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Kurzfassung 

Ziel der Arbeit ist die Entwicklung und Anwendung von Methoden zur 

empirischen Analyse und Modellierung des Agrarstrukturwandels. Veränderungen 

der Agrarstruktur sind nicht allein für den Sektor bedeutend, sondern können 

weitreichende ökonomische, soziale und ökologische Konsequenzen für eine 

Region haben. Ein Verständnis des Strukturwandels ist somit wichtig für die 

Folgenabschätzung (agrar-)politischer Maßnahmen, sowie deren Gestaltung im 

Hinblick auf konkrete (agrar-)politische Ziele.  

Ein häufig verwendeter methodischer Ansatz zur Untersuchung des 

Agrarstrukturwandels ist die Markowketten-Analyse. In dieser Arbeit wird ein 

Bayes‘scher Schätzansatz entwickelt, der eine Kombination von 

einzelbetrieblichen und aggregierten Daten in der Schätzung von nicht-stationären 

Markowketten erlaubt. Die Datenkombination erfolgt auf eine, im Vergleich zu 

existierenden Ansätzen, konsistentere und transparentere Weise und es wird 

gezeigt, dass sie die Präzision sowie die numerische Stabilität des Schätzers erhöht. 

Darauf aufbauend wird ein Bayes‘scher Ansatz zur Vorhersage des EU 

Strukturwandels entwickelt, der es erlaubt die verfügbaren Daten besser zu nutzen. 

Darüber hinaus befasst sich die Arbeit mit Interdependenzen auf Betriebsebene und 

deren Bedeutung für den Strukturwandel. Es wird argumentiert, dass sich das 

Verhalten von Betrieben gegenseitig bedingt und die Annahme einer unabhängigen 

Entwicklung, wie sie der Markowketten-Analyse zugrundeliegt, zu Problemen 

führen kann. Es wird empirisch gezeigt, dass die Berücksichtigung von 

Interdependenzen zwischen Betrieben wichtig für eine konsistente Aggregation der 

Ergebnisse der Betriebsebene zur Politikfolgenabschätzung auf regionaler Ebene 

ist. Am Beispiel Norwegens wird gezeigt, dass zur Abschätzung der Effekte von 

Direktzahlungen die Charakteristika benachbarter Betriebe berücksichtigt werden 
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müssen. Nach Wissen des Autors ist die Arbeit die erste, die empirisch die 

Bedeutung von Interdependenzen auf Betriebsebene für den Strukturwandel belegt. 

Mit Blick auf eine Politikfolgenabschätzung zeigen die Ergebnisse, dass 

Direktzahlungen, die ein Betrieb selbst erhält, einen positiven Einfluss auf das 

Überleben des Betriebs haben, während Direktzahlungen an benachbarte Betriebe 

einen negativen Einfluss haben. Zur Abschätzung des generellen Effekts von 

Direktzahlungen ist es somit notwendig, die Interdependenzen zwischen Betrieben 

zu berücksichtigen. Werden diese vernachlässigt, kann der Effekt von 

Direktzahlungen überschätzt werden. 

Schlüsselwörter: Agrarstrukturwandel, Markowketten, Datenkombination, 

räumliche Abhängigkeit, Aggregation, Politikfolgenabschätzung  
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Abstract 

The dissertation aims to develop and apply new empirical methods to analyze and 

model farm structural change. Changes of the farm structure are not only important 

for the sector itself but may have broader economic, social and environmental 

consequences for a region. Understanding this process is important for assessing 

the impact of (agricultural-) policies.  

A common approach to analyze farm structural change are Markov chains. The 

dissertation provides a Bayesian estimation framework that allows to more 

consistently and transparently combine individual and aggregated data in the 

estimation of non-stationary Markov models compared to existing methods. It is 

shown that the data combination improves precision and numerical stability of the 

estimation. Building on this, a Bayesian prediction framework for EU farm 

structural change is developed exploiting the available information more fully. 

Secondly, farm interdependences and their importance for farm structural change 

are analyzed. It is argued that the assumption of independence between farm 

behavior as implied by the Markov approach may become problematic in specific 

applications. Empirical evidence is provided that these interactions are indeed 

important to consider for a consistent aggregation of farm level results when 

assessing policy effects at regional level. Specifically, it is shown for the case of 

Norway that it is important to consider neighboring farm characteristics when 

analyzing the influence of direct payments on farm survival. To the knowledge of 

the author, the study is the first to show empirically that spatial interdependence at 

farm level is important for farm structural change. With respect to policy 

assessment, the results indicate that direct payments a farm receives itself have a 

positive influence on farm survival while neighboring direct payments have a 

negative one. For an overall assessment of the policy effects it is thus necessary to 



- vi- 

 

consider the interdependencies between farms. Ignoring these interdependencies 

might lead to an overestimation of the effects of direct payments. 

Keywords: Farm structural change, Markov process, data combination, spatial 

dependence, aggregation, policy assessment 
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Chapter 1  

Research Context
1
 

1.1 Motivation and general research question 

Individual farmers decide to change their specialization, the intensity level, the 

size of the farm or its organization in response to changes in their environment. 

The environment they respond to is complex and covers a wide range of issues 

such as personal, social, economic, natural or political factors (Boehlje 1992; 

Zimmermann et al. 2009). The decision of a single farmer is largely irrelevant for 

the overall sector. Collectively, however, the sum of the individual decisions 

transform the farm sector as a whole. This process is typically characterized by 

the term farm structural change.  

The term is generally understood even by people with no or only a loose 

connection to agriculture. The drastic decline of farm numbers along with an 

                                                                 

1 The research presented in this dissertation is to the largest part supported by the project 

“Development of a Bayesian estimator for non-stationary Markov transition probabilities and its 

application to EU farm structural change” of the German Research Foundation (DFG), grant no. 

HE 2854/4-1. Chapter three has its origin in a joint research project “Modelling the effects of the 

CAP on farm structural change” (Contract 151949-2010-A08-DE) from the European Commission 

Joint Research Centre - Institute for Prospective Technological Studies (IPTS). Chapter four was 

primarily conducted during a research visit at the Norwegian Agricultural Economics Research 

Institute (NILF) in Oslo additionally funded by a travel grant from the German Academic Exchange 

Service (DAAD) financed by the Federal Ministry for Economic Cooperation and Development 

under project ID 56453885. 
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increase in average farm size that occurred in most developed countries in the last 

decades is the most common association that comes to mind. In the academic 

literature however, there is no universal definition of the term and plenty of 

authors provide alternative ones. By comparing different definitions Stanton 

(1993) identified (1) the farm businesses as a productive enterprise (2) the farm 

household and (3) the agriculture resources as three major elements of all 

definitions of structural change. Further he highlighted (1) “changing distributions 

within the sector”, (2) “production decisions and who makes them” and (3) 

“ownership of resources and control over their use (p.19)” as the three major 

issues farm structural change is concerned with. The term farm structural change 

thus covers a wide array of aspects. Nevertheless, in the most basic and widely 

used case, farm structural change analysis is indeed concerned with the size and 

number of farms in the population (Goddard et al. 1993:476). However, Stanton 

(1993) points out that “[n]o single frequency is adequate to describe farm 

structure. Hence, distributions of farms by sales class, land area, labor force, acres 

of key crops or numbers of livestock are all used in examining structure and 

change through time. What happens to these distributions remains a focus of 

public interest and debate (p. 19).”  

But irrespective of the definition chosen and the aspect of farm structural change 

considered, its consequences are not only relevant for the sector itself but may 

have broader social, economic and environmental consequences for a region 

(Flaten 2002:436–438). Being able to understand and explain farm structural 

change at the aggregate level and the individual decisions that lead to it is thus 

crucial to assess how (agricultural-) policy affects this development. 

A large body of literature is concerned with the analysis of farm structural change 

(see references in the following). The overall objective of this dissertation is to 

develop and apply methods to analyze and model farm structural change. The 

dissertation can be distinguished into two major parts. The first, consisting of 

chapter two and three, aims at improving the use of data information in the 

analysis of EU farm structural change by developing a Bayesian estimation 

approach for non-stationary Markov models combining farm level with 

aggregated data. Markov models are popular for the analysis of farm structural 

change and chapter two and three address a specific methodological gap 

indentified in the literature. In the second part, consisting of chapter 4, the 
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assumption of independent farm behavior underlying the Markov approach is 

addressed. Specifically, the focus is on the importance of farm level spatial 

interaction between farms and their relevancy for policy assessment.  

Even though the two parts stand on their own the reoccurring theme that is central 

throughout the dissertation is the distinction between strategic decisions at the 

individual farm level (e.g. size, specializations, survival decisions etc. by an 

individual farmer) and changes of the farm structure at the aggregated/regional 

level. What we are commonly interested in is how all individual decision together 

lead to transformations of the sector as a whole. For an understanding of farm 

structural change it is crucial, however, to clearly differentiate between the 

individual and aggregate level. In the first part the distinction plays a role at the 

data level. The unique feature of the Markov approach is that it allows deriving 

probabilities for individual farm level behavior from aggregated data. The 

estimation approach considered here provides the possibility to combine 

individual and aggregated data. In the second part the focus is on the interaction 

between farms on the individual level. These interactions are analyzed empirically 

and shown to be crucial for aggregating results from individual farm to regional 

level. Due to interaction between farms, the aggregated outcome is not simply the 

sum of individual decisions. 

In the remainder of this introductory the contribution of the thesis to the literature 

is highlighted. Afterwards, a concluding section summarizes results and discusses 

limitations and further research potential. 

1.2 Contribution of the thesis 

In this section the three chapter of the dissertation are summarized. Additionally, 

the gaps in the literature addressed by each single chapter and the path of 

development from the first to the last chapter are highlighted. 

1.2.1 Bayesian Estimation of Non-Stationary Markov Models Combining Micro 

and Macro Data 

The analysis of farm structural change has a long tradition in agricultural 

economics with Cochrane (1958) as one of the earliest references. In the 
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following years a large body of literature emerged considering multiple aspects of 

farm structural change using a large array of methodological approaches (see 

Zimmermann et al. 2009 for an extensive review). A popular approach is the 

Markov framework which allow analyzing the movement of individuals between 

predefined states over time (recent examples are: Huettelet et al. 2010, Huettel 

and Jongeneel 2011, Zimmermann and Heckelei 2012a, Zimmermann and 

Heckelei 2012b). For estimation, the latter three of the cited examples rely on the 

generalized cross-entropy (GCE) approach, proposed by Golan and Vogel (2000) 

and first applied in a Markov context by Karantininis (2002). The GCE approach 

allows including prior information in the estimation. In the Markov context, prior 

information is typically specified for the transition probabilities. Prior information 

can be based on previous studies and on external knowledge. The possibility to 

consider prior information is the strength as well as the major criticism of the 

GCE approach. The use of prior information allows estimating ill-defined systems 

but is often criticized to introduce subjective prior believes in estimation.  

This criticism is addressed in a recent dissertation by Zimmermann (2012) who 

proposed to specify prior information in the GCE approach empirically based on 

additional data. For the EU, there are two types of data sources that provide 

information about farm structural change: the farm structural survey (FSS; 

Council Regulation (EC) No 1166/2008) and the Farm accountancy network 

(FADN; Council Regulation (EC) No 1217/2009). Each data source provides 

different information at different levels and temporal resolution. The FSS 

provides aggregated census data in which the total number of farms in each state 

is observed. Data obtained from FADN is an unbalanced panel in which the 

individual movement of farms between states can be identified for a sample of 

farms. In accordance to the literature we refer in the following to the aggregated 

and individual level data as “macro” and “micro” data, respectively. Zimmermann 

(2012) proposed combining the two data sources in a GCE estimation approach. 

The estimation is based on FSS macro data, while FADN micro data is used to 

specify the prior information on the transition probabilities avoiding an otherwise 

rather ad hoc specification.  

Despite this contribution, however, several shortcomings of the GCE approach 

persist which are addressed in chapter two of this dissertation. One general 

shortcoming of the GCE approach is the rather in-transparent way prior 
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information is specified and used in estimation. This makes it difficult for the 

researcher and the research community to assess the importance and influence of 

prior information on the final estimation results. Further, it is not possible to 

specify an ignorance (or non-informative) prior for cases where no prior 

information is available. For a detailed more technical discussion of the general 

limitations of the GCE approach we refer to Heckelei et al. (2008). An additional 

shortcoming of the approach proposed by Zimmermann (2012) is that it ignores 

the precision of prior information in the micro data. Thus micro and macro data is 

not weighted in estimation and the final results are independent of the size of the 

micro sample. Lastly, since FSS data is only available every two to three years, 

the approach requires interpolating FSS macro data to a yearly basis.  

These limitations are addressed in chapter two by the developed Bayesian 

approach. The proposed framework is an alternative to the GCE approach and 

also allows combining micro and macro data in the estimation of transition 

probabilities. Similar to the entropy approach proposed by Zimmermann (2012), 

micro data is used to specify prior information on the transition probabilities. 

Specifically, a prior density is defined based on the micro data and combined with 

a macro data based likelihood function. In comparison to the GCE approach, this 

combination of prior and likelihood within the Bayesian framework is consistent 

and more transparent. Also, the approach implies a weighting of micro and macro 

data such that the precision of both is considered consistently. An additional 

feature of the proposed approach is that it can handle asynchronous micro and 

macro data, meaning that the time resolution of the combined micro and macro 

may differ. It is thus possible to combine, for example, yearly micro data with 

three yearly macro data. In the application based on FSS macro and FADN micro 

data it is thus not longer necessary to interpolate the FSS macro data to a yearly 

basis.  

Apart from these improvements over the GCE approach, chapter two also 

contributes to the literature by proposing two different specifications for the 

transition probabilities. Specifically, it introduces an ordered logit specification as 

an alternative to the multinomial logit model used so far in the structural change 

Markov literature. It is argued that the ordered logit model is not only 

theoretically more appropriate for ordered choices but also empirically since it 

requires substantially fewer parameters to be estimated.  
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The proposed Bayesian estimation framework is evaluated with a Monte Carlo 

Simulation in order assess the influence of prior information on several 

performance indicators. Results show that prior information improves the 

numerical stability of the estimation approach, decreases the variance of the 

posterior and the mean square error of the posterior mean estimator. The effects 

become more pronounce the larger the micro sample size and the higher the 

number of Markov states considered. 

Additionally, the proposed estimator is applied in a real world data setting using 

the same data combination of FSS macro and FADN micro data as proposed by 

Zimmermann (2012). In the application an example with unordered and ordered 

states using the multinomial and ordered logit model, respectively, is considered. 

The application illustrates how asynchronous data, here yearly FADN micro data 

and two to three yearly FSS macro data, can be combined. The results depict 

reasonable patterns for the estimated transition probabilities and indicate in what 

way the prior information (in the micro data) is updated using FSS macro data. 

It should be pointed out that the approach proposed in this chapter is equally 

relevant for the analysis of issues in other disciplines in which micro and macro 

data is available for the estimation of Markov models (see section 2.1 for a more 

detailed discussion).  

1.2.2 Short term prediction of agricultural structural change using FSS and 

FADN data 

Chapter three applies the proposed Bayesian approach to address specific policy 

requirements and data insufficiencies. The work conducted in this chapter is in 

parts the result of the joint research project “Modelling the effects of the CAP on 

farm structural change” (Contract 151949-2010-A08-DE) from the European 

Commission Joint Research Centre - Institute for Prospective Technological 

Studies (IPTS). The broader aim of the project is to develop novel analytical tools 

for ex-post and ex-ante analysis of structural change using FADN data. The 

specific objective of chapter three is a short term prediction of farm structural 

change using FADN in combination with FSS data.  

The Bayesian approach developed in chapter two helps to exploit the specific 

advantage of each data set while mitigating its disadvantages. FADN data is 
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available on a yearly basis while FSS data is only available every two to three 

years. It is thus likely that FADN data is available for one to three years after the 

last available FSS year. FADN data provides micro level information, i.e. the 

movement of farms between states, but not information about farm entry or exit 

due to its sampling plan. FSS data, on the other hand, does not allow indentifying 

the movement of farms over time but provides aggregate information about the 

number of farms in the population in different states. Implicitly, this contains 

information about net farm exit/entry. Combining both data sources allows 

exploiting the micro level information in order to complete the missing macro 

data for the most recent years and to obtain information not available from any of 

the two single data sets alone. 

The chapter extends the Bayesian approach developed in chapter two by 

improving the numerical Monte Carlo integration approach used in estimation. 

The computational implementation of the Bayesian framework is challenging. 

Integrating of the posterior density is intractable analytically. Instead, a Monte 

Carlo integration approach is employed for which a sample from the posterior 

density is obtained. In chapter two the sample is obtained using a Metropolis 

Hastings algorithm. In this chapter the algorithm is replaced by a Parallel 

Tempering algorithm (Liu 2008). The Metropolis-Hasting algorithm considers 

just one Markov chain to generate random outcome from the posterior. The 

Parallel Tempering approach runs several chains raised to different powers in 

parallel and allows swapping states between them. The algorithm is capable of 

escaping local minima more easily which increases the numerical stability of the 

sampling approach and the final estimation.  

Additionally, the chapter contributes to the literature by developing a Bayesian 

prediction framework that provides an entire predictive distribution instead of 

only a point prediction. From this predictive distribution, point predictions as well 

as the variance of predictions can be derived. 

The approach is evaluated in an out-of-sample prediction with respect to the 

completion of macro data information for the most recent years. For this, 

predictions of farm numbers in different states, specializations and time periods 

are considered. In each case the Markov states reflect three size classes defined in 

terms of the economic size of a farm and an artificial entry/exit class. The 
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prediction is performed for these four states considering all farms irrespective of 

their farm size as well as for three different farm specializations, namely crop, 

livestock and mixed farms. All predictions are performed for seven (West) 

German regions for which a relatively long sample is available. Also, three 

different out-of-sample prediction periods are considered for each prediction. 

Each time the last FSS year is excluded from estimation and the prediction is 

performed for this year. Considering all these individual out-of-sample 

predictions different measures of the prediction quality are calculated. The results 

are compared to naive linear, geometric and constant (i.e. no change) predictions 

that are additionally performed for each considered situation. 

The out-of-sample prediction results indicate that the proposed Markov prediction 

approach outperforms the geometric and linear prediction. It failed however, to 

clearly outperform the prediction of no change. These results indicate that 

structural change within two to three years is rather modest and the prediction of 

“no change at all” is difficult to compete with. Nevertheless, the proposed 

approach can be useful in order to predict farm numbers between FSS years or for 

longer prediction periods in which a prediction of no change becomes less 

plausible. 

1.2.3 Direct payments, spatial competition and farm survival in Norway 

Chapter four focuses on the importance of spatial interaction between farms for 

policy assessment. Particularly it looks at farm exit decision in Norway and the 

role of direct payments in this respect. The hypothesis explored in the paper states 

that farms interact with each other in multiple ways and that these interactions are 

important for farmers’ survival decision and need to be considered in policy 

assessment when aggregating results from the individual farm to the regional 

level.  

The chapter thus addresses two limitations of the Markov approach. These two 

issues are first the interdependency between individual farm behaviors and 

secondly the aggregation of individual farm level results to the regional level. In 

the following, the importance and implications of both issues for the Markov 

approach are discussed. Afterwards the contribution of chapter four is highlighted 

in this respect. 
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Interdependence between farm behavior 

The specification of the Markov model relies on the multinomial logit model or as 

proposed in chapter two on the ordered logit model. Even though the latter might 

be an improvement in situations with ordered states, both specifications still rely 

on the assumption of independent individual transitions between states. For the 

concrete example of farm structural change, this implies that farm transitions 

between different size or specialization classes are independent from each other. 

This assumption is problematic. Even though decisions to change farm size, 

specialization or to enter or exit are indeed taken at the individual level they are 

likely to be influence by decisions of other farms. 

Interdependence between farm behavior can come in multiple forms. Flaten 

(2002) points out that farmers are part of a social rural network, which is 

important for social well being of the rural society. A strengthening or weakening 

of this network might thus affect individual farm decision, while decision of the 

individual farmer (i.e. to exit) might affect the social network
2
. Similarly, farmers 

are part of a corporate network of suppliers, wholesalers and processors on which 

they depend but which also depends on their individual decisions (Mosnier and 

Wieck 2010). Good access to up- and downstream industries is vital for farm 

productivity and survival. But also do these industries depend on the decision by 

individual farmers to change their specialization or to quit. Farmers are also part 

of a corporate network with other farmers important for technology adoption and 

knowledge transfer (Rogers 1995; Berger 2001). For example, Case (1992) and 

Holloway et al. (2002), found evidence that the probability of adopting a new 

technology increases with neighboring adoption. Consequently, an active 

corporate network may raise technology diffusion, which increases farm 

productivity and finally influences decisions of an individual farmer. Apart from 

these network effects farmers also compete on input and output markets. In most 

of the structural change literature, prices for inputs and outputs are takes as given, 

which often makes sense. For some goods, however, markets are local with only 

few farms participating such that their decisions matter directly for market 

                                                                 

2 This simulations interactions are also known as Manski’s reflection problem (Manski 1993). 
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outcomes. On the output side this might hold for goods that are marketed locally. 

The most important case in this respect, though, is the land market (Leathers 

1992; Margarian 2010). Due to the physical immobility of land and transportation 

costs which increases with the distance between farm and plot, potential buyers 

are typically limited to a small number of farms. Common to almost all these 

forms of market or network interactions is that they are spatial in nature, meaning 

that the interaction level decreases with distance. The importance of the location 

of farms in space, the immobility of land and the spatial interaction between 

farms is considered in the Agent based model literature on farm structural change 

(Balmann 1997; Happe 2004; Happe et al. 2006; Happe et al. 2008; Berger 2001; 

Freeman et al. 2009).  

Ignoring the interactions in the Markov approach is problematic not only because 

they might be relevant explanatory variables itself but also because they are 

important for a consistent aggregation of the farm level results. A particular 

problem arises in the Markov approach with respect to the land market: In most 

regions, agricultural area is almost fixed in supply and fully employed such that 

the prerequisite for farms to grow is that other farms free resources by declining 

in size or exit the sector (Weiss 1999). In the classical application of the Markov 

approach where farms are grouped into different size classes, this interaction 

between farms and the resulting limitation to farm growth is not accounted for 

and difficult to do so. This implies that using estimated Markov transition 

probabilities farms may predict to transit to larger size classes without other farms 

giving up area in comparable quantities. We might thus predict a farm distribution 

in which more than the total available agricultural area is employed. In cases 

where size classes are defined in terms of economic size units (as in chapter 3), 

the interconnection is not as direct, since all farms may grow in terms of the 

economic size by intensifying production, for example by increasing livestock 

density per area. Nevertheless, most of livestock production remains, to some 

extent, coupled to agricultural area. At some point, growing in economic size 

units is likely, to go along with an increase in cultivated area.  

Consistent aggregation of farm level results  

Following from this discussion we conclude that imposing the independence 

assumptions in the Markov approach can lead to violations of land constraints that 
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exist at the aggregated level when aggregating the individual level results. This 

particular problem is an example of a more general problem in the analysis of 

farm structural change - not limited to the Markov approach - which relates to the 

aggregation of individual farm level results to the aggregated regional level.  

Empirical studies analyzing farm structural change may in general be classified in 

either farm level or regional level studies. Regional level studies analyze the 

change in total number of farms, whereas individual level studies consider 

changes at the farm level. Both types have advantages and disadvantages with 

respect to different purposes. Regional level studies (such as Goetz and Debertin 

2001 or Breustedt and Glauben 2007) directly deliver the result at the aggregated 

regional level which is of interest in an assessment of policy effects on farm 

structural change. As pointed out by Gale (1994), however, the disadvantage of 

regional level studies is that aggregated statistics may mask quite complex 

behavior at the individual farm level (see also Ehrensaft et al. 1984:824 in this 

respect). Further, explanatory variables need to be defined at the regional level as 

well. Interpretation of the effects is thus only possible indirectly and statistical 

more complicated. Also identification might be more difficult since only the 

variation between regions can be used.  

Individual level studies (such as Kimhi and Bollman 1999; Weiss 1999; Gale 

2003; Bragg and Dalton 2004; Hoppe and Korb 2006; Dong et al. 2010) in 

contrast consider explanatory variables at the individual farm level. This allows 

exploiting the variation between individual which eases identification and might 

make definition and interpretation easier and more direct. Understanding the 

driving forces of farm structural change at the individual level might be an 

important result of its own and the final purpose of an individual farm level study. 

For policy assessment, however, one is usually interested at the aggregated 

regional effect of a policy. For the required aggregation it is crucial to consider 

the interaction between farms discussed above, but accounting for this interaction 

is difficult and often impossible. This lead Roberts and Key (2008:628) to argue 

in favor of regional level studies over individual level studies for policy 

assessment: “[Farm level] studies [...] consider effects of payments on the growth 

or survival of individual farms, which cannot predict the effects of an increase in 

payments on aggregate farm structure. This is because studies of individual farms 
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cannot account for how induced changes on one farm affect other, neighboring 

farms […].”  

In social science these “aggregation problems” are well known and discussed 

under the term “emergence”, meaning that macro patterns arise from the 

interaction of individuals which could not be derived from the properties of the 

individuals (Emmeche et al. 1997; Schelling 2006; Epstein 2006).  

The Markov approach cannot clearly be classified as either an individual or 

regional level study. Instead it is at the intersection between both, which has 

advantages as well as disadvantages. In most cases the input data either consists 

of individual level transitions (micro data) or the aggregated number of farms in 

different classes (macro data; see Zimmermann et al. 2009 for an overview of 

studies differentiated by data use). In both cases explanatory variables are usually 

defined at the aggregated level which has the advantage that data requirements are 

relatively low, but, as mentioned above, interpretation and identification is more 

problematic. The resulting transitions probabilities describe behavior at the 

individual farm level. The possibility to use macro (i.e. aggregated) data to derive 

information about the individual level behavior (the transition probabilities) is a 

unique an attractive feature, compared to other approaches applied in the 

structural change context. For some application this individual level behavior is of 

final interest. In other instances, such as policy assessment the individual level 

results need to be aggregated. The specific Markov application in Zimmermann 

and Heckelei (2012a), Zimmermann and Heckelei (2012b) and in chapter two and 

three add a new twist in the classification of the Markov approach as either a 

individual or regional level approach. Here, farm level micro data is introduced as 

additional information and combined with the aggregated macro data. In these 

specific applications individual farm behavior is thus derived from a combination 

of macro and micro data. This provides advantages as discussed above but 

explanatory variables remain to be defined at the regional level with the 

associated disadvantages. Also the problems arising from the independence 

assumption remain unchanged.  

Contribution 

Both issues, the interdependence between farms and the aggregation of farm level 

results, are addressed in chapter 4. With farm survival the chapter focuses on a 
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narrow but important aspect for farm structural change. The analysis takes place 

at the individual farm level using a Norwegian data set.  

The specific focus of the chapter is to identify the role of policy in farm survival 

and particularly the effect of direct payments. Within this context the importance 

of spatial interactions between farms and their role in policy assessment is 

considered specifically. In order to assess the influence of a change in the direct 

payments scheme on the aggregated/regional farm level the interdependence are 

considered when aggregating farm level results. The empirical analysis of farm 

level spatial interdependence is novel to the farm structural change literature, even 

though farm level spatial interdependence is highlighted in the theoretical 

structural change literature and considered in agent based models. The study thus 

contributes to the literature by showing that spatial interdependence between 

farms is indeed important empirically. Furthermore, results indicate that spatial 

interdependence is important for a policy assessment at the aggregated/regional 

level. Failure to account for it may lead to substantial overestimation of the policy 

effects. 

The empirical analysis employs a Norwegian data set covering almost all 

Norwegian farms in 1999 and 2009, providing the production activities in the two 

years as well as some additional farm characteristics, including the location of 

each farm in space. Based on the production activities it is possible to derive the 

direct payments each farm receives. This spatially explicit data set at near census 

level covering more than 64.00 farms provides a unique opportunity to analyze 

spatial interdependence at farm level.  

A spatial binary choice probit model is estimated. The binary dependent variable 

is defined as farm survival/exit between 1999 and 2009. As explanatory variables 

several own and neighboring characteristics of the farm and the holder are 

considered. With respect to the research question, the primary interest lies on own 

and neighboring direct payments. Two specifications of the spatial probit model 

are considered. First, a spatially lagged explanatory variable model (SLX) and 

second a spatial Durbin error model (SDEM). Both specifications consider 

spatially lagged neighboring characteristics, but the SDEM additionally allows for 

spatial correlation in the errors. 
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Results indicate that the most important variables to explain farm survival are 

variables related to the own size of a farm, such as the total labor input, the 

agricultural area or the total direct payments. All three variables are positively 

correlated with farm survival indicating that large farms are more likely to 

survive. All other variables add only little to the overall explanatory power of the 

model. Nevertheless, with respect to the research question of evaluating the effect 

of direct payments on the aggregated level the effects of the spatially lagged 

neighboring characteristics are crucial to consider. Results show that neighboring 

direct payments negatively influence own survival. The overall effect of a change 

in direct payments is thus a complex process and depends on the interaction 

between farms. This issue is explored in greater detail using policy scenario 

simulations. With respect to the overall importance of farm interdependence 

results further indicate that neighboring agricultural area and total labor input 

have, ceteris paribus, a positive influence on own survival. Findings of negative 

effects of neighboring payments but positive effects of neighboring farm area and 

labor input hint at the different channels through which farms interacts. The 

negative effects of direct payments can be seen as an indication of competition on 

the land market. The positive effects of neighboring area and labor input on the 

other hand show that farms gain from larger neighbors (as long as direct payment 

are kept constant). One explanation for this can be positive effects through an 

active corporate network, which is strengthened by large and potentially more 

active neighbors.  

For policy assessment at the aggregated/regional level, scenario simulations are 

performed for the entire farm population based on the obtained regression results. 

Different policy scenarios such as an overall decrease of the payments rates by 

10% or the abolishment of specific elements of the payment scheme that favors 

smaller farms are considered. In both cases, the change in the predicted survival 

probability before and after the policy change is derived for the entire population 

considering the neighboring relationship. The difference in the survival 

probability provides an assessment of the policy effects at the aggregated/regional 

level. Overall, the effects of direct payments on farm survival remain modest. The 

same simulations are repeated for a model that ignores the spatial interactions in 

the estimation and simulations. Results show that ignoring spatial interaction lead 

to an overestimation of the effects of direct payments.  
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1.3 Conclusion 

Summary of results 

The overall aim of the dissertation is to develop and apply methods to analyze 

farm structural change. The dissertation can broadly be distinguished into two 

major parts. In the first, a methodological gap in the literature with respect to the 

combination of micro and macro data in the estimation of Markov models is 

addressed. The second part looks at the importance of interactions between farms 

and thus addresses limitations of the Markov approach considered in the first part. 

The recurring theme in the dissertation is the relationship between the micro and 

macro level. Strategic decisions are taken by the individual farmer at the micro 

level. The aggregation of these individual decision lead to changes in the farm 

structure at the macro level. These different levels of analysis are considered in 

varying ways throughout the dissertation.  

Specifically, in part one the relationship between the micro and macro level is 

reflected in the data considered for estimation. Here micro and macro data is 

combined in the estimation of Markov transition probabilities which describe 

behavior on the micro level. The dissertation contributes to the literature by 

providing a Bayesian estimation framework for non-stationary Markov models. 

The proposed Bayesian approach allows combining micro and macro data in the 

estimation more consistently and transparently than other methods previously 

applied in the literature. Based on Monte Carlo Simulation it is shown that adding 

micro data to a macro data based Markov estimation indeed improves the 

precisions of the estimates and the numerical stability of the approach. 

Additionally, a Bayesian prediction formwork is developed that enables a 

prediction of farm numbers in the EU in different categories, based on a 

combination of two data sources that allows deriving information not available 

from one data set alone. 

In a second part, it is argued and shown empirically that the assumption of 

independence between farm behaviors on the micro level may become 

problematic for specific applications. Working on the individual farm level 

usually provides more information, but for policy assessment an aggregation to 

the regional level becomes necessary which needs to consider interactions 
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between farms. Theoretically or in agent based models interactions between farms 

are considered in multiple ways in the literature. To the knowledge of the author, 

however, the study is the first to show empirically that spatial interactions at the 

farm level are indeed important for analysis of farm structural change. 

Specifically, it is shown for the case of Norway that neighboring characteristics 

are relevant for the influence of direct payments on farm survival. The empirical 

results indicate that direct payments a farm receives itself have a positive 

influence on farm survival while neighboring direct payments have a negative 

one. For an overall assessment of the policy effects it is thus necessary to consider 

the interaction between farms. Ignoring these interactions might lead to an 

overestimation of the effects of direct payments. 

Limitations and outlook 

Despite these contributions to the literature there are several remaining 

shortcomings of which some are more specific with respect to data or technical 

issues and some more general. Here the focus is on the more general 

shortcomings and an outlook for relevant future research is provided. The more 

detailed shortcomings are left to the specific sections in each individual chapter. 

A major contribution of the work is the empirical analysis of the importance of 

farm interaction on the micro level. A particular challenge in this respect is to 

identify the concrete channels through which the interaction between farms 

occurred. One usually can infer from empirical approaches information about - in 

the best case - causal relationship between variables. The underlying mechanism 

that drives the relationship, however, remains often unobserved. Economic theory 

can provide explanations about the relationship, but in this context theory about 

the spatial interaction between farms is not very well developed, complex and 

sometimes conflicting. The explanations for the interactions thus remain partial. 

Agent based models, on the other hand, approach the issue of aggregation and 

interaction from the opposite side. They naturally work at the micro level and 

agents are allowed to interact with each other. The aggregate regional results then 

emerge from the interaction between individuals. The aggregation problem is thus 

solved endogenously, which is one of the strength of the agent based model 

approach. The problem here is that the way farms interact in the first place, is 

based on assumption made in the model design. This model design can be based 
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on economic theory or empirical evidence. Often, however, the specification is 

rather ad hoc with a weak empirical justification. This is problematic because 

even though the aggregated results emerge consistently they crucially depend on 

the correct specification of the micro level interactions.  

The agent based model approach thus solves the aggregation problem naturally 

and allows defining the exact mechanisms of farm interaction. Empirical 

(econometric) approaches, on the other hand, provide empirical evidence of the 

importance of interdependence but are usually limited with respect to an 

explanation of the mechanisms that lead to the interdependence. The two 

approaches thus seem to complement each other and a combination of both could 

be fruitful in further research to exploit their individual advantages. One approach 

would be to implement alternative assumption about possible interaction 

mechanisms in the agent based model. The model outcomes can then be 

compared to the empirically observed patterns. This approach would help to shed 

light on the mechanisms that most likely lead to the relationships observed 

empirically. The obtained results might be useful for theory development and the 

approach provides an empirical justification of specific agent base model 

assumptions. The outlined approach can more clearly be illustrated using the 

empirical results presented in chapter 4. We found that neighboring direct 

payments have a negative influence on farm survival while neighboring cultivated 

area and labor input have a positive influence. From these empirical results, 

however, we can only conclude indirectly about the potential mechanisms through 

which farms interact. As argued in chapter 4, it is likely that the negative 

influence of direct payment hint at competition on the land market while the 

positive influence of cultivated area or labor input hint at positive influences due 

to corporate network effects. An agent based model can be used to explore the roll 

of alternative mechanisms of interactions. It may be compared which form of 

interactions leads to the observed pattern. Specifically, alternative versions of the 

agent based model can be considered which are based on different assumptions 

concerning the land market or corporate network effects. For each specification 

the regression applied to the empirical data can be repeated for the agent based 

model results and it can be explored which specification lead to similar patterns 

observed empirically. Even though, this strategy will not provide a direct proof of 

the underlying mechanisms of farm interaction it will nevertheless help to 
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understand which specification is capable of reproducing the observed pattern and 

thus is most likely at work in reality. The combination of spatial econometric 

approaches, similar as the one proposed in this dissertation and agent based 

models would provide an empirical validation of the agent based model and could 

be helpful for theoretical development concerning farm level interactions. 
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Chapter 2   

Bayesian Estimation of Non-

Stationary Markov Models 

Combining Micro and Macro 

Data
3
 

Abstract. We develop a Bayesian framework for estimating non-stationary 

Markov models in situations where not only macro population data is available on 

the proportion of individuals residing in each state, but also micro-level sample 

data on observed transitions between states. Posterior distributions on non-

stationary transition probabilities are derived from a micro-based prior and a 

macro-based likelihood using potentially asynchronous data observations, 

providing a new method for inferring transition probabilities that merges 

previously disparate approaches. Monte Carlo simulations demonstrate how 

observed micro transitions can improve the precision of posterior information. We 

provide an empirical application in the context of farm structural change.  

Keywords: Markov process, transition probabilities, micro and macro data, data 

combination  

JEL classification codes: C11, C81 

                                                                 
3 An earlier version of this part is published as Storm H, Heckelei T, Mittelhammer RC. 2011 

Bayesian estimation of non-stationary Markov models combining micro and macro data. Discussion 

Paper 2011:2, Institute for Food and Resource Economics, University of Bonn. 
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2.1 Introduction 

A new Bayesian framework for inferring the transition probabilities of non-

stationary Markov models is developed in this paper. Non-stationary Markov 

models facilitate analysis of factors influencing the probability that an individual 

will transition between predefined states. Data used for estimating Markov 

models can either be panel data, where the specific movement of an individual 

between states is observed over time, or aggregated data, providing only the 

number of individuals residing in each state over time. Following Markov 

terminology, we refer to such panel data and aggregated data as micro and macro 

data, respectively. The overall objective of our approach is to combine micro and 

macro information into a unified and consistent methodology for estimating 

transition probabilities.  

The idea of combining micro and macro data was considered previously in the 

context of a medical application by Hawkins and Han (2000). They analyzed 

macro data obtained in repeated independent cross sectional surveys within a city 

district together with limited micro data obtained from respondents who were 

‘coincidently’ interviewed in two consecutive cross sectional surveys. The 

behavior under study was the benefits of an intervention program attempting to 

modify drug use-related behavior, and their Markov model was a two-state 

process relating to awareness, or not, of the health consequences of not bleaching 

shared drug needles. They defined a linear model, within the Classical statistical 

framework, that explained the binary marginal probabilities of being in one of the 

two awareness states in a certain time period (based on “standard observed 

proportion estimates” from aggregate data) as well as transition probabilities 

relating to transitions between the two states (from the micro data). 

Generalizations of Hawkins and Han’s binary state model to multinomial 

transitions are conceptually possible, but the parameter dimensionality, as well as 

the complexity of the covariance structure and constraint set imposed by the 

sampling design, quickly renders their general linear model approach intractable 

as the number of states increase beyond two. 

A recent alternative by Zimmermann and Heckelei (2012) utilizes a Generalized 

Cross Entropy (GCE) approach to combine micro and macro data, and has an 

advantage relative to Hawkins and Han of being dimensionally and 



24  2.1 Introduction 

 

 

computationally better suited for modelling multinomial Markov processes with a 

relatively large number of states. They utilize estimates of transition probabilities 

derived from observed micro transitions as reference probabilities in the GCE 

approach. However, treating the reference probabilities as priors on the transition 

probabilities, as they do, results in a relative weighting of micro and macro data 

information that is independent of the precision of the estimates underlying the 

prior information. In particular, the influence of the micro estimates on the final 

estimation result is the same no matter how large the micro sample, and thus no 

matter how precise the prior information is relative to population characteristics. 

In addition, the approach requires the specification of reference distributions for 

residuals, including the specification of support points, which determine the 

signal-to-noise ratios in the Markov transition equations a priori.  

In contrast to the previous two Classical approaches, the Bayesian framework 

provides a flexible and tractable method of combining micro and macro data 

generating processes that is logically consistent and coherent within the tenets of 

the probability calculus while accommodating a relatively large number of 

Markov states. The rather complicated linkages between transition probabilities 

and observed Markov state outcomes, and the complex parametric constraints and 

covariance matrix structure of the combination of micro and macro data 

generating processes, are specified consistently as a matter of course in specifying 

the posterior probability distribution for the parameters of the transition equation. 

Moreover, the Bayesian framework allows prior information to be incorporated 

into the estimation of non-stationary Markov models within an established 

coherent probabilistic framework. In addition, the Bayesian methodology 

provides a natural and relatively straightforward way of combining data 

observations at either the macro or micro level that are asynchronous
4
, which is in 

contrast to the methods offered heretofore. The approach is also applicable to both 

ordered and unordered Markov states, which is yet another flexible feature of the 

method. Overall, the Bayesian approach that we present offers a tractable full 

posterior information approach for combining micro and macro data-based 

                                                                 
4 By “synchronous” we mean both that observations over time occur in sequence without gaps 

(follow a tact) and that the micro and macro data are observed for the same time units. 
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information on non-stationary transition probabilities that allows the estimation of 

functional relationships linking transition probabilities with their determinants.
5
 

Examples of empirical problems for which both macro and micro data are 

relevant and available exist in previous literature. One example is an analysis of 

European Union (EU) farm structural change, where structural change is defined 

as farm size or production specialization change over time (see Zimmermann et 

al. 2009 for a review of that strand of literature). In that application population 

data on the number of farms in specific size or specialization states is available 

from the Farm Structure Survey (FSS). Micro data, offering observed transitions 

of individual farms between the states, is available in the Farm Accountancy Data 

Network (FADN), albeit for a relatively small sample of farms. Another example 

is an analysis of voter transitions in political science. Here, macro data on the vote 

shares of candidates is available from official statistics, whereas micro data can be 

obtained from voter (transition) surveys (McCarthy and Tyan 1977; Upton 1978). 

Additional examples of similar data situations can be found in the context of 

Ecological inference problems, which are closely related to Markov processes 

(Wakefield 2004; Lancaster et al. 2006). In general the proposed approach is 

relevant for all situations in which the micro sample is relatively small compared 

to the macro data. If the micro sample is relatively large the macro sample does 

not contribute additional information such that an approach relaying exclusively 

on the micro data is sufficient. 

The paper is organized as follows: First, the Bayesian framework for non-

stationary Markov models is developed in section 2. Two different specifications 

of the transition probabilities, that of ordered and unordered Markov states, are 

discussed, appropriate likelihood functions and prior densities are defined, and 

issues relating to computational implementation are identified. Then the design 

and results of a Monte Carlo simulation experiment are presented in section three 

                                                                 
5 In their pedagogical contribution to the use of MCMC computational methodology Pelzer and 

Eisinga (2002) include an example of a Bayesian approach specifically designed for a two state 

Markov model which depends crucially on the characteristics of a Bernoulli process. The 

specification of prior information in their example is effectively ad-hoc, whereas our specification is 

fully consistent with the structure of the data generating process. Moreover, their example does not 

generalize to either stationary or non-stationary multinomial Markov processes.  



26  2.2 Bayesian Approach for Non-Stationary Markov Models 

 

 

and used to assess how the inclusion of prior information affects the posterior as 

well as the numerical stability of the sampling algorithm, and the degree to which 

estimator performance is improved under different micro sample sizes for both 

specifications. In section four the methodological framework is applied 

empirically in the context of an analysis of farm structural change in Germany. 

The application demonstrates how the framework can facilitate estimation in a 

situation where estimation with either micro or macro data alone would suffer 

from several limitations. Section 2.5 provides conclusions and a discussion of 

areas for further research. 

2.2 Bayesian Approach for Non-Stationary Markov Models 

Markov processes provide a conceptual model for the movement of individuals 

between a finite number of predefined states, 1,...,i k , within the context of a 

stochastic process. The k  states are mutually exclusive and exhaustive. A 

Markov process is characterized by a  k k  transition probability (TP) matrix
6
 

tP . The elements ijtP
 
of tP represent the probability that an individual moves 

from state i  in time 1t   to j  in time t . The  1k  -vector tn  denotes the 

number of individuals in each state i  at time t and evolves over time according to 

a (first order) Markov process  

 1t t tn P n . (1) 

In a non-stationary Markov process, the TPs change over time periods
7
 

0,1,..., .t T  Data used for estimating a non-stationary Markov process can either 

be macro or micro level. In the case of macro data, only the aggregate numbers of 

individuals in the states, ,tn  is observed at each time period. For micro data, the 

movement of each individual between states is also observed over time. Thus, the 

 k k -matrix tN  with elements ijtn  representing the number of individuals that 

transition from state i  at 1t   to j  in t , is directly observed.  

                                                                 
6Bold letters are used for vectors or matrices. 
7Depending on the problem context, one could also consider only two time periods observed over 

various regions, or a combination of multiple time and regional observations.  
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In this section we assume data observations are synchronous, as defined in 

footnote 1, both for ease of exposition and to be consistent with precedence in the 

literature. However, the proposed approach is considerably more flexible in that 

asynchronous data can be analyzed in a straightforward way, and in the empirical 

application in section 4, macro data available only every two to three years will be 

combined with yearly micro data. Similarly, the reverse case, where macro data 

has a higher temporal resolution than the micro data, can be considered as well.  

The structural specification of the TP matrix tP  depends on the underlying 

behavioral model. In the following subsection we review TP matrix specifications 

corresponding to ordered as well as unordered Markov states to define notation 

and establish the foundation for the definition of the posterior. Then the data 

likelihood function  1,..., TL n n β , representing the macro data, and a prior 

density  p β , representing the micro data are defined and combined into the 

posterior distribution for the TPs.
8
 The last subsection presents computational 

methodology relating to the use of the posterior distribution for inference 

purposes. 

Specification of the Transition Probability Matrix 

For appropriate specification of the TPs, the nature of the relationship between 

Markov states need to be considered, and we discuss two different behavioral 

models that differentiate between ordered and unordered Markov states. We argue 

that for ordered Markov states the ordered logit model is superior to the more 

common multinomial logit model with respect to both model assumptions and 

from a computational point of view.  

In cases where the states of the Markov process are unordered, the multinomial 

logit model is a suitable specification for the TPs
9
. The specification based on the 

                                                                 
8 In his dissertation, Rosenqvist (1986) introduces the conceptual rudiments of combining micro and 

macro data in a prior-likelihood framework. However, the analysis was restricted to stationary 

processes with synchronous observations and the micro and macro data observations were assumed 

to be disjoint. Our Bayesian framework is not constraint by any of these assumptions and moreover, 

we provide a tractable empirical method of implementation. 
9 A multinomial probit model could be an appropriate alternative for the error structure 

specification, but is left for future work. 
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multinomial logit model assumes that the transition of individuals between 

different states can be represented by a random utility model. The utility that 

would accrue to individual l  upon moving from state i  in 1t   to j  in t  is 

denoted as ,ijtl ijt ijtlU V   where the deterministic component of utility is 

specified as 1ijt t ijV  z b , with 1tz  being a vector of lagged exogenous variables. 

The deterministic part varies only over time and not over individuals because 

aggregated (macro) data is considered. Consequently, the deterministic 

component of utility reflects exogenous variables that affect the utility of all 

individuals alike. The random error ijtl
 
varies over time and individuals. It is 

assumed that an individual chooses a transition that maximizes her utility ijtlU . 

The assumption that ijtl
 
are iid random draws from a Gumbel distribution result 

in a multinomial logit specification for each row of tP .  

If the Markov states are ordered, an ordered choice model is an appropriate 

specification for the underlying behavioral model. In this case it is assumed that 

there exists an unobserved continuous latent variable *
itlY  for each individual l  

that determines the outcome of the observed variable itlY  according to 

 *
1if , 1,...,itl j itl jY j c Y c i j k       (2) 

where the jc ’s are the thresholds for each Markov state, with 

o kc and c   . The index i  indicates that an individual was in state i  at 

1t  . The unobserved latent variable *
itlY  consists of a deterministic part 1t iz β  

plus a random part *
itl . The vector of unknown parameters iβ  are allowed to 

differ between the k  different states in 1t  . As in the preceding multinomial 

logit model, the deterministic part varies over time but not over individuals. 

Assuming that *
it  are iid random draws from a logistic distribution

10
 results in an 

ordered logit model for each row of tP . 

One important difference between the ordered logit and the multinomial logit 

model is that only one error term, instead of one error term for each alternative, is 

considered for each individual. This implies that the assumption of “Independence 

                                                                 

10 Assuming that the 
*
it  are random draws from a normal distribution would result in a probit (see 

footnote 6). 
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of Irrelevant Alternatives” (IIA) does not apply to the ordered logit model. This is 

more appropriate whenever the alternatives are ordered since in this case it can be 

expected that the error associated with one state is more similar to the error of an 

alternative close to it than to an alternative further away (Train 2009). Also from a 

computational point of view, the ordered logit specification is often preferable 

since only  2zk n k k   parameters
11

 need to be estimated, as compared to 

( 1) zk k n  parameters for the multinomial logit model.  

A further advantage of the ordered choice model is that the interpretation of the 

latent variable is often straightforward. For example, in the case of farm structural 

change noted in the introduction, where Markov states refer to firm size classes, 

the latent variable can be interpreted directly as farm size (see section 4). In the 

medical context where classes refer to different stages of illness, the latent 

variable can be interpreted as the degree of illness. However, the decision 

between an ordered and unordered choice model is not always straightforward 

and can depend on the problem context as well as decision makers’ behavioral 

characteristics. In the voter transition example, one could regard the candidates as 

unordered choices, but alternatively one could also argue that they are ordered 

according to a one-dimensional political spectrum (“right” to “left”), in which 

case both models have justification and the choice between the two must be 

guided by additional theoretical and/or substantive behavioral arguments.  

Posterior  

The posterior is defined as the joint density of a micro data prior and macro data 

likelihood. Since micro and macro data are interdependent, the likelihood is the 

conditional density of the macro data given the micro data. The prior density 

represents information derived from a sample of micro observations on state 

transitions. It should be pointed out that the distinction between prior and 

likelihood is somehow artificial. Both are likelihood specification representing 

two different data sets. Also they are sampled at the same time which usually 

                                                                 
11 If a constant is included and 1c  is normalized to zero  2k k  cut points need to be estimated 

in addition to one parameter for each explanatory variable and state ( zk n  ) . 
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distinguishes prior and likelihood information. The labeling is thus more a 

convention and is motivated from the works in the context of the entropy 

estimation by Zimmermann and Heckelei (2012), mentioned above, using micro 

data to specify the support and prior densities in an entropy estimation based on 

macro data.  

The foundation for the likelihood function is provided by the first-order non-

stationary Markov process proposed by MacRae (1977). For the specification of a 

macro data based likelihood function MacRae (1977) points out that the nature of 

the likelihood specification depends critically on whether the state proportions, 

tx , are observed over time for the entire population of size N , which she refers 

to as perfect observations, or whether the state proportions, ty , are only a random 

sample of size tM N  drawn and observed at each time period, referred to as 

imperfect observations. In the case of perfect observations the distribution of tx  

is fully characterized by 1tx . However, for imperfect observations the 

distribution of ty  also depends on earlier observations, 2 0,...,ty y , which 

provide additional information on .ty  For the latter case MacRae (1977) 

proposed a limited information likelihood approach which is appropriate 

whenever macro data is available for only a sample of the population. In the 

following, we focus on the case of perfect observations, i.e., a census type of 

macro data set, which characterizes the type of data available in our empirical 

application provided in section 4.  

MacRae (1977) shows that in the case of perfect observations, the state 

proportions are distributed as a weighted sum of independent multinomial random 

variables with probabilities equal to the corresponding rows in tP  and weights 

equal to the state proportions in 1t  . The resulting likelihood function is given 

by  

 

   0 1 , 1

1 1 1

, ,..., ! / !ijt

t t

T k k

T i t ijt ijt

t i j

L n P




  

 
  

 
  
Η

β n n n . (3) 

The 'itn s  are the elements of the data vector tn . The matrix tΗ
 
is of dimension

 k k and has entries 
ijt

 
denoting the (unobserved) number of individuals 

transitioning from state i  at time 1t   to state j  at time t . The summation 

involving tΗ  in likelihood expression (3) is over the set t  of all matrices tΗ  



2.2 Bayesian Approach for Non-Stationary Markov Models  31

 

  

having rows that sum to corresponding elements in 1tn  and columns that sum to 

the corresponding entries in tn , so that  

  1,t t k t t t k t
   Η 1 Η n Η 1 n ,

 

 (4) 

with k1  being a  1k   vector of ones. The set of matrices represented by t  is 

the collection of all conceptually possible outcomes of between-states transition 

numbers when moving from observed state distribution 1tn  in time 1t   to the 

observed state distribution tn
 
in time t . With micro data available we observe 

that some transitions have occurred at the micro level. Let 
*

tN  denote the micro 

data i.e. a matrix of observed transitions with 
*

ijtn  being the number of state i-type 

units in time 1t   that we observed to be state j-type unites in time t . The 

likelihood of the event of moving from 1tn  to tn  changes given that certain 

ways of transitioning to achieve tn  are ruled out by the *

tN  observations. 

Particularly, the set of all possible combination is now defined as  

  * *

1: ,  and t t s t t t s t t t
    H 1 H n H 1 n H N  (5) 

such that the likelihood becomes  

    
*

* *

0 1 1 , 1

1 1 1

, ,..., ; ,..., ! / !ijt

t t

T k k

T T i t ijt ijt

t i j

L n P




  

 
  

 
  
Η

β n n n N N  (6) 

The number of elements in set t  or 
*

t  increases exponentially with the 

number of states, making the implementation of expression (3) or (6) for larger 

samples challenging (or intractable) from a computational point of view. For 

example, in the case of only three states and 200 observations, there are over 2.5 

million combinations of  3 3 -matrices possible if approximately the same 

number of individuals reside in each of the three states. For the unconditional 

likelihood (3) this dimensionality problem can be approached using a large 

sample approximation that avoids the computation of the set t  (see Hawkes 

1969 and Brown and Payne 1986). The large sample approximation used the 

property that the multinomial distribution can be approximated with a 

multivariate normal distribution in large samples. In our case each i -th row itH  

of tH  is multinomial with size , 1i tn   over 1,...,k  categories. If , 1i tn   is large itH  
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is approximately multivariate normal with mean *
, 1i it i tn μ P , where *

itP  denotes 

the i  row of tP  without the element of the last column, and covariance matrix 

  * * *
, 1i i t it it itn diag   V P P P , where  diag   denotes a square matrix with the 

argument vector as the main diagonal and zero off-diagonal elements. Since 

transitions between observations are independent, each row of tH  is independent 

and the probability of tH  is approximately equal to a multivariate normal random 

 1 1k k    vector  * *
1 ....t t ktM  H H  with mean 1[ ... ]k  μ μ μ  and variance  

 

1

2

0 0

0 0

0 0 k

 
 
 
 
 
 

V

V
V

V

. (7) 

Defining  * *
1 ... kB I I , with *

iI  being an identity matrix of size 1k  , we have 

t tBM n . Using the each linear transformation of a multivariate normal random 

variable is also multivariate normal it follows that tn  is multivariate normal with 

mean * *
1t tBμ P n  and variance 

  * * * * *
1 1t t t t tdiag      BVB P n P n P Γ , (8) 

where *
tP  and *

tn  is equal to tP  and tn  without the last column and row, 

respectively. Therefore, the probability of tn  given 1tn  can be approximated by a 

normal density such that    *

1 1; ,t t t t tP  n n n P n Γ . From this it follows that 

(3) can be approximated by a large sample log-likelihood,
 laL , given by 

 

 

     

0 1

1* * * *

1 1

1

, ,...,

0.5 log .

a T

T

t t t t t t t t

t

L



 





 
      

 


β n n n

Γ n P n Γ n P n
 

(9) 

When considering the micro observations, itH  is still multinomial with size , 1i tn   

over 1,...,k  categories except that the constraint *
it itH N  need to be considered. 

As argued above the approach is intended for situation in which the micro data is 

only available for a fraction of the observation in the macro data. In these 

situations the limits imposed by *
it itH N  are hardly binding such that tH  can 

still be approximated by a multivariate normal. From this it follows that the large 

sample log-likelihood approximation in (9) remains valid for (6). The validity of 
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this large sample approximation is assessed in the Monte Carlo simulations 

considering different sizes of the micro sample. 

The specification of the prior density  p β , considers the underlying sampling 

distribution of the micro observations. Recall that itn  is the number of individuals 

that were in state i  at time t , let i

tX  be the vector of shares across states in t for 

individuals who were in state i  in 1t  , and let itP  be the i -th row of tP . The 

propensity of each individual in the micro sample to transition between states is in 

accordance with the appropriate elements of tP . Analogous to the case of macro 

data, the distribution across states in t of individuals who were in state i  in 1t   

is multinomial around mean itP  with size itn . The observed number of 

individuals in each of the k states in t, , 1,...,itn i k , is then the corresponding 

weighted sum of vectors , 1,..., .i

t i kX  Therefore, the prior density can be 

represented as a likelihood similar to (3), except that now information about the 

individual transitions ijtn is available, making the summation over the set t  

unnecessary because the actual transitions are observed. Hence the likelihood 

simplifies to  

 

     1 , 1

1 1 1

,..., ! / !ijt

T k k
n

T i t ijt ijt

t i j

p L n n

  

 
   

 
 β β N N P , (10) 

where the  k k -matrix tN  has elements ijtn  representing the number of 

individuals that transition from state i  at 1t   to j  in t . We emphasize that for 

the case of aggregated data discussed above, the distribution of tn  differs 

between imperfect and perfect observations, while for micro observations, this 

distinction does not apply. In the latter case, the distribution of tx  is fully 

characterized by 1tx  regardless of whether a sample or the entire population is 

observed. The fundamental difference is that in the case of micro observations, 

individuals in the sample in time period t  are all the same as in 1t   which is 

usually not the case for imperfect macro data. Consequently, information earlier 

than 1tx
 
contains no additional information about tx . 

Computational Implementation  

In order to conduct inference in the model depicted above, integrating and/or 

taking expectations based on the posterior density 
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     0 1, ,..., Th L pβ d β n n n β  or on its approximation  ah β d
 

   0 1, ,...,a TL pβ n n n β
 
is required. An analytical approach to such computations 

is generally intractable. Instead a Monte Carlo integration approach is 

implemented based on sampling from the posterior density via a Metropolis 

Hastings (MH) algorithm.
12

 For our purposes, we evaluate the optimal Bayesian 

estimator under quadratic loss, the posterior mean, by calculating the mean of an 

iid sample from  h β d for sufficiently large sample sizes. 

Specifically, a random walk MH algorithm with a multivariate normal generating 

density is employed.
13

 The variance of the proposal density is adjusted such that 

an acceptance rate in the interval  .2, .3 is obtained. In cases where the number of 

parameters to be estimated is large, a “Block-at-a-Time” algorithm proposed by 

Chib and Greenberg (1995) is employed in which the parameters to be estimated 

are divided into blocks.  

2.3 Monte Carlo Simulation of Prior Information Effects 

In this section we analyze the influence of prior information, in the form of a 

sample of micro observations, on the posterior distribution and associated 

estimators’ performance as well as on the behavior of the sampling algorithm. 

Based on an underlying population of 10,000indn 
 
individuals, four different 

scenarios are considered regarding the availability of prior information, including 

a case of no micro observations, and micro samples of n = 100, 500, and 1000. 

The scenarios are further distinguished by the number of Markov states (

3,4,5k  ). Data is generated for 100T   time periods and 6zn   explanatory 

variables including a constant. All simulations are undertaken for a Markov 
                                                                 
12 An interesting alterative to the simple random walk MH sample would be the development of a 

data augmentation sample algorithm, in the spirit of Albert and Chib (1993), for a non-stationary 

Markov model using aggregated data. Our first implementation of such an algorithm, building on 

Musalem et al. (2009) who proposed a concept to consider aggregated data in an simple ordered 

logit model, suffered, however, form slow convergence problems. Convergence problems are 

known for the Albert and Chib (1993) algorithm and could be overcome using alternatives such as 

those proposed by Frühwirth-Schnatter and Frühwirth (2007) or Scott (2011). These algorithms, 

however, focus on simple multinomial logit models and are not directly transferable to the Markov 

case using aggregated data.  
13 To mitigate computer overflow problems the Metropolis acceptance ration is calculated as 

        , min exp ln ln ,1rcan canr h h    β β β d β d . 
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model based on either the multinomial logit specification or the ordered logit 

specification discussed above, and are performed using Aptech’s GAUSS
TM

 11. 

Data Generating Process 

The data generating process distinguishes between the two different behavioral 

models, based on the multinomial logit and ordered logit specification discussed 

above. In both cases the parameterization is chosen so that the deterministic part 

constitutes roughly one third of the model’s total variation. Furthermore, in both 

cases indn  individuals are considered that transition over time between the k  

states in accordance with the underlying behavioral model. The initial state of 

each individual in 1t   is randomly chosen with probability equal to 

1,...,iu i k  , where the probability is the same for all individuals and given by 

1

k

i i h

h

u u u


   with  ~ 0,1iu iid , where  ,a b denotes the continuous 

uniform distribution on the interval a to b. 

 In the multinomial logit model each individual l  chooses the state of the 

next period based on the utility, ijtlU , associated with a specific transition from 

state i  in 1t   to j  in t . The utility ijtl ijt ijtlU V  
 
consists of a deterministic part 

1ijt t ijV  z b  and an individual random part ijtl  and is generated by drawing the 

elements of the (lagged) exogenous variables 1tz  from  1,4  and the 

elements of the  1zn   “true” parameter vectors ijb  from  1,1 . Since only 

differences in utilities are relevant, the parameters of the last alternative are set to 

zero, 1,...,ik i k  b 0 , in order to identify the model. To obtain a logit model, 

the ijtl  are drawn from a Gumbel (type I extreme value) distribution, specified by 

   3;0,3 exp ijtl
g ijtlF e    . In each time period an individual chooses the 

transition that maximizes utility, moving from state i  in 1t   to state j  in t  if 

 1 2, ,...,ijtl i tl i tl iktlU Max U U U . 

For the ordered logit model, the transition between states is based on a latent 

index value * *
1itl t i itlY  z β  consisting of a deterministic part 1t iz β  and a random 

part *
itl . The index value is generated by drawing the elements of the (lagged) 

exogenous variables 1tz  from  1,4  and the elements of the  1zn   true 

parameter vectors iβ  from  1,1 . The random errors *
itl  are iid random 

draws from a logistic distribution, specified by 
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    
1* *;0,2.3 1 exp 2.3l itl itlF  


   . The latent index value determines the 

outcome of itlY  for each individual in each time period according to (2).  

Using the above sampling design a micro dataset for indn  individuals and T  time 

periods is obtained for both the multinomial logit and the ordered logit 

specification, and represents the full population of individuals under study. For 

the specification of the prior density, random samples of size 100, 500, and 1000 

are drawn without replacement from these micro datasets. The population is 

transformed into macro datasets by summing up the number of individuals in each 

state in each time period.  

In order to avoid dependency of the results on a specific set of parameters, 

10truen   true models are generated using the data generating process. For each of 

the truen  true models the process is repeated 20repn   times with the same 

parameters, but with new draws of the random errors ijtl  or *
itl  in each 

repetition. 

Performance Measures  

The influence of prior information is assessed by a comparison of measures 

characterizing features of the posterior density, including performance of the 

posterior mean of the density, representing the minimum quadratic risk estimate 

of β . The effect of prior information on the numerical stability of the sampling 

algorithm is also analyzed. For the Monte Carlo simulation a fixed burn-in period 

and a fixed sample size is employed for the MH sampler. Even though 

appropriate burn-in periods and sample sizes are found using graphical measures 

in trial runs for each scenario and resulted in substantially large burn-in periods, it 

still cannot be guaranteed that the MH sample will converge correctly for every 

simulation run. Therefore, Box-Whisker-Plots are employed to detect outliers 

among the sum of squared errors of the true repn n  simulations as an indication that 

the MH sample had not converged appropriately. Measures characterizing the 

posterior density and performance measures relating to the estimator are then 

calculated based on only those runs that were not designated as outliers.  

The effect of prior information on the spread of the posterior is assessed based on 

posterior variances, and is calculated on the basis of the posterior sample 

outcomes. The total variance of the posterior density is calculated by summing 
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over the posterior variances of all zn  parameters for each run, and then the mean 

over all true repn n  simulation runs (outliers excluded) is calculated to obtain one 

scalar value measure of the total variance.  

The analysis of the influence of prior information on the Bayes estimator 

(posterior mean) is based on the mean square error (MSE) criterion, calculated as 

the mean sum of squared errors between estimated and true parameter values, 

where the mean is calculated over all of the true repn n  simulation runs not detected 

as outliers. The MSE is further decomposed into variance and bias components, 

where the squared bias is again summed over all parameters. The distribution of 

the sum of squared errors together with the number of outliers detected for each 

scenario provides an assessment of the numerical stability of the MH sampler, and 

the effects of prior information on that numerical stability.  

Results of the Monte Carlo Simulation 

Results for the multinomial logit model of a Monte Carlo simulation to analyze 

the influence of prior information, in the form of a micro sample, on the posterior 

and the posterior mean estimator. Results indicate that prior information reduces 

the variance of the posterior and improves the performance of the mean posterior 

estimate in terms of the MSE. 

The results of the Monte Carlo Simulations for the multinomial logit model are 

presented in figure 2.1. Results show that incorporating prior information in the 

form of a micro sample decreases the total variance of the posterior density, and 

more so the larger the micro sample. The variance reduction effect of prior 

information becomes even more pronounced the greater the number of Markov 

states being considered. Similarly, prior information decreases the MSE of the 

estimator, and a greater number of Markov states accentuate this effect. 

Decomposing the MSE into bias and variance suggests that the MSE is primarily 

determined by the variance of the estimator. In all scenarios the share of the 

squared bias is only 4 to 9 % of total MSE.  

The distribution of the sum of squared errors, as depicted in the Box-Whisker-

Plots in figure 2.1, provides information about the numerical performance of the 

MH sampling algorithm. Results show that more simulation runs are detected as 

outliers in the no prior information scenario (i.e. micro sample with 0 obs.), 
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especially when considering 4k   or 5k   Markov states. This observation 

indicates problems relating to the numerical stability of the MH sampler, in the 

sense that the algorithm does not converge correctly for some simulation runs. 

When considering a micro sample as prior information, substantially fewer 

simulation runs are detected as outliers, indicating that the use of prior 

information improves the numerical stability of MH sampler.  

Comparable results are obtained for the ordered logit model as depicted in figure 

2.2. Similar to the multinomial logit simulation, results indicate that prior 

information reduces the variance of the posterior density, and more so the larger 

the micro sample considered. The same can be observed for the MSE, which 

decreases with increasing micro sample size. If prior information is considered 

the MSE is mainly determined by the variance of the estimator such that the share 

of the squared bias is only 4 to 6 % of total MSE in all scenarios. For the no prior 

information scenarios, however, the bias share is substantially larger, being 

between 23 and 28 %.  

The number of outliers detected by the Box-Whisker-Plots is used again to assess 

the numerical stability of the MH sampler. The results are consistent with the 

findings in the multinomial logit case, where performance of the MH sampler 

improves the larger the micro sample size considered as prior information. It is 

worth noting that the numerical problems in cases without prior information 

persist in the ordered logit model compared to the multinomial logit model even 

though substantially fewer coefficients need to be estimated (e.g. 25 compared to 

120 for 5k  ).  

Overall the results suggest that without prior information, alternative 

individualized sampling strategies or extensions of the simple MH sampler (e.g. 

Parallel Tempering (Liu 2008) or Multiple Try Method (Liu et al. 2000)) should 

be considered for successful sampling from the posterior, which could not be 

automated for the Monte Carlo simulations. This suggests that through prior 

information, the computational demands with respect to the sampling algorithm 

are reduced and that more precise estimation can be achieved with the simple MH 

sampler in both the multinomial and the ordered logit model with a moderately 

sized micro sample. The Monte Carlo results also show that despite the fact that 

the large sample approximation does not explicitly consider the conditioning of 
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the macro data based likelihood on the micro data still leads to an improvement of 

the performance of the estimator. 

Figure 2.1 Results for the multinomial logit model of a Monte Carlo simulation to 

analyze the influence of prior information, in the form of a micro sample, on the 

posterior and the posterior mean estimator.  

Number of Markov states: k=3 

 
 

 

Size of micro sample  

Measures 0 100 500 1000 

Variancea, Posterior 0.00592 0.00496 0.00312 0.00219 

MSEa, Estimator 0.00892 0.00672 0.00414 0.00275 

Sq. Biasa, Estimator 0.00042 0.00041 0.00024 0.00014 

Outlierb 12 9 7 9 

Sample: 50,000;   Burn-In: 100,000;   Blocks: 1;    

σ: 1/800;   num. o coef.: 36 

k=4 

 
 

 

Sizeof micro sample 

Measures 0 100 500 1000 

Variancea, Posterior 0.03585 0.02433 0.01340 0.00891 

MSEa, Estimator 0.09394 0.04425 0.01802 0.0106 

Sq. Biasa, Estimator 0.0080 0.021 0.00108 0.0045 

Outlierb 34 0 9 11 

Sample: 100,000;   Burn-In: 200,000;   Blocks: 1;    

σ: 1/870;   num. of oef.: 72 

k=5 

 
 

 

Size of micro sample  

Measures 0 100 500 1000 

Variancea, Posterior 0.18702 0.10570 0.04839 0.02992 

MSEa, Estimator .392 0.13130 0.0586 0.03296 

Sq. Biasa, Estimator 0.03678 0.00758 0.00336 0.00179 

Outlierb 3 1 7 9 

Sample: 250,000;   Burn-In: 500,000;   Blocks: 2;    

σ: 1/580;   num. of coef.: 120 

a Calculated without simulation runs detected as outliers. b Note that due to the illustration the 

number of outliers cannot be derived from the figures directly. Source: Own estimations.  
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Figure 2.2 Results for the ordered logit model of a Monte Carlo simulation to 

analyze the influence of prior information, in the form of a micro sample, on the 

posterior and the posterior mean estimator 

Number of Markov states: k=3 

 

 

 

Size of micro sample  

Measures 0 100 500 1000 

Variancea, Posterior 0.00557 0.00352 0.00197 0.00139 

MSEa, Estimator 0.02149 0.00530 0.00290 0.00168 

Sq. Biasa, Estimator 0.00532 0.00022 0.00018 0.00008 

Outlier 33 18 14 15 

Sample: 20,000;   Burn-In: 50,000;   Blocks: 1;   σ: 

1/730;   num. of coef.: 21 

k=4 

 
 

 

Size of micro sample  

Meures 0 10 500 1000 

Variancea Posterior 0.02031 0.00906 0.00435 0.00274 

MSEa, Estimator 0.43143 0.01457 0.00526 0.00320 

Sq. Biasa, Estimator 0.11923 0.00069 0.00023 0.00020 

Outlier 8 5 11 5 

Sample: 30,000;   Burn-In: 70,000;   Blocks: 1;   σ: 

1/700;   num. of coef.: 32 

k=5 

 

 

 

Size of micro sample 

Measures 0 10 500 1000 

Variancea, Posterior 0.05809 0.02361 0.00851 0.00483 

MSEa, Estimator 1.97938 0.03864 0.00979 0.00516 

Sq. Biasa, Estimator 0.45399 0.00196 0.00047 0.00029 

Outlier 15 7 9 7 

Sample: 50,000;   Burn-In: 100,000;   Blocks: 1;   σ: 

1/750;   num. of coef.: 45 

a Calculated without simulation runs detected as outliers. b Note that due to the illustration the 

number of outliers cannot be derived from the figures directly. Source: Own estimations.  
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2.4 Empirical Application: Structural Change in German 

Farming  

The Bayesian estimation framework developed in section 2.2 is used to combine 

micro and macro data from two different data sources in an empirical analysis of 

structural change in German farming. The application demonstrates how the 

approach facilitates estimation of non-stationary TPs in a situation in which 

estimation with either macro or micro data alone would be substantially 

debilitated. Further, it illustrates how asynchronous data, in this case consisting of 

yearly micro data and macro data available only every two to three years, can be 

consistently combined in estimation. The application provides an alternative 

inferential approach to Zimmermann and Heckelei (2012) mentioned in section 1, 

who were the first to consider using the same data sources to analyze farm 

structural change, using a generalized cross entropy approach to estimation.  

Both the multinomial logit and the ordered logit model of the TPs are applied to 

provide two different perspectives on the evolution of structural change. The 

multinomial logit model is applied in an analysis of changes in farm 

specialization (for example, the transition from a crop producing to a milk 

producing farm). In this case the states constitute five different farm types as well 

as an entry/exit class (see table 2.1). The entry/exit class is used to represent 

farms that enter or quit farming. The six states are mutually exclusive, and with 

the entry/exit class included, are also exhaustive. Since no clear order can be 

assumed for the farm types, the multinomial logit model is the appropriate 

Table 2.1 Definition of farm types and size classes 

 State Description 

Farm types 

considered in the 

multinomial logit 

model 

E/E Entry/Exit class 

COP crops Specialist Cereals, Oilseed And Protein Crops; Specialist 

Granivores 

Other crops Specialist other field crops; Mixed crops 

Milk Specialist milk 

Other livestock Specialist sheep and goats; Specialist cattle 

Mix Mixed livestock; Mixed crops and livestock 

Size classes 

considered in the 

ordered logit 

model 

E/E Entry/Exit class 

Small 16 -< 40 Economic Size Units (ESU) 

Medium 40 -< 100 Economic Size Units (ESU) 

Large >100 Economic Size Units (ESU) 

Note: In the FSS and the FADN farm are classified by type of farming and size classes based on the 

concept of Standard Gross Margin and Economic Size Units (ESU) (Commission Decision 

85/377/ECC and following amendments); Source: Own table 
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specification. The second analysis perspective concerns the transition of farms 

between an entry/exit class and three classes representing different sizes of 

operation. Here an ordering (entry/exit, small, medium, large) of the states can be 

assumed such that the ordered logit model can be applied. The four states are 

again mutually exclusive and exhaustive.  

Sources for Micro and Macro Data  

Two different data sources, namely the Farm Structural Survey (FSS) and the 

Farm Accountancy Data Network (FADN), provide the macro and micro data, 

respectively. The FSS is a census of all agricultural holdings (above a specific 

size limit) conducted every two to three years. The available FSS data do not 

allow tracking an individual farm over time so that only macro data can be 

derived from the survey. The FADN provides detailed farm level information 

from a sample of farm holdings on a yearly basis. Using information associated 

with farms that remained in the sample over several years, micro data on 

transitions between predefined states can be derived. The advantage of FADN is 

that it provides more detailed information with a higher temporal resolution 

compared to the FSS  

The stratified sampling plan applied in FADN aims to obtain a sample of farms 

that encompass different farm types and size classes. However, the sample is not 

necessarily fully representative of the transitions between these farm types and 

classes. While the macro data derived from the FSS is less detailed and available 

only every two to three years, the information that it contains is representative of 

the entire population. An additional limitation of the micro data derived from the 

FADN is that no information about entry or exit of farms to or from the sector can 

be derived. The reason is that no distinction is made between farms that quit 

farming and farms that are simply not selected by the sampling scheme (the same 

applies for entry). In contrast, in the FSS data, because the total number of farms 

in the population is assessed, information about entry and exit can be derived. 

This is commonly accounted for in Markov-type models by adding a catch-all 

entry/exit category. The number of farms in this entry/exit class
14

, which is 
                                                                 
14 One might also categorize this class as the number of farms that are inactive or that are idle.  
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unobservable, is defined as a residual between an assumed maximum number of 

farms (e.g. 20% more than the maximum number of farms observed in any year 

during the estimation period
15

) and the observed number of farms in the particular 

year.  

Table 2.2 Available FADN and FSS years 

Year FADN years 

( t ) 

FSS years 

( ) 

1989 0 

 1990 1 0 

1991 2 

 1992 3 

 1993 4 1 

1994 5 

 1995 6 2 

1996 7 

 1997 8 3 

1998 9 

 1999 10 

 2000 11 4 

2001 12 

 2002 13 

 2003 14 5 

2004 15 

 2005 16 6 

2006 17 

 2007 18 7 

2008 19 

 
Source: FADN data base. 

                                                                 
15 The assumed maximum number of farms was chosen ad hoc. Note that this value can be chosen 

arbitrarily without its value impacting the main results of principal interest. It only influences the 

absolute size of the TPs in the row of the entry/exit state that are defined in combination with the 

number of farms in the entry/exit state. The choice of the “20% more than the maximum observed 

number of farms” could be motivated from a Bayesian perspective by viewing the choice of the 

maximum number of farms in a hierarchical Bayesian formulation. A uniform prior density between 

0 and 40% could be defined to represent prior beliefs about the number of individuals thought to be 

idle or potential farming entrants. In this instance, since no information about the true maximum 

number of farms is available in the data the optimal Bayesian estimation under squared error loss 

would be 20%, equivalent to the mean of the posterior density. 
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Both datasets are available at a regional level for the entire EU 27. However, the 

specific example is restricted to seven West German Laender
16

 for which a 

relatively long time period is available. Here, FADN data is available from 1989 

to 2008 on a yearly base while the FSS data is available from 1990 to 2007 for 

every two or three years (table 2.2).  

Implementation 

Estimation of TPs would in principle be possible with either micro or macro data 

alone. However, each approach would have substantial limitations. If only macro 

data were used one would need to address the problem that FSS data is only 

available every two or three years. If only FADN micro data were used no 

information about entry and exit of farms can be obtained. Only information 

about transitions between states, conditional on the farm being active and 

remaining active, can be derived. This is particularly problematic given that the 

rapid decline of farm numbers is the most obvious pattern of structural change 

observed in the last decades and hence of central interest. The combination of 

micro and macro data allows exploiting the advantages of each data source while 

mitigating their disadvantages. Using the framework delineated in section 2, it is 

straightforward to analyze both macro data available only every two or three years 

and yearly micro data in a consistent way. Moreover, it is possible to exploit the 

information in the macro data concerning entry and exit while using a non-

informative prior for the entry/exit transitions.  

In consideration of macro data being available only every two to three years, the 

large sample likelihood function (9) can be adjusted to apply to the available data 

as  

 

 

     
 

1* * * *
1 1

0

,

0.5 log ,

aL 

       






 

 

  

      
 



β n

Γ n Π n Γ n Π n
 (11) 

                                                                 
16 Baden-Württemberg, Bavaria, Hesse, Lower Saxony, North Rhine-Westphalia, Rhineland-

Palatinate, Schleswig-Holstein 
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where n  denotes the observed macro data in the FSS years   with   being 

a set of all FSS years for which a pair of sequential observations are available 

such that n and 1n  are both observed, 0   begins the first of the FSS years, 

and 1   refers to the FSS year previous to  (see table 2.2). Further, Π  

represents the TPs between FSS years which are calculated by multiplying the 

yearly TPs, represented by tP , accordingly. For example the first TP matrix 

between FSS years (1990 to 1993) is calculated as 1 2 3 4Π P P P  and the second 

(1993 to 1995) is defined by 2 5 6Π P P . The remaining years follow accordingly 

based on the mapping of FSS and FADN years given in table 2. As we had done 

previously, *
n  represent n  without the last row and *

Π  represent Π  without 

the last column. The definition of Γ  follows from (8) where FADN years ( t ) are 

replaced by FSS years ( ) and *
tP  by *

Π . A non-informative prior distribution 

with respect to the entry/exit class, defined as the first state ( 1k  ), is obtained by 

adjusting (10) to (note the difference for the index ,i j ) 

    , 1

1 2 2

! / !ijt

k kT
n

i t ijt ijt

t i j

p n n

  

 
  

 
 β P . (12) 

For the multinomial and the ordered logit model two different model 

specifications are chosen. For the multinomial logit model the observations are 

pooled across different regions. For the ordered logit model, which requires fewer 

parameters, a fixed effects panel model is estimated by including regional 

indicator variables for all (except one) regions. Policy indicator variables are used 

as explanatory variables in both cases to model the effects of major shifts in EU 

agricultural policy on structural change. Specifically, these variables include an 

indicator for the Mac Sherry Reform in 1993 (zero before 1993, one otherwise), 

an indicator for the Agenda 2000 in 2000 and an indicator for the Mid Term 

Review in 2003 in addition to a constant and, in the ordered logit model, the 

regional indicator variables.
17

 

                                                                 
17 The mean posterior estimator is calculated based on a sample of 100,000 draws from the 

posterior, after a burn-in-period of 200,000 iterations. The variance of the multivariate normal 

proposal density is  1 350I  and  1 400I  which resulted in an acceptance rate of 0.26 and 

0.24 for the multinomial logit model and the ordered logit model, respectively. 
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Results 

Table 2.3 provides the estimated TP matrix (averaged over all regions and time 

periods) between the five farm types and the E/E class obtained from the 

multinomial logit model. The TP matrix displays a reasonable pattern of 

magnitudes. As expected we obtain relatively high diagonal elements for the TP 

matrix, indicating that most farms remain in their current farm type. TPs between 

the substantially different farm types of crop (COP crop and Other crop) and 

livestock (Milk and Other livestock) enterprises are near zero while higher TPs are 

obtained for transitions between the two relatively similar crop farm types and the 

two livestock farm types. Further we observer relatively high TPs between all 

farm types and the Mix farm type which represents farms without one major 

specialization such that movement to or from any other class is likely if one 

branch of a farm gains importance.  

Table 2.3 Comparison of transition probabilities (TPs) between farm types and 

between size classes calculated from FADN micro data and estimated TPs using 

FADN micro and FSS macro data (averaged over all regions and time periods). 

Calculated TP from the FADN micro data 

 

Estimated TP using FADN micro and FSS 

macro data 
Transition probabilities for transition between farm types 

 

E/E 

COP 

Crop 

Other 

Crop Milk 

Other 

Livest. Mix 

  

E/E 

COP 

Crop 

Other 

Crop Milk 

Other 

Livest. Mix 

E/E --- --- --- --- --- --- 

 
E/E 91 2 2 2 2 1 

COP 

Crop 
--- 84 5 0 0 11 

 

COP 

Crop 
13 74 4 0 0 9 

Other 

Crop 
--- 6 87 0 0 7 

 

Other 

Crop 
5 3 85 0 0 6 

Milk --- 0 0 96 2 2 

 
Milk 4 1 0 92 2 2 

Other 

Livest. 
--- 0 0 14 72 14 

 

Other 

Livest. 
9 0 0 14 60 17 

Mix --- 6 4 3 2 85 

 
Mix 4 4 4 3 3 83 

Transition probabilities for transition between size classes 

 

E/E Small Medium Large 

  

E/E Small Medium Large 

E/E  ---   ---   ---   ---  

 
E/E 90 4 6 0 

Small  ---  90 10 0 

 
Small 11 85 5 0 

Medium  ---  5 91 4 

 
Medium 0 7 86 7 

Large  ---  0 9 91 

 
Large 15 0 5 79 

Source: Own estimations. 

 

Comparisons with TP matrices calculated from the FADN micro data illustrates 

how prior information is updated using the macro data information (upper part of 
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table 2.3). Although the two TP matrices are not directly comparable
18

, the 

general pattern described above is already contained in the calculated TP matrix, 

which is then updated by the information in the FSS macro data. In addition to the 

results on the TPs, figure 2.3 provides a comparison between the observed 

numbers of farms in the FSS years with the yearly fitted values. It suggests that 

the combination of FSS data with yearly FADN data is well suited to recover the 

observed farm numbers and to provide yearly estimates for the number of farms 

between FSS years.  

Table 2.3 (lower part) provides a TP matrix for the three size classes and the 

entry/exit class estimated using the ordered logit Markov approach in comparison 

to a TP matrix for the three size classes calculated from the FADN micro data 

(both averaged over all regions and time periods). Again the estimated TPs depict 

reasonable patterns and indicate how prior information is updated using FSS 

macro data. As expected, farms are most likely to remain in their current size 

class or transit to the immediate neighboring one. Farm entry is most likely to 

happen in the small or medium class and only very rarely in the large size class. 

Only with respect to farm exit results do not match the intuitive expectation. 

Naturally one would expect that farm exit rates are highest for small farms and 

decline for the medium and large class. Estimated exit TP, however, are largest 

for the large size class followed by the small and the medium size class. This 

might indicate that results overestimated the true exit rate from the large class 

while the exit rate from the medium class is underestimated. Nevertheless, the 

comparison between observed number of farms in the FSS years and the fitted 

values based on the estimated TPs shows that total exits rates are well matched 

(figure 2.4).  

 

                                                                 
18 As noted above no information about entry and exit is provided in FADN such that the calculated 

TP matrix gives the probability that a farm moves to another state conditional on the farm being 

active before and remaining active. 
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Figure 2.3 Number of farms (in 1000) observed in the FSS dataset and fitted 

values of the Markov multinomial logit model. Results aggregated over all 

considered regions and differentiated between the five different farm types and 

the total number of farms.  

 

Source: Own calculations. 
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Figure 2.4 Number of farms (in 1000) observed in the FSS dataset and fitted 

values of the Markov ordered logit model. Results aggregated over all considered 

regions and differentiated between the three different size classes and the total 

number of farms. 

 

Source: Own calculations. 

2.5 Conclusion 

We propose a Bayesian framework for analyzing non-stationary Markov models 

that allows micro and macro data to be combined in estimation. In contrast to 

earlier approaches for combining micro and macro data offered in the literature, 

the Bayesian framework offers a general full posterior information approach for 

combining micro and macro data-based information on TPs and allows the 

estimation of functional relationships that link TPs with their determinants. Our 

Monte Carlo simulations show how prior information, in the form of a micro 

sample of data, can improve the accuracy of posterior information on the 

parameters of interest as well as the numerical stability of the estimation 

approach. 
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An application of the approach in the context of farm structural change 

underscored the advantages of the approach in an empirical setting. The 

combination of micro and macro data based on the proposed framework allows 

one to take advantage of information in each data set while mitigating the 

respective disadvantages of using either data set in isolation. Moreover, it was 

shown that the approach allows combining two dataset with different temporal 

resolution (yearly micro data in combination with macro data available only every 

two or three years). In this respect the proposed framework could also be useful 

for deriving TPs for shorter time intervals (e.g., months) from TPs for longer 

intervals (e.g., years). Such problems arise in several areas of inquiry such as 

network theory (Estrada 2009), land use change (Takada et al. 2010), chronic 

disease analysis (Charitos et al. 2008) or the analysis of credit risk (Jarrow 1997) 

(see Higham and Lin 2011 for a general discussion of the problem).  

The general findings and the proposed approach are subject to some limitations. 

First, the likelihood specification presented here is applicable for aggregated data 

observed for the entire population. For other situations alternative likelihood 

specifications, such as MacRae’s (1977) limited information likelihood 

specification, need to be considered for use in the proposed Bayesian framework. 

Secondly, the number of model parameters increases with the number of Markov 

states, often limiting the number of states that can be feasibly considered in 

empirical applications. The proposed ordered logit approach moderated this 

problem significantly, but other model specifications based on continuous 

Markov chains, such Piet (2010), could provide further improvement in this 

respect.  

Overall, this paper contributes to the existing literature by providing an analysis 

framework that allows for combining micro and macro data information relating 

to non-stationary Markov models in a way that is consistent with the established 

tenets of the probability calculus and leads to a minimum loss estimator that is 

based on full posterior information. The approach is relevant for a broad range of 

empirical applications in which macro data is available at the population level 

while micro data is only available for a subsample and one is interested in 

quantifying the effect of factors that cause individuals to switch between 

predefined states. 
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Chapter 3  

Short term prediction of 

agricultural structural change 

using FSS and FADN data
19

 

Abstract: A Bayesian framework for short term prediction of farm numbers is 

developed that allows combining two asynchronous data sources in a single 

estimation. Specifically, the approach allows combining aggregated FSS macro 

data, available every two to three years, with individual farm level FADN micro 

data, available at a yearly base. A Bayesian predictive distribution is derived from 

which point predictions such as mean and other moments can be obtained. The 

proposed approach is evaluated in an out-of-sample prediction exercise of farm 

numbers in German regions and compared to linear, geometric and constant 

predictions. Results show that the proposed approach outperforms the linear and 

the geometric prediction and performs similar to the prediction of no change. The 

approach may be used for short term prediction as well as to complete the 

information within the sampling period.  

Keywords: Bayesian prediction, Markov transitions, Asynchronous data, 

Structural Change 

JEL classification: Q19, C11, C53 

                                                                 
19 An earlier version of this chapter is part of a project report Gocht A, Röder N, Neuenfeldt S, 

Storm H, Heckelei T. 2012. Modelling farm structural change: A feasibility study for ex-post 

modelling utilizing FADN and FSS data in Germany and developing an ex-ante forecast module for 

the CAPRI farm type layer baseline. JRC Scientific and Policy Reports, 25555 EN.  
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3.1 Introduction 

Detailed up-to-date information about farm structural change, defined as the 

change in farm size or farm specialization, and the farm structure is of great 

interest for policy makers and stakeholders and provides the basis for policy 

analysis.  

In the EU two major data sources, namely the Farm Structural Survey (FSS) and 

the Farm Accountancy Data Network (FADN) provide information at a regional 

level for all EU member states that can be used for the analysis of farm structural 

change. In this paper we aim to combine both data sources for a more precise 

prediction of farm structural change. The developed approach allows completing 

information on farm numbers in size and specialization classes not available, for 

the most recent years or for years between FSS years. In this paper the focus is on 

completing the information for most recent years, however, it should be stressed 

that the approach may as well be used to complete information between FSS 

years.  

The FSS is a census of all agricultural holdings conducted every ten years with 

three intermediate sample surveys conducted in-between (Council Regulation 

(EC) No 1166/2008). FSS data is thus available every two to three years offering 

aggregated information about the total number of farm holdings in different size 

or specialization classes
20

. In the following we refer to this aggregated data as 

macro data. On the other hand, FADN data is available on a yearly basis and 

provides information about individual farms for a sample of farms. Different from 

FSS, individual farms can be indentified such that it is possible to track the 

development of one farm in the sample over several years. This type of data 

allows observing the movement of farm between classes for the analysis of farm 

structural change and we will refer to it in the following as micro data. The 

sample of FADN farms shall represent all relevant farm types and farm sizes in 

each region. The corresponding stratified sampling plan usually implies that farms 

                                                                 
20 The individual level (micro) FSS data is processed by the individual member states and typically 

not accessible for confidentiality reasons, whereas FSS macro data is publically available.   
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in less common farm types or size classes are overrepresented while farms in 

common farm types or size classes are underrepresented
21

.  

Given the shorter intervals with which FADN data is collected and the shorter 

release time, FADN data is generally the more recent information on farm 

numbers in classes compared to FSS. Therefore, we might have FADN data for 

up to three more years after the last available FSS year. The aim of this chapter is 

to exploit this information together with all other available FADN micro and FSS 

macro data from previous years to predict farm numbers in size and specialization 

classes for years after the last FSS year. 

This objective addressed in this chapter is motivated by the particular need of the 

European Commission to predict farm numbers in classes between FSS years. 

This need resulted in the joint research project “Modelling the effects of the CAP 

on farm structural change” (Contract 151949-2010-A08-DE) from the European 

Commission Joint Research Centre - Institute for Prospective Technological 

Studies (IPTS). The work and results presented in this chapter reflect in parts the 

outcome of this project. 

Particularly, in this chapter a prediction framework is developed in which farm 

structural change, defined as the transition between size classes, is modeled as a 

non-stationary Markov process. The non-stationary transition probabilities (TP) 

are estimated using the Bayesian estimation framework developed in chapter two 

that allows combining micro and macro data in a single estimation.  

Methodologically, this paper contributes to the literature in three ways: 1) it 

allows to consistently combine the bi- or triennial FSS with the yearly FADN data 

in the estimation of yearly TPs , thereby improving upon previous approaches 

with data interpolation as in Zimmermann and Heckelei (2012b). The approach 

developed in chapter two allows merging such asynchronous data sources in a 

single estimation explicitly reflecting their connection in the data generating 

                                                                 
21 For each sample farm, however, a weight is calculated using the information in FSS about the 

total number of farms in each farm type, size class and region. With these weights the FADN 

sample can be aggregated to match FSS results on the population level and information about the 

total number of farms in each farm type or size class (macro data) can be derived. Even though these 

macro data can be derived from FADN each year, the weights still reflect only the last available FSS 

year. 
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process; 2) A Parallel Tempering (PT) approach (Liu 2008) for sampling from the 

posterior is implemented replacing the simple Metropolis-Hasting sampler used in 

the chapter two. The PT sampler converges more reliably than the simple 

Metropolis-Hasting sampler when faced with a multimodal posterior distribution; 

3) The employed Bayesian approach offers a predictive distribution for the 

number of farms from which point predictions and predictive uncertainty can be 

derived. 

The approach is illustrated and evaluated in an out-of-sample prediction for seven 

(West) German Regions for which a relatively long sample is available. Farm 

numbers are predicted for different size classes, with and without differentiation 

of specialization classes. Specifically, three (economic) size classes and an 

entry/exit class are considered in four different situations. First, we perform a 

prediction at an aggregated level where farm numbers in different size classes and 

the entry/exit class are predicted without any distinction by farm specialization. 

Then the prediction for the three size classes and entry/exit is repeated at a more 

disaggregated level for three different farm specializations, namely crop, livestock 

and mixed farms. In each case, three different time periods are considered in the 

out-of-sample prediction. The predictions based on the Markov approach are 

compared to simple constant, linear and geometric predictions of farm numbers. 

Even though we choose seven West Germen regions for illustrative purposes, it 

should be pointed out that the approach can be directly transferred to other EU 

member states for sufficiently long series of FSS and FADN, currently available 

in at least the EU-15 member states. 

The remaining structure of the paper is as follows: the next section 3.2 develops 

the estimation and prediction framework and derives an appropriate measure to 

assess the performance of the Bayesian Markov approach compared to its simple 

alternatives. Section 3.3 discusses the specific implementation, including the 

setup of the out-of-sample prediction, the selection of explanatory variables and 

the implementation of the PT sampling algorithm. Results are presented 

afterwards followed by conclusions.  
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3.2 Method 

Bayesian estimation framework 

The number of farms in different classes is modeled as a Markov process. In a 

Markov process, the movement of individuals between a finite number of 

predefined, mutually exclusive, and exhaustive states, 1,...,i k , is a stochastic 

process. In the following we consider a situation in which the states represent an 

entry/exit and three different farm size classes ( 4k  ). The Markov process is 

characterized by a  k k  transition probability (TP) matrix tP . The elements 

ijtP
 
of that matrix give the probability that an individual moves from state i  in 

1t   to j  in t . The  1k  vector tn  denotes the number of individuals in each 

state i  and develops over time according to a first order Markov process 

 1t t tn P n . (13) 

In a non-stationary Markov process the TPs change over time depending on 

exogenous variables. The specification of the TPs,  P β  differs depending on the 

type of Markov states considered. If we assume that the Markov states do not 

have an order, the specification is based on the multinomial logit model, whereas 

an ordered logit model is suitable for our case where transitions between size 

classes are considered (see chapter two). 

For the estimation of the non-stationary TPs a Bayesian estimation framework is 

employed that allows combining macro and micro data in the estimation of non-

stationary Markov TPs. For a detailed description we refer to chapter two. The 

general idea of the framework is that a macro data based likelihood function is 

combined with a micro data based prior density. Both likelihood and prior are 

therefore data based and represent the two different available data sources we aim 

to combine in a consistent manner. Similarly as in chapter two we will combine 

FSS macro data, available every two to three years, with the FADN micro data, 

available at a yearly base (see table 3.1).  

The prior density is combined with the likelihood function to a posterior density 

which is used for deriving the marginal density of individual parameters. Since 

the required integration is not traceable analytically, Monte Carlo Integration is 

employed. For this, the simple Metropolis-Hastings (MH) algorithm used in 
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chapter two (section 2.2) to draw a sample from the posterior is replaced by a 

Parallel Tempering (PT) sampling algorithm (Liu 2008). The general idea of the 

PT approach is to run multiple copies of the original chain raised to different 

powers (i.e. temperatures) in parallel and allow exchanges between them. The 

advantage of the PT approach is that the ‘heated’ chains (raised to powers smaller 

one) are able to escape local modes more easily such that it becomes easier to 

sample from multimodal posterior distributions like those found in the specific 

application.  

In our particular case we adopt the following setup of the PT sampler. We 

consider I  parallel chains with temperatures 1 21 ... IT T T    . The PT sampler 

consists of parallel and swapping steps. In each parallel step r  the current states, 
     
1 2, ,...,

r r r
Ix x x , of all I  chains are updated in simple MH steps using a random 

walk MH sample with a multivariate normal proposal density. After every five 

Table 3.1 Available FADN and FSS years 

Year FADN years 

( t ) 

FSS years 

( ) 

1989 0 

 1990 1 0 

1991 2 

 1992 3 

 1993 4 1 

1994 5 

 1995 6 2 

1996 7 

 1997 8 3 

1998 9 

 1999 10 

 2000 11 4 

2001 12 

 2002 13 

 2003 14 5 

2004 15 

 2005 16 6 

2006 17 

 2007 18 7 

2008 19 

 
Source: FADN data base. 



60  3.2 Method 

 

 

parallel steps a swapping step is conducted, in which a swap between all 

neighboring chains is proposed. Denoting neighboring chains as i and 1i  , a 

swap of states 
 r
ix  and 

 
1

r

ix   is accepted with probability  

        1

1min 1,exp
i iT Tr r

i ix x 


 , (14) 

where 
  r
ix  denotes the log posterior density evaluated at state 

 r
ix  of chain i . 

Swaps are first considered for the last two chains and then going back in steps to 

the first two neighboring chains. With such a setup it is generally possible that the 

state of the last chain, 
 r
Ix , is swapped to the first chains within one pass through 

all neighboring chains. This setup was found to be more efficient in our specific 

application compared to the approach proposed by Liu (2008) in which only one 

pair of neighbors are selected at random to swap states in each swap step. 

The performance of the PT tempering crucially depends on the chosen number of 

parallel chains, I , as well as on the chosen temperatures 1 21 ... IT T T     and 

the covariance matrices of the multivariate normal proposal densities to be 

selected for each specific sampling. The temperatures require to be chosen such 

that a sufficiently large temperature range is covered and the hottest chain can 

easily escape local modes. On the other hand, the differences between 

neighboring chains’ temperatures need to be small enough such that a sufficient 

amount of swaps are accepted. The specific implementation of the PT approach is 

described in section 3.3.  

Prediction methods 

The Markov process specified in (13) may be directly used for prediction of farm 

number in different states. The number of farms in k  states in the last observed 

year t  is denoted by a  1k   vector tn . Our aim is to predict farm numbers 

1
ˆ ˆ ˆ,...,t t  N n n  in k  states for   years starting from the last observed year t . 

Taken the TPs  1,...,t t  P P P  as given, prediction to t   follows directly 

from (13) by 

 
1

ˆ
t

t j t

j t









 

 
  
 
n P n . (15) 
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With (15) the predicted farm number N̂  are thus a function of the TPs, P . The 

TPs P  are itself a function of the unknown parameter β , thus we can write 

    ˆ ˆ ˆ N N P β N β . The specification of the functional relationship  P β  is 

based the ordered logit specification (see chapter two). 

The Bayesian estimation framework provides several ways of how the prediction 

may be implemented. One possibility is to derive point estimates of β  such as the 

posterior mean, which is the optimal Bayesian estimator under squared error loss. 

Here we employ an alternative prediction strategy directly using the sample 

outcomes of the joint posterior of β . This provides the advantage that a complete 

Bayesian predictive distribution is derived for each state and year in an intuitive 

and straightforward way. Technically, each sample outcome   ,   1,...,l l Lβ  from 

the posterior is used to predict farm numbers based on (15) obtaining a sample of 

predictions     ˆ ˆ
l lN N β . This sample can be regarded as a sample from the 

predictive distribution       ˆ ˆ
lf hN d N β β d . The predictive distribution may 

itself be the final result or alternatively the mean, variance and the quintiles of the 

predictive distribution may be calculated from the sample. 

Prediction measures  

The prediction quality of the described approach is compared to the simple linear, 

constant and geometric prediction based on the Mean Absolute Scaled Error 

(MASE). The MASE is proposed by Hyndman and Koehler (2006) who argue 

that the MASE is superior to other commonly used forecast measures such as the 

(Root) Mean Square Error (which is not scale free) measures based on relative 

errors, such as the Mean Relative Absolute Error, or relatives measures, such as 

the relative Mean Absolute Error. The MASE has a clear interpretation, is scale 

free and defined in all relevant situations (not defined only in the irrelevant case 

where historical data shows no variation). It is calculated by dividing the absolute 

prediction error ˆ
t t te Y Y  , where t̂Y  is a prediction of tY , by the average one-

step naive forecast in the sample period,  

 
1

11
2

i

n

t tn
i

e
MASE mean

Y Y 





. (16) 
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Therefore, a MASE less than one indicates a better prediction than the average 

one-step naive forecast within-sample. In our specific case the MASE is 

calculated for the predictions of farm numbers in t   over all regions and size 

classes, without considering the artificial E/E. The average one-step naive 

forecast is calculated over all observed FSS years. This needs to be considered in 

the interpretation of the absolute size of the MASE since the step-length of the 

out-of-sample prediction might differ from the step length of the naive one-step 

forecast (two or three years). It is, however, irrelevant for a relative comparison of 

the MASE between different prediction methods being the primary purpose of the 

out-of-sample prediction. 

3.3 Implementation 

Setup of out-of-sample prediction  

In the out-of-sample prediction, farm numbers are predicted for different size and 

specialization classes. The classification of farms is based on the one in FSS and 

FADN with size and specialization classes based on their economic size and the 

relative importance of different production activities (Commission Decision 

85/377/EEC). The physical units of production (hectare or livestock units) are 

valued by the corresponding Standard Gross Margins (SGM) calculated for each 

region on a regular basis by the member states. The sum of all production 

activities valued by the SGM determines the economic size of a farm, expressed 

in Economic Size Units (ESU), while the share of each production activity on 

total ESU determines the farm specialization.
22

  

In the out-of-sample prediction, four different situations are distinguished. On the 

one hand the prediction is performed for all farms (excluding horticulture and 

permanent crops TF14: 20, 31, 32, 33, 34) irrespectively of their farm type. 

Additionally, the prediction is repeated for three different farm specializations, 

                                                                 
22 From the accounting year 2010, the typology for agricultural holdings is based on Standard 

Output (Commission Regulation (EC) No. 1242/2008) instead of SGM. The main differences 

among the SGM and SO is that the SO excludes direct payments and the cost of variable inputs. 

Moreover, the unit used to measure SO is the Euro and not the Economic Size Unit (1.200 Euro). 

The change will have no effect on the general applicability of the proposed prediction approach. 
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namely crop farms (TF14: 12, 14, 60), livestock farms (TF14: 41, 44, 45, 50, 70) 

and mixed farms (TF14: 80). In each of the four cases, three different size classes 

(small < 40ESU, medium <100ESU and large >100ESU) and an entry/exit class 

are considered. The entry/exit class is an artificial class required by the Markov 

approach and representing farms that enter or quit farming (Stokes 2006). 

For each of the four cases, three different out-of-sample prediction periods are 

considered. In each prediction period the last FSS year is excluded from 

estimation and macro data instead predicted for this year. The prediction can then 

be compared to the observed macro data. By considering three different time 

periods, each time excluding an additional FSS year in estimation, it can be 

evaluated how the approach would have performed in previous periods. Table 3.2 

presents the different prediction periods and the corresponding FADN and FSS 

data used.  

For each individual prediction, a panel of seven West-German regions is 

considered in estimation (FADN regional codes: 10 (Schleswig-Holstein), 30 

(Lower Saxony, 50 (North Rhine-Westphalia), 60 (Hesse), 70 (Rhineland-

Palatinate), 80 (Baden-Württemberg) and 90 (Bavaria)).  

These 12 different Bayesian Markov predictions (three time periods for each of 

the four cases) are compared to a constant, linear and geometric prediction. The 

linear prediction employs a least squares estimation of 1  and 2  of the linear 

function 1 2t tn t     , where tn  is the number of farms in time t . Using the 

estimates 1̂  and 2̂ , farm numbers for 1t   are then predicted by 

 1 1 2ˆ ˆˆ 1tn t      and for the following years accordingly. For the estimation 

Table 3.2: Out-of-sample prediction periods and corresponding data considered 

for estimation 

Prediction 

period 

FADN data considered 

in estimation  

FSS data considered 

in estimation  

2000-2003 1989-2003 1989-2000 

2003-2005 1989-2005 1989-2003 

2005-2007 1989-2007 1989-2005 

Source: Own table. 
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only FSS macro data is employed. The geometric growth rate is derived by a least 

squares estimation of   1 2ln t tn t     . Farm numbers in 1t   are predicted 

using the estimated parameters 1̂  and 2̂  to calculate 
  1 2

ˆ ˆ 1
1ˆ

t
tn e

  
  . Data 

source and time periods are the same as those used for the linear prediction. An 

advantage of the geometric over the linear prediction is that predicted farm 

numbers cannot become negative. Problems arise, however, in the geometric 

prediction in cases in which no farms are observed in a particular time period. In 

these cases, the dependent variable is not defined, and we omit the observation 

from the estimation. The constant prediction assumes that farm numbers do not 

change during the prediction period, such that the predicted value is equal to the 

last observed value for each farm type and region. 

Identification of potential explanatory variables 

To select a set of explanatory variables for the estimation of the non-stationary 

TPs, first a set of factors that potentially drive farm structural change are 

identified based on theoretical considerations and the literature analyzing factors 

influencing farm structural change (Breustedt and Glauben 2007; Zimmermann et 

al. 2009; Piet et al. 2012; Zimmermann and Heckelei 2012a; Zimmermann and 

Heckelei 2012b). The identified factors may broadly be categorized in six general 

categories, include technology, the initial farm structure, market conditions, 

natural resource factors, social and demographical factors and agriculture policy 

(see table 3.3). For each potential factor, specific explanatory variables are 

identified that allow approximating that factor.  

The model is specified as a dummy variable fixed effects model with a regional 

dummy variables included for each region except one. These dummy variables 

capture all time invariant factors such as the initial farm structure (farm 

size/capacity, size heterogeneity), natural conditions (share of absolute grassland, 

slope, temperature, population density etc.) that remain rather stable over the time 

period considered. For off-farm employment opportunities the unemployment rate 

and for the age structure of the farm population the percentage of farmers above 

60 years old are considered as explanatory variables. Agricultural policy is 

considered by three dummy variables indicating major shifts in EU Agricultural 

Policy in 1993 (MacSharry reform), 2000 (Agenda 2000) and 2003 (Midterm 

reform). 
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Technological developments as well as market conditions are represented by 

standard gross margins (SGM) for different production activities as explanatory 

variables. SGMs are provided by EuroStat (Commission Decision 85/377/EEC) at 

regional level for all relevant production activities and member states. SGMs are 

calculated by member states based on a period of several years to reduce the 

effects of short term price or yield fluctuations. Therefore, SGMs should reflect 

longer-term changes in productivity as well as in input or output prices that affect 

the attractiveness of different production activities. For our purpose we 

aggregated the different individual SGMs into five SGM indices to reflect major 

production activities in different farm specializations. Specifically, SGMs indices 

Table 3.3: Factors identified to potentially influence farm structural change and 

corresponding explanatory variables 

General 

Category 

Factors Approximated by 

Technology Yields  Index of Standard gross margins 

(SGM) for different farm 

specializations.  

Specialist COP (SGM13), Specialist 

other filed crops (SGM14), Specialist 

Milk (SGM41), Specialist 

sheep/goats/cattle (SGMLive) 

Specialist Grainivores (SGM50) 

Source: FADN 

Initial Farm 

structures 

Farm size/capacity Fix effects 

Size heterogeneity Fix effects 

Market 

conditions 

Input/output prices 

(price ratios) 

SGMs (see Technology) 

 

Natural 

resource 

factors 

Share of grassland Fixed effects 

Slope Fixed effects 

Temperature Fixed effects 

Social and 

demographical 

factors 

Population 

density/growth 

Fixed effects 

Off-farm income 

opportunities 

Unemployment rate (Unemp) 

Source: DeStatis 

Age structure  Percentage of farmers aged above 60 

(Above60)  

Source: FADN 

Agricultural 

Policy 

Agricultural Policy Dummy variables for mayor policy 

reforms (MacSharry reform, Agenda 

2000 and Midterm reform)  

Source: Breustedt and Glauben 2007; Zimmermann, Heckelei and Domínguez 2009; Piet et al. 

2012; Zimmermann and Heckelei 2012a; Zimmermann and Heckelei 2012b. 
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are calculated for Specialist COP (SGM13), Specialist other filed crops (SGM14), 

Specialist Milk (SGM41), Specialist sheep/goats/cattle (SGM40) and Specialist 

Grainivores (SGM50). It is assumed that the SGMs affect transitions of farms 

between size classes in two different ways. On the one hand SGMs reflect the 

productivity of production factors in different activities. Hence an increase of the 

SGM of one specialization should increase the attractiveness of the corresponding 

farm types. This in turn draws production factors and finally farms into those 

farm specializations. Also, an increase in the SGM should lead to an increase of 

the ratio of on-farm to off-farm income possibilities such that farm entries/exits 

should be increased/decreased. On the other hand, changes in SGMs directly 

affect the transitions between states because the classification of farms in size 

classes is based on the SGMs. Therefore, changes in SGMs have a direct effect on 

the change between classes. An increase in SGM, for example, increases the 

economic size of a farm even though the physical layout stays the same; hence the 

farm should move to a higher size class. These two effects, movements in the 

physical unites as well as in the valuation of each unit, render an interpretation of 

the causal relationship between SGM and farm structural change problematic but 

this is irrelevant for the prediction of farm numbers.  

The set of explanatory variables is further restricted using the high correlation 

between individual explanatory variable. Particularly, three SGM indices 

(Specialist other filed crops (SGM14), Specialist sheep/goats/cattle (SGM40) and 

Specialist Granivores (SGM50)) are excluded which are highly correlation to the 

other two SGMs (table 3.4). Even though high correlations among explanatory 

variables are irrelevant for prediction they add little to the overall explanatory 

power of the model and are therefore excluded in order to limit the numerical 

complexity which increase with each additional explanatory variable.  
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Table 3.4: Correlation matrix of explanatory variables 

 SGM13 SGM14 SGM41 SGM40 SGM50 Unemp Above60 

SGM13 1 0.84 -0.13 0.25 0.10 0.41 0.36 

SGM14  1 0.11 0.49 0.34 0.40 0.40 

SGM41   1 0.85 0.82 0.06 0.10 

SGM40    1 0.92 0.19 0.35 

SGM50     1 0.19 0.23 

Unemp      1 -0.16 

Above60       1 

Source: Own calculation. 

Implementation of the Parallel Tempering sampler 

For sampling from the posterior we found an implementation of the PT approach 

using 30I   parallel chains to be suitable for delivering robust sample results. 

The selection of temperatures and covariance matrixes of the proposal densities 

requires a substantial amount of manual fine tuning for each individual 

estimation. Temperatures are chosen such that the swap acceptance rate is above 

20% for most of the pairs and at least 2-3% such that swaps between all chains 

are possible. The covariance matrices of the multivariate normal proposal 

densities are specified as diagonal matrices with equal variance for all parameters 

within one chain but different across chains such that an acceptance rate between 

20-30% is obtained for most chains. In order to ease convergence of the sample 

we set a supports for each parameter usually ranging from  8,8  to avoid that 

the sampler drifts away and gets stuck in areas of very low density. In individual 

cases the support is increases when trail runs indicate that a substantial marginal 

probability is place near the edge of the chosen support of a parameter, such that 

the final result are not affected by the chosen support. Starting values for all 

parameters in all chains are drawn randomly from a uniform distribution with the 

specific support chosen for the parameter. For the final estimation a burn-in 

period of two million draws and a sample of one million draws are used. 

Computations are performed using Aptech’s GAUSS
TM

 12 on an Intel® Xeon® 

E5-2690, where computation time for one estimation is around 1.6 hours using 

around half of the available CPU.  
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Table 3.5: Mean, 5% and 95% Quintiles of the marginal posterior density for the 

first 10 of 64 coefficients estimated in five identical runs using different random 

starting values. Estimation is for the prediction of crop, livestock and mixed farms 

combined for the prediction period from 2005 to 2007.  

Mean of the marginal posterior density 

Coef. 1. Run 2. Run 3. Run 4. Run 5. Run 

1 -3.08 -3.01 -3.08 -3.14 -3.01 

2 0.86 0.86 0.87 0.86 0.85 

3 3.81 3.75 3.77 3.78 3.79 

4 -2.93 -2.89 -2.88 -2.95 -2.89 

5 1.02 1.02 1.02 1.03 1.01 

6 -0.58 -0.59 -0.59 -0.58 -0.60 

7 -0.64 -0.65 -0.64 -0.64 -0.64 

8 0.88 0.90 0.89 0.87 0.89 

9 1.81 1.75 1.80 1.84 1.76 

10 1.58 1.57 1.57 1.58 1.58 

5% Quintiles of the marginal posterior density 

1 -3.43 -3.52 -3.49 -3.52 -3.46 

2 0.69 0.62 0.71 0.71 0.08 

3 3.13 3.37 3.18 3.00 3.28 

4 -3.17 -3.14 -3.16 -3.16 -3.16 

5 0.73 -0.15 0.54 0.64 -0.06 

6 -0.81 -0.74 -0.74 -0.72 -0.85 

7 -0.78 -0.81 -0.78 -0.81 -0.77 

8 0.60 0.69 0.69 0.67 0.53 

9 1.25 0.54 1.43 1.44 0.83 

10 1.37 1.42 1.41 1.25 1.45 

95% Quintiles of the marginal posterior density 

1 -2.18 -1.13 -2.43 -2.41 -0.13 

2 1.19 1.08 1.15 1.33 1.01 

3 4.00 3.95 3.92 3.93 4.01 

4 -1.11 -1.32 -1.30 -1.00 -0.08 

5 1.34 1.31 1.25 1.22 1.38 

6 -0.45 -0.15 -0.47 -0.43 -0.14 

7 -0.45 -0.47 -0.49 -0.52 -0.42 

8 1.17 1.19 1.17 1.20 1.16 

9 2.01 2.03 2.03 2.06 2.01 

10 1.71 1.82 1.71 1.71 2.09 

Source: Own estimation. 

In order to assess the convergence of the PT sampler, each estimation is repeated 

several times using a different set of random starting values. The results of the 

different runs are compared and it is checked if the marginal posterior densities 

are sufficiently similar between the runs. Specifically the mean, as well as the 5% 

and 95% quintile of the marginal posterior densities are compared. To illustrate 
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the results of the convergence check, table 3.5 shows exemplary estimation results 

for 10 coefficients obtained in five estimations using different starting values. 

They illustrate that despite small variation induced by sampling noise, all runs 

converged to very similar values indicating that the sampler has indeed converged 

and does not get caught up in local modes. Similar results are obtained for all of 

the 64 coefficients and for all other estimations but are not shown here due to 

space limitations.  

3.4 Results 

To assess the quality of the different prediction approaches different measures 

based on the Absolute Scaled Error are considered. In the out-of-sample 

prediction we obtain prediction results in each of the four cases for seven regions, 

three time periods and three size classes
23

. For each single prediction, the 

Absolute Scaled Error is calculated and then summarized across predictions by 

the mean and median Absolute Scaled Error as a measure of central tendency as 

well as the standard deviation and the 3
rd

 quartile as measures of spread. The 3
rd

 

quartile is used as we are only interested in how far the Absolute Scaled Error 

deviates from zero. 

Figure 3.1 depicts the performance measures of the different prediction method 

for the four different cases considered. The Markov approach clearly outperforms 

the geometric prediction in all four cases with respect to all measures. Compared 

to the linear prediction and the prediction of no change the picture is less clear. 

With respect to the mean Absolute Scaled Error, the Markov prediction 

outperforms the constant and the linear prediction in case of ‘all’ farms and 

livestock farms while it is outperformed by the constant and linear prediction in 

case of crop farms and the constant prediction in case of mixed farms. With 

respect to the median Absolute Scaled Error the Markov prediction is slightly 

inferior to the prediction of no change which has either a very similar or slightly 

lower median Absolute Scaled Error. Compared to the linear prediction, the 

                                                                 
23 The prediction for the entry/exit class is not considered since it is a no observable artificial class 

(see section 3.1).   
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Markov prediction is superior except for the case of Livestock farms where the 

linear prediction is slightly better. 

Figure 3.1 Box-Whisker-Plot of Absolute Scaled Errors for different prediction 

methods in four cases. Absolute Scaled Errors are displayed for each prediction in 

three size classes, three prediction periods and seven regions considered. In each 

case the Markov prediction is calculated as the mean of the posterior predictive 

distribution 

Source: Own calculations. 
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Figure 3.2 Box-Whisker-Plot of Absolute Scaled Errors for different prediction 

methods in the out-of-sample prediction. Absolute Scaled Errors are displayed for 

a prediction of crop, livestock and mix farms as well as for a prediction of all 

farms combined. In each case farm number are predicted in three size classes, 

three prediction periods and seven regions. The Markov prediction is calculated 

as the mean of the posterior predictive distribution.  

 

Source: Own calculations. 

For an overall assessment the individual results of the four cases are combined to 

obtain an overall measure of the prediction quality. The results are given in figure 

3.2. The geometric prediction performs worst on all measures, followed by the 

linear prediction. The Markov prediction and the prediction of no change perform 

very similar with the prediction of no change being slightly better. The prediction 

of no change has a slightly lower mean and median Absolute Scaled Error and a 

slightly lower 3
rd

 quartile while the Markov prediction has a slightly lower 

standard deviation. The results indicate that overall the Markov prediction is not 

able to clearly outperform the prediction of no change.  
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3.5 Conclusion 

Overall, the paper contributes to the literature by extending the Bayesian 

estimation approach for non-stationary Markov model developed in chapter two 

by implementing a Parallel Tempering sampler that allows obtaining more robust 

sampling results. Additionally, a Bayesian prediction framework is derived that 

allows obtaining a full predictive distribution from which point predictions as 

well as all other moments of the prediction can be derived. Further, by relying on 

the Bayesian approach developed in chapter two, asynchronous data can be 

considered directly without the need of interpolating macro data as in previous 

studies.  

In the paper a prediction framework was developed that enables a short term 

prediction of farm number combining all the available FSS macro and FADN 

micro data in one prediction. The results of out-of-sample prediction show that 

the developed approach outperforms naive linear and geometric predictions but is 

not able to outperform a prediction of no change. One needs to keep in mind, 

however, that the farm structure was rather stable within the short prediction 

period of two to three years. Moreover, further relevant drivers of farm structural 

change might have been missed due to limited data availability on potential 

explanatory variables.  

Even though the focus of the paper and the out-of-sample prediction was a short 

term prediction of farm numbers, the proposed approach is useful for other 

purposes as well. As mentioned in the introduction, one application is to improve 

the projection of farm numbers in each farm typology (characterized by a type of 

farming and Economic class) in between the FSS years. This exercise is important 

in order to update the FADN weights which are a relevant input for agricultural 

policy analysis. Furthermore, the approach is useful to study the drivers of farm 

structural change by analyzing the influence of explanatory variables on the non-

stationary transition probabilities using all available FSS and FADN data.  
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Chapter 4  

Direct payments, spatial 

competition and farm survival 

in Norway
24

 

Abstract: We argue that farm survival is influenced by neighboring farmer’s 

characteristics, and in particular by direct payments neighboring farmers receive. 

The paper shows empirically that these interdependencies are crucial for an 

assessment of the effects of direct payments on farm survival. Using spatially 

explicit farm level data for nearly all Norwegian farms, a spatial probit model is 

estimated in order to explain farm survival from 1999 to 2009. We show that 

ignoring spatial interdependencies between farms leads to a substantial 

overestimation of the effects of direct payments on farm survival. To our 

knowledge, this article is the first attempt to empirically analyze the importance 

of neighboring interdependencies for the effects of direct payments on farm 

survival. 

Keywords: direct payments, farm structural change, land market, policy 

assessment, spatial competition 

JEL classification: C21, C25, Q12, Q13 

                                                                 

24 This chapter is the basis for a paper accepted for publication in the American Journal of 

Agricultural Economics entitled: Storm H, Mittenzwei K, Heckelei T. (accepted). Direct payments, 

spatial competition and farm survival in Norway. DOI: 10.1093/ajae/aau085. 



4.1 Introduction  75

 

  

4.1 Introduction 

In Norway, as in many other industrial countries, direct payments are often 

legitimized as a way to maintain a vital agricultural sector and, in particular, to 

prevent the abandonment of farms. It is often argued (e.g. Breustedt and Glauben 

2007 for the EU or Goetz and Debertin 2001 for the US) that agricultural support 

increases farm profitability and with it reduces farm exits. Both studies analyze 

the effects of income support on net regional farm exit. These aggregate regional 

effects, however, might mask potential different reaction at the individual level 

(Gale 1994, Ehrensaft et al. 1984). Additionally, regional level studies rely on 

explanatory variables defined at the regional level making definition, 

interpretation and identification more complicated. With respect to direct 

payments, for example, one can only identify the aggregated effect of the average 

payment level in a region on net exit which likely differs from the individual level 

effects. 

Individual farm level studies in contrast allow a direct analysis of the effects of 

farm characteristics and payments on farm survival, for example Key and Roberts 

(2006) who employ different survival modelling approaches to farm exits. For an 

overall assessment of the effects of payments, however, individual farm level 

effects need to be aggregated. We argue that this requires considering the 

interdependence between farms. As this link is missing in empirical farm level 

studies to date, Roberts and Key (2008:628) suggest regional level studies for 

policy assessment.  

In this article we aim to explicitly consider these interdependencies in estimation 

and aggregation of the farm survival effects induced by a policy change. The 

objective is to empirically analyze the effect of direct payments on farm exit rates 

controlling for spatial farm interdependence using individual farm level data of 

nearly all Norwegian farms for 1999 and 2009. It is shown that ignoring the 

spatial interdependencies between farms in aggregation leads to an overestimation 

of the effects of direct payments on farm survival. To our knowledge this article is 

the first attempt to empirically analyze the role of neighboring characteristics for 

an assessment of the effects of direct payments on farm survival.  
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The importance of neighboring characteristics for an empirical evaluation of 

policies has been pointed out by Holloway, Lacombe and LeSage (2007:39–40) 

albeit in a different context.  

In the farm structural change context, which subsumes the analysis of farm 

survival, the importance of neighboring interaction has long been acknowledged. 

Specifically, agent-based models of regional farm populations recognize the 

importance of land immobility, the location of farms in space and the 

interdependence of farms via competition on the spatial land market (Balmann 

1997; Balmann et al. 2006; Happe et al. 2006; Happe et al. 2008; Freeman et al. 

2009). However, econometric studies concerned with spatial interaction in farm 

structural change are rare. Huettel und Margarian (2009) consider different 

theoretical frameworks of strategic competition on the land market but do not 

empirically model interaction between farms when analyzing the impact of 

current and past regional farm structure on farm structural change. Weiss (1999) 

is aware of the importance of farm interdependence and the competition for land 

and labor, but does not consider them in his empirical analysis of farm survival 

and farm growth in Upper Austria.  

In general the importance of spatial interdependencies in agricultural markets is 

long recognized. A classical paper by Sexton (1990), for example, devises a 

theoretical spatial competition model of the pricing behavior of processors under 

various conditions. The topic is picked up in two more recent articles by Graubner 

et al. (2011a) and Graubner et al. (2011b). Benirschka and Binkley (1994) 

consider spatial correlation in explaining land prices, however, on the regional 

level only. In other areas such as land use/cover change models, spatial 

dependencies and interactions on the land market are widely recognized (see 

Irwin und Geoghegan 2001 and Verburg et al. 2004 for a review). Gellrich und 

Zimmermann (2007), for example, focus on drivers of land abandonment in the 

Swiss mountains. In some respect land abandonment is similar to farm survival 

since the reasons for both likely overlap. Their approach, however, considers 

spatial correlation between regions leading to different interpretations of the 

spatial correlation compared to our approach at farm level. 

One reason for the scarcity of empirical models analyzing spatial farm level 

interdependencies is the very limited availability of spatially explicit farm level 

data for representative samples at country scale. The data source for Norway thus 
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provides a unique opportunity to empirically analyze their importance for farm 

survival. We estimate a spatial binary choice model to explain farm survival using 

own as well as neighboring farm characteristics. The regression results are then 

used for policy scenario simulations that explore the effects of a change in the 

direct payment system and the influence of spatial dependence for policy 

evaluation.  

4.2 Theoretical Background and Hypothesis 

One important source of interdependence between farms is the interaction of 

farms on the land market. Farms compete for a (in most cases) fix supply of 

agricultural land. This implies that farms may only grow if other farms decline in 

size or exit (Weiss 1999). Our arguments in the following rest on the assumption 

that transactions on the land market (either via rental agreements or land sale) are 

driven by the relative difference between farms’ willingness to pay (WTP) for 

land. Farm WTP for one unit land is equal to the marginal value product of land, 

i.e. the residual return to land after cost for all other production factors are 

accounted for. Each unit of cultivated land ties labor and capital, therefore, WTP 

for land can also be interpreted as the difference between the on-farm income per 

area unit and the forgone off-farm income induced by cultivating that area unit. If 

farmers derive non-pecuniary utility from being self employed or see farming as a 

“way of life” (Key und Roberts 2009), WTP may also be larger than that 

difference. Given that each farm is located in a specific point in space and land is 

immobile, WTP for a specific plot is reduced by transportation costs rising 

proportional to the distance between plot and farm. Transactions on the land 

market occur if the relative differences in WTP for a specific plot exceed 

transaction costs. Focusing on farm survival, the article studies the special case in 

which WTP of one farm is lower than WTP of a competitor for every available 

plot. In this case the farm quits by renting out or selling all its land.  

WTP for land differs between farms due to different characteristics. Of particular 

interest is the effect of direct payments on WTP and finally on farm exit. Key und 

Roberts (2006:391) found empirical evidence that payments have a significant 

positive effect on farm survival. They argue that relieve of liquidity constraints 

increases the possibility to bid up prices on the land market and helps farms to 
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achieve a more efficient scale of operation. Payments also improve the relative 

profitability of farming compared to alternative occupations. Additionally, they 

reduce income uncertainty and the risk of bankruptcy. They therefore induce 

farmers to invest more aggressively (Vercammen 2007). Consequently, we expect 

a positive influence of direct payments on WTP.  

It remains unclear, however, whether the absolute amount of payments or 

measured in relative terms (e.g., on a per labor hour basis) is more relevant. This 

issue is similar to the question whether total farm income or the on-farm wage 

rate is more important. We expect that this question depends on labor market 

conditions. Under perfect labor market conditions total farm income is less 

important, because small farms can complement their total income by off-farm 

employment at the on-farm wage rate. With imperfect labor markets, however, it 

might not be possible to complement income by off-farm employment and 

farmers may need to quit farming in order to take on a full off-farm employment. 

In this case total farm income matters more than the on-farm wage rate. 

Accordingly, we expect direct payments per labor input/total direct payments to 

be more important for WTP under fully functioning/imperfect labor markets.  

On the other hand total farm income or total payments are a measure for the 

absolute size of a farm which is important in multiple aspects. Larger farms are 

likely to use labor more efficiently due to scale effects (Flaten 2002), adopt new 

technologies earlier (Weiss 1999) and, giving their larger collateral, face lower 

borrowing costs (Roberts and Key 2008). A crucial aspect in this respect is that 

farm size can be measured in several ways. Total income or total payments for 

example reflect the economic size of farm while total cultivated area or total labor 

input reflect the input side of production. In general, all measures are expected to 

be highly correlated and each capture size effects. Total area and total direct 

payments, however, might be a more direct measure of farm collateral while total 

labor use might be more relevant to asses scale effects. Following from this, we 

expect that all three measures are important in determining farmers WTP with 

each representing somewhat different effects.  

Beside these factors of primary interest here, are many others that might be 

important for determining farms WTP for land. To limit further discussion, we 

restrict attention to those variables available in the empirical application. The 

productivity of a farm for example should have a positive influence on on-farm 
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income and hence on WTP. The share of lease to total land should, ceteris 

paribus, have a negative effect on farm net worth and hence increase capital cost 

and decrease WTP. Further difference in WTP may arise due to different legal 

requirements for specific production types or specific policies for single 

specializations
25

. Equally important as farm characteristics are attributes of the 

farm holder (see among other Weiss 1999, Key and Roberts 2006). However, the 

age of the farm holder is the only variable available in the empirical application. 

Key und Roberts (2006) argued that older farms posses more information about 

the strength of the firm, more financial liquidity and over time are able to obtain a 

certain scale of production. On the other hand farm development beyond a certain 

age of the holder is strongly dependent on the availability of successor. Before 

retirement farm size might increase if a successor is available or if not might 

decrease in order to prepare for an exit (Mann et al. 2013). The theoretical effect 

of age on farm growth and survival is thus unclear. 

Due to competition on the land market we expect that farm size is positively 

related to own WTP but negatively related to neighboring WTP. Given such 

interaction on the land market we expect the effects of neighboring characteristic 

to be the opposite as the effects of own characteristics. For total direct payments, 

for example, this means we expect a positive influence on WTP and on own 

growth/survival but a negative influence of neighboring payments. Farm growth 

and survival therefore depends on the relative difference between WTP between 

farms, i.e. farms occupy that area for which their difference between on and off-

farm income exceeds that of their competitors. With respect to payments, this 

implies that changes in payments only have an effect if they change the relative 

difference in WTP between farms. When changes in payments are the same for all 

farms, as in the case of decoupled payments or coupled payments when farms 

production program are exactly the same, the relative difference remains constant 

and will leave farmers growth or survival decision unaffected. One can also think 

of the effect of a full capitalization of payments in land rents (Latruffe and Le 

Mouël 2009). If changes in payments differ (e.g., due to different participating 

                                                                 
25 Within the study period, for example, the government had a large milk quota-buy-out program in 

place, which might have had an effect on milk farms but no direct effect on other farms.  
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rates (Roberts and Key 2008:630), different farm specializations or because per 

unit subsidy rates discriminate between land and herd sizes as is the case in 

Norway) the relative difference changes, leading to growth/decline and an 

increase/decrease of the likelihood of survival for favored/non-favored farms.  

Finally, it is important to point out that spatial interactions on the land market are 

not the only way farms interact which each other. One other important type of 

interaction is technology adoption and knowledge transfer (Rogers 1995; Berger 

2001). Case (1992) and Holloway et al. (2002), for example, found evidence that 

the probability of adopting a new technology increases with neighboring 

adoption. Consequently, an active corporate network raises technology diffusion 

and with it farm productivity. Neighboring farms are also important to maintain 

an active network of suppliers and processors. Overall, an active corporate 

network should thus increase farm profitability and hence WTP for land. 

Similarly as with payments, the effects of an active corporate network on farm 

size could cancel out if all farms benefit similarly (WTP would increase for all 

farms alike). However, larger farms are more likely to adopt a new technology 

(Feder and Slade 1984) and might also be more capable in maintaining an active 

corporate network of suppliers and processors. Therefore, WTP of small farms 

that benefit from larger neighbors might increase more as WTP of large farm with 

small neighbors. Based on this reasoning neighboring size can also have a 

positive influence on own WTP and hence farm size and survival. Which effects 

dominate in the end, the negative due to competition on the land market or the 

positive due to an active corporate network, remains an empirical question. In 

general, all cases where we do not find the opposite sign of neighboring 

characteristics compared to own characteristics hints at interaction between farms 

other than the competition on the land market. 

4.3 Empirical Model and Estimation 

The empirical investigation explores the effects of own and neighboring direct 

payments on farm survival using a spatial probit model considering the exit 

decision of almost all Norwegian farms between 1999 and 2009 (a description of 

the data is available in appendix A). The latent variable 


y  underlying the probit 

model, determines the outcome of the observed survival ( 1iy   if 0iy  ) or exit 

decision ( 0iy   if 0iy  ). The model can be interpreted as a latent utility 
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model reflecting the difference between own and neighboring WTP for land 

discussed in the theoretical part. The latent variable 


y is specified to be a linear 

function of own characteristics X  and neighboring characteristics WX , with W  

being a spatial weighting matrix defined below. For estimation purposes, two 

different model specifications are considered. The first specification is a spatially 

lagged explanatory variable model (SLX) of the form 
y = Xβ+WXθ+ε  with 

 2~ ,N 0 I  which assumes iid normal errors. The second specification is a 

spatial Durbin error model (SDEM) of the form 
y = Xβ+WXθ+u  with 

 u Wu ε  which relaxes the assumptions of the SLX model by allowing for 

spatially autocorrelated errors (LeSage and Pace 2011:22). Reasons for choosing 

the SLX and SDEM specification over the more common spatial autoregressive 

model (SAR) are laid out in appendix B.  

The SLX model is estimated using standard probit maximum likelihood 

estimation techniques. We then test for spatial error dependence using three 

different test principles compared in Amaral et al. (2013). All three tests clearly 

reject the H0 of no spatial autocorrelation. Since autocorrelation may lead to 

estimation bias the test results render the SDEM model more appropriate. 

Estimation of a SDEM probit model for over 60,000 observations, however, is 

challenging from a computational perspective. Most existing estimation 

techniques such as McMillen (1992), Beron and Vijverberg (2004) or LeSage and 

Pace (2009) are only applicable for relatively small samples of a couple of 

thousand observations (see Pace and LeSage 2011 for a detailed discussion of the 

limitations with respect to large samples). Therefore, Pace und LeSage (2011) 

proposed a simulated maximum likelihood framework capable of handling large 

samples (a detailed description of the implementation of the estimator is provided 

in appendix C).  

4.3.1 Dependent and Explanatory Variables 

The dependent variable in the analysis represents farm survival in 2009 of all 

farm active in 1999 and is equal to one if a farm is still active in 2009, zero 

otherwise.
 
We consider a farm as active if at least one production activity is 

observed in the payment data base. Explanatory variables are derived from the 

payment data base as well as from the 1999 farm census. As discussed above, the 

most important variables relate to different types of farm income. Farm income is 
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divided into market returns and direct payments which are of particular interest. 

Since actual market returns for each farm are unobserved, we consider an average 

market return to labor for each production activity derived from the reference 

farms data collection (NILF 2000 and NILF 2009)
26

. These average returns are 

used to reflect the difference in market returns arising from different production 

programs. The direct payments per farm are calculated rather accurately using 

actual payment rates, observed production activities and eligibility rules. Total 

income is then equal to the sum of the two and farmers’ on-farm wage rate is 

approximated as the ratio of direct payment and market returns over an estimated 

total labor use. Additionally, we obtain a measure for the potential change in the 

on-farm wage rate under the condition that a farm maintains its 1999 size and 

production program. The reasoning is that changes in either size or production 

program might already be the result of changes in income opportunities that we 

aim to measure. A detailed description of all income variables is provided in 

Storm und Mittenzwei (2013).  

As discussed in the theoretical section it remains undecided whether the total 

income or the on-farm wage rate is more important for farmers WTP for land and 

hence farm survival. In the empirical application we thus include total direct 

payments (dpay99) and total market return in 1999 (mReturn99) as a measure of 

total farm income as well as direct payment and market returns per labor use in 

1999 (dpay99/reqLabo and mReturn99/reqLabo). Furthermore, we add the 

change in the latter two (C.DPayLabo and C.mRetLabo) as measures of the on-

farm wage rate.  

Additionally total agricultural area (area), total observed labor input in 1999 

(obsLabo99) and estimated labor use for 1999 (reqLabo99)
27

 are included. All 

three, together with total income, are measures for the absolute size of a farm. In 

line with the discussion above, we finally include the age of the farm holder
28

 

                                                                 
26 It is important to recognize that ‘market returns’ also substantially depend on policy decisions 

since market prices are strongly affected by administrative prices. 
27 See Storm and Mittenzwei (2013) for detailed information about the estimation of the labor 

requirements. 
28 For observations where age is missing in the data base we imputed the mean age. The age is 

missing for example for all farms where the owner is not a natural person. In total we have 495 or 

0.77% missing observations for age.   
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(age), the ratio of leased to total agricultural area (landLease/Tot), the ratio 

between observed labor input, estimated labor requirements (laboObs/Req) as a 

measure of farm productivity, and dummy variables indicating if a farm has milk 

cows (hasMilk), sheep (hasSheep), sows (hasSows), poultry (hasPoultry) as a 

rough measure to reflect specialization specific policy environments. Descriptive 

statistics along with the variable code of all explanatory variables are provided in 

appendix D. For the analysis all variables are z-standardized.  

4.3.2 Spatial Weighting Matrix 

Estimation of SLX and SDEM models, requires the specification of a spatial 

weighting matrix W , which approximates neighboring relations between farms. 

This task is challenging in general and in particular given Norway’s 

heterogeneous farming regions, varying from dense small scale berry production 

to wide extensive sheep grazing areas. We expect that neighboring relations and 

the size of the local land market, i.e. the distance between farms and fields 

farmers compete for, to differ between these regions. From the 1999 farm census, 

data about the driving distance from the farmstead to the furthest field is available 

and we expect that this data carries information about the local structure of the 

farm sector and the distance over which farms compete for land. Using this data 

the median driving distance to the furthest field in each municipality is derived 

and neighbors of a farm are defined as all farms that are within a radius of this 

distance. The median is used to eliminate the influence of potential outlier and 

zero observations that cannot be distinguished from missing values. Further, the 

maximum number of neighbors is set to 20 (nearest neighbors) in order to prevent 

farms from having a very large number of neighbors and neighboring farms are 

weighted by their inverse distance.  

One common criticism of spatial regression models, particularly in a micro-data 

environment (Bell and Dalton 2007), is that W  is defined rather arbitrary and 

does not necessarily represent the true neighboring relation. Even though we base 

our definition on empirical data this criticism remains valid. The importance of 

the definition of W  for the final results is controversial. LeSage and Pace (2011) 

argued that in most cases the results are less sensitive to the definition of W  as 

commonly believed. Others, such as Holloway et al. (2007), found that the spatial 

correlation in an SAR model depends heavily on the definition of W . They used 
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a Bayesian model comparison approach in order to determine the most likely 

neighboring relationships. Such a rigorous treatment of model uncertainty goes 

beyond the scope of our article. We explore the sensitivity of our results to the 

definition of W  by repeating the estimation of the SLX model using two very 

different definitions. Results (reported in appendix E) show that the final 

conclusions are largely unaffected by the definition of W . 

4.4 Regression Results 

In the following the results with and without spatial interactions are presented. 

Distinguishing between the two models, we can explore the effects of including 

and ignoring spatial interactions on the influence of changes in direct payments. 

The regression results for the non-spatial model as well as the results for the 

spatial model using the SLX and SDEM model specification are reported in table 

4.1. It can be seen that the coefficients with respect to the non-spatially lagged 

variables differ only slightly between the three specifications. Therefore we 

discuss the non-spatial results first and highlight the differences with respect to 

the spatial model in the following.  

The non-spatial regression results are presented in the left panel of table 4.1. 

Except for the market return and its square, the “has poultry” dummy 

(hasPoultry) and the squared estimated labor requirement (reqLabo99^2), all 

explanatory variables are highly significant. Insignificant squared terms are 

dropped from the model. Statistical significance is comparatively easy achieved 

with more than 60,000 observations, but says little regarding relevance. A 

measure of the explanatory power of the overall model is the percentage of  
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Table 4.1: Regression Results for the Non-Spatial Probit SLX and SDEM Model 

to Explain Farm Survival 

 
 Non-spatial probit SLX SDEM 

Variable Coef p-value Coef p-value Coef p-value 

const 0.3931 0.0000 0.3948 0.0000 0.3974 0.0000 

age 0.5656 0.0000 0.5581 0.0000 0.5631 0.0000 

age^2 -0.6596 0.0000 -0.6499 0.0000 -0.6548 0.0000 

area 0.2533 0.0000 0.1920 0.0000 0.1886 0.0000 

area^2 -0.1331 0.0000 -0.1190 0.0000 -0.1176 0.0000 

obsLabo 0.2784 0.0000 0.2622 0.0000 0.2626 0.0000 

obsLabo^2 -0.1174 0.0000 -0.1100 0.0000 -0.1103 0.0000 

reqLabo 0.1411 0.0000 0.1291 0.0000 0.1334 0.0000 

mRet 0.0043 0.7039 0.0090 0.4286 0.0107 0.3250 

dpay 0.6197 0.0000 0.7421 0.0000 0.7507 0.0000 

dpay^2 -0.3382 0.0000 -0.3477 0.0000 -0.3518 0.0000 

laboObs/Req -0.0425 0.0000 -0.0396 0.0000 -0.0394 0.0320 

landLease/Tot -0.0455 0.0000 -0.0441 0.0000 -0.0442 0.0287 

mretrun/reqLabo 0.1141 0.0000 0.1006 0.0000 0.0972 0.0000 

dpay/reqLabo 0.0629 0.0000 0.0723 0.0000 0.0738 0.0000 

C.DPayLabo 0.1311 0.0000 0.0967 0.0000 0.0951 0.0000 

C.mRetLabo 0.0780 0.0000 0.0638 0.0000 0.0586 0.0000 

hasMilk -0.1885 0.0000 -0.2254 0.0000 -0.2270 0.0000 

hasPoultry 0.0071 0.2799 0.0061 0.3554 0.0067 0.5520 

hasSheep 0.0220 0.0010 0.0209 0.0031 0.0205 0.0229 

hasSows 0.0455 0.0000 0.0421 0.0000 0.0433 0.0084 

W_mRet  ---   ---  -0.0179 0.0539 -0.0185 0.0665 

W_dpay  ---   ---  -0.2708 0.0000 -0.2718 0.0000 

W_area  ---   ---  0.0721 0.0000 0.0742 0.0003 

W_reqLabo  ---   ---  0.0617 0.0000 0.0624 0.0188 

W_landLease/Tot  ---   ---  -0.0371 0.0000 -0.0373 0.0520 

W_FarmWage  ---   ---  0.0345 0.0015 0.0341 0.0186 

W_C.inco  ---   ---  0.0498 0.0000 0.0509 0.0000 

W_hasMilk  ---   ---  0.0774 0.0000 0.0761 0.0015 

W_hasPoultry  ---   ---  0.0094 0.1084 0.0102 0.5515 

W_hasSheep  ---   ---  0.0186 0.0090 0.0177 0.4407 

W_hasSows  ---   ---  0.0144 0.0163 0.0130 0.5541 

rho  ---   ---   ---   ---  0.1199 0.0000 

n 

 
64488   64488 

 
64488 

% Correct predictions Model 72.59   72.63 

 
72.64 

% Correct predictions Naive 62.72   62.72 

 
62.72 

Total Gain
a
   9.88   9.91   9.92 

Note: The dependent variable is equal to one if the farm stays active between 1999 and 2009 and 

zero otherwise. Spatially lagged variables are denoted with a leading “W_”; 

 aChange in "% Correct" compared to naive specification.  
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correctly predicting the binary choice. With the non-spatial model we are able to 

correctly predict the exit/survival decision in 72.64% compared to 62.72% using a 

naïve model. To assess the explanatory power of individual variables, we can 

explore how the percentage of correct prediction changes with or without the 

variable under consideration. Overall we found that the variables related to farm 

size (area, obsLabo99, reqLabo99, and dpay99) are most important explaining 

farmers’ exit/survival decision (see appendix F). A model with all variables 

except these variables would predict 67.58% of the choices correctly, which is 

around half the gain of the full model over the naïve model. Due to their high 

correlation (see appendix G) each size variable can explain more or less the same, 

with the percentage of correct predictions of a model with only one of the size 

variables being only slightly lower than of one with all included. The importance 

of the remaining variables, including the on-farm wage rate, is relatively evenly 

distributed with each variable adding only little to the overall explanatory power 

of the model (see appendix H). As discussed above, the greater importance of the 

absolute size of a farm compared to the on-farm wage rate or changes in the later, 

might indicate potential imperfections on the labor market. These might render 

the potential on-farm income per person or family, proxied by the absolute size, 

as more important than the on-farm wage rate per hour. 

Overall, all variables related to the absolute size of a farm show a positive 

influence (some with decreasing rate) between farm size and survival. Figure 4.1, 

which shows the survival probability for an ‘average’ farm for varying direct 

payments, illustrates that the effect of payments levels out with increasing size. 

This indicates, as mentioned above, that beyond the size sufficient to provide for 

the family, additional payments have a minor effect on the probability of survival.  

With respect to policy design, we could draw the conclusion from the non-spatial 

findings that increasing direct payments would be a good approach to increase the 

survival probability (of at least relatively small) farms. In the following we 

explore how this conclusion is affected when considering spatial interaction 

between farms.  
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Figure 4.1 Probability for an ‘average’ farm to stay active between 1999 and 2009 

for varying total direct payments 

 

Note: The x-axis represents the 2.5% to 97.5% quintile of the observed total direct payments. All 

other variables are held constant at their means. 

The spatial regression results for the SLX and SDEM model are reported in the 

right panel of table 4.1. For model specification we included all variables, except 

the squared terms, as spatially lagged variables
29

. The regression results for the 

SLX and SDEM model are almost identical despite the significant spatially 

autocorrelated errors with 0.12   in the SDEM model. This implies that 

ignoring the spatially autocorrelation in the errors does not result in a substantial 

bias of the SLX model.  

                                                                 
29 Since the spatially lagged variables show less variation we summarize variables that are highly 

correlated and measure related aspects. Specifically, the two variables for the on-farm wage rate 

mReturn99/reqLabo and dpay99/reqLabo are summarized to one variable W_FarmWage99. 

Similarly, the two variables for the change in on-farm wage rate C.DPayLabo and C.mRetLabo are 

summarized to one variable W_C.inco99. The spatially lagged observed labor input is excluded 

from the model specification because of a high correlation to the estimated labor requirement that 

does not allow identifying both variables. The general model results and conclusions, however, are 

unaffected by the choice of which to exclude from the model. 
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The results of the non-spatial variables discussed before seem to be robust with 

respect to the inclusion of spatial lagged explanatory variables as they stay almost 

unchanged. The percentage of correct predictions improves only slightly 

indicating that the spatial lagged variables have only little explanatory power. 

Further, the relative importance of different variables stays unaffected such that 

the findings discussed above similarly hold for the spatial model. With respect to 

the research question, however, considering the spatial effects is crucial. Above 

we concluded that, irrespective of the measurement, the absolute size is the most 

important factor in explaining farm survival and, for the relevant range, the larger 

the size the higher the survival probability. These findings remain valid for the 

spatial model, but the effect of the absolute size of neighboring farms is 

somewhat more complicated. When considering only one spatially lagged 

variable for neighboring farm size, we found a negative influence between 

neighboring farm size and own survival irrespective of which variable 

(w_dpay99, w_uaar or w_laboreq99) is used. As discussed above, all three 

measures of the absolute size of the farm are highly correlated and the same holds 

for the spatially lagged absolute size measures. Nevertheless, the large sample 

size is sufficient to identify different coefficients for the three variables (table 

4.1). Farms with larger neighbors in terms of area and labor use have a higher 

survival probability, while farms with larger neighbors in terms of total direct 

payments have a lower survival probability. As discussed in the theoretical 

section, a reason for this finding could be the multiple ways farms interact which 

each other. On the one hand farms gain from an active cooperative network due to 

technology diffusion or easier access to suppliers or processors. The larger the 

neighboring farms in terms of the cultivated area and/or the total labor use, the 

more likely it is that farms are situated in an active corporate network with the 

positive effects that follow from this. On the other hand farms compete with their 

neighbors for the limited resource land on local land markets. Hence, farms 

having neighbors with higher direct payments (everything else equal) have 

increased the attractiveness to rent out/sell the farm, limit growth prospects and 

therefore decrease survival probability. 

With respect to policy design, these findings have important implications. The 

non-spatial results imply that increasing direct payments increases survival 

probability and that an increase for all farms may reduce farm exits. However, the 
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spatial results imply that increasing own direct payments increase survival 

probability, but negatively affect the survival of neighboring farms. The overall 

effects of a change in direct payments are ambiguous and need to consider the 

actual neighboring relations between farms in the population. This issue is 

explored in the next section.  

4.5 Policy Scenario Simulation 

In order to illustrate the importance of spatial dependencies for policy design and 

evaluation, and to provide empirical evidence for specific changes in the 

Norwegian payment scheme, simulation experiments based on the entire 

population are performed. In particular, we calculate the change in farm survival 

probability for two different direct payment policy scenarios. Therefore, predicted 

survival probabilities are derived based on observed explanatory variables and for 

the same variables except that total direct payments are now calculated for each 

farm under the new policy regime. The difference between these survival 

probabilities is plotted as a histogram in figure 4.2 and 4.3. The differences 

between the spatial and non-spatial model is highlighted in each histogram by 

showing separate results for each model. The first scenario (figure 4.2) considers 

a general reduction of all payment rates by 10%, irrespective of farm types, sizes 

or location. The second scenario (figure 4.3) assumes the elimination of the 

structural dimension of the payments by providing support through flat per animal 

and per ha payment rates. In the current policy regime, several payment schemes 

differentiate payments rates according to farm size, in the sense that rates for the 

first unit (animal head or area) are higher than for the last. Assuming flat rates 

equal to the lowest rates currently paid, this scenario implies a 30% reduction of 

total direct payments with small farms being more affected in relative terms.  

With an average decrease in survival probability equal to 1.04 and 0.26 

percentage points for the non-spatial and spatial model, respectively, the effects of 

the first scenario (figure 4.2) seem modest in general but particularly when 

considering the spatial dependence. The 95% prediction interval for both values, 

equal to [0.89, 1.18] and [0.2, 0.31] is relatively small due to the large sample. 

The prediction intervals are calculated using a bootstrap procedure described in 

appendix I. Instead of the average decrease in survival probability the result can 
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also be expressed in terms of number of predicted farm exits. Here, predicted 

exits increase by 964 and 171 for the non-spatial and spatial model, respectively 

(farm population size 64.488 in 1999 and 40.445 in 2009). Figure 4.3 shows 

results of the second scenario in which the structural dimension of direct 

payments is abolished. The effects are more substantial with an average decrease 

in predicted survival probability equal to 4.00 (95% prediction interval [4.52 

,3.47]) and 1.60 (95% prediction interval [1.77,1.42]) and an increase in predicted 

farm exits equal to 4,046 and 1,474 for the non-spatial and spatial model, 

respectively.  

Several conclusions follow from this. The first scenario shows generally moderate 

effects on farm survival. Interestingly, the spatial model indicates (figure 4.2) that 

a substantial share of farms is unaffected or even gains from an overall decrease 

in payments. The neighboring effects of payments seem to outweigh the negative 

effect of a decrease in own payments. Further, with respect to the importance of 

spatial dependence for policy design, both scenarios indicate that the non-spatial 

model leads to a substantial overestimation of the effects of payments. This is 

especially evident in the second scenario, where despite a large overall reduction 

Figure 4.2 Change in individual farm survival probability for a 10% reduction of 

all direct payment rates 

 
Source: Own illustrations. 
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in payments of about 30%, survival probabilities decrease only by 1.6 percentage 

points on average. These results are important for Norwegian policy makers and 

the society as a whole as a basis for decision on policy design. A spatial 

representation of the results at regional level is available in the appendix J and K. 

4.6 Conclusion  

This article for the first time considers spatial interdependence between farms in 

an empirical assessment of the effects of direct payments on farm survival. We 

found that higher direct payments for neighbors decrease own survival 

probability. Ignoring this spatial interdependence led to a substantial 

overestimation of the overall effects of direct payments on farm exits. An 

assessment of the effect of a change in the support regime should therefore not be 

based on the assumption of independent farm behavior. Instead, policy changes 

should be assessed for the entire farm population considering the spatial 

interdependence. Policy simulation results show rather modest effects of 

Figure 4.3 Change in individual farm survival probability for a abolishment of the 

structural dimension of direct payments in which rates are set equal to the lowest 

rates currently paid 

 
Source: Own illustrations. 
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reductions in direct payments and survival probabilities for a substantial share of 

farmers which remain unaffected or even increase.  

In addition, we found that the total economic size of a farm is more important for 

farm survival than on-farm wage rates. Imperfect labor markets and family farm 

structures in Norway are likely rendering a farm’s total income potential as highly 

relevant for farm survival. Results indicate that direct payments may help smaller 

farm across thresholds for survival to some extent, but the probability of survival 

of larger farms is basically unaffected.  
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4.8 Appendix  

Appendix A: Description of the Data Source  

The analysis is based on data from the Norwegian Direct Payment Register for the 

years 1999 and 2009. The register contains information about agricultural area by 

crop and number of animals by type of animal (126 different crop and animal 

activities are distinguished) for every farm that applies for direct payments
30

. 

Eligibility for direct payments is subject to certain conditions, one of which is a 

minimum economic size of the farm (measured by turn-over) in order to prevent 

“hobby-farms” from receiving subsidies. As a consequence, the total numbers of 

acreage and/or animals may be somewhat underestimated when compared with 

other official sources such as slaughter statistics or the decennial total farm 

census.  

Individuals and legal entities managing agricultural area or keeping animals 

eligible for direct payments may apply for subsidies by filling in data in the 

register. The register links the amount of acreage and animals with business 

identification and property numbers. Additionally, farmers’ social security 

numbers are available containing the birth date.  

As the unit of analysis we rely on the property number. Property units present in 

1999, but not in 2009 are assumed to have left the sector. Some potential 

measurement errors arise from this choice: We disregard if farms split their 

activities in different business units. Small farms may incidentally have left the 

sector in 2009, but applied for subsidies in 2008 and 2010.  

Table A-1 shows the number of farms covered in the database for the two 

measures mentioned above and compared to the number of farms recorded in 

other statistics.  

                                                                 
30 Because of missing observations due to mergers of municipalities it was necessary to exclude 11 

municipalities from the analysis. Municipality codes 529, 716, 718, 1154, 1214, 1418, 1514, 1569, 

1572, 1576, and 1842.  
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Table A-1. Number of Farms for Various Accounting Measures  

 1999 2009 

Property number (NAA) 66,892 45,460 

Business number (NAA) 66,832 45,420 

Number of farms (Statistics Norway) 70,740 47,688 

Source: Norwegian Agricultural Authority 2011 and Statistics Norway 2011 

Table A-1 reveals that there are small differences between the measures to 

identify farms. For all practical purposes regarding the analysis, the number of 

properties and the number of businesses appears to be the same. Further, the 

numbers are somewhat lower than the number of farms provided by the Statistical 

Office (Statistics Norway) due to certain size limits regarding the eligibility of 

direct payments.  

Appendix B: Background information on model choice 

In many spatial econometric studies the spatial autoregressive (SAR) 

model of the form  

(17)    y Wy Xβ ε  with  20,N Iε , 

is employed. The SLX and SDEM model is chosen over the more common SAR 

model since it allows greater flexibility with respect to the direct and indirect 

effects of explanatory variables. As shown by Pace and Zhu (2012), the indirect 

effects in the SAR model have the same signs as direct effects and the ratio 

between indirect and direct effects is constant across variables. This is an 

undesirable property for our purposes because we generally expect the direct 

effects of own payments to differ from the indirect effects of neighboring 

payments as discussed in the theoretical part of the article.  

Additional reasons for our choice come from a rather forceful argumentation by 

Gibbons and Overman (2012) to consider the SLX model as a more credible 

alternative to the SAR model in many situations. They argue that the SAR model 

may suffer from an identification problem which is insufficiently addressed in the 
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applied literature. This identification problem is similar to Manski’s reflection 

problem (Manski 1993). Without additional information, restrictions or 

theoretical arguments it is hardly possible to determine if exogenous changes are 

caused by neighboring outcomes, iw y , and not by changes in neighboring 

characteristics iw X  (Gibbons and Overman 2012, p. 181). In other words, for 

identification we require variation in iw y  that is not caused by variation in iw X  

or iw ε . In most cases estimation of the SAR model is based on (quasi) ML 

advocated by LeSage and Pace (2009) for which Lee (2004) showed that it 

provides consistent estimates under the condition that the spatial model is the true 

data generating process. Gibbons and Overman (2012) however argued that this 

assumption is difficult to defend since the spatial weighting matrix W is usually 

not known with certainty. Alternative to the ML approach, the identification 

problem of the SAR model can be addressed by a (2SLS) IV estimation approach 

proposed by Kelejian and Prucha (1998). Considering the reduced from of the 

SAR model given by  

(18)  2 3 2 ...i i i i i iy v          x β w Xβ w WXβ wW Xβ , 

with i i iv u  w v  illustrates that the spatial lags 2, ,i i i  w X w WX w W X  etc. 

could be used as instruments. Gibbons and Overman (2012), however, argued that 

this approach also requires W to be known such that the exclusion restriction on 

the spatial lags 2, ,i i i  w X w WX w W X  etc. are justified. Concluding from these 

combined obstacles Gibbons and Overman (2012, p. 183) “ague for estimation of 

reduced form SLX models in ix  and spatial lags of ix , rather than direct 

estimation of the SAR or SD [Spatial Durbin Model] model”. Further they state 

that “we believe that in many situations this ‘reduced from’ approach is simply 

more credible. The composite reduced form parameter describing the influence of 

neighbors’ characteristics or outcomes is itself a useful and policy-relevant 

parameter. With this in hand judgment can be made based on theory and 

institutional context about the likely channels through which the effects operate 

(p. 183-184).” Following these lines of argumentation and considering that the 

main interest of the study is anyway on the influence of neighboring 

characteristics, the SLX model is chosen. As suggested by Gibbons and Overman 

the channel through which the influence occurred cannot be measured empirically 
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but theoretical arguments can be provided which channels are most likely (here 

interaction on the land market, social or corporate networks etc). 

Appendix C: Technical implementation of the SDEM model estimation using the 

GHK algorithm 

The major difference between a standard and spatial probit model is that the 

likelihood function is based on multivariate instead of a univariate truncated 

normal distribution due to the dependence between observations. This increases 

computational needs particularly for large samples. For these cases Pace und 

LeSage (2011) proposed a simulated maximum likelihood framework capable of 

handling large sample sizes. Their approach is based on the GHK (Geweke-

Hajivassiliou-Keen) algorithm to approximate the intractable multivariate integral 

of the multivariate truncated normal distribution. The general idea of the GHK 

algorithm in this context is to replace the joint multivariate truncated normal 

density by a product of conditional densities. This product of conditional densities 

has a sequential order in the sense that each conditional density only depends on 

prior variables in the sequence. Using specific realizations of the random 

variables allows calculating the sequence of conditional densities. By repeating 

the calculation R  times, each time with different realizations of the random 

variables, a numeric approximation of the multivariate truncated normal 

distribution can be obtained. One obstacle of the approach with respect to large 

samples is that the number of operations required for the GHK algorithm depends 

on the number of non-zeros in the Cholesky lower triangular matrix of the 

covariance matrix
31

. Pace und LeSage (2011) argued, however, that in most 

spatial application each observation might only depend on a limited number of 

neighbors such that the sparsity of the variance-covariance matrix can be 

exploited in order to reduce the computation burden of the GHK sampler. They 

further propose to adopt the GHK algorithm to rely on a Cholesky decomposition 

of the precision matrix (i.e. the inverse variance-covariance matrix) instead of the 

variance-covariance matrix since in many situations it has greater sparsity. It 

                                                                 

31 For a dense variance-covariance matrix there are  1n n n  non-zeros elements.  
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should be pointed out that the approach proposed by Pace and LeSage (2011) 

cannot only be used to estimate the SDEM model but also to other spatial model 

specification such as the SAR model. 

In our specific implementation for the SDEM model we also rely on the precision 

matrix being equal to
32

        I W I W . As recommended by Pace und 

LeSage (2011) the sparsity of the precision matrix or variance-covariance matrix 

can be increased by an appropriate ordering of the observations. In our 

implementation we use the Matlab (Version R2013a) build in function symamd() 

for a symmetric approximate minimum degree permutation applied to the 

precision matrix to reorder the observations. For the GHK algorithm, we follow 

Pace und LeSage (2011) and employed scrambled Halton sequences where we 

skipped the first 1,000 values and used only every 101st value (Matlab default). 

For each likelihood evaluation we used 15R  . Optimization is performed with 

the Matlab Optimization Toolbox using a constrained maximization solver with 

an interior-point algorithm. Derivates are approximated numerically using 

forward differences. With our implementation it is possible to estimate the SDEM 

model with 64,488 observations in around 5.2h hours using Matlab Parallel 

Computing Toolbox with 12 workers on a Intel® Xeon® E5-2690 (2 processors) 

where we parallelize the R repetitions of the GHK sampler. This is lower as the 

speed reported in Pace und LeSage (2011), who claim to estimate a sample of size 

100.000 in around four minutes on a standard laptop computer without 

parallelization, but since our focus is on a single estimation no further 

improvements of the implementation is pursued. 

  

                                                                 

32 The variance-covariance matrix is given by  Var u  
    with  

1



  I W , see 

for example Beron und Vijverberg 2004, S. 170–173. 
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Appendix D. Descriptive Statistics and Definition of Variable Codes (n=64488) 

  Codes Units  Mean 

 

Median  Max.  Min. 

 Std. 

Dev. 

Age of farm holder  age year 48.83 49.00 97.00 7.00 11.58 

Farm area  area daa
a
  153.50 121.00 3411.00 0.00 132.45 

Observed labor input  obsLabo hour 2215.46 1900.00 52330.00 0.00 1827.00 

Estimated labor 

requirement  

reqLabo hour 1950.39 1454.92 44452.84 9.79 1719.36 

Total direct 

payments  

Dpay 1000 Nkr 167.02 128.47 1252.47 0.01 132.06 

Total market return mRet 1000 Nkr -33.87 -24.20 1403.76 -2606.99 66.27 

Ratio observed over 

estimated labor 

requirement  

laboObs/Req ratio 1.37 1.13 83.32 0.00 1.33 

Ratio leased area 

over total area  

landLease/Tot ratio 0.27 0.13 1.50 0.00 0.33 

Dummy if farm has 

milk cows  

hasMilk binary 0.33 0.00 1.00 0.00 0.47 

Dummy if farm has 

sheep 

hasSheep binary 0.33 0.00 1.00 0.00 0.47 

Dummy if farm has 

poultry 

hasPoultry binary 0.01 0.00 1.00 0.00 0.08 

Dummy if farm has 

sows 

hasSows binary 0.05 0.00 1.00 0.00 0.22 

Tot. market ret. per 

labor req. in 1999  

mretrun/ 

reqLabo 

1000 

Nkr/hour 

-0.01 -0.02 0.24 -0.58 0.03 

Tot. direct pay. per 

labor req. in 1999  

dpay/ 

reqLabo 

1000 

Nkr/hour 

0.09 0.09 0.42 0.00 0.03 

Change in market 

returns per labor 99-

09 structure equal to 

1999  

C.mRetLabo 1000 

Nkr/hour 

-0.05 -0.04 0.29 -0.15 0.03 

Change in direct pay. 

per labor 99-09 

structure equal to 

1999  

C.DPayLabo 1000 

Nkr/hour 

0.10 0.09 0.28 -0.17 0.04 

a daa = 1/10 ha.  
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Appendix E. Sensitivity of SLX Regression Results with Respect to three Different 

Definitions of the Neighboring Relationships  

 
All within 2km radius  5 Nearest Neigh 

Median dist. to furthest 

fields 

Variable Coef p-value Coef p-value Coef p-value 

const 0.3954 0.0000 0.3953 0.0000 0.3948 0.0000 

age 0.5615 0.0000 0.5567 0.0000 0.5581 0.0000 

age^2 -0.6516 0.0000 -0.6475 0.0000 -0.6499 0.0000 

area 0.1408 0.0000 0.1504 0.0000 0.1920 0.0000 

area^2 -0.1063 0.0000 -0.1105 0.0000 -0.1190 0.0000 

obsLabo 0.2500 0.0000 0.2538 0.0000 0.2622 0.0000 

obsLabo^2 -0.1055 0.0000 -0.1081 0.0000 -0.1100 0.0000 

reqLabo 0.1244 0.0000 0.1291 0.0000 0.1291 0.0000 

mRet 0.0107 0.3453 0.0090 0.4300 0.0090 0.4286 

dpay 0.8222 0.0000 0.8086 0.0000 0.7421 0.0000 

dpay^2 -0.3591 0.0000 -0.3588 0.0000 -0.3477 0.0000 

laboObs/Req -0.0382 0.0000 -0.0386 0.0000 -0.0396 0.0000 

landLease/Tot -0.0405 0.0000 -0.0420 0.0000 -0.0441 0.0000 

mretrun/reqLabo 0.0894 0.0000 0.0926 0.0000 0.1006 0.0000 

dpay/reqLabo 0.0829 0.0000 0.0813 0.0000 0.0723 0.0000 

C.DPayLabo 0.0661 0.0000 0.0752 0.0000 0.0967 0.0000 

C.mRetLabo 0.0525 0.0001 0.0574 0.0000 0.0638 0.0000 

hasMilk -0.2467 0.0000 -0.2449 0.0000 -0.2254 0.0000 

hasPoultry 0.0058 0.3791 0.0055 0.4026 0.0061 0.3554 

hasSheep 0.0307 0.0000 0.0290 0.0001 0.0209 0.0031 

hasSows 0.0375 0.0000 0.0389 0.0000 0.0421 0.0000 

W_mRet -0.0223 0.0480 -0.0053 0.5805 -0.0179 0.0539 

W_dpay -0.3040 0.0000 -0.2653 0.0000 -0.2708 0.0000 

W_area 0.0633 0.0000 0.0774 0.0000 0.0721 0.0000 

W_reqLabo 0.0886 0.0000 0.0517 0.0004 0.0617 0.0000 

W_landLease/Tot -0.0441 0.0000 -0.0482 0.0000 -0.0371 0.0000 

W_FarmWage 0.0490 0.0000 0.0272 0.0027 0.0345 0.0015 

W_C.inco 0.0639 0.0000 0.0394 0.0000 0.0498 0.0000 

W_hasMilk 0.0765 0.0000 0.0892 0.0000 0.0774 0.0000 

W_hasPoultry 0.0059 0.3131 0.0034 0.5631 0.0094 0.1084 

W_hasSheep 0.0018 0.8075 0.0043 0.5643 0.0186 0.0090 

W_hasSows 0.0304 0.0000 0.0213 0.0004 0.0144 0.0163 

n 

 
64488 

 
64488 

 
64488 

% Correct predictions Model 72.80 

 
72.78 

 
72.63 

% Correct predictions Naive 62.72 

 
62.72 

 
62.72 

Note: Neighbors defined as 1) all farms with a radius of 2km, 2) five nearest farms and 3) all farms 

within a radius of the regional median furthest driving distance to field. 
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Appendix F. Correct Predictions of Farm Survival between 1999 and 2009 with 

Different Model Specification with Respect to the Absolute Size of a Farm 

 

Naive All other non-spatial explanatory variables  Full 

Model 

        and Area 

and obs. 

Labor 

and est.req 

Labor 

and direct 

payments 

% Correct 62.72 67.58 71.82 71.48 71.85 72.49 72.59 

Diff. to full M. -9.88 -5.01 -0.78 -1.11 -0.75 -0.11 0.00 

Note: Presented results refer to the non-spatial binary choice probit model. 

Appendix G. Correlation Coefficients between Different Measures of the Absolute 

Farm Size 

  Area 

Obs. labor 

input 

Est. labor 

requirement 

Total direct 

payments 

Area  1 0.44 0.65 0.62 

Obs. labor input 

 

1 0.78 0.70 

Est. labor requirement 

  

1 0.85 

Total direct payments 

   

1 

Source: Own calculation. 

 

Appendix H. Correct Predictions of Farm Survival between 1999 and 2009 with 

Different Model Specification with Respect to the On-Farm Wage  

 

Naive All non-spatial explanatory variables except Full Model 

    

on-farm 

wage 

changes in 

on-farm 

wage 

on-farm wage and 

changes in on-farm 

wage   

% Correct 62.72 72.53 72.34 72.17 72.59 

Diff. to full M. -9.88 -0.07 -0.26 -0.43 0.00 

Note: Presented results refer to the non-spatial binary choice probit model. 
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Appendix I: Description of the Bootstrap to derive the interval of the difference in 

predicted probabilities 

In order to derive the interval of the average change in predicted survival 

probabilities a bootstrap procedure is applied to the scenario calculations. 

The following steps are performed specifically: 

1. Relying on the asymptotic normality of the ML estimator a random draw 

from  ˆ,rβ β Γ , with β̂  and Γ  being the ML estimate and 

covariance, respectively, is obtained. 

2. For rβ  the scenario simulation are performed and the mean change in 

survival probability between the baseline and the scenario is calculated.  

3. Step 1 and 2 are repeated for 1,...,r R . 

4. Based on the bootstrap sample of size 2000R   the 95% interval of 

predicted probabilities is calculated as the 2.5% and 97.5% quantile of the 

sample. 
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Appendix J. Average change in survival probability of municipalities for a 10% 

reduction of all direct payment rates 

 

Non-Spatial model results   Spatial model results 

 

Source: Own illustrations. Shape files were derived from the GADM database (www.gadm.org), 

version 2.0.  
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Appendix K. Average change in survival probability of municipalities for an 

abolishment of the structural dimension of direct payments in which rates are set 

equal to the lowest rates currently paid  

 

Non-Spatial Model results   Spatial Model results 

 

Source: Own illustrations. Shape files were derived from the GADM database (www.gadm.org), 

version 2.0.  


