined Type System 117

foldl :: (α→ β → α)→ α→ [β]→ α
foldl c n [] = n
foldl c n (x : xs) = foldl c (c n x) xs

foldl ′′ :: (α→ β → α)→ α→ [β]→ α
foldl ′′ c n [] = seq (c n) n
foldl ′′ c n (x : xs) =

seq xs (seq x (foldl ′′ c (c n x) xs))

foldl ′ :: (α→ β → α)→ α→ [β]→ α
foldl ′ c n [] = n
foldl ′ c n (x : xs) =

let n ′ = c n x in seq n ′ (foldl ′ c n ′ xs)

foldl ′′′ :: (α→ β → α)→ α→ [β]→ α
foldl ′′′ c n [] = seq c n
foldl ′′′ c n (x : xs) = seq c (foldl ′′′ c (c n x) xs)

Figure 5.2: The Haskell standard functions foldl and foldl ′, and two more variants

parametricity theorem”. Unfortunately, the refined type system presented in
Section 5.2 is not suitable as a retyping algorithm. Neither can we guarantee
termination nor can we directly use input with standard types when we want
to employ the type systems’ rules as type refinement algorithm. Therefore, in
Section 5.3, we alter the typing rules such that we obtain an algorithmic rule
system. Based on the obtained rule system a retyping algorithm is implemented.
Section 5.4 describes how to use the implementation. In Section 5.5 we present
a summary of the whole chapter, and Section 5.6 discusses directions for further
research.

5.1 Motivation for a Refined Type System

Consider the following two snippets of Haskell code.

(+1) ◦ (foldl (+) 0) and foldl (+) 1

The second snippet is an optimized version of the first one. The semantic equiv-
alence of the two code snippets is an instance of a more general equivalence,
called fusion property (Hutton, 1999). It says that for all appropriately typed f ,
c, c′, n , xs , we have

(∀x , y . f (c x y) ≡ c′ (f x) y) ⇒ f (foldl c n xs) ≡ foldl c′ (f n) xs (5.1)

We can prove (5.1) inductively over the structure of xs , employing the definition
of foldl , or gain it directly via the free theorem for foldl ’s type.

The free theorem for foldl ’s type in a calculus without the possibility to enforce
strict evaluation (like λαfix) states that for all appropriately typed strict f and g ,
and appropriately typed c, c′, n , xs ,

(∀x , y . f (c x y) ≡ c′ (f x) (g y))

⇒ f (foldl c n xs) ≡ foldl c′ (f n) (map g xs) (5.2)

118 5 Taming Selective Strictness

holds. Via refined typing à la Launchbury and Paterson (1996) we can also
remove the strictness conditions on f and g ; and if we choose g = id we
immediately get the fusion property (5.1).

But, how about foldl ′, does (5.1) hold for it? Unfortunately, it does not. If we
choose

f = λx → if x then True else ⊥ n = False

c = c′ = λx y → if y then True else x xs = [False,True]

then we obtain a counterexample to (5.1) with foldl replaced by foldl ′.5 An
attempt to prove (5.1) with foldl replaced by foldl ′ via the definition of foldl ′

reveals a new sufficient extra condition to reestablish the fusion property: If
we force f total then (5.1) holds for foldl ′. Totality of a function means that
for every argument different from ⊥, the result is different from ⊥.total function Or, put
differently, the total functions are exactly the functions with a bottom-reflecting
graph.

Now, how about the proof of (5.1) for foldl ′ via the free theorem? Since foldl ′

employs seq, we have to choose a free theorem aware of selective strict evalu-
ation. We already described the influence of selective strictness on relational
parametricity in Section 2.3. Employing the parametricity theorem for a lan-
guage with selective strictness (Theorem 3) we obtain (5.2), but with the extra
conditions that

• f and g strict and total,

• c ≡ ⊥ iff c′ ≡ ⊥,

• c z ≡ ⊥ iff c′ (f z) ≡ ⊥, for all appropriately typed z .

Applying the resulting statement for a proof of the fusion property, we in-
stantiate g by id , which is strict and total, and we require f to be total, as the
inductive proof does. The strictness requirement on f can probably be dropped
by refined typing à la Launchbury and Paterson (1996). But, the conditions on
c and c′, that are superfluous as we know from the inductive proof, remain.
So, why do these restrictions arise and are they really necessary? Therefor,
consider foldl ′′ and foldl ′′′, given in Figure 5.2 and basically equivalent to foldl
and foldl ′ but with different applications of seq.

We regard the free theorem given in (5.2) and show by example the necessity
of all additional restrictions that arise in the presence of seq. We choose the
following three instantiations for the variables in (5.2):

f = id g = t1 c = t2 c′ = t2 n = True xs = [False] (5.3)
f = id g = id c = t2 c′ = t3 n = False xs = [] (5.4)
f = id g = id c = ⊥ c′ = λx → ⊥ n = False xs = [] (5.5)

5We obtain True ≡ ⊥.

5.1 Motivation for a Refined Type System 119

with

t1 = λx → if x then True else ⊥
t2 = λx y → if x then True else ⊥
t3 = λx → if x then (λy → True) else ⊥

For all instantiations the free theorem (5.2) holds for foldl and with foldl ′ instead
of foldl . But, instantiations (5.3) and (5.4) break the theorem if we replace foldl
by foldl ′′. Furthermore, (5.5) breaks it if we replace foldl by foldl ′′′. All three
instantiations violate a different condition that arises through seq. For the
first instantiation g is not total, for the second c z 6≡ ⊥ while c′ (f z) ≡ ⊥ for
z = False, and for the last one c ≡ ⊥ while c′ 6≡ ⊥. Hence, we see that none
of the extra conditions on (5.2) that arise in a selectively strict language can be
dropped. We also observe that the necessity of a restriction seems to depend
on the actual use of seq, i.e., not only on the fact that seq is employed, but
crucially on the fact where it is employed. Our intuition will prove right: We
show that the totality restriction on f arises from the strict evaluation of a term
of type α, the totality restriction on g arises from the strict evaluation of a term
of type β, and the other two restrictions arise from the strict evaluation of c
and c n . Concerning the different uses of seq in the versions of foldl shown in
Figure 5.2, only the strict evaluation of xs in the definition of foldl ′′ does not
enforce a restriction. Strictly evaluating a list’s structure is nothing we must
employ seq for. We can simulate the same behavior via a case expression and
thus seq has no negative effect on the free theorem when used on lists.

The fundamental problem when establishing stronger free theorems in a calcu-
lus with a strictness primitive is that (in the standard type system) the theorems
cannot be sensitive to the actual applications of the strictness primitive because
the applications are not reflected in the type of a term. For example, all ver-
sions of foldl given in Figure 5.2 have the same type. Since a free theorem
only relies on the type of a function, obviously for all versions of foldl the free
theorem must be identical. In particular, all restrictions that arise through the
different uses of seq must be enforced by the free theorem. This situation is
unsatisfactory. For example, consider that we get the fusion property for foldl
directly as an instance of the free theorem of foldl ’s type in a calculus without
selective strictness. But, in a calculus that allows selective strict evaluation,
the free theorem is encumbered with several superfluous side conditions, the
same for foldl ′ where only one extra condition is important. Hence, we would
benefit if free theorems were to somehow incorporate knowledge about the
use of strictness primitives. The only way to achieve such theorems is to enrich
the type of a function by information about the employment of the strictness
primitive. If we can guarantee that at certain places we do not evaluate strictly,
we are able to avoid restrictions on free theorems that typically arise in a se-
lectively strict language. The idea to use refined types to control the influence
of a language feature on parametricity results stems from Launchbury and
Paterson (1996). They develop a refined type system to track general recursion
and thereby reduce strictness restrictions on free theorems that arise in a cal-
culus with general recursion as presented in Section 2.2. We already used the

120 5 Taming Selective Strictness

original refinement in Chapter 4. Here, we realize the idea w.r.t. the influence
of selective strict evaluation on parametricity results.

5.2 A Refined Type System

We develop a refined type system for λαseq. The calculus λαseq can be seen as
a core of Haskell that captures the (w.r.t. our investigations of free theorems)
important features of selective strictness and general recursion. Before we start
the development, let us point out that this work is not the first approach that
focuses on the problems selective strictness causes w.r.t. parametricity results.

5.2.1 A Former Refinement Approach — The Type Class Eval

The influence of selective strict evaluation on parametricity results and hence
on free theorems was noticed already when selective strict evaluation was
introduced in Haskell. It was known that the polymorphically typed function
seq :: α → β → β does not satisfy the corresponding parametricity property
and also functions using it may not. As a consequence, in Haskell 1.3 (Peterson
et al., 1996), the first Haskell version supporting selective strict evaluation, it
was not typed completely polymorphic, but constrained by a type class Eval:
seq :: Eval α ⇒ α → β → β. Hence, terms had to be of some type in Eval to
be strictly evaluated. The restriction was meant to prevent from additional
side conditions regarding parametricity results, in particular it was intended to
guarantee the optimization rule foldr / build , implemented in GHC and relying
on parametricity, to remain correct (Hudak et al., 2007, Section 10.3).6 But, the
type class approach turned out to be improper.

Even with the type class restriction on seq, parametricity results were not
completely restored, as observed by Johann and Voigtländer (2004, 2006). The
Haskell language report for version 1.3 states that “Functions as well as all other
built-in types are in Eval.” (Peterson et al., 1996, Section 6.2.7). As a consequence,
function foldl ′′′, shown in Figure 5.2, would not require a single Eval restriction,
even though it does not satisfy the “naive” free theorem that is not aware of
selective strict evaluation. That means, with the type class approach some
restrictions on free theorems that arise from the strict evaluation of functions
are not tracked. The problem is that with only the Haskell type class approach
(Wadler and Blott, 1989) we can hardly do better. If we try to distinguish
function types in Eval from those not in Eval, the Haskell type class approach is
insufficient. Type classes in Haskell constrain the types that we can instantiate
for a type variable, and as a pay off, they guarantee certain operations to be
available at those types. For Eval, the available operation is seq. Starting from
the type class assertions for type variables, class membership of all other types

6The GHC allows to optimize code via explicitly given rewrite rules. Directed by such rules
GHC replaces code snippets (Peyton Jones et al., 2001). The programmer writing the rule is
responsible for its correctness, i.e., semantic equivalence of both code snippets. The module
Data.List from the standard libraries implements several rewrite rules that are special cases of
foldr / build .

5.2 A Refined Type System 121

must be derivable in a fixed manner. Thus, we need to read off only from the
argument or the result type of a function if it is in Eval or not. Unfortunately,
neither of the types has an influence on whether we allow strict evaluation of
functions of a certain type or not. Hence, the type class approach is unsuitable.
But also an extension that allows to set type class restrictions on function
types directly does not solve the problem completely.7 Consider the function
f :: Eval (α → Int) ⇒ (α → Int) → (α → Int) → Int with the definition
f = λg h → seq g 5. Here the type class restriction tells that seq might be
employed on g and h . Actually, it is not employed on h , but we cannot express
that by removing a type class constraint, because then we would remove the
necessary restriction on g . Hence, a type system that really allows fine-grained
insights about the use of a strictness primitive must take another approach
than only the Haskell type class system for refinement.

Just as a side note: The type class Eval was removed in Haskell 98 (Peyton Jones,
2003), making seq completely polymorphic. As Hudak et al. (2007) recall, the
reason was rather practical: seq is usually introduced when optimizing an
already complete program. In this scenario, the type class constraint might
force a change of the type signature of the function that is optimized and
thereby cause changes of type signatures all over the program.

5.2.2 The New Approach — An Annotated Type System

Before we design a new refined type system, we have to clarify what the
type system has to express. Therefore, we consider the influence of selective
strictness in detail. The parametricity theorems for λαfix (Theorem 2) and λαseq

(Theorem 3), i.e., for calculi without/with a strictness primitive, differ only in
the bottom-reflectingness requirement on the logical relation. Concerning this
requirement two questions arise:

• How is bottom-reflectingness guaranteed?

• Where is bottom-reflectingness really used?

A closer look on the definitions of the logical relations for λαfix and λαseq, as
well as on Theorems 2 and 3, reveals the differences that suffice to guarantee
bottom-reflectingness of the logical relation: Relations between functions have
to be forced bottom-reflecting by definition and the range of ρ must also be
restricted to bottom-reflecting relations.

Concerning the use of bottom-reflectingness, a closer look at the proof of Theo-
rem 3 reveals that the property is only needed for the relational interpretation
of a type if a term of that type is strictly evaluated, i.e., if a term is bound to
a variable via a strict let expression, like t1 of type τ1 in let! x :: τ1 = t1 in t .
Hence, if we distinguish types whose relational interpretation is guaranteed to
be bottom-reflecting from those whose relational interpretation is not and if

7In Haskell 98 and Haskell 2010 we can only add class constraints to type variables, but not to
function types. Nevertheless, GHC provides an extension that allows to constrain also other types.
It is enabled via the flag -XFlexibleContexts.

122 5 Taming Selective Strictness

we allow strict evaluation only for terms whose type’s relational interpretation
is guaranteed to be bottom-reflecting, then the parametricity theorem should
still hold. To distinguish the different kinds of types, we set up the type class
SeqableSeqable , containing only the types that guarantee a bottom-reflecting relational
interpretation.

By the just described insights, we see that the relevant restrictions to guarantee
bottom-reflectingness are manifested only in additional conditions on function
types and type variables. If we know guarantees about bottom-reflectingness
of the relational interpretations of function types and type variables, we can
determine all types for which the bottom-reflectingness guarantee holds via
class membership rules for Seqable. Hence, we (only) need a way to distinguish
function types and type variables that do allow to safely omit the extra bottom-
reflectingness condition (because terms of these types are not allowed to be
strictly evaluated) from those who do not.

In the words of Nielson and Nielson (1999), we set up anannotated
type system

annotated type sys-
tem over the underlying type system of λαseq to express the necessity of extra
conditions. Annotations are made on the types where we may or may not
omit extra conditions. For type variables we decide to annotate them either
with ε if they allow for strict evaluation of terms of their type (and therefore
force a bottom-reflectingness restriction), or by ◦, otherwise. The handling is
in line with the introduction of the type class Eval in Haskell: type variables
with an ε-annotation are exactly the ones declared to be in Eval via a type class
constraint. For function types, we distinguish the annotated type constructors
→ε and →◦; where terms of type τ1 →ε τ2 can be strictly evaluated, while
terms of type τ1 →◦ τ2 cannot. The annotations on the function types allow
to express for every single term of such types if we are allowed to evaluate it
strictly, or not. They constitute the main difference of our approach to a refined
type system compared to the approach via Eval. The distinction of two function
types is essential to allow for minimally restrictive free theorems.

The calculus λαseq with the annotated type system is calledλαseq∗ λαseq∗. Type syntax
is given in Figure 5.3, term syntax has not changed compared to λαseq (except
for type annotations). The refined typing rules (except the ones involving
naturals that do not provide any extra insight) are shown in Figure 5.4, the
class membership rules for Seqable in Figure 5.5. Typing contexts contain
type variables that are annotated by either ε or ◦. The subtype relation that is
described in the next paragraphs and stated in Figure 5.6 suggests to interpret
the annotations as an ordered set.

DEFINITION 31
(ordered set of anno-
tations)

The annotations ◦ and ε form an ordered set ({◦, ε},6) with 6 the reflexive
closure of ◦ 6 ε.

From the discussion above, most typing and class membership rules should
be clear: There are two function types, a Seqable-check is only performed by

5.2 A Refined Type System 123

τ ::= α type variable
| τ →ε τ function type whose terms can be strictly evaluated
| τ →◦ τ function type whose terms must not be strictly evaluated
| [τ] list type

Figure 5.3: Annotated type syntax of λαseq∗, term syntax remains as for λαseq (Figure 2.11)

Γ, x :: τ ` x :: τ (VAR) Γ ` []τ :: [τ] (NIL)

Γ ` t :: [τ1] Γ ` t1 :: τ Γ, x1 :: τ1, x2 :: [τ1] ` t2 :: τ
(LCASE)

Γ ` (case t of []→ t1; (x1 : x2)→ t2) :: τ

Γ, x :: τ1 ` t :: τ2 (ABSν)ν∈{◦,ε}
Γ ` (λx :: τ1.t) :: τ1 →ν τ2

Γ ` t1 :: τ1 →ν τ2 Γ ` t2 :: τ1 (APPν)ν∈{◦,ε}
Γ ` (t1 t2) :: τ2

Γ ` t1 :: τ Γ ` t2 :: [τ]
(CONS)

Γ ` (t1 : t2) :: [τ]

Γ ` t :: τ1 τ1 � τ2 (SUB)
Γ ` t :: τ2

Γ ` t :: τ →ν τ (FIXν)ν∈{◦,ε}
Γ ` fix t :: τ

Γ ` τ1 ∈ Seqable Γ ` t1 :: τ1 Γ, x :: τ1 ` t2 :: τ2 (SLET’)
Γ ` (let! x = t1 in t2) :: τ2

Figure 5.4: Refined typing rules of λαseq∗

ΓT ` [τ] ∈ Seqable (CS-LIST) ΓT ` τ1 →ε τ2 ∈ Seqable (CS-ARROW)
αε ∈ Seqable

(CS-VAR)
ΓT ` α ∈ Seqable

Figure 5.5: Class membership rules for Seqable in λαseq∗ and λαseq+

the rule (SLET’), and the only types not in Seqable are type variables annotated
by ◦ in the typing context and function types constructed by→◦. Note that
some typing rules are defined as rule families, thus for example the family
(ABSν)ν∈{◦,ε} consists of the rules (ABS◦) and (ABSε), where ν in (ABSν)ν∈{◦,ε} is
replaced by ◦ and ε, respectively, i.e., ν is a meta-level variable.

The rule (SUB) may come as surprise. The rule is introduced because the two
different function types induce a subtype relation. Basically, we can type every
function f with standard type τ1 → τ2 either to τ1 →ε τ2 or to τ1 →◦ τ2. But,
the type has a significant influence when we pass the function as argument to
another function.

On the one hand, consider function

g = λh :: α→ε β.let! h ′ = h in 42

It strictly evaluates its argument and hence, should take only arguments h that
are allowed to be strictly evaluated, i.e., g should be typeable to (α→ε β)→ε

124 5 Taming Selective Strictness

α � α (S-VAR)
τ ′1 � τ1 τ2 � τ ′2 (S-ARROWν,ν′)ν,ν′∈{◦,ε},ν′6ν
τ1 →ν τ2 � τ ′1 →ν′ τ ′2

τ � τ ′
(S-LIST)

[τ] � [τ ′]

Figure 5.6: Subtyping rules of λαseq∗

Nat , but not to (α →◦ β) →ε Nat . Also annotating the argument h in g by
α→◦ β should make g untypeable. Thus, a function f serves as input to g only
if it is associated with type α→ε β.

On the other hand, consider the function

g ′ = λh :: α→◦ β.42

It does not evaluate its argument strictly and hence is allowed to take functions
of type α →◦ β as argument. Nevertheless, g ′ should be allowed to take
functions that are suitable for strict evaluation as input, i.e., g ′ should be
typeable to (α→◦ β)→ε Nat and (α→ε β)→ε Nat ; and it should also remain
typeable if h is annotated by α→ε β.

In essence, there are really functions of type (τ1 →ε τ2) →ε τ3 that are not
typeable to (τ1 →◦ τ2) →ε τ3 but not vice versa, i.e., (τ1 →◦ τ2) →ε τ3 is a
subtype of (τ1 →ε τ2) →ε τ3. Additionally, even if every function of type
τ1 →ε τ2 is also typeable to τ1 →◦ τ2 and vice versa, the ones typed to τ1 →ε τ2
can serve as input to more functions, i.e., they have an additional property and
hence τ1 →ε τ2 can be seen as a subtype of τ1 →◦ τ2. The rules in Figure 5.6
set up the just described subtype relation and are called via the typing rule
(SUB) that allows each type to be transformed into one of its supertypes. The
transformation is safe, because every element in a type interpretation is also an
element of the interpretations of all its supertypes. Note also that the super-
and subtype relation switches between argument and result position in the
rule (S-ARROWν,ν′)ν,ν′∈{◦,ε},ν′6ν , i.e., the standard contravariant interpretation
of subtyping for function argument types applies.

In the terminology of annotated type systems, we establish a system withshape conformant
subtyping

shape
conformant subtyping, because the types of the underlying type system (the one
of λαseq) are not changed by the subtype relation. A very intuitive description of
subtyping is to weaken the information contained in an annotated type.

The intention behind refined typing was to enhance free theorems without
changing the expressiveness of the calculus, neither w.r.t. the terms typeable,
nor w.r.t. their semantic interpretation. We can directly define the semantics of
λαseq∗ in terms of the semantics of λαseq and also easily show equivalence of the
set of typeable terms. The central idea to do so is an annotation eraser. To ease
notation we set up a convention that ε is invisible.

5.2 A Refined Type System 125

DEFINITION 32
(annotation eraser)

The function | · |, called annotation eraser, takes a term, type or typing context
in λαseq∗ and returns it with all annotations at type variables and arrows
removed.

CONVENTION 11
(invisible ε)

The annotation ε is invisible, i.e., for type variables α we can write α instead
of αε and instead of→ε we can write→.

Supported by the annotation eraser and the above convention, we describe the
relation between typeability in λαseq and λαseq∗.

LEMMA 19
(conservative type
extension)

If Γ ` t :: τ valid in λαseq, then Γ ` t :: τ valid in λαseq∗. If Γ ` t :: τ valid in
λαseq∗, then |Γ| ` |t | :: |τ | valid in λαseq.

Lemma 19 states that the annotated type system is a conservative
extension

conservative extension of
the underlying type system, i.e., the system of λαseq. The proof of Lemma 19
requires the following two auxiliary results.

LEMMA 20If τ is closed under ΓT, then |ΓT| ` |τ | ∈ Seqable.

LEMMA 21
(shape conformance
of subtyping)

If τ � τ ′, then |τ | = |τ ′|.

Proof (Lemma 19). To prove the first statement of Lemma 19 we must, for each
derivation tree in λαseq, find a derivation tree in λαseq∗ that yields the same typing
judgment. The proof proceeds by induction on the depth of the derivation tree
in λαseq, i.e., it suffices to regard only the rule at the root of a derivation tree
(the rule applied last to yield the final typing judgment). We can translate each
typing rule of λαseq to the corresponding rule in λαseq∗ by setting all annotations
to ε. The additional premise on (SLET’) is fulfilled by Lemma 20.

To prove the second statement of Lemma 19 we convert each type derivation
in λαseq∗ to one in λαseq that constructs the same typing judgment without any
annotations. All rules in λαseq∗ with a corresponding unannotated version in
λαseq can be replaced by the unannotated version. By Lemma 21 we can drop
the remaining rule (SUB).

The semantics of types and terms in λαseq∗ is easily reduced to the semantics in
λαseq. Annotations in types do not influence the semantics at all, their only aim
is to influence the relational interpretation of types and thereby to strengthen
parametricity results. Or, in the words of Nielson and Nielson (1999, Section 3)
we have no effect system. We define type and term semantics in λαseq∗ as follows.

126 5 Taming Selective Strictness

∆seq∗
α,ρ = ρ(α)

∆seq∗
[τ],ρ = lfp(λR. {(⊥,⊥), ([], [])} ∪ {(a : as,b : bs) | (a,b) ∈ ∆seq∗

τ,ρ ∧ (as,bs) ∈ R})
∆seq∗
τ1→◦τ2,ρ = {(f ,g) | ∀(a,b) ∈ ∆seq∗

τ1,ρ . (f $ a,g $ b) ∈ ∆seq∗
τ2,ρ}

∆seq∗
τ1→ετ2,ρ = {(f ,g) | f = ⊥ iff g = ⊥, ∀(a,b) ∈ ∆seq∗

τ1,ρ . (f $ a,g $ b) ∈ ∆seq∗
τ2,ρ}

Figure 5.7: Logical relation for λαseq∗

DEFINITION 33
(type semantics of
λαseq∗)

Let τ a type in λαseq∗ and θ a type environment with all type variables in τ in
its domain. The semantics of τ is defined as J|τ |Kθ.

DEFINITION 34
(term semantics of
λαseq∗)

Let t such that there exist Γ and τ with Γ ` t :: τ valid in λαseq∗ and σ a term
environment corresponding to Γ. The semantics of t is defined as J|t |Kσ .

To complete the investigation of λαseq∗, we explore the appropriate logical rela-
tion and the resulting parametricity theorem. The main changes to the logical
relation are the liftings for function types. The lifting for→ε is as the lifting in
λαseq, i.e., the bottom-reflectingness restriction remains in place, while the lifting
for→◦ is as the lifting in λαfix, i.e., without the bottom-reflectingness restriction.
Figure 5.7 shows the whole definition of the logical relation.

If, for a typing context Γ, the environment ρ maps type variables annotated
by ◦ in Γ to strict and continuous relations and type variables annotated by ε
to relations that are strict, continuous and bottom-reflecting, then the logical
relation is strict and continuous for all types, while for types in Seqable it is
additionally bottom-reflecting. Also, the logical relation has a very natural
behavior w.r.t. subtyping and finally allows to state and prove the refined
parametricity theorem we aim for. The next definition, lemmas and the theorem
formalize these facts.

DEFINITION 35
(appropriate relational
environment in λαseq∗)

In λαseq∗ a relational environment ρ is appropriate w.r.t. a type context ΓT, if
ρ(α) ∈ Rel⊥ for every α◦ ∈ ΓT and ρ(α) ∈ Rel> for every αε ∈ ΓT.

LEMMA 22 Let τ closed under ΓT and ρ appropriate, then

(a) ∆seq∗
τ,ρ ∈ Rel⊥ (b) ΓT ` τ ∈ Seqable⇒ ∆seq∗

τ,ρ ∈ Rel>

Proof. For (a) the proof is by induction on the structure of τ , employing the
definition of the logical relation. For the proof of (b) we regard the different
class membership rules for Seqable (cf. Figure 5.5) and obtain the implication
immediately by the definition of the logical relation.

5.2 A Refined Type System 127

LEMMA 23If τ1, τ2 closed under ΓT, then τ1 � τ2 implies ∆seq∗
τ1,ρ ⊆ ∆seq∗

τ2,ρ for every ρ
appropriate for ΓT.

Proof. See Appendix A.2.

As the final result about type refinement, we prove a refined version of the
parametricity theorem that provides stronger, i.e., less restricted, free theorems.

THEOREM 9
(parametricity theo-
rem for λαseq∗)

If Γ ` t :: τ valid in λαseq∗, then for every θ1, θ2, ρ, σ1, σ2 such that

• for every α◦ occurring in Γ, ρ(α) ∈ Rel⊥(θ1(α), θ2(α)),

• for every αε occurring in Γ, ρ(α) ∈ Rel>(θ1(α), θ2(α)), and

• for every x :: τ ′ occurring in Γ, (σ1(x), σ2(x)) ∈ ∆seq∗
τ ′,ρ ,

we have (J|t |Kseq
σ1
, J|t |Kseq

σ2
) ∈ ∆seq∗

τ,ρ .

Proof. We only point out differences to the proof of Theorem 3. The cases
(ABSν)ν∈{◦,ε} and (APPν)ν∈{◦,ε} (for all possible choices of annotations) are
proved exactly like the cases (ABS) and (APP).

For (LCASE), now Lemma 22 (a) guarantees strictness of the logical relation.
The lemma also ensures strictness and continuity for the cases (FIXν)ν∈{◦,ε}.

For (SLET’) the Seqable-check ensures the required bottom-reflectingness of the
logical relation (cf. Lemma 22 (b)) and hence the proof proceeds as for (SLET).

For the new rule (SUB), we reason as follows:

(J|t |Kseq
σ1
, J|t |Kseq

σ2
) ∈ ∆τ2,ρ

⇐ { τ1 � τ2 and Lemma 23 }
(J|t |Kseq

σ1
, J|t |Kseq

σ2
) ∈ ∆τ1,ρ

We close the subsection with an example, showing what we gained by the re-
fined type system. Consider again the fusion property of foldl and its restricted
variant for foldl ′. In Section 5.1 we found that to reestablish (5.1) from page 117
with foldl exchanged by foldl ′, totality of f is sufficient. But, when we prove
(5.1) via free theorems in λαseq (or normally typed Haskell) extra conditions
on the function c arise. The situation changes if we employ the refined type
system. To keep the different versions of foldl as examples, we translate the
definitions given in Figure 5.2 to λαseq. The translations are shown in Figure 5.8.

128 5 Taming Selective Strictness

foldl = fix (λh :: (α→ β → α)→ α→ [β]→ α.
λc :: α→ β → α.λn :: α.λys :: [β].

case ys of {
[] → n;
x : xs → h c (c n x) xs })

foldl ′′ = fix (λh :: (α→ β → α)→ α→ [β]→ α.
λc :: α→ β → α.λn :: α.λys :: [β].

case ys of {
[] → let! cn ′ = c n in n;
x : xs → let! xs ′ = xs in

let! x ′ = x in h c (c n x ′) xs ′})

foldl ′ = fix (λh :: (α→ β → α)→ α→ [β]→ α.
λc :: α→ β → α.λn :: α.λys :: [β].

case ys of {
[] → n
x : xs → let! n ′ = c n x in h c n ′ xs })

foldl ′′′ = fix (λh :: (α→ β → α)→ α→ [β]→ α.
λc :: α→ β → α.λn :: α.λys :: [β].

case ys of {
[] → let! c′ = c in n
x : xs → let! c′ = c in h c′ (c′ n x) xs })

Figure 5.8: The versions of foldl from Figure 5.2 in λαseq-syntax

EXAMPLE 26 The function foldl ′, as given in Figure 5.8 and with appropriately adjusted
refined type annotations, is typeable to (α→◦ β →◦ α)→ε α→ε [β]→ε α
under typing context Γ = αε, β◦ in λαseq∗, and hence, by the parametricity
theorem for λαseq∗ (Theorem 9) we can deduce (5.2) from page 117 with f
strict and total and g strict as conditions, but without any condition on c.
Specializing g to the identity function, we obtain the fusion property for
foldl ′ with only the conditions we employed for the inductive proof that is
depending directly on the function definition.8

5.3 Improvement of the Algorithmic Properties of
the Typing Rules

In Section 5.2 we end up with a calculus with a refined type system that allows
stronger free theorems in the sense that side conditions that arise through
the possibility of strict evaluation can safely be eliminated. To employ the
typing rules as a typing algorithm good algorithmic properties of the rules
are essential. Unfortunately, the rules presented in Figure 5.4 do not enjoy
such properties. In particular, they form neither a deterministic nor an always
terminating algorithm.

So, what problem exactly should the typing algorithm solve, and where do
we encounter difficulties? In principle, the typing algorithm should take a
typing context and a term, and, if any such type exists, produce a type to which
the term is typeable under the given context. But, which kind of contexts
and terms should the algorithm take? Ideally, standard typing contexts and

8Again, as in Section 5.1, we obtain a strictness requirement for f that could again probably be
eliminated via refined typing à la Launchbury and Paterson (1996).

5.3 Improvement of the Algorithmic Properties 129

standardly annotated terms as in λαseq should be given to it and besides a
refined type, also a refined typing context and the input term with refined type
annotations added should be returned. Designing such an algorithm, we must
be aware that in general one term is typeable to several refined types. We can
always solely add ε-annotations to get a valid refined type, but depending on
the applications of the strictness primitive, ε-annotations can be replaced by
◦-annotations. Consequently, whole sets of refined types, contexts and type
annotations arise. Our interest is limited to the types that pose so few conditions
on the parametricity theorem that we get a maximally strong (correct) assertion
about the investigated function.

To obtain an always terminating typing algorithm that has the just described
input/output behavior, three problems have to be solved:

• termination has to be guaranteed,

• the gap between the unannotated types in contexts and terms that serve
as input and the annotated types that are required by the refined typing
rules has to be bridged,

• the annotated types that allow maximally strong free theorems have to
be extracted from all possible refined types.

In the next subsections, we treat the three problems separately. We end up with
a type refinement algorithm that provides us with type annotations that allow
for maximally strong free theorems.

Basically, the algorithm we develop forms the second stage of a two-stage type
inference algorithm for annotated type systems: The standard types of the
underlying type system are known and only the annotations are inferred.

5.3.1 Guarantee of Termination

First, we concentrate on termination. The problematic rule concerning termina-
tion is (SUB). It is always applicable. In particular, the reflexivity of the subtype
relation allows us to apply it repeatedly and infinitely often. Hence, the rule
may cause nontermination and we have to eliminate it — at least in its current
form. The main idea is that (SUB) can usually be pushed trough other rules in
the derivation tree. For example, consider the following part of a derivation
tree:

Γ ` t1 :: τ1 →◦ τ2 Γ ` t2 :: τ1 (APP◦)
Γ ` (t1 t2) :: τ2 τ2 � τ ′2 (SUB)

Γ ` (t1 t2) :: τ ′2

We can transform it into:

Γ ` t1 :: τ1 →◦ τ2 τ1 →◦ τ2 � τ1 →◦ τ ′2 (SUB)
Γ ` t1 :: τ1 →◦ τ ′2 Γ ` t2 :: τ1 (APP◦)

Γ ` (t1 t2) :: τ ′2

130 5 Taming Selective Strictness

The same way, we can push applications of (SUB) through most other rules.
Only for some rules it is impossible. Consider:

Γ ` t :: τ →◦ τ (FIX◦)
Γ ` fix t :: τ τ � τ ′

(SUB)
Γ ` fix t :: τ ′

We cannot push (SUB) through (FIX◦), because on the one hand τ ′ →◦ τ ′ is
not a supertype of τ →◦ τ if τ ′ is a strict supertype of τ , and on the other
hand τ →◦ τ ′ is a supertype of τ →◦ τ (if τ ′ is a supertype of τ) but not a
valid premise for (FIX◦). Nevertheless, we can eliminate the call to (SUB) by
integrating it into (FIX◦). We replace the above fragment of a derivation tree by

Γ ` t :: τ →◦ τ τ � τ ′
(FIX+

◦)
Γ ` fix t :: τ ′

Besides pushing applications of (SUB) through the derivation tree, we can fuse
successive applications and insert new applications wherever we want because
the subtype relation is transitive and reflexive.

LEMMA 24 The subtype relation �, given in Figure 5.6, is reflexive and transitive.

Proof. Reflexivity is proved inductively over the type structure. Because sub-
typing is shape conformant (cf. Lemma 21), we can prove transitivity also on
the structure of the type. Details are given in Appendix A.2.

Eliminating and integrating (SUB) as just described, we transform the typing
rules of λαseq∗, given in Figure 5.4, to the rules presented in Figure 5.9. The
calculus λαseq∗ with the original typing rules substituted by the ones from
Figure 5.9 is called λαseq+. The two calculi are equivalent w.r.t. typeability.λαseq+

LEMMA 25 A typing judgment Γ ` t :: τ is valid in λαseq∗ iff it is valid in λαseq+.

Proof. We use induction on the depth of the derivation tree. Consider Γ ` t :: τ
derivable in λαseq∗. By Lemma 24 we assume that the root of the derivation
tree is (SUB) followed by another rule from Figure 5.4. Hence, it suffices to
replace every combination (SUB) plus another typing rule of λαseq∗ by a rule (se-
quence) from λαseq+, potentially with calls to (SUB) at the leaves of the derivation
fragment. We regard each rule (family) different from (SUB) separately.

To translate a derivation tree in λαseq+ to one in λαseq∗ that yields the same typing
judgment, we transform each typing rule in λαseq+ into a (sequence of) typing
rules in λαseq∗.

Concrete transformations are shown in Appendix A.2.

5.3 Improvement of the Algorithmic Properties 131

τ � τ ′
(VAR+)

Γ, x :: τ ` x :: τ ′
τ � τ ′

(NIL+)
Γ ` []τ :: τ ′

Γ ` t1 :: τ Γ ` t2 :: [τ]
(CONS)

Γ ` (t1 : t2) :: [τ]

Γ ` t :: [τ1] Γ ` t1 :: τ Γ, x1 :: τ1, x2 :: [τ1] ` t2 :: τ
(LCASE)

Γ ` (case t1 of { []→ t1;x1 : x2 → t2}) :: τ

Γ, x :: τ1 ` t :: τ2 τ ′1 � τ1 (ABS+ν)ν∈{◦,ε}
Γ ` (λx :: τ1.t) :: τ ′1 →ν τ2

Γ ` t1 :: τ1 →ν τ2 Γ ` t2 :: τ1 (APPν)ν∈{◦,ε}
Γ ` (t1 t2) :: τ2

Γ ` t :: τ →ν τ τ � τ ′
(FIX+

ν)ν∈{◦,ε}
Γ ` (fix t) :: τ ′

Γ ` τ1 ∈ Seqable Γ ` t1 :: τ1 Γ, x :: τ1 ` t2 :: τ2 (SLET’)
Γ ` (let! x = t1 in t2) :: τ2

Figure 5.9: Typing rules of λαseq+

By the switch from λαseq∗ to λαseq+ we enhance the algorithmic properties of the
typing rules in the way that a typing algorithm, taking a term with refined
type annotations and a typing context possibly with ◦ and ε-annotations, will
always terminate.

5.3.2 Allowing Non-Refined Input

To cope with a standard typing context and a standardly annotated term as
input, different solutions are possible. As one possibility, we can introduce
a preprocessing step to add annotations at unannotated input. Thus we can
produce the set of all possible refined contexts and terms we can search types
for. The main algorithm then consists of the rules in Figure 5.9 and the rules
of the systems they call. The algorithm will be nondeterministic because rules
of a rule family with an annotation in a premise that does not occur in the
conclusion, like (ABSν)ν∈{◦,ε}, are necessarily in competition to each other.

An alternative way to allow non-refined input is to factor out the nondetermin-
ism of the typing algorithm. All different types we can find and all different
inputs we can generate from standardly typed inputs only differ in the choice
of annotations on the type variables in the context and at the arrows. Hence, if
we do not require fixed annotations ◦ and ε, but allow variables instead, we
obtain a deterministic algorithm. To do so, we must collect constraints on and
between the different annotation variables. The constraints are necessary to
restrict the possible instances of the found parametrized type to the ones valid
in λαseq+ and hence in λαseq∗. The set (or conjunction) of constraints captures all
nondeterminism. Solving it will yield a set of possible concrete instantiations
for the annotation variables, from which we select the ones yielding optimal,
i.e., minimally restricted and therefore maximally strong, free theorems. A
schematic overview of the final algorithm is given in Figure 5.10.

132 5 Taming Selective Strictness

input: standard typing context and a term with standard type annotations
⇓ add annotation variables

parametrized term and typing context
⇓ the main algorithm

typing constraint and parametrized type
⇓ solve constraint

all possible refined types, terms and contexts with concretely annotated types/type variables
⇓ type comparison

output: the refined type-context-term-triples yielding the strongest free theorems

Figure 5.10: Schematic overview of the final algorithm for refined typing

To add annotation variables to standard typing contexts and at normally typed
terms requires no special care. Every annotation consists of a distinguished
annotation variable, e.g. we can take the variables ν1, . . . , νn if n distinct anno-
tations have to be set.

A typing context and a term, both with annotation variables added, serve
as input to the main algorithm which is established by an adaptation of
the typing rules of λαseq+. We consider rule families that are parametrized
over the different concrete annotations in λαseq+, such as (APPν)ν∈{◦,ε} or (S-
ARROWν,ν′)ν,ν′∈{◦,ε},ν′6ν , as one rule of the main algorithm that introduces
object-level annotation variables with possibly some constraints. For example,
the rule family

Γ ` t1 :: τ1 →ν τ2 Γ ` t2 :: τ1 (APPν)ν∈{◦,ε}
Γ ` (t1 t2) :: τ2

is replaced by the rule:

〈Γ̇ ` ṫ1〉V (C1, τ̇1 →ν τ̇2) 〈Γ̇ ` ṫ2〉V (C2, τ̇ ′1) 〈τ̇1 = τ̇ ′1〉V (C3)
(APPC)

〈Γ̇ ` (ṫ1 ṫ2)〉V (C1 ∧ C2 ∧ C3, τ̇2)

The rule (APPC) sets up a conditional typing judgment for parametrized terms,
types and contexts. Here are the respective definitions.

DEFINITION 36
(parametrized/concrete
typing context, term
and type)

A typing context, term or type is called parametrized if all type variables
in the typing context and all arrows at type annotations or in the type are
annotated by an annotation variable. It is called concrete if all annotations
are fixed, i.e., each annotation is either ◦ or ε.

To distinguish parametrized from concrete entities, we introduce the following
convention.

5.3 Improvement of the Algorithmic Properties 133

CONVENTION 12Parametrized entities are indicated by a dot, e.g. Γ̇, ṫ or τ̇ .

DEFINITION 37
(conditional typing
judgment)

A conditional typing judgment is a statement of the form

〈Γ̇ ` ṫ〉V (C, τ̇)

where Γ̇ is a parametrized typing context, ṫ a parametrized term, C a propo-
sitional logic formula and τ̇ a parametrized type. The propositional logic
formula C is built from equations and inequations between the concrete
annotations ◦ and ε and annotation variables.

DEFINITION 38
((concrete) typing con-
straint)

We call C in Definition 37 a typing constraint. If C contains no annotation
variables it is called concrete and we denote its truth value by JCK.

Note that the way we denote conditional typing judgments already indicates
the algorithmic use of the, though still declarative, typing rules: All statements
are of the form input V output . The conditional typing rules are given in
Figure 5.11. The rules relate very directly to the typing rules of λαseq+. Only
regarding the rule systems that the main typing rules call, some comments are
in order. Rules that test if a type is in Seqable now return a typing constraint for
the annotations on the type, or the annotations of the type variables in the type
context. The rules are shown in Figure 5.12. To keep the input/output-scheme,
the rules for subtyping are split into rules for finding supertypes and for finding
subtypes. The type searched for is moved to the right-hand side ofV, while the
input type is placed on the left-hand side. The rules are shown in Figure 5.13.
Furthermore, an additional rule system is necessary. Consider the rule family
(APPν)ν∈{◦,ε} again. In both premises of the rules the type τ1 is present, i.e., it
has to be equal in both premises. But, regarding conditional typing via (APPC),
the equality constraint is too restrictive. It would require to employ the same
variable names for annotation variables in τ̇1 in both premises. Instead of
equality of variable names, we restrict the instantiation of differently named
annotation variables in the way that both possibly differently parametrized
occurrences of τ1 are replaceable only by identical instantiations. Therefore, we
set up a rule system that returns a typing constraint that forces the instances of
two types to be equal. The rules are given in Figure 5.14. We call the calculus
with the just introduced rules for conditional typing λα

seqC
λα

seqC
.

A conditional typing judgment in λα
seqC

gives rise to several concrete typing
judgments, i.e., typing judgments as in λαseq∗ and λαseq+. If we find correct
instantiations for all annotation variables, we get a concrete typing judgment.
To replace annotation variables by a concrete annotation, we define annotation
substitutions by which we can instantiate parametrized entities and the typing
constraint.

134 5 Taming Selective Strictness

〈τ̇ � ·〉V (C, τ̇ ′)
(VARC)

〈Γ̇, x :: τ̇ ` x 〉V (C, τ̇ ′)

〈τ̇ � ·〉V (C, τ̇ ′)
(NILC)

〈Γ̇ ` []τ̇ 〉V (C, τ̇ ′)

〈Γ̇ ` ṫ1〉V (C1, τ̇) 〈Γ̇ ` ṫ2〉V (C2, [τ̇ ′]) 〈τ̇ = τ̇ ′〉V (C3)
(CONSC)

〈Γ̇ ` (ṫ1 : ṫ2)〉V (C1 ∧ C2 ∧ C3, [τ̇])

〈Γ̇ ` ṫ〉V (C1, [τ̇1]) 〈Γ̇ ` ṫ1〉V (C2, τ̇)

〈Γ̇, x1 :: τ̇1, x2 :: [τ̇1] ` ṫ2〉V (C3, τ̇ ′) 〈τ̇ = τ̇ ′〉V (C4)
(LCASEC)

〈Γ̇ ` (case ṫ of {[]→ ṫ1;x1 : x2 → ṫ2})〉V (C1 ∧ C2 ∧ C3 ∧ C4, τ̇)

〈Γ̇, x :: τ̇1 ` ṫ〉V (C1, τ̇2) 〈· � τ̇1〉V (C2, τ̇ ′1)
(ABSC)

〈Γ̇ ` (λx :: τ̇1.ṫ)〉V (C1 ∧ C2, τ̇ ′1 →ν τ̇2)

〈Γ̇ ` ṫ1〉V (C1, τ̇1 →ν τ̇2) 〈Γ̇ ` ṫ2〉V (C2, τ̇ ′1) 〈τ̇1 = τ̇ ′1〉V (C3)
(APPC)

〈Γ̇ ` (ṫ1 ṫ2)〉V (C1 ∧ C2 ∧ C3, τ̇2)

〈Γ̇ ` ṫ〉V (C1, τ̇ →ν τ̇ ′) 〈τ̇ = τ̇ ′〉V (C2) 〈τ̇ � ·〉V (C3, ˙τ ′′)
(FIXC)

〈Γ̇ ` (fix ṫ)〉V (C1 ∧ C2 ∧ C3, ˙τ ′′)

〈Γ̇ ` τ̇1 ∈ Seqable〉V (C1) 〈Γ̇ ` ṫ1〉V (C2, τ̇1) 〈Γ̇, x :: τ̇1 ` ṫ2〉V (C3, τ̇2)
(SLETC)

〈Γ̇ ` (let! x = ṫ1 in ṫ2)〉V (C1 ∧ C2 ∧ C3, τ̇2)

Figure 5.11: Conditional typing rules of λα
seqC

αν ∈ Γ̇
(CS-VARC)

〈Γ̇ ` α ∈ Seqable〉V (ν = ε)

〈Γ̇ ` [τ̇] ∈ Seqable〉V (True) (CS-LISTC) 〈Γ̇ ` τ̇1 →ν τ̇2 ∈ Seqable〉V (ν = ε) (CS-ARROWC)

Figure 5.12: Conditional class membership rules for Seqable in λα
seqC

〈α � ·〉V (True, α) (S-VARC1) 〈· � α〉V (True, α) (S-VARC2)

〈· � τ̇1〉V (C1, τ̇ ′1) 〈τ̇2 � ·〉V (C2, τ̇ ′2)
(S-ARROWC

1)
〈τ̇1 →ν τ̇2 � ·〉V (C1 ∧ C2 ∧ (ν′ 6 ν), τ̇ ′1 →ν′ τ̇ ′2)

〈τ̇ ′1 � ·〉V (C1, τ̇1) 〈· � τ̇ ′2〉V (C2, τ̇2)
(S-ARROWC

2)
〈· � τ̇ ′1 →ν′ τ̇ ′2〉V (C1 ∧ C2 ∧ (ν′ 6 ν), τ̇1 →ν τ̇2)

〈τ̇ � ·〉V (C, τ̇ ′)
(S-LISTC1)

〈[τ̇] � ·〉V (C, [τ̇ ′])

〈· � τ̇ ′〉V (C, τ̇)
(S-LISTC2)

〈· � [τ̇ ′]〉V (C, [τ̇])

Figure 5.13: Conditional subtyping rules of λα
seqC

5.3 Improvement of the Algorithmic Properties 135

〈α = α〉V (True) (E-VARC)
〈τ̇ = τ̇ ′〉V (C)

(E-LISTC)
〈[τ̇] = [τ̇ ′]〉V (C)

〈τ̇1 = τ̇ ′1〉V (C1) 〈τ̇2 = τ̇ ′2〉V (C2)
(E-ARROWC)

〈τ̇1 →ν τ̇2 = τ̇ ′1 →ν′ τ̇ ′2〉V (C1 ∧ C2 ∧ (ν = ν′))

Figure 5.14: Conditional equality rules of λα
seqC

DEFINITION 39
(annotation substitu-
tion)

A function % that maps from a finite set of annotation variables into the set
of concrete annotations {◦, ε} is called an annotation substitution.

DEFINITION 40
(instantiation of a
parametrized entity
or a typing constraint)

Let κ̇ a parametrized term, type or typing context, or a typing constraint. By
κ̇% we denote the instantiation of κ̇ under %, i.e., the replacement, in κ̇, of all
annotation variables ν that occur in κ̇ and in the domain of % by %(ν).

Annotation substitutions enable us to reduce conditional typeability to concrete
typeability such that it is equivalent to typeability in λαseq+, and hence in λαseq∗.
We define (concrete) typeability in λα

seqC
as follows.

DEFINITION 41
(typeability in λα

seqC
)

A term t is typeable to τ under Γ in λα
seqC

, if there exist Γ̇, ṫ , τ̇ , C and %, such
that Γ̇% = Γ, ṫ% = t , τ̇ % = τ , JC%K = True, and 〈Γ̇ ` ṫ〉 V (C, τ̇) valid in
λα

seqC
.

By that notion of concrete typeability, we can, w.r.t. λαseq+, prove syntactic
soundness and completeness of the typing algorithm stated by the typing rules
of λα

seqC
.

THEOREM 10A term t is typeable to type τ under typing context Γ in λα
seqC

iff it is typeable
to the same τ under the same Γ in λαseq+.

The proof of Theorem 10 proceeds basically as follows: We construct for every
concrete valid typing judgment in λαseq+ a conditional one that can be instanti-
ated as shown in Definition 41 and thus shows that the original type statement
is also valid in λα

seqC
.

Conversely, we show that every instance of a conditional typing judgment in
λα

seqC
that satisfies the typing constraint is a valid typing judgment in λαseq+.

In the proof, we relate the respective subsystems of the typing rules, before we
can prove the following two lemmas that, with Definition 41, yield Theorem 10.

136 5 Taming Selective Strictness

LEMMA 26 If Γ ` t :: τ valid in λαseq+, then there exist parametrized Γ̇, ṫ , τ̇ , a typing
constraint C, and an annotation substitution %, such that ṫ% = t , τ̇ % = τ ,
JC%K = True , and 〈Γ̇ ` ṫ〉V (C, τ̇) valid.

LEMMA 27 If 〈Γ̇ ` ṫ〉 V (C, τ̇) valid then for every %, such that dom(%) includes the
annotation variables that occur in Γ̇, ṫ or τ̇ and JC%K = True, we have
Γ̇% ` ṫ% :: τ̇ % valid in λαseq+.

The proof is found in Appendix A.2.

5.3.3 Finding Optimal Annotations

Figure 5.10 (page 132) provides an overview of the algorithm for refined typing.
Up to now, we described how to get typing constraint and parametrized type.
The next step is to solve the constraint. That is, when we have found a valid
conditional typing judgment 〈Γ̇ ` ṫ〉 V (C, τ̇), we search for all annotation
substitutions % that have the annotation variables occurring in the conditional
typing judgment as domain and satisfy JC%K = True . A way to find all possible
concrete refinements is to consider all annotation substitutions that have the
annotation variables occurring in C as domain, choose the ones with C% =
True, and extend these to obtain annotation substitutions with all annotation
variables that occur in the typing judgment as domain.

Once we generated all possible concrete refinements, we can select the ones that
provide maximally strong free theorems. But which are these? For annotations
on type variables in the typing context it is clear that we prefer ◦-annotations
instead of ε-annotations, because in the parametricity theorem (cf. Theorem 9)
for ◦-annotated type variables a bottom-reflectingness restriction is dropped.
Hence, a totality condition vanishes in the derived free theorem in which
relations are specialized to functions. Concerning annotations in the type,
i.e., at arrows, the types that allow the strongest free theorems are exactly the
ones with minimal (in the sense of related values) logical relations. Intuitively,
the connection is quite clear: The smaller the relation, the more we can say
about the related items. Fortunately, Lemma 23 already provides a way to
characterize the types that give rise to minimal logical relations. They are
exactly the minimal types (w.r.t. the subtype relation). Hence, employing the
subtyping rules from λαseq∗ (cf. Figure 5.6) and preferring ◦-annotations over
ε-annotations in the typing context, we can identify the optimal refined typing
judgments, in the sense that they provide for maximally strong free theorems.

By the next example, we show how the complete algorithm works.

EXAMPLE 27 We consider strict function application, i.e., the function

($!) = λf :: α→ β.λx :: α.let! x ′ = x in f x ′

5.3 Improvement of the Algorithmic Properties 137

It is typeable under Γ = α, β in λαseq. To start the main algorithm, i.e.,
the algorithm stated by the typing rules of λα

seqC
and the corresponding

subsystems, we annotate type variables in Γ and arrows in type annotations
of ($!) by pairwise distinct annotation variables. We feed the resulting tuple

〈αν1 , βν2 ` λf :: α →ν3 β.λx :: α.let! x ′ = x in f x ′〉

to the main algorithm and get the derivation shown in Figure 5.15. It yields

〈αν1 , βν2 ` λf :: α →ν3 β.λx :: α.let! x ′ = x in f x ′〉
V ((ν1 = ε) ∧ (ν4 6 ν3) ∧ (ν3 6 ν6), (α →ν6 β) →ν7 α →ν5 β)

The conditional typing judgment contains the annotation variables ν1, . . . , ν7

and we have to find all % with the domain D = {ν1, . . . , ν7} that satisfy
JC%K = True for C = (ν1 = ε) ∧ (ν4 6 ν3) ∧ (ν3 6 ν6). Then we select the
ones that yield optimal typing judgments.

We use the example to consider two extremes of annotation instantiations
that we can choose. First, consider we choose all annotations ε. That means
to create exactly the free theorem we had in λαseq, i.e., to accept all extra
conditions arising from possible uses of the strictness primitive. Hence, we
expect the arising type to be valid, and indeed, JC%εK = True for %ε the
constant function from D to ε. Second, consider we choose all annotations
◦. That means to create exactly the free theorems we had in λαfix, i.e., to
disregard all extra conditions arising from possible uses of the strictness
primitive. Hence, aware that x of type α is to be evaluated strictly, we expect
the arising type to be invalid, and indeed JC%◦K = False for %◦ the constant
function from D to ◦.

So, what is the optimal typing judgment? For the example, we do a sys-
tematic search. First, we know that every ε-annotated type variable in the
typing context enforces a constraint in the parametricity theorem, i.e., we try
to prefer ◦-annotations. For ν1 we are forced to map it to ε by the constraint
C, but ν2 does not appear in C at all. Hence, we can instantiate it by ◦.
Second, concerning the annotations at arrows, the subtype relation tells that
for top-level arrows ε is the best choice. The choice is natural concerning
free theorems, because the relation for →ε tells more about related pairs
of functions than the relation for →◦, in particular that ⊥ is only related
to itself. With each nesting level of arrows to the left of other arrows, the
preferable annotation changes, which is also quite natural, thinking of input
and output positions and the contravariant behavior of function arguments.
Top-level arrows describe the function we characterize, i.e., an output posi-
tion, and therefore we want them as heavily restricted as possible. Arrows
nested once to the left of a top-level arrow describe functions that are given
as input, i.e., we want as few restrictions as possible on them. Summarizing
the above thought, the best choice in our example would be to map ν6 to ◦
and ν7, as well as ν5, to ε. Doing so, we fulfill the constraint when we fix ν3

and ν4 to ◦. Hence, we found the best possible concrete typing judgment

138 5 Taming Selective Strictness

〈α � ·〉
V (True, α)

〈Γ̇, x :: α ` x 〉
V (True, α)

αν1 ∈ Γ̇T

〈Γ̇T ` α ∈ Seqable〉
V (ν1 = ε)

(1)

〈Γ̇, x :: α ` let! x ′ = x in f x ′〉
V ((ν1 = ε) ∧ (ν4 6 ν3), β)

〈· � α〉
V (True, α)

〈Γ̇ ` λx :: α.let! x ′ = x in f x ′〉
V ((ν1 = ε) ∧ (ν4 6 ν3), α →ν5 β)

〈α � ·〉
V (True, α)

〈· � β〉
V (True, β)

〈· � α →ν3 β〉
V ((ν3 6 ν6), α →ν6 β)

〈αν1 , βν2 ` λf :: α →ν3 β.λx :: α.let! x ′ = x in f x ′〉
V ((ν1 = ε) ∧ (ν4 6 ν3) ∧ (ν3 6 ν6), (α →ν6 β) →ν7 α →ν5 β)

where (1) is

〈· � α〉V (True, α) 〈β � ·〉V (True, β)

〈α →ν3 β � ·〉V ((ν4 6 ν3), α →ν4 β)

〈Γ̇, x :: α, x ′ :: α ` f 〉
V ((ν4 6 ν3), α →ν4 β)

〈α � ·〉V (True, α)

〈Γ̇, x :: α, x ′ :: α ` x′〉
V (True, α)

〈α = α〉
V (True)

〈Γ̇, x :: α, x ′ :: α ` f x ′〉V ((ν4 6 ν3), β)

and Γ̇ = αν1 , βν2 , f :: α →ν3 β.

Figure 5.15: Example derivation with the typing rules of λα
seqC

we can get in λα
seqC

, λαseq+ and λαseq∗ w.r.t. the strength of free theorems:

αε, β◦ ` (λf :: α→◦ β.λx :: α.let! x ′ = x in f x ′) :: (α→◦ β)→ε α→ε β

From the refined type, we derive the following free theorem: For all types
τ1, . . . , τ4, every strict and total function f :: τ1 → τ2 and strict function
g :: τ3 → τ4, we have9

((($!)[τ1/α, τ3/β] ≡ ⊥)⇔ (($!)[τ2/α, τ4/β] ≡ ⊥))

∧ ∀p :: τ1 → τ3, q :: τ2 → τ4.

(∀x :: τ1. g (p x) ≡ q (f x))

⇒ (((p $!) ≡ ⊥)⇔ ((q $!) ≡ ⊥))

∧ ∀y :: τ1. g (p $! y) ≡ q $! (f y)

The theorem is a significant improvement compared to the standard free
theorem (i.e., the one derivable in λαseq). The standard theorem would
additionally force g total and require (p ≡ ⊥τ1→τ3)⇔ (q ≡ ⊥τ2→τ4).

9We employ some syntactic sugar, writing ($!) as infix operator $!, in particular we write f $! x
instead of ($!) f x and (f $!) instead of ($!) f .

5.4 The Implemented Algorithm 139

Having seen the above example, the following question may come into mind:
Why do we speak of optimal typing judgments, and not of a best typing
judgment? The answer is simple: There can be many, incomparable, valid,
optimal typing judgments, i.e., there is no best one. Consider the following
example.

EXAMPLE 28The identity function restricted to (endo-) functions can be defined as

(λx :: α→ α.x) :: (α→ α)→ (α→ α)

The type is refineable to (α→◦ α)→ε (α→◦ α) or to (α→ε α)→ε (α→ε α)
under Γ = α◦. Both typing judgments are optimal in the set of valid refined
statements. The refinement to (α→◦ α)→ε (α→ε α) under Γ = α◦, i.e., the
refined statement that would yield the strongest free theorem, is invalid.

5.4 The Implemented Algorithm

The type refinement algorithm defined by the typing rules of λα
seqC

and de-
scribed in Section 5.3 is implemented and can be used via a web interface at
http://www-ps.iai.uni-bonn.de/cgi-bin/polyseq.cgi . Also, the source code
is available at Hackage: http://hackage.haskell.org/package/free-theorems-
seq-1.0 (library plus command line interface) and http://hackage.haskell.org/
package/free-theorems-seq-webui-1.0.0.2 (web interface).

The implementation extends the considered language. It allows type abstrac-
tion and application. It also includes Boolean values and integers. Furthermore,
some syntactic sugar is added. As another change, possible due to the explicit
type abstraction, we omit typing contexts (and thereby annotated type vari-
ables) in the interface to the algorithm. Instead, the annotation is attached
to an explicit ∀-quantifier in the type syntax. Figure 5.16 gives an overview
of the implementation’s syntax. It also provides hints on how things are ex-
pressed with ASCII-characters. Particularly helpful to test the influence of
strict evaluation at a certain point of the program is the easy switch of strict
and nonstrict let-expressions: One can “turn on and off” strict evaluation by
adding or removing the “!” right after let.

The algorithm, as accessible via the web interface, takes only closed terms. As
already indicated, we do not need a typing context as input. We can explicitly
abstract over all type variables occurring in the type annotations of the input
term, or leave it to the implementation to add all occurring type variables to a,
to the user invisible, typing context. The implementation does not only provide
the optimal refined types, it also presents the respective free theorems for these
types and the free theorem for the standard type. All parts of the theorems that
are only necessary because of strict evaluation are highlighted. In general, the
highlighted parts in the theorems for refined types are at most as many as in
the standard theorem. Figure 5.17 shows a screenshot of the output for foldl ′′.

http://www-ps.iai.uni-bonn.de/cgi-bin/polyseq.cgi
http://hackage.haskell.org/package/free-theorems-seq-1.0
http://hackage.haskell.org/package/free-theorems-seq-1.0
http://hackage.haskell.org/package/free-theorems-seq-webui-1.0.0.2
http://hackage.haskell.org/package/free-theorems-seq-webui-1.0.0.2

140 5 Taming Selective Strictness

τ ::= α | Int | Bool | [τ] | τ → τ | τ →◦ τ | ∀α.τ | ∀◦α.τ
t ::= x | n | True | False | []τ | t : t | [t , . . . , t]τ | t + t | case t of {True → t ;False → t }

| case t of {False → t ;True → t } | if t then t else t | case t of {0→ t ; → t }
| case t of { []→ t ; x : xs → t } | λx :: τ.t | t t | Λα.t | tτ | fix t

| let x = t in t | let! x = t in t | seq t t

where ASCII representations for special characters are as in the following examples

pretty ASCII pretty ASCII pretty ASCII
→ -> ∀ forall Λα.t /\a.t
→◦ ->^o ∀◦ forall^o fInt f_{Int}

and variables can have any (non-keyword) alphanumeric string, starting with a letter.

Figure 5.16: Syntax of the implemented version of the type refinement algorithm

5.5 Summary

We presented an annotated type system to localize the influence of selective
strict evaluation on free theorems. Based on the insights of Johann and Voigtlän-
der (2004) and inspired by the way Launchbury and Paterson (1996) localized
the influence of general recursion, we developed a type system that expresses
via annotations at type variables in typing contexts and at arrows, if in a term t
the evaluation of a specific subterm (or a term given for a variable t abstracts
over) is definitely not forced via a strictness primitive, or if it may be evaluated
because of such a primitive even if not needed. The annotated type system
leads to a stronger parametricity theorem, Theorem 9, that allows to drop
totality restrictions and also to relax extra conditions on functions involved in
the respective free theorems.

To derive refined types automatically, we reworked the original system of
annotated typing rules and improved the algorithmic properties. In the end,
we arrived at an algorithm for conditional typeability and employed it to obtain
all optimally refined typing judgments, in the sense of maximally strong free
theorems. The final algorithm is implemented and available online at http://
www-ps.iai.uni-bonn.de/cgi-bin/polyseq.cgi .

Summarizing our work in terms of Nielson and Nielson (1999), we developed
an annotated type system with shape conformant subtyping, showed it to be a
conservative extension of the underlying type system, i.e., the type system of
λαseq, and developed the second stage of a two-stage type inference algorithm,
i.e., an algorithm generating possible annotations to the already given type
of the underlying type system. As described by Nielson and Nielson (1999)
our algorithm “operates on a free algebra by restricting annotations to be
annotation variables only [. . .] and by recording a set of constraints for the
meaning of the annotation variables”. We proved the algorithm syntactically
sound and complete.

http://www-ps.iai.uni-bonn.de/cgi-bin/polyseq.cgi
http://www-ps.iai.uni-bonn.de/cgi-bin/polyseq.cgi

5.5 Summary 141

Figure 5.17: Output of the web interface for foldl ′′

142 5 Taming Selective Strictness

Interestingly, a work quite similar to ours, but taming selective strictness from
a somehow opposite direction, has been published by Holdermans and Hage
(2010). They incorporate explicit strictness annotations in the spirit of seq into
a strictness analysis based on relevance typing. Their strategy is, dual to ours,
to track where “a term is definitely strictly evaluated” and where “a term might
or might not be strictly evaluated” by type annotations. Most other works on
strictness analysis do not consider the possibility of strictness primitives. An
exception is the algorithm SAL, a variant of Nöcker’s abstract reduction based
strictness analysis, presented by Schmidt-Schauß et al. (2008). Schmidt-Schauß
et al. (2008) remark that, as for our considerations, it is not redundant to include
a strictness primitive in a calculus, at least if considering an (at least weakly)
typed calculus, as they do.

5.6 Outlook

At the moment we do not employ an (even close to) optimal strategy to solve
the constraint that arises by the presented type inference algorithm. We might
replace the current strategy by a more efficient one. Nielson and Nielson
(1999) write that: “For efficiency the algorithmic techniques often involve the
generation of constraint systems in a program independent representation”. We
already have such a representation, but only to describe valid refined typing
judgments, not to gain only the ones that are optimal w.r.t. the strength of
free theorems. We might enrich the constraint with further information about
optimality and apply an advanced technique to solve the constraint.

Another question worth to be considered is the lack of a principal type in the
current approach. As Example 28 shows, with only concrete annotations at
types, we do not gain principal types in general. But what if we allow for
polymorphic type annotations in the final typing judgments? At least in our
simple example, we could quantify over the choice for the two type variables
that are altered between the two solutions, to get a single, principal type.
The extension to polymorphic annotations could also yield a more abstract
formulation of free theorems.

Besides generalization of the annotations, we also might extend the underlying
calculus’ type structure. In Seidel and Voigtländer (2009c) we already consider
type abstraction and instantiation but, to extend our work such that a refined
typing mechanism can be implemented in a Haskell compiler, is a long and
non-trivial way.

Nevertheless, we may benefit already now from the detailed insights about
the influence of strict evaluation on free theorems. In particular, refined typing
allows already in the current setting to check if and how exactly program
transformations that rely on free theorems are influenced, and considerations
about their validity, e.g. as performed by Johann and Voigtländer (2006) and
Voigtländer (2008c), can be refined.

5.6 Outlook 143

Last, but not least, the refined type system can serve as a starting point to
develop a counterexample generator to free theorems that ignore necessary
extra restrictions arising from forced strict evaluation. Refined types might be
employed similarly to their role in the counterexample generator presented in
Chapter 4, where the influence of general recursion was considered.

145

Chapter 6

Looking at Quantitative
Aspects

1 Free theorems imply the semantic equivalence (or at least approximation)
of two expressions involving a polymorphic function. Hence, they validate
program transformations and exactly this validation is, as already stated in
Section 3.2, one of their main applications. Naturally the question arises
whether the substitution of an expression by a semantically equal one speeds
up the program execution or not. Concerning this question, we consider a
very simple example: the program equivalence implied by the free theorem
for a function f of the type α→ Nat . When we ignore general recursion and
selective strictness, we get for all types τ1, τ2, functions g :: τ1 → τ2 and terms
x :: τ1 the following equivalence:

f (g x) ≡ f x (6.1)

Intuitively, the theorem states that every function f :: α → Nat is a constant
function. It ignores its argument and returns always the same natural number.
Concerning evaluation costs, one is tempted to conjecture that the costs for the
right-hand side expression never exceed, or are even below, the costs for the
left-hand side expression. This conjecture will prove true. But, as simple as
the example is, it is sufficient to reveal two main points when we compare the
evaluation costs (and thus indirectly the runtime) of two expressions that are
proved semantically equivalent via a free theorem:

• Only parametric polymorphism allows a (useful) statement on which
expression has less evaluation costs than the other.

• The concrete evaluation strategy is essential for a correct comparison of
evaluation costs.

1Results have been published in (Seidel and Voigtländer, 2011b)

146 6 Looking at Quantitative Aspects

To show that parametric polymorphism really is essential, imagine function
f has type Nat → Nat . Even if it returns the same value for all inputs it is
not forced to have the same evaluation cost (in whatever measure). Say, for
example, f always returns zero, but, dependent on the input, it calls itself
differently often recursively. Clearly, then the evaluation cost depends on the
input, and clearly we can give different g and x such that for one combination
the left-hand side and for another the right-hand side of statement (6.1) is more
efficient w.r.t. evaluation costs. Let us pin down this fact by a concrete example.

EXAMPLE 29 Consider the function

f :: Nat → Nat
f x = if x == 0 then 0 else f (x − 1)

and a function

g :: Nat → Nat
g x = 1000

Regarding left- and right-hand side of statement (6.1), we have f x less
expensive than f (g x) if and only if x 6 1000 when we count function
applications as evaluation costs. Also for other measures of evaluation costs
we will find g and x where the left-hand side is less expensive and g and x
where the right-hand side is less expensive than the respective other side.

Based on the example, we also elaborate on the influence of the evaluation
strategy. In general, three different evaluation strategies are distinguished:
call-by-name, call-by-need and call-by-value. Call-by-need is also known as lazy
evaluation and for example applied by Haskell implementations. It delays
evaluation as long as possible and that way omits unnecessary evaluation steps.

call-by-name
call-by-need
call-by-value
lazy evaluation

Furthermore, it shares expressions and thereby omits multiple evaluations of
the same expression. For example, if we evaluate the application of the function
double = λx .x +x to 5+3 then both x in the function body will first point to the
expression 5+3. If one x in the body needs to be evaluated, 5+3 is evaluated to
8 and now, since the other x points to the same expression, it points to 8 as well.
Hence, when the second x is requested, reevaluation is prevented. In contrast,
call-by-name would copy 5 + 3 to both x and this way evaluate the sum twice
if both x are requested. Thus, call-by-name can be viewed as an “as late as
possible” strategy without sharing while call-by-need can be viewed as an “as
late as possible” strategy with sharing. Completely differently call-by-value,
also calledstrict / non-strict

evaluation
strict evaluation (call-by-name and call-by-need are both non-strict),

evaluates all function arguments before the function body is evaluated. In the
double-example we would evaluate 5 + 3 and then copy the resulting 8 to both
x in the function body. Now, how does the evaluation strategy influence the
relative performance of the left-/right-hand side of statement (6.1)? While for
call-by-value the right-hand side is more efficient than the left-hand side that

147

f :: α→ Nat f :: α→ α→ α f :: α→ (α, α)

f (g x) = f x f (g x) (g y) = g (f x y) f (g x) = mapPair (g , g) (f x)

call-by-value lhs > rhs lhs > rhs lhs < rhs
call-by-name lhs = rhs lhs = rhs lhs 6 rhs
call-by-need lhs = rhs lhs = rhs lhs < rhs

Figure 6.1: Comparison of evaluation costs under different evaluation strategies

has to evaluate g x , for the other two strategies both sides are equally efficient
because g x is never evaluated (since f cannot employ its argument).

The table in Figure 6.1 gives an overview of the comparison of evaluation
costs for left- and right-hand sides of free theorems for different types. For the
comparison, function applications are counted as cost measure. We abbreviate
left-hand side as lhs and right-hand side as rhs. The function mapPair takes a
pair of functions and a pair of arguments and applies the respective functions
to the respective arguments. In Haskell we could define it for example as
follows:

mapPair :: (α→ β, γ → δ)→ (α, γ)→ (β, δ)
mapPair (f , g) (x , y) = (f x , g y)

Note that, dependent on the cost associated to the function mapPair the relative
efficiency of the different sides of the free theorem for f :: α → (α, α) under
call-by-name evaluation differs: Only if mapPair causes costs, the right-hand
side is less efficient, otherwise both sides are equally efficient.

The simple examples suggest that for strict evaluation only the number of
occurrences of g on each side of the free theorem count. But, a general formal
machinery for efficiency analysis via types should also handle more compli-
cated cases. What for example can we say about the relative efficiency between
the two sides of the free theorem for type [α]→ [α] as given in statement (1.1)
on page 5? Or what is the profit we gain when performing free theorem based
program transformations, say short-cut fusion for example? We want to tackle
these questions via a general theory and the gain is not only to assert that one
program is faster than another, but also to quantify the runtime difference in
an appropriately abstract measure (of evaluation cost).

For concrete investigations we have to decide on the evaluation strategy under
which we consider costs. The two simple strategies to look at are call-by-name
and call-by-value. Call-by-need is much more challenging since evaluation of
one part of a program may influence evaluation costs of another, i.e., evaluation
costs are not compositional. We concentrate on call-by-value. It is not the
evaluation strategy of Haskell, but it is applied in many functional languages,
e.g. for most ML dialects such as Standard ML (Milner et al., 1997) or OCaml
(Leroy et al., 2010). Call-by-name is, at least from a practical point of view,
less interesting than call-by-value. It is less efficient then call-by-need and

148 6 Looking at Quantitative Aspects

therefore implementations of non-strict functional languages usually employ
call-by-need as evaluation strategy.

What has to be done to incorporate evaluation costs into free theorems? Free
theorems are semantic statements. Hence, if they shall incorporate runtime
assertions a measure for runtime must be visible in the semantics, i.e., be an
external property. From the standard denotational semantics as described
in Chapter 2 evaluation costs are not observable. Hence, we need to adjust
the semantics and externalize evaluation costs. Suitable adjustments of a
denotational semantics are for example presented by Wadler (1988), Rosendahl
(1989), Liu and Gómez (2001) and van Stone (2003). Also Sands (1995) worked
on a time analysis for functional programs. He employed an operational
semantics. We choose an easy to handle, straightforward extension of the
standard denotational semantics. We extend it in the style of the instrumented
semantics of Rosendahl (1989). Semantic domains do not consist of single
values. Each value is paired with its evaluation cost, in our case an integer
value. The simplest measure to count as evaluation cost in the lambda calculus
is function application. So this will be the cost we count. Adding other costs, for
example for constructor applications, is possible but unnecessarily complicates
our study.

The work presented here can be summarized as follows. We

• set up an instrumented denotational semantics that externalizes evalua-
tion costs in a very simple λ-calculus,

• develop a theory of relational parametricity incorporating costs based on
this semantics,

• apply the theory to several simple examples and

• analyze the concrete performance gains achieved by short-cut deforesta-
tion (Gill et al., 1993).

The chapter is structured as follows. In Section 6.1 we introduce the syntax
of the λ-calculus we study. It is an extension of the calculus λα presented in
Section 2.1. In particular, as λα, it does not allow general recursion, but it
provides primitives for structural recursion on lists and numbers. Section 6.2
introduces the instrumented semantics for the calculus and Section 6.3 presents
an appropriate theory of parametricity. In Section 6.4 we apply the newly
developed theory to several examples. Besides several small examples, we
investigate the efficiency improvements gained via foldr / build . The last two
Sections (Sections 6.5 and 6.6) summarize the work and discuss directions of
further research.

6.1 The Calculus

As the basis for our investigations we employ an extension of the calculus
λα presented in Section 2.1. Since we do not consider general recursion, the
standard denotational semantics presented in Section 2.1 correctly models

6.1 The Calculus 149

τ ::= . . .

| (τ, τ) tuple type
t ::= . . .

| (t , t) tuple
| case t of {(x , x)→ t } case expression for tuples
| ifold(t , t , t) structural recursion on naturals
| lfold(t , t , t) structural recursion on lists

Figure 6.2: Type and term syntax of λαfold, extended from Figure 2.1

Γ ` t1 :: τ1 Γ ` t2 :: τ2 (PAIR)
Γ ` (t1, t2) :: (τ1, τ2)

Γ ` t :: (τ1, τ2) Γ, x1 :: τ1, x2 :: τ2 ` t1 :: τ
(PCASE)

Γ ` case t of {(x1, x2)→ t1} :: τ

Γ ` t1 :: τ1 → τ2 → τ2 Γ ` t2 :: τ2 Γ ` t3 :: [τ1]
(LFOLD)

Γ ` lfold(t1, t2, t3) :: τ2

Γ ` t1 :: τ → τ Γ ` t2 :: τ Γ ` t3 :: Nat (NFOLD)
Γ ` ifold(t1, t2, t3) :: τ

Figure 6.3: Additional typing rules of λαfold, extended from Figure 2.2

J(τ1, τ2)Kθ = Jτ1Kθ × Jτ2Kθ

Figure 6.4: Type semantics of λαfold, extended from Figure 2.3

strict and non-strict evaluation, so we only extend it here. We call the extended
calculus λαfoldλαfold. In Figure 6.2 the additional type and term syntax compared
to λα is shown. The primitives ifold(·, ·, ·) and lfold(·, ·, ·) capture structural
recursion. Their three arguments are: the step function, the base value and
finally the “structure” that is folded over. For example, we can express the
map-function over lists as follows.

map = λg :: α→ β.λys :: [α].lfold(λx :: α.λxs :: [β].(g x) : xs, []β , ys)

The typing rules of λαfold (that are new compared to the rules of λα) are given in
Figure 6.3. The standard semantics for the new constructs is given in Figures 6.4
and 6.5. The standard parametricity theorem, Theorem 1, still holds if we
extend the logical relation by a lifting for tuples as given in Figure 6.6.

The first task on the way to cost-sensitive free theorems is to enrich the standard
semantics with a cost measure. The next section presents a suitable enrichment.

150 6 Looking at Quantitative Aspects

J(t1, t2)Kσ = (Jt1Kσ, Jt2Kσ)

Jcase t of {(x1, x2)→ t1}Kσ = Jt1Kσ[x1 7→v1,x2 7→v2] with JtKσ = (v1,v2)

Jlfold(t1, t2, t3)Kσ = Jt1Kσ v1 (Jt1Kσ v2 . . . (Jt1Kσ vn Jt2Kσ) . . .) with Jt3Kσ = [v1, . . . ,vn]

Jifold(t1, t2, t3)Kσ = Jt1Kσ (Jt1Kσ . . . (Jt1Kσ︸ ︷︷ ︸
Jt3Kσ times

Jt2Kσ) . . .)

Figure 6.5: Term semantics of λαfold, extended from Figure 2.4

∆(τ1,τ2),ρ = {((x1,x2), (y1,y2)) | (x1,y1) ∈ ∆τ1,ρ ∧ (x2,y2) ∈ ∆τ2,ρ}

Figure 6.6: Logical relation for λαfold, extended from Figure 2.5

6.2 An Instrumented Semantics for Counting Costs

To set up free theorems that incorporate assertions about evaluation costs, we
enrich the semantics presented in Section 6.1 with information about evaluation
costs. A non-standard semantics that “lifts” typically intensional properties
of expressions into the denotations is called aninstrumented

semantics
instrumented semantics (Jones

and Nielson, 1995, Section 4.1.5). Rosendahl (1989) presents an instrumented
semantics that externalizes evaluation costs. We adopt this semantics.

The basic idea for the instrumented semantics is to tuple the values returned
by the standard term semantics (as presented in Figures 2.4 and 6.5) with a cost
value that counts operations necessary to evaluate the original expression, i.e.,
the semantics of a term t is not a value v anymore, but a tuple (v, c) where c
is some abstract cost measure. As cost measure we employ integers, i.e., we
simply count (some) evaluation steps. It seems more natural to consider only
non-negative evaluation costs, but the generalization to negative costs comes
in handy later on.

Before we regard the actual instrumented term semantics, we clarify to which
mathematical structures types are mapped. Because we regard a strict language,
there is no need for nested costs in data structures, for example for costs on
elements of a list. Strictness forces the list, if evaluated at all, to be fully
evaluated and hence top-level costs are sufficient. Only the costs for function
application must be nested. As long as a function is not provided with an
argument, the cost of applying the function is not encountered and moreover
the actual cost may depend on the concrete argument the function is applied to.
Otherwise evaluation costs are independent of values. To highlight this fact, we
decide to interpret types as sets, i.e., the same way the standard interpretation
does, and define a cost-lifting for types that tuples values with costs. The
concrete type semantics is given in Figure 6.7 where θ, as for the standard
semantics, maps type variables to sets.

6.2 An Instrumented Semantics for Counting Costs 151

JαK¢
θ = θ(α) J(τ1, τ2)K¢

θ = Jτ1K¢
θ × Jτ2K¢

θ

JNatK¢
θ = N Jτ1 → τ2K¢

θ = Jτ1K¢
θ → C(Jτ2K¢

θ)

J[τ]K¢
θ = {[x1, . . . ,xn] | n ∈ N ∧ ∀i ∈ {1, . . . , n}. xi ∈ JτK¢

θ}

where C(S) = {(x, c) | x ∈ S ∧ c ∈ Z}

Figure 6.7: Instrumented type semantics with embedded costs

For better reference, we give names to values with and without top-level costs.

DEFINITION 42
(cost-full, cost-free
value, cost(·), val(·))

For each τ and θ with UTV(τ) ⊆ dom(θ), we call v ∈ JτK¢
θ a cost-free value.

For each cost-free value v, a pair x = (v, c) with c ∈ Z is called cost-full value.
To extract the components of a cost-full value, we introduce the functions

val(x) = v cost(x) = c

To state the instrumented term semantics, we first need to decide which evalu-
ation steps entail costs. A simple possibility is to assign costs only to function
applications. Of course, the choice does not reflect real evaluation costs, but
the results we present are independent of the exact costs assigned to function
applications, constructor applications or other high-level evaluation steps that
correspond to a rule in the definition of the standard denotational semantics.
Adjustment of the abstract costs w.r.t. real runtime is not the focus of this work,
but Liu and Gómez (2001) show that the attachment of a cost measure to a de-
notational semantics provides for quite good cost prediction. Thus, potentially
our approach is well suited to derive predictions about real runtimes.

The concrete cost-full term semantics is shown in Figure 6.8. Environment
σ maps term variables to cost-free values. To express the term semantics
in a convenient way, we define several auxiliary semantic functions. The
function cBx increases the cost component of x by c. The functions (:¢), (+¢),
(¢) and (·, ·)¢ are cost-sensitive variants of (:), (+), function application and
(·, ·). They sum up the costs of their arguments. Costs arise only for function
applications. We nest a cost of 1 in the body of semantic functions, i.e., via
the definition of Jλx :: τ.tK¢

σ cost 1 is introduced. Alternatively, costs could
have been added via (¢). Note that the cost-handling for functions clearly
corresponds to call-by-value evaluation: On the one hand costs that arise
from the evaluation of a function argument are added to the overall costs of a
function application directly via ¢ when a function is applied to an argument.
On the other hand, values that are stored in the term environment, i.e., had
already been an argument somehow, do not cause costs (except of nested costs
when applied to an argument) when they are employed during the evaluation.

To avoid parentheses, we introduce the following conventions.

152 6 Looking at Quantitative Aspects

JxK¢
σ = (σ(x), 0) Jt1 t2K¢

σ = Jt1K¢
σ ¢ Jt2K¢

σ

JnK¢
σ = (n, 0) J(t1, t2)K¢

σ = (Jt1K¢
σ, Jt2K¢

σ)¢

J[]τ K¢
σ = ([], 0) Jλx :: τ.tK¢

σ = (λv.1BJtK¢
σ[x 7→v], 0)

Jt1 : t2K¢
σ = Jt1K¢

σ :¢ Jt2K¢
σ Jt1 + t2K¢

σ = Jt1K¢
σ +¢ Jt2K¢

σ

Jcase t of {0→ t1; → t2}K¢
σ =

{
cBJt1K¢

σ if JtK¢
σ = (0, c)

cBJt2K¢
σ if JtK¢

σ = (n, c) where n > 0

Jcase t of {[]→ t1;x1 : x2 → t2}K¢
σ =


cBJt1K¢

σ if JtK¢
σ = ([], c)

cBJt2K¢
σ[x1 7→v1,x2 7→[v2,...,vn]] if JtK¢

σ = ([v1, . . . ,vn], c)

where n > 0

Jcase t of {(x1, x2)→ t1}K¢
σ = cBJt1K¢

σ[x1 7→v1,x2 7→v2]
with JtK¢

σ = ((v1,v2), c)

Jlfold(t1, t2, t3)K¢
σ = (c1 + c3)B((g v1) ¢ ((g v2) ¢ . . . ((g vn) ¢ Jt2K¢

σ) . . .))
with Jt1K¢

σ = (g, c1), Jt3K¢
σ = ([v1, . . . ,vn], c3)

Jifold(t1, t2, t3)K¢
σ = (c1 + c3)B((g, 0) ¢ ((g, 0) ¢ . . . ((g, 0) ¢︸ ︷︷ ︸

n times

Jt2K¢
σ) . . .))

with Jt1K¢
σ = (g, c1), Jt3K¢

σ = (n, c3)

where
cB(v, c′) = (v, c+ c′)

x :¢ xs = ([v,v1, . . . ,vn], c+ c′) with x = (v, c), xs = ([v1, . . . ,vn], c′)

x1 +¢ x2 = (n1 + n2, c1 + c2) with x1 = (n1, c1),x2 = (n2, c2)

(x1,x2)¢ = ((v1,v2), c+ c′) with x1 = (v1, c), x2 = (v2, c
′)

f ¢ x = (c+ c′)B(g v) with f = (g, c), x = (v, c′)

Figure 6.8: Instrumented term semantics with costs

CONVENTION 13 • B and :¢ are right-associative,

• ¢ is left-associative,

• B has always the highest precedence.

The just defined semantics guarantees that every well-typed term is in the
cost-lifting of the respective type’s semantics.

LEMMA 28 If Γ ` t :: τ valid in λαfold then JtK¢
σ ∈ C(JτK¢

θ) for every mapping θ with
dom(θ) ⊇ ΓT and σ with σ(x) ∈ Jτ ′K¢

θ for every x :: τ ′ in Γ.

Since costs are mostly summed up and pushed through by the term semantics,
shifting costs does not alter the semantics as stated by the following lemma
and used (mostly silently) throughout.

6.3 Parametricity Theory Involving Costs 153

LEMMA 29Let x, xs, x1, x2, f cost-full semantic values and c, c′ costs, i.e., integers. The
following equivalences hold.

• cB c′Bx = (c+ c′)Bx

• cB(x :¢ xs) = cBx :¢ xs = x :¢ cBxs

• cB(x1,x2)¢ = (cBx1,x2)¢ = (x1, cBx2)¢

• cB(f ¢ x) = cB f ¢ x = f ¢ cBx

Finally, let us show the instrumented semantics in action and calculate the
semantics of a program that determines the length of a two element list.

EXAMPLE 30We express the length function in λαfold by

length = λxs :: [α].lfold(λx :: α.λy :: Nat .1 + y , 0, xs)

and calculate the semantics of

length[Nat/α] (1 : 2 : []Nat)

where type substitution is as described in Section 2.4.

J(λxs :: [Nat].lfold(λx :: Nat .λy :: Nat .1 + y , 0, xs)) (1 : 2 : []Nat)K¢
∅

= Jλxs :: [Nat].lfold(λx :: Nat .λy :: Nat .1 + y , 0, xs)K¢
∅ ¢ J1 : 2 : []NatK¢

∅
= (λv.1BJlfold(λx :: Nat .λy :: Nat .1 + y , 0, xs)K¢

[xs 7→v], 0) ¢ ([1,2], 0)

= 1BJlfold(λx :: Nat .λy :: Nat .1 + y , 0, xs)K¢
[xs 7→[1,2]]

= 1B(((λx.(λy.(1 + y, 1), 1)) 1) ¢ (((λx.(λy.(1 + y, 1), 1)) 2) ¢ (0, 0)))

= 1B((λy.(1 + y, 1), 1) ¢ 1B(1 + 0, 1))

= 1B(1 + 1 + 1)B((λy.(1 + y, 1)) (1 + 0))

= (2, 5)

Exactly the five required beta-reductions (one for λxs :: [Nat] and two for
each λx :: Nat .λy :: Nat) have been counted. Note that the cost is linearly
dependent on the list length. Each additional list entry causes an additional
cost of two function applications.

6.3 Parametricity Theory Involving Costs

The key to a cost-sensitive theory of relational parametricity is a suitable
relational type interpretation, i.e., a logical relation over the instrumented type

154 6 Looking at Quantitative Aspects

∆′α,ρ = ρ(α)

∆′Nat,ρ = idN

∆′[τ],ρ = {([v1, . . . ,vn], [v′1, . . . ,v
′
n]) | n ∈ N ∧ ∀i ∈ {1, . . . , n}. (vi,v

′
i) ∈ ∆′τ,ρ}

∆′(τ1,τ2),ρ = {((v1,v2), (v′1,v
′
2)) | (v1,v

′
1) ∈ ∆′τ1,ρ ∧ (v2,v

′
2) ∈ ∆′τ2,ρ}

∆′τ1→τ2,ρ = {(f ,g) | ∀(v,v′) ∈ ∆′τ1,ρ. (f v,g v) ∈ C(∆′τ2,ρ)}

where
C(R) = {((v, c), (v′, c)) | (v,v′) ∈ R ∧ c ∈ Z}

Figure 6.9: Logical relation with embedded costs

semantics. To establish such a relation, we consider the difference between
the standard and the instrumented type interpretation (cf. Figures 2.3, 6.4
and 6.7). The essential difference is the use of a cost-lifting. Hence, if we
find an appropriate cost-lifting for relations, we might be able to give a cost-
sensitive version of the standard logical relation presented in Figures 2.5 and 6.6.
Alike the cost-sensitive standard type interpretation, we define the relational
interpretation on cost-free values. Consequently, the semantic interpretations
of terms are related if they are related by the cost-lifting of the logical relation.

But how should the cost lifting for relations look like? Of course, cost-full
values should only be related if their value components are. Regarding costs,
different choices seem possible. To allow assertions about the difference be-
tween evaluation costs, we cannot allow values with arbitrarily different costs
to be related. We get precise assertions about the cost difference for two values
if we force the cost components to be equal whenever the values are related.
This restriction on costs seems to prevent us from getting useful theorems at all.
But, we can add artificial costs to values to enforce relatedness. The artificial
costs essentially express that the evaluation of a value causes less costs than
the evaluation of the value it is related to. The cost-sensitive logical relation is
given in Figure 6.9. It allows the following parametricity theorem.

THEOREM 11
(parametricity theo-
rem)

If Γ ` t :: τ valid in λαfold, then for every ρ, σ1, σ2 such that

• for every α in Γ, ρ(α) ∈ Rel , and

• for every x :: τ ′ in Γ, (σ1(x), σ2(x)) ∈ ∆′τ ′,ρ ,

we have (JtK¢
σ1
, JtK¢

σ2
) ∈ C(∆′τ,ρ).

The proof of Theorem 11 employs a characterization of the logical relation’s
lifting for function types that does only rely on cost-full values. We give it via
the next lemma, before we prove Theorem 11.

6.3 Parametricity Theory Involving Costs 155

LEMMA 30For all types τ1, τ2 and ρ, such that all type variables in τ1 or τ2 are in its
domain, we have

(f ,g) ∈ C(∆′τ1→τ2,ρ)
⇔

cost(f) = cost(g) ∧ ∀(x,y) ∈ C(∆′τ1,ρ). (f ¢ x,g ¢ y) ∈ C(∆′τ2,ρ)

Proof. See Appendix A.3.

Proof (Theorem 11). The proof is by induction over the type derivation, i.e., we
have to consider the derivation rules in Figures 2.2 and 6.3. In the proof we
use the same names for terms and types as in the figures with the typing rules;
we name environments as in Theorem 11 (i.e., ρ, σ1, σ2) and we assume the
conditions on them that are given in Theorem 11 to be satisfied.

We state only selected cases of the proof. A complete version is found in
Appendix A.3.

(SUM)

(Jt1 + t2K¢
σ1
, Jt1 + t2K¢

σ2
) ∈ C(∆′Nat,ρ)

⇔
{

term semantics, definition of (+¢)
}

((n1 + n2, c1 + c2), (n′1 + n′2, c
′
1 + c′2)) ∈ C(∆′Nat,ρ)

where (n1, c1) = Jt1K¢
σ1
, (n′1, c

′
1) = Jt1K¢

σ2
, (n2, c2) = Jt2K¢

σ1
, (n′2, c

′
2) = Jt2K¢

σ2

⇔
{

definition of cost-lifting and ∆′Nat,ρ

}
n1 + n2 = n′1 + n′2 ∧ c1 + c2 = c′1 + c′2

where (n1, c1) = Jt1K¢
σ1
, (n′1, c

′
1) = Jt1K¢

σ2
, (n2, c2) = Jt2K¢

σ1
, (n′2, c

′
2) = Jt2K¢

σ2

⇐ { sum of equal addends is equal }
n1 = n′1 ∧ n2 = n′2 ∧ c1 = c′1 ∧ c2 = c′2

where (n1, c1) = Jt1K¢
σ1
, (n′1, c

′
1) = Jt1K¢

σ2
, (n2, c2) = Jt2K¢

σ1
, (n′2, c

′
2) = Jt2K¢

σ2

⇔
{

definition of ∆′Nat,ρ and cost-lifting
}

((n1, c1), (n′1, c
′
1)) ∈ C(∆′Nat,ρ) ∧ ((n2, c2), (n′2, c

′
2)) ∈ C(∆′Nat,ρ)

where (n1, c1) = Jt1K¢
σ1
, (n′1, c

′
1) = Jt1K¢

σ2
, (n2, c2) = Jt2K¢

σ1
, (n′2, c

′
2) = Jt2K¢

σ2

⇔ { term semantics }
(Jt1K¢

σ1
, Jt1K¢

σ2
) ∈ C(∆′Nat,ρ) ∧ (Jt2K¢

σ1
, Jt2K¢

σ2
) ∈ C(∆′Nat,ρ)

The last statement is true by the induction hypotheses.

156 6 Looking at Quantitative Aspects

(NCASE)

The proof is by case distinction on the value of JtK¢
σ1

. First, we assume
JtK¢

σ1
= (0, c) for an arbitrary c ∈ Z. Taking the induction hypothesis from

the first premise and the definition of the logical relation for type Nat into
account, we know JtK¢

σ2
= (0, c), too. Hence, evaluating the semantics of the

case expression reduces to evaluating the first branch of the semantics of the
case expression:

(Jcase t of {0→ t1; → t2}K¢
σ1
, Jcase t of {0→ t1; → t2}K¢

σ2
) ∈ C(∆′τ,ρ)

⇔ { term semantics with choice of the first branch }
(cBJt1K¢

σ1
, cBJt1K¢

σ2
) ∈ C(∆′τ,ρ)

⇔ { definition of cost-lifting }
(Jt1K¢

σ1
, Jt1K¢

σ2
) ∈ C(∆′τ,ρ)

The last statement is by the induction hypothesis from the second premise.
Second, we take JtK¢

σ1
= (n, c) for n > 0 and c ∈ Z arbitrary. Again, using

the induction hypothesis from the first premise we have JtK¢
σ2

= (n, c), too.
Hence, we can reason as follows:

(Jcase t of {0→ t1; → t2}K¢
σ1
, Jcase t of {0→ t1; → t2}K¢

σ2
) ∈ C(∆′τ,ρ)

⇔ { term semantics with choice of the second branch }
(cBJt2K¢

σ1
, cBJt2K¢

σ2
) ∈ C(∆′τ,ρ)

⇔ { definition of cost-lifting }
(Jt2K¢

σ1
, Jt2K¢

σ2
) ∈ C(∆′τ,ρ)

The last statement is true by the induction hypothesis from the third premise.

(ABS)

(Jλx :: τ1.tK¢
σ1
, Jλx :: τ1.tK¢

σ2
) ∈ C(∆′τ1→τ2,ρ)

⇔ { term semantics }
((λv.1BJtK¢

σ1[x 7→v], 0), (λv′.1BJtK¢
σ2[x 7→v′], 0)) ∈ C(∆′τ1→τ2,ρ)

⇔ { definition of cost-lifting }
(λv.1BJtK¢

σ1[x 7→v], λv.1BJtK¢
σ2[x7→v]) ∈ ∆′τ1→τ2,ρ

⇔
{

definition of ∆′τ1→τ2,·
}

∀(v,v′) ∈ ∆′τ1,ρ.((λv.1BJtK¢
σ1[x 7→v]) v, (λv.1BJtK¢

σ2[x 7→v]) v′) ∈ C(∆′τ2,ρ)

⇔ { function application }
∀(v,v′) ∈ ∆′τ1,ρ.(1BJtK¢

σ1[x 7→v], 1BJtK¢
σ2[x 7→v′]) ∈ C(∆′τ2,ρ)

6.3 Parametricity Theory Involving Costs 157

⇔ { definition of cost-lifting }
∀(v,v′) ∈ ∆′τ1,ρ.(JtK

¢
σ1[x 7→v], JtK

¢
σ2[x 7→v′]) ∈ C(∆′τ2,ρ)

The last statement is true by the induction hypothesis.

(APP)

(Jt1 t2K¢
σ1
, Jt1 t2K¢

σ2
) ∈ C(∆′τ2,ρ)

⇔ { term semantics }
(Jt1K¢

σ1
¢ Jt2K¢

σ1
, Jt1K¢

σ2
¢ Jt2K¢

σ2
) ∈ C(∆′τ2,ρ)

⇐ { induction hypothesis from the second premise }
∀(x,y) ∈ C(∆′τ1,ρ).(Jt1K¢

σ1
¢ x, Jt1K¢

σ2
¢ y) ∈ C(∆′τ2,ρ)

⇐ { Lemma 30 }
(Jt1K¢

σ1
, Jt1K¢

σ2
) ∈ C(∆′τ1→τ2,ρ)

The last statement is true by the induction hypothesis from the first premise.

(LFOLD)

We take Jt1K¢
σ1

= (f , c1) and thus have Jt1K¢
σ2

= (f ′, c1) with (f , f ′) ∈
∆′τ1→τ2→τ2,ρ by the induction hypothesis from the first premise. By the induc-
tion hypothesis from the third premise, taking Jt3K¢

σ1
= ([v1, . . . ,vn], c3),

we have Jt3K¢
σ2

= ([v′1, . . . ,v
′
n], c3) for the same n and c3 and with

{(v1,v
′
1), . . . , (vn,v

′
n)} ⊆ ∆′τ1,ρ. We reason as follows:

(Jlfold(t1, t2, t3)K¢
σ1
, Jlfold(t1, t2, t3)K¢

σ2
) ∈ C(∆′τ2,ρ)

⇔ { term semantics }
((c1 + c3)B((f v1) ¢ (. . . ((f vn) ¢ Jt2K¢

σ1
))),

(c1 + c3)B((f ′ v′1) ¢ (. . . ((f ′ v′n) ¢ Jt2K¢
σ2

)))) ∈ C(∆′τ2,ρ)
⇔ { definition of cost-lifting }

(((f v1) ¢ (. . . ((f vn) ¢ Jt2K¢
σ1

))),

((f ′ v′1) ¢ (. . . ((f ′ v′n) ¢ Jt2K¢
σ2

)))) ∈ C(∆′τ2,ρ)
⇐

{
side conditions on f , f ′, vi, v′i, cost-lifting, definition of ∆′τ1→τ2,ρ

}
(Jt2K¢

σ1
, Jt2K¢

σ2
) ∈ C(∆′τ2,ρ)

The last statement is true by the induction hypothesis from the second
premise.

158 6 Looking at Quantitative Aspects

When we employ Theorem 11 to establish cost-sensitive free theorems, reason-
ing is complicated by the interaction between the cost-lifted and the unlifted
version of the logical relation. On first sight, the way we presented the logical
relation was reasonable because it reflects the alteration from the standard to
the instrumented type interpretations and it also highlights the places where
costs are of interest. Nevertheless, for reasoning we prefer a completely cost-
lifted logical relation. Lemma 30 already provides a characterization for the
function lifting of C(∆′·,·). For all other liftings, we establish similar charac-
terizations. The proofs for the following lemmas are found in Appendix A.3.

LEMMA 31 Let τ1, τ2 types and ρ such that all type variables in τ1 and τ2 are in its
domain. Then

(x,y) ∈ C(∆′(τ1,τ2),ρ)

⇔
∃(p,q) ∈ C(∆′τ1,ρ), (p′,q′) ∈ C(∆′τ2,ρ). (x,y) = ((p,p′)¢, (q,q′)¢)

Using Lemma 31 we can directly express a relation between cost-full pairs
based on the relations between their cost-full components.

COROLLARY 2 C(∆′(τ1,τ2),ρ) = {((x1,x2)¢, (y1,y2)¢) |
(x1,y1) ∈ C(∆′τ1,ρ) ∧ (x2,y2) ∈ C(∆′τ2,ρ)}

In the sequel we abbreviate x1 :¢ . . . :¢ xn :¢ ([], 0) by[x1, . . . ,xn]¢ [x1, . . . ,xn]¢.

LEMMA 32 Let τ type and ρ such that all type variables in τ are in its domain. Then

(x,y) ∈ C(∆′[τ],ρ)

⇔
∃n ∈ N, (x1,y1), . . . , (xn,yn) ∈ C(∆′τ,ρ), c ∈ Z.

(x,y) = (cB[x1, . . . ,xn]¢, cB[y1, . . . ,yn]¢)

Using Lemma 32 we can define a relation between cost-full lists based on
cost-full components.

COROLLARY 3 For all types τ and ρ such that all type variables in τ are in its domain it
holds that

C(∆′[τ],ρ) = {(cB[x1, . . . ,xn]¢, cB[y1, . . . ,yn]¢) |
c ∈ Z ∧ n ∈ N ∧ (x1,y1) . . . (xn,yn) ∈ C(∆′τ,ρ)}

6.4 The Parametricity Theory at Work 159

∆¢
α,ρ = C(ρ(α)) ∆¢

[τ],ρ = lift¢
[](∆

¢
τ,ρ)

∆¢
Nat,ρ = idC(N) ∆¢

(τ1,τ2),ρ
= lift¢

(,)(∆
¢
τ1,ρ,∆

¢
τ2,ρ)

∆¢
τ1→τ2,ρ = {(f ,g) | cost(f) = cost(g) ∧ ∀(x,y) ∈ ∆¢

τ1,ρ. (f ¢ x,g ¢ y) ∈ ∆¢
τ2,ρ}

where

lift¢
[](C(R)) = {(cB[x1, . . . ,xn]¢, cB[y1, . . . ,yn]¢) |

c ∈ Z ∧ n ∈ N ∧ (x1,y1) . . . (xn,yn) ∈ C(R)}
lift¢

(,)(C(R1), C(R2)) = {((x1,x2)¢, (y1,y2)¢) | (x1,y1) ∈ C(R1) ∧ (x2,y2) ∈ C(R2)}

Figure 6.10: Fully cost-lifted logical relation

The alternative descriptions of the liftings of the cost-lifted logical relation
allow us to establish an alternative definition of this relation that only relies
on cost-full values. We call the resulting relation ∆¢

·,· and give its definition in
Figure 6.10. The following lemma shows that the newly defined relation ∆¢

·,·
really is the same relation as the cost-lifting of ∆′·,·.

LEMMA 33For all τ and ρ, C(∆′τ,ρ) = ∆¢
τ,ρ.

Proof. By Lemma 30, Corollaries 2 and 3, definitions of ∆¢
·,· and ∆′·,·, and cost-

lifting.

The benefits of the characterization become apparent in the next section where
we regard concrete efficiency assertions based on free theorems. Employing the
characterization, the parametricity theorem can be stated slightly differently
from Theorem 11.

COROLLARY 4
(parametricity theo-
rem)

If Γ ` t :: τ valid in λαfold, then for every ρ, σ1, σ2 such that

• for every α in Γ, ρ(α) ∈ Rel , and

• for every x :: τ ′ in Γ, ((σ1(x), 0), (σ2(x), 0)) ∈ ∆¢
τ ′,ρ

we have (JtK¢
σ1
, JtK¢

σ2
) ∈ ∆¢

τ,ρ.

6.4 The Parametricity Theory at Work

In the previous section we established a theory of parametricity that incorpo-
rates evaluation costs in the sense that the number of function applications is
counted. Based on the cost-lifted version of the logical relation presented in

160 6 Looking at Quantitative Aspects

Figure 6.10 we want to derive free theorems that, besides equivalence in terms
of the standard denotational semantics, also provide a statement about the cost
difference between two expressions.

The general scheme to derive a free theorem that states the semantic equiva-
lence of two expressions from the parametricity theorem is to unfold the logical
relation and to specialize the relations chosen via environment ρ to functions
that can be expressed as the semantics of some term. Let us recapitulate the
procedure for the type α→ Nat w.r.t. the standard semantics, i.e., without costs.
The parametricity theorem (Theorem 1) states that for all sets S1, S2, relations
R ⊆ S1 × S2 and terms f :: α→ Nat we have

(Jf K∅, Jf K∅) ∈ ∆α→Nat,[α 7→R]

We unfold the logical relation and gain

∀(x,y) ∈ R. (Jf K∅ x = Jf K∅ y)

As a next step we specialize the relationR (and thereby the sets S1 and S2) to
(the graph of) the semantics of a term g :: τ1 → τ2 with τ1 and τ2 arbitrary types.
We gain (with the definition of the term semantics):

∀τ1, τ2, g :: τ1 → τ2, x :: τ1. (Jf xK∅ = Jf (g x)K∅)

Unfortunately, if we try to reuse the same scheme starting from the cost-
sensitive parametricity theorem (Corollary 4), we encounter difficulties with
the specialization of the relation R. The environment ρ maps to cost-free re-
lations. Hence, we cannot directly specialize relation R to a function that
corresponds to the semantics of some term, because the semantics of a term
will be a cost-full value. To bridge the gap between the cost-full semantics and
the cost-free relation, we define for each cost-full function g ∈ C(S1 → C(S2))
a corresponding cost-free relation based on the val(·)-parts of the function.
Because it will allow stronger assertions about cost differences (as we will see
from the examples to come), we consider mostly partial function graphs.

DEFINITION 43
(cost-free graph)

Let S1, S2 sets and g ∈ C(S1 → C(S2)). We define by

Rg = {(val(x), val(g ¢ x)) | x ∈ C(S1)}

the total cost-free graph of g and for any given x1, . . . ,xn ∈ C(S1) with
n ∈ N \ {0}we define by

Rg
x1,...,xn

= {(val(x1), val(g ¢ x1)), . . . , (val(xn), val(g ¢ xn))}

the partial cost-free graph of g on {x1, . . . ,xn}.

To derive free theorems, costs that arise during function application play a
central role and we abbreviate these costs as follows.

6.4 The Parametricity Theory at Work 161

DEFINITION 44
(appCost(f ,x))

Let S1, S2 sets, f ∈ C(S1 → C(S2)) and x ∈ C(S1). The costs that arise when
f is applied to x are as follows:

appCost(f ,x) = cost(f ¢ x)− cost(x)

Definitions 43 and 44 allow us to formulate the following lemmas and the corol-
lary. These are handy in the actual derivation of cost-sensitive free theorems.
The respective proofs are given in Appendix A.3.

LEMMA 34For all S1, S2 sets, f ∈ C(S1 → C(S2)) and x1,x2 ∈ C(S1) we have

val(x1) = val(x2)⇒ appCost(f ,x1) = appCost(f ,x2)

LEMMA 35Let x ∈ C(S1), y ∈ C(S2) and n ∈ N+. Then (x,y) ∈ C(Rg
x1,...,xn

) if and only
if there exist i ∈ {1, . . . , n} and c ∈ Z such that

x = cB appCost(g,xi)Bxi and y = cB(g ¢ xi)

COROLLARY 5Let x ∈ C(S1), y ∈ C(S2) and n ∈ N+. If (x,y) ∈ C(Rg
x1,...,xn

), then there
exists i ∈ {1, . . . , n} such that

g ¢ x = appCost(g,xi)By

A further property we employ, but without explicitly mentioning it, is that
(x,y) ∈ C(R) implies (cBx, cBy) ∈ C(R) for every c ∈ Z.

By the additional statements just given we derive cost-sensitive free theorems
from Corollary 4. As a first example, we derive the theorem for f :: α→ Nat .

The cost-sensitive parametricity theorem states

∀R ∈ Rel . (Jf K¢
∅, Jf K

¢
∅) ∈ ∆¢

α→Nat,[α7→R]

Via unfolding of the logical relation we obtain

∀R ∈ Rel , (x,y) ∈ C(R). Jf K¢
∅ ¢ x = Jf K¢

∅ ¢ y

Now we specialize R to Rg
x for some g ∈ C(S1 → C(S2)) and x ∈ C(S1).

Applying Lemma 35 we get

∀S1, S2 sets,g ∈ C(S1 → C(S2)),x ∈ C(S1).

Jf K¢
∅ ¢ appCost(g,x)Bx = Jf K¢

∅ ¢ (g ¢ x)

162 6 Looking at Quantitative Aspects

By Lemma 29 we move the extra costs to the top level, get

∀S1, S2 sets,g ∈ C(S1 → C(S2)),x ∈ C(S1).

appCost(g,x)B(Jf K¢
∅ ¢ x) = Jf K¢

∅ ¢ (g ¢ x)

and finally, by the specialization of the sets S1 and S2 to the semantics of
types and the specialization of the function g to the semantics of a term, and
furthermore by the definition of the term semantics, we obtain

∀τ1, τ2 types, g :: τ1 → τ2, x :: τ1.

appCost(JgK¢
∅, JxK

¢
∅)BJf xK¢

∅ = Jf (g x)K¢
∅

Regarding our semantics, the costs that arise when the semantic interpretation
of one term is applied to the semantic interpretation of another term are always
positive. Whenever a function that is the semantics of a term is applied to an
argument, the application has at least cost 1. Hence, the final specialization
of our free theorem implies that: If f has type α → Nat and g is an arbitrary
term of function type, then for every appropriately typed x , the terms f x and
f (g x) evaluate to the same cost-free semantic value, but f x can be calculated
with appCost(JgK¢

∅, JxK
¢
∅), which is at least 1, less costs than f (g x). To express

this implication in an easy to read manner, we introduce the following relation.

DEFINITION 45
(v¢, @¢)

Let S set and x,y ∈ C(S). We say that x is as least as efficient as y, written
x v¢ y, if there exists c ∈ N with cBx = y. We say x is more efficient than
y, written x @¢ y, if there exists c ∈ N+ such that cBx = y. We use the
notation also to compare (closed) terms: t1 @¢ t2 means Jt1K¢

∅ @¢ Jt2K¢
∅.

With Definition 45 we express a (slightly weaker version of) the assertion we
derived above as:

f x @¢ f (g x)

In the next subsection, we regard the cost-sensitive free theorems for the remain-
ing types shown in Figure 6.1 and also for the type [α]→ [α]. The examples
are simple, but useful to show how our theory works and to introduce some
extra lemmas to handle pairs and lists. Subsection 6.4.2 shows a more complex
application: We investigate the speed-up that is gained via short-cut fusion
(Gill et al., 1993).

6.4.1 Simple Examples

Let us consider the cost-sensitive free theorem for type α→ α→ α. Therefor,
the machinery developed up to now is completely sufficient.

6.4 The Parametricity Theory at Work 163

EXAMPLE 31
(α→ α→ α)

Starting from Corollary 4 we derive the cost-sensitive free theorem for
f :: α→ α→ α.

∀R ∈ Rel . (Jf K¢
∅, Jf K

¢
∅) ∈ ∆¢

α→α→α,[α 7→R]

⇒
{

definition of ∆¢
·,· (cf. Figure 6.10)

}
∀R ∈ Rel , (x,y), (x′,y′) ∈ C(R). (Jf K¢

∅ ¢ x ¢ x′, Jf K¢
∅ ¢ y ¢ y′) ∈ C(R)

⇒ { specialization ofR }
∀S1, S2 sets,g ∈ C(S1 → C(S2)),x1,x2 ∈ C(S1).

∀(x,y), (x′,y′) ∈ C(Rg
x1,x2

). (Jf K¢
∅ ¢ x ¢ x′, Jf K¢

∅ ¢ y ¢ y′) ∈ C(Rg
x1,x2

)

⇒ { Lemma 35 }
∀S1, S2 sets,g ∈ C(S1 → C(S2)),x1,x2 ∈ C(S1).

(JfK¢
∅ ¢ (appCost(g,x1)Bx1) ¢ (appCost(g,x2)Bx2),

JfK¢
∅ ¢ (g ¢ x1) ¢ (g ¢ x2)) ∈ C(Rg

x1,x2
)

⇒ { Corollary 5 }
∀S1, S2 sets,g ∈ C(S1 → C(S2)),x1,x2 ∈ C(S1). ∃i ∈ {1, 2}.

g ¢ (JfK¢
∅ ¢ (appCost(g,x1)Bx1) ¢ (appCost(g,x2)Bx2))

= appCost(g,xi)B(JfK¢
∅ ¢ (g ¢ x1) ¢ (g ¢ x2))

⇔ { simplification employing Lemma 29 }
∀S1, S2 sets,g ∈ C(S1 → C(S2)),x1,x2 ∈ C(S1).

∃c ∈ {appCost(g,x1), appCost(g,x2)}.
cB(g ¢ (Jf K¢

∅ ¢ x1 ¢ x2)) = Jf K¢
∅ ¢ (g ¢ x1) ¢ (g ¢ x2)

⇒ { specialization of g, type and term semantics }
∀τ1, τ2 types, g :: τ1 → τ2, t1 :: τ1, t2 :: τ1.

∃c ∈ {appCost(JgK¢
∅, Jt1K

¢
∅), appCost(JgK¢

∅, Jt2K
¢
∅)}.

cBJg (f t1 t2)K¢
∅ = Jf (g t1) (g t2)K¢

∅

This certainly means that the evaluation of g (f t1 t2) is more efficient than
the evaluation of f (g t1) (g t2) and as simplified statement we get:

g (f t1 t2) @¢ f (g t1) (g t2)

As a second example, we consider f :: α→ (α, α). We should get a very similar
result compared to Example 31. But we have to handle pairs and thus the
pair-lifting of the logical relation. Therefore, we need similar statements as
Lemma 35 and Corollary 5, but concerned with pairs. To set up such state-
ments, we define mapPair = JmapPairK¢

∅ for a reasonable implementation of

164 6 Looking at Quantitative Aspects

mapPair in our calculus, as for example

mapPair :: (α→ β, γ → δ)→ (α, γ)→ (β, δ)
mapPair = λfp :: (α→ β, γ → δ).λp :: (α, γ).

case fp of {(f , g)→ case p of {(x , y)→ (f x , g y)}}

The semantics of mapPair is

(λ(f ,g).(λ(x,y).((val(f x), val(g y)), cost(f x) + cost(g y) + 1), 1), 0)

Now we are prepared to state the next lemma and corollary. Up to the end of
this subsection we omit the proofs since they are straightforward but lengthy
calculations.

LEMMA 36 Let p ∈ C(S1 × S3), q ∈ C(S2 × S4) and n,m ∈ N+. Then

(p,q) ∈ lift¢
(,)(C(Rg

x1,...,xn
), C(Rh

y1,...,ym
))

if and only if there exist i ∈ {1, . . . , n}, j ∈ {1, . . .m}, and c ∈ Z such that

p = cB appCost(mapPair ¢ (g,h)¢, (xi,yj)
¢)B(xi,yj)

¢

and
q = cB(mapPair ¢ (g,h)¢ ¢ (xi,yj)

¢)

COROLLARY 6 Let p ∈ C(S1 × S3), q ∈ C(S2 × S4) and n,m ∈ N+. If (p,q) ∈
lift¢

(,)(C(Rg
x1,...,xn

), C(Rh
y1,...,ym

)), then there exist i ∈ {1, . . . , n} and j ∈
{1, . . . ,m} such that

mapPair ¢ (g,h)¢ ¢ p = appCost(mapPair ¢ (g,h)¢, (xi,yj)
¢)Bq

EXAMPLE 32
(α→ (α, α))

Starting from Corollary 4 we derive the cost-sensitive free theorem for
f :: α→ (α, α).

∀R ∈ Rel . (Jf K¢
∅, Jf K

¢
∅) ∈ ∆¢

α→(α,α),[α7→R]

⇒
{

definition of ∆¢
·,· (cf. Figure 6.10) and specialization ofR

}
∀S1, S2 sets,g ∈ C(S1 → C(S2)),x1 ∈ C(S1).

∀(x,y) ∈ C(Rg
x1

). (Jf K¢
∅ ¢ x, Jf K¢

∅ ¢ y) ∈ lift¢
(,)(C(Rg

x1
), C(Rg

x1
))

⇒ { Lemma 35 }
∀S1, S2 sets,g ∈ C(S1 → C(S2)),x1 ∈ C(S1).

(JfK¢
∅ ¢ (appCost(g,x1)Bx1), JfK¢

∅ ¢ (g ¢ x1)) ∈ lift¢
(,)(C(Rg

x1
), C(Rg

x1
))

6.4 The Parametricity Theory at Work 165

⇒
{

Corollary 6, choice of relations,
definition of lift¢

(,)(·, ·), Lemma 34

}
∀S1, S2 sets,g ∈ C(S1 → C(S2)),x1 ∈ C(S1).

mapPair ¢ (g,g)¢ ¢ (Jf K¢
∅ ¢ (appCost(g,x1)Bx1))

= appCost(mapPair ¢ (g,g)¢, (x1,x1)¢)B(JfK¢
∅ ¢ (g ¢ x1))

⇒ { appCost(mapPair . . .)− appCost(g,x1) > 0 }
∀τ1, τ2 types, g :: τ1 → τ2, t :: τ1. f (g t) @¢ mapPair (g , g) (f t)

Finally, we consider types involving lists. We give two examples, one very
simple where the relative efficiency between the two expressions is clear, and
one just a bit more complicated, where additional restrictions are necessary to
clearly assert one of the compared expressions more efficient than the other.
Of course, to handle lists we need to establish the analogues of Lemma 35
and Corollary 5 w.r.t. the list-lifting. We call the appropriate semantic lifting
mapList and take it to be the semantics of the already known map, given on
page 149.

Hence, mapList is defined as

Jλg :: α→ β.λys :: [α].lfold(λx :: α.λxs :: [β].(g x) : xs, []β , ys)K¢
∅

= (λg.(λys.((vf v1) ¢ ((vf v2) ¢ . . . ((vf vn) ¢ ([], 1)))), 1), 0)

for ys = [v1, . . . ,vn] as input and with vf an abbreviation for

val(Jλx :: α.λxs :: [β].(g x) : xsK¢
[g 7→g,ys 7→ys]) = λx.(λxs.1B(g x :¢ (xs, 0)), 1)

LEMMA 37We have (xs,ys) ∈ lift¢
[](C(Rg

x1,...,xn
)) if and only if there exist m ∈ N,

i1, . . . , im ∈ {1, . . . , n}, and c ∈ Z such that

xs = cB appCost(mapList ¢ g, [xi1 , . . . ,xim]¢)B[xi1 , . . . ,xim]¢

and
ys = cB(mapList ¢ g ¢ [xi1 , . . . ,xim]¢)

COROLLARY 7If (xs,ys) ∈ lift¢
[](C(Rg

x1,...,xn
)), then there exist m ∈ N and i1, . . . , im ∈

{1, . . . , n} such that

mapList ¢ g ¢ xs = appCost(mapList ¢ g, [xi1 , . . . ,xim]¢)Bys

and
val([xi1 , . . . ,xim]¢) = val(xs)

166 6 Looking at Quantitative Aspects

Now, we are prepared to state the two examples that involve lists.

EXAMPLE 33
([α]→ Nat)

Starting from Corollary 4 we derive the cost-sensitive free theorem for
f :: [α]→ Nat . The definition of ∆¢

·,·, the specialization ofR toRg
x1,...,xn

and
Lemma 37 for the specialized relation lead to the following assertion.

∀S1, S2 sets,g ∈ C(S1 → C(S2)), n ∈ N,x1, . . . ,xn ∈ C(S1).

JfK¢
∅ ¢ appCost(mapList ¢ g, [x1, . . . ,xn]¢)B[x1, . . . ,xn]¢

= JfK¢
∅ ¢ (mapList ¢ g ¢ [x1, . . . ,xn]¢)

With specialization of g to JgK¢
∅ and similar arguments as in the previous

examples we obtain:

∀τ1, τ2 types, g :: τ1 → τ2, t :: [τ1]. f t @¢ f (map g t)

EXAMPLE 34
([α]→ [α])

Starting from Corollary 4 we derive the cost-sensitive free theorem for
f :: [α] → [α]. By the definition of the logical relation, Lemma 37 and
Corollary 7 forRg

x1,...,xn
, plus simplification via cost shifting, we get:

∀S1, S2 sets,g ∈ C(S1 → C(S2)), n ∈ N,x1, . . . ,xn ∈ C(S1).

∃m ∈ N, i1, . . . , im ∈ {1, . . . , n}.
appCost(mapList ¢ g, [x1, . . . ,xn]¢)B

(mapList ¢ g ¢ (Jf K¢
∅ ¢ [x1, . . . ,xn]¢))

= appCost(mapList ¢ g, [xi1 , . . . ,xim]¢)B
(Jf K¢

∅ ¢ (mapList ¢ g ¢ [x1, . . . ,xn]¢))

∧ val([xi1 , . . . ,xim]¢) = val(Jf K¢
∅ ¢ [x1, . . . ,xn]¢)

In order to continue and derive a statement about the relative efficiency
of map g (f t) and f (map g t), for types τ1, τ2, function g :: τ1 → τ2, and
list t :: [τ1], we would need further information about appCost(mapList ¢
g, [x1, . . . ,xn]¢) and appCost(mapList ¢ g, [xi1 , . . . ,xim]¢). This cannot be
provided generally, but a number of useful observations is possible. For ex-
ample, we know that the elements xi1 , . . . ,xim form a subset of {x1, . . . ,xn},
and hence that evaluation of map g (f t) does not incur g-costs on elements
other than those already encountered during evaluation of f (map g t),
though of course a different selection and multiplicities are possible. More-
over, if we assume that g is equally costly on every element of t , or indeed
on every term of type τ1, then we can reduce the question about the relative
efficiency of map g (f t) and f (map g t) to one about the relative length of
t and f t , to which an answer might be known statically by some separate
analysis. Also, note that with some extra effort it would even be possible
to explicitly get our hands at the existentially quantified m and i1, . . . , im,
namely to establish that [i1, . . . , im] = val(Jf K¢

∅ ¢ ([1, . . . ,n], 0)).

6.4 The Parametricity Theory at Work 167

6.4.2 Considering foldr / build

We now consider the first complex example. We obtain a perhaps slightly
surprising result, but unfortunately also uncover a weak point of our theory
of parametricity. Gill et al. (1993) present a program transformation named
short-cut fusion or foldr / build -rule (cf. Section 3.2).

In our calculus, the foldr / build -rule says that for arbitrary monotypes τ , τ ′,
every function g :: (τ → α→ α)→ α→ α, function k :: τ → τ ′ → τ ′ and term
z :: τ ′, the value parts of Jlfold(k , z , g (:) []τ)K¢

∅ and Jg k z K¢
∅ are equal. Here (:)

describes the cons-operator as a function:

(:) = λx :: α.λxs :: [α].x : xs

In the sequel, we write (:¢) (:¢)to denote J(:)K¢
∅. The question if the evaluation of

g k z is always as least as efficient as the evaluation of lfold(k , z , g (:) []τ)
arises, and for an answer we can derive a specialization of the cost-sensitive
free theorem of g ’s type, i.e., for type (τ → α → α) → α → α with τ a fixed
monotype. As long as a type is not polymorphic, the logical relation is the
identity relation. Consequently, the logical relation on type τ is fixed to the
identity. Additionally to fixing τ , we fix τ ′, k :: τ → τ ′ → τ ′ with semantics
JkK¢
∅ = k = (vk, ck) and z :: τ ′ with semantics JzK¢

∅ = z = (vz, cz).

As in the examples in Subsection 6.4.1, we start from the type specific statement
of Corollary 4, i.e., in the current case:

∀R ∈ Rel . (JgK¢
∅, JgK¢

∅) ∈ ∆¢
(τ→α→α)→α→α,[α 7→R]

and unfold the logical relation to gain

∀R ∈ Rel . ∀(f , f ′) ∈ ∆¢
τ→α→α,[α7→R].

∀(x,x′) ∈ C(R). (JgK¢
∅ ¢ f ¢ x, JgK¢

∅ ¢ f ′ ¢ x′) ∈ C(R)

The first essential step now is to find an appropriate instantiation forR. Basi-
cally we need to introduce lfold, k and z ; and hence, in analogy to the reasoning
by Gill et al. (1993, Section 3.4), where a partial application of foldr is chosen,
we choose

fkz = Jλxs :: [τ].lfold(k , z , xs)K¢
∅ fkz

= (λ[v1, . . . ,vn].1B((vk v1) ¢ ((vk v2) . . . ((vk vn) ¢ z) . . .)), ck)

to specialize R to Rfkz and obtain, also specializing x to []¢ = ([], 0), via
Lemma 35 and Corollary 5, that

∀(f , f ′) ∈ ∆¢
τ→α→α,[α 7→Rfkz]

.

appCost(fkz, []¢)B(fkz ¢ (JgK¢
∅ ¢ f ¢ []¢))

= appCost(fkz, JgK¢
∅ ¢ f ¢ []¢)B(JgK¢

∅ ¢ f ′ ¢ (fkz ¢ []¢))

168 6 Looking at Quantitative Aspects

For the application of fkz to []¢ we get (ck + 1)B z as result and ck + cz + 1 as
application costs. Hence, we can simplify the free theorem to

∀(f , f ′) ∈ ∆¢
τ→α→α,[α 7→Rfkz]

.

cz B(fkz ¢ (JgK¢
∅ ¢ f ¢ []¢))

= appCost(fkz, JgK¢
∅ ¢ f ¢ []¢)B(JgK¢

∅ ¢ f ′ ¢ z)

A last and a bit tricky problem must still be solved: What to choose for f and
f ′? The answer for f ′ is quite clear, it has to be k. The answer for f seems
also quite clear, it has to be (:¢). But here we encounter the problem that
((:¢),k) ∈ ∆¢

τ→α→α,[α 7→Rfkz]
does not necessarily hold — differently from the

cost-free case proved by Gill et al. (1993). The reason is that k and (:¢) might
cause different costs.

Let us examine the problem in depth and unfold ∆¢
τ→α→α,[α7→Rfkz]

. Up to
now, unfolding the function-lifting of the logical relation, we dropped the cost
equivalence of the functions and thus achieved only an implication instead
of an equivalence. If we recall the function-lifting of ∆¢

·,· (cf. Figure 6.10) the
simplification becomes clear and as long as function types were only on result
positions, and not the type of an argument, the implication was sufficient to
establish the kind of assertion about evaluation costs we aim for. Unfortunately,
now we have a function of type τ → α→ α as input and therefore we need an
exact characterization, derived as follows.

(f , f ′) ∈ ∆¢
τ→α→α,[α7→Rfkz]

⇔
{

definition of ∆¢
·,· with ∆¢

τ,∅ = id JτK¢
∅

}
cost(f) = cost(f ′) ∧ ∀u ∈ C(JτK¢

∅).

cost(f ¢ u) = cost(f ′ ¢ u) ∧
∀(v,v′) ∈ C(Rfkz). (f ¢ u ¢ v, f ′ ¢ u ¢ v′) ∈ C(Rfkz)

⇔
{

definition ofRfkz, Lemma 35 and Corollary 5
}

cost(f) = cost(f ′) ∧ ∀u ∈ C(JτK¢
∅).

cost(f ¢ u) = cost(f ′ ¢ u) ∧ ∀v ∈ C(J[τ]K¢
∅).

appCost(fkz,v)B(fkz ¢ (f ¢ u ¢ v))

= appCost(fkz, f ¢ u ¢ v)B(f ′ ¢ u ¢ (fkz ¢ v))

To obtain an assertion about the foldr / build -rule, we cannot vary k, since
it should be an arbitrary function. Also, an alteration of (:¢) seems to be
inappropriate. But to obtain relatedness, we must alter one of the functions.
Our choice is to adjust the costs of (:¢) in accordance with the (top-level) costs
and the nested costs of k. Hence, provisionally, we obtain functions (:¢

k
) that,

on the value part, behave like (:¢), but that cause costs like k.

6.4 The Parametricity Theory at Work 169

DEFINITION 46
((:¢k))

Let S1, S2, S3 sets and k ∈ C(S1 → C(S2 → C(S3))). We define

(:¢
k
) = (λvx.(λvxs.

(vx : vxs, cost(val(vk vx) val(val(fkz) vxs)))

, cost(vk vx)), ck)

LEMMA 38The function (:¢
k
) fulfills the following two assertions

(a) ∀x ∈ C(JτK¢
∅),xs ∈ C(J[τ]K¢

∅). val(x:¢
k
xs) = val((:¢) ¢ x ¢ xs)

(b) ((:¢
k
),k) ∈ ∆¢

τ→α→α,[α7→Rfkz]

Proof. See Appendix A.3.

If we instantiate f by (:¢
k
) and f ′ by k we obtain

cz B(fkz ¢ (JgK¢
∅ ¢ (:¢

k
) ¢ []¢))

= appCost(fkz, JgK¢
∅ ¢ (:¢

k
) ¢ []¢)B(JgK¢

∅ ¢ k ¢ z)

Because of Lemma 38 (a) we can replace (:¢
k
) by (:¢) if we appropriately adjust

the costs and obtain

(cost(JgK¢
∅ ¢ (:¢

k
) ¢ []¢)− cost(JgK¢

∅ ¢ (:¢) ¢ []¢))B
cz B(fkz ¢ (JgK¢

∅ ¢ (:¢) ¢ []¢))

= appCost(fkz, JgK¢
∅ ¢ (:¢) ¢ []¢)B(JgK¢

∅ ¢ k ¢ z)

The cost expressions are still quite complicated and cannot straightforwardly
be summarized to a single cost that is always non-negative. Obviously the
artificial costs on the right-hand side, i.e., the costs of applying fkz to a list
depend mainly on the length of the list. For the artificial costs on the left-
hand side we take the cost difference between two applications of JgK¢

∅ only
differing in the cost behavior of the first argument. Thus, the artificial costs
on the left-hand side depend on how often JgK¢

∅ employs (:¢
k
) or (:¢) (partially

or fully). Intuitively, this is reflected in the list length again. Our aim is to
separate the costs that g produces into the costs that arise because of (partial or
full) applications of its first argument and the costs that arise otherwise (that,
because g is polymorphic, cannot rely on a particular first argument).

Via the separation the costs hopefully can be summarized in a way that a simple
estimation of the cost difference between left- and right-hand side of the free
theorem is possible. In particular, we aim for these simplifications of costs:

170 6 Looking at Quantitative Aspects

• The costs g causes independently of its first argument are the same for the
application to (:¢

k
) and to (:¢). Thus, these costs vanish on the left-hand

side.

• The costs g causes when applied to (:¢
k
) because of the applications of

(:¢
k
) are intuitively the same as the application costs of fkz to the list

produced by g (minus the costs of z). Thus, these costs from the left- and
the right-hand side should somehow vanish as well.

• The costs g causes when applied to (:¢) because of the applications of (:¢)
are on the first sight linear in the length of the list g produces.2 Because
of polymorphism, g seems to have no other possibility than applying (:¢)
n-times to produce its output list. Thus, we might leave these costs as last
costs in the equation and get extra costs linear in the list length for the
expression on the left-hand side of the free theorem (i.e., the expression
not transformed via foldr / build).

To separate the costs g causes by (applications of) its first argument and other
costs, we introduce costless versions of functions. These versions of functions
behave on the value side exactly as the original function, but cause no costs at
all.

DEFINITION 47
(costless function ver-
sion)

Let f ∈ C(S1 → . . .→ C(Sn)). The function

f0...0 = (λv1.(. . . (λvn.(val(val(. . . val(val(f) v1) . . .) vn), 0), . . . , 0)

where f is indexed by n zeros, is called a costless version of f .

Because cost(JgK¢
∅ ¢ (:¢

k
)000 ¢ []¢) is equal to cost(JgK¢

∅ ¢ (:¢)000 ¢ []¢) we can
rewrite the free theorem as follows.

(cost(JgK¢
∅ ¢ (:¢

k
) ¢ []¢)− cost(JgK¢

∅ ¢ (:¢
k
)000 ¢ []¢)

− (cost(JgK¢
∅ ¢ (:¢) ¢ []¢)− cost(JgK¢

∅ ¢ (:¢)000 ¢ []¢)))B
cz B(fkz ¢ (JgK¢

∅ ¢ (:¢) ¢ []¢))

= appCost(fkz, JgK¢
∅ ¢ (:¢) ¢ []¢)B(JgK¢

∅ ¢ k ¢ z)

Next, we want to compare the first cost difference on the left-hand side and
the application costs of fkz on the right-hand side. Therefore, without loss of
generality, we consider JgK¢ ¢ (:¢) ¢ []¢ to produce a list of length n.

CONVENTION 14 Up to the end of this subsection, we assume, for arbitrary, but fixed n ∈ N
and cl ∈ Z,

JgK¢ ¢ (:¢) ¢ []¢ = ([v1, . . . ,vn], cl)

2Actually, polymorphism does not guarantee the costs to be linear in the length of the list.
Hence, our intuition will prove false. We discuss the problem later on.

6.4 The Parametricity Theory at Work 171

Before we regard the costs that g causes depending on the costs of its first
argument, we calculate the application costs of fkz that are artificially added
on the right-hand side of the free theorem. As obvious from the semantics of
fkz given on page 167, for the list ([v1, . . . ,vn], cl) the application costs of fkz
are

1 + ck + cz +

n∑
i=1

cost(vk vi) +

n∑
i=1

cost(v′i v′′i) (6.2)

where

v′i = vk vi and v′′i = cost(val(vk vi) val((vk vi+1) ¢ (. . . ¢ ((vk vn) ¢ z))))

To set off the first cost difference on the left-hand side against the just calculated
application costs, we have to verify how often g applies its first argument
(partially or fully) to build up the list. On the first look, it should apply it as
often as fkz applies k. The reason seems to be obvious, but is actually faulty:
Because g is polymorphic, it can, given (:¢

k
) and []¢ as arguments, only employ

the given constructors to build a list. To build a list of length n it has to apply
the given (:¢

k
) n times. Applications that do not directly contribute to the

generation of the output list are useless, because g cannot inspect the (in g’s
view) polymorphic output. But, unfortunately, nothing hinders g to enforce
useless applications.

EXAMPLE 35Regard the function

g = λk :: Nat → α→ α.λz :: α.case [k 42 z] of {[]→ z ; x : xs → k 1 z }

If we apply g to (:) and []α the function (:) is applied twice, even if only
once to produce the final result. The first application does not contribute to
the overall result, but artificially causes extra costs.

EXAMPLE 36Consider the function

g :: (Int → α→ α)→ α→ α
g = λk .λz .case [k 42] of {[]→ z ; (λx .x (x (x z))) (k 1)}

We get g ¢ (:¢) ¢ []¢ = ([1,1,1], c) for some c, but k is applied unnecessarily
to an element not appearing in the list.

The above examples show that we cannot generally offset the application costs
of fkz against the costs that (:¢

k
) enforces when applied inside of g. Example 35

might give the impression that it suffices to limit the applications of (:¢
k
) in g

to the length of the list g produces. Example 36 disproves the impression: Only
two of the partial applications of (:¢

k
) produce a list of length three and one still

172 6 Looking at Quantitative Aspects

is an unnecessary application. We can try to ignore unnecessary applications
as long as (:¢

k
) is not employed more than n times. But this handling is only

valid if the application costs for (:¢
k
) are independent of the argument given

to it. If for example k 42 is way more expensive than k 1 in Example 36, we
cannot estimate the cost difference we want in our free theorem.

The above discussion has shown that in general foldr / build does not neces-
sarily speed up a program. Hence, we must restrict g to guarantee a speed
up. Fortunately, in practice the restriction will not matter because it essentially
says “g is not allowed to apply its first argument unnecessarily”. Thus, we
call sufficiently restricted functions “reasonable”. We provide two definitions
of reasonable. The first definition (weakly reasonable) requires the first ar-
gument to g to cause equal costs when applied to different arguments. The
second definition (strongly reasonable) relaxes that restriction, but in return
complicates the conditions on g . Note, that both definitions establish an upper
and a lower bound for the costs. The lower bound is eligible, because the
polymorphism of g intuitively guarantees that the list can only be built up
using the operator given to g as first argument. Unfortunately, we were not
able to state a somehow abstract definition for “reasonable”, thus we will really
just require g to cause costs that are easy to handle when we further simplify
the free theorem.

DEFINITION 48
(weakly reasonable)

The function g :: (τ → α → α) → α → α with val(JgK¢
∅ ¢ (:¢) ¢ []¢) =

[v1, . . . ,vn] is weakly reasonable if for every k ∈ C(JτK¢
∅ → C(S → C(S))) with

• ∃c. ∀x ∈ JτK¢
∅. appCost(k,x) = c

• ∃c. ∀x ∈ JτK¢
∅. ∀y ∈ C(S). appCost(k ¢ x,y) = c

there exists an i ∈ {0, . . . , n} such that for arbitrary x = (v, c) ∈ JτK¢
∅,

cost(JgK¢
∅ ¢ (:¢

k
) ¢ []¢)− cost(JgK¢

∅ ¢ (:¢)000 ¢ []¢)

= cost(k) + i · cost(val((:¢k)) v) + n · cost(val((:¢k) ¢ x) [])

DEFINITION 49
(strongly reasonable)

The function g :: (τ → α → α) → α → α with val(JgK¢
∅ ¢ (:¢) ¢ []¢) =

[v1, . . . ,vn] is strongly reasonable if for every k ∈ C(JτK¢
∅ → C(S → C(S))),

• cost(JgK¢
∅ ¢ (:¢

k
) ¢ []¢)− cost(JgK¢

∅ ¢ (:¢)000 ¢ []¢
0
)

6 cost(k) + cost((val((:¢
k
)) v1) ¢ (. . . ((val((:¢

k
)) vn) ¢ []¢)))

• cost(JgK¢
∅ ¢ (:) ¢ []¢)− cost(JgK¢

∅ ¢ (:¢)000 ¢ []¢
0
) > n

For reasonable functions g we can simplify the already known free theorem
further. Either assuming g to be weakly reasonable and k such that its applica-
tion costs are independent of the arguments given to it, or assuming g to be

6.4 The Parametricity Theory at Work 173

strongly reasonable and not constraining k, we can simplify the already known
assertion

(cost(JgK¢
∅ ¢ (:¢

k
) ¢ []¢)− cost(JgK¢

∅ ¢ (:¢
k
)000 ¢ []¢)

− (cost(JgK¢
∅ ¢ (:¢) ¢ []¢)− cost(JgK¢

∅ ¢ (:¢)000 ¢ []¢)))B
cz B(fkz ¢ (JgK¢

∅ ¢ (:¢) ¢ []¢))

= appCost(fkz, JgK¢
∅ ¢ (:¢) ¢ []¢)B(JgK¢

∅ ¢ k ¢ z)

By Definition 48 or 49 we overestimate the first cost difference on the left-hand
side by the application costs of fkz to a list of length n (minus the costs of
z). Furthermore, by the same definitions, we underestimate the second cost
difference on the left-hand side by n. Thereby we obtain

(appCost(fkz, JgK¢
∅ ¢ (:) ¢ []¢)− n)B(fkz ¢ (JgK¢

∅ ¢ (:¢) ¢ []¢))

w¢ appCost(fkz, JgK¢
∅ ¢ (:¢) ¢ []¢)B(JgK¢

∅ ¢ k ¢ z)

Finally, we cancel the remaining artificial application costs and move n to the
right-hand side to get the cost estimation

(fkz ¢ (JgK¢
∅ ¢ (:¢) ¢ []¢)) w¢ nB(JgK¢

∅ ¢ k ¢ z)

So, in the end we gain that under appropriate restrictions, foldr / build enables
a linear speed up in the length of the list g ¢ (:¢) ¢ []¢ produces. The result
is quite promising w.r.t. the applicability of our theory, but the restrictions on
g are formulated very brute force. Let us rethink what we want to express.
Essentially, we want to state that g applies its first argument only to produce
the final result. Since g is polymorphic, parametricity should tell us that the
production of a list of length n needs at least n total applications of g ’s first
argument and at least one partial such application. Furthermore, not more
than n partial and n total applications should be necessary. Hence, at least for
weakly reasonable functions it should suffice to count applications of g ’s first
argument. A possible way to count applications might be “tick”-versions of
functions, an extension of the concept of costless functions.

DEFINITION 50
(tick-version)

Let f ∈ C(S1 → . . .→ C(Sn)) and c1, . . . , cn ∈ {0, 1}. The function

f c1...cn = (λv1.(. . . (λvn.(val(val(. . . val(val(f) v1) . . .) vn), cn), . . . , c1)

is called a tick-version of f .

The concrete usage of tick-versions is illustrated best by example.

174 6 Looking at Quantitative Aspects

EXAMPLE 37 Let addApps :: (Nat → Nat)→ Nat → Nat with

addApps = λf :: Nat → Nat .λx :: Nat .f x + f x

as semantics of addApps we get

addApps = (λvf .(λvx.((vf vx) +¢ (vf vx)), 1), 0)

We can calculate how often a function f ∈ C(N→ C(N)) given to addApps
as first argument is applied in addApps for a specific second input x by

cost(addApps ¢ f01 ¢ x)− cost(addApps ¢ f00 ¢ x)

For the example, we take f = (λx.(5, 3), 1) and x = (3, 0). As tick-versions
we obtain

f00 = (λx.(5, 0), 0)

f01 = (λx.(5, 1), 0)

and thereby we have

cost(addApps ¢ f01 ¢ x) = 3

cost(addApps ¢ f00 ¢ x) = 1

which means that our concrete f is applied twice when we hand it to
addApps as first argument and give x as second argument.

Note that in general the number of applications really depends on the concrete
functions, even if not so in Example 37. Consider for example

h = λf :: Nat → Nat .λx :: Nat .case x of {0→ 0; → f x + f x }

or

h = λf :: Nat → Nat .λx :: Nat .case f 1 of {0→ 0; → f x + f x }

That the number of applications is independent of the concrete input holds
only for sufficiently polymorphic functions, as g is. Furthermore, counting
is only correct if the function, that applies the function we count, properly
propagates application costs. All functions that arise as the semantics of a term
do so.

That said, parametricity should provide the tools to prove the next proposition
that much more directly corresponds to a pure counting of function applications
than our original definition.

6.5 Summary 175

PROPOSITION 1
(weakly reasonable
function)

Let g = JgK¢
∅ with g :: (τ → α → α) → α → α where τ arbitrary but fixed

and g ¢ (:¢) ¢ []¢ = [x1, . . . ,xn]¢ for n ∈ N. If

cost(g ¢ (:¢)010 ¢ []¢)− cost(g ¢ (:¢)000 ¢ []¢) 6 n
cost(g ¢ (:¢)001 ¢ []¢)− cost(g ¢ (:¢)000 ¢ []¢) = n

then g is weakly reasonable.

Unfortunately, our theory is not capable to prove Proposition 1. The problem
is that we do not get a grip on nested costs. Thus, with the current theory of
parametricity, we must stick to the original definition of a weakly reasonable
function. For strongly reasonable functions a similar statement as Proposition 1
should be possible, but again our theory is too weak to prove it.

Irrespective of the restriction we encountered, our theory was able to reveal
cases where foldr / build slows down program execution. By informal argu-
ments we also found out, that those adverse instances of the transformation
never occur for functions that do not calculate values they never use for their
output, hence, hopefully for all functions that appear in practice.

6.5 Summary

We investigated in how far free theorems can be enriched to allow assertions
about evaluation costs. For the study, we chose a very simple λ-calculus
without general recursion, but with structural recursion on lists and natural
numbers. As semantics, we employed an instrumented denotational semantics
that externalized evaluation costs. In particular, we counted function applica-
tions. The semantics is similar to the one of Rosendahl (1989) and cost handling
corresponds to call-by-value evaluation.

Based on the instrumented semantics, we set up a theory of relational parame-
tricity. In essence we lifted the standard theory of relational parametricity to
cost-full expressions in the way that only expressions that cause equal costs are
related. The logical relation we set up allows the parametricity theorem given
as Theorem 11.

To increase usability of our theory, we reformulated the logical relation and the
parametricity theorem in a fully cost-lifted style (cf. Corollary 4). We employed
the fully cost-lifted formulation of our theory to investigate in how far we can
set up useful assertions about evaluation costs via free theorems. For simple
examples the results were quite promising.

Finally, we applied our theory to explore the speed up of a program when it
becomes transformed via the foldr / build -rule. We found out that there are
situations where the transformed program might run even slower than the
original one. But those cases, though they are possible not only in a call-by-

176 6 Looking at Quantitative Aspects

value calculus but also in Haskell with seq, do not matter in practice. They
require the forced evaluation of an expression that certainly does not influence
the overall result of the program. In all practically relevant cases, foldr / build
guarantees a speed up that is linear in the length of the list whose construction
is omitted by the program transformation.

Unfortunately, the foldr / build example also revealed a weakness of our theory
of parametricity. We were not able to give a simple criterion for the require-
ments we needed to guarantee a speed up. In particular, the theory seems to
be of limited help when functions with different application costs need to be
put in relation. Thus, the handling of higher-order functions is not satisfactory.

6.6 Outlook

There are several ways to extend or modify the presented results. Firstly, we
might head for a more realistic cost measure. We can add costs to evaluation
steps different than function application. Liu and Gómez (2001) show that
already within the possibilities of a denotational semantics as ours, suitable
choices for costs allow realistic runtime approximations. Secondly, we could
extend our theory to a more powerful calculus, e.g. we could add general
recursion. For such an extension, the work of van Stone (2003) might provide
useful ideas. Thirdly, we might revise our theory to allow a better handling of
higher-order functions. In particular, we could head for a theory that allows
to relate functions with different application costs (for related arguments). At
the moment, we do not see how such a theory should look like, but intuition
says that parametricity should allow stronger statements than the ones we can
derive at the moment. In particular, Proposition 1 should be provable.

Besides developing our theory further, we could automatize the derivation
of cost-sensitive free theorems. We could try to extend the theorem generator
of Böhme (2007) that is available at http://www-ps.iai.uni-bonn.de/ft/ to
generate cost-sensitive free theorems.

Last, but not least, we could take a look at other free theorem based program
transformations than foldr / build and investigate in how far and under which
conditions these transformations speed up program execution.

We could also consider a different evaluation strategy. But while an investi-
gation for call-by-name is of very limited interest (the strategy is usually not
employed in implementations of programming languages), an investigation for
call-by-need will be much more complicated than the one for call-by-value. In
a call-by-need setting the instrumented semantics cannot be completely compo-
sitional. We must somehow propagate if an expression is already evaluated or
not. For example, we might try to encode the state of evaluation of expressions
in a parameter that is attached to the semantic function J·K·,·.

http://www-ps.iai.uni-bonn.de/ft/

177

Part III

Conclusion

179

Chapter 7

Conclusion

The main goal of this thesis was to extend the theory of parametricity to boost its
usability w.r.t. real-world programming languages. In particular, our interest was
to increase applicability of free theorems.

To reach this goal,

• we considered the impact of typical programming features on parametri-
city results

• we extended the theory of parametricity to incorporate runtime asser-
tions,

• we provided two web interfaces to make (parts of) our theory applicable
virtually for free.

7.1 Consideration of Programming Features

As already explained in the introduction and described closer in the formal
background section, free theorems were originally considered in a very sim-
ple λ-calculus and do not directly carry over to the calculi that real-world
programming languages rely on. Our focus was in particular on functional pro-
gramming languages, even more concrete on the functional language Haskell.
Here in particular

• general recursion and

• forced strict evaluation

were the features of interest.

As already explained in the introduction (Section 1.2), the influence of a new
programming feature on free theorems can be investigated in four phases. We

180 7 Conclusion

picture the phases by a circle:

new
feature

counterexamples

conditions

theorems

localization

in
tu

ition

pro
of

refined
types

se
ar

ch

The different steps are described as follows.

manual search for counterexamples (intuition)

new
feature

counterexamples

conditions

theorems

localization

in
tu

ition

We consider a calculus where
a theory of parametricity already is established and extend this calculus
by the programming feature we want to investigate. Having done so, we
try to find examples where the original theory yields incorrect theorems.
Those counterexamples to the theory serve as a starting point to extract
suitable conditions or alterations that lead the way to an enhanced theory.

formalization of the enhanced theory (proof)

new
feature

counterexamples

conditions

theorems

localization

in
tu

ition

pro
of

Having an idea about how a
correct theory of parametricity might look like in the calculus with the
new feature, we formally prove whether our intuition is correct. Doing
so, we establish an appropriate parametricity theorem.

localization of the influence (refined types)

new
feature

counterexamples

conditions

theorems

localization

in
tu

ition

pro
of

refined
types

The new feature we consider will
weaken the assertions we can derive via the parametricity theorem. The
restrictions are only necessary if we really use the feature. Hence, we can
relax restrictions if we are able to incorporate knowledge about use or
disuse of the new feature in the theory. Since the theory is based only on
types, we need to refine typing.

automatic generation of counterexamples (search)

new
feature

counterexamples

conditions

theorems

localization

in
tu

ition

pro
of

refined
types

se
ar

ch

Although, after the first
three steps we have a fully fledged formal theory of parametricity for
the calculus that includes the newly investigated feature, and we already
reduced the influence of this feature via localization, still one step seems
beneficial. For practical use it is interesting and helpful to see why extra
conditions on free theorems arise. This knowledge may increase un-
derstanding of the theory. Moreover, for some types, restrictions might
be superfluous. This could be discovered by an exhaustive search for
examples in which the restrictions are really necessary. Those examples,
i.e., free theorems that are incorrect if one of the newly introduced re-
strictions is relaxed, we call (according to the nomenclature in phase one)
counterexamples.

According to the four phase scheme, we pushed the development one phase
further for the feature of general recursion and the feature of forced strict

7.2 Parametricity Enables Efficiency Assertions 181

general
recursion

counterexamples

conditions

theorems

localization

W
ad

ler
(1989)

W
ad

le
r (1

98
9)

Launchbury
and

Paterson
(1996)

C
hap

te
r 4

forced
strict

evaluation

counterexamples

conditions

theorems

localization

Joh
an

n
an

d

V
oigtlän

d
er

(2004)

Jo
han

n
an

d

Voig
tlä

nder
(2

00
4)C

hapter 5

Figure 7.1: Investigation of program features (contributions of this thesis in red)

evaluation. Figure 7.1 graphically summarizes the progress we made. It also
points to preceding works.

With the theoretical developments, we hope to supply good tools for formal
proofs of program transformations. Free theorems act as verification tool of
equational reasoning steps in many contexts. Investigating the restrictions on
the theorems in the settings they actually are applied in, and hinting to the
pitfalls and corner cases, will help to correctly use free theorems. The additional
supply with automatic theorem generators (as we provide it for a calculus with
forced strict evaluation and refined types) and counterexample generators (as
we provide it for a calculus with general recursion), eases the application of
free theorems and guarantees correctness of the results on a formal basis.

7.2 Parametricity Enables Efficiency Assertions

Aside from investigating free theorems in lambda calculi with additional fea-
tures that are available in real-world functional programming languages, our
interest was to widen the view on the kind of assertion free theorems may yield.
For that purpose, we studied how to incorporate runtime assertions into free
theorems. Those assertions are in particular of interest concerning program
transformations that are verified via free theorems. It would be beneficial to
know if a program transformation, that may be implemented in a compiler,
speeds up a program. For a very simple calculus, we enriched the theory
of parametricity such that free theorems with statements about evaluation
costs can be derived. Employing the theory we were able to formally consider
simple examples. We also employed the theory for a detailed investigation of
the foldr / build program transformation that is implemented in the Glasgow
Haskell Compiler (GHC). At least in a call-by-value setting, we found criteria
where a speed-up is guaranteed and we could also argue that the speed-up is
linear in the length of the list, whose construction is omitted.

182 7 Conclusion

Certainly, the theory can be improved and considerations should be made in
calculi with more features. Nevertheless, we showed that extra information
about evaluation costs can be derived via free theorems. As already mentioned,
this information is particularly helpful to estimate the speed-up a program
transformation may bring.

183

Part IV

Appendix

185

Appendix A

Proofs

In this chapter, we present proofs that are omitted in the thesis’ main part or
only sketched there. We always present the entire proofs, in particular the parts
presented already in the thesis’ main part are repeated here.

A.1 Proofs from Chapter 4

Proof of Theorem 6 on page 81 (correctness of TermFind)

Proof. The proof splits into two parts. First we show that Γ ` t ::τ does not hold
in λαfix∗ . Therefor, we prove that every term t returned by TermFind contains a
subterm ⊥τ ′ with ΓT ` τ ′ 6∈ Pointed. If this is the case we have immediately that
Γ ` t :: τ does not hold, since (FIX) is the only rule introducing fix, and hence
⊥τ ′ , and we can only use it if τ ′ is pointed. Since ΓT does not change during a
type derivation, pointedness of types does not change during a derivation.

If TermFind terminates successfully it employs (BOTTOM) that introduces ⊥τ ′
on an unpointed type τ ′, or, if not, the algorithm uses (BOTTOM→’) at some
step switching to the second phase and that way ⊥τ ′ for τ ′ unpointed is intro-
duced, too. Knowing that at least one of (BOTTOM) and (BOTTOM→’) is applied
whenever the algorithm returns a term, it suffices to show that the subterm
⊥τ ′ introduced by one of the mentioned rules is propagated by every rule of
the first phase. Propagation is easily seen because the term at the right-hand
side of every rule remains either unchanged as part of the new term on the
right-hand side or with some variables substituted. Since ⊥τ ′ does not contain
any variable it is always propagated unchanged.

The second part of the proof is to show that Γ∗ ` t :: τ holds. We relate every
rule of TermFind to a rule or a rule sequence of the typing rules of λαfix∗ that
performs the identical term transformation under the assumption that all types

186 A Proofs

are pointed. The pointedness assumption is immediate because during the
algorithm type variables in the context never change, and since we start with
Γ∗ all type variables are always annotated by ∗. Thus, regarding the definition
of the type class Pointed (cf. Figure 4.5), we have pointedness for all types.

The rules (UPDROP), (NDROP) and (UDROP) perform only context extensions
and hence can be skipped. (ABS), (LEFT) and (RIGHT) are present in both rule
systems. In the case (WRAP) we use (CONS) with the additional premise (NIL)
as corresponding rule. For all following rules we take Γ ` ⊥τ :: τ as additional
premise, since we can derive it for every τ under all contexts Γ:

Γ, x :: τ ` x :: τ

Γ ` (λx :: τ.x) :: τ → τ

Γ ` ⊥τ :: τ

The additional premise enables us to relate (BOTTOM) with (FIX) and (PAIR1),
(PAIR2) both with (PAIR).

In the third phase (PAIR’) corresponds to (PAIR) and (EITHER’) to (LEFT), both
with ⊥τ of the appropriate type as a premise. The remaining rules of the third
phase correspond to the axioms of the original typing rules. In the second phase
(NAT’), (UNIT’), (LIST’), (PAIR’) and (EITHER’) fit to the respective case-rules with
(VAR) as additional premise.

The remaining rules all substitute variables in the term t on the right-hand side.
If the substituted variables do not appear in t , the proof is immediate. If they
appear, they must have been brought into t by some rule already used in the
derivation tree. Since all rules only distinguish types, but not term structures,
it suffices to generate the term tv that is substituted for the term variable v ,
only using the term variables known in the context Γ in the conclusion of
the currently examined rule. Thus, in the following cases we focus on the
derivation of the tv in question1.

(WRAP→’)

Γ, f :: [τ1]→ τ2 ` f :: [τ1]→ τ2

Γ, y :: τ1 ` y :: τ1 Γ, y :: τ1 ` []τ1 :: [τ1]

Γ, y :: τ1 ` (y : []τ1) :: [τ1]

Γ, f :: [τ1]→ τ2, y :: τ1 ` (f (y : []τ1)) :: τ2

Γ, f :: [τ1]→ τ2 ` (λy :: τ1.f (y : []τ1)) :: τ1 → τ2

(HEAD)

We use the rule (LCASE) with Γ, l :: [τ1] ` l :: [τ1], Γ ` ⊥τ1 :: τ1 and Γ, x1 :: τ1 ` x1 :: τ1 as premises.
They are all three immediate.

1During the proof we omit uninteresting typing context entries in type derivations to save
space.

A.1 Proofs from Chapter 4 187

(PAIR→)

Γ, f :: (τ1, τ2)→ τ3 ` f :: (τ1, τ2)→ τ3

Γ, x :: τ1 ` x :: τ1 Γ, y :: τ2 ` y :: τ2
Γ, x :: τ1, y :: τ2 ` (x , y) :: (τ1, τ2)

Γ, f :: (τ1, τ2)→ τ3, x :: τ1, y :: τ2 ` (f (x , y)) :: τ3

Γ, f :: (τ1, τ2)→ τ3, x :: τ1 ` (λy :: τ2.f (x , y)) :: τ2 → τ3

Γ, f :: (τ1, τ2)→ τ3 ` (λx :: τ1.λy :: τ2.f (x , y)) :: τ1 → τ2 → τ3

(PROJ)

We have to consider two substitutions. The term derivation is both times the same style. We use
(PCASE’) with Γ, p :: (τ1, τ2) ` p :: (τ1, τ2) and either Γ, x :: τ1 ` x :: τ1 or Γ, y :: τ2 ` y :: τ2 as premises.

(EITHER→)

We also consider two substitutions. The term constructions are again of similar style. The first one is
constructed as follows:

Γ, f :: Either τ1 τ2 → τ3 ` f :: Either τ1 τ2 → τ3

Γ, x :: τ1 ` x :: τ1
Γ, x :: τ1 ` Leftτ2 x :: Either τ1 τ2

Γ, f :: Either τ1 τ2 → τ3, x :: τ1 ` (f (Leftτ2 x)) :: τ3

Γ, f :: Either τ1 τ2 → τ3 ` (λx :: τ1.f (Leftτ2 x)) :: τ1 → τ3

The second derivation is similar, but with y :: τ2 and Rightτ1 y instead of x :: τ1 and Leftτ2 x ,
respectively.

(DIST1)

We use the rule (ECASE’) with the premises Γ, e ::Either τ1 τ2 ` e ::Either τ1 τ2, Γ, x :: τ1 ` x :: τ1 and
Γ ` ⊥τ2 :: τ2.

(DIST2)

Change the last two premises from case (DIST1) to Γ ` ⊥τ1 :: τ1 and Γ, x :: τ2 ` x :: τ2.

(BOTTOM→’)

Γ, f :: τ1 → τ2 ` f :: τ1 → τ2 Γ ` ⊥τ1 :: τ1

Γ, f :: τ1 → τ2 ` (f ⊥τ1) :: τ2

188 A Proofs

(ARROW→’)

Γ, f :: (τ1 → τ2)→ τ3 ` f :: (τ1 → τ2)→ τ3

Γ, u :: τ1, z :: τ2 ` z :: τ2
Γ, z :: τ2 ` (λu :: τ1.z) :: τ1 → τ2

Γ, f :: (τ1 → τ2)→ τ3, z :: τ2 ` (f (λu :: τ1.z)) :: τ3

Γ, f :: (τ1 → τ2)→ τ3 ` (λz :: τ2.f (λu :: τ1.z)) :: τ2 → τ3

to gain a substitute for g . The substitution of w by x is just a renaming of a bound variable occurrence
and as substitute for y we have

Γ, g :: . . . , f :: . . . ` f :: (τ1 → τ2)→ τ3

Γ, g :: τ2 → τ3,w :: τ1 ` t1 :: τ2
Γ, g :: τ2 → τ3, x :: τ1 ` t1[x/w] :: τ2

Γ, g :: . . . ` (λx :: τ1.t1[x/w]) :: τ1 → τ2

Γ, g :: τ2 → τ3, f :: (τ1 → τ2)→ τ3 ` (f (λx :: τ1.t1[x/w])) :: τ3 (*)
Γ, f :: (τ1 → τ2)→ τ3 ` (f (λx :: τ1.t1[λz :: τ2.f (λu :: τ1.z)/g , x/w]) :: τ3

where (*), i.e., removing the substitution of g , is by the first derivation tree.

(BOTTOM→)

Similar to (BOTTOM→’)

(BOTTOM→◦)

Similar to (BOTTOM→’)

(APP’◦)

We use the rule (APP) with the premises Γ, x :: τ1 ` x :: τ1 and Γ, f :: τ1 → τ2 ` f :: τ1 → τ2, and have
Γ, x :: τ1, f :: τ1 → τ2 ` (f x) :: τ2.

All remaining rules are ◦-annotated and similar to the unannotated cases.

Proof of Theorem 7 on page 83 (termination of TermFind)

Proof. To state the termination of TermFind we introduce a termination order
that decreases with every (backward) rule application during the construction
of the derivation tree and thus reaches its least element after finitely many rule
applications.

Consider, we have an arbitrary external input (Γ; τ). We define the termina-
tion order on a summed up complexity measure over τ and over all types
that are assigned to term variables in Γ, i.e., all types in ΓV. We regard tuples
(Eithern, . . . ,Either1, (·, ·), [·],→,#var) where n is the maximal nesting level
of a structural2 subtype Either τ1 τ2 in τ and in the types in ΓV together. Nest-
ing level is made precise below. The entries in the tuple are the number of

2By structural we want to emphasize that we distinguish two subtypes by their position in a
type, even if they are syntactically equal. This is not very explicit in the proof, but could easily

A.1 Proofs from Chapter 4 189

occurrences of Either in different nesting levels, the number of occurrences of
pairs, of lists and of arrows in the regarded types; and finally the number of
term variables in ΓV. As order on those tuples we first compare the maximal
nesting level of Either and if the tuples are of the same size we take the lex-
icographical order on them, comparing each component separately, starting
with the left-most. The nesting level of a structural subtype τ ′′ of a type τ ′ in τ
is defined recursively by the function nl (τ ′′, τ ′, r), where τ ′′ is the structural
subtype we search the nesting level for, τ ′ the currently examined structural
subtype of τ and r the nesting level of τ ′ in τ . We call nl (τ ′′, τ, 0) to get the
nesting level of τ ′′ in τ . The function nl is defined as follows3:

nl (τ ′′, τ ′, r) =
if τ ′ ≡ τ ′′ then r

else let rec τ1 τ2 = if nl (τ ′′, τ1, r + 1) 6≡ None
then nl (τ ′′, τ1, r + 1)
else nl (τ ′′, τ2, r + nlmax τ1 + 1)

in case τ ′ of
[τ1] → nl (τ ′′, τ1, r + 1)
(τ1, τ2) → rec τ1 τ2
Either τ1 τ2 → rec τ1 τ2
τ1 → τ2 → rec τ1 τ2

→ None

where nlmax τ returns the maximal nesting level of τ , i.e., the maximal result
of nl (τ ′, τ, 0) where τ ′ ranges over all structural subtypes of τ . For every call
nl (τ ′′, τ, 0) with τ ′′ a structural subtype of τ the function nl returns the nesting
level of τ ′′ in τ (i.e., not None) and hence is well-defined.

Having the definition of nesting level we examine whether the measure re-
ally decreases with each rule’s application. Rules without premise can be
disregarded, because the algorithm terminates immediately whenever they
are applied. Also rules with a pointedness check as only premise can be dis-
regarded, because pointedness checks are also obviously terminating if we
consider the rules in Figure 4.5. Regarding (UPDROP), (NDROP), (UDROP),
(NAT◦), (UNIT◦), (LIST◦), (PAIR◦) and (EITHER◦) there is only a term variable re-
moved from the term context, thus none of the values in our measure increases,
but at least the number of variables in the term context decreases.

For (ABS) an arrow is eliminated, nothing new is introduced and there is no
chance to deepen the nesting level of any Either . Hence the measure decreases.

Regarding (WRAP→’) a list is eliminated and the nesting levels of τ1 and τ2 are
reduced.
be made explicit by annotating (sub)types with unique identifiers. We refrain from annotations,
because they blur the presentation further without adding significant details, not captured in this
footnote.

3The definition is in Haskell-like syntax. None is a special integer value. Correct Haskell code
could use Maybe with Nothing as None , but consequently must pack/unpack r in Just .

190 A Proofs

For (PAIR→) the nesting level of τ1 decreases by one and the levels of τ2 and
τ3 remain. Because the elimination of the pair is weighted higher than the
introduction of an arrow, the termination order decreases.

The other rules behave harmless in similar ways. We only need to check that no
Either is nested deeper than it was in the conclusion and that some structural
element is removed. Regarding (ARROW→’) we have to consider each premise
separately.

The only exception in just removing something is (EITHER→). The premise of
(EITHER→) duplicates τ3. Hence, we can have (limited) growth in the number
of all structural elements. What we know is that the nesting level of τ1, τ2 and
τ3 and consequently the nesting level of all their subtypes decreases. Here, the
distinction between differently leveled Either in the measure comes in. Assume
we have a second Either besides the eliminated one, then it is moved to a lower
level and the termination order decreases. If we have no other Either , we have
decreased the number of Eithers to zero and hence decreased the termination
measure, too.

Proof of Lemma 15 on page 98

Proof. We refer to the notation in Definition 26 and prove Lemma 15 over
the different cases in Definition 26 and by induction on the length of l. Keep
in mind that functions are related iff their results for related arguments are,
and note that the first element of l if written as (v,v′) in Definition 26 is
already determined by the type τ as we see from the definition of a disrelator.
Furthermore, remember that τ ′ is pointed under ΓT and thus (⊥,⊥) ∈ ∆fix

τ ′ .

First, we prove (g1,g2) ∈ ∆fix

τ→τ ′ . If τ is an unpointed type variable α, we
check the required properties for all argument pairs in ∆fix

α = {(⊥, ()), ((), ())}
and see that the values of g1 and g2 applied to the components of these pairs,
respectively, are related. For all other cases, except τ = τ1 → τ2, ⊥ is only
related to itself by the definition of the logical relation (cf. Figures 4.4 and 2.10).
Thus (g1,g2) ∈ ∆fix

τ→τ ′ is either immediate, or by the induction hypothesis that
it holds for every (structural) subtype of τ . In the cases with τ = τ1 → τ2 the
induction hypothesis suffices, too. This is because (p+

τ1 ,p
+
τ1) and (v,v′) are

both related, respectively.

Second, we regard (g1 t1,g2 t2) = (t′1,⊥). For the case τ = α and unpointed,
we have (t1, t2) = (⊥,⊥) for it is the only unrelated pair for type α, and we
are done. For all other cases where l = [], except for τ = τ1 → τ2, we know
from Definition 25 that (t1, t2) = (t1,⊥) and t1 6= ⊥ because Γ ` τ ∈ Pointed.
Taking the components of this pair as arguments for the respective g1 and g2,
the proof is immediate. For τ = τ1 → τ2 and l = [] the proof relies on t1 a
constant function (cf. Definition 25) and the induction hypothesis. For the cases
with l 6= [] the induction hypotheses suffice again. Regarding (g1 t1,g2 t2)

A.1 Proofs from Chapter 4 191

we apply the head of l to (t1, t2). Hence, for the result the former disrelator
with l replaced by its tail is a disrelator, and therefore the recursive call of the
construction is well defined.

Proof of Lemma 16 on page 106

Proof. The proof is by induction on the length of the derivation tree generated
by the second and third phase of ExFind. Hence, we consider separately each
rule of phase II and III as root rule of the derivation tree, yielding the final
environment. We assume that for the premises we can already construct the
respective result environments. The environment definitions in Definition 30
ensure directly the domain restrictions for a result environment. Hence, it
remains to check that (σ1(x),⊥) 6∈ ∆fix

τ and (σ1(x), σ2(x)) ∈ ∆fix
τ for the appro-

priate type. By Lemma 14 (2) we get (σ1(x),⊥) 6∈ ∆fix
τ and by Lemma 14 (1)

we get (σ1(x), σ2(x)) ∈ ∆fix
τ for all rules of the third phase, all rules whose

premises are calls to the third phase, and for (VAR◦). For the rule (APP’◦)
Lemma 15 and the induction hypothesis are sufficient. For all other rules of
the second phase (σ1(x),⊥) 6∈ ∆fix

τ as well as (σ1(x), σ2(x)) ∈ ∆fix
τ is directly

by the definition of the logical relation and the induction hypothesis for the
substituted variable.

Proof of Lemma 17 on page 106

Proof. As the proof of Lemma 16, this proof is by induction on the length of
the derivation tree generated by the second and third phase of ExFind. In the
remainder of the proof, we denote common parts of the term environments of
premise and conclusion of a rule by σ1 and σ2 respectively. We give altered
entries explicitly, where the value a variable is mapped to is symbolized by the
variable’s name and the respective environment index. By this notation, we
refer to the value generated for the respective environment entry by Defini-
tion 30. Furthermore, we denote the term in the premise of a rule by tp and the
term in the conclusion by tc. For axioms the term is also denoted by tc.

For the rules of the third phase it suffices to show (JtcKfix
σ1
,⊥) 6∈ ∆fix

τ . For (VAR’)
the term is not related to ⊥ as a consequence of Lemma 16. For all other rules
of the third phase, (JtcKfix

σ1
,⊥) 6∈ ∆fix

τ follows directly from the definition of the
logical relation.

For the rules of the second phase, we show that term t in the conclusion is a
strong result term. For (VAR◦) Lemma 16 is sufficient to guarantee x a strong
result term.

For rule (NAT◦), we show that JtcKfix
σ⊥2

[x 7→ ⊥] = ⊥. Since tc is a case expression
with x as scrutinee, the scrutinee and hence the whole case expression evaluates
to ⊥. Furthermore, we have to show that (JtcKfix

σ1[x 7→p+
Nat]

,⊥) 6∈ ∆fix
τ . Since

192 A Proofs

p+
Nat = 0 the semantics of tc is equal to the semantics of tp under σ1[x 7→ p+

Nat].
And hence, the induction hypothesis suffices for the proof. All other rules that
yield case expressions as terms are proved similarly.

For the remaining rules, we prove that the semantic interpretations of the result
term remain unchanged. Because for all rules the proofs are similar, we give
the details only for (BOTTOM→◦).

For the rule (BOTTOM→◦) we have

JtKfix
σ1[y 7→y1] = JtKfix

σ1[y 7→Jf ⊥τ1Kfix
σ1[f 7→f1]

]
= Jt[f ⊥τ1/y]Kfix

σ1[f 7→f1]

and we reason similarly for σ⊥2 , where always the first equality is by the
definition of the environment entries for f in Definition 30 and the second
equality by (the appropriate adaptation of) Lemma 4.

Proof of Lemma 18 on page 106

Proof. The proof proceeds by induction on the length of the derivation tree.
To prove (σ1, σ2) a result environment, we show only (σ1(x), σ2(x)) ∈ ∆fix

τ

for each variable x of type τ introduced to the typing context during a rule
application. All other properties required by the definition of result environ-
ment (Definition 21) are easy to check looking at Definition 30. To prove the
constructed term t a result term and the constructed $ a disrelator to it, we
state the interesting cases only.

During the proof we denote the term in the premise of the currently considered
rule by tp and the term in the conclusion by tc. Similarly all environments
and also the disrelators are indexed by p and c for premise and conclusion,
respectively. Concerning rule (ARROW→∗), which has two premises (that are
no pointedness checks), the indices for the premises are additionally enriched
by a number, i.e., we write p1 and p2. Note that an axiom is a rule without a
premise, i.e., we regard it as a conclusion.

For (BOTTOM) we have (σc1, σ
c
2) a result environment by Lemma 14 (1). By

Lemma 13 (2) tc is a result term. The constructed $c = (τ, []) also meets
Definition 25 as a disrelator for (JtKfix

σc1
, JtKfix

σc2
).

For the rules (UPDROP), (NDROP) and (UDROP) by Lemma 14 (1) the term
environments form a result environment. Since t and $ remain unchanged,
there is nothing else to prove.

For the rule (ABS) the term environments remain unchanged and since we
have (JtcKfix

σc1
σp1(x), JtcKfix

(σc2)⊥
(σp2)⊥(x)) = (JtpKfix

σp1
, JtpKfix

(σp2)⊥
) 6∈ ∆fix

τ2 , the term tc

is a result term: By the definition of the logical relation for function types we
have (JtcKfix

σc1
, JtcKfix

(σc2)⊥
) 6∈ ∆fix

τ1→τ2 . Applying the first element of the list in $c to

A.1 Proofs from Chapter 4 193

(JtcKfix
σc1
, JtcKfix

(σc2)⊥
) we get (JtpKfix

σp1
, JtpKfix

(σp2)⊥
) to which the tail of the list combined

with the type in $c is a disrelator by the induction hypothesis. Consequently,
$c is a disrelator for (JtcKfix

σc1
, JtcKfix

(σc2
)⊥). Similar arguments work for (WRAP),

(PAIR1), (PAIR2), (LEFT) and (RIGHT).

In all remaining rules $ is not changed. Hence, if we show that the term
environments in the conclusion form a result environment and the values of tc

in the different term environments of the conclusion are equal to the values of
tp in the respective term environments of the premise, we are done.

In the case (WRAP→’), regarding the induction hypothesis (σp1(g), σp2(g)) ∈
∆fix
τ1→τ2 , the definition of the logical relation for list types and (⊥,⊥) ∈ ∆fix

τ2
(because Γ ` τ2 ∈ Pointed is required as premise), we have (σc1(f), σc2(f)) ∈
∆fix

[τ1]→τ2 and hence (σc1, σ
c
2) a result environment. Furthermore,

JtKfix
σ1[g 7→g1] = JtKfix

σ1[g 7→Jλy::τ1.f (y:[])Kfix
σ1[f 7→σc1(f)]

]
= Jt[λy ::τ1.f (y : [])/g]Kfix

σ1[f 7→σc1(f)]

and we reason similarly for the term environment σc2. Both times, the first
equivalence is by the choice for σc1(f) and σc2(f) in Definition 30, and the
second equivalence by (the appropriate version of) Lemma 4.

For all remaining rules the reasoning is similar and we point only to ad-
ditional difficulties. Regarding (BOTTOM→’) and (ARROW→∗) the fact that
(σc1(f), σc2(f)) ∈ ∆fix

τ for appropriate τ is by Lemma 15. For (BOTTOM→’)
Lemma 16 together with (τ, []) a disrelator for every strong result term of type
τ suffices to verify that we meet the conditions of Lemma 15. For (ARROW→∗)
the induction hypothesis for tp1 and $p1 , and the result from Lemma 16, as
well as the induction hypothesis for the environments of the first premise are
sufficient to verify that we meet the conditions of Lemma 15.

For (ARROW→∗) the proof is still incomplete after reasoning as above: The tuple
of term environments (σp1 , σ

p
2) found by mergeEnv (cut to the entries in the

respective typing context in the premises) has to be a result environment, such
that tp1 is a result term and tp2 a strong result term w.r.t. (σp1 , σ

p
2). We know that

the result environments (σp11 , σp12) and (σp21 , σp22), belonging to the two premises
respectively, fit one to tp1 and the other to tp2 . The proof that (σp1 , σ

p
2) with

the appropriate domain restrictions forms respective result environments is
accomplished by induction over the different histories of variables. This is the
proof idea: Since the same history tag corresponds to equal term environment
manipulations, variables with the same history have the same value and thus
can be taken from either environment. If some history ends by Leaf it means
that the choice of the values was close to arbitrary and has just to be non-⊥ (and
in the respective domain). Therefore, such an entry can always be substituted
by an entry for a term variable with the same type, but a different history. This
is not possible the other way round. The algorithm mergeEnv performs exactly
the admissible substitutions when comparing the histories belonging to the
two result environments given as input.

194 A Proofs

A.2 Proofs from Chapter 5

Proof of Lemma 23 on page 127

Proof. Induction on the structure of the subtype derivation. Hence, we regard
each of the rules in Figure 5.6 separately.

For (S-VAR) the assertion of Lemma 23 is immediate.

For (S-ARROWν,ν′)ν,ν′∈{◦,ε},ν′6ν we regard all rules of the family separately. For
the rule with ν = ν′ = ◦we reason:

∆seq∗
τ1→◦τ2,ρ ⊆ ∆seq∗

τ ′1→◦τ ′2,ρ
⇔ { logical relation }
{(f ,g | ∀(a,b) ∈ ∆seq∗

τ1,ρ. (f $ a,g $ b) ∈ ∆seq∗
τ2,ρ)}

⊆ {(f ,g | ∀(a,b) ∈ ∆seq∗
τ ′1,ρ

. (f $ a,g $ b) ∈ ∆seq∗
τ ′2,ρ

)}
⇐ { property of functions }
∆seq∗
τ ′1,ρ
⊆ ∆seq∗

τ1,ρ ∧∆seq∗
τ2,ρ ⊆ ∆seq∗

τ ′2,ρ

⇐ { induction hypotheses }
τ ′1 � τ1 ∧ τ2 � τ ′2

For ν = ν′ = ε we reason the same way, but exchange the definition of the
logical relation. For ν = ε and ν′ = ◦ reasoning is also similar, again with
adjusted definitions of the logical relation, due to the different function types.

Finally, for (S-LIST) the definition of the logical relation for list types and the
induction hypothesis suffice for the proof.

Proof of Lemma 24 on page 130

Proof. Reflexivity is proved inductively over the type structure. The different
cases are obvious by the rules in Figure 5.6.

Because subtyping is shape conformant (cf. Lemma 21), we can prove transitiv-
ity also on the structure of the type. Consider the three types τ , τ ′ and τ ′′ with
τ � τ ′ and τ ′ � τ ′′. We prove τ � τ ′′ inductively over the structure of τ .

A.2 Proofs from Chapter 5 195

τ = α

τ = α

⇒ { τ � τ ′ only by rule (S-VAR) }
τ ′ = α

⇒ { τ ′ � τ ′′ only by rule (S-VAR) }
τ ′′ = α

⇒ { (S-VAR), τ = α and τ ′′ = α }
τ � τ ′′

τ = τ1 →ν τ2

τ = τ1 →ν τ2

⇒ { τ � τ ′ only by rule (S-ARROWν,ν′) }
τ ′ = τ ′1 →ν′ τ ′2 with ν′ 6 ν, τ ′1 � τ1 and τ2 � τ ′2
⇒ { τ ′ � τ ′′ only by rule (S-ARROWν′,ν′′) }
τ ′′ = τ ′′1 →ν′′ τ ′′2 with ν′′ 6 ν′, τ ′′1 � τ ′1 and τ ′2 � τ ′′2
⇒ { induction hypothesis and transitivity of 6 }
ν′′ 6 ν ∧ τ ′′1 � τ1 ∧ τ2 � τ ′′2
⇒ { (S-ARROWν,ν′′) }
τ � τ ′′

τ = [τ1]

Similar to τ = τ1 →ν τ2.

Proof of Lemma 25 on page 130

Proof. We use induction on the depth of the derivation tree. Consider Γ ` t :: τ
derivable in λαseq∗. By Lemma 24 we assume that the root of the derivation
tree is (SUB) followed by another rule from Figure 5.4. Hence, it suffices to
replace every combination (SUB) plus another typing rule of λαseq∗ by a rule (se-
quence) from λαseq+, potentially with calls to (SUB) at the leaves of the derivation
fragment. We regard each rule (family) different from (SUB) separately.

(VAR)

We replace the sequence
Γ, x :: τ ` x :: τ (VAR) τ � τ ′

(SUB)
Γ, x :: τ ` x :: τ ′

by
τ � τ ′

(VAR+)
Γ, x :: τ ` x :: τ ′

196 A Proofs

(NIL)

Similar to case (VAR), we replace (NIL) by (NIL+).

(CONS)

We replace
Γ ` t1 :: τ Γ ` t2 :: [τ]

(CONS)
Γ ` (t1 : t2) :: [τ] [τ] � τ ′′

(SUB)
Γ ` (t1 : t2) :: τ ′′

by
Γ ` t1 :: τ τ � τ ′

(SUB)
Γ ` t1 :: τ ′

Γ ` t2 :: [τ] [τ] � [τ ′]
(SUB)

Γ ` t2 :: [τ ′]
(CONS)

Γ ` (t1 : t2) :: [τ ′]

Forcing τ ′′ = [τ ′] is not a limitation, since subtyping is shape conformant.

(LCASE)

We replace

Γ ` t :: [τ1] Γ ` t1 :: τ Γ, x1 :: τ1, x2 :: [τ1] ` t2 :: τ
(LCASE)

Γ ` (case t of { []→ t1;x1 : x2 → t2}) :: τ τ � τ ′
(SUB)

Γ ` (case t of {[]→ t1;x1 : x2 → t2}) :: τ ′

by

Γ ` t :: [τ1]

Γ ` t1 :: τ τ � τ ′
(SUB)

Γ ` t1 :: τ ′
Γ, x1 :: τ1, x2 :: [τ1] ` t2 :: τ τ � τ ′

(SUB)
Γ, x1 :: τ1, x2 :: [τ1] ` t2 :: τ ′

(LCASE)
Γ ` (case t of { []→ t1;x1 : x2 → t2}) :: τ ′

(ABSν)ν∈{◦,ε}

We replace
Γ, x :: τ1 ` t :: τ2 (ABSν)

Γ ` (λx :: τ1.t) :: τ1 →ν τ2 τ1 →ν τ2 � τ ′1 →ν′ τ ′2 (SUB)
Γ ` (λx :: τ1.t) :: τ ′1 →ν′ τ ′2

by
Γ, x :: τ1 ` t :: τ2 τ2 � τ ′2 (SUB)

Γ, x :: τ1 ` t :: τ ′2 τ ′1 � τ1 (ABS+ν′)
Γ ` (λx :: τ1.t) :: τ ′1 →ν′ τ ′2

A.2 Proofs from Chapter 5 197

(APPν)ν∈{◦,ε}

We replace
Γ ` t1 :: τ1 →ν τ2 Γ ` t2 :: τ1 (APPν)

Γ ` (t1 t2) :: τ2 τ2 � τ ′2 (SUB)
Γ ` (t1 t2) :: τ ′2

by
Γ ` t1 :: τ1 →ν τ2 τ1 →ν τ2 � τ1 →ν τ ′2 (SUB)

Γ ` t1 :: τ1 →ν τ ′2 Γ ` t2 :: τ1 (APPν)
Γ ` (t1 t2) :: τ ′2

(FIXν)ν∈{◦,ε}

We replace
Γ ` t :: τ →ν τ (FIXν)
Γ ` (fix t) :: τ τ � τ ′

(SUB)
Γ ` (fix t) :: τ ′

by
Γ ` t :: τ →ν τ τ � τ ′

(FIX+
ν)

Γ ` (fix t) :: τ ′

(SLET’)

We replace

Γ ` τ1 ∈ Seqable Γ ` t1 :: τ1 Γ, x :: τ1 ` t2 :: τ2 (SLET’)
Γ ` (let! x = t1 in t2) :: τ2 τ2 � τ ′2 (SUB)

Γ ` (let! x = t1 in t2) :: τ ′2

by

Γ ` τ1 ∈ Seqable Γ ` t1 :: τ1

Γ, x :: τ1 ` t2 :: τ2 τ2 � τ ′2 (SUB)
Γ, x :: τ1 ` t2 :: τ ′2 (SLET’)

Γ ` (let! x = t1 in t2) :: τ ′2

To translate a derivation tree in λαseq+ to one in λαseq∗ that yields the same typing
judgment, we transform each typing rule in λαseq+ into a (sequence of) typing
rules in λαseq∗. Of course, the typing rules that are present in both calculi can
be taken over unchanged. For the other rules (or rule families) the concrete
transformations are as follows.

198 A Proofs

(VAR+)

We replace
τ � τ ′

(VAR+)
Γ, x :: τ ` x :: τ ′

by
Γ, x :: τ ` x :: τ (VAR) τ � τ ′

(SUB)
Γ, x :: τ ` x :: τ ′

(NIL+)

Similar to case (VAR+).

(ABS+ν)ν∈{◦,ε}

We replace
Γ, x :: τ1 ` t :: τ2 τ ′1 � τ1 (ABS+ν)

Γ ` (λx :: τ1.t) :: τ ′1 →ν τ2

by
Γ, x :: τ1 ` t :: τ2 (ABSν)

Γ ` (λx :: τ1.t) :: τ1 →ν τ2 τ1 →ν τ2 � τ ′1 →ν τ2 (SUB)
Γ ` (λx :: τ1.t) :: τ ′1 →ν τ2

(FIX+
ν)ν∈{◦,ε}

We replace
Γ ` t :: τ →ν τ τ � τ ′

(FIX+
ν)

Γ ` (fix t) :: τ ′

by
Γ ` t :: τ →ν τ (FIXν)
Γ ` (fix t) :: τ τ � τ ′

(SUB)
Γ ` (fix t) :: τ ′

Proof of Theorem 10 on page 135

The proof of Theorem 10 proceeds basically as follows: We construct for every
concrete valid typing judgment in λαseq+ a conditional one that can be instanti-
ated as shown in Definition 41 and thus shows that the original type statement
is also valid in λα

seqC
. The components of the conditional type statement are

called parametrizations of its concrete counterparts:

DEFINITION 51
(parametrization)

Let κ a concrete term, type or typing context. We call κ̇ a parametrization of κ
if there exists an annotation substitution %, such that κ̇% = κ.

A.2 Proofs from Chapter 5 199

Conversely, we show that every instance of a conditional typing judgment in
λα

seqC
that satisfies the typing constraint, is also a valid typing judgment in λαseq+.

To get the proof through, a few mostly technical restrictions of parametriza-
tions and annotation substitutions are necessary. They are given by the next
definitions.

DEFINITION 52Let κ̇, κ̇′ (parametrized) terms, types, typing contexts or typing constraints
and %, %′ annotation substitutions. We define:

• AV(κ̇) denotes the set of annotation variables in κ̇.

• κ̇ is general if no annotation variable occurs more than once in κ̇.

• κ̇ is closed under % if AV(κ̇) ⊆ dom(%).

• % is tight w.r.t. κ̇ if AV(κ̇) = dom(%).

• Annotation substitutions are disjoint if their domains are.

• % and %′ are compatible if ν ∈ dom(%) ∩ dom(%′) implies %(ν) = %′(ν).

• κ̇ and κ̇′ are disjoint if AV(κ̇) ∩AV(κ̇′) = ∅.
• If % and %′ are compatible, we define their union, % ∪ %′, as the union

of the graphs.

DEFINITION 53The notion tight extends canonically to parametrized typing judgments, i.e.,
an annotation substitution is tight w.r.t. a typing judgment if its domain
contains exactly the annotation variables that occur in the typing judgment.

Now we are prepared to present a proof of Theorem 10.

First, we ensure that it suffices to consider general, pairwise disjoint parametriza-
tions.

LEMMA 39For all concrete terms, types or typing contexts κ1, . . . , κn, n ∈ N, there exist
general, pairwise disjoint parametrizations κ̇1, . . . , κ̇n and an annotation
substitution %, such that κ̇1% = κ1, . . . , κ̇n% = κn.

Proof. We sketch how to construct κ̇1, . . . , κ̇n and %. Since all terms, types and
typing contexts are finite, each of them has only finitely many annotations.
Thus, we can replace each concrete type annotation (◦ or ε) in κ1, . . . , κn by a
fresh annotation variable ν. The resulting parametrized entities are general
and pairwise disjoint by construction. A suitable annotation substitution % is
defined by mapping each newly introduced annotation variable back to the
concrete annotation that was replaced by the variable.

200 A Proofs

The next lemmas are grouped by the subsystems of conditional and concrete
typing rules that they relate. The proofs for the main rule system will rely
on these lemmas. We start with the rules for the Seqable-check, i.e., relate the
systems shown in Figure 5.5 and Figure 5.12.

LEMMA 40 If Γ ` τ ∈ Seqable valid, there exist pairwise disjoint, general Γ̇ and τ̇ , a
typing constraint C and an annotation substitution %, such that Γ̇% = Γ,
τ̇ % = τ , JC%K = True and 〈Γ̇ ` τ̇ ∈ Seqable〉V (C) valid.

Proof. The proof is by induction over the depth of the derivation tree of Γ ` τ ∈
Seqable. It mainly employs Lemma 39. We regard each rule from Figure 5.5 and
translate it to a conditional class membership rule in λα

seqC
, i.e., a rule shown in

Figure 5.12.

For (CS-LIST), Lemma 39 suffices to get a parametrization that fulfills (CS-LISTC)
and also a suitable %.

For (CS-ARROW) we employ again Lemma 39 to get general, pairwise disjoint
parametrizations for Γ̇, τ̇1 and τ̇2, as well as the corresponding annotation
substitution %. Finally, we extend % by a new entry, mapping the variable ν
(w.l.o.g. not yet in the dom(%)) to ε.

For (CS-VAR) we take a general parametrization Γ̇ of Γ and a corresponding
annotation substitution %. By (CS-VARC) we have 〈Γ̇ ` α ∈ Seqable〉V (ν = ε)
valid in λα

seqC
. By the premise of (CS-VAR), we know that % maps the annotation

variable at α to ε. Hence, we have also (ν = ε)% = True .

LEMMA 41 For every valid 〈Γ̇ ` τ̇ ∈ Seqable〉 V (C) and every % with dom(%) ⊇
AV(Γ̇) ∪AV(τ̇) and JC%K = True , we have Γ̇% ` τ̇ % ∈ Seqable valid.

Proof. The proof is by induction on the depth of the derivation tree of 〈Γ̇ `
τ̇ ∈ Seqable〉 V (C). We translate each rule from Figure 5.12 to a rule from
Figure 5.5 that is applicable for each concrete instantiation of Γ̇ and τ̇ that is
obtained via an annotation substitution % with JC%K = True .

The rule (CS-LISTC) is translated to (CS-LIST). Since in (CS-LIST) no type an-
notations are checked, the rule is applicable independently of the concrete
%.

The rule (CS-VARC) is translated to (CS-VAR). Since every % under which the
typing constraint has truth value True has to map ν to ◦, (CS-VAR) is applicable
for the instantiations obtained by each such %.

A.2 Proofs from Chapter 5 201

The rule (CS-ARROWC) is translated to (CS-ARROW). For the same reasons as for
(CS-VARC), (CS-ARROW) is applicable for each annotation substitution under
which the typing constraint in (CS-ARROWC) has truth value True .

Next we relate the systems for subtyping, shown in Figures 5.6 and 5.13.

LEMMA 42If τ � τ ′ valid then there exist general, disjoint τ̇ and τ̇ ′, a typing constraint
C and an annotation substitution %, such that τ̇ % = τ , τ̇ ′% = τ ′, JC%K = True ,
and 〈τ̇ � ·〉V (C, τ̇ ′), as well as 〈· � τ̇ ′〉V (C, τ̇), valid.

Proof. The proof is by induction on the depth of the derivation tree of τ � τ ′.

(S-VAR)

Immediately by Lemma 39 and (S-VARC1) and (S-VARC2) because the typing
constraint has truth value True independently of %.

(S-LIST)

Immediately by the induction hypothesis since in the conclusion, compared
to the premise, no new annotations occur.

(S-ARROWν,ν′)ν,ν′∈{◦,ε},ν′6ν

By the induction hypothesis for the first premise for each rule of the family
(S-ARROWν,ν′)ν,ν′∈{◦,ε},ν′6ν we have general, disjoint τ̇1 and τ̇ ′1, a typing con-
straint C1 and an annotation substitution %1, such that τ̇1%1 = τ1, τ̇ ′1%1 = τ ′1,
JC1%1K = True, and 〈τ̇ ′1 � ·〉 V (C1, τ̇1), as well as 〈· � τ̇1〉 V (C1, τ̇ ′1), valid.
By the induction hypothesis for the second premise for each rule of the family
(S-ARROWν,ν′)ν,ν′∈{◦,ε},ν′6ν we have general, disjoint τ̇2 and τ̇ ′2, a typing con-
straint C2 and an annotation substitution %2, such that τ̇2%2 = τ2, τ̇ ′2%2 = τ ′2,
JC2%2K = True , and 〈τ̇2 � ·〉V (C2, τ̇ ′2), as well as 〈· � τ̇ ′2〉V (C2, τ̇2), valid.
Employing these hypotheses, rules (S-ARROWC

1) and (S-ARROWC
2) are applica-

ble and yield the statements 〈τ̇1 →ν τ̇2 � ·〉V (C1 ∧ C2 ∧ (ν′ 6 ν), τ̇ ′1 →ν′ τ̇ ′2)

and 〈· � τ̇ ′1 →ν′ τ̇ ′2〉 V (C1 ∧ C2 ∧ (ν′ 6 ν), τ̇1 →ν τ̇2). For both, relying on
the induction hypotheses and w.l.o.g. assuming that ν and ν′ fresh, it holds
that τ̇1 →ν τ̇2 and τ̇ ′1 →ν′ τ̇ ′2 are general, disjoint parametrizations of the
types in the conclusion of each rule of the family (S-ARROWν,ν′)ν,ν′∈{◦,ε},ν′6ν
and that for %, defined as %1 ∪ %2 extended by entries for ν and ν′ according
to the concrete rule of the family (S-ARROWν,ν′)ν,ν′∈{◦,ε},ν′6ν , as well as for
C = C1 ∧ C2 ∧ ν′ 6 ν the statements of Lemma 42 hold.

202 A Proofs

LEMMA 43 If 〈τ̇ � ·〉 V (C, τ̇ ′) or 〈· � τ̇ ′〉 V (C, τ̇) valid and % such that dom(%) ⊇
AV(τ̇) ∪AV(τ̇ ′) and JC%K = True , then τ̇ % � τ̇ ′% valid.

Proof. Induction over the depth of the derivation tree for 〈τ̇ � ·〉V (C, τ̇ ′) or
for 〈· � τ̇ ′〉V (C, τ̇).

For the conditional equality checks (the rule system in Figure 5.14) there is
no concrete counterpart in λαseq+. The typing rules of λαseq+ force syntactic
equality of types via identical naming, e.g. in (LCASE) in Figure 5.9 τ is used in
the second and third premise to denote equality of the types in the different
premises. Hence, conditional equality in λαseq∗ should coincide with syntactic
equality in λαseq+.

LEMMA 44 For every type τ there exist disjoint, general parametrizations τ̇ and τ̇ ′, a
typing constraintC and an annotation substitution %, such that τ̇ % = τ̇ ′% = τ ,
JC%K = True and 〈τ̇ = τ̇ ′〉V (C) valid.

Proof. The proof is by induction on the structure of τ , which is also the structure
of the parametrizations τ̇ and τ̇ ′.

τ a type variable

The case is immediately by employing rule (E-VARC) and setting % = ∅.

τ = τ1 →◦ τ2

By the induction hypotheses there exist τ̇1, τ̇ ′1, τ̇2, τ̇ ′2, and %1, %2, w.l.o.g.
disjoint, such that 〈τ̇1 = τ̇ ′1〉 V (C1) and 〈τ̇2 = τ̇ ′2〉 V (C2) hold, as well as
τ̇1%1 = τ1, τ̇ ′1%1 = τ ′1, τ̇2%2 = τ2, τ̇ ′2%2 = τ ′2, JC1%1K = True , and JC2%2K = True .
Hence, we can apply (E-ARROWC) to obtain 〈τ̇1 →ν τ̇2 = τ̇ ′1 →ν′ τ̇ ′2〉 V
(C1 ∧ C2 ∧ (ν = ν′)) valid. For this statement the annotation substitution
(%1 ∪ %2)[ν 7→ ◦, ν′ 7→ ◦] fulfills the conditions from Lemma 44.

All other cases are similar to case τ = τ1 →◦ τ2.

LEMMA 45 If 〈τ̇ = τ̇ ′〉 V (C) valid, dom(%) ⊇ AV(τ̇) ∪ AV(τ̇ ′) and JC%K = True then
τ̇ % = τ̇ ′%.

Proof. Induction on the depth of the derivation tree of 〈τ̇ = τ̇ ′〉V (C).

A.2 Proofs from Chapter 5 203

Having lemmas for all subsystems, we focus on the main system.

LEMMA 46
(stronger version of
Lemma 26)

If Γ ` t :: τ valid in λαseq+, then there exist pairwise disjoint, general
parametrizations Γ̇, ṫ , τ̇ , a typing constraint C, and an annotation sub-
stitution %, such that ṫ% = t , τ̇ % = τ , JC%K = True, and 〈Γ̇ ` ṫ〉 V (C, τ̇)
valid.

Proof. The proof is by induction on the depth of the derivation tree of Γ ` t :: τ
in λαseq∗.

(VAR+)

By Lemma 42 we have τ̇ , τ̇ ′,C and %p, such that 〈τ̇ � ·〉V (C, τ̇ ′),C%p = True ,
τ̇ %p = τ , and τ̇ ′%p = τ ′. By Lemma 39 we can find a general parametrization
Γ̇ of Γ such that AV(Γ̇) and dom(%p) are disjoint. Furthermore, we find an
annotation substitution %′ that is tight w.r.t. Γ̇ and satisfies Γ̇%′ = Γ. Now
with % = %p ∪ %′ it holds that JC%K = True, Γ̇% = Γ, τ̇ % = τ . By (VARC) we
additionally get that 〈Γ̇, x :: τ̇ ` x 〉V (C, τ̇ ′) is valid.

(NIL+)

Similar to case (VAR+).

(CONS)

We can rewrite rule (CONS) to

Γ ` t1 :: τ Γ ` t2 :: [τ ′] τ = τ ′

Γ ` (t1 : t2) :: [τ]

By the induction hypotheses and Lemma 44 we have general parametrizations
Γ̇1 and Γ̇2 of Γ, τ̇1 and τ̇2 of τ , as well as τ̇ ′1 and τ̇ ′2 of τ ′. Furthermore, we
have %p1, %p2 and %p3 such that

• 〈Γ̇ ` ṫ1〉 V (C1, τ̇) holds and JC1%
p
1K = True, Γ̇%p1 = Γ, ṫ1%

p
1 = t1,

τ̇ %p1 = τ ;

• 〈Γ̇ ` ṫ2〉 V (C2, ˙[τ ′]) holds and JC2%
p
2K = True, Γ̇%p2 = Γ, ṫ2%

p
2 = t2,

˙[τ ′]%p2 = [τ ′] and thus τ̇ ′%p2 = τ ′;

• 〈τ̇ = τ̇ ′〉V (C3) holds and C3%
p
3 = True , τ̇ %p3 = τ , τ̇ ′%p3 = τ ′.

We can assume dom(%p1)∩dom(%p2) = AV(Γ̇), dom(%p1)∩dom(%p3) = AV(τ̇) and
dom(%p2) ∩ dom(%p3) = AV(τ̇ ′). Therefore, the three annotation substitutions
are pairwise compatible and we take % = %p1 ∪ %p2 ∪ %p3. Applying (CONSC) with
the three just stated premises completes the proof case.

204 A Proofs

For the remaining rules we just point out differences to the already proved
cases. Regarding (ABS+ε) we extend % by the entry ν 7→ ε. Similarly, for (ABS+◦)
we add ν 7→ ◦.

LEMMA 47
(repetition of
Lemma 27)

If 〈Γ̇ ` ṫ〉 V (C, τ̇) valid then for every % with dom(%) ⊇ AV(Γ̇) ∪ AV(ṫ) ∪
AV(τ̇) and JC%K = True we have Γ̇% ` ṫ% :: τ̇ % valid in λαseq+.

Proof. The proof is by induction on the depth of the derivation tree of 〈Γ̇ `
ṫ〉V (C, τ̇). For each rule we consider, the induction hypothesis is that every
premise either fulfills Lemma 27 or satisfies one of the Lemmas 41, 43, 45.

We give only three proof cases. The remaining ones cause no additional prob-
lems.

(VARC)

By Lemma 43 we have τ̇ % � τ̇ ′ % valid for all % with AV(τ̇) ∪ AV(τ̇ ′) ⊆
dom(%) and JC%K = True. Hence, this holds also for all % with AV(τ̇) ∪
AV(τ̇ ′)∪AV(Γ̇) ⊆ dom(%) and JC%K = True . Thus, whenever the conditions of
Lemma 27 are fulfilled, we can apply (VAR+) and obtain the proof obligation.

(CONSC)

From the premises we get

∀% ∈ P1. 〈Γ̇ ` ṫ1〉V (C1, τ̇)⇒ Γ̇% ` ṫ1% :: τ̇%,

∀% ∈ P2. 〈Γ̇ ` ṫ2〉V (C2, [τ̇ ′])⇒ Γ̇% ` ṫ2% :: ˙[τ ′]%,
∀% ∈ P3. 〈τ̇ = τ̇ ′〉V (C3)⇒ τ̇% = τ̇ ′%

with

P1 = {% | AV(Γ̇) ∪AV(ṫ1) ∪AV(τ̇) ⊆ dom(%) ∧ (JC1%K = True)},
P2 = {% | AV(Γ̇) ∪AV(ṫ2) ∪AV(τ̇ ′) ⊆ dom(%) ∧ (JC2%K = True)},

P3 = {% | AV(τ̇) ∪AV(τ̇ ′) ⊆ dom(%) ∧ (JC3%K = True)}.

Hence, rewriting (CONS) as in the proof of Lemma 26, making syntactic
equality of types explicit by the additional premise τ = τ ′, the induction
hypotheses guarantee that for each % ∈ P1 ∩ P2 ∩ P3 and Γ̇%, ṫ1%, ṫ2%, τ̇%, τ̇ ′%
the premises of the rewritten (CONS) are valid. Consequently, in such cases
we can apply the rule to obtain Γ̇% ` ṫ1% : ṫ2% :: [τ̇%] valid.
Restricting the domain of % to the annotation variables that are really looked
up, and distributivity of %, we obtain the proof obligation, i.e., Γ̇ ` (ṫ1 : ṫ2)% ::

[τ̇]% for each % ∈ {% | AV(Γ̇) ∪ AV(ṫ1) ∪ AV(ṫ2) ∪ AV(τ̇) ⊆ dom(%) ∧ J(C1 ∧
C2 ∧ C3)%K = True}.

A.3 Proofs from Chapter 6 205

(ABSC)

From the premises we get

∀% ∈ P1. 〈Γ̇, x :: τ̇1 ` ṫ〉V (C1, τ̇2)⇒ Γ̇%, x :: τ̇1% ` ṫ% :: τ̇2%,

∀% ∈ P2. 〈· � τ̇1〉V (C1, τ̇ ′1)⇒ τ̇ ′1% � τ̇1%

with

P1 = {% | AV(Γ̇) ∪AV(τ̇1) ∪AV(τ̇2) ⊆ dom(%) ∧ (JC1%K = True)},
P2 = {% | AV(τ̇1) ∪AV(τ̇ ′1) ⊆ dom(%) ∧ (JC2%K = True)}.

Hence, by the induction hypotheses we can apply (ABS◦) or (ABSε) in λαseq∗.
For (ABS◦) we get (with distributivity of %) that Γ̇% ` (λx :: τ̇1.ṫ)% :: (τ̇ ′1 →ν τ̇2)%
is valid for all % ∈ P1 ∩ P2 ∩ {% | %(ν) = ◦}. For (ABSε)we get (again with
distributivity of %) that Γ̇% ` (λx :: τ̇1.ṫ) % :: (τ̇ ′1 →ν τ̇2) % is valid for all
% ∈ P1 ∩ P2 ∩ {% | %(ν) = ε}.
Therefore, we have % ∈ P1 ∩ P2 ∩ {% | %(ν) = ε} valid for all % ∈ {% |
AV(Γ̇) ∪ AV(τ̇1) ∪ AV(ṫ) ∪ AV(τ̇ ′1 →ν τ̇2) ⊆ dom(%) ∧ (JC1 ∧ C2K = True)},
which is the proof obligation.

Proof (Theorem 10). Equivalence, in the sense of typeability, is directly by Defi-
nition 41, Lemma 26 and Lemma 27.

A.3 Proofs from Chapter 6

Proof of Lemma 30 on page 155

Proof.

(f ,g) ∈ C(∆′τ1→τ2,ρ)
⇔ { definition of cost-lifting }

cost(f) = cost(g) ∧ (val(f), val(g)) ∈ ∆′τ1→τ2,ρ

⇔
{

definition of ∆′τ1→τ2,·
}

cost(f) = cost(g) ∧ ∀(v,v′) ∈ ∆′τ1,ρ. (val(f) v, val(g) v′) ∈ C(∆′τ2,ρ)
⇔ { definition of cost-lifting and val(·) }

cost(f) = cost(g) ∧ ∀(x,y) ∈ C(∆′τ1,ρ).
(val(f) val(x), val(g) val(y)) ∈ C(∆′τ2,ρ)
⇔ { definition of cost-lifting }

206 A Proofs

cost(f) = cost(g) ∧ ∀(x,y) ∈ C(∆′τ1,ρ).
(cost(x)B(val(f) val(x)), cost(y)B(val(g) val(y))) ∈ C(∆′τ2,ρ)
⇔ { definition of cost-lifting }

cost(f) = cost(g) ∧ ∀(x,y) ∈ C(∆′τ1,ρ).
((cost(f) + cost(x))B(val(f) val(x)),

(cost(g) + cost(y))B(val(g) val(y))) ∈ C(∆′τ2,ρ)
⇔ { definition of ¢ }

cost(f) = cost(g) ∧ ∀(x,y) ∈ C(∆′τ1,ρ). (f ¢ x,g ¢ y) ∈ C(∆′τ2,ρ)

Proof of Theorem 11 on page 154

Proof. The proof is by induction over the type derivation, i.e., we have to
consider the derivation rules in Figures 2.2 and 6.3. In the proof we use the
same names for terms and types as in the figures with the typing rules; we name
environments as in Theorem 11 (i.e., ρ, σ1, σ2) and we assume the conditions
on them that are given in Theorem 11 to be satisfied.

(VAR)

(JxK¢
σ1
, JxK¢

σ2
) ∈ C(∆′τ,ρ)

⇔ { term semantics }
((σ1(x), 0), (σ2(x), 0)) ∈ C(∆′τ,ρ)
⇔ { definition of the cost-lifting }

(σ1(x), σ2(x)) ∈ ∆′τ,ρ

The last statement is true by the second condition of Theorem 11.

(NAT)

(JnK¢
σ1
, JnK¢

σ2
) ∈ C(∆′Nat,ρ)

⇔ { term semantics }
((n, 0), (n, 0)) ∈ C(∆′Nat,ρ)

⇔ { definition of the cost-lifting }
(n,n) ∈ ∆′Nat,ρ

The last statement is true by the definition of ∆′Nat,ρ.

A.3 Proofs from Chapter 6 207

(NIL)

Similar to case (NAT).

(SUM)

(Jt1 + t2K¢
σ1
, Jt1 + t2K¢

σ2
) ∈ C(∆′Nat,ρ)

⇔
{

term semantics, definition of (+¢)
}

((n1 + n2, c1 + c2), (n′1 + n′2, c
′
1 + c′2)) ∈ C(∆′Nat,ρ)

where (n1, c1) = Jt1K¢
σ1
, (n′1, c

′
1) = Jt1K¢

σ2
, (n2, c2) = Jt2K¢

σ1
, (n′2, c

′
2) = Jt2K¢

σ2

⇔
{

definition of cost-lifting and ∆′Nat,ρ

}
n1 + n2 = n′1 + n′2 ∧ c1 + c2 = c′1 + c′2

where (n1, c1) = Jt1K¢
σ1
, (n′1, c

′
1) = Jt1K¢

σ2
, (n2, c2) = Jt2K¢

σ1
, (n′2, c

′
2) = Jt2K¢

σ2

⇐ { sum of equal addends is equal }
n1 = n′1 ∧ n2 = n′2 ∧ c1 = c′1 ∧ c2 = c′2

where (n1, c1) = Jt1K¢
σ1
, (n′1, c

′
1) = Jt1K¢

σ2
, (n2, c2) = Jt2K¢

σ1
, (n′2, c

′
2) = Jt2K¢

σ2

⇔
{

definition of ∆′Nat,ρ and cost-lifting
}

((n1, c1), (n′1, c
′
1)) ∈ C(∆′Nat,ρ) ∧ ((n2, c2), (n′2, c

′
2)) ∈ C(∆′Nat,ρ)

where (n1, c1) = Jt1K¢
σ1
, (n′1, c

′
1) = Jt1K¢

σ2
, (n2, c2) = Jt2K¢

σ1
, (n′2, c

′
2) = Jt2K¢

σ2

⇔ { term semantics }
(Jt1K¢

σ1
, Jt1K¢

σ2
) ∈ C(∆′Nat,ρ) ∧ (Jt2K¢

σ1
, Jt2K¢

σ2
) ∈ C(∆′Nat,ρ)

The last statement is true by the induction hypotheses.

(CONS)

Similar to case (SUM).

(NCASE)

The proof is by case distinction on the value of JtK¢
σ1

. First, we assume
JtK¢

σ1
= (0, c) for an arbitrary c ∈ Z. Taking the induction hypothesis from

the first premise and the definition of the logical relation for type Nat into
account, we know JtK¢

σ2
= (0, c), too. Hence, evaluating the semantics of the

case expression reduces to evaluating the first branch of the semantics of the
case expression:

(Jcase t of {0→ t1; → t2}K¢
σ1
, Jcase t of {0→ t1; → t2}K¢

σ2
) ∈ C(∆′τ,ρ)

⇔ { term semantics with choice of the first branch }

208 A Proofs

(cBJt1K¢
σ1
, cBJt1K¢

σ2
) ∈ C(∆′τ,ρ)

⇔ { definition of cost-lifting }
(Jt1K¢

σ1
, Jt1K¢

σ2
) ∈ C(∆′τ,ρ)

The last statement is by the induction hypothesis from the second premise.
Second, we take JtK¢

σ1
= (n, c) for n > 0 and c ∈ Z arbitrary. Again, using

the induction hypothesis from the first premise we have JtK¢
σ2

= (n, c), too.
Hence, we can reason as follows:

(Jcase t of {0→ t1; → t2}K¢
σ1
, Jcase t of {0→ t1; → t2}K¢

σ2
) ∈ C(∆′τ,ρ)

⇔ { term semantics with choice of the second branch }
(cBJt2K¢

σ1
, cBJt2K¢

σ2
) ∈ C(∆′τ,ρ)

⇔ { definition of cost-lifting }
(Jt2K¢

σ1
, Jt2K¢

σ2
) ∈ C(∆′τ,ρ)

The last statement is true by the induction hypothesis from the third premise.

(LCASE)

We need a case distinction via the semantics of t similar to the induction step
for (NCASE). The case JtK¢

σ1
= ([], c) with c ∈ Z arbitrary is similar to the first

case in the proof for (NCASE).
The case JtK¢

σ1
= (v : vs, c) requires some extra care w.r.t. the term environ-

ments. The induction hypothesis from the first premise (using the definition
of the logical relation for list types) ensures that JtK¢

σ2
= (v′ : vs′, c) with

(v,v′) ∈ ∆′τ,ρ and (vs,vs′) ∈ ∆′[τ],ρ. Thus, under both environments σ1 and
σ2, semantic evaluation of the case expression reduces to the evaluation of the
second branch of its semantics:

(Jcase t of {[]→ t1;x1 : x2 → t2}K¢
σ1
,

Jcase t of {[]→ t1;x1 : x2 → t2}K¢
σ2

) ∈ C(∆′τ,ρ)
⇔ { term semantics with choice of the second branch }

(cBJt2K¢
σ1[x1 7→v,x2 7→vs], cBJt2K¢

σ2[x1 7→v′,x2 7→vs′]) ∈ C(∆′τ,ρ)

⇔ { definition of cost-lifting }
(Jt2K¢

σ1[x1 7→v,x2 7→vs], Jt2K
¢
σ2[x1 7→v′,x2 7→vs′]) ∈ C(∆′τ,ρ)

Because, as already stated, (v,v′) ∈ ∆′τ,ρ and (vs,vs′) ∈ ∆′[τ],ρ are ensured,
we end up with (a statement covered by) the induction hypothesis from the
third premise.

A.3 Proofs from Chapter 6 209

(PAIR)

Similar to case (SUM).

(PCASE)

Similar to the second case of case (LCASE).

(ABS)

(Jλx :: τ1.tK¢
σ1
, Jλx :: τ1.tK¢

σ2
) ∈ C(∆′τ1→τ2,ρ)

⇔ { term semantics }
((λv.1BJtK¢

σ1[x 7→v], 0), (λv′.1BJtK¢
σ2[x 7→v′], 0)) ∈ C(∆′τ1→τ2,ρ)

⇔ { definition of cost-lifting }
(λv.1BJtK¢

σ1[x 7→v], λv.1BJtK¢
σ2[x 7→v]) ∈ ∆′τ1→τ2,ρ

⇔
{

definition of ∆′τ1→τ2,·
}

∀(v,v′) ∈ ∆′τ1,ρ.((λv.1BJtK¢
σ1[x 7→v]) v, (λv.1BJtK¢

σ2[x 7→v]) v′) ∈ C(∆′τ2,ρ)

⇔ { function application }
∀(v,v′) ∈ ∆′τ1,ρ.(1BJtK¢

σ1[x 7→v], 1BJtK¢
σ2[x 7→v′]) ∈ C(∆′τ2,ρ)

⇔ { definition of cost-lifting }
∀(v,v′) ∈ ∆′τ1,ρ.(JtK

¢
σ1[x 7→v], JtK

¢
σ2[x 7→v′]) ∈ C(∆′τ2,ρ)

The last statement is true by the induction hypothesis.

(APP)

(Jt1 t2K¢
σ1
, Jt1 t2K¢

σ2
) ∈ C(∆′τ2,ρ)

⇔ { term semantics }
(Jt1K¢

σ1
¢ Jt2K¢

σ1
, Jt1K¢

σ2
¢ Jt2K¢

σ2
) ∈ C(∆′τ2,ρ)

⇐ { induction hypothesis from the second premise }
∀(x,y) ∈ C(∆′τ1,ρ).(Jt1K¢

σ1
¢ x, Jt1K¢

σ2
¢ y) ∈ C(∆′τ2,ρ)

⇐ { Lemma 30 }
(Jt1K¢

σ1
, Jt1K¢

σ2
) ∈ C(∆′τ1→τ2,ρ)

The last statement is true by the induction hypothesis from the first premise.

210 A Proofs

(LFOLD)

We take Jt1K¢
σ1

= (f , c1) and thus have Jt1K¢
σ2

= (f ′, c1) with (f , f ′) ∈
∆′τ1→τ2→τ2,ρ by the induction hypothesis from the first premise. By the induc-
tion hypothesis from the third premise, taking Jt3K¢

σ1
= ([v1, . . . ,vn], c3),

we have Jt3K¢
σ2

= ([v′1, . . . ,v
′
n], c3) for the same n and c3 and with

{(v1,v
′
1), . . . , (vn,v

′
n)} ⊆ ∆′τ1,ρ. We reason as follows:

(Jlfold(t1, t2, t3)K¢
σ1
, Jlfold(t1, t2, t3)K¢

σ2
) ∈ C(∆′τ2,ρ)

⇔ { term semantics }
((c1 + c3)B((f v1) ¢ (. . . ((f vn) ¢ Jt2K¢

σ1
))),

(c1 + c3)B((f ′ v′1) ¢ (. . . ((f ′ v′n) ¢ Jt2K¢
σ2

)))) ∈ C(∆′τ2,ρ)
⇔ { definition of cost-lifting }

(((f v1) ¢ (. . . ((f vn) ¢ Jt2K¢
σ1

))),

((f ′ v′1) ¢ (. . . ((f ′ v′n) ¢ Jt2K¢
σ2

)))) ∈ C(∆′τ2,ρ)
⇐

{
side conditions on f , f ′, vi, v′i, cost-lifting, definition of ∆′τ1→τ2,ρ

}
(Jt2K¢

σ1
, Jt2K¢

σ2
) ∈ C(∆′τ2,ρ)

The last statement is true by the induction hypothesis from the second
premise.

(NFOLD)

Taking Jt1K¢
σ1

= (f , c1) we have Jt1K¢
σ2

= (f ′, c1) with (f , f ′) ∈ ∆′τ→τ,ρ by the
induction hypothesis from the first premise. By the induction hypothesis from
the third premise, taking Jt3K¢

σ1
= (n, c3), we have Jt3K¢

σ2
= (n, c3), too. We

can reason as follows:

(Jifold(t1, t2, t3)K¢
σ1
, Jifold(t1, t2, t3)K¢

σ2
) ∈ C(∆′τ,ρ)

⇔ { term semantics }
((c1 + c3)B((f , 0) ¢ (. . . ((f , 0) ¢︸ ︷︷ ︸

n times

Jt2K¢
σ1

))),

(c1 + c3)B((f ′, 0) ¢ (. . . ((f ′, 0) ¢︸ ︷︷ ︸
n times

Jt2K¢
σ2

)))) ∈ C(∆′τ,ρ)

⇔ { definition of cost-lifting }
(((f , 0) ¢ (. . . ((f , 0) ¢︸ ︷︷ ︸

n times

Jt2K¢
σ1

))), ((f ′, 0) ¢ (. . . ((f ′, 0) ¢︸ ︷︷ ︸
n times

Jt2K¢
σ2

)))) ∈ C(∆′τ,ρ)

⇐
{

side conditions on f , f ′, cost-lifting, definition of ∆′τ→τ,ρ
}

(Jt2K¢
σ1
, Jt2K¢

σ2
) ∈ C(∆′τ,ρ)

A.3 Proofs from Chapter 6 211

The last statement is true by the induction hypothesis from the second
premise.

Proof of Lemma 31 on page 158

Proof. Let x = ((x1,x2), cx) and y = ((y1,y2), cy). By (x,y) ∈ C(∆′(τ1,τ2),ρ) we
know cx = cy, (x1,y1) ∈ ∆′τ1,ρ and (x2,y2) ∈ ∆′τ2,ρ. We define p = (x1, c1),
p′ = (x2, c2), q = (y1, c1), q′ = (y2, c2) with c1 + c2 = cx = cy to get the
forward direction of Lemma 31.

To show the backward direction of Lemma 31, we take p = (x1, c1), p′ =
(x2, c2), q = (y1, c1), q′ = (y2, c2). By the definition of (·, ·)¢ we get x =
((x1,x2), c1 + c2) and y = ((y1,y2), c1 + c2). Since (p,q) ∈ C(∆′τ1,ρ) and
(p′,q′) ∈ C(∆′τ2,ρ), we have (x1,y1) ∈ ∆′τ1,ρ and (x2,y2) ∈ ∆′τ2,ρ, which,
already knowing that x and y have the same costs, is sufficient for (x,y) ∈
C(∆′(τ1,τ2),ρ).

Proof of Lemma 32 on page 158

Proof. First we prove the forward direction. Since (x,y) ∈ C(∆′[τ],ρ) we know
(by the definition of cost-lifting and the definition of ∆′[τ],ρ) that there exist
c ∈ Z, n ∈ N and {(v1,v

′
1), . . . (vn,v

′
n)} ⊆ ∆′τ,ρ, such that we have (x,y) =

(([v1, . . . ,vn], c), ([v′1, . . . ,v
′
n], c)). If we choose (x1,y1) = ((v1, 0), (v′1, 0)), . . . ,

(xn,yn) = ((vn, 0), (v′n, 0)), then by the definition of [x1, . . . ,xn]¢ and the
term semantics for lists we get the right-hand side of Lemma 32: (x,y) =
(cB[x1, . . . ,xn]¢, cB[y1, . . . ,yn]¢).

Now consider the backward direction. For every n ∈ N and i ∈ {1, . . . , n}
we have (xi,yi) ∈ C(∆′τ,ρ) and hence, by the definition of the cost-lifting,
there exist (vi,v

′
i) ∈ ∆′τ,ρ and ci ∈ Z such that (xi,yi) = ((vi, ci), (v

′
i, ci)).

Consequently, exploring the definition of [x1, . . . ,xn]¢ and the term seman-
tics for lists, we get for all c ∈ Z that (cB[x1, . . . ,xn]¢, cB[x1, . . . ,xn]¢) =
(([v1, . . . ,vn], c + c1 + . . . + cn), ([v′1, . . . ,v

′
n], c + c1 + . . . + cn)), which is in

C(∆′[τ],ρ) by the definition of cost-lifting and of ∆′[τ],ρ.

Proof of Lemma 34 on page 161

Proof. Let x1,x2 ∈ C(S1) such that val(x1) = val(x2) = v. Furthermore, let
f ∈ C(S1 → C(S2)). By the definition of appCost and (¢), we get

appCost(f ,x1)

= cost(f ¢ x1)− cost(x1)

212 A Proofs

= cost((cost(f) + cost(x1))B val(f) val(v))− cost(x1)

= cost(f) + cost(x1) + cost(val(f) val(v))− cost(x1)

= cost(f) + cost(val(f) val(v))

and by similar reasoning we get

appCost(f ,x2) = cost(f) + cost(val(f) val(v))

Proof of Lemma 35 on page 161

Proof. Let S1, S2 sets, g ∈ C(S1 → C(S2)) and x1, . . . ,xn ∈ C(S1).

(x,y) ∈ C(Rg
x1,...,xn

)

⇔ { definition of cost-lifting }
cost(x) = cost(y) ∧ (val(x), val(y)) ∈ Rg

x1,...,xn

⇔ { Definition 43 }
∃i ∈ {1, . . . , n}. cost(x) = cost(y)

∧ val(x) = val(xi) ∧ val(y) = val(g ¢ xi)

⇔ { definition of B and val(·) }
∃i ∈ {1, . . . , n}. cost(x) = cost(y)

∧val(x) = val(appCost(g,x)Bxi) ∧ val(y) = val(g ¢ xi)

⇔ { Definition 44 }
∃i ∈ {1, . . . , n}, c ∈ Z. cost(x) = c+ cost(appCost(g,x)Bxi)

= c+ cost(g ¢ xi) = cost(y)

∧val(x) = val(appCost(g,x)Bxi) ∧ val(y) = val(g ¢ xi)

⇔ { definition of val(·) and cost(·) }
∃i ∈ {1, . . . , n}, c ∈ Z. x = cB appCost(g,xi)Bxi ∧ y = cB(g ¢ xi)

Proof of Corollary 5 on page 161

Proof. By Lemma 35 we know that there exist c and xi such that we have
x = cB appCost(g,xi)Bxi and y = cB(g ¢ xi). With these characterizations,
we reason as follows:

g ¢ x

= g ¢ (cB appCost(g,xi)Bxi)

= cB appCost(g,xi)B(g ¢ xi)

= appCost(g,xi)B cB(g ¢ xi)

= appCost(g,xi)By

A.3 Proofs from Chapter 6 213

Proof of Lemma 38 on page 169

Proof. First, we prove statement (a). For the proof we simply calculate the
value parts of the semantics of the two applications. Therefore, we need the
semantics of (:). We have

J(:)K¢
∅ = Jλx :: α.λxs :: [α].x : xsK¢

∅ = (λx.(λxs.(x : xs, 1), 1), 0)

Employing the just calculated semantics and the semantics of (:¢
k
), stated in

Definition 46, we get that for all x ∈ C(JτK¢
∅) and xs ∈ C(J[τ]K¢

∅) both value
parts in statement (a) evaluate to val(x) : val(xs).

Second, we prove statement (b). Above Definition 46 we already unfolded the
relation ∆¢

τ→α→α,[α 7→Rfkz]
. Regarding the unfolded version, we have to show

(i) cost((:¢
k
)) = cost(k)

(ii) ∀u ∈ C(JτK¢
∅). cost((:

¢k) ¢ u) = cost(k ¢ u)

(iii) ∀u ∈ C(JτK¢
∅),v ∈ C(J[τ]K¢

∅).

appCost(fkz,v)B(fkz ¢ ((:¢
k
) ¢ u ¢ v))

= appCost(fkz, (:¢
k
) ¢ u ¢ v)B(k ¢ u ¢ (fkz ¢ v))

Statements (i) and (ii) are directly by the definition of (:¢
k
). For statement (iii)

we calculate

appCost(fkz,v)B(fkz ¢ ((:¢
k
) ¢ u ¢ v))

= appCost(fkz,v)B(fkz ¢ (val(u) : val(v),

ck + cost(u) + cost(vk val(u)) + cost(v) +

cost(val(vk val(u)) val(val(fkz) val(v)))))

= appCost(fkz,v)B(ck + cost(vk val(u)) +

cost(val(vk val(u)) val(val(fkz) val(v))))B(fkz ¢ (u :¢ v))

=
{

fkz ¢ (u :¢ v) = −ck B(k ¢ u) ¢ (fkz ¢ v)
}

appCost(fkz,v)B(cost(vk val(u)) +

cost(val(vk val(u)) val(val(fkz) val(v))))B(k ¢ u ¢ (fkz ¢ v))

=

{
appCost(fkz, (:¢

k
) ¢ u ¢ v)− appCost(fkz,v) =

cost(vk val(u)) + cost(val(vk val(u)) val(val(fkz) val(v)))

}
appCost(fkz, (:¢

k
) ¢ u ¢ v)B(k ¢ u ¢ (fkz ¢ v))

215

Bibliography

Samson Abramsky and Achim Jung. Domain Theory, In Handbook of Logic in
Computer Science, volume 3, pages 1–168. Oxford University Press, 1994.
ISBN 0-19-853762-X.

Amal Ahmed, Derek Dreyer, and Andreas Rossberg. State-dependent rep-
resentation independence. In 36th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’09), Proceedings, pages 340–353,
2009. ACM Press. DOI 10.1145/1480881.1480925.

Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler. Blame
for all. In 38th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL’11), Proceedings, pages 201–214, 2011. ACM Press. DOI
10.1145/1926385.1926409.

Andrew W. Appel and David McAllester. An indexed model of recursive types
for foundational proof-carrying code. ACM Transactions on Programming
Languages and Systems, 23:657–683, September 2001. DOI 10.1145/504709.
504712.

Lennart Augustsson. Putting Curry-Howard to work (Invited talk). At Ap-
proaches and Applications of Inductive Programming, 2009.

Edwin S. Bainbridge, Peter J. Freyd, Andre Scedrov, and Philip J. Scott. Func-
torial polymorphism. Theoretical Computer Science, 70(1):35–64, 1990. DOI
10.1016/0304-3975(90)90151-7. Special Issue Fourth Workshop on Mathemat-
ical Foundations of Programming Semantics, Boulder, CO, May 1988.

Henk Barendregt. Lambda Calculi with Types, In Handbook of Logic in Computer
Science (vol. 2), volume 2. Oxford University Press, 1992. URL http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.4391.

Nick Benton and Benjamin Leperchey. Relational reasoning in a nominal se-
mantics for storage. In 7th International Conference on Typed Lambda Calculi and
Applications (TLCA ’05), Proceedings, volume 3461 of Lecture Notes in Computer
Science, pages 86–101. Springer-Verlag, 2005. DOI 10.1007/11417170_8.

Jean-Philippe Bernardy. A Theory of Parametric Polymorphism and an Application.
PhD thesis, Chalmers University of Technology and Göteborg University,
2011.

http://dx.doi.org/10.1145/1480881.1480925
http://dx.doi.org/10.1145/1926385.1926409
http://dx.doi.org/10.1145/504709.504712
http://dx.doi.org/10.1145/504709.504712
http://dx.doi.org/10.1016/0304-3975(90)90151-7
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.4391
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.4391
http://dx.doi.org/10.1007/11417170_8

216 Bibliography

Jean-Philippe Bernardy, Patrik Jansson, and Koen Claessen. Testing poly-
morphic properties. In 19th European Symposium on Programming as part of
European Joint Conferences on Theory and Practice of Software (ESOP/ETAPS ’10),
Proceedings, volume 6012 of Lecture Notes in Computer Science, pages 125–144.
Springer-Verlag, 2010. DOI 10.1007/978-3-642-11957-6_8.

Sascha Böhme. Free theorems for sublanguages of Haskell. Diplomarbeit,
Technische Universität Dresden, 2007.

Nina Bohr and Lars Birkedal. Relational reasoning for recursive types and
references. In 4th Asian Symposium on Programming Languages and Systems
(APLAS ’06), Proceedings, volume 4279 of Lecture Notes in Computer Science,
pages 79–96. Springer-Verlag, 2006. DOI 10.1007/11924661_5.

Alan Bundy and Julian Richardson. Proofs about lists using ellipsis. In 6th
International Conference on Logic for Programming, Artificial Intelligence and
Reasoning (LPAR’ 99), Proceedings, volume 1705 of Lecture Notes in Artificial
Intelligence, pages 1–12. Springer-Verlag, 1999. DOI 10.1007/3-540-48242-3_1.

Jan Christiansen and Daniel Seidel. Minimally strict polymorphic functions.
In 13th International ACM SIGPLAN Symposium on Principles and Practice of
Declarative Programming (PPDP ’11), Proceedings, pages 53–64, 2011. ACM
Press. DOI 10.1145/2003476.2003487.

Alonso Church. A formulation of the simple theory of types. The Journal of
Symbolic Logic, 5(2):56–68, 1940. DOI 10.2307/2266170.

Alonso Church. The Calculi of Lambda-Conversion. Princeton University Press,
1941. ISBN 978-0-691-08394-0.

Koen Claessen and John Hughes. QuickCheck: A lightweight tool for random
testing of Haskell programs. In 15th ACM SIGPLAN International Conference
on Functional Programming (ICFP ’00), Proceedings, pages 268–279, 2000. ACM
Press. DOI 10.1145/351240.351266.

Pierre Corbineau. First-order reasoning in the calculus of inductive construc-
tions. In Types for Proofs and Programs: 3rd Annual Workshop of the Types
Working Group (TYPES ’03), Revised and selected papers, volume 3085 of Lec-
ture Notes in Computer Science, pages 162–177. Springer-Verlag, 2004. DOI
10.1007/978-3-540-24849-1_11.

Haskell B. Curry and Robert Feys. Combinatory Logic, volume 1. North-Holland,
1958.

Peter J. de Bruin. Naturalness of polymorphism. Technical Report CS8916, De-
partment of Mathematics and Computing Science, University of Groningen,
1989.

Derek Dreyer, Amal Ahmed, and Lars Birkedal. Logical step-indexed logical
relations. In 24th Annual IEEE Symposium on Logic in Computer Science (LICS
’09), Proceedings, pages 71–80, August 2009. DOI 10.1109/LICS.2009.34.

http://dx.doi.org/10.1007/978-3-642-11957-6_8
http://dx.doi.org/10.1007/11924661_5
http://dx.doi.org/10.1007/3-540-48242-3_1
http://dx.doi.org/10.1145/2003476.2003487
http://dx.doi.org/10.2307/2266170
http://dx.doi.org/10.1145/351240.351266
http://dx.doi.org/10.1007/978-3-540-24849-1_11
http://dx.doi.org/10.1109/LICS.2009.34

Bibliography 217

Derek Dreyer, Georg Neis, and Lars Birkedal. The impact of higher-order state
and control effects on local relational reasoning. In 15th ACM SIGPLAN
International Conference on Functional Programming (ICFP ’10), Proceedings,
pages 143–156, 2010a. ACM Press. DOI 10.1145/1863543.1863566.

Derek Dreyer, Georg Neis, Andreas Rossberg, and Lars Birkedal. A relational
modal logic for higher-order stateful ADTs. In 37th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’10), Proceedings,
pages 185–198, 2010b. ACM Press. DOI 10.1145/1706299.1706323.

Derek Dreyer, Georg Neis, and Lars Birkedal. The impact of higher-order
state and control effects on local relational reasoning. Journal of Functional
Programming, 22:477–528, 2012. DOI 10.1017/S095679681200024X.

R. Kent Dybvig. The Scheme Programming Language, 3rd Edition. MIT Press, 2003.
ISBN 0-262-54148-3.

Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. The
Journal of Symbolic Logic, 57(3):795–807, 1992. DOI 10.2307/2275431.

João Paulo Fernandes, Alberto Pardo, and João Saraiva. A shortcut fusion
rule for circular program calculation. In ACM SIGPLAN Workshop on Haskell
(Haskell ’07), Proceedings, pages 95–106, 2007. ACM Press. DOI 10.1145/
1291201.1291216.

Peter J. Freyd, Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. Semantic
parametricity in polymorphic lambda calculus. In 3rd Annual IEEE Sympo-
sium on Logic in Computer Science (LICS ’88), Proceedings, pages 274–279, jul
1988. DOI 10.1109/LICS.1988.5126.

The GHC Team. The Glorious Glasgow Haskell Compilation System User’s Guide,
Version 7.6.3, April 2013. URL http://www.haskell.org/ghc/docs/7.6.3/
users_guide.pdf.

Andrew Gill, John Launchbury, and Simon L. Peyton Jones. A short cut to
deforestation. In International Conference on Functional Programming Languages
and Computer Architecture (FPCA ’93), Proceedings, pages 223–232, 1993. ACM
Press. DOI 10.1145/165180.165214.

Jean-Yves Girard. Interprétation functionelle et élimination des coupures dans
l’arithmétique d’ordre supérieure. PhD thesis, Université Paris VII, 1972.

Paul Graham. ANSI Common Lisp. Prentice Hall, 1997. ISBN 3-8272-9543-2.

Haskell, 2010. Haskell 2010 language report, 2010. URL http://haskell.org/
definition/haskell2010.pdf.

Stefan Holdermans and Jurriaan Hage. Making "stricterness" more relevant. In
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM ’10), Proceedings, pages 121–130, 2010. ACM Press. DOI
10.1145/1706356.1706379.

http://dx.doi.org/10.1145/1863543.1863566
http://dx.doi.org/10.1145/1706299.1706323
http://dx.doi.org/10.1017/S095679681200024X
http://dx.doi.org/10.2307/2275431
http://dx.doi.org/10.1145/1291201.1291216
http://dx.doi.org/10.1145/1291201.1291216
http://dx.doi.org/10.1109/LICS.1988.5126
http://www.haskell.org/ghc/docs/7.6.3/users_guide.pdf
http://www.haskell.org/ghc/docs/7.6.3/users_guide.pdf
http://dx.doi.org/10.1145/165180.165214
http://haskell.org/definition/haskell2010.pdf
http://haskell.org/definition/haskell2010.pdf
http://dx.doi.org/10.1145/1706356.1706379

218 Bibliography

Furio Honsell and Donald Sannella. Prelogical relations. Information and
Computation, 178(1):23–43, 2002. DOI 10.1006/inco.2002.3115.

William A. Howard. The Formulae-as-Types Notion of Construction, In To H. B.
Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism, pages
476–490. Academic Press, 1980. ISBN 0123490502.

Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history
of Haskell: Being lazy with class. In 3rd ACM SIGPLAN Conference on History
of Programming Languages (HOPL III ’07), Proceedings, pages 12–1–12–55, 2007.
ACM Press. DOI 10.1145/1238844.1238856.

Graham Hutton. A tutorial on the universality and expressiveness of fold.
Journal of Functional Programming, 9(04):355–372, 1999. DOI 10.1017/
S0956796899003500.

Patricia Johann. A generalization of short-cut fusion and its correctness proof.
Higher-Order and Symbolic Computation, 15(4):273–300, 2002. DOI 10.1023/A:
1022982420888.

Patricia Johann. On proving the correctness of program transformations
based on free theorems for higher-order polymorphic calculi. Mathemat-
ical Structures in Computer Science, 15(02):201–229, 2005. DOI 10.1017/
S0960129504004578.

Patricia Johann and Janis Voigtländer. Free theorems in the presence of seq.
In 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’ 04), Proceedings, pages 99–110, 2004. ACM Press. DOI
10.1145/964001.964010.

Patricia Johann and Janis Voigtländer. The impact of seq on free theorems-based
program transformations. Fundamenta Informaticae, 69(1–2):63–102, 2006.

Patricia Johann and Janis Voigtländer. A family of syntactic logical relations
for the semantics of Haskell-like languages. Information and Computation, 207
(2):341–368, 2009. DOI 10.1016/j.ic.2007.11.009. Special issue on Structural
Operational Semantics (SOS).

Neil D. Jones and Flemming Nielson. Handbook of Logic in Computer Science
(vol. 4), chapter Abstract Interpretation: A Semantics-Based Tool for Program
Analysis, pages 527–636. Oxford University Press, 1995. ISBN 0-19-853780-8.

Donald E. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley,
1973. ISBN 0-201-89685-0.

John Launchbury and Ross Paterson. Parametricity and unboxing with un-
pointed types. In 6th European Symposium on Programming (ESOP ’96), Pro-
ceedings, volume 1058 of Lecture Notes in Computer Science, pages 204–218.
Springer-Verlag, 1996. DOI 10.1007/3-540-61055-3_38.

http://dx.doi.org/10.1006/inco.2002.3115
http://dx.doi.org/10.1145/1238844.1238856
http://dx.doi.org/10.1017/S0956796899003500
http://dx.doi.org/10.1017/S0956796899003500
http://dx.doi.org/10.1023/A:1022982420888
http://dx.doi.org/10.1023/A:1022982420888
http://dx.doi.org/10.1017/S0960129504004578
http://dx.doi.org/10.1017/S0960129504004578
http://dx.doi.org/10.1145/964001.964010
http://dx.doi.org/10.1016/j.ic.2007.11.009
http://dx.doi.org/10.1007/3-540-61055-3_38

Bibliography 219

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy,
and Jérôme Vouillon. The Objective Caml system - release 3.12. Institut National
de Recherche en Informatique et en Automatique, 2010. URL http://caml.
inria.fr/distrib/ocaml-3.12/ocaml-3.12-refman.pdf. Documentation and
user’s manual.

Yanhong A. Liu and Gustavo Gómez. Automatic accurate cost-bound analysis
for high-level languages. IEEE Transactions on Computers, 50(12):1295–1309,
2001. DOI 10.1109/TC.2001.970569.

Jacob Matthews and Amal Ahmed. Parametric polymorphism through
run-time sealing or, theorems for low, low prices! In 17th European
Symposium on Programming (ESOP ’08), Proceedings, volume 4960 of Lec-
ture Notes in Computer Science, pages 16–31. Springer-Verlag, 2008. DOI
10.1007/978-3-540-78739-6_2.

John McCarthy. Recursive functions of symbolic expressions and their com-
putation by machine, part i. Communications of the ACM, 3(4):184–195, 1960.
DOI 10.1145/367177.367199.

Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard ML.
MIT Press, 1997. ISBN 0262631814.

John C. Mitchell. Foundations for Programming Languages. MIT Press, 1996. ISBN
0262133210.

Georg Neis, Derek Dreyer, and Andreas Rossberg. Non-parametric parame-
tricity. In 14th ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP ’09), Proceedings, pages 135–148, 2009. ACM Press. DOI
10.1145/1631687.1596572.

Flemming Nielson and Hanne Riis Nielson. Type and effect systems. In
Correct System Design, volume 1710 of Lecture Notes in Computer Science, pages
114–136. Springer-Verlag, 1999. DOI 10.1007/3-540-48092-7_6.

Bruno C. d. S. Oliveira, Tom Schrijvers, and William R. Cook. EffectiveAdvice:
Disciplined advice with explicit effects. In 9th International Conference on
Aspect-Oriented Software Development (AOSD ’10), Proceedings, pages 109–120,
2010. ACM Press. DOI 10.1145/1739230.1739244.

John Peterson, Kevin Hammond, Lennart Augustsson, Brian Boutel, Warren
Burton, Joseph Fasel, Andrew D. Gordon, John Hughes, Paul Hudak, Thomas
Johnsson, Mark Jones, Simon L. Peyton Jones, Alastair Reid, and Philip
Wadler. Report on the programming language Haskell, version 1.3, May
1996. URL http://www.haskell.org/definition/haskell-report-1.3.ps.gz.

Simon L. Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised
Report. Cambridge University Press, 2003. DOI 10.2277/0521826144.

Simon L. Peyton Jones, Alastair Reid, Fergus Henderson, Tony Hoare, and
Simon Marlow. A semantics for imprecise exceptions. In ACM SIGPLAN

http://caml.inria.fr/distrib/ocaml-3.12/ocaml-3.12-refman.pdf
http://caml.inria.fr/distrib/ocaml-3.12/ocaml-3.12-refman.pdf
http://dx.doi.org/10.1109/TC.2001.970569
http://dx.doi.org/10.1007/978-3-540-78739-6_2
http://dx.doi.org/10.1145/367177.367199
http://dx.doi.org/10.1145/1631687.1596572
http://dx.doi.org/10.1007/3-540-48092-7_6
http://dx.doi.org/10.1145/1739230.1739244
http://www.haskell.org/definition/haskell-report-1.3.ps.gz
http://dx.doi.org/10.2277/0521826144

220 Bibliography

Conference on Programming Language Design and Implementation (PLDI ’99),
Proceedings, pages 25–36, 1999. ACM Press. DOI 10.1145/301618.301637.

Simon L. Peyton Jones, Andrew Tolmach, and Tony Hoare. Playing by the
rules: Rewriting as a practical optimisation technique in GHC. In ACM
SIGPLAN Workshop on Haskell (Haskell ’01), Preliminary Proceedings, Technical
Report UU-CS-2001-23, Utrecht University, pages 203–233, 2001. URL http:
//haskell.org/haskell-workshop/2001/proceedings.pdf.

Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002. ISBN
978-0-262-16209-8.

Andrew M. Pitts. Parametric polymorphism and operational equivalence.
Mathematical Structures in Computer Science, 10(3):321–359, 2000. DOI 10.
1017/S0960129500003066.

Andrew M. Pitts and Ian D.B. Stark. Operational Reasoning for Functions with
Local State, In Higher Order Operational Techniques in Semantics, pages 227–274.
Cambridge University Press, 1998. DOI 10.2277/0521631688.

Rinus Plasmeijer and Marko van Eekelen. Clean Language Report Version 2.1,
2002. URL http://clean.cs.ru.nl/download/Clean20/doc/CleanLangRep.2.
1.pdf.

Gordon Plotkin and Martín Abadi. A logic for parametric polymorphism. In 1st
International Conference on Typed Lambda Calculi and Applications (TLCA ’93),
Proceedings, volume 664 of Lecture Notes in Computer Science, pages 361–375.
Springer-Verlag, 1993. DOI 10.1007/BFb0037118.

Gordon D. Plotkin. Lambda definability and logical relations. Technical Report
SAI-RM-4, Department of AI, University of Edinburgh, 1973.

Gordon D. Plotkin, John Power, Donald Sannella, and Robert Tennent. Lax
logical relations. In 27th International Colloquium on Automata, Languages
and Programming (ICALP ’00), Proceedings, volume 1853 of Lecture Notes
in Computer Science, pages 85–102. Springer-Verlag, 2000. DOI 10.1007/
3-540-45022-X_9.

Rawle Prince, Neil Ghani, and Conor McBride. Proving properties about
lists using containers. In 9th International Symposium on Functional and
Logic Programming (FLOPS ’08), Proceedings, volume 4989 of Lecture Notes
in Computer Science, pages 97–112. Springer-Verlag, 2008. DOI 10.1007/
978-3-540-78969-7_9.

Uday Reddy and Hongseok Yang. Correctness of data representations involv-
ing heap data structures. In 12th European Symposium on Programming (ESOP
’03), Proceedings, volume 2618 of Lecture Notes in Computer Science, pages
223–237. Springer-Verlag, 2003. DOI 10.1007/3-540-36575-3_16.

John C. Reynolds. Towards a theory of type structure. In Colloque sur la
Programmation, Proceedings, volume 19 of Lecture Notes in Computer Science,
pages 408–423. Springer-Verlag, 1974.

http://dx.doi.org/10.1145/301618.301637
http://haskell.org/haskell-workshop/2001/proceedings.pdf
http://haskell.org/haskell-workshop/2001/proceedings.pdf
http://dx.doi.org/10.1017/S0960129500003066
http://dx.doi.org/10.1017/S0960129500003066
http://dx.doi.org/10.2277/0521631688
http://clean.cs.ru.nl/download/Clean20/doc/CleanLangRep.2.1.pdf
http://clean.cs.ru.nl/download/Clean20/doc/CleanLangRep.2.1.pdf
http://dx.doi.org/10.1007/BFb0037118
http://dx.doi.org/10.1007/3-540-45022-X_9
http://dx.doi.org/10.1007/3-540-45022-X_9
http://dx.doi.org/10.1007/978-3-540-78969-7_9
http://dx.doi.org/10.1007/978-3-540-78969-7_9
http://dx.doi.org/10.1007/3-540-36575-3_16

Bibliography 221

John C. Reynolds. Types, abstraction and parametric polymorphism. In In-
formation Processing 83, 9th IFIP World Computer Congress, Proceedings, pages
513–523. Elsevier, 1983.

John C. Reynolds. Polymorphism is not set-theoretic. In International Symposium
of Semantics of Data Types, Proceedings, volume 173 of Lecture Notes in Computer
Science, pages 145–156. Springer-Verlag, 1984. DOI 10.1007/3-540-13346-1_7.

Mads Rosendahl. Automatic complexity analysis. In 4th International Conference
on Functional Programming Languages and Computer Architecture (FPCA ’89),
Proceedings, pages 144–156, 1989. ACM Press. DOI 10.1145/99370.99381.

Colin Runciman, Matthew Naylor, and Fredrik Lindblad. SmallCheck and
lazy SmallCheck: automatic exhaustive testing for small values. In 1st ACM
SIGPLAN Haskell Symposium (Haskell ’08), Proceedings, pages 37–48. ACM
Press, 2008. DOI 10.1145/1411286.1411292.

David Sands. A naïve time analysis and its theory of cost equivalence. Journal
of Logic and Computation, 5(4):495–541, 1995. DOI 10.1093/logcom/5.4.495.

Manfred Schmidt-Schauß, David Sabel, and Marko Schütz. Safety of Nöcker’s
strictness analysis. Journal of Functional Programming, 18(04):503–551, 2008.
DOI 10.1017/S0956796807006624.

Daniel Seidel and Janis Voigtländer. Taming selective strictness. In Arbeitsta-
gung Programmiersprachen at 39th Jahrestagung der Gesellschaft für Informatik
e.V., Proceedings, volume 154 of Lecture Notes in Informatics, pages 2916–2930.
GI, 2009a.

Daniel Seidel and Janis Voigtländer. Automatically generating counterexamples
to naive free theorems. Technical Report TUD-FI09-05, Technische Universität
Dresden, 2009b.

Daniel Seidel and Janis Voigtländer. Taming selective strictness. Technical
Report TUD-FI09-06, Technische Universität Dresden, 2009c.

Daniel Seidel and Janis Voigtländer. Automatically generating counterexamples
to naive free theorems. In 10th International Symposium on Functional and
Logic Programming (FLOPS ’10), Proceedings, volume 6009 of Lecture Notes
in Computer Science, pages 175–190. Springer-Verlag, 2010. DOI 10.1007/
978-3-642-12251-4_14.

Daniel Seidel and Janis Voigtländer. Refined typing to localize the impact of
forced strictness on free theorems. Acta Informatica, 48(3):191–211, 2011a.
DOI 10.1007/s00236-011-0136-9.

Daniel Seidel and Janis Voigtländer. Improvements for free. In 9th Workshop
on Quantitative Aspects of Programming Languages (QAPL ’11), Proceedings,
volume 57 of Electronic Proceedings in Theoretical Computer Science, 2011b. DOI
10.4204/EPTCS.57.

http://dx.doi.org/10.1007/3-540-13346-1_7
http://dx.doi.org/10.1145/99370.99381
http://dx.doi.org/10.1145/1411286.1411292
http://dx.doi.org/10.1093/logcom/5.4.495
http://dx.doi.org/10.1017/S0956796807006624
http://dx.doi.org/10.1007/978-3-642-12251-4_14
http://dx.doi.org/10.1007/978-3-642-12251-4_14
http://dx.doi.org/10.1007/s00236-011-0136-9
http://dx.doi.org/10.4204/EPTCS.57

222 Bibliography

Daniel Seidel and Janis Voigtländer. Proving properties about functions on
lists involving element tests. In 20th International Workshop on Algebraic
Development Techniques (WADT ’10), Revised Selected Papers, volume 7137 of
Lecture Notes in Computer Science, pages 270–286. Springer-Verlag, 2012. DOI
10.1007/978-3-642-28412-0_17.

Florian Stenger and Janis Voigtländer. Parametricity for Haskell with im-
precise error semantics. In 9th International Conference on Typed Lambda
Calculi and Applications (TLCA ’09), Proceedings, volume 5608 of Lecture
Notes in Computer Science, pages 294–308. Springer-Verlag, 2009. DOI
10.1007/978-3-642-02273-9_22.

Christopher Strachey. Fundamental concepts in programming languages.
Higher-Order and Symbolic Computation, 13(1–2):11–49, 2000. DOI 10.1023/A:
1010000313106. The article is a reprint of lecuture notes from the International
Summer School in Computer Programming, Copenhagen, August 1967.

Josef Svenningsson. Shortcut fusion for accumulating parameters & zip-like
functions. In ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP ’02), Proceedings, pages 124–132. ACM Press, 2002. DOI
10.1145/583852.581491.

Kathryn van Stone. A Denotational Approach to Measuring Complexity in Func-
tional Programs. PhD thesis, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213, USA, 2003.

Janis Voigtländer. Concatenate, reverse and map vanish for free. In 7th ACM
SIGPLAN International Conference on Functional Programming (ICFP ’02), Pro-
ceedings, pages 14–25, 2002. ACM Press. DOI 10.1145/581478.581481.

Janis Voigtländer. Proving correctness via free theorems: The case of the
destroy/build-rule. In ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM ’08), Proceedings, pages 13–20,
2008a. ACM Press. DOI 10.1145/1328408.1328412.

Janis Voigtländer. Much ado about two (pearl): a pearl on parallel prefix
computation. In 35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’08), Proceedings, pages 29–35, 2008b. ACM
Press. DOI 10.1145/1328438.1328445.

Janis Voigtländer. Semantics and pragmatics of new shortcut fusion rules. In
9th International Symposium on Functional and Logic Programming (FLOPS ’08),
Proceedings, volume 4989 of Lecture Notes in Computer Science, pages 163–179.
Springer-Verlag, 2008c. DOI 10.1007/978-3-540-78969-7_13.

Janis Voigtländer. Asymptotic improvement of computations over free monads.
In 9th International Conference on Mathematics of Program Construction (MPC
’08), Proceedings, volume 5133 of Lecture Notes in Computer Science, pages
388–403. Springer-Verlag, 2008d. DOI 10.1007/978-3-540-70594-9_20.

http://dx.doi.org/10.1007/978-3-642-28412-0_17
http://dx.doi.org/10.1007/978-3-642-02273-9_22
http://dx.doi.org/10.1023/A:1010000313106
http://dx.doi.org/10.1023/A:1010000313106
http://dx.doi.org/10.1145/583852.581491
http://dx.doi.org/10.1145/581478.581481
http://dx.doi.org/10.1145/1328408.1328412
http://dx.doi.org/10.1145/1328438.1328445
http://dx.doi.org/10.1007/978-3-540-78969-7_13
http://dx.doi.org/10.1007/978-3-540-70594-9_20

Bibliography 223

Janis Voigtländer. Bidirectionalization for free! In 36th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’09), Proceedings,
pages 165–176. ACM Press, 2009a. DOI 10.1145/1480881.1480904.

Janis Voigtländer. Free theorems involving type constructor classes: Func-
tional pearl. In 14th ACM SIGPLAN International Conference on Functional
Programming (ICFP ’09), Proceedings, pages 173–184, 2009b. ACM Press. DOI
10.1145/1596550.1596577.

Janis Voigtländer and Patricia Johann. Selective strictness and parametricity in
structural operational semantics, inequationally. Theoretical Computer Science,
388(1–3):290–318, 2007. DOI 10.1016/j.tcs.2007.09.014.

Philip Wadler. Strictness analysis aids time analysis. In 15th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’88), Pro-
ceedings, pages 119–132, 1988. ACM Press. DOI 10.1145/73560.73571.

Philip Wadler. Theorems for free! In 4th International Conference on Functional
Programming Languages and Computer Architecture (FPCA ’89), Proceedings,
pages 347–359, 1989. DOI 10.1145/99370.99404.

Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad
hoc. In 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’89), Proceedings, pages 60–76, 1989. ACM Press. DOI
10.1145/75277.75283.

http://dx.doi.org/10.1145/1480881.1480904
http://dx.doi.org/10.1145/1596550.1596577
http://dx.doi.org/10.1016/j.tcs.2007.09.014
http://dx.doi.org/10.1145/73560.73571
http://dx.doi.org/10.1145/99370.99404
http://dx.doi.org/10.1145/75277.75283

225

Index

A
annotations

eraser . 125
ordered set of . 122
variables in an entity (AV(·)) 199

axiom. .15

B
Backus-Naur-Form (BNF) . 13

C
calculus

λα .13
logical relation (∆τ,ρ)22
parametricity theorem 23
syntax . 13
term semantics . 18
type semantics . 18
typing rules . 16

λαfix . 26
logical relation (∆fix

τ,ρ)33
parametricity theorem 33
syntax . 27
term semantics . 31
type semantics . 31
typing rules . 27

λαseq . 35
logical relation (∆seq

τ,ρ)38
parametricity theorem 39
syntax . 36
term semantics . 37
type semantics . 36
typing rules . 36

λα
fix+ .60
logical relation (∆fix

τ,ρ) 61
syntax . 60

term semantics . 61
type semantics . 61

λαfix∗ . 63
logical relation (∆fix

τ,ρ) 61
parametricity theorem 64
syntax . 60
term semantics . 61
type semantics . 61

λαseq∗ . 122
logical relation (∆seq∗

τ,ρ)126
subtyping rules . 124
syntax . 123
term semantics .126
type semantics . 126
typing rules . 123

λαseq+ . 130
typing rules . 131

λα
seqC

. 133
(conditional) typing rules 134
typeability . 135

λαfold . 149
logical relation (∆τ,ρ) 150
logical relation (cost-full, ∆′τ,ρ) 154
logical relation (cost-full, lifted, ∆¢

τ,ρ) . 159
parametricity theorem (cost-full) 154
parametricity theorem (cost-full, lift-

ed) . 158
syntax . 149
term semantics .150
term semantics (instrumented) 152
type semantics . 149
type semantics (instrumented) 151
typing rules . 149

simply typed lambda calculus 13
untyped lambda calculus 12

Church style . 17

226 Index

context
term (ΓV) . 15

compatible . 15
type (ΓT) . 15
typing (Γ) . 15

compatible . 15
concrete . 132
parametrized . 132

context (program, C[]) . 20
conversion (α, β, γ) . 20
cpo . see partial order (poset)
Curry style . 17

D
disrelation . 71
disrelator . 96
domain (dom(·)) . 19

E
environment

history (η) . 101
minimal . 89

properties . 92
relational (ρ) . 22

appropriate (in λαseq∗) 126
minimal . 89

result (ξ) . 95
term (σ) . 19
type (θ) .18

minimal . 89
evaluation strategy

call-by-name . 146
call-by-need . 146
call-by-value . 146
lazy . 146
non-strict . 35, 146
strict . 35, 146

ExFind . 59, 84, 102
correctness . 106
external input . 70
internal input . 81

expression
for the undefined value (⊥τ)32

F
fixpoint . 27

least (lfp) . 30

function
anonymous . 12
cost-free graph

partial (Rg
x1,...,xn

) . 160
total (Rg) . 160

costless version . 170
strongly reasonable . 172
tick-version . 173
total . 39, 118
weakly reasonable . 172

G
general recursion . 27

H
harmful (use of fix) . 69

locally harmful . 70
history . 101
history tag . 101

I
instantiation

of a parametrized entity 135
of a typing constraint135

L
least element (⊥) . 28

lifting with ((·)⊥) . 30

M
mergeEnv . 101

O
order

definedness (v) . 27
efficiency (v¢, @¢) . 162

P
parametrization (term, type, typing context) 198
parametrized entity

closed under % . 199
disjoint .199
general . 199

partial order (poset) . 27
complete (cpo) . 27
pointed . 27

Index 227

pointed complete (pcpo) 27
pcpo . see partial order (poset)
polymorphism

ad hoc . 4
parametric . 4

poset .see partial order (poset)
primitive

seq .35

R
referential transparency . 4
relation

bottom-reflecting . 38
continuous . 32
logical .22
strict . 32

relation, set of
Rel . 22
Rel⊥ . 32
Rel> . 38
Rel∞ . 62

relational parametricity . 21

S
semantics . 18

axiomatic . 18
denotational . 18
instrumented . 150
operational . 18

side effects . 4
substitution

capture avoiding . 20
of annotations (%) . 135

compatible . 199
disjoint . 199
tight . 199
union . 199

term variables . 19
type variables . 41

subtyping
shape conformant . 124

T
term

closed (under a term context) 17
concrete . 132
parametrized . 132

result . 96
strong. .96

subterm . 21
term variable . 13

bound occurrence . 14
unbound occurrence . 13

TermFind . 59, 69, 71
completeness . 81
correctness . 81
external input . 70
internal input . 81
rules

phase I . 72
phase II . 73
phase III . 73

termination . 83
type

closed (under a type context) 17
concrete . 132
monotype . 17, 41
parametrized . 132
pointed . 62
unpointed . 62

type class
Pointed . 62

class membership.62, 69
Seqable . 122

class membership rules 123
type derivation . 15
type extension

conservative . 125
type system

annotated . 122
type variable .13

unbound occurrence (UTV(·)) 14
typing constraint . 133

concrete . 133
typing judgment . 15

conditional . 133
valid . 16

typing rules .14

V
value

cost-free . 151
cost-full . 151
plus-value. .92

228 Index

W
weak head normal form. 35
weak subformula property 17

Typeset October 17, 2013

	I Introduction and Background
	Introduction
	The Power of Types
	Real World Problems
	The Contributions of the Thesis
	The Structure of the Thesis

	The Formal Background of Free Theorems
	Free Theorems for the Simply Typed Lambda Calculus
	Definition of the Simply Typed Lambda Calculus
	Relational Parametricity and Free Theorems

	Adding General Recursion
	Changes to the Calculus
	Changes to the Parametricity Results

	Adding Selective Strictness
	Changes to the Calculus
	Changes to the Parametricity Results

	Explicit Type Abstraction and Instantiation

	State of the Art
	Theoretical Developments of Free Theorems
	Results Building on a Standard Denotational Semantics
	Results Building on an Operational Semantics
	Formalization of Parametricity in Pure Type Systems

	Applications of Free Theorems

	II New Results
	Exemplifying the Necessity of Strictness Conditions
	The Calculus
	Refined Typing
	An Alternative System of Typing Rules
	Terms that Give Rise to Counterexamples
	Term Generation via TermFind: Strategy and Definition
	Detailed Explanations on the Design of TermFind
	Properties of TermFind

	Generation of Complete Counterexamples
	Choosing Type and Relation Environments
	Requirements for Term Environments
	Restrictions to TermFind
	Creating Extra Information — Concrete Constructions
	Correctness of ExFind
	A Closer Look on Completeness
	The Implementation of ExFind

	Summary
	Outlook

	Taming Selective Strictness
	Motivation for a Refined Type System
	A Refined Type System
	A Former Refinement Approach
	The New Approach

	Improvement of the Algorithmic Properties
	Guarantee of Termination
	Allowing Non-Refined Input
	Finding Optimal Annotations

	The Implemented Algorithm
	Summary
	Outlook

	Looking at Quantitative Aspects
	The Calculus
	An Instrumented Semantics for Counting Costs
	Parametricity Theory Involving Costs
	The Parametricity Theory at Work
	Simple Examples
	Considering foldr/build

	Summary
	Outlook

	III Conclusion
	Conclusion
	Consideration of Programming Features
	Parametricity Enables Efficiency Assertions

	IV Appendix
	Proofs
	Proofs from Chapter 4
	Proofs from Chapter 5
	Proofs from Chapter 6

	Bibliography
	Index

